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ABSTRACT

METAMODELING ATOMIC MODELS IN DISCRETE EVENT SYSTEM
SPECIFICATION (DEVS) FORMALISM USING MULTIVARIATE ADAPTIVE

REGRESSION SPLINES (MARS)

Bozağaç, Cumhur Doruk

Ph.D., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Halit Og̃uztüzün

Co-Supervisor : Prof. Dr. İnci Batmaz

January 2014, 94 pages

Computer simulations are widely used for design optimization purposes. The prob-

lem becomes challenging when design variables are high dimensional and when the

simulation is computationally expensive. In this work we propose a methodology

for metamodeling of dynamic simulation models via Multivariate Adaptive Regres-

sion Splines (MARS). To handle incomplete output processes, where the simulation

model does not produce an output in some steps due to missing inputs, we have

devised a two-level metamodeling scheme. The methodology is demonstrated on a

dynamic radar simulation model. The prediction performance of the resulting meta-

model is tested with four different sampling techniques (i.e., experimental designs)

and 16 sample sizes. We also investigate the effect of alternative coordinate system

representations on the metamodeling performance. The results suggest that MARS

is an effective method for metamodeling dynamic simulations, particularly, when ex-

pert judgment is not readily available. Results also show that there are interactions
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between the coordinate system representations and sampling techniques, and some

sampling-representation-size combinations are very promising in the solution to this

type of problem. The technique is then applied to develop proxy models (PMs) of

atomic models in Discrete Event System Specification (DEVS) simulations to re-

place an atomic model with a PM that uses the fitted metamodel. The mechanisms

required for replacing an atomic model and integrating the PM into a simulation are

described in detail. The methodology is tested by replacing a radar atomic model

in a military engagement simulation with the PM and the method’s benefits and chal-

lenges are discussed thoroughly. As a final step of this research, the response surfaces

of the original simulation and the PM integrated simulation is analyzed. Both simula-

tions are used in a Particle Swarm Optimization based optimization procedure and the

results are compared. Results obtained from this particular case suggest that meta-

modeling of computationally intensive atomic models is feasible, and even with rela-

tively small number of observations, we can apply metamodeling to sub-components

of DEVS simulation models successfully.

Keywords: metamodeling, DEVS, MARS, dynamic simulation model, discrete sim-

ulation, statistical experimental design
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ÖZ

KESİKLİ OLAY SİSTEM BELİRTİMİ (DEVS) FORMALİZMİNDEKİ ATOMİK
MODELLERİN ÇOK DEĞİŞKENLİ UYARLANABİLİR REGRESYON

EĞRİLERİ (MARS) İLE METAMODELLENMESİ

Bozağaç, Cumhur Doruk

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Halit Og̃uztüzün

Ortak Tez Yöneticisi : Prof. Dr. İnci Batmaz

Ocak 2014 , 94 sayfa

Bilgisayar benzetimleri tasarım eniyilemesinde sıkça kullanılmaktadır. Tasarım de-

ğişkenlerinin çok boyutlu olması ve simülasyanların çok işlem gücü gerektirmesi du-

rumunda ise problem daha zor olmaktadır. Bu çalışmada dinamik benzetim modelle-

rinin çok değişkenli uyarlanabilir regresyon eğrileri (MARS) ile metamodellenmesi

için bir yöntem önerilmektedir. Benzetim modellerinin her adımda çıktı üretmediği

durumlarda eksik çıktı işlemlerinin ele alınabilmesi için iki seviyeli bir metamodel-

leme düzeni geliştirilmiştir. Yöntem dinamik bir radar benzetim modelinde uygulan-

mış ve sonuçlar dört farklı örnekleme yöntemi ve 16 farklı örneklem genişliği için

test edilmiştir. Ayrıca alternatif koordinat sistemlerinin metamodelleme üzerindeki

etkileri de araştırılmıştır. Sonuçlar MARS’ın dinamik benzetimler için ve özellikle

uzman görüşüne başvurmanın zor olduğu durumlarda uygulanabilir olduğunu göster-

mektedir. Sonuçlar ayrıca koordinat sistemleri ile örnekleme yöntemleri arasında et-
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kileşimler olduğunu ve bazı koordinat-örnekleme yöntemi-örneklem genişliği kombi-

nasyonlarının örnek problem için daha başarılı olduğunu göstermektedir. Geliştirilen

metamodelleme yöntemi, kesikli olay sistem belirtimi (DEVS) kullanan benzetim-

lerde atomik modellerin metamodel kullanan bir vekil model (VM) ile değiştirilme-

sinde kullanılmıştır. Bir atomik modelin değiştirilmesi için gereken mekanizmalar ve

VM’in kullanılmasının faydalı ve zararlı yönleri ayrıntılı olarak tartışılmıştır. Yöntem

bir angajman benzetimindeki radar atomik modelinin VM’i ile değiştirilmesi sağlana-

rak test edilmiştir. Bu araştırmanın son adımı olarak orjinal benzetimin ve VM kulla-

nılan benzetimin tepki yüzeyleri karşılaştırılmış ve iki benzetim parçacık sürü optimi-

zasyonunda kullanılmıştır. Örnek problemden elde edilen sonuçlar, gerçek benzetim

ile karşılaştırıldığında atomik modellerin metamodellemesinin mümkün olduğunu ve

göreceli olarak küçük örneklem genişlikleri ile bile başarılı metamodellerin oluşturu-

labildiğini göstermektedir.

Anahtar Kelimeler: metamodelleme, DEVS, MARS, dinamik benzetimler, deney ta-

sarımı
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Bozağaç, for his care, love and support. I cannot ask for more from my mother,
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CHAPTER 1

INTRODUCTION

Computer simulation is frequently used in solving real world problems by evaluating

models and optimizing responses. Large-scale engineering design problems can in-

clude a large number of variables and finding the optimum solution in these problems

can be very difficult and time consuming. Computer simulations enable analysts to

explore the behavior of complex systems through the use of mathematical models.

Modeling a complex system often requires composition of models where each model

represents a particular aspect or component of the system. The system is in general

determined by a set of design variables and parameters (system inputs). Optimization

of a complex system involves determining the values for design variables that produce

the best system response based on some criteria. Design variables can be changed by

the designer, while input parameters are considered fixed during the design process.

Optimization of a system is harder if we do not know the closed-form definition of

the system (either because system is too complex or there may be encapsulated com-

ponents in the system). Designer cannot use analytical optimization methods such

as those using derivatives of the function, therefore performance evaluation is lim-

ited with system simulation execution. Shan and Wang [104] carried out a survey

on modeling and optimization strategies to solve high-dimensional, expensive, black-

box simulations. Metamodeling and decomposition are two common approaches used

for solving these kinds of problems. Hierarchical decomposition allows designers to

exploit the intrinsic structure of the problem in terms of smaller sub-problems, but if

the subproblems are highly-coupled, then integration or coordination will be harder.

Another way of dealing with the computational intensity involved in such problems is
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to use model approximation with simulation metamodels, which are also called surro-

gate models or emulators [42, 45]. Then the simulation is treated like an input-output

function and separate metamodels need to be built for each of the outputs [5].

An early metamodeling technique is fitting polynomial functions by regression analy-

sis for approximating response surfaces [5]. There are a substantial number of studies

in the literature that use this technique, such as [85, 89, 102]. Other metamodeling

methods used contain, for example, kriging [67], radial basis functions [38], bayesian

methods [90], artificial neural networks (ANNs) [91], and support vector regression

machines [35]. Among them, ANN is the most popular choice for metamodeling

due to its ability to provide a good fit with nonlinear models. However, ANNs re-

quire structure specification [58], and appropriate hidden layers selection [23] to

avoid overfitting. Yet, there are other techniques, reported in [44, 50]. Friedman’s

method, called multivariate adaptive regression splines (MARS) depends on recur-

sive partitioning of the input space and competes with the performance of ANNs

[30, 78, 84, 116].

Most metamodeling techniques predict system performance using an average value

or the final state of a simulation. These metamodels neither represent the time evo-

lution of a simulation, nor can they give information about the simulation states at

specific time instances. Consequently, most metamodels cannot represent dependen-

cies between simulation states at different time instances. Dynamic bayesian network

(DBN) [31] or recurrent neural network (RNN) [25] are two attempts to achieve a

time series prediction. Nevertheless, DBN may require a priori knowledge about

state of the system [94] and RNN is not guaranteed to reach stability during training

[115].

Conti et al. [26] propose predicting time series output of a dynamic simulation using

a multi-output Gaussian emulator. Our study is inspired by their emulator, but we

build a metamodel with certain novelties: a) we use MARS instead of their Gaussian

approach, and b) we devise a two-level metamodeling scheme to handle an incomplete

output process where simulation does not always generate an output, while the first

metamodel decides whether to output at this time step, the second predict what to

output. To demonstrate our approach, a dynamic radar simulation is modeled using
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MARS [44] metamodels. MARS is selected in this work, because it is flexible enough

to model complex (i.e, high-dimensional involving non-linear relationships) systems

successfully without any expert intervention. The performance of the metamodel

is analyzed by considering various sampling techniques and different sample sizes.

In addition, the effect of alternative coordinate system representations on modeling

performance is also investigated.

After analyzing the effectiveness of the dynamic system metamodel, we tackle com-

plex system simulations problem with a divide and fit approach and combine decom-

position and metamodeling. Instead of building a metamodel of the complete sys-

tem simulation, the simulation system is decomposed into sub-components (atomic

models) using the Discrete Event System Specification (DEVS) [121] formalism.

Atomic models usually generate time dependent output in accordance with input

events, hence metamodeling of an atomic model requires dynamic system metamod-

eling. The metamodeling approach presented in Section 4 is applied to metamodel

atomic models in a DEVS simulation. Note that in literature emulator, surrogate

model and metamodel are used interchangeably to refer to modeling of a simulation

model. From this point on, we prefer to use the term ‘metamodel’ for this purpose.

Our divide and fit approach consists of three stages: i) Metamodeling of a selected

atomic model, ii) Integrating the whole (composite) simulation with a proxy model

(PM) by replacing the atomic model, and iii) Running the composite simulation. Of

course, the process is the same when we target more than one atomic model for the

metamodeling effort, but in this work, to illustrate our approach better, we simplify

our presentation by considering one atomic model only. Our approach is applicable

to any simulation framework that allows a hierarchical composition/decomposition

of models where (sub)models (with encapsulated states) interact through port-based

interfaces by exchanging messages. We employ DEVS as it is a well-established

formalism and we have the development tools and execution environment at hand.

PM replacement technique is applied to a dynamic radar atomic model in a one-on-

one military engagement simulation. The radar atomic model is replaced by a PM

implementation using the trained metamodels. Prediction performance of the PM

depends on the performance of the metamodels, which in turn depends on the type
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of the sampling technique used during the training. PM integrated simulation (PMIS)

performance is evaluated with respect to prediction accuracy, complexity and stability

according to the simulation results obtained by using different sampling techniques

for training. We also compare the computation time of the original simulation (OS)

and PMIS.

After selecting the proper sampling technique and sample size of PM, the PMIS is

used in an optimization procedure. The aim is finding the best design variables of a

radar system to detect an engaging aircraft for providing the anti aircraft (AA) gun

the best position information. The success of the radar system is measured by the

minimum miss distance of the AA bullets to the aircraft (dAAB). We apply single

objective optimization to the PMIS without any constraints.

This work is organized as follows: Chapter 2 provides background information about

the DEVS formalism, sampling techniques, metamodeling techniques, and particu-

larly, MARS metamodeling. Insight about the previous works on radar simulation

metamodeling and dynamic simulation metamodeling are given in Chapter 3. Chap-

ter 4 gives detailed information about our dynamic system metamodeling approach

and, particularly, Section 4.2 explains the case involved for analyzing the approach.

In Section 4.3, we present our experimental setup and the results for the metamodel

selection. The divide and fit approach and the sample simulation for the approach is

presented in Chapter 5 and Section 5.2, respectively. In Section 5.3, we present our

experimental setup and the results for PM. The application of the developed methods

to optimization is provided in Chapter 6 with background information on the opti-

mization technique and results of the experiments. Finally, the conclusion and future

work are given in Chapter 7.
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CHAPTER 2

BACKGROUND

In this chapter, we present background information about the DEVS formalism and

the selected sampling techniques. We enumerate some of the methodologies for han-

dling computationally expensive simulations and give detailed information about se-

lected metamodeling technique which is, MARS.

2.1 Discrete Event System Specification (DEVS)

DEVS is a formalism introduced by Bernard Zeigler et al. in 1976 [121] to describe

discrete event systems. In this formalism there are two types of models: atomic mod-

els and coupled models. States are maintained and state transitions are performed

in atomic models. On the other hand, coupled models consist of other models and

connections between those models. An atomic model in classical DEVS formalism

consists of a set of input events, a state set, a set of output events, internal and external

transition functions, an output function and a time advance function. Formal defini-

tion of an atomic model in classical DEVS formalism is defined as follows [121]:

M = 〈V, S ,Y, δint, δext, λ, ta〉 ,

where

V is the finite set of input events,

S is the finite set of states,

Y is the finite set of output events,
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δint : S → S is the internal transition function,

δext : Q × V → S is the external transition function, where

Q = {(s, te) |s ∈ S , 0 ≤ te ≤ ta(s)} is total state set,

λ : S → YΦ is the output function, where

YΦ = Y
⋃

Φ and Φ < Y is a state where model does not generate output

ta : S → T is the time advance function.

Note that, te is the elapsed time since last external or internal transition, T is the set

of nonnegative real numbers with the special ‘infinity’ element, designated∞.

In DEVS formalism, simulation models communicate with each other using their

ports, which are interfaces of models. External input events (V) are received by input

ports and output events (Y) are sent by output ports. The state set S is valid for a time

interval, which is determined by the time advance (ta) function. After the completion

of each time interval, the output function (λ) is executed to send the output events

that belong to the current state S , and then, the internal transition function (δint) is

executed to calculate a new state. If a model receives an external event during this

time interval, the external transition function (δext) is executed and state of the model

s ∈ S is updated to reflect the effects of the incoming event.

2.2 Selected Sampling Techniques

The success of metamodeling technique depends on the sampling technique (experi-

mental design) used in simulation to gather information about the function modeled.

Most relevant works on design of simulation experiments are McKay et al. [81], Stein

[107], Sacks et al. [100], Kleijnen [66] and Morris and Mitchell [86].

Sampling techniques used in simulation are typically classified in two groups: clas-

sical and space filling [106]. In this study we use an asymmetrical factorial design

(AFD) and hybrid design (HD), which are classical, and the latin hypercube design

(LHS) and uniform design (UD), which are space filling, in order to evaluate their
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effects on the metamodeling performance. Brief descriptions of the designs are pro-

vided below.

The AFD is a factorial experiment with p factors each with li levels where 1 ≤ i ≤

p. Different sample sizes with distinct factor levels can be selected and the AFD

allows for the testing of the factorial design technique with small increments in the

sample sizes [122]. It requires n = l1 × l2 × ... × lp number of design points to

run. Factorial designs require a fairly large number of distinct design points. An

alternative approach is to use central composite design based HD as suggested by

Roquemore [99]. Batmaz and Tunalı [7] show that HD is rotatable, efficient and has

good predictive capabilities. Hence, we include it in our tests to compare its effect

with those of the other designs studied. The design matrices in this study are taken

from Myers et al. [89].

Classical design approaches tend to place most design points on or near the bound-

aries of an experimental region, leaving the interior region unattended. Space filling

designs, on the other hand, fill the experimental region by selecting design points at

equal distances. LHS [55] is a popular space filling design, where the range of each

one of p factors is divided into n intervals. From each interval of each factor we take

a uniform sample. These samples are then matched across all factors to form n design

points such that a factor interval is not used more than once. We use a maximin LHS

design [51] so that the distance between the closest pair of points is as large as pos-

sible. On the other hand, UD [41] provides uniformly scattered design points in the

design space. It is similar to LHS, but LHS requires one-dimensional balance of all

levels for each factor, while UD requires one-dimensional balance and p-dimensional

uniformity. In this respect, the design points can be very different from LHS for

high-dimensional problems [61].

2.3 Computationally Expensive Simulation Handling Methods

Computer simulations are widely used for solving real life problems. Using computer

simulations becomes challenging when the problem (hence the input parameters) are

high-dimensional and the simulation or analysis is computationally expensive [72].
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There are strategies for handling design problems with combinations of these tackles.

2.3.1 Decomposition

Decomposition is reformulating the problem into a set of coordinated or indepen-

dent sub-problems for reducing high dimensionality of input parameters to tackle

"curse-of-dimensionality" [104]. There are three types of decomposition; product

decomposition, process decomposition and problem decomposition [71].

Product decomposition partitions a product into physical components [47]. Process

decomposition is applied to problems with flow of information, problems defined

like a process [59]. Problem decomposition divides multidisciplinary problem mod-

els into different sub-problem models. Decomposition-based system design depends

on problem decomposition. The general strategy is forming a design structure matrix

[17] or functional dependency matrix [112] to reflect the dependency relationship be-

tween input parameters and components of the problem model to other components

of the problem model. After that, the matrices are analyzed using methods like graph

algorithms [82] or tree [21] algorithms. The matrix rows and columns are reposi-

tioned so that dependant rows and columns are brought together in diagonals. Then,

the problem model can be solved as aggregation of sub-problem models.

Most of the time designers cannot have an ideal decomposition (i.e. there would be

rows or columns apart from the clusters, namely coordinating variables, showing de-

pendency to more than one clusters), then the optimization process will also include a

coordination step [2]. The methodology is solving master problem to obtain optimal

coordinating variables and solving subproblems to obtain optimal local variables and

iteratively applying this process until optimization reaches convergence [112]. The

problem with these techniques is that, the problem details needs to be well-analyzed

so that the designer can efficiently identify dependencies. What is more, these tech-

niques do not handle recurrent relationships between sub-models.

Decomposition is applied using problem specific information. For example, Kon-

stantinidis et al. [69] decomposed the deployment and power assignment problem

for wireless sensor networks into three subproblems. One subproblem is dedicated
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to increasing network lifetime performance, other is dedicated to increasing coverage

quality and final subproblem is dedicated to finding solutions with tradeoffs.

The procedure of solving decomposed individual disciplines or subsystems of a large

multidisciplinary design problem is called decentralized design [92]. There are nu-

merous approaches in the literature for using decentralized designs such as; game

theory based approaches [97], collaborative optimization (CO) [16], concurrent sub-

space optimization [12] and analytical target cascading (ATC) [83]. Methodology

is selected according to the characteristics of the problem. For example, game the-

ory based approaches are preferred when there is little communication between the

subsystem; CO is preferred when design is complex and discipline based analysis is

required in subsystems and ATC is preferred for hierarchical architectural designs.

The subsystems are dependent with each other through the coupled design variables.

Du and Chen [37] define external uncertainties as uncertainties in input parameters

and internal uncertainties are uncertainties in models. They use interval methods

for propagating the effect of uncertainties. In [36], Du and Chen define concurrent

subsystem uncertainty analysis. They calculate mean and variance of the subsystems

and propagated these in the system. Gurnani and Lewis [53] apply game theory based

approach and defined a rational reaction set for subsystems. Kokkolaras et al. [68]

extend ATC and define an advanced mean value method to generate the cumulative

distribution function of subsystem non-linear response.

2.3.2 Metamodeling

Metamodeling is using model approximation techniques for reducing the computa-

tional complexity of functions [89]. Simulations are used when prototyping a real

system is not practical or experimenting with the system has difficulties. If the sim-

ulation is complex and time consuming, then simpler approximations of the simula-

tions can be constructed by using metamodels. If we do not know the simulation as

a closed form definition, then the simulation is an input-output function and separate

metamodels need to be built for each of the outputs [5].

Metamodel construction includes the following steps: [6]
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1. Experimental design for sampling

2. Running the simulation at selected points

3. Constructing the metamodel

4. Validating the metamodel and repeating steps 1, 2 and 3 if necessary

5. Using the metamodel

The major issues in metamodeling are the choice of metamodeling method, sampling

technique and validating the metamodel. Most metamodeling methods require the

target function to be continuous and smooth. If the nature of the true function is not

known a priori, it is not clear which metamodel will be the most accurate. In addition,

there is no consensus on how to obtain the most reliable estimates of the accuracy of

a given metamodel [113].

There are different techniques proposed for metamodeling of simulations. The first

metamodeling technique is the usage of polynomial functions as response surfaces by

Box and Wilson [15]. Cressie [28] proposes the use of a geo-statistical model, called

kriging for interpolation of stochastic system responses. Other types of metamodeling

methods include radial basis functions [38], support vector regression machines [35],

bayesian approaches [24] and MARS [44].

2.4 Multivariate Adaptive Regression Splines

In the classical regression approach, a global parametric function is fitted to the avail-

able data to approximate the underlying relationship between the target (response)

variable (y) and predictor variables (z). Although these methods are relatively easy to

develop and interpret, they have limited flexibility and work well only in cases where

the true underlying relationship is close to the pre-specified approximating function

in the model. To overcome the shortcomings of global parametric approaches, non-

parametric models, which do not have any distributional assumptions, have been de-

veloped locally over specific subregions of the data, and the data is searched to find

the optimum number of subregions [120].
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MARS is one of the nonparametric methods that uses a set of linear regressions. The

nonlinearity of the model is approximated with different regression slopes in the cor-

responding intervals of each predictor. The intervals are closed and non-overlapping

except for their boundaries, which are called knots. In other words, the slope of each

regression line is allowed to change from one interval to another with the condition

that there is a knot defined in between [44].

The intervals are defined using linear basis functions (BFs) of the form (z − τ)+ and

(τ − z)+ such that:

(z − τ)+ =


z − τ, if z > τ

0, otherwise
(2.1)

(τ − z)+ =


τ − z, if z < τ

0, otherwise,
(2.2)

where τ is a knot value and z is a predictor for the MARS model. Assuming that zi j

is a knot for jth observation of ith predictor, where i = 1, 2, ..., P, j = 1, 2, ...,N, N is

the total number of observations included in the regression and P is the total number

of predictors, the collection of BFs for all predictors can be defined as:

B = {(zi − τ)+, (τ − zi)+|τ ∈ {zi1, zi2, ..., zi(N)}, i ∈ {1, 2, ..., P}} (2.3)

Then the MARS model is of the following form:

y = β0 + ΣM
m=1(βmbm) + ε, and bm ∈ B, (2.4)

where y is the output (response) to be predicted, M is the number of BFs in B, β0 is

a constant term, βm are a set of coefficients for the BFs and ε is an error term having

zero mean and finite variance.

The MARS method generates a model in a two-stage process: forward and backward.

In the first stage, MARS constructs a model with an extra large number of BFs, which

deliberately overfits the data. These BFs represent distinct intervals of every predictor

divided by knots, and in an intensive search, every possible knot location is tested.

The MARS model is actually, in each dimension, a linear summation of certain BFs,

and interactions among them if needed. Then, some of the BFs are removed as they

contribute least to the overall performance. Therefore, the forward construction may
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initially include insignificant model terms. In the backward pruning step, these terms

are excluded. Thus, the backward step reduces the complexity of the model without

degrading the fit to the data [44].

By allowing arbitrary shapes of BFs and their interactions, MARS has the capacity

of reliably tracking very complex data structures that often hide in high dimensions

[120]. Compared with other widely used modeling techniques such as multivariate

linear regression models, regression trees and support vector machines, MARS has

a better prediction accuracy [1, 3, 74]. The MARS method is also applied to sev-

eral problems including the modeling of simulation data [4, 60, 75, 96, 118], weather

forecasting [1, 120], ecological modeling [73], biomedical prediction [3, 32] and in-

trusion detection [88].
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CHAPTER 3

RELATED WORKS

In this chapter, we give insight about the previous work on dynamic simulation meta-

modeling. Further, we present previous work on metamodeling of radar simulations.

3.1 Metamodeling of Dynamic Simulations

As stated in Chen et al. [22], metamodeling methods generally deal with univariate

output variables, however, dynamic simulations require relating the inputs to a mul-

tivariate output (multi-output) which is a function of time-space coordinates. There

are diverse approaches for metamodeling dynamic simulations. One such example

is treating the time-space coordinates as additional input variables as in Zhang et al.

[123], which results in a very large number of data points.

Bayesian network (BN) is a collection of random variables represented as network

nodes while interconnecting arcs indicating dependency between nodes. Tempo-

ral Bayesian networks (TBN) account for temporal dependencies allowing depen-

dency between nodes in different slices [14]. There are instant-based (time sliced)

approaches and interval-based (event-based) approaches. Instant-based approaches

divide the time into successive slices, and a node is associated with each time in-

stant. To illustrate, DBN [31] is an instant-based TBN. Interval-based approaches

divide the time line into disjoint time intervals. A node represents an output event

of a state variable, and it can happen within a specific time interval. Interval-based

discrete time BN (IBDTBN) [13] and continuous time BN (CTBN) [14] are examples

of interval-based TBN.
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A Markov process is a stochastic process that satisfies the Markov property and takes

values from a set called the state space. The Markov property stipulates that at any

times s > t > 0, the conditional probability distribution of the state of the process

at time s given the whole history of the process up to and including time t, depends

only on the state of the process at time t. In effect, the state of the process at time s is

conditionally independent of the history of the process before time t, given the state

of the process at time t.

A state space model (SSM) is a metamodel of D-dimensional real valued outputs

(observations) Y assuming that at each time step, Yt, t ∈ {1...T } is generated from a

hidden state variable Xt, where a sequence of X is a Markov process [48]. A hidden

Markov model (HMM) is the discrete state counterpart of SSM. Bengio and Frasconi

[9] propose an input-output HMM by forming a recurrent network of state variable

nodes [10].

DBN [31] is a Bayesian network, which accounts for temporal dependencies allowing

dependency between nodes in different slices. Poropudas and Virtanen [95] suggest

using DBN as metamodels. They also give an example of DBN usage for time de-

pendant state variable analysis [94]. They assume that state variable infrastructure is

known, and an expert can build the structure beforehand. Weber and Jouffe [114] use

DBN to create a dynamic fault tree for reliability modeling. Boudali and Dugan [14]

use CTBN for reliability analysis of a system with known state variables.

Monte Carlo (MC) methods are a class of computational algorithms that rely on re-

peated random sampling to compute their results. Sequential MC methods (SMC),

are model estimation techniques based on simulation outputs. SMC are used to esti-

mate Bayesian models in which the state variables are defined as a SSM [19]. Particle

filtering is an SMC method used for determining the distribution of a latent variable

at a specific time, given all observations up to that time using a set of ‘particles’

(differently-weighted samples of the distribution). Doucet and Johansen [34] give a

detailed tutorial about particle filters. Gu and Hu [52] apply particle filter method to a

fire simulation based on cellular-DEVS formalism. They estimate the wind parameter

by using simulation outputs.

RNN is a special type of ANN, which can be used for time series prediction [25]. One
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disadvantage of RNN models is that like feed-forward networks, they very easily get

trapped in local optimal solutions [29, 33]. Since the feedback does not contain a

delay, the input values must be propagated many times through the network until the

output reaches an equilibrium. This process of repeatedly applying the inputs is called

internal recurrence, and it is required since the feedback value directly depends on

the output of the hidden layer (without delay). The network may oscillate over many

cycles, and there is no guarantee that it will reach stability; it may keep oscillating

between the certain values [115].

Kennedy et al. [65] view the underlying code of black-box computer model as an

unknown process and model it as a Gaussian process with a specified mean and co-

variance function. Bhattacharya [11] extends the dynamic emulators with the idea

of forcing (dynamic) inputs. For continuous input-output spaces they evaluate the

model on a fine grid, and interpolate within the resulting look-up table to obtain an

approximate version of the dynamic sequence.

Liu and West [77] propose using time varying auto-regression series for the dynamic

computer models (i.e. simulators that model a system evolving over time). They add

current time (t) to the function definition and apply BN to this structure.

Conti et al. [26] use single time step emulators to model dynamic computer models.

They argue that dynamic simulators operate iteratively over fixed time steps to model

a system that is evolving over time. A single run of such a simulator typically consists

of a simulation over many time steps, which can be considered as a simpler, single-

step simulator being run iteratively many times. Conti and O’Hagan [27] compare the

performance of multi-output emulator against a time input emulator, which accepts

time as an extra input. The multi-output emulator has been found to be more efficient.

3.2 Previous Radar Simulation Metamodels

Ender et al. [40] propose a system of systems approach for the analysis of the ballistic

missile defense system (BMDS). They develop an ANN metamodel to predict a sen-

sor model and track its performance. Lum [80] uses response surface methodology

to form a metamodel of an air combat model. The detection range data is collected
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using an experimental design, then regressed to develop an equation to predict radar

detection range.

Hall and Clark [54] present a simulation study in which they use linear interpola-

tions of the bi-static radar development simulation to populate a static radar perfor-

mance look-up table as a metamodel. Rodriguez [98] proposes the aggregation of

high-resolution simulation models with low-resolution simulations. A mathemati-

cal representation of the simulation model based on network theory is presented and

procedures are proposed for simulation aggregation using statistical techniques.

All these metamodels measure system performance using either the average detection

performance of the sensor model over time or the detection performance on comple-

tion of the simulation. Their metamodels do not represent the time evolution of a

simulation, hence they do not give information about the simulation outputs at spe-

cific time instances. In this work, we model a dynamic radar system model using a

MARS based metamodel which can predict different outputs (responses) of a radar

model during the course of a simulation run.
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CHAPTER 4

DYNAMIC SIMULATION METAMODELING

In this chapter, we give detailed information about our dynamic simulation metamod-

eling approach, explain the used sample case and present the experimental studies

made for selection of the metamodel.

4.1 The Methodology for Dynamic Simulation Metamodeling

A dynamic system generates outputs over time using the inputs and/or the state of

the system. Accordingly, inputs may be fixed (known) design variables and/or time-

based (dynamic) inputs. In order to simulate such a system, in this study, we adopt a

discrete-event simulation approach with a fixed-increment time advance mechanism.

Here, we assume that there are p + q inputs, p of which are known and q of which

are dynamic, and r outputs measured at ω different time points. We also assume state

output is the same as the state at each instant. Then, the methodology consists of the

following stages:

1. Gathering simulated data:

1.1. Selecting design points,

1.2. Running simulation at selected design points,

1.3. Preparation of observation tables:

1.3.1. Complete observation table which may include incomplete observa-

tions, to be used in stage 2.1,

1.3.2. Reduced observation table to be used in stage 2.2,

2. Metamodeling the data obtained at stage 1 with MARS:

17



2.1. Developing metamodel(s) for predicting the existence of output(s) at each

time step,

2.2. Developing metamodel(s) for predicting output(s).

In the first stage, the problem owner (or decision maker) specifies the range values

of design variables to form a fixed independent variables’ space, and design points

are selected from this design space by utilizing sampling techniques such as those

discussed in Section 2.2. Then, for each design point, the simulation is run and dy-

namic inputs and generated outputs are recorded. On completion of simulation runs

these observations are recorded in the complete observation table in which the cells

denote the values of design variables, dynamic inputs and outputs at ω time points for

different samples (labeled as S ampleID in Table 4.1). Table 4.1 presents a sample

complete observation table produced by running the simulation for n design points of

p design variables, q dynamic inputs and r outputs.

As shown in Table 4.1, a dynamic simulation model generates output over time de-

noted by the set Y = {yit|i = 1, 2, ..., r and t = 1, 2, ..., ω} during the simulation. The

output may be affected by a set of design variables X = {xi j|i = 1, 2, ..., p and j =

1, 2, ..., n} and time-based inputs obtained during the course of the simulation V =

{vit|i = 1, 2, ..., q and t = 1, 2, ..., ω}. Hence, the metamodel should take both the

design variables and dynamic inputs into account. At time-step t, the simulation

model output may be written as a function of Y = f (X,V,Y ′), where y′it = yit−1, i =

1, 2, ..., r and t = 1, 2, ..., ω − 1, is the output of the model at the previous step. In

other words, the design variables of the model, the dynamic inputs at the current time

step and the output at the previous time step are used to estimate the output at the

current step.

Table 4.1 includes simulation runs at ω time steps for n different design points where

N = n×ω is the total number of rows in the observation table. However, for some time

steps, the simulation model may receive no inputs, thus, generate no output. Hence,

some of the values in the table may not be observed. We call this an incomplete output

process. To handle this situatin, we prepare another observation table containing only

the observed outputs, called reduced observation table. In other words, the complete

observation table is reduced so that only the output occurring rows remain in the
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table. The reduction improves the prediction performance, since the observation rows

without any output are useless for predicting the output values.

In the second stage of the methodology, developing a metamodel to generate output

for any time step is inspired by the idea of multi-output emulator by Conti et al. [26].

We metamodel the dynamic simulation model by correlating the current outputs with

the current inputs as well as the previous outputs.

In our study, we use MARS for three reasons: i) MARS is efficient in problems

with large number of inputs and huge training datasets; ii) MARS is non-parametric

(does not require any distributional assumptions regarding the model or the model

parameters), thus, can be used without any knowledge of the problem characteristics,

and iii) MARS is flexible enough to model complex problems (i.e., involving large

number predictors with nonlinear relations).

In addition, our approach can handle an incomplete output process in which the sim-

ulation may not generate output at some steps. This is particularly useful for cases

where output generation depends on the dynamic inputs of the simulation model (e.g.

sensor generates output when it senses an object). We also use the previous output

as a predictor. During the preparation of the observation dataset, for each time step

of the observation dataset, we include the one-step previous output of the simulation

model as extra dynamic inputs to the metamodel (instead of providing all previous

outputs for each step). Thus, we guide the metamodel to detect and incorporate the

correlation only between the current and one-step previous outputs.

In the metamodeling stage since the output process may be incomplete as mentioned

above, a two-stage metamodeling scheme is devised; while the first metamodel de-

cides whether to output at this time step, the second one predicts what to output. In

developing the first metamodel (OutputControl metamodel), the complete observation

table prepared at stage 1.3.1 is used. For developing the second metamodel Output

metamodel, the reduced table prepared at stage 1.3.2 is utilized. The OutputControl

model is used to predict whether the simulation model generates output at this step.

If it does, then Output metamodel is used to predict the output value.
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Using the observation table (Table 4.1), the MARS model in (2.4) can be fitted. In

equation 2.4, zi j is a predictor for the MARS model, where zi j ∈ X ∪ V ∪ Y ′ and zi j is

the knot for the jth observation of the ith predictor where i = 1, 2, ..., P, j = 1, 2, ...,N,

P = p + q + r. Here, X, V and Y ′ are the same as defined above.

It is worth to mention here that implementation of MARS method involves some

technical difficulties. A simulation model can have any type of inputs or outputs such

as string, list, matrix, double, integer or enumeration, but available MARS tools only

accept numeric data such as integer and double or categorical data. To resolve this

mismatch, an input data with a complex structure is split into single pieces and each

component is treated as a separate independent variable. If an output has a complex

structure, then the response is also split into single pieces. Thus, before the training

stage, the columns of both (complete and reduced) observation tables are split into

columns that are primitive data types (e.g., integer, double, float, enumeration).

4.2 The Case: Metamodeling Dynamic Radar Simulation

In this study, the methodology developed for dynamic simulation metamodeling with

MARS in the previous section, is implemented for a radar simulation model against

an aircraft. The simulation model is dynamic, because the radar model in the simula-

tion uses the current location and signal information for performing target detection

analysis and generates radar track information over time during the simulation. If the

radar detects a platform two out of three times in three consecutive attempts (i.e., time

steps), it issues a detection event.

In the simulation, the purpose of the user is to find the best radar configuration pa-

rameters for earlier, more accurate and precise detection. The user can control the

frequency, transmit power and bandwidth of the radar system model. The aircraft

model’s flight way points are specified before the simulation.

Thus, the radar simulation model has three design variables, two dynamic inputs and

one output. As shown in Table 4.2, the inputs include the host platform information

(RadarPlatformInfo) and the signal information from the target (TargetSignal), while

output is the detection information (TargetDetection).

21



Table 4.2: Inputs and outputs of the radar simulation model

Input/Output Set Label Variable Name

Input: Design Variables X x1 RadarFrequency (GHz)
x2 RadarPower (dBW)
x3 RadarBandwidth (MHz)

Input: RadarPlatformInfo V v1 Position 〈sposx, sposy, sposz〉 (m)
v2 Velocity 〈svelx, svely, svelz〉 (m/s )

Input: TargetSignal V v3 TargetPosition 〈tposx, tposy, tposz〉 (m)
v4 TargetVelocity 〈tvelx, tvely, tvelz〉 (m/s )
v5 TargetRCS (W

/
m2 )

Output: TargetDetection Y y1 TargetDetectedPosition 〈dx, dy, dz〉 (m)

The radar simulation model is implemented in accordance with the propagation model

recommendations of the International Telecommunications Union (ITU): ITU-R P.452

(The prediction procedure for the evaluation of interference at frequencies above

about 0.1 GHz), ITU-R P.525 (Free space attenuation), ITU-R P.526 (Propagation by

diffraction), ITU-R P.676 (Attenuation and ducting by atmospheric gases) and ITU-R

P.1407 (Multi-path propagation and parameterizations of its characteristics).

4.2.1 Training the metamodel

As stated in the previous section, the radar simulation model is dynamic and generates

output over time (e.g., radar track information) during the simulation. The output is

affected by the design variables (e.g., radar power), and time-based inputs from other

models during the simulation (e.g., position of the target aircraft).

The radar model generates output only when there is a detection. The output is the

position of the detected target. During the training stage, two observation tables are

prepared as explained in Section 4.1 and used in training by means of the formula in

(2.4). The OutputControl metamodel is trained using the complete observation table

using all the rows at once. Then, Output metamodel is trained using the reduced

observation table (e.g., time steps in which the radar detects the aircraft).
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4.2.2 Metamodel coordinate system representations

The observations include the position information of the radar and the aircraft. During

the training stage, the position information of both predictors and responses are split

into components. Although a MARS model can undertake the feature selection and

interaction analysis between predictors, the coordinate system is modified before the

training to investigate the coordinate system’s effect on the metamodel performance.

For this purpose, we use three different coordinate systems. Firstly, the observations

are used as they are. By default the simulation uses the cartesian coordinate system,

so the acronym CRTSN is used for this representation. Secondly, the radar system

uses range, azimuth and elevation information during the detection analysis. The co-

ordinate system of radar, aircraft and target detection is converted from a cartesian to

polar coordinate system before the training, leading to a polar (POLAR) representa-

tion. Thirdly, aggregation operators are used for reducing the number of predictors

and increasing the metamodel performance [18]. For this purpose, several mean op-

erators are considered, and based on the results, the geometric mean of the position

information is selected, and called, CMBND. Evidently, this representation has no

physical interpretation. The predictions are all converted back to the cartesian coor-

dinate system to obtain performance measures that can be compared.

4.3 Experimental Study for Metamodel Selection

In this section, we present the experimental studies made for selection of the meta-

model by comparing the sampling techniques and discussing the results.

4.3.1 Training and Test Data

Four sampling techniques are used in our experiments: AFD and HD, UD and LHS.

In order to analyze the effect of the number of observations (i.e. sample size) on the

overall performance, several sample sizes are tried, which are primarily chosen for

the AFD and applied to the UD and LHS sampling techniques for easy comparison.

In this study HD is used with three factors and sample size 11. The full list of sample
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sizes used in this study are: {4, 6, 8, 10, 11, 12, 15, 18, 24, 30, 36, 40, 42, 45, 48, 50}.

The simulation is run during the final phase of the engagement of the aircraft with the

ship, which takes roughly 10 seconds with 0.1 second time steps (fixed time incre-

ment) for each combination of the parameters. For a single design point, we have 100

(= 10/0.1) observations, which increase as the sample size increases and becomes

5000 (= 50 × 10/0.1) for the largest sample size.

The design variables of the radar are defined as follows:

i. Radar Frequency(GHz) : [1.0, 8.0]

ii. Radar Transmit Power(dBW) : [50.0, 80.0]

iii. Radar Bandwidth(MHz): [0.4, 1.0]

For each of the determined sampling techniques and sample sizes, the design points

(i.e. the levels of design variables) are determined, and the simulation is run for all

design points. Figure 4.1 shows the representative distributions of the design points

in a cross section of the design space. After the simulation runs, the inputs and out-

puts of the radar simulation model are recorded at each time step to build the com-

plete observation table. In order to investigate the correlation between the coordinate

system representations and metamodeling performance, the three coordinate systems

explained in Section 4.2.2 are applied to the observations before training the meta-

models mentioned.

The test data set is generated with UD sampling (with different random seed from

training) and a sample size of 50. For every combination of sampling technique,

coordinate system representation and sample size, we use the same data set to test the

performance of the metamodel.

4.3.2 Performance Measures

The performance of the developed MARS metamodels is evaluated with respect to

these three criteria: accuracy, complexity and stability. The measures used for these

criteria, their meanings, interpretations and formulas are presented in Table 4.3. The

measures are calculated for each output of the model and the notation ykt specifies the
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Figure 4.1: Design point distribution in a cross section of sampling techniques used
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output value during the simulation run for design point k and time step t. Robustness

of the methods under different data features is also assessed with the help of the spread

of performance measures used. For this purpose, median absolute deviation (MAD)

of the measures is utilized.

4.3.3 Applications and Findings

The holdout method is applied to each of the four sampling techniques for the sample

sizes given in Section 4.3.1. As explained in Section 4.1 two distinct metamodels

are used, one to predict the occurrence of a detection (i.e., whether to output) called

OutputCntrl metamodel and the other for predicting the detection location (i.e., what

to output) called Output metamodel.

MARS models are built using the stand-alone Earth package (v3.2 − 6) for the R

environment [109]. After the models are built, the comparison measures listed in

Table 4.3 are calculated for training and testing samples as well as the stabilities of

the measures. An example MARS metamodel BF list (knots) for UD sampling with

CMBD coordinate system is presented in Appendix section, Tables 7.1-7.2.

Run time is an important concern for computationally expensive simulations. For that

reason, we strive to determine the smallest sample size for sampling techniques such

that the performance measures of the model are relatively better and more resolute.

Figures 4.2 and 4.3 show training, test and stability performances of different coor-

dinate system representations for different sample sizes. For each sample size, the

median of each output and each measure obtained from running different sampling

techniques are plotted. To obtain the average, the median is preferred because of

the existence of outliers. The values in the charts for sample size 11 are the results

obtained using the HD sampling.

When these plots are closely examined, the following conclusions can be drawn:

i. The three representations perform well and behave similarly with respect to the

four measures under consideration as the sample size increases for the training

data.
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Figure 4.2: R2 performances with respect to different sample sizes
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Figure 4.3: r performances with respect to different sample sizes
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Figure 4.4: MAE performances with respect to different sample sizes
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Figure 4.5: MSE performances with respect to different sample sizes
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ii. As expected, the performance of methods for the test data are not as good as

to those of training data, especially for small sample sizes. As the sample size

increases, the performance of the methods approaches to that of the training

data with respect to all measures under consideration.

iii. The stability of the R2 and r measures are very high and almost the same for

all three representations for n ≥ 24 where n is the sample size. However, this

is not the case for the MAE and MSE measures since their stabilities fluctuate

more as sample size increases.

iv. MAE and MSE stabilities are considerably lower in comparison to those of R2

and r.

v. According to the test data and stabilities of the measures, POLAR representa-

tion has the worst performance results, particularly when n ≥ 15 for MAE and

MSE and when n ≤ 24 for R2 and r. Interestingly, it performs even better than

the other representations when combined with HD with a sample size of 11.

vi. When n ≥ 15, stabilities of MAE and MSE for the two representations other

than the POLAR sharply increase with large deviations and become relatively

regular for n ≥ 30.

The plots indicate that, apart from the POLAR representation results, which are in

general worse than the other representations, a sample size of 15 yields relatively

better performances for AFD, LHS and UD. Therefore, 15 is chosen as our candidate

sample size for these three samplings and together with a sample size of 11 for the

HD. The samplings and representations are analyzed on this basis. Table 4.4 shows

overall results for different coordinate representations and sampling techniques.

4.3.4 Results

The performance results of metamodels with respect to three coordinate system repre-

sentations and four sampling techniques for selected sample sizes (15 for AFD, LHS,

UD and 11 for HD) are presented in Tables 4.5 and 4.6, respectively. These tables

show the median and median absolute deviation (MAD) of the training, test and sta-

bility results for our measures. These statistics are specifically selected since they
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Table 4.4: Performance of metamodels for the selected sample sizes
Training Test Stability

OutputCntrl Output OutputCntrl Output OutputCntrl Output

CMBND AFD1 R2 0.978 0.974 0.968 0.964 0.991 0.989
r 0.989 0.986 0.985 0.984 0.998 0.999
MAE 0.005 1.228 0.006 1.412 0.900 0.912
MSE 0.005 336.251 0.006 403.317 0.895 0.902

LHS1 R2 0.973 0.968 0.978 0.915 0.961 0.945
r 0.987 0.984 0.968 0.958 0.981 0.973
MAE 0.006 1.486 0.014 3.708 0.429 0.401
MSE 0.006 370.573 0.014 974.290 0.431 0.380

UD1 R2 0.981 0.981 0.981 0.978 1.000 0.997
r 0.991 0.990 0.990 0.989 1.000 0.999
MAE 0.004 0.938 0.004 1.038 0.952 0.903
MSE 0.004 216.100 0.004 252.321 0.958 0.856

HD2 R2 0.992 0.993 0.969 0.960 0.978 0.967
r 0.996 0.997 0.985 0.980 0.989 0.983
MAE 0.002 0.400 0.007 1.743 0.275 0.229
MSE 0.002 79.285 0.007 455.089 0.278 0.174

CRTSN AFD R2 0.988 0.991 0.890 0.869 0.901 0.877
r 0.994 0.995 0.947 0.936 0.952 0.941
MAE 0.003 0.545 0.023 5.817 0.116 0.094
MSE 0.003 112.010 0.023 1473.027 0.117 0.076

LHS R2 0.975 0.973 0.969 0.972 0.991 0.996
r 1.000 0.999 1.000 0.999 1.000 1.000
MAE 0.006 1.358 0.008 1.542 0.732 0.837
MSE 0.006 266.568 0.008 326.534 0.738 0.859

UD R2 0.978 0.975 0.971 0.963 0.994 0.988
r 0.989 0.988 0.986 0.982 0.997 0.994
MAE 0.005 1.121 0.006 1.610 0.753 0.696
MSE 0.005 274.390 0.006 421.965 0.760 0.650

HD R2 0.992 0.993 0.942 0.918 0.950 0.924
r 0.996 0.997 0.971 0.959 0.975 0.962
MAE 0.002 0.384 0.013 3.410 0.147 0.113
MSE 0.002 79.803 0.013 941.175 0.149 0.085

POLAR AFD R2 0.985 0.984 0.875 0.851 0.888 0.864
r 0.993 0.992 0.940 0.927 0.947 0.935
MAE 0.003 0.790 0.026 6.593 0.128 0.120
MSE 0.003 195.212 0.026 1677.305 0.129 0.116

LHS R2 0.982 0.977 0.909 0.904 0.925 0.925
r 0.991 0.989 0.955 0.953 0.964 0.964
MAE 0.004 1.036 0.020 4.507 0.206 0.230
MSE 0.004 271.965 0.020 1086.720 0.208 0.250

UD R2 0.984 0.984 0.925 0.921 0.940 0.936
r 0.992 0.992 0.963 0.961 0.971 0.969
MAE 0.003 0.762 0.016 3.764 0.208 0.202
MSE 0.003 177.017 0.016 886.912 0.210 0.200

HD R2 0.996 0.996 0.975 0.969 0.979 0.973
r 0.998 0.998 0.988 0.985 0.990 0.986
MAE 0.001 0.201 0.005 1.377 0.168 0.146
MSE 0.001 42.902 0.005 354.813 0.171 0.121

1 AFD, LHS and UD results are taken with sample size of 15
2 HD results are taken with sample size of 11
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are resistant to outliers. For R2 and r, higher median values, and for MAE and MSE

lower median values indicate better performances for training and test data. On the

other hand, the median stabilities that are close to one reveal better performances for

the corresponding measures. Here it should be noted that lower median MSE values

indicate less complex methods, and lower MAD values indicate more robust methods.

4.3.4.1 Performance with respect to representations

Table 4.5 shows the overall results for performance with respect to coordinate sys-

tems, in terms of the median and MAD values of the sampling technique.

According to the results:

i. For the training data set, the POLAR and CRTSN representations give best

results for the R2 and r measures, while CRTSN representation has better results

for MAE and MSE measures. POLAR and CRTSN representations are also the

most robust.

ii. For the test data set, the CMBND and POLAR representations yield the best

and worst results, respectively, with respect to all measures.

iii. The CMBND representation is more stable than the other coordinate systems;

its stability is more robust with respect to the R2 and r measures. Furthermore,

it also seems to produce less deviation in results.

4.3.4.2 Performance with respect to sampling techniques

Table 4.6 shows the results of the metamodel with respect to the sampling techniques,

in terms of the median and MAD values of the coordinate systems. From the results

the following conclusions can be drawn:

i. For the training data set, HD performs better and is also the most robust, while

AFD and UD have a worse performance than the other samplings.

ii. For the test data set, UD and HD give comparable and better results than the

other samplings in terms of the R2 and r measures, while LHS is better than the
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others in terms of the MAE and MSE results. AFD is significantly worse than

the others.

iii. In terms of the stability, UD is the best and AFD is the worst, with the HD

having more robust stability.

4.3.4.3 Interactions between representations and sampling techniques

We also investigate interactions among sampling techniques and coordinate system

representations. Figures 4.6 and 4.7 show the median of output measure performance

changes with respect to sampling and representation interactions.

The results can be interpreted as follows:

i. According to the R2 and r measures, test and stability performances indicate

that HD performs better when it is used together with the POLAR representa-

tion, but the others perform better with CMBND.

ii. MAE and MSE test and stability performances confirm that HD-POLAR com-

bination performs better than the HD-CMBND combination.

iii. MAE and MSE training and stability performance results show that AFD, LHS

and UD perform better when they are used with the CRTSN representation and

have worse performance when used with POLAR. Furthermore, AFD has best

results with CMBND representation and LHS has best results with CRTSN.

4.3.5 Discussion

In this section, some results that might need more explanation are discussed further in

the light of the above findings. In this work, we first find the minimum number of ob-

servations (i.e. sample size) required to develop a metamodel with a good prediction

performance. According to the results, the LHS-CRTSN and UD-CMBND combi-

nations with sample sizes of 15 yield the best results together with the HD-POLAR

combination with a sample size of 11.

In general, AFD does not produce steady results, as opposed to LHS, UD and HD.

This may be due to the uneven distribution of the design points in the AFD sampling
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Figure 4.6: Sampling-representation training interaction of R2 and r measures
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Figure 4.7: Sampling-representation test interaction of R2 and r measures
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Figure 4.8: Sampling-representation stability interaction of R2 and r measures
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Figure 4.9: Sampling-representation training interaction of MAE and MSE measures
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Figure 4.10: Sampling-representation test interaction of MAE and MSE measures
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Figure 4.11: Sampling-representation stability interaction of MAE and MSE measures
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space in low sample sizes. AFD performance is affected by the number of levels

of each factor. HD on the other hand locates 10 samples at the boundaries and one

sample at the center. LHS and UD have n-dimensional uniformity, where n is the

number of design points, that locates sample points around the center. We believe

that a high number of observations close to the center leads to an increase in the

prediction performance of the metamodel.

The CMBND representation generates good results, since the independent variables

(predictors) of a position information is reduced before training the metamodel. The

POLAR representation produces unsteady results. Notably, it has the best perfor-

mance with HD. In general, according to the testing data performance, POLAR has

worse performance than the other representations for sample sizes less than 24. It

also produces the best training and the worst test data performances for the sample

of size 15. This might be due to the fact that after the coordinate conversion, small

errors that occurred during the prediction of azimuth or elevation angles can cause

significant changes in the final detection location. Thus, POLAR generates the worst

results with respect to MSE measure.

The results show that the metamodeling of a dynamic simulation system using MARS

is feasible. The LHS-CRTSN and UD-CMBND combinations with sample sizes of

15 and the HD-POLAR combination with a sample size of 11 can all be used to train

a metamodel to replace the dynamic simulation model for radar detection.
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CHAPTER 5

THE DIVIDE AND FIT APPROACH

DEVS formalism allows hierarchical specification of simulation models. A DEVS

simulation model, also called composite simulation, consists of atomic models con-

nected to form coupled models. In other words, the composite simulation can be

decomposed into smaller models connected to each other. By courtesy of DEVS for-

malism, the connection structure and the types of data exchanged between atomic

models are known before a simulation run. The connection structure of atomic mod-

els seems suitable for exploitation, but potential recurrent (feedback loop) connec-

tions and time-dependent input and output messaging do not leave room for static

decomposition techniques like component oriented decomposition [47] or optimal

partitioning [2].

We propose building metamodels of computationally expensive atomic models and

replacing the original atomic models with their respective metamodels implemented

as PMs for faster simulation runs. In many multi-disciplinary simulations we are

aware of, only a few simulation models per simulation are predominantly time con-

suming and worth the metamodeling effort. The designer can specify the list of atomic

models for metamodeling and only those atomic models are subjected to the meta-

modeling process.

5.1 Metamodeling of an Atomic Model

An atomic model is like a black-box function and only the values of design variables

in X and the time and values of the input events with external transition function
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δext : st−1 × vt → st and output events with output function λ : st → yt can be

observed. The metamodel should predict whether to produce output and the value of

output using only these values.

Major assumptions about the atomic model that we are metamodeling are as follows:

i. Atomic model is a dynamic time-invariant system [79], intuitively meaning that

model’s behavior does not depend explicitly on time.

ii. Atomic model’s internal transitions are not observable in accordance with the

black-box assumption.

iii. Atomic model generates output in the course of a simulation run, but it may not

generate output at some instants of time.

The methodology explained for dynamic simulation metamodeling in Section 4.1 is

applied to the atomic model. Metamodel building starts with the selection of design

points from the design space using the selected sampling technique. We assume that

the range values of the design variables are pre-specified by the decision maker (or

problem owner). Then, for each design point, composite simulation is run and the in-

put and output events of the atomic model are recorded at each time step. At the end

of the simulation runs, a table of observations is formed called complete observations

table, where columns specify data from each port and rows specify input-output com-

munication of the atomic model in a time step basis. During this process, the previous

time step output, y′t , is also added to the predictors of the current time step. By this

way, the metamodel is provided with information to find the correlations between the

previous and the current states of the atomic model.

Atomic Model

X

ytyt‐1

vt

Figure 5.1: Input and outputs of an atomic model

The inputs and outputs of an atomic model is presented by Figure 5.1. At time step t,
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the atomic model output may be written in the form Yt = f (X,Vt,Y ′t ), where X is the

set of atomic model design variables, Vt = {v1t, v2t, .., vqt} is the set of all input events

at time step t received from q input ports and Y ′t = Yt−1 = {y1t−1, y2t−1, .., yrt−1} is the

set of all output events produced by r output ports at the previous time step. In other

words, the design variables of the atomic model, the input events at a time step and

the output events at the previous time step are used to estimate the output events at

the current step.

5.1.1 Training of the metamodel

Output metamodels are used for predicting the output events of the atomic model,

but an atomic model may not generate output at every time step. We call this as an

incomplete output process. For example, a sensor model generates output only when

there is a detection or a launcher may only fire a missile when the launch command is

received. To handle these cases, as explained in Section 4.1 we have devised a two-

level metamodeling approach, where a different metamodel is used for predicting

whether to output or not in this step, which is called OutputControl metamodel.

During the training phase, the observation tables are preprocessed for each meta-

model. Output metamodels should only be trained using the observation rows (time

steps) where atomic model generates output. For this reason, before training, the time

step logs without any output are trimmed. On the other hand, the OutputControl meta-

model requires the boolean response of whether to output in each step. The responses

in the observation table are converted to boolean information (e.g. 0 if there is no out-

put and 1 if there is output) before training the metamodel. Hence, the metamodels

are trained using the preprocessed observation tables.

As mentioned in Section 4.1, due to limitations of the available MARS tools, input

or output events with a complex structure is split into separate pieces and each piece

is treated as a separate predictor (e.g., the position vector 〈sposx, sposy, sposz〉 is

separated into three distinct variables).
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5.1.2 Proxy Model (PM) Integration

In this section the integration procedure of PM into the PMIS is described. In order

to replace an atomic model with its PM in the context of the whole simulation, one

must implement mechanisms for

i. Logging the input events and output events of the target atomic model during

the training runs.

ii. Emulating the input event handling and output event generation of the target

atomic model in the PM.

iii. Using the trained metamodel during the output event generation.

Logging events in a DEVS simulation requires attaching hooks to the events of the

DEVS engine for a specific atomic model. The events should be parsed using the

types declared in the external transition function (δext) of DEVS formal definition.

(Standard DEVS event messages do not carry type information, but they are structured

according to the types specified). Then, the events should be properly logged in

a time step basis. For this purpose we implement the Logger Model (LM), which

attaches itself to an atomic model and records inputs and outputs of it to generate the

observation table. Later, the observation table is used for training a metamodel by the

Earth package of the R environment [109].

Replacing the target atomic model requires altering the connection structure of DEVS

simulation and attaching the input ports and output ports of the target atomic model to

the new model. The new model must correctly parse the input event, use the event to

predict the next output and form output event from the predictions of the metamodel.

Moreover, the input event handling, prediction and output event generation are per-

formed repeatedly at each time step of the simulation run; so these structures should

work efficiently.

We implement PM for this purpose. PM uses the trained metamodel and replaces

an atomic model in the DEVS simulation. PM uses the input events from the input

port and design values to generate the output events from output ports. Figure 5.2

shows the usage of the LM and PM in our engagement simulation. The whole simu-

lation, with LM and PM included, has been implemented by using the DEVS-based

48



R Environment

Earth Package (MARS)

LM

Coupled Model

Atomic Model

Target
Atomic Model

Atomic Model

Atomic Model

PM

Figure 5.2: PM in DEVS simulation

simulation framework SIMA [57].

The process to replace an atomic model with its metamodel consists of the following

steps:

i. PM gets the input events and forms a single row of observation table using

previous time step output event and the current time step input events.

ii. PM uses the observation row and the trained OutputControl metamodel to de-

cide whether to generate outputs at this time step or not.

iii. PM uses the observation row and trained Output metamodels to predict the

output values, in case an output should be generated.

iv. PM generates an output event of the required type from the output values and

sends the event from the output port.

The architecture of PM is depicted in Figure 5.3. PM binds the event parser to the

input port. Event parser extracts the required data from input events since an event

can contain other information such as sender id, receiver id and simulation framework

dependent data. Input event data and previous time step’s prediction are used by the

observation collator to form the observation row. The observation row is passed to

the output predictor to be used by the MARS metamodels. The output predictor

uses the OutputControl metamodel and the observation row to decide whether atomic

model should generate an output event. If it should, then the predictor uses Output

metamodels and the observation row to predict the output. Event generator builds the
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corresponding output event from these components and propagates the output event

to the output port.

PM

Input 
Port

Event Parser

Observation Collator

Event Generator

Output Predictor

Output 
Port

Input Event Data

Input Event Output Event

Observation 
Table Row

Predicted Output Event Data

MARS 
Metamodels

Figure 5.3: PM architecture

5.2 The Case: Radar Simulation in a Military Engagement Simulation

In this study, the sample composite simulation is an engagement simulation between

an attacking aircraft and a defending ship. The aircraft engages the ship with a missile

from a properly close distance while the ship responds by firing its AA gun. The ship

has a radar system for detecting the incoming aircraft. Command and control system

(C2) of the ship uses the track information from the radar and issues fire commands to

its AA gun with the target location. There is an environment model in the simulation

that checks for collisions and radar signal transmission by using platform information

(e.g., location) and radar information (e.g., range).

The radar system in the simulation uses the current location and signal information

for performing target detection analysis. If the radar detects a platform two times in

three consecutive time steps, it issues a detection event. Evidently, the ship’s defense

system relies on the detection performance of the radar. In the simulation, the purpose

of the user is to build a defensive strategy for the ship to survive the engagement.

Figure 5.4 shows an overall view of the engagement.

The simulation accepts two sets of input parameters. User can define the radar design

variables, which are the characteristic parameters of a radar system (i.e. the power,

frequency and bandwidth of the radar). The user can also define the scenario of the

simulation by specifying the initial height (hp) and speed (sp) of the aircraft. The
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dASM

Figure 5.4: An overall view of the engagement simulation

aircraft model calculates the flight way points to successfully attack the ship with a

missile. In our model, the flight way points are calculated deterministically. In other

words, any given initial position and initial speed always generate the same flight way

points. Note that the radar is assumed to be an omni-directional radar, meaning that

the approach angle of the aircraft does not affect the radar’s detection performance.

The AA gun and missile parameters are assumed to be fixed in this simulation. Table

5.1 shows the input and output variables of the simulation. Here, the design variables

of the simulation are the design variables of the radar atomic model.

Table 5.1: Inputs and outputs of the simulation

Category Name

Input:Design Variables ShipRadarFrequency (GHz)
ShipRadarPower (dBW)
ShipRadarBandwidth (MHz)

Input:Aircraft Parameters AircraftInitialDistance (m)
AircraftInitialAltitude (m)
AircraftInitialSpeed (m/s )

Output:Simulation Results MinAABulletDistanceToAircraft dAAB (m)
NumAABulletsFired nAAB

MinMissileDistanceToShip (m) dAS M

We analyze the simulation results with respect to three outputs (see Figure 5.4): the
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minimum AA bullet distance (dAAB) to the aircraft, total number of AA bullets (nAAB)

fired by the ship and the minimum missile distance (dAS M) to the ship. High rate of

detection by the radar system increase the AA bullet accuracy, thus making the dAAB

smaller and dAS M larger. The simulation detects bullet-aircraft collisions by using the

aircraft body dimensions but dAAB results are calculated according to the geometric

center of the aircraft. High number of nAAB indicates inaccuracy of the radar tracking.

The radar system can detect the aircraft but without accurate location information the

bullets cannot hit the aircraft. The radius of the aircraft body is specified as 3.75m,

which specifies the minimum distance to the center required to hit the aircraft. Any

bullet closer than this distance is assumed to destroy the aircraft (there is no partial

damage) and the engagement (hence simulation) will be finished.

The overall system is a time-driven simulation implemented as a discrete-event sim-

ulation with fixed time increments. As shown in Figure 5.5, there are three main

models in the simulation: environment, ship and aircraft. The ship model is further

decomposed into ship platform, ship C2, radar and AA gun atomic models while the

aircraft model is further decomposed into aircraft platform, aircraft C2, radar and

missile models.

Ship’s radar atomic model is the most computationally intensive part in the whole

simulation making it a worthwhile candidate for our metamodeling technique. Thus,

we build the metamodel of the radar atomic model. Radar atomic model has three de-

sign variables, two input ports and one output port as listed in Chapter 4.2 Table 4.2.

Input events include the host platform information (ShipPlatformInfo) and signal in-

formation from target (TargetSignal), while output event is the detection information

(TargetDetection).

5.3 Experimental Study on PM-Integrated Simulation

The three sampling technique-coordinate system representation-sampling size com-

binations specified in Section 4.3.5 are used during the experimental studies: LHS-

CRTSN and UD-CMBND with the sample size of 15 and HD-POLAR with the sam-

ple size of 11. From this point we will call them as HD, LHS and UD for brevity.
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Figure 5.5: The engagement simulation model structure

In order to test the metamodel performance in the context of the composite simu-

lation, we replace the radar model with the PM as described in Section 5.1.2. The

prediction performance of the PM is tested using the simulation results of the PMIS

with selected combinations and comparing them against the original simulation (OS)

results.
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5.3.1 Training and Test Data

The scenario parameters, specifically, aircraft parameters, are chosen such that the

aircraft starts the simulation at 3000 m distance to the ship (which is just outside the

range of the radar system) with 50 m altitude and 200 m/s speed.

During the training phase, MARS models are trained using the simulated data ob-

tained by the specified sampling technique and sample size. The experiments are

executed using a test data set which is obtained by random selection from the experi-

mental region with a sample of size 50. The same test data set is used for both PMIS

and OS.

5.3.2 Applications and Findings

For each combination, the original simulation is run with the LM model, which builds

the observation table. After that, OutputControl metamodel and Output metamodels

are built using the stand-alone Earth package of the R environment [109]. The radar

atomic model is replaced by the PM containing the MARS models build. PMIS is

run for the test data set and the results are collected. This process is repeated for all

combinations studied.

The OS is also run using the test data set. OS and PMIS results are evaluated with

respect to some critical performance measures. The measures used, their meanings,

explanations and formulas are presented in Table 5.2.

The simulation results are analyzed in terms of the three simulation outputs: dAAB,

nAAB and dAS M. In order to compare the execution durations of OS and PMIS, simula-

tion is run using the worst case scenario, which guarantees that the ship radar cannot

detect the aircraft till the end of the simulaton and the aircraft survives. Using this

scenario, OS and PMIS are run for 50 times and the original radar model and PM

processing times are measured. The overall simulation execution durations of OS and

PMIS are also measured together with the training simulation execution durations.
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ŷ k
)2

N
ot

es
:n

is
th

e
is

th
e

nu
m

be
ro

fs
am

pl
es

in
th

e
sa

m
pl

in
g

te
ch

ni
qu

e,
P

is
th

e
to

ta
ln

um
be

ro
fp

re
di

ct
or

va
ri

ab
le

s
in

th
e

m
et

am
od

el
,y

k
is

th
e

ac
tu

al
ou

tp
ut

fr
om

O
S

an
d
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5.3.3 Results

The results for the sampling techniques with respect to all three simulation outputs

are presented in Table 5.3.

Table 5.3: Performance of sampling techniques with respect to simulation outputs

HD LHS UD

dAAB R2 0.955 0.810 0.966*

r 0.988* 0.928 0.987
MAE 0.264 0.418 0.215*

MSE 0.406 1.552 0.318*

nAAB R2 0.664 0.878* 0.873
r 0.947 0.954* 0.951
MAE 2.220 1.240* 1.840
MSE 19.891 6.217* 7.609

dAS M R2 0.927 0.943* 0.895
r 0.993* 0.987 0.958
MAE 1.905* 3.810 7.238
MSE 5.526* 20.868 67.907

* indicates the best values with respect to the measure

According to the results,

i. Regarding the dAAB, UD has the best performance in terms of R2, MAE and MSE

measures, while LHS has the worst performance. HD has a similar performance

with UD but can outperform it only with respect to the r measure.

ii. Regarding the nAAB, LHS yields the best performance results in terms of all

measures, while HD yields the worst performance.

iii. Regarding the dAS M, HD gives the best performance results in terms of r, MAE

and MSE measures. LHS is the second best according to these measures, while

exceeding the performance of HD with respect to the R2 measure. UD does not

exhibit a good performance with respect to MAE and MSE measures.

iv. The selected sampling-representation-size combinations have varying perfor-

mances in terms of the simulation outputs. The radar model’s primary output is

the location of detection. At the beginning of the simulation, the radar model

cannot detect the aircraft which has just entered into the effective detection
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range. After that the range of the first detection point depends on the radar

performance for the original radar model. Upon detection, the AA gun fires

bullets as long as there is a detection. PM should be accurate enough to predict

the detection at a similar range so that the nAAB is close to that of the OS.

v. The radar propagation model takes the atmospheric ducting and multi-path

propagation effects into account, which cause the radar model to drop the track-

ing on the aircraft from time to time as shown in Figure 5.6. The AA gun cannot

fire bullets until there is a re-detection. Similarity of the results between the OS

and PMIS also depends on the closeness of the detection start and end points of

the original radar model and those of the PM model.

Aircraft missile
hits the ship

Aircraft
is hit

Aircraft inside
the detection range

Time

Radar tracking
fails

Total AA
Bullets Fired

Radar detects and
tracks the aircraft

Radar tracking
resumes

Aircraft
launches
the missile

Figure 5.6: Example nAAB with respect to aircraft distance to ship

vi. If the detection point prediction error is so small that it does not affect the

occurrence of a aircraft hit/miss event (i.e. both results are larger than the radius

of the bounding sphere of the aircraft), then it has no effect on the dAS M. Also

there are simulation results where the dAAB is close to zero, but the aircraft is hit

after the missile launch and the ship is destroyed.

vii. HD has the best results for predicting the dAS M, LHS has the best results for

predicting the nAAB, and UD has the best prediction performance for the dAAB.

Execution time performance results are shown in Table 5.4. According to the results,

i. PM works over 1000 times faster than the original radar atomic model.

ii. PMIS works more than 300 times faster than OS.

iii. As expected, the training costs of LHS and UD are greater than that of HD due

to the training sample sizes.
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Table 5.4: Execution time comparison of OS and PMIS

OS PMIS-LHS PMIS-HD PMIS-UD

Training Time N/A 15 × 24914.11 11 × 24795.48 15 × 24952.43

Radar Model Time 24723.17 20.97 21.64 20.61

Total Simulation Time 24968.48 73.91 74.16 73.35

Note: Units are in milliseconds.

5.4 Discussion

In this section, some of the results that might need closer attention to evaluate the

proposed methodology are discussed further in the light of the above findings. The

radar atomic model is the most time consuming atomic model in the simulation. By

replacing it with a PM, the composite simulation has gained a speed-up of more than

300. According to the execution time performance results, the PMIS is extremely

efficient. The processing requirements of the target atomic model are important in

this respect. Only the most time consuming atomic models should be replaced by

PM. Unlike static metamodel of an overall simulation, metamodel of an atomic model

will run through a series of inputs and produce a series of outputs (the time steps of

the simulation). Hence, the efficiency of the metamodel is much more important.

The selected sampling-representation combinations have dissimilar performance re-

sults for different simulation outputs. The difference in performance may be attributed

to distinct allocation schemes of design points in the experimental regions for each

sampling technique. To illustrate, HD, LHS and UD provide the best performance for

predicting the missile distance to ship, the total AA bullets and the AA bullet miss

distance to the aircraft, respectively.

What is best for the accuracy of the metamodel may not be the best for the accuracy

of the overall simulation. The PM runs for all the time steps and with inputs other

than the design variables (e.g. input events such as aircraft location at each time step).

Hence, in order to successfully train the metamodel, a simulation run should include

time steps where as many input events as possible has occurred. In our example,

consider the case where radar detects the aircraft at the very first time step. Then

simulation run will only include one input event and PM will not be trained with
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enough observation data. Hence, design points generated by the sampling technique

should be distributed enough for the simulation model in the sense that a variety of

dynamic inputs can be observed.

Magnitude of errors in the overall simulation results is larger than that in the atomic

model outputs. This is due to the accumulation of errors over all the time steps during

a simulation run. An early prediction error may cause an unreasonable result such as

untimely destruction of the aircraft. On the other hand, if the aircraft is hit on the first

time step of the original simulation, and if PM fails to generate the hit event on that

first time step, then simulation result will be unreliable.

Metamodeling a dynamic simulation includes some particular properties, too. Since

the PM here is a dynamic simulation model, any error in the prediction at some time

step may affect subsequent time steps. The observation table includes output data

from the previous time step. By this way the metamodel can keep track of the state

of the target model. However, if an output has an error, then it may affect the next

step. Consider radar’s first detection of the aircraft. In the previous time step the

radar fails to detect giving no output, and in the next time step the radar outputs the

detected location. Let us call this sequence F-D, where F and D represent ‘fail-to-

detect’ and ‘detect’ respectively. The radar model will not drop the tracking of the

aircraft until consecutive no-detection steps occur. Hence, there will only be a few

time steps with this information (F-D or D-F), whereas a lot of time steps will consist

of ongoing track (D-D) or ongoing fail-to-detect (F-F) information. The metamodel

will be more successful at predicting the D-D or F-F cases and may miss the state

changes of the output.

The observation table has n × ω rows instead of n rows, where n is the cardinality of

the set of points selected by the sampling technique and ω is the number of steps in

one simulation run. This puts a burden on the observation table collection, observa-

tion table preprocessing and metamodeling. Our two-level metamodeling approach

(OutputControl metamodel and Output metamodels) aims to increase the accuracy

of the metamodeling with the large observation table, since Output metamodels are

trained using only the relevant rows.
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CHAPTER 6

AN APPLICATION OF THE PROPOSED APPROACH FOR

OPTIMIZATION

In this chapter, we use the PMIS in optimization to demonstrate a usage scenario of

the proposed approach. In real world problems, computer simulation is frequently

used for optimizing the design variables of a system. If the computer simulation is

computationally expensive, then the optimization procedure will take too much time

or require a lot of computational resources. In Section 2.3, we present a number of

methods for handling computationally expensive simulations. The developed method

is another way of dealing with the computational intensity. In this chapter, we present

the response surfaces of the OS and PMIS, run an optimization procedure on both

simulations and compare the results. The simulation has three different outputs but

according to the results we found out that only the simulation result of dAAB can be

directly optimized. Hitting the aircraft as close to the center as possible has a higher

survival value than using minimum nAAB. And maximizing dAS M is not useful since

the results are same for all cases where the aircraft is hit before launching the mis-

sile. For this reason, we will apply single objective optimization to the radar design

variables with no constraints considering the dAAB as response of the simulation.

6.1 Optimization Techniques

A variety of techniques have been proposed for solving the general optimization prob-

lem. Comprehensive surveys about these techniques can be found in [46, 108, 110].

The techniques can be divided into two major parts: global optimization techniques
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and local optimization techniques [110]. Local optimization techniques require uni-

modal response surfaces and they fail when the surface model is discontinuous or non-

differentiable [101]. On the other hand, global optimization techniques are designed

for multi-modal functions; and heuristic search methods like evolutionary computa-

tion techniques can work without any information about the response surface and they

do not require the closed form definition of the problem.

6.1.1 Evolutionary Computation

Evolutionary Computation techniques are stochastic heuristic search methods that at-

tempt to mimic nature [56]. Genetic algorithms (GA) [49] are the first evolutionary

algorithm introduced, where input configurations (solutions) are modeled as genes of

chromosomes and candidates of optimal solution are compared, selected and recom-

bined according to their performance. Just like evolution and survival of the fittest in

nature, the population of configurations breed for reaching the optimum. The algo-

rithm also maintains mutation concept for increasing exploratory behavior and avoid-

ing local optimums. Although modified versions of GA has been used for continuous

problems [20, 117], original algorithms work with discrete decision spaces and are

widely used for combinatorial optimization. Furthermore gene coding schemes de-

termine the success of the GA [8], therefore problem specific knowledge is needed

for effective usage of GA.

Memetic algorithms are inspired by Darwin’s meme notion, and they are hybrid al-

gorithms combining GA with local search techniques [43]. As an analogy, offsprings

after the recombination of GA are allowed to gain local experience and selection for

next generation is applied afterwards. Just like GA, it is best applied to combinatorial

optimization problems (e.g., traveling salesman problem, vehicle routing problem,

knapsack problem, minimum spanning tree problem) [70].

6.1.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [63] is another heuristic inspired from the nature

and mimics the social behavior of migrating birds trying to reach a destination. Each
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design configuration (named particle in the algorithm) is viewed as a bird in the flock

and just like birds determine their speed and direction to avoid collision in flock, to

maintain flock velocity and to stay close to center of the flock; particles determine

their velocity and update their location (i.e, update value of each design variable) in

p-dimensional design space [64]. Unlike GA and MA, PSO particles can readily use

real values. The ith particle is represented as xi = {xi1 , xi2 . . . , xip} and velocity of

the particle is represented as veli = {veli1 , veli2 . . . , velip}. Each particle’s local best

position and flock’s global best position are also maintained and they are represented

as bli = {bli1 , bli2 . . . , blip} and bg = {bg1, bg2 . . . , bgp} respectively. The algorithm

runs for a number of iterations and at each iteration, the particle velocity and position

is updated according to the following formula:

velt+1
id = w ∗ velt

id + c1 ∗ r1 ∗ (blt
id − xt

id ) + c2 ∗ r2 ∗ (bgt
d − xt

id ) (6.1)

subject to velt+1
max ≥ velt+1

id ≥ −velt+1
max

xt+1
id = xt

i−1d
+ velt

id where d = 1, . . . , p. (6.2)

Here t is the iteration counter; c1 and c2 are positive numbers named learning con-

stants c1 for the affect of the local best position and c2 for the affect of the global

best position; r1 and r2 are two random numbers in the range [0, 1] and w is called

inertia weight, which defines how previous velocity contributes to current velocity. W

defines the tradeoff between global and local exploration abilities of the particles. A

larger inertia weight relaxes the particle movement and facilitates global exploration

while a smaller inertia weight facilitates local exploration for fine tuning optimiza-

tion. Eberhart and Shi [39] propose decreasing w linearly with time. velmax limits

maximum velocity change of a particle. Note that second term in equation 6.1 de-

fines ‘private thinking’ of a particle, while third term in equation 6.1 defines ‘social

collaboration’ among particles.

There are two versions of PSO according to the communication between particles: lo-

cal PSO and global PSO. In global PSO, all particles communicate, therefore global

best position is the swarm best position. In local PSO, particles can only communi-

cate with neighborhood particles. Kennedy [62] suggests that global PSO converges

fast but has large chance of being caught in local optimum while local PSO converges

slowly while better searching the solution space. There are a number of proposed lo-

cal PSO neighborhood structures in literature including pyramid shaped, star shaped,
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von Neumann, ring shaped and random shaped [105].

The global optimization algorithm is selected as PSO, due to the following reasons:

i. PSO is a successful continuous variable global search algorithm, which has

been applied to large-scale problems in several engineering disciplines [103],

ii. The main algorithm of PSO is relatively simple and there are only two param-

eters (coefficients) of the algorithm to be specified,

iii. There are several parallel and distributed applications of PSO algorithm which

leaves room for scalable optimization runs in distributed environments such as

[76, 87, 111, 119].

6.2 Experimental Study on Optimization

The single objective simulation optimization of the military engagement simulation

presented in Section 5.2 can be defined as follows:

min
x∈X

dAAB = F( x ) (6.3)

where x = {x1, x2, . . . , xp} is a design configuration of the system being simulated, F

is the simulation (OS or PMIS) and dAAB is the AA bullet miss distance to the aircraft

during the simulation. The simulation runs in a deterministic way, so there is no vari-

ation in the results for repeated runs. We want to find the design configuration for

the radar system which increases the detection performance of the radar and in turn

allows the AA gun to hit the aircraft as close to the center of the aircraft (find mini-

mum dAAB) as possible. The simulation detects bullet-aircraft collisions by using the

aircraft body dimensions. The dAAB results are calculated according to the geometric

center of the aircraft.

PMIS trained with UD design is found to have the best prediction performance for

simulation result dAAB in Section 5.3.3. In order to test the performance of the PM

integrated simulation in an optimization procedure, we select PSO as the optimization

technique and use UD design with the sample size of 15 to train the PM.

The design variables of the radar and their feasible values are as follows:
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i. Radar Frequency(GHz) : [1.0, 8.0]

ii. Radar Transmit Power(dbW) : [50.0, 80.0]

iii. Radar Bandwidth(MHz): [0.4, 1.0]

Before running the optimization algorithm, we plot the response surface of the OS

and PMIS to compare their optimization performances. The plots represent the dAAB

results of the simulation with respect to frequency and power design variables for

specified bandwidth values. Figures 6.1-6.3 compare the response surfaces for the

bandwidth values of 0.4, 0.7 and 1.0 respectively.

Looking at these figures, one may observe the following:

i. Values higher than 3.75m are critical in the sense that they represent the failure

of the aircraft termination.

ii. The radar system needs higher power for better detection as the frequency in-

creases. This characteristic does not change for different bandwidth values of

the radar.

iii. The response surface consists of three zones which can be characterized as

good, bad and risky. If we draw a diagonal line from the lower left corner to

the upper right corner, the region above that line always has good results, but

the values are not best. There is a zone in the lower right corner where the

results are always bad (failure). And in between these zones, there is a risky

zone which includes a mix of best values and bad values.

iv. There are multiple regions of best values scattered in the risky zone.

There are a number of best values for the minimal bullet distance result for different

frequency-power pairs and we want find one such pair using PMIS. According to the

results, the optimization results are quite similar to the optimization results of OS.

However, there are some points where PMIS gives smaller results than OS. In order

to analyze this behaviour, we plot the difference of the response values as contour

plots. Figure 6.4 represents the regions where PMIS results are larger (worse) than

OS results (false negative values). Figure 6.5 on the other hand, shows the regions

where PMIS results are smaller (better) than OS results (false positive values).
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Figure 6.2: Response surfaces of the simulations for the minimum AA bullet distance
to the aircraft with 0.7 MHz Bandwidth
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Figure 6.3: Response surfaces of the simulations for the minimum AA bullet distance
to the aircraft with 1.0 MHz Bandwidth
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According to these figures, the following may be concluded:

i. The difference in the responses is prominent in the risky zone.
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ii. There is a region in the good zone where PMIS can generate false positive

values, though the difference of the values are not too high to produce false

best results.

iii. The highest values of difference between the results are at the border of the

risky and bad zones.

6.2.1 Applications and Findings

In order to test the performance of PMIS during an optimization procedure, we use

SwarmOps [93] as the PSO library. The parameters of the PSO are selected as the

common values in the literature, which are also similar to the default parameters

suggested for three-dimensional problems in the PSO library used:

i. Np (number of particles) : 25

ii. w (inertia weight) : 0.4

iii. c1 (cognitive acceleration coefficient) : 2

iv. c2 (social acceleration coefficient): 2

The simulation is deterministic but the optimization procedure includes a random be-

haviour in the particle coefficients. We also know that there are multiple best regions

for the selected simulation result. The optimization procedure is run 50 times using

OS. Then in order to analyze the performance of PMIS, the PM is trained using UD

and the optimization procedure is run 50 times using the integrated simulation.

6.2.2 Results and Discussion

The best points found for OS are given in Table 6.1. They are in the range of 0.662 −

0.668. The best points found for PMIS are given in Table 6.2. They are in the range

of 0.622 − 0.665, except one result value of 0.805.

OS and PMIS best points are drawn in Figures 6.6(a)-6.6(c) and each chart represents

the results in terms of frequency versus power, frequency versus bandwidth and power

versus bandwidth, respectively.
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Figure 6.6: Best points comparison of OS and PMIS for dAAB simulation output
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Table 6.1: Best points of OS
Freq. (GHz) Power (dBW) Bandw. (MHz) dAAB (m)

2.01 50 0.85 0.663
2.34 52.82 0.89 0.662
2.4 51.76 0.57 0.663
2.56 50.95 0.68 0.663
3.16 56.11 0.84 0.662
3.25 50 0.8 0.668
3.37 55.45 0.87 0.663
3.6 57.56 0.77 0.662
3.65 51.31 0.51 0.668
3.73 58.05 0.8 0.662
3.79 53.77 0.79 0.663
3.79 58.27 0.5 0.662
4.01 54.45 0.56 0.663
4.21 55.11 0.76 0.663
4.28 61.26 0.56 0.662
4.38 61.59 0.79 0.662
4.49 57.53 0.9 0.663
4.67 56.42 0.61 0.663
4.75 63 0.62 0.662
4.98 55.46 0.52 0.668
5.04 62.66 0.65 0.662
5.17 58.11 0.74 0.663
5.39 58.84 0.87 0.663
5.44 65.54 0.64 0.662
5.55 62.97 0.55 0.663
5.64 57.56 0.5 0.668
5.69 63.39 0.56 0.663
5.76 61.98 0.83 0.663
5.8 67.02 0.78 0.662
5.9 62.56 0.64 0.663
5.97 58.68 0.79 0.668
5.97 60.97 0.58 0.663
6.06 66.52 0.65 0.662
6.09 66.66 0.75 0.662
6.09 66.66 0.75 0.662
6.38 66.47 0.84 0.663
6.48 68.76 0.72 0.662
6.5 68.86 0.79 0.662
6.53 63.3 0.73 0.663
6.64 69.68 0.5 0.662
6.64 69.72 0.68 0.662
6.81 68.72 0.55 0.663
7.56 70.61 0.55 0.663
7.7 69.11 0.84 0.663
7.75 71.69 0.63 0.663
7.8 71.91 0.63 0.663
8 67.81 0.84 0.668
8 77.65 0.54 0.662
8 79.68 0.84 0.662
8 79.69 0.68 0.662

Table 6.2: Best points of PMIS
Freq. (GHz) Power (dBW) Bandw. (MHz) dAAB (m)

2.3 50 0.85 0.663
2.69 55.78 0.71 0.663
2.71 54.58 0.71 0.622
2.73 50.39 0.5 0.663
2.96 54.64 0.89 0.622
2.97 53.24 0.9 0.622
3.38 55.16 0.65 0.664
3.64 52.78 0.85 0.665
3.67 54.97 0.65 0.664
3.95 53.96 0.6 0.622
3.98 59.15 0.5 0.662
4.36 60.83 0.57 0.665
4.45 55.35 0.86 0.622
4.46 55.39 0.77 0.662
4.46 55.54 0.86 0.665
4.61 55.88 0.84 0.623
4.73 56.22 0.76 0.663
4.84 58.99 0.54 0.623
4.92 59.15 0.6 0.664
4.93 59.13 0.9 0.665
5.26 62.19 0.71 0.623
5.41 62.64 0.67 0.623
5.52 63.14 0.77 0.623
5.58 64.64 0.59 0.664
5.63 62.27 0.57 0.664
5.68 65.21 0.9 0.625
5.7 58.44 0.67 0.664
5.74 62.74 0.68 0.663
5.76 58.65 0.54 0.664
5.83 58.97 0.82 0.665
5.94 59.23 0.59 0.623
5.99 61.24 0.65 0.663
6.01 62.58 0.64 0.663
6.24 60.48 0.55 0.662
6.27 67.35 0.52 0.625
6.3 62.53 0.79 0.664
6.31 60.5 0.52 0.664
6.4 62.96 0.65 0.622
6.53 61.59 0.56 0.623
6.56 61.58 0.84 0.662
6.56 65.6 0.8 0.664
6.58 67.66 0.75 0.664
6.68 62.02 0.57 0.663
6.81 68.8 0.64 0.805
6.86 63.12 0.9 0.664
6.91 63.5 0.53 0.665
6.92 63.65 0.51 0.625
7.14 70.23 0.6 0.625
7.28 71.53 0.78 0.665
7.46 70.32 0.76 0.622
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According to the results,

i. The best points lay in the risky zone in both OS and PMIS runs.

ii. For the best points, we can realize an interaction between the frequency and

power design variables, yet there is no obvious interaction between bandwidth

and other design variables.

iii. Best points of OS and PMIS are similar in value and distribution. There is a

group of best points located above the frequency value of 7.5, but PMIS did not

find any best points in this region.

The high amount of false positive (FP) values can be considered as dangerous, since

a FP best point value can lead to non-termination of the aircraft and mislead the

simulation user. False negatives (FN) on the other hand may hinder the optimiza-

tion procedure during the search. For this purpose we present the contingency ta-

ble in Table 6.3 based on the hit/miss results of the simulation. We also calcu-

late the sensitivity and the specificity of the results. Sensitivity or true positive rate

= T P/P = T P/(T P + FN), where T P is true-positive. Specificity or true negative

rate = T N/N = T N/(FP + T N) where T N is true-negative.

Table 6.3: Contingency table of the simulation results according to the minimum AA
bullet distance to the aircraft

OS Result

PM
IS

R
es

ul
t

Hit Miss

Hit 722 11

Miss 25 141

Sensitivity: 96.65%
Specificity: 92.76%

The results show that usage of PMIS in an optimization procedure give comparable

results to the usage of OS. The sensitivity and specificity of the results are also quite

high. There are some regions where PMIS can give FP results, but the threshold where

these values can mislead the optimization procedure is quite high (3.75) considering

the best values (0.662).
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CHAPTER 7

CONCLUSION AND FURTHER STUDIES

This work has proposed a methodology for the MARS based metamodeling of dy-

namic discrete-event simulations with fixed-increment time advance mechanism. For

this purpose, first an emulator was developed to predict the output at any time step

using the data collected from the previous time steps during the simulation.

The dynamic simulation is treated like a black-box function and only the values of

the design variables, time, values of the inputs and the values of the outputs can be

observed. The design variables of the simulation, the input at a time step and the out-

put in the previous time step are used to train a metamodel using the MARS method

and estimate the output at the current step. MARS is particularly selected as a meta-

modeling technique due to its power for modeling complex (i.e, high-dimensional

and nonlinear) relations. Furthermore, our approach can handle an incomplete output

process where simulation does not necessarily generate an output for every time step.

The model was tested on four sampling techniques: AFD, HD, UD and LHS. In order

to analyze the effect of sample size on the overall performance, several sample sizes

were tried. During the training stage, the position information of both the predictors

and responses were split into components. Although a MARS model can undertake

feature selection and interaction analysis between predictors, the coordinate system

was transformed before the training to investigate the effect of three different coordi-

nate systems on the metamodel performance. For each of the experimental designs

and for the list of sample sizes, the design points were selected, and the simulation

was run for all the design points using different coordinate system representations.
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The results show that a dynamic simulation model can be successfully metamodeled

with MARS for the radar detection problem. The four selected sampling-representation-

size combinations provide good prediction performances. The effectiveness of the

MARS method for dynamic simulation metamodeling should be further evaluated by

other case studies.

The methodology is further extended to decompose the simulation into smaller work-

ing pieces using the hierarchical specification of simulation models in the DEVS for-

malism and to build metamodels of the sub-systems. Atomic models in a DEVS sim-

ulation generate time dependent output in accordance with input events, so building

a metamodel of an atomic model is essentially the dynamic simulation metamodel-

ing problem. For this purpose, the metamodeling approach based on single time step

metamodels via MARS is used. The design variables of the model, the input at the

current time step and output at the previous time step are used to train a model using

the MARS method and estimate the output at the current step.

Performance of the PM depends on the performance of the metamodels, which in turn

depends on the type of the sampling techniques used. For this purpose, different de-

signs are tried for testing the metamodel including LHS, HD and UD. For each of the

sampling techniques, the simulation is run for all the design points and metamodels.

The resulting metamodels are substituted into the PM to replace the original atomic

model in the simulation.

The metamodeling technique proposed is applied to a radar simulation model in a

one-on-one military engagement simulation between an attacking aircraft and a de-

fending ship. The approach is tested by comparing the simulation results belonging

to three response variables against original simulation results. Results indicate that

each design has some advantage over the others for a simulation result, which can

be attributed to dynamic behavior of the radar model and characteristics of the sim-

ulation results. PM-integrated simulation works significantly faster than the original

simulation and PM has good prediction performance as it generates the output events

for the original model.

Metamodeling of a dynamic simulation model and replacing it with a PM offer some

challenges including: a large number of data values gathered from the observations at
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each time step, the need for the high accuracy of the metamodel due to accumulation

of errors in the simulation and the need for explorative experiments (not for the design

variables but for the dynamic inputs of the atomic model) during training. Further-

more, replacing the target atomic model requires altering the connection structure of

DEVS simulation, logging and parsing the events in a DEVS simulation, handling in-

complete output processes where an atomic model does not generate output for each

time step and forming proper output events from the predictions of the metamodel.

In the final step of this research, we used the PMIS in an optimization procedure. For

this purpose, PSO optimization procedure is applied to both the OS and the PMIS

to find an optimal solution in the design space for the radar system. The results

were analyzed in terms of best point values, sensitivity and specificity, which show

that usage of the PMIS in an optimization procedure yields comparable results to the

usage of the OS. If we also consider the speed-up gain from using the PM, we can

conclude that our method successfully applied to our case.

7.1 Future Research

As a future research of this work, first of all the sample case can be upgraded to allow

the usage of multiple PMs in a simulation. By this way, we can see the performance

effect of the number of PMs in the PMIS. Furthermore, the error in the output of PM

can be analyzed sequentially in a time step basis and compared to the original atomic

model for a single run of the simulation. The procedure should be repeated for every

sample in the test data set. By comparing the results for single PM simulations and

multi PM simulations, one can deduce the effect of PM for error accumulation.

Our metamodeling approach is inspired by the multi-output Gaussian emulator of

Conti et al. [26], but we build our metamodel with certain novelties. Their emulator

can be implemented and the divide and fit approach based on MARS metamodel can

be compared against their gaussian emulator.

Finally, different optimization procedures can be used such as applying multi objec-

tive constrained optimization procedure or selecting different optimization methods

so that their performance with PMIS can be analyzed.
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APPENDIX

MARS Metamodel Knots

Table 7.1: Knots of CMBD-UD-15 MARS Output metamodel

Detection X Output:

0.6035
+0.953 * max(0, x[SgVPXYZ] - 0.6918)
-0.948 * max(0, 0.6918 - x[SgVPXYZ])
-0.0536 * max(0, x[PlPsXYZ] - 1.019)
+0.0509 * max(0, 1.019 - x[PlPsXYZ])

Detection Y Output:

0.5147
+0.928 * max(0, x[SgVPXYZ] - 0.6918)
-0.885 * max(0, 0.6918 - x[SgVPXYZ])
+0.0228 * max(0, x[PlPsXYZ] - 1.164)
+0.0993 * max(0, 1.164 - x[PlPsXYZ])
+0.0995 * max(0, 1.164 - x[PlPsXYZ]) * max(0, x[SgVPXYZ] - 1.227)
-0.0405 * max(0, 1.164 - x[PlPsXYZ]) * max(0, 1.227 - x[SgVPXYZ])
-0.0235 * max(0, 1.164 - x[PlPsXYZ]) * max(0, 1.227 - x[SgVPXYZ])

* max(0, x[DtLsY] - -0.834)
-0.00497 * max(0, 1.164 - x[PlPsXYZ]) * max(0, 1.227 - x[SgVPXYZ])

* max(0, -0.834 - x[DtLsY])
-0.0381 * max(0, x[PlPsXYZ] - -1.498) * max(0, x[SgVPXYZ] - 0.6918)
+0.0764 * max(0, -1.498 - x[PlPsXYZ]) * max(0, x[SgVPXYZ] - 0.6918)

Detection Z Output:

0.9276
+1.12 * max(0, x[SgVPXYZ] - 0.6492)
-1.18 * max(0, 0.6492 - x[SgVPXYZ])
-0.0303 * max(0, x[PlPsXYZ] - 1.2)
-0.158 * max(0, 1.2 - x[PlPsXYZ])
-0.147 * max(0, 1.2 - x[PlPsXYZ]) * max(0, x[SgVPXYZ] - 1.187)
+0.0617 * max(0, 1.2 - x[PlPsXYZ]) * max(0, 1.187 - x[SgVPXYZ])
+0.0341 * max(0, 1.2 - x[PlPsXYZ]) * max(0, 1.187 - x[SgVPXYZ])

* max(0, x[DtLsY] - -0.8945)
+0.00773 * max(0, 1.2 - x[PlPsXYZ]) * max(0, 1.187 - x[SgVPXYZ])

* max(0, -0.8945 - x[DtLsY])
+0.0461 * max(0, x[PlPsXYZ] - -1.439) * max(0, x[SgVPXYZ] - 0.6492)
-0.0945 * max(0, -1.439 - x[PlPsXYZ]) * max(0, x[SgVPXYZ] - 0.6492)
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Table 7.2: Knots of CMBD-UD-15 MARS OutputCntrl metamodel

Detection Exists:

1.613
-0.495 * max(0, x[DtLsZ] - 0.4785)
-1.06 * max(0, 0.4785 - x[DtLsZ])
-0.226 * max(0, x[SgVPXYZ] - -0.2213) * max(0, x[DtLsZ] - 0.4785)
+0.338 * max(0, 0.8533 - x[SgVPXYZ]) * max(0, 0.4785 - x[DtLsZ])
-183 * max(0, x[SgVPXYZ] - 0.957)
-0.5 * max(0, 0.957 - x[SgVPXYZ])
+89.7 * max(0, x[SgVPXYZ] - 0.946) * max(0, 0.4785 - x[DtLsZ])
-260 * max(0, x[PlPsXYZ] - -1.867) * max(0, x[SgVPXYZ] - 0.946)

* max(0, 0.4785 - x[DtLsZ])
-0.318 * max(0, x[Freq] - -0.7069) * max(0, x[SgVPXYZ] - 0.8533)

* max(0, 0.4785 - x[DtLsZ])
+3.02 * max(0, -0.7069 - x[Freq]) * max(0, x[SgVPXYZ] - 0.8533)

* max(0, 0.4785 - x[DtLsZ])
+34.7 * max(0, x[Freq] - -1.414) * max(0, x[SgVPXYZ] - 0.957)
+2.41 * max(0, x[Freq] - -0.7069) * max(0, x[PlPsXYZ] - -1.604)

* max(0, x[SgVPXYZ] - 0.8533) * max(0, 0.4785 - x[DtLsZ])
-19.7 * max(0, x[Freq] - -0.7069) * max(0, -1.604 - x[PlPsXYZ])

* max(0, x[SgVPXYZ] - 0.8533) * max(0, 0.4785 - x[DtLsZ])
+0.405 * max(0, x[Power]) * max(0, x[SgVPXYZ] - 0.8533)

* max(0, 0.4785 - x[DtLsZ])
-0.415 * max(0, 0 - x[Power]) * max(0, x[SgVPXYZ] - 0.8533)

* max(0, 0.4785 - x[DtLsZ])
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GLOSSARY

Complete observation table Observation table produced by running the simulation for all

design points of the sample set and recording input and out-

put for all time steps

Design variable Variable that is controllable from the point of view of the

designer (i.e., simulation user)

Design space Multidimensional combination of design variables with ac-

ceptable ranges

Dynamic system A system that generates outputs over time using the dynamic

inputs and/or the state of the system

Incomplete output process A simulation model which does not produce an output in

some steps due to missing inputs or internal behavior

Input parameter Uncontrollable parameters from the point of view of the de-

signer (e.g., environment conditions)

Original simulation Simulation with original atomic model (radar system in the

sample case)

Predictor variable Independent variable that can be used to predict the output of

a model

PM integrated simulation Simulation in which a target atomic model is replaced with a

proxy atomic model (PM) implementing its metamodel

Reduced observation table Observation table produced by trimming complete observa-

tion table so that only the rows with output data remain in the

table

Response Dependent variable that changes in accordance with changes

in the predictors

Response surface Surface plots that visualize the dependence of a response on

the predictors by presenting contours of the response values
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