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ABSTRACT

OPTIMAL CONTROL OF A HALF CIRCULAR COMPLIANT LEGGED
MONOPOD

, YASEMİN ÖZKAN AYDIN
Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Kemal LEBLEBİCİOĞLU

Co-Supervisor : Assoc. Prof. Dr. Afşar SARANLI

December 2013, 119 pages

Legged robots have complex architecture because of their nonlinear dynamics and
unpredictable ground contact characteristics. They can be also dynamically stable
and exhibit dynamically dexterous behaviors like running, jumping, flipping which
require complex plant models that may sometimes be difficult to build. In this thesis,
we focused on half circular compliant legged monopod that can be considered as a
reduced-order dynamical model for the hexapod robot, called RHex.

The main objective of this thesis is the development of an algorithm based on opti-
mal control theory that allows a half circular compliant legged monopod to run with
a desired forward velocity or height starting from rest. The algorithm optimizes the
foot attack angle and parameters of the PD controller while minimizing the error be-
tween desired and actual velocity. The effectiveness of the developed control strategy
is verified by a variety of computer simulations. After obtaining a wide range of
constant velocity running, we designed another energy-efficient controller which can
effectively perform one of the dynamic behaviors, jumping motion. The jumping mo-
tion increases the maneuverability of the robot on the variety of rough terrain in a
qualitatively satisfying manner. We analyze the performance of the our jumping con-
trol with a different jumping task, called triple jumping motivated by the exceptional
performance of triple jumper athletes.

Keywords: Optimal Control, Legged Robots, Compliant Leg, Hexapod Running,
RHex
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ÖZ

YARIM DAİRE ESNEK TEK BACAKLI ROBOTUN EN İYİ DENETİMİ

, YASEMİN ÖZKAN AYDIN
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Kemal LEBLEBİCİOĞLU

Ortak Tez Yöneticisi : Doç. Dr. Afşar SARANLI

Aralık 2013 , 119 sayfa

Bacaklı robotlar lineer olmayan dinamikleri ve tahmin edilemeyen yer temas karak-
teristikleri nedeniyle karmaşık bir yapıya sahiptirler. Bununla beraber dinamik olarak
kararlı olup, koşma, sıçrama, takla atma gibi kapsamlı modelleme çalışması gerekti-
ren davranışları gerçek-leştirebilirler. Bu tezde, altı bacaklı RHex robotunun basitleş-
tirilmiş bir modeli olarak düşüne-bileceğimiz tek esnek yarım daire bacaklı robot
üzerinde yoğunlaşacağız.

Bu tezin ana odak noktası optimal kontrol teorisini temel alan ve robotun istenilen
yatay hızda koşmasını sağlayacak bir kontrol algoritmasının geliştirilmesidir. Bu al-
goritma robotun yere değmesi esnasındaki bacak açısını ve PD kontrolcünün para-
metrelerini en iyileştirmektedir. Geniş bir hız yelpazesinde gerekli olan kontrolcü
tasarı-mından sonra atlama hareketini yapacak kontrolcü tasarımı yapılmıştır. Atlama
harake-ti robotun engebeli arazilerde hareketini kolaytıran bir hareket çeşididir. At-
lama denetimcisinin performansı üç adım atlama hareketini kullanarak analiz edil-
miştir.

Anahtar Kelimeler: Optimal Kontrol, Bacaklı Robotlar, Esnek Bacak, RHex
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Figure 5.13 The undisturbed (solid line) and disturbed (dashed line) COM tra-
jectory of the robot that jumps over obastacle with hobs = 0.5(m) and
wobs = 0.1(m) using the triple jump controller. The disturbance amount
equals to (a) 0.1% (b) 10% of the initial y position. . . . . . . . . . . . . . 76

Figure 5.14 The optimum scale of the controller parameters that eliminate nor-
malized 10% error in the initial x position of the robot for different obsta-
cle size h0 and w0 scaled between 0.1− 0.5. The color scale represents the
scale of (a) θ∗des1 (b) θ∗des3. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.15 The optimum scale of the controller parameters that eliminate 3%
error in the initial forward velocity of the robot for different obstacle size
h0 and w0 scaled between 0.1 − 0.5. The color scale represents the scale
of (a) θ∗des1 (b) θ∗des3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.16 The optimum scale of the controller parameters that eliminate 10%
error in the initial height of the robot for different obstacle size h0 and w0

scaled between 0.1 − 0.5. The color scale represents the scale of (a) θ∗des1
(b) θ∗des3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.17 The new representation of obstacle with a 10% safety margin. . . . 81

Figure 5.18 The COM trajectory of the robot that jumps over obstacle (hobs =

0.1 (m) and wobs = 0.1) (top) with a 10% safety margin (bottom) without
the safety margin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 5.19 The COM trajectory of the robot that jumps over obstacle (hobs =

0.2 (m) and wobs = 0.3) (top) with a 10% safety margin (bottom) without
the safety margin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 5.20 The COM trajectory of the robot that jumps over obstacle (hobs =

0.5 (m) and wobs = 0.5) (top) with a 10% safety margin (bottom) without
the safety margin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xix



Figure 5.21 The optimum reference angle signals of triple jump controller with-
out safety margin added to obstacle size. The height and width of the
obstacle are scaled between 0.1-0.5 (m). The color scale represents the
optimum reference angle signal of controller at the (left) first (middle)
second (right) third step of triple jump. . . . . . . . . . . . . . . . . . . . 84

Figure 5.22 The optimum reference angle signals of triple jump controller with
a 10% safety margin added to obstacle size. The height and width of the
obstacle are scaled between 0.1-0.5 (m). The color scale represents the
optimum reference angle signal of controller at the (left) first (middle)
second (right) third step of triple jump. . . . . . . . . . . . . . . . . . . . 84

Figure 5.23 The optimum touchdown angle of triple jump controller without
safety margin added to obstacle size. The height and width of the obstacle
are scaled between 0.1-0.5 (m). The color scale represents the optimum
touchdown angle of controller at the (left) first (middle) second (right)
third step of triple jump. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.24 The optimum touchdown angle of triple jump controller with a
10% safety margin added to obstacle size. The height and width of the
obstacle are scaled between 0.1-0.5 (m). The color scale represents the
optimum touchdown angle of controller at the (left) first (middle) second
(right) third step of triple jump. . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.25 The optimum starting conditions of triple jump phase without safety
margin added to obstacle size. The height and width of the obstacle are
scaled between 0.1-0.5 (m). The color scale represents the optimum (left)
initial forward velocity (middle) initial height (right) the initial starting x
position of triple jump phase. . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 5.26 The optimum starting conditions of triple jump phase with a 10%
safety margin added to obstacle size. The height and width of the obstacle
are scaled between 0.1-0.5 (m). The color scale represents the optimum
(left) initial forward velocity (middle) initial height (right) the initial start-
ing x position of triple jump phase. . . . . . . . . . . . . . . . . . . . . . 86

Figure 6.1 Edubot [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 6.2 The SLIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 6.3 The CCB Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 6.4 (a)The Buehler two speed profile is defined by 4 parameters (b)
Side view of the robot with a desired leg angle of the fligth and stance
phase [θtd, θlo, ts, tp] [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xx



Figure 6.5 Sagittal plane movement of the robot in the world coordinate frame 97

Figure 6.6 The stance phases of one run (top), mean of the actual θ̇act, tar-
get angular velocity θ̇t and shifted target angular velocity θ̇st of the left
(middle) and right tripod (bottom). . . . . . . . . . . . . . . . . . . . . . 98

Figure 6.7 The controller parameters [φlo, φtd, ts] of (a) SLIP model (b) CCB
template obtained in the second step . . . . . . . . . . . . . . . . . . . . 101

Figure 6.8 Fitting errors of (a) SLIP template (b) CCB template . . . . . . . . 101

Figure 6.9 The geometrical stance extraction procedure of SLIP and CCB
models. The dashed part of the COM trajectory is eliminated since the
height of the COM in this part does not satisfy the geometrical constraint
given in (6.14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xxi



xxii



CHAPTER 1

INTRODUCTION

Mobile robots are widely used for military, industrial and medical applications, as

well as space exploration, education and entertainment. In this thesis, we concen-

trated on land based mobile robots that can be categorized into three main classes:

wheeled, tracked and legged robots.

Biologists explain the nonexistence of the wheel-like locomotion in nature with an

unsuitability of the biological process to produce bio-wheels [5]. They also claim that

the wheel-like locomotion requires more energy to activate muscles compared to other

forms of locomotion [6]. Wheels are good at locomoting in a structured environment

such as roads and railways, whose infrastructures and material properties are adjusted

to obtain smooth, fast and energy efficient movement [7]. Despite the efficiency of

wheeled locomotion in the structured environments, it is not the most suitable type of

locomotion in the environment where the vertical and horizontal irregularities of the

terrain block the movement of the wheels. [8] classified the limitations of the wheeled

locomotion into three categories; surface compliance, roughness of terrain and size

of the obstacle. On the uneven and soft ground or when the mass of the vehicle is

increased, the rolling resistance increases [9]. The maximum height of the obstacle

that a wheeled vehicle overcomes is depent on the radius of the wheels [10]. If the

height of the obstacle is higher than half of the wheel radius, the vehicle does not

propel its body over it.

In nature, animals use the rolling motion as a second form of a locomotion to escape

from their enemies [11] or adapt to environemental changes [12]. There are several

species such as caterpillars [13], wheel spiders, stomatopod [11, 12], salamanders
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[14] etc. that exhibit self-propelled rolling motion by converting their bodies into a

wheel [15, 16].

Monopod robots have been studied by many researchers since they are simpler but

still exhibit relevant hopping gaits. Raibert and his colleagues designed a hopping

robot that was a significant step for legged robotic systems [17]. Their 2D model

consisted of a body and a compliant leg with two actuated joints. Raibert extended

this mechanism to a 3D hopper as well [18]. Many other researchers developed differ-

ent types of one legged robots, with one, two or three link legs actuated by hydraulic

or pneumatic actuators after Raibert’s work [19, 20, 21, 22]. Differently from the pre-

vious studies, Zeglin built a planar bow-legged hopper that used a curved leg profile

to take advantage of passive energy storing property of elastic materials [23].

The first systematic study on the effect of semicircular feet on passive dynamic walk-

ing was performed by Mcgeer [24]. In this study, he showed that humans normally

produce an effective foot curvature with a radius equal to 30% of leg length and that

with a circular shaped foot, we can capture the motion of center of pressure effec-

tively. This study also revealed that, as the arc radius of feet increased, the step-

to-step transition [25, 26] cost decreased [24]. In addition, a study conducted by

Adamczyk et al. [27] analyzed the effect of varying foot curvature on the mechanical

and metabolic cost of biped walking and it was shown that rolling feet reduces step-

to-step transition costs. Another study on the effects of circularly shaped feet on the

locomotion of a 3D passive dynamic walker demonstrated that circular feet increases

the walking speed and stability of gaits [28]. In summary, with a semi-circular feet,

one can increase the efficiency, reliability and speed of dynamic bipedal locomotion

[29].

The advantages of wheeled locomotion and rolling feet have resulted in the evalua-

tion of the latest legs used on RHex robots [30, 31]. Various approaches have been

proposed to analyse the dynamical motion of RHex with half circular legs [4, 32, 33].

Many of these have used the Spring-Loaded Inverted Pendulum (SLIP) model as a

template to model the motion of the center of mass (COM) of the robot. However,

limited research effort has been put to model the integration between the compliance

of the leg with its half circular shape and the resulting effect on the locomotion of the
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hopper. The pseudo-rigid-body (PRB) model [34] has been used to characterize the

deflection path of the loading point on the leg under static [1] and dynamic load [35].

In this model, the deflection behavior of the curved leg was represented with two rigid

links connected by a torsional spring from the effective center of rotation (character-

istic pivot) [36]. However, the selection of the position of characteristic pivot and

torsional spring constant proved to be difficult since the position of the contact point

changes during locomotion.

In [23], Sayginer considered the rolling kinematics of the semi-circular leg and have

also used Castigliano’s Theorem [37, 38, 39] to model the deflection behaviour of

the leg under loading. As explained in the experimental study performed by Aydin et

al. [2], Castigliano’s Model captures the spatial compliance of the variable stiffness

circular leg more accurately than a PRB model under static loads. Extending on the

results of [2], we have implemented the leg model in a dynamic mode of operation.

In the present study, we improve on the model in [40] by lifting the assumption on

the force direction which was therein assumed to point in the direction of the hip (the

connection of the leg with the rotary motor).

In robotics, optimal control techniques, using torque and energy related objective

function, have been widely used to obtain stable, energy efficient and robust locomo-

tion on a variety of environment. A considerable amount of literature has been pub-

lished on trajectory optimization of legged robots in irregular terrain. Iida and Tedrake

optimized the motor control parameters of the underactuated two segment leg mono-

pod to locomote in uneven terrain [41]. Vermuelen et al. constructed polynomial

functions for the flight and stance phases and optimized the locomotion parameters to

perform hopping motion in complex environment [42]. Also, a stair hopping trajec-

tory of the monopod with a flat foot was obtained by minimizing actuation energy in

hopping cycle [43].

The application of optimization to biped walking have gathered attention of many

researchers. Optimal control problems considering minimum energy consumption as

an objective were defined to optimize the leg stiffness of the biped robots for a stable,

cyclic gait [44, 45]. Chevallereau and Aoustin defined a polynomial function of joint

variables and optimized the coefficients of this function while maximizing forward
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velocity and minimizing torque and consumed energy to obtain cyclic gaits for a

biped without actuated ankles [46]. Mombaur et al. described two level optimization

problem and attempted to minimize energy in the low level while optimizing the

parameters of biped robot model in the upper level to realize stable periodic gaits [47].

A spline based parametric optimization technique was used to minimize the joint

torque to optimize walking phases including the transition configurations of seven

link planar biped [48]. From a different point of view, Tedrake accomplised a stable

limit cycle gait for a 3D passive dynamic walker by minimizing the eigenvalues of its

return map [49].

Figure 1.1: The SensoRHex robot platform

In this study, we optimized the controller parameters and touchdown angle of the

half circular legged monopod whose leg morphology is similar to the RHex family

of hexapods. Previous studies were performed on the optimization of different gait

patterns of RHex. Weingarten et al. described the implementation of the gait tuning

process to obtain an efficient, stable gait using two different specific resistance based

cost functions [50]. Also, [51] investigated the effect of the leg stiffness on the dy-

namics of hexapod robot using reduces order dynamic model and they optimized the

controller parameters and the leg stiffness to find most stable gaits. Different from

the gait optimization approaches, Saranli et al. defined a constraint optimal control

problem to maximize energy injection during the self-righting maneuvers of RHex

[52].
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1.1 Motivation and Contributions

The performance of the wheeled robots in the structured environment and the legged

robots in the rough terrain results in a combination of these two types of locomotion.

The hexapedal mobile robot RHex is one of the robots that exploits wheel-type leg

morphology to locomote in a wide variety of environmental conditions. Obtaining the

mathematical model of a hexapedal robot plays a critical role in understanding parts

of dynamic locomotion. For this purpose, simplified model called templates are used

to describe the dynamics of the hexapedal locomotive behavior [4, 32, 53, 54]. One of

the most significant model that is used widely in modeling the center of mass (COM)

motion of multilegged animals [55] is the passive spring-loaded inverted pendulum

(SLIP) [56].

An overriding goal throughout this dissertation has been to present a thorough dy-

namical model of the half circular complaint legged monopod that considers rolling

motion, elasticity and geometry of the leg and ground friction. This model is sig-

nificantly different from the previous model [57, 58] that uses same methodology to

obtain force-deflection relation of the half circular compliant leg but restricts the di-

rection of the spring force. In this thesis, we improve the model in [57] by removing

the assumption on the spring force direction which was therein assumed to point in

the direction of the hip joint. An alternative approach to solve circular compliant

beam force characteristics is the pseudo rigid body model. This model is sufficiently

accurate especially in the presence of static loading conditions, but in the dynamic

running, it is challenging to obtain principal model parameters since the contact point

of the leg changes.

So far, there has been little discussion about the control of a monopod with a circular

leg. This thesis aims to contribute to the study of dynamically running half circular

compliant legged monopod, by proposing a control strategy based on numerical opti-

mization techniques. We describe a simple solution to generate reference trajectories

for different types of locomotion such as running with a desired forward velocity and

jumping across or over a desired height or length.

As far as we know, the only model that is used to capture the dynamics of hexapedal
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locomotion is SLIP model. In this thesis, we also propose a new template model that

can be used to characterize the dynamics of hexapedal running with a half circular

compliant leg. We used experimental COM trajectory of the hexapedal robot to show

that a simple, energetically conservative monopod with a half circular elastic leg can

produce a similar trajectory provided by RHex type of robots.

1.2 Organization of the Thesis

This thesis is organized as follows: Chapter 2 outlines our methodology to obtain

the dynamic equations of the half circular complaint legged monopod. First, we ob-

tained force-deflection relationship of a circular compliant beam under the external

forces using Castigliano’s Theorem. We experimentally validated this relationship

and adapted this solution approach to our system and obtained unknown external

forces applied to C-leg as a function of state variables. The combined translational

and rotational dynamics of the robot are obtained by Newton-Euler method. The

motion of the body is analyzed under the constraint of rolling without slipping

Chapter 3 develops an algorithm based on optimal control theory that allows a half

circular compliant (HCC) legged monopod to locomote with (1) a desired forward

velocity and (2) a desired height starting from zero initial velocity. We investigated

the stability of the gait when the reference forward velocity or height changed using

Apex Return Map analysis. To apply the return map analysis to our system first we

have obtained fixed points of the system and a transition function that calculates the

dependency of two subsequent apex height.

A new jumping control method is subsequently described in Chapter 4. The controller

parameters and touchdown angle of the leg are optimized using the cost function that

is a convex function of a jumping height and distance. We show the relation between

initial velocity, take-off angle and jumping performance.

In the Chapter 5, we have proposed control strategies to achieve rough terrain loco-

motion. Inspiring from the performance of long and high jump athletes, we focused

on jumping over obstacle which has height and width. We have identified the prin-

ciples that govern optimum speed and leg angle, for the take-off phase of high and

long jumping with a compliant half circular legged monopod. Based on sensitivity
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analysis, we have investigated the effects of disturbances on the output of controlled

system. We have determined the sensitivity of triple jump trajectory to variations in

the initial conditions and controller parameters of the system. Using the results of

sensitivity analysis, we have tried to find suitable sets of controller parameters that

eliminate the effects of variations in initial conditions. We also modify the trajectory

of the robot taking into account the positioning error of the obstacle by adding safety

margin around to it.

Chapter 6 analyzes the dynamic motion of the hexapod robot, called Edubot, using

two different modeling approach using the time trajectory of a full body configuration

and leg states. We propose a low dimensional circular compliant beam (CCB) tem-

plate as a candidate template model for the hexapedal running and we compare the

performance of our candidate template with the performance of widely used Spring

Loaded Inverted Pendulum (SLIP) template.

The last chapter summarizes and discusses the results of the research.
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CHAPTER 2

ONE LEGGED ROBOT MODEL

2.1 Introduction

Obtaining dynamic modeling of robot platforms is an important topic for the design,

simulation, and control of robots. Different techniques have been proposed and used

by the robotics community. Lagrange and Newton-Euler are two classical dynamical

modeling methods which are commonly used [59].

The Lagrange approach is based on the energy principles. It formulates the forces

as a combination of kinetic and potential energies of the system to derive the closed-

form equations and it eliminates the internal joint reaction forces and moments. This

method can be useful for multiple degree of freedom systems if there is no constraints

on motion. The Newton-Euler method takes into account the external and constraint

forces and relates them with the motion of a system. It constructs free-body diagram

considering unknown reaction forces and moments between interconnected elements.

It writes individual equations of motion for each body and solves them in a numeric

and recursive way. In this thesis, we have chosen Newton-Euler method to model dy-

namics of the robot since the energy relation of compliant leg is not a simple function

of state variables and it is very challenging to get dynamic equations with Lagrange

approach.

This section describes our effort for modeling the monopod dynamics while consider-

ing geometric and elastic properties of the leg. When the robot stands on the ground,

the deflection of contact point on C-shaped leg due to the reaction force applied by

the ground should be found in order to characterize the dynamical behavior of the
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robot. Until now, different modeling approaches have been used to describe the func-

tion of compliant property of the leg during the locomotion of the robot. The very

common approach is to use Spring Loaded Inverted Pendulum (SLIP) model, a sim-

ple spring-mass template [4, 53, 56]. This model consists of a massless springy leg

that is connected to a point mass. The exchange between kinetic and potential energy

of SLIP model can predict the dynamic properties of a variety of living organisms that

have different leg number and skeleton type. Although the SLIP model can capture

the main characteristics of the dynamic locomotion of humans and animals [55], it can

sometimes oversimplifies the nonlinear characteristics of the complex mechanisms.

In our previous study, we presented closed form equations for a variable stiffness

leg using a well-known energy based deflection analysis method for elastic beams,

Castigliano’s Theorem [37, 38, 39]. We compared the results of Castigliano’s method

with a simple closed form approach, called the PRB model [34] and experimentally

showed that Castigliano’s method estimates the deflection of the curved beam for

different stiffness settings more accurately than the PRB model [2].

In the rest of this thesis, we consider this curved leg model as a basis for our spring

force calculation and employ the same methodology used in [2]. The spring forces

obtained in the next section are implemented in the dynamic equations of the motion

in stance phase that are obtained by the Newton-Euler method, which is based on the

dynamic equations of the isolated bodies. The leg and robot parameters used in the

Section 2.2 and 2.3 are given in Table 2.2.

2.2 Half Circular Compliant Leg Model

The force acting on a body causes some strain energy if the force cannot rotate or

translate the body. Due to stiffness of the leg, this strain energy will results in some

deflection on the leg. That is, a point on the leg will deflect by a distance in a direction

not necessarily parallel to the force applied. According to Castigliano’s Theorem [39],

the amount of deflection is the derivative of the total strain energy stored in the elastic

element, with respect to a force parallel to the direction in which the deflection is

calculated.

Instead of dealing with forces and deflections in arbitrary directions, the problem
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Table 2.1: Table of variables used in (2.3)

Variable Definition Unit
A cross-section area m2

E young modulus GPa
G shear modulus GPa
e eccentricity m
r radius of curvature m
C correction factor unit-less
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Figure 2.1: The forces and torques at the cross-section of curved beam

is divided into sub-problems in which the x- y components of the external forces

(they can be considered reaction forces) are handled. First of all, the reaction force

F applied by the ground is decomposed into its components Fx and Fy; then these

forces are moved to cross-section. The shear force, normal force and bending moment

occurring at a cross section due to the external force F can be expressed as

Fθ = Fxθ + Fyθ,

FR = FyR − FxR,

M = Mx + My,

(2.1)
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Figure 2.2: Angles and distances used to calculate strain energy of curved beam. The
ingtegration starts from loading point (γ = 0) and ends at fixed point (γ = (π − θ)).
∆x and ∆y are the distances from loading point to crosssection.

where
FxR = Fx sin(γ),

FyR = Fy cos(γ),

Fxθ = Fx cos(γ),

Fyθ = Fy sin(γ),

Mx = −Fx(r − ∆y) = −Fxr(1 − cos(γ)),

My = Fy∆x = Fyr sin(γ).

(2.2)

The forces and deflection components at the cross section can be seen in Fig. 2.1. The

integral of these shear force, normal force and bending moments at a cross section

from loading point to hip point gives the three strain energy terms caused by these

forces. The total strain energy of a circular curved beam then can be written as

U = r(
∫

M2 dγ
2AEe

+

∫
F2
θ dγ

2AE
+

∫
CF2

R dγ
2AG

) −
∫

MFθ dγ
AE

, (2.3)

where U is the total strain energy, and M, Fθ, and FR are the total bending moment,

tangential and radial forces, respectively, created by external forces at the cross sec-
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tion of the curved beam [39]. The remaining variables used in (2.3) are defined in

Table 6.1.

As depicted in Fig. 2.2, there is a relation between the arc length of the curved beam

and the variable of integration

dl = r dγ, (2.4)

where l is the arc length of the curved beam. The integration interval starts from the

loading point and ends at the fixed end of the curved beam. In general, if the radius

of the curved beam is at least ten times larger than its thickness, the strain energy

expression (2.3) can be approximated by

U ≈
∫

M2r dγ
2EIcs

, (2.5)

where Ics(m4) is the second moment of area of beam cross-section [39].

The partial derivative of the total strain energy, U of (2.5) with respect to any external

force Fi gives the deflection, δi, of the loading point in the direction of the Fi to yield

δi =
∂U
∂Fi

. (2.6)

Figure 2.3: The images of a half circular leg in the experimental setup that is used to
confirm our circular leg assumption for different compression levels. The leg prop-
erties are the same as that used in this study. We fit a circle to the deflected leg only
considering the leg part between the hip and ground contact point.

We now apply this theorem to our system. The leg, robot and environment parameters

used in this and next chapter are given in Table 2.2 Since there is no damping in the

model, the ground reaction force exerted by the leg during stance phase was assumed

to be equivalent to spring force F s. In this study, we also use a circular leg assumption,
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Figure 2.4: The radius of fitted circle vs. root mean square of error that is defined as
sum of distances from the selected points on the leg to the fitted circle.

i.e., that the leg preserves its circular shape after deflection, and that the deflected leg

radius, r is equal to the radius of a circular arc that passes from the ground contact

point G and hip point H with an angle θ. We confirmed our circular leg assumption

with an experimental setup shown in Fig. 2.3. In this experiment, the leg whose

properties are the same as that used in this study was fixed the moving platform from

hip and we applied force to obtain different amount of compression. We fitted a

circle to the points selected on a compressed part of the leg and calculated the root

mean square of distances from the points to the fitted circle. In Fig. 2.4, we give the

percentage error vs. the radius of fitted circle. The errors are smaller than 2.2% for

all deflection amount. Actually, the whole shape of the leg is closer to an elliptic arc,

but the shape of the leg part where the force is applied (from hip to contact point) is

closer to circular arc, which supports our circularity assumption. We also confirm this

assumption while dynamic locomotion (see Fig. 2.5) Consequently, the strain energy

of the compliant half circular leg of Fig. 2.6 can be written as

U =
r

2EIcs

∫ (π−θ)

0
(Ms

x + Ms
y)2 dγ, (2.7)

where ru is the undeflected leg radius, and Ms
x and Ms

y are moments at the cross

section caused by the horizontal and vertical components of the spring force, F s
x and
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Figure 2.5: The confirmation of the circular leg assumption during dynamic running
with a same leg used in this study.

F s
y, respectively, and can be written as

Ms
x = −F s

xr(1 − cos γ) (2.8)

Ms
y = F s

yr sin γ.

Lets define the upper integral limit of (2.7) as

ζ , (π − θ). (2.9)

The total strain energy and deflection amount in the direction of external forces can

then be written as

U =
r3

8EI

(
− 6F s

xF s
y + 6F s

x
2ζ + 2F s

y
2ζ + 8F s

xF s
y cos(ζ)

− 2F s
xF s

y cos(2ζ) − 8F s
x

2 sin(ζ) + (F s
x

2
− F s

y
2) sin(2ζ)

)
,

δx =
∂U
∂F s

x
=

r3

4EI
(6ζ − 8 sin(ζ) + sin(2ζ))F s

x

+
r3

4EI
(−3 + 4 cos(ζ) − cos(2ζ))F s

y,

δy =
∂U
∂F s

y
= +

r3

4EI
(−3 + 4 cos(ζ) − cos(2ζ))F s

x

+
r3

4EI
(2ζ − sin(2ζ))F s

y.

(2.10)

If we write (2.10) in matrix form, we obtain the displacement of the loading point as
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Figure 2.6: Horizontal and vertical components of external force, [F s
x, F

s
y] and corre-

sponding cross-sectional moments [Ms
x,M

s
y]

a linear function of external forces asδx

δy

 =

(
C
) F s

x

F s
y

 , (2.11)

where C is the compliance matrix and its elements are

C11 =
r3

4EI
(6ζ − 8 sin(ζ) + sin(2ζ)),

C12 =
r3

4EI
(−3 + 4 cos(ζ) − cos(2ζ)),

C21 =
r3

4EI
(−3 + 4 cos(ζ) − cos(2ζ)),

C22 =
r3

4EI
(2ζ − sin(2ζ)).

(2.12)

In order to calculate forces acting on the monopod body through the compliant legs,

we first need to obtain the deflection of the loading point. For this purpose, the un-

deflected ground contact point is found with the same leg angle θ, assuming that this

undeflected leg touches the ground from the point on which external forces F s
x and F s

y

are applied, i.e. HA = HA′ (see Fig. 2.7). The difference between the positions of the

loading point on the deflected and undeflected legs gives the deflection amount in the
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Table 2.2: The leg, robot and environment parameters

L
eg

Pa
ra

m
et

er
s

E
mleg

ru

bleg

hleg

Ics

Ileg

Young modulus
mass of the leg
rest leg radius
cross-section width
cross-section height
second moment of area
moment of inertia about hip

9.58109 Pa
0.005 kg
0.06 m
0.025 m
0.0035 m
blegh3

leg

12
2mlegr2

u

R
ob

ot
Pa

ra
m

et
er

s

mb

bb

hb

Ib

mass of the body
width of the body
height of the body
moment of inertia

1.5 kg
0.15 m
0.06 m
1
12mb(b2

b + h2
b)

g gravity 9.8 m/s2

direction of external forces and can be written as

δx = r sin(θ) − ru sin(θ) + ru sin(ζ
r
ru

+ θ) (2.13)

δy = ru cos(θ) − ru cos(ζ
r
ru

+ θ) − r cos(θ) − r.

The forces can then be calculated from (2.11) asF s
x

F s
y

 =

(
K
) δx

δy

 , (2.14)

where the stiffness matrix K, is the inverse of the compliance matrix, C of (2.11).

The equations obtained above are used to evaluate deflection of the half-circle legs

of RHex type robot, and any other robots that have curved leg, in the direction of the

external forces. According to material used to design the leg, the strain energy of the

system has different eccentricity, young modulus and shear modulus values which are

the coefficients in the derived equations.

In this section, the effect of forces and moments applied on the curved leg is analyzed

in terms of stiffness behavior and change in leg geometry. Castigliano’s Theorem for

curved members is used for calculating the deflection of the leg under the effect of

external forces. The calculated deflection values will be used to improve the studies

made before, and also to do the dynamic analysis more accurately.
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Figure 2.7: The undeflected(dark) and deflected(light) leg with a leg angle θ. The leg
is attached to the body from H. A and A′ are the points with a same arc length on the
undeflected and deflected leg, respectively. The deflection amount in the direction of
external forces are, δx = x2 − x1 and δy = y1 − y2.

2.2.1 Experimental Validation of the Leg Model

In the previous study [2], we experimentally investigated the accuracy of the our

leg model that uses Castigliano’s Theorem to characterize the deflection behavior of

the compliant, half circular, tunable stiffness robot leg. The leg stiffness adjustment

mechanism was designed to understand the role of leg compliance in a dynamic run-

ning [60, 61].

To observe the deflection behavior of C-leg under the static load and to validate the

deflection results predicted by Castigliano’s Theorem, we used the experimental setup

shown in Fig. 2.8. The tunable stiffness half circular leg was anchored to the platform

of a linear stage from its hip. The effective stiffness of the leg was adjusted by chang-

ing the position of a compliant slider. The AMTI HE 6x6 multi axis force plate and

the MICOS linear stage were mounted on aluminum base plate, vertically and hori-

zontally, respectively. The linear stage can move maximum 20 mm at 10 mm/s. An

Optotrak 3020 Motion capture system recorded the deflection path of the leg at a sam-

pling rate of 200 Hz by tracking the position of the three markers mounted rigidly to

18



Figure 2.8: Top view of experimental setup (Presented with permission from [1]).
Three markers are inserted to hip, loading point and at the end of leg. The cable
is connected between force plate and loading point on the leg. (Left) Linear stage
platform is in the initial position and no force is applied to leg. (Right) Linear stage
platform has been moved 20 mm and leg is deflected.
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the leg. A flexible steel cable was connected between force plate and loading point

(Marker 2) passing from the pulley that was anchored to the hip. This pulley keeps the

cable normal to force plate and decreases the dimension of force measurement data

to one. Although the position of the loading point is constant, the pulley provides

rolling contact motion when the linear stage moves along the y-direction. The force

plate is capable of measuring maximum 10 pounds with a 12-bit resolution and 200

Hz. sampling rate. The reaction forces at the loading point and leg deflection path

camera data were collected for the leg stiffness settings (LSSs) 0 to 4.

Figure 2.9: Schematic diagram of the experimental setup (Presented with permission
from [2]). The leg is rigidly attached to a linear stage platform from the hip. The leg
is deflected by moving the stage on the direction indicated by the red arrow.
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Figure 2.10: (a)-(b) Comparision of the radial force-deflection relation of Castigliano
Model (∗) with real data (�) at the stiffness extremes, LSS0 and LSS4. The axis are
defined in the reference frame attached to the point C (see Fig. 2.9) (c)-(d) Compari-
sion of the deflection path of Castigliano Model (∗) with real data (�) at the stiffness
extremes, LSS0 and LSS4.

In Fig. 2.10, we present the actual and predicted deflection path of loading point

(Marker 2). We define the corresponding percentage errors as follows:
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PE(i) =
‖q(i)act − q(i)est‖2

dmax
100% (2.15)

from i = 1 : n where q is the x-y position of loading point in the coordinate frame that

is attached to point C (see Fig. 2.9), n is the number of samples and dmax is the magni-

tude of actual maximum deflection. Since the model used in this thesis is not a tunable

stiffness leg, we only consider the two extreme stiffness setting where LS S = 0 and

LS S = 4. As seen from the Fig. 2.11 the error between the actual and estimated de-

flection path of loading point is less than 15%. This simple, computationally efficient

model captures the elastic behavior of a half circular, compliant leg accurately and

can be used to capture the dynamics of a running hexapod with a C-leg.
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Figure 2.11: Percentage error (2.15) vs. radial deflection of the Castigliano Model at
the stiffness extremes (a) LLS0 (b) LSS4.

2.3 Dynamic Equations of One Legged Robot

In this section, we introduce the dynamical model of the planar half circular com-

pliant legged monopod in rolling contact. The dynamic equations are derived by the

Newton-Euler formulation since the expression of leg elastic potential energy as a

function of the generalized coordinate is not straightforward . The robot we consider

consists of a planar rigid body with a massless compliant leg (there is no inertial force
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on the leg) attached to the center of mass (see Fig. 2.12). The compliance of the leg

allows storage of energy during compression (i.e. when r < ru).
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Figure 2.12: External forces and torque acted on the robot and the leg

The robot has two phases of motion; stance and flight. The weight force is applied

at the center of mass and the body is supported by the leg spring force F s. During

the stance phase, the leg always touches the ground and the hip torque is controlled

by a PD controller. The radius of the curvature of leg changes with the leg angle

θ due to stiffness of the leg. In the flight phase, since the legs are not in contact

with ground leg spring forces are equal to zero and the robot follows an unactuated

projectile motion. In dynamic equations, we ignore the body pitching assuming that

the body is a point mass with an infinite rotary inertia. Although, this may initially

seem to be a strong assumption, our rationale is that monopod models are often used

as embedded control targets for more complex legged robots such as the six legged

robot presented in Fig. 1.1. The presence of multiple legs restrict the body to remain

close to horizontal. This behavior can be approximated in a simplified model by use

of infinite inertia.

The half circular compliant leg with no damping will be assumed to roll without

slipping on the ground surface. The associated no slip constraint is that the relative

velocity between the contact point on the leg and ground should be equal to zero [62].

To simplify the calculation, the contact point can be treated as a stationary point at

every instant during continuous motion. We define a constraint force Fτ to enforce
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the no-slip condition, assuming that it is perpendicular to the spring force F s. Note

that this constraint force has no effect on the deflection.

Fig. 2.12 shows external forces and the hip torque acting on the robot. In this figure,

Fb
x and Fb

y are the reaction forces transmitted to the monopod body, T is the torque

applied from the hip point, l is the distance between hip and contact point, and φ is

the spring angle that is defined between l and F s as

φ =
(π − θ)

2
− tan(

F s
y

F s
x
). (2.16)

The states of the robot are defined as [x, ẋ, y, ẏ, θ, θ̇]. According to the free body

diagram in Fig. 2.12, the equations of motion with the constraint force during the

stance phase can be written as

mb ẍ − Fb
x = 0 (2.17)

mb ÿ − Fb
y + mbg = 0

Ileg θ̈ + T + | ~F s| l sinφ − | ~Fτ| l cosφ = 0

F s
x + Fb

x − Fτ
x = 0

−F s
y + Fb

y − Fτ
y = 0

ẍc = 0,

where we have

[F s
x F s

y] = |F s|[sin(φ +
θ

2
) cos(φ +

θ

2
)]

[Fτ
x Fτ

y] = |Fτ|[cos(φ +
θ

2
) sin(φ +

θ

2
)].

We calculate the leg radius r assuming that the leg preserves its circular shape after

deflection. We fit a circle which has an angle θ, passing from the hip point and is

tangent to the ground. This radius can be calculated from the arc length of the leg

starting from the fixed end of the leg to the contact point as

r =
larc

(π − θ)
. (2.18)

The position of the contact point with respect to x is then equal to

xc = x +
larc

(π − θ)
sinθ. (2.19)
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If we differentiate xc with respect to time twice, keeping the arc length larc constant,

we can capture the no-slip constraint as

ẍc = ẍ +
larcθ̈

(π − θ)2 (sinθ + cosθ(π − θ)) (2.20)

+
2larcθ̇

2

(π − θ)3 (sinθ + cosθ(π − θ) − sinθ(π − θ)2).

We now write the dynamic and constraint equations in a matrix form as



mb 0 0 −1 0 0

0 mb 0 0 −1 0

0 0 Ileg 0 0 −larccosφ

0 0 0 1 0 −cos θ2 + φ

0 0 0 0 1 −sin θ
2 + φ

1 0 C1 0 0 0





ẍ

ÿ

θ̈

Fb
x

Fb
y

Fτ


=



0

−mbg

−T − F slarcsinφ

−F s
x

F s
y

C2


, (2.21)

where

C1 :=
larc

(π − θ)2 (sinθ + cosθ(π − θ))

C2 := −2larc
θ̇2

(π − θ)3 (sinθ + cosθ(π − θ) − sin(θ)(π − θ)2).

Note that the last row of (2.21) is the constraint equation for the no-slip case. In the

flight phase, the ground reaction forces Fx and Fy acting on the robot are equal to

zero and the body follows a ballistic trajectory. Only the gravitational force acts on

the body. Therefore, the equations of motion during flight are

ẍ = 0

ÿ = −g

θ̈ =
T
Ileg

. (2.22)

The phase transition conditions of the robot are given in Table 2.3. From the Fig. 2.7

it can be seen that, when the radius of the leg equals to undeflected leg radius, the

height of the COM is ru(1 + cos(θ)). If we use r = ru in Eq. 9, we obtain δx = 0

and δy = 0 means that both horizontal and vertical component of the ground reaction
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force are zero. We used this geometric constraint to detect touchdown and liftoff

events without using force data.

Fig. 2.13 demonstrates the energy change of robot during simulation. Since the sys-

tem does not have any damping, the mechanical energy is conserved at each step.

Table 2.3: Event functions for stance and flight phase.

Event Equation
Stance to Flight y = (cos θ + 1)ru

Flight to Stance y = (cos θtd + 1)ru

2.3.1 Free Fall Simulation

In this simulation, we desire to verify the dynamic equations obtained in the previous

section. An important way of validating model accuracy is to consider “no-torque”

simulation and observe the total energy of the system to be constant. For this purpose,

we performed a free-fall simulation that was carried out for the set of initial conditions

in which all state variables except initial height of the robot were set to zero and

no control input was applied during the simulation. The physical parameters of the

robot’s body and leg, which closely match the physical properties of Edubot, are given

in Table 2.2.

The robot was left from y = 0.5m with a zero leg angle, θ, and it is allowed to exhibit

ten successive jumps. When the robot strikes the ground, its leg starts to deflect. The

amount of deflection equals the difference between deformed and undeformed coor-

dinates (see (2.14)) of the contact point on leg. The coordinate of contact point is

calculated from circle geometry. The problem is finding a circle which passes from

hip and also tangent to leg from hip and ground contact point. It can be easily seen

from (2.14) when the radius of the leg equals to undeflected leg radius the deflection

of the contact point and the corresponding spring forces are equivalent to zero, which

is also satisfied with the event functions that are given in Table 2.3. If the deflec-

tion amount is greater than zero, the unknown ground reaction forces in the dynamic

equations are calculated by the deflection matrix given in (2.14). Considering the
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constraint equations, the position and velocity of the COM, the angle and angular

velocity of the leg are obtained from integration of the accelerations in (2.21) at each

time step. We used MATLAB built-in function ode45 that numerically solve differ-

ential equations with a variable step Runge-Kutta Method and we printed results with

a time step ∆T = 0.001.

Fig. 2.13a and Fig. 2.13b show the kinetic and potential energy variations during the

simulation. Since the system has no damping, and we do not apply any torque during

the stance phase, the total mechanical energy is conserved (see Fig. 2.13c) validates

our model.
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Figure 2.13: The free fall simulation of the C-leg robot. The robot is let free to fall
under gravity with an initial condition of [x = 0, ẋ = 0, y = 0.5 m, ẏ = 0, θ = 0, θ̇ = 0]
for ten successive jumping. The time step of ode45 is taken 0.001 sec. The energy
plots are: (a) The kinetic and gravitational potential energy vs. time (b) The strain
energy vs. time (c) The total mechanical energy vs. time plots of the robot
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2.4 Conclusion

This chapter demonstrates the dynamical equations of the monopod with a half cir-

cular compliant leg under the assumption of rolling without slipping. We used Cas-

tigliano’s Theorem to obtain force-deflection relation of general compliant curved

member and we integrated this solution approach into our dynamic model to calcu-

late unknown external forces applied to the body. Although the leg model in this

section is intended to be used for RHex type of robots, it can be applicable to any

compliant curved structures other than half circular one. Throughout the thesis, we

will use dynamic equations obtained in this section.
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CHAPTER 3

OPTIMAL CONTROL OF LOCOMOTION

3.1 Introduction

The main objective of this section is the development of an algorithm based on op-

timal control theory that allows a half circular compliant (HCC) legged monopod to

run with a desired forward velocity or height starting from zero initial state. The con-

trol algorithm chooses the most suitable touchdown angle and reference signal of the

PD controller for each step of the robot, while considering the dynamic stability of

the system.

3.2 Horizontal Velocity Control

First we consider the problem where the horizontal velocity of robot is regulated about

a certain desired value. The controller used for this purpose is motivated by Raibert’s

three part controller [17].

The one legged robot system has only a single input applied from the hip actuator.

During the stance phase, we use a Proportional-Derivative (PD) controller to apply a

torque to the hip as

T = −Kp (θ − θdes) − Kd θ̇ , (3.1)

where T is the actuator torque generated at the hip, θ̇ is the angular velocity of the

leg, θdes is desired leg angle, and Kp and Kd are PD controller gains, respectively.

As explained in [17], the selection of footholds is critical since it directly affects the

acceleration of the body. To stabilize the horizontal velocity of the robot, we optimize

the touchdown angle and reference signal of the controller during the stance phase.
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Firstly, we manually tuned Kp and Kd such that the robot exhibits smooth and stable

running. Table 3.1 summarizes the Kp and Kd values we obtained through the manual

tuning for different values of θtd.

Our aim is to bring the horizontal velocity of the robot to the desired velocity. Taking

the touchdown and liftoff conditions of Table 2.3 into account, the dynamic equations

of the system, (2.17) and (2.22), were solved so that the horizontal velocity of the

COM is equal to desired velocity. In other words, we find the control reference θdes

and touchdown angle θtd that minimize the cost functional

J1 =

n∑
i=1

(ẋavg,i − ẋdes)2 + 10
n∑

i=n−9

|ẋavg,i−1 − ẋavg,i| , (3.2)

subject to (2.17) and (2.22), where ẋavg,i is the mean horizontal velocity during the

flight phase of the ith stride and n is the total number of strides. The first term in

this functional attracts towards the desired velocity while the second term promotes

stability and convergence. where ẋavg,i is the mean horizontal velocity of flight phase

of ith step and n is the total step number. Note that, while walking or running, we

apply same constant angle and velocity reference at each step. To prevent undesirable

solutions and to improve the feasibility of the solution, we used the penalty function

below

P(θ) =

 0 if θ ≤ 65o

+∞ if θ > 65o
. (3.3)

Table 3.1: Optimized Kp and Kd values for different ranges of ẋdes

ẋdes(m/s) 0.1-0.3 0.4-1.0 1.1-1.3 1.4-1.8 1.9-2.0

Kp 100 200 300 335 380
Kd 7 8 9 13 13

3.3 Height Control

The aim of the second problem is to keep height of the robot around the desired value.

The controller used for this purpose is motivated by Raibert’s three part controller

[17].
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Figure 3.1: Stance, flight phase and step length of the robot

Similar to previous problem, during the stance phase, we use a Proportional-Derivative

(PD) controller to apply a torque to the hip as

T = −Kp(θ − θdes) − Kd θ̇, (3.4)

where T is the actuator torque generated at the hip, θ is the actual leg angle, θ̇ is the

actual angular velocity of the leg, θdes is the desired leg angle, and Kp and Kd are PD

controller gains, respectively.

As explained in [17], the selection of footholds is critical since it directly affects

the acceleration of the body. To stabilize the height of the robot, we optimize the

touchdown angle θtd and the parameters of controller [θdes, Kp, Kd] during the stance

phase. The optimal control problem can be defined as

min J2 =

n∑
i=1

(yapex,i − yapex,des)2

subject to (2.17) and (2.22), (3.5)

where yapex,i is the height of the COM at ith step and n is the total step number.

31



Table 3.2: Parameter optimization results of height control

Results of Optimization
ydes (m) θdes (rad) θtd (deg) Kp (Nm/rad) Kd (Nm/(rad/s))

0.15 -0.5446 34.1277 33,4355 0,4152
0.20 -0.5424 36.9876 32,3226 0,4000
0.25 -0.5303 38.3130 31,9095 0,3829
0.30 -0.5312 39.0934 31,5695 0,3759
0.35 -0.5271 39.6882 31,5902 0,3702
0.40 -0.5266 40.1411 32.4941 0,3667
0.45 -0.5307 40.4255 33.9229 0,3621
0.50 -0.5342 40.6669 34.7490 0,3611

3.4 Results

3.4.1 Horizontal Velocity Control

Fig. 3.2 presents the solution of the optimization problem. We scaled the desired

velocity from 0.1 m/s to 2 m/s with an increment 0.1 m/s. Initial states were manually

chosen as x = 0m, ẋ = 0m/s, y = 0.25m, ẏ = 0m/s, ensuring that they remained

within the domain of attraction of the steady-state locomotion.

The robot runs fifty steps and the cost function in (3.2) is minimized using MAT-

LAB optimization toolbox built-in function fminsearch starting at an initial estimate

[θdes, θtd] = [0.2rad, 10o].The function fminsearch uses Nelder-Mead Simplex direct

search method [63] to find the minimum of a multidimensional unconstrained func-

tion. The method generates an n-dimensional simplex (where n is the length of the

optimization space) and, usually, at the each iteration eliminate one of the vertices

which gives the worst function value and continues until the user-defined tolerance

values are satisfied. This method does not use gradients and finds the local optimum

of the function very quickly, but it can not converge to global minimum if the initial

estimate of the problem is distant from the global minimum. As seen from Fig. 3.2,

when we increase the desired forward velocity the touchdown angle increases and

these changes the vertical force applied to the body. Since the body exhibits projec-

tile motion in flight phase, the change in the vertical force effects directly the duration
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Figure 3.2: Optimization results of horizontal velocity control for different choices of
desired velocity.

of flight phase. Similarly, the desired leg angle decreases as the ẋdes increases. By us-

ing the values [θdes, θtd] obtained in section 3.2, one can find the sequence of footholds

and corresponding thrust for the desired running profile.

The kinetic energy of the robot during the stance phase can be written as

EK =
1
2

m(ẋ2 + ẏ2) +
1
2

Ilegθ̇
2. (3.6)

In flight we ignore the rotational kinetic energy of the leg. The total potential energy

of the robot is

EK = mgy + Ustrain (3.7)

where Ustrain is given in (2.10).

Fig. 3.3 compares the energy exchange vs. time corresponding to about ten consec-

utive steps of a typical running with desired forward speeds (0.5, 1.0, 1.5, 2.0 m/s).

The first column is the kinetic and gravitational potential energy, the second column

is the elastic strain energy that is stored in the leg due to the deformation and the

last column is the total mechanical energy that is sum of kinetic energy and potential
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energies.
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(b) ẋdes = 0.5 m/s
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(c) ẋdes = 0.5 m/s
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(d) ẋdes = 1.0 m/s
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(f) ẋdes = 1.0 m/s
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(g) ẋdes = 1.5 m/s
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(j) ẋdes = 2.0 m/s
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Figure 3.3: The first column presents kinetic and gravitational potential energy, sec-
ond column is the strain energy and the last column is the total mechanical energy of
the robot.
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In our model no damping is employed and no impact is considered when the leg col-

lides with the ground since the leg is compliant, the only way that we can dissipate

energy is to use of actuator dynamics (see Fig. 3.8). As seen from the last column of

Fig. 3.3, for all running speeds the total mechanical energy level stabilizes at equilib-

rium. During the stance phase of the slow forward speed running, while the kinetic

and gravitational potential energy decreases the elastic strain energy increases, which

means that the leg stores most of its energy and acts as brakes. This is not valid for

the high speed running where both the kinetic and elastic strain energy increase as the

potential energy decreases during the leg contacts with ground. The findings of this

study is in agreement with previous study [64].
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Figure 3.4: 25 step running with a horizontal velocity 0.5 m/s

35



0 5 10 15
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

x (m)

y
(m

)

(a) y vs. x plot of COM

0 2 4 6 8
0

0.5

1

1.5

2

t (s)

ẋ
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Figure 3.5: 25 step running with a horizontal velocity 1.5 m/s
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Figure 3.6: 30 step running with a horizontal velocity of the first 15 steps 1.0 m/s, last
15 steps 1.5 m/s
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Figure 3.7: 30 step running with a horizontal velocity of the first 15 steps 1.0 m/s, last
15 steps 0.5 m/s

Fig. 3.4 and Fig. 3.5 show 25 steps running simulations using parameters [θdes, θtd]

obtained in section 3.2. As seen from these figures, the horizontal velocity of the

robot converges to the desired velocity after about five steps. If the initial energy

of the system is not around the total energy at steady-state, then the robot attempts

to gain energy by compressing its leg in first two or three steps. Our results show

that even though we desire to control the horizontal velocity, we also stabilize the

steady-state hopping height of the robot.
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ẋdes =0.4 m/s
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Figure 3.8: (a) The normalized leg radius vs. percentage of the total spring force to
the its max. value and (b) The torque applied during the stance phase for the desired
forward velocity from 0.2 − 2.0 m/s.

Fig. 3.6 and Fig. 3.7 show two different velocity profile running results. The robot

runs 30 steps, in the first 15 steps, it runs with a different velocity than last 15 steps, i.e.

the touchdown angle and controller parameters are changed after 15 steps. In order

to investigate the steady-state error of the second part of running, we simulate the

system with different velocity pairs. We first increased the desired velocity halfway

through the running and then vice versa. Fig. 3.10 shows the desired velocities and

deviations from the desired velocity with a percentage error measure defined as

N-RMS E :=

√
1
15

30∑
i=15

(ẋ2avg,i − ẋ2des)2

ẋ2des

, (3.8)

where ẋ2avg,i is the average horizontal flight velocity during the ith step. This measure

quantifies how far the final steady-state velocity is from the desired velocity across

different initial conditions.
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ẋdes =0.4 m/s
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ẋdes =2.0 m/s

(c)

0 50 100 150
0

50

100

150

200

F s
x

F
s y
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ẋdes =1.4 m/s
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Figure 3.9: (a) The steady-state horizontal stiffness of the desired forward velocity
from 0.2 − 2.0 m/s during the stance phase (b) The steady-state vertical stiffness of
the desired forward velocity from 0.2 − 2.0 m/s during the stance phase (c) The total
stiffness of the desired forward velocity from 0.2−2.0 m/s during the stance phase (d)
The horizontal vs. vertical spring force of the desired forward velocity from 0.2− 2.0
m/s during the stance phase

Fig. 3.8 shows the relation between the normalized instantaneous leg radius (r/ru)

and the total spring force ‖F s‖ for a different forward running speed. As depicted in

the figure, the loading and unloading curve characteristics imply that absorbed energy

of the leg is smaller than the released energy during the stance phase. The difference

between these two energies is the energy lost resulted by nonlinear characteristic of

the compliant circular leg. The energy lost increases by the forward speed of the
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robot. For a small forward speed the force-deflection relation is almost linear.

Figure 3.10: Accuracy of steady-state velocity control for different initial condition
and desired velocity pairs. The color code corresponds to the values of the N-RMSE
calculated by (3.8).

3.4.2 Height Control

Figure 3.11: Accuracy of steady-state height control for different initial condition
and desired height pairs. The color code corresponds to the values of the N-RMSE
calculated by (3.9).

Fig. 3.12 shows the height control results for a different desired hopping height. The

robot initially left from y = 0.3 m with a zero velocity . We run the robot 30 steps with

the controller parameters given in Table 3.2 that were obtained by minimization of the
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objective function (3.19). Although the thrust is not applied vertically, the height of

the robot converges to desired height and the robot presents stable motion. It takes

about five or six steps to arrive at equilibrium. When the desired height is close to

initial height of the robot it takes two or three steps to converge to the desired height.
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Figure 3.12: 30 step running with a desired height (a) 0.15 m (b) 0.25 m (c) 0.35 m
(d) 0.45 m and initial height 0.3 m

42



0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x (m)

y
(m

)

(a) initial height of COM is 0.3 m

0 20 40 60 80
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

x (m)

y
(m

)

(b) initial height of COM is 0.3 m

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x (m)

y
(m

)

(c) initial height of COM is 0.5 m
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Figure 3.13: 50 step running with a desired height (a) first 20 steps 0.5 m, then 15
steps 0.25 m, last 15 steps 0.4 m (b) first 20 steps 0.35 m, then 15 steps 0.5 m, last 15
steps 0.25 m (c) first 20 steps 0.5 m, then 15 steps 0.25 m, last 15 steps 0.4 m (d) first
20 steps 0.35 m, then 15 steps 0.5 m, last 15 steps 0.25 m

We repeated the above simulations with an initial height 0.5 m to realize the distur-

bance effect of the initial conditions. As the difference between initial and desired

height increase, the oscillation amount of the COM increases (see Fig. 3.13c and

Fig. 3.13d). The same rule is valid for the desired height that changes during the run-

ning. In Fig. 3.13, we applied different thrust by changing the controller parameters

and touchdown angle of the leg after 15 and 30 steps. It requires again five or six steps

for the hopping amplitude to stabilize the desired value. Similar to previous section,
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we investigated the steady-state error of the second part of running when the target

height of the robot is changed after the halfway of running. We first increased the

desired height halfway through the running and then vice versa. Fig. 3.11 shows the

desired height and deviations from the desired height with a percentage error measure

defined as

N-RMS E :=

√
1

15

30∑
i=15

(yapex,i − y2des)2

y2des

, (3.9)

where y2apex,i is the apex height of the robot at the ith step. This measure quantifies

how far the final steady-state height is from the desired height across different initial

conditions. As seen from the Table 3.2, the reference leg angle and Kd value are

almost constant for different desired hopping height. The proportional constant of the

controller Kp and the touchdown angle θtd are dominant parameters that change the

dynamics of the locomotion.

3.5 Stability Analysis

Designing a controller which achieves dynamically stable and self-balancing gaits

for one legged robots is important since this type of gaits are more energy efficient

and faster than statically ones [17, 18]. In this section we examine the stability of a

monopod hopper motion on a limit cycle. The conventional stability definitions such

as stability around the equilibrium point may not be applicable to analyze the loco-

motion stability of monopod robots since it is very hard to find an equilibrium point

where the system states can stay forever. [65] suggests an approximate solution for

the dynamics of the simple SLIP model which includes gravitational effects. They in-

vestigate periodicity of the motion with an one dimensional apex return map. Similar

return map analysis are performed using analytic map of two successive touchdown

states or two successive apex states. With tuned controller parameters there exists

stable periodic gaits in the controlled SLIP model.

In the rest of this section, we apply the Poincare Map or called Return Map analysis

to the our system. We begin with defining some useful theorems for the analysis of

periodic motions of dynamical systems.
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Definition 3.5.1 Limit Cycle is a closed trajectory whose neighboring trajectories

spiral either toward or away from it as time goes to infinity [66].

Definition 3.5.2 A limit cycle is stable if all neighboring trajectories approach to

limit cycle.

Consider the flow defined by differential equation

ẋ = F(x) (3.10)

where F : D → Rn is a continuously differentiable map. Poincare Map discretizes

the continuous time nth order autonomous systems by an (n − 1) order discrete-time

system [67] and gives iterative relation rather than a differential relation between the

two successive intersection points. It is useful for analyzing high-order systems since

the dimension of the problem is reduced. For example, in the three dimensional state

space, we draw a surface, S , that cuts through the limit cycle as shown in Fig. 3.14.

Let e is the point where the periodic orbit of the nth order system intersects the (n−1)th

order manifold. The trajectory starting from e will pass the same point in T seconds,

where T is the period of periodic orbit (see Fig. 3.14). The trajectories starting on S

whose initial states are very close to e intersect S in approximately in T seconds in

the vicinity of e. The Poincare Map P : U → S is defined

P(x) = Φ(ω, x) (3.11)

where Φ(ω, x) is the solution of dynamic equations in Eq. 3.10 with a initial state of

x and t = 0 and ω(t, x) is the time it takes for the trajectory starting at x to first return

to S .

3.5.1 Apex Return Map

In this section we analyze the stability of the C-leg locomotion by defining a Poincare

Section at the apex point, where the robot reaches its maximum height. We use nu-

merical simulations to show that our horizontal velocity controller achieves stable
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Figure 3.14: Poincare map

Figure 3.15: The position of the robot at stance and flight phase

locomotion for the forward speed range 0.1 − 2.0 m/s. To apply the return map anal-

ysis to our system first we need to obtain a transition function that calculates the

dependency of two subsequent apex heights y(i) and y(i + 1). During the flight phase

the horizontal velocity is constant and the vertical velocity is zero at apex. Since the

vertical velocity at apex is zero, the dimension of the map is decreased by one. The

apex-to-apex map, P, starts with flight phase and then continues with stance phase

and reaches the next apex with an other flight phase. The transition can be consid-

ered as a combination of three subsequent maps that consist of continuous differential

equations (2.21) and (2.22) and discrete impact events (Table 2.3) and can be written

as P = F2 ◦ S ◦ F1. In this map F1 is the apex to touchdown, S is the touchdown

to lift-off and F2 is the lift-off to next apex dynamics of the robot (see Fig. 3.15).
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The Poincare Map P, or termed the “stride function” by Mcgeer [24], determines the

states of the next apex as a function of previous apex states. During stance, the C-leg

locomotion is non-integrable since the gravity forces are not neglected. As a result,

we derive the apex return map numerically through simulation. The gait is called

stable if all eigenvalues of the linearized apex return map around the fixed point have

an absolute value smaller than one [68, 69]. The fixed points of the map P,

zi+1 = P(zi) (3.12)

where z = [ẋ, y] and P = [P1, P2], correspond to period-1 oscillatory motion on a

limit cycle, i.e. the system returns to the same states after one step. We can also write

the above equation as

ẋn+1 = P1(ẋn, yn) (3.13)

yn+1 = P2(ẋn, yn) n = 1, 2, ...

To find the Jacobian numerically, we perturbed the initial condition in a small neigh-

borhood of the fixed point and recorded the next apex states. Let a fixed point p and

the near by point p̄ be defined as

p =

ẋ∗

y∗

 and p̄ =

ẋ∗ + ∆ẋ

y∗ + ∆y

 (3.14)

where ∆x and ∆y are sufficiently small. Then

P(p̄) =

P1(ẋ∗ + ∆ẋ, y∗ + ∆y)

P2(ẋ∗ + ∆ẋ, y∗ + ∆y)

 . (3.15)

Using Taylor series expansion we obtain

P(p̄) = p + DP(p)

∆ẋ

∆y

 + O(ε2) (3.16)
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The Jacobian matrices DP(p) can be written as

DP(p) =


∂P1(ẋ∗, y∗)

∂ẋ
∂P1(ẋ∗, y∗)

∂y
∂P2(ẋ∗, y∗)

∂ẋ
∂P2(ẋ∗, y∗)

∂y

 . (3.17)

To find the periodic gait cycles, we used the steady-state results obtained in Chp.3.2.

We started with a set of initial guess close to the steady-state solution of constant

velocity running results, and we tried to minimize the cost function

C = ‖zn+1 − P(zn)‖ (3.18)

using Nelder-Mead optimization algorithm. The stopping criterion is chosen C <

10−6. The fixed points of constant horizontal velocity running for 20 different speed

goals are given in Fig. 3.16a.
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Figure 3.16: (a) The fixed points of desired velocity 0.1 to 2 m/s with the predefined
controller parameters. (b) The eigenvalues of Jacobian of desired velocity range 0.1-2
m/s for different percentage perturbation amount of initial states.

The local stability of the periodic orbit is determined by the eigenvalues of the lin-

earized Jacobian of Poincare map, DP(p), at fixed points. If all the eigenvalues

(λ1, λ2) of DP(p) have magnitudes strictly less than unity, then the corresponding

periodic gait is asymptotically stable [68, 69]. If the magnitude of one of the eigen-
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values is bigger than one, the system is unstable. In our case, the Jacobian evaluated

at fixed points has the unity eigenvalue that is independent from the control input.

The trivial eigenvalue does not affect the stability, so we determined the asymptotic

behavior by the second eigenvalue which lies inside the unit circle for all range of

forward velocity and depends strongly on the controller used. The fixed points are

attracting in the y direction and neutrally stable in the ẋ direction. This means that a

small perturbation of ẋ from the equilibrium puts the system on a periodic orbit that

stays near the equilibrium. But the velocity does not return to that equilibrium. Since

the other eigenvalue is less than unity, we can conclude that our forward velocity con-

troller makes the locomotion partially asymptotically stable for typical speed range

0.1 − 2.0 m/s. [70]. The Fig. 3.16b also shows that when the velocity of the robot

increases, the stability of locomotion on the y direction also increases.

We have also examined the stability of locomotion obtained using controller parame-

ters (Table 3.2) that regulates the amplitude of the hopping motion by specifying the

torque applied to the leg on each hop. We could not find any fixed points with this

controller parameters, thus to investigate the effect of parameter changes on the stabil-

ity we tried a new cost function that optimizes both initial apex states and controller

parameters. The new cost function does not consider only the difference between de-

sired and actual apex height at steady-state but also considers the forward speed of

the robot.

Table 3.3: Parameter optimization results of height control using the cost function
(3.19)

Results of Optimization
ydes (m) ẋ∗ (m/s) y∗ (m) θdes (rad) θtd (deg) Kp

(Nm/rad)
Kd
(Nm/(rad/s))

0.15 1.0427 0.1666 -0.5372 9.5466 32.0325 0.4095
0.20 1.5304 0.1915 -0.5580 10.9758 31.6396 0.4171
0.25 1.4132 0.2449 -0.5120 14.0358 31.4496 0.3795
0.30 1.5617 0.3087 -0.5829 17.6926 33.5734 0.4586
0.35 1.2182 0.3608 -0.6268 20.6767 32.2163 0.4626
0.40 1.5137 0.3904 -0.5094 22.3730 31.7641 0.3714
0.45 1.4013 0.4588 -0.5278 26.2922 30.7907 0.3630
0.50 1.6103 0.5121 -0.5345 29.3431 31.1045 0.3684
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Figure 3.17: (a) The fixed points of desired height 0.15 to 0.5 m with the controller
parameters given in Table 3.3 (b) The second eigenvalue of Jacobian of desired height
range 0.15-0.5 m for different percentage perturbation amount of initial states. The
first eigenvalue is unity for all desired height.

To stabilize the height of the robot, we optimize the touchdown angle θtd and the

parameters of controller [θdes, Kp, Kd] during the stance phase. We define the new

cost function as follows

min J3 = ‖z1 − P(z0)‖

subject to (2.17) and (2.22), (3.19)

where z0,1 = [ẋ0,1, y0,1] are the apex states of the consecutive apex states and P is

the apex return map defined in (3.12). To obtain fixed points and desired hopping

height, we have minimized the cost function starting with an initial estimate of z0 =

[1 m/s, ydes m] using the nonlinear optimization function fminsearch of MATLAB’s

Optimization Toolbox. We obtained fixed points for desired hopping heights starting

with different guesses of initial states. Minimizing this cost function not only gives the

controller parameters that exhibit smooth hopping motion with a desired height, but

also provides optimum starting hopping conditions for our system. We analyzed the

stability of the system around the fixed points obtained by optimization procedure.

Similar to the velocity control part, one of the eigenvalues of controlled system is

always unity. The variation of the second eigenvalue for different desired height is

given in Fig. 3.17b. The eigenvalues of the system under the height control gets close
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to unity as the desired height increases.

3.6 Conclusion

In this chapter, we designed a controller to obtain desired running velocity and height

of the robot. Although the structure of the controller is simple, we can achieve stable

running performance by changing touchdown angle of the leg and controller reference

signals. The constant reference signal of the PD controller can be replaced by a

nonlinear function. The performance of the controller should be investigated for other

leg design and system parameters.

The findings of this study indicates that although we have a drastically different leg

morphology, to increase horizontal velocity of the robot, the touchdown angle should

be increased as in shown in other biomedical studies [71, 72]. Future work includes

the analysis of transition phase between two velocities and effects of initial states on

the dynamics to obtain more accurate and robust controller.
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CHAPTER 4

JUMPING CONTROL

4.1 Introduction

Although wheeled robots are capable of locomote on even ground with a consider-

able speeds, they can not perform well in the environment that has obstacles or other

uneven structures. The legs give the robot maneuverability to climb body size ob-

jects, and increase the ability of negotiation in uneven terrain. When the legged robot

encounters an obstacle higher than its own size, the jumping or hopping behavior are

the one of the ways to overcome this situation using a minimal amount of energy.

Jumping is a complex behavior involving the coordination of whole body part move-

ments to execute rapid locomotion. Biological systems use different control strate-

gies to perform desired jumping tasks. There are several robots that are designed to

perform jumping like motions. Some of them are focused on continuous hopping be-

havior [17, 18, 73, 74], while the others only consider stand by jumping [75, 76, 77].

The common property of these jumping robots is to have elastic leg structures.

In this section we describe an optimal control approach for exploring the jumping

behavior of compliant legged monopod that can locomote in an unstructured environ-

ment. We introduce basic jumping controller structure that regulates the parameters

of PD controller and the leg attack angle while minimizing the convex function of

jumping height and distance.

4.2 Jumping Control Problem

The scenario we focused on in this section is running a number of steps with a con-

stant velocity, then maximize the step length or the height of the robot for the last step.

We used the weighted cost function (4.1) inspired from athletes performing long/high
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jump. These jumping motions include a preparation phase consisting of run up and

adjustment of vertical height for an ideal take-off [78]. The initial velocity is impor-

tant since at the take-off moment, the body momentum is converted to the upward and

forward motion [79].

By taking into account physical limitations of the robot associated with motor speed

limitations, maximum leg deflection and leg’s kinematic reachability range, the op-

timal control problem defined as follows: find the control references [θdes, θ̇des] and

touchdown angle θtd that minimize the cost functional

min J3 = −λ Lstep − (1 − λ) yapex

subject to (2.17) and (2.22), (4.1)

where Lstep is the step length, hapex is the vertical position of COM at the last apex

(See Fig.3.1) and λ is a weighting coefficient. During steady-state running, we define

the step length as the distance between the initial and final positions of the ground

contact point of the leg on the flight phase as

Lstep = ẋavgT f + llo cosαlo + ltd cosαtd, (4.2)

where ẋavg is the mean horizontal running speed in flight phase, T f is the duration

of flight phase, llo, ltd virtual leg length defined between hip point and ground con-

tact point of the leg at the lift-off (lo) and touch-down (td) moments, respectively.

Equations for virtual leg angles, αlo and αtd, as a function of the leg angle θ are given

as

αlo =
π

2
− θlo (4.3)

αtd =
π − θtd

2
,

where θlo and θtd are the leg angle at the lift-off and touchdown moments, respec-

tively.
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4.3 Results
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Figure 4.1: The apex height for the COM during flight found by using J2 of (4.1) for
different values of the optimization weight λ. Cell shades represent the optimal apex
height (h∗apex) at the last step.
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ẋ (m/s)

 

λ

L
∗ s
te
p

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
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length (L∗step) at the last step.
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Figure 4.3: Jumping height h∗apex and length L∗step for different values of the optimiza-
tion weight λ for the one-shot jumping problem. Shades for each point represents (a)
the take-off angle of the body at the last step, (b) the take-off velocity of the body at
the last step.

We give the results for the problem running with a constant speed and maximize

the jumping height or distance at the last step. We used final states of the ten step
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constant velocity running as an initial condition for the jumping control problem.

Fig. 4.1 and Fig. 4.2 give the maximum apex height and step length obtained using

different weight value (λ) in (4.1). We changed the λ from 0 to 1 and we solved

the optimal control problem (4.1) described in section 4.2 for different horizontal

velocity using MATLAB optimization toolbox built-in function fminsearch starting

at an initial estimate [θdes, θtd] = [0.2rad, 30o]. The structure of the leg controller is

identical to the one used in Section 3.2.

As seen from the figures, for the velocities smaller than 1 m/s, changing λ of (4.1)

does not have significant effect on the jumping performance. When the initial hor-

izontal velocity is bigger than 1 m/s, the small λ values increase the optimal apex

height, as expected (see Fig. 4.1). Note that, the maximum apex height is obtained

when the horizontal velocity is 2 m/s and λ is 0.1. This means that we need to run at a

high velocity to get appropriate initial conditions for the high jump and to consider the

jumping distance. As the initial horizontal velocity increases, the λ should be chosen

close to 1 to get maximum jumping distance. A possible explanation for this might

be that, when the horizontal velocity is between 1 m/s and 1.5 m/s, to maximize the

jumping distance, the robot attempts to increase its vertical velocity at the last step to

get a long flight duration using λ value about 0.6. As the horizontal velocity increases,

the influence of flight duration on the jumping decreases.

Typically, the maximum horizontal distance in projectile motion is obtained when

the take-off angle of the body is 45o and the maximum vertical distance is obtained

when the take-off angle is 90o. To check the performance of our jumping controller,

we looked at the take-off angle (Fig. 4.3a) and velocity (Fig. 4.3b) of the body at the

last step for different horizontal velocity. Fig. 4.3a shows that the maximum jumping

distances are achieved with a take-off angle about 50o and the maximum apex heights

are obtained when the take-off angle is about 90o, which is close to ideal case. It can

also be seen from Fig. 4.3b that the take-off velocity has a strong effect on jumping

height and distance as expected.
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4.4 Conclusion

This study underlined the importance of touchdown angle and controller parameters

selection on the dynamics of half circular compliant legged monopod. The combina-

tion of running with constant speed and maximizing jumping height or distance at the

last step problems can be extended to the design of auto-pilot for the real time rough

terrain locomotion. Since our robot model does not include any sensor to detect its

environment, the dimension of the obstacle and the map of the terrain must be given

previously to control the selection of suitable footholds. The weights in (4.1) can be

adjusted according to height and width of the obstacles. In the next chapter we will

discuss the obstacle avoidance problem.

Future studies, which considers ellipsoid shape of the deflected leg will need to be

performed to get more realistic results. We hope that our research will be valuable in

understanding the dynamic behavior of the RHex type robots.
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CHAPTER 5

OBSTACLE AVOIDANCE

5.1 Introduction

Although traditional ground robot locomotion techniques traverse obstacles of a simi-

lar order of magnitude as their size well, they could not cope with obstacles which are

two times larger their size. The most effective way of traveling safely over different

types of terrain with obstacles would be to fly over it [80]. Similar to flying motion,

jumping over obstacles is an another way to traverse rough terrain especially for the

legged locomotion.

The well known kinematic equations that used to analyze motions containing flight

phase are

hapex =
(v sinθ)2

2g
(5.1)

and

r f light = v2 sin(2θ)
g

(5.2)

where hapex is the maximum height and r f light is the maximum range of ballistic pro-

jectiles, v is the take-off velocity, θ is the take-off angle and g is the gravitational

force. The greater the projectile angle, the smaller the horizontal velocity but the

greater the time in the air. Thus if the take-off and landing height is same, it is clear

from (5.2) that the maximum horizontal range is achieved when the take-off angle is

45. Likewise, from (5.1) in order to maximize the height of a jump, the ideal take-off

angle is 90o.
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In this chapter, we have proposed control strategies to achieve rough terrain loco-

motion with a compliant half circular legged monopod. We have firstly focused on

jumping over obstacle which has height and width. We have inspired from the per-

formance of long and high jump athletes. [79] identified the principles that govern

optimum speed and leg angle, for the take-off phase of high and long jumping. He

concluded that a high jumper should run up at a moderate speed and set down the

foot from take-off board with a leg angle about 45o. A long jumper should run up

as fast as possible. With a slow run up speeds, high jumpers control their take-off

and obtain the complicated movements for the aerial phase. A fast run-up increases

the horizontal component of velocity at take-off, but shortens the duration of ground

contact and reduces the vertical impulse. The horizontal component of velocity at

take-off is more important in long jumping than in high jumping, so a faster run-up is

desirable in long jumping.

5.2 Problem Definition

The obstacle is placed at a desired distance from the robot’s initial position, in our

case it is 5 meters. Dimensions and roughness property of the obstacle must be given

before solving the optimal control problem since the robot does not have any sensor

units. We decompose the problem into smaller optimization tasks. First we find the

optimum take-off angle, velocity and take-off distance (it is defined as the horizontal

distance between the robot center of mass and obstacle when take-off) which consume

minimum energy to jump over obstacle. If the air resistance is ignored, an object

projected for horizontal distance continuous to travel horizontally until it is stopped

by external force which is usually provided by ground. The longer an object is in

the air with a horizontal velocity component, the longer it can continue to move in

the horizontal direction. So, if the obstacle does not have height, i.e. it is a hole, we

need to maximize the vertical component of velocity to increase flight time and the

horizontal component of velocity to increase jumping distance. Thus, for all take-off

velocity, we need to utilize take-off angle 45o to maximize the jumping distance if

the take-off and landing height are same [81, 82]. On the other hand, if the obstacle

has height, we attempt to jump over obstacle without striking it. The main purpose

is to consume minimum energy while jump over obstacle, i.e. use the path that has
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minimum take-off energy. One of the example jumping path with a minimum energy

is given in Fig. 5.1.

Figure 5.1: Jumping over obstacles whose height is 0.3 m and width is 0.3 m. The
red line represents the clearance of the robot.
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Figure 5.2: The optimum take-off angle (a) and velocity (b) surfaces of the COM for
a different obstacle size.

For different obstacle size (height is scaled between 0.1m and 0.5m and width is

scaled between 0.1m-0.35m) we find the optimum take-off angle and velocity of the

COM that result in a trajectory that is safe and consumes minimum energy. We fit a

surface to the points defined by obstacle size, take-off velocity and angle of the COM.
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The equation of the surfaces that are parametrized by obstacle size, take-off velocity

and angle of the body can be written as

θto(wobs, hobs) = 0.7557 − 0.3486 wobs + 1.204 hobs (5.3)

vto(wobs, hobs) = 1.64 + 1.85 wobs + 2.904 hobs. (5.4)

Fig. 5.2 shows the corresponding surfaces. There is a significant correlation between

obstacle size and take-off angle and velocity of the body [83]. The maximum take-off

angle is about 75o and it is required to jump over the obstacle whose wobs = 0.15 m

and hobs = 0.5 m. The maximum take-off velocity is about 3.7 m/s and it is required

to jump over the obstacle whose wobs = 0.35 m and hobs = 0.5 m.

5.2.1 Case I: Free Initial State

After obtaining approximate take-off angle, velocity and take-off distance for the de-

sired jumping motion, we calculate the starting point of the triple jumping. We have

used triple jumping techniques as in athletes to attain the greatest possible horizontal

and vertical distance with a minimum energy. A triple jumper should run up with an

average speeds during the last 5 m before the take-off, and to maintain as much of

this speed as possible during steps of triple jump; the hop, the step and the jump [84].

According to distance between robot and obstacle we first run s steps with the fastest

constant horizontal velocity which is close to horizontal take-off velocity. In this step

we used the controller parameters and touch down angle obtained in Chapter 3. The

constant speed step number is important since robot gains energy which facilitates the

preparation phase of jumping. The constant running step number s is adjusted man-

ually, but it should be considered as an optimization variable. After running s steps

with a constant velocity, we go into 3-step preparation phase. This phase is important

since we bring the robot to the desired initial states for the triple jumping. The robot

must be able to orientate itself prior to jumping in this phase. The main problem is

that we can not be able to find appropriate controller input to bring the system desired

states all the time. We need to investigate the sensitivity of the triple jump controller

part to the initial state variations. This analysis will be done in Section 5.4.
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Figure 5.3: The phases of the free initial state problem

In the triple jump problem we optimize the touchdown angle and PD controller ref-

erence signal of each step. Note that, these control parameters are not same for all of

the last three steps. These parameters are found so that the take-off velocity and angle

are equal to desired one.

If we summarize the jumping procedure;

1. Put the obstacle to the desired position in the workspace

2. Give the height and width of the obstacle, also define the obstacle type, i.e. hole

or hill

3. First find the safe takeoff velocity, angle and x position of the body to jump over

the given obstacle. The objective function is the minimization of the consumed

energy during jumping over the obstacle.

4. After obtaining desired takeoff velocity, angle and x position of the body to

jump over the obstacle, calculate the distance between robot’s initial position

and desired take off position. This distance is then used to calculate the distance

of run-up phase.

5. Run with a constant speed until the preparation phase start.

6. Find desired control input to bring system from constant speed running condi-

tions to triple jumping starting condition.

7. Find control parameters and suitable touch down angle of triple jump phase.

8. Perform jumping.
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5.2.2 Case II: Fixed Initial State

In the second case, we fixed the initial condition of the triple jumping phase and

designed a controller which brings the system from any initial configuration to final

desired configuration that is initial state of the triple jump. The desired final state is

chosen so that if the robot starts its triple jumping motion from this state, it can jump

over considerable amount of obstacles that have different size.

5x m0x m 3.7x m

0.15y m

0.30y m

PREPARATION PHASE TRIPLE JUMP

( , )d dx y
dx

Figure 5.4: The preparation and triple jump phase of the second case. The obstacle is
placed at x = 5 m. The shaded area represents the initial state space. The robot is left
from any point in the shaded area with a zero velocity.

Similar to the first problem, the obstacle is placed to x = 5 m. We choose two desired

initial state for the triple jumping phase; z1 = [x, ẋ, y, ẏ] = [3.7 m, 1.5 m/s, 0.2 m, 0 m/s]

and z2 = [x, ẋ, y, ẏ] = [4 m, 1 m/s, 0.3 m, 0 m/s] , that are the state of the robot at the

last apex of the preparation phase. The initial states of preparation phase are defined

as

0 m ≤ x ≤ 2 m, ẋ = 0 (5.5)

0.15 m ≤ y ≤ 0.3 m, ẏ = 0.

Fig. 5.4 presents the workspace of the fixed initial state problem. The robot is left

from the any point in the shaded area with a zero horizontal and vertical velocities.

The optimal control algorithm tries to find leg angle and controller parameters that

bring the system near to desired final state.
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The control input of the system is similar to defined in Section 3. Different from

the previous velocity control problem we also optimize the Kp and Kd gains of PD

controller. The control problem can be defined as follows

min J4 = ‖z − zd‖

subject to (2.17) and (2.22), (5.6)

where z is the final apex state of the preparation phase and zd is the desired initial state

of the triple jump.

5.3 Results

5.3.1 Results of Case I: Free Initial State

We control the step length and jumping height by controlling horizontal running speed

and running height. Different from the jumping over obstacle with height, if we have

hole obstacle we need only maximize the step length while minimizing the energy

consumed during jumping. The vertical velocity at the take off adjusts the duration of

the flight phase and it is somehow important to jump over hole. But vertical take-off

velocity is not as important as in jumping over hill type obstacles as in long jump run-

ning athletes who increase their horizontal velocity and use optimum vertical velocity

to get desired flight time.

Fig. 5.8 - Fig. 5.10 show the jumping performance of the robot for the different sized

obstacles. As seen from the Fig. 5.7a, if the size of the obstacle is small compared to

robot size, the robot does not change its initial velocity and touch down angle at the

last steps. As the height of the obstacle increases, the robot compresses its leg to gain

energy which is required at the take-off. At the last three steps jump energy should

be stored in the leg, ready for instantaneous release when take-off. The preparation

phase is more remarkable when the height and width of the obstacle increased at the

same time. The step number of run-up phase is chosen so that the robot reach the

desired take off phase with a desired take-off velocity. If the obstacle width is larger

than its height, the robot attempt to increase its horizontal velocity in last 5 steps as in

the long jumpers. The step number of preparation phase can be adjusted to get more
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accurate take-off performance.
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5.3.2 Results of Case II: Fixed Initial State
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Figure 5.7: The desired final state (a)zd = [3.7 m, 1.5 m/s, 0.2 m, 0 m/s] (b)zd =

[4 m, 1 m/s, 0.3 m, 0 m/s]. The blue rectangular part is the initial state space.

Fig. 5.7a and Fig. 5.7b shows the resulting final state of the robot in preparation phase.

The rectangular area represents initial state space where the robot starts its locomotion

from rest. According to distance between initial and final COM position of the robot

the optimal touchdown angle and other controller parameters are changed. We fit a

surface to understand the relation between the desired touchdown angle of the robot

and initial position of COM. The surface equation for zd1 and zd2 can be written as

θtd(x, y) = 0.6697 + 0.05369x + 0.001192y for zd1 (5.7)

θtd(x, y) = 0.596 + 0.04197x − 0.02079y for zd2
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5.4 Sensitivity Analysis

Analyzing the effects of disturbances on the output of the controlled system is nec-

essary before implementing the controller on the real robot platform. The sensitivity

analysis approach is based upon linearizing the system around a nominal trajectory

rather than around an equilibrium point and try to interpret the variations around that

trajectory.

There are different types of disturbances that should be considered when designing

controller structure. First and foremost, the small and large disturbances in the initial

conditions of the system may result in considerable impact on the output especially

if the controller is open loop. The stability and accuracy of the controller should be

analyzed when the trajectory of the dynamic system does not start from the desired

initial point, but from its neighborhood. Secondly, the parameters of the system such

as physical properties of robot platform and environment can be time variant and most

of time they can be determined with a certain accuracy.

In this section, we test the robustness of our triple jumping controller in the presence

of initial state and controller parameter disturbances and we try to develop a metric

for those variations and relate it to the performance of triple jumping controller.

5.4.1 Sensitivity to Initial Conditions

To determine the sensitivity of the triple jump trajectory in the case of time invariant

initial state perturbations, we choose the trajectory of robot that jumps over obstacle

whose height is 0.5 (m) and width is 0.1 (m). We have added disturbance to the initial

states of the robot with an increment ±0.1%, 1%, 10% and we calculated the devia-

tion of final states from the desired nominal values. The results are given in Table 5.1.

Although we only give the results of jumping over one obstacle, the relation of the

initial and final states are similar for all jumping conditions. The disturbance of initial

x state affects only the final x position of the robot, while ẋ changes both x f and ẋ f .

The final error at x and ẋ are linearly dependent on the initial perturbation amount.

The final height of the robot is independent from the perturbation at the initial x and

ẋ. On the other hand, the disturbance on the initial height changes all of the final

71



states and the final variations are not linear functions of perturbation amount. When

the initial height is less than its nominal value, the amount of the energy that brings

the robot to desired trajectory should be increased.

Fig. 5.11 - Fig. 5.13 show the perturbed and optimal unperturbed trajectories of the

robot with respect to positive extreme disturbances 0.1% and 10% given in Table 5.1.

It can be seen from the figures that the small errors in the initial states do not affect

the jumping performance so much. If the offset in initial condition gets larger, the

final trajectory lies off and the robot does not perform the desired jumping task.
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Table 5.1: Sensitivity of triple jump trajectory to a perturbation in the initial states
of the robot. The first column gives the percentage disturbance in the corresponding
states and other three columns present the percentage of deviation from the desired
final apex states. This results are obtained by jumping over obstacle with a hobs = 0.5
(m) and wobs = 0.1 (m).

Error %
∆xi% ∆x f (m) ∆ẋ f (m/s) ∆y f (m)

0.1 0.0136 0 0
1 0.1363 0 0
10 1.3629 0 0
-10 -1.3629 0 0
-1 -0.1363 0 0
-0.1 -0.0136 0 0

∆ẋi% ∆x f (m) ∆ẋ f (m/s) ∆y f (m)

0.1 0.0283 0.0902 0
1 0.2829 0.9018 0
10 2.8294 9.0181 0
-10 -2.8294 -9.0181 0
-1 -0.2829 -0.9018 0
-0.1 -0.0283 -0.0902 0

∆yi% ∆x f (m) ∆ẋ f (m/s) ∆y f (m)

0.1 0.0125 -0.0390 0.4497
1 0.1359 -0.0209 0.4741
10 1.5853 -0.0065 6.0270
-10 -1.7261 -0.0444 -6.1449
-1 -0.1693 -0.0329 -0.3808
-0.1 -0.0427 -0.0328 -0.1493
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Figure 5.11: The undisturbed (solid line) and disturbed (dashed line) COM trajectory
of the robot that jumps over obastacle with hobs = 0.5(m) and wobs = 0.1(m) using
the triple jump controller. The disturbance amount equals to (a) 0.1% (b) 10% of the
initial x position.
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Figure 5.12: The undisturbed (solid line) and disturbed (dashed line) COM trajectory
of the robot that jumps over obastacle with hobs = 0.5(m) and wobs = 0.1(m) using
the triple jump controller. The disturbance amount equals to (a) 0.1% (b) 10% of the
initial ẋ position.
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Figure 5.13: The undisturbed (solid line) and disturbed (dashed line) COM trajectory
of the robot that jumps over obastacle with hobs = 0.5(m) and wobs = 0.1(m) using
the triple jump controller. The disturbance amount equals to (a) 0.1% (b) 10% of the
initial y position.
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Table 5.2: The effects of controller parameter variations in the final desired apex states
of the triple jump trajectory.

Parameter Change: 10 % Final Error
θdes1 θtd1 θdes2 θtd2 θdes3 θtd3 x f ẋ f y f

↑ - - - - - ↓ ↓ ↓

- ↑ - - - - ↑ - ↑

- - ↑ - - - - - -
- - - ↑ - - - - -
- - - - ↑ - ↓ ↓ ↑

- - - - - ↑ ↑ ↑ ↑

5.4.2 Sensitivity to Controller Parameters

Trajectory sensitivity analysis provides valuable insights into understanding the influ-

ence of parameter variations on the dynamic behavior of the robot. Properties which

are not obvious from the actual system response are often evident in the sensitivities.

In this section similar to previous part, we have analyzed the sensitivity of trajectory

to control parameters. We are interested in how uncertainty in control parameters

propagate to uncertainty in the final state of the robot.

We have increased the nominal values of controller parameters and we have per-

formed triple jump for different size of obstacles. We see that the most significant

variations are obtained when the reference angle of the first and last step are changed.

When we increase the reference angle of first or last step, the final x position and

velocity decreases. The increase in the touchdown angle of first or last step increases

the final x position of the robot as expected. The final forward velocity raises with

the positive change of touchdown angle at the last step. Final height of the robot

only decreases with an increase in the reference angle of the first step. The impact

of the parameter variations in the second step of triple jump is almost negligible. We

summarized the results in Table 5.2. When we decrease the control parameters all

direction of deviations at the final state reverse.

77



5.5 Triple Jump Controller based on Sensitivity Analysis

In the two previous sections we have investigated the sensitivity of triple jump tra-

jectory to variations in the initial conditions and controller parameters of the robot.

In this section, we try to nullify the effect of disturbances in the initial conditions of

the robot by suitable choice of control parameters θdes1 and θdes2. For this purpose,

we define a new cost function that optimizes the scale of the controller parameters,

c1 and c2, by minimizing the trajectory error at the last step of triple jump. The new

scaled controller parameters are θdes1new = θdes1(1 + c1) and θdes3new = θdes3(1 + c2).

The other controller parameters [θtd1, θdes2, θtd2, θtd3] are fixed to their nominal values

that are obtained in Section 5.3.1. The cost function defined as

min J = ‖z3disturbed − z3nominal‖

subject to (2.17) and (2.22), (5.8)

where z3 = [x f , ẋ f , y f ] is the COM trajectory of the robot at the last step.

Fig. 5.14 - Fig. 5.16 show the parameter optimization results of the triple jump con-

troller for various obstacle sizes. First, we investigated the effect of varying the initial

x position of the robot. We add 10% error normalized with x position of the obstacle

to nominal value of x and we minimize the cost function given in (5.8). The rest of

the controller parameters are set to their nominal values. The optimum scale of the

controller parameters that eliminate normalized 10% error in the initial x position of

the robot for different obstacle sizes h0 and w0 scaled between 0.1 − 0.5 are given

in Fig. 5.14. Since adding positive disturbance to initial x position only affects the

final x position of the robot, we obtained increased θdes1 for all obstacle size. There

is a small drop in θdes3 to satisfy optimum jumping height at the last step. Secondly,

we disturbed the initial ẋ, which results in increase of final x position and forward

velocity of the robot. Both θdes1 and θdes3 increases to decrease the final state er-

ror. As seen from the Fig. 5.15, when the height of the robot is less than its width

to not collide with an obstacle the forward velocity and x position must be adjusted

carefully. Finally, we added positive 10% error to initial height of the robot and we

obtained controller scales given in Fig. 5.16. We observed a large increment in θdes1
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and a small decline in θdes3 to decrease the final height error. Starting triple jump with

a height higher than its nominal value adds the system extra energy especially when

the height of the robot is less than its width. The energy must be removed to obtain

energy efficient jumping motion. As seen from the Fig. 5.16, we obtained higher

scales factor for the obstacles whose height is less than 0.3 m. Our results show that

having tuned the parameters of controller based on the sensitivity analysis, we can

compensate errors in initial states by tuning only two parameters of the controller not

all of them.

(a) scale of θ∗des1 (b) scale of θ∗des3

Figure 5.14: The optimum scale of the controller parameters that eliminate normal-
ized 10% error in the initial x position of the robot for different obstacle size h0 and
w0 scaled between 0.1 − 0.5. The color scale represents the scale of (a) θ∗des1 (b) θ∗des3.
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(a) scale of θ∗des1 (b) scale of θ∗des3

Figure 5.15: The optimum scale of the controller parameters that eliminate 3% error
in the initial forward velocity of the robot for different obstacle size h0 and w0 scaled
between 0.1 − 0.5. The color scale represents the scale of (a) θ∗des1 (b) θ∗des3.

(a) scale of θ∗des1 (b) scale of θ∗des3

Figure 5.16: The optimum scale of the controller parameters that eliminate 10% error
in the initial height of the robot for different obstacle size h0 and w0 scaled between
0.1 − 0.5. The color scale represents the scale of (a) θ∗des1 (b) θ∗des3.

5.6 Triple Jump Controller with a Safety Margin

The sensitivity analysis of the robot states that we require very accurate initial condi-

tions and controller parameters for the reliable jumping motion without colliding with
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obstacles. Although we only consider uncertainty in the states and control parame-

ters of the robot, there are other uncertainties such as position of obstacle, random

disturbances at the states of robot while in motion, the sensor noises etc.

Figure 5.17: The new representation of obstacle with a 10% safety margin.

In this section, to avoid collisions with obstacle, we modify the trajectory of robot

taking into account the positioning accuracy. We define an area, called safety margin,

around an obstacle that the robot can jump over it safely. The new representation

of obstacle with a safety margin is given in Fig. 5.17. Then we re-optimized the

reference signals and touchdown leg angles as well as initial states [x, ẋ, y] of triple

jump by considering the new size of obstacle.

Fig. 5.18-5.20 show the COM trajectory of the robot that jumps over different size of

obstacles without and with 10% safety margin added to obstacle size. The size of the

safety margin is selected intuitively, it needs careful study and analysis of the way the

source of uncertainties and their effects at the jumping performance.

Fig. 5.21-5.24 compare the variations of controller parameters and initial conditions

of the triple jump phase when we add safety margin. Fig. 5.21 and Fig. 5.22 present

the variation of optimum reference angle of controller at each step. θdes1 is almost

similar for both case, where θdes2 incerases when the height of the robot is less than

0.3 m and θdes3 decreases when the width of the robot is less than 0.3 m.

Fig. 5.23-5.24 present the changes of optimum touchdown angles of robot at each

step. θtd1 increases when the height of the robot is greater than 0.3 m, θtd2 increases

when the both height and width of the robot is greater than 0.3 m and θtd3 increases

when the height of the robot is greater than its width.

Fig. 5.25-5.26 show the changes of optimum states of robot at the beginning of triple
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jump. The initial velocity of the robot increases for all obstacle size as expected.

When obstacle height is bigger than its width the initial height increases. We obtained

decline in xrunup since the robot needs more distance to store energy before jump over

obstacle.

4 4.5 5 5.5
−0.1

0

0.1

0.2

0.3

y

Triple Jumping with a 10% Safety Margin

4 4.5 5 5.5
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0

0.1
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0.3

Triple Jumping without Safety Margin

x

y

Figure 5.18: The COM trajectory of the robot that jumps over obstacle (hobs = 0.1 (m)
and wobs = 0.1) (top) with a 10% safety margin (bottom) without the safety margin.
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Figure 5.19: The COM trajectory of the robot that jumps over obstacle (hobs = 0.2 (m)
and wobs = 0.3) (top) with a 10% safety margin (bottom) without the safety margin.
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Figure 5.20: The COM trajectory of the robot that jumps over obstacle (hobs = 0.5 (m)
and wobs = 0.5) (top) with a 10% safety margin (bottom) without the safety margin.
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Figure 5.21: The optimum reference angle signals of triple jump controller without
safety margin added to obstacle size. The height and width of the obstacle are scaled
between 0.1-0.5 (m). The color scale represents the optimum reference angle signal
of controller at the (left) first (middle) second (right) third step of triple jump.

Figure 5.22: The optimum reference angle signals of triple jump controller with a
10% safety margin added to obstacle size. The height and width of the obstacle are
scaled between 0.1-0.5 (m). The color scale represents the optimum reference angle
signal of controller at the (left) first (middle) second (right) third step of triple jump.
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Figure 5.23: The optimum touchdown angle of triple jump controller without safety
margin added to obstacle size. The height and width of the obstacle are scaled be-
tween 0.1-0.5 (m). The color scale represents the optimum touchdown angle of con-
troller at the (left) first (middle) second (right) third step of triple jump.

Figure 5.24: The optimum touchdown angle of triple jump controller with a 10%
safety margin added to obstacle size. The height and width of the obstacle are scaled
between 0.1-0.5 (m). The color scale represents the optimum touchdown angle of
controller at the (left) first (middle) second (right) third step of triple jump.
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Figure 5.25: The optimum starting conditions of triple jump phase without safety
margin added to obstacle size. The height and width of the obstacle are scaled be-
tween 0.1-0.5 (m). The color scale represents the optimum (left) initial forward ve-
locity (middle) initial height (right) the initial starting x position of triple jump phase.

Figure 5.26: The optimum starting conditions of triple jump phase with a 10% safety
margin added to obstacle size. The height and width of the obstacle are scaled be-
tween 0.1-0.5 (m). The color scale represents the optimum (left) initial forward ve-
locity (middle) initial height (right) the initial starting x position of triple jump phase.
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5.7 Conclusion

We have presented the optimal control approach for the rough terrain locomotion of

half circular legged robot. The main purpose is that while using suitable algorithms

for rough terrain locomotion that found the path of the robot to navigate through the

world, we need to consider actions the robot should perform to realize the path safely.

We have analyzed the sensitivity of trajectory to variations in initial states and control

parameters. We scaled the control parameters based on the response of the system

to perturbation in the initial states. We have also evaluated the performance of the

controller in the presence of uncertainty in the localization of the obstacle. We have

defined a controller that takes into account the safety margin around obstacle. The

controllability of this nonlinear system is the other issue that should be considered

to find the suitable controller input to bring the system from any initial starting point

to desired jumping conditions. Simulation of the system in the environment with an

irregularly distributed different size multiple obstacles should be realized.
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CHAPTER 6

HALF CIRCULAR LEG TEMPLATE FOR A HEXAPEDAL

RUNNING

6.1 Introduction

Template is a low dimensional model that exhibits a targeted behavior of high dimen-

sional biological and robotic systems that have different morphological structures

[53]. It reduces modeling complexity that arises from the highly nonlinear charac-

teristics of human and animals biological parts such as muscles, tendons, neurons,

joints etc. The high degree of freedom, nonlinear motion of different animals can be

captured with a low dimensional templates, and this gives insight to understand the

locomotion of complex mechanisms found in nature.

A template based control of the robotic systems is a well-known approach that drives

the system to mimic the template dynamics [85]. A spring-mass template model is

used to describe accurately the rapid locomotion of human and other animals that

have different leg and skeleton morphology [55, 56, 72]. Until know SLIP template

has been applied to characterize the locomotion behavior of different types of robot

platforms [17, 18, 54, 86, 87]. It was experimentally shown that the dynamics of

bipedal SLIP can be anchored a high degree of freedom hexapod robot, called RHex

[4, 32]

In this chapter, the dynamic motion of the hexapod robot is analyzed using two dif-

ferent modeling approaches. The goal is to find optimum control inputs and physical

parameters of the leg such that the dynamics of templates accurately mimic the COM

motion of the hexapod robot. We used the time trajectory of a full body configuration
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and leg states of hexapod, called Edubot (see Fig. 6.1) a small form-factor modular

RHex variant that is used for education and research [1, 3, 88, 89]. We propose a low

dimensional circular compliant beam (CCB) template described in Chapter 2 as a can-

didate template model for the hexapedal running and we compare the predictions of

this model with those of widely used Spring Loaded Inverted Pendulum (SLIP) model

using the experimental data of Edubot. The data collection and extraction procedures

are same as described in [90].

Figure 6.1: Edubot [3]

6.2 Templates for Legged Locomotion

6.2.1 Spring Loaded Inverted Pendulum (SLIP) Template

The SLIP template [56] is a simplified model which is used for representing the COM

dynamics of the robot. The six legs of the robot represented by a massless virtual leg

with a spring constant, k and rest length, l0. The virtual leg is attached the point mass

body from the COM. The SLIP has a two phase: stance and flight. During the stance

phase leg spring applies a force on the body. Figure (6.2) shows the COM trajectory

and forces of the SLIP in stance phase. We assume that the virtual toe position does

not change during the stance phase. The dynamic equations of the torque controlled

SLIP in stance can be written as follows

l̈ = −g cosθ −
k
m

(l − l0) + l θ̇2

θ̈ =
τ

m l2 +
g sinθ

l
−

2 l̇ θ̇
l
.

(6.1)
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Figure 6.2: The SLIP Model

where θ is the angle of leg defined between gravity vector and leg, l is the instanta-

neous leg length, k is the spring stiffness constant, m is the mass of body and l0 is

the initial leg length. During stance the leg is free to rotate around its toe. In flight

phase, the point body mass is acted upon by only body mass and exhibits a projectile

motion.

6.2.2 Half Circular, Compliant Beam (CCB) Template

The details of the this model is given in Chapter 2. We rewrite the dynamic equations

as

sF F


2



r

arcl



l


( , )h hx y m

Figure 6.3: The CCB Model
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, (6.2)

where

C1 :=
larc

(π − θ)2 (sinθ + cosθ(π − θ))

C2 := −2larc
θ̇2

(π − θ)3 (sinθ + cosθ(π − θ) − sin(θ)(π − θ)2).

6.3 Experimental Set-up and Data Collection

All the experiments in this study were performed by the Edubot robot platform [3].

EduBot, (Fig. 6.1), has one rigid body with six actively driven compliant legs. Each

leg of the Edubot is enforced by six local PD controllers and the open loop control

of the slow and fast swing phases of each tripod performed by a controller, called

Buehler Clock [4], that is parametrized by four variables: [tc, ts, φs, φo]. We used

equivalent set of control parameters like defined in [91], tp (duration of whole period),

ts (stance time), θtd (leg touchdown angle) and θlo (leg liftoff angle). Fig. 6.4 presents

the controller structure where φs is the rotation angle of the leg during slow phase.

The period of one leg starts with a ground contact. During the stance phase the leg

sweeps φs = (θlo − θtd) rad, and its completes the whole phase by rotating (2π − φs)

rad. during the flight phase.
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Table 6.1: Edubot parameters

Variable Definition Value Unit
E young modulus 9.8 GPa
r radius of leg 0.059 m

des

td
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SI
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Flight

Stance
+



/23 / 2

0

des lo 
des td 

s

(b)

Figure 6.4: (a)The Buehler two speed profile is defined by 4 parameters (b) Side view
of the robot with a desired leg angle of the fligth and stance phase [θtd, θlo, ts, tp] [4].

θdes =


θlo−θtd

ts
t + θtd 0 ≤ t < ts

θtd−θlo−2π
tp−ts

(t − ts) + θlo ts ≤ t < tp

(6.3)

θ̇des =


θlo−θtd

ts
0 ≤ t < ts

θtd−θlo−2π
tp−ts

ts ≤ t < tp

In this experiment Vicon camera setup is used to capture center of mass (COM) posi-

tion of the robot during locomotion. This setup includes six cameras with a sampling

rate 120 Hz. [90]. In order to start analysis we first obtained accurate COM position

data with a deviation of less than 5 mm. Due to the inherent inaccuracies in the Vi-

con calibration process, the physical ground plane is not aligned with the X-Y plane

of the Vicon coordinate frame. We first calibrated the camera system logging the
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positions of numerous reflective balls which were spread out on the Vicon system’s

capture area, and then we fitted a surface to these points, which defines the shape and

orientation of the ground. The Cartesian body position data vb := [vbx
vby

vbz] ∈ R3 in

the Vicon coordinate system, V , are then transformed to World Coordinate System,

W, by a homogeneous transformation hw
v : V → W.

The control parameters of the robot adjusted carefully to acquire smooth and con-

tinuous tripod gaits. We run the robot from one side to other side of the experiment

area whose length is approximately three meters. Vicon cameras track and record

the position of reflective markers attached to robot and user-defined function fits a

rectangular to these markers. Then orientation and geometric center, which is almost

near to location of COM, of the robot are calculated with a sampling rate 120 Hz.

Another logger on the robot receipts the information about the angular position and

velocity of each leg. We synchronized Vicon and leg logger by fitting a spline to both

sets of data and evaluating the fitted spline at points in a common time vector with a

frequency of 1000 Hz.

Since both model live in the sagittal plane we will use the sagittal plane projection

of the COM tracjectory obtained from Vicon data. When the robot runs between two

points, the horizontal trajectory of COM may not be parallel to one of the axis of

Vicon system. In this case, we need to find a straight line which defines the direction

of motion. A straight line can be obtained from least squares polynomial fitting of

horizontal trajectory. Figure (6.5) shows the projection of COM trajectory to the

sagittal plane.

The x, y, z points in the Vicon coordinate frame,V can be represented in the sagittal

Plane, S with the below matrix,

[
bx by 0 1

]
=

[
x y z 1

]
RP (6.4)

where b is the position vector of COM in sagittal plane, R is the rotation and transla-

tion matrix and P is the orthogonal projection matrix. R and P can be written as
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R =


1 0 0 0

0 1 0 0

0 0 1 0

Tx Ty Tz 1




cos(β) sin(β) 0 0

−sin(β) cos(β) 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1



P =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1


where the first matrix in R is translation matrix and the others are rotation matrices

about the z and x axis of the Vicon coordinate frame, respectively. The angle β is the

slope of the approximate trajectory line in horizontal plane.

Using above matrices, the COM trajectories of each run are projected to the sagittal

plane. To fit the models to experimental data, we need to define stances of each run.

In this study we used the tripod gait controller [4, 92] that is characterized by the

simultaneous motion of the front and rear leg on the one side and middle leg on the

other side. While the robot operating in the tripod gait, it has three different operation

modes: single support, double support and flight phase. We only consider the single

support phase where the robot is propelled by only one tripod (left or right).

In our analysis, the exact measurement of the COM height is very important to obtain

accurate fitting results. The Vicon system has a limited area where the measurement

of the rigid body pose is done accurately. To acquire the this area, we swept the robot

on the Vicon area, and then we found the region which has acceptable measurement

error. We filtered the data where the robot was on the outside of this permissible

region.

The goodness of the running is the other important issue of our data filtering. Since

templates used in this study live in the sagittal plane, we will use the sagittal plane

projection of the COM trajectory obtained by Vicon system. When the robot runs

between two points, the horizontal trajectory of COM may not be parallel to one of

the axis of Vicon system. In this case, we need to find a straight line which defines
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the direction of motion. A straight line can be obtained from least squares polynomial

fitting of horizontal trajectory. Since the robot is not always able to walk or run along

a straight line, sometimes this fitting result gives us unacceptable errors. We defined

another criterion for the goodness of the run. Firstly, we fitted a straight line, i.e.

y = ax + b , to the horizontal trajectory of COM in W, and then we calculated the

orthogonal distance between each point and fitted line from the below formula

d(i) =

∣∣∣wby(i) − (a.wbx(i) + b)
∣∣∣

√
1 + a2

. (6.5)

We filtered the data which lie the outside of the interval µ ± α, where µ is the mean

and α is the standard deviation of the distance vector. The Cartesian body position

data wb := [wbx
wby

wbz] ∈ R3, in the World coordinate frame, W, are then projected

to the sagittal Plane, S , by a homogeneous transformation hs
w : W → S defined as

hs
w =


1

√
1+a2

0 0
a

√
1+a2

0 0

0 0 1

 and


sbx

0
sbz

 = hs
w.


wbx

wby

wbz

 . (6.6)

Fig. 6.5 shows the projection of COM trajectory to the sagittal plane. The red line is

the real horizontal trajectory of the robot. The sagittal plane, S , is perpendicular to the

fitted straight line. To calculate the net force acting on body during one stride, we first

fitted a cubic spline to x and y trajectory of COM and then we double differentiated

them. This provided us estimated value of the instantaneous body COM acceleration

in S .

Fb = m
d2

dt2 b = [m
d2

dt2 bx,m
d2

dt2 by] (6.7)

where m is the body mass.
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Figure 6.5: Sagittal plane movement of the robot in the world coordinate frame

6.4 Fitting Models to Hexapod Running Data

6.4.1 Fitting Procedure

6.4.1.1 Stance Extraction

The system identification study in this section only considers the single tripod sup-

port phase of the robot; therefore, we need to extract the stance phase of each tripod

for the gaits that have double stance phase (or in other words that do not exhibit any

flight phase). Since our experimental platform was not equipped with any sensor to

detect the touchdown and liftoff conditions of leg while running, we performed off-

line stance detection procedure i.e. time-shifted target speed based stance extracting

method that uses mean target velocities of the both left and right tripod as a tem-

plate signal in order to find best delay with a minimum absolute error. The template

signal provided by Buehler clock was shifted along the time axis and at each step

we minimized the total absolute error between the actual and target velocity that was

calculated by

e =

n∑
i=1

∣∣∣∣θ̇(i) − ˙̂θ(i + k)
∣∣∣∣, (6.8)

where θ̇ is the actual hip velocity, ˙̂θ is the target hip velocity, n is the number of

samples, and k is the delay.
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The stride of the robot, where the template model is valid, is defined by the slow

phase of shifted target velocity with a minimum error. Figure (6.6-top) gives the

extracted strides of the one run. The left and right tripods are represented by a differ-

ent line type. Figure (6.6-middle) and Fig. (6.6-bottom) show the actual, target and

shifted mean velocity of the one tripod. As seen from the figure the stance phase is

approximated by a slow phase of the shifted target velocity.

The stride detection procedure explained above is the first step of our system identifi-

cation study. We will try to optimize the parameters of the SLIP and CCB templates

that fit the stance COM trajectory of the hexapod platform. After obtaining the ap-

proximate leg parameters of the CCB template, we will change the stance detection

procedure with a geometrical one that uses the half circular leg structures as a base

for extraction.
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Figure 6.6: The stance phases of one run (top), mean of the actual θ̇act, target angular

velocity θ̇t and shifted target angular velocity θ̇st of the left (middle) and right tripod

(bottom).

6.4.1.2 Data Processing

Our data consist of three different post-processed data sets whose gait parameters are

given in Tab. 6.2. Wc is the angular speed of the leg [rad/sec], φs is the angle of the

stance phase centered on φ0. Duty cycle (dc) is the percentage of the time spent in

the stance phase. While the robot is walking, the dc value is more than 0.5. The dc

98



value which is smaller than 0.5 is used for running and jogging. Kp and Kd is the

normalized proportional and derivative gain of the controller, respectively.

Table 6.2: Parameters of each gait

Parameter Running Jogging Pace
ωc 19.0 17.4 10
φs 0.75 1.12 1.0
φ0 0.35 0.20 0.2
dc 0.30 0.45 0.6
kp 0.56 0.56 0.7
kd 0.03 0.03 0.0

In section 6.2, we have presented the dynamic equations of the SLIP and CCB model

as a function of unknown leg parameters. In this section, we use these models to

estimate unknown leg and controller parameters of each gait. To obtain a continuous

trajectory (bx(t), bz(t)) ∈ S , we fitted a cubic spline to data points

sb =


sbx(k)

sbz(k)

 , t(k), k = 1...N, (6.9)

where N is the number of samples in a stance phase. An estimated COM trajectory

is obtained by double differentiating the body accelerations. The initial states of the

SLIP and CCB template models are identical to the initial states of the fitted trajecto-

ries, i.e.

xslip(0) = xccb(0) = bx(t)t=t(1),

ẋslip(0) = ẋccb(0) =
dbx(t)

dt

∣∣∣∣∣
t=t(1)

yslip(0) = yccb(0) = bz(t)t=t(1),

ẏslip(0) = ẏccb(0) =
dbz(t)

dt

∣∣∣∣∣
t=t(1)

θslip(0) = θccb(0) = θ(t)t=t(1),

θ̇slip(0) = θ̇ccb(0) =
dθ(t)

dt

∣∣∣∣∣
t=t(1)

(6.10)
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6.5 Fitting Prodecure

6.5.1 Fitting to Individual Stance Phase of One Gait

The system identification study is achieved in two steps. In the first step, simulations

of stance phases of template models for different gaits are performed over the same

period of time as the data trajectory and the leg parameters, i.e. [k, l0, f0] for SLIP

and [EI, r0] for CCB template, as well as controller parameters [Kp,Kd, φlo, φtd, ts]

are obtained by minimizing error function defined as

e =

√√
1
N

N∑
i=1

∥∥∥Xreal,i − Xmodel,i

∥∥∥2

L2
(6.11)

where X ∈ (x, y). This nonlinear unconstrained optimization problem is solved by

Nelder-Mead search techniques [63]. Table 6.3 summarizes the results of the first

step of system identification study.

In the second step, we fixed the leg parameters and gains of PD controller and we

optimized the parameters of the reference signal function of PD controller [φlo, φtd, ts]

to obtain more accurate results. Fig. 6.7 shows the fine tuned controller parameters

of each stance. The CCB template errors calculated by (6.11) and are less than that

of SLIP template errors for all gait types (see Fig. 6.8).

Table 6.3: The results of the first step of the system identification.

SL
IP

gait
running
jogging

pace

k
4543.2
1979.2
3222.6

l0

0.1300
0.1367
0.1300

Kp

3.66
50.99
133.15

Kd

35.50
13.08
1.79

C
C

B

gait
running
jogging

pace

EI
0.8729
0.5911
0.8196

r0

0.0666
0.0673
0.0681

Kp

724.39
492.16
54.21

Kd

12.63
17.37
12.44
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Figure 6.7: The controller parameters [φlo, φtd, ts] of (a) SLIP model (b) CCB template
obtained in the second step
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Figure 6.8: Fitting errors of (a) SLIP template (b) CCB template

6.5.2 Fitting to All Stance Phase of One Gait

In the previous section, the two models were fitted to individual stance phases of

RHex COM trajectory for a single speed with a performance measure defined as an

error between the fitted and real trajectory. This method gives different touchdown

angle, length and stiffness values over the one gait type that actually should be same.

In this section, we have tried to optimize all parameters by fitting the both model to

all stances of single speed. For these purpose, we select 100 stances for running, 200
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stances for jogging and walking. The cost function is defined as

nerr =
1
M

M∑
k=1

(

√
1
N

N∑
i=1

∥∥∥Xreal,i − Xmodel,i

∥∥∥2

L2√
1
N

N∑
i=1

∥∥∥Xreal,i

∥∥∥2

L2

) (6.12)

where M is the total stance number of one gait, N is the sample number of a one

stance, Xreal ∈ (x, y, ẋ, ẏ) is the experimentally obtained states of the robot COM, and

Xmodel ∈ (x, y, ẋ, ẏ) is the model generated states for the same time instant, i. The error

is normalized with respect to the experimental flow.

Table 6.4: The results of the first step of optimization.

M
od

el

Gait Cost
Optimized Parameters

EI Kp Kd θtd θlo ts

C
C

B

Running 0.0795 0.1294 46.8497 0.4427 0.6641 -0.0054 0.4573

Jogging 0.1196 0.1572 24.9387 0.5358 0.5908 -0.0011 1.0257

Pace 0.4045 0.2630 10.7346 0.0757 0.4271 0.0270 0.1555

Optimized Parameters

k f x0

SL
IP

Running 0.2829 2296.4 0.0532

Jogging 0.2003 2479.6 0.0449

Pace 0.3954 12446 -0.0095

The optimization is performed in three steps. In the first step, we find the optimum

[k, f x0] parameters of SLIP model and [EI,Kp,Kd, θtd, θlo, ts] parameters of CCB

model by minimizing the cost function (6.12). The resulting parameters of two model

for three gaits are given in Table 6.4. The errors of CCB model for all gait type are

less than that of SLIP model.
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Table 6.5: The mean, maximum and minimum leg radius of CCB model and leg
length of SLIP model that are calculated by using optimum θtd and f x0 given in
Table 6.4

M
od

el

Gait
Radius of Leg (m)

rmean rmax rmin

C
C

B
Running 0.0615 0.0650 0.0549

Jogging 0.0613 0.0659 0.0570

Pace 0.0539 0.0556 0.0524

Initial Length of Leg (m)

l0mean l0max l0min

SL
IP

Running 0.1222 0.1278 0.1117

Jogging 0.1209 0.1288 0.1135

Pace 0.1035 0.1067 0.1005

In the second step, we calculated the initial leg length of SLIP model and radius of

CCB model for all individual stance phase of one gait assuming that the leg hits the

ground with an undeflected configuration. The mean, maximum and minimum values

of the leg length and radius are given in Table 6.5. The leg length and radius calcu-

lated in this step are utilized to extract stance data only using the model structures

and eliminate the dependency on experimental stance calculation method described

previously in Section 6.4.1.1.

0
,

mean
k l

0
f

mean
r



Figure 6.9: The geometrical stance extraction procedure of SLIP and CCB models.
The dashed part of the COM trajectory is eliminated since the height of the COM in
this part does not satisfy the geometrical constraint given in (6.14)
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In the last step of optimization, we fixed the leg parameters [k, l0mean] of SLIP model

and [EI, rmean] of CCB model and we optimized f x0 and [Kp,Kd, θtd, θlo] by eliminat-

ing experimental stance data (the dashed part of the trajectory, see Fig. 6.9) where the

height of the robot is higher than

y > l0mean(
√

1 − ( f x0
l0mean

)2) for SLIP (6.13)

y > rmean(1 + cos(θtd)) for CCB. (6.14)

Table 6.6: The optimization results of the last part. We fixed the leg parameters
([EI, k] are given in Table 6.4 and [l0mean, rmean] are given in Table 6.5) and we re-
optimized the control parameters of both models.

M
od

el

Gait Cost
Optimized Parameters

Kp Kd θtd θlo

C
C

B

Running 0.1043 18.8760 0.7243 0.8319 -0.0051

Jogging 0.1438 3.7335 0.4220 0.6844 -0.0014

Pace 0.3605 19.9981 0.2342 0.6503 0.1442

f x0

SL
IP

Running 0.2447 0.0567

Jogging 0.2560 0.0447

Pace 0.3197 -0.0091

6.6 Conclusion

In this section, we validated that the CCB template is capable of estimating the tra-

jectory of the COM of hexapedal running for a large range of speeds. We compare

the efficiency of this model with a widely used SLIP template and we show that the

normalized error between real and model generated trajectory is about 2% for all

range of speeds, which are smaller than the error of SLIP model. It is emphasized

that this more complete model can be implemented on RHex type of robots to derive

controllers that provides wide range of stable and robust dynamic locomotion.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we have focused on the characterization and optimization of running

with curved legs. Although the spring-loaded-inverted-pendulum (SLIP) model char-

acterizes the essential aspects of running dynamics of humans and animals, because of

its excessive simplicity this model cannot capture the fundamental aspects of running

with curved legs such as rolling contact during stance phase and nonlinear stiffness of

the leg, which are inherent properties of the curved leg. In this thesis we have offered

a computationally efficient, physically accurate and more realistic low dimensional

model which inherently satisfies rolling contact and variable stiffness properties and

is intended for use as a template to understand dynamics of legged locomotion. We

also experimentally validated that our model captures nonlinear stiffness property of

the leg very accurately. The proposed leg model is not limited to RHex-like robots, it

can be used to understand the dynamics of locomotion with compliant curved struc-

tures other than half circular one. This energy based compliance calculation proce-

dure can be also generalized to understand the dynamics of a wide range of motion

and various behaviors with an arbitrary shape compliant leg.

We designed controllers based on optimal control theory and analyzed the different

locomotive behavior of the circular compliant legged monopod such as running and

jumping over obstacles. We have used simple open-loop control strategies since they

do not require rich sensory information (especially without notice of body state).

Despite the simplicity of controller structures used throughout the thesis, we think

that the results obtained using standard optimization techniques will give an idea

how the feedback control policies should be structured to obtain reactive, stable and
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more robust controller for the autonomous dynamic locomotion. The stability of the

designed controllers have been analyzed using Apex return map, and we have shown

that the motion of the system under forward speed and height controllers are neutrally

stable.

We have presented the optimal control approach for the rough terrain locomotion of

half circular legged robot. Motivating by the performance of the long and high triple

jumper athletes, we have defined optimal control problem that finds the optimum take-

off conditions for the triple jump motion considering different obstacle sizes. We have

examined the sensitivity of triple jump trajectory to variations in initial states, control

parameters and localization of obstacle. We have also defined a controller that takes

into account the safety margin around an obstacle. The current study is limited to one

obstacle whose localization is known in the environment. We need to consider irreg-

ularly distributed different size multiple obstacles to obtain more realistic controller

structure.

Finally, the new compliant circular beam template is anchored to produce a repre-

sentative model to capture the dynamics of hexapedal locomotion. We compare the

efficiency of this model with a widely used SLIP template. The results of this study

confirms that this candidate template can be used to understand the locomotion of the

complex biological systems.

The next step of our study is the experimental verification of our controllers which re-

quires the parameter identification of real robot platform and reliable high-bandwidth

state feedback. The physical limitations of the robot platform such as torque limits

of the hip motor or maximum deflection of the leg can be added as a constraint to

the optimal control problems to enhance practical applicability of the controller. The

performance of the controller should be investigated for other leg design and system

parameters.

Throughout the thesis, we have analyzed the effects of circularity and compliance

properties of the leg on the dynamics of one legged robot. Although studies about

monopod locomotion may improve knowledge about dynamics of multi-legged loco-

motion, their pay load capabilities, stability and limited locomotion properties such

as performing only hopping motion makes them hard to use in real time applications.
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The circular, compliant leg model will be extended to two, four or six legged models

with increasingly capable dynamic abilities. We hope that our research will serve as a

base for future studies on multi-legged locomotion with a circular and compliant leg.
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