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Supervisor, Electrical and Electronics Eng. Dept., METU

Assoc. Prof. Dr. Nail Akar
Co-supervisor, Electrical and Electronics Eng. Dept., Bilkent
Univ.

Examining Committee Members:

Prof. Dr. Aydın Alatan
Electrical and Electronics Engineering, METU
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ABSTRACT

BAYESIAN MULTI FRAME SUPER RESOLUTION

Turgay, Emre

Ph. D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozdağı Akar

Co-Supervisor : Assoc. Prof. Dr. Nail Akar

January 2014, 155 pages

This thesis aims at increasing the effective resolution of an image using a set of low

resolution images. This process is referred to as super resolution (SR) image recon-

struction in the literature. This work proposes maximum a-posteriori (MAP) based

iterative reconstruction methods for this problem.

The first contribution of the thesis is a novel edge preserving SR image reconstruc-

tion method. The proposed MAP based estimator uses local gradient direction and

amplitude for optimal noise reduction while preserving edges.

The second contribution of the thesis is a novel texture prior for maximum a posteriori

(MAP) based super resolution (SR) image reconstruction. The prior is based on a

multiscale compound Markov Random Field (MRF) model. Gabor filters are utilized

for subband decomposition. Each subband is modeled by a compound MRF that

inherits a binary texture process. The texture process at each pixel location at each

subband is estimated iteratively along with the unknown high-resolution image pixels.

Finally, a two stage SR method comprising a Bayesian reconstruction step followed

by a restoration step is proposed. In the first stage, two MAP based SR estimators with
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different regularizations are employed. In the second stage, pixel-to-pixel difference

between these two estimates is post-processed to restore edges and textures while

eliminating noise.

Experiments on synthetically generated images and real experiments on visual CCD

cameras and thermal cameras demonstrate that the proposed methods are more favor-

able compared to state-of-the-art SR methods especially on textures and edges.

Keywords: Bayesian, Super Resolution, Texture, Edge, Reconstruction

vi



ÖZ

BAYES TABANLI ÇOKLU ÇERÇEVELİ SUPER ÇÖZÜNÜRLÜK

Turgay, Emre

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar

Ortak Tez Yöneticisi : Doç. Dr. Nail Akar

Ocak 2014, 155 sayfa

Bu tez, düşük çözünürlüklü görüntüler kullanarak bir görüntünün etkin çözünürlüğünü

artırmayı hedeflemektedir. Bu işlem, literatürde süper çözünürlükte (SR) görüntü

oluşturma olarak adlandırılır. Bu çalışma bu problemin çözümü için iteratif maksi-

mum sonsal (MAP) yöntemler önermektedir.

İlk olarak, görüntüdeki kenar yapılarını koruyan yeni bir SR görüntü geri çatılama

yöntemi sunulmuştur. Önerilen yöntem görüntüdeki yerel değişimlerin yönünü ve

genliğini kullanarak kenar yapılarına zarar vermeden optimum gürültü giderme yap-

maktadır.

Tezin literatüre ikinci katkısı, MAP tabanlı süper çözünürlükte kullanılmak üzere

geliştirilmiş yeni bir desen görüntü öncüsüdür. Önerilen görüntü öncüsü çok kat-

manlı Markov rastgele alanlarını temel almaktadır. Katman ayrıştırılması amacıyla

Gabor süzgeçleri kullanılmıştır. Her alt katman içerisinde bir desen rastgele süreci

bulunur. Desen süreci, yüksek çözünürlük görüntü pikselleri ile birlikte döngüsel

olarak bulunur.
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Son olarak, MAP tabanlı bir geri çatılama yöntemi ve akabinde bir restorasyon adımını

içeren iki aşamalı bir yöntem önerilmiştir. İlk aşamada, farklı seviyede düzenlileyici

içeren iki MAP SR yöntem koşturulmuştur. İkinci aşamada, bu iki tahmin arasındaki

piksel farkını içeren görüntü restore edilerek kenar ve desenler korunmuştur.

Sentetik görüntüler, gerçek kamera ve termal kamera görüntüleri üzerinde yapılan

deneyler, önerilen yöntemlerin özellikle kenar ve desen içeren görüntülerde litertürdeki

eş yöntemlere kıyasla daha iyi sonuç verdiğini göstermektedir.

Anahtar Kelimeler: Bayesçi, Süper Çözünürlük, Desen, Kenar, Geri çatılama
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To the woman in red dress...
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 FORWARD PROBLEM: IMAGE FORMATION PROCESS . 2

1.2 STATEMENT OF THE PROBLEM . . . . . . . . . . . . . . 6

1.3 CONTRIBUTION OF THE THESIS . . . . . . . . . . . . . 6

1.4 THESIS OUTLINE . . . . . . . . . . . . . . . . . . . . . . 7

2 LITERATURE SURVEY . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 FREQUENCY DOMAIN METHODS . . . . . . . . . . . . 9

2.2 INTERPOLATION-RESTORATION BASED METHODS . 11

2.3 ITERATIVE BACK PROJECTION METHOD . . . . . . . . 12

2.4 PROJECTION ONTO CONVEX SETS METHOD . . . . . 12

2.5 DETERMINISTIC METHODS . . . . . . . . . . . . . . . . 14

2.6 STOCHASTIC METHODS . . . . . . . . . . . . . . . . . . 16

2.6.1 Maximum Likelihood Solution . . . . . . . . . . . 17

2.6.2 Incorporating the Image Prior . . . . . . . . . . . 19

2.7 LEARNING BASED METHODS . . . . . . . . . . . . . . . 22

xi



2.8 VIDEO SUPER RESOLUTION . . . . . . . . . . . . . . . 24

3 ANALYSIS OF DISTANCE MEASURES IN SUPERRESOLUTION 25

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 DISTANCE MEASURES FOR DATA AND THE MODEL . 25

3.2.1 Norm Function as a Distance Measure . . . . . . . 25

3.2.2 Log-Sum Function as a Distance Measure . . . . . 27

3.2.3 Simulation Results . . . . . . . . . . . . . . . . . 28

3.3 REGULARIZATION FUNCTIONS . . . . . . . . . . . . . 32

3.3.1 Simulation Results . . . . . . . . . . . . . . . . . 34

3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . 35

4 GRADIENT DIRECTION ADAPTIVE SUPER RESOLUTION . . . 39

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 PROPOSED DIRECTIONAL REGULARIZATION . . . . . 39

4.2.1 Directional Huber-Markov Random Field Method . 43

4.2.2 Directional Bilateral Total Variation Method un-
der Laplacian Noise . . . . . . . . . . . . . . . . . 44

4.2.3 Directional Bilateral Total Variation Method un-
der Gaussian Noise . . . . . . . . . . . . . . . . . 45

4.3 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . 45

4.3.1 Gradient Map Estimation . . . . . . . . . . . . . . 48

4.3.2 Convergence of the Proposed Methods . . . . . . . 53

4.3.3 Performance Comparison . . . . . . . . . . . . . . 54

4.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 TEXTURE ADAPTIVE SUPER RESOLUTION . . . . . . . . . . . 61

5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 PROPOSED BAYESIAN SUPER RESOLUTION . . . . . . 63

5.2.1 The Imaging Model . . . . . . . . . . . . . . . . . 63

5.2.2 Multiresolution Compound Texture Prior . . . . . 63

5.2.3 MAP Solution . . . . . . . . . . . . . . . . . . . . 65

5.2.4 Prior Parameter Estimation . . . . . . . . . . . . . 69

xii



5.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Experiments on Synthetically Generated Images . . 71

5.3.2 Experiments on Real Image Data . . . . . . . . . . 84

5.3.3 Experiments on Thermal Image Data . . . . . . . . 90

5.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 POST PROCESSING BASED SUPER RESOLUTION . . . . . . . . 97

6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Gabor Filter Bank Based Restoration . . . . . . . . 99

6.2.2 Discrete Cosine Transform Based Restoration . . . 101

6.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Experiments on Synthetically Generated Images . . 105

6.3.2 Experiments on Real Image Data . . . . . . . . . . 113

6.3.3 Experiments on Thermal Image Data . . . . . . . . 113

6.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . 125

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

APPENDICES

A STRUCTURE OF THE OPERATIONS IN MATRIX FORM . . . . . 135

A.1 Decimation Operation . . . . . . . . . . . . . . . . . . . . . 136

A.2 Shift Operation . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.3 Rotation Operation . . . . . . . . . . . . . . . . . . . . . . . 140

A.4 Blur Operation . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.5 System Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.6 Observations on Matrix Operators in Super Resolution . . . . 143

B VIDEO SUPERRESOLUTION . . . . . . . . . . . . . . . . . . . . 145

B.1 SEQUENTIAL VERSUS BATCH SUPER RESOLUTION . 145

xiii



B.2 Recursive Least Squares (RLS) Approach . . . . . . . . . . 147

B.3 Pseudo Recursive Least Squares (Pseudo-RLS) Approach . . 149

B.4 Least Mean Squares Estimate . . . . . . . . . . . . . . . . . 150

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xiv



LIST OF TABLES

TABLES

Table 3.1 PSNR (dB) values for the reconstructed image in Figure 4.3(a) un-

der noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 4.1 Reconstruction methods in simulations. . . . . . . . . . . . . . . . 46

Table 4.2 SSIM / PSNR (dB) values for the SR images obtained from the LR

data set of the images in Figure 4.3. . . . . . . . . . . . . . . . . . . . . . 56

Table 4.3 PSNR (dB) values for the edge pixels of the images in Figure 4.3. . . 56

Table 5.1 MSE Values at 25 and 30 dB SNR Levels . . . . . . . . . . . . . . 83

Table 5.2 SSIM Values at 25 and 30 dB SNR Levels . . . . . . . . . . . . . . 83

Table 6.1 MSE and SSIM Values at 25 and 30 dB SNR Levels . . . . . . . . . 106

xv



LIST OF FIGURES

FIGURES

Figure 1.1 Image formation process. . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2 Camera model with a high-resolution and noise free detector array.

The effect of the finite size high-resolution detector sensor is modeled as

HDET,HR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.3 Relationship between the high-resolution image z and a set of low-

resolution images yk, where k = 1, . . . , c, and c is the number of LR im-

ages. l1 and l2 are downsampling factors in vertical and horizontal direc-

tions respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.4 LR images with non-redundant information can cover a higher res-

olution grid to make higher resolution image reconstruction possible. . . . 5

Figure 2.1 Once the motion is found this information is mapped on to the HR

grid The HR image pixel points are found by interpolating this data around

the LR image pixel values depicted as “�”, “� ”, “◦”. . . . . . . . . . . . 11

Figure 2.2 On the left, a pixel with its four neighbors is shown. On the right,

4 cliques defined for the neighborhood system are depicted with texture. . 20

Figure 3.1 Effect of additive Gaussian noise on reconstructions. . . . . . . . . 29

Figure 3.2 Effect of salt & pepper noise on reconstructions. . . . . . . . . . . 30

Figure 3.3 Evolution of Cost function, MSE, and average change in pixel

value at each iteration for �1, �2, log(·)-sum penalty functions. . . . . . . . 31

Figure 3.4 Variation of β parameter for additive Gaussian noise and motion

errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.5 Effect of varying T in the huber function. From left to right T is

set to 1, 3, 10, and 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xvi



Figure 3.6 Effect of increasing λ. Starting from the first to 4th column, recon-

structions with �2 norm, �1 norm, Huber function, and log(·)-sum function

in the regularization term are given. . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.7 Effect of increasing λ. Starting from the first to 4th column, recon-

structions with �2 norm, �1 norm, Huber function, and log(·)-sum function

in the regularization term are given. . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.1 Four images with white to gray transitions are shown. The arrows

are perpendicular to gradient direction. . . . . . . . . . . . . . . . . . . . 41

Figure 4.2 (a) Zebra image used in simulations. (b) Gradient map of Zebra.

White regions show pixels with small gradient activity. Four directions

are coded as shown on the right. . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.3 Original HR images and 4 of 8 corresponding LR images. . . . . . 47

Figure 4.4 Evolution of gradient map estimate through iterations. The itera-

tion number is tagged at every map image. . . . . . . . . . . . . . . . . . 49

Figure 4.5 Evolution of gradient map estimate through iterations. The itera-

tion number is tagged at every map image. . . . . . . . . . . . . . . . . . 50

Figure 4.6 Evolution of gradient map estimate through iterations. The itera-

tion number is tagged at every map image. . . . . . . . . . . . . . . . . . 51

Figure 4.7 Percentage of pixels whose gradient value is greater than the thresh-

old T of Equation 4.5 is plotted for every iteration. . . . . . . . . . . . . . 52

Figure 4.8 Mean error at each iteration. . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.9 Effect of varying the regularization amount, λ. SSIM values for

each reconstruction is given for each method. . . . . . . . . . . . . . . . . 55

Figure 4.10 (a) Reconstructions for Figure 4.3(a). In the first row: Bicubic

interpolation, HUBER, RSR, and GMRF are given respectively; In the

second row: HUBER INT, MTD1, MTD2, and MTD3 are given. (b) High

frequency components of the reconstructions are given. In the first row:

Bicubic interpolation, HUBER, RSR, and GMRF are given; In the second

row: HUBER INT, MTD1, MTD2, and MTD3 are given. . . . . . . . . . 57

xvii



Figure 4.11 (a) Reconstructions for Figure 4.3(b). In the first row: Bicubic

interpolation, HUBER, RSR, and GMRF are given respectively; In the

second row: HUBER INT, MTD1, MTD2, and MTD3 are given. (b) High

frequency components of the reconstructions are given. In the first row:

Bicubic interpolation, HUBER, RSR, and GMRF are given; In the second

row: HUBER INT, MTD1, MTD2, and MTD3 are given. . . . . . . . . . 58

Figure 4.12 (a) Reconstructions for Figure 4.3(c). In the first row: Bicubic

interpolation, HUBER, RSR, and GMRF are given respectively; In the

second row: HUBER INT, MTD1, MTD2, and MTD3 are given. (b) High

frequency components of the reconstructions are given. In the first row:

Bicubic interpolation, HUBER, RSR, and GMRF are given; In the second

row: HUBER INT, MTD1, MTD2, and MTD3 are given. . . . . . . . . . 59

Figure 5.1 One iteration of the proposed method. . . . . . . . . . . . . . . . . 68

Figure 5.2 Original HR images for (a) “Barbara”, (c) “Chart Section 1”, (e)

“Chart Section 2”, and (g) “House”, (b), (d), (f) and (h) Four of eight

synthetically generated LR images at 25 dB noise. . . . . . . . . . . . . . 71

Figure 5.3 Effect of varying regularization amount λ versus SSIM values at

different SNR levels (a) Barbara image at SNR = 25 dB, (b) SNR = 30

dB. (c) Chart image Section 1 at SNR = 25 dB, (d) SNR = 30 dB. . . . . . 73

Figure 5.4 Convergence of the algorithms. (a) Barbara image at SNR = 25

dB, (b) SNR = 30 dB. (c) Chart image at SNR = 25 dB, (d) SNR = 30 dB. 73

Figure 5.5 (a) Bicubic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e)

Original Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.6 High-frequency contents of each reconstruction are given (a) Bicu-

bic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original Image. . 75

Figure 5.7 (a) Bicubic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e)

Original Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.8 High-frequency contents of each reconstruction are given (a) Bicu-

bic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original Image. . 77

Figure 5.9 (a) Bicubic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e)

Original Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xviii



Figure 5.10 High-frequency contents of each reconstruction are given (a) Bicu-

bic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original Image. . 79

Figure 5.11 (a) Bicubic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e)

Original Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.12 High-frequency contents of each reconstruction are given (a) Bicu-

bic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original Image. . 81

Figure 5.13 Effect of regularization on highly textured and uniform regions for

the GMRF and RSR methods. . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 5.14 (a) and (c) Four of the seven LR images, (b) and (d) 2× resolution

increase by pixel duplication. . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.15 (a) Bicubic interpolation, (b) GMRF, (c) RSR, (d) Proposed Method. 86

Figure 5.16 High-frequency content of reconstructions (a) Bicubic interpola-

tion, (b) GMRF, (c) RSR, (d) Proposed Method. . . . . . . . . . . . . . . 87

Figure 5.17 (a) Bicubic interpolation, (b) GMRF, (c) RSR, (d) Proposed Method. 88

Figure 5.18 High-frequency content of reconstructions (a) Bicubic interpola-

tion, (b) GMRF, (c) RSR, (d) Proposed Method. . . . . . . . . . . . . . . 89

Figure 5.19 (a) 6 of 20 LR images of the image set 1, (b) 2x resolution increase

by pixel duplication. (c) LR images of the image set 2, (d) 2x resolution

increase by pixel duplication. . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.20 Reconstructions for the image set. A 120 × 150 window is selected

for better visual inspection. (a) Bicubic, (b) GMRF, (c) RSR, (d) Proposed. 92

Figure 5.21 Reconstructions for the image set. A 120 × 150 window is selected

for better visual inspection. High frequency content of (a) Bicubic, (b)

GMRF, (c) RSR, (d) Proposed. . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 5.22 Reconstructions for the image set. A 120 × 150 window is selected

for better visual inspection. (a) Bicubic, (b) GMRF, (c) RSR, (d) Proposed. 94

Figure 5.23 Reconstructions for the image set. A 120 × 150 window is selected

for better visual inspection. High frequency content of (a) Bicubic, (b)

GMRF, (c) RSR, (d) Proposed. . . . . . . . . . . . . . . . . . . . . . . . 95

xix



Figure 6.1 Block diagram of the proposed texture preserving super resolution

reconstruction method. SR MAP λ1, and SR MAP λ2 refer to SR methods

given in (6.1) with two different regularizations. According to the figure

λ2 > λ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 6.2 Intermediate images obtained through the proposed Gabor Filter

Bank Based method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 6.3 (a) Original high resolution image Barbara and (b) four of eight

synthetically generated LR images. (c) Original high resolution image Ba-

boon and (d) four of eight synthetically generated LR images. (e) Original

high resolution image Chart and (f) four of eight synthetically generated

LR images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 6.4 Effect of varying regularization amount λ versus SSIM values . . . 104

Figure 6.5 Reconstructed images. . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 6.6 High frequency content of the reconstructed images. . . . . . . . . 108

Figure 6.7 Reconstructed images. . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 6.8 High frequency content of the reconstructed images. . . . . . . . . 110

Figure 6.9 Reconstructed images. . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 6.10 High frequency content of the reconstructed images. . . . . . . . . 112

Figure 6.11 (a) Four of seven LR images of the first image set, (b) 2x resolution

increase by pixel duplication, (c) Four of seven LR images of the second

image set, (d) 2x resolution increase by pixel duplication. . . . . . . . . . 114

Figure 6.12 Reconstructions for first image set. A 270 x 180 window is selected

for better visual inspection. (a) GMRF, (b) RSR, (c) MTD1, (d) MTD2.

High frequency images are also given in the second row for (e) GMRF, (f)

RSR, (g) MTD1, (h) MTD2. . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 6.13 Reconstructions for second image set. A 280 x 180 window is

selected for better visual inspection. (a) GMRF, (b) RSR, (c) MTD1, (d)

MTD2. High frequency images are also given in the second row for (e)

GMRF, (f) RSR, (g) MTD1, (h) MTD2. . . . . . . . . . . . . . . . . . . . 116

xx



Figure 6.14 (a) 6 of 20 LR images of the image set 1, (b) 2x resolution increase

by pixel duplication. (c) LR images of the image set 2, (d) 2x resolution

increase by pixel duplication. . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 6.15 Reconstructions for the image set. A 120 × 150 window is selected

for better visual inspection. . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 6.16 Reconstructions for the image set. A 120 × 150 window is selected

for better visual inspection. High frequency content of the reconstructed

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 6.17 Reconstructions for the image set. A 120 × 150 window is selected

for better visual inspection. . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 6.18 Reconstructions for the image set. A 120 × 150 window is selected

for better visual inspection. High frequency content of the reconstructed

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure A.1 For a 4 × 4 image 25o clockwise rotation matrix is as shown on the

left. Transpose of a 25o counter clock wise rotation is shown on the right.

The two matrices are not exactly same however can be considered similar. 141

Figure A.2 For a 16 × 16 high resolution image and 8 × 8 low revolution image

the system matrix W has the above forms. Here the motion in x and y

directions are 0.5 pixels each (the right system matrix also comprises 10o

of counter clock wise rotation), zoom factor is two, and the blur operation

is a 2 × 2 averaging operator the white pixels are zeros. . . . . . . . . . . 143

Figure B.1 Change in R as new images are added in time. The non zero ele-

ments along the diagonal increases away from the diagonal. . . . . . . . . 149

Figure B.2 Batch SR versus Sequential SR with LMS method is given. . . . . 151

Figure B.3 Flow of RLS and Pseudo-RLS algorithms. . . . . . . . . . . . . . 152

Figure B.4 Flow of Bicubic interpolation and LMS methods. . . . . . . . . . . 153

xxi



GLOSSARY

SR Super resolution

HR High resolution

LR Low resolution

ML Maximum likelihood

MAP Maximum a posteriori

PDF Probability Density Function

CS Compressive sensing

MSE Mean square error

SNR Signal to noise ratio

PSNR Peak signal to noise ratio

MRF Markov random field

GMRF Gaussian Markov random field

HMRF Huber Markov random field

SSIM Structural similarity index

POCS Projection onto convex set

DFT Discrete Fourier transform

TV Total variation

BTV Bilateral total variation

RLS Recursive least squares

LMS Least mean squares

xxii



CHAPTER 1

INTRODUCTION

Image resolution enhancement is a critical need in several fields. Increasing the num-

ber of detector pixels in imaging devices can not always satisfy this demand due to

the limitations in optics, manufacturing, and cost. Super resolution (SR) image recon-

struction provides software solutions for this need. SR image reconstruction refers to

methods that use a set of low resolution (LR) images to construct a higher resolution

image of the same scene. Since the first formulation of the problem in the 1980s

[1], it has found many application areas in both civil and military applications such

as: surveillance [2], remote sensing [3, 4], plate reading, face recognition [5], tar-

get detection, identification, medical imaging (MRI [6, 7], PET [8]), video standard

conversion, e.g. from NTSC video signal to HDTV signal.

Higher resolution does not always mean increasing only the number of pixels in

an image. SR image reconstruction aims at retrieving the lost high frequency com-

ponents, that is to say details in the scene. This can only be achieved if the input

LR images contain non-redundant information, in other words, a different look at the

same scene. This can be achieved by either changing the camera focus [9, 10, 11],

changing the zoom [12], the lightening conditions or relative motion. By relative

motion, we refer to using multiple cameras with slightly different angles or a single

camera under relative motion. For example, in military applications a surveillance

camera on a moving platform is under enough vibration so that successive images

provide slightly different information [13]. Interestingly, the same type of image en-

hancement algorithm is also present in human eye. Assume we look at a far stationary

target, which is barely visible. If this target moves, suddenly the edges and the sil-

houette of the target becomes apparent. Although the mechanism in the retina and

human brain is unknown, the similarity of the need for motion is worth noting.
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The most critical stage in SR image reconstruction is the estimation of relative

motion among LR images. A survey of image registration algorithms have been given

in [14]. Registered LR pixels are processed to reconstruct an SR image. Various

methods have been proposed for SR image reconstruction in the last three decades. A

survey of SR methods is presented later in Chapter 2.

In this chapter, we describe an efficient model for SR image reconstruction. This

model will be used throughout the thesis for constructing the SR algorithms. Al-

though theoretically image fusion to reconstruct an SR image using multiple cameras

and using a single camera under motion are the same problems, we will consider sin-

gle camera image reconstruction for the ease of the presentation. Furthermore the

following assumptions have been made:

• Each image has undergone the same optical blur (camera focus is not altered

during image acquisition).

• Optical blur is linear and spatially invariant. The proposed methods can be

extended for a linear and spatially variant case.

• Lightening conditions are consistent.

• Each LR image contains non-redundant information (e. g., sub-pixel motion is

present among LR images and LR images are aliased.).

• Only affine transformation among LR images are considered. Perspective mo-

tion or moving object within the background image are not considered for sim-

plifying the discussion.

1.1 FORWARD PROBLEM: IMAGE FORMATION PROCESS

Figure 1.1 illustrates the image formation process for a typical CCD camera [15, 16].

Scene irradiance goes through an optical system, where a blurred version of the scene

is projected onto an array of finite size detector elements. The detector elements

produce a discrete image, whose pixel intensity values are proportional to the amount

of flux projected on to each detector element. During this process, the pixel intensity

values are contaminated by noise from several sources. This mechanism is simplified

in the block diagram in Figure 1.1. Here, I is image irradiance, HOptics term models
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optic effects (lens blur etc.), and HDET,LR represents detector pixel physics (pixel size,

shape, sensitivity etc.). Finally, additive noise is represented by n.

Figure 1.1: Image formation process.

Figure 1.2: Camera model with a high-resolution and noise free detector array. The
effect of the finite size high-resolution detector sensor is modeled as HDET,HR.

Assume that the camera lens, modeled as HOptics in Figure 1.1, restricts the band-

width of the input irradiance, and let IBandLimited be the resultant irradiance. Suppose

that an imaginary high-resolution detector array has replaced the low-resolution and

noisy detector array as depicted in Figure 1.2. If this imaginary detector array is dense

enough and noise free, a high-resolution image z can be obtained, whose pixels can

be used to recover IBandLimited perfectly.

Super resolution methods try to estimate this high-resolution image z from the

low-resolution image y. The block diagram in Figure 1.3 illustrates the relation be-

tween the continuous image I, high-resolution image, z, and low-resolution image,

y.

Lexicographical representation of the images are used for convenience in express-
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Figure 1.3: Relationship between the high-resolution image z and a set of low-
resolution images yk, where k = 1, . . . , c, and c is the number of LR images. l1
and l2 are downsampling factors in vertical and horizontal directions respectively.

ing the mathematical relationship between y and z. In this representation, all the rows

of an image is attached to each other to form a long column vector. By this way, the

M × N size low-resolution image y is represented as an MN × 1 size column vector.

Similarly, the high-resolution image z, is a vector of size l1M l2N × 1, where l1 and

l2 are downsampling factors in vertical and horizontal directions, respectively. The

relationship between z and y, shown in Figure 1.3, can be formulated as follows:

y = DH · z + n, (1.1)

where D is an MN × l1M l2N matrix representing the down sampling operation, H

is a l1Ml2N × l1Ml2N matrix representing the effect of finite detector size, and n

is additive noise vector of size MN × 1. Blurring an l1M × l2N image by a 3 by

3 kernel requires l1M × l2N × 3 × 3 multiplications and additions in 2 dimensional

image domain. However, the same operation (H · z) requires l1Ml2N × l1Ml2N ×
l1Ml2N × l1Ml2N multiplications and additions in lexicographical representations.

Although the number of operations are vastly different in both domains, the results

are exactly the same. This difference is due to the sparsity of operator matrices defined

in lexicographical form as shown in Appendix A. The key operations such as blurring

H, decimation D, and affine transformations F, are given explicitly in lexicographical

form for 4 × 4 images in Appendix A. In practice, all the operations are conducted

in 2-dimensional image domain due to efficiency. Lexicographical representation is

used for all the equations throughout this thesis, unless otherwise stated.

The problem of finding z given y is an ill-posed inverse problem [1]. Firstly, the
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number of unknown high-resolution pixels are higher than the known low-resolution

pixels. Secondly, observation model errors and additive noise creates instability dur-

ing the iterative reconstructions. The equation (1.1) can be made over-determined by

adding more LR images to the equation set. This idea is illustrated in Figure 1.4,

where 3 LR images with different spatial orientation with respect to a reference grid

are aligned on a higher resolution grid. If these images have non-redundant infor-

mation, such as presence of aliasing and sub-pixel shifts with respect to a reference

frame, then a higher resolution image can be reconstructed.

Figure 1.4: LR images with non-redundant information can cover a higher resolution
grid to make higher resolution image reconstruction possible.

The sub-pixel shifts among LR images provide the necessary information to make

the system of equations overdetermined. The equation (1.1) takes the following form

with multiple LR images:

yk = DHFk︸︷︷︸
Wk

·z + nk k = 1, . . . , c (1.2)

Here, LR images are denoted as yk, where k is the index of the LR images, and c is

the number of LR images. Fk represents the warping operation in matrix form. Sub-

pixel shifts are inserted into the equation set through this operator. Therefore, a sound

estimation for Fk is the most critical part of the SR image reconstruction process. This
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thesis does not focus on the image registration problem. Image registration values are

known a priori in most of the simulations. In (1.2), sampling, blur, and warping

operators are merged into a single matrix Wk.

1.2 STATEMENT OF THE PROBLEM

Given the model in (1.2), the SR problem statement is given as follows.

Given a set of low-resolution images with dimensions M×N, reconstruct a higher

resolution image with an expansion factor l1 and l2 in vertical and horizontal direc-

tions respectively, so that the lost details of the original scene is restored.

Related problems are:

Image restoration: Given a single or a set of images with dimensions M × N,

reconstruct a restored image with the same dimensions as the degraded image.

Single frame interpolation: Given a single low-resolution image with dimensions

M × N, reconstruct a higher resolution image with an expansion factor l1 and l2 in

vertical and horizontal directions respectively.

Unlike single frame interpolation methods, SR image reconstruction tries to in-

crease the effective resolution of the image data. As mentioned before, just increas-

ing the number of samples through single frame linear or bicubic interpolation do not

necessarily increase the effective resolution of the image. The details are lost through

imaging process due to optical blur, finite detector size, and down sampling. In con-

trast to the single frame interpolation methods, SR reconstruction methods retrieve

the lost high frequency information. If the optical blur filter in Figure 1.1 were a

perfect anti-aliasing filter, it would not be possible to retrieve any of the lost details.

In such a case, SR reconstruction would only upsample and restore the LR images.

Therefore, SR reconstruction is not suitable for imaging devices that outputs perfectly

anti-aliased LR images.

1.3 CONTRIBUTION OF THE THESIS

• The first contribution of the thesis is a novel edge preserving SR image recon-

struction method. The proposed Bayesian estimator uses local gradient direc-

tion and amplitude for optimal noise reduction while preserving edges. The
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proposed method estimates gradient amplitude and direction at each iteration.

This gradient map guides the SR reconstruction stage through iterations.

• The second contribution of the thesis is a novel texture prior for maximum a

posteriori (MAP) based super resolution (SR) image reconstruction. The prior

is based on a multiscale compound Markov Random Field (MRF) model. Ga-

bor filters are utilized for subband decomposition. Each subband is modeled

by a compound MRF that inherits a binary texture process. The texture process

at each pixel location at each subband is estimated iteratively along with the

unknown high-resolution image pixels.

• Finally, A two stage method is proposed, comprising multiple SR reconstruc-

tions with different regularization parameters followed by a restoration step for

preserving edges and textures. In the first stage, two maximum-a-posteriori

(MAP) estimators with two different amounts of regularizations are employed.

In the second stage, pixel-to-pixel difference between these two estimates is

post-processed to restore edges and textures. Frequency selective character-

istics of discrete cosine transform (DCT) and Gabor filters are utilized in the

post-processing step.

1.4 THESIS OUTLINE

In Chapter 2, a literature survey on SR methods is presented.

In Chapter 3, a brief analysis is done on distance measures used in the cost func-

tion expressions in MAP estimators.

In Chapter 4, a novel gradient adaptive edge preserving Bayesian method for SR

reconstruction is proposed.

In Chapter 5, a novel texture prior for Bayesian estimation of SR image pixels is

proposed.

In Chapter 6, a two stage edge and texture preserving SR method suitable for real

time applications is proposed.

In Chapter 7, conclusion and future directions are given.
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CHAPTER 2

LITERATURE SURVEY

Super resolution image reconstruction has been discussed in image processing lite-

rature for over three decades. Although the problem is first stated in the 1980s [1],

similar problems such as image and video interpolation, restoration, and algebraic

image reconstruction for computed tomography have constructed the basis for many

SR approaches. In this chapter, pioneering studies published in the literature are

summarized under various topics to give a structured presentation for a reader who

is not familiar with the field. We also briefly consider video SR problem at the end

of the chapter. A special attention is given to stochastic methods since the proposed

approaches belong to this category.

2.1 FREQUENCY DOMAIN METHODS

The first formulation of the SR problem is given in frequency domain by Tsai and

Huang [1]. Their solution is based on the Fourier shift theorem and the aliasing

relation between high resolution (HR) image, z, and corresponding low resolution

(LR) images, y. Assume that y is obtained by downsampling z by a factor of r in both

directions, then the aliasing relation between 2D discrete Fourier transforms (DFT)

of y and z is given as, [17]

Y[n1, n2] =
1
r2

r−1∑
p=0

r−1∑
p=0

Z
[
(n1 − Mp)Mr , (n2 − N p)Nr] , (2.1)

where (·)N is the mod operation, M and N are the number of LR image pixels in

vertical and horizontal directions. Z and Y are DFTs of z and y respectively. The

aim of SR image reconstruction is to obtain z, given a set of low resolution images
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yk, which are related to each other by global translational motion. Assume that each

yk is obtained by down sampling a separate HR image zk, and assume each HR image

zk is obtained from a reference image z1 by globally shifting it by αk and βk pixels in

vertical and horizontal directions. The relationship between the DFTs of z1 and zk is

given in (2.2). It is assumed that no aliasing occurred while obtaining z through the

samples of the continuous image [17],

Zk

[
n1, n2
]
= Z
[
n1, n2
] · e− j 2π

Mr ·n1·αke− j 2π
Nr ·n2·βk . (2.2)

Substituting (2.2) into (2.1) gives the following relation between DFTs of z and

yk:

Yk[n1, n2] =
1
r2

r−1∑
p=0

r−1∑
p=0

(
Z
[
(n1 − Mp)Mr , (n2 − N p)Nr] x

e− j 2π
Mr ·(n1−Mp)Mr ·α1e− j 2π

Nr ·(n2−N p)Nr ·β1
)
,

(2.3)

where k is the index for each LR image. For multiple LR images the above equation

set can be made overdetermined to solve the missing DFT coefficients of z. Once

all of the DFT coefficients Z[m1,m2] are estimated, the inverse DFT of Z gives the

HR image. This method directly aims at finding the missing aliased high frequency

components. Later, this approach is extended to include image blur, and noise [18],

[19]:

Y[n1, n2] =
1
r2

r−1∑
p=0

r−1∑
p=0

(
Z
[
(n1 − Mp)Mr , (n2 − N p)Nr] x H

[
(n1 − Mp)Mr , (n2 − N p)Nr

]

x e− j 2π
Mr ·(n1−Mp)Mr ·α1e− j 2π

Nr ·(n2−N p)Nr ·β1
)
+ V[n1, n2],

(2.4)

where H is the DFT of image blur operation, and V[n1, n2] is the DFT of additive

noise. Frequency domain methods are convenient for hardware implementations due

to the use of fast Fourier transforms. However, these methods only assume global

translational motion among the LR images. Moreover, it is usually hard to apply a

priori spatial domain information to the solution procedure.
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2.2 INTERPOLATION-RESTORATION BASED METHODS

Interpolation-restoration type methods mainly consist of three stages: i) Registration

of LR image pixels onto an HR image grid according to the motion estimate, ii) Non-

uniform interpolation on the HR grid, iii) Restoration for blur removal. The first two

stages are depicted in Figure 2.1. During the second stage direct [20] or iterative

methods [21] can be used to map the interpolated data onto the HR grid.

Figure 2.1: Once the motion is found this information is mapped on to the HR grid
The HR image pixel points are found by interpolating this data around the LR image
pixel values depicted as “�”, “� ”, “◦”.

The simplest form of such methods is given in [20], where image registration step

is followed by interpolation and motion compensation with respect to a reference

frame. The interpolated images are then averaged pixel-wise to obtain an SR image.

The outlier pixels among the LR image set is discarded during the averaging stage.

Alam et al. [22] has employed the same approach for infrared images. After subpixel

registration, a Wienner filter is designed according to the optics of the camera to de-

blur the resultant image. In [21], the low resolution image pixels are mapped to a high

resolution grid and non-uniformly spaced samples are interpolated iteratively. How-

ever, sensor blur is not considered in their approach. In [19], local thin-plate spline

method is used for interpolation, which is followed by a Wienner filter restoration for

blur and noise.

These algorithms are simple, easy to implement, suitable for implementing on FP-
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GAs, and computationally cheap [23]. however, these methods do not use an imaging

model nor noise model. The methodology assumes that the LR image samples are

obtained through impulse field at 2D sampling grids, however they are actually spa-

tial averages [24]. Separation of non-uniform interpolation and restoration steps is

only possible, if the underlying motion among LR images is pure translational mo-

tion [25]. Furthermore, it is not straightforward to incorporate a priori information to

the solution.

2.3 ITERATIVE BACK PROJECTION METHOD

Iterative back projection method is adapted from algebraic reconstruction methods
in computer aided tomography, [26]. The idea is to simulate the imaging process
(forward problem) using an initial HR estimate and to back project the error between
the simulated and real low resolution images to the new HR estimate. The method is
given in the following equation, [27]:

ysimn
k[m1,m2] =

∑
n1,n2

Wk[m1,m2; n1, n2] · ẑn[n1, n2
]

ẑn+1[n1, n2] = ẑn[n1, n2] +
∑
n1,n2

hBP[m1,m2; n1, n2] ·
(
yk[m1,m2] − ysimn

k[m1,m2]
)
, (2.5)

where Wk[m1,m2, n1, n2] is related to the observation model in Chapter 1. ysimn
k

is

the kth simulated low resolution image at nth iteration. ẑn is the HR estimate at nth

iteration and hBP is the back projection operator. Various hBP operators can be used

for regularizing the solution as well. This method is easy to implement, however it is

difficult to apply a priori constraints [24] through the back projection operator.

2.4 PROJECTION ONTO CONVEX SETS METHOD

The projection onto convex sets (POCS) method is an iterative method that has been

employed in digital image restoration field [28, 29, 30]. The method has been first

used in SR image reconstruction in [31]. In POCS method, each a priori information,

such as an LR image pixel value, constrains the solution into a convex set, Cm. The

solution belongs to the intersection of all sets Cm (m = 1 · · · c). This intersection is

found iteratively using projection operators, Pm, defined for each constraint, Cm, as

follows:
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zn+1 = PcPc−1Pm−2 · · · P2P1zn. (2.6)

The relationship between each LR image pixel value, yk[m1,m2], and correspond-

ing HR image pixel value, z[n1, n2], is referred to as the “fidelity to data” or the “data

consistency” constraint. Each LR image pixel yk[m1,m2] defines the following convex

set according to the data consistency constraint:

Cm1,m2,k =

⎧⎪⎪⎨⎪⎪⎩z[n1, n2
]

: yk

[
m1,m2
]
=
∑
n1,n2

Wk[m1,m2; n1, n2] · z[n1, n2
]⎫⎪⎪⎬⎪⎪⎭ , (2.7)

where Wk[m1,m2, n1, n2] is related to the observation model in Chapter 1. The iterative

solution for the above constraining convex set can be given as follows:

z(n+1)[n1, n2] = z(n)[n1, n2] +
r(z)[m1,m2] ·Wk[m1,m2, n1, n2]∑

p,q W2
k
[m1,m2, p, q]

, (2.8)

where

r(z)[m1,m2] = yk

[
m1,m2
] −∑

n1,n2

Wk[m1,m2; n1, n2] · z(n)[n1, n2
]
. (2.9)

The update equation (2.8) is a special case of (2.5), where hBP[m1,m2, n1, n2] is

replaced by Wk[m1,m2, n1, n2]
/∑

p,q W2
k [m1,m2, p, q] .

Tekalp et al. [19] has extended the POCS method to include observation noise as

follows:

Cm1,m2,k =

⎧⎪⎪⎨⎪⎪⎩z[n1, n2
]

:
∣∣∣∣ yk

[
m1,m2
] −∑

n1,n2

Wk[m1,m2; n1, n2] · z[n1, n2
] ∣∣∣∣ < δ
⎫⎪⎪⎬⎪⎪⎭ , (2.10)

where δ is related to the observation noise and represents the confidence in the data.

The update term with the confidence term, δ is:
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z(n+1)[n1, n2] = z(n)[n1, n2]+

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(r(z)[m1,m2]−δ[m1,m2])·Wk[m1,m2,n1,n2]∑
p,q W2

k
[m1,m2,p,q] r(z)[m1,m2] > δ[m1,m2]

0
∣∣∣r(z)[m1,m2]

∣∣∣ < δ[m1,m2]
(r(z)[m1,m2]+δ[m1,m2])·Wk[m1,m2,n1,n2]∑

p,q W2
k

[m1,m2,p,q] r(z)[m1,m2] < −δ[m1,m2]
(2.11)

Additional constraints, such as the amplitude constraint [19], can also be added to

narrow the search space as follows:

Ca =
{
z
[
n1, n2
]

: a < z
[
n1, n2
]
< b
}
. (2.12)

Later, smoothness constraint [9] has been added to penalize the image spatial

derivative terms in Tikhonov type regularization sense as follows:

Cs =

{
z
[
n1, n2
]

:
∣∣∣∣ [S z][n1, n2

] ≤ δ ∣∣∣∣} , (2.13)

where S is an high pass filter operator, and δ is related to the amount of smoothness.

Motion blur effects has been added to the POCS formulation in [32]. Later, POCS

formulation has been expanded to include local object motions in the image by using

a validity map and a segmentation map [33]. The main advantage of POCS method

is the ease of using spatial domain a priori information. The method is robust against

inconsistent or missing data. Possible difficulty is finding operators for projections

[23].

2.5 DETERMINISTIC METHODS

The methods in this category is based on the following forward problem equation

given in Chapter 1:

yk = Wk · z + nk k = 1 · · · c, (2.14)

where z and yk are the the HR image and the kth LR image respectively. A natural

solution to the system of equations given in (2.14) is obtained by minimizing the

following cost function:
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Cost =

c∑
k=1

‖Wkz − yk‖pp. (2.15)

�1 norm or �2 norm is used if the noise is assumed to have Laplacian distribu-

tion, [25] or Gaussian distribution [13] respectively. High resolution image can be

estimated iteratively by minimizing this cost function using several methods such

as: Gradient descent, steepest descent, conjugate gradient [34] etc. Gradient descent

derivation is given here for its simplicity. For both noise cases, the gradients of the

cost function with respect to z are;

∇Cost =

c∑
k=1

2
(
WT

k

) · (Wkz − yk
)

f or ‖·‖22,

∇Cost =

c∑
k=1

(
WT

k

) · sign
(
Wkz − yk

)
f or ‖·‖11. (2.16)

Substituting ∇Cost into, zn+1 = zn − β · ∇Cost,

zn+1 = zn − β
c∑

k=1

(
WT

k

)
·
(
Wkẑn − yk

)
f or ‖·‖22

zn+1 = zn − β
c∑

k=1

(
WT

k

)
· sign
(
Wkẑn − yk

)
f or ‖·‖11 (2.17)

In SR problem, even for over-determined cases, modeling errors and noise in the

process create unstable solutions. Ill-posed nature of the SR problem makes regular-

ization necessary for achieving a stable solution. Tikhonov type regularization is very

common and expressed as follows, [13]

Cost =

c∑
k=1

‖Wkz − yk‖22 + λ‖Cz‖22 (2.18)

where C refers to the regularization operator in matrix form. Selecting C as Laplacian

operator in matrix form penalizes solutions with derivative values in both direction,

hence favors smoother solutions, [13]. But in SR literature over-smoothing of edges

is an important issue. Recently, total variation (TV) method [35] is proposed for edge

preserving regularization in deblurring and denoising applications. The cost function
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to be minimized for TV type regularization is,

Cost =

c∑
k=1

‖Wkz − yk‖pp + λ‖∇z‖11. (2.19)

With this approach, �1 norm of the pixel gradient is penalized instead of the �2

norm. �1 norm tends to penalize edges less severely compared to �2 norm [25]. In

[25] a variation of TV criterion, bilateral total variation filter (BTV) is proposed as

the regularization term for edge preservation. The cost function to be minimized for

BTV type regularization is,

Cost =

c∑
k=1

‖Wkz − yk‖pp + λ
p∑

l=−p

r∑
m=−r

α|l+m|‖ z − S l
hS m

v z‖11 (2.20)

where S m
h

shifts the image in horizontal direction by m pixels and S m
v shifts image in

vertical direction by m pixels. Note that, ‖∂ f

∂h
‖11 ≈ ‖S 1

h f ‖11 and ‖∂ f

∂v
‖11 ≈ ‖S 1

v f ‖11. So

BTV can be considered as a more general derivative operator. α (between 0 and 1)

decreases the effect of far pixels to regularization exponentially. As a special case,

for p = 1, r = 1, and α = 1, BTV approximates the TV prior [36].

Deterministic methods has the flexibility to vary the cost function in several ways

to make the solution converge to any desired solution. It will be shown that stochas-

tic methods given in the next section are similar in many ways to the deterministic

methods. Many of the solutions given in this section can be derived by the stochastic

approaches.

2.6 STOCHASTIC METHODS

Stochastic SR methods propose ways to insert probabilistic information to the so-

lution procedure. These methods use image and noise probability density functions

(PDF) to estimate the most probable SR image. Bayesian methods have been applied

to image restoration [37], and interpolation problems [38, 39].

Stochastic SR methods are based on the Bayes’ theorem which states that:

p
(
A|B) = p

(
B|A) · p(A)

p
(
B
) . (2.21)

Application of this theorem to the SR problem is simply asking “What is the most
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probable estimate for the high resolution image, given low resolution images and the

image prior?”. Maximum a posteriori (MAP) solution to this problem maximizes a

posteriori PDF, p
(
z | y1, y2, y3 · · · yc

)
, with respect to z. Applying the Bayes’ theorem

to this conditional probability results in the following MAP solution, [40, 13],

ẑMAP = argmax
z

[
p
(
y1, y2, y3 · · · yc|z) · p(z) · p(y1, y2, y3 · · · yc

)−1
]
, (2.22)

where p
(
z
)

is the PDF of the solution, and p
(
y1, y2, y3 · · · yc|z) is the joint PDF of LR

images given z. Joint PDF of LR images, p(y1, y2, y3 · · · yc), has no effect to the above

maximization. Removing this term results:

ẑMAP = argmax
z

[
p(y1, y2, y3 · · · yc|z) · p(z)

]
. (2.23)

In the above maximization, p
(
y1, y2, y3 · · · yc | z) term is related to the observation

model formulated in (2.14). Assuming each LR image yk is independent observations:

ẑMAP = argmax
z

⎡⎢⎢⎢⎢⎢⎣p(z) ·
c∏

k=1

p(yk|z)

⎤⎥⎥⎥⎥⎥⎦ . (2.24)

2.6.1 Maximum Likelihood Solution

If no a priori information is available about the solution, the image prior term, p(z),

can be considered to have uniform distribution. In this case, it has no effect to the

maximization in (2.24). This case is referred to as the maximum likelihood (ML)

solution:

ẑML = argmax
z

c∏
k=1

p
(
yk|z). (2.25)

The ML solution depends on the PDF of the observation noise in the model given

in (2.14). The PDF of noise at each pixel is assumed to be zero mean, identical, and

independent of each other. Both Gaussian and Laplacian noise cases are investigated.

Under i. i. d. assumptions, the multivariate Gaussian distribution for the noise

vector is given as follows:
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p(nk) =
1

(2πσ2)N/2 exp
(
−nk

T nk

2σ2

)
. (2.26)

Here, noise term, nk, is an N × 1 column vector, where each element refers to

the additive noise added to the specific pixel value and N is the number of LR image

pixels. σ is the standard deviation of noise at one pixel. Conditional PDF of low

resolution images, p
(
yk|z), can be written in terms of noise PDF by substituting the

noise term nk with (yk −Wkz) according to (2.14).

p
(
yk|z) = 1

(2πσ2)N/2 exp
[
− 1

2σ2

(
yk −Wkz

)T · (yk −Wkz
)]

In this case ML solution takes the following form

ẑML = argmax
z

( c∏
k=1

1
(2πσ2)N/2 exp

[
− 1

2σ2

(
yk −Wkz

)T · (yk −Wkz
)])
. (2.27)

Maximizing the logarithm of the PDF gives the same solution since the logarithm

is a positive monotonic function. Product operation is replaced by summation term

and the minus sign in each probability term reverses the maximization problem into

minimization problem as follows:

ẑML = argmin
z

( n∑
k=1

1
2σ2

(
yk −Wkz

)T (yk −Wkz
)
+ ln

c

(2πσ2)N/2

)
. (2.28)

The ML solution therefore can be found by minimizing the following cost function

for Gaussian noise distribution:

Cost =

n∑
k=1

‖Wkz − yk‖22 . (2.29)

Now assume noise has a zero mean, identical and independent Laplacian distribu-

tion. The probability density function for multivariate Laplacian noise is [41]

p(n) =
1

(2σ)N
· exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
‖n‖11
σ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.30)
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Conditional PDF of low resolution images are derived from the multivariate Lapla-

cian noise distribution equation above with a similar approach to the normal distribu-

tion case. ML solution in this case is,

ẑML = argmax
z

n∏
i=1

1
(2σ)N

· exp
1
σ
‖yk −Wkz‖11 . (2.31)

Maximizing the above expression gives the same estimate as maximizing the log-

arithm of the PDF since the probability is a positive monotonic function.

ẑML = argmin
z

⎛⎜⎜⎜⎜⎜⎝
n∑

k=1

1
σ
|Wkz − yk

∥∥∥1
1
+

1
(2σ)N

⎞⎟⎟⎟⎟⎟⎠ . (2.32)

Therefore, if the noise is Laplacian the cost function becomes

Cost =

n∑
k=1

‖Wkz − yk‖11 . (2.33)

It should be noted that the derived cost functions in (2.29) and (2.33) are exactly

the same as the one given in the previous section in (2.15).

2.6.2 Incorporating the Image Prior

Formulating an image prior is a challenging task in MAP estimation. Natural im-

ages have abrupt changes within neighboring pixels, due to occlusions, shadows, and

textures. Therefore, slow variations as well as discontinuities may exist in a pixel

neighborhood. Modeling this relation within a Bayesian framework is achieved by

constructing an image prior model, p(z). Markov Random Fields are widely used in

achieving this goal. Markovian process is defined as the process, where the probabil-

ity of having a certain outcome given all the previous outcomes is equivalent to the

probability of having a certain outcome given only the previous outcome. This can

be formulated as follows:

p
(
xn|xn−1
)
= p
(
xn|xn−1, xn−2, xn−3, xn−4, · · · ),

where n shows the time index. This assumption is fairly true for real images since the

dependencies of pixels to each other are mostly local. Markov random field (MRF)

with the Gibbs density function is given in a general form as follows:
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Figure 2.2: On the left, a pixel with its four neighbors is shown. On the right, 4
cliques defined for the neighborhood system are depicted with texture.

p
(
z
)
=

1
H

exp

⎧⎪⎪⎨⎪⎪⎩−
∑
c∈C

Vc

(
z
)⎫⎪⎪⎬⎪⎪⎭ , (2.34)

where Vc(z) is a clique potential function and C is the set of cliques. Cliques define

certain pairs in images. For example, a pixel and its left neighbor is a clique. Clique

potentials define the relationship within a clique. For a hypothetical case, if it is given

that the probable value of a pixel only depends on its cardinal neighbors (up, down,

left, right) as shown in Figure 2.2, then p(z) is formed by using (2.34) as follows:

p
(
z
)
=

1

Z
exp

⎧⎪⎪⎨⎪⎪⎩−
∑
i∼ j

Vc

(
zi − z j

)⎫⎪⎪⎬⎪⎪⎭ (2.35)

where
∑

i∼ j represents all pixel pairs that are neighbors to each other. zi and z j are ith

and jth pixels of image z. Note that the joint probability density function peaks when

the image is uniform (i. e. zi − z j = 0).

Clique potentials takes the quadratic form for Gaussian prior case. The following

relation penalizes the differences within neighboring pixels.

p
(
z
)
=

1

Z
exp

⎧⎪⎪⎨⎪⎪⎩−
∑
i∼ j

λ · (zi − z j)2

⎫⎪⎪⎬⎪⎪⎭ (2.36)

Based on [13], the above PDF can be written in a multivariate Gaussian form:

p
(
z
)
= |A|1/2

(
1

2π

)N/2
exp
{
−1

2
zT Az
}

(2.37)

where A is the inverse covariance matrix, whose elements are:
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A(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
4λ i = j

−λ i ∼ j

0 else

. (2.38)

here i ∼ j refers to the indices of neighboring pairs. λ is a tuning parameter af-

fecting the contribution of the prior to the overall solution. Note that in (2.38) only

cardinal neighbors are considered. Inserting the prior model in the MAP solution is

straightforward:

ẑMAP = argmax
z

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c∏

k=1

1
(2πσ)N/2 exp

[
− 1

2σ2

(
yk −Wkz

)T · (yk −Wkz
)] · 1

Z
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
∑
i∼ j

λ · (zi − z j)2

⎞⎟⎟⎟⎟⎟⎟⎠ .(2.39)

Following the same argument to derive (2.28),

ẑMAP = argmin
z

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

k=1

(
yk −Wkz

)T (yk −Wkz
)
+
∑
i∼ j

λ · (zi − z j)2

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.40)

where the constant terms are removed from the minimization problem. In [39, 40]

Huber-Markov Random Field Model is used as image prior. The clique potentials are

defined using Huber function as follows

p
(
z
)
=

1
Z

exp λ
∑
i∼ j

ρκ
(
zi − z j

)
. (2.41)

where,

ρκ
(
x
)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2 |x| ≤ κ

2T |x| − κ2 |x| > κ
(2.42)

where κ is a threshold determining the linear and quadratic regions in the cost func-

tion. If the discontinuity between neighboring pixels is less than κ, a quadratic penalty

is applied otherwise a less severe linearly varying penalty is applied. MAP estimate

for HMRF case is:
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ẑMAP = argmin
z

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

k=1

(
yk −Wkz

)T (yk −Wkz
)
+ λ
∑
i∼ j

ρκ
(
zi − z j

)⎞⎟⎟⎟⎟⎟⎟⎠ . (2.43)

The nonlinear nature of this function apply fewer penalties to strong edges while

smoothing the low amplitude noise.

Deterministic and stochastic methods are both based on the same forward problem

equation given in (1.2). The methods proposed in this thesis belong to this family of

methods.

2.7 LEARNING BASED METHODS

Learning based approaches construct an SR image from LR images by using a data

base, which consists of low resolution and high resolution image patch pairs. The

main idea is to divide an input LR image into small overlapping patches and finding

the best matching LR patch in the data base. Once a good match is found, the cor-

responding high frequency image patch is used to construct an SR image. In theory,

for each matching LR patch, infinitely many HR patches can exists. However, images

are not random signals, and the data base contains similar images. Moreover, input

LR image is divided into overlapping patches to limit the possible HR image patch

candidates according to a continuity constraint.

The data base could either consist of small size blocks of high resolution and

corresponding low resolution image pixel values, [42, 43, 44], or mid-frequency and

high frequency blocks obtained from training the low and high resolution images

[45, 46], or a feature space consisting of Gaussian, Laplacian and spatial derivative

pyramids, [47]. In [42, 43, 44, 47], training sets are used to form an image prior to be

used in the MAP estimator. In [43] the image prior term is formed directly from the

best matching high resolution pixel value in the training data. A Gaussian probability

distribution whose mean is the gray scale value of the selected pixels is formed. This

prior image is used to solve the multi-frame reconstruction problem. The method is

applied on textured images. In [44], a similar idea is used for constructing the image

prior to solve SR problem from a single low resolution image. In [42] an extension

of this idea is proposed to be used in facial images. Training sets are also used to
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estimate directly the image posterior instead of an image prior in [46, 45, 48, 49].

Although these are the best available methods for a texture preserving framework,

each LR patch is searched in an enormous databases of millions of high-resolution

and low-resolution patch pairs. The need for a training set and searching the best

possible solution for every pixel or image block do not make these methods good

candidates for real time applications.

Recent progress in compressive sensing (CS) theory has made SR image recon-

struction possible from a single LR observation using an over complete dictionary,

which is trained for similar images. The CS theory states that if the imaging pro-

cess and the representation basis are incoherent enough, a sparse representation and

a good recovery of the signal is possible [50, 51]. CS based methods approach the

problem from the same perspective as the learning based methods. The LR image is

first divided into overlapping LR patches. At this stage, it is assumed that there exists

a coupled-image representing basis, in which the high resolution and corresponding

low resolution image has a sparse representation. For each LR patch the coefficients

for a sparse representation is extracted using an LR dictionary. These coefficients are

used to construct the HR patch using an HR dictionary. This requires training for two

coupled dictionaries in such a way that if an LR patch is represented by a certain set

of coefficients in the LR dictionary, exactly the same coefficients can be used to con-

struct a corresponding high resolution patch using a HR dictionary. In [52, 53, 54] a

single sparse representation with respect to both LR and corresponding HR dictionary

is formed. An input LR image is divided into overlapping patches. For each patch a

sparse coefficient set with respect to a LR dictionary is formed. The coefficients for

this LR patch are used to construct a HR patch using the HR dictionary. Additional

constraints for forcing continuity are also included. Later in [53, 54], the dictionaries

are optimized for compactness to speed up computations. The same concept is also

extended for face hallucination problem in [53]. In a similar work [55], instead of a

coupled dictionary, a single dictionary in HR image domain is constructed. A sparse

coefficient set for each LR patch is extracted from the blurred and down-sampled ver-

sion of this dictionary. These coefficients are than used to construct HR image patches

using the original dictionary. This approach has been applied on SR reconstruction of

satellite images.
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2.8 VIDEO SUPER RESOLUTION

In the previously discussed SR problem, the whole low resolution image set is as-

sumed to be available for high resolution image reconstruction. However, in video

frame up-sampling, low resolution images arrive sequentially for the reconstruction.

Starting from the first frame a high resolution image is constructed and updated after

each new frame. The need for video SR reconstruction arises in applications such as;

real time target tracking, zooming, or standard to HD video conversion.

In video super resolution, the last reconstructed SR frame should be projected

onto the most recent frame of reference determined by the last low resolution image

to achieve continuity in the video, [56, 57]. The forward problem for video super

resolution is:

yt = DB · zt + nt

zt = Ft
t−1 · zt−1 + vt.

Here, D and B are the decimation and blur operators respectively, defined in lexi-

cographical representation. Subindex denotes the time index, where zt and zt−1 refers

to the HR image at time t and t − 1 respectively. Ft
t−1 operator warps image at time

t − 1 to time t. Kalman filtering is a natural approach for tackling the above problem,

since it will result in an optimal solution in the mean square sense [57]. However

because of the large dimensions involved in the computations, approximations are

preferred, [58]. Recursive least square and least mean square derivations are given in

[57, 56] (See Appendix B). However, a direct application of the RLS approach is not

possible due to large matrix sizes. A pseudo-RLS approach is given in [57, 56] (See

Appendix B). Another important issue in video SR is the necessity of faster and par-

allel methods for high video frame rates. Least mean square approach is feasible in

real time applications [57, 56], a statistical analysis of LMS algorithms in SR is given

in [59]. Another challenge in video SR is the motion blur [60]. Ben et al. proposed a

special camera that minimizes motion blur during image acquisition by sampling the

space-time volume in a special manner, [60].
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CHAPTER 3

ANALYSIS OF DISTANCE MEASURES IN

SUPERRESOLUTION

3.1 INTRODUCTION

Derivations of various MAP estimators based on (1.2) and Bayes’ Theorem have been

presented in Chapter 2. In this chapter, following that discussion, a general MAP

estimator is formulated as follows,

ẑ = argmin
z

c∑
k=1

ρ(Wkz, yk) + λΓ
(
z
)
, (3.1)

where ρ(·) is a function that measures the distance between the data (low resolution

image pixels) and the model. Norm functions, ‖·‖RR, are usually used as distance mea-

sures. �2 norm is employed if the noise is assumed to have a Gaussian distribution

[40, 13] and �1 norm for Laplacian distribution [25]. The derivations for both cases

have been discussed in Chapter 2. In Section 3.2, we further investigate other possi-

ble distance functions ρ(·) in (3.1). Γ(.) represents the regularization term, which is

related to the image prior term. Γ(.) is usually expressed in the form of a spatial finite

difference operator. Effect of various norm functions in the Γ(.) term is investigated

in Section 3.3.

3.2 DISTANCE MEASURES FOR DATA AND THE MODEL

3.2.1 Norm Function as a Distance Measure

Substituting the distance measure, ρ(·), in (3.1) with a general norm function, results

in the following expression,
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ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖RR+λΓ
(
z
)
. (3.2)

This cost function can be minimized iteratively using the gradient descent method,

zn+1 = zn − β · ∇Cost. Ignoring the regularization term, ∇Cost term is given as,

∇Cost =

c∑
k=1

WT
k sign(Wkz − yk) 
 |Wkz − yk|R−1. (3.3)

Here 
 operator represents pixel wise multiplication among vectors, and |Wkz−yk|R−1

term is a pixel wise operation, which applies to the pixels of each vector element.

∇Cost term takes the following form for �1 and �2 cases:

∇Cost�1 =

c∑
k=1

WT
k sign(Wkz − yk), (3.4)

∇Cost�2 =

c∑
k=1

WT
k (Wkz − yk). (3.5)

A statistical analysis presented in [41] states that noise in the image model has a

more Laplacian characteristics than a Gaussian one. For more general cases, where

both Laplacian and Gaussian noise are present, R can be selected between 1 and

2. If the character of the noise is unknown or have both Gaussian and Laplacian

components, a mixture of �1 and �2 norms can be used, [61]. In [61], the ratio of

Laplacian and Gaussian noise components has been estimated at each iteration. This

ratio is used in reconstructing the cost function, which has a similar form to (3.6).

Cost = (1 − β) ·
c∑

k=1

‖Wkz − yk‖22 + β · Z
⎧⎪⎪⎨⎪⎪⎩

c∑
k=1

‖Wkz − yk‖11
⎫⎪⎪⎬⎪⎪⎭

2

+ λΓ
(
z
)
. (3.6)

Here β term determines the ratio of �1 and �2 norms in the overall cost function.

Square of the �1 cost is taken to match the units of �1 cost and �2 cost. Moreover, a

normalizing constant, Z, is introduced to balance the magnitudes of the two parts of

the cost function.
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3.2.2 Log-Sum Function as a Distance Measure

In compressive sensing literature [50, 51], �0 norm of the unknown sparse signal is

minimized subject to an underdetermined linear equation set. However, due to the

non-convexity of �0 norm, �1 norm approximations are preferred in estimating the

sparse signal [62]. In [62], it is stated that a log-sum penalty function shown in (3.7)

approximates �0 norm better than the �1 norm.

Cost =
∑

i

log(|xi + ε|), (3.7)

where ε is kept as a constant, and xi is the elements of a sparse vector x.

In this section, this idea is adapted to the super resolution problem. First a residue

vector, rk, is defined:

rk = Wkz − yk. (3.8)

Here k = 1 . . . c is the LR image index. A cost function is redefined using the elements

of rk in (3.9):

Cost =

c∑
k=1

∑
i

log(1 + |rki|), (3.9)

where rki represents the ith pixel of the kth LR image. The cost can be minimized to

solve for z via a gradient descent algorithm, where ∇Cost term is:

∇Cost =

c∑
k=1

WT
k sign(Wkz − yk) � (η + |Wkz − yk|) (3.10)

Here � represents pixel wise division, η is a column vector of ones, and operator |·|
takes pixel-wise absolute value of a vector.

27



3.2.3 Simulation Results

In this section �1, �2, mixture of �1 and �2 norms and log-sum functions are com-

pared as penalty functions in SR image reconstruction in (3.1). Regularization term

is ignored during the simulations to simplify the discussion.

An HR image shown in Figure 4.3(e) is used to obtain 16 LR images according to

the observation model of (1.2). Each image is a translated, blurred and down-sampled

version of the original HR image. A 2 × 2 moving average filter is used for blurring

the high resolution images.

Peak signal-to-noise ratio and mean-square error (MSE) are used as performance

comparison metrics:

PS NR = 20 log10

{
255 N

‖ẑ − z‖
}
, (3.11)

MS E =
[
(ẑ − z)T · (ẑ − z)

]
/N, (3.12)

where ẑ and z is reconstructed and the original images respectively. N is the number

of image pixels. Each experiment is repeated 10 times at each noise level. The mean

and the standard deviation of the metrics are given in Table 3.1. In the first experiment

Gaussian white noise at various SNR levels are added to simulate the observation

noise in (1.2). True motion estimates are used during reconstructions. In the second

experiment, salt & pepper noise is added as the observation noise in (1.2). Again true

motion estimates are used during reconstructions. In the third experiment additive

noise in (1.2) is set to zero. Wk term is corrupted by adding various amounts of

Gaussian noise to the motion estimates. The PSNR of the reconstructions are given

in Table 3.1.

Table 3.1 shows that �2 norm outperforms other two penalty functions under ad-

ditive Gaussian noise. Figure 3.2 shows that �1 norm reconstruction is visually more

successful compared to �2 reconstruction under salt and pepper noise consistent with

the results in Table 3.1. For the cost functions under discussion, the estimation is

updated at each iteration according to the residue defined in (3.8). The gradient of the

cost function in �2 norm is proportional to the magnitude of the residue. However, it

is proportional to the sign(·) of the residue for �1 norm, (See (3.4)). Lets say during

28



Table 3.1: PSNR (dB) values for the reconstructed image in Figure 4.3(a) under noise.

Gaussian Noise �1 norm �2 norm log-sum
40 dB 34.89 ±0.16 35.29 ±0.19 33.95 ±0.18
35 dB 34.48 ±0.15 35.09 ±0.17 33.13 ±0.13
30 dB 32.74 ±0.09 33.37 ±0.08 31.04 ±0.09
25 dB 30.53 ±0.1 31.24 ±0.12 28.22 ±0.09
% Salt & Pepper Noise �1 norm �2 norm log-sum
0.1 36.63±0.96 33.56±0.73 33.07 ±1.7
0.2 35.86±1.86 32.12±0.82 31.92 ±2.51
0.3 35.48±1.46 30.61±0.81 30.14 ±1.75
0.4 35.52±1.47 30.05±0.77 30 ±1.69
0.5 35.26±1.66 29.43±1.01 28.94 ±2.27
Std. of Motion Error �1 norm �2 norm log-sum
0.1 34.87 ±0.79 35.29 ±0.81 32.78 ±0.89
0.2 33.29 ±0.59 33.48 ±0.83 31.29 ±0.49
0.3 32.06 ±0.93 31.64 ±0.85 30.65 ±0.38
0.4 30.23 ±0.7 29.36 ±0.52 29.59 ±0.31

(a) �1 norm (b) �2 norm (c) log(·)-sum function

Figure 3.1: Effect of additive Gaussian noise on reconstructions.
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(a) �1 norm (b) �2 norm (c) log(·)-sum function

Figure 3.2: Effect of salt & pepper noise on reconstructions.

the iterations 20 LR pixels are affecting a particular SR image pixel. In �2 norm case,

these 20 pixels have a vote in proportion to their difference to the model (residue).

This results in averaging the residue from the 20 LR pixels. In �1 norm case, only the

sign(·) of each residue corresponding to these 20 LR pixels are affecting the fate of

the SR pixel on the next iteration. This corresponds to a median operation. The salt

and pepper noise introduces huge errors from certain LR image pixels, but the effect

of this huge error disappears during median operation in �1 norm case. However, this

huge error effects the overall average in �2 norm case.

log(·)-sum function behaves in a way inverse to the behavior of �2 norm in terms

of updating SR pixels at each iteration. Derivative of the log function, log(x), is 1/x.

If the magnitude of the residue is small, its effect to the SR image pixel is higher

at each iteration. This helps recovering the salt and pepper noise during reconstruc-

tion (See Figure 3.2). The mean square error (MSE) of the reconstructed image gets

lower during iterations. This lowers the residue (discrepancy between the data and the

model). As a results, both the gradient of the cost and the change of the reconstructed

pixel increase at each iteration as seen in Figure 3.3(i). This behavior is different in

�1 and �2 reconstructions, where a nice exponential decay is observed, Figure 3.3(c)

and (f). The undesirable trend of log(·)-sum function in Figure 3.3(i) is the result of

the concave cost function.

Motion estimation errors in SR reconstruction behaves more like Laplacian noise

in the overall model. As the motion estimation error increases, �1 norm outperforms

�2 norm reconstruction. log(·) function reconstructions have the worst performance

under both Gaussian noise and motion errors.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Evolution of Cost function, MSE, and average change in pixel value at
each iteration for �1, �2, log(·)-sum penalty functions.

The convergence properties of log(·) function are compared to �1 and �2 norms.

In a standard approach at every iteration the “defined cost’ is expected to drop in

an exponential manner. If the cost function is properly defined, MSE value is also

expected to drop at every iteration. It is observed in Figure 3.3 that MSE and Cost

functions are monotonically decreasing with each iteration. However, the square of

the average change at a pixel at each reconstruction is increasing unlike �1 and �2

norm reconstructions due to the concave “log-sum” cost function.
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Figure 3.4: Variation of β parameter for additive Gaussian noise and motion errors.

As a final experiment, both additive Gaussian noise and motion error are added

at the same time. PSNR performances as a function of β in (3.6) are investigated.

Gaussian noise is added at each LR image so that the SNR value for each LR image

is 25 dB. True motion vectors are corrupted by adding random Gaussian noise at a

standard deviation of 0.3 pixels. Mixture of norms approach gives higher PSNR value

under two different sources of noise as expected. However, the PSNR difference is

not as high as to make this method an alternative in practical applications.

In this thesis, experiments are conducted in a controlled environment, i.e. i) Image

sets with only global motion is selected, ii) Images that have poor motion estimation

quality are discarded. Therefore, �2 norm is preferred. It should be noted that �1 norm

should be preferred in a practical scenario, where the quality of motion estimation is

poor or local object motion is present.

3.3 REGULARIZATION FUNCTIONS

In the following Bayesian solution, we focus on the Γ
( · ) function in (3.1), which

controls regularization.

ẑ = argmin
z

c∑
k=1

ρ(Wkz, yk) + λΓ
(
z
)

Natural images inherit abrupt changes within neighboring pixels, due to occlu-

sions, shadows, and textures. Γ
( · ) term should be designed to model image discon-

tinuities as well as smoothness in a natural scene. In this section, we consider �1

norm, �2 norm, log(·)-sum function, and Huber function in the regularization term.
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We restrict the distance measure in the first part of (3.1) to �2 norm to make a fair

comparison and to simplify the discussion. The cost functions under consideration

are:

Cost�2 =

c∑
k=1

‖Wkz − yk‖22+λ
[
‖Qxz‖22+‖Qyz‖22

]

Cost�1 =

c∑
k=1

‖Wkz − yk‖22+λ
[
‖Qxz‖11+‖Qyz‖11

]2

Costhuber =

c∑
k=1

‖Wkz − yk‖22+λ
[
ρT

(
Qxz
)
+ ρT

(
Qyz
)]

Costlogsum =

c∑
k=1

‖Wkz − yk‖22+λ
{ N∑

i=1

[
log
(|(Qxz
)

i| + 1
)
+ log
(|(Qyz
)

i| + 1
)]}2

Here, Qx and Qy are image derivative operators in horizontal and vertical directions

respectively. Qxz = z−S 1
xz and Qyz = z−S 1

yz, where S 1
x and S 1

y shift the entire image

by 1 pixels in horizontal and vertical directions respectively. c denotes the number of

LR images and N denotes the number of pixels in the HR image.
(
Qxz
)

i and
(
Qyz
)

i

refer to the ith pixel of the derivative images. Huber function, ρT (·), is

ρT (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2 |x| ≤ T

2T |x| − T 2 |x| > T
, (3.13)

where T is a threshold determining the linear and quadratic regions in the cost func-

tion. If the discontinuity between neighboring pixels is less than T , a quadratic

penalty is applied otherwise a less severe, linearly varying penalty is applied. The

gradients of the cost functions have the following form:

∇Cost�2 =

c∑
k=1

WT
k (Wkz − yk) + λ

[(
I − S −1

x

)(
z − S 1

xz
)
+
(
I − S −1

y

)(
z − S 1

yz
)]

∇Cost�1 =

c∑
k=1

WT
k (Wkz − yk) + λ

[(
I − S −1

x

)
sign
(
z − S 1

xz
)
+
(
I − S −1

y

)
sign
(
z − S 1

yz
)] · Λ(z)

∇Costhuber =

c∑
k=1

WT
k (Wkz − yk) + λ

[(
I − S −1

x

)
CLIP
(
z − S 1

xz
)
+
(
I − S −1

y

)
CLIP
(
z − S 1

yz
)]

∇Costlogsum =

c∑
k=1

WT
k (Wkz − yk) + λ

[(
I − S −1

x

)
sign
(
z − S 1

xz
) � (I + |z − S 1

xz|)

+
(
I − S −1

y

)
sign
(
z − S 1

yz
) � (I + |z − S 1

yz|)] · Φ(z)
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Here

Λ(z) � ‖Qxz‖11+‖Qyz‖11

and

Φ(z) �
N∑

i=1

[
log
(|(Qxz
)

i| + 1
)
+ log
(|(Qyz
)

i| + 1
)]
.

� represents pixel wise division, I is a column vector of ones. Operator |·| takes pixel-

wise absolute value of a vector. Transpose of S 1
x and S 1

y are S −1
x and S −1

y respectively,

and

CLIP(v) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

clip(v1)

clip(v2)
...

clip(vn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.14)

Here, clip(x) � ∂ρκ(x)
∂x

and is

∂ρκ(x)
∂x

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x |x| ≤ T

2T sign(x) |x| > T
. (3.15)

3.3.1 Simulation Results

An HR image shown in Figure 4.3(a) and (e) is used to obtain 16 LR images according

to the observation model of (1.2). Each image is a translated, blurred and down-

sampled version of the original HR image. A 2x2 moving average filter is used for

blurring the high resolution images.

The first experiment investigates the effect of T in the huber function ρT (·). λ
is set to 0.8, a large value, to see the effect of change in T more clearly in Figure

3.5. The edges are completely lost at T = 50, due to the quadratic penalty applied

to the whole image. It can be observed that strong edges along the hat of lena is

preserved while other edges are blurred at T = 3 and 10 in Figure 3.5. For T very

large, Huber function behaves like �2 norm function and for T = 1 it acts similar to

�1 norm function. This is due to the definition of Huber function, where a quadratic

penalty is used for differences among pixels smaller than T and a fixed penalty for

differences higher than T .
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Figure 3.5: Effect of varying T in the huber function. From left to right T is set to 1,
3, 10, and 50.

We visually inspect the effect of blur to reconstructions for �1 norm, �2 norm,

log(·)-sum function, and Huber function, where T is set to 5. λ term is increased for

each reconstruction in Figures 3.6 and 3.7 starting from (a) to (f). The differences of

the regularization terms are clearer for large λ.

3.3.2 Discussion

Huber function has the characteristics of both �1 and �2 norms. However, the nonlin-

ear behavior increases the computational complexity. Furthermore, determination of

parameter T according to the image type in a heuristic way is a major drawback. �1

norm reconstructions, on the other hand, are satisfactory especially for the artificial

image, in Figure 3.7. However, �1 norm adds a cartoon effect to the reconstructions

for natural images. Visual inspection of log-sum function reveals similarity to �1

norm reconstructions. Unfortunately, the computational complexity is high and con-

vergence is slow compared to other norms. The proposed methods in the next sections

employs �1 norm, �2 norm, and Huber function for the regularization term.
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(a) λ = 0

(b) λ = 0.2

(c) λ = 0.4

(d) λ = 0.6

(e) λ = 0.8

(f) λ = 0.9

Figure 3.6: Effect of increasing λ. Starting from the first to 4th column, reconstruc-
tions with �2 norm, �1 norm, Huber function, and log(·)-sum function in the regular-
ization term are given.
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(a) λ = 0

(b) λ = 0.2

(c) λ = 0.4

(d) λ = 0.6

(e) λ = 0.8

(f) λ = 0.9

Figure 3.7: Effect of increasing λ. Starting from the first to 4th column, reconstruc-
tions with �2 norm, �1 norm, Huber function, and log(·)-sum function in the regular-
ization term are given.
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CHAPTER 4

GRADIENT DIRECTION ADAPTIVE SUPER RESOLUTION

4.1 INTRODUCTION

In this chapter, a maximum a posteriori (MAP) based SR estimator is proposed,

where image gradient direction and magnitude are used for aiding the SR image pixel

estimation. The aim of this method is to improve edge preservation in MAP esti-

mators. The proposed method is based on the following observation model given in

Chapter 1.

yk = Wk · z + nk k = 1 · · · c, (4.1)

where z and yk are the HR image and the kth LR image respectively, and nk is the

observation noise, where both Gaussian and Laplacian distributions are considered.

Each LR image, yk, is obtained from z through warping, blurring, and down-sampling

operations modeled in the system matrix Wk, of size LN × m2LN.

4.2 PROPOSED DIRECTIONAL REGULARIZATION

The main focus of this chapter is edge preservation in SR image reconstruction. We

start with a brief comparison of three state-of-the-art SR methods and construct a

direction adaptive regularizer in relation to these methods. In [13], observation noise

in (4.1) is assumed to have i. i. d. Gaussian distribution and image prior term is based

on GMRF. The MAP estimator under these conditions is

ẑMAP = argmin
z

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

k=1

‖Wkz − yk‖22 + λ
∑
i∼ j

(zi − z j)2

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.2)
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here i ∼ j refers to the indices of neighboring pairs, and zi and z j are the ith and jth

pixels respectively. The well known disadvantage of this type of regularization is

over-smoothing. This problem is addressed in [40], where edge preserving regular-

ization is applied using Huber Markov Random Fields as image priors. The nonlinear

nature of this regularizer applies fewer penalties to strong edges while smoothing low

amplitude noise. Replacing the GMRF prior with HMRF in (4.2) results:

ẑMAP = argmin
z

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

k=1

‖Wkz − yk‖22 + λ
∑
i∼ j

ρT (zi − z j)

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.3)

where ρT (·) is defined in 3.13.

Recently, the distribution of the additive noise in the SR observation model is

assumed to be Laplacian [25]. This has introduced �1 norm to be used in the mi-

nimization problem, which yields very successful edge preservation. The robustness

of this method is also achieved by using bilateral total variation (BTV) regularization

[25], where the differences within the neighboring pixels are penalized by �1 norm

instead of �2 norm as used in [13], [40].

ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖11 + λ
2∑

q=−2

2∑
p=−2

α|q|+|p|‖z − S
p

h
S q

vz‖11 (4.4)

In this equation, S
p

h
and S

p
v operators shift the image by p pixels horizontally and

vertically respectively, and α is a decay term to decrease the effect of distant pixels in

the difference operation.

Although edge preservation is achieved in (4.3),([40]), (4.4)([25]), these methods

do not use the direction of the local variation for further optimizing the regulariza-

tion. A more computationally cumbersome approach for solving the over-smoothing

problem in SR is using anisotropic diffusion in regularization [63]. In this approach

the regularization parameter in the MAP estimator is replaced by a modified version

of Perona-Malik diffusion operator, [64], such that smoothing works along the edge.

Direction of the gradient has also been used in single frame image interpolation prob-

lem. In [65], multiple-direction wavelets, directionlets, are used to do directionally

adaptive interpolation. In [66], HR image local covariance estimates, which comprise

edge orientation information around an edge pixel, are used to adapt interpolation

through edges.
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In the proposed method, the gradient amplitude and direction at each pixel is used

to improve the regularization in the MAP solution. The proposed method is based

on the MAP formulation expressed in (3.2). The regularization term Γ(·) is modified

to include both the gradient amplitude and gradient direction into the solution. The

main idea is to run a regularization Kernel perpendicular to the gradient direction as

depicted in Figure 4.1. The parallel arrows show the direction of regularization for

4 different directions. Regularization works on neighboring pixels that are aligned

perpendicular to the gradient direction. This is formulated in (4.5).

Figure 4.1: Four images with white to gray transitions are shown. The arrows are
perpendicular to gradient direction.

ΓDIR

(
z
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∑
p=−2

α|p|ρ
(
zn − S p

v zn) θ ∈
{

(15π
8 ,
π
8 ] ∪ ( 7π

8 ,
9π
8 ]
}
|�g| > T

2∑
p=−2

α|p|ρ
(
zn − S

p

h
S −p

v zn) θ ∈
{

(π8 ,
3π
8 ] ∪ ( 9π

8 ,
11π

8 ]
}
|�g| > T

2∑
p=−2

α|p|ρ
(
zn − S

p

h
zn) θ ∈

{
(3π

8 ,
5π
8 ] ∪ ( 11π

8 ,
13π

8 ]
}
|�g| > T

2∑
p=−2

α|p|ρ
(
zn − S

p

h
S p

v zn) θ ∈
{

(5π
8 ,

7π
8 ] ∪ ( 13π

8 ,
15π

8 ]
}
|�g| > T

2∑
q=−2

2∑
p=−2

α|p|+|q|ρ
(
zn − S

p

h
S q

vzn) |�g| < T

(4.5)

Similar to the regularizers previously discussed, the differences between neigh-

boring pixels are penalized by a symmetric nonnegative function ρ(·), and α is a

weighting term in the difference operation.

�g is the gradient vector defined for each pixel in the image. θ is the gradient angle

for each gradient vector. A Scharr operator in the following form is used for obtaining

the gradient at each pixel.
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Gx = I ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 1

−5 0 5

−1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Gy = I ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 −5 −1

0 0 0

1 5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.6)

and,

Gmag(m1,m2) =
√

G2
x(m1,m2) +G2

y(m1,m2), Gθ = atan
Gx(m1,m2)
Gy(m1,m2)

, (4.7)

where I is an image in matrix form. Gx and Gy are images, where each pixel is an

approximation for gradients in x and y directions respectively, and ∗ is convolution

operator. Magnitude and angle of a gradient at an image pixel [m1,m2] is Gmag(m1,m2)

and Gθ(m1,m2) respectively. Gradient angle θ is quantized to four directions given in

(4.5). T is a threshold for eliminating weak gradients. A gradient map is obtained out

of the reconstructed image as shown in Figure 4.2.

Figure 4.2: (a) Zebra image used in simulations. (b) Gradient map of Zebra. White
regions show pixels with small gradient activity. Four directions are coded as shown
on the right.

Accordingly, if there is a small gradient activity in the region the regularization

term works in all directions the same way as Tikhonov [13] or BTV type regularizers

[25], depending on the selection of ρ(·). If the gradient has a vertical direction, the

regularization is towards horizontal direction. Similarly if the gradient is near −π/4
to 3π/4 diagonal direction, the regularizer works along the perpendicular direction,

π/4 to 5π/4. Same idea applies to other directions.

At every iteration the gradient map is updated using the current reconstructed
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image. The most general case for the proposed method can be formulated as

ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖RR + λΓDIR

(
z
)
. (4.8)

Three variations of the proposed regularization are formulated in the next sections.

4.2.1 Directional Huber-Markov Random Field Method

In this method, additive observation noise is assumed to have identical independent

Gaussian distribution. MAP estimate for directional HMRF method is given as fol-

lows:

ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖22 + λΓDIR

(
z
)

(4.9)

The penalty function, ρ(·), in (4.5) is selected as Huber function (3.13), [40], for

further edge-preservation. According to (4.5), if the gradient is lower than a certain

threshold, (4.9) reduces to a similar form of (4.3) ([40]). (4.9) can be solved iteratively

using the gradient descent method, zn+1 = zn − β · ∇Cost, as follows.

ẑn+1 = ẑn − β
⎛⎜⎜⎜⎜⎜⎝

c∑
k=1

(
WT

k

)
·
(
Wkẑn − yk

)
+ λ∇ΓDIR

(
ẑn)⎞⎟⎟⎟⎟⎟⎠ (4.10)

The derivative of the huber function is also known as the clip function ∂ρκ(x)
∂x

�
clip(x). Clip function for column vector v with elements vi i = 1 · · · n is defined as

CLIP(v) in (3.14). Substituting (3.14) in ∇ΓDIR term of directional HMRF solution

in (4.10) results;

∇ΓDIR

(
z
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∑
p=−2

α|p|(I − S
−p
v ) ·CLIP

(
zn − S

p
v zn) θ ∈

{
( 15π

8 ,
π
8 ] ∪ ( 7π

8 ,
9π
8 ]
}
|�g| > T

2∑
p=−2

α|p|(I − S
−p
v S

p

h
) ·CLIP

(
zn − S

−p

h
S

p
v zn) θ ∈

{
( π8 ,

3π
8 ] ∪ ( 9π

8 ,
11π

8 ]
}
|�g| > T

2∑
p=−2

α|p|(I − S
−p

h
) ·CLIP

(
zn − S

p

h
zn) θ ∈

{
( 3π

8 ,
5π
8 ] ∪ ( 11π

8 ,
13π

8 ]
}
|�g| > T

2∑
p=−2

α|p|(I − S
−p
v S

−p

h
) ·CLIP

(
zn − S

p

h
S

p
v zn) θ ∈

{
( 5π

8 ,
7π
8 ] ∪ ( 13π

8 ,
15π

8 ]
}
|�g| > T

2∑
q=−2

2∑
p=−2

α|p|+|q|(I − S
−q
v S

−p

h
)CLIP
(
zn − S

p

h
S

q
vzn) |�g| < T

(4.11)
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4.2.2 Directional Bilateral Total Variation Method under Laplacian Noise

In this section, ρ(·) in the regularization term in (4.5) is selected as ‖·‖11. MAP estimate

for directional BTV assuming Laplacian distribution for observation noise is

ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖11 + λΓDIR

(
z
)
, (4.12)

where

ΓDIR

(
z
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∑
p=−2

α|p|‖(zn − S
p
v zn)‖11 θ ∈

{
( 15π

8 ,
π
8 ] ∪ ( 7π

8 ,
9π
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(4.13)

If the gradient values are smaller than a certain threshold, resultant ΓDIR term

reduces to the BTV expression given in [25].

(4.12) can be solved iteratively using gradient descent method as follows:

ẑn+1 = ẑn − β
⎛⎜⎜⎜⎜⎜⎝

c∑
k=1

(
WT

k

)
· sign
(
Wkẑn − yk

)
+ λ∇ΓDIR

(
ẑn)⎞⎟⎟⎟⎟⎟⎠ (4.14)

∇ΓDIR term for directional BTV solution in (4.14) is;

∇ΓDIR

(
z
)
=
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(4.15)
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4.2.3 Directional Bilateral Total Variation Method under Gaussian Noise

If noise is assumed to have Gaussian distribution and regularization is selected as in

(4.13), then the MAP solution is

ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖22 + λ
[
ΓDIR

(
z
)]2 (4.16)

The iterative solution is

ẑn+1 = ẑn − β
⎛⎜⎜⎜⎜⎜⎝

c∑
k=1

(
WT

k

)
·
(
Wkẑn − yk

)
+ λ∇ΓDIR

(
ẑn) · ΓDIR

(
ẑn)⎞⎟⎟⎟⎟⎟⎠ , (4.17)

where ΓDIR term is the same as in (4.15).

4.3 SIMULATION RESULTS

The performance of the proposed methods are evaluated through simulations. HR

images shown in Figure 4.3 are used to obtain three LR image sets according to the

observation model of (4.1). Each set consists of 8 LR images, which are translated,

blurred and down-sampled by a factor of two. A 2x2 moving average filter is used for

blurring the high resolution images. Gaussian white noise at SNR level of 25 dB is

added to simulate the observation noise in (4.1). Original images and corresponding

LR images used in reconstruction is given in Figure 4.3. True motion information is

used during reconstructions.

Proposed methods are compared against bicubic interpolation and edge preserving

methods given in [39, 40, 25]. Method described in [39] is a single frame interpolation

method with a regularization term comprising a Huber function. The abbreviations of

the methods along with their formulations is summarized in Table 4.1. The proposed

methods are denoted by MTD1, MTD2 and MTD3. SR method with a GMRF prior is

also added to the simulations, where the regularization term in (4.2) is approximated

by ‖Cz‖22. Here, C is a matrix operator in lexicographic form, which is equivalent to

a Laplace operator with parameters [1 1 1 ; 1 − 8 1 ; 1 1 1].
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Table 4.1: Reconstruction methods in simulations.

Abbreviation Equation Reference

BICUBIC Reference frame is interpolated using bi-cubic interpolation

INT HUBER ẑ = argmin
z

‖Wkz − y1‖22 + λ
1∑

q=−1

1∑
p=−1

α|p|+|q|ρκ
(
z − S p

x S q
yz
)

[39]

GMRF ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖22 + λ‖Cz‖22 [13]

RSR ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖11 + λ
2∑

q=−2

2∑
p=−2

α|p|+|q|‖z − S p
x S q

yz‖11 [25]

HUBER ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖22 + λ
1∑

q=−1

1∑
p=−1

α|p|+|q|ρκ
(
z − S p

x S q
yz
)

[40]

MTD1 ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖22 + λΓDIR

(
z
)
ρκ(·) = HuberF(·) Proposed method in Section 4.2.1

MTD2 ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖11 + λΓDIR

(
z
)
ρ(·) = ‖·‖11 Proposed method in Section 4.2.2

MTD3 ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖22 + λ
[
ΓDIR

(
z
)]2

ρ(·) = ‖·‖11 Proposed method in Section 4.2.3
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Original HR images and 4 of 8 corresponding LR images.
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4.3.1 Gradient Map Estimation

It is assumed that the gradient map is fixed during the derivations of the proposed

methods. However, the gradient map is estimated out of the reconstructed image at

each iteration. The gradient map modifies the reconstructed image and the resultant

reconstructed image modifies the gradient map for the next iteration. The validity of

fixed gradient map assumption is tested during the simulations. The evolution of the

gradient map through iterations are shown in Figures 4.4, 4.5, and 4.6. Gradient map

obtained from the original image is also shown in these figures for comparison. It

is observed that after early iterations the map converges. Although the map is quite

similar to the original gradient map, the map slightly varies for the three methods.

Total number of edge pixels, in other words, number of pixels whose gradient

value is greater than the threshold T of Equation 4.5 is counted for every iteration.

Percentage of total edge pixels versus the iteration number is plotted in Figure 4.7. For

all three methods, although the number of total edge pixels are different, the overall

percentage does not vary after early iterations in accordance with Figures 4.4, 4.5,

and 4.6. Fixed gradient map assumption is also necessary for convergence analysis.

Under this assumption, the proposed cost function is convex following the arguments

discussed in [25, 40].
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(a) Directional HMRF Method in Section 4.2.1

(b) Directional BTV with Laplacian Noise Assumption in Section 4.2.2

(c) Directional BTV with Gaussian Noise Assumption in Section 4.2.3

Figure 4.4: Evolution of gradient map estimate through iterations. The iteration num-
ber is tagged at every map image.
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(a) Directional HMRF Method in Section 4.2.1

(b) Directional BTV with Laplacian Noise Assumption in Section 4.2.2

(c) Directional BTV with Gaussian Noise Assumption in Section 4.2.3

Figure 4.5: Evolution of gradient map estimate through iterations. The iteration num-
ber is tagged at every map image. 50



(a) Directional HMRF Method in Section 4.2.1

(b) Directional BTV with Laplacian Noise Assumption in Section 4.2.2

(c) Directional BTV with Gaussian Noise Assumption in Section 4.2.3

Figure 4.6: Evolution of gradient map estimate through iterations. The iteration num-
ber is tagged at every map image.
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(a) Image set in Figure 4.3(a)

(b) Image set in Figure 4.3(b)

(c) Image set in Figure 4.3(c)

Figure 4.7: Percentage of pixels whose gradient value is greater than the threshold T
of Equation 4.5 is plotted for every iteration.
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4.3.2 Convergence of the Proposed Methods

The convergence of each method is investigated experimentally. Number of iterations

and the step size parameter for the gradient descent is determined according to the

convergence of the algorithms. In Figure 4.8, the change in mean square error at each

iteration is plotted. As seen, the methods converge for each image set.

(a) Image set in Figure 4.3(a)

(b) Image set in Figure 4.3(b)

(c) Image set in Figure 4.3(c)

Figure 4.8: Mean error at each iteration.
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4.3.3 Performance Comparison

The quantitative performance comparison is achieved using PSNR (3.11) and mean

structural similarity index measure (SSIM) measurements. SSIM is also used in ad-

dition to the PSNR measures, since human visual perception is more sensitive to

structural information in a scene [67]. SSIM is calculated as follows:

S S IM(x, y) =

(
2μxμy + (255 · K1)2

) (
2σxy + (255 · K2)2

)
(
μ2

x + μ
2
y + (255 · K1)2

) (
σ2

x + σ
2
y + (255 · K2)2

) , (4.18)

where μx and μy are the mean value of the pixels in a window for images x and y. σ2
x,

σ2
y , and σxy are the variance of x, y and covariance of x and y respectively. K1 and K2

are two constants set to 0.01 and 0.03 respectively in [67]. This calculation is repeated

at each pixel within a windowed neighborhood. For each image the mean values are

calculated to obtain mean SSIM. An SSIM value close to one refers to perfect match.

To have a fair comparison, the optimal value of λ is searched for the highest SSIM

score heuristically for each algorithm in Figure 4.9. The effect of the change in λ is

given for the methods given in Table 4.1.

The best achievable SSIM and corresponding PSNR values are given in Table

4.2. The proposed methods effects only around 15% of the pixels as given in Figure

4.7. According to (4.5), in regions with small gradient activity, MTD1 reduces to the

method in [40] , and MTD2 reduces to (4.4). The edge thresholds for the proposed

methods are selected as 250, 280, 250 for MTD1, MTD2 and MTD3 respectively.

The PSNR values for edge pixels are given in Table 4.3 .

The reconstructions are given in Figures 4.10(a), 4.11(a), and 4.12(a). These re-

constructions are filtered by a Laplacian filter in the form of [-1 -1 -1; -1 8 -1; -1

-1 -1] for better visual assessment. The resultant high frequency images for each

reconstruction are given in Figures 4.10(b), 4.11(b), and 4.12(b).
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(a) Image set in Figure 4.3(a)

(b) Image set in Figure 4.3(b)

(c) Image set in Figure 4.3(c)

Figure 4.9: Effect of varying the regularization amount, λ. SSIM values for each
reconstruction is given for each method.

55



Table 4.2: SSIM / PSNR (dB) values for the SR images obtained from the LR data
set of the images in Figure 4.3.

Figure 4.3(a) Figure 4.3(b) Figure 4.3(c)
BICUBIC 0.709 / 25.2 0.805 / 20.6 0.784 / 27.5
INT HUBER 0.912 / 28.3 0.845 / 22.0 0.826 / 28.2
GMRF 0.871 / 26.9 0.904 / 24.5 0.900 / 31.0
HUBER 0.961 / 34.3 0.920 / 25.5 0.911 / 31.4
RSR 0.983 / 35.9 0.914 / 25.5 0.898 / 30.8
MTD1 0.988 / 38.5 0.926 / 26.0 0.911 / 31.5
MTD2 0.987 / 37.2 0.914 / 25.5 0.898 / 30.8
MTD3 0.978 / 37.7 0.923 / 26.0 0.909 / 31.5

Table 4.3: PSNR (dB) values for the edge pixels of the images in Figure 4.3.

Fig 4.3(a) Fig 4.3(b) Fig 4.3(c)
BICUBIC 26.7 21.9 31.8
INT HUBER 29.1 23.5 32.5
GMRF 27.3 26.3 34.7
HUBER 35.4 27.4 35.7
RSR 36.6 27.6 35.1
MTD1 40.0 28.1 35.8
MTD2 38.1 27.5 35.1
MTD3 39.4 28.0 35.9
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(a)

(b)

Figure 4.10: (a) Reconstructions for Figure 4.3(a). In the first row: Bicubic interpo-
lation, HUBER, RSR, and GMRF are given respectively; In the second row: HUBER
INT, MTD1, MTD2, and MTD3 are given. (b) High frequency components of the
reconstructions are given. In the first row: Bicubic interpolation, HUBER, RSR, and
GMRF are given; In the second row: HUBER INT, MTD1, MTD2, and MTD3 are
given.
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(a)

(b)

Figure 4.11: (a) Reconstructions for Figure 4.3(b). In the first row: Bicubic interpo-
lation, HUBER, RSR, and GMRF are given respectively; In the second row: HUBER
INT, MTD1, MTD2, and MTD3 are given. (b) High frequency components of the
reconstructions are given. In the first row: Bicubic interpolation, HUBER, RSR, and
GMRF are given; In the second row: HUBER INT, MTD1, MTD2, and MTD3 are
given.
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(a)

(b)

Figure 4.12: (a) Reconstructions for Figure 4.3(c). In the first row: Bicubic interpo-
lation, HUBER, RSR, and GMRF are given respectively; In the second row: HUBER
INT, MTD1, MTD2, and MTD3 are given. (b) High frequency components of the
reconstructions are given. In the first row: Bicubic interpolation, HUBER, RSR, and
GMRF are given; In the second row: HUBER INT, MTD1, MTD2, and MTD3 are
given.
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4.4 DISCUSSION

In this chapter, a directionally adaptive SR image reconstruction method is presented.

The basic idea behind this algorithm is determining the best regularization filter ac-

cording to the magnitude and direction of the local gradient. Three variations of this

algorithm are compared with previous work [25, 40]. The SSIM, PSNR values and

illustrations are given for performance evaluations. Especially for highly degraded

images with sharp edges, the proposed methods clearly preserve edges while apply-

ing high amounts of regularization. The performance is similar to [25, 40] in regions,

where a strong edge is not present. The proposed approach has a computational over-

head, which varies depending on the gradient distribution in the input LR image sets.

In the simulations 10 - 15 % increase in computation time is observed compared to

RSR and HUBER implementations.
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CHAPTER 5

TEXTURE ADAPTIVE SUPER RESOLUTION

5.1 INTRODUCTION

This chapter targets texture preservation during SR reconstruction. Similar to the

proposed direction adaptive MAP approach in Chapter 4, the proposed solution also

depends on the general MAP estimator

ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖RR + λΓ
(
z
)

(5.1)

where Γ(.) represents the regularization term which depends on the image prior term.

λ controls the influence of the regularization to the solution. The main focus in this

chapter is the Γ
(
z
)

term in Eqn. 5.1, which is directly related to the proposed texture

prior.

Designing a texture prior in a MAP framework is not a straightforward task be-

cause of the variety of textures in nature, [68]. A region in an image is defined as

textured if a set of local statistics or local properties of the region are constant, slowly

varying, or approximately periodic [69]. Several successful texture models have been

proposed in texture synthesis, analysis, and segmentation fields. Early models include

auto regressive (AR) models [70], simultaneous auto regressive (SAR) models, and

GMRF models. However, the major problem of these single-layer models is local-

ity. Texture characteristics need to be defined at a large neighborhood. To solve this

problem, multiscale approaches have been proposed. In [71], a rotation invariant SAR

model has been proposed for texture. This model has been used in analyzing texture at

multiple resolutions. In [72], texture has been modeled by fitting a separate AR model

at each level of a Laplacian pyramid. This model has been utilized in texture segmen-
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tation. Later, multiresolution MRF models have been proposed in texture modeling.

In [73], multidimensional histograms have been obtained at multiple scales of an ex-

ample texture. These histograms have been considered as approximations of local

conditional probability density functions. These density functions have been used to

synthesize a texture from coarse to fine resolution. In [74], multiresolution images

have been obtained by using Haar wavelets. Each subband has been modeled by an

MRF, whose coefficients have been used in texture classification along with subband

energy parameters. In [75], a GMRF model has been proposed for each level of a

Gaussian pyramid, which has been used in a course to fine resolution segmentation

procedure.

Although there is a large choice of multiresolution texture models in the literature,

“to best of our knowledge”, there has not been any attempt to employ these models

in SR problem. As mentioned previously, standard priors in SR literature such as

TV, BTV, HMRF, and GMRF are all defined in an 8-pixel neighborhood aiming at

edge preservation and noise suppression. However, texture preservation requires a

multiscale approach to model complex interactions in a large neighborhood. We pro-

pose a Bayesian SR method with a multiscale compound MRF prior. This prior is

the main contribution of this study. It has been reported that dominant scales and ori-

entations representing both highly random and quasi-periodic textures are captured

using Gabor filters [76], [77], [78]. Therefore, Gabor filters are specifically preferred

for multiscale decomposition. The proposed model inherits a compound GMRF at

each subband, similar to the “line process” [79]. This second hidden binary process

models sharp variations due to high-frequency texture. We propose a joint estima-

tion method for estimating the model parameters and high-resolution image pixel in

a MAP framework.

The rest of the chapter is organized as follows. In Sections 5.2.1 and 5.2.2, the

forward problem and proposed multiresolution texture prior are described. A MAP-

based reconstruction method is given in Section 5.2.3. Section 5.2.4 presents prior

estimation using Gabor filters. Lastly, in Section 5.3, the proposed methods are val-

idated through simulations and experiments on visual CCD images and thermal im-

ages.
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5.2 PROPOSED BAYESIAN SUPER RESOLUTION

5.2.1 The Imaging Model

The proposed method is based on the following observation model given in Chapter

1.

yk =Wk · z + nk k = 1, . . . , c. (5.2)

Here, observation noise is assumed to be independent and identically distributed

Gaussian noise. It is also assumed that each observation (LR image) is statistically

independent. Under these conditions, the joint probability for all LR images can be

written as follows [80]:

Pr
(
y1, . . . , yc|z, β

)
=

c∏
k=1

(
β

2π

)N/2
exp
{
−β

2
‖Wkz − yk‖22

}
. (5.3)

where β is the inverse variance of independent and identically distributed noise and

N is the number of total pixels in each LR image. The above-mentioned equation is

rearranged in the following form to be used in the next sections,

Pr
(
y1, · · · yc|z, β) =

(
β

2π

)cN/2

exp

⎧⎪⎪⎨⎪⎪⎩−
c∑

k=1

β

2
‖Wkz − yk‖22

⎫⎪⎪⎬⎪⎪⎭ . (5.4)

5.2.2 Multiresolution Compound Texture Prior

Gabor filters are used in many fields in image processing such as edge detection,

texture classification, and data compression [81]. They are employed as a family of

filters with multiple scales and orientations [81, 82]. The form of a 2D real symmetric

Gabor filter is:

G(x, y) = exp
(

x2 + y2

σ2

)
cos
(
2π
λ

(
x cos θ + y sin θ

))
, (5.5)

where θ determines the direction of the filter. Usually, eight directions between 0o

and 180o are used [83]. Defining the filter family on a half circle is sufficient owing

to the symmetry of cosine function. λ is inversely proportional to the frequency of

the carrier and σ is related to the spread of the Gaussian envelope. As the span of the

Gaussian envelope increases, the frequency resolution of the filter increases and the
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spatial selectivity decreases.

Let Fk represent Gabor filters (k = 1 · · ·K) and zFk
be the response of image z to

kth Gabor filter. The multiresolution MRF (MRMRF) prior given in [84] (pp. 40) has

the following form:

Pr(z) =
1
Z

exp

⎧⎪⎪⎨⎪⎪⎩−
K∑

k=1

∑
c∈C

V (k)
c (zFk)

⎫⎪⎪⎬⎪⎪⎭ , (5.6)

where V
(k)
c are clique potentials defined on the filtered image zFk

and Z is the nor-

malizing constant. In this section, we will derive the proposed compound MRMRF

texture prior starting from (5.6). A quadratic potential function is defined for each

clique, similar to that in [13, 80],

Vc(z, ρ) =
K∑

k=1

∑
i∼ j

ρk(zk
i − zk

j)
2, (5.7)

Substituting the potential function term in the prior term gives:

p(z|ρ) = 1
Z

exp

⎧⎪⎪⎨⎪⎪⎩−
K∑

k=1

∑
i∼ j

ρk(zk
i − zk

j)
2

⎫⎪⎪⎬⎪⎪⎭ , (5.8)

where zk
i represents the value of the ith pixel of zFk

and
∑

i∼ j represents all pixel pairs

that are neighbors to each other. Clique potentials within the same subband have the

same quadratic form. ρk determines the total effect of the sum of the clique potentials

within a subband to the overall sum. ρk of each subband is stacked in vector ρ in

(5.8).

We extend the MRMRF prior by inserting a latent variable into the potential func-

tion expression in (5.8) at each subband, referring it as the “texture process”. Texture

process, η, is composed of binary variables ηi, j,k similar to the line process defined in

[79]. We follow the same naming convention as used in [85, 86], with the only differ-

ence being the additional index, k, referring to the corresponding subband. Inserting

η into (5.8) gives

p(z|ρ, η) = 1
Z

exp

⎧⎪⎪⎨⎪⎪⎩−
K∑

k=1

∑
i∼ j

ρkηi, j,k(zk
i − zk

j)
2

⎫⎪⎪⎬⎪⎪⎭ . (5.9)

Unlike the line process [79, 85, 86], the texture process occupies the same lattice
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as the image pixels. This makes the index j redundant for defining the process. In

other words, for a pixel on a subband, e.g., zk
i , if ηi,k is one, then the cliques defined

on zk
i and its eight neighbors is turned on simultaneously. This results in a smoother

solution around that pixel at the specified subband. Therefore, we omit the additional

index j, having only ηi,k, where i stands for the pixel index and k denotes the subband

index.

Based on [85, 86], (5.9) can be written in a multivariate Gaussian form. The

resultant multiresolution multivariate Gaussian MRF image prior has the following

form:

p(z|ρ, η) =
K∏

k=1

|Aη,k|1/2
(
ρk

2π

)N/2
exp
{
−ρk

2
zT

Fk
Aη,kzFk

}
(5.10)

where

Aη,k(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
8ηi,k i = j

−ηi,k i ∼ j

0 else

.(5.11)

here i ∼ j refers to the indices of neighboring pairs.

5.2.3 MAP Solution

The standard MAP approach for estimating high-resolution image pixels is to maxi-

mize the conditional probability of z, given low-resolution image pixels and unknown

model parameters. The unknown parameter set consists of high-resolution image

pixels, z, inverse variance of observation noise, β, and texture prior parameters repre-

sented by (η, ρ). η is defined for each image pixel at each subband and ρ is a vector

consisting of ρk’s defined for each subband. The unknown parameter set could be

increased by adding the unknown camera blur and registration parameters similar to

that carried out in [87, 88].

Various methods have been proposed in SR literature to solve such problems with

multidimensional unknowns. Hardie et al. proposed a joint MAP approach [13] to

solve for both registration among LR pixels and high-resolution image pixels. An

alternating minimization algorithm has been employed, in which one set of parame-

ters are fixed while the other set is iteratively estimated for both sets in an alternating
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manner. Similarly, in [89, 85], a marginalized maximum likelihood (ML) approach

has been proposed for solving the unknown high-resolution pixels under unknown

registration and camera blur. A marginalized MAP formulation has been proposed

for solving for unknown high-resolution image pixels along with model parameters

in [88, 87, 86]. In the present study, we have simplified the discussion by assum-

ing that the camera blur and registration were estimated before reconstruction. It

should be noted that the main aim of this study is the compound texture prior and it

is straightforward to include unknown registration and camera blur to the proposed

MAP solution similar to that carried out in [88, 87, 86].

The proposed MAP approach is based on maximizing the following posterior

probability for unknown high-resolution image z,

p(z|y1 · · · yc, η, ρ, β) =
p(y1 · · · yc|z, β)p(z|ρ, η)

p(y1 · · · yc|ρ, η, β) . (5.12)

The probability term in the denominator in (5.12) is independent of z and therefore,

is removed from the maximization. Among the various approaches to solve this high-

dimensional problem, we resort to a joint estimation method to maximize the follow-

ing expression iteratively:

zMAP = argmax
z

p(y1 · · · yc|z, η, ρ)p(z|ρ, η), (5.13)

where ρ, η terms are extracted iteratively from the available estimate of z. By sub-

stituting the conditional probabilities in (5.4) and (5.10) with (5.13), the following

maximization problem is obtained:

zMAP = argmax
z

exp

⎧⎪⎪⎨⎪⎪⎩−
c∑

k=1

β

2
‖Wkz − yk‖22 −

K∑
k=1

ρk

2
zT

Fk
(Aη,k)zFk

⎫⎪⎪⎬⎪⎪⎭ , (5.14)

where the constants are removed from maximization. The overall problem can be

written as a minimization problem as follows:

zMAP = argmin
z

c∑
k=1

β

2
‖Wkz − yk‖22 +

K∑
k=1

ρk

2
zT

Fk
(Aη,k)zFk

. (5.15)

As stated previously, zFk
is obtained by filtering z by the kth filter of the Gabor
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filter family. Let Fk be N × N matrix operator representing the kth Gabor filter in

lexicographical representation. Substitution of zFk
with Fkz results in minimization

only with respect to z:

zMAP = argmin
z

c∑
k=1

β

2
‖Wkz − yk‖22 +

K∑
k=1

ρk

2
zT FT

k (Aη,k)Fkz . (5.16)

Separation of Aη,k term as Aη,k = Dη,kC is possible, because the sites for the texture

process occupy the same lattice as those for the image pixels. The definitions of Dη,k

and C are as follows:

C(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
8 i = j

−1 i ∼ j

0 else

(5.17)

and

D(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ηi i = j

0 else
(5.18)

Note that an 8-pixel neighborhood is considered. Substitution of these new terms

with Aη,k in (5.16) results in

zMAP = argmin
z

c∑
k=1

β

2
‖Wkz − yk‖22 +

K∑
k=1

ρk

2
zT FT

k (Dη,kC)Fkz. (5.19)

It can be shown that the inverse covariance matrix C acts as a Laplacian operator in

the form of c = [-1 -1 -1 ; -1 8 -1; -1 -1 -1 ] in 2D image domain. Being block circulant

matrices, Fk and C in (5.19) commute [90]. This results in

zMAP = argmin
z

c∑
k=1

β

2
‖Wkz − yk‖22 +

K∑
k=1

ρk

2
zT FT

k (Dη,k)FkC z . (5.20)

Application of gradient descent to (5.20) gives us

ẑn+1 = ẑn − λ
[
β

c∑
k=1

(
WT

k

)
·
(
Wkẑn − yk

)
+

K∑
k=1

ρkFT
k (Dη,k)FkC ẑn

]
, (5.21)

where λ is the step size at nth iteration and ẑn is the estimate at nth iteration. For
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Figure 5.1: One iteration of the proposed method.

comparison, the gradient descent equation with GMRF prior is also given in (5.22),

ẑn+1 = ẑn − λ
[
β

c∑
k=1

(
WT

k

)
·
(
Wkẑn − yk

)
+ C ẑn

]
. (5.22)

The difference between (5.21) and (5.22) is clear on the block diagram given in

Figure 5.1, where one iteration of (5.21) is given. The Cẑn term represents the high-

frequency content of the reconstructed image at nth iteration. It can be observed that

the Cẑn term in Figure 5.1 comprises high-frequency noise and texture fragments.

If GMRF prior is employed, the Cẑn term is penalized and a smoother solution is

obtained. However, with the use of the proposed texture prior,
∑K

k=1 ρ
kFT

k (Dη,k)FkC ẑn

term is penalized at each iteration. The penalty image does not contain texture on the

scarf of Barbara in Figure 5.1.

An important challenge in the proposed solution in (5.21) is the estimation of ρ

and η at each iteration so that texture preservation is achieved.
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5.2.4 Prior Parameter Estimation

Gabor filter bank used in this study is composed of 24 filters with 3 scales and 8

directions. The size of each filter is 32 × 32. The spatial spread of each Gabor filter

is dependent on the scale such that at each scale, 5 lobes are visible. As a result, a

better span of the frequency domain with minimum overlap is achieved.

Filtering an image with a Gabor filter bank results in a series of filtered images.

The magnitude of the response at a pixel location is proportional to the presence of an

edge [81] or texture [82] oriented at the selected orientation. Using this idea, the Dη,k

term of (5.21) is estimated by thresholding the FkC ẑn term of (5.21) at each band as

follows:

Dη,kFkC ẑn(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
FkC ẑn(i) FkC ẑn(i) < T

0 else
(5.23)

where i represents the index of each image pixel and ρk is set to 1 for all subbands to

simplify the discussion. A heuristic approach is taken in determining T . T is selected

to be proportional to the standard deviation of all pixels in the Cẑn, which results in

successful reconstructions in the simulations.

The filtered and thresholded images are filtered again with their corresponding

filters and summed up to form the residue
∑K

k=1 ρkFT
k (Dη,k)FkC ẑn at nth iteration. This

additional filtering corresponds to the FT
k operation in the residue term. This operation

is equivalent to convolving a 2D image with the kth Gabor filter corresponding to

Fk, owing to the symmetry of Fk. Proving the symmetry of Fk is strait-forward if

corresponding Gabor filter in 2D image model is considered. Each Gabor filter has

a spatial symmetry with respect to its center element. Any radial line crossing the

center element is symmetric with respect to its center. Therefore, each row of the

operator matrix Fk is symmetric with respect to the diagonal element. Henceforth, Fk

is equal to FT
k , because Fk is also circulant. The reconstructed image is updated by

adding the back-projected error and residue term, as described in (5.21).

5.3 RESULTS

In this section, we demonstrate the performance of the proposed method on both syn-

thetically generated images and real images. The proposed method is compared with
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single frame bicubic interpolation, MAP estimate with Gaussian Markov Random

Field image prior, and the method given in [25]. The reasons for selecting the method

in [25] are its robustness to motion estimation errors and its edge-preserving nature.

This method is abbreviated as RSR.

Gradient descent formulation for the MAP estimate with GMRF prior is

ẑn+1 = ẑn − βn

[ c∑
k=1

(
WT

k

)
·
(
Wkẑn − yk

)
+ λCT C · ẑn

]
, (5.24)

C is selected as a Laplacian operator in the form of [-1 -1 -1; -1 8 -1; -1 -1 -1] to force

smoothness, as in [13]. This method is abbreviated as GMRF through out the paper.

Best possible λ is searched experimentally for the GMRF estimate.

The method described in [25] is implemented as follows:

ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖11 + λ
2∑

q=−2

2∑
p=−2

α|p|+|p|‖z − S p
xS q

yz‖11 (5.25)

In this equation S
p
x and S

q
y operators shift the image by p pixels horizontally and q

pixels vertically respectively. α (set to 0.3) is a decay term to decrease the effect of

distant pixels in the difference operation. Gradient descent formulation in the follow-

ing form is used during reconstruction.

ẑn+1 = ẑn−β
[ c∑

k=1

(
WT

k

)
· sign
(
Wkẑn−yk

)
+λ

2∑
q=−2

2∑
p=−2

α|p|+|q|sign
(
ẑn−S p

xS q
y ẑn
)]

(5.26)

where sign(x) operation results in 1 or -1 if the sign of x is positive or negative re-

spectively. Best possible λ is searched experimentally. All SR methods are initialized

with bicubic interpolation through the experiments. In the first section experiments on

synthetically generated images are conducted. Real experiments on day and thermal

cameras are conducted in the other two sections. The iterations are ceased after the

percentage change in the reconstructed image with respect to the previous reconstruc-

tion is below a threshold. This condition is formulated as: ‖ẑn+1 − ẑn‖/ ‖ẑn‖ ≤ 10−6,

where zn is the reconstructed image at nth iteration.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: Original HR images for (a) “Barbara”, (c) “Chart Section 1”, (e) “Chart
Section 2”, and (g) “House”, (b), (d), (f) and (h) Four of eight synthetically generated
LR images at 25 dB noise.

5.3.1 Experiments on Synthetically Generated Images

In the following simulations, the proposed method is tested against synthetically gen-

erated images given in Figure 5.2. The “Barbara” and “House” images are selected

for its textured structure. The other two images are cropped from the well-known

“Chart” image. Each 200 × 200 high-resolution image is warped, blurred, and down-

sampled by a factor of 2 to obtain eight 100 × 100 LR images according to (5.2). The

Gaussian noise at SNR levels of 25 and 30 dB are used to degrade the LR images.

The example LR images are also given in Figure 5.2 for 25 dB noise case. Only trans-

lational motion is considered, which is randomly set within a 2-pixel range among the

LR images. The true motion values are used during reconstruction. A 2×2 moving

average filter is used to simulate blurring. The resolution is increased by a factor of

2.

The quantitative performance comparison is achieved using MSE and SSIM mea-

surements. SSIM (4.18) is also used in addition to the MSE measures, because human

visual perception is more sensitive to structural information in a scene [67].

The amount of regularization, λ, is varied to achieve the best possible SSIM value

for all methods. By this way, the best possible performances are compared with the

proposed method. The effect of varying λ for the GMRF, RSR, and proposed method

71



is given for both 25 and 30 dB noise levels in Figure 5.3. The GMRF and proposed

method converge to each other for λ close to 0 as expected. Figure 5.4 shows the

convergence of the reconstructions for both 25 and 30 dB noise. The GMRF and

proposed method converge after 20 iterations and RSR converges after 200 iterations.

One of every 10 iterations is shown to plot RSR convergence on the same graph. The

reconstructed images are given in Figures 5.5, 5.7, 5.9, and 5.11. These reconstruc-

tions are filtered by a Laplacian filter in the form of [-1 -1 -1; -1 8 -1; -1 -1 -1] for

better visual assessment. The resultant high-frequency images for each reconstruction

are given in Figures 5.6, 5.8, 5.10, and 5.12.
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(a) (b)

(c) (d)

Figure 5.3: Effect of varying regularization amount λ versus SSIM values at different
SNR levels (a) Barbara image at SNR = 25 dB, (b) SNR = 30 dB. (c) Chart image
Section 1 at SNR = 25 dB, (d) SNR = 30 dB.

(a) (b)

(c) (d)

Figure 5.4: Convergence of the algorithms. (a) Barbara image at SNR = 25 dB, (b)
SNR = 30 dB. (c) Chart image at SNR = 25 dB, (d) SNR = 30 dB.
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(a) (b)

(c) (d)

(e)

Figure 5.5: (a) Bicubic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original
Image.
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(a) (b)

(c) (d)

(e)

Figure 5.6: High-frequency contents of each reconstruction are given (a) Bicubic
Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original Image.
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(a) (b)

(c) (d)

(e)

Figure 5.7: (a) Bicubic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original
Image.
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(a) (b)

(c) (d)

(e)

Figure 5.8: High-frequency contents of each reconstruction are given (a) Bicubic
Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original Image.
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(a) (b)

(c) (d)

(e)

Figure 5.9: (a) Bicubic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original
Image.
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(a) (b)

(c) (d)

(e)

Figure 5.10: High-frequency contents of each reconstruction are given (a) Bicubic
Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original Image.
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(a) (b)

(c) (d)

(e)

Figure 5.11: (a) Bicubic Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original
Image.
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(a) (b)

(c) (d)

(e)

Figure 5.12: High-frequency contents of each reconstruction are given (a) Bicubic
Interpolation, (b) GMRF, (c) RSR, (d) Proposed, (e) Original Image.
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(a) Original Image (b) GMRF with λ = 0.1 (c) RSR with λ = 0.1,

(d) Proposed method (e) GMRF with λ = 0.3 (f) RSR with λ = 0.3

Figure 5.13: Effect of regularization on highly textured and uniform regions for the
GMRF and RSR methods.

As expected, all reconstructed images have better visual quality, when compared

with bicubic interpolation. The MSE and SSIM values for the best possible recon-

structions are given in Tables 5.1 and 5.2. A total of 20 experiments have been con-

ducted at each noise level. The mean and standard deviation of the metrics are given

in Tables 5.1 and 5.2. The proposed method has higher SSIM and lower MSE values,

when compared with GMRF and RSR estimates for both 25 and 30 dB noise levels.

The success of the proposed method is visually apparent, especially on the textured

regions, such as the texture on the clothing in Figure 5.5, the higher frequency lines

in Figures 5.7 and 5.9, and the front surface of the background house in Figure 5.11.

The following simulation is conducted on a synthetic image shown in Figure

5.13(a). The image is composed of vertical and horizontal line patterns with peri-

ods: 3 pixels-per-cycle in horizontal and vertical directions in the top left quadrant;

3-pixels-per-cycle in horizontal direction in the top right and bottom right quadrants,

and 4 pixels-per-cycle in two directions in the bottom left quadrant. The simulation

setup is the same as the ones that are conducted before. For the GMRF and RSR

methods, if λ is optimized for the textured region, MSE at the uniform region in-

creases, whereas if λ is optimized for the uniform region, MSE at the textured region
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Table 5.1: MSE Values at 25 and 30 dB SNR Levels

Image SNR MSE
(dB) BICUBIC GMRF RSR Proposed

Barbara 25 435.8±1 183.6±15 181.6±18 101.8±8
30 411.1±0 113.2±24 115.9±20 87.7±20

Chart Sec1 25 570.9±3 117.3±11 151.2±13 87±13
30 533.1±2 82.1±16 94.5±16 64.8±18

Chart Sec2 25 618.7±2 244.5±48dB 280.7±46 126.5±38
30 560.7±1 142.5±41 152.5±42 72.2±33dB

House 25 949.8±2 378.6±28 374.4±34 359.9±33
30 943.1±2 277.2±12 265.5±17 256.6±15

Table 5.2: SSIM Values at 25 and 30 dB SNR Levels

Image SNR MSE
(dB) BICUBIC GMRF RSR Proposed

Barbara 25 0.646±0.002 0.819±0.008 0.817±0.01 0.899±0.005
30 0.693±0.001 0.884±0.013 0.881±0.012 0.921±0.012

Chart Sec1 25 0.685±0.005 0.893±0.004 0.886±0.006 0.926±0.005
30 0.742±0.004 0.941±0.006 0.942±0.006 0.958±0.006

Chart Sec2 25 0.479±0.004 0.648±0.025 0.666±0.023 0.85±0.022
30 0.595±0.003 0.773±0.021 0.828±0.02 0.912±0.018

House 25 0.575±0.002 0.822±0.015 0.81±0.017 0.841±0.015
30 0.608±0.001 0.873±0.005 0.879±0.007 0.895±0.006

increases. This is demonstrated in Figure 5.13(b), (c), (e), and (f), where the GMRF

and RSR reconstructions at λ set to 0.1 and 0.3 are given. Proposed method has a

good balance at both the highly textured and uniform regions. Although the GMRF

and RSR reconstructions in Figure 5.13(b) and (c) are optimized for the textured

region, only the proposed method has recovered the bars having 3 pixel-per-cycle pe-

riod in Figure 5.13(d). Standard regularizers work on a 3 × 3 neighborhood, which

is not wide enough to differentiate the true high frequency variations and noise. The

Gabor filters, on the other hand, can easily detect the underlying pattern under heavy

noise, because these filters span a 32 × 32 pixel neighborhood at different scales in

the proposed method.
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5.3.2 Experiments on Real Image Data

A Samsung camera with 768 × 1024 pixel size is used in the experiments. Two image

sequences, each having seven images of size 100 × 100, are obtained. The relative

motion among images is estimated using the global optical flow based approach de-

scribed in [20]. The blurring kernel in (5.2) is selected as 5 × 5 Gaussian, whose

standard deviation is heuristically estimated to be 1.0. The resolution is increased

by a factor of 2. Regularization parameters are manually tuned to obtain the most

visually appealing reconstructions for the RSR, GMRF, and proposed method.

Four of the seven images are shown in Figure 5.14 as well as the pixel duplica-

tion results. Figures 5.15 and 5.17 presents the reconstructions for the GMRF, RSR,

and proposed method. High-frequency components of the reconstructed images are

also given in Figures 5.16 and 5.18 to compare the texture and edge recovery perfor-

mances. The reconstruction of the proposed method has sharper textures and edges,

when compared with RSR and GMRF. The success of the proposed method is clearer

on the high-frequency texture at the bottom of each reconstruction in Figure 5.17.

Although the proposed algorithm is not designed for images with text, the results in

Figure 5.15 are sharper than the RSR and GMRF reconstructions.

The reconstructions are run on a laptop with a 1.8-GHz dual-core Intel Ivy Bridge

Core i5. For GMRF method, one iteration takes around 0.5 s for GMRF method for

seven 100 × 100 images and for the proposed method, It takes around 1 s.
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(a) (b)

(c) (d)

Figure 5.14: (a) and (c) Four of the seven LR images, (b) and (d) 2× resolution
increase by pixel duplication.
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(a) (b)

(c) (d)

Figure 5.15: (a) Bicubic interpolation, (b) GMRF, (c) RSR, (d) Proposed Method.
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(a) (b)

(c) (d)

Figure 5.16: High-frequency content of reconstructions (a) Bicubic interpolation, (b)
GMRF, (c) RSR, (d) Proposed Method.
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(a) (b)

(c) (d)

Figure 5.17: (a) Bicubic interpolation, (b) GMRF, (c) RSR, (d) Proposed Method.
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(a) (b)

(c) (d)

Figure 5.18: High-frequency content of reconstructions (a) Bicubic interpolation, (b)
GMRF, (c) RSR, (d) Proposed Method.
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5.3.3 Experiments on Thermal Image Data

An uncooled thermal camera with 144 × 176 pixel detector size is used in the ex-

periments. 20 frames are used in the reconstruction. Relative motion is estimated

as described in, [20]. The resolution is increased by a factor of 2 in horizontal di-

rection and 4 in vertical direction. This asymmetric resolution increase is due to the

image acquisition system. The output video is composed of odd and even lines of the

generated images. The monitor combines odd and even lines into a full image. How-

ever when motion is present, odd and even lines shift with respect to each other. To

overcome this problem, each frame is separated into its even and odd line images and

treated as separate LR images during SR reconstruction. Some of these LR images

are shown in Figure 5.19. The blurring kernel in Eq. 5.2 is selected as 5 × 10 Gaus-

sian filter with heuristically estimated standard deviation of 1.0. The regularization

parameter for RSR, GMRF, and the proposed method are manually tuned to obtain

the most visually appealing reconstructions, given in Figures 5.20 and 5.22. High

frequency components of the reconstruction are also given in Figures 5.21 and 5.23

to compare the reconstructions on regions with textures and edges.
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(a) (b)

(c) (d)

Figure 5.19: (a) 6 of 20 LR images of the image set 1, (b) 2x resolution increase by
pixel duplication. (c) LR images of the image set 2, (d) 2x resolution increase by
pixel duplication.
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(a) (b)

(c) (d)

Figure 5.20: Reconstructions for the image set. A 120 × 150 window is selected for
better visual inspection. (a) Bicubic, (b) GMRF, (c) RSR, (d) Proposed.
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(a) (b)

(c) (d)

Figure 5.21: Reconstructions for the image set. A 120 × 150 window is selected for
better visual inspection. High frequency content of (a) Bicubic, (b) GMRF, (c) RSR,
(d) Proposed.

93



(a) (b)

(c) (d)

Figure 5.22: Reconstructions for the image set. A 120 × 150 window is selected for
better visual inspection. (a) Bicubic, (b) GMRF, (c) RSR, (d) Proposed.
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(a) (b)

(c) (d)

Figure 5.23: Reconstructions for the image set. A 120 × 150 window is selected for
better visual inspection. High frequency content of (a) Bicubic, (b) GMRF, (c) RSR,
(d) Proposed.
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5.4 DISCUSSION

Various texture models have been proposed in texture segmentation and synthesis

literature. Repetition of structures in a texture at various resolutions makes multi-

scale models good candidates in modeling texture behavior. Moreover, such models

employ multiscale decomposition to model complex interactions on a large neigh-

borhood without increasing the number of model parameters astronomically. In this

study, a multiscale texture model was used for the first time in solving super-resolution

image reconstruction problem. Furthermore, we extended the multiscale model by

embedding a binary process in each scale of the model. The overall model is easy

to implement and intuitive. It has been shown that the proposed model has sharper

reconstructions, when compared with the standard BTV and GMRF priors, especially

on images with high-frequency texture.
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CHAPTER 6

POST PROCESSING BASED SUPER RESOLUTION

6.1 INTRODUCTION

In this chapter, texture preserving regularization is handled as a post-processing step.

A two stage method is proposed, comprising multiple SR reconstructions with dif-

ferent regularization parameters followed by a restoration step for preserving edges

and textures. In the first stage, two maximum-a-posteriori (MAP) estimators with

two different amounts of regularization are employed. In the second stage, pixel-to-

pixel difference between these two estimates is post-processed to restore edges and

textures. Frequency selective characteristics of discrete cosine transform (DCT) and

Gabor filters are utilized in the post-processing step.

The main contribution of this study is the idea of running two MAP estimators

with different amount of regularization in parallel to obtain two solutions that can

be considered as the two extremes in the SR solution space. Post processing the

difference of these extremes to preserve edges and textures, to the best of the authors’

knowledge, has not been considered in SR image reconstruction before. The second

contribution of this study is using DCTs and Gabor filters to restore edge and texture

information during SR reconstruction.

This chapter is organized as follows. Section 6.2 presents the proposed methods

along with the standard GMRF solution. Section 6.3 presents experiments on synthet-

ically generated images to demonstrate the mean squared error (MSE) and structural

similarity index measure (SSIM) improvement compared to the Bayesian methods

given in [13, 25]. Performances are also visually validated through real experiments

on visual CCD images and thermal images. Finally, Section 6.4 has a discussion on

the results.
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6.2 METHODOLOGY

The general MAP solution given in Eq. 5.1 comprises a regularization term repre-

sented in Γ(·) function. It is previously mentioned that priors such as HMRF [40, 87],

TV [91, 88], BTV[25], or compound MRFs with line process [85, 86] are used for

sharper estimates. In this work, GMRF is considered as image prior. Γ(·) function

comprises the square sum of local pixel differences, which can be simplified to a

Laplacian operator matrix C as described in [13, 80]. As mentioned in the previous

section, this leads to smoother estimates.

ẑ = argmin
z

c∑
k=1

‖Wkz − yk‖22 + λ‖Cz‖22 (6.1)

where λ controls the influence of the regularization to the solution. Setting λ to zero

simplifies the above equation to maximum likelihood solution where the noise is

amplified while the details are preserved. Increasing λ will increase the effect of the

GMRF prior; as a result, the differences among neighboring pixels will be penalized

more and the high frequency content of the reconstructed image will decrease.

Edge preserving regularizers [40, 25, 92] are known to corrupt high frequency

textures in images [93]. Textures usually have rapid low amplitude variations. The

classical regularizers are usually defined for 8-pixel-neighborhood system which is

not sufficient to meet the periodicity and regularity of textures. As a result, classical

regularizers usually smooth out texture information. In Chapter 5, a texture prior

is proposed to solve this problem. In this chapter, a post-processing approach is

preferred for texture and edge preservation as an alternative.

The proposed method comprises multiple SR reconstructions with different reg-

ularization parameters followed by a restoration step. In the first stage, two MAP

estimates given in (6.1) are utilized with regularization parameters λ1 and λ2. Setting

λ1 < λ2 creates a noisy and an over-smoothed SR estimates respectively, as depicted

in Figure 6.1. These two solutions can be considered as two extremes in the SR solu-

tion space. The pixel-to-pixel difference of these solutions is a high frequency image

that is composed of edges, texture fragments, and high frequency noise as seen in

Figure 6.1.

zDIFF = ẑMAP1 − ẑMAP2. (6.2)
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Figure 6.1: Block diagram of the proposed texture preserving super resolution recon-
struction method. SR MAP λ1, and SR MAP λ2 refer to SR methods given in (6.1)
with two different regularizations. According to the figure λ2 > λ1.

where ẑMAP1 and ẑMAP1 are MAP estimates with regularization parameters λ1 and λ2.

The difference image is restored at multiple frequencies as given in (6.3).

ẑ = ẑMAP2 + N1F1zDIFF + N2F2zDIFF + · · · + NcFczDIFF k = 1, . . . , c. (6.3)

Here Fk is a linear operation for extracting kth frequency component of zDIFF . Nk is

a diagonal matrix with entries ni (i being the image pixel index) being either 1 or 0.

Nk can be considered as a thresholding operator for selecting pixels corresponding to

kth frequency band. The proposed solution given in (6.3) is realized in two alternative

ways: Gabor filter bank based or DCT based methods.

6.2.1 Gabor Filter Bank Based Restoration

Th same Gabor filter family used in Chapter 5 is also employed in the determination of

local texture/edge activity. The magnitude of Gabor filter response at a pixel location

is proportional to the presence of an edge [81] or texture [82] aligned with the filter

orientation. Using this idea, (6.3) is rewritten as follows:

ẑ = ẑMAP2 + zF1 + zF2 + . . . + zFc
k = 1, . . . , c. (6.4)

where each pixel of zFk
term is approximated as follows:
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Figure 6.2: Intermediate images obtained through the proposed Gabor Filter Bank
Based method.

zFk
(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
FkzDIFF(i) FkzDIFF(i) > T

0 else
(6.5)

Here, i is the pixel index, Fk is a matrix operator (k = 1 · · · 24) representing the Gabor

filters. The size of each filter is 32 by 32. The extent of each Gabor filter is dependent

on the scale such that 5 lobes are visible at each scale.

T term in (6.5) thresholds texture/edge activity at the corresponding pixel. It re-

alizes Nk matrix referred to in (6.3). T is adaptively chosen according to the standard

deviation of all pixels in zDIFF . Thresholding is also necessary to suppress ringing

artifacts especially on strong edges after filtering. Figure 6.2 illustrates the effect

of thresholding. Filtered and thresholded images are summed up in (6.6) to obtain

restored ẑDIFF , abbreviated with a hat.

ẑDIFF =

24∑
k=1

zFk
. (6.6)

Restored difference image ẑDIFF is added to the over-smoothed SR estimate ẑMAP2

to obtain the final image.

ẑ = ẑMAP2 + ẑDIFF . (6.7)
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6.2.2 Discrete Cosine Transform Based Restoration

Discrete cosine transform is widely used in texture classification, texture feature ex-

traction, and representation [94]. High frequency DCT coefficients are employed for

analyzing variation, regularity, complexity, and directional information of textures

[94]. High frequency DCT coefficients are also analyzed in the proposed method. The

proposed DCT based method is based on two assumptions: Signal level of texture is

stronger than noise; DCT coefficients of texture gather around close vicinities in DCT

domain. Based on these assumptions, zDIFF term is divided into non-overlapping

blocks. Each block is restored by two band pass filters. These filters are defined in

transform domain with center frequencies set as the locations of the peaking DCT

coefficients. Practical reasons for selecting only two band-pass filters are discussed

later in this section.

A similar process, called zone filtering [95], is used in DCT based image restora-

tion. However, in Zone filtering, the mask is fixed for the whole image, it is con-

nected, and it must include the DC coefficient. In the proposed method, the mask

varies for each block, and it is centered around the strongest DCT coefficients. The

zone filter in [95] discards the high frequency DCT coefficients. However, high fre-

quency DCT coefficients are mostly preserved in the proposed method. Note that

since zDIFF is a high frequency image, the strong DCT coefficients are expected to

gather in the high frequency region.

The proposed DCT based method approximates the realization of (6.3). Let Bk be

the DCT of 8×8 sized non-overlapping blocks in zDIFF . The algorithm for modifying

Bk is given as follows:

1. Let λmax
k
= Bk(o, l) s.t.

∀(x, y) � (o, l) , |Bk(o, l)| > |Bk(x, y)|

where (x, y) and (o, l) are coordinates in transform domain.

2. Define a region Ra
k

in coefficient space such that

Ra
k = {(x, y)k | ‖(x, y)k − (o, l)k‖ ≤ D} .
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D is related to the bandwidth of the band-pass filters.

3. Let λmax 2
k
= Bk(m, n) , (m, n)k � Ra

k
s.t.

∀(x, y) � (m, n) and (x, y) � Ra
k , |Bk(m, n)| > |Bk(x, y)|

4. Define Rb
k

s. t.

Rb
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(x, y)k

∣∣∣∣∣∣∣∣
⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖(x, y)k − (m, n)k‖ ≤ D λmax 2

k
> λmax

k
/2

∅ else

⎫⎪⎪⎪⎬⎪⎪⎪⎭
5. Set

BR
k (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bk(x, y) (x, y) ∈

(
Ra

k
∪ Rb

k

)
0 else

.

Here BR
k represents the kth restored block. Let zIDCT be image obtained from BR

k .

Thresholding is applied to suppress ringing artifacts in (6.8).

ẑDIFF(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zIDCT (i) σNi

> σall

0 else
(6.8)

where σall refers to the standard deviation of all pixels in ẑMAP2, and i refers to pixel

index. σNi
is the standard deviation at a 3 × 3 neighborhood of the ith pixel location.

ẑDIFF is the restored version of zDIFF . Similarly, restored difference image ẑDIFF is

added to the over-smoothed SR estimate ẑMAP2 to obtain the final image.

ẑ = ẑMAP2 + ẑDIFF . (6.9)

Unlike the proposed Gabor based method, DCT based method is an approximation

for (6.3). Using 8×8 window size is a common practice in video processing and video

compression literature. The bandwidth of the band-pass filters, D, could take limited

values (1, 2, 3). Setting D = 3 results in an all-pass filter if the center of the filter

is selected as the center in the DCT domain. Setting D = 2 is a practical choice

determined through simulations. With D = 2, the span of two filters in total can be
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(a) (b) (c) (d)

(e) (f)

Figure 6.3: (a) Original high resolution image Barbara and (b) four of eight synthet-
ically generated LR images. (c) Original high resolution image Baboon and (d) four
of eight synthetically generated LR images. (e) Original high resolution image Chart
and (f) four of eight synthetically generated LR images.

maximum 5×5×2. This number is already more than half of the DCT domain (8 × 8).

Therefore, using one or two band-pass filters is optimum. This approach may cause

blocking artifacts as discussed in the results section. Using overlapping windows is

an option to deal with this artifact, which will compromise computation time.

6.3 RESULTS

In this section, the performances of the proposed methods are demonstrated on both

synthetically generated images and real images. The proposed methods are compared

against single frame bicubic interpolation, MAP estimate with Gaussian Markov Ran-

dom Field image prior, and method given in [25]. The reasons for selecting method in

[25] are its robustness to motion estimation errors and its edge preservation property.

MAP estimate with GMRF prior is obtained as described in (5.24). This method

is abbreviated as GMRF throughout the chapter. Best possible λ is searched experi-

mentally for this estimate. The method described in [25] is implemented as described

in (5.26). Best possible λ is searched experimentally. This method is denoted as RSR

in the rest of the chapter.

Proposed methods are based on restoring the difference of two MAP estimates

with two different λ values. These two MAP estimators are implemented as described
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(a) ”Barbara” 25 dB noise (b) ”Barbara” 30 dB noise

(c) ”Baboon” 25 dB noise (d) ”Baboon” 30 dB noise

Figure 6.4: Effect of varying regularization amount λ versus SSIM values

in (5.24). Setting both λ1 and λ2 to a high value results in two smooth solutions. In

this case, the difference image will have poor frequency content. On the other hand,

as the difference between λ1 and λ2 increases, the content of the difference image in-

creases. Intuitively, the best strategy is to maximize the high frequency content of the

difference image. For this purpose, λ1 is set to zero, simplifying the MAP estimator

to maximum likelihood (ML) estimator. This selection does not risk the convergence

of the solution, since the blur kernel in (6.1) acts as a regularizer during the recon-

struction. After setting λ1 to zero, the best possible λ2 is searched experimentally.

The proposed Gabor filter based and DCT based restoration methods are abbreviated

as MTD1 and MTD2 respectively. The iterations are initialized with bicubic interpo-

lation for all the SR methods. Experiments are conducted on synthetically generated

images in the first section. Results for real experiments are given in the next section.

The iterations are ceased if the following condition occurs:

∥∥∥zn+1 − zn
∥∥∥ / ‖zn‖ ≤ 10−6 (6.10)

here, zn is the reconstructed image at nth iteration.
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6.3.1 Experiments on Synthetically Generated Images

The proposed methods are tested against synthetically generated images given in Fig-

ure 6.3. These images are selected for their textured structure. Each 512 x 512 high

resolution image is warped, blurred and down sampled by a factor of two to obtain

eight 256 x 256 LR images according to Eq. 1.2. Gaussian noise at SNR levels of 25

dB and 30 dB are used to degrade the LR images. 4 of 8 LR images are also given

in Figure 6.3 for 25 dB noise case. Only translational motion randomly set within

2 pixel range among LR images is used. True motion values are used during recon-

structions. A 2x2 moving average filter is used to simulate blurring. The resolution is

increased by a factor of 2. The quantitative performances are compared using MSE

and SSIM measurements.

The amount of regularization, λ, is varied to achieve the highest possible SSIM

value for both RSR and GMRF methods. By this way the best performances are

compared against the proposed methods MTD1 and MTD2. The method proposed

in Chapter 5 is also added to the tests and abbreviated as CHP5. The The effect of

varying λ for GMRF, RSR, MTD1, and MTD2 reconstructions are given for both

25 dB and 30 dB noise levels in Figure 6.4. λ refers to the regularization amount

given in (5.24) and (5.26) for GMRF and RSR respectively. For MTD1 and MTD2, λ

refers to λ2 of zMAP2. It has been previously stated that λ1 of zMAP1 is set to zero. The

reconstructed images are given in Figures 6.5, 6.7, and 6.9. These reconstructions are

filtered by a Laplacian filter in the form of [-1 -1 -1; -1 8 -1; -1 -1 -1] for better visual

assessment. The resultant high frequency images for each reconstruction are given

in the second row of Figures 6.6, 6.8, and 6.10. Both proposed methods have better

visual quality than RSR and GMRF reconstructions when high frequency components

are compared.

MSE and SSIM values for best possible reconstructions are given in Table 6.1.

The proposed methods have higher SSIM and MSE values compared to GMRF and

RSR estimates for both 25 dB and 30 dB noise levels. Block-wise post-processing

step in MTD2 creates blocking artifacts in restored difference image ẑMAP1 − ẑMAP2.

This results in lower SSIM and higher MSE values compared to MTD1. Using over-

lapping blocks in MTD2 can reduce these artifacts. However, this increases the com-

putational complexity of the method. MTD1 on the other hand restores the whole
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Table 6.1: MSE and SSIM Values at 25 and 30 dB SNR Levels

Image SNR MSE
(dB) BICUBIC GMRF RSR MTD1 MTD2 CHP5

Barbara 25 434.3±1dB 155.2±13dB 172.9±16dB 125.1±10dB 131.3±9dB 86.4±5dB
30 414.9±1dB 108.6±8dB 117.1±8dB 91±7dB 89.6±7dB 60.6±4dB

Baboon 25 285.7±2dB 163.7±4dB 184.4±4dB 160.7±4dB 173.4±3dB 206.2±14dB
30 254.2±0dB 126.4±4dB 135.3±4dB 115.2±4dB 119.6±3dB 120.9±6dB

Chart 25 817.6±6dB 104.3±8dB 162.1±11dB 81.9±5dB 104.9±9dB 86.3±8dB
30 786.1±5dB 82.1±10dB 99.4±6dB 43.4±7dB 48.7±8dB 44.6±7dB

SSIM
BICUBIC GMRF RSR MTD1 MTD2 CHP5

Barbara 25 0.654±0.001 0.824±0.008 0.825±0.008 0.865±9.829 0.851±0.007 0.911±0.004
30 0.696±0.001 0.889±0.005 0.887±0.005 0.911±7.263 0.908±0.005 0.941±0.003

Baboon 25 0.629±0.004 0.784±0.004 0.757±0.005 0.794±3.57 0.783±0.003 0.729±0.017
30 0.675±0.001 0.841±0.004 0.825±0.004 0.852±3.794 0.848±0.004 0.843±0.007

Chart 25 0.808±0.003 0.924±0.002 0.939±0.004 0.958±4.586 0.955±0.001 0.933±0.003
30 0.675±0.001 0.841±0.004 0.825±0.004 0.852±3.794 0.848±0.004 0.843±0.007

difference image hence it has smoother reconstructions. As λ approaches to zero,

ẑMAP2 approaches to the maximum likelihood estimate. As a result, their difference

and the restored difference approach to a zero image. Therefore, MTD1 and MTD2

converges to GMRF as lambda approaches to zero. This can be observed in Figure

6.4. The method proposed in Chapter 5 has better performance on Barbara and Chart

Image. However, the performance of CHP5 drops for the Baboon image. Visual in-

spection of the high frequency content of CHP5 reconstruction reveals ghost textures,

which are formed due the Gabor filters. The patterns on the fur of the baboon are not

regular enough for the Gabor filters.
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(a) Bicubic Interpolation (b) GMRF (c) RSR

(d) MTD1 (e) MTD2 (f) CHP5

(g) Original Image

Figure 6.5: Reconstructed images.
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(a) Bicubic Interpolation (b) GMRF (c) RSR

(d) MTD1 (e) MTD2 (f) CHP5

(g) Original Image

Figure 6.6: High frequency content of the reconstructed images.
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(a) Bicubic Interpolation (b) GMRF (c) RSR

(d) MTD1 (e) MTD2 (f) CHP5

(g) Original Image

Figure 6.7: Reconstructed images.
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(a) Bicubic Interpolation (b) GMRF (c) RSR

(d) MTD1 (e) MTD2 (f) CHP5

(g) Original Image

Figure 6.8: High frequency content of the reconstructed images.
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(a) Bicubic Interpolation (b) GMRF (c) RSR

(d) MTD1 (e) MTD2 (f) CHP5

(g) Original Image

Figure 6.9: Reconstructed images.
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(a) Bicubic Interpolation (b) GMRF (c) RSR

(d) MTD1 (e) MTD2 (f) CHP5

(g) Original Image

Figure 6.10: High frequency content of the reconstructed images.
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6.3.2 Experiments on Real Image Data

The same image set used in Chapter 5 Section 5.3.2 is also experimented in this

section. The settings for the experiments are explained again for the sake of com-

pleteness. 7 LR images are used in the reconstructions. The relative motion among

LR images is estimated using a global optical flow based approach described in [20].

Optimum value for the blurring kernel in Eq. 1.2 is selected as 5x5 Gaussian filter

whose standard deviation is heuristically estimated to be 1.0. The resolution is in-

creased by a factor of 2. Regularization parameters are manually tuned to obtain the

most visually appealing reconstructions for RSR, GMRF, MTD1, and MTD2

Of the 7 LR images, 4 are shown in Figure 6.11(a) and 6.11(c). Pixel duplica-

tion results are also given in Figures 6.11(b) and 6.11(d). Reconstructions for GMRF,

RSR, MTD1, and MTD2 methods are compared in Figures 6.12 and 6.13. High fre-

quency components of the reconstructed images are also given so that the differences

on textures and edges can be observed. It is observed that RSR results are sharper

than GMRF results since RSR is more robust to motion estimation errors. The recon-

structions of MTD1 and MTD2 have sharper textures and edges compared to RSR

and GMRF. MTD1 is slightly better than MTD2 consistent with the simulation re-

sults. The discontinuity in textures and edges can be observed in MTD2 which is due

to the block-wise post-processing stage. Although the proposed algorithms are not

designed for images with text, the results in Figure 6.13 are very successful.

The reconstructions are run on a laptop with Intel core i5 M 460 processor at

2.53 GHz. One iteration takes around 1 s for GMRF method for seven 100 x 100

images. The post processing stages takes 3.11 and 5.15 s for MTD1 and MTD2

respectively. A 20 iteration reconstruction takes 20 s (1 s x 20) for GMRF method.

The reconstruction time for the proposed methods is therefore 2 times this value plus

the time for the post-processing stage.

6.3.3 Experiments on Thermal Image Data

The same thermal image data set used in Chapter 5 is also experimented here. Relative

motion is estimated as described in, [20]. The resolution is increased by a factor of 2

in horizontal direction and 4 in vertical direction. Some of these LR images are shown

in Fig. 6.14. The blurring kernel in (1.2) is selected as 5 × 10 Gaussian filter with
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(a) (b) (c) (d)

Figure 6.11: (a) Four of seven LR images of the first image set, (b) 2x resolution
increase by pixel duplication, (c) Four of seven LR images of the second image set,
(d) 2x resolution increase by pixel duplication.

heuristically estimated standard deviation of 1.0. The method proposed in Chapter

5 is also added to the tests and abbreviated as CHP5. The regularization parameter

for RSR, GMRF, and the proposed method are manually tuned to obtain the most

visually appealing reconstructions, given in Figures 6.15 and 6.17. High frequency

components of the reconstruction are also given in Figures 6.16 and 6.18 to compare

the reconstructions on regions with textures and edges.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.12: Reconstructions for first image set. A 270 x 180 window is selected for
better visual inspection. (a) GMRF, (b) RSR, (c) MTD1, (d) MTD2. High frequency
images are also given in the second row for (e) GMRF, (f) RSR, (g) MTD1, (h) MTD2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.13: Reconstructions for second image set. A 280 x 180 window is selected
for better visual inspection. (a) GMRF, (b) RSR, (c) MTD1, (d) MTD2. High fre-
quency images are also given in the second row for (e) GMRF, (f) RSR, (g) MTD1,
(h) MTD2.
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(a) (b)

(c) (d)

Figure 6.14: (a) 6 of 20 LR images of the image set 1, (b) 2x resolution increase by
pixel duplication. (c) LR images of the image set 2, (d) 2x resolution increase by
pixel duplication.
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(a) Bicubic Interpolation (b) GMRF

(c) RSR (d) MTD1

(e) MTD2 (f) CHP5

Figure 6.15: Reconstructions for the image set. A 120 × 150 window is selected for
better visual inspection.
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(a) Bicubic Interpolation (b) GMRF

(c) RSR (d) MTD1

(e) MTD2 (f) CHP5

Figure 6.16: Reconstructions for the image set. A 120 × 150 window is selected for
better visual inspection. High frequency content of the reconstructed images.
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(a) Bicubic Interpolation (b) GMRF

(c) RSR (d) MTD1

(e) MTD2 (f) CHP5

Figure 6.17: Reconstructions for the image set. A 120 × 150 window is selected for
better visual inspection.
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6.4 DISCUSSION

In this chapter, a novel SR image reconstruction algorithm is presented where tex-

ture regularization is treated as a post-processing step. Two methods based on Gabor

filters and DCT are used in the post-processing step. Effect of regularization values

and effect of noise to robustness of the proposed methods are investigated. For all

regularization values and noise levels, proposed methods gave higher MSE and SSIM

values compared to standard SR algorithms. The proposed approaches have signifi-

cantly better results in real world scenarios, especially on textured areas and edges. It

is noted that the methods reduce to MAP estimator for uniform regions. This property

makes these methods flexible for different types of image sets. The proposed methods

are also computationally very efficient since the two Bayesian estimators can run in

parallel and the restoration stage is not iterative.
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(a) Bicubic Interpolation (b) GMRF

(c) RSR (d) MTD1

(e) MTD2 (f) CHP5

Figure 6.18: Reconstructions for the image set. A 120 × 150 window is selected for
better visual inspection. High frequency content of the reconstructed images.
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CHAPTER 7

CONCLUSION

7.1 Summary

Superresolution image reconstruction refers to methods where a higher resolution

image is reconstructed using a set of overlapping, aliased low resolution observations

of the same scene. This thesis has proposed several maximum a posteriori based SR

image reconstruction methods. Here, we summarize basic contributions of the thesis

and give directions for future research.

Chapter 2 presents a survey of SR methods covering a 30 year period in literature.

We have selected the pioneering studies related to each class of algorithms and sum-

marized each category for a reader who is not familiar with the SR field. A special

attention is given to iterative maximum a posteriori based methods since the proposed

approaches in Chapter 4, 5, and 6 belong to this category.

The proposed methods in Chapter 4, 5, and 6 are based on minimizing the flowing

cost function

ẑ = argmin
z

c∑
k=1

ρ(Wkz, yk) + λΓ
(
z
)
. (7.1)

The main focus of this thesis is the image prior term, Γ(·), in (7.1). Chapter 4

presents a directionally adaptive SR image reconstruction method. The basic idea

behind this algorithm is determining the best regularization filter according to the

magnitude and direction of the local gradient. Three variations of this algorithm are

compared with previous work [25, 40]. The SSIM, PSNR values and illustrations are

given for performance evaluations. Especially for highly degraded images with sharp

edges, the proposed methods clearly preserve edges while applying high amounts of
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regularization. The performance is however very similar to [25, 40] in regions where

a strong edge is not present.

In Chapter 5, we propose a novel texture prior for maximum a posteriori (MAP)

based super-resolution (SR) image reconstruction. The prior is based on a multiscale

compound Markov Random Field (MRF) model. Gabor filters are utilized for sub-

band decomposition. Each subband is modeled by a compound MRF that inherits a

binary texture process. The texture process at each pixel location at each subband

is estimated iteratively along with the unknown high resolution image pixels. The

proposed method is novel in two ways: 1) Multiscale priors has never been used in

SR literature. 2) Compound multiscale priors,”to the best of our knowledge”, has not

been proposed in image processing literature before. The overall model is easy to

implement and intuitive. The proposed method is validated through simulations and

real experiments, which clearly demonstrates significant visual improvements, espe-

cially on images with high frequency textures, when compared with state-of-the-art

methods.

Incorporating more information to the solution results in better reconstructions.

However, this increases the computational overhead. In Chapter 4, direction of gradi-

ents is used in addition to standard regularizers. The proposed approach has a com-

putational overhead which varies depending on the gradient distribution in the input

LR image sets. In our simulations we have observed 10 - 15 % increase in computa-

tion time compared with [25, 40]. In Chapter 5, Gabor filters are effectively used in

determining underlying texture process. However, the computational overhead is 2-4

times compared with [25, 40].

In Chapter 6, a two stage method is proposed, comprising multiple SR recon-

structions with different regularization parameters followed by a restoration step for

preserving edges and textures. In the first stage, two maximum-a-posteriori (MAP)

estimators with two different amounts of regularization are employed. In the sec-

ond stage, pixel-to-pixel difference between these two estimates is post-processed

to restore edges and textures. Frequency selective characteristics of discrete cosine

transform (DCT) and Gabor filters are utilized in the post-processing step. The pro-

posed approaches have significantly better results in real world scenarios, especially

on textured areas and edges. It is noted that the methods reduce to MAP estimator for

uniform regions. This property makes these methods flexible for different types of
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image sets. The proposed methods are also computationally very efficient since the

two Bayesian estimators can run in parallel and the restoration stage is not iterative.

7.2 Future Directions

Proposed algorithms consider image registration values, camera blur and various pa-

rameters related to the image prior as known. In SR literature, several approaches

have been proposed for simultaneously solving SR image pixels, image registration,

sensor PSF, and model parameters in a Bayesian framework. The natural follow up

is to adapt these simultaneous estimation methods to the proposed methods in the

thesis. The second line of study is application of these methods for video super res-

olution. Two important challenges are: 1) optimizing the proposed methods in terms

of speed; 2) finding an efficient way to deal with the ever increasing video frames in

terms of memory and computation time. Some important derivations for video super

resolution are given in Appendix B, which highlights these challenges.
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APPENDIX A

STRUCTURE OF THE OPERATIONS IN MATRIX FORM

Structures of the matrix operators and system matrix used in super resolution for-

mulation are investigated. Decimation, blur, warping operators are defined in lexi-

cographical representation. The lexicographical form is constructed by adding the

rows of the image to each other to construct a long column vector. For example the

following 2x2 matrix is rewritten in lexicographical form as a 4×1 vector.

Im =

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1 5

6 8

⎤⎥⎥⎥⎥⎥⎥⎥⎦→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

5

6

8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Assume yk and z are the low and high resolution images in lexicographical form

with sizes L × L and M × M respectively. The forward problem of obtaining a low

resolution image out of the high resolution image is given in (A.1)

yk = DBFk · z + nk k = 1 · · · c. (A.1)

where D is decimation, B is blur and Fk is the spatial warping operator. Fk and B are

M2 × M2 matrices and D is a L2 × M2 matrix. Their structures are written explicitly

for small images in the following sections.
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A.1 Decimation Operation

The following operator creates a 2 × 2 image out of a 4 × 4 image by sampling one

pixel every two pixels in the 4 × 4 image.

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.2)

A.2 Shift Operation

The following operator shifts a 4 × 4 image toward left by one pixel.

S x(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.3)

The flowing matrix shifts a 4 × 4 image one pixel down.
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S y(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.4)

The following matrix is obtained by multiplying the two matrices given above. It

shifts a 4 × 4 image one pixel left and one pixel down.
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S x(1) · S y(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.5)

The two matrices given next shifts an image 0.5 pixels to left, 0.5 pixels down
respectively. The third matrix shifts an image 0.5 pixels left and 0.5 pixels down at
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the same time

S x(0.5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.6)
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S y(0.5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0

0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0

0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0 0

0 0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0

0 0 0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0

0 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0 0 0

0 0 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0

0 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0 0

0 0 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0

0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0

0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.7)

S x(0.5) · S y(0.5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0

0.25 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0
0.25 0.25 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0

0 0.25 0.25 0 0 0 0.25 0 0 0 0 0 0 0 0 0
0 0 0.25 0.25 0 0 0 0.25 0 0 0 0 0 0 0 0
0 0 0 0 0.25 0 0 0 0.25 0 0 0 0 0 0 0
0 0 0 0 0.25 0.25 0 0 0 0.25 0 0 0 0 0 0
0 0 0 0 0 0.25 0.25 0 0 0 0.25 0 0 0 0 0
0 0 0 0 0 0 0.25 0.25 0 0 0 0.25 0 0 0 0
0 0 0 0 0 0 0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0 0 0 0 0 0.25 0.25 0 0 0 0.25 0 0
0 0 0 0 0 0 0 0 0 0.25 0.25 0 0 0 0.25 0
0 0 0 0 0 0 0 0 0 0 0.25 0.25 0 0 0 0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.8)

A.3 Rotation Operation

For a 2 × 2 matrix rotation with bilinear approximation is defined as follows
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Figure A.1: For a 4 × 4 image 25o clockwise rotation matrix is as shown on the
left. Transpose of a 25o counter clock wise rotation is shown on the right. The two
matrices are not exactly same however can be considered similar.

Rot
( − 45o) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4 0 0.4 0

0.4 0.4 0 0

0 0 0.4 0.4

0 0.4 0 0.4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Rot

(
45o) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4 0.4 0 0

0 0.4 0 0.4

0.4 0 0.4 0

0 0 0.4 0.4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.9)

Note that Rot
(
45o
)T
= Rot
( − 45o) , however it is shown in Figure A.1 that for

larger images Rot
(
θo
)T ≈ Rot

( − θo). Note also that Rot
(
θo
)−1 � Rot

( − θo). Structure

of a larger rotation matrix is shown in Figure A.1.

A.4 Blur Operation

For a 3 × 3 circulary symmetric blur operator such as b =

[
1 1 1
1 1 1
1 1 1

]
The blur operator

matrix becomes
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0

0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0

0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0

0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1

0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 1/9 (A.10)

The above matrix is symmetric, BT = B.

A.5 System Matrix

System Matrix W = D × B × Fk is obtained by multiplying the above matrices. The

following system matrix creates a 2 × 2 low resolution image from a 4 × 4 high

resolution image according to the observation model in (A.1).

D·B·F(0.5, 0.5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.5 0 0 0.5 0.25 0 0 0 0 0 0 0 0 0 0

0 0.5 1 0.5 0 0.25 0.5 0.25 0 0 0 0 0 0 0 0

0 0 0 0 0.5 0.25 0 0 1 0.5 0 0 0.5 0.25 0 0

0 0 0 0 0 0.25 0.5 0.25 0 0.5 1 0.5 0 0.25 0.5 0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.11)

The pattern can be observed better in a system where a 4 × 4 low resolution image is

obtained from a 16 × 16 image where the system matrix is 64 × 256 in Figure A.2.
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Figure A.2: For a 16 × 16 high resolution image and 8 × 8 low revolution image
the system matrix W has the above forms. Here the motion in x and y directions
are 0.5 pixels each (the right system matrix also comprises 10o of counter clock wise
rotation), zoom factor is two, and the blur operation is a 2 × 2 averaging operator the
white pixels are zeros.

A.6 Observations on Matrix Operators in Super Resolution

• S x

(
dx
) · S y

(
dy
)
= S y

(
dy
) · S x

(
dx
)

translation matrices are commutative.

• S x

(
dx
)
= S x

( − dx
)T but S x

(
dx
)−1 � S x

( − dx
)
.

• Let F
(
dx, dy
)
= S x

(
dx
)·S y

(
dy
)

then F
(
dx, dy
)T
= F
(−dx,−dy

)
but F
(
dx, dy
)−1 �

F
( − dx,−dy

)
.

• F
(
dx1, dy1

) · F(dx2, dy2
)
= F
(
dx2, dy2

) · F(dx1, dy1
)

• Rot
(
θo
)T ≈ Rot

( − θo) (as shown in Figure A.1) a small difference can be ob-

served.

• Rot
(
θo
)−1 � Rot

( − θo)

• Rot
(
θo1
) · Rot
(
θo2
) ≈ Rot

(
θo2
) · Rot
(
θo1
) ≈ Rot

(
θo1 + θ

o
2
)
.

• D down-samples Z by Y = D · Z operation, and DT upsamples Y by zero

padding.

• D · DT = I is identity however DT · D is a diagonal matrix only.

• If the blurring Kernel is circulary symmetric having a center pixel, then the blur

matrix B is symmetric, B = BT .
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• If warping only consists of transformation then D · W · F = D · F · W where

W is the blur and F is the warping operator. The two image obtained through

the system matrix given at both sides of the equality only differs at the pixels

located at the edges where translational motion introduces zero padding.
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APPENDIX B

VIDEO SUPERRESOLUTION

In the previously discussed SR problem, the whole low resolution image set is as-

sumed to be available for high resolution image reconstruction. However, in video

frame up-sampling, low resolution images arrive sequentially for the reconstruction.

Starting from the first frame a high resolution image is constructed and updated after

each new frame. This type of application is named as sequential super resolution

throughout this chapter. The classical SR problem where low resolution input images

are available before the reconstruction are referred to as batch super resolution.

B.1 SEQUENTIAL VERSUS BATCH SUPER RESOLUTION

For both batch and sequential SR problem the relationship between SR image and LR

image, namely the forward problem, is quite similar. This relationship is constructed

through a camera model where image formation process is simplified as blurring,

down sampling and introduction of additive noise. The formulation for both batch

and sequential SR is given in (B.1).

Batch SR yk = DBFk · z + nk k = 1 · · · c
Sequential SR yt = DB · zt + nt

zt = Ft
t−i · zt−i + vt

(B.1)

For batch SR, yk represents the kth LxN low resolution image. z is the corresponding

HR image of size mL×mN where m is the down sampling factor, and c is the number

of LR images. All images are represented in lexicographical ordering. Each LR

image is obtained from z through warping (Fk), blurring (B), and down-sampling (D)

operations. nk represents the additive observation noise in the process. For sequential
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SR, LR image at time t (yt) is obtained from zt through blurring (B), and down-

sampling (D) operations only. The relationship between two SR images at time t and

t − i is given through warping operator Ft
i where the notation in sub and superscripts

denotes warping from time t − i to t. Finally, nt and vt represents the additive noise in

the processes.

A MAP estimator for both methods are formulated using Bayes’ theory as follows;

Batch SR ẑ = argmax
z

p
(
y1, · · · yc|z)p(z)

Sequential SR ẑt = argmax
zt

p
(
yt, yt−1 · · · yt−c|zt

)
p
(
zt

) (B.2)

where p
(
yk|z) is the conditional probability density of yk given z, p

(
yt−i|zt

)
is the

conditional probability density of yt−i given zt (t being the time tag). p(z) and p(zt)

is related to the image prior, and c is the number of LR images. In relation with

(B.1), the above estimation problem can be written as a minimization problem in the

following form assuming: 1) noise has independent identical Gaussian distribution

and 2) image prior is based on GMRF.

Batch SR ẑ = argmin
z

c∑
k=1

‖DBFkz − yk‖22 + λ‖Cz‖22

Sequential SR ẑt = argmin
zt

c∑
i=1

‖DBFt−i
t zt − yt−i‖22 + λ‖Cz‖22

(B.3)

where ‖Cz‖22 represents the regularization term which depends on the image prior

term. λ controls the influence of the regularization to the solution. C is usually

expressed in the form of a spatial finite difference operator.

Steepest descent formulation for the cost function of sequential SR problem in

(B.3) is as follows.

ẑn+1
t = ẑn

t − βn

( c∑
i=0

[(
DBFt−i

t

)T · (DBFt−i
t ẑn

t − yt−i

)]
+ λCTC · ẑn

t

)
(B.4)

The above solution is not different than batch SR solution if number of images

(c) is limited. However, as c grows, it gets computationally impossible to calculate
c∑

i=0

[(
DBFt−i

t

)T · (DBFt−i
t ẑn

t − yt−i

)]
term directly.

A common practice is using a forgetting factor, μ (0 ≤ μ < 1), to decrease the

effect of old observations to the reconstruction.
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ẑn+1
t = ẑn

t − βn

( ∞∑
i=0

μi
[(

DBFt−i
t

)T · (DBFt−i
t ẑn

t − yt−i

)]
+ λCTC · ẑn

t

)
(B.5)

Solving ∇Costt term directly requires all previous low resolution images to be

buffered. Adaptive filtering theory has recursive solutions for this type of problems.

In the next section recursive least squares (RLS) estimate is detailed which gives a

direct solution to (B.5). Then pseudo RLS formulation is given where the forgetting

factor is used to ignore very old observations completely. Finally, least mean squares

(LMS) estimate is given.

B.2 Recursive Least Squares (RLS) Approach

Gradient of the cost function with infinitely many images has the following form. λ

in (B.5) is set to zero for simplicity during the derivations.

∇Costt =

∞∑
i=0

μi
[(

DBFt−i
t

)T · (DBFt−i
t ẑn

t − yt−i

)]
(B.6)

The gradient term is rewritten in terms of two new variables Rt and Pt. The aim is

to rewrite the gradient at time t in terms of Rt−1 and Pt−1. Instead of buffering all the

past images, these two variables will be buffered. Sizes of Pt and Rt are LNm2 × 1

and LNm2 × LNm2 respectively. Resolution increase is set to m in both directions.

∇Costt =

∞∑
i=0

μi(DBFt−i
t

)T · yt−i

︸���������������������︷︷���������������������︸
Pt

−
∞∑

i=0

μi(DBFt−i
t

)T (
DBFt−i

t

)
︸��������������������������︷︷��������������������������︸

Rt

ẑn
t

Rt �
∞∑

i=0

μi(DBFt−i
t

)T (
DBFt−i

t

)

Pt �
∞∑

i=0

μi(DBFt−i
t

)T (
DBFt−i

t

)
yt−i

Rt =
(
DB
)T (

DB
)
+

∞∑
i=1

μi(DBFt−i
t

)T (
DBFt−i

t

)
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Pt =
(
DB
)T yt +

∞∑
i=1

μi(DBFt−i
t

)T yt−i

Replace the index i with i + 1,

Rt =
(
DB
)T (

DB
)
+

∞∑
i=0

μi+1(DBFt−1−i
t

)T (
DBFt−1−i

t

)

Pt =
(
DB
)T yt +

∞∑
i=0

μi+1(DBFt−1−i
t

)T yt−1−i

It is straightforward to see that transformation from time t to time t − 1− i, Ft−1−i
t ,

is equivalent to transforming from time t to t − 1 then from t − 1 to t − 1 − i. Thus

Ft−1−i
t is equivalent to Ft−1

t · Ft−1−i
t−1 using this equality in the formulation of Rt

Rt =
(
DB
)T (

DB
)
+ μ(Ft−1

t )T

∞∑
i=0

μi(DBFt−1−i
t−1
)T (

DBFt−1−i
t−1
)

︸�������������������������������︷︷�������������������������������︸
Rt−1

Ft−1
t

Pt =
(
DB
)T yt + μ(Ft−1

t )T

∞∑
i=0

μi(DBFt−1−i
t−1
)T yt−1−i

︸������������������������︷︷������������������������︸
Pt−1

Steepest descent formulation given in (B.5) is calculated in two steps. Step 1:

Update Pt and Rt in terms of its previous values

Pt = μ(Ft−1
t )T Pt−1 +

(
DB
)T · yt

Rt = μ(Ft−1
t )T Rt−1Ft−1

t +
(
DB
)T

DB

Step 2: Update ẑt iteratively.

ẑn+1
t = ẑn

t − βn
[
Rtẑn

t − Pt

]

Although SR problem and its solutions are expressed in lexicographical format,

the implementations are preferred to be in the 2 dimensional image domain. For

example calculating back projection DT BT FT zt requires multiplying LN2 by LNm2

matrix D with LNm2 by LNm2 matrix B then with with LNm2 by LNm2 matrix F and
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Figure B.1: Change in R as new images are added in time. The non zero elements
along the diagonal increases away from the diagonal.

LNm2 by 1 vector zt. Instead, BT can be expressed as a 3 by 3 matrix convolution,

and DT as upsampling with zero padding, and F as image affine transform in 2D

image domain. Mathematically both domains give exactly the same solution. This

easy conversion is due to the structures of the matrices D, B, F. These matrices are

sparse matrices as shown in Appendix A. For this reason computational complexity

is calculated as the sum of operations involving non zero elements of the key matrices

D, B, F.

Considering the elements of RLS calculations updating Pt requires, warping Pt−1

and adding
(
DB
)T · yt term. These operations can easily be transferred to 2 dimen-

sional image domain. Convert Pt−1 as M by M image. Apply affine transform ex-

pressed in Ft−1
t in image domain.

(
DB
)T · yt term can be expressed as upsampling and

zeropadding yt in image domain and blurring it with simple convolution operation.

However updating Rt has difficulties, since as t increases Rt develops such that all

elements of Rt is non-zero. In Figure B.1 for a 16 by 16 image the development of

Rt is given. Unlike batch SR, calculating matrix Rt increases the complexity of the

calculations dramatically.

B.3 Pseudo Recursive Least Squares (Pseudo-RLS) Approach

To overcome this problem a pseudo RLS approach is proposed. The gradient function

in (B.6) is re-written in the following form.

149



∇Costt =

c∑
i=0

μi
((

DBFt−i
t

)T · (DBFt−i
t ẑt

n − yt−i

))
+

∞∑
i=c

μi
((

DBFt−i
t

)T · (DBFt−i
t ẑn

t − yt−i

))

The past observations can be selected to be forgotten completely according to the

selection of the forgetting factor μ and image index c, depending on the application.

∇Costt =

c∑
i=0

μi
((

DBFt−i
t

)T ·(DBFt−i
t ẑn

t−yt−i

))
+ μc︸︷︷︸

0

∞∑
i=0

μi
((

DBFt−i
t

)T ·(DBFt−i
t ẑn

t−yt−i

))

With the above simplification of the cost term, ∇Costt, SR problem simplifies to

the standard SR formulation given in the following equation,

ẑn+1
t = ẑn

t − βn

c∑
i=0

μi
((

DBFt−i
t

)T · (DBFt−i
t ẑn

t − yt−i

))
(B.7)

B.4 Least Mean Squares Estimate

Setting c in (B.7) to 0 leads to the least mean squares (LMS) estimate given in the

following equation,

ẑn+1
t = ẑn

t − βn
[(

DB
)T · (DB ẑn

t − yt

)]
(B.8)

Adding a regularization term with a GMRF prior results in the following formu-

lation.

ẑn+1
t = ẑn

t − βn
[(

DB
)T · (DB ẑn

t − yt

)
+ λCTCẑn

t

]
(B.9)

A comparison of batch SR and LMS SR methods are given In Figure B.2.

The video flow for RLS, pseudo-RLS, LMS and video interpolation methods are

graphically given in Figures B.3 and B.4 to summarize the sequential methods derived

in this section.
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(a) Batch Super Resolution

(b) LMS Super Resolution

Figure B.2: Batch SR versus Sequential SR with LMS method is given.
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(a) Video SR with RLS Estimation

(b) Video SR with pseudo-RLS estimation.

Figure B.3: Flow of RLS and Pseudo-RLS algorithms.
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(a) Video Upsampling with Bicubic interpolation

(b) Video SR with LMS Estimation

Figure B.4: Flow of Bicubic interpolation and LMS methods.
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