
A TRANSFORMATION APPROACH FROM eEPC TO S-BPM MODELS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

BAŞAK ÇAKAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JANUARY 2014

A TRANSFORMATION APPROACH FROM eEPC TO S-BPM MODELS

Submitted by Başak Çakar in partial fulfillment of the requirements for the degree

of Master of Science in Information Systems, Middle East Technical University

by,

Prof. Dr. Nazife Baykal

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin

Head of Department, Information Systems

Prof. Dr. Onur Demirörs

Supervisor, Information Systems, METU

Examining Committee Members:

Prof. Dr. Semih Bilgen

Electrical & Electronics Engineering, METU

Prof. Dr. Onur Demirörs

Information Systems, METU

Dr. Ali Arifoğlu

Information Systems, METU

Assoc. Prof. Dr. Altan Koçyiğit

Information Systems, METU

Dr. Barış Özkan

Information Systems Engineering, Atılım University

Date: 21.01.2014

v

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name and Surname : Başak ÇAKAR

Signature :

vi

ABSTRACT

A TRANSFORMATION APPROACH FROM eEPC TO S-BPM MODELS

ÇAKAR, Başak

M.S., Department of Information Systems

Supervisor: Prof. Dr. Onur DEMİRÖRS

January 2014, 87 pages

Business process models are vital assets of organizations. The organizations prefer to

use one of the many modeling methods and notations according to its features like

tool support, size of user base, ease of use. During the last decade bottom up process

modeling approaches such as S-BPM started to become popular among

organizations. Many organizations have large process model assets modeled in a top

down fashion. As a result, for most organizations to adopt bottom up process

modeling approaches the existence of transformation algorithms is critical. In this

work, model transformation is proposed as a method to migrate from eEPC to S-

BPM. Direct mapping rules are defined to transform models and the application of

these rules is demonstrated by on a real world case studies.

Keywords: Process Modeling, eEPC, S-BPM, Model Transformation

vii

ÖZ

eEPC MODELLERİNDEN S-BPM MODELLERİNE BİR DÖNÜŞÜM

YAKLAŞIMI

ÇAKAR, Başak

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Onur DEMİRÖRS

Ocak 2014, 87 sayfa

İş süreci modelleri kuruluşların hayati varlıklarıdır. Kuruluşlar, araç desteği,

kullanıcı tabanın büyüklüğü, kullanım kolaylığı gibi özelliklerine bakarak birçok

modelleme yönteminden birini kullanmayı tercih ederler. Son yıllarda kuruluşlar

arasında S-BPM gibi bu süreçleri tabandan yukarı doğru modelleyen yaklaşımlar

popüler olmaya başlamıştır. Fakat kuruluşların elinde yukarıdan tabana doğru

modellenmiş birçok iş süreci bulunmaktadır. Bu nedenle, birçok kuruluş için

önceden modellenmiş süreçleri tabandan yukarı süreç modelleme yaklaşımlarına

dönüştüren algoritmalar kritik bir öneme sahiptir. Bu çalışmada, model dönüşümü

eEPC`den S-BPM`e göç için bir yöntem olarak önerilmiştir. Modellerin

dönüştürülmesi için doğrudan eşleştirme kuralları tanımlanmış ve bu kuralların

uygulamaları durum çalışmaları ile verilmiştir.

Anahtar Kelimeler: Süreç Modellemesi, eEPC, S-BPM, Model Dönüşümü

viii

DEDICATION

To My Family

ix

ACKNOWLEDGEMENTS

I am deeply grateful to my supervisor Prof. Dr. Onur DEMİRÖRS who has guided

me throughout this research with their invaluable suggestions, criticisms and

encouragement.

My most sincere appreciation goes to Banu Aysolmaz. She never hesitated to provide

support whenever I needed it. Our extensive discussions and their comments were

invaluable.

Many thanks go to Murat Salmanoğlu for participating in case study and providing

valuable comments.

I am also thankful to my family for their patience and support during this process.

Last but not least, I would like to thank my love for his love, trust, understanding and

every kind of support throughout this study.

x

TABLE OF CONTENTS

ABSTRACT ... vi

ÖZ .. vii

DEDICATION ...viii

ACKNOWLEDGEMENTS .. ix

LIST OF TABLES ... xii

LIST OF FIGURES ..xiii

LIST OF ABBREVIATIONS .. xv

CHAPTERS

1. INTRODUCTION ... 1

1.1 Motivation .. 2

1.2 Proposed Solution .. 3

1.3 Organization of the Thesis .. 4

2. RELATED WORK .. 5

2.1 Advantages of S-BPM ... 5

2.2 Business Model Transformations ... 6

3. BACKGROUND ... 11

3.1 Business Process Management .. 11

3.2 Business Process Modeling .. 12

3.2.1 eEPC .. 13

3.2.1.1 eEPC Elements ... 13

3.2.1.2 eEPC Modeling Rules... 17

3.2.1.3 eEPC Metamodel ... 17

xi

3.2.2 S-BPM .. 19

3.2.2.1 S-BPM modeling procedure ... 19

3.2.2.2 S-BPM Notation .. 21

4. S-BPM MODELING TOOL ..23

4.1 UPROM ... 23

4.2 S-BPM Editor .. 24

4.2.1 Metamodel of SBD .. 24

4.2.2 Graphical User Interface ... 25

4.2.3 Validation .. 27

5. eEPC to S-BPM TRANSFORMATION ...31

5.1 Model Transformation ... 31

5.2 Mapping Rules ... 32

5.3 Algorithm ... 40

6. APPLICATION OF THE APPROACH ..49

6.1 Case Study Design and Questions .. 49

6.2 Case Study .. 50

6.3 Results and Discussions ... 68

6.4 Threats to Validity .. 69

7. CONCLUSIONS & FUTURE WORK ...73

REFERENCES ..75

APPENDIX A: SBD Validation Rules in Check Language ..79

APPENDIX B: eEPC Diagram of Document Approval Process ..87

xii

LIST OF TABLES

Table 1. Annotations for Subjects types ... 34

Table 2. Annotations for Information, Material and Resource Objects 34

xiii

LIST OF FIGURES

Figure 1. eEPC core modeling elements ... 13

Figure 2. eEPC Logical Connectors‟ usage patterns .. 15

Figure 3. eEPC elements in data view .. 16

Figure 4. eEPC elements in organization view ... 16

Figure 5. Flow elements in eEPC .. 17

Figure 6. eEPC Metamodel from scratch for covered elements 18

Figure 7. The natural language description of Business Trip Application process (adopted

from [5]) .. 20

Figure 8. SBD of Business Trip Application process... 20

Figure 9. SID of Business Trip Application process .. 21

Figure 10. Elements of SID ... 21

Figure 11. Elements of SBD .. 22

Figure 12. Metamodel of SBD ... 26

Figure 13. GUI of S-BPM Editor .. 27

Figure 14. Model Transformation ... 31

Figure 15. Mapping rules for eEPC events .. 33

Figure 16. Mapping rules for eEPC functions .. 33

Figure 17. Resource object transformation rules... 35

Figure 18. Mapping rules for input data objects ... 36

Figure 19. Mapping rules for output data objects .. 37

xiv

Figure 20. Mapping rules for join functions connectors ... 38

Figure 21. Mapping rules for split function connectors .. 38

Figure 22. Mapping rules for join events connectors ... 39

Figure 23. Mapping rule for split event connector .. 39

Figure 24. Mapping rule for Process Path element ... 40

Figure 25. Transformation of eEPC models .. 41

Figure 26. Transformation of path .. 42

Figure 27. Transformation of Function and Process Path element 43

Figure 28. Logical Connector Transformation ... 45

Figure 29. Generated sub-models from one eEPC diagram... 46

Figure 30. Determine models to be generated.. 47

Figure 31. Archiving process in eEPC ... 51

Figure 32. Automatically transformed archiving process for Personnel 52

Figure 33. Automatically transformed archiving process for Archives Officer 53

Figure 34. Manually transformed archiving process for Personnel 54

Figure 35. Manually transformed archiving process for Archives Officer 56

Figure 36. Outgoing document tracking process in eEPC... 57

Figure 37. Automatically transformed outgoing document tracking process 59

Figure 38. Manually transformed outgoing document tracking process 61

Figure 39. Incoming document tracking process in eEPC .. 62

Figure 40. Automatically transformed incoming document tracking process for Editor-in-

chief ... 64

Figure 41. Manually transformed incoming document tracking process for Editor-in-chief 66

Figure 42. Transformed incoming document tracking process for Chief of the unit.......... 67

Figure 43. Transformed incoming document tracking process for Personnel 67

xv

LIST OF ABBREVIATIONS

ARIS : Architecture of Integrated Information Systems

BDD : Business Driven Development

BPEL : Business Process Execution Language

BPM : Business Process Management

BPMN : Business Process Modeling Notation

CPN : Colored Petri Nets

CSD : Communication Structure Diagram

EMF : Eclipse Modeling Framework

eEPC : Extended Event-driven Process Chain

EPC : Event-driven Process Chain

ERD : Entity Relationship Diagram

FAD : Functional Analysis Diagram

FTD : Function Tree Diagram

GMF : Graphical Modeling Framework

IT : Information Technology

oAW : OpenArchitectureWare

OC : Organizational Chart

oEPC : Object-oriented Event-driven Process Chain

SBD : Subject Behavior Diagram

S-BPM : Subject-oriented Business Process Management

SID : Subject Interaction Diagram

SMRG : Software Management Resource Group

TCPN : Timed Colored Petri Nets

UPROM : Unified Process Modeling Tool

YAWL : Yet Another Workflow Language

1

APTER

CHAPTER 1

1.INTRODUCTION

Business process management (BPM) becomes more crucial for organizations to

maintain competitive advantage recently. BPM is the discipline of defining and

outlining business practices, processes, information flows, data stores and systems

[1]. It supports design, administration, configuration, enactment, and analysis of

business processes. It also provides organizations to improve the performance of

business processes in a short time and to respond changes in the market rapidly.

Therefore; BPM increases customer satisfaction with quick responses and reduces

business and service cost. Business process models are the main artefacts of BPM.

Business process models describe logical order of activities and dependencies in

organization [2]. Business process modeling is an important part of understanding

and restructuring the activities and information of enterprise systems to achieve

organization‟s business goals. Business process models are used to analyze process

efficiency and quality by business analysts and managers. Additionally they are used

to analyze system requirements and to design system architecture. Thereby models

helps to narrow gaps between business processes (organization) and IT systems

(technology). There are many modeling languages to visualize system specifications

and process execution. In the frame of this study, we particularly focus on eEPC and

S-BPM languages.

EPC is a business process modeling technique developed by Scheer et al. at the

Institute for Information Systems in Germany, in 1990s [3] [4]. EPC represents

business process as an ordered graph which shows chronological sequence and

logical interdependencies between elements. In order to model more complex

business processes, EPC notation is extended with additional elements from the

organization and data view, which is called eEPC (extended Event-driven Process

Chain). It is relatively simple notation to model business processes and highly

accepted by the practitioners from diverse areas for business process re-engineering,

management and documentation. eEPC is one of the most frequently used modeling

notations for top down process modeling approaches. Top down approach focuses on

overall business process and business strategy of organizations supported by that

process. In eEPC sequence of activities, relationships between actors and data flow

of process are modeled in the first step. In other words, the big picture up-front is

given in eEPC models.

2

S-BPM (Subject-oriented Business Process Management) is a paradigm that is

developed by Albert Fleischmann [5] to describe and execute business processes

from the perspective of subjects. S-BPM gets inspired from natural languages and the

structure of S-BPM is similar to sentence structure of natural languages. According

to S-BPM, subjects are active elements in a business process. Therefore, they should

be the starting point of the activities (like natural language sentences) [6]. S-BPM

diagrams can be directly derived from process descriptions in natural language

representation. Subjects execute business processes by exchanging messages with

each others. Interactions between subjects are shown in the Subject Interaction

Diagram (SID). SIDs visualize subjects and data flow (exchange messages) among

them. Internal activities of subjects are shown in Subject Behavior Diagram (SBD).

S-BPM uses top down approach in determining communication between subjects and

uses bottom-up approach in determining internal behavior of subjects.

In the industry EPC is widely accepted during the last decade by means of ARIS

toolset. A number of organizations represented their processes using eEPC.

However; there is a gap between business and information technology systems in the

eEPC [7]. S-BPM helps organization to close that gap. S-BPM enables to create

dynamic business applications and to integrate them into the existing systems

seamlessly. This also provides organizations, which use S-BPM as modeling

language, competitive advantage. In addition to this, S-BPM provides a better

representation for human interaction patterns and its notation is simple and easy to

understand (only a few symbols). As an alternative to EPC, S-BPM gaining ground

with IT support. S-BPM modeling language is based on process algebra with a clear

formal semantics and this allows automatic code generation. Extensive usage of

EPCs forces other modeling methods to accept EPCs as an input and transfer EPC

information into their own needs [8]. Migration of legacy eEPC models requires

considerable effort and substantial costs. Furthermore, it‟s a labor intensive work

which increases the usage of personal resources and costs dramatically.

In this work mapping rules are defined to transform eEPC models to S-BPM models

and automatic transformation is realized. Model transformation is adopted as a main

method to provide automation. A model transformation takes a source model and

transforms it into a target model by using predefined transformation definition (rules)

[9]. The transformation definition is executed on concrete models by a

transformation engine. In order to automate eEPC to S-BPM transformation a plug-in

in UPROM is developed. UPROM stands for Unified Process Modeling Tool which

is developed by Bilgi Grubu and SMRG Research Group.

1.1 Motivation

In the literature there are numerous studies on transformations between modeling

notations. Since S-BPM is a new modeling paradigm, a very small part of them

studied on S-BPM. Studies which compares S-BPM notation to others states that S-

BPM usage increases inevitably because of its advantages. Proposed solutions related

to S-BPM transformation are generally focuses on the generation of SIDs instead of

SBDs. None of these works provides a concrete and explicit method to transform

3

eEPC models to S-BPM models. Therefore; the main motivation of this thesis is

provide a guideline to generate SBDs from eEPC models.

In contrast to eEPC, S-BPM is a bottom up business process modeling paradigm.

Business processes are constructed from the base upwards. Actions of subjects are

defined firstly and they are linked together to form processes and procedures.

Changes in business strategy of organizations lead frequent changes in core business

processes of organizations. Bottom up approaches provide to handle these changes

more rapidly and smoothly. In addition to this, S-BPM helps organizations to

distribute responsibilities to accomplish a process to different units, groups or

positions in the organization. Besides that, S-BPM is simple and understandable for

software developers and stakeholders thus they can easily involve in modeling

process and give feedbacks. All of them make S-BPM more preferable for

organizations. However; many organizations have large process model assets

modeled in a top down fashion. Therefore, a transformation tool is necessary for

most organizations to adopt bottom up process modeling approaches.

There is only one tool for S-BPM language called Metasonic Suite. It is a

commercial tool and does not comprise all SBD notations such as macro class and

choice operator. This obligates modelers to model business processes by using

limited number of S-BPM elements. Thus providing a more comprehensive modeling

tool for S-BPM language is another motivation of this study. Since our tool is based

on open source bflow* toolbox, it also enables organizations to minimize tool costs.

Modelers can easily model business processes by using graphical user interface of S-

BPM editor.

By defining mapping rules, manual transformation process is simplified for

modelers. In addition an automatic transformation is also supported. Currently there

are no tools to transform eEPC models to SBDs. It is also implemented in UPROM

as a new feature. Automatic transformation provides modelers to adapt previously

modeled business processes to S-BPM paradigm confidingly in a short time with

minimum effort.

1.2 Proposed Solution

In order to solve problems in S-BPM modeling and eEPC to S-BPM transformation,

in the following main outcomes of the proposed solution is given.

 S-BPM Editor: It is added to UPROM as a plug-in. It provides process

modeling ability in S-BPM to UPROM. S-BPM editor provides modelers to

construct process models graphically. Visual markers for core elements of

SBD are satisfied by the editor. It also provides continues verification during

modeling. Continuous verification feature provides modelers to recognize

problems in the model during modeling time and prevents to develop IT

systems wrongly.

 Validation rules for SBDs: Syntax and semantic rules are defined for SBDs.

They include constraints on inter-elements relations and element sequence.

Besides that, generated models should be verified to ensure that the model

4

does not contain errors, the validity of those models are automatically

checked by the developed plug-in with those rules.

 Guideline for eEPC to S-BPM transformation: This works provides a

guideline for manual transformation. Mapping rules are described for most

commonly used eEPC elements. While defining mapping rules, different

patterns which are the different combinations of elements are also taken into

consideration to maintain semantic meaning.

 Transformation Algorithm: In the scope of this study, a transformation

approach is also provided and the algorithm of transformation is given in

detail. This provides an opportunity to other researchers to improve the

algorithm for future studies. Transformation algorithm mainly focuses on the

separation of eEPC model into SBDs according to subjects who accomplish

the process and shows how to transform eEPC models in SBDs.

 Transformation Engine: As a proof of concept, transformation approach and

mapping rules are implemented as a plug-in in UPROM. This

implementation gives an idea, how defined transformation can be

implemented and realized.

1.3 Organization of the Thesis

The remainder of the thesis is structured into seven chapters.

Chapter 2 summarizes the literature related to advantages of S-BPM and

transformations between different business modeling languages.

Chapter 3 explains Business Process Management, Business Process Modeling,

eEPC and S-BPM concepts.

Chapter 4 UPROM and S-BPM plug-in are explained. Metamodel of SBD, graphical

user interface of S-BPM Editor and validation rules implemented in the editor is

given.

Chapter 5 describes the proposed method in detail. The model transformation

approach and mapping rules defined for transformation are described. Applied

transformation algorithm is also explained in this chapter by the help of flow charts

and description of them.

Chapter 6 presents the application of the eEPC to S-BPM transformation on a case

involving multiple business processes in a public institute. Questions of the study,

data collection and analysis strategies are explained. The conduct of the case is

briefly described, automatic and manual transformations of selected processes and

comparisons of transformations are given. Strengths and weaknesses of proposed

solution are discussed and the outcomes of the case study are analyzed also in this

chapter.

Chapter 7 presents the conclusions reached and summarizes the contribution and

significance of this research.

5

CHAPTER 2

2.RELATED WORK

Business Process management, business process modeling and modeling notations

are studied by several researchers in the literature. There are numerous studies on

transformations between modeling notations. Since S-BPM is a new modeling

paradigm, a very small part of them studied on S-BPM. However; there are also

studies which compares S-BPM notation to others and conclude that S-BPM usage

increases inevitably because of its advantages. Therefore, automatic transformation

to S-BPM becomes critical. This chapter summarizes the literature related to

advantages of S-BPM and transformations between different business modeling

languages. In section 2.1, contributions of S-BPM approach to business process

management are given. In second section 2.2, various transformation studies between

business process modeling languages in the literature are explained.

2.1 Advantages of S-BPM

S-BPM is a bottom up business process modeling approach which is used to describe

and execute business processes from the perspective of subjects. The structure of S-

BPM is similar to sentence structure of natural languages. Thereby, S-BPM models

are simple and understandable for software developers and stakeholders and they can

easily involve in modeling process. The details of S-BPM approach is given in

Chapter 3.

There are numerous notations for business process modeling such as UML Activity

Diagrams, Business Process Modeling Notation (BPMN), Event-driven Process

Chains and Petri nets widely used in the industry. A new paradigm, S-BPM

introduced and it has contributed a lot in business process modeling. Those

contributions make S-BPM more preferable by modelers.

In [10], Aguilar-Savén compares different modeling languages in terms of message

exchange, communication partner‟s role, process flow and timing, visualization of

none sequential process steps, understandability and clear structure of models in

order to find the most suitable language for a specific project. According to this study

S-BPM is very successful in visualizing message exchange between subjects.

6

Behavior of the communication partners is also well defined in S-BPM and it has a

comprehensive notation.

In [11], Fleischmann et al. state that modeling business processes with respect to

subjects has many advantages. Firstly S-BPM notation has few basic elements for

modeling. Thus, learning and applying this approach is easier and quicker than other

languages. Secondly, in S-BPM models are constituted from subjects, predicates and

objects like natural languages. This makes models more simple and understandable

for software developers and stakeholders can easily involve in modeling process. S-

BPM provides executable models and in this way it bridges the gap between business

models and IT systems. Finally, S-BPM models integrate functional and data-driven

processes technologies. In addition to advantages mentioned in [11], Rodenhagen et

al. [12] compare different modeling languages with regard to the usage of multiple

instances. Multiple instances are not supported by EPC; on the other hand S-BPM

provides simple notations to visualize multi subjects and repetitive subject behavior.

In [7], Singer et al. explain which features of S-BPM make it a valuable alternative

for competitive advantage. According to Singer et al. S-BPM is valuable because it

provides „IT support‟, „an integrated message orientation‟, „a behavior oriented

modeling approach‟, „a puristic set of graphical symbols‟, „natural language based

process modeling‟ and „process models with strictly formal definition‟.

2.2 Business Model Transformations

In literature, there are most of studies on business model transformations that support

by different motivations. Those are verification, bridging the gap between business

models and IT systems, increasing understandability and necessity of following new

modeling techniques. Generally unidirectional transformations are defined and a

subset of source models elements is used.

2.2.1 Transformations from BPMN

In [13], Dijkman et al. check the semantic correctness of BPMN models by

transforming them into Petri nets. Since Petri nets have more efficient analysis

techniques, defining semantics of BPMN as mapping is preferred. Mapping rules

from BPMN to Petri nets are described in detail for large subset of BPMN element.

Rules are mainly focus on functional features and control flows (the order of

activities and events) and message flows. This study omits the non-functional

features such as groups and associations and organizational features such as lanes

and pools. Rules for well-formed BPMN process are also defined, which are

restrictions for control flows, start events and end events. They guarantee that all

nodes are connected. van der Werf et al. [14] also use BPMN to Petri net

transformation for verification and validation of BPMN models and define their own

mapping rules. Mapping rules defined in those studies are completely different. Since

there are not direct mapping between BPMN elements and Petri net elements.

In [15] and [16], transformation rules from BPMN to UML Activity diagram are

defined without losing semantic meaning. The motivations are supporting Business-

7

Driven Development (BDD) and closing the gap between business process modeling

and its realization. According to BDD, IT solutions should satisfy business

requirements. UML is chosen because it is well accepted implementation standard in

the industry and there are tools which generate the source code of UML models

automatically. Automatic transformation from BPMN to UML Activity diagrams

reduces time and resource usage for implementation. In [15], transformation rules are

explained under six groups. They are direct transformation rules (one-to-one

mapping), complex transformation rules, data transformation, transformation rules

for loops, gateways and stereotypes. Bảo [15]combines the presentation power of

BPMN with the implementation power of UML and gives a proposal for

transformation. In [16], defined transformation rules are realized by ATL

transformation language. The study focuses on explaining the implementation details

in contrast to [15]. As a result of those studies, generated UML models should be

checked by business modelers because it is not guaranteed that all elements in

BPMN are transformed into UML Activity diagram without losing any information.

However, in any case automatic transformation reduces the need for manual work.

2.2.2 Transformations from EPC/eEPC

eEPC is an top down business process modeling approach and it is widely used for

modeling, analyzing and redesigning business processes by organizations. Business

processes are visualized as an ordered graph in eEPC. eEPC diagrams show

chronological sequence and logical interdependencies between functions and events.

eEPC notation is explained in Chapter 3 in detail.

In [17] Hoyer et al. transform organizations‟ internal private processes to public

processes. Internal private processes are modeled by eEPC modeling language and

they include technique details about organization‟s internal business processes.

However; public process view also required for external business partners. BPMN

modeling language is selected for public process models. Since BPMN models are

more easily understood by non-technical people. Transformation is performed semi-

automatically. In the first part of the transformation original eEPC model is

simplified and information hiding is applied. In this stage, trivial events are

eliminated and events which initiate connectors are deleted. Organization units,

positions and groups are removed. Only functions which send or receive message

take into consideration, others are dropped and process interfaces are also dropped to

get rid of hierarchical structure. In the second part mapping rules for eEPC to BPMN

transformation are defined. As a result of this work one directional mapping is given.

It is inferred that event mapping requires user interaction in order to save semantic

meaning.

In [18], Tscheschner describes a direct mapping technique to convert eEPC to BPMN

and defines transformation rules to map eEPC elements to BPMN elements. The

main motivation of this work is that BPMN becomes more popular in the industry

and automatic transformation is required to transform tons of business processes

modeled by eEPC for rapid adaptation. Rules are defined for core EPC elements and

extended EPC elements. Additional semantic rules for sending and receiving events

are also defined. This work is realized as a plug-in in the Oryx-Editor. However;

8

eEPC and BPMN differ in their semantics and formalization. Therefore, a complete

mapping (structural and semantic) is almost not achievable by solely using direct

mapping for each and every component. In order to get complete one, elements of

core EPC definition and a subset of eEPC elements are used for mapping. In [19]

Levina investigates that whether the significant change in information content or not

in eEPC to BPMN transformation. It gives a generic mathematical strategy for

information context measurement. The study in [18] is used as an example.

Information loss occurs during transformation however measurement results show

that information content of the model is not change significantly. Additionally,

Levina concludes that the size of the eEPC model do not increase the information

loss.

In [20] Korherr et al. states that eEPC to UML transformation is critical to bridge the

gap between business process engineering and software engineering. EPC diagrams

are the starting point of software development since they are used to elicit

requirements by software developers. They are also used to check the compatibility

between the functions of an existing system and requirements of new business

processes. In order to provide models to software developers in a well-known

notation, EPC models should be converted to UML. This work gives a guideline to

transform eEPC models to UML Activity Diagrams. New stereotypes, constraints

and tag values are used to extend UML notation and cover more EPC elements.

Mapping rules are defined in four categories; Functions and events, Additional

process objects (data objects and actors), Flows (control, data and organization) and

logical operators. Constraints which an EPC should satisfy are also defined as

transformation prerequisites. Consequently; this work supports the business-goal

oriented software development and provides software engineers to improve the

quality of software system‟s requirements and design with minimum modeling effort.

 In [21], Nüttgens et al. introduce an integration approach called by “The Object-

oriented Event-driven Process Chain (oEPC)”. Relations between EPC and UML

diagrams (use case, activity diagram, class diagram and application architecture

diagram) and transformation approach for each UML diagram are defined. For each

diagram, different subsets of eEPC elements are used for transformation. For activity

diagrams; functions and data object are transformed and others are omitted. Use case

diagrams are constructed from functions and organizational units. For class diagrams

functions and information objects are used. Each application (IT System) is

transformed into an application architecture diagram and inner details of components

are design from scratch. In this study, mapping between EPC and UML elements is

not stated; only structural transformation approach is explained.

In [22], Loos et al. gives a different integration approach. Instead of translating EPC

models into UML models, new object oriented extensions are defined for eEPC.

Motivation of the study is the same as [20]. UML diagrams are used for system

design and cover all system requirements. However; it is not sufficient to design and

model business processes. Therefore integration of UML and business process

modeling languages is critical. EPC notation is extended to cover class concept, data

encapsulation, message concept, object hierarchies and inheritance. In this work,

they define transitions between UML elements and EPC elements for class diagrams,

9

use case diagrams, statechart diagrams, sequence/collaboration diagrams and activity

diagrams separately. This approach is implemented in ARIS Toolset. This study

provides to combine process analysis phase and object oriented design and

implementation phase.

In [23], eEPC models are transformed to Timed Colored Petri nets (TCPN) in order

to check correctness of eEPC models. Errors in process design cause errors in

developed system as well and error correction process becomes costly. Therefore,

identifying and fixing errors in business process modeling phase is vital. All EPC

elements can transform into places and transitions of Petri nets. Besides that in timed

colored Petri nets additional features (data, time and probabilities) are available to

map extended EPC elements. Additionally available CPN Tools support model

checking for TCPNs. Therefore, TCPN is the best choice for verification. This study

provides eEPC patterns and their corresponding TCPN patterns and describes how to

verify the correctness of eEPC with the CPN Tools.

In [24] Lohmann et al. provides a survey about transformations of business process

models into Petri nets. Since Petri net has formal semantics and it can be verified in a

formal way, it is more preferable by academic people. However in the industry,

business people prefer to use business languages like BPEL, BPMN, and EPCs. In

contrast to academic languages, business languages do not have a proper semantics.

Thus the interpretation of models changes according to modeler. In order to verify

business process models by using Petri net verification techniques, transformation is

required. This work investigates transformation studies from business models

(BPEL, EPCs, YAWL, and BPMN) onto Petri nets. Challenges which are

encountered in transformation are explained. Those are related to mapping

difficulties and semantic problems. As a conclusion Lohmann et al. states that there

is no chance to transform all element combinations with saving its semantics. Thus

restrictions for source business models should be determined.

2.2.3 Transformations from S-BPM

In [25] Sneed states that BPMN is a worldwide standard. On the other hand, S-BPM

provides modelers to model distributed system and S-BPM process models can be

easily converted into abstract state machines and hence executable code. Thus, the

usage of S-BPM increases inevitably in the industry. The goal of this study is

providing a mapping method to modelers so as to transfer S-BPM models into

BPMN models readily without losing information as much as possible. The method

consists of a set of bidirectional mapping rules between subsets of both modeling

languages. Since BPMN specification is inadequate for execution in terms of

semantics, the method does not support the transformation of executable models.

There is remarkable difference between business models and their executions in

BPMN.

Transformation consists of two main parts. In the first part rules for atomic structures

are defined which are basic modeling constructs. One-to-one mapping for them is not

possible since some of the elements in BPMN can only be expressed in S-BPM by

multiple elements. Sneed transforms a subset of BPMN elements which includes

10

manual tasks, service tasks, receive tasks, send tasks, sequence flows, conditional

forks and process participants. Main challenges of the first part are transformation of

multiple receive tasks and events. The first part of the transformation provides

mapping for Subject Behavior Diagrams. In the second part, mapping rules for

complex structures are defined. Complex structures are used to visualize the

communication view between subjects. In this part pool and participants in BPMN

are mapped to subjects and collaboration entities are mapped to S-BPM process

entities.

In the conclusion of the study, losses of transformation between both modeling

languages are analyzed. The most problematic parts of the BPMN to S-BPM

transformation are lane sets, parallel gateways, user tasks, activity callers, events and

annotations (group, documentation and text). In S-BPM to BPMN transformation,

usage of business objects, multi subjects, roles are difficult to map without losing

information. Defined transformation method is implemented as an eclipse plug-in in

the Metasonic suite.

11

 CHAPTER 3

3.BACKGROUND

In this chapter information about related concepts are given in order to increase

understandability of the study. In Section 3.1 objectives, phases and key points of

Business Process Management are described. Section 3.2 explains Business Process

Modeling concepts and modeling notations. Only eEPC and S-BPM notations are in

the scope of this study. Therefore, details about eEPC and S-BPM are given in sub-

sections 3.2.1 and 3.2.2 respectively.

3.1 Business Process Management

Weske [1] defines Business Process Management (BPM) as „Concepts, methods, and

techniques to support the design, administration, configuration, enactment, and

analysis of business processes‟. Recently BPM becomes indispensable for

organizations to maintain competitive advantage because it provides organizations to

improve the performance of business processes. Business processes are set of

activities performed to realize organization‟s business goal in organizational and

technical environment [1]. Rapid improvement of business processes satisfies

changes in the industry, increases customer satisfaction, reduces business and service

cost and makes easier to establish new products. Thus, from the business

administration point of view BPM is necessity. Most of the business rules are

supported by information systems to be performed and BPM helps to narrow gaps

between business processes (organization) and IT systems (technology). Therefore,

BPM is also critical for computer science communities. In organizational

environment analysts investigates process requirements by interacting customers and

models them as a set of process activities. Those processes are the abstractions of

real world processes. Provided models from process abstractions provide to detect

structural deficiencies beforehand. In this way, verified processes are provided to IT

developers for technical design and realization. BPM provides organizations to

manage changes in those business processes in an effective and efficient way. BPM

includes the following steps [26]:

 Identify changes in processes: In this step, required changes in business

processes are identified by managers. Those changes can be the result of

12

defining or modeling business process wrongly in organization level, being

need of more efficient models to improve business performance or the

necessity of creating new products.

 Analyze existing processes: In this step, modelers identify inefficiencies

such as redundant steps, paper-intensive tasks and bottlenecks in the business

process. Required changes are measured in terms of time and cost. Besides

that results of those analyses are documented to make decision stage easier.

 Design new processes: The process is redesigned by determined changes

taking into consideration. Redesigned processes are also modeled and

documented in order to compare with the old processes.

 Implement the new processes: New set of procedures and work rules are

defined for redesigned process. Either the process is implemented from

scratch or existing systems are enhanced to support redesigned process.

Additionally, optimization of the redesigned process is performed by

developers.

 Continues measurement: Implemented and optimized processes are

measured continuously in order to identify the necessity of change. If change

is necessary BPM steps are performed from the first step.

In order to apply BPM effectively in an organization, key points given in the

following should be considered [27].

 Major BPM activities have to be mapped and documented

 Customers needs have to be taken into consideration

 Processes should be relies on IT systems in order to be consistent and

repeatable

 Measurement activities for processes should be well-defined to assess the

performance

 Process improvements should be incremental and ongoing

 Best practices should be taken into consideration in order to achieve superior

competitiveness

3.2 Business Process Modeling

Business process models are the main artefacts of Business Process Management.

They visualize a set of activities and states that constitute a business process in their

execution order [28]. Models include information (data), materials and resources that

are used or produced during process execution. Execution constraints and business

rules are also defined graphically in process models. They are used to analyze

process efficiency and quality by business analysts and managers. Besides that, those

models are the basis of process-aware Information Systems‟ construction [29]. They

are used to analyze system requirements and to design system architecture.

There are numerous modeling languages to visualize system specifications and

process execution. In this study, two of those languages are used for transformation;

eEPC and S-BPM. Those business process modeling notations are well known and

13

established in research and practice. In the following sub-sections brief explanations

about those notations are given.

3.2.1 eEPC

eEPC stands for “extended Event-driven Process Chain”. EPC is developed by

Scheer et al. within the ARIS (Architecture of Integrated Information Systems)

framework at the Institute for Information Systems in Germany, in 1990s [3] [4].

EPC represents business process as an ordered graph which shows chronological

sequence and logical interdependencies between elements. Basic elements of EPC

are functions and events. By logical connectors business relevant decisions are

visualized and complex control flows are modeled. Since its notation is easily

understood by business people, it is preferred by them to plan, design, simulate and

control their business processes. However EPC notation is inadequate to show data

flows, responsibility of actors, the use of IT systems, etc. Therefore, EPC notation is

extended with additional elements from the organization and data view, which is

called eEPC (extended Event-driven Process Chain). It is relatively simple notation

to model business processes and highly accepted by the practitioners from diverse

areas for business process re-engineering, management and documentation.

3.2.1.1 eEPC Elements

eEPC models lays out business process work flows and visualize the flow of events

and functions, performers of functions, inputs and outputs (products/services) of

functions and supporting application systems. The core elements of eEPC notation

are events, functions, process paths and logical connectors (“and”, “or” and

“exclusive or”) (Figure 1).

Figure 1. eEPC core modeling elements

 Events are passive elements, they shows the initial and final state of related

function. There are three types of events in the EPC; start event, internal

event and end event. Start event shows in what condition the business process

starts. Internal events indicate pre-conditions and post-conditions of

functions. End events show the result of the business process.

14

 Functions are active elements that show tasks or activities need to be

executed to support a business goal. A function is triggered by an event and

leads to the occurrence of an event when it is performed. In this way,

functions describe transformation from the initial state to end state.

 Process Paths serves as navigation and establish a connection with other

processes.

 Logical connectors show the logical relationships between functions and

events in the control flow. They combine functions and events and connect

those function-event combinations in order to represent alternative or parallel

executions. They are also used to show decision stages and loops in the

process. Each connector type can split one control flow into two or more

control flows or can concatenate two or more control flows. There are three

types of logical connectors; “and”, “or” and “exclusive-or”. Logical

connectors can be categorized according to their usage patterns (Figure 2).

o Join_Functions. This pattern includes a logical connector (“and”, “or”

and “exclusive or”) with two or more incoming control flows coming

from a function and one outgoing control flow going to event. “and”

connector concatenates and synchronize active control flows

(incoming) and activates the result event which occurs after

accomplishment of all active functions. “or” connector shows that if

one of the functions is accomplished, the following event is fulfilled.

“exclusive-or” connector is used if accomplishment of exactly one of

the functions is expected to fulfill the following event.

o Split_Function. This pattern includes a logical connector (“and”, “or”

and “exclusive or”) with one incoming control flow coming from a

function and two or more outgoing control flows going to event.

“and” connector splits post-conditions (output situations) which occur

by accomplishment of the previous function and activates outgoing

control flows in parallel. “or” connector is used to show that when

function is accomplished, at least one outgoing control flows are

activated. In other words, at least one post-condition is satisfied. And

finally “exclusive-or” connector is used if exactly one of the events is

fulfilled after the accomplishment of the function.

o Join_Events. This pattern includes an “and” connector with two or

more incoming control flows coming from an event and one outgoing

control flow going to a function. “And” connector concatenates

preconditions to activate the following function (outgoing control

flow). “or” connector is used to show that if at least one precondition

is fulfilled, outgoing control flow is activated by “or” connector.

“exclusive-or” connector is used if the outgoing control flow is

activated after exactly one of the events is fulfilled.

15

o Split_Event. This pattern includes an “and” connector with one

incoming control flow coming from an event and two or more

outgoing control flows going to a function. “and” connector activates

the outgoing control flows in parallel when the precondition(event) is

satisfied. It is not used with “or” and “exclusive-or” connectors.

Figure 2. eEPC Logical Connectors‟ usage patterns

eEPC also includes additional notations for data and organization view (Figure 3).

Data view includes information, material and resource objects which are related to

functions but they do not have a chronological order on the process workflow.

Document, list, log, product and file are data types which are produced as output

after the execution of a function or used as input to execute a function. Application,

reference and business rules are thought as resource objects which are used as a

service.

16

Figure 3. eEPC elements in data view

In organization view, organization unit, group and position elements are used as

performers (Figure 4). If a performer is connected to a function, it shows who

responsible for a function to execute. Besides that, it shows who send or receive data

if a performer is connected to a data object. Organization unit refers the unit within

the structure of the organization which is responsible for a specific business goal.

Group are people who work together to perform a specific business process in the

organization. Position is the smallest unit of an organization and it is assigned to

employees.

Figure 4. eEPC elements in organization view

In order to connect elements and visualize the flow between those elements, flow

notations are used (Figure 5). Control flows show the transition between events,

functions and process paths and constructs the business process as a chain.

Information flows depicts the data flow between data and function or between data

and process path. It can be used bidirectionally. If the source of information flow is a

data object, which means that it is used by target function or process path as an input.

If the target is a data object, it shows that data is produced by target function or

process path as an output. Relation is used for organizational unit assignment, to

show applications and references used during execution of connected function and to

show constraints of a function.

17

Figure 5. Flow elements in eEPC

3.2.1.2 eEPC Modeling Rules

W.M.P. van der Aalst gives a formal definition which explains the requirements of

an EPC element and defines the core elements as well [30]. Kees van Hee et al.

define extended-EPC (eEPC) by providing syntax and semantics [23]. Those studies

provide a foundation for our transformation and validation rules. In order to validate

an eEPC diagram the following rules are used [30] [23]:

 There must be at least one start event,

 There must be at least one end event,

 All elements must be connected,

 All functions or process paths must have exactly one incoming and one

outgoing control flow,

 Events cannot be consecutive to each other,

 Split connectors must have one incoming control flow and more than one

outgoing control flow,

 Join connectors must have more than one incoming control flow and one

outgoing control flow,

 An event cannot be followed by “OR” or “XOR” connector.

 Except start and end events, logical connectors should be used in pairs.

Each logical connector block should be opened and closed by the same

connector.

3.2.1.3 eEPC Metamodel

In this study, a subset of eEPC elements is covered for transformation. In order to

elaborate those elements and their relationships, composed meta-model is

depicted in Figure 6. It is based on the formal definition of EPC defined by

W.M.P. van der Aalst [30] and eEPC Kees van Hee et al. [23]. According to our

meta-model, a process consists of at least five process elements (start event,

function, end event and control flows between them). Process elements can be

workflow elements (function, event, process path, control flow, split connector

and join connector) or extended elements (data object, resource object, actor,

information flow and relation). eEPC workflow elements are consecutive to each

other to form a process flow. Core elements (function, event and process path)

are connected to each other by control flows. Data objects (document, list, log,

product and file) are connected to functions or process paths via an information

flow and they are connected to an actor via a relation. Relation also connects

functions and process paths to actors and resource objects (application, reference

and business rule).

18

F
ig

u
re

 6
.
eE

P
C

 M
et

am
o
d
el

 f
ro

m
 s

cr
at

ch
 f

o
r

co
v
er

ed
 e

le
m

en
ts

19

3.2.2 S-BPM

S-BPM stands for “Subject-oriented Business Process Management”. It is a new

paradigm that is developed by Albert Fleischmann [5] to describe and execute

business processes from the perspective of subjects. According to S-BPM, subjects

are active elements in a business process. Therefore, they should be the starting point

of the activities (like natural language sentences) [6]. S-BPM gets inspired from

natural languages and the structure of S-BPM is similar to sentence structure of

natural languages. The main motivation of this approach is that, task or process

descriptions are always initially documented in natural language and they are

complemented with diagrams [31]. In S-BPM, those diagrams can be directly derived

from process descriptions in natural language representation and they show the

communication between people and describe the activities of the people involved.

Since natural language descriptions are understood by all people immediately, S-

BPM models are also understood easily by nontechnical people.

3.2.2.1 S-BPM modeling procedure

S-BPM uses bottom-up business process modeling approach. In this approach;

responsibilities of actors in organizations are defined firstly and in detail. Then the

message exchange between these subjects is modeled in order to show whole

process. S-BPM uses natural language sentence structure while modeling business

processes as well. Natural language sentences are formed from Subject, Predicate

and Object. Subjects are the starting points for describing a situation or a sequence of

events, predicates are actions which are performed by subjects and objects are the

targets of actions. While generating S-BPM models from natural language

description of processes, following activities are performed [32];

 Identify subjects involved in the process. Subjects are the result of “Who

acts?” question. Unique names of identified subjects with a brief description

are documented in this phase.

 Identify activities of subjects. Activities are the result of “What does the

subject?” question.

 Identify business objects. They are the result of “What edits the subject?”

question. Business objects can be collections of materials, such as a list of

documents, electronic forms, applications being used and data record and

data element descriptions, etc. Those objects are attached to messages in

Subject Interaction Diagrams (SID) and they are exchanged between subjects.

 Detail behaviors of individual subjects. In this phase Subject Behavior

Diagrams (SBDs) are formed.

Figure 7 shows the natural language description of Business Trip Application

process. The subjects are underlined, predicates are marked by rectangles and objects

are marked by rounded rectangles. In this way subjects, activities and business

objects are identified.

20

Figure 7. The natural language description of Business Trip Application process

(adopted from [5])

In SBD, behavior of employee is detailed (Figure 8). All identified predicates are

represented by subject states. Sequence of those predicates is also sequence of states

in the diagram.

Figure 8. SBD of Business Trip Application process

Business trip application process is performed by employee and manager is a

participant. Thus in SID, employee and manager should be represented as subjects.

Business objects are transmitted between those subjects. In the second sentence

business trip request is sent to manager by employee. In the following sentences it is

shown that employee receive approval or rejection information from the manager.

SID of the process is given in Figure 9.

21

Figure 9. SID of Business Trip Application process

3.2.2.2 S-BPM Notation

While generating S-BPM models from natural language description of processes,

sentences are analyzed and subjects, actions of those subjects and business objects

are identified and finally Subject Interaction Diagram (SID) and Subject Behavior

Diagrams (SBDs) are formed.

SID is also called as “Communication Structure Diagram (CSD)”. SIDs show the

process performed by more than one actor as a whole. They show subjects and

message exchange between those subjects. Figure 10 shows the elements of SID.

SIDs consist of three elements; Subject, Message and Business objects. Subject

element is used to show actors or participants in business processes. Business objects

are attached to message flow and they are used to visualize interactions between

subjects during the execution of the process. Business objects are physical or logical

“things” which are required to process business transactions.

Figure 10. Elements of SID

SBDs show the internal behavior of a subject. SBDs consist of a series of states

(send, receive and function state), macro classes and choice operators. Figure 11

shows the elements of SBD. Function, send and receive states can also be start and

end states. Start states trigger the process and marked by a triangle in the upper left

corner. End states are the last states of the process and when they are performed, the

process is terminated. They are marked by a triangle in the lower right corner.

22

Figure 11. Elements of SBD

 Function states (Performing functions) represent internal actions of the

subject (process owner). They are assigned to services. To reach function

states, associated services should be executed. End conditions of the executed

service correspond to the exits of the respective internal function state.

 Send states (Sending messages) are used to show sending messages (with

business objects) to other subjects. Information of receiver (subject) and

received data are shown in the outgoing transmission.

 Receive states (Receiving messages) are used to show receiving messages

(with business objects) from other subjects. Information of sender (subject)

and received data are shown in the outgoing transmission.

 Macro Classes are used to show sub-processes which are repeated in

different SBDs to avoid redundant repetitions and includes behavior

sequences. The notation of macro class consists of three parts, in the first part

valid start states which activate the sub-process are shown. Name of the

macro (sub-process) is shown in the second part. And in the final part the

output of the sub-process are shown.

 Choice Operators provides to model overlapping actions without specifying

strict sequence. They consist of a number of parallel paths which are

activated simultaneously. Multipath structure starts and ends with a bar which

includes beginning and end switches for each path. Set beginning switch

means that related alternative path must be started and if it is not set

alternative path does not have to be started. Set end switch means that related

alternative path must be completed if it is started and if end switch is not set,

alternative path does not need to be finished. Functions in the alternative

paths may be arbitrarily executed in parallel and overlapping.

23

CHAPTER 4

4.S-BPM MODELING TOOL

Growing attention to BPM led to develop business process modeling tools since

nineties. They provide to design, control and analyze business processes and support

continuous improvement of processes. There are different tools for different

modeling languages. For eEPC, ARIS toolset is used widely in the industry. For S-

BPM Metasonic Suite is developed. In this study UPROM which is developed by

Bilgi Grubu is used. It has different editors for various modeling notations, but it

does not support S-BPM. Therefore, UPROM is extended for S-BPM notation and

eEPC to S-BPM transformation. In the following UPROM and S-BPM plug-in are

explained respectively.

4.1 UPROM

In Turkey, organizations do not perform business modeling activities effectively due

to the high cost of commercial modeling tools and the lack of knowledge and

expertise. Bilgi Grubu conducts studies for modeling and improving business

processes of public institutions and software companies. In order to analyze, model

and improve business processes UPROM is developed. It is an integrated business

process modeling tool and it is used for modeling activities of Bilgi Grubu. It also

provides to generate system requirements from business process models

automatically. In this way more effective implementation of IT systems is supported.

UPROM is based on bflow* toolbox which is an open source tool source project

contributed by at the University of Hamburg and the University of Applied Sciences

Emden/Leer [33]. It supports eEPC, Object-oriented EPC and value chain diagrams.

It is an Eclipse plug-in and provides graphical business process modeling in the EPC

notation. It uses EMF (Eclipse Modeling Framework) and GMF (Eclipse Graphical

Modeling Framework) technologies [34]. It makes use of the usual features provided

by EMF and GMF like storing models as XMI files, collapsing and expanding

modeling elements, aligning modeling elements, using the clipboard, etc.

Additionally, it provides possibility to add new features easily.

While developing UPROM, new features are added to bflow* toolbox to use FTD

(Function Tree Diagram), FAD (Functional Analysis Diagram), OC (Organizational

Chart) and ERD (Entity-Relationship Diagram) notations. By using different

notations, a system can be modeled from different perspectives and necessary

24

improvements can be determined easily. Automatic requirement generation is also

added by implementing model to text transformation. UPROM uses EPC and FAD

diagrams to generate the system requirements document.

4.2 S-BPM Editor

S-BPM editor is added to UPROM as a plug-in in the frame of this work. This plug-

in provides to model business processes in S-BPM. A metamodel for S-BPM

notation is composed as an ecore file. Graphical representations of ecore elements

are realized by the help of GMF. Finally validation rules are defined in check

language and continuous verification is satisfied. In the following details of

constructed metamodel, graphical representations of SBD elements and validation

rules will be given.

4.2.1 Metamodel of SBD

In S-BPM editor, firstly a metamodel for SBD is formed as ecore diagram (Figure

12). This ecore diagram includes all SBD elements which are used in process

modeling. A SBD consists of elements and connections between those elements.

“Element” and “Connection” classes are extended from “BflowSymbol” class. eEPC

elements in UPROM are also extended “BflowSymbol” class. In this way, mapping

SBD element attributes to eEPC element attributes becomes easier. Elements and

connections include three main attributes that are come from “BflowSymbol” class.

These are name, id and description. Name attribute of elements are visualized in the

graphical model in contrast to id and description. “Element” class also has lists of in

and out connections. This shows that an element can have more than one incoming

and outgoing connections. On the other hand, connections can only have one source

and one target element. Thus, “Connection” class has “to” and “from” attributes.

Types of those attributes are “Element”, “to” holds the source and “from” holds the

target of the connection.

Elements that are special for SBD are extended from “Element” class. Those are

“MacroClass”, “SubjectState”, “UsedItem”, “AlternativesBar”, “OpenSwitch” and

“ClosedSwitch”. “MacroClass” element includes sub-diagram name that holds the

path of the sub-diagram, list of start states and outputs as additional attributes.

“SubjectState” elements can be “FunctionState”, “SendState” or “ReceiveState”.

They can also be start task or final task of the process. In order to hold this

information “isStart” and “isEnd” attributes are added to “SubjectState” class.

“UsedItem” element is not a core SBD element. It is defined as a new element for

transformation to map application and business rules. “AlternativesBar”,

“OpenSwitch” and “ClosedSwitch” are used to form choice operator (Alternative

clauses). An alternative bar comprises open and closed switches.

In SBD, there are three types of connections; “SendArc”, “ReceiveArc” and

“StateArc”. “Relation” is added to connect “UsedItem” element to others. “StateArc”

is the basic control flow arc in SBD and “name” attribute is used to show post-

conditions. “SendArc” has “receiver”, “data”, “receiverType” and “dataType” and

these attributes are also shown in the graphical representation. “receiverType” is an

25

instance of “SubjectType” which is enumerations with values “Undefined”, “Group”,

“OrganizationalUnit” and “Position”. “Receiver” attribute holds the name of the

subject who received the data. “Data” attribute holds the name of the data and finally

“dataType” holds the type of the data. Type of the data can be undefined, document,

file, list, log, product or reference. “ReceiveArc” holds the same information with

“SendArc” except receiver information. In “SendArc” name of the sender and sender

types are held. They are also shown in the graphical representation.

4.2.2 Graphical User Interface

S-BPM editor provides modelers to construct process models graphically. Visual

markers for core elements of SBD are satisfied by the editor. These elements are

function state, receive state, send state, macro class, alternative bar, open switch,

closed switch, and arcs (receive, send and state arc). There are also new elements

which are added for transformation; used item and relation. Modelers can easily add

elements by using drag and drop feature. Deletion and update features are also

satisfied. When modelers change properties of an element, changes are applied to

visual model elements and model is refreshed automatically. Figure 13 shows the

graphical user interface of the S-BPM editor. Elements of SBD are shown in the right

side of the editor. Properties of the selected element can be changed from

“Properties” view.

26

Figure 12. Metamodel of SBD

Editor is designed to avoid modeling errors during modeling time. Therefore, it does

not allow every action during modeling. For instance, it does not allow connecting all

elements to each other by using any arc types. Types of source and target element for

each connection (send, receive and state) are pre-defined and connections can only

27

be established according to those pre-defined rules. Besides that, after each save

action model is validated by pre-defined validation rules and information about

errors and warnings are added to the Eclipse problem view. The details of model

validation will be given in the next section.

Figure 13. GUI of S-BPM Editor

4.2.3 Validation

Model validation should happen as early as possible in development process.

Therefore; syntax and semantic rules should be defined for business process models

and automatic validation should be satisfied by modeling tools. Continuous

validation for SBDs is satisfied for modelers by UPROM. The modeler gets feedback

about possible modeling problems continuously. In S-BPM editor validation rules are

detailed and are implemented by Check language as constraints. Check language is a

domain specific language and introduced for model validation. It is based on

OpenArchitectureWare (oAW) expressions framework [35]. The content of the

check file and extension file which is used by check file is given in Appendix A. In

the following constraints defined in S-BPM editor will be explained.

28

Constraints for SBDs;

 Function states should not be start and end state at the same time

 Receive states should not be start and end state at the same time

 Send states should not be start and end state at the same time

 Function states should have at least one incoming arc or should be marked as

start state

 Receive states should have at least one incoming arc or should be marked as

start state

 Send states should have at least one incoming arc or should be marked as

start state

 Start states should not have an incoming arc

 End states should not have outgoing arc

 Function states should have at least one outgoing arc or should be marked as

end state

 Receive states should have at least one outgoing arc or should be marked as

end state

 Macro classes should have at least one outgoing arc and at least one incoming

arc

 Alternative bars should have only one incoming or one outgoing arc

 Switches should have only one incoming arc or one outgoing arc

 Alternative bars should have at least two switches (two alternative paths).

 There should be at least one start state in the model.

 There should be at least one end state in the model.

 Elements should have a name.

 Connections should have a name.

 Macro classes should have a name.

 Function states should have only state arcs as outgoing control flows

 Receive states should have only receive arcs as outgoing control flows

 Send states should have only send arcs as outgoing control flows

 Macro classes should have only state arcs as outgoing control flows

 Open switches should have only one state arc as outgoing control flow

 Closed switches should have only one state arc as outgoing control flow

 Alternative bars should have only one state arc as outgoing control flow

 Used items should be connected to an element

 Used items should have only relations as outgoing control flows

 Macro classes should have at least one start state

 Macro classes should have at least one output

 Sources of state arcs should not be Receive States, Send States or Used Items

 Sources and targets of state arcs should not be the same

 Targets of state arcs should not be Used Items

 State arcs should not connect Alternatives bars and switches to each other.

 Sources and targets of send arcs should not be the same

 Sources of send arcs should be Send States

 Targets of send arcs should not be Used Items

29

 Sources and targets of receive arcs should not be the same

 Sources of receive arc should be Receive State.

 Targets of receive arcs should not be Used Items

 Sources and targets of relations should not be the same

 Sources of relations should be Used Items

 Targets of relations should be Function States or Macro Classes

 Targets of relations should not be Used Items

 Function states should be connected to only one alternative bar or switch as a

source.

 Receive states should be connected to only one alternative bar or switch as a

source.

 Send states should be connected to only one alternative bar or switch as a

source.

 Function states should be connected to only one alternative bar or switch as a

target.

 Receive states should be connected to only one alternative bar or switch as a

target.

 Send states should be connected to only one alternative bar or switch as a

target.

After transformation is completed, those constraints are checked by S-BPM editor

and gives feedback to users whether the model is valid or not. In this way, syntax of

the generated model is validated.

31

CHAPTER 5

5.eEPC to S-BPM TRANSFORMATION

This chapter presents the proposed solution to transform eEPC models to S-BPM

models. Section 5.1 explains the model transformation approach. Mapping rules

defined for transformation are given in Section 5.2. In Section 5.3 transformation

algorithm applied in this study is explained in detail by the help of flow charts.

5.1 Model Transformation

For the automation of eEPC to S-BPM mapping model-to-model (M2M)

transformation technology is used. Since different domains have different models,

which may or may not conform to same metamodel, transformation from one model

to another model is usually needed. M2M transformation increases the reusability

since developers use the existing models and make little changes on them. A model

transformation which is shown Figure 14 takes a source model and transforms it into

a target model by using predefined transformation definition [9]. Both models

conform to their respective metamodels. A transformation is defined with respect to

the metamodels. The transformation definition is executed on concrete models by a

transformation engine. In this case, eEPC is the source model and S-BPM is the

target model. Metamodels of those models are the extension of bflow metamodel. In

order to automate eEPC to S-BPM transformation a plug-in in the existing

transformation engine (UPROM) is developed.

4.

Figure 14. Model Transformation

eEPC and S-BPM differs the most in the aspect of adopted modeling techniques.

eEPC uses flow-oriented approach. Due to that, it is generally considered as a kind of

flowchart. It visualizes the sequence of tasks which are performed by different

actors. On the other hand, S-BPM uses subject-oriented modeling technique which

32

means that it focuses on subjects (actors) and their relationships. In eEPC, a business

process performed by more than one actor can be visualized by one eEPC diagram.

However, in S-BPM that business process is visualized by SID in higher level and

internal activities of each subject are shown in separate SBDs in lower level. For that

reason when an eEPC model is transformed, more than one S-BPM model are

generated. The number of generated models depends on consecutive actions

performed by different actors. For each consecutive actions performed by the same

actor, an SBD is generated for each individual model. Input eEPC diagrams which

will be transformed are assumed to be valid according to syntactic and semantic rules

defined in [30] [23]. Transformation can be performed automatically by the new

version of UPROM. Validation of eEPC models are also check by UPROM

automatically.

5.2 Mapping Rules

SBD generation starts from the root node and follows through the nodes in sequential

order. The events without incoming control flow, the events without outgoing control

flow and function-event pairs are taken into account firstly. In the conversion of

function-event pairs, relations of the function with other elements (data and resource

object) are inspected. Matched patterns (defined in following subsections) converted

into respecting target patterns. In this section, mapping rules for eEPC elements will

be explained in detail.

Functions and Events

Functions and events are the most crucial elements of eEPC. Functions represent

tasks or activities which are executed by organization units, groups or positions.

Events show the state of the process. They are triggered by functions and they also

trigger functions as well. Function-event pairs show the flow of the business process.

Events are problematic in transformation because there is not a corresponding

element in S-BPM to map. Figure 15 shows the mapping rules defined for start, end

and internal events.

In the eEPC diagram there can be events without incoming control flow which means

that event is not triggered by a function. They are interpreted as start event and

mapped to a dummy start function with «Start» annotation (Figure 15.a). Since an

eEPC diagram has to start with an event which triggers the business process to start,

generated S-BPM diagram starts with this dummy start function. Events which have

no outgoing control flow are interpreted as end event of the process since they show

in what condition the business process is completed. They are mapped to a dummy

start function with «End» annotation (Figure 15.b). Generated S-BPM diagram ends

with this dummy end function. Internal events are triggered by a function or process

path and they also trigger the next function or process path. Events with incoming

and outgoing control flows are interpreted as internal events and mapped to a control

flow (state arc) with a label that includes event description (Figure 15.c).

33

Figure 15. Mapping rules for eEPC events

Internal events and the function or process path which triggers it are transformed

together during transformation. Mapping rules for functions is shown in Figure 16. If

a function follows by an event, it is transformed as a performing action (function

state) element of S-BPM and following event is transformed as text on the outgoing

control flow label (Figure 16.a). Functions without following event are mapped to

performing action element and a control flow without any label (Figure 16.b).

Figure 16. Mapping rules for eEPC functions

Data and Subjects

In the eEPC there are many different types of data and subjects, however

corresponding representations of those objects are not available in SBD.

Transforming these elements by ignoring these types causes information lost. In

order to overcome that, annotations for data and subject types are introduced.

In the eEPC subjects can be connected to functions, process paths or data objects.

During transformation subjects which are connected to functions or process paths are

used to divide eEPC model into sub-models. These types of subjects are not shown in

generated SBD diagrams. However; if they are connected to data, subjects are

considered as sender or receiver according to the direction of information flow.

Those subjects can be seen on receive arcs or send arcs in SBD diagrams with

respective annotation. Table 1 gives the subject type annotations. Transformation of

those subjects will be explained in the following sub-section.

34

Table 1. Annotations for Subjects types

Subject Type Annotation

Organization Unit « OrganizationUnit »

Group «Group»

Position «Position»

In the EPC a function or process path may use information, material and resource

objects as input or may produce them as its output. If those objects are connected to

functions with outgoing control flow or incoming control flow, they are considered

as sending and receiving messages. Lacking of corresponding S-BPM notations for

those objects leads us to use annotations to represent them. Table 2 gives annotations

for information, material and resource objects.

Table 2. Annotations for Information, Material and Resource Objects

Information, Material

and Resource Objects

Annotation

Document «Document»

 List «List»

Product «Product»

File «File»

Log «Log»

Application «Application»

Reference «Reference»

Business rule «BusinessRule»

Document, list, product, file and log can be seen as a data object. However;

application, reference and business rule are resource objects. Applications are

systems and supports functions for execution. References (laws, regulations,

standards, guidelines, etc…) are used to provide information to execute related

function. Business rules restrict the operations of functions. For resource objects,

notation with “Used” keyword and respective annotation is used (Table 2). The

description of resource object is also given as a part of this notation. Resource object

notation is connected to functions with a dotted line (relation arc) (Refer to Figure

17).

35

Figure 17. Resource object transformation rules

Receive/Send Data

In the eEPC, there are data objects which are used by functions (input) or produced

by functions (output). Direction of the information flow between data object and

function (or process path) shows whether it is a receiving or sending data. Data

objects do not affect the process flow. In other words a function can receive/send one

or more data in any order. In S-BPM notations for data objects (Data and Business

Object) are used to visualize message flow between subjects and shared data objects

between subjects in SIDs, there is not a graphical representation of data object in

SBD. In SBD, data objects are stated on control flow as a label. Textual structure of

that label is set according to direction of the information flow. Accordingly, one to

one mapping is not an option for data objects. “Receiving Message” and “Sending

Message” elements are used during the conversion of data-subject pairs. Since the

data objects are not ordered in the process flow, it‟s assumed that all receiving

messages take place before the concerning function and all sending messages come

after the function in the flow.

A pattern which consists of data with outgoing information flow in the eEPC

diagram is transformed to “Receiving Message” element in S-BPM. Name of the

element is given as “«Receive» data name” automatically. Subject and related data

which is received from that subject is shown as a textual notation (“[From Subject

«related annotation»: Data «related annotation»]”) on the outgoing control flow

label. If there is only one data received by the following function, one receive state

with an outgoing receive arc is generated (Figure 18.a). However; if there is more

than one data received by following function, alternative clauses to combine those

receiving messages is used (Figure 18.b). For each input data an alternative path is

generated. This path consists of a receive state, an outgoing receive arc and two

closed switch at the beginning and end. This alternative clause structure gives the

meaning of “and” operator. It guarantees that all received states are performed (all

data are received) before activating the function. If there is no subject connected to

the data object, «undefined» annotation is used for this missing subject. For data with

outgoing information flow without any subject relation, the textual structure “[From

«undefined»: Data]” on the receive arc is used for “Receiving Message (receive

state)” element (Figure 8.c).

36

Figure 18. Mapping rules for input data objects

 “Sending Message” element is used to transform data with incoming information

flow. Name of the element is given as “«Send» data name”. Subject and related data

which is sent to that subject is shown as a textual notation (“[To Subject «related

annotation»: Data «related annotation»]) on the outgoing control flow label. If the

function produces only one data, a “Sending Message (send state)” element with an

outgoing send arc is generated (Figure 19.a). If more data are produced by the

function, alternative clause is used to combine sending messages likewise multiple

receiving messages mentioned before (Figure 19.b). In this way, it is guaranteed that

all produced data is sent before activating the next function. If there is no subject

connected to the data object, «undefined» annotation is used for this missing subject

(“[To «undefined»: Data]”) (Figure 19.c).

37

Figure 19. Mapping rules for output data objects

Logical connectors

Logical connectors show the logical relationships between functions and events in

the control flow. They are used to split one control flow into two or more control

flows or to concatenate two or more control flows. In the eEPC there are three types

of logical connectors; “and”, “or” and “exclusive-or”. Since there is not any element

in S-BPM with the same behavior to map logical connectors, conversion of them is

the most problematic part of the transformation process. Three new functions with

“«and»”, “«or»” and “«xor»” annotations are defined in order to use as logical

connectors. In S-BPM functions with more than one incoming control flows and

more than one outgoing control flows are possible. Therefore, “Performing Action”

element with a respective annotation is used to depict logical connectors.

“Performing Action” with «and» annotation awaits all incoming controls flows arrive

and activates all outgoing control flows. “Performing Action” with «or» annotation

awaits at least one incoming controls flow arrive and activates one or more outgoing

control flows. “Performing Action” with «xor» annotation awaits exactly one

incoming control flow arrive and activates one outgoing control flow. In the

following, mapping rules about logical connectors grouped by behavior will be

explained.

Join Functions connectors join the incoming control flows (their sources are

functions) and activate the result event. “or”, “and” and “exclusive-or” connectors

can be used for this purpose. Logical connector which join functions is mapped to

performing action elements with «and», «or» or «xor» annotations according to type

of the connector. These elements have incoming control flows without any label and

38

an outgoing control flow with a label that includes the description of the output event

of join function (Figure 20).

Figure 20. Mapping rules for join functions connectors

Split Function connectors activate two or more post-conditions (events) of a

function. “or”, “and” and “exclusive-or” connectors can be used for this purpose.

Split Function connectors is mapped to performing action element with «and», «or»

or «xor» annotations. These elements have one incoming control flow and outgoing

control flows with a label that includes event description (Figure 21).

Figure 21. Mapping rules for split function connectors

39

Join Events connectors concatenate preconditions (events) and activate the following

function. “or”, “and” and “exclusive-or” connectors can be used to join events. Join

Events connectors are mapped to performing action element with «and», «or» or

«xor» annotations. These elements have incoming control flows with a label that

includes the description of precondition (event) and an outgoing control flow without

any label (Figure 22).

Figure 22. Mapping rules for join events connectors

Split Event connector activates all outgoing control flows when the precondition

(event) is satisfied. Only “and” connector is used to split events. In S-BPM, Split

Event connector is transformed as performing action element with «and» annotation.

It has an incoming control flow with a label that includes the description of

precondition (event) and outgoing control flow without any label (Figure 23).

Figure 23. Mapping rule for split event connector

40

Process Path

Process path navigates the control flow to sub-processes which are modeled in a

separate eEPC diagram. Mapping rules defined for function element are also

applicable to process path element. In contrast to function element, process path

element is mapped to macro class. In the notation of macro class element, valid start

states, name of the macro and possible output transitions are shown respectively. In

transformation, firstly “subdiagram” property of process path element is read. If the

sub-process exists, the given path, the model of the sub-process is read. The start

events of the sub-process‟ model are set as start states of macro class and end events

are set as output transitions (Figure 24). If the model of the sub-process is not in the

given location, «undefined» annotation is used for missing information.

Figure 24. Mapping rule for Process Path element

5.3 Algorithm

In this section complex parts of transformation algorithm are explained by the help of

flow charts. Transformation begins from the one of the start state of eEPC model and

follows the control flow to the end state. In other words, control flow paths from start

event to end event are transformed in order. This procedure is applied for each start

event in the eEPC model. There are also sub-paths in models which are the results of

split connectors. All encountered sub-paths during transformation are collected in a

“paths” list and after transformation of path is completed, sub-paths in that list are

transformed in order. Transformation continues until transformation of all paths and

sub-paths are completed. If functions or function sets are encountered performed by

different actors during transformation of paths, those functions or function sets are

collected into “models” list in order to be transformed as a separate model. There can

be more than one S-BPM diagram for an actor in eEPC. Since, if functions

accomplished by a specific actor are not consecutive, determining the order of those

functions is not possible. Therefore, consecutive functions and individual functions

accomplished by one actor are transformed separately as a new S-BPM model. This

general transformation algorithm is given in Figure 25.

41

Figure 25. Transformation of eEPC models

The details of “Transformation of path” procedure are given at Figure 26. This

procedure takes the start element as an input which can be event, function, process

path or logical connector and transform each element in the control flow as long as

there is a next element. If element to be translated is event, the type of the event is

taken into consideration. Start events are transformed as a function state and a state

arc as mentioned previous section. The source of the state arc is set as start event and

name of the start function is set as name of the state arc. Created arc is saved as

“open connection” in order to connect next transformed element and find the next

element to continue transformation. If element is end event, end function state is

generated, “open connection” is connected to this function state and transformation

of path is terminated. If element is internal event, next element is found and

transformation continues from next element. Since internal events are transformed

with previous functions connected to them.

If the element to be translated is function or process path, subject who is responsible

from that element becomes critical. If subject of the element is different than the

subject who is the owner of transforming model at that moment, the element is added

to "models" list to be transformed later and the next element is fetched. If not,

transformation of the element is performed and the next element is fetched. If the

element is a logical connector, "Logical connector transformation" procedure is

performed.

42

Figure 26. Transformation of path

Functions and process paths are the most complex elements to transform. Since they

are connected to information, material and resource objects with information flows

or relations. While transforming those elements, all incoming information flows are

thought as received data and are transformed first. If the number of incoming

information flows are greater than zero, received data part is generated. Receive data

part can include one receive state or an alternatives block with more receive states. It

also includes an outgoing arc to connect the next transformed element. This arc can

be a state arc or a receive arc, it changes according to last element of the received

data part. If receive data part is generated, its first element is set as the target of

"open connection". If there is not an "open connection", it means that it is a start

element of a sub-path. Thus, the "isStart" property of generated function is set to

true. If element is a function, a function state is generated and the target of "open

connection" is set to this element. If it is a process path, a macro class element is

generated and the target of "open connection" is set to this element. While generating

43

macro class "subdiagram" property is used to get the location of sub-diagram. If the

sub-diagram exists in the given location, starts events of that diagram are set as start

states and end events are set as outputs of macro class. If not, start states and outputs

are marked as undefined. After the element transformed, a state arc with the name of

following event is generated and saved as "open connection". The source of this arc

is set to the transformed element (function state or macro class). Then sent part is

generated likewise received part. "open connection" is connected to the first element

of the send part. The outgoing arc is also generated and it is set as "open connection".

(Figure 27)

Figure 27. Transformation of Function and Process Path element

In "Logical Connector Transformation" procedure is shown in Figure 28. A "logical

connector mapping" list keeps the mapping information of all transformed

44

connectors. This list keeps eEPC element and generated S-BPM element (function

state, connection or closed switch) which corresponds to that eEPC element. While

transforming logical connectors, firstly the "logical connector mapping" list is

checked to identify whether it is transformed before or not. If it is transformed

before, the target of the open connection is set to mapped S-BPM element. This

situation can be occurred for join logical connectors. Join connectors can be

transformed during the transformations of previous paths. If a pre-transformed join

connector is encountered, this means that it is the end of transforming path.

Therefore, the transformation is terminated at that point. If the logical connector is

not transformed before, the transformation is performed according to its usage.

"OR","XOR" and "AND” connectors are transformed as function state. Generated

function state is added to "logical connector mapping" list. Target of "open

connection" is set to that function state. New state arcs with the name of following

events are generated for each outgoing control flow of eEPC logical connector

element. Sources of all generated connections are set to the function state. They are

added to "paths" list as sub-path in order to be transformed in next iterations except

the first one. The first state arc is set as “open connection” to continue the

transformation of the current path and the next element which follows the first

connection is fetched.

45

Figure 28. Logical Connector Transformation

While converting a valid eEPC model to S-BPM, the actor who performed the first

function is thought as main subject. During the transformation of main subject‟s

functions, function or function set which are connected to another actor are skipped.

46

In order not to disrupt the flow and the validity of reorganized diagram, the event of

the last function which is performed by specified actor and the event of the last

function which is performed by another actor are concatenated with an "and”

connector. Figure 29 shows this technique in practice. However, during

transformation only elements of separate models are saved to transform. Individual

eEPC models are not generated.

Figure 29. Generated sub-models from one eEPC diagram

Figure 30 shows which steps are performed when a function of a different actor is

encountered. This procedure explains under what conditions, elements are added to

"models" list and how the transformation continues. This procedure takes an eEPC

element as an input. Then it checks that whether the element is added to a pre-

defined sub-model or not. For this, element is searched in "models" list. If it exists, it

will be transformed in next iterations and so the transformation is terminated.

However; if it does not belong to any model, the subject of the element is taken into

consideration. If the subject of the element is the same as the subject of previous

function or process path, it is added to "models" list as an element of the last added

model and the next function is fetched. If the subject is the same as the main subject

(the first function's subject of eEPC model), a function state with «AND» annotation

is generated to concatenate elements. The target of "open connection" is set to it.

Then a start function with a state arc is generated. That state arc includes the name of

47

the previous element. The target of that arc is also set to the generated function state

that includes «AND» annotation. Finally an outgoing state arc for that function state

is generated and is set as "open connection". The next element is fetched and the

procedure is terminated.

Figure 30. Determine models to be generated

49

CHAPTER 6

6.APPLICATION OF THE APPROACH

This chapter presents the application of the eEPC to S-BPM transformation on a case

involving multiple business processes in a public institute. Section 6.1 describes the

questions of the study, data collection and analysis strategies. In section 6.2 the

conduct of the case is briefly described and automatic and manual transformations of

selected processes are given. Section 6.3 discusses our findings and improvement

possibilities.

6.1 Case Study Design and Questions

Case studies have been a common research strategy in many fields, such as

psychology, sociology, political science and information systems [36], [37]. They

can be conduct to show qualitative or quantitative evidences. In order to explore the

applicability of eEPC to S-BPM transformation and to uncover improvement

opportunities for the transformation approach, a case study is conducted. The case

study involves business processes modeled for a public institute. Business process

models that are generated by Bilgi Grubu in UPROM with eEPC notation are used as

source models. Those processes belong to Ministry of Development of the Republic

of Turkey. Bilgi Grubu analyzed the organizational structure and processes of the

institute and conducted a project in order to define business processes and to support

those processes with IT Systems. Within the scope of the project, main and

supporting business processes which belong to development agencies are modeled

[38].

 The case study has the following primary research question:

 “What information is lost during transformation?”

Automatically generated S-BPM models are analyzed. The source eEPC

model and target S-BPM models are compared with each other and what

information is lost during the transformation are identified. The answer of

this question also reveals the required improvements and shows what type of

information are not visualized in S-BPM models.

 “What are the semantic differences between the source and target models?

In order to answer this question the semantics of the source eEPC model is

analyzed. Then the target S-BPM model is checked whether it gives the same

50

semantic meaning or not. The results show the applicability of the

transformation method.

 “What are the differences between automatically and manually generated

models?”

By comparing manually and automatically generated models, the differences

are highlighted. The similarities between models show the power of

automatic transformation. On the other hand differences help to analyze

necessary improvements. The results show that how our automatic

transformation reduces effort and spending time of manual transformation.

 “What improvements are needed for the transformation?”

 We were also interested in identifying improvement points and enhancing

the transformation approach and tool. The answers of previous research

questions reveal the problems of the approach. By using previous analyses we

decide what improvements are necessary.

In the first phase of the case study we transform source models (eEPC) into target

models (S-BPM) by UPROM automatically and analyze the results of automatic

transformation. In the second phase, manually transformed models are compared

with automatically transformed models in terms of mapping and semantics. Manual

transformations are performed by Murat Salmanoğlu. He is the graduate student in

METU Graduate School of Informatics and is working on business process modeling

especially in S-BPM.

6.2 Case Study

Three essential processes of Archive Management System are selected for case

study. These are archiving process, outgoing document tracking process and

incoming document tracking process. While selecting processes, we emphasis on to

cover all defined mapping rules as much as possible. In the following, eEPC models

of those processes are given with a brief description. Then automatic and manual

transformations are performed and the results are analyzed respectively. The validity

of output SBDs are checked automatically by UPROM with pre-defined validation

rules.

Archiving process

Archiving process is performed by two actors; personnel and archives officer.

Personnel is responsible for determining which materials need to be achieved and

creating archiving requests for them. Archives officer is responsible for filing the

determined material and puts away the material to file defined in standard filing plan.

Then he/she creates an inventory record for material and terminates the process. In

eEPC diagram (Figure 31), it is shown that the process is started by personnel and

completed by archives officer.

51

Figure 31. Archiving process in eEPC

Archiving process includes following elements/patterns to transform;

 Event (start, end and internal),

 Function with following event,

 Function without following event

 Multiple data with outgoing information flow

 Data with outgoing information flow

 Data with incoming information flow

 Resource object (Business Rule)

Because of the process is performed by two different actors, SBDs for each actor are

generated during automatic transformation. Figure 32 shows SBD of “Personnel”

(first actor) and Figure 33 shows SBD of “Archives Officer” (second actor) for

archiving process.

52

All syntactic information given in the source model are also shown in automatically

transformed models. All functions, events, incoming and outgoing data and business

rules are also visualized in SBDs. However; semantics of the source model is not

entirely same with the target models. In the source model input data which are used

to perform related task are transformed into receive states. Thus, SBDs give the

meaning that they are sent to related subject from another subject and after the

subject receives data, the following function is triggered. However; in the source

model there is not any information which shows whether the data is coming from

another subject or not. In eEPC, data with outgoing information flow means that data

is used as input. Output data also have the same problem. In eEPC data with

incoming information flow is used to show output data which is produced during the

execution of the function. It is not have to be sent to another subject. However, in

SBD output data are transformed into send states and it is assumed that if there is a

produced data, it has to be sent to another subject. Eventually, it is obvious that

during the transformation of data objects, semantics of the model changes.

Figure 32. Automatically transformed archiving process for Personnel

In Figure 33, transformation of reference object (Business Rule) is shown newly as

distinct from the previously generated model. While separating tasks of archives

53

officer, a dummy start function is added in order not to lose event which triggers the

“Filing archival material” function. In this way, in generated model last event of

previous model triggers the first function of achiever officer‟s process and the

semantic meaning in the source model are protected.

Figure 33. Automatically transformed archiving process for Archives Officer

Figure 34 shows manually generated SBD for “Personnel”. When we compare the

automatically and manually transformed models for “Personnel”, following findings

are identified.

 Applied mapping rules for internal event, end event, function with following

event, data with outgoing information flow and data with incoming

information flow are the same as automatic transformation.

54

 Instead of using dummy start state modeler prefers to mark the first subject

state in target model as start state and the start event in the source model is

omitted.

 Instead of using choice operator for multiple input data, modeler prefers to

put receive states in order by taking initiative.

Figure 34. Manually transformed archiving process for Personnel

Figure 35 shows manually generated SBD for “Archives Officer”. The comparison

of the automatically and manually transformed models reveals the following

differences.

 In contrast to automatic transformation, the last produced data by personnel

are transformed into receive state and it is marked as start state. Receiving

last producing data triggers the first function of achiever officer. In addition

55

to this; sender name and sender type is also given for the first receive state.

Briefly; in automatic transformation last event triggers to following process,

however in manual transformation last produced data triggers.

 Resource object (Business Rule) is not transformed in manual transformation.

Since there is not any notation in S-BPM for resource objects. Thus the

resource objects are omitted during manual transformation in contrast to

automatic one.

 Functions without following event are transformed as function state and an

outgoing arc without any text in automatic transformation. However; modeler

adds post-condition onto outgoing state arc from scratch which is not in the

source model. (Transformation of “Filing archival material” function)

 Following event of “Creating inventory record” function is omitted in manual

transformation. The event states that archiving process is completed. This

expression is omitted because archiving process is completed after the

following send state is performed.

56

Figure 35. Manually transformed archiving process for Archives Officer

Outgoing document tracking process

Outgoing document tracking process is performed by personnel in the institute.

When a document is requested from the archive, personnel creates the draft

document that is copy of the original document with its appendices. Then he/she

performs to document approval process to certify copied documents. After

numbering the document, approved document is distributed to request owner. eEPC

model of the process is given in Figure 36.

57

Figure 36. Outgoing document tracking process in eEPC

58

Outgoing document tracking process includes following elements/patterns to

transform;

 Event (start, end and internal),

 Function with following event,

 Function without following event

 Data with outgoing information flow

 Data with incoming information flow

 Resource object (Business Rule)

 Logical connectors (XOR-Split and XOR-Join)

 Process path

All elements in the source model are transformed during automatic transformation

(Figure 37). All functions, events, incoming and outgoing data, business rules,

logical connectors and process path elements are also visualized in SBDs. Semantic

problems mentioned in previous transformation are also available in this

transformation. These are related to transformation of input and output data.

In addition to the previously transformed elements in this process, transformation of

logical connectors (XOR-Split and XOR-Join) and process path element are seen

differently. Logical connectors are transformed into function state elements with

related annotation in automatic transformation. In this way, modelers and software

developers can easily understand how the outgoing control flows should be activated

in process flow.

In automatic transformation, process path element is transformed into macro class

element. Macro classes consist of three main parts; start states, macro name and

outputs. Macro name is the name of the process path element. However, start states

and outputs are not given in the source eEPC model. Therefore; starts states and

outputs are acquired from the eEPC model of “Document Approval” process. The

model is given at Appendix B for verification. Start event “Draft document saved” is

shown as start state of macro class and end event “The draft document transformed

into approved document” is shown as output of the macro class. The output of macro

class shows that approved document is produced at the end of “Document Approval”

process. By using macro class for process path transformation, we also save the

information; “Document Approval” is navigation to a sub-process which is modeled

in a separate diagram.

59

Figure 37. Automatically transformed outgoing document tracking process

60

Figure 38 shows manually generated SBD for outgoing document tracking process.

When we compare the automatically and manually transformed models, following

findings are identified.

 The start state in the source eEPC model is omitted during transformation.

 Business rule is not transformed due to the lack of notations.

 No additional function state is used to transform XOR-Split connectors in

contrast to automatic transformation. Outgoing control flows of XOR split

connector and following events of those flows are transformed as outgoing

state arcs of previous function. “Recording the draft document” function state

has two outgoing arcs and this gives the “OR” meaning. Therefore; in

manual transformation the semantic meaning of “exclusive-OR” connector is

not given.

 Similar problems are also available for XOR-Join connector. Incoming

control flows of XOR join connector are directly connected to the next

function. Thus the semantic meaning of the connector is lost. In addition to

this, when the source of the incoming flow and the target of the outgoing

control flow is an event, modeler has to omit one of them indispensably. In S-

BPM, there is no notation for events thus there is also no way to show

sequential events.

 For the transformation of process path element, function state is selected. In

manually transformed model, “Document Approval” process is seen like a

single task. Therefore, the eEPC diagram of “Document Approval” process is

not used during transformation and the navigation meaning is discarded.

 For missing events in eEPC diagrams, new events are added to SBD by

modeler.

61

Figure 38. Manually transformed outgoing document tracking process

62

Incoming document tracking process

Documents which are sent to the institute from outside are prepared for archiving and

distribution inside the institute. This preparation and distribution process is called as

“Incoming document tracking” in the institute (Figure 39).

Figure 39. Incoming document tracking process in eEPC

Incoming document tracking process is accomplished by three different actors;

Editor-in-chief, Chief of the unit and Personnel. Editor-in-chief is the main actor of

63

the process. He/she receives the incoming document and registers the document with

its appendices by the help of ADMS (Achieve Document Management System).

After numbering the document, distribution record of the document is prepared.

Editor-in-chief gets a copy of the document for archiving and delivers to the

document to the concerning unit. Then chief of the unit prepares another document

distribution record and sends the document to personnel. Finally, personnel puts

away the incoming document in a file and the process is completed.

Outgoing document tracking process includes following elements/patterns to

transform;

 Event (start, end and internal),

 Function with following event,

 Data with outgoing information flow

 Data with incoming information flow

 Resource object (Business Rule and Application)

 Logical connectors (XOR-Split, XOR-Join and AND-Split)

This process is selected to show the transformation of Application (Resource object)

and AND-Split connector. Because of the process is performed by three actors, SBDs

for each actor are generated during automatic transformation. Figure 40 shows SBD

of “Editor-in-chief” (first actor). In this automatic transformation, all elements are

transformed into S-BPM. For instance; ADMS (Archive Document Management

System) is transformed to a used item and connected to recording function by a

relation. In this way, in generated model it is obviously seen, “Recording subject

and/or appendix of the incoming document” function is used ADMS to perform its

job. However; identified semantic problems in previous processes are also available

in this transformation.

AND-Split connector is transformed into a function state element with related

annotation. However; a single person typically cannot execute two tasks in parallel.

Therefore, choice operator is most suitable to transform “AND” block. It provides

subject freedom of choice. In other words; subject can perform paths of the “AND”

block in any order. However; in order to use choice operator logical operator should

be used in pairs. This usage provides to define the beginning and end of the block. In

the source model, only one “And” connector is used to split control flow. When it is

used alone, it is impossible to use choice operator for transformation due to the lack

of information.

64

Figure 40. Automatically transformed incoming document tracking process for

Editor-in-chief

65

Figure 41 shows manually generated SBD for editor-in-chief. Visual and semantic

differences between automatically and manually transformed models are given in the

following.

 In manual transformation, start state is omitted.

 Business rule and application are not transformed due to the lack of notations

in S-BPM.

 XOR-Join and XOR-Split connectors are not directly map to any S-BPM

element. The meaning of the connector is given by using multiple outgoing

arcs. If a subject state has more outgoing arcs with different labels, which

means that it splits the control flow into alternative paths. If a subject state

has more incoming arcs with different labels, which means that the subject

state is activated when one of the paths is completed. However; the type of

the connector is not given explicitly. Therefore; manually transformed

models can be interpreted differently by different modelers and the

implementation of logical connectors are also depends on interpretation of

modelers.

 AND-Split connectors are not also directly mapped to any S-BPM element.

Multiple outgoing arcs with the same information (label) are used for AND

connectors in manual transformation. If a subject state has more outgoing

arcs with the same label, which means that, it activates all outgoing control

flows. In the transformation of AND-Join connectors incoming arcs have

different information because they are transformed independently from the

following AND operators, they shows the information about previous subject

states. Therefore the meaning of AND-Join operator is not given in the target

model clearly like other join operators.

 For missing events in eEPC diagrams, new events are added to S-BPM

diagram by modeler.

 Another difference between automatic and manual transformation is that

receiver information is added to some of the receive arcs. Modeler interprets

the whole model and determines the message flow between subjects. In this

way receivers of some of the documents are specified in the model.

66

Figure 41. Manually transformed incoming document tracking process for Editor-in-

chief

Figure 42 shows the automatic and manual transformation for chief of the unit‟s

responsibilities in incoming document tracking process. The only difference between

models is start states. In automatic transformation a dummy start state is used and

last event of the previous subject is used to trigger the first subject state of chief of

the unit‟s process. In other words, the last event of previous subject (Editor-in-chief)

starts the chief of the unit‟s process. However; in manual transformation receiving

data from previous subject starts the process. When chief of the unit receives

67

incoming document from editor-in-chief, he/she starts to perform his/her

responsibilities. Determination of the start state (receiving data) is not done with a

predetermined rule. In archiving process last produced data of previous subject is

used to trigger the following process. However; in this case incoming document is

not produced by editor-in-chief, it is an input of editor-in-chief‟s process. Those

outcomes show that modeler determines the initial subject state by using initiative.

In addition to this, last produced element is sent to next subject. However; in source

model this information is not given directly.

Figure 42. Transformed incoming document tracking process for Chief of the unit

In Figure 43, automatic and manual transformations of incoming document tracking

process for Personnel are shown. The same differences with chief of the unit‟s

process are also available in this transformation.

Figure 43. Transformed incoming document tracking process for Personnel

68

6.3 Results and Discussions

In automatic transformation, source eEPC model is transformed into SBDs without

any syntactic information lost by using the pre-defined transformation rules. The

generated SBDs are valid and semantics of the input model are majorly preserved in

output models. As a result of eEPC to S-BPM transformation, individual models for

each subject are generated. The output model names give information about subjects

and related processes. However, in this study interactions of the subjects and

message flow between them are not taken into consideration. In other words, SID for

source model is not generated in automatic transformation. Therefore; generated

models do not show which subject starts the process, which subject completes the

process, what information are transmitted between subjects and the order of subjects

in the process workflow. In manual transformation, modeler traces the message flow

between subjects and reflects this information into SBDs. Message flow are

especially used while separating source model to SBDs. Receiving message from

previous actor starts the processes and processes generally ends with sending

message to the next actor. In order to provide traceability, the automatic

transformation approach should be improved and SID for input process should also

be generated before the SBD generation.

Additionally, data objects are transformed into send or receive states according to

direction of the information flow in automatic transformation. However; this

transformation changes the meaning of target model in some cases. In eEPC

diagrams, data with outgoing information flow is used to show that data is an input

of related function and it is used during the execution of related function. When it is

transformed into receive state element, the meaning changes to that it is sent by

another subject to the owner of related function. Similar to this, data with incoming

information flow is used to show produced data in eEPC. Transforming output data

into send state element changes the semantics to “data is produced and sent to other

subjects”. However; since there is no element to map data objects in S-BPM, not

only automatic transformation but also manual transformation send and receive states

are used for this purpose.

Transformation of multiple input/output data differs in automatic and manual

transformation. In automatic transformation choice operator with closed start and end

switches (which gives the “and” meaning) is used. Choice operator gives the

meaning that data are received from other subjects in any order. However; in manual

transformation modeler put receive states in an order. Putting them in an order

changes the semantics of the model since it puts constraints. This is the decision of

modeler but it is not appropriate to order receiving and sending messages in

automatic transformation without any basis.

Duplication is another problem which occurs in the conversion of sending and

receiving messages. If there is a function which includes “receive” keyword in its

description and an incoming information flow connected to it, information flow part

is converted as receive message with «receive» annotation and conversion of the

function also includes “receive” keyword which refers to the same data. The

duplication problem also occurs in the conversion of outgoing information flow

connected to a function that contains “Send” keyword. In order to avoid this

69

problem, description of functions is also taken into account. Information flow and

related function is considered as a different pattern and that pattern is mapped to

“Receive Message” or “Send Message” element directly. However, there is no way

to show all information flows in a single S-BPM element (e.g. send-receive element)

if there are more than one information flow related to the function. Thus, possible

duplicates are not handled in order not to complicate transformation.

The most problematic part the transformation is logical connectors. In the first

glance, we have evaluated to use choice operator for branches of the logical

connector. However, in this approach the beginning and the end of the control flows

have to be known. Additionally, combinations of connectors are not mapped to

combinations of alternative clauses because of S-BPM syntax. Therefore, instead of

this notation, we preferred to define new functions with “«and»”, “«or»” and “«xor»”

annotations. Logical connectors are transformed into function states the semantics of

them are preserved by annotations. Transforming “AND” operator by this way

contradicts the S-BPM concept that the work of a subject is executed by a single

person and a single person typically cannot execute two tasks in parallel. However; if

logical connectors are not used in pairs in the source model, there is no way to

determine the end of those processes. Thus; in manually generated models choice

operator is not used, too. In order to solve this problem validation rules for eEPC can

be extended and modeling tool can be improved to prevent modelers to use single

“And” operator, it only allows operators used in pairs.

Despite all these analysis, automatically and manually generated models are very

similar. For direct mappings same rules are applied, but if direct mapping is not

possible different approaches are used in transformations. Separations of models

according to subjects are performed in the same way and so the output models are

similar in two of them. Eventually, automatic transformation is guaranteed that

transformation is performed without losing any syntactic information. However;

there are small semantic differences which are also available manual transformation.

Changes in the semantics can be handled by small modifications in the target models.

During the case study, we have had some observations for more understandable

model generations. These remarks can be summarized as follows:

 Each function should be followed by an event and each function should be

triggered by an event in the input model. Otherwise, null transitions will be

occurred in the model.

 Each data object should be related to a subject. Otherwise, subject

information will be marked as «undefined».

 In case of eEPC model belongs to only one actor, less changes in semantics

occurs in transformation.

 “AND” connectors should be used in pairs.

6.4 Threats to Validity

In this study, core eEPC elements and a subset of elements in data view and

organization view are covered for transformation. Core eEPC elements are events,

functions, process path and logical connectors (and, or, exclusive-or) and they

70

construct the process workflow. In organization view; organizational unit, group and

position are taken into consideration. In data view; document, list, log, product, file,

application, reference and business rule elements are transformed.

In addition to determining elements‟ subset, validation rules are also defined for

source models. Our approach supports only models which are valid according to

those validation rules. In order to apply our transformation algorithm to an eEPC

model, following rules should be satisfied by the model.

 There must be at least one start event

 There must be at least one end event

 All elements must be connected

 All functions or process paths must have exactly one incoming and one

outgoing control flow

 Events cannot be consecutive to each other

 Split connectors must have one incoming control flow and more than one

outgoing control flow

 Join connectors must have more than one incoming control flow and one

outgoing control flow

 Except start and end events, logical connectors should be used in pairs

This study supports only modeling and generation of SBDs. SID are not supported

by the editor and they are not generated during transformation. As in eEPC, in S-

BPM also a subset of elements is used. Elements of SIDs (subject, business objects

and message flow) and some of the SBD elements such as multiprocesses, exceptions

and extensions are not supported.

Validation rules for S-BPM models are also defined in the scope of this study. Those

rules are implemented in S-BPM editor and guide modelers to construct valid SBDs.

They are also used to check correctness of automatically generated models.

 There must be at least one start event

 There must be at least one end event

 Subject states must not be start and end state at the same time

 All elements must be connected

 Except start and end events, states must have at least one outgoing and one

incoming control flow

 Alternative bars must have at least two switches

 The source of states arc must be function state, macro class, alternative bar or

switch.

 The source of receive arc can be receive state

 The source of send arc can be send state

 The source of relation must be Used Items

 The target of relation should be Function States or Macro Classes

71

Assumptions in transformation;

 Consecutive functions or process paths accomplished by one actor are

transformed separately as a new SBD. Since, if functions accomplished by a

specific actor are not consecutive, determining the order of those functions is

not possible.

 If a subject (organization unit, group, position) is connected to a function or

process path, it shows the performer of that function or process path.

 If a subject is connected to a data object, subjects are considered as sender or

receiver of that data according to the direction of information flow.

 Data objects with outgoing control flow are considered as receiving

messages.

 Data objects with incoming control flow are considered as sending messages.

 All receiving messages take place before the concerning function or process

path and all sending messages come after the function or process path in the

flow.

 «undefined» annotation is used for all missing information during

transformation.

73

CHAPTER 7

7.CONCLUSIONS & FUTURE WORK

This thesis presents a contribution about eEPC to S-BPM transformation with a

concrete and explicit transformation method. The main motivation is to provide a

guideline to generate SBDs from eEPC models. For this purpose; mapping rules are

defined and transformation algorithm for realization are described. Defined mapping

rules are simplified manual transformation process for modelers. Furthermore,

realization of the transformation approach provides modelers to adapt previously

modeled business processes to S-BPM paradigm in a short time with minimum

effort.

In the scope of this study firstly S-BPM editor as an UPROM plug-in is developed, it

visualizes core SBD elements. This editor is also more comprehensive than

commercial editors in terms of notations. It also satisfies continues verification

during modeling time. Secondly transformation engine is developed as a plug-in in

UPROM. The details of transformation algorithm are given in Section 5.3 and

realization of the algorithm proves the applicability of the concept.

Analyses depend on case study results show that transformation is performed without

losing any information. Semantics of the input model and output models are analyzed

manually by different modelers and it is observed that semantics are significantly

preserved in output models. However; minor differences in semantics occur during

transformation. Since; there is no chance to transform all element combinations with

saving its semantics. There are also some differences between automatically and

manually generated models. Those differences generally arise from different

interpretations. Thus; variance can be also happen in manually transformed models

by different modelers as eEPC is not a formal modeling notation. Nevertheless; the

results show that our transformation approach needs to be improved in terms of

subjects‟ interactions. In order to visualize interactions and message flow between

subjects, SID for input process should also be generated before the SBD generation

in automatic transformation. Additionally, restrictions for source business models

should be determined and in some cases user interaction is required in order to save

semantic meaning.

In the future; S-BPM editor can be extended in order to provide modeling of SIDs.

Restrictions and new validation rules can be added to eEPC editor in order to

generate S-BPM models with better semantic mapping. In order to avoid

misinterpretations of source models user interaction during transformation time can

74

be added as a new feature. In other words semi-automatic transformation can be

developed. Automatic code and requirement generation for S-BPM models can be

added to newly developed S-BPM editor.

75

REFERENCES

[1] Mathias Weske, Business process management: concepts, languages,
architectures.: Springer, 2012.

[2] Ruth Sara Aguilar-Saven, "Business process modelling: Review and
framework," International Journal of production economics, pp. 129-149, 2004.

[3] August Wilhelm Scheer, ARIS- Modeling Methods, Meta-models, Applications.
Berlin: Springer, 1998.

[4] August Wilhelm Scheer, ARIS - Business Process Modeling.: Springer, 1999.

[5] Albert Fleischmann, Werner Schmidt, Christian Stary, Stefan Obermeier, and
Egon Börger, Subject-Oriented Business Process Management.: Springer, 2012.

[6] Albert Fleischmann, "What Is S-BPM?," in S-BPM ONE–Setting the Stage for
Subject-Oriented Business Process Management.: Springer, 2010, pp. 85-106.

[7] Robert Singer and Erwin Zinser, "Business Process Management—S-BPM a New
Paradigm for Competitive Advantage?," in S-BPM ONE–Setting the Stage for
Subject-Oriented Business Process Management.: Springer, 2010, pp. 48-70.

[8] Stefan Reinheimer, "Modeling Needs in the BPM Consulting Process," in S-BPM
ONE-Learning by Doing-Doing by Learning. Berlin , Heidelberg: Springer, 2011,
pp. 115-125.

[9] Shane Sendall and Wojtek Kozaczynski, "Model transformation: The heart and
soul of model-driven software development," Software, IEEE, pp. 42-45, 2003.

[10] Barbara Handy, Max Dirndorfer, Josef Schneeberger, and Herbert Fischer,
"Methods of Process Modeling in the Context of Civil Services by the Example

of German Notaries," in S-BPM ONE-Learning by Doing-Doing by Learning.:
Springer, 2011, pp. 281-295.

[11] Albert Fleischmann, Werner Schmidt, and Christian Stary, "Open S-BPM= Open
Innovation," in S-BPM ONE-Running Processes.: Springer, 2013, pp. 295-320.

[12] Jörg Rodenhagen and Florian Strecker, "Using Multi-subjects for Process
Synchronization on Different Abstraction Levels," in Subject-Oriented Business
Process Management.: Springer, 2011, pp. 134-162.

76

[13] Remco M Dijkman, Marlon Dumas, and Chun Ouyang, "Semantics and analysis
of business process models in BPMN," Information and Software Technology,
pp. 1281-1294, 2008.

[14] Ivo Raedts et al., "Transformation of BPMN Models for Behaviour Analysis," ,

2007, pp. 126-137.

[15] Nguyễn Quốc Bảo, "A proposal for a method to translate BPMN model into UML

activity diagram," in 13th International Conference on Business Information
Systems, 2010.

[16] María Agustina Cibran, "Translating BPMN Models into UML Activities," , 2009,
pp. 236-247.

[17] Volker Hoyer, Eva Bucherer, and Florian Schnabel, "Collaborative e-Business
Process Modelling: Transforming Private EPC to Public BPMN Business Process

Models," in Business Process Management Workshops, 2008, pp. 185-196.

[18] Willi Tscheschner, "Transformation from EPC to BPMN," Business Process
Technology, pp. 7-21, 2006.

[19] Olga Levina, "Assessing Information Loss in EPC to BPMN Business Process
Model Transformation," in Enterprise Distributed Object Computing Conference
Workshops (EDOCW), 2012 IEEE 16th International, 2012, pp. 51-55.

[20] Birgit Korherr and Beate List, "A UML 2 Profile for Event Driven Process
Chains," in Research and Practical Issues of Enterprise Information Systems.:

Springer, 2006, pp. 161-172.

[21] Markus Nüttgens, Thomas Feld, and Volker Zimmermann, "Business Process
Modeling with EPC and UML: transformation or integration?," in The Unified
Modeling Language.: Springer, 1998, pp. 250-261.

[22] Peter Loos and Thomas Allweyer, "Object-orientation in business process
modeling through applying event driven process chains (EPC) in UML," in

Enterprise Distributed Object Computing Workshop, 1998. EDOC'98.
Proceedings. Second International, 1998, pp. 102-112.

[23] Kees Van Hee, Olivia Oanea, and Natalia Sidorova, "Colored Petri nets to verify
extended event-driven process chains," in On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE.: Springer, 2005, pp. 183-201.

[24] Niels Lohmann, Eric Verbeek, and Remco Dijkman, "Petri net transformations

for business processes–a survey," in Transactions on Petri Nets and Other
Models of Concurrency II.: Springer, 2009, pp. 46-63.

[25] Stephan Sneed, "Mapping Possibilities of S-BPM and BPMN 2.0," in S-BPM ONE-

77

Education and Industrial Developments.: Springer, 2012, pp. 91-105.

[26] Kenneth C Laudon and Jane Laudon, "Management information systems:
managing the digital firm," New Jersey, 2004.

[27] R G Lee and B G Dale, "Business process management: a review and
evaluation," Business process management journal, pp. 214-225, 1998.

[28] Marta Indulska, Jan Recker, Michael Rosemann, and Peter Green, "Business
process modeling: Current issues and future challenges," Advanced information
systems engineering, pp. 501-514, 2009.

[29] Marlon Dumas, Wil M Van der Aalst, and Arthur H Ter Hofstede, Process-aware
information systems: bridging people and software through process
technology.: Wiley-Interscience, 2005.

[30] Wil MP van der Aalst, "Formalization and verification of event-driven process
chains," Information and Software technology, pp. 639-650, 1999.

[31] Albert Fleischmann, Werner Schmidt, Christian Stary, and Florian Strecker,
"Nondeterministic events in business processes," in Business Process
Management Workshops, Berlin, 2013, pp. 364-377.

[32] Albert Fleischmann, Werner Schmidt, and Christian Stary, "A Primer to Subject-

Oriented Business Process Modeling," in S-BPM ONE–Scientific Research.:
Springer, 2012, pp. 218-240.

[33] Christian Böhme et al., "bflow* Toolbox-an Open-Source Modeling Tool," 2011.

[34] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro, EMF:
eclipse modeling framework.: Pearson Education , 2008.

[35] Sven Efftinge and Markus Völter, "oAW xText: A framework for textual DSLs,"
in Workshop on Modeling Symposium at Eclipse Summit, 2006.

[36] Robert K Yin, "The Case Study Method: An Annotated Bibliography," COSMOS
Corporation, 1983.

[37] Robert K Yin, Applications of case study research.: Sage, 2011.

[38] Ahmet Coşkunçay, Banu Aysolmaz, Onur Demirörs, Ömer Bilen, and İdris
Doğan, "An Approach for Concurrent Business Process Modeling and

Requirements Analysis," in Symposium on Software Quality and Software
Development Tools, İstanbul, 2010.

79

APPENDICES

APPENDIX A: SBD Validation Rules in Check Language

sbpmSyntax.chk context

context sbpm::FunctionState if(shallCheck("SBPMSyntaxRule1"))

 ERROR getErrorMessage("SBPMSyntaxRule1",this.name):

 !(this.isStart && this.isEnd);

context sbpm::ReceiveState if(shallCheck("SBPMSyntaxRule2"))

 ERROR getErrorMessage("SBPMSyntaxRule2",this.name):

 !(this.isStart && this.isEnd);

context sbpm::SendState if(shallCheck("SBPMSyntaxRule3"))

 ERROR getErrorMessage("SBPMSyntaxRule3",this.name):

 !(this.isStart && this.isEnd);

context sbpm::FunctionState if(shallCheck("SBPMSyntaxRule4"))

 ERROR getErrorMessage("SBPMSyntaxRule4",this.name):

 !(this.in.toList().size==0 && !this.isStart);

context sbpm::ReceiveState if(shallCheck("SBPMSyntaxRule5"))

 ERROR getErrorMessage("SBPMSyntaxRule5",this.name):

 !(this.in.toList().size==0 && !this.isStart);

context sbpm::SendState if(shallCheck("SBPMSyntaxRule6"))

 ERROR getErrorMessage("SBPMSyntaxRule6",this.name):

 !(this.in.toList().size==0 && !this.isStart);

context sbpm::SubjectState if(shallCheck("SBPMSyntaxRule7"))

 ERROR getErrorMessage("SBPMSyntaxRule7",this.name):

 !(this.isStart && this.in.toList().size>0);

context sbpm::SubjectState if(shallCheck("SBPMSyntaxRule8"))

 ERROR getErrorMessage("SBPMSyntaxRule8",this.name):

 !(this.isEnd && this.out.toList().size>0);

context sbpm::FunctionState if(shallCheck("SBPMSyntaxRule9"))

 ERROR getErrorMessage("SBPMSyntaxRule9",this.name):

 !(this.out.toList().size==0 && !this.isEnd);

80

context sbpm::ReceiveState if(shallCheck("SBPMSyntaxRule10"))

 ERROR getErrorMessage("SBPMSyntaxRule10",this.name):

 !(this.out.toList().size==0 && !this.isEnd);

context sbpm::SendState if(shallCheck("SBPMSyntaxRule11"))

 ERROR getErrorMessage("SBPMSyntaxRule11",this.name):

 !(this.out.toList().size==0 && !this.isEnd);

context sbpm::MacroClass if(shallCheck("SBPMSyntaxRule11"))

 ERROR getErrorMessage("SBPMSyntaxRule11",this.name):

 !(this.in.toList().size==0 || this.out.toList().size==0);

context sbpm::AlternativesBar if(shallCheck("SBPMSyntaxRule12"))

 ERROR getErrorMessage("SBPMSyntaxRule12",this.name):

 !((this.in.toList().size + this.out.toList().size)!=1);

context sbpm::ClosedSwitch if(shallCheck("SBPMSyntaxRule13"))

 ERROR getErrorMessage("SBPMSyntaxRule13",this.name):

 !((this.in.toList().size + this.out.toList().size)!=1);

context sbpm::OpenSwitch if(shallCheck("SBPMSyntaxRule13"))

 ERROR getErrorMessage("SBPMSyntaxRule13",this.name):

 !((this.in.toList().size + this.out.toList().size)!=1);

context sbpm::AlternativesBar if(shallCheck("SBPMSyntaxRule14"))

 ERROR getErrorMessage("SBPMSyntaxRule14",this.name):

 !((this.openSwitches.toList().size + this.closedSwitches.toList().size)<2);

context sbpm::sbpm if(shallCheck("SBPMSyntaxRule15"))

 ERROR getErrorMessage("SBPMSyntaxRule15",""):

 !(this.subjectStates().select(e|e.isStart).size==0);

context sbpm::sbpm if(shallCheck("SBPMSyntaxRule16"))

 ERROR getErrorMessage("SBPMSyntaxRule16",""):

 !(this.subjectStates().select(e|e.isEnd).size==0);

context sbpm::AlternativesBar if(shallCheck("SBPMSyntaxRule17"))

 ERROR getErrorMessage("SBPMSyntaxRule17",""):

 !(this.name==null || this.name.trim()=="");

context sbpm::FunctionState if(shallCheck("SBPMSyntaxRule17"))

 ERROR getErrorMessage("SBPMSyntaxRule17",""):

 !(this.name==null || this.name.trim()=="");

context sbpm::SendState if(shallCheck("SBPMSyntaxRule17"))

 ERROR getErrorMessage("SBPMSyntaxRule17",""):

 !(this.name==null || this.name.trim()=="");

81

context sbpm::ReceiveState if(shallCheck("SBPMSyntaxRule17"))

 ERROR getErrorMessage("SBPMSyntaxRule17",""):

 !(this.name==null || this.name.trim()=="");

context sbpm::UsedItem if(shallCheck("SBPMSyntaxRule17"))

 ERROR getErrorMessage("SBPMSyntaxRule17",""):

 !(this.name==null || this.name.trim()=="");

context bflow::Connection if(shallCheck("SBPMSyntaxRule18"))

 WARNING getErrorMessage("SBPMSyntaxRule18",""):

 !(this.name==null || this.name.trim()=="");

context sbpm::FunctionState if(shallCheck("SBPMSyntaxRule20"))

 ERROR getErrorMessage("SBPMSyntaxRule20",this.name):

!((this.outgoingSendArcs().size + this.outgoingReceiveArcs().size)>0);

context sbpm::ReceiveState if(shallCheck("SBPMSyntaxRule21"))

 ERROR getErrorMessage("SBPMSyntaxRule21",this.name):

 !((this.outgoingSendArcs().size + this.outgoingStateArcs().size)>0);

context sbpm::SendState if(shallCheck("SBPMSyntaxRule22"))

 ERROR getErrorMessage("SBPMSyntaxRule22",this.name):

!((this.outgoingReceiveArcs().size + this.outgoingStateArcs().size)>0);

context sbpm::MacroClass if(shallCheck("SBPMSyntaxRule23"))

 ERROR getErrorMessage("SBPMSyntaxRule23",this.name):

!((this.outgoingSendArcs().size + this.outgoingReceiveArcs().size)>0);

context sbpm::MacroClass if(shallCheck("SBPMSyntaxRule26"))

 ERROR getErrorMessage("SBPMSyntaxRule26",""):

 !(this.name==null || this.name.trim()=="");

context sbpm::OpenSwitch if(shallCheck("SBPMSyntaxRule27"))

 ERROR getErrorMessage("SBPMSyntaxRule27",this.name):

!((this.outgoingSendArcs().size + this.outgoingReceiveArcs().size)>0);

context sbpm::ClosedSwitch if(shallCheck("SBPMSyntaxRule28"))

 ERROR getErrorMessage("SBPMSyntaxRule28",this.name):

!((this.outgoingSendArcs().size + this.outgoingReceiveArcs().size)>0);

context sbpm::AlternativesBar if(shallCheck("SBPMSyntaxRule29"))

 ERROR getErrorMessage("SBPMSyntaxRule29",this.name):

!((this.outgoingSendArcs().size + this.outgoingReceiveArcs().size)>0);

context sbpm::UsedItem if(shallCheck("SBPMSyntaxRule30"))

 ERROR getErrorMessage("SBPMSyntaxRule30",this.name):

 !((this.inRelationArcs().size + this.outRelationArcs().size)==0);

82

context sbpm::UsedItem if(shallCheck("SBPMSyntaxRule31"))

 ERROR getErrorMessage("SBPMSyntaxRule31",this.name):

!((this.outgoingSendArcs().size + this.outgoingReceiveArcs().size)>0);

context sbpm::MacroClass if(shallCheck("SBPMSyntaxRule34"))

 ERROR getErrorMessage("SBPMSyntaxRule34",this.name):

 !(this.startState.toList().size==0);

context sbpm::MacroClass if(shallCheck("SBPMSyntaxRule35"))

 ERROR getErrorMessage("SBPMSyntaxRule35",this.name):

 !(this.output.toList().size==0);

context sbpm::StateArc if(shallCheck("SBPMSyntaxRule36"))

 ERROR getErrorMessage("SBPMSyntaxRule36",this.name):

 !(this.from.isReceiveState());

context sbpm::StateArc if(shallCheck("SBPMSyntaxRule37"))

 ERROR getErrorMessage("SBPMSyntaxRule37",this.name):

 !(this.from.isSendState());

context sbpm::StateArc if(shallCheck("SBPMSyntaxRule38"))

 ERROR getErrorMessage("SBPMSyntaxRule38",this.name):

 !(this.from.isUsedItem());

context sbpm::StateArc if(shallCheck("SBPMSyntaxRule39"))

 ERROR getErrorMessage("SBPMSyntaxRule39",this.name):

 !(this.from==this.to);

context sbpm::StateArc if(shallCheck("SBPMSyntaxRule40"))

 ERROR getErrorMessage("SBPMSyntaxRule40",this.name):

 !(this.to.isUsedItem());

context sbpm::StateArc if(shallCheck("SBPMSyntaxRule41"))

 ERROR getErrorMessage("SBPMSyntaxRule41",this.name):

!((this.from.isAlternativesBar() || this.from.isOpenSwitch() ||

this.from.isClosedSwitch()) && (this.to.isAlternativesBar() ||

this.to.isOpenSwitch() || this.to.isClosedSwitch()));

context sbpm::SendArc if(shallCheck("SBPMSyntaxRule42"))

 ERROR getErrorMessage("SBPMSyntaxRule42",this.name):

 !(this.from==this.to);

context sbpm::SendArc if(shallCheck("SBPMSyntaxRule43"))

 ERROR getErrorMessage("SBPMSyntaxRule43",this.name):

 !(!this.from.isSendState());

context sbpm::SendArc if(shallCheck("SBPMSyntaxRule44"))

 ERROR getErrorMessage("SBPMSyntaxRule44",this.name):

83

 !(this.to.isUsedItem());

context sbpm::ReceiveArc if(shallCheck("SBPMSyntaxRule45"))

 ERROR getErrorMessage("SBPMSyntaxRule45",this.name):

 !(this.from==this.to);

context sbpm::ReceiveArc if(shallCheck("SBPMSyntaxRule46"))

 ERROR getErrorMessage("SBPMSyntaxRule46",this.name):

 !(!this.from.isReceiveState());

context sbpm::ReceiveArc if(shallCheck("SBPMSyntaxRule47"))

 ERROR getErrorMessage("SBPMSyntaxRule47",this.name):

 !(this.to.isUsedItem());

context sbpm::Relation if(shallCheck("SBPMSyntaxRule48"))

 ERROR getErrorMessage("SBPMSyntaxRule48",this.name):

 !(this.from==this.to);

context sbpm::Relation if(shallCheck("SBPMSyntaxRule49"))

 ERROR getErrorMessage("SBPMSyntaxRule49",this.name):

 !(!(this.from.isFunctionState()||this.from.isMacroClass()

||this.from.isUsedItem()));

context sbpm::Relation if(shallCheck("SBPMSyntaxRule50"))

 ERROR getErrorMessage("SBPMSyntaxRule50",this.name):

!(this.to.isUsedItem() && !(this.from.isFunctionState() ||

this.from.isMacroClass()));

context sbpm::Relation if(shallCheck("SBPMSyntaxRule51"))

 ERROR getErrorMessage("SBPMSyntaxRule51",this.name):

!((this.to.isFunctionState() || this.to.isMacroClass()) &&

!this.from.isUsedItem());

context sbpm::SendArc if(shallCheck("SBPMSyntaxRule53"))

 WARNING getErrorMessage("SBPMSyntaxRule53",this.name):

 !(this.receiver==null || this.receiver.trim()=="");

context sbpm::SendArc if(shallCheck("SBPMSyntaxRule54"))

 ERROR getErrorMessage("SBPMSyntaxRule54",this.name):

 !(this.data==null || this.data.trim()=="");

context sbpm::ReceiveArc if(shallCheck("SBPMSyntaxRule55"))

 WARNING getErrorMessage("SBPMSyntaxRule55",this.name):

 !(this.sender==null || this.sender.trim()=="");

context sbpm::ReceiveArc if(shallCheck("SBPMSyntaxRule56"))

 ERROR getErrorMessage("SBPMSyntaxRule56",this.name):

 !(this.data==null || this.data.trim()=="");

84

context sbpm::ReceiveArc if(shallCheck("SBPMSyntaxRule56"))

 ERROR getErrorMessage("SBPMSyntaxRule56",this.name):

 !(this.data==null || this.data.trim()=="");

context sbpm::FunctionState if(shallCheck("SBPMSyntaxRule57"))

 ERROR getErrorMessage("SBPMSyntaxRule57",this.name):

 !(this.incomingControlFlowsFromBarOrSwitch().toList().size>1);

context sbpm::ReceiveState if(shallCheck("SBPMSyntaxRule58"))

 ERROR getErrorMessage("SBPMSyntaxRule58",this.name):

 !(this.incomingControlFlowsFromBarOrSwitch().toList().size>1);

context sbpm::SendState if(shallCheck("SBPMSyntaxRule59"))

 ERROR getErrorMessage("SBPMSyntaxRule59",this.name):

 !(this.incomingControlFlowsFromBarOrSwitch().toList().size>1);

context sbpm::FunctionState if(shallCheck("SBPMSyntaxRule60"))

 ERROR getErrorMessage("SBPMSyntaxRule60",this.name):

 !(this.outgoingControlFlowsToBarOrSwitch().toList().size>1);

context sbpm::ReceiveState if(shallCheck("SBPMSyntaxRule61"))

 ERROR getErrorMessage("SBPMSyntaxRule61",this.name):

 !(this.outgoingControlFlowsToBarOrSwitch().toList().size>1);

context sbpm::SendState if(shallCheck("SBPMSyntaxRule62"))

 ERROR getErrorMessage("SBPMSyntaxRule62",this.name):

 !(this.outgoingControlFlowsToBarOrSwitch().toList().size>1);

sbpm.ext context

Boolean hasName(bflow::Element element) :

 element.name != null && element.name.length > 0;

cached Collection[sbpm::SubjectState] subjectStates(sbpm::sbpm sbpm):

 sbpm.elements.typeSelect(sbpm::SubjectState);

cached Collection[bflow::Connection] outgoingControlFlows(bflow::Element

element) :

 element.out.typeSelect(bflow::Connection);

cached Collection[bflow::Connection] incomingControlFlows(bflow::Element

element) :

 (element.in.typeSelect(bflow::Connection));

cached Collection[bflow::Connection] outgoingReceiveArcs(bflow::Element

element) :

 element.out.typeSelect(sbpm::ReceiveArc);

cached Collection[bflow::Connection] outgoingSendArcs(bflow::Element element) :

85

 element.out.typeSelect(sbpm::SendArc);

cached Collection[bflow::Connection] outgoingStateArcs(bflow::Element element) :

 element.out.typeSelect(sbpm::StateArc);

cached Collection[bflow::Connection] inRelationArcs(bflow::Element element) :

 element.in.typeSelect(sbpm::Relation);

cached Collection[bflow::Connection] outRelationArcs(bflow::Element element) :

 element.out.typeSelect(sbpm::Relation);

cached Collection[bflow::Connection]

incomingControlFlowsFromBarOrSwitch(bflow::Element element) :

 (element.incomingControlFlows().select(e|(e.from.isAlternativesBar()||

e.from.isOpenSwitch() || e.from.isClosedSwitch())));

cached Collection[bflow::Connection]

outgoingControlFlowsToBarOrSwitch(bflow::Element element) :

(element.outgoingControlFlows().select(e|(e.to.isAlternativesBar()||

e.to.isOpenSwitch() || e.to.isClosedSwitch())));

//***********************

// simplified type checks

//***********************

cached Boolean isFunctionState(bflow::Element element) :

 sbpm::FunctionState.isInstance(element);

cached Boolean isSendState(bflow::Element element) :

 sbpm::SendState.isInstance(element);

cached Boolean isReceiveState(bflow::Element element) :

 sbpm::ReceiveState.isInstance(element);

cached Boolean isMacroClass(bflow::Element element) :

 sbpm::MacroClass.isInstance(element);

cached Boolean isUsedItem(bflow::Element element) :

 sbpm::UsedItem.isInstance(element);

cached Boolean isAlternativesBar(bflow::Element element) :

 sbpm::AlternativesBar.isInstance(element);

cached Boolean isOpenSwitch(bflow::Element element) :

 sbpm::OpenSwitch.isInstance(element);

cached Boolean isClosedSwitch(bflow::Element element) :

 sbpm::ClosedSwitch.isInstance(element);

86

cached Boolean isStateArc(bflow::Connection connection) :

 sbpm::StateArc.isInstance(connection);

cached Boolean isReceiveArc(bflow::Connection connection) :

 sbpm::ReceiveArc.isInstance(connection);

cached Boolean isSendArc(bflow::Connection connection) :

 sbpm::SendArc.isInstance(connection);

cached Boolean isRelation(bflow::Connection connection) :

 sbpm::Relation.isInstance(connection)

87

APPENDIX B: eEPC Diagram of Document Approval Process

 TEZ FOTOKOPİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı : Çakar

Adı : Başak

Bölümü : Bilişim Sistemleri

TEZİN ADI (İngilizce) : A Transformation Approach From eEPC to S-

BPM Models

TEZİN TÜRÜ : Yüksek Lisans Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek

şartıyla tezimin bir kısmı veya tamamının fotokopisi alınsın.

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullancılarının

erişimine açılsın. (Bu seçenekle tezinizin fotokopisi ya da elektronik

kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin

fotokopisi ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına

dağıtılmayacaktır.)

Yazarın imzası Tarih

