3'UTR ALTERATIONS IN CONNECTION WITH ESTROGEN RECEPTOR-ALPHA IN BREAST CANCER

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERVE ÖYKEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGY

FEBRUARY 2014

Approval of the thesis:

3'UTR ALTERATIONS IN CONNECTION WITH ESTROGEN RECEPTOR-ALPHA IN BREAST CANCER

submitted by **MERVE ÖYKEN** in partial fulfillment of the requirements for the degree of **Master of Sciencein BiologyDepartment**, **Middle East Technical University**by,

Prof. Dr. Canan Özgen	
Dean, Graduate School of Natural and Applied Sciences	
Prof. Dr. Gülay Özcengiz Head of Department, Biology	
Assoc. Prof. Dr. A.Elif Erson-Bensan Supervisor, BiologyDept., METU	
ExaminingCommitteeMembers:	
Assoc. Prof. Dr. Mesut Muyan BiologyDept., METU	
Assoc. Prof. Dr. A.Elif Erson-Bensan BiologyDept., METU	
Assoc. Prof. Dr. SreeparnaBanerjee BiologyDept., METU	
Assist. Prof. Dr. Mehmet Somel BiologyDept., METU	
Assoc. Prof. Dr. Özlen Konu MolecularBiologyand Genetics Dept.,Bilkent University	

Date: 06.02.2014

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: MerveÖyken

Signature:

ABSTRACT

3'UTR ALTERATIONS IN CONNECTION WITH ESTROGEN RECEPTOR-ALPHA IN BREAST CANCER

Öyken, Merve MSc., Department of Biology Supervisor: Assoc. Prof. Dr. A. ElifErson-Bensan

February 2014, 110 pages

Alternative polyadenylation (APA) generates transcript isoforms with different 3'UTR (untranslated region) lengths due to the position of poly(A) tail. This difference may alter the stability and location of mRNA isoforms in cell. APA has been observed in various cellular states. For example, preferential use of distal poly(A) sites and 3'UTR lengthening occurs during development. However, in proliferation, use of poly(A) sites result with 3'UTR shortening for a large group of genes. In cancer cells, APA seems to be deregulated based on few observations. Widespread 3'UTR shortening was reported in valous cancers. For example, our group revealed 3'UTR shortening of CDC6induced by estrogen in breast cancer cells. In this study, we aim to investigate the 3'UTR alterations in estrogen receptor (ER)-positive breast cancer patients and cell models. For this purpose, publicly available microarray datasets were analyzed by a probe-based microarray analysis tool (APADetect). Based on the means of proximal to distal poly(A) site ratios of individual transcripts, the SLR (short-long ratio) was calculated as an indication of short vs. long 3'UTR abundance. Significance Analysis of Microarrays (SAM) determined significant genes that had 3'UTR shortened or lengthened genes. These genes were further analyzed in silico to reveal 3'UTR alterations in ER(+) breast

cancer patients compared to normal breast samples. Interestingly, we did not detect APA based changes in patients in connection with relapse information. Further studies of APA in an ER α transfected MDA-MB-231 cell line model revealed a complicated picture of APA possibly as a consequence of direct and indirect effects of ER α . Our results suggest involvement of APA mechanisms in ER α action mechanisms. Possible link between ER α regulated transcription and APA remains to be elucidated.

Keywords: Alternative Polyadenylation, 3'UTR, Estrogen Receptor, Breast Cancer

MEME KANSERİNDE ÖSTROJEN RESEPTÖR-ALFA'YA BAĞLI 3'UTR DEĞIŞİMLERİ

Öyken, Merve YüksekLisans, BiyolojiBölümü TezYöneticisi: Doç. Dr. A. ElifErson-Bensan

Şubat 2014, 110sayfa

Alternatif poliadenilasyon (APA) farklı 3'UTR (transle olmayan bölge) uzunluklarına sahip farklı transkript izoformlar meydana getirir. Bu farklılıklar mRNA'nın hücre içindeki stabilitesini ve lokasyonunu değiştirebilir. 3'UTR değişimleri birçok hücresel durumda gözlemlenir. Örneğin, gelişim sırasında 3'UTR uzaması görülürken, proliferasyon sırasında kısalma gözlemlenmektedir. Kanser hücrelerinde de düzensiz bir APA söz konusudur. Birçok çalışmada yaygın olarak 3'UTR kısalması rapor edilmiştir. Meme kanseri hücrelerinde östrojen etkisiyle CDC6 geninde 3'UTR kısalması olduğunu daha önceki çalışmalarımızda göstermiştik. Bu çalışmada ise, östrojen reseptör (ER)-pozitif meme kanseri hastalarında ve hücre modellerindeki 3'UTR değişimlerinin incelenmesi amaçlanmıştır. Bu amaçla, halka açık mikroçip datasetleriprob-tabanlı mikroçip edildi. Her analiz aracı (APADetect) ile analiz bir transkriptin proksimal/distalpoly(A) bölgesi oranlarının ortalamalarına bağlı olarak, kısa vs. uzun 3'UTR varlığının göstergesi olan kısa-uzun oranı (SLR) hesaplandı.

Mikroçiplerin Anlamlılık Analizi (SAM) ile anlamlı olarak 3'UTR'si uzayan ya da kısalan genler belirlendi. Daha sonra, bu genler in siliko analize tabi tutuldu. Bu analizlerin sonucunda ER(+) meme kanseri hastalarında, normal meme örneklerine kıyasla, 3'UTR değişimleri saptandı. Fakat hastalığın nüks ettiği hastalarda, nüks etmeyenlere göre, herhangi bir değişim bulunmadı. ERa'nın direkt ve indirekt etkilerinin sonucu olarak, ERatransfekte edilmiş MDA-MB-231 hücre hattı modelinde ise daha karmaşık bir APA tablosu meydana geldi. Sonuçlarımız ERa'nın etki mekanizmalarında APA mekanizmalarının da dahil olduğunu önermektedir. ERa'nın düzenlediği transkripsiyon ve APA arasındaki muhtemel bağlantı tam olarak açıklığa kavuşturulamamıştır.

Anahtar Kelimeler: Alternatif Poliadenilasyon, 3'UTR, Östrojen Reseptör, Meme Kanseri

To my family

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my supervisor Assoc. Prof. Dr. A. ElifErson-Bensan for her endless support, motivation, and immense knowledge. Without her inspiring guidance and encouragement, I could not have accomplished this thesis successfully.

I would like to thank all my thesis committeemembers; Assoc. Prof. Dr. MesutMuyan, Assoc. Prof. Dr. Sreeparna Banerjee, Assist. Prof. Dr. Mehmet Somel, and Assoc. Prof. Dr. ÖzlenKonu.

I would like to express my sincere gratitude to Assoc. Prof. Dr. Tolga Can for the bioinformatics support. I am deeply grateful to Assoc. Prof. Dr. MesutMuyan for his invaluable suggestions and inspiration.

I would like to thank to all previous and current members of Erson Lab; BegümAkman, TanerTuncer, NihanÖzdemirler, Tuna Çınkıllı, ÜlküUzun, Shiva Akhavan, AyşegülSapmaz, and CansaranSaygılı for providing a fun filled environment, for their precious friendship, and for their advices.

I would like to thank to Muyan Lab members; GizemGüpür, PelinYaşar, SırmaDamla User, GamzeAyaz, and Hasan Hüseyin Kazan for their support and friendship.

I would like to thank to Banerjee Lab for sharing their resources.

I am deeply thankful to my friends for their encouragement, moral support, and suggestions.Many thanks to M. Şeyma Ceyhan for her friendship, patience, and motivation throughout my undergraduate and graduate studies.

I would like to express my endless gratitude to my family; my mother İncilayÖyken, my father EthemÖyken, and my brother UğurÖyken. I wish to offer my deepest

thanks to my cousin Senem Ayşe Haser who was always beside me to motivate me during the happy and tough moments of my life.

I would like to thank TUBITAK for support (112S478).

TABLE OF CONTENTS

ABSTRACT v
ÖZ vii
ACKNOWLEDGEMENTS x
TABLE OF CONTENTS xiii
LIST OF TABLES xv
LIST OF FIGURES xvi
CHAPTERS
1. INTRODUCTION 1
1.1Alternative polyadenylation1
1.1.13' end processing of pre-mRNA1
1.1.2Mechanism of polyadenylation2
1.1.2.1Types of polyadenylation
1.1.2.2APA-regulating <i>cis</i> -acting elements
1.1.2.3 <i>Trans</i> -acting factors regulating APA
1.1.2.4Chromatin and APA6
1.1.2.5Interaction between transcription and APA7
1.1.2.6Interaction between splicing and APA9
1.1.3APA sites and APA events10
1.1.1Biological processes involving APA12
1.2Estrogen receptor signaling14
1.2.1Types of estrogen receptor signaling15
1.2.2Estrogen receptor signaling and breast cancer

1.3Aim of the study	
2. MATERIALS AND METHODS	
2.1 Microarray Datasets	
2.2APADetect and SAM	
2.3Statistical Analyses	
2.4Ontology Search	
3. RESULTS AND DISCUSSION	
3.1APA in GSE2034	
3.1.1APA in ER(+) patients	
3.1.2APA and Relapse	
3.2APA in GSE7390	
3.2.1APA in ER(+) patients	
3.2.2APA and Relapse	
3.3Role of ER in APA Regulation	
3.3.1APA in ERα-infected MDA-MB-231	
3. CONCLUSION	
REFERENCES	
APPENDICES	
A. PATIENT CHARACTERISTICS	
B. SIGNIFICANTLY 3'UTR ALTERED GENES AS A RESULT OF	
APADETECT AND SAM	

LIST OF TABLES

TABLES

Table 3.1 The common alternatively polyadenylated genes of the two ER(+) breast
cancer patient datasets
Table 3.2 The 3'UTR shortening genes in the two datasets.52
Table 3.3 The 3'UTR lengthening genes in the two datasets. 54
Table 3.4 The 3'UTR shortening genes in the ER α -infected MDA-MB-231 cells63
Table 3.5 The 3'UTR lengthening genes in the ER α -infected MDA-MB-231 cells. 64
Table A.1Patient characteristics of GSE2034 dataset. 87
Table A.2 Patient characteristics of GSE7390 dataset
Table A.3 Normal breast samples from GSE20437, GSE9574, GSE6883, GSE26910,
GSE21422, GSE3744, and GSE2361 datasets
Table A.4 Samples of GSE9761 dataset. 96
Table B.1 Significantly 3'UTR shortened genes in ER(+) patients from GSE2034
compared to normal breast samples97
Table B. 2 Significantly 3'UTR lengthened genes in ER(+) patients from GSE2034
compared to normal breast samples
Table B.3 Significantly 3'UTR shortened genes in ER(+) patients from GSE7390
compared to normal breast samples
Table B.4 Significantly 3'UTR lenghened genes in ER(+) patients from GSE7390
compared to normal breast samples104
Table B.5 Significantly 3'UTR shortened genes in ER α -infected MDA-MB-231 cells
compared to control
Table B.6 Significantly 3'UTR shortened genes in ERE-binding defective ERα-
infected MDA-MB-231 cells compared to ERα-infected MDA-MB-231 cells 108
Table B.7 Significantly 3'UTR lengthened genes in ERE-binding defective ER α -
infected MDA-MB-231 cells compared to ERα-infected MDA-MB-231 cells 110

LIST OF FIGURES

FIGURES

Figure 3.9 S	SAM graph of normal samples vs. ER(+) samples comparison
Figure 3.10	Scatter plots of 3'UTR shortened transcripts in $ER(+)$ samples compared
	to controls
Figure 3.11	ROC analyses of the 3'UTR shortened transcripts in ER(+) samples
	compared to controls
Figure 3.12	Scatter plots of 3'UTR lengthened transcripts in ER(+) samples
	compared to controls
Figure 3.13	ROC analyses of the 3'UTR lengthened transcripts in ER(+) samples
	compared to controls
Figure 3.14	The comparison of the GSE2034 and GSE7390 datasets' APA results. 49
Figure 3.15	Scatter plots of 3'UTR shortened transcripts in $\text{ER}\alpha\text{-infected}$ MDA-MB-
	231 compared to control group
Figure 3.16	SAM graph of ER α -infected MDA-MB-231 compared to mutant ER α -
	infected group
Figure 3.17	Scatter plots of 3'UTR shortened transcripts in the ER α -infected MDA-
	MB-231 compared to mutant ERα-infected cells
Figure 3.18	Scatter plots of 3'UTR lengthened transcripts in the $\text{ER}\alpha\text{-infected}$ MDA-
	MB-231 compared to mutant ERα-infected cells

CHAPTER 1

INTRODUCTION

1.1 Alternative polyadenylation

1.1.1 3' end processing of pre-mRNA

Following transcription, precursor mRNAs (pre-mRNAs) are processed into mature mRNAs in the nucleus. During maturation, poly(A) tail is added to the 3' end of almost all mRNAs by template-independent poly(A) polymerases (PAPs)(Eckmann et al., 2011). The length of poly(A) tails differs among species; however, there is an average length of 250-300 Adenines in humans and 70-80 in yeast (Elkon et al., 2013). Poly(A) tail provides transport of the mRNA from the nucleus to cytoplasm, mRNA stability, and efficient translation(Colgan and Manley, 1997). The variation of the length of the poly(A) tail changes some aspects of mRNA characteristics. mRNAs having relatively long tails have higher half-life in cytoplasm than those with shorter tails.An insufficient tail length leads to untranslation or enzymatic degradation of the mRNA (D'Ambrogio et al., 2013). Hence, the length of 3'UTRs of mRNAs is another critical factor determining protein levels. In this regard, polyadenylation mechanisms become important for 3'UTR length regulation.

1.1.2 Mechanism of polyadenylation

Poly(A) tail is added to pre-mRNA in a two-step reaction: First, pre-mRNA is cleaved endonucleolytically, and then synthesis of the tail occurs(Di Giammartino et al., 2011). This reaction requires many multi subunit protein complexes (Figure 1.1). The main proteins for the formation of 3' end are CPSF (cleavage and polyadenylation specificityfactor), CstF (cleavage stimulation factor), CFIm and CFIIm(cleavage factors Im and IIm), poly(A) polymerase (PAP), and RNA polymerase II (RNAP II)(Shi et al., 2009).

Figure 1.1 Proteins involved in cleavage and polyadenylation processes. Several proteins are involved in cleavage and polyadenylation processes. Cleavage is performed by CPSF, CSTF, CFIm, and CFIIm. PAP and poly(A)-binding proteins (PABs) are required for cleavage and polyadenylation. Poly(A) signals (PAS) represent the cleavage site. Upstream and downstream sequence elements (USE and DSE) enhance cleavage efficiency. Figure is taken from (Elkon et al., 2013).

Poly(A) signals (PAS) are6-nucleotide motifs that specifies the cleavage site of mRNA. They are located in the 15-30 nucleotides upstream of the cleavage site. AAUAAA is the common sequence of PAS; however, ten additional PAS sequences were recognized(Proudfoot, 2011). UGUA motif which is located 40-100 nucleotides upstream of the cleavage site is recognized by CFIm and CFIIm(Brown and Gilmartin, 2003). Upstream sequence elements (USE) and downstream sequence elements (DSE) are Uor GU-rich sequences toimprove cleavage efficiency.Poly(A)-binding proteins (PABs) are needed for effective polyadenylation and the length of the poly(A) tail is controlled by PABs.

1.1.2.1 Types of polyadenylation

50% of human genes contain multiple poly(A) sites (Tian et al., 2005). As a result, alternative polyadenylation(APA) is likely to generate different isoforms with different 3'UTR lengths(Andreassi and Riccio, 2009).

There are four types of APA;1) Tandem 3'UTR APA, 2) Alternative Terminal Exon APA, 3) Intronic APA, and 4) Internal Exon APA (Figure 1.2). In tandem 3'UTR type of APA, there are two polyadenylation sites in the 3'UTR. As a result of APA, the two transcripts share the same coding sequence, but have different 3'UTR lengths. This type is one of the most common types observed. Alternative terminal exon APA, another common type of APA, creates two transcripts that differ in their coding sequences and 3'UTRs. When proximal poly(A) site is in an intron, an internal exon becomes the terminal exon, so part of an intron becomes 3'UTR. This type of APA is called intronic APA.In internal exon APA,proximal poly(A) site is in an exon. Proximalpolyadenylation within the coding region is observed(Elkon et al., 2013).

Figure 1.2 Types of alternative polyadenylation.In tandem 3'UTR APA type, the coding sequence does not change as a result of APA, only 3'UTR changes. In the other isoforms, the coding sequence, as well as 3'UTR, differs between the alternatively polyadenylated isoforms. Figure is taken from (Elkon et al., 2013).

1.1.2.2 APA-regulating cis-acting elements

The consensus sequence AAUAAA is the most frequently used *cis*-acting element (Tian et al., 2005). However, there are newly discovered several sequences near poly(A) sites (Figure 1.3). A TTTTTTTT motif and an AAWAAA motif (W denoting A or T) are positioned upstream of the poly(A) site. CCAGSCTGG sequence (S denoting C or G) is found downstream of the poly(A) site. They are

located in intragenic and intergenic poly(A) sites, but they are not found with the AAUAAA motif (Ozsolak et al., 2010). Moreover, stem-loop motifs and secondary structures in 3'UTRs are likely to have roles in the regulation of mRNA stability. Such structuresmay also improve or suppress the modulation of APA by regulating 3' end processing proteins (Di Giammartino et al., 2011).

Figure 1.3 The *cis*-acting elements in **3'UTR.** *Cis*-acting elements can be divided into two categories. The first category is that miRNA binding sites, AU-rich element (ARE), cytoplasmic polyadenylation element (CPE), and GU-rich elements are classified as post-transcriptional/translational elements. The second category is that cleavage and polyadenylation sites include U-rich element (USE) and poly(A) signal(PAS). Figure is retrieved from (Sun et al., 2012).

1.1.2.3 Trans-acting factors regulating APA

Recent studies suggested RNA-binding proteins (RBPs) to be involved in APA regulation. Polyadenylation binding protein nuclear 1 (PABPN1) is one example. It inhibitsAPA at the proximal sites in 3'UTRs (Jenal et al., 2012). Another RBP is neuronal ELAV (embryonic lethal, abnormal vision-Drosophila) protein. It suppresses cleavage at proximal poly(A) sites(Mansfield and Keene, 2012). Another example to inhibitory proteins is polypyrimidine-tract-binding protein 1 (PTB1). It competes with CSTF64 for binding to DSEs(downstream sequence elements) (Castelo-Branco et al., 2004).

Cytoplasmic polyadenylation element binding protein 1 (CPEB1) binds to *cis*regulatory cytoplasmic polyadenylation element (CPE) in cytoplasm and recruits CPSF and cytoplasmic poly(A) polymerase GLD2 [poly(A) polymerase associated domain containing 4) to the PAS element. In addition to this regulation, when CPEB1 binds to CPE near to proximal poly(A) sites in the nucleus, 3' end processing proteins are also recruited to this site and generateshorter 3'UTRtranscripts (Bava et al., 2013).

1.1.2.4 Chromatin and APA

Epigenetic and chromatin modifications are also thought to influence APA patterns. There is a depletion of nucleosomes at poly(A) sites; whereas, there is an enrichment at regions downstream of these sites. This is due to the AT rich sequence of poly(A) sites resulting in poor affinity to nucleosomes. Eventually, nucleosome positioning affects APA. When a poly(A) site is highly depleted of nucleosomes and its downstream is highly enriched with nucleosomes, this poly(A) site becomes stronger, meaning; more preferable than other sites (Spies et al., 2009). DNA methylation is another example to the relation between chromatin and APA. This relation was firstly confirmed in mouse cells.*H13 and Herc3genes* have two retrogenes (*Mcts2* and *Napl1*, respectively) in their introns. On the maternal allele, both genes are methylated, so they are not active; however, on the paternal allele, they are not methylated, so they are active. The host gene uses its intronicpoly(A) site when the transcription of the retrogene occurs on the paternal allele. In contrast, the host gene uses its distal poly(A) site on the maternal copy in which the retrogene is silenced (Cowley et al., 2012; Wood et al., 2007). These observations suggest that the regulation of APA is also controlled by complex chromatin and epigenetic modifications.

1.1.2.5 Interaction between transcription and APA

The coupling between 3' end processing and transcription has been reported earlier(Buratowski, 2005). The specific relation between APA and transcription is of interest. There are two principles about how APA and transcription is associated.

The first one is that cleavage efficiency of poly(A) tail and use of proximal sites increase with the interplay between mechanisms of transcription and 3' end processing (Di Giammartino et al., 2011). This claim was supported with RNA polymerase II-associated factor complex (PAF1c). It has roles in both transcription elongation and 3' end processing machinery(Nagaike et al., 2011). When CDC73 (one of the subunits of PAF1c) was knocked down, one of the targets of CDC73 had a longer 3'UTR. This indicates that PAF1c enhances proximal site cleavage(Rozenblatt-Rosen et al., 2009). In a similar manner, ELL2 (transcription elongation factor) supports loading of CSTF on the mechanism of transcription and increases the use of proximal poly(A) site of IgM(Martincic et al., 2009).

The second principle is the kinetic coupling. Because the proximal poly(A) sites are firstly transcribed, they first meet with the 3' end processing factors; therefore, the promixal sites are more favorable than distal sites (Shi, 2012). It means that longer distance between the proximal and distal poly(A) site results with more use of proximal sites than distal ones. Furthermore, when transcription elongation rate decreases, the use of proximal poly(A) sites increases developmental processes rather than proliferation (Pinto et al., 2011) (Figure 1.4).

Figure 1.4Kinetic coupling of transcription and APA.The rate of the RNA Pol II may determine the choice of poly(A)site. When it is fast, distal poly(A) site is chosen, whereas when it is slow, proximal poly(A) site is preferred. Figure is adapted from (Elkon et al., 2013).

1.1.2.6 Interaction between splicing and APA

Cleavage efficiency increases when splicing and polyadenylation factors physically interact at the terminal introns of pre-mRNA(Millevoi and Vagner, 2010). Alternative terminal exon and intronic APA events are influenced by this interaction. There are splicing-related regulatory motifs in 3'UTRs, thus both splicing and APA may be regulated by the factors binding to these motifs.

One example to this interaction is NOVA2 (neuron-specific RNA binding protein). It is a splicing factor that binds to 3'UTRs.Transcripts with longer 3'UTRs are produced by the help of NOVA2. This claim was tested with *Nova2*-knockout mouse brains, resulting in shortening of 3'UTR as compared to the wild type (Licatalosi et al., 2008).

The roles of CPE (cytoplasmic polyadenylation element) and CPEB1 (cytoplasmic polyadenylation element binding protein) in polyadenylation mechanismwere mentioned earlier. CPEB1 binds to CPE and recruits CPSF (Bava et al., 2013). Both CPEB1 and CPEare thought to be involved in APA along with alternative splicing. If alternative splice sites have CPEs, splicing machinery may be interrupted by binding of the CPEB1-CPSF to that CPEs (Bava et al., 2013).

Another example is a spliceosome component U1 (small nuclear ribonucleoprotein). When U1 was knocked-down, intronicpoly(A) sites were preferred (Figure 1.5). Therefore, U1 may have a role in protection of pre-mRNAs from early cleavage. In addition, when transcription rate increases, U1 shortage is observed, leading to shorter transcripts(Kaida et al., 2010).

Figure 1.5Interaction between splicing and APA through U1 small nuclear ribonucleoprotein. When U1 involves in spliceosomecomplex, it prevents the use of intronic proximal poly(A) site. However, when U1 is not present, both splicing and APA machineries are affected. Figure is taken from (Elkon et al., 2013).

1.1.3 APA sites and APA events

Determining the APA sites in the genome may provide better understanding about the genes and their expressions. There are several ways to explore these sites in the genome with the help of bioinformatics. Expressed sequence tag (EST) databases provide data for searching poly(A) sites. Many unreported polyadenylation sites were discovered by analyzing the EST sequences(Gautheret et al., 1998). Nevertheless, these databases provide limited information because the composition of EST databases is in the frame of biological circumstances. Furthermore, given the number of poly(A) sites predicted, experimental confirmation of these sites becomes important.

Microarray technology is another method to gain experimental evidence about functional APA sites. Tandem 3'UTR APA is the mostly analyzed event. Probe positions may be useful to determine expression level differences of 3'UTR of isoforms. However, there are some limitations concerning the use of this technology. The array probe positions restrict the analysis. In addition, the analysis is made with the known poly(A) sites; therefore, it may miss unknown sites. Furthermore, transcripts having more than two polyadenylation sitescould be difficult to analyze.

Sequence-based approaches are also of interest to study poly(A) sites with the help of advanced RNA sequencing (RNA-seq) technology.Detection of short isoforms and in some cases mapping novelpoly(A) sites can be achieved by analyzing the RNA-seq data. Unlike other APA analysis methods, unannotated transcripts can also be discoveredusing this technique(Pickrell et al., 2010). However, the standard RNA-seq data may notextend beyond the polyadenylation sites and specific optimizations may be needed.

Then, deep-sequencing techniques become more suitable for APA analysis.Genes having three or more poly(A) sites, which may not be probably discovered using microarray techniques, can be detected by deep-sequencing techniques. The difficulties in statistical analysis of multiple poly(A) sites can alsobe overcome with new analysis methods(Fu et al., 2011).

In short, different approaches are being developed to specifically determine the 3' ends of mRNAs. These techniques will provide more accurate APA analysis and will better reveal the extent of APA in normal and in cancer cells(Sun et al., 2012).

1.1.1 Biological processes involving APA

Many studies have reported APAto be involved in various biological processes. Differences in 3'UTR lengths of transcripts have been observed in different cell contexts and in different pathways.

One of the alternatively polyadenylated genes discovered over 30 years ago is the immunoglobulin M (IgM) heavy-chain gene. When mouse B cells were activated, 3'UTR shorteningof IgM transcript was observed (Alt et al., 1980). The use of proximal poly(A) site results in the secreted form of the protein, rather than membrane-bound form (Peterson and Perry, 1989).

Later, high-throughput analysis revealed 3'UTR shortening events in T cells. Expression of short isoforms of 86% of genes was increased in activated and proliferating T cells(Sandberg et al., 2008). These examples suggest a correlation between cell proliferation and tandem shortening of 3'UTR.

Brain-derived neurotrophic factor (BDNF) is another case of APA regulation taking place in neurons. APA does not change the coding sequence of the two isoforms of *BDNF*, but changes the 3'UTR length. These two isoforms, when translated,were found in different subcellular locations. The short isoform localizes at somata, whereas the long one is in dendrities(An et al., 2008). Based on this study, APA seems to alter the subcellular localization of proteins.

Furthermore, transcripts with longer 3'UTRs are more preferred in spinal cord and brain (Zhang et al., 2005b). However, when there are stimulations in the environment, truncated proteins or transcripts with shorter 3'UTR are produced. As a result, the equilibrium in the neuronal tissues is disrupted. This may be due to the fact that these tissues have to respond rapidly to environmental stimuli. The transcription has to be very fast to produce the transcripts of the respondent proteins. Therefore, the proximal poly(A) sites may be chosen (Ji et al., 2011). This case is another example that the transcription and APA is coupled (Figure 1.6).

Figure 1.6The relation of APA and transcriptional activity. Shorter transcripts are produced when transcriptional activity is high, whereasduring low transcriptional activity, unprocessed mRNAs which are degraded or longer transcripts are produced. Due to the low number of destabilizing elements in the 3'UTRs of shorter transcripts, they are more stable than longer ones. TSS indicates transcription start site and pA refers to poly(A) site. Figure is taken from (Ji et al., 2011).

On the other hand, in developmental processes, 3'UTR lengthening seems to be more prominent than shortening event. When mouse C2C12 myoblast cells are differentiated into myotubes, proximal poly(A) sites are not processed. This can be due to the fact that during differentiation, 3' end processing genes are downregulated(Ji et al., 2009).

Alternative polyadenylation is also involved in tumorigenesis. Because microRNAs (miRNA) are highly deregulated in cancer, it is expected that the 3'UTRs of transcripts change due to the targeting of these regions by miRNAs. Global 3'UTR shortening is observed in primary breast cancer samples *in vitro*(Fu et al., 2011). For

example, when Cyclin D2 is in the shorter isoform, there are more MCF7 cells in the S phase than cells having longer isoform. In addition, IMP-1 (Insulin-like growth factor 2,mRNA binding protein 1) is an RNA-binding protein which is upregulated in many cancers. Its shorter isoform enhances oncogenic processes(Mayr and Bartel, 2009).

Possible mechanisms have been proposed for the use of short 3'UTRs in cancer. One of them is genomic abnormalities. Cyclin D1 has shorter isoforms in mantle cell lymphoma tumors (Rosenwald et al., 2003). The differences between these isoforms are only in 3'UTRs. Genomic deletionsor point mutations resulting in *de novo*poly(A) sites could be the main reasons for shortened isoforms(Wiestner et al., 2007). Furthermore, translocation may occur between the 3'UTRs of the genes resulting in APA. *HMGA2*(high mobility group AT-hook 2) gene is an example to this situation. It changes its 3'UTR with other transcripts by translocation. As a result of this new 3'UTR structure, miRNA regulation is altered(Lee and Dutta, 2007).

1.2 Estrogen receptor signaling

Estrogen receptor (ER) is a nuclear hormone receptor having roles in various parts of the human body. There are two forms of ER: ER α and ER β which are transcribed from two different genes on different chromosomes (Bjornstrom and Sjoberg, 2005). They have domains which are evolutionarily conserved. DNA-binding domain (DBD) is the main domain found in both ER α and ER β interacting with DNA. The domain which ligands are binding is called the ligand-binding domain (LBD). In addition, there are two activation function (AF) domains allowing thebinding of several coregulatory proteins when the ER is bound on DNA (Nilsson et al., 2001). Figure 1.7 is a representative picture of ER structures.

Figure 1.7Structures of ER\alpha and ER\beta.Four domains are involved in both receptors. AF-1 and AF-2 domains are the two activation function domains. DBD and LBD are the DNA-binding and ligand-binding domains, respectively. The percentages represent the homology between the two receptors. Several kinases can phosphorylate ER α leading to diverse cellular responses. Figure was retrieved from(Roman-Blas et al., 2009).

Estrogen receptors are expressed in bone, brain, and the mammary gland (Matthews and Gustafsson, 2003). However, ER α and ER β may not be present in the same tissue. Although they may form heterodimers, ER β is thought to repress the activity of ER α if they are expressed in the same cell(Cheskis et al., 2007).

1.2.1 Types of estrogen receptor signaling

Estrogen receptors are classified as ligand-dependent transcription factors. The main action of these receptors is the ability to bind to 17β -estradiol (E2).Upon binding of

the ligand, the LBD changes conformation of the receptors. This changing leads to the activation of coactivator proteins (Rosenfeld and Glass, 2001). As a result, receptors dimerize and bind to specific sequences called estrogen response elements (EREs) found on the promoters of the estrogen-regulated genes (Nilsson et al., 2001).

When the promoters of the genes do not have EREs, they can be regulated by ER through other mechanisms. One of them is that ER can bind to other transcription factors, such as SP1 (specificity protein 1) and DBC1 (deleted in breast cancer 1),in the nucleus, and then they co-bind to specific transcription factor sites(Gottlicher et al., 1998; Porter et al., 1997; Yu et al., 2011). Furthermore, ERs can be activated through growth factor receptors. Activation of these receptors results in the phosphorylation of ER. The phosphorylated receptor can bind to DNA. This mechanism is an example of the ligand-independent activation of ER(Bjornstrom and Sjoberg, 2005). In addition to the genomic association of ERs and estrogen, estradiolcan also affect the ERs on membrane. Protein-kinase cascades are responsible for this action. In this mode, ER does not bind to DNA, but activates other transcription factors to regulate gene expression (Losel and Wehling, 2003). These mechanisms were summarized in Figure 1.8.

Figure 1.8Signaling mechanisms of estrogen receptor.Classical type of ER signaling is the direct signaling. Dimerized ER due to E2 binds to DNA. ERE-independent mechanism is the tethered signaling. ER binds to DNA via other transcription factors. Membranous actions of ER are the non-genomic signaling through second messengers (SM). ER does not bind to DNA, but it indirectly regulates the physiological effects like nitric oxide (NO) level or ion channel mechanisms in the cell. Ligand-independent type of action occurs via growth factor signaling. ER can bind to DNA and regulate gene expression when phosphorylated with active kinases. Figure was taken from(Heldring et al., 2007).

1.2.2 Estrogen receptor signaling and breast cancer

The relationship between estrogen and carcinogenesis has been investigated in many studies. It appears that ER signaling is associated with many cancer types, such as colon, lung, prostate, ovary, and breast (Folkerd and Dowsett, 2010).

Binding of estrogen to its receptor activates many cellular processes like cell proliferation and progression of cell cycle. For example, the expressions of c-Myc and cyclin D1 are enhanced by the ER α signaling, resulting in increased G1-S transition in cells (Musgrove et al., 2011);(Caldon et al., 2010). ER β acts in an opposite manner. It suppresses the cell proliferation as a response to E2(Strom et al., 2004).

Among various targets, estrogen receptor signaling also regulates Bcl-2 and Bcl- X_L expression in breast cancer. The upregulation of these anti-apoptotic proteins results in the inhibition of apoptosis (Gompel et al., 2000). Moreover, the indirect activation of MAPK (mitogen activated protein kinase) and PI3K/Akt(Phosphatidylinositol 3-kinase/Protein kinase B) pathways by E2-ER α interaction promotes cell survival (Musgrove and Sutherland, 2009).

Our group also found the first link between E2 and APA. 3'UTR shortened isoform of *CDC6*(cell division cycle 6) was found to be expressed 38% more than the lengthened isoform in response to E2 treatment to MCF7 and T47D breast cancer cell lines. The protein level of CDC6 was also increased upon E2 treatment (Akman et al., 2012).
1.3 Aim of the study

3'UTR length is an important factor for post-transcriptional mechanisms of gene expression. Because shorter 3'UTRs are more generally formed in proliferative states and E2 induces proliferation, we hypothesized that E2 and ER may have roles in APA regulation. Therefore, we used ER(+) patient and model system datasets, present in the public domain, to search for alterations in 3'UTR lengths.

CHAPTER 2

MATERIALS AND METHODS

2.1 Microarray Datasets

The Gene Expression Omnibus (GEO) is a next-generation sequence and highthroughput microarray repository providing publicly available highthrougputdatasets (Barrett et al., 2013). Twelve experiment sets;GSE2034 (Wang et al., 2005), GSE7390 (Desmedt et al., 2007), GSE9761 (Nott et al., 2009), GSE20437(Graham et al., 2010), GSE9574 (Tripathi et al., 2008), GSE6883 (Liu et al., 2007), GSE26910 (Planche et al., 2011), GSE21422 (Kretschmer et al., 2011), GSE3744 (Alimonti et al., 2010), and GSE2361 (Ge et al., 2005)were selected from GEO.

GSE2034 dataset includes286 lymph-node negative breast cancer patients, 209 of them were ER(+). Tumor samples were collected from Erasmus Medical Center (Rotterdam, Netherlands). The patients were followed up between 1980 and 1995. No systemic adjuvant or neoadjuvant therapy was applied to the patients during this term. Modified radical mastectomy or breast-conserving surgery was performed (Wang et al., 2005). Patient characteristics are summarized in Table A.1.

GSE7390 dataset contains 198 lymph-node negative breast cancer patients, 135 of them were ER(+). Patients in this series were followed up between 1980 and 1998. Data were collected from six centers: Institut Gustave Roussy, Villejuif, France; Karolinska Institute, Stockholm and Uppsala University Hospital, Uppsala, Sweden; Centre Rene' Huguenin, Saint-Cloud, France; Guy's Hospital, London, United Kingdom; and John Radcliffe Hospital, Oxford, United Kingdom. All the patients were systemically untreated (Desmedt et al., 2007).Patient characteristics are summarized in Table A.2.

GSE20437, GSE9574, GSE6883, GSE26910, GSE21422, GSE3744, and GSE2361 datasets were used for their normal breast tissue samples. The samples are summarized in Table A.3.

GSE9761 dataset is composed of MDA-MB-231 breast cancer cell line. The cells were infected with recombinant adenoviruses for the expression of ER. There are 6 groups of cells:ER α expressing cells, ERE-binding defective ER α expressing cells, ER β expressing cells, and 2 control groups. Then, 10⁻⁹ M E2 treatment to all groups was performed for 6 hours. Each group has 6 replicates (Nott et al., 2009). Samples are summarized in Table A.4.

2.2 APADetectand SAM

Earlier, a probe-based expression analysis tool (APADetect) was developed by Dr. Tolga Can (Department of Computer Engineering, METU, Turkey)(Akman et al., 2012). The tool detects expression levels of different 3'UTR isoforms. It analyzes Affymetrix Human Genome U133A Arrays (HGU133A, GPL96) and Affymetrix Human Genome U133 Plus 2.0 Arrays (HGU133Plus2, GPL570) using the available chip design data. 2411 and 3683 unique probe sets for a total of 2066 and 3067 genes are present on the HGU133A and HGU133Plus2 platforms. The 11 probes/transcript can be split into proximal and distal probe sets based on the positions of poly(A) sites taken from PolyA_DB(Zhang et al., 2005a)."Short" and "Long" 3'UTR isoform abundance are determined by calculating mean signal intensities of proximal and distal probe sets for proximal probe sets for proximal probe sets for proximal probe sets for proximal probe sets for proximal probe sets for proximal probes for proximal

were compared with each other to detect changes of APA based isoform abundance. SLR patient values were normalized to that of controls.

$$SLR = \frac{\text{mean of proximal probes}}{\text{mean of distal probes}}$$

There are 4 stringency filters for the calculation of SLRs: "Size filter" excludes transcripts detected by only one distal or proximal probe. "Outlier probe filter" excludes individual outlier probes using Iglewicz and Hoaglin's median based outlier detection method. The median absolute deviation (MAD) is calculated as the median of absolute differences of individual probe intensities from their respective medians for each proximal and distal subset. The modified z-score of a probe p is then calculated as:

$$z = \frac{0.6745 \text{ (intensity of p - median)}}{MAD}$$

When z-score of probes are greater than 3.5, these probes are defined as outliers and are eliminated from subsequent analyses. Samples with only one proximal/distal probe are filtered out by re-application of the "size filter" at the sample level after removal of the outlier probes. "Outlier sample filter" is applied with the same outlier detection method of outlier probe filter. SLRs of samples deviating significantly from their respective group median are eliminated. "Distal filter" removes probe sets with distal intensities significantly higher than proximal ones since proximal probes should recognize both the short and the long isoform.

The GSM numbers of samples obtained from GEO were usedinAPADetect by Dr. Tolga Can. The output of the APADetectis the input file loaded to TIGR Multiexperiment Viewer (MeV) software(http://www.tm4.org/mev.html). MeV is a microarray data analysistool for clustering, visualization, classification, statistical analysis and biological theme discovery. The data loading is illustrated in Figure 2.1.

Multiple Array Viewer					
File Adjust Data Metrics A	nalysis Display Utilities				
🞐 Load Data					
😔 Open Analysis	Statistics Classification Data Reduction Meta Analysis Msualization Miscellaneous				
📳 Save Analysis	Use the File menu to load data from text files or a saved analysis file. Use the Utilities menu to connect to the Gangle network				
📳 Save Analysis As					
Rew Script					
Load Script	🕼 Expression File Loader				
Save Matrix	Select File Loader Help				
Save Image	Telectule roadel Tele				
🚔 Print Image	File (Tab Delimited Multiple Sample (*.*))				
👺 Clear Loaded Data					
X Close	Select expression data file opbox/merve/APA/GSE2U34/normal vs patients/MEVInput_control_GSE2U34.txt Browse				
	Selected files opbox\merve\APA\GSE2034\normal vs patients\MEVInput_control_GSE2034.txt				
	Two-color Array Single-color Array				
	L oad Annotation Data				
	Automatically download O Load from local file				
	Choose an organism 🔻 No file selected Please choose an array and species name.				
	Choose File				
	Fxpression Table				
	Gene Name Probeset ID PolyA Site ID GSM512557 GSM512558 GSM512559 GSM512560 GSM512561 GSM512562 GSM512562				
MultiCurrent Minutes	SDF4 217855_x_at Hs.42806 0.8941434 1.4238516 0.8039716 1.3008516 0.9165023 0.84376170.0439227.				
MuluExperiment viewer	KIAA0495 213340_s Hs.496580.11321940.06004960.09118800.04623070.1505672				
	UNKNOWN 204074_s Hs.5090170.16626090.1617940				
	HES2 214521_at Hs.118/2/ 0.0212968 0.01/1/124				
	HES2 214921_at Hs.118/27 0.0212988 0.017/124.				
	UNRD2 214321_at T5.110727 0.42125000.2020007.0.2755007.0.2657464.0.4440010.0.2129000.0177124.				
	PERE 211749_5R5.007060.42123900.42173650.57536070.20074040.41469190.220140710.34940035				
	Kialongo 212395 s Hs 43200				
	CAPTB 201949 x at Hs 432760 -0 1539972 -0 0403601 -0 1291409 -0 0884157				
	DDOST 208674 x at Hs 523145 0.6956822 0.4673386 0.4689421 0.0865759 0.1282874 0.7622857 0.0918933 -				
	Click the upper-leftmost expression value. Click the Load button to finish.				
	? MeV ∗ MultiExperiment Viewer Cancel Load				

Figure 2.1 Screenshots of data loading from the MeV tool. From the file menu of MeV, "load data" was chosen. In the next window, MeV input file was loaded. The Affymetrix platform number and species name were chosen. The upper-leftmost expression value was clicked. Then, the "Load" button was chosen.

Significance Analysis of Microarrays (SAM) is a statistical method designed especially for microarrays. Statistically significant genes are detected by SAM taking into account *t* tests specific for the genes. Relative to the standard deviation of each gene, a score is defined according to the change in gene expression. Scores above a threshold are assumed as statistically significant (Tusher et al., 2001). After log normalization of sample to control SLR values, individual SLRs were tested with SAM for statistical significance. In Figure 2.2, SAM application is shown in MeV.

lultiple Array Viewe	·	and the second second second second				
Adjust Data Mei	trics Analysis Display Utilities					
Clustering	Statistics Classification Data Reduction	Méta Analysis Visualization	Miscellaneous			
Original Data	PTM Pavlidis Template Matching					
Cluster Manager	TTEST	0 0 0 0 0 0 0 0 0 0 0 0 0 0	5555 553 5555 553 999 001 001 001 001 001 001 001 001 001			
- 🏭 Sample Clus - 🌐 Gene Cluste	ster SAM Significance Analysis for Microarrays	4512 4512 4512 4512 4512 4512 4512 4512	45 12 45 12 45 12 45 12 45 12 45 12 42 42 42 br>42 42 42 42 42 42 42 42 42 42 42 4			
Analysis Results Script Manager	S ANOVA ANOVA					
History	2Feet Two-factor ANOVA					
	Nonparametric lests		x			
SA	M Initialization					
	VIEV					
Two	o-class unpaired Two-class paired Multi-class Cens	ored survival One-Class				
But	tton Selection Cluster Selection					
Gro	Constances Common A	Crew D O Neither crew				
	GSM512557 GGroup A	Group B O Neither grou				
	GSM512559 Group A	Group B Neither grou				
	GSM512560 Group A	Group B O Neither grou				
	Note: Group A and Group B MUST each co	ntain more than one sample.				
Experim	Note: You can assign large numbers of	samples quickly by using a saved text t	file.			
	Save grouping Load grou	ping Reset				
R se	ettings					
	Use R	Time-Course Data				
Num	nber of permutations					
	Enter number of permutations	: 100				
- S 0 a	and Q Value parameters					
	Select S0 using Tusher et al. method	OR Enter s0 percentile (0-100)				
	Calculate q-values? No (quick) Yes (slow!)					
_ Imp	utation Engine					
	K-nearest neighbors imputer	Imber of neighbors: 10				
	Row average imputer					
	Save Imputed M	atrix				
Hier	archical Clustering					
	Construct Hierarchical Trees for :	gnificant genes only 🔘 All clusters				
?		Reset Cancel	ОК			
	IVIO V Viewer					

Figure 2.2Screenshots of SAM from the MeV tool. After data loading, SAM was chosen from "Statistics" section. Then, groups were defined as "Group A" and Group B" according to GSM numbers of the samples.

SAM was performed. The resultswere illustrated as a significance graph. In addition, the significant genes were listed according to positive and negative significance. These properties can be chosen from the toolbar at the right of the window. Figure 2.3 represents SAM application.

Figure 2.3Screenshots of MeV after SAM."SAM graph" shows the distributions, "Cluster information" indicates the number, and "Table Views" section illustrates the lists of the significant genes.

2.3 Statistical Analyses

As a result of the APADetect analysis, log SLR values were determined for each gene in the array. The significant genes according to SAM were further statistically analyzed using these log SLR values. Graphpad Prism (California, USA) was used to plot the graphics. The graphic type was scatter plot in order to show every patientSLR on the graphic. Unpaired t-test was used to compare the means of patient and control groups. Welch's correction was applied with t-test to assume that these two groups do not have equal variances. F-test was also considered to evaluate that the variances of the two groups are significantly different. ROC (Receiver Operator Curve) analysis was performed for sensitivity and specificity of each significant gene (Metz, 1978; Wray et al., 2010). X-axis and y-axis define the false positive rate and the true positive rate, respectively. Interpretation of ROC curves is thorough the area under curve (AUC) value ranging from 0 to 1(Berrar and Flach, 2012).

2.4 Ontology Search

Panther Classification System was used for ontology analysis with statistically significantly 3'UTR lengthened or shortened genes as a result of APADetect and SAM (Mi et al., 2013).

CHAPTER 3

RESULTS AND DISCUSSION

3.1 APA in GSE2034

The relationship between 3'UTR shortening and proliferation was reported previously (Sandberg et al., 2008). Because ER(+) cells are highly proliferative, we investigated whether APA was deregulated in ER(+) patients. To find APA-based 3'UTR length changes, we used a probe-based microarray analysis tool developed by Dr. Tolga Can (Department of Computer Engineering, METU, Ankara). APADetectgroups microarray probes as proximal and distal based on polyadenylationposition information taken from polyA_DB(database) (Zhang et al., 2005a). Based on the sample of proximal to distal ratios of individual transcripts, the SLR (short-long ratio) is calculated as an indication of short vs. long 3'UTR abundance.

In order to statistically determine significantly altered SLRs in patients, we used SAM (Significance Analysis of Microarrays)(Tusher et al., 2001).

3.1.1 APA in ER(+) patients

Microarray datasets containing ER(+) patients were retrieved from GEO (Gene Expression Omnibus) (Barrett et al., 2013). GSE2034 has 209 ER(+) patients which were compared tonormal breast samples (n=82) using APADetectin order to observe the APA changes. APADetect results were then investigated for significance using SAM. We observed both shortening and lengthened events in ER(+) patients compared to controls (Figure 3.1).

Figure 3.1SAM graph of normal samples vs. ER(+) samples comparison.The red and green dots represent the shortened and lengthened transcripts in patient samples, respectively.In total, there were119 shortening and 114 lengthening cases.

As a result of SAM, 119 shortened and 114 lengthened transcripts were determined (Table B.1 and Table B.2). All of these shortening and lengthening cases were analyzed in terms of ontologyin order to have a general idea about the molecular function of these genes (Figure 3.2).

Figure 3.2 Classification of the significant genes. Shortened transcripts (A) and lengthened transcripts (B) were classified in terms of molecular function. The percentages were indicated on pie charts. The broadest categories are binding and catalytic activity for both 3'UTR shortening and lengthening cases.

Significant genes weregrouped aswithproteins having "binding" and "catalytic activity" function. Binding activity group consisted of mostly nucleic acid and protein binding proteins. Catalytic activity was dominated by hydrolase and transferase enzymes.

For shortening events, 6 genes (*IQCK*, *MAPK13*, *WIZ*, *PVR*, *C19orf42*, and *WDTC1*) that hadthe highest SLRvalues were selected. These genes were scatter-plottedin order to compare the means and variances of patients with controls(Figure 3.3). Each dot in the plot represents an individual patient or a control sample. All genes had significantly higher SLRs compared to controls (p<0.0001).

Next, ROC analysis was performed for 6 shortening cases (Figure 3.4). This analysis confirmed the sensitivity and specificity of the SLR values of these 6 genes in ER(+) patients compared to controls. The area under the curve represents this discrimination between the patients and controls in terms of sensitivity and specificity.

Figure 3.3 Scatter plots of 3'UTR shortened transcripts in ER(+) samples compared to controls. The genes represented are the top 6 shortened genes according to APADetect andSAM. Unpaired t test with Welch's correction was applied to compare means and F-test was used to compare variances of the groups. *** indicates statistical significance for both t-test and F-test with a p value of <0.0001.

Figure 3.4ROC analyses of the 3'UTR shortened transcripts in ER(+) samples compared to controls. Area under curve (AUC) values are indicated separately for individual genes. For all genes, the p value is <0.0001.

For lengthening cases, 6 cases(*TNPO1*, *SLC46A3*, *WIP12*, *ERG* 1.5, *ERG* 1.6, and *EIF5B*) having the lowest SLR values were selected. Among these 6 genes, *ERG* had appearedin APADetectand SAM results due to the presence of 2 different poly(A) sites. Therefore, 1.5 and 1.6 represent the different poly(A) sites of *ERG*. As for shortening, scatter plots were generated(Figure 3.5) and ROC analyses were performed (Figure 3.6).

Figure 3.5 Scatter plots of 3'UTR lengthened transcripts in ER(+) **samples compared to controls.**The genes represented are the top 6 lengthened genes according to APADetect and SAM. Unpaired t test with Welch's correction was applied to compare means and F-test was used to compare variances of the groups. *** indicates statistical significance for both t-test and F-test with a p value of <0.0001.*ERG* 1.5 and *ERG* 1.6 represents the two different poly(A) sites of *ERG*.

Figure 3.6ROC analyses of the 3'UTR lengthened transcripts in ER(+) **samples compared to controls.** Area under curve (AUC) values are indicated separately for individual genes. For all the genes, the p value is <0.0001.*ERG* 1.5 and *ERG* 1.6 represents the two different poly(A) sites of *ERG*.

In summary, we confirmed that the selected genes for both shortening and lengthening events had different means and variances in ER(+) breast cancer patients compared to the control group.Furthermore, the specificity and sensitivity of altered 3'UTR lengths in ER(+) patients compared to controls were confirmed with ROC analyses. As a result, we showed that ER(+) patients had deregulations in APA when compared to control group.

To confirm the validity of our approach, we selected 2 genes with unaltered SLR values in patients compared to controls. Individiual scatter plots indeed showed no statistical significance for means of patients vs. controls (Figure 3.7). ROC plots also confirmed that these insignificant SLRs for *SH2D2A* and *LRRC23* were not sensitive or specific to distinguish the 2 groups (Figure 3.8).

Figure 3.7Scatter plots of 3'UTR unaltered transcripts in ER(+) **samples compared to controls.** The genes represented are the 2unaltered genes according to APADetect and SAM. Unpaired t test with Welch's correction was applied to compare means and F-test was used to compare variances of the groups.ns indicates statistical insignificance for both t-test and F-test.

Figure 3.8ROC analyses of the 3'UTR unaltered transcripts in ER(+) samples compared to controls. Area under curve (AUC) values are indicated separately for individual genes. For all the genes, the p value is indicated below the gene name.

3.1.2 APA and Relapse

Given the deregulated APA events in ER(+) patients, we next investigated whether any of these APA events were correlated with the prognosis of patients. In GSE2034 dataset, there are both relapse-free and relapsed patients. In order to examine the changes in 3'UTR lengths among patients in terms of relapse, the patients were divided into two groups: relapse-free patients (n=123) and patients with relapse (n=80). The two groups of patients were compared to each other using APADetect and SAM. There were no significantly altered 3'UTR lengths in relapsed patients compared to relapse-free patients. These observations led to the idea that deregulated APA could be an early event in tumorigenesis.

3.2 APA in GSE7390

To confirm and test our earlier results, we chose to analyze another independent data set of ER(+) breast cancer patientsGSE7390. The difference between this dataset and the previous one is that GSE7390 dataset is a combination of many patient samples from different clinics. However, GSE2034 dataset is uniform; all the patient samples are from the same clinic. Therefore, the two datasets were not combined.

Based on the means of proximal to distal ratios of individual transcripts, the SLR was calculated as an indication of short vs. long 3'UTR abundance. First, we analyzed these patients with controls (normal breast). Next, we investigated whether APA in these patients correlated with relapse status.

3.2.1 APA in ER(+) patients

The normal breast sample set(n=82) was used as the control group. 130 ER(+) breast cancer patient samples of GSE7390 were compared with the controls and APAD etectanalysis was performed in order to investigate the APA changes between these groups. As a result, shortened and lengthened transcripts according to APAD etect and SAM were determined (Figure 3.9).

Figure 3.9 SAM graph of normal samples vs. ER(+) **samples comparison.** The red and green dots represent the shortened and lengthened transcripts in patient samples, respectively. In total, there were65 shortening and 139 lengthening cases.

As a result of SAM, 65 shortened and 139 lengthened transcripts were determined in ER(+) patients(Table B.3 and Table B.4). All of these shortening and lengthening cases were analyzed in terms of ontology. Genes significantly shortened or lengthened also belonged to binding or catalytically active protein groups, similar to our previous findings.

For shortening cases, 6 genes (*GLRX3*, *IQCK*, *APP*, *USP9X*, *GOLPH3*, and *MAPK13*) that had the highest SLR values were selected. These genes were scatterplotted in order to compare the means and variances of patients with controls and show every data point on the plot (Figure 3.10). Furthermore, ROC analysis was performed for these 6 shortening cases (Figure 3.11).

Figure 3.10 Scatter plots of 3'UTR shortened transcripts in ER(+) samples compared to controls. The genes represented are the top 6 shortened genes according to APADetect and SAM. Unpaired t test with Welch's correction was applied to compare means and F-test was used to compare variances of the groups. *** indicates statistical significance for both t-test and F-test with a p value of <0.0001.

Figure 3.11 ROC analyses of the 3'UTR shortened transcripts in ER(+) samples compared to controls. Area under curve (AUC) values are indicated separately for individual genes. For all the genes, the p value is <0.0001.

For lengthening event, 6 cases (*PABPC3*, *OGT*, *WIPI2* 1.29, *WIPI2* 1.30, *GNS*, and *SLC46A3*) having the lowest SLR values were selected. The two polyadenylation sites for *WIPI2* were significant according to SAM. Therefore, 1.29 and 1.30 represent the differentpolyadenylation sites of *WIPI2*.Scatter plots were generated (Figure 3.12) and ROC analyses were performed (Figure 3.13).

Figure 3.12Scatter plots of 3'UTR lengthened transcripts in ER(+) **samples compared to controls.** The genes represented are the top 6 lengthened genes according to APADetect and SAM. Unpaired t test with Welch's correction was applied to compare means and F-test was used to compare variances of the groups. *** indicates statistical significance for both t-test and F-test with a p value of <0.0001.*WIPI2* 1.29 and *WIPI2* 1.30 represents the two different poly(A) sites of *WIPI2*.

Figure 3.13ROC analyses of the 3'UTR lengthened transcripts in ER(+) samples compared to controls. Area under curve (AUC) values are indicated separately for individual genes. For all the genes, the p value is <0.0001.*WIPI2* 1.29 and *WIPI2* 1.30 represents the two different poly(A) sites of *WIPI2*.

We observed that the selected genes for both shortening and lengthening events have different means and variances in ER(+) breast cancer patients compared to control group. Furthermore, the specificity and sensitivity of these genes were confirmed with ROC analyses.

Next, we investigated whether our GSE2034 and GSE7390 results overlapped in terms of 3'UTR shortening and lengthening events. To determine shared or dataset-specific APA genes for the two analyses, we used the Venny tool (Oliveros, 2007). Our results showed 32 common 3'UTR shortening events (Figure 3.14A) and 35 3'UTR lengthening events (Figure 3.14B). List of common genes are given in Table 3.1. The same group of normal samples was used for the analysis these ER(+) datasets.

Figure 3.14 The comparison of the GSE2034 and GSE7390 datasets' APA results. A. Shortening genes of the two datasets were compared. There were 32 common genes shorthened in both of the datasets. **B.** Lengthening genes of the two datasets were compared. There were 35 common genes lengthened in both of the datasets.

3'UTR shortening		3'U	FR lengthenir	ıg	
IQCK	APP	МАРК13	SLC46A3	WIPI2	ERG
PVR	USP9X	RPL13	EIF5B	OGT	MUT
HSPA4L	POFUT1	TIMM9	AMOT	SLC25A31	РНКВ
PRSS21	CLU	RLF	DOPEY1	CCDC93	ESF1
C1orf50	TPT1	METTL9	KIF5A	ZAK	SF4
WBP5	IFT57	DDX28	AZIN1	B4GALT1	YTHDC2
HNRNPA1	SAG	RPL31	MEF2A	AK2	TIAL1
SLC25A17	SNX3	NIPBL	ATP6V1C1	HFE	SUPT7L
MRPL3	RPL19	DCK	STAT6	TSHR	DKC1
HMOX2	COIL	G3BP2	EBI3	TFDP1	PLSCR1
MED14	ZFP64		COL15A1	ZMYM1	CCND1
			KDM6A	NPAS2	

Table 3.1 The common alternatively polyadenylatedgenes of the two ER(+) breast cancer patient datasets. 32 and 35 genes were common for shortening and lengthening events, respectively.Bold genes are the selected genes analyzed statistically.

Although there were common significant genes in both ER(+) patient groups (GSE2034 and GSE7390), we also detected group-specific changes. One of the reasons for this could be the nature of the datasets. For example, while GSE2034 comes from one hospital, GSE7390 samples are collected from 5 hospitals. Another

reason could be that breast cancers are quite heterogeneous and then could be some hidden pattern of enriched subtypes.

The genes that were found to be statistically significantly different in ER(+) patients compared to control in both datasets are interesting in terms of their functions and relations with cancer. They were summarized in tables below (Table 3.2 and Table 3.3).

Table 3.2 The 3'UTR shortening genes in the two datasets.

Gene	Function/Relevance to Cancer	References
<i>MAPK13</i> (mitogen-activated protein kinase 13)	-a member of MAP kinases -proliferation and transcription regulation -induce invasion and motility in cancer	(Tan et al., 2010)
PVR (poliovirus receptor)	-immunoglobulin superfamily -cell-cell attachment,proliferation, migration, and metastasis -upregulated in lung cancer	(Tane et al., 2013)
WDTC1 (WD and tetratricopeptide repeats 1)	-one of the highly mutated genes leading to colorectal cancer	(Alhopuro et al., 2012)
GLRX3 (glutaredoxin 3)	-an oxidoreductase enzyme suppressing apoptosis and promoting cell growth -promoting proliferation, invasion, and survival <i>in vitro</i> in breast cancer	(Qu et al., 2011)
APP [amyloid beta (A4) precursor protein]	-a prognostic marker in ER(+) breast cancer patients -high proliferation activity of MCF7 and MDA-MB-231 breast cancer cells	(Takagi et al., 2013)
USP9X (ubiquitin specific peptidase 9, X- linked)	-ubiquitin-specific protease -above 3-fold upregulationin breast cancer -associated with increased beta-catenin levels in MCF7 breast cancer cells -protecting cells against chemotherapy	(Deng et al., 2007),(Murray et al., 2004),(Peddaboina et al., 2012)
<i>GOLPH3</i> [Golgi phosphoprotein 3 (coat protein)]	 -a member of Golgi complex -high expression in approximately 50% of breast cancer -associated with poor survival, high proliferation, and advanced clinical stage -enhancing the expression of the CDK regulator cyclin D1 and inhibited CDK inhibitor p21 (Cip1), p27 (Kip1), and p57 (Kip2) 	(Zeng et al., 2012)
<i>IQCK</i> (IQ motif containing K) <i>WIZ</i> (widely interspaced zinc finger motifs) <i>C19orf42</i> [SMIM7 (small integral membrane protein 7)]	remain to be characterized	

Almost all the shortening genes in ER(+) breast cancer patients are associated with cancer and they have roles in proliferation based on literature (Table 3.2). For example, GLRX3 promotes proliferation and invasion in breast cancer(Qu et al., 2011). Therefore, 3'UTR shortening in certain genes may be considered as a mechanism for oncogene activation.

The functions of lengthening genes in ER(+) patients that we analyzed were also investigated for their relevance to cancer in Table 3.3.

Table 3.3 The 3'UTR lengthening genes in the two datasets.

Gene	Function/Relevance to Cancer	References
TNPO1 (transportin 1)	-the beta subunit of the karyopherin complex -cytoplasm-to-nuclear transport, mitotic spindle and nuclear pore assembly	(Lau et al., 2009)
<i>WIP12</i> (WD repeat domain, phosphoinositide interacting 2)	-WD40 repeat proteins -regulation of the assembly of multiprotein complexes by promoting a platform for simultaneous protein-protein interactions -a part of autophagosomes	(Proikas-Cezanne and Robenek, 2011)
ERG (v-ets avian erythroblastosis virus E26 oncogene homolog)	 -a member of erythroblast transformation-specific (ETS) family of transcription factors -embryonic development, cell proliferation, differentiation, angiogenesis, inflammation, and apoptosis -overexpressed in prostate carcinoma 	(Verdu et al., 2013)
<i>EIF5B</i> (eukaryotic translation initiation factor 5B)	-required for translation in eukaryotes -positioning the initiation methionine tRNA on the mRNA -increased expression due to E2 in MCF7 cells	(Garcia and Nagai, 2011)
<i>PABPC3</i> [poly(A) binding protein, cytoplasmic 3)	-required for translation initiation and mRNA stability -extensively found in testis during spermatogenesis	(Feral et al., 2001)
<i>OGT</i> [O-linked N-acetylglucosamine (GlcNAc) transferase]	-an enzyme catalyzing the addition of a single N-acetylglucosamine in O- glycosidic linkage to serine and threonine residues -promoting tumor growth both <i>in vitro</i> and <i>in vivo</i> and decreasing the expression of the cell-cycle inhibitor p27(Kip1) in breast cancer cells -associated with metastasis in breast cancer patients	(Caldwell et al., 2010),(Huang et al., 2013)
GNS [glucosamine (N-acetyl)-6-sulfatase]	-a lysosomal enzyme found in all cells -the accumulation of undegraded substrates in deficiency	(Mok et al., 2003)
As given in Table 3.3, some of these genes were also associated with breast cancer. For example, *OGT* ([O-linked N-acetylglucosamine (GlcNAc) transferase]has been found to promote tumor growth and downregulatethe cell-cycle inhibitor p27(Kip1) in breast cancer cells(Caldwell et al., 2010). Furthermore, *OGT* is known to have 11 transcript variants. It was reported that splicing may lead to use of distal poly(A) sites for these isoforms (Kaida et al., 2010). In connection with our findings, the significance of OGT 3'UTR lengthening and alternative splicing mechanisms remains to be further investigated in breast cancer cells.

3.2.2 APA and Relapse

In order to investigate whether APA alterations correlated with relapse of patients, the patients were divided into two groups: relapse-free patients (n=94) and patients with relapse (n=36). The two groups of patients were compared to each other usingAPADetect and SAM.

As a result of this analysis, we did not observe any 3'UTR lengthdifference in relapsed patients compared to relapse-free patients. This result was consistent with the result of the previous dataset. The reason may be that these events could be an early event in tumorigenesis.

3.3 Role of ER in APA Regulation

Our results showed both 3'UTR shortening and lengthening events in ER(+) patients. It is known that ER expressing breast cancer cells have a high proliferation rate(Fanelli et al., 1996). Interestingly, when MDA-MB-231 cells (triple negative breast cancer cell line) exogenously express ER α , cell proliferation is suppressed, as well as cell motility and invasion (Lazennec et al., 2001). Therefore, to better investigate the role of ER in APA regulation, we chose to use a cell line model system. This model was generated by infecting ER α and ERE-binding defective ER α in to an ER(-) breast cancer cell line, MDA-MB-231 (Nott et al., 2009). Control groups were infected with recombinant adenovirus containing no cDNA. In addition, each group was treated with E2 for 6 hours. Microarray expression data for a set of comparisons is available through GEO (GSE9761). Hence, we compared the groups in terms of APA usingAPADetect and SAM. Based on the means of proximal to distal ratios of individual transcripts, the SLR was calculated as an indication of short vs. long 3'UTR abundance.

3.3.1 APA in ERα-infected MDA-MB-231

We compared the ER α -infected MDA-MB-231 cells with its control group (both treated with E2 for 6 hours) to analyze the APA events.

As a result of APADetect and SAM, 2 shortened transcripts were determined in ER α infected cells (Table B.5). The scatter plots were graphed forthese two shortened transcripts to test the statistical significance between the groupsin terms of means and variances (Figure 3.15).

Figure 3.15 Scatter plots of 3'UTR shortened transcripts in ER α -infected MDA-MB-231compared to control group. The genes represented are the shortening genes according to the APADetect and SAM. Unpaired t test with Welch's correction was applied to compare means of the groups. *** indicates statistical significance for t-test with a p value of <0.0001.

For *SLC25A42* and *WNT16*, group means and variances were statistically significantly different in ER α -infected and E2-treated cells compared to just E2-treated cells.

Next, the control group and mutant $ER\alpha$ -infected group was compared to each other. Mutant $ER\alpha$ is unable to bind to ERE; therefore, the effect of $ER\alpha$ is independent of direct DNA binding.APADetect and SAM wereused to find the significantly shortened or lengthened 3'UTRs.

Based on analyses with APAD etect and SAM, no significant genes in the comparison of control and mutant ER α -infected MDA-MB-231 cells were seen. This indicated that 3'UTR length of target genes does not change when ER α does not bind to DNA directly.

To further investigate a potential role of ER α in APA, ER α -infected and mutant ER α -infected groups were compared. This comparison wasexpected to give information about APA events of ER α when it only binds to DNA (Figure 3.16).

Figure 3.16 SAM graph of ER α -infected MDA-MB-231 compared to mutant ER α -infected group. The red and green dots represent the shortened and lengthened transcripts in ER α -infected cells, respectively. In total, there were 76 shortening and 24 lengthening cases.

A total of 76 shortening and 24 lengthening 3'UTR events were detected in ER α infected cells compared to DNA-binding defective ER α -infected cells (Table B.6 and Table B.7). For 3'UTR shortening cases, 6 genes (*WNT16*, *CD44*, *LOC440131*, *ST3GAL2*, *MAP7*, and *SRP72*) that had the highest SLR values were selected. These genes were scatter-plotted in order to compare the means and variances of patients with controls (Figure 3.17). For 3'UTR lengthening events, 6 genes (*PML*, *RPS6KB1*, *YME1L1*, *PPP4R1L*, *CLDN22*, and *ADH5*) having the lowest SLR values were selected and scatter plots were generated (Figure 3.18).

Figure 3.17Scatter plots of 3'UTR shortened transcripts in the ER α -infected MDA-MB-231 compared to mutant ER α -infected cells. The genes represented are the top 6 shortened genes according to the APADetect and SAM. Unpaired t test with Welch's correction was applied to compare means of the groups. *** indicates statistical significance for t-test with a p value of <0.0001.

Figure 3.18 Scatter plots of 3'UTR lengthened transcripts in the ER α -infected MDA-MB-231 compared to mutant ER α -infected cells. The genes represented are the 6 3'UTR lengthened genes according to the APADetect and SAM. Unpaired t test with Welch's correction was applied to compare means of the groups. *** indicates statistical significance for t-test with a p value of <0.0001.

We confirmedAPADetect and SAM results for shortened or lengthened 3'UTR genes. Our results suggested higher number of shortening and lengthening cases in ER α -infected MDA-MB-231 cells compared to DNA binding defective cells. This comparison gave information about the APA events in cells that can only bind to DNA. The result was surprising as we expected control vs. ER α -infected cells to demonstrate higher numbers of significant genes. In reality, there were only 2 significant genes in ER α -infected cells.

Both shortening and lengthening genes were searched in literature for their functions and significance in cancer. They were summarized in Table 3.4 and 3.5.

	Table 3.4 The 3'UTR	shortening genes in	the ERa-infected	MDA-MB-231 cells.
--	---------------------	---------------------	------------------	-------------------

Gene	Function/Relevance to Cancer	References
<i>SLC25A42</i> (solute carrier family 25, member 42)	-localized to mitochondria -a mitochondrial transporter for coenzyme A (CoA) and adenosine 3',5'- diphosphate across the inner mitochondrial membrane	(Fiermonte et al., 2009)
<i>WNT16</i> (wingless-type MMTV integration site family, member 16)	-a member of WNT gene family encoding secreted signaling proteins -roles in oncogenesis and developmental processes -downregulated or lost in breast cancer cell lines	(Benhaj et al., 2006)
CD44 [CD44 molecule (Indian blood group)]	-a cell-surface glycoprotein -cell-cell interaction, cell adhesion, and migration -increased expression in basal-like breast carcinomas -provides motility to the cells resulting in metastasis	(Kim et al., 2013)
<i>ST3GAL2</i> (ST3 beta-galactoside alpha-2,3-sialyltransferase 2)	-a type II membrane protein found in Golgi by which sialic acid is catalyzed to galactose-containing substrates -increased in human breast cancer stem cells	(Liang et al., 2013)
MAP7 (microtubule-associated protein 7)	-stabilizing and modulating the microtubules -roles in proliferation in cancer cells with an unknown mechanism	(Yan et al., 2013)
SRP72 (signal recognition particle 72 kDa)	 -a subunit of a ribonucleoprotein complex having roles in targeting secretory proteins to the endoplasmic reticulum -enhancing TRAIL (TNF-related apoptosis-inducing ligand)-induced apoptosis in HeLa cells 	(Ren et al., 2004)
LOC440131 (long intergenic non-protein coding RNA 544)	Remain to be characterized	

Table 3.5 The 3'UTR lengthening genes in the ER α -infected MDA-MB-231 cells.

Gene	Function/Relevance to Cancer	References
<i>PML</i> (promyelocytic leukemia)	-a member of tripartite (TRIM) family -found in nuclear bodies and functions as a transcription factor and tumor suppressor via modulating the p53 response to oncogenic signals -overexpressed in breast cancer especially in triple-negative cases -associated with poor prognosis	(Carracedo et al., 2012)
<i>RPS6KB1</i> (ribosomal protein S6 kinase, 70 kDa, polypeptide 1)	 -belonging to the ribosomal S6 kinase family of serine/threonine kinases -enhancing cell growth, cell proliferation and protein synthesis -increasing ERα-induced cell proliferation -upregulating anti-apoptotic protein Mcl-1, thus inhibiting apoptosis in MCF7 cells 	(Choi et al., 2013)
YME1L1 (YME1-like 1 ATPase)	-role inmitochondrial protein metabolism -promoting apoptotic resistance and cell proliferation, and regulating cristae morphology	(Stiburek et al., 2012)
CLDN22 (claudin 22)	 -a member of claudin family which are integral membrane proteins -low expression in breast cancer -related withepithelial-to-mesenchymal transition (EMT) epithelial-to-mesenchymal transition (EMT) 	(Prat et al., 2010)
<i>ADH5</i> [alcohol dehydrogenease 5 (class III), chi polypeptide]	-belonging to alcohol dehydrogenease family -deregulated inpancreatic and colon cancers	(Jelski et al., 2008a, b)
<i>PPP4R1L</i> (protein phosphatase 4, regulatory subunit 1-like)	Remain to be characterized	

In a study conducted in our lab, triple negative breast cancer (TNBC) patients seem to have a tendency towards proximal poly(A) site usage. Because ER α reverses the high proliferation status of MDA-MB-231 cells (triple negative breast cancer cell line) (Lazennec et al., 2001), we hypothesized that the 3'UTR shortened genes may be lengthened in these ER α -infected MDA-MB-231 cells. One of the examples of this situation was*YME1L1* which had significantly shortened 3'UTR in TNBC patients. However, we observed the opposite in the ER α -infected MDA-MB-231 cells. This result may be due to anti-proliferative effect of ER α in this cell line. Some of the other 3'UTR lengthened genes are also highly associated and upregulated in breast cancer. For example, *RPS6KB1* (ribosomal protein S6 kinase, 70 kDa, polypeptide 1) enhances cell growth and proliferation. Therefore, lengthening event of *RPS6KB1* may reverse these functions in this cell line.

Among the 3'UTR shortened genes, there are also highly cancer-related genes. Most of them are involved in breast cancer. Although we expect 3'UTR lengthening for those genes, 3'UTR shortening was observed. Because MDA-MB-231 cells favor distal poly(A) sites, the shortening of these genes may affect some cellular processes that should be investigated experimentally.

Given that transcription is thought to be kinetically coupled to APA (Elkon et al., 2013), involvement of ER α as a transcriptional regulator will be of interest in terms of deregulated APA in ER(+) breast cancer cells. While we do not have any experimental data to answer this question, we speculate that DNA-dependent or DNA-independent ER α actions in cells may operate in complicated ways; there could be additional downstream effects of ER. We also have to consider that E2 treatment and ER α infection in MDA-MB-231 cells may result in an anti-proliferative phenotype which may favor 3'UTR lengthening events. However, MDA-MB-231 cells have already been shown to prefer distal poly(A) sites (Fu et al., 2011). Therefore, these observations should also be repeated in different cell line backgrounds, considering various deregulated other signaling pathways.

CHAPTER 4

CONCLUSION

APA canlead to the production of different transcript isoforms due to the use of alternative poly(A) sites in the 3'UTRs of pre-mRNAs(Liaw et al., 2013). The choice of poly(A) sites may differ in different cellular contexts and physiological states. Therefore, APA deregulation is predicted to be one of the major causes of gene expression abnormalities in various diseases including cancer. In cancer cells, there is a tendency towardsproximal poly(A) site usage and 3'UTR shortening resulting in activation of oncogenes (Mayr and Bartel, 2009). Highly proliferative normal cells also have shorter 3'UTRs to producemore proteins for sustaining the proliferation. On the contrary, in T lymphocytes, forced use of distal poly(A) sites results in decreased protein expression (Sandberg et al., 2008). Proximal poly(A) site choice results with decreased miRNA binding sites due to the shortening of the 3'UTR. Therefore, more transcripts are translated into proteins which is a very favorable situation for oncogenes (An et al., 2013).

Estrogen receptor (ER) overexpression is found approximately 60% of human breast cancers(Boulay et al., 2005).ER is expressed at basal levels in normal mammary gland; however, its expression is higher in breast cancer cells. Two subtypes of ER have been identified as ER α and ER β . The main ER expressed in breast cancer is ER α ,rather than ER β and the main ligand of ER is 17 β -estrodiol (E2) (Renoir et al., 2013).E2-ER α complex may regulate the transcription of genes involved in

proliferation, differentiation, survival and in the stimulation of invasion, metastasis and angiogenesis.For example, E2 promotes cell proliferation by inducing the expression of anti-apoptotic protein Bcl-2 in MCF7 breast cancer cell line (Perillo et al., 2000). C-myc, cyclins D, A and E are otherexamples of the ER-activated proteins,whilethe cyclin-dependent kinase (CDK)inhibitor p21^{Waf1/Cip1} is inhibited by ER-E2 activity (Musgrove et al., 2011).Increased survival and proliferation leads to the E2 dependency of ER α (+) cells; therefore, E2 depletion results in inhibition of the tumor growth. Interestingly, E2-induced proliferation and ER α -regulated transcription activation areinhibited by ER β if it is present (Gougelet et al., 2005; Paruthiyil et al., 2004; Strom et al., 2004).Given the link between transcription, proliferation and ER, we hypothesized that 3'UTR lengths may be altered due to APA in ER(+) breast cancer patients and cell models.

To address the link between APA and ER, we used publicly available microarray datasets of ER(+) breast cancer patients from GEO. We separately analyzed two datasets of ER(+) breast cancer patient samples with normal breast samples using APADetect and SAM. We selected a few genes that had high SLR for shortening events and low SLR for lengthening events. After statistical analyses, these genes were found to be significantly different between the patient and control groups. These genes are interesting in terms of their functions and relationsto cancer. Almost all the 3'UTR shortening genes enhance proliferation and are upregulated in breast cancer. This pattern was also observed for some lengthening genes.

We also analyzed the APA events in relapsed ER(+) breast cancer patients compared to relapse-free patients using APADetect and SAM. No 3'UTR shortening or lengthening events were detected for both two ER(+) patient datasets. The reason may be that APA events could be an early event in tumorigenesis or that we need to use a higher number of better classified patient samples.

To better investigate the relation between APA and ER, the next approach was the analysis of ER α -infected MDA-MB-231 cells. Because these cells are triple-negative breast cancer cells, we hypothesized that ER α infection may influence the APA

events. We compared ER α -infected cells with controls in terms of APA usingAPADetect and SAM. As a result, we detected 2 3'UTR shortening events for *WNT16* and *SLC46A3*. The same analyses were also performed for ERE-binding defective ER α infected cells. When we compared them with the control group, there were no significantly altered genes in terms of APA. However, the comparison of ER α -infected MDA-MB-231 compared to mutant ER α -infected group resulted in 76 shortening and 24 lengthening genesthat are significantly changed. These results suggested to us that most of the genes are 3'UTR shortened or lengthened via directbinding of ER α to DNA.However, we do not have any explanation to why only 2 3'UTR shortening events were detected in E2-treated ER α -infected cells compared to the control group. One contributing factor could be that E2 treatment was for 6 hours; therefore, only very early events could be detected in the analysis.

Our future studies will include more detailed APA analysis in breast cancer. Because ER(+) breast cancer has two subtypes as Luminal A and Luminal B(Schnitt, 2010), subtype specific analysis may give better information about APA patterns. Furthermore, experimental verifications of these shortening and lengthening events will strengthen the results of APADetect. For example, 3'RACE (Rapid Amplification of cDNA Ends) can prove the existance of the short and long isoforms. RT-qPCR studies can show the expression levels of the isoforms.Given the significance of these new findings, we are likely to better understand how different choices of APA may be involved in different physiological and disease states.

REFERENCES

- Akman, B. H., T. Can, and A. E. Erson-Bensan, 2012, Estrogen-induced upregulation and 3'-UTR shortening of CDC6: Nucleic Acids Res, v. 40, p. 10679-88.
- Alhopuro, P., H. Sammalkorpi, I. Niittymaki, M. Bistrom, A. Raitila, J. Saharinen,
 K. Nousiainen, H. J. Lehtonen, E. Heliovaara, J. Puhakka, S. Tuupanen, S.
 Sousa, R. Seruca, A. M. Ferreira, R. M. Hofstra, J. P. Mecklin, H. Jarvinen,
 A. Ristimaki, T. F. Orntoft, S. Hautaniemi, D. Arango, A. Karhu, and L. A.
 Aaltonen, 2012, Candidate driver genes in microsatellite-unstable colorectal
 cancer: Int J Cancer, v. 130, p. 1558-66.
- Alimonti, A., A. Carracedo, J. G. Clohessy, L. C. Trotman, C. Nardella, A. Egia, L. Salmena, K. Sampieri, W. J. Haveman, E. Brogi, A. L. Richardson, J. Zhang, and P. P. Pandolfi, 2010, Subtle variations in Pten dose determine cancer susceptibility: Nat Genet, v. 42, p. 454-8.
- Alt, F. W., A. L. Bothwell, M. Knapp, E. Siden, E. Mather, M. Koshland, and D. Baltimore, 1980, Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3' ends: Cell, v. 20, p. 293-301.
- An, J., X. Zhu, H. Wang, and X. Jin, 2013, A dynamic interplay between alternative polyadenylation and microRNA regulation: implications for cancer (Review): Int J Oncol, v. 43, p. 995-1001.
- An, J. J., K. Gharami, G. Y. Liao, N. H. Woo, A. G. Lau, F. Vanevski, E. R. Torre, K. R. Jones, Y. Feng, B. Lu, and B. Xu, 2008, Distinct role of long 3' UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons: Cell, v. 134, p. 175-87.

- Andreassi, C., and A. Riccio, 2009, To localize or not to localize: mRNA fate is in 3'UTR ends: Trends Cell Biol, v. 19, p. 465-74.
- Barrett, T., S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K.
 A. Marshall, K. H. Phillippy, P. M. Sherman, M. Holko, A. Yefanov, H. Lee,
 N. Zhang, C. L. Robertson, N. Serova, S. Davis, and A. Soboleva, 2013,
 NCBI GEO: archive for functional genomics data sets--update: Nucleic Acids
 Res, v. 41, p. D991-5.
- Bava, F. A., C. Eliscovich, P. G. Ferreira, B. Minana, C. Ben-Dov, R. Guigo, J. Valcarcel, and R. Mendez, 2013, CPEB1 coordinates alternative 3'-UTR formation with translational regulation: Nature, v. 495, p. 121-5.
- Benhaj, K., K. C. Akcali, and M. Ozturk, 2006, Redundant expression of canonical Wnt ligands in human breast cancer cell lines: Oncol Rep, v. 15, p. 701-7.
- Berrar, D., and P. Flach, 2012, Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them): Brief Bioinform, v. 13, p. 83-97.
- Bjornstrom, L., and M. Sjoberg, 2005, Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes: Mol Endocrinol, v. 19, p. 833-42.
- Boulay, A., J. Rudloff, J. Ye, S. Zumstein-Mecker, T. O'Reilly, D. B. Evans, S. Chen, and H. A. Lane, 2005, Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer: Clin Cancer Res, v. 11, p. 5319-28.
- Brown, K. M., and G. M. Gilmartin, 2003, A mechanism for the regulation of premRNA 3' processing by human cleavage factor Im: Mol Cell, v. 12, p. 1467-76.
- Buratowski, S., 2005, Connections between mRNA 3' end processing and transcription termination: Curr Opin Cell Biol, v. 17, p. 257-61.

- Caldon, C. E., R. L. Sutherland, and E. Musgrove, 2010, Cell cycle proteins in epithelial cell differentiation: implications for breast cancer: Cell Cycle, v. 9, p. 1918-28.
- Caldwell, S. A., S. R. Jackson, K. S. Shahriari, T. P. Lynch, G. Sethi, S. Walker, K. Vosseller, and M. J. Reginato, 2010, Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1: Oncogene, v. 29, p. 2831-42.
- Carracedo, A., D. Weiss, A. K. Leliaert, M. Bhasin, V. C. de Boer, G. Laurent, A. C. Adams, M. Sundvall, S. J. Song, K. Ito, L. S. Finley, A. Egia, T. Libermann, Z. Gerhart-Hines, P. Puigserver, M. C. Haigis, E. Maratos-Flier, A. L. Richardson, Z. T. Schafer, and P. P. Pandolfi, 2012, A metabolic prosurvival role for PML in breast cancer: J Clin Invest, v. 122, p. 3088-100.
- Castelo-Branco, P., A. Furger, M. Wollerton, C. Smith, A. Moreira, and N. Proudfoot, 2004, Polypyrimidine tract binding protein modulates efficiency of polyadenylation: Mol Cell Biol, v. 24, p. 4174-83.
- Cheskis, B. J., J. G. Greger, S. Nagpal, and L. P. Freedman, 2007, Signaling by estrogens: J Cell Physiol, v. 213, p. 610-7.
- Choi, H. N., H. O. Jin, J. H. Kim, S. E. Hong, H. A. Kim, E. K. Kim, J. K. Lee, I. C. Park, and W. C. Noh, 2013, Inhibition of S6K1 enhances glucose deprivation-induced cell death via downregulation of anti-apoptotic proteins in MCF-7 breast cancer cells: Biochem Biophys Res Commun, v. 432, p. 123-8.
- Colgan, D. F., and J. L. Manley, 1997, Mechanism and regulation of mRNA polyadenylation: Genes Dev, v. 11, p. 2755-66.
- Cowley, M., A. J. Wood, S. Bohm, R. Schulz, and R. J. Oakey, 2012, Epigenetic control of alternative mRNA processing at the imprinted Herc3/Nap115 locus: Nucleic Acids Res, v. 40, p. 8917-26.

- D'Ambrogio, A., K. Nagaoka, and J. D. Richter, 2013, Translational control of cell growth and malignancy by the CPEBs: Nat Rev Cancer, v. 13, p. 283-90.
- Deng, S., H. Zhou, R. Xiong, Y. Lu, D. Yan, T. Xing, L. Dong, E. Tang, and H. Yang, 2007, Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics: Breast Cancer Res Treat, v. 104, p. 21-30.
- Desmedt, C., F. Piette, S. Loi, Y. Wang, F. Lallemand, B. Haibe-Kains, G. Viale, M. Delorenzi, Y. Zhang, M. S. d'Assignies, J. Bergh, R. Lidereau, P. Ellis, A. L. Harris, J. G. Klijn, J. A. Foekens, F. Cardoso, M. J. Piccart, M. Buyse, and C. Sotiriou, 2007, Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series: Clin Cancer Res, v. 13, p. 3207-14.
- Di Giammartino, D. C., K. Nishida, and J. L. Manley, 2011, Mechanisms and consequences of alternative polyadenylation: Mol Cell, v. 43, p. 853-66.
- Eckmann, C. R., C. Rammelt, and E. Wahle, 2011, Control of poly(A) tail length: Wiley Interdiscip Rev RNA, v. 2, p. 348-61.
- Elkon, R., A. P. Ugalde, and R. Agami, 2013, Alternative cleavage and polyadenylation: extent, regulation and function: Nat Rev Genet, v. 14, p. 496-506.
- Fanelli, M. A., L. M. Vargas-Roig, F. E. Gago, O. Tello, R. Lucero De Angelis, and D. R. Ciocca, 1996, Estrogen receptors, progesterone receptors, and cell proliferation in human breast cancer: Breast Cancer Res Treat, v. 37, p. 217-28.
- Feral, C., G. Guellaen, and A. Pawlak, 2001, Human testis expresses a specific poly(A)-binding protein: Nucleic Acids Res, v. 29, p. 1872-83.

- Fiermonte, G., E. Paradies, S. Todisco, C. M. Marobbio, and F. Palmieri, 2009, A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3',5'-diphosphate in human mitochondria: J Biol Chem, v. 284, p. 18152-9.
- Folkerd, E. J., and M. Dowsett, 2010, Influence of sex hormones on cancer progression: J Clin Oncol, v. 28, p. 4038-44.
- Fu, Y., Y. Sun, Y. Li, J. Li, X. Rao, C. Chen, and A. Xu, 2011, Differential genomewide profiling of tandem 3' UTRs among human breast cancer and normal cells by high-throughput sequencing: Genome Res, v. 21, p. 741-7.
- Garcia, S. A., and M. A. Nagai, 2011, Transcriptional regulation of bidirectional gene pairs by 17-beta-estradiol in MCF-7 breast cancer cells: Braz J Med Biol Res, v. 44, p. 112-22.
- Gautheret, D., O. Poirot, F. Lopez, S. Audic, and J. M. Claverie, 1998, Alternate polyadenylation in human mRNAs: a large-scale analysis by EST clustering: Genome Res, v. 8, p. 524-30.
- Ge, X., S. Yamamoto, S. Tsutsumi, Y. Midorikawa, S. Ihara, S. M. Wang, and H. Aburatani, 2005, Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues: Genomics, v. 86, p. 127-41.
- Gompel, A., S. Somai, M. Chaouat, A. Kazem, H. J. Kloosterboer, I. Beusman, P. Forgez, M. Mimoun, and W. Rostene, 2000, Hormonal regulation of apoptosis in breast cells and tissues: Steroids, v. 65, p. 593-8.
- Gottlicher, M., S. Heck, and P. Herrlich, 1998, Transcriptional cross-talk, the second mode of steroid hormone receptor action: J Mol Med (Berl), v. 76, p. 480-9.
- Gougelet, A., C. Bouclier, V. Marsaud, S. Maillard, S. O. Mueller, K. S. Korach, and J. M. Renoir, 2005, Estrogen receptor alpha and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90- and

immunophilin-ligands in human breast cancer cells: J Steroid Biochem Mol Biol, v. 94, p. 71-81.

- Graham, K., A. de las Morenas, A. Tripathi, C. King, M. Kavanah, J. Mendez, M. Stone, J. Slama, M. Miller, G. Antoine, H. Willers, P. Sebastiani, and C. L. Rosenberg, 2010, Gene expression in histologically normal epithelium from breast cancer patients and from cancer-free prophylactic mastectomy patients shares a similar profile: Br J Cancer, v. 102, p. 1284-93.
- Heldring, N., A. Pike, S. Andersson, J. Matthews, G. Cheng, J. Hartman, M. Tujague, A. Strom, E. Treuter, M. Warner, and J. A. Gustafsson, 2007, Estrogen receptors: how do they signal and what are their targets: Physiol Rev, v. 87, p. 905-31.
- Huang, X., Q. Pan, D. Sun, W. Chen, A. Shen, M. Huang, J. Ding, and M. Geng, 2013, O-GlcNAcylation of Cofilin Promotes Breast Cancer Cell Invasion: J Biol Chem, v. 288, p. 36418-25.
- Jelski, W., B. Zalewski, and M. Szmitkowski, 2008a, Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) activity in the sera of patients with pancreatic cancer: Dig Dis Sci, v. 53, p. 2276-80.
- Jelski, W., B. Zalewski, and M. Szmitkowski, 2008b, The activity of class I, II, III, and IV alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in liver cancer: Dig Dis Sci, v. 53, p. 2550-5.
- Jenal, M., R. Elkon, F. Loayza-Puch, G. van Haaften, U. Kuhn, F. M. Menzies, J. A. Oude Vrielink, A. J. Bos, J. Drost, K. Rooijers, D. C. Rubinsztein, and R. Agami, 2012, The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites: Cell, v. 149, p. 538-53.
- Ji, Z., J. Y. Lee, Z. Pan, B. Jiang, and B. Tian, 2009, Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development: Proc Natl Acad Sci U S A, v. 106, p. 7028-33.

- Ji, Z., W. Luo, W. Li, M. Hoque, Z. Pan, Y. Zhao, and B. Tian, 2011, Transcriptional activity regulates alternative cleavage and polyadenylation: Mol Syst Biol, v. 7, p. 534.
- Kaida, D., M. G. Berg, I. Younis, M. Kasim, L. N. Singh, L. Wan, and G. Dreyfuss, 2010, U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation: Nature, v. 468, p. 664-8.
- Kim, K. J., A. Godarova, K. Seedle, M. H. Kim, T. A. Ince, S. I. Wells, J. J. Driscoll, and S. Godar, 2013, Rb Suppresses Collective Invasion, Circulation and Metastasis of Breast Cancer Cells in CD44-Dependent Manner: PLoS One, v. 8, p. e80590.
- Kretschmer, C., A. Sterner-Kock, F. Siedentopf, W. Schoenegg, P. M. Schlag, and W. Kemmner, 2011, Identification of early molecular markers for breast cancer: Mol Cancer, v. 10, p. 15.
- Lau, C. K., V. A. Delmar, R. C. Chan, Q. Phung, C. Bernis, B. Fichtman, B. A. Rasala, and D. J. Forbes, 2009, Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly: Mol Biol Cell, v. 20, p. 4043-58.
- Lazennec, G., D. Bresson, A. Lucas, C. Chauveau, and F. Vignon, 2001, ER beta inhibits proliferation and invasion of breast cancer cells: Endocrinology, v. 142, p. 4120-30.
- Lee, Y. S., and A. Dutta, 2007, The tumor suppressor microRNA let-7 represses the HMGA2 oncogene: Genes Dev, v. 21, p. 1025-30.
- Liang, Y. J., Y. Ding, S. B. Levery, M. Lobaton, K. Handa, and S. I. Hakomori, 2013, Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells: Proc Natl Acad Sci U S A, v. 110, p. 4968-73.

- Liaw, H. H., C. C. Lin, H. F. Juan, and H. C. Huang, 2013, Differential microRNA regulation correlates with alternative polyadenylation pattern between breast cancer and normal cells: PLoS One, v. 8, p. e56958.
- Licatalosi, D. D., A. Mele, J. J. Fak, J. Ule, M. Kayikci, S. W. Chi, T. A. Clark, A. C. Schweitzer, J. E. Blume, X. Wang, J. C. Darnell, and R. B. Darnell, 2008, HITS-CLIP yields genome-wide insights into brain alternative RNA processing: Nature, v. 456, p. 464-9.
- Liu, R., X. Wang, G. Y. Chen, P. Dalerba, A. Gurney, T. Hoey, G. Sherlock, J. Lewicki, K. Shedden, and M. F. Clarke, 2007, The prognostic role of a gene signature from tumorigenic breast-cancer cells: N Engl J Med, v. 356, p. 217-26.
- Losel, R., and M. Wehling, 2003, Nongenomic actions of steroid hormones: Nat Rev Mol Cell Biol, v. 4, p. 46-56.
- Mansfield, K. D., and J. D. Keene, 2012, Neuron-specific ELAV/Hu proteins suppress HuR mRNA during neuronal differentiation by alternative polyadenylation: Nucleic Acids Res, v. 40, p. 2734-46.
- Martincic, K., S. A. Alkan, A. Cheatle, L. Borghesi, and C. Milcarek, 2009, Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing: Nat Immunol, v. 10, p. 1102-9.
- Matthews, J., and J. A. Gustafsson, 2003, Estrogen signaling: a subtle balance between ER alpha and ER beta: Mol Interv, v. 3, p. 281-92.
- Mayr, C., and D. P. Bartel, 2009, Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells: Cell, v. 138, p. 673-84.
- Metz, C. E., 1978, Basic principles of ROC analysis: Semin Nucl Med, v. 8, p. 283-98.

- Mi, H., A. Muruganujan, and P. D. Thomas, 2013, PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees: Nucleic Acids Res, v. 41, p. D377-86.
- Millevoi, S., and S. Vagner, 2010, Molecular mechanisms of eukaryotic pre-mRNA 3' end processing regulation: Nucleic Acids Res, v. 38, p. 2757-74.
- Mok, A., H. Cao, and R. A. Hegele, 2003, Genomic basis of mucopolysaccharidosis type IIID (MIM 252940) revealed by sequencing of GNS encoding Nacetylglucosamine-6-sulfatase: Genomics, v. 81, p. 1-5.
- Murray, R. Z., L. A. Jolly, and S. A. Wood, 2004, The FAM deubiquitylating enzyme localizes to multiple points of protein trafficking in epithelia, where it associates with E-cadherin and beta-catenin: Mol Biol Cell, v. 15, p. 1591-9.
- Musgrove, E. A., C. E. Caldon, J. Barraclough, A. Stone, and R. L. Sutherland, 2011, Cyclin D as a therapeutic target in cancer: Nat Rev Cancer, v. 11, p. 558-72.
- Musgrove, E. A., and R. L. Sutherland, 2009, Biological determinants of endocrine resistance in breast cancer: Nat Rev Cancer, v. 9, p. 631-43.
- Nagaike, T., C. Logan, I. Hotta, O. Rozenblatt-Rosen, M. Meyerson, and J. L. Manley, 2011, Transcriptional activators enhance polyadenylation of mRNA precursors: Mol Cell, v. 41, p. 409-18.
- Nilsson, S., S. Makela, E. Treuter, M. Tujague, J. Thomsen, G. Andersson, E. Enmark, K. Pettersson, M. Warner, and J. A. Gustafsson, 2001, Mechanisms of estrogen action: Physiol Rev, v. 81, p. 1535-65.
- Nott, S. L., Y. Huang, X. Li, B. R. Fluharty, X. Qiu, W. V. Welshons, S. Yeh, and M. Muyan, 2009, Genomic responses from the estrogen-responsive elementdependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations: J Biol Chem, v. 284, p. 15277-88.

- Ozsolak, F., P. Kapranov, S. Foissac, S. W. Kim, E. Fishilevich, A. P. Monaghan, B. John, and P. M. Milos, 2010, Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation: Cell, v. 143, p. 1018-29.
- Paruthiyil, S., H. Parmar, V. Kerekatte, G. R. Cunha, G. L. Firestone, and D. C. Leitman, 2004, Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest: Cancer Res, v. 64, p. 423-8.
- Peddaboina, C., D. Jupiter, S. Fletcher, J. L. Yap, A. Rai, R. P. Tobin, W. Jiang, P. Rascoe, M. K. Rogers, W. R. Smythe, and X. Cao, 2012, The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition: BMC Cancer, v. 12, p. 541.
- Perillo, B., A. Sasso, C. Abbondanza, and G. Palumbo, 2000, 17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence: Mol Cell Biol, v. 20, p. 2890-901.
- Peterson, M. L., and R. P. Perry, 1989, The regulated production of mu m and mu s mRNA is dependent on the relative efficiencies of mu s poly(A) site usage and the c mu 4-to-M1 splice: Mol Cell Biol, v. 9, p. 726-38.
- Pickrell, J. K., J. C. Marioni, A. A. Pai, J. F. Degner, B. E. Engelhardt, E. Nkadori, J.
 B. Veyrieras, M. Stephens, Y. Gilad, and J. K. Pritchard, 2010, Understanding mechanisms underlying human gene expression variation with RNA sequencing: Nature, v. 464, p. 768-72.
- Pinto, P. A., T. Henriques, M. O. Freitas, T. Martins, R. G. Domingues, P. S. Wyrzykowska, P. A. Coelho, A. M. Carmo, C. E. Sunkel, N. J. Proudfoot, and A. Moreira, 2011, RNA polymerase II kinetics in polo polyadenylation signal selection: Embo j, v. 30, p. 2431-44.

- Planche, A., M. Bacac, P. Provero, C. Fusco, M. Delorenzi, J. C. Stehle, and I. Stamenkovic, 2011, Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer: PLoS One, v. 6, p. e18640.
- Porter, W., B. Saville, D. Hoivik, and S. Safe, 1997, Functional synergy between the transcription factor Sp1 and the estrogen receptor: Mol Endocrinol, v. 11, p. 1569-80.
- Prat, A., J. S. Parker, O. Karginova, C. Fan, C. Livasy, J. I. Herschkowitz, X. He, and C. M. Perou, 2010, Phenotypic and molecular characterization of the claudinlow intrinsic subtype of breast cancer: Breast Cancer Res, v. 12, p. R68.
- Proikas-Cezanne, T., and H. Robenek, 2011, Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes: J Cell Mol Med, v. 15, p. 2007-10.
- Proudfoot, N. J., 2011, Ending the message: poly(A) signals then and now: Genes Dev, v. 25, p. 1770-82.
- Qu, Y., J. Wang, P. S. Ray, H. Guo, J. Huang, M. Shin-Sim, B. A. Bukoye, B. Liu, A. V. Lee, X. Lin, P. Huang, J. W. Martens, A. E. Giuliano, N. Zhang, N. H. Cheng, and X. Cui, 2011, Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-kappaB signaling: J Clin Invest, v. 121, p. 212-25.
- Ren, Y. G., K. W. Wagner, D. A. Knee, P. Aza-Blanc, M. Nasoff, and Q. L. Deveraux, 2004, Differential regulation of the TRAIL death receptors DR4 and DR5 by the signal recognition particle: Mol Biol Cell, v. 15, p. 5064-74.
- Renoir, J. M., V. Marsaud, and G. Lazennec, 2013, Estrogen receptor signaling as a target for novel breast cancer therapeutics: Biochem Pharmacol, v. 85, p. 449-65.

- Roman-Blas, J. A., S. Castaneda, R. Largo, and G. Herrero-Beaumont, 2009, Osteoarthritis associated with estrogen deficiency: Arthritis Res Ther, v. 11, p. 241.
- Rosenfeld, M. G., and C. K. Glass, 2001, Coregulator codes of transcriptional regulation by nuclear receptors: J Biol Chem, v. 276, p. 36865-8.
- Rosenwald, A., G. Wright, A. Wiestner, W. C. Chan, J. M. Connors, E. Campo, R.
 D. Gascoyne, T. M. Grogan, H. K. Muller-Hermelink, E. B. Smeland, M.
 Chiorazzi, J. M. Giltnane, E. M. Hurt, H. Zhao, L. Averett, S. Henrickson, L.
 Yang, J. Powell, W. H. Wilson, E. S. Jaffe, R. Simon, R. D. Klausner, E.
 Montserrat, F. Bosch, T. C. Greiner, D. D. Weisenburger, W. G. Sanger, B. J.
 Dave, J. C. Lynch, J. Vose, J. O. Armitage, R. I. Fisher, T. P. Miller, M.
 LeBlanc, G. Ott, S. Kvaloy, H. Holte, J. Delabie, and L. M. Staudt, 2003, The
 proliferation gene expression signature is a quantitative integrator of
 oncogenic events that predicts survival in mantle cell lymphoma: Cancer
 Cell, v. 3, p. 185-97.
- Rozenblatt-Rosen, O., T. Nagaike, J. M. Francis, S. Kaneko, K. A. Glatt, C. M. Hughes, T. LaFramboise, J. L. Manley, and M. Meyerson, 2009, The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3' mRNA processing factors: Proc Natl Acad Sci U S A, v. 106, p. 755-60.
- Sandberg, R., J. R. Neilson, A. Sarma, P. A. Sharp, and C. B. Burge, 2008, Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites: Science, v. 320, p. 1643-7.
- Schnitt, S. J., 2010, Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy: Mod Pathol, v. 23 Suppl 2, p. S60-4.
- Shi, Y., 2012, Alternative polyadenylation: new insights from global analyses: Rna, v. 18, p. 2105-17.

- Shi, Y., D. C. Di Giammartino, D. Taylor, A. Sarkeshik, W. J. Rice, J. R. Yates, 3rd, J. Frank, and J. L. Manley, 2009, Molecular architecture of the human premRNA 3' processing complex: Mol Cell, v. 33, p. 365-76.
- Spies, N., C. B. Nielsen, R. A. Padgett, and C. B. Burge, 2009, Biased chromatin signatures around polyadenylation sites and exons: Mol Cell, v. 36, p. 245-54.
- Stiburek, L., J. Cesnekova, O. Kostkova, D. Fornuskova, K. Vinsova, L. Wenchich, J. Houstek, and J. Zeman, 2012, YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation: Mol Biol Cell, v. 23, p. 1010-23.
- Strom, A., J. Hartman, J. S. Foster, S. Kietz, J. Wimalasena, and J. A. Gustafsson, 2004, Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D: Proc Natl Acad Sci U S A, v. 101, p. 1566-71.
- Sun, Y., Y. Fu, Y. Li, and A. Xu, 2012, Genome-wide alternative polyadenylation in animals: insights from high-throughput technologies: J Mol Cell Biol, v. 4, p. 352-61.
- Takagi, K., S. Ito, T. Miyazaki, Y. Miki, Y. Shibahara, T. Ishida, M. Watanabe, S. Inoue, H. Sasano, and T. Suzuki, 2013, Amyloid precursor protein in human breast cancer: An androgen-induced gene associated with cell proliferation: Cancer Sci.
- Tan, F. L., A. Ooi, D. Huang, J. C. Wong, C. N. Qian, C. Chao, L. Ooi, Y. M. Tan, A. Chung, P. C. Cheow, Z. Zhang, D. Petillo, X. J. Yang, and B. T. Teh, 2010, p38delta/MAPK13 as a diagnostic marker for cholangiocarcinoma and its involvement in cell motility and invasion: Int J Cancer, v. 126, p. 2353-61.
- Tane, S., Y. Maniwa, D. Hokka, S. Tauchi, W. Nishio, Y. Okita, and M. Yoshimura, 2013, The role of Necl-5 in the invasive activity of lung adenocarcinoma: Exp Mol Pathol, v. 94, p. 330-5.

- Tian, B., J. Hu, H. Zhang, and C. S. Lutz, 2005, A large-scale analysis of mRNA polyadenylation of human and mouse genes: Nucleic Acids Res, v. 33, p. 201-12.
- Tripathi, A., C. King, A. de la Morenas, V. K. Perry, B. Burke, G. A. Antoine, E. F. Hirsch, M. Kavanah, J. Mendez, M. Stone, N. P. Gerry, M. E. Lenburg, and C. L. Rosenberg, 2008, Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients: Int J Cancer, v. 122, p. 1557-66.
- Tusher, V. G., R. Tibshirani, and G. Chu, 2001, Significance analysis of microarrays applied to the ionizing radiation response: Proc Natl Acad Sci U S A, v. 98, p. 5116-21.
- Verdu, M., I. Trias, R. Roman, N. Rodon, B. Garcia-Pelaez, M. Calvo, A. Dominguez, J. M. Banus, and X. Puig, 2013, ERG expression and prostatic adenocarcinoma: Virchows Arch, v. 462, p. 639-44.
- Wang, Y., J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, D. Talantov, M. Timmermans, M. E. Meijer-van Gelder, J. Yu, T. Jatkoe, E. M. Berns, D. Atkins, and J. A. Foekens, 2005, Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer: Lancet, v. 365, p. 671-9.
- Wiestner, A., M. Tehrani, M. Chiorazzi, G. Wright, F. Gibellini, K. Nakayama, H. Liu, A. Rosenwald, H. K. Muller-Hermelink, G. Ott, W. C. Chan, T. C. Greiner, D. D. Weisenburger, J. Vose, J. O. Armitage, R. D. Gascoyne, J. M. Connors, E. Campo, E. Montserrat, F. Bosch, E. B. Smeland, S. Kvaloy, H. Holte, J. Delabie, R. I. Fisher, T. M. Grogan, T. P. Miller, W. H. Wilson, E. S. Jaffe, and L. M. Staudt, 2007, Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival: Blood, v. 109, p. 4599-606.

- Wood, A. J., R. G. Roberts, D. Monk, G. E. Moore, R. Schulz, and R. J. Oakey, 2007, A screen for retrotransposed imprinted genes reveals an association between X chromosome homology and maternal germ-line methylation: PLoS Genet, v. 3, p. e20.
- Wray, N. R., J. Yang, M. E. Goddard, and P. M. Visscher, 2010, The genetic interpretation of area under the ROC curve in genomic profiling: PLoS Genet, v. 6, p. e1000864.
- Yan, X., H. Liang, T. Deng, K. Zhu, S. Zhang, N. Wang, X. Jiang, X. Wang, R. Liu, K. Zen, C. Y. Zhang, Y. Ba, and X. Chen, 2013, The identification of novel targets of miR-16 and characterization of their biological functions in cancer cells: Mol Cancer, v. 12, p. 92.
- Yu, E. J., S. H. Kim, K. Heo, C. Y. Ou, M. R. Stallcup, and J. H. Kim, 2011, Reciprocal roles of DBC1 and SIRT1 in regulating estrogen receptor alpha activity and co-activator synergy: Nucleic Acids Res, v. 39, p. 6932-43.
- Zeng, Z., H. Lin, X. Zhao, G. Liu, X. Wang, R. Xu, K. Chen, J. Li, and L. Song, 2012, Overexpression of GOLPH3 promotes proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor: Clin Cancer Res, v. 18, p. 4059-69.
- Zhang, H., J. Hu, M. Recce, and B. Tian, 2005a, PolyA_DB: a database for mammalian mRNA polyadenylation: Nucleic Acids Res, v. 33, p. D116-20.
- Zhang, H., J. Y. Lee, and B. Tian, 2005b, Biased alternative polyadenylation in human tissues: Genome Biol, v. 6, p. R100.

APPENDIX A

PATIENT CHARACTERISTICS

Table A.1Patient characteristics of GSE2034 dataset.

GEO accession number	lymph node status	time to relapse or last follow-up (months)	relapse
GSM36777	negative	79	0
GSM36779	negative	132	0
GSM36781	negative	147	0
GSM36782	negative	66	0
GSM36783	negative	52	0
GSM36785	negative	57	0
GSM36786	negative	66	0
GSM36787	negative	72	0
GSM36790	negative	107	0
GSM36794	negative	87	0
GSM36796	negative	118	0
GSM36799	negative	75	0
GSM36801	negative	125	0
GSM36802	negative	92	0
GSM36803	negative	93	0
GSM36804	negative	88	0
GSM36805	negative	100	0
GSM36806	negative	92	0
GSM36807	negative	88	0
GSM36810	negative	105	0
GSM36817	negative	113	0
GSM36819	negative	131	0
GSM36820	negative	141	0
GSM36821	negative	88	0
GSM36823	negative	119	0
GSM36824	negative	86	0
GSM36825	negative	99	0
GSM36829	negative	157	0
GSM36830	negative	117	0
GSM36831	negative	87	0
GSM36832	negative	119	0
GSM36834	negative	109	0
GSM36836	negative	99	0
GSM36837	negative	137	0
GSM36840	negative	86	0
GSM36841	negative	134	0
GSM36842	negative	81	0
GSM36843	negative	77	0
GSM36844	negative	121	0
GSM36845	negative	54	0

Table A.1 (continued)

GEO accession number	lymph node status	time to relapse or last follow-up (months)	relapse
GSM36848	negative	105	0
GSM36849	negative	110	0
GSM36850	negative	121	0
GSM36851	negative	100	0
GSM36852	negative	107	Õ
GSM36853	negative	105	Ő
GSM36856	negative	86	0
CSM26857	negative	80	0
GSM30857	negative	95	0
GSM36859	negative	130	0
GSM36861	negative	155	0
GSM36864	negative	84	0
GSM36866	negative	107	0
GSM36867	negative	108	0
GSM36868	negative	123	0
GSM36869	negative	126	0
GSM36871	negative	84	Õ
GSM36873	negative	100	Õ
GSM36879	negative	08	0
CSM2(200	negative	90	0
G51v150880	negative	97	0
GSM36882	negative	99	0
GSM36883	negative	88	0
GSM36884	negative	129	0
GSM36887	negative	108	0
GSM36889	negative	108	0
GSM36890	negative	116	0
GSM36892	negative	110	0
GSM36893	negative	124	Ő
GSM36894	negative	100	0
CSM26805	negative	109	0
GSM26906	negative	90	0
GSM36896	negative	102	0
GSM36899	negative	169	0
GSM36900	negative	109	0
GSM36901	negative	101	0
GSM36907	negative	86	0
GSM36910	negative	125	0
GSM36913	negative	109	0
GSM36914	negative	84	0
GSM36916	negative	125	0
GSM36917	negative	144	Ő
GSM36010	negative	153	0
CSM26021	negative	109	0
GSM130921	negative	108	0
GSM36922	negative	113	0
GSM36925	negative	104	0
GSM36929	negative	93	0
GSM36930	negative	84	0
GSM36932	negative	96	0
GSM36933	negative	110	0
GSM36934	negative	171	0
GSM36936	negative	109	0
GSM36938	negative	108	0
GSM36042	negative	152	Ő
CSM26044	negative	112	0
CSM26045	negative	112	0
GSM36945	negative	92	0
GSM36948	negative	8/	0
GSM36951	negative	104	0
GSM36958	negative	111	0
GSM36962	negative	114	0
GSM36963	negative	60	0
GSM36965	negative	134	0
GSM36970	negative	116	0
GSM36975	negative	110	Õ
GSM36070	negative	107	0
GSM26090	negativo	107	0
CSM22002	negative	02	0
031/130982	negative	72	0
GSM36984	negative	138	U

Table A.1 (continued)

GEO accession number	lymph node status	time to relapse or last follow-up (months)	relapse
GSM36987	negative	97	0
GSM36988	negative	96	0
GSM36990	negative	143	0
GSM36992	negative	104	0
GSM36993	negative	98	0
GSM36995	negative	113	Õ
GSM37000	negative	137	Ő
GSM37000	negative	122	0
GSM37009	negative	101	0
CSM37010	negative	101	0
GSM37012	negative	132	0
GSM37014	negative	143	0
GSM37015	negative	122	0
GSM37019	negative	146	0
GSM37024	negative	95	0
GSM37025	negative	107	0
GSM37032	negative	86	0
GSM37033	negative	161	0
GSM37044	negative	112	0
GSM37046	negative	86	0
GSM37047	negative	108	0
GSM37057	negative	59	0
GSM37059	negative	83	0
GSM37060	negative	81	0
GSM37062	negative	54	0
GSM36778	negative	50	1
GSM36784	negative	57	1
GSM36789	negative	51	1
GSM36792	negative	71	1
GSM36811	negative	62	1
GSM36813	negative	40	1
CSM26914	negative	49	1
CSM26915	negative	01 72	1
GSM30813	negative	12	1
GSM36818	negative	62	1
GSM30820	negative	58	1
GSM36838	negative	34	1
GSM30839	negative	32	1
GSM36858	negative	14	1
GSM30800	negative	30	1
GSM36870	negative	30	1
GSM368/2	negative	7	1
GSM368/4	negative	30	1
GSM36877	negative	43	1
GSM36881	negative	11	1
GSM36885	negative	40	1
GSM36888	negative	28	1
GSM36897	negative	25	1
GSM36898	negative	7	1
GSM36902	negative	28	1
GSM36903	negative	8	1
GSM36908	negative	15	1
GSM36911	negative	80	1
GSM36920	negative	20	1
GSM36924	negative	29	1
GSM36927	negative	8	1
GSM36928	negative	23	1
GSM36931	negative	37	1
GSM36939	negative	14	1
GSM36943	negative	19	1
GSM36946	negative	26	1
GSM36947	negative	16	1
GSM36950	negative	28	1
GSM36954	negative	19	1
GSM36956	negative	32	1
GSM36957	negative	47	1
GSM36960	negative	51	1

Table A.1 (continued)

GEO accession number	lymph node status	time to relapse or last follow-up (months)	relapse
GSM36967	negative	15	1
GSM36971	negative	19	1
GSM36972	negative	37	1
GSM36973	negative	25	1
GSM36974	negative	23	1
GSM36976	negative	38	1
GSM36983	negative	75	1
GSM36985	negative	55	1
GSM36986	negative	77	1
GSM36989	negative	11	1
GSM36994	negative	2	1
GSM36996	negative	24	1
GSM36997	negative	44	1
GSM36998	negative	5	1
GSM36999	negative	37	1
GSM37001	negative	33	1
GSM37003	negative	19	1
GSM37004	negative	35	1
GSM37005	negative	56	1
GSM37006	negative	71	1
GSM37007	negative	59	1
GSM37008	negative	70	1
GSM37011	negative	60	1
GSM37013	negative	66	1
GSM37018	negative	20	1
GSM37026	negative	36	1
GSM37027	negative	17	1
GSM37028	negative	39	1
GSM37029	negative	47	1
GSM37030	negative	44	1
GSM37031	negative	18	1
GSM37035	negative	14	1
GSM37036	negative	15	1
GSM37037	negative	19	1
GSM37038	negative	60	1
GSM37039	negative	48	1
GSM37041	negative	9	1
GSM37051	negative	18	1
GSM37058	negative	64	1
Table A.2Patient chara	cteristics of	' GSE7390	dataset
------------------------	---------------	-----------	---------
------------------------	---------------	-----------	---------

Sample ID	node	grade	t.rfs	e.rfs	t.os	e.os	t.dmfs (dav)	e.dmfs	t.tdm (dav)	e.tdm	hospital
GSM177886	0	3	183	1	6591	0	6591	0	6591	0	GUY
GSM177890	Õ	2	6507	0	6507	Õ	6507	Õ	6507	Õ	GUY
GSM177893	Õ	3	6007	Õ	6007	Õ	6007	0	6007	Õ	GUY
GSM177896	Õ	1	5984	Õ	5984	Õ	5984	Õ	5984	Õ	GUY
GSM177904	Õ	2	5693	Õ	5693	Õ	5693	0	5693	Õ	GUY
GSM177905	ŏ	$\frac{1}{2}$	5823	ŏ	5823	Ő	5823	Ő	5823	Ő	GUY
GSM177907	Õ	$\frac{-}{2}$	5598	1	5661	Õ	5661	0	5661	Õ	GUY
GSM177910	Õ	1	5110	1	5110	Õ	5110	Õ	5110	Õ	GUY
GSM177911	Õ	2	5533	0	5533	Õ	5533	0	5533	Õ	GUY
GSM177912	Õ	1	1429	1	5571	Õ	5571	Õ	5571	Õ	GUY
GSM177914	0	3	5379	0	5379	0	5379	0	5379	0	GUY
GSM177915	0	3	4675	0	4675	0	4675	0	4675	0	GUY
GSM177916	0	2	1666	1	4652	0	4652	0	4652	0	GUY
GSM177917	0	2	4227	0	4227	0	4227	0	4227	0	GUY
GSM177919	0	2	4472	0	4472	0	4472	0	4472	0	GUY
GSM177921	0	2	5632	1	7057	0	7057	0	7057	0	IGR
GSM177922	0	2	958	0	958	0	958	0	958	0	IGR
GSM177928	0	2	5685	0	5685	0	5685	0	5685	0	IGR
GSM177930	0	2	4791	0	4791	0	4791	0	4791	0	IGR
GSM177931	0	1	1215	0	1215	0	1215	0	1215	0	IGR
GSM177932	0	1	3779	0	3779	0	3779	0	3779	0	IGR
GSM177933	0	3	5306	0	5306	0	5306	0	5306	0	IGR
GSM177934	0	3	5678	0	5678	0	5678	0	5678	0	IGR
GSM177936	0	2	840	1	5612	0	5612	0	5612	0	IGR
GSM177938	0	1	1104	0	1104	0	1104	0	1104	0	IGR
GSM177940	0	2	1609	1	5238	0	5238	0	5238	0	IGR
GSM177941	0	2	5101	0	5101	0	5101	0	5101	0	IGR
GSM177942	0	3	2809	0	2809	0	2809	0	2809	0	IGR
GSM177944	0	2	546	1	3555	0	3555	0	3555	0	IGR
GSM177945	0	2	3525	1	5433	0	5433	0	5433	0	IGR
GSM177946	0	3	854	1	5228	0	5228	0	5228	0	IGR
GSM177947	0	2	1813	1	5316	0	5316	0	5316	0	IGR
GSM177948	0	1	4925	0	4925	0	4925	0	4925	0	IGR
GSM177949	0	3	3853	1	5012	0	5012	0	5012	0	IGR
GSM177950	0	1	4642	0	4642	0	4642	0	4642	0	IGR
GSM177951	0	1	3311	0	3311	0	3311	0	3311	0	IGR
GSM177952	0	2	4863	0	4863	0	4863	0	4863	0	IGR
GSM177955	0	2	2105	0	2105	0	2105	0	2105	0	IGR
GSM177957	0	1	4830	0	4830	0	4830	0	4830	0	IGR
GSM177959	0	1	4720	0	4720	0	4720	0	4720	0	IGR
GSM177963	0	3	1740	0	1740	0	1740	0	1740	0	IGR
GSM177965	0	2	2536	1	3900	0	3900	0	3900	0	IGR
GSM177967	0	3	3544	0	3544	0	3544	0	3544	0	IGR
GSM177968	0	1	3721	0	3721	0	3721	0	3721	0	IGR
GSM177969	0	2	3771	0	3771	0	3771	0	3771	0	IGR
GSM177974	0	2	4945	1	4952	0	4952	0	4952	0	JRH
GSM177984	0	1	4327	0	4327	0	4327	0	4327	0	JRH
GSM177986	0	3	2083	1	4181	0	4181	0	4181	0	JRH
GSM177987	0	1	3188	0	3188	0	3188	0	3188	0	JRH
GSM177988	0	3	2672	0	2672	0	2672	0	2672	0	JRH
GSM177990	0	1	1591	0	1591	0	1591	0	1591	0	JRH
GSM177991	0	1	1920	0	1920	0	1920	0	1920	0	JRH
GSM177992	0	2	2647	0	2647	0	2647	0	2647	0	JRH
GSM177995	0	2	4568	0	4568	0	4568	0	4568	0	KAR
GSM177996	0	1	4357	0	4357	0	4357	0	4357	0	KAR
GSM177997	0	2	5035	0	5035	0	5035	0	5035	0	KAR
GSM178001	0	3	2549	0	2549	0	2549	0	2549	0	KAR
GSM178002	0	2	4085	0	4085	0	4085	0	4085	0	KAR
GSM178004	0	NA	2441	1	5236	0	5236	0	5236	0	KAR
GSM178005	0	1	5406	0	5406	0	5406	0	5406	0	KAR
GSM178007	0	2	1520	1	5359	0	5359	0	5359	0	KAR
GSM178008	0	1	3964	0	3964	0	3964	0	3964	0	KAR
GSM178011	0	NA	4972	1	6399	0	6399	0	6399	0	KAR
GSM178012	0	3	5683	0	5683	0	5683	0	5683	0	KAR
GSM178014	0	2	6161	0	6161	0	6161	0	6161	0	KAR

Sample ID	node	grade	t.rfs	e.rfs	t.os	e.os	t.dmfs (day)	e.dmfs	t.tdm (day)	e.tdm	hospital
GSM178015	0	2	6132	0	6132	0	6132	0	6132	0	KAR
GSM178019	0	2	5014	0	5014	0	5014	0	5014	0	KAR
GSM178024	0	3	6135	0	6135	0	6135	0	6135	0	KAR
GSM178026	0	3	5917	0	5917	0	5917	0	5917	0	KAR
GSM178027	0	2	5909	0	5909	0	5909	0	5909	0	KAR
GSM178029	0	2	5860	0	5860	0	5860	0	5860	0	KAR
GSM178031	0	2	5779	0	5779	0	5779	0	5779	0	KAR
GSM178032	0	3	5779	0	5779	0	5779	0	5779	0	KAR
GSM178033	0	2	5723	0	5723	0	5723	0	5723	0	KAR
GSM178034	0	2	5714	0	5714	0	5714	0	5714	0	KAR
GSM178035	0	3	5653	0	5653	0	5653	0	5653	0	KAR
GSM178037	0	1	5678	0	5678	0	5678	0	5678	0	KAR
GSM178040	0	2	5602	0	5602	0	5602	0	5602	0	KAR
GSM178041	0	2	5768	0	5768	0	5768	0	5768	0	KAR
GSM178042	0	2	5684	0	5684	0	5684	0	5684	0	KAR
GSM178043	0	3	5530	0	5530	0	5530	0	5530	0	KAR
GSM178045	0	1	6352	0	6352	0	6352	0	6352	0	KAR
GSM178046	0	2	722	1	6295	0	6295	0	6295	0	RH
GSM178048	0	2	6281	0	6281	0	6281	0	6281	0	RH
GSM178053	0	2	1857	1	9108	0	9108	0	9108	0	RH
GSM178056	0	3	5181	0	5181	0	5181	0	5181	0	RH
GSM178057	0	3	3855	0	3855	0	3855	0	3855	0	RH
GSM178058	0	3	5156	0	5156	0	5156	0	5156	0	RH
GSM178062	0	2	5038	0	5038	0	5038	0	5038	0	RH
GSM178064	0	3	4555	0	4555	0	4555	0	4555	0	RH
GSM178067	0	2	4866	0	4866	0	4866	0	4866	0	RH
GSM178068	0	3	4178	0	4178	0	4178	0	4178	0	RH
GSM178070	0	2	2541	1	4052	0	4052	0	4052	0	RH
GSM178071	0	2	1432	1	3782	0	3782	0	3782	0	RH
GSM178072	0	1	3492	0	3492	0	3492	0	3492	0	RH
GSM178076	0	2	5137	0	5137	0	5137	0	5137	0	RH
GSM1/80//	0	2	6961	1	7023	0	7023	0	7023	0	RH
GSM1/8080	0	1	2225	0	2225	0	2225	0	2225	0	RH
GSM1/8081	0	2	2122	0	2122	0	2722	0	2722	0	KH
GSM177888	0	3	2192	1	6255	1	6255	1	6255	0	GUY
GSM177802	0	2	5822	1	4133	1	5822	1	5822	1	GUY
GSM177892	0	1	2810	1	3810	1	3810 1222	1	2810	0	GUY
GSM177894	0	2	422	1	1484	1	1255	1	1255	1	GUY
GSM177000	0	3	1150	1	2920	1	1130	1	1130	1	GUY
CSM177008	0	2	2000	1	2000	1	2000	1	994 2000	1	GUI
CSM177908	0	2	2909	1	1075	1	2909	1	2909	1	CUV
CSM177026	0	3	520	1	6026	1	528	1	528	1	ICP
GSM177920	0	3	1022	1	1754	1	1022	1	1022	1	ICR
GSM177929	0	1	1023	1	3347	1	1025	1	1023	1	IGR
GSM177955	0	1	530	1	020	1	530	1	530	1	IGR
GSM177958	0	3	1721	1	21/18	1	1721	1	1721	1	IGR
GSM177960	0	2	1250	1	2140	1	1721	1	1721	1	IGR
GSM177961	0	$\frac{2}{2}$	3976	1	2433 1/38	0	3976	1	3976	1	IGR
GSM177962	0	2	3331	1	44.50	0	4050	1	4050	1	IGR
GSM177964	0	1	3218	1	3608	1	3608	1	3608	0	IGR
GSM177973	0	3	649	1	1029	1	649	1	649	1	IRH
GSM177983	0	2	996	1	2111	1	1731	1	1731	1	IRH
GSM177989	0	2	730	1	794	1	730	1	730	1	IRH
GSM177998	Ő	2	1465	1	3207	1	2604	1	2604	1	KAR
GSM178000	0	2	3512	1	8251	0	6777	1	6777	0	KAR
GSM178016	Ő	2	4212	1	5337	1	4212	1	4212	1	KAR
GSM178018	0	2	1703	1	1703	1	1703	1	1703	0	KAR
GSM178020	Ő	3	880	1	1924	1	880	1	880	1	KAR
GSM178025	Ő	2	805	1	1803	1	805	1	805	1	KAR
GSM178030	Ő	2	2349	1	3650	1	2349	1	2349	1	KAR
GSM178038	Ő	$\overline{\overline{2}}$	1742	1	2697	1	1742	1	1742	1	KAR
GSM178039	õ	1	865	1	3614	1	3614	1	3614	0	KAR
GSM178047	Ő	2	6590	1	7260	0	7185	1	7185	1	RH

Table A.2 (continued)

Sample ID	node	grade	t.rfs	e.rfs	t.os	6.05	t.dmfs (dav)	e.dmfs	t.tdm (dav)	e.tdm	hospital
GSM178049	0	2	3313	1	4594	1	3313	1	3313	1	RH
GSM178051	0	2	966	1	2972	1	2972	1	2972	0	RH
GSM178054	0	1	4353	1	5445	1	4353	1	4353	1	RH
GSM178060	0	1	794	1	1308	1	794	1	794	1	RH
GSM178061	0	2	1598	1	1864	1	1598	1	1598	1	RH
GSM178074	0	3	2454	1	5284	1	2454	1	2454	1	RH

Table A.3Normal breast samples fromGSE20437, GSE9574, GSE6883,GSE26910, GSE21422, GSE3744, and GSE2361 datasets

GSMS12557 histologically normal breast epithelium from Ek+ breast cancer patient sample 2 GSMS12559 histologically normal breast epithelium from Ek+ breast cancer patient sample 4 GSMS12550 histologically normal breast epithelium from Ek+ breast cancer patient sample 6 GSMS12561 histologically normal breast epithelium from Ek+ breast cancer patient sample 6 GSMS12562 histologically normal breast epithelium from Ek+ breast cancer patient sample 6 GSMS12566 histologically normal breast epithelium from Ek+ breast cancer patient sample 8 GSMS12566 histologically normal breast epithelium from Ek+ breast cancer patient sample 1 GSMS12566 histologically normal breast epithelium from Ek+ breast cancer patient sample 1 GSMS12570 histologically normal breast epithelium from Ek+ breast cancer patient sample 3 GSMS12571 histologically normal breast epithelium from Ek+ breast cancer patient sample 5 GSMS12572 histologically normal breast epithelium from Ek+ breast cancer patient sample 5 GSMS12571 histologically normal breast epithelium from Ek+ breast cancer patient sample 6 GSMS12572 histologically normal breast epithelium from prophylactic mastectomy patient sample 7 GSMS12573 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSMS12574	GSM number	Sample name
GSMS1258 histologically normal breast epithelium from ER+ breast cancer patient sample 3 GSMS12560 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSMS12561 histologically normal breast epithelium from ER+ breast cancer patient sample 5 GSMS12561 histologically normal breast epithelium from ER+ breast cancer patient sample 7 GSMS12565 histologically normal breast epithelium from ER+ breast cancer patient sample 7 GSMS12566 histologically normal breast epithelium from ER+ breast cancer patient sample 9 GSMS12566 histologically normal breast epithelium from ER+ breast cancer patient sample 2 GSMS12576 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSMS12570 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSMS12571 histologically normal breast epithelium from ER+ breast cancer patient sample 6 GSMS12572 histologically normal breast epithelium from ER+ breast cancer patient sample 6 GSMS12575 histologically normal breast epithelium from prophylacic mastectomy patient sample 1 GSMS12576 histologically normal breast epithelium from prophylacic mastectomy patient sample 2 GSMS12577 histologically normal breast epithelium from prophylacic mastectomy patient sample 4 GSMS125	GSM512557	histologically normal breast epithelium from ER+ breast cancer patient sample 1
GSM512550 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSM512561 histologically normal breast epithelium from ER+ breast cancer patient sample 6 GSM512562 histologically normal breast epithelium from ER+ breast cancer patient sample 7 GSM512565 histologically normal breast epithelium from ER+ breast cancer patient sample 8 GSM512565 histologically normal breast epithelium from ER+ breast cancer patient sample 1 GSM512566 histologically normal breast epithelium from ER+ breast cancer patient sample 3 GSM512566 histologically normal breast epithelium from ER+ breast cancer patient sample 3 GSM512576 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSM512571 histologically normal breast epithelium from ER+ breast cancer patient sample 5 GSM512571 histologically normal breast epithelium from ER+ breast cancer patient sample 6 GSM512575 histologically normal breast epithelium from ER+ breast cancer patient sample 1 GSM512575 histologically normal breast epithelium from prophylactic mastectorny patient sample 2 GSM512575 histologically normal breast epithelium from prophylactic mastectorny patient sample 3 GSM512575 histologically normal breast epithelium from prophylactic mastectorny patient sample 4	GSM512558	histologically normal breast epithelium from ER+ breast cancer patient sample 2
GSM512560 histologically normal breast epithelium from ER+ breast cancer patient sample 5 GSM512562 histologically normal breast epithelium from ER+ breast cancer patient sample 7 GSM512564 histologically normal breast epithelium from ER+ breast cancer patient sample 8 GSM512565 histologically normal breast epithelium from ER+ breast cancer patient sample 9 GSM512566 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSM512576 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSM512576 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSM512570 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSM512571 histologically normal breast epithelium from ER+ breast cancer patient sample 6 GSM512572 histologically normal breast epithelium from ER+ breast cancer patient sample 1 GSM512575 histologically normal breast epithelium from ER+ breast cancer patient sample 1 GSM512576 histologically normal breast epithelium from PR+ breast cancer patient sample 2 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512576	GSM512559	histologically normal breast epithelium from ER+ breast cancer patient sample 3
GSM512561 histologically normal breast epithelium from ER+ breast cancer patient sample 6 GSM51263 histologically normal breast epithelium from ER+ breast cancer patient sample 7 GSM512645 histologically normal breast epithelium from ER+ breast cancer patient sample 8 GSM512656 histologically normal breast epithelium from ER+ breast cancer patient sample 1 GSM512666 histologically normal breast epithelium from ER+ breast cancer patient sample 3 GSM512667 histologically normal breast epithelium from ER+ breast cancer patient sample 3 GSM512676 histologically normal breast epithelium from ER+ breast cancer patient sample 5 GSM512767 histologically normal breast epithelium from ER+ breast cancer patient sample 6 GSM512577 histologically normal breast epithelium from ER+ breast cancer patient sample 7 GSM512577 histologically normal breast epithelium from ER+ breast cancer patient sample 1 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512577 histologically normal breast epithelium from prophylactic mastecomapatient sample 5	GSM512560	histologically normal breast epithelium from ER+ breast cancer patient sample 4
GSM512562 histologically normal breast epithelium from ER+ breast cancer patient sample 7 GSM512564 histologically normal breast epithelium from ER+ breast cancer patient sample 8 GSM512565 histologically normal breast epithelium from ER+ breast cancer patient sample 1 GSM512566 histologically normal breast epithelium from ER+ breast cancer patient sample 2 GSM512567 histologically normal breast epithelium from ER+ breast cancer patient sample 3 GSM512570 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSM512570 histologically normal breast epithelium from ER+ breast cancer patient sample 6 GSM512571 histologically normal breast epithelium from ER+ breast cancer patient sample 7 GSM512575 histologically normal breast epithelium from prophylactic mastectomy patient sample 1 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSM512578 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 <t< th=""><th>GSM512561</th><th>histologically normal breast epithelium from ER+ breast cancer patient sample 5</th></t<>	GSM512561	histologically normal breast epithelium from ER+ breast cancer patient sample 5
GSM512563 histologically normal breast epithelium from ER+ breast cancer patient sample 8 GSM512565 histologically normal breast epithelium from ER+ breast cancer patient sample 1 GSM512567 histologically normal breast epithelium from ER+ breast cancer patient sample 3 GSM512567 histologically normal breast epithelium from ER+ breast cancer patient sample 3 GSM512568 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSM512571 histologically normal breast epithelium from ER+ breast cancer patient sample 5 GSM512572 histologically normal breast epithelium from ER+ breast cancer patient sample 6 GSM512573 histologically normal breast epithelium from ER+ breast cancer patient sample 7 GSM512575 histologically normal breast epithelium from ER+ breast cancer patient sample 8 GSM512575 histologically normal breast epithelium from ER+ breast cancer patient sample 1 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSM512577 histologically normal breast epithelium from Prophylactic mastectomy patient sample 4 GSM512578 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512577 histologically norma	GSM512562	histologically normal breast epithelium from ER+ breast cancer patient sample 6
GSM512564 histologically normal breast epithelium from ER+ breast cancer patient sample 9 GSM512565 histologically normal breast epithelium from ER+ breast cancer patient sample 1 GSM512566 histologically normal breast epithelium from ER+ breast cancer patient sample 2 GSM512570 histologically normal breast epithelium from ER+ breast cancer patient sample 3 GSM512570 histologically normal breast epithelium from ER+ breast cancer patient sample 4 GSM512571 histologically normal breast epithelium from ER+ breast cancer patient sample 5 GSM512572 histologically normal breast epithelium from ER+ breast cancer patient sample 7 GSM512575 histologically normal breast epithelium from ER+ breast cancer patient sample 3 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 1 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512580 histologically normal breast epithelium sample 1 GSM512541	GSM512563	histologically normal breast epithelium from ER+ breast cancer patient sample 7
GSM512565 histologically normal breast epithelium from ER-breast cancer patient sample 1 GSM512567 histologically normal breast epithelium from ER-breast cancer patient sample 2 GSM512568 histologically normal breast epithelium from ER-breast cancer patient sample 3 GSM512570 histologically normal breast epithelium from ER-breast cancer patient sample 4 GSM512571 histologically normal breast epithelium from ER-breast cancer patient sample 6 GSM512572 histologically normal breast epithelium from ER-breast cancer patient sample 6 GSM512573 histologically normal breast epithelium from ER-breast cancer patient sample 7 GSM512575 histologically normal breast epithelium from ER-breast cancer patient sample 1 GSM512577 histologically normal breast epithelium from prophytactic mastectomy patient sample 2 GSM512577 histologically normal breast epithelium from prophytactic mastectomy patient sample 3 GSM512579 histologically normal breast epithelium from prophytactic mastectomy patient sample 4 GSM512579 histologically normal breast epithelium from prophytactic mastectomy patient sample 4 GSM512579 histologically normal breast epithelium from prophytactic mastectomy patient sample 5 GSM512541 reduction mammoplasty breast epithelium sample 1 GSM512542 red	GSM512564	histologically normal breast epithelium from ER+ breast cancer patient sample 8
GSM51256 histologically normal breast epithelium from ER-breast cancer patient sample 1 GSM51256 histologically normal breast epithelium from ER-breast cancer patient sample 3 GSM512570 histologically normal breast epithelium from ER-breast cancer patient sample 4 GSM512571 histologically normal breast epithelium from ER-breast cancer patient sample 5 GSM512572 histologically normal breast epithelium from ER-breast cancer patient sample 7 GSM512573 histologically normal breast epithelium from ER-breast cancer patient sample 7 GSM512574 histologically normal breast epithelium from ER-breast cancer patient sample 7 GSM512575 histologically normal breast epithelium from ER-breast cancer patient sample 1 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512578 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512580 histologically normal breast epithelium from prophylactic mastectomy patient sample 6 GSM512540 reduction mammoplasty breast epithelium sample 1 GSM512540 reduction mammoplasty breast epithelium sample 1 GSM512541 reduction mammoplasty breast epithelium sample 4 GSM512544 reduction mammoplasty breast epithelium sample 6 GSM512544 reduction mammoplasty breast epithelium sample 6 GSM512544 reduction mammoplasty breast epithelium sample 6 GSM512544 reduction mammoplasty breast epithelium sample 7 GSM512544 reduction mammoplasty breast epithelium sample 8 GSM512547 reduction mammoplasty breast epithelium sample 8 GSM512548 reduction mammoplasty breast epithelium sample 1 GSM512549 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty patient 288 GSM512554 reduction mammoplasty patient 38	GSM512565	histologically normal breast epithelium from ER+ breast cancer patient sample 9
GSM512567 histologically normal breast epithelium from ER-breast cancer patient sample 2 GSM512569 histologically normal breast epithelium from ER-breast cancer patient sample 4 GSM512570 histologically normal breast epithelium from ER-breast cancer patient sample 5 GSM512571 histologically normal breast epithelium from ER-breast cancer patient sample 6 GSM512573 histologically normal breast epithelium from ER-breast cancer patient sample 7 GSM512575 histologically normal breast epithelium from ER-breast cancer patient sample 1 GSM512575 histologically normal breast epithelium from ER-breast cancer patient sample 1 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 1 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSM512579 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512579 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512580 reduction mamoplasty breast epithelium from prophylactic mastectomy patient sample 6 GSM512580 reduction mamoplasty breast epithelium sample 1 GSM512540 reduction mamoplasty breast epithelium sample 4 GSM512541 reduction mamoplasty breast epithelium sample 4 GSM512544 reduction mamoplasty breast epithelium sample 6 GSM512544 reduction mamoplasty breast epithelium sample 6 GSM512545 reduction mamoplasty breast epithelium sample 6 GSM512546 reduction mamoplasty breast epithelium sample 7 GSM512547 reduction mamoplasty breast epithelium sample 8 GSM512548 reduction mamoplasty breast epithelium sample 10 GSM512548 reduction mamoplasty breast epithelium sample 10 GSM512550 reduction mamoplasty breast epithelium sample 10 GSM512551 reduction mamoplasty breast epithelium sample 13 GSM512551 reduction mamoplasty breast epithelium sample 13 GSM512551 reduction mamoplasty patient 300 GSM512554 reduction mamoplasty patient 300 GSM512554 reduction mamoplasty patient 300 GSM512554 reduction mamoplasty patient 300 GSM512554 red	GSM512566	histologically normal breast epithelium from ER- breast cancer patient sample 1
GSM512568 histologically normal breast epithelium from ER-breast cancer patient sample 3 GSM512570 histologically normal breast epithelium from ER-breast cancer patient sample 5 GSM512571 histologically normal breast epithelium from ER-breast cancer patient sample 7 GSM512572 histologically normal breast epithelium from ER-breast cancer patient sample 8 GSM512573 histologically normal breast epithelium from ER-breast cancer patient sample 1 GSM512575 histologically normal breast epithelium from prophylactic mastectomy patient sample 1 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512578 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512570 reduction mammoplasty breast epithelium sample 1 GSM512571 reduction mammoplasty breast epithelium sample 1 GSM512540 reduction mammoplasty breast epithelium sample 2 GSM512541 reduction mammoplasty breast epithelium sample 4 GSM512542 reduction mammoplasty breast epithelium sample 4 GSM512541 reduction mammoplasty breast epithelium sample 4 GSM512542 reduction mammoplasty breast epithelium sample 6	GSM512567	histologically normal breast epithelium from ER- breast cancer patient sample 2
GSMS12569 histologically normal breast epithelium from ER- breast cancer patient sample 5 GSMS12571 histologically normal breast epithelium from ER- breast cancer patient sample 6 GSMS12572 histologically normal breast epithelium from ER- breast cancer patient sample 7 GSMS12573 histologically normal breast epithelium from ER- breast cancer patient sample 8 GSMS12575 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSMS12577 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSMS12577 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSMS12579 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSMS12579 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSMS12530 reduction marmoplasty breast epithelium sample 1 GSMS12541 reduction marmoplasty breast epithelium sample 3 GSMS12542 reduction marmoplasty breast epithelium sample 4 GSMS12541 reduction marmoplasty breast epithelium sample 5 GSMS12542 reduction marmoplasty breast epithelium sample 6 GSMS12543 reduction marmoplasty breast epithelium sample 10 GSMS12544 reduction marmoplasty breast epithelium sample 13 <	GSM512568	histologically normal breast epithelium from ER- breast cancer patient sample 3
GSMS12570 histologically normal breast epithelium from ER- breast cancer patient sample 5 GSMS12572 histologically normal breast epithelium from ER- breast cancer patient sample 7 GSMS12573 histologically normal breast epithelium from ER- breast cancer patient sample 7 GSMS12574 histologically normal breast epithelium from prophylactic mastectomy patient sample 1 GSMS12575 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSMS12576 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSMS12577 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSMS12578 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSMS12579 histologically normal breast epithelium sample 1 GSMS12540 reduction mammoplasty breast epithelium sample 2 GSMS12541 reduction mammoplasty breast epithelium sample 3 GSMS12542 reduction mammoplasty breast epithelium sample 4 GSMS12541 reduction mammoplasty breast epithelium sample 5 GSMS12542 reduction mammoplasty breast epithelium sample 6 GSMS12543 reduction mammoplasty breast epithelium sample 9 GSMS12544 reduction mammoplasty breast epithelium sample 10 GSMS1254	GSM512569	histologically normal breast epithelium from ER- breast cancer patient sample 4
GSMS12571 histologically normal breast epithelium from ER-breast cancer patient sample 6 GSMS12573 histologically normal breast epithelium from ER-breast cancer patient sample 8 GSMS12573 histologically normal breast epithelium from prophylactic mastectomy patient sample 1 GSMS12575 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSMS12577 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSMS12577 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSMS12578 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSMS12579 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSMS12530 reduction mammoplasty breast epithelium sample 1 GSMS12541 reduction mammoplasty breast epithelium sample 3 GSMS12542 reduction mammoplasty breast epithelium sample 4 GSMS12542 reduction mammoplasty breast epithelium sample 4 GSMS12544 reduction mammoplasty breast epithelium sample 6 GSMS12545 reduction mammoplasty breast epithelium sample 6 GSMS12546 reduction mammoplasty breast epithelium sample 6 GSMS12547 reduction mammoplasty breast epithelium sample 8 GSMS12548 reduction mammoplasty breast epithelium sample 9 GSMS12548 reduction mammoplasty breast epithelium sample 10 GSMS12549 reduction mammoplasty breast epithelium sample 13 GSMS12550 reduction mammoplasty breast epithelium sample 13 GSMS12551 reduction mammoplasty breast epithelium sample 13 GSMS12552 reduction mammoplasty breast epithelium sample 14 GSMS12552 reduction mammoplasty breast epithelium sample 16 GSMS12554 reduction mammoplasty breast epithelium sample 18 GSMS12554 reduction mammoplasty patient 300 GSMS12554 reduction mammoplasty patient 310 GSMS12554 reduction mammoplasty patient 326 GSMS12544 reduction mammoplasty	GSM512570	histologically normal breast epithelium from ER- breast cancer patient sample 5
GSM512572 histologically normal breast epithelium from EK-breast cancer patient sample 7 GSM512573 histologically normal breast epithelium from EK-breast cancer patient sample 9 GSM512575 histologically normal breast epithelium from prophylactic mastectomy patient sample 1 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSM512578 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSM512579 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSM512580 histologically normal breast epithelium sample 1 GSM512541 reduction mammoplasty breast epithelium sample 2 GSM512541 reduction mammoplasty breast epithelium sample 3 GSM512542 reduction mammoplasty breast epithelium sample 6 GSM512544 reduction mammoplasty breast epithelium sample 6 GSM512545 reduction mammoplasty breast epithelium sample 6 GSM512547 reduction mammoplasty breast epithelium sample 7 GSM512547 reduction mammoplasty breast epithelium sample 7 GSM512547 reduction mammoplasty breast epithelium sample 7 GSM512548 reduction mammoplasty breast epithelium sample 8 GSM512547 reduction mammoplasty breast epithelium sample 9 GSM512548 reduction mammoplasty breast epithelium sample 10 GSM512549 reduction mammoplasty breast epithelium sample 13 GSM512550 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 14 GSM512552 reduction mammoplasty breast epithelium sample 16 GSM512554 reduction mammoplasty breast epithelium sample 16 GSM512555 reduction mammoplasty breast epithelium sample 18 GSM512550 reduction mammoplasty patient 278 GSM512551 reduction mammoplasty patient 278 GSM512552 reduction mammoplasty patient 278 GSM512554 reduction mammoplasty patient 360 GSM512555 reduction mammoplasty patient 370 GSM512556 reduction mammoplasty patient 370 GSM512564 Normal (022_Br	GSM512571	histologically normal breast epithelium from ER- breast cancer patient sample 6
GSM512573 histologically normal breast epithelium from ER- breast cancer patient sample 9 GSM512575 histologically normal breast epithelium from prophylactic mastectomy patient sample 1 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 histologically normal breast epithelium sample 1 GSM512570 histologically normal breast epithelium sample 1 GSM512530 reduction mammoplasty breast epithelium sample 1 GSM512541 reduction mammoplasty breast epithelium sample 3 GSM512542 reduction mammoplasty breast epithelium sample 4 GSM512543 reduction mammoplasty breast epithelium sample 4 GSM512544 reduction mammoplasty breast epithelium sample 6 GSM512545 reduction mammoplasty breast epithelium sample 4 GSM512546 reduction mammoplasty breast epithelium sample 6 GSM512547 reduction mammoplasty breast epithelium sample 10 GSM512548 reduction mammoplasty breast epithelium sample 10 GSM512549 reduction mammoplasty breast epithelium sample 11 GSM512550 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 14 GSM512551 reduction mammoplasty breast epithelium sample 16 GSM512554 reduction mammoplasty breast epithelium sample 17 GSM512554 reduction mammoplasty breast epithelium sample 16 GSM512555 reduction mammoplasty breast epithelium sample 16 GSM512556 reduction mammoplasty breast epithelium sample 17 GSM512556 reduction mammoplasty breast epithelium sample 18 GSM242001 reduction mammoplasty breast epithelium sample 18 GSM242004 reduction mammoplasty patient 378 GSM242005 reduction mammoplasty patient 378 GSM242006 reduction mammoplasty patient 376 GSM242007 reduction mammoplasty patient 360 GSM242008 reduction mammoplasty patient 352 GSM	GSM512572	histologically normal breast epithelium from ER- breast cancer patient sample 7
GSM512574 histologically normal breast epithelium from ER- breast cancer patient sample 1 GSM512575 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSM512578 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512579 histologically normal breast epithelium from prophylactic mastectomy patient sample 6 GSM512530 reduction mammoplasty breast epithelium sample 1 GSM512540 reduction mammoplasty breast epithelium sample 2 GSM512541 reduction mammoplasty breast epithelium sample 3 GSM512541 reduction mammoplasty breast epithelium sample 4 GSM512545 reduction mammoplasty breast epithelium sample 4 GSM512545 reduction mammoplasty breast epithelium sample 6 GSM512546 reduction mammoplasty breast epithelium sample 7 GSM512547 reduction mammoplasty breast epithelium sample 10 GSM512548 reduction mammoplasty breast epithelium sample 10 GSM512550 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 14 GSM512551 reduction mammoplasty breast epithelium sample 15	GSM512573	histologically normal breast epithelium from ER- breast cancer patient sample 8
GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 2 GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSM512578 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512579 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSM512580 reduction mammoplasty breast epithelium sample 1 GSM512540 reduction mammoplasty breast epithelium sample 2 GSM512541 reduction mammoplasty breast epithelium sample 1 GSM512542 reduction mammoplasty breast epithelium sample 4 GSM512543 reduction mammoplasty breast epithelium sample 4 GSM512544 reduction mammoplasty breast epithelium sample 6 GSM512545 reduction mammoplasty breast epithelium sample 6 GSM512546 reduction mammoplasty breast epithelium sample 6 GSM512547 reduction mammoplasty breast epithelium sample 6 GSM512548 reduction mammoplasty breast epithelium sample 7 GSM512547 reduction mammoplasty breast epithelium sample 10 GSM512548 reduction mammoplasty breast epithelium sample 10 GSM512548 reduction mammoplasty breast epithelium sample 11 GSM512550 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 14 GSM512551 reduction mammoplasty breast epithelium sample 16 GSM512557 reduction mammoplasty breast epithelium sample 17 GSM512556 reduction mammoplasty breast epithelium sample 18 GSM242000 reduction mammoplasty breast epithelium sample 18 GSM242001 reduction mammoplasty patient 300 GSM242003 reduction mammoplasty patient 340 GSM242004 reduction mammoplasty patient 340 GSM242005 reduction mammoplasty patient 340 GSM242006 reduction mammoplasty patient 340 GSM242007 reduction mammoplasty patient 340 GSM242008 reduction mammoplasty patient 340 GSM242009 reduction mammoplasty patient 340 GSM242001 reduction mammoplasty patient 340 GSM242004 reduct	GSM512574	histologically normal breast epithelium from ER- breast cancer patient sample 9
GSM51257 histologically normal breast epithelium from prophylactic mastectomy patient sample 3 GSM51257 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM51257 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSM512580 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSM512540 reduction mammoplasty breast epithelium sample 1 GSM512541 reduction mammoplasty breast epithelium sample 3 GSM512542 reduction mammoplasty breast epithelium sample 4 GSM512543 reduction mammoplasty breast epithelium sample 5 GSM512544 reduction mammoplasty breast epithelium sample 6 GSM512545 reduction mammoplasty breast epithelium sample 7 GSM512546 reduction mammoplasty breast epithelium sample 10 GSM512547 reduction mammoplasty breast epithelium sample 10 GSM512550 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 14 GSM512551 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 13 GSM512555 reduction mammoplasty breast epithelium sample 16 GSM512556 re	GSM512575	histologically normal breast epithelium from prophylactic mastectomy patient sample 1
GSM512577 histologically normal breast epithelium from prophylactic mastectomy patient sample 4 GSM512578 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSM512580 histologically normal breast epithelium from prophylactic mastectomy patient sample 6 GSM512580 reduction mammoplasty breast epithelium sample 1 GSM512541 reduction mammoplasty breast epithelium sample 2 GSM512542 reduction mammoplasty breast epithelium sample 4 GSM512543 reduction mammoplasty breast epithelium sample 5 GSM512544 reduction mammoplasty breast epithelium sample 6 GSM512545 reduction mammoplasty breast epithelium sample 7 GSM512546 reduction mammoplasty breast epithelium sample 8 GSM512547 reduction mammoplasty breast epithelium sample 10 GSM512548 reduction mammoplasty breast epithelium sample 11 GSM512551 reduction mammoplasty breast epithelium sample 13 GSM512551 reduction mammoplasty breast epithelium sample 14 GSM512551 reduction mammoplasty breast epithelium sample 13 GSM512555 reduction mammoplasty breast epithelium sample 16 GSM512556 reduction mammoplasty patient 278 GSM512556 reduction mammoplasty patient 278	GSM512576	histologically normal breast epithelium from prophylactic mastectomy patient sample 2
GSM512576 histologically normal breast epithelium from prophylactic mastectomy patient sample 5 GSM512580 histologically normal breast epithelium from prophylactic mastectomy patient sample 6 GSM512540 reduction mammoplasty breast epithelium sample 1 GSM512541 reduction mammoplasty breast epithelium sample 2 GSM512542 reduction mammoplasty breast epithelium sample 3 GSM512543 reduction mammoplasty breast epithelium sample 4 GSM512544 reduction mammoplasty breast epithelium sample 5 GSM512545 reduction mammoplasty breast epithelium sample 6 GSM512546 reduction mammoplasty breast epithelium sample 7 GSM512547 reduction mammoplasty breast epithelium sample 9 GSM512548 reduction mammoplasty breast epithelium sample 10 GSM512549 reduction mammoplasty breast epithelium sample 11 GSM512550 reduction mammoplasty breast epithelium sample 12 GSM512551 reduction mammoplasty breast epithelium sample 16 GSM512551 reduction mammoplasty breast epithelium sample 16 GSM512555 reduction mammoplasty preast epithelium sample 17 GSM512556 reduction mammoplasty patient 278 GSM512550 reduction mammoplasty patient 286 GSM512551	GSM512577	histologically normal breast epithelium from prophylactic mastectomy patient sample 3
GSM512579Inisologically normal breast epithelium from prophytactic mastectomy patient sample 5GSM512580histologically normal breast epithelium sample 1GSM512541reduction mammoplasty breast epithelium sample 2GSM512542reduction mammoplasty breast epithelium sample 3GSM512543reduction mammoplasty breast epithelium sample 4GSM512544reduction mammoplasty breast epithelium sample 5GSM512545reduction mammoplasty breast epithelium sample 6GSM512546reduction mammoplasty breast epithelium sample 7GSM512547reduction mammoplasty breast epithelium sample 8GSM512548reduction mammoplasty breast epithelium sample 9GSM512549reduction mammoplasty breast epithelium sample 10GSM512551reduction mammoplasty breast epithelium sample 12GSM512551reduction mammoplasty breast epithelium sample 13GSM512551reduction mammoplasty breast epithelium sample 13GSM512551reduction mammoplasty breast epithelium sample 14GSM512551reduction mammoplasty breast epithelium sample 15GSM512555reduction mammoplasty breast epithelium sample 16GSM512556reduction mammoplasty breast epithelium sample 18GSM242000reduction mammoplasty patient 278GSM242001reduction mammoplasty patient 340GSM242002reduction mammoplasty patient 340GSM242003reduction mammoplasty patient 340GSM242004reduction mammoplasty patient 340GSM242005reduction mammoplasty patient 341GSM242006reduction mammoplasty patient 350 <th>GSM512578</th> <th>histologically normal breast epithelium from prophylactic mastectomy patient sample 4</th>	GSM512578	histologically normal breast epithelium from prophylactic mastectomy patient sample 4
GSM5112:30Inistologicality itolinal totasis epithelium sample 1GSM5112:31reduction mammoplasity breast epithelium sample 2GSM5112:41reduction mammoplasity breast epithelium sample 3GSM5112:42reduction mammoplasity breast epithelium sample 4GSM5112:43reduction mammoplasity breast epithelium sample 6GSM5112:44reduction mammoplasity breast epithelium sample 6GSM5112:45reduction mammoplasity breast epithelium sample 7GSM5112:47reduction mammoplasity breast epithelium sample 8GSM5112:48reduction mammoplasity breast epithelium sample 10GSM512:549reduction mammoplasity breast epithelium sample 10GSM512:550reduction mammoplasity breast epithelium sample 12GSM512:551reduction mammoplasity breast epithelium sample 13GSM512:552reduction mammoplasity breast epithelium sample 14GSM512:553reduction mammoplasity breast epithelium sample 16GSM512:555reduction mammoplasity breast epithelium sample 17GSM512:556reduction mammoplasity breast epithelium sample 18GSM512:557reduction mammoplasity breast epithelium sample 16GSM512:556reduction mammoplasity patient 288GSM2:42000reduction mammoplasity patient 310GSM2:42001reduction mammoplasity patient 314GSM2:42005reduction mammoplasity patient 350GSM2:42006reduction mammoplasity patient 351GSM2:42007reduction mammoplasity patient 352GSM2:42008reduction mammoplasity patient 352GSM2:42009reduction mammoplasity patient 352	GSM512579 GSM512580	histologically normal breast epithelium from prophylactic mastectomy patient sample 5
GSM5112:57Feduction mammoplasty breast epithelium sample 2GSM512:540reduction mammoplasty breast epithelium sample 3GSM512:541reduction mammoplasty breast epithelium sample 4GSM512:542reduction mammoplasty breast epithelium sample 6GSM512:543reduction mammoplasty breast epithelium sample 7GSM512:545reduction mammoplasty breast epithelium sample 7GSM512:546reduction mammoplasty breast epithelium sample 9GSM512:547reduction mammoplasty breast epithelium sample 10GSM512:548reduction mammoplasty breast epithelium sample 10GSM512:551reduction mammoplasty breast epithelium sample 11GSM512:551reduction mammoplasty breast epithelium sample 12GSM512:551reduction mammoplasty breast epithelium sample 13GSM512:551reduction mammoplasty breast epithelium sample 14GSM512:552reduction mammoplasty breast epithelium sample 15GSM512:554reduction mammoplasty breast epithelium sample 16GSM512:555reduction mammoplasty breast epithelium sample 16GSM512:556reduction mammoplasty patient 278GSM242000reduction mammoplasty patient 310GSM242001reduction mammoplasty patient 314GSM242003reduction mammoplasty patient 357GSM242004reduction mammoplasty patient 357GSM242005reduction mammoplasty patient 357GSM242006reduction mammoplasty patient 357GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 368GSM242010reduction mammoplasty	GSM512530	reduction mammonlasty breast epithelium sample 1
GSM512541reduction mammoplasty breast epithelium sample 3GSM512542reduction mammoplasty breast epithelium sample 4GSM512543reduction mammoplasty breast epithelium sample 6GSM512544reduction mammoplasty breast epithelium sample 6GSM512545reduction mammoplasty breast epithelium sample 7GSM512546reduction mammoplasty breast epithelium sample 8GSM512547reduction mammoplasty breast epithelium sample 10GSM512549reduction mammoplasty breast epithelium sample 11GSM512550reduction mammoplasty breast epithelium sample 11GSM512551reduction mammoplasty breast epithelium sample 11GSM512552reduction mammoplasty breast epithelium sample 13GSM512553reduction mammoplasty breast epithelium sample 14GSM512554reduction mammoplasty breast epithelium sample 16GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty breast epithelium sample 18GSM242000reduction mammoplasty patient 278GSM242001reduction mammoplasty patient 310GSM242003reduction mammoplasty patient 340GSM242004reduction mammoplasty patient 350GSM242005reduction mammoplasty patient 351GSM242008reduction mammoplasty patient 361GSM242009reduction mammoplasty patient 361GSM242009reduction mammoplasty patient 361GSM242001reduction mammoplasty patient 361GSM242005reduction mammoplasty patient 361GSM242006reduction mammoplasty patient 361GS	GSM512540	reduction mammoplasty breast epithelium sample 2
GSM512542reduction mammoplasty breast epithelium sample 4GSM512543reduction mammoplasty breast epithelium sample 5GSM512544reduction mammoplasty breast epithelium sample 6GSM512545reduction mammoplasty breast epithelium sample 7GSM512546reduction mammoplasty breast epithelium sample 7GSM512547reduction mammoplasty breast epithelium sample 8GSM512548reduction mammoplasty breast epithelium sample 10GSM512549reduction mammoplasty breast epithelium sample 10GSM512550reduction mammoplasty breast epithelium sample 12GSM512551reduction mammoplasty breast epithelium sample 13GSM512552reduction mammoplasty breast epithelium sample 15GSM512553reduction mammoplasty breast epithelium sample 15GSM512554reduction mammoplasty breast epithelium sample 15GSM512555reduction mammoplasty breast epithelium sample 16GSM512556reduction mammoplasty breast epithelium sample 18GSM242000reduction mammoplasty patient 278GSM242001reduction mammoplasty patient 309GSM242002reduction mammoplasty patient 314GSM242003reduction mammoplasty patient 330GSM242004reduction mammoplasty patient 357GSM242005reduction mammoplasty patient 357GSM242006reduction mammoplasty patient 361GSM242007reduction mammoplasty patient 364GSM242008reduction mammoplasty patient 368GSM242009reduction mammoplasty patient 364GSM242001reduction mammoplasty patient 364GS	GSM512541	reduction mammoplasty breast epithelium sample 2
GSM512543reduction mammoplasty breast epithelium sample 5GSM512544reduction mammoplasty breast epithelium sample 6GSM512545reduction mammoplasty breast epithelium sample 7GSM512546reduction mammoplasty breast epithelium sample 8GSM512547reduction mammoplasty breast epithelium sample 8GSM512548reduction mammoplasty breast epithelium sample 10GSM512549reduction mammoplasty breast epithelium sample 11GSM512550reduction mammoplasty breast epithelium sample 12GSM512551reduction mammoplasty breast epithelium sample 14GSM512552reduction mammoplasty breast epithelium sample 14GSM512553reduction mammoplasty breast epithelium sample 16GSM512554reduction mammoplasty breast epithelium sample 17GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty breast epithelium sample 18GSM24000reduction mammoplasty patient 278GSM242001reduction mammoplasty patient 310GSM242002reduction mammoplasty patient 314GSM242003reduction mammoplasty patient 350GSM242004reduction mammoplasty patient 357GSM242005reduction mammoplasty patient 357GSM242006reduction mammoplasty patient 360GSM242010reduction mammoplasty patient 361GSM242010reduction mammoplasty patient 361GSM242007reduction mammoplasty patient 361GSM242008reduction mammoplasty patient 361GSM242009reduction mammoplasty patient 361GSM242001	GSM512542	reduction mammoplasty breast epithelium sample 5
CSMD1254reduction mammoplasty breast epithelium sample 5CSM512545reduction mammoplasty breast epithelium sample 6CSM512546reduction mammoplasty breast epithelium sample 9CSM512547reduction mammoplasty breast epithelium sample 9CSM512548reduction mammoplasty breast epithelium sample 10CSM512549reduction mammoplasty breast epithelium sample 12CSM512550reduction mammoplasty breast epithelium sample 12CSM512551reduction mammoplasty breast epithelium sample 15CSM512552reduction mammoplasty breast epithelium sample 15CSM512553reduction mammoplasty breast epithelium sample 15CSM512554reduction mammoplasty breast epithelium sample 15CSM512555reduction mammoplasty breast epithelium sample 15CSM512556reduction mammoplasty patient 288CSM241099reduction mammoplasty patient 278CSM242001reduction mammoplasty patient 309CSM242002reduction mammoplasty patient 310CSM242003reduction mammoplasty patient 340CSM242004reduction mammoplasty patient 340CSM242005reduction mammoplasty patient 340CSM242006reduction mammoplasty patient 347CSM242007reduction mammoplasty patient 352CSM242011reduction mammoplasty patient 361CSM242009reduction mammoplasty patient 361CSM242009reduction mammoplasty patient 361CSM242010reduction mammoplasty patient 361CSM242011reduction mammoplasty patient 361CSM242012reduction mammoplasty patient 3	GSM512543	reduction mammoplasty breast epithelium sample 5
CSMD1251reduction mammoplasty breast epithelium sample 7CSM512545reduction mammoplasty breast epithelium sample 7CSM512547reduction mammoplasty breast epithelium sample 8CSM512548reduction mammoplasty breast epithelium sample 10CSM512549reduction mammoplasty breast epithelium sample 10CSM512550reduction mammoplasty breast epithelium sample 13CSM512551reduction mammoplasty breast epithelium sample 13CSM512552reduction mammoplasty breast epithelium sample 16CSM512553reduction mammoplasty breast epithelium sample 16CSM512554reduction mammoplasty breast epithelium sample 16CSM512555reduction mammoplasty breast epithelium sample 16CSM512556reduction mammoplasty breast epithelium sample 16CSM512557reduction mammoplasty breast epithelium sample 16CSM512558reduction mammoplasty breast epithelium sample 16CSM512559reduction mammoplasty patient 278CSM242000reduction mammoplasty patient 310CSM242001reduction mammoplasty patient 314CSM242005reduction mammoplasty patient 350CSM242006reduction mammoplasty patient 357CSM242007reduction mammoplasty patient 352CSM242010reduction mammoplasty patient 360CSM242011reduction mammoplasty patient 360CSM242012reduction mammoplasty patient 360CSM242013reduction mammoplasty patient 360CSM242010reduction mammoplasty patient 361CSM242011reduction mammoplasty patient 360CSM242012 <t< th=""><th>GSM512544</th><th>reduction mammoplasty breast epithelium sample 6</th></t<>	GSM512544	reduction mammoplasty breast epithelium sample 6
GSM512546reduction mammoplasty breast epithelium sample 8GSM512547reduction mammoplasty breast epithelium sample 9GSM512548reduction mammoplasty breast epithelium sample 10GSM512549reduction mammoplasty breast epithelium sample 11GSM512550reduction mammoplasty breast epithelium sample 11GSM512551reduction mammoplasty breast epithelium sample 13GSM512552reduction mammoplasty breast epithelium sample 14GSM512553reduction mammoplasty breast epithelium sample 16GSM512554reduction mammoplasty breast epithelium sample 17GSM512555reduction mammoplasty breast epithelium sample 18GSM242000reduction mammoplasty patient 288GSM242001reduction mammoplasty patient 309GSM242002reduction mammoplasty patient 309GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 340GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 352GSM242008reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 354GSM242011reduction mammoplasty patient 356GSM242011reduction mammoplasty patient 366GSM242011reduction mammoplasty patient 366GSM242011reduction mammoplasty patient 366GSM242011reduction mammoplasty patient 366GSM242011reduction mammoplasty patient 368GSM242011reduction mammoplasty patient 360GSM242011	GSM512545	reduction mammoplasty breast epithelium sample 7
GSM512547reduction mammoplasty breast epithelium sample 9GSM512548reduction mammoplasty breast epithelium sample 10GSM512549reduction mammoplasty breast epithelium sample 11GSM512550reduction mammoplasty breast epithelium sample 12GSM512551reduction mammoplasty breast epithelium sample 13GSM512552reduction mammoplasty breast epithelium sample 14GSM512553reduction mammoplasty breast epithelium sample 15GSM512554reduction mammoplasty breast epithelium sample 16GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty breast epithelium sample 18GSM242000reduction mammoplasty patient 288GSM242001reduction mammoplasty patient 310GSM242002reduction mammoplasty patient 310GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 340GSM242005reduction mammoplasty patient 350GSM242006reduction mammoplasty patient 357GSM242007reduction mammoplasty patient 352GSM242008reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 352GSM242011reduction mammoplasty patient 360GSM242012reduction mammoplasty patient 361GSM242013reduction mammoplasty patient 361GSM242014reduction mammoplasty patient 352GSM242015reduction mammoplasty patient 364GSM242011reduction mammoplasty patient 364GSM242012reduction mammoplasty patient 360GSM24201	GSM512546	reduction mammoplasty breast epithelium sample 8
GSM512548reduction mammoplasty breast epithelium sample 10GSM512549reduction mammoplasty breast epithelium sample 11GSM512550reduction mammoplasty breast epithelium sample 12GSM512551reduction mammoplasty breast epithelium sample 13GSM512552reduction mammoplasty breast epithelium sample 14GSM512553reduction mammoplasty breast epithelium sample 15GSM512554reduction mammoplasty breast epithelium sample 16GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty patient 278GSM241099reduction mammoplasty patient 278GSM242001reduction mammoplasty patient 310GSM242002reduction mammoplasty patient 314GSM242003reduction mammoplasty patient 334GSM242004reduction mammoplasty patient 334GSM242005reduction mammoplasty patient 350GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 351GSM242009reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM24201reduction mammoplasty patient 328GSM242010reduction mammoplasty patient 362GSM242011reduction mammoplasty patient 361GSM242012reduction mammoplasty patient 364GSM242013reduction mammoplasty patient 368GSM242011reduction mammoplasty patient 368GSM158644Normal (022_Breast) <th>GSM512547</th> <th>reduction mammoplasty breast epithelium sample 9</th>	GSM512547	reduction mammoplasty breast epithelium sample 9
GSM512549reduction mammoplasty breast epithelium sample 11GSM512550reduction mammoplasty breast epithelium sample 12GSM512551reduction mammoplasty breast epithelium sample 13GSM512552reduction mammoplasty breast epithelium sample 14GSM512553reduction mammoplasty breast epithelium sample 15GSM512554reduction mammoplasty breast epithelium sample 16GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty breast epithelium sample 18GSM242000reduction mammoplasty patient 288GSM242000reduction mammoplasty patient 309GSM242001reduction mammoplasty patient 310GSM242002reduction mammoplasty patient 310GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 340GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 347GSM242008reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 362GSM242012reduction mammoplasty patient 368GSM242013reduction mammoplasty patient 368GSM242013reduction mammoplasty patient 368GSM158644Normal (023_Breast)GSM158656Normal breast (023_Breast_B)GSM158656Normal breast (023_Breast_B)GSM158656Normal breast (023_Breast_B)GSM158657Normal breast (023_Breast_B) <th>GSM512548</th> <th>reduction mammoplasty breast epithelium sample 10</th>	GSM512548	reduction mammoplasty breast epithelium sample 10
GSM512550reduction mammoplasty breast epithelium sample 12GSM512551reduction mammoplasty breast epithelium sample 13GSM512552reduction mammoplasty breast epithelium sample 14GSM512553reduction mammoplasty breast epithelium sample 15GSM512554reduction mammoplasty breast epithelium sample 16GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty breast epithelium sample 18GSM241999reduction mammoplasty patient 278GSM242000reduction mammoplasty patient 309GSM242001reduction mammoplasty patient 310GSM242002reduction mammoplasty patient 314GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 334GSM242005reduction mammoplasty patient 357GSM242006reduction mammoplasty patient 357GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 352GSM242011reduction mammoplasty patient 352GSM242012reduction mammoplasty patient 361GSM242013reduction mammoplasty patient 368GSM242011reduction mammoplasty patient 366GSM242012reduction mammoplasty patient 368GSM242013reduction mammoplasty patient 368GSM242013reduction mammoplasty patient 368GSM158646Normal (023_Breast)GSM158646Normal (023_Breast_B)GSM158656 <th>GSM512549</th> <th>reduction mammoplasty breast epithelium sample 11</th>	GSM512549	reduction mammoplasty breast epithelium sample 11
GSM512551reduction mammoplasty breast epithelium sample 13GSM512552reduction mammoplasty breast epithelium sample 14GSM512553reduction mammoplasty breast epithelium sample 15GSM512554reduction mammoplasty breast epithelium sample 16GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty patient 288GSM241999reduction mammoplasty patient 278GSM242000reduction mammoplasty patient 309GSM242001reduction mammoplasty patient 310GSM242002reduction mammoplasty patient 314GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 340GSM242005reduction mammoplasty patient 350GSM242006reduction mammoplasty patient 357GSM242007reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 368GSM242012reduction mammoplasty patient 368GSM242013reduction mammoplasty patient 368GSM242014reduction mammoplasty patient 368GSM158646Normal (022_Breast)GSM158646Normal (023_Breast_B)GSM158657Normal breast (022_Breast_B)GSM158658Normal breast (023_Breast_B)	GSM512550	reduction mammoplasty breast epithelium sample 12
GSM512552reduction mammoplasty breast epithelium sample 14GSM512553reduction mammoplasty breast epithelium sample 15GSM512554reduction mammoplasty breast epithelium sample 16GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty breast epithelium sample 18GSM242000reduction mammoplasty patient 288GSM242001reduction mammoplasty patient 278GSM242002reduction mammoplasty patient 309GSM242003reduction mammoplasty patient 310GSM242004reduction mammoplasty patient 314GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 357GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 352GSM242011reduction mammoplasty patient 360GSM242012reduction mammoplasty patient 368GSM242013reduction mammoplasty patient 368GSM242014reduction mammoplasty patient 368GSM158644Normal (023_Breast)GSM158645Normal (024_Breast_B)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM512551	reduction mammoplasty breast epithelium sample 13
GSM512553reduction mammoplasty breast epithelium sample 15GSM512554reduction mammoplasty breast epithelium sample 16GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty breast epithelium sample 18GSM241999reduction mammoplasty patient 288GSM242000reduction mammoplasty patient 278GSM242001reduction mammoplasty patient 309GSM242002reduction mammoplasty patient 310GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 334GSM242005reduction mammoplasty patient 350GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 352GSM242011reduction mammoplasty patient 352GSM242012reduction mammoplasty patient 361GSM242013reduction mammoplasty patient 368GSM242014reduction mammoplasty patient 368GSM242015reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM512552	reduction mammoplasty breast epithelium sample 14
GSM512554reduction mammoplasty breast epithelium sample 16GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty patient 288GSM241999reduction mammoplasty patient 278GSM242000reduction mammoplasty patient 309GSM242001reduction mammoplasty patient 310GSM242002reduction mammoplasty patient 314GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 340GSM242005reduction mammoplasty patient 350GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 352GSM242011reduction mammoplasty patient 361GSM242012reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158656Normal (023_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM512553	reduction mammoplasty breast epithelium sample 15
GSM512555reduction mammoplasty breast epithelium sample 17GSM512556reduction mammoplasty breast epithelium sample 18GSM241999reduction mammoplasty patient 288GSM242000reduction mammoplasty patient 278GSM242001reduction mammoplasty patient 309GSM242002reduction mammoplasty patient 310GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 314GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 357GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 360GSM242012reduction mammoplasty patient 360GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158656Normal (023_Breast)GSM158656Normal breast (023_Breast_B)GSM158658Normal breast (023_Breast_B)GSM158658Normal breast (023_Breast_B)	GSM512554	reduction mammoplasty breast epithelium sample 16
GSM512556reduction mammoplasty breast epithelium sample 18GSM241999reduction mammoplasty patient 288GSM242000reduction mammoplasty patient 278GSM242001reduction mammoplasty patient 309GSM242002reduction mammoplasty patient 310GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 314GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 361GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 366GSM242012reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158656Normal (068_Breast_B)GSM158658Normal breast (023_Breast_B)GSM158658Normal breast (023_Breast_B)	GSM512555	reduction mammoplasty breast epithelium sample 17
GSM241999reduction mammoplasty patient 288GSM242000reduction mammoplasty patient 278GSM242001reduction mammoplasty patient 309GSM242002reduction mammoplasty patient 310GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 344GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 352GSM242011reduction mammoplasty patient 328GSM242012reduction mammoplasty patient 360GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158656Normal (023_Breast)GSM158656Normal breast (022_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM512556	reduction mammoplasty breast epithelium sample 18
GSM242000reduction mammoplasty patient 278GSM242001reduction mammoplasty patient 309GSM242002reduction mammoplasty patient 310GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 334GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 352GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 360GSM242012reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158656Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM241999	reduction mammoplasty patient 288
GSM242001reduction mammoplasty patient 309GSM242002reduction mammoplasty patient 310GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 334GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 357GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 368GSM242012reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (068_Breast)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242000	reduction mammoplasty patient 278
GSM242002reduction mammoplasty patient 310GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 334GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 347GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 368GSM242012reduction mammoplasty patient 368GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (068_Breast)GSM158656Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242001	reduction mammoplasty patient 309
GSM242003reduction mammoplasty patient 314GSM242004reduction mammoplasty patient 334GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242009reduction mammoplasty patient 347GSM242010reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 360GSM242012reduction mammoplasty patient 368GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (068_Breast)GSM158656Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242002	reduction mammoplasty patient 310
GSM242004reduction mammoplasty patient 334GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 347GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 361GSM242012reduction mammoplasty patient 360GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158656Normal toesat (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242003	reduction mammoplasty patient 314
GSM242005reduction mammoplasty patient 340GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 347GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 360GSM242012reduction mammoplasty patient 360GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158646Normal (068_Breast)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242004	reduction mammoplasty patient 334
GSM242006reduction mammoplasty patient 350GSM242007reduction mammoplasty patient 357GSM242008reduction mammoplasty patient 347GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 363GSM242012reduction mammoplasty patient 360GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158656Normal (068_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242005	reduction mammoplasty patient 340
GSM242007reduction mammoplasty patient 337GSM242008reduction mammoplasty patient 347GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 328GSM242012reduction mammoplasty patient 360GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158646Normal (068_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242000	reduction mammoplasty patient 350
GSM242008reduction mammoplasty patient 347GSM242009reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 328GSM242012reduction mammoplasty patient 360GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158646Normal (068_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242007	reduction mammoplasty patient 357
GSM242010reduction mammoplasty patient 352GSM242010reduction mammoplasty patient 361GSM242011reduction mammoplasty patient 328GSM242012reduction mammoplasty patient 360GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158646Normal (068_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242000	reduction mammoplasty patient 352
GSM242011reduction mammoplasty patient 301GSM242012reduction mammoplasty patient 360GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158646Normal (068_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242009	reduction mammoplasty patient 361
GSM242012reduction mammoplasty patient 360GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158646Normal (068_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242010	reduction mammoplasty patient 301
GSM242013reduction mammoplasty patient 368GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158646Normal (068_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242012	reduction mammoplasty patient 360
GSM158644Normal (022_Breast)GSM158645Normal (023_Breast)GSM158646Normal (068_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM242013	reduction mammoplasty patient 368
GSM158645Normal (023_Breast)GSM158646Normal (068_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM158644	Normal (022 Breast)
GSM158646Normal (068_Breast)GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM158645	Normal (023 Breast)
GSM158656Normal breast (022_Breast_B)GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM158646	Normal (068 Breast)
GSM158657Normal breast (023_Breast_B)GSM158658Normal breast (068_Breast_B)	GSM158656	Normal breast (022 Breast B)
GSM158658 Normal breast (068_Breast_B)	GSM158657	Normal breast (023_Breast_B)
	GSM158658	Normal breast (068_Breast_B)

Table A.3 (continued)

GSM number	Sample name
GSM662768	breast normal 1
GSM662770	breast normal 2
GSM662772	breast normal 3
GSM662774	breast normal 4
GSM662776	breast normal 5
GSM662778	breast normal 6
GSM535613	healthy breast 1, biological rep. 1
GSM535614	healthy breast 2, biological rep. 2
GSM535615	healthy breast 3, biological rep. 3
GSM535616	healthy breast 4, biological rep. 4
GSM535617	healthy breast 5, biological rep. 5
GSM85513	NB42 U133p2
GSM85514	NB58 U133p2
GSM85515	NB60 U133p2
GSM85516	NB64 U133p2
GSM85517	NB69 U133p2
GSM85518	NB83 U133p2
GSM85519	NB87 U133p2
GSM44683	Normal Breast

Table A.4Samples of GSE9761 dataset.

sample name	replicates	
GSM246267	CMV_rep1	
GSM246268	CMV_rep2	
GSM246269	CMV_rep3	
GSM246270	CMV_rep4	
GSM246271	CMV_rep5	
GSM246272	CMV_rep6	
GSM246273	Era_rep1	
GSM246274	Era_rep2	
GSM246275	Era_rep3	
GSM246276	Era_rep4	
GSM246277	Era_rep5	
GSM246278	Era_rep6	
GSM246279	ERa3411 rep1	
GSM246280	ERa3411 rep2	
GSM246281	ERa3411 rep3	
GSM246282	ERa3411 rep4	
GSM246283	ERa3411 rep5	
GSM246284	ERa3411 rep6	

APPENDIX B

SIGNIFICANTLY 3'UTR ALTERED GENES AS A RESULT OF APADETECT AND SAM

Table B.1 Significantly 3'UTR shortened genes in ER(+) patients fromGSE2034 compared to normal breast samples.

Gene		Expected	Observed	NT	D	Fold change
name	Probeset ID	score	score	Numerator	Denominator	(unlogged)
IQCK	215131_at	-0.26693344	14.869099	1.1437807	0.07692334	1.753656
RPL13	212933_x_at	-0.21758601	14.592625	0.70703244	0.048451357	1.61349
MAPK13	210059_s_at	0.57093936	14.274828	0.5123836	0.035894204	1.4094101
WIZ	52005_at	-0.05815504	13.521205	0.49019104	0.036253504	1.3847715
PVR	32699_s_at	0.039425924	13.49765	0.46782953	0.03466007	1.3572268
C19orf42	219097_x_at	0.057249665	13.141416	0.33470854	0.025469748	1.2594177
WDTC1	40829_at	-1.7080995	12.618292	0.554647	0.04395579	1.4233975
NPAT	209798_at	-0.6319465	12.079135	0.5373497	0.044485778	1.4259518
SLC25A16	214140_at	-0.83625805	11.870001	0.43469316	0.036621157	1.3263723
AGTPBP1	204500_s_at	1.06976	11.593541	0.4592939	0.03961636	1.3660648
PAOX	50400 at	-0.75881225	11.485974	0.43052647	0.037482798	1.3491884
MYCL1	215491_at	-1.5378548	10.899136	0.3204515	0.029401552	1.2401507
POT1	204354_at	0.80276525	10.744241	0.39274552	0.03655405	1.299497
SLN	205374_at	-0.63333696	10.706981	0.3123579	0.029173294	1.2408386
PGLYRP4	220944_at	-1.146012	10.509596	0.33258408	0.031645752	1.2405081
RPL19	200029 at	-0.18616603	10.439489	0.37957883	0.036359902	1.3041017
CLU	208792_s_at	0.87892085	9.916545	0.38619912	0.038944926	1.3000784
HSPA4L	205543 at	0.39981884	9.916491	0.35994944	0.036298066	1.264505
LDB1		-0.8008531	9.716555	0.45569396	0.04689872	1.3377743
POFUT1	212349 at	0.13705173	9.70073	0.28516483	0.029396223	1.2087847
TIMM9	218316_at	-0.41904286	9.446563	0.39134663	0.04142741	1.2907164
AGTPBP1	204500 s at	1.0669562	9.424316	0.313274	0.03324103	1.2261332
PRSS21	220051_at	-0.28071043	9.345635	0.32463312	0.034736335	1.2321146
USP9X	201100_s_at	1.3351561	9.2433815	0.38133457	0.041254878	1.2848903
FDX1	203647_s_at	-0.62902963	9.22335	0.26574102	0.02881177	1.1945549
RLF	204243 at	-1.5280606	9.097696	0.299913	0.032965817	1.2294047
PHTF2	215286_s_at	0.73700196	9.0529175	0.33181635	0.036652975	1.246871
PHTF2	215286 s at	0.7384707	9.0529175	0.33181635	0.036652975	1.246871
FAM82B	218549_s_at	0.9313432	9.006654	0.32319966	0.035884544	1.2374682
LYPLA2	215568 x at	-1.7960716	8.905746	0.42537212	0.04776378	1.3033253
OFD1	203569_s_at	1.2589577	8.719146	0.43949246	0.05040545	1.3306351
TBC1D15	218268_at	-0.53751785	8.709812	0.3210737	0.03686345	1.2252878
C1orf50	219406 at	-1.5015637	8.590482	0.25156647	0.029284326	1.1815795
TACC1	217437_s_at	0.89118445	8.566732	0.42363197	0.049450822	1.3085457

Table B.1	(continued)
-----------	-------------

Gene	Probosot ID	Expected	Observed	Numerator	Donominator	Fold change
name	Frobeset ID	score	score	Numerator	Denominator	(unlogged)
TBX2	40560_at	-0.14685693	8.564255	0.51393235	0.060009	1.4359604
NRG1	206343_s_at	0.88926274	8.52073	0.33134496	0.038886923	1.2657403
TBX2	40560_at	-0.1477507	8.476936	0.40431833	0.04769628	1.2590455
EGR1	201694_s_at	0.5031329	8.4257965	0.35795766	0.04248354	1.2827574
PTPLA	219654_at	-0.8852287	8.416165	0.25627756	0.030450633	1.1899526
TIMM9	218316_at	-0.4200468	8.381658	0.33096883	0.039487276	1.2339793
TPT1	212284_x_at	-0.47648934	8.377408	0.1736727	0.020731078	1.1246094
METTL9	217868_s_at	-0.26392618	8.33841	0.5333246	0.063959986	1.3889018
PVR	214444_s_at	-0.04031699	8.222619	0.33882824	0.04120685	1.2251234
WBP5	217975_at	1.4871516	8.148816	0.40614477	0.049840953	1.3351613
TPMT	203671_at	0.54041535	8.078473	0.19709487	0.02439754	1.1418058
PALMD	218736_s_at	-1.2455142	7.96067	0.27157688	0.034114826	1.1993032
IVL	214599_at	-1.1494005	7.940681	0.22156075	0.027901983	1.1567066
SARDH	211322_s_at	1.2215593	7.8279085	0.2663512	0.034025844	1.1963962
MFAP3	214588_s_at	0.5146847	7.7609735	0.30899316	0.039813712	1.2041906
MGAT4A	219797_at	0.032474793	7.752417	0.2905742	0.037481755	1.2227991
SFTPB	209810_at	0.024118332	7.574096	0.18124482	0.023929564	1.1263815
KRT12	207811_at	-0.18126981	7.5378127	0.20001416	0.026534773	1.1487439
EXOSC8	215136_s_at	-0.4809082	7.529675	0.27012968	0.035875343	1.1941551
IFT57	218100_s_at	0.2558981	7.4957404	0.2684511	0.03581382	1.1992615
FAM82B	218549_s_at	0.9333978	7.3660865	0.29217163	0.039664432	1.2285534
UGCG	221765_at	1.1353837	7.3658023	0.33864877	0.045975816	1.2493011
MPZL2	203779_s_at	-0.6179394	7.2442994	0.21095188	0.029119708	1.154771
DDX28	40255_at	-0.23714711	7.224147	0.20233501	0.028008154	1.141862
HNRNPA1	214280_x_at	-0.5641692	7.197557	0.40616742	0.05643129	1.3374013
HNRNPA1	214280_x_at	-0.56267875	7.197557	0.40616742	0.05643129	1.3374013
HNRNPA1	214280_x_at	-0.56136537	7.197557	0.40616742	0.05643129	1.3374013
SAG	206671_at	0.11475154	7.146125	0.21828692	0.030546194	1.1562064
RPL31	221593_s_at	0.037939034	7.1178665	0.23845404	0.033500776	1.1622843
YARS2	218470_at	-0.5796557	6.957309	0.3468712	0.049857095	1.2349056
SLC25A17	211754_s_at	0.21678136	6.905259	0.31535548	0.045668885	1.2588645
SRP72	208800_at	0.3571506	6.8988733	0.24633408	0.03570642	1.1817627
LETM1	218939_at	0.32290265	6.886277	0.18962267	0.02753631	1.1329005
NIN	219285_s_at	-0.43087614	6.8584003	0.26933587	0.039270945	1.1762735
NEIL3	219502_at	0.42621672	6.8490834	0.28822485	0.04208225	1.2183038
RET	215771_x_at	-0.86333525	6.8439627	0.26886442	0.039284904	1.2060405
RET	215771_x_at	-0.8651639	6.8439627	0.26886442	0.039284904	1.2060405
FZD10	219764_at	-0.5000687	6.8142424	0.29609346	0.043452147	1.2095503
MKI67	212022_s_at	-0.7712661	6.7941933	0.23654786	0.03481618	1.1690986
SNX3	213545_x_at	0.6201064	6.7117214	0.35243082	0.05250975	1.1928873
NIPBL	212483_at	0.44325668	6.6758566	0.24323922	0.036435656	1.1643995
PCMT1	208857_s_at	0.6556854	6.655611	0.2578592	0.03874313	1.1757983
MRPL3	208787_at	0.28139162	6.627436	0.21322565	0.03217317	1.1622691
SERPINB8	206034_at	-0.09201695	6.580668	0.18826324	0.02860853	1.1361245
BICDI	204741_at	-0.58254224	6.5751505	0.24476182	0.03/22528	1.181069
GLRA3	210661_at	0.42282984	6.5533133	0.28405774	0.043345667	1.1904067
INN	2152/1_at	-1.0585968	6.5432324	0.27891535	0.042626537	1.2049855
PSAP	2008/1_s_at	-0.8293218	6.535729	0.22779618	0.034853984	1.1695193
SMAD6	207069_s_at	-0.31943175	6.5300903	0.2581066	0.03952573	1.1804172
SMAD6	207069_s_at	-0.31846628	6.5300903	0.2581066	0.03952573	1.18041/2
CD5L	206680_at	-1.1058527	6.484/61/	0.2/231544	0.04199313	1.1866862
APP	200602_at	0.16696/48	6.449291	0.24/29216	0.038344085	1.1610193
YAKS2	2184/0_at	-0.5/834166	6.434623	0.28810084	0.04477354	1.214/344
SMADO	$214/39_at$	0.3190/998	0.400342	0.219/8/13	0.03429397	1.1040073
SWIAD0	207009_8_at	-0.31/328/3	0.40384	0.23390099	0.030833294	1.1/43334
DUK IMOV2	205502_at	0.30249307	0.3009004	0.27302902	0.0402808/	1.2243390
MGAT2	210121_at	-0.2/3/8/44	63679275	0.2063984	0.042112283	1.1024423
TOD2 A	203102_8_at	-0.43330448	0.3020333	0.2732143	0.0403900/3	1.17/3007
NI RD2	201291_8_at	-0.16304008	6 3512645	0.24130300	0.03/3//03/	1.1943332
DIR A \$2	207075_at 215506_s_st	-0.9214197	6 3/5221	0.10/23314	0.020330398	1 120/600
DICASS PEDN4	215500_8_at	-1.3123/39	631/7616	0.17033320	0.02/021200	1.1294009
PFDN/	205362_s_at	0.15002959	6 3147616	0.2647639	0.041927774	1 1632806
ACTR8	218658 s at	0.24864465	6.265595	0.18322831	0.029243562	1.1235654

Gene name	Probeset ID	Expected score	Observed score	Numerator	Denominator	Fold change (unlogged)
MRP63	204386_s_at	-0.4968153	6.2077475	0.21331811	0.034363206	1.1375813
C2orf18	219783_at	-0.00378709	6.185712	0.21685785	0.035057865	1.1432338
SLC16A3	217691_x_at	-0.1289822	6.141049	0.4108246	0.066898115	1.3579204
COIL	203654_s_at	-0.15512627	6.119961	0.24686179	0.040337153	1.1849078
G3BP2	208841_s_at	0.3694926	6.092217	0.21011353	0.034488846	1.1452626
ARSJ	219973_at	0.3966821	6.0529175	0.15638843	0.025836868	1.1158233
TBC1D9	212956_at	0.4019018	6.0515957	0.28610176	0.047277078	1.2195276
SEC22A	218703_at	0.27051756	6.0441413	0.33006507	0.054609094	1.2395762
MED14	202610_s_at	1.3241192	5.998848	0.30834752	0.051401123	1.2263118
CETN1	207209_at	-0.12337953	5.99096	0.19670671	0.032833923	1.1358333
SHOX2	208443_x_at	0.29599816	5.9882226	0.17490456	0.029208092	1.126643
ZFP64	218968_s_at	0.15487224	5.9797807	0.20519595	0.034314964	1.1564603
C11orf24	52164_at	-0.6755164	5.977472	0.25075063	0.04194928	1.1587437
ACACB	214584_x_at	-0.51553005	5.9698567	0.26251233	0.04397297	1.1838033
SNX3	200067_x_at	0.61864305	5.8936825	0.2869867	0.048693955	1.1491308
SPA17	205406_s_at	-0.6107301	5.8487926	0.15721337	0.02687963	1.1128808
NR0B1	206644_at	1.297714	5.8422666	0.1525614	0.026113393	1.1039187
ANKRD12	216550_x_at	0.117988594	5.803189	0.3413775	0.058825847	1.2400688
MYST2	200049_at	-0.16360782	5.710427	0.2714969	0.047544062	1.1628419
CUGBP2	202158_s_at	-0.90555644	5.6692576	0.26924247	0.047491662	1.1660706

Table B.1 (continued)

Table B. 2Significantly 3'UTR lengthened genes in ER(+) patients fromGSE2034 compared to normal breast samples.

Strukture From	Cone nome	Prohesot ID	Expected	Observed	Numerator	Denominator	Fold change
ThPO1 209225 x, at 0.46078923 -18.105446 -0.0032246 0.049887337 0.5278050 SLC46A3 214719 at -0.4911211 -15.76002 -0.9314178 0.05793327 0.5100096 WIPL2 214699 x, at 0.0735498 -0.5183749 0.05454923 0.5417785 ERG 211626 x, at 0.77368971 -15.36649 -0.9018877 0.66763446 0.4669014 EIFS 201024 x, at 0.03339885 -13.56491 -0.918877 0.057634246 0.4669014 DGT 207564 x, at 1.429951 -11.439954 -0.8044336 0.07081876 0.3232015 CTBS 219973 at -0.11112964 -10.387724 -0.6632476 0.1061475 0.837145 AMOT 207561 x, at 1.4019544 -9.4297 -0.4805055 0.492459 0.7332506 CCDS3 21077 x at -0.123422 -0.2364137 0.02367972 0.790608 SLC25A31 21073 x at -0.2264071 -0.24607978 0.700188 CDF2103 x at -0.22073 x at	Gene name	Prodeset ID	score	score	Numerator	Denominator	(unlogged)
TNPO1 209225.x.at 0.49594993 -17.676332 0.9324622 0.92752018 0.5214621 KLC46A3 21469p.x.at 0.6935498 -15.0025015 0.8183749 0.05454923 0.5106006 WIP12 21469p.x.at 0.01733572 14.503464 0.04514233 0.05454923 0.5417785 ERG 21162c.x.at 0.17335727 14.503464 0.0481228 0.035379884 0.66959434 MUT 2029002.x.at 0.033359885 -12.696313 0.05960024 0.046042953 0.62320015 OCT 207564.x.at 1.2429951 -11.439954 0.01631276 0.01601475 0.8387145 AMOT 20937.at 1.23977.at -0.108655 -0.0123422 -0.4404714 0.0631951 0.03828116 OCT 20937.at 1.5386855 -0.0123422 -0.64040714 0.03359885 0.023859972 0.70981085 SLC25A31 221037.x.at 0.2535566 -0.23564566 0.033598952 0.82335805 0.824783502 DPFV1 40612.at 0.40467492 -2.286	TNPO1	209225_x_at	0.46078923	-18.105446	-0.90323246	0.049887337	0.52796805
SLC46A3 214719_mt -0.4911221 -15.762062 -0.9131478 0.0579327 0.5106006 ERG 211626_x_at 0.0793377 -14.503462 -0.9083415 0.06624861 0.445469356 ERG 211626_x_at 0.01736891 -13.86469 -0.9118577 0.005768346 0.46669014 EIF5B 201024_x_at 0.03359885 -13.564391 -0.4812258 0.03547714 0.6999434 MUT 202950_x_at 1.277423 -10.986677 -0.0314453 0.03726617 0.73332506 CTRS 21937_mt -1.112944 -10.885724 -0.16622476 0.01601475 0.8897145 OGT 207564_x_at 1.430554 -9.4297 -0.43945055 0.02447978 0.70981855 SLC25A31 21037_x_at 0.2355564 -5.69605 -0.23106645 0.0324978 0.7094048 CCDCY3 219774_at 0.2455695 0.2326697 0.02447978 0.7094048 CCDCY3 21974_at 0.6166333 -9.316464 0.3319665 0.03249461 0.779448 <td>TNPO1</td> <td>209225_x_at</td> <td>0.45954993</td> <td>-17.676332</td> <td>-0.9324622</td> <td>0.052752018</td> <td>0.50416213</td>	TNPO1	209225_x_at	0.45954993	-17.676332	-0.9324622	0.052752018	0.50416213
WIPI2 214699_x_att 0.6935498 -15.0025015 -0.8183749 0.05454923 0.65447735 ERG 211626_x_att 0.17835727 -14.503464 -0.46969014 0.045763346 0.44569356 ERG 211024_x_att 0.17353727 -14.503464 -0.461258 0.0357714 0.66959444 MUT 202900_x_att 0.5852868 -12.696313 -0.5960024 0.046942953 0.6523401576 OCT 207564_x_att 1.1249951 -11.6396672 -0.41410453 0.00326617 0.7332506 CMSD 219377_att -1.0386753 -0.1623422 -0.64404714 0.06361951 0.63283116 OGT 207364_x_att 1.5868655 -10.123422 -0.64404714 0.06361951 0.63283116 OGT 20736_x_att -1.287878312 -9.620655 -0.3196645 0.03289721 0.7090480 SLC25A31 21037_x_att -0.255556 -0.22559890 0.038398022 0.7237852 DOPEV1 40612_att 0.0467492 -9.286576 -0.255784 0.0790133 <td>SLC46A3</td> <td>214719_at</td> <td>-0.4911221</td> <td>-15.762062</td> <td>-0.9131478</td> <td>0.05793327</td> <td>0.5106096</td>	SLC46A3	214719_at	-0.4911221	-15.762062	-0.9131478	0.05793327	0.5106096
ERG 21162c,x_at 0.1735891 -13.86409 -0.9018571 0.06624861 0.45469356 ERG 21102c,x_at 0.037359885 -13.86409 -0.9118577 0.00576346 0.46969014 EIFSB 201024,x_at 1.03359885 -13.86439 -0.94812258 0.03547714 0.662230115 OCT 207561,x_at 1.4249951 -11.439954 -0.9804435 0.03767714 0.662230115 CTBS 219377,at -0.11112964 -10.385724 -0.16632476 0.01601475 0.8897145 CCTS 271037,s_at 0.5555566 -9.569605 -0.31196645 0.03259722 0.79966235 DOPEY1 40612,at 0.60163933 -9.316416 -0.34329566 0.03268447 0.7000408 CCDCO3 218774,at 0.01246742 -9.266576 -0.2500298 0.03259702 0.7372752 CDCDCV3 21874,at 0.04667492 -9.266576 -0.2500298 0.03268447 0.7070048 CCDCO3 21874,at 0.04667492 -9.266576 -0.25002986 0.0327417	WIPI2	214699_x_at	0.6935498	-15.0025015	-0.8183749	0.05454923	0.54177785
ERG 21162cx_xat 0.17736891 -13.86469 -0.9118577 0.065763346 0.46969014 MUT 202960_x,at 0.5832868 -12.696313 -0.59960024 0.046942953 0.6523015 OGT 207564_x,at 1.2429951 -11.439954 -0.80444363 0.07031576 0.53229055 CTBS 219572_at -1.2777423 -10.986672 -0.43140453 0.0325617 0.7332506 CMT 207564_x,at 1.5868655 -01.123422 -0.64404714 0.0631951 0.632387116 CMT 207564_x,at 1.4301554 -9.94297 -0.48965055 0.0492459 0.70081085 SLC25A31 21073_x_at 1.4301554 -9.366616 -0.356497 0.0244778 0.84148943 DPEY1 40612_at -0.6163933 -9.316416 -0.3432596 0.03226972 0.79966235 DEF1 21855_x_at -0.2651298 0.0281478 0.7572752 KIF5A 205314_at -0.966738 -0.3527984 0.0211718 0.0722954 CXA 218832_	ERG	211626_x_at	0.17835727	-14.503462	-0.96083415	0.06624861	0.45469356
EIFSB 201024_x_at 0.033359885 1.13.564391 -0.4812258 0.03547714 0.6959434 MUT 202960_x_1 0.585286 -12.696313 -0.5960024 0.046942953 0.63220015 CGT 207564_x_nt 1.42794251 -10.986722 -0.43140453 0.0392617 0.73332506 FAM59A 219377_at -0.11112964 -10.385724 -0.16632476 0.01601475 0.6392617 0.02333116 OCT 207564_x_at 1.5868655 -0.0256055 -0.2556497 0.02447978 0.841484943 PHKB 20279_x_at -0.6016339 -9.656065 -0.2556497 0.02457997 0.841484943 CCDO33 219774_at 0.04667492 -9.286576 -0.2560298 0.02853902 0.82333505 CCDO33 219774_at 0.014667492 -9.286576 -0.2560298 0.024519177 0.8841244 ZAK 21833_at 0.004667492 -9.286576 -0.2560298 0.02418775 0.2106685304 0.890154 ZAK 21833_at 0.01244518 -8.3909994	ERG	211626_x_at	0.17736891	-13.86469	-0.9118577	0.065768346	0.46969014
MUT 202960_s_at 0.5582868 -12.696313 -0.5960024 0.046942953 0.62230015 CTBs 218923_at -1.2777423 -10.986672 -0.43140453 0.07031876 0.53429055 CTBs 218923_at -1.2777423 -10.986672 -0.43140453 0.07031876 0.538216 CMT 209524_s_at 1.5868655 -10.123422 -0.64404714 0.06316951 0.63283116 OCT 207564_s_at 1.4301554 -994297 -0.4896055 0.02492459 0.700408 SLC25A31 2210375_s_at 0.05616333 -9.316416 -0.34329566 0.03684847 0.7700408 CCDC03 219774_at 0.04667492 -9.286576 -0.250298 0.0621564 0.6727752 KIFSA 205318_at -0.0502788 0.6415644 0.672713 MCTD 212846_at 0.010124561 -8.833683 -0.16482331 0.01858540 0.890154 SF4 209547_s_at -0.04953985 -5.54227 -0.3432812 0.018656 0.7272782 CDV	EIF5B	201024_x_at	0.033359885	-13.564391	-0.4812258	0.03547714	0.6959434
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MUT	202960_s_at	0.5852868	-12.696313	-0.5960024	0.046942953	0.62230015
$\begin{array}{llllllllllllllllllllllllllllllllllll$	OGT	207564_x_at	1.4249951	-11.439954	-0.80444336	0.07031876	0.53429055
FAM59A 219377_at -0.11112964 -10.2385724 -0.16632476 0.01601475 0.6897145 AMOT 209521_s_at 1.5868655 -10.2385724 -0.64965055 0.0492459 0.70081085 SLC25A31 201375_s_at 0.03978312 -9.626065 -0.2356497 0.02447978 0.841484943 PHKB 202739_s_at -0.6016333 -9.316416 -0.3432966 0.03868487 0.79966235 DOPEY1 0.6016333 -9.316416 -0.3432966 0.03864847 0.7704088 CCDC93 219774_at 0.04667492 -9.286576 -0.2650298 0.02853902 0.82333505 ESF1 218853_s_at 0.004953985 -8.542827 0.43695334 0.0164458 0.83081244 ZAK 218057_s_at -0.0210618 -8.417012 -0.1510556 0.017944028 0.8991654 ZIMOT_s_at -0.02140518 8.41718 -0.15388341 0.018825645 0.8440696 EFS1 201624_s_at -0.2319726 -7.8036275 -0.1600867 0.021794428 0.8991654 </td <td>CTBS</td> <td>218923_at</td> <td>-1.2777423</td> <td>-10.986672</td> <td>-0.43140453</td> <td>0.03926617</td> <td>0.73332506</td>	CTBS	218923_at	-1.2777423	-10.986672	-0.43140453	0.03926617	0.73332506
AMOT 209521_s_at 1.6.123422 -0.64404714 0.0631915 0.63283116 OGT 207564_x.at 1.4301554 -9.94277 0.4806505 0.00492459 0.70081085 SLC25A31 221037_x.g.at 0.39878312 -9.626065 -0.23564397 0.02457978 0.84148943 DDPEY1 40612_at 0.04667492 -9.286576 -0.2650298 0.03853902 0.82333505 ESF1 218859_x.at 0.1224136 -9.086528 -0.3802428 0.0418478 0.772752 KIF5A 205318_at -0.6525743 -8.900994 -0.2026903 0.022619177 0.8681284 ZAK 218835_at 0.04951858 -8.54227 -0.40659331 0.01845644 0.890154 SF4 209547_x.g.t -0.04953858 -8.54227 -0.4569534 0.018825645 0.894401 RF51 211487_x.a.t -0.03009007 -8.150904 -0.1783212 0.02187466 8840499 RF51 211487_x.a.t -0.30039007 -8.150904 -0.17832124 0.7273515 0.88961723	FAM59A	219377_at	-0.11112964	-10.385724	-0.16632476	0.01601475	0.8897145
OGT 207564_x_at 1.4301554 -9.94297 -0.4896505 0.0492459 0.70081085 SLC25A31 201037_x_at 0.39878312 -9.656065 -0.35196445 0.03259972 0.79966235 DOPEY1 40612_at 0.00163933 -9.316161 -0.34329566 0.03584847 0.7700408 CCDC93 219774_at 0.04667492 -9.286576 -0.2650298 0.02853902 0.82333505 ESF1 218859_x_at 0.04919245 -8.927961 -0.572788 0.0418478 0.077777572 KIFSA 201246_x1 -0.011244561 -8.83363 -0.1642331 0.018658504 0.890154 CCNANB 2118077_x_at -0.20466151 -8.174138 -0.151838341 0.018658504 0.8901634 AZIN1 201772_at 0.9646151 -8.174138 -0.17832112 0.01784476 0.8840969 EIFSB 210347_x_at 0.03009007 -8.15094 -0.10783012 0.4827466 0.884069 EIFSB 210457_x_at 0.03004007 -8.150940 -0.021893356 0.890	AMOT	209521_s_at	1.5868655	-10.123422	-0.64404714	0.06361951	0.63283116
SLC25A31 221037_s_at 0.39878312 -9.626065 -0.23564397 0.0244578 0.84148943 DPIKB 202739_s_at -0.235566 -9.569605 -0.31196645 0.03259972 0.79966235 DOPEYI 40612_at 0.04667492 -9.286576 -0.2650298 0.03259972 0.79966235 SEFI 218859_s_at 0.1224136 -9.086528 -0.3802428 0.04118478 0.572752 KIFSA 203818_at -0.05525743 -8.900994 -0.2026903 0.022619177 0.8681284 ZAK 218833_at 0.05525745 -8.9277961 -0.572788 0.0415664 0.6720713 MCFD2 212246_at 0.0111244561 -8.833683 -0.16482331 0.0188256428 0.8991654 CXN4NB 218077_a_at -0.0293958 -8.542277 -0.5087983 0.04717199 0.67238724 PTN 200465_x_at -0.2116618 -8.174138 -0.15388341 0.018256425 0.894401 RFS17 2.11487 0.2353066 0.023242625 0.82812926	OGT	207564_x_at	1.4301554	-9.94297	-0.48965055	0.0492459	0.70081085
PHKB 202739_s_at -0.2355566 -9.569605 -0.31196645 0.0325972 0.79966235 DOPEY1 40612_at 0.04667492 -9.28676 -0.2650298 0.02853920 0.82333505 ESFI 218859_s_at 0.1284164 -0.36864847 0.7700408 CCDC03 219774_at 0.04667492 -9.28676 -0.2626028 0.0218177 0.8681284 ZAR 218859_s_at 0.021246461 -8.833683 -0.16482331 0.018658504 0.6720713 MCFD2 21246_at -0.011244561 -8.833683 -0.16482331 0.018658504 0.8991654 SF4 20547_s_at -0.04953985 -8.542827 -0.43669334 0.01118366 0.7242954 COX4NB 211807_s_at -0.231671621 -1.51101556 0.017940428 0.8991654 AZIN1 20172_at 0.0946151 -8.174138 -0.17822112 0.01287766 0.8840969 EIFB 201024_s_at 0.03431013 -7.857134 -0.2333066 0.03226252 0.8281266 CLUAPI	SLC25A31	221037_s_at	0.39878312	-9.626065	-0.23564397	0.02447978	0.84148943
DOPEY1 40612_at 0.060163933 -9.316416 -0.34329566 0.03853902 0.08233305 ESF1 218859_s_at 0.1284136 -9.086328 -0.3802428 0.0418478 0.7272752 KIF5A 205318_at -0.5525743 -8.960994 -0.2026903 0.022619177 0.8681284 ZAK 218333_at 0.06119245 -8.927961 -0.572788 0.06415664 0.6720713 MCFD2 212246_at 0.011244561 -8.813083 -0.16482331 0.01685804 0.8991654 COXANB 218957_x_at -0.22116618 -8.417612 -0.15101556 0.017940428 0.8991654 AZINI 201072_at 0.9646151 -8.1714138 -0.1538364 0.0647199 0.67238724 PTN 20465_x_at 0.013431013 -7.852217 -0.5087983 0.0647199 0.8281286 CLUAPI 20456_x_at 0.013431013 -7.7516594 -0.1600867 0.022753615 0.8291287 GTA3 209646_x_at 1.0161317 -7.7618754 -0.1603871 0.02753616 <td>PHKB</td> <td>202739_s_at</td> <td>-0.25355566</td> <td>-9.569605</td> <td>-0.31196645</td> <td>0.03259972</td> <td>0.79966235</td>	PHKB	202739_s_at	-0.25355566	-9.569605	-0.31196645	0.03259972	0.79966235
CCDC93 219774_at 0.04667492 -9.286576 -0.2650298 0.0283902 0.82333505 ESFI 218859_st 0.1284136 -9.086528 -0.3802428 0.0418478 0.7572752 KIF5A 205318_at -0.5525743 -8.960994 -0.2056003 0.022169177 0.8681284 ZAK 218353_st 0.061194456 -8.83363 -0.16482331 0.018658504 0.890154 SF4 209547_s_at -0.211618 -8.17712 -0.16482331 0.01858504 0.8991654 AZIN1 201727_at 0.9646151 -8.174138 -0.1583541 0.01287466 0.8840969 EIF3B 201024_s_at 0.034331013 -7.855217 -0.508783 0.06477199 0.67238724 PTN 204465_s_at 0.270726 -7.8036275 -0.16000867 0.020504396 0.89607435 BRD8 210352_st 0.201394364 -7.7516594 -0.21993351 0.02254545 0.8826941 THC2 20836_s_at 0.43386422 -7.674269 -0.21993956 0.03674613	DOPEY1	40612_at	0.60163933	-9.316416	-0.34329566	0.03684847	0.7700408
ESF1 218859_s_at 0.1284136 -9.086328 -0.3802428 0.04178 0.727272 XLF5A 205318_at -0.5527543 -8.960994 -0.0226903 0.022619177 0.3681284 ZAK 21833_at 0.009119245 -8.927961 -9.572788 0.061658504 0.890154 SF4 209547_s_at -0.04953985 -8.542827 -0.43669534 0.051118366 0.7242954 COX4NB 210057_s_at -0.22116618 -8.417612 -0.15101556 0.017940428 0.8991654 RPS17 211487_s_at -0.30000007 -8.159004 -0.17332112 0.02477466 0.8840969 EIFSB 201024_s_at 0.03431013 -7.8572174 -0.2533066 0.032362625 0.8281286 CLUAP1 20457_s_at 0.0179726 -7.8036275 -0.1600867 0.02218366 0.7229534 PTMD 209465_x_at 0.0316542 -7.674269 -0.21393351 0.02188576 0.828129 BRD8 210352_at 0.0306542 -7.674269 -0.2189966 0.02721394	CCDC93	219774_at	0.04667492	-9.286576	-0.2650298	0.02853902	0.82333505
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ESF1	218859_s_at	0.1284136	-9.086328	-0.3802428	0.0418478	0.7572752
ZAK 21883.at 0.069119245 -8.927961 -0.572788 0.041564 0.6720713 MCFD2 212246.at 0.011244561 -8.83683 -0.16482331 0.018658504 0.8991654 AZINI 2109547.s.at -0.02116618 -8.417612 -0.15101556 0.017940428 0.8991654 AZINI 201772.at 0.9646151 -8.17912 -0.018825645 0.88440969 EIFSB 201024.x.at 0.03009007 -8.159094 -0.17832112 0.021877466 0.8840969 EIFSB 201024.x.at 0.03131013 -7.8552217 -0.5087983 0.06477199 0.67238724 PTN 209455.x.at 0.2797226 -7.8036275 -0.16000867 0.02054396 0.89607435 BRD8 210352.at 0.5018454 -7.761875 -0.21933351 0.037461632 0.8281299 TRAK1 214924.s.at 0.23604089 -7.6021214 -0.20842266 0.02741632 0.826329 TRAK1 214924.s.at -0.23609768 -7.4249135 -0.16815245 0.02634251 0.888	KIF5A	205318_at	-0.5525743	-8.960994	-0.2026903	0.022619177	0.8681284
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ZAK	218833_at	0.069119245	-8.927961	-0.572788	0.06415664	0.6720713
Sr4 209547_s_at -0.04953985 -8.542827 -0.43669534 0.01118366 0.7242954 COX4NB 218057_x_at -0.22110618 -8.17612 -0.15101556 0.017940428 0.8991654 AZIN1 201772_at 0.9646151 -8.174138 -0.15101556 0.017940428 0.8891654 RPS17 211487_x_at 0.03009007 -8.150904 -0.17832112 0.021877466 0.8840669 EIFSB 201024_x_at 0.031331013 -7.8525217 -0.5087983 0.06477199 0.67233724 PTN 209455_x_at 0.81632006 -7.827134 -0.21393511 0.02753615 0.85961723 BGALT1 211631_x_at 1.0163137 -7.7691875 -0.1600867 0.02746542 0.8729534 GATA3 209603_at -0.90730554 -7.6021214 -0.20842266 0.02746382 0.8628329 TRAK1 214924_s_s_at -0.23604089 -7.458703 -0.1643551 0.022634251 0.888941 PEF2A 208328_s_at -0.20909768 -7.459105 -0.022634251	MCFD2	212246_at	0.011244561	-8.833683	-0.16482331	0.018658504	0.890154
COX4NB 21807/x_at -0.22116618 -8.417612 -0.15101556 0.017940428 0.8991654 AZINI 201772_at 0.9646151 -8.174138 -0.1538341 0.01882645 0.8994601 RPS17 211487_x_at 0.03009007 -8.150904 -0.17832112 0.021877466 0.8840969 EIF5B 201024_x_at 0.03335006 -7.827134 -0.205066 0.032366225 0.8281286 CLUAPI 2049576_x_at 0.81632006 -7.8036775 -0.16000867 0.020504396 0.89607435 BRD8 210352_at 0.5018454 -7.761875 -0.21393351 0.02753615 0.85961723 BRD8 208506_x_at 0.48386422 -7.674269 -0.28199968 0.03674613 0.8017305 GATA3 209603_at -0.20790564 -7.450121 -0.1643351 0.02185575 0.8929949 MEF2A 20832_x_at 0.23604089 -7.43012 -0.464162 0.661655 0.7012107 ARL4A 20500_x_at -0.6794686 -7.4273043 -0.2636431 0.03185	SF4	209547_s_at	-0.04953985	-8.542827	-0.43669534	0.051118366	0.7242954
AZIN1 201772_at 0.9646151 -8.174138 -0.15388341 0.018825645 0.894401 RPS17 211487_xat 0.3009007 8.150904 -0.17832112 0.018825645 0.840069 EIF5B 201024_x_at 0.81632006 -7.857134 -0.2533066 0.023562625 0.8281286 CULVAP1 204576_s.at 0.2797226 -7.8036275 -0.16000867 0.0205504396 0.89607435 BRD8 210352_at 0.5018454 -7.7516594 -0.19033904 0.02455462 0.8729534 YTHDC2 208356_s.at 0.4388422 -7.674269 -0.28199968 0.03674613 0.8017305 GATA3 209603_at -0.90730554 -7.6021214 -0.20842266 0.022185755 0.8929949 MEF2A 208326_s.at -0.23099968 -0.3674613 0.8017305 AK1 214924_s.at -0.26199968 -0.22199968 0.03674613 0.80253226 AK2 208996_s.at -1.6035434 -7.454503 -0.22189265 0.7012107 AK2 20590_s.at	COX4NB	218057_x_at	-0.22116618	-8.417612	-0.15101556	0.017940428	0.8991654
RPS17 211487_x_at -0.30009007 -8.159904 -0.17852112 0.021877466 0.8840969 EIFSB 201024_x_at 0.81632006 -7.8521134 -0.2533066 0.032362625 0.8281286 CLUAPI 204576_s_at -0.2797226 -7.8036275 -0.16000867 0.020504396 0.89607435 BRD8 210352_at 0.5018454 -7.761875 -0.21393351 0.02735615 0.82951723 BRD8 210352_at 0.5018454 -7.761879 -0.20849266 0.0027416382 0.8628329 GATA3 209603_at -0.2090730554 -7.6021214 -0.20842266 0.027416382 0.80253226 AK2 205966_s_at 1.6035434 -7.430312 -0.48841682 0.0616955 0.7012107 ARLA 205020_s_at 0.6996866 -7.429115 -0.1631514 0.03265431 0.8895394 LPXN 216250_s_at 0.6996866 -7.429115 -0.1815245 0.02634251 0.888941 PRKAR1A 206021_s_at 0.02144305 -7.417143 -0.16256431 0.0318663 0.8205394 LPXN 216250_s_at 0.6996866 <td>AZIN1</td> <td>201772_at</td> <td>0.9646151</td> <td>-8.174138</td> <td>-0.15388341</td> <td>0.018825645</td> <td>0.894401</td>	AZIN1	201772_at	0.9646151	-8.174138	-0.15388341	0.018825645	0.894401
EIF3B 201024_x_at 0.034331013 -7.852217 -0.5087983 0.06477199 0.67238724 CLUAPI 204576_x_at 0.01632006 -7.827134 -0.2333066 0.032362625 0.8281286 CLUAPI 204576_s_at -0.2797226 -7.8036275 -0.16000867 0.020504396 0.89607435 B4GALTI 211631_x_at 1.0163137 -7.761875 -0.2139351 0.02753615 0.87905734 YTHDC2 205836_s_at 0.48386422 -7.674269 -0.28199968 0.03674613 0.8017305 GATA3 209603_at -0.90730554 -7.6021214 -0.20842266 0.027416382 0.8623322 MEF2A 208328_s_at -0.20999768 -7.4545035 -0.2723928 0.036540706 0.80253226 AKL4 205096_s_at -1.6095434 -7.420315 -0.16815245 0.022634251 0.03185063 0.8206399 LPXN 216250_s_at -0.69108844 -7.420362 -0.2072171 0.02786091 0.8605394 FE22 215000_s_at -0.2777147 -7.333573	RPS17	211487_x_at	-0.30009007	-8.150904	-0.17832112	0.021877466	0.8840969
PIN 209465_x_att 0.81652006 -7.827134 -0.253066 0.032542625 0.8281286 CULVAPI 204576_s_att -0.2797226 -7.8036275 -0.16000867 0.020504396 0.89607435 B4GALT1 211631_x_att 1.0163137 -7.7691875 -0.21393351 0.02753615 0.89607435 BRD8 210352_att 0.5018454 -7.7516594 -0.19033904 0.02455462 0.8729534 GATA3 209605_att -0.601730554 -7.6021214 -0.20842266 0.027416382 0.8628329 TRAK1 214924_s_att 0.23604089 -7.58877 -0.1643351 0.031885755 0.8929949 MEF2A 208596_s_att -1.6035434 -7.430312 -0.45841682 0.0016955 0.7012107 ARLA 205020_s_att 0.6996866 -7.429115 -0.16815245 0.022634251 0.88084941 PRKAR1A 20603at -0.049108844 -7.423043 -0.23656431 0.03185063 0.8206399 LPXN 216250_s_at 0.0691846 -7.4230342 -0.237313	EIF5B	201024_x_at	0.034331013	-7.8552217	-0.5087983	0.06477199	0.67238724
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PTN	209465_x_at	0.81632006	-7.827134	-0.2533066	0.032362625	0.8281286
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CLUAP1	204576_s_at	-0.2797226	-7.8036275	-0.16000867	0.020504396	0.89607435
BRD8 210352_att 0.5018454 -1.7516594 -10.1903304 0.02452462 0.8729534 YTHDC2 205836_s_att 0.48386422 -7.674269 -0.28199968 0.03674613 0.8017305 GATA3 209603_at -0.20090730554 -7.6021214 -0.20842266 0.027416382 0.8628329 TRAK1 214924_s_att 0.23004089 -7.50877 -0.1643351 0.021885755 0.8929949 MEF2A 208328_s_att -0.29909768 -7.4545035 -0.2723928 0.036540706 0.80253226 AK2 205996_s_att -1.6035434 -7.4203012 -0.45841682 0.022634251 0.8888941 PRKAR1A 20600_s_att -0.69108844 -7.420362 -0.207217 0.02726091 0.8605394 FEZ2 215000_s_att -0.02114305 -7.411118 -0.106961496 0.01432572 0.9275853 CREBBP 202160_att -0.277147 -7.3335543 -0.1715671 0.02384863 APC 216933_x_att 0.45275344 -0.22319441 0.023562761 0.8892286 <td>B4GALTI</td> <td>211631_x_at</td> <td>1.0163137</td> <td>-7.7691875</td> <td>-0.21393351</td> <td>0.02/53615</td> <td>0.85961723</td>	B4GALTI	211631_x_at	1.0163137	-7.7691875	-0.21393351	0.02/53615	0.85961723
YTHDC2 20836_s_at 0.48386422 -0.67269 -0.2819968 0.036174613 0.8017305 GATA3 209603_at -0.90730554 -7.6021214 -0.20842266 0.027416382 0.8628329 TRAK1 214924_s_at 0.23604089 -7.50877 -0.1643351 0.021885755 0.8929949 MEFZA 208328_s_at -0.29099768 -7.4545035 -0.2723928 0.036540706 0.80253226 AK2 205996_s_at -1.6035434 -7.430312 -0.45841682 0.0616955 0.7012107 ARL4A 20502_s_at 0.6990886 -7.4273043 -0.23656431 0.03185063 0.8206394 PEZ2 215000_s_at -0.002144305 -7.411118 -0.106961496 0.01432572 0.9275853 CREBBP 202160_at -0.2777147 -7.333587 -0.41329575 0.05635656 0.7352935 TIAL1 20405_at -0.784015 -7.333587 -0.1156711 0.02369481 0.8829205 SLC6A16 219820_at -0.9501419 -7.0223384 -0.12581838 0.01644934 0.9239979 SEC11A 201290_at -0.03500556 </td <td>BRD8</td> <td>210352_at</td> <td>0.5018454</td> <td>-7.7516594</td> <td>-0.19033904</td> <td>0.02455462</td> <td>0.8729534</td>	BRD8	210352_at	0.5018454	-7.7516594	-0.19033904	0.02455462	0.8729534
$\begin{array}{llllllllllllllllllllllllllllllllllll$	YTHDC2	205836_s_at	0.48386422	-7.674269	-0.28199968	0.036/4613	0.8017305
$\begin{array}{llllllllllllllllllllllllllllllllllll$	GATA3	209603_at	-0.90/30554	-7.6021214	-0.20842266	0.02/416382	0.8628329
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IRAKI	214924_s_at	0.23604089	-/.508//	-0.1643351	0.021885755	0.8929949
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MEF2A	208328_s_at	-0.29099768	-7.4545035	-0.2723928	0.036540706	0.80253226
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	AK2	205996_s_at	-1.6035434	-7.430312	-0.45841682	0.0616955	0.7012107
PRKARIA 200605_at -0.14202192 -7.4273043 -0.23656431 0.03185063 0.5206399 LPXN 216250_s_at -0.69108844 -7.420362 -0.207217 0.027926091 0.8605394 FEZ2 215000_s_at 0.002144305 -7.411118 -0.106961496 0.014432572 0.9275853 CREBBP 20160_at -0.2777147 -7.333587 -0.41329575 0.05635656 0.7352935 TIAL1 202405_at -0.7884015 -7.3335543 -0.2531943 0.036055554 0.889265 ATP6V1C1 202872_at 0.9701419 -7.0223384 -0.2531943 0.036055554 0.8232901 HFE 211332_x_at 0.5525901 -6.9532223 -0.12588388 0.018104395 0.91462994 SLC6A16 219820_at -0.03500556 -6.928284 -0.16324951 0.023562761 0.89282286 PPP1R11 201500_s_at 0.5575347 -6.868958 -0.11364558 0.016544934 0.9239979 SEC11A 201290_at -0.5959064 -6.7483653 -0.13067186	AKL4A	205020_s_at	0.6996866	-7.429115	-0.16815245	0.022634251	0.8888941
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	PRKARIA	200603_at	-0.14202192	-7.4273043	-0.23656431	0.03185063	0.8206399
FE.Z. 215000_sat 0.002144305 -7.411118 -0.106961496 0.014432572 0.927853 CREBBP 202160_at -0.2777147 -7.336307 -0.31375313 0.042767175 0.79384863 APC 216933_x_at 0.48274702 -7.3335543 -0.17156711 0.02339481 0.889265 ATP6V1C1 202872_at 0.9701419 -7.0223384 -0.2531943 0.036055554 0.8232901 HFE 211332_x_at 0.5525901 -6.9332223 -0.12588388 0.018104395 0.91462994 SLC6A16 219820_at -0.03500556 -6.928284 -0.16324951 0.02362761 0.89282286 PPP1R11 201500_s_at 0.5575347 -6.862861 -0.11364558 0.016244934 0.9239979 SEC11A 201290_at -0.21592064 -6.7688958 -0.13067186 0.019253554 0.910526 IPO13 203546_at -1.4712919 -6.7433653 -0.14158213 0.020995768 0.9071333 SUP7L 201837_s_at -0.05923835 -6.6245117 -0.14305055 0.21228585 0.9064449 STAT6 201331_s_at <td< td=""><td>LPXN</td><td>216250_s_at</td><td>-0.69108844</td><td>-7.420362</td><td>-0.20/221/</td><td>0.02/926091</td><td>0.8605394</td></td<>	LPXN	216250_s_at	-0.69108844	-7.420362	-0.20/221/	0.02/926091	0.8605394
CREBBP 202100_att -0.27/7147 -7.3305807 -0.31373515 0.042707175 0.79384865 APC 216933_x_att 0.48274702 -7.333587 -0.41329575 0.05635656 0.7352935 TIAL1 202405_att -0.7884015 -7.333587 -0.17156711 0.02339481 0.889265 ATP6V1C1 202872_at 0.9701419 -7.0223384 -0.2531943 0.036055554 0.8232901 HFE 211332_x_at 0.5525901 -6.9532223 -0.12588388 0.018104395 0.91462994 SLC6A16 219820_at -0.03500556 -6.928284 -0.16324951 0.023562761 0.89282286 PPP1R11 201500_s_at 0.5575347 -6.862861 -0.11364558 0.016544934 0.9239979 SEC11A 201290_at -0.29592064 -6.7868958 -0.13067186 0.019253554 0.910526 IPO13 203546_at -1.4712919 -6.745475 -0.2127963 0.031546526 0.8452857 TTTL 201837_s_at -0.051199067 -6.7433653 -0.14158213	FEZ2	215000_s_at	0.002144305	-/.411118	-0.106961496	0.014432572	0.9275853
APC 216935_x_at 0.482/4/02 -1.333587 -0.41329575 0.03603056 0.7352955 TIAL1 202405_at -0.7884015 -7.3335543 -0.17156711 0.02339481 0.889265 ATP6V1C1 202872_at 0.9701419 -7.0223384 -0.2531943 0.036055554 0.8232901 HFE 211332_x_at 0.5525901 -6.9532223 -0.12588388 0.018104395 0.91462994 SLC6A16 219820_at -0.03500556 -6.928284 -0.16324951 0.023562761 0.89282286 PPP1R11 201500_s_at 0.5575347 -6.862861 -0.11354558 0.016544934 0.9239979 SEC11A 201290_at -0.29592064 -6.7868958 -0.13067186 0.019253554 0.910526 IPO13 203546_at -1.4712919 -6.745475 -0.2127963 0.031546526 0.8452857 SUPT7L 201837_s_at -0.001385372 -6.738581 -0.14305055 0.021228858 0.9064449 STAT6 201331_s_at -0.5551185 -6.70826 -0.26082468	LKEBBP	202160_at	-0.2///14/	-/.33030/	-0.313/3313	0.042/0/1/5	0.79584805
$\begin{array}{llllllllllllllllllllllllllllllllllll$	APC TIAL 1	210935_x_at	0.482/4/02	-1.333381	-0.41529575	0.03033030	0.7352955
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TIALI	202405_at	-0.7884013	-7.3333343	-0.1/130/11	0.02559461	0.889203
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HEE	202672_at	0.9701419	-7.0225564	-0.2331943	0.050055554	0.8232901
SLCATO 219820_at -0.05300300 -0.928284 -0.10324931 0.023302701 0.03828280 PPP1R11 201500_s_at 0.5575347 -6.862861 -0.11354558 0.016544934 0.9239979 SEC11A 201290_at -0.29592064 -6.7868958 -0.13067186 0.019253554 0.910526 IPO13 203546_at -1.4712919 -6.745475 -0.2127963 0.031546526 0.8452857 PTPN11 212610_at -0.51199067 -6.7433653 -0.14158213 0.020995768 0.9071333 SUPT7L 201837_s_at -0.001385372 -6.738581 -0.14305055 0.021228585 0.9064449 STAT6 20131_s_at -0.5551185 -6.7378316 -0.33494455 0.04971103 0.77077824 KDM5B 201548_s_at -0.98916453 -6.6245117 -0.10736015 0.0162065 0.92767495 MAP3K7IP2 212184_s_at 0.65147567 -6.610662 -0.15225255 0.023031363 0.8916863 EBAG9 204274_at 0.9769356 -6.5405884 -0.17348556 0.022365678 0.90402955 NRG1 208230_s_at	SI CGA16	211332_x_a	0.02500556	-0.9332223	-0.12300300	0.010104393	0.91402994
PFP1R11 201500_s_at 0.5575347 -0.602861 -0.113343538 0.010544934 0.9259979 SEC11A 201290_at -0.29592064 -6.7868958 -0.13067186 0.019253554 0.910526 IPO13 203546_at -1.4712919 -6.745475 -0.2127963 0.031546526 0.8452857 PTPN11 212610_at -0.51199067 -6.7433653 -0.14158213 0.020995768 0.9071333 SUPT7L 201837_s_at -0.001385372 -6.7378316 -0.14305055 0.021228585 0.9064449 STAT6 201311_s_at -0.5551185 -6.7378316 -0.33494455 0.04971103 0.77077824 KDM5B 201548_s_at -0.98916453 -6.6245117 -0.10736015 0.0162065 0.92767495 MAP3K7IP2 212184_s_at 0.6529613 -6.610662 -0.15225255 0.023031363 0.8916863 EBAG9 204274_at 0.9769356 -6.5405884 -0.17348556 0.026524458 0.8009718 TSHR 210055_at -0.39507926 -6.5041447 -0.1454696 0.022365678 0.90402955 NRG1 208230_s_at	SLC0A10	219620_at	-0.05500550	-0.928284	-0.10324931	0.025502701	0.89282280
SIECTIA 201290_at -0.23932004 -0.7608938 -0.13007180 0.019235334 0.910320 IPO13 203546_at -1.4712919 -6.745475 -0.2127963 0.031546526 0.8452857 PTPN11 212610_at -0.51199067 -6.7433653 -0.14158213 0.020995768 0.9071333 SUPT7L 201837_s_at -0.001385372 -6.7378851 -0.14305055 0.021228585 0.9064449 STAT6 20131_s_at -0.5551185 -6.7378316 -0.33494455 0.04971103 0.77077824 KDM5B 201548_s_at -0.98916453 -6.70826 -0.26082468 0.038881123 0.8141915 CDKN1B 209112_at -0.5923835 -6.6245117 -0.10736015 0.0162065 0.92767495 MAP3K7IP2 212184_s_at 0.65147567 -6.610662 -0.15225255 0.023031363 0.8916863 EBAG9 204274_at 0.9769356 -6.5405884 -0.17348556 0.026524458 0.8809718 TSHR 210055_at -0.39507926 -6.5041447 -0.1454696 0.022365678 0.90402955 NRG1 208230_s_at	SEC11A	201300_s_at	0.3373347	6 7868058	-0.11334336	0.010344934	0.9239979
PTOTS 203340_2at -1.4/12919 -0.743473 -0.2127903 0.031340520 0.0432037 PTPN11 212610_at -0.51199067 -6.7433653 -0.14158213 0.020995768 0.9071333 SUPT7L 201837_s_at -0.001385372 -6.7378581 -0.14305055 0.021228585 0.9064449 STAT6 201331_s_at -0.5551185 -6.7378316 -0.33494455 0.04971103 0.77077824 KDM5B 201548_s_at -0.98916453 -6.70826 -0.26082468 0.038881123 0.8141915 CDKN1B 209112_at -0.5923835 -6.6245117 -0.10736015 0.0162065 0.92767495 MAP3K7IP2 212184_s_at 0.65147567 -6.610662 -0.15225255 0.023031363 0.8916863 EBAG9 204274_at 0.9769356 -6.5405884 -0.17348556 0.026524458 0.8809718 TSHR 210055_at -0.39507926 -6.5041447 -0.1454696 0.022365678 0.90402955 NRG1 208230_s_at 0.7886968 -6.485954 -0.15794145 0.024323532 0.8955876 COG5 203630_s_at	JECTIA JECTIA	201290_at	-0.29392004	-0.7606936	-0.13007180	0.019233334	0.910320
SUPT7L 201837_s_at -0.01385372 -6.735503 -0.14130215 0.021228585 0.9064449 STAT6 201331_s_at -0.0551185 -6.738581 -0.14305055 0.021228585 0.9064449 STAT6 201331_s_at -0.5551185 -6.7378316 -0.33494455 0.04971103 0.77077824 KDM5B 201548_s_at -0.98916453 -6.70826 -0.26082468 0.038881123 0.8141915 CDKN1B 209112_at -0.5923835 -6.6245117 -0.10736015 0.0162065 0.92767495 MAP3K7IP2 212184_s_at 0.6529613 -6.610662 -0.15225255 0.023031363 0.8916863 EBAG9 204274_at 0.9769356 -6.5405884 -0.17348556 0.026524458 0.8809718 TSHR 210055_at -0.39507926 -6.5041447 -0.1454696 0.022365678 0.90402955 NRG1 208230_s_at 0.88729453 -6.4933596 -0.15794145 0.024323532 0.8955876 COG5 203630_s_at 0.7886968 -6.4453692 -0.29286561 0.035663683 0.83155584 DKC1 216212_s_at	PTPN11	203340_at	-1.4/12212	-6.7433653	-0.212/903	0.020905768	0.0452057
Str TrE 201637_s_at -0.00130572 -0.130501 -0.130501 -0.130501 0.021220505 0.9004449 Str AT6 201331_s_at -0.5551185 -6.7378316 -0.33494455 0.04971103 0.77077824 KDM5B 201548_s_at -0.98916453 -6.7378316 -0.26082468 0.038881123 0.8141915 CDKN1B 209112_at -0.5923835 -6.6245117 -0.10736015 0.0162065 0.92767495 MAP3K7IP2 212184_s_at 0.6529613 -6.610662 -0.15225255 0.023031363 0.8916863 MAP3K7IP2 212184_s_at 0.65147567 -6.610662 -0.15225255 0.023031363 0.8916863 EBAG9 204274_at 0.9769356 -6.5405884 -0.17348556 0.026524458 0.8809718 TSHR 210055_at -0.39507926 -6.5041447 -0.1454696 0.022365678 0.90402955 NRG1 208230_s_at 0.88729453 -6.4933596 -0.15794145 0.024323532 0.8955876 COG5 203630_s_at 0.7886968 -6.4453692 -0.22986561 0.035663633 0.83155584 0KC1 216212_s_a	SUDT7I	212010_at	-0.51199007	-6.738581	-0.14130213	0.020993700	0.9071333
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	STAT6	201037_8_at	-0.001303372	-6.7378316	-0.14505055	0.021220303	0.7004449
RDB/RD 201340_s_at -0.70210+053 -0.70220 -0.20022406 0.03080112.5 0.011115 CDKN1B 209112_at -0.5923835 -6.6245117 -0.10736015 0.0162065 0.92767495 MAP3K7IP2 212184_s_at 0.6529613 -6.610662 -0.15225255 0.023031363 0.8916863 MAP3K7IP2 212184_s_at 0.65147567 -6.610662 -0.15225255 0.023031363 0.8916863 EBAG9 204274_at 0.9769356 -6.5405884 -0.17348556 0.026524458 0.8809718 TSHR 210055_at -0.39507926 -6.5041447 -0.1454696 0.022365678 0.90402955 NRG1 208230_s_at 0.88729453 -6.4933596 -0.15794145 0.024323532 0.8955876 COG5 203630_s_at 0.7886968 -6.4453692 -0.22986561 0.03566383 0.8315584 DKC1 216212_s_at 1.9830532 -6.433341 -0.20526257 0.03190606 0.859966 EBI3 219424 at -0.07107137 -6.4460023 -0.1660773	KDM5P	201551_8_at	-0.5551165	-6.70826	-0.33474433	0.038881103	0.77077024
MAP3K7IP2 212184_s_at 0.6512505 -6.610662 -0.15225255 0.023031363 0.8916863 MAP3K7IP2 212184_s_at 0.65147567 -6.610662 -0.15225255 0.023031363 0.8916863 EBAG9 204274_at 0.9769356 -6.5405884 -0.17348556 0.0226524458 0.8809718 TSHR 210055_at -0.39507926 -6.5041447 -0.1454696 0.022365678 0.90402955 NRG1 208230_s_at 0.88729453 -6.4933596 -0.15794145 0.024323532 0.8955876 COG5 203630_s_at 0.7886968 -6.4453692 -0.22986561 0.035663683 0.8315584 DKC1 216212_s_at 1.9830532 -6433341 -0.20526257 0.03190606 0.859966 EBI3 219424_at -0.07107137 -64460023 -0.1660773 0.025884857 0.89090807	CDKN1R	2013-0_s_al 209112 at	-0 5923835	-6 6245117	-0.10736015	0.0162065	0.92767495
MAP3K7IP2 212184_s_at 0.65147567 -6.610662 -0.15225255 0.023031363 0.8916863 EBAG9 204274_at 0.9769356 -6.5405884 -0.17348556 0.026524458 0.8809718 TSHR 210055_at -0.39507926 -6.5041447 -0.1454696 0.022365678 0.90402955 NRG1 208230_s_at 0.88729453 -6.4933596 -0.15794145 0.024323532 0.8958876 COG5 203630_s_at 0.7886968 -6.4453692 -0.15434164 0.02379629 0.89720863 MEF2A 208328_s_at -0.28995076 -6.4453692 -0.22986561 0.035663683 0.83155584 DKC1 216212_s_at 1.9830532 -6.433341 -0.20526257 0.03190606 0.859966 EBI3 219424_at -0.07107137 -6.44304023 -0.1660773 0.02588457 0.8900807	MAP3K7ID2	20212_at 21218/ c at	0.6529613	-6.610662	-0.15225255	0.023031363	0.8916863
EBAG9 204274_at 0.9769356 -6.5405884 -0.17348556 0.026524458 0.8809718 TSHR 210055_at -0.39507926 -6.5041447 -0.1454696 0.022365678 0.90402955 NRG1 208230_s_at 0.88729453 -6.4933596 -0.15794145 0.024323532 0.8955876 COG5 203630_s_at 0.7886968 -6.485954 -0.15434164 0.02379629 0.89720863 MEF2A 208328_s_at -0.28995076 -6.4453692 -0.22986561 0.035663683 0.83155584 DKC1 216212_s_at 1.9830532 -6.433341 -0.20526257 0.03190606 0.859966 EBI3 219424_at -0.07107137 -6.44360023 -0.1660773 0.02588457 0.8909807	MAP3K7ID2	212104_5_al	0.65147567	-6.610662	-0.15225255	0.023031303	0.8916863
EDRO 201217_at 0.070930 0.040094 0.0134030 0.022365678 0.090402955 TSHR 210055_at -0.39507926 -6.5041447 -0.1454696 0.022365678 0.90402955 NRG1 208230_s_at 0.88729453 -6.4933596 -0.15794145 0.024323532 0.8955876 COG5 203630_s_at 0.7886968 -6.485954 -0.15434164 0.02379629 0.89720863 MEF2A 208328_s_at -0.28995076 -6.4453692 -0.22986561 0.035663683 0.83155584 DKC1 216212_s_at 1.9830532 -6.433341 -0.20526257 0.03190606 0.859966 EBI3 219424_at -0.07107137 -6.44360023 -0.1660773 0.025884857 0.8909807	EBAG9	212104_8_al 204274_at	0.9769356	-6 5405884	-0 17348556	0.026574458	0.8809718
NRG1 208230_s_at 0.88729453 -6.4933596 -0.15794145 0.024323532 0.895876 COG5 203630_s_at 0.7886968 -6.485954 -0.15434164 0.02379629 0.89720863 MEF2A 208328_s_at -0.28995076 -6.4453692 -0.22986561 0.035663683 0.83155584 DKC1 216212_s_at 1.9830532 -6.433341 -0.20526257 0.03190606 0.859966 EBI3 219424_at -0.07107137 -6.43160023 -0.1660773 0.025884857 0.8909807	TSHR	210055 at	-0.39507926	-6 5041447	-0 1454696	0.022365678	0.90402955
COG 205226_5_a 0.0012755 0.4755576 -0.1577145 0.02375552 0.059567 COG5 203630_s_at 0.7886968 -6.485954 -0.15744164 0.02379629 0.89720863 MEF2A 208328_s_at -0.28995076 -6.4453692 -0.22986561 0.035663683 0.83155584 DKC1 216212_s_at 1.9830532 -6.433341 -0.20526257 0.03190606 0.859966 EBI3 219424_at -0.07107137 -6.43160023 -0.1660773 0.025884857 0.8909807	NRG1	208230 s at	0.88729453	-6 4933596	-0 15794145	0.022303070	0.8955876
MEF2A 208328_s_at -0.28995076 -0.45354 -0.2986561 0.0357522 0.83155584 DKC1 216212_s_at 1.9830532 -6.433341 -0.20526257 0.03190606 0.859966 EBI3 219424_at -0.07107137 -6.4360023 -0.1660773 0.02584457 0.800807	COG5	200230_s_at	0.00729433	-6.48505/	-0.15/34145	0.0279629	0.89720863
DKC1 216212_s_at 1.9830532 -6.433341 -0.20526257 0.03190606 0.859966 EBI3 219424 at -0.07107137 -6.4160023 -0.1660773 0.025884857 0.800807	MEF2A	203030_s_at	-0 28995076	-6 4453692	-0 22986561	0.02575025	0.83155584
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DKC1	216212 c at	1 9830532	-6 4333/1	-0.20526257	0.03190606	0.859966
	EBI3	219424 at	-0.07107137	-6 4160023	-0.1660773	0.025884857	0.8900807

C		Expected	Observed	N	D	Fold change
Gene name	Probeset ID	score	score	Numerator	Denominator	(unlogged)
UBAP2	221839_s_at	1.0240314	-6.399785	-0.13519794	0.021125387	0.91101944
SSX2IP	203019_x_at	-1.2686129	-6.3026257	-0.1797665	0.028522478	0.8804776
TRAPPC3	203511_s_at	-1.5547765	-6.2908354	-0.14897567	0.023681382	0.8999684
ATP6V1C1	202872_at	0.9669238	-6.275585	-0.26995167	0.043016177	0.81132627
TFDP1	204147 s at	-0.45129114	-6.2740364	-0.18813786	0.029986734	0.87605256
MAPK6	207121 s at	-0.33925897	-6.264071	-0.13207465	0.021084476	0.9146859
PTK2	207821 s at	0.98908687	-6.256107	-0.16129768	0.025782436	0.8916596
EGFL6	219454 at	1.2536263	-6.2429366	-0.1537441	0.024626888	0.8973278
CXCL3	207850 at	0.36743	-6.23566	-0.1404111	0.022517439	0.9093991
PLSCR1	202430 s at	0.29195005	-6.2346945	-0.2976034	0.047733437	0.8025127
SRPX2	205499 at	1.4576367	-6.2168756	-0.13587284	0.021855487	0.9110368
GGNBP2	218079 s at	-0.18811125	-6.213671	-0.14668459	0.023606751	0.9023478
ODPR	209123 at	0.3419478	-6.2005725	-0.1519603	0.024507463	0.8992791
SPCS2	201240 s at	-0.6628756	-6.179752	-0.11808455	0.0191083	0.91859806
HIPK1	212293 at	-1.1754303	-6.17884	-0.15070896	0.02439114	0.8984788
PKP4	201928 at	0.0588165	-6.1547856	-0.15410604	0.025038408	0.8967266
SERF2	217756 x at	-0.35366198	-6.145681	-0.09904216	0.016115734	0.93218136
RBM15	219286 s at	-1.1979829	-6.1211243	-0.13319151	0.021759322	0.9116592
SLC47A1	219525 at	-0.19884372	-6.050712	-0.15269256	0.025235469	0 8945783
HSP90AA1	2196 <u>2</u> 6_at	-0 37815994	-6.0418344	-0 122014344	0.020194918	0.918558
COL15A1	203477_at	1 1116642	-6.032374	-0 14682534	0.024339562	0.9030873
ZMYM1	200117_at	-1 5757039	-6.0318527	-0 14392546	0.023860903	0.90102875
CD58	205173 x at	-1 1687167	-6.001715	-0 11721629	0.019530466	0.91953534
VIPF2	200170_x_at	-0.06544364	-6.0005307	-0 105901405	0.017648673	0.9262192
ITSN2	209907 s at	-0.009334193	-5 996298	-0 13031797	0.021733072	0.9154365
DI GAP2	20007_3_at	0.84208244	-5 98293	-0 1494219	0.024974702	0.8998387
DUT	208956 x at	-0 35064635	-5 981703	-0 17092028	0.02457385	0.8786377
DOPEY1	213271 s at	0.6028955	-5 952086	-0.11640925	0.019557724	0.922969
CCND1	213271_s_at 208712_at	-0 67383236	-5 9475083	-0.1786204	0.030032812	0.922909
CHSV1	200712_at 203044_at	-0.2888774	-5.9206085	-0.13055602	0.022051115	0.005450
KDM64	203044_at	1 3/79817	-5.916387	-0.1661983	0.022051115	0.88339806
GADD/15B	203991_s_at	-0.07/79551	-5.9151826	-0.1501038	0.025376022	0.003339000
GTDBD1	207374_s_at	0.2002342	5 0000002	0.16374257	0.025570022	0.9011550
FAM13A	202275_at 202973_x_at	0.2092342	-5 881051	-0.13109946	0.027700444	0.090558
FIE5	202975_x_at	0.38519775	5 867073	0.13056870	0.022291845	0.9149558
SATR1	208708_x_at	-0.37396342	-5.807075	-0.13030879	0.022234302	0.913103
KRTRD11	203408_s_at	0.22932987	5 817601	0.12254364	0.021063065	0.9281003
ZNE143	204501_at	0.34400415	5 800280	0.12234304	0.021003903	0.9204104
ZINI 145 TDT1	221075_at	0.4775202	5 2026267	0.14001672	0.032091013	0.80972290
TRYASI	212809_x_at	-0.4773202	5 774535	-0.14991072	0.023833743	0.0937349
TDVASI	208130_s_at	0.8231307	-5.774555	-0.14306432	0.02488244	0.902037
CPV6	208150_s_at	0.823103	-3.774355	-0.14308432	0.02466244	0.902037
CLUAD1	211545_8_at	0.52459550	-3.772023	-0.13000214	0.022320433	0.9123336
ACTR	204376_s_at	-0.27873833	-3.7336133	-0.12072081	0.020974733	0.920800
ACIKO	218395_at	-0.5212515	-5./5/580	-0.14155/08	0.024034507	0.9001330
INFAS2	201256 of	0.03/019243	-3.1291920	-0.149004/1	0.020003233	0.02574052
COX/A2L	201256_at	0.00/89/385	-5./149224	-0.0950/20/6	0.010035/59	0.93574055
	204239_at	-0.03/311/3	-3./01/13	-0.3419810	0.073033880	0.00220413
SFKS14 SEDS14	213505_s_at	-0.05251557	-3.099/083	-0.1023908	0.017064028	0.9284384
SFKS14 MDTDC1	213305_s_at	-0.0515/09/4	-3.099/083	-0.1023908	0.017260012	0.9284384
MB1P51	201020_at	-0.2202/11	-3.0/9030	-0.09800098	0.01/302213	0.9340088
UBE2I	208/00_at	-0.2828552/	-3.0//3018	-0.140/6495	0.024/93204	0.90/30/4
GSTMI	204550_x_at	-1.2048852	-3.6/6961	-0.11616//1	0.02046301	0.9224915

Table B.3Significantly 3'UTR shortened genes in ER(+) patients from GSE7390compared to normal breast samples.

Gene name	Probeset ID	Poly(A) site ID	Expected score	Observed score	Numerator	Denominator	Fold change (unlogged)
HNRNPA1	214280_x_at	Hs.546261.1.24	-0.5474836	15.283277	0.965465	0.063171	1.9274905
HNRNPA1	214280_x_at	Hs.546261.1.23	-0.5487645	15.283277	0.965465	0.063171	1.9274905
HNRNPA1	214280_x_at	Hs.546261.1.20	-0.549977	15.283277	0.965465	0.063171	1.9274905
G3BP2	208841_s_at	Hs.303676.1.3	0.35860148	14.729386	0.641015	0.043519	1.5513788
RPL13	212933_x_at	Hs.410817.1.11	-0.20844637	14.71295	0.895472	0.060863	1.8627723
WBP5	217975_at	Hs.533287.1.3	1.482113	13.518285	0.744868	0.055101	1.6708009
GLRX3	214205_x_at	Hs.42644.1.14	-0.74183613	13.477963	0.770273	0.057151	1.6666461
GLRX3	214205_x_at	Hs.42644.1.16	-0.74006283	13.477963	0.770273	0.057151	1.6666461
GLRX3	214205_x_at	Hs.42644.1.17	-0.7384402	13.477963	0.770273	0.057151	1.6666461
IQCK	215131_at	Hs.460217.1.5	-0.25728709	13.126949	1.240696	0.094515	1.8900921
APP	200602_at	Hs.434980.1.2	0.16212215	12.705506	0.543549	0.042781	1.4237798
USP9X	201100_s_at	Hs.77578.1.84	1.3256184	12.11886	0.518964	0.042823	1.4099373
CNBP	206158_s_at	Hs.518249.1.4	0.26460963	11.773301	0.689798	0.05859	1.5847447
GOLPH3	217803_at	Hs.408909.1.2	0.4219005	11.279692	0.448643	0.039774	1.3500788
MAPK13	210059_s_at	Hs.178695.1.25	0.55835325	11.177422	0.411913	0.036852	1.3218129
RPL19	200029_at	Hs.381061.1.6	-0.1//60162	10.815645	0.56/822	0.0525	1.515099
RPL31	221593_s_at	Hs.469473.1.5	0.0379352	10.733009	0.426562	0.039743	1.32/0297
LMAN2	200805_at	Hs./5864.1.4	0.50/01946	10.6/3/98	0.479423	0.044916	1.4008951
ADSL MDDL 2	210250_x_at	HS./552/.1.19	0.20635948	10.3/1504	0.53/513	0.051826	1.405/109
MKPL3	$208/8/_at$	HS.205163.1.4	0.27232802	10.330479	0.39496/	0.038233	1.3210634
	208/92_s_at	Hs.436657.1.10	0.8654564	10.025/16	0.3783	0.037733	1.2846111
METIL9	21/868_s_at	HS.279583.1.15	-0.2546/512	9.94/806	0.667794	0.06/13	1.510//25
DDKGKI	218159_at	HS.4/19/5.1.5	0.11901050	9.908055	0.421152	0.042505	1.3339392
LAN UNDNDA1	218/29_at 200016_x_at	HS.4/800/.1.0	0.29012/37	9.830243	0.392297	0.039883	1.2912373
	200010_x_at	ПS.340201.1.20	-0.331378	9.004445	0.380034	0.059525	1.26/43/1
SPP1 SNV3	209875_s_at	П8.515.1.15 Не 12102-1-3	0.50970505	9.03938	0.424017	0.043987	1.5559408
SNX3	213343_x_at	Hs 12102.1.3	0.0109900	9.544580	0.555337	0.003099	1.4202209
CKS2	200007_x_at	Hs 83758 1 6	1.0700601	9.407029	0.26712	0.038550	1.307234
PRSS2	204170_s_a	Hs 72026 1 3	-0 27319172	9.5505095	0.20712	0.023011	1.2012534
MFD14	202610 s at	Hs 407604 1 7	1 3156382	9 207467	0.383675	0.053104	1 3807857
VASP	202010_s_at	Hs 515469 1 28	-0.03231617	9 144816	0.421884	0.046134	1 3200918
CNBP	206158 s at	Hs 518249.1.3	0.26367977	9.129408	0.48726	0.053373	1.3786234
GLUL	215001 s at	Hs 518525.1.4	-0.98703086	8.785584	0.393426	0.044781	1.3491642
ATP6V1D	208899 x at	Hs.272630.1.17	-0.39417022	8.678844	0.396495	0.045685	1.3206781
IFT57	218100 s at	Hs.412196.1.6	0.24841578	8.550838	0.310804	0.036348	1.2267473
SPIN1	217813 s at	Hs.146804.1.15	1.0637699	8.547181	0.313971	0.036734	1.2470126
DDX28	40255 at	Hs.458313.1.2	-0.22841386	8.52653	0.256349	0.030065	1.1824886
FMR1	215245 x at	Hs.103183.1.36	1.8851423	8.373392	0.314381	0.037545	1.2417293
WARS	200628 s at	Hs.497599.1.4	-0.37115327	8.35754	0.345452	0.041334	1.2715523
DCK	203302 at	Hs.709.1.27	0.3514836	8.259256	0.416944	0.050482	1.3348552
SMARCA4	208794_s_at	Hs.327527.1.81	-0.06057165	8.206937	0.324594	0.039551	1.2485884
PPFIA1	202066_at	Hs.530749.1.60	-0.64876103	8.190737	0.286623	0.034994	1.2146345
ГРТ1	214327_x_at	Hs.374596.1.15	-0.46137166	8.066726	0.545821	0.067663	1.5071801
DNPEP	38703_at	Hs.258551.1.5	0.10169233	8.046389	0.356429	0.044297	1.2614763
TIMM9	218316_at	Hs.440525.1.4	-0.4072631	7.9888597	0.392065	0.049076	1.2951349
RLF	204243_at	Hs.205627.1.5	-1.4787644	7.7894983	0.234587	0.030116	1.1691171
CNBP	206158_s_at	Hs.518249.1.5	0.26561546	7.760622	0.292728	0.03772	1.2243514
TIMM9	218316_at	Hs.440525.1.3	-0.40835676	7.710879	0.338978	0.043961	1.2408638
HMOX2	218121_at	Hs.284279.1.14	-0.26843545	7.646531	0.386293	0.050519	1.2889805
SAG	206671_at	Hs.32721.1.21	0.10980464	7.4971094	0.232246	0.030978	1.1675955
SLC25A17	211754_s_at	Hs.474938.1.9	0.20802753	7.4955516	0.305579	0.040768	1.2265078
YME1L1	216304_x_at	Hs.499145.1.10	-0.8453865	7.4704103	0.508516	0.068071	1.36344
HIST1H1C	209398_at	Hs.7644.1.2	0.53186595	7.44674	0.238097	0.031973	1.1754853
STAM	203544_s_at	Hs.441498.1.40	-0.85768837	7.4331284	0.299631	0.04031	1.2094488
ANXA6	200982_s_at	Hs.412117.1.7	0.49992004	7.430307	0.248605	0.033458	1.1849054
PVR	214444_s_at	Hs.171844.1.18	-0.03602296	7.424177	0.345998	0.046604	1.2300892
ZFP64	218968_s_at	Hs.473082.1.19	0.14942865	7.3761024	0.248094	0.033635	1.1880822
NIPBL	212483_at	Hs.481927.1.71	0.4285732	7.3222885	0.321961	0.04397	1.2340492
POFUT1	212349_at	Hs.472409.1.31	0.13477793	7.261289	0.242279	0.033366	1.1737554
HSPA4L	205543_at	Hs.135554.1.18	0.3868922	7.2205977	0.304999	0.04224	1.218558
C1orf50	219406_at	Hs.148845.1.9	-1.4523133	7.197904	0.23398	0.032507	1.167575

Table B.3 (continued)

Gene name	Probosot ID	Doly(A) site ID	Expected	Observed	Numerator	Donominator	Fold change
	I TODESET ID	I ofy(A) site ID	score	score	Numerator	Denominator	(unlogged)
COIL	203654_s_at	Hs.532795.1.6	-0.14778629	7.14301	0.307614	0.043065	1.2343034
CCNG2	202769_at	Hs.13291.1.25	0.36697868	7.0888762	0.420334	0.059295	1.3444141
BGN	201262_s_at	Hs.821.1.15	1.9842215	7.053238	0.388488	0.055079	1.3610016

Table B.4Significantly 3'UTR lenghened genes in ER(+) patients from GSE7390compared to normal breast samples.

Cono nomo	Probasat ID	Doly(A) site ID	Expected	Observe	Numerator	Donominator	Fold change
Gene name	r i obeset iD	r oly(A) site ID	score	d score	Numerator	Denominator	(unlogged)
PABPC3	208113_x_at	Hs.458280.1.1	-0.47981	-22.9631	-1.77	0.07708	0.27945822
OGT	207564 x at	Hs.405410.1.62	1.412618	-17.9894	-1.3312	0.073999	0.36659104
WIPI2	214699 x at	Hs.122363.1.30	0.684733	-17.2008	-0.56049	0.032585	0.6717721
GNS	203676_at	Hs 334534 1 5	-0 53145	-15 1702	-0 54735	0.036081	0.67505664
SI C/6A3	203070_at	Hs 117167 1 1	-0.47643	-14 4142	-0.90964	0.0530001	0.5088842
WIDD	$214/19_{at}$	H ₂ 122262 1 20	-0.47043	-14.4142	-0.90904	0.0005107	0.50000042
WIF12	214099_x_a	HS.122303.1.29	1.06016	-14.0692	-0.85504	0.000340	0.32460337
VAMP5	211/49_s_at	HS.00/08.1.11	-1.96016	-13.3025	-0.37780	0.028277	0.76540786
CHS15	64900_at	Hs.156/84.1.13	-0.22305	-13.1427	-0.69279	0.052/13	0.5934663
ESFI	218859_s_at	Hs.369284.1.19	0.125591	-12.1923	-0.49912	0.040937	0.6939443
ARF6	203312_x_at	Hs.525330.1.12	-0.42138	-12.1603	-0.7191	0.059135	0.5878332
ERG	211626_x_at	Hs.473819.1.5	0.17172	-11.9198	-0.93293	0.078267	0.46288368
AMOT	209521_s_at	Hs.528051.1.1	1.591824	-11.7865	-0.75087	0.063705	0.5800485
EIF5B	201024_x_at	Hs.158688.1.13	0.034351	-11.2905	-0.81667	0.072333	0.5414848
ADRBK1	38447_at	Hs.83636.1.51	-0.65421	-11.2507	-0.54348	0.048306	0.66532904
SRP72	208802_at	Hs.237825.1.39	0.347536	-11.2066	-0.62643	0.055898	0.6210181
MEF2A	208328 s at	Hs.268675.1.28	-0.28276	-11.0302	-0.46514	0.042169	0.7013186
KIE5A	205318 at	Hs.151219.1.36	-0.53852	-10.8285	-0.27945	0.025807	0.8218636
ERG	211626 x at	Hs 473819.1.6	0.172602	-10.816	-0.85761	0.079291	0 49155885
ZMYM1	220206_at	Hs 471243 1 13	-1 54159	-10 7618	-0.27351	0.025415	0.8219444
EVA3	206370_at	He 185774 1 3	1.62864	10.7206	0.333	0.025415	0.021)444
TODVI 1	200379_at	HS.103774.1.3	-1.02004	-10.7200	-0.333	0.031002	0.7601203
TOPVI 1	221495_at	ПS.430330.1.4 Ц. 450250 1.2	0.017003	-10.7104	-0.19627	0.010490	0.009402
ISPILI	221495_at	HS.458558.1.5	0.010400	-10./184	-0.19827	0.018498	0.809482
SEI	21304/_x_at	Hs.436687.1.19	1.185643	-10.6991	-0.608/9	0.056902	0.622509
PLSCRI	202430_s_at	Hs.130759.1.13	0.283241	-10.6632	-0.51244	0.048057	0.68431926
MUT	202960_s_at	Hs.485527.1.6	0.573772	-10.6445	-0.59413	0.055816	0.6237134
BBS9	37547_at	Hs.372360.1.39	0.70519	-10.2754	-0.349	0.033965	0.77229625
EYA3	206379_at	Hs.185774.1.6	-1.61733	-10.27	-0.32448	0.031594	0.78957665
MKS1	218630_at	Hs.408843.1.8	-0.14511	-10.2467	-0.45386	0.044293	0.70913875
STK3	211078_s_at	Hs.492333.1.29	0.941575	-10.1324	-0.43309	0.042743	0.7200486
CYP4A11	207407_x_at	Hs.1645.1.4	-1.36699	-10.1144	-0.32309	0.031943	0.7947006
DOPEY1	40612 at	Hs.520246.1.28	0.591698	-10.0495	-0.41068	0.040865	0.73328274
AK2	205996 s at	Hs.470907.1.3	-1.57182	-9.99116	-0.63865	0.063922	0.60994035
LMO7	202674 s at	Hs.207631.1.53	-0.45253	-9.89989	-0.6423	0.06488	0.6131617
SPTBN1	200671 s at	Hs 503178 1 83	0.015809	-9.66539	-0.42238	0.043701	0.7260106
SAFB	200077 <u>s</u> at	Hs 23978 1 24	-0.06488	-9 5996	-0 38934	0.040558	0.74386686
MEE2A	201747_3_at	Hs 268675 1 29	-0.28198	-9 53381	-0.38611	0.040390	0.7445498
PAGALT1	200526_8_at	$H_{0.272011,1,1,15}$	1 0048	0 27485	-0.38011	0.040499	0.8242672
D4GALTI SLC49A1	211051_X_at	$H_{S,2/2011.1.13}$	0.55920	-9.57465	-0.23217	0.020899	0.0342075
SLC48AI	48106_at	HS.438807.1.13	-0.55839	-9.33035	-0.4518	0.048422	0.7148501
ATP6VICI	2028/2_at	Hs.86905.1.22	0.959287	-9.32821	-0.36903	0.039561	0./5/5/5/5
SF4	209547_s_at	Hs.515274.1.3	-0.0446	-9.25215	-0.46735	0.050512	0.7025299
COL5A3	52255_s_at	Hs.235368.1.2	-0.06399	-9.25132	-0.26352	0.028484	0.82893914
TFDP1	204147_s_at	Hs.79353.1.21	-0.43807	-9.22294	-0.26232	0.028442	0.82896316
OGT	207564_x_at	Hs.405410.1.63	1.418391	-9.13814	-0.47028	0.051463	0.7045664
DCAF6	217908_s_at	Hs.435741.1.51	-1.04924	-8.7692	-0.1797	0.020492	0.8789563
HBB	209116_x_at	Hs.523443.1.8	-0.72252	-8.69856	-0.20389	0.023439	0.86596084
SIGMAR1	214484_s_at	Hs.522087.1.7	1.021321	-8.69525	-0.21773	0.02504	0.85299915
SLC45A2	220245_at	Hs.278962.1.3	0.425494	-8.63762	-0.29395	0.034032	0.80520815
HFE	211332 x at	Hs.233325.1.9	0.536351	-8.5451	-0.18783	0.021981	0.87346727
CAPN3	210944 s at	Hs.143261.1.34	-0.3462	-8.54288	-0.1541	0.018038	0.89857715
HSPA4	211016 x at	Hs 90093 1 1	0.481216	-8 51604	-0.28917	0.033956	0.807177
TMRIM4	219206 x at	Hs 505934 1 8	-0 52899	-8 50687	-0.58921	0.069263	0.60374
PARCEE1	219200_x_at	He 530053 1 33	0.721857	8 46215	0.50/21	0.059618	0.66714805
TTC4	210510_at	He 112/82 1 25	-1 31100	-0.40213	-0.3043	0.039018	0.00714095
VTUDC2	40107_at	ПS.412462.1.23	-1.31109	-0.30111	-0.17773	0.021237	0.0007331
THDC2	205856_s_at	ПS.231942.1.36	0.4/1029	-8.244/1	-0.33105	0.040153	0.7725908
BUBI	209642_at	HS.469649.1.11	0.041338	-8.24128	-0.21136	0.025646	0.86157775
SERPINB3	209720_s_at	Hs.22/948.1.6	-0.08986	-8.22858	-0.21122	0.025669	0.86321026
HSPBAP1	219284_at	Hs.29169.1.2	0.259985	-8.18616	-0.17636	0.021543	0.8830752
IL1R2	211372_s_at	Hs.25333.1.10	0.038773	-8.17706	-0.26094	0.031911	0.8270676
NPAS2	39549_at	Hs.156832.1.43	0.037035	-8.14922	-0.21004	0.025775	0.8589163
OXR1	218197_s_at	Hs.148778.1.30	0.961397	-8.14913	-0.15905	0.019517	0.89353395
PA2G4	214794_at	Hs.524498.1.17	-0.54521	-8.05848	-0.46964	0.058279	0.6831055
C17orf42	219146_at	Hs.317340.1.7	-0.18397	-8.03975	-0.18419	0.02291	0.8790497

Table B.4 (continued)

Cono nomo	Probosot ID	Poly(A) site ID	Expected	Observe	Numerator	Denominator	Fold change
Gene name	riobeset ID	roiy(A) site ID	score	d score	Numerator	Denominator	(unlogged)
CCDC93	219774_at	Hs.107845.1.3	0.04567	-8.002	-0.24865	0.031074	0.8307782
C17orf85	218896_s_at	Hs.120963.1.2	-0.20657	-7.99752	-0.31491	0.039376	0.7942325
GABRA3	207210_at	Hs.123024.1.5	1.916286	-7.96061	-0.22694	0.028508	0.8466355
SRD5A1	211056_s_at	Hs.552.1.20	0.419853	-7.95988	-0.30926	0.038852	0.79941297
SRD5A1	211056_s_at	Hs.552.1.19	0.418877	-7.95988	-0.30926	0.038852	0.79941297
TSHR	210055_at	Hs.160411.1.17	-0.38529	-7.89616	-0.18064	0.022877	0.8799382
PHKB	202739_s_at	Hs.78060.1.71	-0.24436	-7.87534	-0.27312	0.03468	0.82067275
ZNF764	222120_at	Hs.132227.1.3	-0.24622	-7.85905	-0.39411	0.050147	0.73676383
ABHD6	45288_at	Hs.476454.1.20	0.242837	-7.84098	-0.19318	0.024638	0.87347114
NDUFS7	211752_s_at	Hs.211914.1.16	-0.07913	-7.84031	-0.18153	0.023154	0.87538093
SOX10	209842_at	Hs.376984.1.7	0.201782	-7.8383	-0.1662	0.021204	0.89070714
MRPL35	218890_x_at	Hs.433439.1.6	0.027189	-7.83619	-0.17094	0.021814	0.8887486
STAT6	201331_s_at	Hs.524518.1.4	-0.54001	-7.82279	-0.22309	0.028518	0.849438
LARP1	212193_s_at	Hs.292078.1.54	0.502442	-7.79877	-0.24764	0.031754	0.8334033
KDM6A	203991_s_at	Hs.522616.1.43	1.334203	-7.79424	-0.25383	0.032566	0.8321544
AZIN1	201772_at	Hs.459106.1.14	0.955	-7.76924	-0.13494	0.017368	0.90926313
COL15A1	203477_at	Hs.409034.1.43	1.105354	-7.75194	-0.19617	0.025305	0.8700244
PCYT1A	204209_at	Hs.435767.1.5	0.305997	-7.74904	-0.17514	0.022602	0.8844559
SLC5A1	206628_at	Hs.1964.1.12	0.198994	-7.73309	-0.23744	0.030705	0.8374668
POLE	216026_s_at	Hs.524871.1.3	-0.48321	-7.72556	-0.2216	0.028684	0.8518298
SUPT7L	201837_s_at	Hs.6232.1.10	0.002404	-7.72082	-0.1458	0.018884	0.9036612
GAS7	202192_s_at	Hs.462214.1.3	-0.20099	-7.70053	-0.16722	0.021715	0.88662624
LOC441453	217551_at	Hs.523504.1.3	-0.70568	-7.69857	-0.17896	0.023246	0.87998426
DSC2	204751_x_at	Hs.95612.1.5	-0.10769	-7.64137	-0.21709	0.02841	0.8577078
CSK	202329_at	Hs.77793.1.24	-0.30118	-7.61093	-0.18184	0.023891	0.8796827
RFC5	203209_at	Hs.506989.1.23	-0.49426	-7.57119	-0.1573	0.020777	0.895878
SLC25A31	221037_s_at	Hs.149030.1.11	0.385952	-7.55374	-0.21498	0.028461	0.8537564
TPI1	210050_at	Hs.524219.1.15	-0.58015	-7.52426	-0.43598	0.057944	0.70364296
SRRT	201679_at	Hs.111801.1.18	0.763314	-7.52385	-0.26748	0.035551	0.82462054
CHD4	201184_s_at	Hs.162233.1.4	-0.58136	-7.49321	-0.19691	0.026278	0.8699236
WSB2	201760_s_at	Hs.506985.1.9	-0.49216	-7.45727	-0.13883	0.018617	0.90615374
HINFP	206495_s_at	Hs.504091.1.37	-0.59561	-7.44234	-0.14768	0.019843	0.9029614
TIAL1	202405_at	Hs.501203.1.2	-0.76238	-7.438	-0.15127	0.020338	0.89964294
ECHDC1	219974_x_at	Hs.486410.1.5	0.624277	-7.43264	-0.28818	0.038773	0.80548143
TOR1A	202349_at	Hs.534312.1.3	1.199056	-7.42471	-0.13402	0.01805	0.91053605
HISPPD1	203253_s_at	Hs.212046.1.54	0.465343	-7.42322	-0.14731	0.019844	0.9024756
HISPPD1	203253_s_at	Hs.212046.1.55	0.466299	-7.42322	-0.14731	0.019844	0.9024756
FBXO34	218539_at	Hs.525348.1.8	-0.40959	-7.41997	-0.11548	0.015563	0.92236185
NIF3L1	218133_s_at	Hs.145284.1.11	0.08156	-7.40834	-0.12288	0.016587	0.9170253
CTBP2	201220_x_at	Hs.501345.1.6	-0.74645	-7.3739	-0.17157	0.023267	0.88560325
MRPL28	204599_s_at	Hs.513230.1.3	-0.27624	-7.3734	-0.14176	0.019226	0.90566254
DDX28	203785_s_at	Hs.458313.1.2	-0.22749	-7.36349	-0.15135	0.020554	0.9002905
LPO	210682_at	Hs.234742.1.9	-0.14419	-7.33325	-0.24561	0.033493	0.8397367
NUP98	210793_s_at	Hs.524750.1.52	-0.72575	-7.3236	-0.17364	0.02371	0.88503975
BCL2	203685_at	Hs.150749.1.2	-0.09239	-7.30791	-0.12319	0.016856	0.91688675
CHP	207993_s_at	Hs.406234.1.6	-0.34724	-7.27595	-0.20211	0.027778	0.8637066
AMOT	209521_s_at	Hs.528051.1.2	1.60552	-7.26226	-0.45766	0.063018	0.70787066
EHD1	222221_x_at	Hs.523774.1.2	-0.66275	-7.24773	-0.15192	0.02096	0.89649016
EHD1	222221_x_at	Hs.523774.1.7	-0.66003	-7.24773	-0.15192	0.02096	0.89649016
EHD1	222221_x_at	Hs.523774.1.8	-0.65849	-7.24773	-0.15192	0.02096	0.89649016
EHD1	222221_x_at	Hs.523774.1.3	-0.66142	-7.24773	-0.15192	0.02096	0.89649016
CYCS	208905_at	Hs.437060.1.5	0.700034	-7.24468	-0.32802	0.045278	0.77130806
SUMO3	200740_s_at	Hs.474005.1.4	0.1841	-7.24266	-0.11985	0.016548	0.91945523
ETAA1	219216_at	Hs.353022.1.16	0.018232	-7.24189	-0.3649	0.050387	0.74694216
OAT	201599_at	Hs.523332.1.4	-0.74951	-7.23878	-0.17373	0.024	0.8867666
ANKRD12	216550_x_at	Hs.464585.1.21	-0.11363	-7.22982	-0.42622	0.058953	0.72194123
MAP7	202890_at	Hs.486548.1.2	0.640076	-7.22449	-0.13278	0.018379	0.9110237
EBI3	219424_at	Hs.501452.1.12	-0.06775	-7.15008	-0.17876	0.025002	0.8800343
WDHD1	204727_at	Hs.385998.1.1	-0.41172	-7.14933	-0.19073	0.026679	0.8688579
GLRA3	207928_s_at	Hs.413099.1.4	0.410532	-7.13113	-0.17059	0.023921	0.88541716
FBN2	215717_s_at	Hs.519294.1.49	0.478194	-7.10973	-0.17612	0.024772	0.8822563
REG1A	209752_at	Hs.49407.1.5	0.023487	-7.10934	-0.1746	0.024559	0.88450956
MTSS1L	213978_at	Hs.432387.1.3	-0.2249	-7.09869	-0.16559	0.023327	0.8892862
CCND1	208712_at	Hs.523852.1.22	-0.65146	-7.09582	-0.26724	0.037662	0.8161082

Table B.4 (continued)

Gene name	Probeset ID	Poly(A) site ID	Expected	Observe	Numerator	Denominator	Fold change
		3 ()	score	d score			(unlogged)
ATP7A	205198_s_at	Hs.496414.1.21	1.445468	-7.0921	-0.27796	0.039193	0.8105867
PTP4A1	200730_s_at	Hs.227777.1.13	0.580208	-7.08292	-0.13019	0.018381	0.91118026
ADM	202912_at	Hs.441047.1.9	-0.71153	-7.08074	-0.13763	0.019437	0.907549
ADM	202912_at	Hs.441047.1.8	-0.71276	-7.08074	-0.13763	0.019437	0.907549
C21orf7	221211_s_at	Hs.222802.1.15	0.163712	-7.05473	-0.13092	0.018558	0.9107128
PEBP1	211941_s_at	Hs.433863.1.5	-0.49109	-7.04149	-0.14927	0.021198	0.90199757
ZAK	218833_at	Hs.444451.1.34	0.065268	-7.04112	-0.42775	0.060751	0.72764003
SFRS18	212177_at	Hs.520287.1.23	0.604665	-6.94638	-0.12601	0.01814	0.91437536
DKC1	216212_s_at	Hs.4747.1.24	2.031887	-6.90973	-0.23144	0.033495	0.8424745
WDR26	218107_at	Hs.497873.1.14	-0.92031	-6.84512	-0.15478	0.022612	0.89706737
SCARB2	201647_s_at	Hs.349656.1.9	0.362117	-6.83823	-0.38602	0.05645	0.73126984
ZNF207	200829_x_at	Hs.500775.1.32	-0.18305	-6.81503	-0.2165	0.031768	0.857782
SMARCA2	206544_x_at	Hs.298990.1.54	0.987793	-6.79825	-0.17412	0.025612	0.8821816

Table B.5Significantly 3'UTR shortened genes in ER α -infected MDA-MB-231 cells compared to control.

Gene name	Probeset ID	Poly A site ID	Expected	Observed	Numerator	Denominator	Fold change
			score	score			(unlogged)
WNT16	224022_x_at	Hs.272375.1.3	1.01731	26.27276	1.822064	0.06935184	3.525134
SLC25A42	242274_x_at	Hs.303669.1.6	-0.09608	15.83061	1.145703	0.0723726	2.2171903

Table B.6Significantly 3'UTR shortened genes in ERE-binding defective ERαinfected MDA-MB-231 cells compared to ERα-infected MDA-MB-231 cells.

			Evenanted	Observed			Fold
Gene name	Probeset ID	Poly A site ID	Expected	Observed	Numerator	Denominator	change
		v	score	score			(unlogged)
WNT16	224022 x at	He 272375 1 3	0.032211	15 7172	1 707023	0.11/335	3 4408667
WDD60	224022_x_a	118.272373.1.3	0.952211	12 22001	0.62015	0.114333	1 5569002
WDK60	219251_s_at	HS.389945.1.28	0.968162	13.33901	0.03915	0.04/916	1.5568092
CD44	204490_s_at	Hs.502328.1.28	-0.82894	12.50567	0./3353/	0.058656	1.6633995
CD44	204490_s_at	Hs.502328.1.13	-0.83057	12.50567	0.733537	0.058656	1.6633995
CD44	204490_s_at	Hs.502328.1.11	-0.83203	12.50567	0.733537	0.058656	1.6633995
LOC440131	233804_at	Hs.132371.1.1	-0.59381	11.48993	0.653921	0.056913	1.5738183
ST3GAL2	229336 at	Hs.368611.1.3	-0.29968	11.14743	0.941434	0.084453	1.9181896
MAP7	202890_at	Hs.486548.1.2	0.770252	11.14631	0.642443	0.057637	1.5590887
SRP72	208801_at	Hs 237825 1 35	0.40386	11 10564	0.478901	0.043122	1 3934757
SIC 72 SI C25 A 42	200001_at	Hs 203660 1 6	0.40500	10 04707	0.867113	0.07021	1.820160
SLC25A42	242274_x_at	HS.303009.1.0	-0.08885	10.94707	0.807113	0.07921	1.029109
FLJ51465	245551_at	HS.200202.1.2	-0.0133	10.04/91	0.762006	0.071304	1.09/2034
SEMA3C	203/88_s_at	Hs.269109.1.7	0.863068	9.986657	0.648018	0.064888	1.564895
BRD8	210352_at	Hs.519337.1.3	0.58305	9.877386	0.839934	0.085036	1.7854321
ASCC1	219336_s_at	Hs.500007.1.3	-0.96816	9.447157	0.40888	0.043281	1.3282617
TMEM38B	222735_at	Hs.411925.1.24	1.297696	9.10306	0.425222	0.046712	1.3437139
RPS25	200091 s at	Hs.512676.1.15	-0.74271	9.077871	0.43495	0.047913	1.3520378
RPS25	200091 s_at	Hs.512676.1.10	-0.74433	9.077871	0.43495	0.047913	1.3520378
OGT	207564 x at	Hs 405410 1 63	1 619891	8 928095	0.846037	0.094761	1 8014696
FPMD6	207501_A_u	Hs. 105 110.1.05	0 50327	8 704706	0.587537	0.057496	1 5023122
LIDVN7	223401_at	115.454914.1.59	-0.30327	0.704700 0.264050	0.567557	0.007450	1.3023122
UDAN/	212840_at	ПS.316324.1.3	0.300731	8.304038	0.300087	0.007735	1.4640672
BIRC6	233093_s_at	Hs.150107.1.118	-0.00/15	8.142216	0.3/59/5	0.046176	1.29/6894
KLCI	212877_at	Hs.20107.1.27	-0.43884	1.123	0.381019	0.049336	1.3018478
WIPI2	214699_x_at	Hs.122363.1.30	0.815474	7.711061	0.690051	0.089488	1.6184205
DCP2	235258_at	Hs.443875.1.31	0.556913	7.622591	0.319925	0.041971	1.248329
ZMYM3	1554171_at	Hs.522684.1.41	1.603828	7.478566	0.932167	0.124645	1.9268546
COL9A2	213622 at	Hs.418012.1.5	-1.65592	7.419562	1.011618	0.136345	1.9878395
PTPN11	212610_at	Hs 506852 1 26	-0.62247	7.304267	0.664188	0.090932	1.5776857
7FP90	242400_at	Hs 461074 1 7	-0.30205	7 1/2789	0.675272	0.09/1539	1 6059068
	242400_at	Hs 512008 1 13	0.30011	7.084623	0.73/031	0.103736	1.657376
SCDN2	214555_s_at	Hs. 470670 1 14	0.071242	7.00+023	0.734731	0.103730	1.057570
SCKINS ATC12	222649_s_at	ПS.470079.1.14	0.071343	7.078383	0.030840	0.069971	1.33000/1
AIGI2	213930_at	HS.483127.1.2	0.564647	6.9883	0.450822	0.064511	1.3660768
SLC25A1/	211/54_s_at	Hs.4/4938.1.11	0.250557	6.938119	0.598275	0.08623	1.5108095
ARPC2	213513_x_at	Hs.529303.1.29	0.121732	6.89833	0.330204	0.047867	1.2574985
SLC25A16	214140_at	Hs.180408.1.3	-0.98906	6.889637	0.408503	0.059292	1.3279775
AGBL5	231857_s_at	Hs.138207.1.20	-0.01819	6.807596	0.460146	0.067593	1.3775839
SNAPC1	205443_at	Hs.179312.1.13	-0.48827	6.799215	0.553989	0.081478	1.4709727
GNL1	203307_at	Hs.83147.1.3	0.663074	6.47381	0.520713	0.080434	1.4353423
MED4	222438 at	Hs.181112.1.5	-0.56853	6.432151	0.449443	0.069874	1.3640698
LRRC57	229232 at	Hs 234681.1.2	-0.41837	6 410457	0.357806	0.055816	1 2819729
EIE5	208708 x at	Hs 433702 1 28	-0.44004	6 383058	0 329089	0.051557	1 2550405
WDEV2	$200700_{x}at$	He 208550 1 16	0 56338	6 376346	0.321007	0.050821	1 2023/78
WDF12	227490_at	IIS.200000.1.10	-0.30338	6.20059	0.36144	0.059621	1.3023478
KCSD1	225705_at	ПS.495607.1.20	-1.24301	0.30038	0.54585	0.034371	1.2065454
MYHII	20/961_x_at	Hs.460109.1.41	-0.34448	6.218151	0.614067	0.098/54	1.5245816
POTT	204354_at	Hs.31968.1.4	0.934136	6.130178	0.589788	0.096211	1.5004686
EIF2S3	224936_at	Hs.539684.1.31	1.442625	6.126629	0.36698	0.059899	1.2905408
STK3	204068_at	Hs.492333.1.3	1.09033	6.116352	0.309882	0.050665	1.2389835
UBE2D3	200668_s_at	Hs.518773.1.7	0.441266	6.071738	0.412315	0.067907	1.3299639
MAGEH1	218573_at	Hs.279819.1.3	1.551685	6.055461	0.315552	0.05211	1.2446123
SMARCC1	201075 s at	Hs.476179.1.4	0.282402	6.041569	0.447788	0.074118	1.3627625
RPL3	211666 x at	Hs 119598 1 45	0.243807	6.002161	0.359989	0.059977	1.2818357
TRAK1	202079 s at	Hs 535711 1 41	0.27331	5 981543	0.484609	0.081017	1 4042693
ABI1	202079_s_at	Hs 508148 1 4	-1.04665	5 978069	0.433/3/	0.072504	1 3519118
	209028_s_at	115.500140.1.4	-1.04005	5.017110	0.433434	0.072304	1.5519116
IGL@	209138_x_at	HS.449363.1.04	0.230271	5.917118	0.028001	0.106245	1.5494140
IGL@	209138_x_at	Hs.449585.1.63	0.229124	5.91/118	0.628661	0.106245	1.5494146
IGL@	209138_x_at	Hs.449585.1.58	0.228014	5.917118	0.628661	0.106245	1.5494146
YPEL5	217783_s_at	Hs.515890.1.16	-0.00937	5.881544	0.3134	0.053285	1.2421267
PPIH	204228_at	Hs.256639.1.18	-1.63794	5.790391	0.378591	0.065383	1.3015186
TDGF1	206286_s_at	Hs.385870.1.17	0.281253	5.780181	0.699375	0.120995	1.6196091
C8orf76	225702_at	Hs.521800.1.2	1.132091	5.731122	0.381702	0.066602	1.3034843
SERPINB1	213572 s at	Hs.381167.1.4	0.636444	5,70877	0.439996	0.077074	1.355842
SLC16A1	209900 s at	Hs.75231.1.3	-1.35464	5.699339	0.47291	0.082976	1.3842754

Table B.6 (continued)

Gene name	Probeset ID	Poly A site ID	Expected score	Observed score	Numerator	Denominator	Fold change (unlogged)
RGL1	209568_s_at	Hs.497148.1.29	-1.17775	5.68917	0.469106	0.082456	1.3840044
CCT6A	201327_s_at	Hs.82916.1.21	0.859467	5.608499	0.369712	0.06592	1.2944047
NBAS	202926_at	Hs.467759.1.4	-0.03727	5.604252	0.30729	0.054832	1.2378598
TNIK	213109_at	Hs.34024.1.6	0.342191	5.565248	0.389971	0.070072	1.3128029
RPL13	212933_x_at	Hs.410817.1.11	-0.28461	5.526751	0.445698	0.080644	1.3591381
SLU7	231718_at	Hs.435342.1.10	0.615502	5.500828	0.463473	0.084255	1.3746166
SLU7	231718_at	Hs.435342.1.9	0.614113	5.500828	0.463473	0.084255	1.3746166
SPTLC1	202277_at	Hs.90458.1.3	1.2369	5.49175	0.368128	0.067033	1.2906532
ATP6V1G1	238765_at	Hs.388654.1.5	1.313413	5.489677	0.351348	0.064002	1.2754904
EIF2B3	218488_at	Hs.533549.1.10	-1.58013	5.449824	0.462532	0.084871	1.3802625
FAM92A1	228011_at	Hs.125038.1.23	1.07037	5.371749	0.339767	0.063251	1.2636511
KREMEN1	235370_at	Hs.229335.1.9	0.233622	5.366154	0.58057	0.108191	1.490515
PCYT1A	204210_s_at	Hs.435767.1.19	0.358393	5.352134	0.499839	0.093391	1.4180946
PCYT1A	204210_s_at	Hs.435767.1.20	0.359568	5.352134	0.499839	0.093391	1.4180946
KBTBD3	228777_at	Hs.101949.1.11	-0.77339	5.337503	0.280465	0.052546	1.2148762

Table B.7Significantly 3'UTR lengthened genes in ERE-binding defective ERαinfected MDA-MB-231 cells compared to ERα-infected MDA-MB-231 cells.

Gene name	Probeset ID	Poly A site ID	Expected	Observe	Numerato	Denominator	Fold change
			score	d score	r		(unlogged)
PML	235508_at	Hs.526464.1.16	-0.37843	-15.6844	-0.91905	0.058596	0.52855873
RPS6KB1	204171_at	Hs.463642.1.34	-0.20793	-11.0468	-0.83455	0.075547	0.5595159
YME1L1	216304_x_at	Hs.499145.1.10	-1.04433	-10.1754	-1.84064	0.180891	0.28279927
PPP4R1L	233069_at	Hs.473179.1.10	0.186588	-9.47417	-0.75493	0.079683	0.5917893
CLDN22	222738_at	Hs.333179.1.37	0.487052	-9.10301	-0.85949	0.094419	0.554145
ADH5	208847_s_at	Hs.78989.1.10	0.435232	-8.98932	-0.763	0.084879	0.5897172
DCAF13	231784_s_at	Hs.532265.1.24	1.113245	-8.97864	-0.62355	0.069448	0.64876527
USP9X	201100_s_at	Hs.77578.1.84	1.481632	-8.73002	-0.77546	0.088827	0.58229667
PANK2	218809_at	Hs.516859.1.22	0.141801	-8.62692	-0.39771	0.046101	0.7594598
TBC1D9	212956_at	Hs.480819.1.3	0.458356	-7.3502	-0.8834	0.120187	0.53757834
FLII	212024_x_at	Hs.513984.1.1	-0.26647	-7.19178	-0.69093	0.096073	0.6178902
G3BP2	208841_s_at	Hs.303676.1.3	0.413379	-6.73972	-0.25918	0.038455	0.83563673
ZNF625	244406_at	Hs.512823.1.2	-0.10315	-6.55469	-0.72501	0.110609	0.6026725
ZNF625	244406_at	Hs.512823.1.1	-0.10424	-6.55469	-0.72501	0.110609	0.6026725
SNHG10	238691_at	Hs.448753.1.2	-0.44987	-6.35629	-0.95907	0.150885	0.51152927
ANKRD12	216550_x_at	Hs.464585.1.21	-0.16416	-6.35487	-0.4454	0.070088	0.735094
CLDN22	222738_at	Hs.333179.1.38	0.488273	-6.32179	-0.53525	0.084667	0.69293326
CBS	1553972_a_at	Hs.533013.1.7	0.205729	-6.26499	-0.24201	0.038629	0.84570926
LDHA	200650_s_at	Hs.2795.1.18	-0.8578	-6.25189	-0.23307	0.037281	0.8508745
RAP2B	238622_at	Hs.98643.1.4	0.332988	-6.1899	-0.48882	0.07897	0.7149284
HADHA	208630_at	Hs.516032.1.4	-0.02606	-5.99499	-0.84346	0.140694	0.5658113
HADHA	208630_at	Hs.516032.1.3	-0.02722	-5.99499	-0.84346	0.140694	0.5658113
AFF1	201924_at	Hs.480190.1.39	0.426729	-5.97131	-0.27733	0.046443	0.82535845
FERMT1	218796_at	Hs.472054.1.3	0.144093	-5.9439	-0.33576	0.056488	0.7924388