
A METHODOLOGY FOR CROSS-RESOLUTION MODELING IN DEVS
USING EVENT-B REFINEMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AHMET KARA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

FEBRUARY 2014

Approval of the thesis:

A METHODOLOGY FOR CROSS-RESOLUTION MODELING IN DEVS
USING EVENT-B REFINEMENT

submitted by AHMET KARA in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Oğuztüzün
Supervisor, Computer Engineering Department, METU

Dr. M. Nedim Alpdemir
Co-supervisor, TÜBİTAK BİLGEM İLTAREN

Examining Committee Members:

Prof. Dr. Faruk Polat
Computer Engineering Department, METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Prof. Dr. Veysi İşler
Computer Engineering Department, METU

Assist. Prof. Dr. Selim Temizer
Computer Engineering Department, METU

Assoc. Prof. Dr. Hürevren Kılıç
Computer Engineering Department, Gediz University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: AHMET KARA

Signature :

iv

ABSTRACT

A METHODOLOGY FOR CROSS-RESOLUTION MODELING IN DEVS
USING EVENT-B REFINEMENT

Kara, Ahmet

Ph.D., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Halit Oğuztüzün

Co-Supervisor : Dr. M. Nedim Alpdemir

February 2014, 98 pages

This thesis proposes a software engineering solution for implementing simulations

via composition of models at different resolution levels with the help of formal meth-

ods. Our solution provides a systematic methodology that offers a well-defined se-

quence of stages to obtain executable converters for entity resolution mapping, given

the types of entity attributes that are exchanged at model interfaces and the map-

ping specifications. Our methodology relies on Event-B as the formal specification

language and DEVS as the model composition framework; utilizes refinement re-

lations between Event-B machines for specification, verification and generation of

the data conversion steps between models, and employs a code generator that in-

puts Event-B machine definitions to generate converter code that connects two model

ports. Resolution converters for model compositions allows an introduction to use of

connector paradigm in modeling and simulation environment. We use our achieve-

ments in DEVS converters for implementing DEVS simulations in heterogeneous

environments with the help of connectors in the sense of component based software

v

engineering. This solution involves implementing connectors as atomic models to be

used in mediation of data type and time resolution mismatches. Employing atomic

models as connectors allows connector composition in the style of Reo and promotes

higher level of reuse in simulation construction.

Keywords: Cross-Resolution Modeling; Model Composability; DEVS; Event-B; Con-

nectors; Modeling and Simulation

vi

ÖZ

DEVS İÇİN MELEZ-ÇÖZÜNÜRLÜKLÜ MODELLEMEDE EVENT-B ARITIMI
KULLANAN BİR YÖNTEMBİLİMİ

Kara, Ahmet

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Halit Oğuztüzün

Ortak Tez Yöneticisi : Dr. M. Nedim Alpdemir

Şubat 2014 , 98 sayfa

Bu tezde benzetim uygulamalarında farklı çözünürlükteki modellerin biçimsel yön-

temler yardımıyla bileştirimi konusunda bir yazılım mühendisliği çözümü sunulmak-

tadır. Çözümümüz varlıkların çözünürlüklerinin eşleştirilmesi için iyi tanımlı ardışık

aşamalar ile çalıştırılabilir dönüştürücü elde eden düzenli bir yöntembilimi sunmak-

tadır, öyle ki varlıkların cinslerine ait öznitelikleri model arayüzleri ve eşleştirme ta-

nımları ile takas edilmektedir. Yöntembilimimiz Event-B adındaki biçimsel tanım-

lama dili ve DEVS adındaki model bileştirme çerçevesini ile Event-B makineleri ara-

sındaki arıtma ilişkilerine dayanarak modeller arasındaki veri dönüştürüm adımları-

nın doğrulanması ve üretilmesi, arıtma ilişkilerinin dönüştürümün tanımlanması ve

doğrulanması için kullanılması ile Event-B makine tanımlarını kod üretiminde kul-

lanarak iki modelin birbirine bağlanması için dönüştürücü kodu üretilmesine dayan-

maktadır. Model bileştirimi için çözünürlük dönüştürücüleri, modelleme ve benzetim

ortamında bağlaştırıcı örneklemi kullanılmasına giriş yapmaktadır. DEVS bağdaştı-

vii

rıcılarından elde ettiğimiz başarıları ayrıcinsten ortamlarda DEVS benzetim uygu-

lamalarının bileşen tabanlı yazılım mühendisliği algısı içerisindeki bağlaştırıcıların

yardımıyla geliştirilmesi için de kullandık. Bu çözüm bağlaştırıcıların atomik model

olarak uygulanması ile veri cinsi ve zaman çözünürlüğü uyuşmazlıklarına arabulucu-

luk sunmaktadır. Atomik modellerin bağlaştırıcı olarak uygulanması Reo tarzı bağ-

laştırıcı bileştirimine olanak vererek benzetim üretiminde daha yüksek seviye yeniden

kullanılabilirlik geliştirmektedir.

Anahtar Kelimeler: Melez-Çözünürlüklü Modelleme; Model Bileştirimi; DEVS; Event-

B; Bağlaştırıcılar; Modelleme ve Benzetim

viii

Dedicated to my wife, son and daughter

ix

ACKNOWLEDGMENTS

First and foremost I would like to thank my supervisor Assoc. Prof. Dr. Halit

Oğuztüzün for all the support and encouragement he gave me. His guidance and

positive approach throughout this time period made possible to complete this work.

I would like to express my gratitude and profound respect to my co-advisor Dr. M.

Nedim Alpdemir for his suggestions, efforts, morale support and patience during this

study. He has made invaluable contributions to my both academic and professional

studies.

I acknowledge with thanks and appreciation to the thesis monitoring committee mem-

bers, Prof. Dr. Veysi İşler and Assoc. Prof. Dr. Hürevren Kılıç for their support and

constructive comments on my thesis work.

I would like to thank to the thesis defense jury members, Prof. Dr. Faruk Polat and

Assist. Prof. Dr. Selim Temizer for reviewing and evaluating my thesis.

I would like to express my appreciation to TÜBİTAK BİLGEM İLTAREN for the

understanding and support during my academic studies. I also want to thank to people

I work with for the joy they bring to my life making my business life together with

academic life a pleasureful experience.

I thank to my wife, who became the light of life with her patience and morale support

during my studies. And I thank to my son and daughter for their patience during my

thesis study.

Finally, I would like to express my thanks to my parents, brother and sister, making

me who I am now with their love, trust, freedom understanding and every kind of

support throughout my life.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xvi

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Cross-Resolution Modeling in the Context of Complex Sim-
ulation Applications . 2

1.2 Our Contribution . 4

1.3 Connectors for Heterogeneous DEVS Simulations 5

2 BACKGROUND . 7

2.1 Multi-Resolution Modeling (MRM) 7

2.1.1 Why is MRM Important? 9

2.1.2 Modeling Environment for MRM 10

xi

2.1.3 Cross-Resolution Modeling 11

2.1.4 Aggregation-Disaggregation 12

2.2 Event-B . 13

2.2.1 Refinement . 14

2.2.2 Proof Obligations 15

2.3 DEVS . 15

2.4 SiMA . 17

2.5 HLA . 20

2.6 Composability . 21

2.7 Components and Connectors 23

2.8 Reo . 24

3 A METHODOLOGY FOR ENTITY RESOLUTION MAPPING . . . 27

3.1 The Formal Representation of Converters in a DEVS setting . 28

3.2 Process of Entity Resolution Mapping 30

3.3 Case Study . 31

3.4 HRE to LRE Mapping . 32

3.4.1 Using Event-B for Model Data Type Definitions . . 33

3.4.2 Applying Event-B Refinement 35

3.4.3 Proving Glue Invariants 36

3.4.4 Converter Generation 36

3.4.5 Monitor Generation 38

xii

3.5 LRE to HRE Mapping . 39

3.5.1 Mapping Based on Assumptions 40

3.5.2 External Data Sources 40

3.5.3 Implementing Mapping on Event-B 41

3.6 Mixed Mapping . 41

3.7 Summary . 42

4 IMPLEMENTATION IN A DEVS SETTING USING SIMA 43

4.1 Creating type definitions . 44

4.2 Generating Event-B Machines 45

4.3 Decorating the Event-B Machines with Glue Invariants . . . 45

4.4 Generating the Converter Code 46

4.4.1 Converter Implementation using SiMA 47

4.4.2 Converter Generation 47

4.4.3 Compensating for the Shortcomings of Event-B
Type System . 48

4.4.4 Using Invariants for Runtime Verification of Con-
verter Output . 49

4.5 Details on Case Study . 50

4.5.1 Platform Data . 50

4.5.2 Sensor Information 54

4.5.3 Environment Information 56

4.6 Lessons Learned . 59

xiii

4.6.1 Name Conflict Problem 59

4.6.2 Complex Glue Invariant Problem 60

4.6.3 Restrictions of Current Event-B Language 61

4.6.4 Proving Glue Invariants Problem 62

4.6.5 A Solution Proposal 62

5 DISCUSSIONS . 63

5.1 Discussion of Entity Resolution Mapping Related Work . . . 63

5.1.1 Consistency Maintenance 64

5.1.2 Staging and Intrusiveness of Resolution Mapping
Procedures . 66

5.1.3 Practicality . 67

5.2 Converters in Relation to Connectors in Component-Based
Development . 68

5.3 The Unconventional Usage of Refinement in Entity Resolu-
tion Mapping . 68

5.4 Entity Resolution Mapping without DEVS and Event-B . . . 69

5.4.1 Modeling Framework 70

5.4.2 Formal Language 70

6 HETEROGENEOUS DEVS SIMULATIONS WITH CONNECTORS 73

6.1 Time Resolution Connectors 73

6.2 Data Conversion Connectors 75

6.3 Multi-Input Multi-Output Connectors 77

6.4 Composite Connectors . 79

xiv

6.5 Representing Composite Connectors in Reo 79

6.6 Case Study . 81

6.6.1 Time Resolution Conversion 82

6.6.2 Data Conversion 84

7 CONCLUSION . 87

7.1 DEVS Connectors . 88

7.2 Future Work . 89

7.2.1 Automatic Discovery and Re-Use of Resolution
Converters . 89

7.2.2 Increase Interoperability with the Help of Acces-
sor Methods on Data Beans 89

7.2.3 Connectors to Enhance Distributed DEVS Approach 90

REFERENCES . 91

CURRICULUM VITAE . 97

xv

LIST OF TABLES

TABLES

Table 2.1 Illustrative Range of Nonintegrated DoD Models with Varied Scope

and Resolution [51] . 8

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 Aspects of model resolution (adapted from [22]) 4

Figure 1.2 A sample application using connectors (adapted from [13]) 5

Figure 2.1 Usual Depiction of Weak and Strong Model Consistency in MRM

[23] . 9

Figure 2.2 Aspects of Model Resolution [22] 12

Figure 2.3 Machine and Context (adapted from [4]) 13

Figure 2.4 Machine Refinement and Context Extension (adapted from [4]) . . 14

Figure 2.5 Horizontal and Vertical Dimensions of Simulation Composability . 23

Figure 2.6 Some basic channels in Reo (reproduced from [46]) 24

Figure 2.7 A sample reo circuit . 25

Figure 3.1 Illustration of entity resolution mapping process 30

Figure 3.2 Models and entities in the sample scenario 32

Figure 3.3 Composition of the new low resolution model 33

Figure 3.4 Event-B machine for DataPacket entity 34

Figure 3.5 More invariants for the Event-B machine of DataPacket entity . . . 35

Figure 3.6 Event-B Machine for DetailedDataPacket entity 37

xvii

Figure 3.7 Glue invariants for DetailedDataPacket entity 38

Figure 3.8 Composition of a new low resolution model with LRE to HRE

mapping . 39

Figure 3.9 Sample function declaration and its output constraint 41

Figure 4.1 Sample KODO data type definition 45

Figure 4.2 Event-B Machine generated from the KODO data type definition . 46

Figure 4.3 Sample Direct Feed Through Transition Function 48

Figure 4.4 Sample glue converter function 49

Figure 4.5 Sample content for a monitor function 50

Figure 4.6 Event-B machine for PlatformData object 51

Figure 4.7 Event-B machine for LowResPlatformData object 52

Figure 4.8 Glue invariants for PlatformData object 52

Figure 4.9 PlatformData converter routines 53

Figure 4.10 Event-B machine for SensorInfo object 54

Figure 4.11 Event-B machine for LowResSensorInfo object 55

Figure 4.12 Glue invariants for LowResSensorInfo object 55

Figure 4.13 SensorInfo converter routines . 56

Figure 4.14 Event-B machine for EnvironmentInfo object 57

Figure 4.15 Event-B machine for LowResEnvironmentInfo object 57

Figure 4.16 Glue invariants for EnvironmentInfo object 58

Figure 4.17 EnvironmentInfo converter routines 58

Figure 4.18 Monitor invariants for EnvironmentInfo object 59

xviii

Figure 4.19 EnvironmentInfo monitoring routines 59

Figure 4.20 Calculate2DVelocityWoHeading implementation in a context file . 60

Figure 5.1 Design of an MRE with two resolution levels [55] 65

Figure 6.1 A sample time resolution DEVS connector 74

Figure 6.2 A sample data conversion DEVS connector 76

Figure 6.3 A sample N-input M-output connector 78

Figure 6.4 T1 to T2 connector A . 79

Figure 6.5 Composite connector of T1 to T3 80

Figure 6.6 A sample connector circuit . 81

Figure 6.7 A sample MxN connector with Reo circuit 81

Figure 6.8 Attributes of Car object . 82

Figure 6.9 Attributes of Truck object . 83

Figure 6.10 Connector designed for case study 85

xix

LIST OF ABBREVIATIONS

ADG Activity Dependency Graph

API Application Programming Interface

BİLGEM Bilişim ve Bilgi Güvenliği İleri Teknolojiler Araştırma Merkezi (In-
formatics and Information Security Research Center)

CBSE Component Based Software Engineering

CCG Converter Code Generator

CPU Central Processing Unit

CRM Cross-Resolution Modeling

DCC Data Conversion Connector

DEVS Discrete Event System Specification

DFT Direct Feed Through

DoD Department of Defense

EMG Event-B Machine Generator

HLA High Level Architecture

HRE High Resolution Entity

İLTAREN İleri Teknolojiler Araştırma Enstitüsü (Advanced Technologies Re-
search Institute)

KODO SiMA Kod Oluşturucu (SiMA Code Generator)

LRE Low Resolution Entity

METU Middle East Technical University

MR Multi-Resolution

MRE Multi-Resolution Entity

MREI Multi-Resolution Event Interface

MRM Multi-Resolution Modeling

MRMF Multi-Resolution Model Family

MRS Multi-Resolution Space

ODTÜ Ortadoğu Teknik Üniversitesi (METU)

PO Proof Obligation

RGB Red, Green, Blue

xx

RTI Run-Time Infrastructure

SiMA Simulation Modeling Architecture

TRC Time Resolution Connector

TÜBİTAK Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (Scientific and
Technological Research Council of Turkey)

UK United Kingdom

USA United States of America

WCF Windows Communication Foundation

WSN Wireless Sensor Network

XML eXtensive Mark-up Language

xxi

xxii

CHAPTER 1

INTRODUCTION

Simulation can be defined as generation of the behavior or characteristics of one sys-

tem through the use of another system, especially a computer program. Models and

simulations are developed for many reasons such as supporting the decision-making

activities of people faced with complex problems. Models can be used to make pre-

dictions, evaluate alternatives, gain insight into phenomenology and test different sce-

narios about real problems. The complexity of the system under study increases the

complexity of the modeling, and so does the importance of utilizing ready, re-usable

models. The motivation for using ready models is mainly due to a possible reduction

in the development effort (and so less time to start experimentation), and also, more

importantly, due to appealing comfort of using verified and validated (and if available

accredited) models where possible.

Constructing complex software systems through the integration and coordinated in-

teractions of simpler components has long been the focus of many research efforts.

As the complexity of software systems increases, the need for systematic approaches

increases accordingly. The issue at hand has a number of more specific problem ar-

eas, each of which deserves a distinct line of research. In the work presented in this

thesis our interest lies in a particular manifestation of this problem that of construct-

ing complex simulation applications by composition. We focus on a relatively subtle

but an important challenge for such complex simulation applications which are the

cross-resolution simulations involving multi-resolution models [19]. Although differ-

ent viewpoints may be attached the associated set of problems by different research

communities, we argue that the issue of resolution mapping pertaining to externally

1

visible properties (i.e. in terms of inputs and outputs) of cross-resolution models is

essentially a software engineering problem. In fact, the concept of connectors [46]

in the context of Component-Based Development [38] can be seen as a more general

case of resolution converters introduced in this thesis. Resolution conversion has pe-

culiarities, mainly characterized by the multi-facets that induce distinct variations to

the handling of the more general problem, these will be briefly discussed below. Not

surprisingly, those peculiarities also allow us to contemplate the more focused and

concrete solutions. As such, based on the analysis and selective targeting of those

peculiarities, we will argue that the process of specifying, verifying and generating

those converters can be supported by the use of a convenient formal language to de-

velop a rigorous software engineering methodology. Along these lines, our primary

motivation at the outset of our research was to develop a well-defined (i.e. based

on formal specifications) and repeatable methodology with necessary tool support

that diminishes the shortcomings of ad-hoc coding practices mostly adopted for such

conversion tasks. Building on our previous research background [7, 26] in terms of

both the formal model specification and underlying model composition framework,

our solution aims to cover aspects ranging from model and mapping specification to

mapping verification and application construction by component composition.

To facilitate a better understanding of the concepts of multi-resolution modeling and

the peculiarities mentioned above, we first provide an introductory summary, fol-

lowed by our key contributions. The reader is referred to our Chapter 2 for further

information on those concepts.

1.1 Cross-Resolution Modeling in the Context of Complex Simulation Applica-

tions

A modeling enterprise involves capturing characteristics and behavior of systems via

mathematical or logical abstractions. Intrinsically, the same real world system can

be represented by various abstractions. Depending on the requirements of different

stakeholders, those abstractions may particularize specific aspects of the entities being

represented or they may delineate varying levels of structural or behavioral informa-

tion across the same set of aspects. The level of detail at which system components

2

and their behaviors are represented is generally agreed to indicate the resolution of a

model which represents that system.

The issue of multiple resolution models pertaining to the same real world system

manifests itself in three distinct forms: i - When constructing the model of a system

the modeller may have to develop multiple representations of the same system, each

with a different level of resolution. This is known as Multi-Resolution Modeling

(MRM). ii - When developing simulation applications, the simulationist may have

to compose or orchestrate models with different resolution levels, paying particular

attention to resolution conversion requirements. This is known as Cross Resolution

Modeling (CRM). iii - When running a simulation scenario and analysing the results

of a simulation run, the analyst may need to be aware of the existence of multiple

resolution models and take the possible cross resolution mapping issues into account

when interpreting the results.

The characterization of these issues and the problems that may be attributed to them

has already been explored in the relevant literature. For instance, Powell [54] provides

a semi-formal description of the central concepts such as resolution, aggregation, dis-

aggregation and consistency maintenance. Davis et al. [23, 22, 24, 25] provide an

in-depth coverage of the key terminology and discuss a wide range of aspects de-

livering considerable insight into the complexity of MRM. An extensively studied

problem in the literature is the need for resolution mapping in a CRM setting. The

root of this problem is that resolution is a relative concept and exhibits variations

across all attributes of a model. So the term ‘level of resolution’ is not congruously

applicable to all the models involved in CRM. Thus, model developers need a method-

ology to compose models with different levels of resolution. Another root difficulty

lies in the fact that the term resolution is a multifaceted concept (Figure 2.2) [22]

and to find a solution that is applicable to all facets is a formidable task. Of the six

facets given in Figure 2.2, the process, spatial and temporal facets are related to the

internal behavioral logic of a model and therefore it is less convenient to deal with

them. This is primarily because the model internals can be arbitrarily complex and

would typically depend on many artefacts starting from conceptual models and re-

quirements down to the implementation techniques across the development life cycle

of the model. Composing cross resolution models based on these facets will require

3

Resolution

Entity Attribute Logical
Dependency

Process Spatial Temporal

Figure 1.1: Aspects of model resolution (adapted from [22])

coordination between the model designers and developers during development cycle,

which, in general, is not practical, since models might be developed at different sites

and at varying times, using a wide range of technologies, standards and tools.

The entity, attribute and logical dependency facets of resolution refer to the externally

manifested properties of models such as input/output variables and their data types.

We claim that the resolution of a model can more conveniently be manifested by its

visible properties. As such, we can document a model through its input/output vari-

ables and use this information to facilitate the composition with other models of dif-

ferent resolution levels; however, to ensure a consistent data exchange between com-

posed models a mapping of these variables is needed. A purely syntactic approach

to define the mappings between these variables may not result in a successful model

composition, since the semantics of data types should be preserved through resolution

conversions. To cater for such semantics-preserving conversions we propose to map

the inputs and outputs of models via special connectors, called converters.

1.2 Our Contribution

Clearly, ad hoc forms of converter building processes would not contribute much to

the current state of CRM since many simulation application developers inevitably

implement some form of conversion logic to compensate for the resolution mismatch

between models. We argue that a rigorous resolution mapping methodology should

be founded on a formal basis to address the four inter-related issues of (i) entity

definition, (ii) mapping specification, (iii) verification and (iv) model composition.

4

Server Client Connector
Required Interface

Provided Interface

Figure 1.2: A sample application using connectors (adapted from [13])

Further, in order to be practical, this methodology should have tool support.

Our contributions to the work in the field of complex simulation software construction

involving CRM are closely aligned with the four aspects listed above. We provide a

methodology for resolution mapping in a CRM setting where we use Event-B [3] as

a formal specification language, fulfilling i) given above; we use refinement relations

between Event-B machines for the validation and generation of the data conversion

steps between models, fulfilling ii), we use tools to verify the transformations and

provide a code generator that uses the Event-B definitions and refinement relations

to generate the converter code, with the option of generating monitor code based on

machine invariants in support of runtime verification, fulfilling iii); we also propose a

formal definition of a resolution converter in the DEVS setting, to incorporate it into

a well-established model composition paradigm, and fulfilling iv).

1.3 Connectors for Heterogeneous DEVS Simulations

A resolution converter in the DEVS setting is in fact implementing a connector ap-

proach in a simulation environment. Component reuse [59] and their adaptation for

multiple reuse contexts via first-class constructs called connectors [13] (Figure 1.2)

are well explored concepts in component based software engineering (CBSE) litera-

ture. Furthermore, formal approaches such as Reo [8] are developed to support the

construction of complex connectors through the composition of simpler ones.

The Discrete Event System Specification (DEVS), on the other hand, is a formal-

ism introduced by Zeigler (1976) to describe discrete event systems with component-

based model composition and reuse. Simulation models are constructed with compo-

5

sition of two kinds of models; atomic and coupled. An atomic model is the smallest

entity that contains the model behavior, and coupled models are containers that are

responsible from the composition of atomic and coupled models.

DEVS allows reuse of atomic or coupled models in a relatively homogeneous envi-

ronment, where models produce and consume data with compatible data types and

logically operate on compatible time resolutions. However DEVS, in its basic form,

does not address the problems emanating from data type and time resolution incom-

patibilities. The term “time resolution incompatibility” here refers to cases where

state computation (or update) intervals of interacting models do not guarantee an

overall consistent behavior for the whole simulation.

Our proposal is that the connector paradigm in CBSE, and in particular complex con-

nector composition paradigm supported by Reo [8], can be used for composition of

heterogeneous DEVS models to bridge the model incompatibilities and solve some of

the interoperability problems. We propose to develop connectors from DEVS atomic

models, compose those connectors (as in Reo channels) to get more complex con-

nectors in the form of DEVS coupled models if necessary, and use those to compen-

sate for data syntax and time resolution incompatibilities in a DEVS setting. Thus,

we seek to develop a systematic approach to model adaptation and reuse for com-

plex simulation applications, by combining the power of two formal approaches (i.e.

DEVS and Reo).

The remainder of this thesis is organized as follows. Chapter 2 outlines the back-

ground to our research; Chapter 3 details our proposed approach and Chapter 4 pro-

vides a description of our software tools to demonstrate the results of our work. Then

in Chapter 5 present our discussions regarding the important aspects of this research.

In Chapter 6 we present our approach on using connectors for heterogeneous DEVS

simulations. Finally, Chapter 7 contains our concluding remarks and future work

propositions.

6

CHAPTER 2

BACKGROUND

This chapter provides information that is essential for a better understanding of our

work. First we provide the definitions of multi-resolution and cross-resolution mod-

elling, including the concept of aggregation/disaggregation which is particularly im-

portant for entity resolution mapping. Then we present introductory information on

Event-B and refinement which together constitute the formal basis of this research.

Consecutively, we provide basic material on the DEVS formalism which constitutes

the basis for our world view on model composability via port connections. Finally,

we give a concise summary of SiMA, our simulation framework that implements an

extended form of DEVS and serves as a basic software platform for the implementa-

tion of our CRM work. Further we provide brief information about component based

software engineering and connector model, then introduce Reo coordination model

for component composition, which we use for our connector solution approach.

2.1 Multi-Resolution Modeling (MRM)

All simulation models are abstractions of a reality but some are more abstract, in the

sense that they are less detailed than others representing the same reality. Resolution

is the level of detail at which system components and their behaviors are depicted

[23]. The subject that deals with multiple levels of resolution for simulation models

is called Multi-Resolution Modelling(MRM).

A comprehensive definition of multi-resolution modeling is given by Davis in [23]

but the basic points are that it comprises:

7

Table2.1: Illustrative Range of Nonintegrated DoD Models with Varied Scope and
Resolution [51]

Level of
Model

Scope Level of De-
tail

Time Span Outputs Illustrative
Uses

Examples

Theater/
campaign

Joint and
combined

Highly
aggregated

Days to
weeks

Campaign
dynamics

Evaluation
of force
structures,
strategies,
balance;
war-gaming

CEM,
TACWAR,
Thunder,
JICM

Mission/

Battle
Multi-
platform

Moderate
aggregation,
with some
entities

Minutes to
hours

Mission ef-
fectiveness

Evaluation
of alterna-
tive force
employment
concepts,
forces,
systems;
war-gaming

Eagle,
Vector II
Suppressor,
EADSIM,
NSS

Engagement One to a few
friendly en-
tities

Individual
entities,
some de-
tailed
sub-systems

Seconds to
minutes

System ef-
fectiveness

Evaluation
of alterna-
tive tactics
and systems;
training

Janus,
Brawler,
ESAMS

Engineering Single
weapon
systems and
components

Detailed
down to
piece parts,
plus physics

Sub-seconds
to seconds

Measures of
system per-
formance

Design and
evaluation
of systems
and subsys-
tems; test
support

Many,
through-
out R&D
centers

(i) building a single model with alternative user modes involving different levels

of resolution for the same phenomena;

(ii) building an integrated family of two or more mutually consistent models of the

same phenomena at different levels of resolution; or

(iii) both i) and ii).

For example, the sensor model in a wireless sensor network simulation [64] may be

implemented at different levels of resolution. To analyze a routing protocol, a sensor

model with a simple battery and wireless model is sufficient; however to analyze the

monitoring capability of a sensor, details such as the sensing unit and its sensitivity

to environmental conditions should be covered by the sensor model.

Table 2.1 shows that there are multiple resolution and scopes for simulation models

8

Initial Aggregate
State

Final Aggregate
State

Final High-Resolution
State

Initial High-Resolution
State

Disaggregate

Aggregate
(and lose

info)

Aggregate
(and lose

info)

Disaggregate

Simulate with Model B

Simulate with Model A

Figure 2.1: Usual Depiction of Weak and Strong Model Consistency in MRM [23]

and generating an integrated simulation of multiple models is not an easy problem.

Davis in [23] focuses on the consistency of MRM models. He pays attention on the

term “Consistent in the Aggregate”, which means execution of simulations in differ-

ent resolutions should produce consistent results. As shown in Figure 2.1 results of an

aggregated (low resolution) model should be consistent with the results of the disag-

gregated (high resolution) model after a conversion with an disaggregation operation

and vice versa. Consistency of results may include equality or the state of “close

enough”, which is decided with a projection function that maps each result into some

subset and measures the difference.

2.1.1 Why is MRM Important?

Both low and high resolution models are used in modeling and simulation environ-

ment but majority tend to place greater trust in high resolution. Many even say that

as computing power grows, the need for low-resolution models will diminish, but the

need for multiple levels of resolution, from high to low, will be as important as today

and a hundred years from now. Here are some of the reasons [23]:

9

• Cognitive Needs: Reasoning occurs at different levels, and each level of reason-

ing has its own natural variables and concepts of cause and effect. For example

in a war simulator, one may decide to reduce the attack power by %20. In a

low-resolution model, probably there will be a single input variable, but in a

high-resolution one there is not a sub-set of variables that can easily reduce the

attack power.

• Economy: It is sometimes necessary to use low resolution models, because

high resolution comes with a cost. Models become more complex, making

them harder to program, debug and validate.

• Explanatory Power: Low-resolution models can provide transparent and per-

suasive explanations of the results, in contrast high-resolution models are often

so detailed as to be opaque.

• Uncertainty, Ignorance and Chaos: Incorporating more detail in a model may

merely spread the analyst’s uncertainty across multiple factors.

2.1.2 Modeling Environment for MRM

McEver and coworkers [45] focuses on the modeling environment of an MRM sim-

ulation and lists the attributes that are needed if workers are to succeed rather than

throw their hands up in frustration:

• Visual modeling: Modeling environments should allow users to see how pro-

cesses and objects interact with each other.

• Interactive languages: The ability to easily experiment with models and their

configuration parameters without having to recode and recompile is important.

• Facilities for experimental design and configuration control: Construction of

skeletal hierarchies and a thoughtful design phase before coding begins greatly

improve the quality and usefulness.

• Statistical analysis tools: These tools are required on the analysis of results to

assess approximations and estimate data and process validity.

10

• Graphical visualization tools: To analyze the model output data these tools

generate insight into the important process in the scenario space.

SiMA [41], which is a DEVS [65] based modeling framework, has many of these

tools implemented and we use it to demonstrate our proposal in action.

2.1.3 Cross-Resolution Modeling

Cross-Resolution Modeling (CRM) [55] is applicable to the concept of simulations

at different levels of resolution that are required to inter-operate. For CRM, it is im-

portant to understand the assumptions made about the levels of resolution of the sim-

ulation models. Two models that are required to work together might have different

characteristics that would make inter-operation difficult. Ensuring that such discrep-

ancies are resolved to allow simulations to interact with each other meaningfully is

the heart of cross-resolution modelling.

To understand the CRM concept, a definition of resolution is needed:

As can be seen in Figure 2.2, resolution is a multifaceted concept. Us-

ing a military example to make the distinctions, higher entity resolution

might mean following units as small as battalions rather than divisions; a

higher attribute resolution might mean following the number of various

weapons held by each battalion rather than merely assigning the battal-

ion a net “strength;” higher logical-dependency resolution might mean

including constraints on the attributes and their interrelationships (e.g.,

the sum of the men in the units comprising a division should equal the

number of men in the division). Higher process resolution might mean

computing combat attrition at the battalion level, rather than computing

it at the division level and then spreading the attrition equally across the

division’s battalions. Higher spatial and temporal resolution means using

finer scales for space and time [22].

As seen in this definition of resolution, unless two models have been designed with

CRM in mind, we cannot easily discuss the relative resolution between them, because

11

Resolution

Entity Attribute Logical
Dependency

Process Spatial Temporal

Figure 2.2: Aspects of Model Resolution [22]

they are likely to be complex and confusing since the resolution of one model com-

pared with another can be higher in some respects, lower in others and the same in

others.

2.1.4 Aggregation-Disaggregation

The common approach to CRM is aggregation/disaggregation and these twin pro-

cesses ensure that entities interact with each other at the same level by forcing one

entity to be formed at the level of the other. For example, in a wireless sensor network

simulation [64] sensors and interactions between sensors can be modeled in terms of

single units or bundles. A bundle is an aggregation that models a set of sensors with a

single base unit. If a low-resolution entity (LRE) and a high resolution entity (HRE)

have to interact, either the LRE will be decomposed into its constituents in a process

known as disaggregation (LRE→ HRE, bundles to units) or an aggregation process

takes place (HRE→ LRE, units to bundles). Aggregation-disaggregation have some

issues to be discussed [55]:

• Temporal Inconsistency exists when two entities have conflicting or inconsis-

tent representations of the state of a third entity at overlapping simulation times.

• Mapping Inconsistency occurs when an entity undergoes a sequence of transi-

tions across levels of resolution, result in a state that could not be achieved by

simulation.

• Chain Disaggregation occurs when an LRE is disaggregated to interact with an

HRE, all other LREs that interact with that LRE would also be disaggregated.

12

Variables

Invariants

Events

Sets

Constants

Axioms

sees MACHINE CONTEXT

Figure 2.3: Machine and Context (adapted from [4])

• Transition Latency is the time to compute aggregated/disaggregated entities.

• Thrashing is the flip-flop of resolution levels for an entity that have dynamically

changed interactions with other entities of different resolutions.

• Network Flooding is the overhead on network traffic if entities are distributed

over a network, as each disaggregation operation adds new attributes and aggregation-

disaggregation process require some control messages.

2.2 Event-B

Event-B [3] is a formal modeling method for discrete systems based on refinement

[4], [29]. The main purpose of creating models in Event-B is to consider and under-

stand the complete system starting from an abstract description.

When modeling a system, Event-B creates the formal model, such that constant and

variable parts are kept in the distinct components of contexts and machines respec-

tively. A machine consists of three distinct elements: (i) a set of state variables, (ii)

a conjoined list of predicates, the invariants, and (iii) some transitions, called events.

A context consists of objects (sets and constants) and the axioms that constrain these

objects (Figure 2.3).

Events are operations that update the state variables of a machine. Each event is

composed of guard and action statements. An event is allowed to execute an operation

whenever all its guard statements return true. Action statements define the behavior

13

Variables

Invariants

Events

Sets

Constants

Axioms

sees
ABSTRACT
MACHINE

M

ABSTRACT
CONTEXT

C

Variables

Invariants

Events

Sets

Constants

Axioms

sees
CONCRETE
MACHINE

N

CONCRETE
CONTEXT

D

refines extends

Figure 2.4: Machine Refinement and Context Extension (adapted from [4])

of the event operation and are required to update the state variables of the machine.

2.2.1 Refinement

Refinement [4] is applied to Event-B when there is an introduction of new machines

and contexts that are related (refines, extends) to existing abstract ones (Figure 2.4).

The sets and constants of an abstract context are kept in its extension. In other words,

the extension of a context only consists of new sets and constants. However, in the

refinement of the machines, the concrete machine N has a collection of state variables

which might be completely distinct from its abstraction M. However, it is allowed that

invariants of N can depend on variables of its abstraction M, which are called glue

invariants. They “glue" the state of the concrete machine N to that of its abstraction

M. Glue invariants are important from our point of view since we use them as the

main constructs for the specification of the required data transformations between

different entity resolution levels.

The new machine N has a number of events that have a corresponding event in the

abstract machine M. New events, which do not exist in M, can also be introduced;

they can be viewed as refining an implicit event which does nothing (skip).

14

2.2.2 Proof Obligations

To reason about a machine we consider its proof obligations, which are produced

from the union of invariants, axioms, and guards. Proof obligations have two-fold

purpose [29]:

• They show that a model is sound with respect to some behavioral semantics.

• They serve to verify the properties of the model.

There are several types of proof obligations, some of which are:

• feasibility: The body of an event should not be blocked when the event is en-

abled, for example, the before/after predicates should not prevent from contin-

uing.

• invariant preservation: Action statements of events should preserve all invari-

ants of the machine.

A machine in Event-B must be verified by discharging its proof obligations. Software

tools are developed for both definition and verification of Event-B machines:

• Atelier B [18] is a commercial product, designed primarily for B Language [2],

but it has an extension for Event-B.

• Rodin [5] is an open-source project and it is actively being developed by its

community. It is developed over Eclipse framework [60] and supports plug-in

development for both functionality and language extension. Due to its power

in application programming interface (API) and since it has an open-source

license we selected Rodin as our Event-B tool.

2.3 DEVS

The Discrete Event System Specification (DEVS) is a formalism introduced by Bernard

Zeigler in 1976 [66] to describe discrete event systems. In this formalism there are

15

two types of models; atomic models and coupled models. The former have a be-

havioral logic and the latter consist of other models and connections between those

models. An atomic model in the classical DEVS consists of a set of input events,

a state set, a set of output events, an internal and an external transition function, an

output function, and time advance function. The formal definition of an atomic model

in the classical DEVS formalism is as follows:

M = 〈X, S ,Y, δint, δext, λ, ta〉

where,

X is the set of input events,

S is the set of states,

Y is the set of output events,

δint : S → S is the internal transition function,

δext : Q × X → S is the external transition function such that:

Q = {(s, e) |s ∈ S , 0 ≤ e ≤ ta(s)} is total state set,

λ : S → Y is the output function,

ta : S → R+
0,∞is the time advance function.

In DEVS models communicate with each other using their ports, which are interfaces

of models. External input events (X) are received by the input ports and output events

(Y) are sent from the output ports. The state set S is valid for a time interval, which

is determined by the time advance (ta) function. After the completion of each time

interval the output function (λ) is executed to send the output events that belong to

a current state and then the internal transition function(δint) is executed to calculate

the new state. If a model receives an external event during this time interval(e) the

external transition function(δext) is executed and the current state is updated to reflect

the effects of the incoming events.

Coupled models are a composition of components (atomic or coupled models) and

the port couplings between these components. Coupled models do not contain any

behavioral logic, states, or transition functions to be executed. They are intermediate

structures that form the hierarchy in model structure. A coupled model in the classical

DEVS formalism is formally defined as follows:

CM = 〈X,Y,D, {Mi} , EIC, EOC, IC, S ELECT 〉

16

where,

X is the set of input events,

Y is the set of output events,

D is the name set of sub-components,

{Mi} is the set of sub-components where for each i ∈ D, Mi can be either an

atomic DEVS model or a coupled DEVS model

EIC : external input coupling connects external inputs to the sub-component

inputs,

EOC : external output coupling connects sub-component outputs to the external

outputs,

IC : internal coupling connects sub-component outputs to the sub-component

inputs,

S ELECT : 2D → D is the tie-breaking function which defines how to select

the event from a set of simultaneous events.

A complete description of DEVS semantics can be found in [66], [65], and [10].

2.4 SiMA

SiMA (Simulation Modeling Architecture) [41] is a modeling and simulation frame-

work, which is based on the DEVS [66] approach to provide a solid formal basis for

complex model construction. SiMA Simulation Execution Engine implements the

Parallel DEVS [65] protocol which provides a well-defined mechanism for model

execution. SiMA builds on a specialized and extended form of DEVS formalism,

namely SiMA-DEVS, which:

1. Formalizes the notion of “port types” leading to a strongly typed (and therefore

type-safe) model composition environment. In this respect SiMA specializes

the basic DEVS formalism by introducing type constraints on the port defini-

tions.

2. Introduces a new transition function, called Direct Feed Through Transition, to

account for model interactions involving state inquiries with possible algebraic

transformations (but no state change) without simulation time advance. In this

17

respect we extend the basic DEVS formalism. This is similar to the notion of

zero-lookahead in HLA [28] from a time-management point of view.

Strongly-typed data ports require a model developer using SiMA to define data types

to be used for inter-port communication. SiMA uses port data types for several issues

including serialization/deserialization of data values flowing between atomic models.

SiMA-DEVS formalism is given below:

S iMA − DEVS =
〈
X, S ,Y, δint, δext, λ, ta, δd f

〉
Where,

X: Set of input values arriving from set of input ports, Pin,

Y: Set of output values sent from set of output ports, Pout,

Pin, Pout: Set of input and output ports such that:

Pin : {(τ, Ix) |Γ 7→ τ ∧ Ix ⊆ X ∧ ∀x ∈ Ix, τ 7→ x},

Pout :
{(
ρ,Oy

)
|Γ 7→ ρ ∧ Oy ⊆ Y ∧ ∀y ∈ Oy, ρ 7→ y

}
,

Γ: XMLSchema [63] type system,

τ, ρ: data types valid wrt XMLSchema type system,

δd f : PDFTin ∈ Pin × S → P
′

out ⊆ Pout is the direct feed through transition

function.

Note that the set of input ports Pin, is formally defined as a set of pairs where each pair

defines one input port of a model uniquely. The first element of each pair, τ, is a data

type conforming to XMLSchema [63] type system (denoted with Γ) and the second

element of the pair (Ix) denotes the set of input data values flowing through that port,

where each element of the value set conforms to data type τ. Similar semantics also

apply to output ports. Thus, SiMA makes strong typing and type-system dependency

of the ports explicit in the formal model. Although introducing a run-time oriented

property into the formal model may seem unusual, SiMA argues that there are a

number of merits in doing so:

1. Introduction of a type discipline to the definition of the externally visible model

interfaces (i.e. ports) leads to an information model for the overall system be-

ing modeled (coherency in modeling level information space), as well as for

18

the simulation environment (consistency and robustness in run-time-level data

space).

2. SiMA facilitates Model-Driven Engineering through well-typed and type sys-

tem dependent external plugs to enable automated port matching and model

composition. In fact SiMA successfully implements a Model-Driven simula-

tion construction pipeline, via a number of tools such as a code generator, a

model builder and a model linker.

3. SiMA reduces the gap between modeling level logical composability constraints

and run-time level pluggability constraints, thus forcing all implementations of

specialized DEVS model to respect the type-system compatibility and to offer

a strongly typed environment.

Note also that, in addition, SiMA introduces a new transition function, δd f , that en-

ables models to access the state of other models through a specific type of port, with-

out advancing the simulation time. As such, it is possible to establish a path of con-

nected models along which models can share parts of their state, use state variables

to compute derived values instantly within the same simulation time step. As stated

earlier, this is similar to the notion of zero-lookahead found in HLA [28]. One may

argue that the zero-lookahead behavior could be modeled by adjusting the time ad-

vance function of an atomic model such that the model causes the simulation to stop

for a while, do any state inquiry via existing couplings, then re-adjusting the time ad-

vance to go back to normal simulation cycle. Although this is possible, we argue that

by introducing a transition function and a specific port type which is tied (through run

time constraints imposed by the framework) to that particular transition function we

gain several advantages:

1. The models can communicate and share state with each other without the inter-

vention of the simulation engine thus providing a very efficient run time infras-

tructure.

2. Allowing such communications only to occur through a specific port type (com-

pile time and run-time checks are carried out) the framework is able to apply

19

application independent loop-breaking logic at the ports to prevent algebraic

loops, thereby ensuring model legitimacy.

SiMA is developed for a commercial project, but it has roots on academic community.

It is continuously developed and improved for the requirements of new projects and

scientific advancements. Some of the research that is already published is:

• Deniz et al in [26] added the functionality of dynamic DEVS formalism, which

allows changing model structure while the simulation continues.

• Bozagac et al in [11] used SiMA in their simulation distribution architecture,

which executes simulations of batch runs and monte-carlo trials on different

computers and collects their results on a single computer.

2.5 HLA

The High Level Architecture (HLA) [20] is a set of specifications and rules within

a common architecture supporting reuse and interoperation of simulations. It was

developed for the need of interoperability among new and existing simulations within

the U.S. Department of Defense.

In HLA each simulation is called a federate, and the composed simulation with dif-

ferent federates is called a federation. All federates are connected to a centralized

server which is called RTI, and all communication and time management is done by

the RTI.

The baseline definition of the HLA includes:

• HLA Rules: Summarizes the key principles behind the HLA. Like: federations

should have a FOM (common data exchange document), federates should have

documentation for HLA, etc. [36]

• HLA Interface Specification: The runtime services provided to federates by

the RTI, and by federates to the RTI. Like: message sending/receiving, time

management etc. [35]

20

• HLA Object Model Template (OMT): The documentation templates that de-

scribe the set of objects, attributes and interactions used in an HLA simulation.

There are two templates of OMT [37]:

– Federation Object Model (FOM): Defines the set of objects, attributes and

interactions shared across a federation.

– Simulation Object Model (SOM): Same as FOM, but specifies only a sin-

gle federate to define any requirements for future federations.

In HLA, the “Federation Object Model (FOM)” [37] allows models to define their

syntactic requirements for composition into a federation. It includes the set of objects

and attributes, their data type and quantity with a basic unformatted description. It

allows modelers to understand and define the data exchange protocol inside a federa-

tion.

2.6 Composability

There are so many simulation models from different application domains, levels of

resolution and time scales on the market. Model Composability is the ability to com-

pose these models and generate a single simulation.

There are different factors that affect the variety of models, such as cost, ease of use

and confidence in the value the simulation can provide. As each factor has its own

solution, a single system that addresses all these issues is not possible, so developing

a simulation infrastructure that simultaneously address as many of these issues as

possible is important. The conceptual system from such an approach is that of a

composable simulation framework.

With composability, simulation developers would no longer have to build large, in-

clusive, monolithic simulations. Instead they would build small modules with well

defined functionality that are readily combined with other modules. And simulation

users don’t need any knowledge of specific module content, or how modules are se-

lected, combined or run. [42, 56]

A composable simulation has six major steps [42]:

21

1. Identify user requirements: A system should assist the user in defining his re-

quirements and constraints.

2. Translation of user requirements and module identification: Users specify the

operational requirements, which must be mapped to functional descriptions.

3. Library of simulation models: A library of simulation “building blocks” is re-

quired. This library needs to be extensive enough to address the desired level

of detail and needs of all application domains.

4. Development of candidate simulations: For a single simulation, system should

define all possible combinations to allow selection of the best.

5. Selection of best simulation candidate: System should develop estimates of

simulation performance and compare them to determine the one most appro-

priate for the simulation.

6. System evaluations: To meet the need of users’ confidence, the system should

have a series of evaluations with some sort of Figure and Merit.

As illustrated in Figure 2.5, the composable simulation problem have both horizontal

and vertical dimensions [52]:

• In horizontal dimension, coupling components facilitate their interoperation

and composability facilitates multi-resolution modeling.

• The vertical dimension involves the act of coupling two models for the sake

of aggregation and hinder the application of other, more suitable, methods of

abstraction.

Composability has many facets that need to be addressed; distinguishing among them,

and their associated challenges is essential [25]:

• Syntax: Models should be able to operate together on the technical level, i.e.,

the digital output from one can be read as the digital input to the other.

• Semantics: The data should have the same meaning in the sending and the

receiving model.

22

Figure 2.5: Horizontal and Vertical Dimensions of Simulation Composability

• Pragmatics: Meaning is not always straightforward, because a word means

different things on different contexts. Pragmatics puts data into context of how

they are used in the model.

• Assumptions: The way Model A calculates the data may not be suitable for

what Model B needs. For example a temperature datum, might refer to a surface

temperature, or an average temperature over some path etc.

• Validity: The question of whether a model is correct, a model that is adequately

valid in one context may not be valid in another.

2.7 Components and Connectors

Component based programming [59] aims at building large scale systems by com-

posing them from smaller parts. These parts (components) are well defined, they

express explicitly what functionality they offer (provided interface) and what func-

tionality they depend on(required interface). Components communicate with their

environment only through these two sets of interfaces. This encapsulation reduces

application complexity, eases the code reuse and allows better manageability and ex-

tensibility [13].

For heterogeneous environments, where components are developed with different re-

quirements and executed in a single system, the required/provided interface paradigm

is not sufficient for component composition. Because component interfaces generally

do not have a common environment view that precludes the communication.

23

P P

FIFO1 channel synchronous
channel

lossy
synchronous

channel

filter P-producer

Figure 2.6: Some basic channels in Reo (reproduced from [46])

Connectors in component systems are the communication channels between compo-

nents. They model and execute the communication between components and propose

solutions for interface mismatch. A connector is often selected in design stage where

it realizes the binding by representing an interaction of a set of components (Figure

1.2).

2.8 Reo

Reo [8] is a channel-based coordination model for component composition where

complex coordinators, called connectors, are compositionally built out of simpler

ones. In Reo, connectors are organized in a network of primitive connectors, called

channels.

Each channel has two channel ends and there are two types of channel ends, namely,

source and sink. A source channel end accepts data into the channel and a sink chan-

nel end dispenses data out of the channel. It is possible for the ends of a channel to

be both sinks and both sources. Thus an open-ended set of channel types can be used

together (Figure 2.6).

Complex connectors are constructed by composing channels via join operations. Chan-

nels are joined together in nodes where communication between channels are coordi-

nated by letting sink channel ends provide data to source channel ends.

A complex connector has a graphical representation, called a Reo circuit, which is a

finite graph where the nodes represent join operation on channel ends and the edges

represent the connecting channels (Figure 2.7). The behavior of a Reo circuit is for-

malized by means of data-flow at its sink and source nodes.

24

A

B

Figure 2.7: A sample reo circuit

25

26

CHAPTER 3

A METHODOLOGY FOR ENTITY RESOLUTION MAPPING

Our approach utilizes the data type information from the input/output variables used

in models of different resolution levels to facilitate their composition. If two distinct

models are to be composed via their input and output ports, they must either use

identical input/output data types or a conversion is needed between the data types.

Evidently, our assumption here is that composable models are semantically related

but may have non-identical data representations due to the different entity resolution

levels they employ.

To compose models at different resolution levels, our solution proposes the specify-

ing, generation and use of converters between data types defining the ports of con-

nected models. Put simply, these converters are connectors between output and input

ports of models. Similar to models, converters have input and output variables, but

unlike typical atomic models they do not have any behavioral logic. Contrary to

the simplicity of the idea, achieving resolution mapping via converters following a

systematic methodology is not straightforward. Thus, we state that systematic and

repeatable resolution mapping via converters should have the following four aspects:

1. A formal language for specifying entities to be mapped,

2. An unambiguous, machine processable notation for specifying the set of trans-

formations required to get a set of entities from another set of (input) entities,

3. A tool that assists with verification of the conversion specification and generates

executable converters for a conversion,

4. A well-defined, formal basis for incorporating the notion of resolution convert-

27

ers into model composition schemes in a uniform way.

Although there are several proposals [55], [33], [34], [9] regarding the use of con-

verters between simulation models in the literature, to our best knowledge they fall

short of offering a comprehensive solution with respect to the aspects listed above.

The main novelty of our approach is as follows:

1. It involves a formal proposal to fit the concept of converters into a well-established

model composition paradigm (i.e. DEVS). Our proposal states that resolution

conversion (of entities) can be specified uniformly via first class constructs

called “connectors” that are inserted between couplings among atomic and/or

coupled models in a DEVS setting.

2. It provides a systematic methodology that offers a well-defined sequence of

stages to obtain executable converters for entity resolution mapping, given the

appropriate descriptions of entities and refinement relations. Our methodol-

ogy relies on Event-B as a formal specification language that utilizes refine-

ment relations between Event-B machines for validation and generation of the

data conversion steps between models, and employs a code generator that uses

Event-B machine definitions and refinement relations to generate the converter

code.

3. It enables the systematic re-use of converters in a uniform way. We define

converters as a first class constructs within a model composition paradigm.

Section 3.1 provides a more detailed account of the first point, Section 3.2 gives

details of the second point. Although the third point is a direct consequence of the

first two, a detailed discussion is outside the scope of this thesis.

3.1 The Formal Representation of Converters in a DEVS setting

The formal representation of converters in DEVS terminology is important in order to

forge the notion of converters into a coherent and well established model composition

paradigm. In fact our SiMA-DEVS definition introduced in [7, 26] and reproduced

below, provides a convenient formal basis for a converter definition.

28

M=
〈
X,Y, S , δint, δext, δcon, δd f , λ, ta

〉
where

S , δint, δext, δcon, λ, ta are as defined in the parallel DEVS formalism [65],

Γ: XMLSchema type system,

InPorts = {(Γ, τ) | Γ ` v : τ, v ∈ X},

OutPorts = {(Γ, ρ) | Γ ` v : ρ, v ∈ Y},

X = {(p, v)|p ∈ InPorts, v ∈ Xp} is the set of input ports and values,

Y = {(p, v)|p ∈ OutPorts, v ∈ Yp} is the set of output ports and values,

Xp is the set of input values that can arrive at port, p

Yp is the set of output values that can be published from port, p

InPorts,OutPorts: Sets of input and output ports such that:

τ, ρ: data types valid w.r.t. XMLSchema type system,

δd f : PDFTin × S → OutPorts
′

is the time invariant direct feed through func-

tion; where PDFTin ⊆ InPorts and OutPorts
′

⊆ OutPorts.

Here, we propose that a connector model can be defined in two different forms:

(i) A standard DEVS atomic model can be restricted in its time advance function:

ta : S → {0,∞} is the restricted time advance function.

This implies that the atomic model operates with only two states: 1. An idle

state where the model waits for an input (i.e. next time interval is equal to in-

finity), 2. A transition state with zero duration which is triggered by the receipt

of an input that produces the converted output at the end of the state.

(ii) A SiMA-DEVS atomic model can be restricted in its ports:

PDFTin = InPorts and OutPorts
′

= OutPorts.

This implies that the atomic model only has defined DFT ports, meaning that

only δd f would be operational at run time (i.e. other transition functions would

do nothing). As mentioned in Section 2.4 the DFT ports and δd f implement

the zero lookahead and provide a convenient mechanism for simple processing

within the same simulation time step.

29

1. Define data types

T1

T2

REFINES

2. Define mappings 3. Verify conversion

4. Generate code

Converter M2 T2 M1 T1

5. Verify at runtime

Figure 3.1: Illustration of entity resolution mapping process

Thus, it follows that the connector model does not violate the closure under coupling

property of DEVS, since it is essentially an atomic model. In fact, in our case study

the connectors are implemented as SiMA atomic models.

3.2 Process of Entity Resolution Mapping

Our methodology has five main stages:

1. Definition of data types for the variables of Event-B machines (Section 3.4.1)

2. Definition of mappings between data types of different resolution levels (Sec-

tion 3.4.2)

3. Verification of conversion steps (Section 3.4.3)

4. Generation of the converter (Section 3.4.4)

5. Optionally, instrumenting the converters with pre- and post-condition checkers

as an aid for runtime verification (Section 3.4.5).

30

We now present the details of our approach in the following sub-sections. Although

our methodology supports both directions of mapping first we will discuss High Res-

olution Entity (HRE) to Low Resolution Entity (LRE) mapping. Subsequently, we

will describe LRE to HRE and mixed mappings.

3.3 Case Study

To demonstrate our approach, we consider a simple wireless sensor network sim-

ulation [64] constructed using DEVS compliant models (an extended version of our

previous example as presented in [26]). A top-level visual representation of the DEVS

models developed to implement the proposed WSN is given in Figure 3.2. The WSN

system consists of four components:

• Sensors detect the movement of objects in the environment and can communi-

cate with other sensors within their range.

• The sink unit is the base unit that collects and fuses all the information supplied

by the sensor network.

• The platform has a predefined path that it follows during the course of simula-

tion. It represents the detectable object for the sensors in the environment.

• The environment model calculates the environmental information depending

on the sensor locations, such as humidity and noise level that affect the signal

transmission.

The simulation exercise is set to involve thousands of sensors that are spread over

a wide area to track the path of a platform. The number of sensors means that the

simulation requires a large amount of CPU power and to decrease the CPU cost, the

resolution level of some of the sensors that are away from roads can be reduced,

since their behavioral requirements allow for lower fidelity levels. A low resolution

sensor model that was developed for previous simulations already exists, and will be

integrated into the current simulation.

31

Sink Model

Platform
Model

SensorModel
SensorModel

SensorModel
Sensor Model

Platform Data

Data Packet

Environment
Model

Sensor Info

Environment Info

Figure 3.2: Models and entities in the sample scenario

3.4 HRE to LRE Mapping

The sensors transmit DataPacket values through their output ports. After introduc-

ing the low resolution sensor models, we need to integrate a converter between high

resolution sensors and the low resolution sensors (Figure 3.3).

The output data type of high resolution model labeled the DetailedDataPacket con-

tains a three-dimensional Position attribute with a SignalStrength value to be used by

the receiver model for receivable signal limit with environmental information from

the environment model. The Direction value contains a vectoral position of the tar-

get. However, the output data type of the low resolution model DataPacket contains a

two-dimensional Location attribute with an exact CommunicationRange value which

is updated by a percentage with environmental information. Furthermore, it contains

only the Distance of the target without the direction.

32

HRE to LRE
Converter

Low
Resolution

Sensor
Model

Data Packet

High
Resolution

Sensor
Model

Detailed Data
Packet

Figure 3.3: Composition of the new low resolution model

3.4.1 Using Event-B for Model Data Type Definitions

We use an Event-B machine as a container for the data type definitions for the in-

put/output variables of a model. As mentioned above an Event-B machine is specified

using three main constructs, namely a set of variables, a list of invariants and some

events. We define a mapping of these constructs to three facets of the entity type

specification in the following way:

• Variables: Each variable represents an attribute of an entity.

• Invariants: Invariants provide semantic information about variables that are cru-

cial for type conversions.

• Events: Events provide modifiers for variables, but our methodology does not

require any event definition.

The DataPacket entity can be represented with an Event-B machine as given in Fig-

ure 3.4. Note that the VARIABLES section of the machine definition includes the

attributes of the complex type DataPacket, furthermore, the INVARIANTS section

contains the types of the attributes. In fact, in an Event-B machine, invariants have

two major responsibilities :

• Data Type Specification: such as integer, string or complex types such as array.

• Provision of Constraints: The relations among variables are specified. For in-

stance, range restrictions such as x > y and x < 1000, or more complex con-

straints such as x ≤ y/z ∗ 100 can be stated.

33

MACHINE DataPacket

SEES DataPacketContext

VARIABLES

CommunicationRange
Location
S ensorLocation
PacketID
OriginID
TargetID
Type
Distance

INVARIANTS

inv1 : CommunicationRange ∈ N (cm)
inv2 : Location ∈ Vector2D (cm)
inv3 : S ensorLocation ∈ Vector2D (cm)
inv4 : PacketID ∈ N
inv5 : OriginID ∈ N
inv6 : TargetID ∈ N
inv7 : Type ∈ PacketTypes
inv8 : Distance ∈ N (cm)

...

END

Figure 3.4: Event-B machine for DataPacket entity

34

inv9 : Type = Activation⇒ Distance = 0

inv10 : Type = Result⇒ Distance > 0

inv11 : Distance < 2000

inv12 : CommunicationRange ≤ 1000

inv13 : OriginID , TargetID
...

Figure 3.5: More invariants for the Event-B machine of DataPacket entity

Figure 3.5 shows the use of invariants for the provision of additional constraints for

the DataPacket entity. These invariants are used for the dynamic checking of the con-

verter output. Assertion statements are generated corresponding to those invariants as

part of the code generation process.

3.4.2 Applying Event-B Refinement

Traditionally, refinement is used to develop a concrete system based on an existing

abstract model [4]. For the purpose of resolution mapping, a concrete system corre-

sponds to a high resolution (or disaggregated) entity, and an abstract system corre-

sponds to a low resolution (or aggregated) entity. Thus refinement in this case can

be viewed as obtaining a high resolution entity from a low resolution entity. Glue

invariants of Event-B map the variables of a refined machine (i.e. the high resolution

entity definition) to those of an abstract machine (i.e. low resolution entity definition).

This effectively makes the glue invariants the primary vehicle for the specification of

refinement relationships between two entities of different resolution levels. It should

be the responsibility of the model developers to define the glue invariants for each

refinement.

An example illustrating the use of glue invariants for the purpose of defining a re-

finement from a DataPacket entity to a DetailedDataPacket entity (as depicted in

Figure 3.6) is given in Figure 3.7. Note that the DetailedDataPacket machine con-

tains different variables and that it indicates, via the REFINES keyword, that it is a

refinement for the DataPacket machine. Note also that the glue invariants define how

the aggregated variables of the DataPacket entity can be obtained from the variables

35

of DetailedDataPacket entity. As a relatively subtle point, notice the use of accessor

functions such as Vector3D_X for variables of complex types in the expressions of

glue invariants. These functions enable access to the members of complex data types

(X member of a Vector3D variable) and are used for both the proof system and code

generation described in the following sections.

3.4.3 Proving Glue Invariants

The verification of the glue invariants requires extensive tool support. Fortunately, the

Event-B community has developed such tools as Rodin [5] for that purpose. Rodin

generates proof obligations (POs) for possible gaps to be filled to construct the proof.

Then it tries to automatically prove all POs and if not possible requests the user to

prove the remaining POs manually. Inside the proof editor, Rodin requests the user

to select related invariants about his/her model and produce the required statements

to prove the proof obligation. If the current list of invariants is not sufficient to prove

the PO, the user should update his/her glue invariants or define more invariants to

provide further constraints. Eventually, with all POs having been proved, the machine

is verified and ready for converter generation.

For example, for the glue invariant glue1 in Figure 3.7 the prover requires the def-

inition of CalculateRange function (e.g. SignalStrength * 10) in order to verify the

CommunicationRange ≤ 1000 and S ignalS trength ≥ 40 invariants. The related POs

could be resolved by using the function definition inside the Rodin editor.

3.4.4 Converter Generation

Once the glue invariants that define the conversion relationships between low-resolution

and high-resolution entities are specified and are proved to preserve the constraints

(as specified by the glue invariants), then the converters can be generated based on

the statements of the glue invariants. Note that converter generation does not depend

on glue invariant proofs. Therefore, converters can be generated while the glue in-

variants are unproven, but such a practice would not be advisable from the viewpoint

of reliability.

36

MACHINE DetailedDataPacket

REFINES DataPacket

SEES DetailedDataPacketContext

VARIABLES

S ignalS trength
Position
S ensorPosition
PacketID
OriginID
TargetID
Type
Direction

INVARIANTS

inv1 : S ignalS trength ∈ N (dB-microvolts)
inv2 : Position ∈ Vector3D (cm)
inv3 : S ensorPosition ∈ Vector3D (cm)
inv4 : PacketID ∈ N
inv5 : OriginID ∈ N
inv6 : TargetID ∈ N
inv7 : Type ∈ PacketTypes
inv8 : Direction ∈ Vector3D (cm)
inv9 : Type = Activation⇒ S calarLength3D(Direction) = 0
inv10 : Type = Result⇒ S calarLength3D(Direction) ≥ 0
inv11 : S ignalS trength ≥ 40

...

END

Figure 3.6: Event-B Machine for DetailedDataPacket entity

37

glue1 : CommunicationRange = CalculateRange(S ignalS trength)

glue2 : Location = mk_Vector2D(Vector3D_X(Position) 7→

Vector3D_Y(Position))
glue3 : S ensorLocation = mk_Vector2D(Vector3D_X(S ensorPosition) 7→

Vector3D_Y(S ensorPosition))
glue4 : Distance = S calarLength3D(Direction)

Figure 3.7: Glue invariants for DetailedDataPacket entity

Glue invariants in general are of the form of x = expr(a, b, ...), where x represents

a variable of a lower resolution entity and expr(a, b, ...) represents some algebraic

expression in terms of variables, such as a, b, ... of a higher resolution entity. To

generate the converter code, we transform these statements to statements in a pro-

gramming language and inject them into the related methods that are called during

simulation execution.

As such, the generation of a converter from DetailedDataPacket entity to DataPacket

entity, for instance, fills the gap between our high resolution sensor model and low

resolution sensor model, and allows the simulation to execute as expected (Figure

3.3).

3.4.5 Monitor Generation

The invariant statements about the provision of constraint information as discussed in

Section 3.4.1 can be used to verify the input and output of converters. They specify

the relationships between variables and self-restrictions like x > y and x < 1000.

We generate assert statements for each invariant that produce an error upon receipt of

invalid values and the converter input/output is checked against the source and target

machine invariants, respectively, at run time, more specifically, before and after the

conversion takes place.

38

LRE to HRE
Converter

High
Resolution

Sensor
Model

Detailed Data
Packet

Low
Resolution

Sensor
Model

Data Packet

Figure 3.8: Composition of a new low resolution model with LRE to HRE mapping

3.5 LRE to HRE Mapping

Although, up to this point we have discussed the mapping of High Resolution Entities

(HREs) to Low Resolution Entities (LREs), our proposed approach puts no limit on

the model composer with respect to the direction of the mapping. Event-B refine-

ments can be put to work in both directions with refinement, as usual and abstraction.

The methodology steps discussed thus far can be applied to LRE to HRE mapping

without any modification. Our transformation routines introduced above employed

only aggregation, therefore additional information was not needed. However, in a

cross-resolution modeling scenario, connections from LRE to HRE are likely to re-

quire that additional information needs to be provided. This problem requires further

consideration.

To illustrate the problem in the context of our example described in Figure 3.2, we

require a converter from low resolution sensor models to high resolution models as

the sensor network needs communication in both directions (Figure 3.8).

In general, the reverse direction requires extra information (to be inputted to the con-

verter) or assumptions “to fill in the gap". Assumptions to map CommunicationRange

value to the actual S ignalS trength value can be produced by a model developer who

knows the high resolution sensor model behavior and can interpret concrete values

with respect to the abstract values.

For the sensor model example given above, we need to have some kind of mapping

from LREs to HREs. There are many ways to implement such mappings, but we can

put them into two main categories:

39

• Mapping based on assumptions: A conversion function that computes the out-

puts for inputs based on the assumptions made by the model composer.

• Mapping with the help of external data sources: The conversion function uses

external data sources, such as statistical databases, to calculate the output.

We describe these categories in the following sections.

3.5.1 Mapping Based on Assumptions

If the model composer knows the details of the high resolution model behavior and

he/she can be certain of the required HRE values for the LRE values; thus, the model

composer can implement a function such as f (i1, i2...im) = {o1, o2...on} while i1, i2...im

are the low resolution inputs and o1, o2...on are the high resolution outputs.

For the CommunicationRange example we may have a mapping similar to the one

below:

• CommunicationRange = 1→ S ignalS trength = 42

• CommunicationRange = 2→ S ignalS trength = 44

• ...

• CommunicationRange = 1000→ S ignalS trength = 540

3.5.2 External Data Sources

The CommunicationRange variable has a limited domain and can be implemented

with simple mappings. More complex variables require external inputs such as sta-

tistical databases to fill the gap between the LRE and HRE values [23]. Hence, this

reverse mapping of complex variables will require the model composer to attach ex-

ternal data sources to connectors to feed the transformation function.

Let E represent the external data source, then our mapping will look like f (E, S , i1, i2...im) =

{S ′, o1, o2...on}. The state variable S is a reflection of values previously converted and

it will let us find more appropriate results from our data source.

40

axm10 : CalculateRange ∈ N→ N

axm11 : ∀x·x ∈ N ∧CalculateRange(x) ≤ 10

Figure 3.9: Sample function declaration and its output constraint

For the sensor model example, the LRE side only transmits a Distance value, however

the HRE side requires a vectoral Direction value which requires the exact position of

the target relative to the sensor at the time of detection to compute. The LRE to HRE

converter obtains the position of the target from a store that keeps the past values of

all the outputs then it fills the Direction value with the Distance computed from the

Position taken from that store.

3.5.3 Implementing Mapping on Event-B

Simple mapping functions such as those given in our examples can be easily imple-

mented using Event-B machines however, more complex functions that cannot be

expressed using the language capabilities of Event-B would require a different so-

lution, and therefore, we suggest employing user-defined functions for that purpose.

Event-B allows for the definition of a function declaration with its inputs and outputs

and does not require other function details unless there is a proof obligation that needs

to be proved. The constraints on inputs or outputs of such functions can be defined

and implemented as shown in Figure 3.9.

Although we cannot formally verify the implementation of these converter functions,

we still have the option to validate their input and check their output at runtime with

the generation of monitors as discussed in Section 3.4.5.

3.6 Mixed Mapping

As discussed above, the resolution difference between two models might be mixed in

the sense that some of the attributes within the same complex entity might be at low

resolution and others at high resolution.

41

To illustrate this situation we can add a new variable to our WSN example. The

low resolution sensor model uses the TimeO f Day value of DataPacket to calculate

the actual Distance, because sensing unit receives more noise during the day and

Distance should be reduced to find the target location. However, the developer of a

high resolution sensor model does not deal with the TimeO f Day but uses DayS tate

which is an enumeration of Night and Daytime. Thus, our converter includes a map-

ping from TimeO f Day to DayS tate that involves aggregation into our LRE to HRE

conversion.

As seen in our examples both HRE to LRE and LRE to HRE mappings can be spec-

ified for the generation of the same converter. Thus our solution supports conversion

in both directions for the same pair of models. If the model composer defines the

required Event-B machine refinements, the converters will be generated accordingly.

3.7 Summary

Summary of the required steps to generate our converters is as follows:

1. Entity types are defined as Event-B machines.

2. Constraints and conversion steps are defined using invariants.

3. Machines (entities) that represent different levels of resolution are linked to

each other with refinement relationships.

4. All the machine invariants including glue invariants are proved.

5. Programming language statements of the converter are automatically generated

from glue invariants.

6. Monitor statements that check the inputs and outputs of the converter are gen-

erated from invariants.

Chapter 4 contains an implementation of our approach using the SiMA [41] frame-

work, followed by a discussion on our findings in Chapter 5.

42

CHAPTER 4

IMPLEMENTATION IN A DEVS SETTING USING SIMA

As pointed out in Section 2.4, SiMA [41] is a modeling and simulation framework

developed by our research group at TÜBİTAK BİLGEM İLTAREN, it is based on

DEVS [66] to provide a solid formal basis for building complex models through

composition. SiMA provides a convenient software platform for our purposes since it

inherently supports simulation construction through model composition. In that, the

connectors fit well into the model coupling paradigm via input-output ports. SiMA

also comes with a tool-chain that facilitates the employment of a simulation con-

struction methodology which involves a distinct stage where all data types used for

input/output variables of model ports are defined in XML conforming to an XML

Schema. In a later stage, automated code generation based on these types is achieved

by using the KODO tool. As explained in more detail in Section 4.2 this also is a

good fit for our converter generation approach employed in this work.

In addition to SiMA we also used Rodin [5] as an appropriate and easily accessible

tool for creating and verifying Event-B constructs. Our development efforts contribut-

ing to our existing software infrastructure followed two paths:

1. Implementing additional tools for Rodin to cater for the definition of Event-B

machines via KODO type definitions and generation of source code from those

definitions,

2. Devising a mechanism for the incorporation of converters into model composi-

tion, to enable the actual deployment and execution of those converters between

SiMA models at simulation run time.

43

For the first path we have developed two tools that operate as plugins to Rodin:

• Event-B Machine Generator (EMG): A tool to generate Event-B machines on

Rodin that represent the KODO data types.

• Converter Code Generator (CCG): A tool to generate converters from the re-

finement definitions of Rodin.

For the second path we used specific properties of the atomic model implementation

provided by SiMA to treat them as state-less algebraic converters.

The overall converter generation process has four stages:

1. Create KODO XML definitions for data types with different levels of resolution

(i.e. including abstract and refined counterparts of a certain entity),

2. Use Event-B Machine Generator Plug-in of Rodin (EMG) to produce an Event-

B machine definition for KODO data types,

3. Decorate the Event-B machine definitions with glue invariants to specify con-

version expressions between abstract and refined entities,

4. Use code generator plug-in of Rodin (CCG) to produce source code that imple-

ments the conversion logic corresponding to those Event-B machine definitions.

In the following sections we describe these stages in more detail.

4.1 Creating type definitions

As stated above, for a simulation construction we define our overall information space

by creating XML definitions for entities flowing through input-output ports of our

models. This creates a natural precursor for potential Event-B machines where reso-

lution conversion is needed. At this point we utilize the KODO tool within the tool-

chain of SiMA that generates source code for input-output variable definitions for

models. KODO has a well-defined schema and a type system to define data types in

44

<object name="DataPacket">
<member typeName="uint" name="CommunicationRange" type="primitive"/>
<member typeName="Vector2D" name="Location" type="struct"/>
<member typeName="Vector2D" name="SensorLocation" type="struct"/>
<member typeName="uint" name="PacketID" type="primitive"/>
<member typeName="uint" name="OriginID" type="primitive"/>
<member typeName="uint" name="TargetID" type="primitive"/>
<member typeName="PacketTypes" name="Type" type="enum"/>
<member typeName="uint" name="Distance" type="primitive"/>

</object>

Figure 4.1: Sample KODO data type definition

XML. KODO uses XML files that fully specify data type definitions for input/output

variables to be used in SiMA models. These type definitions include primitive types

and complex types for each data field of objects as illustrated in Figure 4.1.

4.2 Generating Event-B Machines

In this stage, we use the EMG tool developed for Rodin that uses the KODO data type

definitions to generate Event-B machine definitions. For example, the EMG reads

the KODO type definition given in Figure 4.1 to generate the Event-B machine in

Figure 4.2, which is, in fact, equivalent to the machine definition given in Figure 3.4.

Note that we generate some metadata in the form of comment tags (such as #Object,

#Type etc.) that will allow us to determine object types, invariant categories and other

information during the code generation. The generated machine defines all fields of

the KODO data type as variables, and their data types as primitive invariants. We also

generate and use a Context called MrmTypeContext to define the type representations

of all complex data structures in Event-B.

4.3 Decorating the Event-B Machines with Glue Invariants

The next step is the insertion of refinement relations in the form of glue invariants.

The user is required to select the related data types to be used in the converters for

45

MACHINE DataPacket # Object

SEES MrmTypeContext

VARIABLES

CommunicationRange

Location

OriginID
...

INVARIANTS

inv1 : CommunicationRange ∈ N # TYPE

inv2 : Location ∈ Vector2D # TYPE

inv3 : OriginID ∈ N # TYPE
...

END

Figure 4.2: Event-B Machine generated from the KODO data type definition

model composition. Then he/she should define the REFINES keyword in the refine-

ment machine (Figure 3.6) and place his/her glue invariants as depicted in Figure 3.7.

Note that some variables exist on both LRE and HRE model and do not require a glue

invariant.

Additional invariants that define constraint information and required for monitor code

generation should be inserted manually. An example of such additional invariants is

shown in Figure 3.5.

4.4 Generating the Converter Code

In this stage, the Event-B machines generated by the EMG and finalized by the man-

ual decoration process as described in Section 4.2 are ready for generation of con-

verters. We used the glue invariants in refined machines as the basis of our converters

and other invariants for verification.

As SiMA is implemented with C# language [31], our code generator generates con-

46

verters in C# language. The converter code can then be compiled together with the

other source code which implements the overall simulation.

4.4.1 Converter Implementation using SiMA

The central idea is that converters are placed along the coupling connections of in-

put/output ports between models. To achieve this in a systematic and uniform way,

we utilize an existing construct of DEVS, namely the atomic model. Although in its

original form, an atomic model is used to implement the behavioral logic of a simu-

lation model as a stateful component capable of operating on both discrete-event and

discrete-time paradigms. Here, however, we use a specialized and somewhat reduced

form of this model which operates as a state-less algebraic converter. To achieve this,

we disable all other transition functions of the atomic model and use only the Direct

Feed Through Transition Function mechanism (please see Sections 2.3 and 2.4 for

more detail on the meaning of transition functions in DEVS and SiMA settings).

A Direct Feed Through Transition Function is executed on each arrival of a new

data from input ports and is responsible for producing a response from output ports.

Thus, we define a special atomic model, called Converter Model that implements

only the Direct Feed Through Transition Function (δd f t) and executes the appropriate

converter function for the received value of the input port (See Figure 4.3 for an

example of the δd f t code).

4.4.2 Converter Generation

After the generation of the model described in Section 4.4.1 the next stage is the

generation of the converter code. Our Converter Model contains a function named

ConvertItem that lists the conversion statements for each field of the destination data

type based on their glue invariants (Figure 4.4).

A glue invariant has the form x = f (y, z, ...), where x is the destination data type and

y, z, ... are sources. Most of the statements in f are defined in the Event-B Machine or

its Context. So the code generation for the converter function depends on the specifi-

47

public override void DirectFeedThroughTransitionWithObjects(string portName)

{

foreach(var item in inputManager.ExternallyCreatedObjects)

{

objectMapping.Add(item.ObjectID, outputManager.CreateObject());

ConvertItem(item, objectMapping[item.ObjectID]);

}

foreach(var item in inputManager.ExternallyUpdatedObjects)

{

ConvertItem(item, objectMapping[item.ObjectID]);

}

... // other DirectFeedThroughTransition actions not related

// to converter logic

}

Figure 4.3: Sample Direct Feed Through Transition Function

cation of f and its implementation patterns. We adopt the approach of [47] regarding

the target patterns in the C# language and generate statements in glue invariants (Fig-

ure 3.7) as statements of C# language (Figure 4.4).

4.4.3 Compensating for the Shortcomings of Event-B Type System

Event-B itself is not a fully-fledged programming language; it does not have control

logic constructs such as loops or primitive mathematical functions (e.g. sin, sqrt etc.)

however, some glue invariants require these constructs and to compensate for this

shortcoming we support the manual implementation of complex glue-functions.

To elaborate further, for a glue-statement such as x = f (y) + q(z) we can generate full

details of f and leave the implementation of q to the user. The C# language supports

partial class definitions that allow the user to define his/her functions in different files.

Our code generator will generate f in main file and require the user to implement q

in another file to be used in converter.

Although this extension is instrumental in allowing the definition of refinements in-

volving complex expressions, it does limit our automatic verification capability since

we can no longer use the implementation details of q in our proofs. However, since

48

private void ConvertItem(DetailedDataPacket source, DataPacket dest)

{

MonitorSource(source);

dest.Distance = ScalarLength3D(source.Direction);

dest.Location = (new Vector2D((source.Position).X, (source.Position).Y));

dest.OriginID = source.OriginID;

... // mappings for other variables of DataPacket object

MonitorDestination(dest);

}

Figure 4.4: Sample glue converter function

this extension is implemented because of the limitations of Event-B language, it can

be omitted if, in the future, the Event-B language is enriched to support our require-

ments.

4.4.4 Using Invariants for Runtime Verification of Converter Output

Allowing the manual insertion of conversion code appears to be a loophole in our

automatic verification capability. However, our Event-B machines involve invariants

that provide constraints on variables and the code generator can use these invariants

for converter input and output checking.

We generate assert statements as given in Figure 4.5 and place them inside the Mon-

itorSource and MonitorDestination methods and call them at the beginning and end

of ConvertItem method in Figure 4.4. The assert statements can be executed in the

debugging phase of software development and they can be omitted in the released

executable. This allows the run-time verification to execute in debugging and does

not reduce the performance of the deployed application.

49

Debug.Assert(item.Type != PacketTypes.Result || item.Distance > 0,

"DataPacket: inv8 verification error");

Debug.Assert(item.Distance < 2000, "DataPacket: inv9 verification error");

Debug.Assert(item.OriginID != item.TargetID,

"DataPacket: inv11 verification error");

... // monitor functions for other DataPacket object variables

Figure 4.5: Sample content for a monitor function

4.5 Details on Case Study

We used our case study (Section 3.3) as an illustrative example to explain our method-

ology. During the explanation we focused on methodology, hence skipped the details

of the case study. However these details require some attention, because by imple-

menting the case study we learned some pros and cons of our methodology. This

section will describe these details along with the lessons learned from the case study.

Before going into details, we would like to inform the reader that the implementa-

tion of simulation models in the case study require deep information about sensor

technologies and radio frequency transmission calculation. The main purpose of this

thesis is not the sensing calculations, and the implementation and use of converters

are sufficient. So we omitted these calculations in model implementations and used

abstract calculation functions that probably generate false results.

As illustrated in Figure 3.2, our case study uses three more data types other then Data

Packets. By introducing low resolution sensor model, these data types also need to

have a converter to let the simulation execute.

4.5.1 Platform Data

PlatformData (Figure 4.6) values are produced by the Platform Model to transfer the

information about the object that sensors are tracking. Sensors are using the position

and extent information about the platform object to produce the results of their sensing

computation. As indicated for DataPacket in Chapter 3 these results include distance

of the platform to a sensor.

50

MACHINE PlatformData # Object
REFINES LowResPlatformData
SEES MrmTypeContext, Functions
VARIABLES

Position
Heading
Velocity
Extent
Material

INVARIANTS

inv1 : Position ∈ Vector3D # TYPE
inv2 : Heading ∈ Vector3D # TYPE
inv3 : Velocity ∈ Vector3D # TYPE
inv4 : Extent ∈ Extent3D # TYPE
inv5 : Material ∈ MaterialTypes # TYPE

...

...
END

Figure 4.6: Event-B machine for PlatformData object

51

MACHINE LowResPlatformData # Object
SEES MrmTypeContext
VARIABLES

Location
Velocity2D
Type

INVARIANTS

inv1 : Location ∈ Vector2D # TYPE
inv2 : Velocity2D ∈ Vector2D # TYPE
inv3 : Type ∈ Plat f ormTypes # TYPE

...
END

Figure 4.7: Event-B machine for LowResPlatformData object

glue1 : Location = mk_Vector2D(Vector3D_X(Position) 7→

Vector3D_Y(Position))
glue2 : Velocity2D = Calculate2DVelocityWoHeading(Heading 7→

Velocity)
glue3 : Type = MapPlat f ormType(Extent 7→ Material)

Figure 4.8: Glue invariants for PlatformData object

PlatformData (Figure 4.6) object has five attributes to be used by sensors; Position,

Heading, Velocity and Extent attributes are defined in 3D space, and Material is an

enumeration of Steel, Aluminum, Iron, Plastic and Composite that effects the sensor

range.

However, low resolution sensors do not need these details and expect a LowResPlat-

formData (Figure 4.7) object with simpler attributes. First of all, Location and Ve-

locity attributes are defined in 2D space, because low resolution sensors assume the

world as a flat surface and don’t expect a terrain altitude. Second, the Heading infor-

mation is not used, because platforms are assumed to have heading to the direction of

their velocity. And third, platforms are categorized into types, including Car, Truck,

Tank etc., that reduces the need for Extent and Material attributes.

52

dest.Location = (new Vector2DM((source.Position).X, (source.Position).Y));

dest.Type = MapPlatformType(source.Extent, source.Material);

dest.Velocity2D = Calculate2DVelocityWoHeading(source.Heading,

source.Velocity);

Figure 4.9: PlatformData converter routines

For converter generation we need to define the glue invariants for the attributes of

LowResPlatformData (Figure 4.8):

Location Converting the 3D Position attribute to 2D Location attribute is a bit trivial;

with the assumption of the simulation space is nearly flat surface, that does not

affect the low resolution sensor results.

Velocity2D Calculating Velocity2D attribute requires a complex computation that in-

cludes: a) calculating the scalar length of Velocity, b) calculating scalar times

of Heading with length of velocity, c) converting the resultant vector into 2D.

Implementing these kinds of steps within Rodin editor is not always applicable

because of the limited space. The editor is not designed to have so many equa-

tions in a single invariant, and it does not allow easy readable long equations.

So we can leave the implementation post code generation.

Type To calculate Type attribute we need to build a mapping of Extent and Material

attributes to the restricted set of PlatformTypes enumeration. This conversion

does not have an accurate mapping, but we assume that low resolution sensors

do not need that accuracy. Again this mapping requires a complex mapping

function that is not applicable in Rodin editor, and left to implementation after

code generation.

After definition of glue invariants, our code generator produces a code stub including

the one in Figure 4.9. The code does not include monitoring statements, because

PlatformData structures do not need a validation invariant.

53

MACHINE SensorInfo # Object
SEES MrmTypeContext
VARIABLES

Position
Extent
AntennaPower

INVARIANTS

inv1 : Position ∈ Vector3D # TYPE
inv2 : Extent ∈ Extent3D # TYPE
inv3 : AntennaPower ∈ Z # TYPE

...

...
END

Figure 4.10: Event-B machine for SensorInfo object

4.5.2 Sensor Information

SensorInfo (Figure 4.10) values are produced by Sensor Models to give the descriptive

information of sensors. This information is required by the Environment Model to

compute the environmental conditions of the sensors that effect sensing units and the

radio signal transmission.

SensorInfo (Figure 4.10) object has three attributes to be used by the environment

model; Position and Extent attributes are defined in 3D space, and AntennaPower is

a numeric value that affects the sensor signal transmission range.

However, low resolution sensors do not produce same level of details and use a

LowResSensorInfo (Figure 4.11) object with simpler attributes. First of all, Loca-

tion is defined in 2D space, because of the same reason for LowResPlatformData

objects (Figure 4.7). Second, sensors are categorized into types, including Class1,

Class2 etc., that reduces the need for Extent and AntennaPower attributes.

For converter generation we need to define the glue invariants for the attributes of

SensorInfo (Figure 4.12):

54

MACHINE LowResSensorInfo # Object
REFINES SensorInfo
SEES MrmTypeContext, Functions
VARIABLES

Location
Type

INVARIANTS

inv1 : Location ∈ Vector2D # TYPE
inv2 : Type ∈ S ensorTypes # TYPE

...

...
END

Figure 4.11: Event-B machine for LowResSensorInfo object

glue1 : Position = mk_Vector3D(Vector2D_X(Location) 7→

Vector2D_Y(Location) 7→ 0)
glue2 : Extent = GetExtentO f S ensor(Type)

glue3 : AntennaPower = GetAntennaPowero f S ensor(Type)

Figure 4.12: Glue invariants for LowResSensorInfo object

55

dest.AntennaPower = GetAntennaPowerofSensor(source.Type);

dest.Extent = GetExtentOfSensor(source.Type);

dest.Position = (new Vector3DM((source.Location).X, (source.Location).Y, 0));

Figure 4.13: SensorInfo converter routines

Position Converting the 2D Location attribute to 3D Position attribute is a bit trivial,

with the same assumption of Location attribute of PlatformData object.

Extent and AntennaPower Sensors that are built with the same type has the same

Extent and AntennaPower attributes. For example Class1 type of sensors has

extent of 30mm Width, 20mm Height and 70mm Length, and 42dBm An-

tennaPower. Thus, converting Type attribute to Extent and AntennaPower at-

tributes uses a simple mapping function.

After definition of glue invariants, our code generator produces a code stub including

the one in Figure 4.13. The code does not include monitoring statements, because

SensorInfo structures do not need a validation invariant.

4.5.3 Environment Information

EnvironmentInfo (Figure 4.14) values are produced by the Environment Model to give

the environmental information for sensors. This information is required by the Sensor

Models to compute the capabilities of sensing units and the radio signal transmission

that is effected by the environmental conditions.

EnvironmentInfo (Figure 4.14) object has three attributes to be used by sensor models;

Humidity and SNR are numeric values that affect the sensor signal transmission range

and Floor is an enumeration that effects the sensing unit.

However, low resolution sensors do not require same level of details and use a LowRe-

sEnvironmentInfo (Figure 4.15) object with a simpler attribute. Low resolution sen-

sors just use a noise level enumeration, which consists of Low, Medium and High

members. Sensors use this enumeration to compute their transmission capability by

some constant multipliers, such as in Low noise levels sensors can receive signals

56

MACHINE EnvironmentInfo # Object
REFINES LowResEnvironmentInfo
SEES MrmTypeContext, Functions
VARIABLES

Humidity
Floor
S NR

INVARIANTS

inv1 : Humidity ∈ N # TYPE
inv2 : Floor ∈ FloorTypes # TYPE
inv3 : S NR ∈ Z # TYPE

...

...
END

Figure 4.14: Event-B machine for EnvironmentInfo object

MACHINE LowResEnvironmentInfo # Object
SEES MrmTypeContext
VARIABLES

Level
INVARIANTS

inv1 : Level ∈ NoiseLevels # TYPE
...

...
END

Figure 4.15: Event-B machine for LowResEnvironmentInfo object

57

glue1 : Level = CalculateNoiseLevel(Humidity 7→ Floor 7→ S NR)

Figure 4.16: Glue invariants for EnvironmentInfo object

dest.Level = CalculateNoiseLevel(source.Humidity, source.Floor, source.SNR);

Figure 4.17: EnvironmentInfo converter routines

from 100m distance. Low resolution sensors do not change their sensing unit capa-

bility, so they do not use Floor type attribute or any other. As we use low resolution

sensors away from our search zone, we accept the ignorance of affects on sensing

unit.

For converter generation we need to define the glue invariant for the attributes of

LowResEnvironmentInfo (Figure 4.16):

Level If we have information about inner computation logic of low resolution sensors

we can generate a conversion function that converts the set of Humidity, Floor

and SNR values into a noise level that low resolution sensor models operate

normally. If not, we have to use some assumptions which may affect incor-

rect conversion results, however it is acceptable for low resolution sensors as

described in the previous paragraph.

After definition of glue invariants, our code generator produces a code stub including

the one in Figure 4.17.

EnvironmentInfo attributes have logical limits that can be verified by the monitoring

statements. We define the invariants in Figure 4.18 and our code generator generates

the statements in Figure 4.19.

58

inv4 : Humidity ≤ 100

inv5 : S NR < 10

Figure 4.18: Monitor invariants for EnvironmentInfo object

Debug.Assert(source.Humidity <= 100,

"EnvironmentInfo: inv4 verification error");

Debug.Assert(source.SNR < 10,

"EnvironmentInfo: inv5 verification error");

Figure 4.19: EnvironmentInfo monitoring routines

4.6 Lessons Learned

We learned some lessons that come up from the problems involved in the implemen-

tation. These problems do not prevent our methodology to execute, but requires some

more work on implementing the tool set.

4.6.1 Name Conflict Problem

Event-B does not have any grouping for identifiers. If same identifier name is used on

both abstract and concrete machines, there is no way to use them in glue functions. It

is assumed that the value is transferred as is in the refinement. And if same identifier

is used with different data type on abstract and concrete machine, Rodin generates an

error that prevents the use of machines in code generation.

To overcome this problem, we intentionally changed some attribute names inside the

case study. For example we used Position for detailed, 3D attributes and Location for

low resolution, 2D attributes.

The solution to the problem has two different ways:

• Event-B editor can be extended to allow use of machine names along with at-

tributes in glue functions. This issue requires a deep investigation of Rodin ed-

59

CONTEXT FunctionSample
EXTENDS DetailedPlatformDataContext
CONSTANTS

S calarLength3D

S qrt

S calarT imes3D

Conv3Dto2D

Calculate2DVelocityWoHeading

AXIOMS

axm1 : S calarLength3D ∈ Vector3D→ N
axm2 : S calarT imes3D ∈ (Z × Vector3D)→ Vector3D

axm3 : S qrt ∈ Z→ N
axm8 : Conv3Dto2D ∈ Vector3D→ Vector2D

axm4 : Calculate2DVelocityWoHeading ∈ (Vector3D × Vector3D)→ Vector2D

axm5 : ∀x, y, z·S calarLength3D(mk_Vector3D(x 7→ y 7→ z)) = S qrt(x ∗ x + y ∗ y + z ∗ z)

axm6 : ∀x, y, z, k·S calarT imes3D(k 7→ mk_Vector3D(x 7→ y 7→ z)) = mk_Vector3D(k ∗ x 7→ k ∗ y 7→ k ∗ z)

axm7 : ∀x·S qrt(x ∗ x) = x

axm8 : ∀x, y, z·Conv3Dto2D(mk_Vector3D(x 7→ y 7→ z)) = mk_Vector2D(x 7→ y)

axm9 : ∀v, h·Calculate2DVelocityWoHeading(v 7→ h) = Conv3Dto2D(S calarT imes3D(S calarLength3D(v) 7→ h))

Figure 4.20: Calculate2DVelocityWoHeading implementation in a context file

itor architecture and high implementation work, which goes beyond the scope

of this thesis.

• Event-B Machine Generator (Section 4.2) can be extended to include the ma-

chine names as prefix or postfix to the attributes, but this hardens the human-

readability of the machines and glue invariants.

4.6.2 Complex Glue Invariant Problem

As indicated in Section 4.5.1 implementing some glue invariants in Rodin editor is

not always applicable. Both the editor space and function implementation complexity

in set theory hardens the implementation of invariants in the editor.

For the example of Vector2D glue function in Section 4.5.1, we need to implement the

function Calculate2DVelocityWoHeading with different inner functions and include

them in a Context file that will look like the one in Figure 4.20. This implementation

may look like applicable, but more complex cases are possible and not all of them are

possible to implement in Rodin.

Another example for complex glue invariants is switch/case operations, which is enu-

merating some cases of a value to map to an output value. For the example in Section

60

4.5.1, implementing MapPlatformType function requires statements like:

• Width < 5 ∧ Length < 10 ∧ Height < 4 ∧ Material = Iron⇒ Type = Car

• Width > 5 ∧ Length > 10 ∧ Length < 20 ∧ Height < 8 ∧ Material = Iron ⇒

Type = Truck

• Width > 5 ∧ Length < 10 ∧ Height < 8 ∧ Material = S teel⇒ Type = Tank

• ...

This kind of mapping may not cover all cases of input values, and it is not easily

possible for the user to find out which cases are not mapped. However, the converter

should cover all possible cases and generate an output for each input. At least it

should generate an error to inform the user about the problem. The Rodin editor does

not inform the user about missing cases of mapping. And informing the user about

missing cases in the CCG requires high implementation work.

On the other hand, set theory is much flexible than current programming languages

and generating a code for all cases of Event-B statements would not be possible. To

overcome this problem we can limit the use of operations in Event-B as in [47, 58]

and implement the code generator for the limited cases, however this will reduce the

capabilities of our users.

4.6.3 Restrictions of Current Event-B Language

Event-B language has many capabilities to define a system formally. It supports both

type definition and action statements which allow a modeler to define his/her sys-

tem easily. However it has some shortcomings at the present stage that limits its

widespread use as a specification language. Two of them are pointed out below.

• Lack of the floating point type. Event-B does not support floating point num-

bers. It supports only integer types and enumerated sets as valid types of the

attributes or variables. But it is desirable to have that support since virtually all

simulations of physical processes require floating numbers for their operation.

61

• Models usually require complex arithmetic operations such as trigonometry

and integral calculations to simulate the behavior of a real system. Event-B is

based on set theory, so specifying the actual implementation of an arithmetic

function would normally require complex set-theoretical definitions. Therefore

it is desirable to have language-level support for built-in arithmetic functions.

4.6.4 Proving Glue Invariants Problem

Our methodology uses “Proving Glue Functions” step (Section 3.4.3) in code gener-

ation, however it is not possible to use proving in every glue invariant as we intro-

duced functions. Because of the missing floating point numbers and mathematical

operations, definition of all details of glue operations in Event-B is not possible in

every case. We covered this deficiency by allowing use of non-implemented func-

tions in glue invariants and left details on generated code. This drawback reduces our

possibilities to use Event-B proof system and decrease our formal background.

4.6.5 A Solution Proposal

Event-B primary editor (Rodin) is developed using a very flexible architecture with

extensibility in mind. There are many tools and add-ons already implemented to

extend its capabilities. Although there is not a rigorous formal process defined for

language extensions of Event-B, there seems to be a well-adopted procedure that in-

volves amending the environment and the prover with necessary extensions. Follow-

ing the same path, additional add-ons to Rodin can be developed to extend Event-B

language in our direction. As such, given appropriate time and resources, one can

incorporate both floating point support and arithmetic functions such as widely used

trigonometric functions etc. into Event-B, through extensions into the editor and

prover components of the Rodin environment

62

CHAPTER 5

DISCUSSIONS

In this chapter we present a discussion of some of the central aspects of the work that

is relevant to our solution.

5.1 Discussion of Entity Resolution Mapping Related Work

Different approaches to composition of multi-resolution models [33, 34, 9] have al-

ready been proposed in the literature. Among those, a relatively recent work, [34] in-

troduced the concept of ‘MR modeling space’ to separate aggregation/disaggregation

(i.e. resolution conversion) logic from the mechanics of simulation execution (i.e. the

simulation space). Part of their Multi Resolution Space (MRS) is the Multi-resolution

Event Interface (MREI) which handles the resolution mismatches of messages be-

tween models. In fact the idea of logically separating the resolution conversion and

the simulation through localizing the entity resolution conversion into MREI has sim-

ilarities to our approach. The main difference of our approach lies in formalizing the

notion of entity resolution conversion as a part of connector models in a DEVS set-

ting. Furthermore, and more importantly, we address the reliability of the resolution

conversion, firstly, through the formal verification of Event-B glue invariants and,

secondly, through the automatic generation of resolution converter components (i.e.

connector models) from declarative specifications (i.e. Event-B machines). In that

respect, it is important to note that we specifically target the problem of cross res-

olution modeling as opposed to multi-resolution modelling. The implication of this

emphasis is that our solution tackles the problem of interoperation of models that are

63

coupled via I/O ports exchanging objects at different resolution levels but represent-

ing the same real world entities. Those models, possibly at different resolution levels,

that can replace each other in a composition, can be considered as members of a Multi

Resolution Model Family (MRMF). In fact, at a given simulation time only one mem-

ber of this MRMF may be operational where it would have to interoperate with other

models (that may possibly be a member of another MRMF), this in turn may require

a resolution conversion process due to the difference in the entity resolution levels

of the coupled ports. Postulating along the same lines, the problem of replacing a

simulation model with another higher or lower resolution model that is a member of

the same MRMF at simulation run time (dynamically) can be addressed separately

from the viewpoint of interoperation among cross resolution models, although the

ramifications of the two problems are related.

Apparently, the most relevant work to our approach is that of [55] and [50] in which

the authors present a number of what they call “fundamental observations" regarding

the problem of cross-resolution modelling. We found those observations quite useful

to determine the qualities and level of comprehensiveness of solutions in this field.

We will not go into the details of each of their observations at length; instead we will

compare central tenets of their solution, namely the Multi Resolution Entity (MRE)

with our solution. Since the authors claimed that MREs offer a solution framework

that focuses on the maintenance of consistency based on the fundamental observa-

tions mentioned above, we undertake an informal evaluation based on a qualitative

comparison of the MRE solution with ours as given in the following three subsec-

tions:

5.1.1 Consistency Maintenance

MREs internalize the consistency maintenance via the management of a set of core

attributes and a set of reversible mapping functions. MREs maintain “internal con-

sistency” across multiple, concurrent levels of resolution. Within the MRE concept,

each entity either maintains state information at all desired levels of resolution or pro-

duces attribute values at each simulation step. Simulations involving MREs are based

on concurrently reflecting the effects of interactions at all resolution levels. Figure

64

Attributes

State

Attributes

State

Level 1

Level 0

Figure 5.1: Design of an MRE with two resolution levels [55]

5.1 depicts a typical MRE for two levels; Level0 for the low resolution and Level1 for

the high resolution. The MRE maintains the attributes at both levels at all times and

the two states of the MRE are kept consistent with each other.

In order to maintain consistency among attributes of the different resolution levels,

relationships between attributes must be captured. These relationships can be mod-

eled by a directed, weighted graph where the nodes represent the attributes and the

edges represent relationships. MRE proposes the notion of an Attribute Dependency

Graph (ADG) [50] which depicts the various attributes and sub-entities of the MRE

and portrays the relationships among them. An ADG is an encoding of the concurrent

multi-resolution interactions problem, and is also an encoding of solutions thereof.

Our solution is similar in many ways and also has some additional advantages in that

respect:

• First, the Event-B machines that are linked through refinement relationships to

each other can be considered to collectively define a Multi Resolution Entity.

From another perspective, the concept of a multi-resolution model family is

65

embodied by the collection of Event-B machines that are linked via refinement

relationships.

• Second, the glue invariants that define the conversion logic between the at-

tributes can be viewed as a specification of a directed graph between those

attributes. In fact, the edges of such a graph are annotated with expressions that

effectively specify a mapping between the related attributes.

• Third, if there are additional invariant definitions other than the glue invariants

(such as range restrictions and type definitions) in the machines, those invari-

ants are also taken into consideration by the prover during verification which

provides a further consistency checking mechanism on the resolution mapping.

• Fourth, one important advantage of our approach is that since our mapping is

specified using a formal language, its consistency can be verified using a prover,

and its implementation can be generated automatically, addressing the concept

of correct implementation of the mapping.

• Fifth, in our approach the consistency maintenance logic is internalized (and

hence localized) into the notion of connector model which ensures a system-

atic approach to the simulation construction and an effective management of

consistency issues at run-time. Consistency maintenance in the sense of [50]

amounts to the preservation of glue invariants in our terms.

It is worth noting that our solution perceives simulation models as black-box compo-

nents. The relation between the state and I/O of a model is crucial for the comparison

between our solution and MRE. If the data flowing through the I/O ports is a direct

mapping of the internal model state, the implementation of converters would be equal

to the state mappings of MRE. Otherwise, we would lose some information about

the state and our converter might not achieve the envisioned success rate of MRE in

consistency maintenance.

5.1.2 Staging and Intrusiveness of Resolution Mapping Procedures

Although the authors of [50] do not extend their discussion towards design and im-

plementation issues of MREs, our understanding is that MRE is more intrusive in

66

terms of the model internals since an MRE and the logic required to map different

resolution levels specified within it seems to be coupled with the behavioral logic of

the implementation of the relevant model. This implies that a change in the struc-

ture (i.e. syntax) of an entity enforces complementary modifications on the internals

of the models that consume or produce that MRE. This is something that may raise

questions regarding the architectural clarity and maintainability aspects of the overall

scheme when it comes to the actual construction of simulations based on this concept.

Our approach separates the definition of multi-resolution entity families from the

logic required to map between those multi-resolution entities. This separation is

clearly expressed at a declarative level using a formal language. Moreover, our

methodology ensures that the data constraints and mapping logic are verified via

provers, and implementation is generated in an automated way to support correct-

ness by the construction. The expressive power of the language used (i.e. Event-B)

does impose certain restrictions on the complexity of the logic that handles the reso-

lution mapping, however those restrictions are clearly delineated and there are routes

to work around them.

5.1.3 Practicality

Since the authors [50] provide a design strategy, rather than a complete solution with

guidance for implementation of MREs, there are no details given about how consis-

tency maintenance can be achieved in a simulation and execution of ADG.

Our solution provides a methodology involving both a design strategy and detailed

implementation guidance. We give details of the steps required to apply our method-

ology and present an example of a complete converter generation. Hence, we describe

a practical process to implement a CRM solution based on formal methods and avail-

able tools.

67

5.2 Converters in Relation to Connectors in Component-Based Development

The use of connectors in component-based development is a well-known topic in

software engineering [38, 13]. There is also considerable amount of research on

developing a formal basis for connectors in the context of component composition

[32], [21, 46, 15, 6].

The use of the Connector Model as a first class construct in a DEVS-based simulation

construction environment is a specific case of the generalized connector concept dis-

cussed in the literature cited above. In [16] and [49], the authors propose drivers that

catch incoming real-time events from hardware devices and send output commands

to the hardware by user implemented driver objects. These drivers can be viewed as

connectors that allow the DEVS models to interoperate with real-time systems.

In our case the connectors play a specific role of entity resolution conversion. Note

that, although the adaptation of interaction protocols between components being “glued”

is one of the central properties of connectors in general, in our case this is less of an

issue. This is because the interaction protocol of the DEVS models is under the strict

control of the simulation engine which rigorously applies the DEVS simulation pro-

tocol [65]. Through this protocol the engine drives the models via a standard control

interface that is provided by each model by definition. Therefore port couplings be-

tween models act only as data flow channels. Since our connectors are defined to

exist along port couplings (rather than between the engine and the models) their func-

tionality is limited to data conversion.

It is worth noting that the use of Event-B to facilitate verification and automatic con-

struction of connectors in the DEVS setting to overcome resolution mismatches is

a novel aspect of our methodology in terms of the application of formal methods in

component-based development of multi-resolution simulation software.

5.3 The Unconventional Usage of Refinement in Entity Resolution Mapping

In its conventional sense refinement, is a process to derive concrete models from ex-

isting abstract models. As such, it is used to develop more concrete models, closer

68

to the implementation. Many tools such as code generators developed for Event-B

community normally operate on the most refined models, because refinement leads

to more precise semantics and increases the level of detail, both of which are desir-

able properties in a system development process. In the work presented in this thesis,

we take a different perspective, in that, we use refinement to define the relations be-

tween existing entities and use the defined relation itself as the source for converter

code generation. Evidently, our scheme does not exclude cases where entities and

refinement relations that specify resolution mapping logic are defined together at the

simulation design stage. However, our solution can operate in a setting where there

are entities that represent data types at different resolution levels already implemented

and ready to be used in a simulation. In such a setting, we add refinement relations

between those existing entities to specify how to compensate for the resolution mis-

matches between them in a formal language. As described in Chapter 3, refinement

allows us to define fine grained mapping expressions among attribute pairs and allows

the proof sub-system to be used to validate mapping specifications for the preserva-

tion of constraints and consistency. Thus, we exploit the power of refinement but

employ it in an unconventional way. It is also worth noting once again that we use

the proof capabilities of the Event-B tools [5] in refinement to validate our converters

for constraint preservation.

5.4 Entity Resolution Mapping without DEVS and Event-B

Our approach on entity resolution mapping relies on a modeling framework that al-

lows composition of models, DEVS, and a formal language that allows definition and

verification of converter statements, Event-B. DEVS and Event-B seems to be the el-

ementary root of our approach, however they are just well-defined bases to describe

our methodology. We can use any other modeling framework and formal language

that meets our basic necessities.

69

5.4.1 Modeling Framework

DEVS is a modeling and simulation framework that allows model composition (Sec-

tion 2.3). Our methodology introduces use of connectors between simulation mod-

els to overcome the interoperability problems of data resolution mismatch. We use

DEVS to describe the rules of a modeling and simulation framework and composition

requirements and focus on the connector solution we provide.

Any other modeling and simulation framework that allows composition of models

with use of connectors would be sufficient for demonstration of our methodology.

For example, HLA (Section 2.5) is a modeling and simulation framework, developed

for standardizing distributed simulations. If we assume federates (distributed nodes

in HLA), as the composition units of modeling, we can use the connector approach

between federates and apply our methodology.

There are several commercial products of HLA implementations and some connec-

tor solutions to overcome interoperability problems. These include the Pitch pRTI,

Adapters and Extenders [53], which allow HLA simulations to communicate with

other HLA implementations and simulation frameworks (i.e. DIS [1]). They also

allow breaking down a single HLA simulation into sub-simulations and making them

execute together.

To implement our methodology in HLA, we need to use one of these commercial

products or develop our own. We can place our connectors between federates and

RTI (centralized distribution service) and execute our conversion functions for each

type of object.

5.4.2 Formal Language

Event-B is a formal specification language that allows systems specification and ver-

ification with formal definitions (Section 2.2). Our methodology introduces use of

Event-B for specifying data types in a formal language and use language capabilities

to define and verify conversion steps. We use Event-B to describe our steps of data

type definition and verification process and use its actively developed open-source

70

editor Rodin [5].

Any other specification language that allows our data type definition and conversion

step verification would be sufficient for demonstration of our methodology. For exam-

ple we studied the B Method [2], which is the ancestor of Event-B, but it did not meet

requirements of our methodology. It allows data type definition with B machines, but

the refinement relations between machines are not suitable for our conversion defini-

tions. Aterial B [18] is an editor for B Method, and had been commercial-only when

this research was started.

We also studied rCOS [39], based on UTP [30], which is a specification language on

refinement calculus for object systems. It is a mathematical characterization of object-

oriented concepts and it defines a limited but functional Object Oriented language.

However, its editor environment and development community were not promising to

use in our methodology demonstration.

As we proposed for Event-B, both B Method and rCOS or any other specification

language can be extended and/or their editor can be re-implemented to support our

methodology requirements, but it will probably require a high development effort.

71

72

CHAPTER 6

HETEROGENEOUS DEVS SIMULATIONS WITH

CONNECTORS

Our approach proposes using connectors between models of heterogeneous DEVS

simulations to resolve the data type and time resolution mismatch.

We anticipate that the properties of Reo such as exogenous coordination (i.e., by third

parties), compositional construction, arbitrary mix of synchrony and asynchrony,

user-defined primitives and dynamic reconfigurability are well suited to adaptation

requirements often found in complex component based simulation applications. In

this chapter, we only scratch the surface of the potential realm of exploiting a power-

ful “glue language” such as Reo for composition of incompatible simulation models

in a DEVS setting. In particular, we focus on compositional construction property of

Reo and demonstrate the utility of that aspect adopting a practitioner approach.

6.1 Time Resolution Connectors

One of the problems for heterogeneous simulations is the mismatch of time resolu-

tion. This happens when the time steps used for state updates of source and des-

tination models are not equal, and this difference in the update frequency creates a

behavioral inconsistency at the destination model. For example, the source model

may produce values at ∆src = 2x time units and destination model may expect values

at ∆dst = x time units. Composition of these models is problematic due to missing

input values for the destination model at odd x steps.

73

Model
B T1 Model

A
T1

Time Res.
Converter T1 T1

Figure 6.1: A sample time resolution DEVS connector

A connector between these two models can help solve the problem by calculating the

missing values of intermediary time steps and sending them to the destination model.

For an instance of a time t (e.g. an odd x step), the connector needs to estimate an out-

put value At by using the past values (A0, A2x, A4x...At−3x, At−x). Estimating sequences

of series is called extrapolation and many different algorithms have been devised for it

[12, 57]. A model composer can use one of these extrapolation algorithms to compute

the missing values in his/her time resolution connector.

For each time resolution conversion requirement, a connector model needs to be de-

veloped (Figure 6.1). The connector model consists of standard DEVS functions

(δint, δext, λ), in compliance with DEVS simulation execution protocol, that stores in-

put values and dispatches extrapolated values to output ports at required time steps.

Connector state(S) is an array-like data structure that stores the list of input values.

External transition function (Procedure 1) adds each input value to the state S . Then

it updates the model next time to the minimum time value required for values stored

in S . Output function (Procedure 2) calculates the extrapolated values at current

time and dispatches them to the output port. Internal transition function (Procedure

3) updates the model next time to the minimum time value as in external transition

function.

input : (e, t, S) external event, current time and state

output: (S) updated state

insert (e, t) to S ;

calculate next time nt from S ;

set model next time to nt;

Procedure 1: External transition function(δext) of time resolution converter

More complex timing inconsistencies between interacting models are also possible.

74

input : (t, S) current time and state

output: N/A

foreach (v, vt) at state vector S do

calculate extrapolated value (d) of (v, vt, t);

put d on output port;

end
Procedure 2: Output function(λ) of time resolution converter

input : (t, S) current time and state

output: N/A

calculate next time nt from S ;

set model next time to nt;

Procedure 3: Internal transition function(δint) of time resolution converter

For instance, ∆src = 3x and ∆dst = 5x which have larger least common multiple, or

rational coefficients may be encountered. Solution for such cases is essentially the

same in terms of the mechanism, except that the extrapolation function logic would

be different. For example, in the case of rational coefficients, for all steps of output

an extrapolated output that depend on the rational time value is computed.

6.2 Data Conversion Connectors

If two distinct models are to be composed via their input and output ports, either they

must use identical input/output data types or a conversion is needed in between. Ev-

idently, our assumption here is that composable models are logically related with the

same real world entities and phenomena but may have non-identical data representa-

tions due to different objectives or processes that lead to their creation.

To compose such incompatible models in a DEVS setting, our solution proposes to

use converters between data types defining the ports of connected models (Figure

6.2). Put simply, these converters are connectors between output and input ports of

models. Similar to models, converters have input and output variables, but unlike

atomic models they do not participate in simulation model state calculations. In fact,

75

Model
B T2 Model

A
T1

T1 to T2
Converter T1 T2

Figure 6.2: A sample data conversion DEVS connector

a convertor’s behavior is not time dependent whereas an atomic model can have time-

dependent behavior. This is because a data conversion operation does not consume

simulation time; it is essentially an algebraic operation on input data. Formal repre-

sentation of a data conversion connector was discussed in Section 3.1.

A DEVS connector model for data conversion is structurally and mechanically (i.e.

in terms of execution mechanism) similar to the time resolution conversion converter

discussed in Section 6.1. The most important difference is that the processing of

each input value and the dispatch of the output are performed at the same time step.

External transition function (Procedure 4) converts each input value and stores the

converted value in the state S . Then it sets the model next time equal to current time,

to be able to dispatch output on the same simulation time. Output function (Procedure

5) gets the values from S and publishes them to the output ports. Internal transition

function (Procedure 6) clears the state S and prepares the model to wait for the next

input.

input : (e, t, S) external event, current time and state

output: (S) updated state

calculate converted value c from e;

insert c to S ;

// immediate response

set model next time to t;

Procedure 4: External transition function(δext) of data converter

76

input : (t, S) current time and state

output: N/A

foreach converted value c at S do

put c on output port;

end
Procedure 5: Output function(λ) of data converter

input : (t, S) current time and state

output: (S) updated state

remove all converted values from S ;

// Passivate until next input value

set model next time to∞;

Procedure 6: Internal transition function(δint) of data converter

6.3 Multi-Input Multi-Output Connectors

Both types of connectors we described in previous sections are simple channels that

process single input port and produce values on single output port. However in some

cases we may need to combine two or more input ports and may produce two or more

output ports.

We build our connectors as atomic DEVS models that naturally allow multiple input

and output ports. This capability allows us to build a connector that has multiple

inputs and outputs as in Figure 6.3.

This type of connectors can be developed for a variety of purposes, such as: a) form-

ing a union of two types of data values, b) decomposing a single data value into

simpler types of values, c) synchronizing two input values so that an output could be

produced upon arrival of both, d) any combination of all.

77

C

T1

TN

T2

K1

KM

K2

Figure 6.3: A sample N-input M-output connector

78

A T1 T2

Figure 6.4: T1 to T2 connector A

6.4 Composite Connectors

As introduced above, simple connectors can be used to compensate for data or time

resolution mismatches in a DEVS setting. A data converter A that converts T1 to T2

can be used in any simulation that needs to have a connection of ports with T1 and

T2 data types (Figure 6.4).

For more complex cases, we benefit from “connector reuse” to build more complex

(or composite) connectors by combining existing simpler connectors. If, for instance,

we have another converter B of T2 to T3 connection available to us, we can build a

composite connector by constructing a DEVS coupled model of A and B connectors.

This will effectively end up in a connector that handles T1 to T3 conversion (Figure

6.5). Furthermore, we can combine data converters with time resolution converters

and build a converter that compensate for both data and time resolution inconsisten-

cies.

6.5 Representing Composite Connectors in Reo

Connector composition problem in Reo [8] is treated in a way appropriate for ex-

ploitation in a DEVS setting. The concepts of DEVS connectors and DEVS model

79

A T1 T2 B T2 T3 T1 T3

Figure 6.5: Composite connector of T1 to T3

ports are analogous to channels and sinks of a Reo circuit, respectively. Similar to

Reo, any combination of DEVS connectors can be used to build different composite

connectors.

Our connectors are well-defined entities with their input/output ports and their func-

tion. For example a connector A in Figure 6.4 is defined as a T1 to T2 data converter

connector, where T1 and T2 are well-typed (or strongly typed) with respect to a com-

mon type system. Thus connector A can be used in any simulation that needs a T1

to T2 data conversion. Hence an arbitrary set of connectors can be composed to use

in any simulation that a connector is required. In Reo, channels are also well defined

and can be listed in a channel set (Figure 2.6).

Input ports and output ports are two ends of DEVS connectors, which correspond

to source and sink channel ends in Reo. Connector accepts data from input port and

dispenses data from output port. Connector composition is handled by port couplings.

If a connector output port is coupled with another connector’s input port then these

two connectors are composed. In Reo, composition is handled through nodes; in

DEVS we can consider port couplings as Reo nodes.

Reo allows composition of channels to build connectors. As we realize our connectors

as atomic models, our solution also allows composition of DEVS connectors and

building composite connectors as coupled models. A composition can take a variety

of forms; examples are given in Figure 6.5 and Figure 6.6. Thus DEVS connector

compositions can also be represented as a Reo circuit (Figure 2.7).

On the other hand, multi-input multi-output connectors have complex behavior, which

80

A T1 T3

Q T3 T3

T1

D T3 T5

T4 C T3 T4

T5 B T2 T3 T2

Figure 6.6: A sample connector circuit

T3 T2

T1

Figure 6.7: A sample MxN connector with Reo circuit

can be modeled with a Reo circuit (Figure 6.7). The interconnections of input and

output ports can be designed with Reo channels and implemented by a Reo code

generator (e.g. [40]) or by hand.

6.6 Case Study

To demonstrate our approach, we can think of a simple DEVS simulation application

for traffic training that is built by composing two models, namely a traffic model and

a platform model. The platform model calculates the values for various attributes of

a Car object (Figure 6.8) at each step of the simulation and publishes this Car object

81

from its output port. The traffic model reads the Car object as its input and calculates

interactions between Car objects (collision etc.) with the traffic statistics for post

simulation analysis.

Assume, for instance, that a previously built, ready to use model producing a truck ob-

ject (Figure 6.9) will be introduced to the traffic training simulation. The new model’s

output is not syntactically compatible with the traffic model as it stands. Looking at

the content of the truck object, we can see that it is not logically compatible to what

traffic model expects. So, if we can convert the output of the truck platform model

(i.e. truck object) to a car object and fix the time resolution incompatibilities we can

continue to execute our simulation without any modification to the traffic model.

• width : float

• height : float

• length : float

• licensePlate : string

• colorName : string

• posX : float

• posY : float

• posZ : float

• velX : float

• velY : float

• velZ : float

Figure 6.8: Attributes of Car object

6.6.1 Time Resolution Conversion

Truck model is updating truck object attributes at every 60 seconds, however the car

model does that at every 20 seconds, and since trucks usually move slower than cars

(thus truck model does not require a high update frequency). But traffic model is

82

• Model : string

• LeftHandDrive : boolean

• ColorRGB : RGBVector

• Position : Vector3D

• Velocity : Vector3D

Figure 6.9: Attributes of Truck object

expecting attribute updates at 20 seconds intervals to calculate collisions accurately.

In fact, this kind of “predictive” calculation of state for intermediary time values is a

well-known technique in modeling and simulation, known as dead reckoning. Dead

reckoning (DR) is a specialized extrapolation technique used in modeling and simula-

tion domain and it is a fundamental feature of the DIS standard [1]. It was developed

to compute intermediary position values to reduce the amount of communication.

There are many studies about dead-reckoning for various modeling domains and so-

lutions, e.g. [14, 27, 44].

For multiples of 60 seconds, TRC does not use a converter function and transfers the

source data without modification. But for intermediate steps of 20 and 40 seconds,

we need to build a dead reckoning function. As we have the velocity information of

the Truck object we can estimate the missing position values at the steps of 20 and 40

seconds.

To solve this problem we can build a time resolution converter (TRC) between Truck

and Traffic models. Since we need to build a data conversion connector (DCC) (to

be discussed in Section 6.6.2) too, we can either insert our TRC between Truck

model and DCC or between DCC and Traffic model. The decision depends on im-

plementation complexity as well as the availability of ready-to-use assets such as

dead-reckoning algorithms or the whole TRC model.

For the case of building a TRC between DCC and Traffic model we can use a conver-

sion function such as in Procedure 7.

83

input : (v, vt, ct) value, value time and current time

output: (c) converted output

dt ← ct − vt;

c.posX ← c.posX + (dt/60) × v.velX;

c.posY ← c.posY + (dt/60) × v.velY;

c.posZ ← c.posZ + (dt/60) × v.velZ;

Procedure 7: Conversion function of time resolution converter

6.6.2 Data Conversion

Solving the time resolution compatibility problem between Truck and Traffic models

is not sufficient for building a simulation from these two models. The output data type

of the Truck model is not a Car object. A connector between Truck and Traffic models

can convert Truck objects to Car objects. The conversion steps are somewhat trivial

because Car and Truck objects have similar attributes with different representations.

Car object represents position and velocity with different attributes for each axis,

however Truck object uses a Vector3D structure, which is a complex data type that

consists of X, Y and Z attributes. Conversion of these attributes can be achieved by

flattening the Vector3D structure.

Conversion of informative attributes is a bit more complex. Truck model does not

publish size attributes of a Truck object but gives the name of the truck model, which

implicitly specifies the size information. For example, Truck model produces “1975-

1991 Ford E-Series 124 WB” as model name and it can be converted as 4,745 mm

Length, 2,029.5 mm Height and 2,029 mm Width [62] for the Traffic model.

A similar solution can be applied to colorName attribute of the Car object and Color-

RGB of the Truck object. However this problem is a bit more complicated, since not

all color values (Red, Green, Blue value combinations) have a name. The converter

has to map the color values to the nearest named color possible.

The LeftHandDrive attribute is a boolean that is true if the Truck is left-hand driven,

or false if it is right-hand driven. The traffic model extracts this information from

the licensePlate of the car object, so we can convert the true value of LeftHandDrive

84

DCC Truck Car TRC Car Car Truck Car

Figure 6.10: Connector designed for case study

attribute to USA and false value to UK. We know the model internals of the traffic

model, that the licensePlate attribute is just used for drive side of the car object. If it

was not, our assumption to map left-hand-drive to USA would cause improper model

calculations.

After all steps given above, we finally built the connector in Figure 6.10 for our case

study.

85

86

CHAPTER 7

CONCLUSION

In this thesis, we have presented our approach to implement a solution for compo-

sition of multi-resolution models. The construction of cross-resolution simulations

is a multi-faceted, complex enterprise. Any attempt to devise elegant solutions that

target all of the facets of such a complex problem is deemed to face enormous dif-

ficulties and likely to fall short of delivering a comprehensive remedy that addresses

all of those facets. From the very start of our work our objective has been to target

a closely correlated subset of those facets (in this case entity, attribute and logical

dependency facets), but provide a relatively complete solution for that subset. In that

respect, our approach combines the strength of formal approaches and languages,

with necessary tool and framework support into a systematic methodology, to deliver

a focused but in-depth solution. Clearly, through the formal approaches we sought

one that facilitates precise, machine processable semantics; and through the system-

atic methodology and accompanying tool support we looked for a repeatable process

that builds upon rigorous foundations and relieves the simulationist from adopting

ad-hoc practices.

To re-iterate the merits of our approach:

(i) it involves a formal proposal to fit the concept of converters into a well-established

model composition paradigm, namely, DEVS.

(ii) it provides a practical methodology that offers a well-defined sequence of steps

to obtain executable converters for entity resolution mapping, given appropriate

descriptions of entities and refinement relations.

87

7.1 DEVS Connectors

Our approach on using converters for entity resolution mapping introduced the use of

connectors between DEVS models. We delved into this problem and presented our

approach for composition of DEVS models that suffer from data type and time res-

olution incompatibilities. Our approach involves the use of connectors as first class

DEVS models to convert incompatible data types and bridge over time resolution

differences to enable seamless model composition. We also demonstrated the anal-

ogy between the notion of modular and hierarchical model composition in DEVS

and compositional construction of connectors using channels in Reo. Our approach

potentially facilitates automatic discovery and re-use of connectors (i.e. connector

models as black-box components) developed for conversion requirements. A library

of such connector models can be built and made available for heterogeneous modeling

projects.

The idea of building arbitrarily complex connectors via composition of simpler ones

is supported both by DEVS coupling semantics and the operational semantics of Reo.

Complex connectors that are possible to build due to high expressive power of Reo

would also be valid (or legitimate) for DEVS connector models. However this claim

deserves a separate formal inquisition and our initial quest indicates that this path

seems promising. At least for the case of resolving data type and time resolution

incompatibilities the utility of a powerful connector language seems more obvious.

Furthermore, Reo provides a powerful calculus that lends itself for dynamic compo-

sition of connectors, which is also very promising for dynamic DEVS environments

[26]. In fact, the use of such dynamically configurable connectors between incompat-

ible DEVS models could open the door for solutions to many other interoperability

problems such as cross-resolution modeling [23] and heterogeneous distributed sim-

ulations [67, 48].

88

7.2 Future Work

7.2.1 Automatic Discovery and Re-Use of Resolution Converters

Our approach potentially facilitates the automatic discovery and re-use of resolution

converters (i.e. connector models as black-box components) developed for mapping

requirements that were already addressed during earlier simulation exercises. A li-

brary of such connector models can be built and made available for projects involving

cross-resolution modeling. Since our simulation environment supports strongly typed

port definitions both for models and connectors, the construction of a model composi-

tion graph that involves semantically equivalent but syntactically incompatible model

ports, through appropriate combinations of connectors can be achieved. In fact, our

research group has planned future work that can realize such graph building processes

in a semi-automated way.

7.2.2 Increase Interoperability with the Help of Accessor Methods on Data

Beans

Data beans itself is not sufficient for preserving consistency on refinement. A model

can update fields of the data type without paying attention to the semantic meanings.

For example increasing the velocity of a platform object may require to change the

heading attribute because of the aerodynamics of the platform. A low resolution

model would not take care of this situation and effect the high resolution models’

calculations. Transfer and use of accessor methods along with the data types through

the model ports can solve this problem. If the receiving model does not change a

variable directly and use the accessor methods, the consistency will be increased.

Our methodology used Event-B to describe the data types as machines and used the

refinement relations to describe the conversion routines. We propose the use of events

of Event-B as accessor methods and include them in refinement relations to overcome

this problem as a future work.

89

7.2.3 Connectors to Enhance Distributed DEVS Approach

Distributed simulations generally consist of heterogeneous models that might have

several inconsistencies. Our approach on using connectors to overcome some of the

interoperability problems in heterogeneous models can be used in a distributed sim-

ulation environment. Connectors can be used on input/output ports of the distributed

nodes to resolve the data type and time resolution mismatches.

Research work has been planned in our group to implement an implementation of

distributed DEVS with the help of connectors. Our implementation will implement

one of the Distributed DEVS approaches [61, 67, 43, 67, 48] on SiMA [41] with the

help of our connector approach and based on WCF [17] service oriented software

development architecture.

90

REFERENCES

[1] 1278.2-1995 - IEEE Standard for Distributed Interactive Simulation - Commu-
nication Services and Profiles.

[2] J. Abrial. The B-Book: Assigning programs to meanings. Cambridge Univ Pr,
1996.

[3] J. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
Univ Pr, 2010.

[4] J. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundamenta Informaticae, 77(1):1–
28, 2007.

[5] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. STTT,
12(6):447–466, 2010.

[6] R. Allen and D. Garlan. Formalizing architectural connection. In Proceedings
of the 16th International Conference on Software Engineering, ICSE ’94, pages
71–80, Sorrento, Italy, 1994. IEEE Computer Society Press.

[7] M. N. Alpdemir. SiMA: a discrete event system specification-based modelling
and simulation framework to support model composability. The Journal of
Defense Modeling and Simulation: Applications, Methodology, Technology,
9(2):147–160, 2012.

[8] F. Arbab. Reo: a channel-based coordination model for component composi-
tion. Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[9] L. Baohong. A formal description specification for multi-resolution modeling
based on DEVS formalism and its applications. Journal of Defense Modeling
and Simulation, 4(3):229, 2007.

[10] F. J. Barros, B. P. Zeigler, and P. A. Fishwick. Multimodels and dynamic struc-
ture models: An integration of DSDE/DEVS and OOPM. In Proceedings of the
30th Conference on Winter Simulation, WSC ’98, pages 413–420, Washington,
D.C., USA, 1998. IEEE Computer Society Press.

[11] D. Bozağaç, G. Karaduman, A. Kara, and M. N. Alpdemir. Sim-petek: A
parallel simulation execution framework for grid environments. The Journal

91

of Defense Modeling and Simulation: Applications, Methodology, Technology,
9(4):303–319, 2012.

[12] C. Brezinski. A general extrapolation algorithm. Numerische Mathematik,
35(2):175–187, 1980.

[13] T. Bureš. Generating Connectors for Homogeneous and Heterogeneous De-
ployment. PhD thesis, Faculty of Mathematics and Physics, Charles University,
2006.

[14] W. Cai, F. Lee, and L. Chen. An auto-adaptive dead reckoning algorithm for
distributed interactive simulation. In Proceedings of the thirteenth workshop
on Parallel and distributed simulation, pages 82–89. IEEE Computer Society,
1999.

[15] X. Chen, J. He, Z. Liu, and N. Zhan. A model of component-based program-
ming. In F. Arbab and M. Sirjani, editors, International Symposium on Funda-
mentals of Software Engineering, volume 4767 of Lecture Notes in Computer
Science, pages 191–206. Springer Berlin Heidelberg, 2007.

[16] S. M. Cho and T. G. Kim. Real-time DEVS simulation: Concurrent, time-
selective execution of combined RT-DEVS model and interactive environment.
In Proceeding of 1998 Summer Simulation Conference, Reno, Nevada, 1998.

[17] P. Cibraro, K. Claeys, F. Cozzolino, and J. Grabner. Professional WCF 4: Win-
dows Communication Foundation with. NET 4. John Wiley & Sons, 2010.

[18] ClearSy System Engineering. Atelier B 4 - User Manual, 2013.

[19] Committee on Modeling and Simulation for Defense Transformation, National
Research Council. Defense Modeling, Simulation, and Analysis: Meeting the
Challenge. The National Academies Press, 2006.

[20] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly. The department of de-
fense high level architecture. In WSC ’97: Proceedings of the 29th conference
on Winter simulation, pages 142–149, Atlanta, Georgia, United States, 1997.
IEEE Computer Society.

[21] J. Davies, D. Faitelson, and J. Welch. Domain-specific semantics and data re-
finement of object models. Electronic Notes in Theoretical Computer Science,
195:151–170, 2008.

[22] P. Davis and R. Hillestad. Families of models that cross levels of resolution:
Issues for design, calibration and management. In Proceedings of the 25th con-
ference on Winter simulation, pages 1003–1012. ACM, 1993.

[23] P. K. Davis and J. H. Bigelow. Experiments in multiresolution modeling (MRM).
RAND Corporation, 1998.

92

[24] P. K. Davis, J. H. Bigelow, and J. McEver. Exploratory analysis and a case
history of multiresolution, multiperspective modeling. RAND Reprints RP, 925,
2000.

[25] P. K. Davis and A. Tolk. Observations on new developments in composability
and multi-resolution modeling. In Proceedings of the 39th Conference on Win-
ter Simulation: 40 Years! The Best is Yet to Come, WSC ’07, pages 859–870,
Washington D.C., 2007. IEEE Press.

[26] F. Deniz, M. N. Alpdemir, A. Kara, and H. Oğuztüzün. Supporting dynamic
simulations with Simulation Modeling Architecture (SiMA): a Discrete Event
System Specification-based modeling and simulation framework. Simulation,
88(6):707–730, 2012.

[27] R. M. Fujimoto. Parallel and distributed simulation. In Simulation Conference
Proceedings, 1999 Winter, volume 1, pages 122–131. IEEE, 1999.

[28] R. M. Fujimoto and R. M. Weatherly. Time Management in the DoD High
Level Architecture. In In Proceedings of the 1996 Workshop on Parallel and
Distributed Simulation, 60-67. Institute of Electrical and Electronics Engineers,
Piscataway, pages 60–67. IEEE Computer Society, 1996.

[29] S. Hallerstede. On the purpose of Event-B proof obligations. In E. Börger,
M. Butler, J. Bowen, and P. Boca, editors, Abstract State Machines, B and Z,
volume 5238 of Lecture Notes in Computer Science, pages 125–138. Springer
Berlin Heidelberg, 2008.

[30] J. He and C. Hoare. Unified Theories of programming. Prentice Hall Interna-
tional, 1998.

[31] A. Hejlsberg, S. Wiltamuth, and P. Golde. The C# Programming Language.
Addison-Wesley Professional, 2006.

[32] C. Hoare and J. He. Unifying theories of programming, volume 14. Prentice
Hall, 1998.

[33] S.-Y. Hong and T. Kim. A resolution converter for multi-resolution model-
ing/simulation on HLA/RTI. In K. Koyamada, S. Tamura, and O. Ono, editors,
Systems Modeling and Simulation, pages 289–293. Springer Japan, 2007.

[34] S.-Y. Hong and T. G. Kim. Specification of multi-resolution modeling space for
multi-resolution system simulation. Simulation, 89(1):28–40, 2013.

[35] IEEE. IEEE standard for modeling and simulation (M&S) high-level archi-
tecture (HLA) Federate Interface Specification. IEEE 1516.1-2000, IEEE-SA
Standards Board, 2000.

93

[36] IEEE. IEEE standard for modeling and simulation (M&S) high-level architec-
ture (HLA) Framework and Rules. IEEE 1516-2000, IEEE-SA Standards Board,
2000.

[37] IEEE. IEEE standard for modeling and simulation (M&S) high-level architec-
ture (HLA) Object Model Template (OMT) Specification. IEEE 1516.2-2000,
IEEE-SA Standards Board, 2000.

[38] H. Jifeng, X. Li, and Z. Liu. Component-based software engineering. In
D. Hung and M. Wirsing, editors, Theoretical Aspects of Computing – IC-
TAC 2005, volume 3722 of Lecture Notes in Computer Science, pages 70–95.
Springer Berlin Heidelberg, 2005.

[39] H. Jifeng, X. Li, and Z. Liu. rCOS: a refinement calculus of object systems.
Theoretical Computer Science, 365(1-2):109–142, 2006.

[40] S.-S. T. Jongmans, F. Santini, M. Sargolzaei, F. Arbab, and H. Afsarmanesh.
Automatic code generation for the orchestration of web services with reo. In
Service-Oriented and Cloud Computing, pages 1–16. Springer, 2012.

[41] A. Kara, F. Deniz, D. Bozağaç, and M. N. Alpdemir. Simulation Modeling Ar-
chitecture (SiMA), a DEVS Based Modeling and Simulation Framework. In
Proceedings of the 2009 Summer Computer Simulation Conference, SCSC ’09,
pages 315–321, Istanbul, Turkey, 2009. Society for Modeling & Simulation In-
ternational.

[42] S. Kasputis and H. Ng. Composable simulations. In Simulation Conference
Proceedings, 2000. Winter, volume 2, 2000.

[43] K.-H. Kim and W.-S. Kang. Corba-based, multi-threaded distributed simu-
lation of hierarchical devs models: transforming model structure into a non-
hierarchical one. In Computational Science and Its Applications–ICCSA 2004,
pages 167–176. Springer, 2004.

[44] W. D. McCarty, S. Sheasby, P. Amburn, M. R. Stytz, and C. Switzer. A vir-
tual cockpit for a distributed interactive simulation. Computer Graphics and
Applications, IEEE, 14(1):49–54, 1994.

[45] J. McEver, P. K. Davis, and J. Bigelow. Implementing multiresolution models
and families of models: from entity-level simulation to desktop stochastic mod-
els and" repro" models. Proceedings of Enabling Technology for Simulation
Science IV, Orlando FL, 2000.

[46] S. Meng and F. Arbab. Connectors as designs. Electronic Notes in Theoretical
Computer Science, 255:119–135, 2009.

[47] D. Méry and N. K. Singh. Automatic code generation from Event-B models.
In Proceedings of the Second Symposium on Information and Communication
Technology, SoICT ’11, pages 179–188, Hanoi, Vietnam, 2011. ACM.

94

[48] S. Mittal, B. P. Zeigler, and J. Martin. Implementation of formal standard for
interoperability in m&s/systems of systems integration with devs/soa. Interna-
tional Command and Control C2 Journal, Special Issue: Modeling and Simula-
tion in Support of Network-Centric Approaches and Capabilities, 3(1), 2009.

[49] M. Moallemi and G. Wainer. Designing an interface for real-time and embed-
ded DEVS. In Proceedings of the 2010 Spring Simulation Multiconference,
SpringSim ’10, pages 137:1–137:8, Orlando, Florida, 2010. Society for Com-
puter Simulation International.

[50] A. Natrajan, P. Reynolds, and S. Srinivasan. MRE: a flexible approach to multi-
resolution modeling. In Parallel and Distributed Simulation, 1997., Proceed-
ings., 11th Workshop on, pages 156–163, Lockenhaus, 1997. IEEE.

[51] NRC. Modeling and Simulation, volume 9, pages 2000–3030. National
Academy Press, Washington, D.C., 1997.

[52] E. H. Page and J. M. Opper. Observations on the complexity of compos-
able simulation. In Proceedings of the 31st conference on Winter simulation:
Simulation—a bridge to the future-Volume 1, pages 553–560. ACM New York,
NY, USA, 1999.

[53] Pitch Products. http://www.pitch.se/products/products-overview,
2013.

[54] D. R. Powell. Control of entity interactions in a hierarchical variable resolution
simulation. In Conference: Fall simulation interperability workshop, Orlando,
FL (United States), 8 Sep 1997, 1997.

[55] P. Reynolds Jr, A. Natrajan, and S. Srinivasan. Consistency maintenance in mul-
tiresolution simulation. ACM Transactions on Modeling and Computer Simula-
tion, 7(3):392, 1997.

[56] H. S. Sarjoughian. Model composability. In Proceedings of the 38th conference
on Winter simulation, page 158. Winter Simulation Conference, 2006.

[57] A. Sidi. Practical extrapolation methods: Theory and applications. Num-
ber 10. Cambridge University Press, 2003.

[58] N. Singh. Reliability and Safety of Critical Device Software Systems. PhD
thesis, Université Henri Poincaré - Nancy, 2011.

[59] C. Szyperski, D. Gruntz, and S. Murer. Component software: beyond object-
oriented programming. Addison-Wesley, 2002.

[60] The Eclipse Foundation. http://www.eclipse.org, 2013.

95

http://www.pitch.se/products/products-overview
http://www.eclipse.org

[61] G. A. Wainer, R. Madhoun, and K. Al-Zoubi. Distributed simulation of devs and
cell-devs models in cd++ using web-services. Simulation Modelling Practice
and Theory, 16(9):1266–1292, 2008.

[62] Ford E-Series. https://en.wikipedia.org/wiki/Ford_E-Series, 2013.

[63] XML. http://www.w3.org/XML, 2013.

[64] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Com-
puter Networks, 52(12):2292–2330, 2008.

[65] B. Zeigler, T. G. Kim, and H. Praehofer. Theory of Modeling and Simulation.
Academic Press, January 2000.

[66] B. P. Zeigler. Theory of Modeling and Simulation. John Wiley, 1976.

[67] M. Zhang, B. P. Zeigler, and P. Hammonds. Devs/rmi-an auto-adaptive and re-
configurable distributed simulation environment for engineering studies. In Pro-
ceedings of the 2006 DEVS Integrative M&S Symposium (DEVS’06), Huntsville,
AL, 2006.

96

https://en.wikipedia.org/wiki/Ford_E-Series
http://www.w3.org/XML

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kara, Ahmet

Nationality: Turkish (TC)

Date and Place of Birth: 1981, Eskişehir

Marital Status: Married

Email: ahmet.kara@tubitak.gov.tr

EDUCATION

Degree Institution Year of Graduation

M.S. Bilkent University 2006

B.S. Bilkent University 2003

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2003-Present. TÜBİTAK BİLGEM İLTAREN Chief Researcher

PUBLICATIONS

1. F. Deniz, M. Alpdemir, A. Kara, and H. Oğuztüzün. Supporting dynamic sim-

ulations with simulation modeling architecture (sima): a discrete event system

specification-based modeling and simulation framework. Simulation, 88(6):707–730,

2012.

97

2. D. Bozağaç, G. Karaduman, A. Kara, and M. Alpdemir. Sim-petek: A par-

allel simulation execution framework for grid environments. The Journal of

Defense Modeling and Simulation: Applications, Methodology, Technology,

9(4):303–319, 2012.

3. A. Kara, F. Deniz, C. D. Bozağaç, and M. N. Alpdemir. Simulation Modeling

Architecture (SiMA), A DEVS Based Modeling and Simulation Framework. In

Proceedings of Summer Computer Simulation Conference (SCSC’09), pages

315–321. SCS, 2009.

4. D. Bozağaç, G. Karaduman, A. Kara, M. N. Alpdemir. Sim-PETEK : A Parallel

Simulation Execution Framework for Grid Environments. In Proceedings of

Summer Computer Simulation Conference (SCSC’09), pages 275 - 282. SCS,

2009.

5. F. Deniz, A. Kara, M. N. Alpdemir, H. Oğuztüzün. Variable Structure and Dy-

namism Extensions to SiMA, A DEVS Based Modeling and Simulation Frame-

work. In Proceedings of Summer Computer Simulation Conference (SCSC’09),

pages 117 - 124. SCS, 2009.

6. A. Kara, D. Bozağaç, M. N. Alpdemir. Simülasyon Modelleme Altyapısı (SiMA)

: DEVS Tabanlı Hiyerarşik ve Modüler Bir Modelleme ve Koşum Altyapısı. In

Proceedings of İkinci Ulusal Savunma Uygulamaları Modelleme ve Simülasyon

Konferansı (USMOS 2007), pages 271 - 281. 2007

98

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Cross-Resolution Modeling in the Context of Complex Simulation Applications
	Our Contribution
	Connectors for Heterogeneous DEVS Simulations

	BACKGROUND
	Multi-Resolution Modeling (MRM)
	Why is MRM Important?
	Modeling Environment for MRM
	Cross-Resolution Modeling
	Aggregation-Disaggregation

	Event-B
	Refinement
	Proof Obligations

	DEVS
	SiMA
	HLA
	Composability
	Components and Connectors
	Reo

	A Methodology for Entity Resolution Mapping
	The Formal Representation of Converters in a DEVS setting
	Process of Entity Resolution Mapping
	Case Study
	HRE to LRE Mapping
	Using Event-B for Model Data Type Definitions
	Applying Event-B Refinement
	Proving Glue Invariants
	Converter Generation
	Monitor Generation

	LRE to HRE Mapping
	Mapping Based on Assumptions
	External Data Sources
	Implementing Mapping on Event-B

	Mixed Mapping
	Summary

	IMPLEMENTATION IN A DEVS SETTING USING SiMA
	Creating type definitions
	Generating Event-B Machines
	Decorating the Event-B Machines with Glue Invariants
	Generating the Converter Code
	Converter Implementation using SiMA
	Converter Generation
	Compensating for the Shortcomings of Event-B Type System
	Using Invariants for Runtime Verification of Converter Output

	Details on Case Study
	Platform Data
	Sensor Information
	Environment Information

	Lessons Learned
	Name Conflict Problem
	Complex Glue Invariant Problem
	Restrictions of Current Event-B Language
	Proving Glue Invariants Problem
	A Solution Proposal

	DISCUSSIONS
	Discussion of Entity Resolution Mapping Related Work
	Consistency Maintenance
	Staging and Intrusiveness of Resolution Mapping Procedures
	Practicality

	Converters in Relation to Connectors in Component-Based Development
	The Unconventional Usage of Refinement in Entity Resolution Mapping
	Entity Resolution Mapping without DEVS and Event-B
	Modeling Framework
	Formal Language

	Heterogeneous DEVS Simulations with Connectors
	Time Resolution Connectors
	Data Conversion Connectors
	Multi-Input Multi-Output Connectors
	Composite Connectors
	Representing Composite Connectors in Reo
	Case Study
	Time Resolution Conversion
	Data Conversion

	CONCLUSION
	DEVS Connectors
	Future Work
	Automatic Discovery and Re-Use of Resolution Converters
	Increase Interoperability with the Help of Accessor Methods on Data Beans
	Connectors to Enhance Distributed DEVS Approach

	REFERENCES
	CURRICULUM VITAE

