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ABSTRACT 

 

 

DESIGN OF A REDUCED COMPLEXITY RATELESS SPINAL DECODER 

 

 

 

Taş, Murat 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Melek Diker Yücel 

 

 

 

January 2014, 94 pages 

 

 

Wireless communication systems utilize several forward error correcting 

techniques to cope with changing channel conditions efficiently. One way is 

selecting from a list of coding/modulation schemes by considering the actual 

channel state. When this approach of choosing a fixed rate code is not applicable, 

one can use rateless codes whose rates are dynamically changing with respect to 

the changing channel conditions. A rateless encoder continues to send its 

codeword/packet to the destination unless the receiver sends an 

acknowledgement.  

 

In this thesis, after investigating and evaluating the effects of the main 

parameters on the performance of the rateless spinal codes; our work focuses on 

making the spinal decoder algorithm more efficient in terms of the number of 

computations, while achieving the same rate values. We propose a modification 

that uses the initial information extracted from path metric distributions to 

decrease the computational burden at the initial steps of the ‘bubble decoder’ of 

Perry et al. The reduction offered by our modified algorithm is up to 70% of the 

original computational complexity at the cost of negligible rate losses. 

 

Keywords: rateless codes, spinal codes, efficient decoder 
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ÖZ 

 

 

DÜŞÜK KARMAŞIKLIKLI, ORANSIZ FİLİZ VEREN KOD ÇÖZÜCÜ 

TASARIMI 

 

 

 

Taş, Murat 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Melek Diker Yücel 

 

 

 

Ocak 2014, 94 sayfa 

 

 

Kablosuz haberleşme sistemleri, değişen kanal koşullarına uyum sağlamak için 

çeşitli hata düzeltme kodları kullanırlar. Bir yöntem, değişen kanal koşullarına 

göre kodlama/modülasyon seçenekleri arasından seçim yapmaktır. Sabit oranlı 

kodlardan birini seçmeyi gerektiren bu yöntemin uygulanamadığı durumlarda 

ise, oranı kanalın durumuna göre dinamik olarak değişebilen oransız kodlar 

kullanılabilir. Oransız kod kullanan haberleşme sistemlerinde, gönderici, paketi 

alıcı tarafından başarıyla alındığını öğrenene kadar göndermeye devam 

etmektedir.  

 

Bu çalışma, oransız filiz veren kodların başarımını etkileyen ana parametrelerin 

incelenip değerlendirilmesinden sonra, kod çözme algoritmasının başarımını 

bozmadan işlem sayısını azaltmaya odaklanmaktadır. Perry ve arkadaşlarının 

‘köpük kod çözücü’süne önerdiğimiz değişiklik, algoritmanın metrik 

dağılımlarından çıkarılan ön bilgiyi kullanarak işlem yükünü daha ilk adımlarda 

düşürmektedir. Önerdiğimiz kod çözme algoritması, başarımdan küçük bir ödün 

vererek, oransız filiz veren kod çözücünün karmaşıklığını %70 oranında 

azaltmaktadır. 

 

Anahtar Sözcükler: oransız kodlar, filiz veren kodlar, etkin kod çözücü 



  

 vii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii 

 

 

ACKNOWLEDGEMENTS 

 

 

 

I would like to thank my supervisor Assoc. Prof. Dr. Melek Diker Yücel for her 

guidance and support throughout this work. 

 

I would also like to thank my company ASELSAN for supporting my graduate 

studies. 

 

I would like to thank my colleagues for their patience and valuable friendship. 

 

Finally, I would like to thank my parents and my sister for everything. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 ix 

 

TABLE OF CONTENTS 

 
 
ABSTRACT...........................................................................................................v 

ÖZ .........................................................................................................................vi  

ACKNOWLEDGEMENTS .............................................................................. viii  

TABLE OF CONTENTS......................................................................................ix  

LIST OF TABLES.............................................................................................. .xi 

LIST OF FIGURES .............................................................................................xii  

LIST OF ABBREVIATIONS............................................................................ xiv 

CHAPTERS 

 

1 INTRODUCTION .....................................................................................1 

1.1  Rateless Codes .............................................................................. 2  

1.2  Rateless Spinal Codes ....................................................................3 

1.3  Aim and Organization of the Thesis.............................................. 5 

 

2  RATELESS CODES................................................................................. 7  

2.1 Fixed-Rate Channel Codes........................................................................ 7 

2.2 Overview of Rateless Coding ................................................................... 9 

2.3 LT Codes..................................................................................................11 

2.4 Raptor Codes ...........................................................................................12 

 

3  RATELESS SPINAL CODES ................................................................15 

      3.1 Spinal Encoder......................................................................................... 16 

3.1.1 Message Splitter..............................................................................17 

3.1.2 Spine Generator ..............................................................................17 

3.1.3 Constellation-Mapping ...................................................................18 

      3.2 Spinal Decoder ........................................................................................21 

      3.3 Puncturing ……........................................................................................25 

      3.4 Hash Function ..........................................................................................26 

      3.5 List of Symbols Used for Spinal Codes...................................................27 

 

4  THE ALGORITHM FOR EFFICIENT DECODING OF SPINAL 

CODES ................................................................................................................29 

      4.1 Observations via Offline Simulations......................................................30 

 4.1.1 Observation 1...................................................................................30 

 4.1.2 Observation 2...................................................................................32 

      4.2 The Algorithm for Efficient Decoding of Spinal Codes..........................37 

 

5  SIMULATION RESULTS ......................................................................45 

      5.1 Simulation Environment...........................................................................46 

      5.2 Effect of the Parameter c on the Performance..........................................48 

      5.3 Effect of the Parameter k on the Performance..........................................52 

      5.4 Effect of the Parameter B on the Performance.........................................53 



 x 

      5.5 Effect of the Parameter n on the Performance..........................................56 

      5.6 Effect of the Hash Function on the Performance.....................................58 

      5.7 Effect of the Puncturing on the Performance...........................................59 

      5.8 Simulation Results of the Spinal Decoder that Uses Our Modified 

Algorithm.............................................................................................................62 

      5.9 Simulation Results of the Modified Spinal Decoder for Changing SNR 

Conditions............................................................................................................71 

 

6  CONCLUSIONS .....................................................................................75 

 

7 REFERENCES ........................................................................................79 

 

APPENDICES 

            A. CDF Plots of Subpass 1-6 Path Metric Values for B=1 at Various 

SNR’s...................................................................................................................83 

            B. Limit Values of Subpass 1-6 Path Metric Values for B=1 at Various 

SNR’s……………...............................................................................................89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 xi 

 

 

LIST OF TABLES 

 

 

Table 4.1 – Subpasses  ( ) at which successful decoding starts versus SNR = i, 

for n=96, k=4, c=6, B=256 and d=1.....................................................................30 

Table 4.2 – Subpasses  ( ) at which successful decoding starts versus SNR = i, 

for n=96, k=4, c=6, B=16 and d=1.......................................................................31 

Table 4.3 – Limit values for different   ( ) and SNR’s at the end of subpass 6 

for B=1..................................................................................................................36 

Table 5.1 – Simulation parameters for Section 5.2..............................................48 

Table 5.2 – Simulation parameters for Section 5.3..............................................52 

Table 5.3 – Simulation parameters for Section 5.4..............................................53 

Table 5.4 – Simulation parameters for Section 5.5..............................................56 

Table 5.5 – Simulation parameters for Section 5.6..............................................58 

Table 5.6 – Simulation parameters for Section 5.7..............................................60 

Table 5.7 – (Modified to reference) ratio of number of operations per message 

averaged over the SNR range of [0, 30] dB for Bmax = 256..................................69 

Table 5.8– (Modified to reference) ratio of achieved rates averaged over the 

SNR range of [0, 30] dB for Bmax =256................................................................69 

Table 5.9 – (Modified to reference) ratio of number of operations per message 

averaged over the SNR range of [0, 30] dB for Bmax = 16....................................69 

Table 5.10 – (Modified to reference) ratio of achieved rates averaged over the 

SNR range of [0, 30] dB for Bmax =16..................................................................69 

Table 5.11 – Simulation parameters for Section 5.9............................................71 

Table B.1 – Limit values for our modified algorithm over the SNR range of [0, 

30] dB for subpasses 1 to 6 when the path metric cdf reaches a = 0.95...............89 

Table B.2 – Limit values for our modified algorithm over the SNR range of [0, 

15] dB for subpasses 1 to 6 when the path metric cdf reaches a = 0.9.................90 

Table B.3 – Limit values for our modified algorithm over the SNR range of [0, 

15] dB for subpasses 1 to 6 when the path metric cdf reaches a = 0.8.................91 

Table B.4 – Limit values for our modified algorithm over the SNR range of [0, 

15] dB for subpasses 1 to 6 when the path metric cdf reaches a = 0.7.................92 

Table B.5 – Limit values for our modified algorithm over the SNR range of [0, 

15] dB for subpasses 1 to 6 when the path metric cdf reaches a = 0.6.................93 

Table B.6 – Limit values for our modified algorithm over the SNR range of [0, 

15] dB for subpasses 1 to 6 when the path metric cdf reaches a = 0.5.................94 

 



 xii 

 

 

 

 

 

LIST OF FIGURES 

 

Figure 1.1 –Rate achieved with spinal codes [Perry-Iannucci-Fleming-

Balakrishnan-Shah-2012]....................................................................................4 

Figure 2.1 – Random linear coding [Mackay-2005] .........................................10 

Figure 2.2 – Raptor encoding [Mackay-2005] ..................................................13 

Figure 3.1 – Inner structure of the spinal encoder...............................................16 

Figure 3.2 – Spinal encoder’s generation of symbols in successive passes........20 

Figure 3.3 – Operation of spinal bubble decoder................................................24 

Figure 3.4 – Puncturing schedule offered in [Perry-Iannucci-Fleming-

Balakrishnan-Shah-2012]..................................................................................25 

Figure 4.1 – Histogram of Subpass 1 best path metrics at {0, 5, 10, 15} dB for 

B=256...................................................................................................................33 

Figure 4.2 – Histogram of Subpass 6 best path metrics at {0, 5, 10, 15} dB for 

B=256...................................................................................................................34 

Figure 4.3 – Estimated cdf of Subpass 6 best path metrics at SNR=10 dB for 

B=1 and B=256.....................................................................................................35 

Figure 4.4 – Typical probability densities of best path metrics at different SNR 

values....................................................................................................................41 

Figure 4.5 – Modified Decoding Algorithm Flowchart......................................42 

Figure 5.1 – Structure of the simulation software...............................................47 

Figure 5.2 – Rate achieved for different c values when k=2...............................50 

Figure 5.3 – Rate achieved for different c values when k=3...............................50 

Figure 5.4 – Rate achieved for different c values when k=4...............................51 

Figure 5.5 – Rate achieved for different k values................................................53 

Figure 5.6 – Rate achieved for different B values for k = 3, c = 4......................55 

Figure 5.7 – Rate achieved for different B values for k = 4, c = 6......................55 

Figure 5.8 – Rate achieved for different n values at k = 3, c = 4.........................57 

Figure 5.9 – Rate achieved for different n values for k = 4, c = 6.......................57 

Figure 5.10 – Achieved rate ratio of the MD4 and SHA hash functions to 

Lookup3................................................................................................................59 

Figure 5.11 - Achieved rate ratio of puncturing to no puncturing, k = 3, c = 4...61 

Figure 5.12 - Achieved rate ratio of puncturing to no puncturing, k = 4, c = 6...61 

Figure 5.13 - Number of operations ratio of our modified algorithm to the 

reference decoder, with Bmax =256.......................................................................63 



  

 xiii 

Figure 5.14 - Number of operations per message of our modified algorithm with 

different cdf values and that of the reference decoder, with Bmax =256...............63 

Figure 5.15 - Achieved rate ratio of our modified algorithm to the reference 

decoder, with Bmax =256.......................................................................................65 

Figure 5.16 - Achieved rate ratio of our modified algorithm to the reference 

decoder – closer view, with Bmax =256 ................................................................65 

Figure 5.17 - Number of operations ratio of our modified algorithm to the 

reference decoder, with Bmax =16.........................................................................67 

Figure 5.18 - Number of operations per message of our modified algorithm with 

different cdf values and that of the reference decoder, with Bmax =16................ 67 

Figure 5.19 - Achieved rate ratio of our modified algorithm to the reference 

decoder, with Bmax =16.........................................................................................68 

Figure 5.20 - Achieved rate ratio of our modified algorithm to the reference 

decoder – closer view, with Bmax =16...................................................................68 

Figure 5.21 - Achieved rate ratio of modified / reference decoders for an abrupt 

change from SNR1 = 20 dB in the first t subpasses to SNR2 = 10 dB...................72 

Figure 5.22 - Number of operations ratio of modified / reference decoders for an 

abrupt change from SNR1 = 20 dB in the first t subpasses to SNR2 = 10 dB........72 

Figure 5.23 - Achieved rate ratio of modified / reference decoders for an abrupt 

change from SNR1 = 10 dB in the first t subpasses to SNR2 = 20 dB...................73 

Figure 5.24 - Number of operations ratio of modified / reference decoders for an 

abrupt change from SNR1 = 10 dB in the first t subpasses to SNR2 = 20 dB........73 

Figure A.1 – Path metric cdf’s in Subpasses 1 to 6 for SNR = 0 dB...................83 

Figure A.2 – Path metric cdf’s in Subpasses 1 to 6 for SNR = 5 dB...................83 

Figure A.3 – Path metric cdf’s in Subpasses 1 to 6 for SNR = 10 dB.................84 

Figure A.4 – Path metric cdf’s in Subpasses 1 to 6 for SNR = 15 dB.................84 

Figure A.5 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 1.....................85 

Figure A.6 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 2.....................85 

Figure A.7 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 3.....................86 

Figure A.8 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 4.....................86 

Figure A.9 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 5.....................87 

Figure A.10 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 6...................87 

 

 

 

 

 

 

 

 

 



 xiv 

 

 

 

LIST OF ABBREVIATIONS 
 

 

 

ARQ        Automatic Repeat Request 

AWGN       Additive White Gaussian Noise 

FEC        Forward Error Correction 

LDPC        Low Density Parity Check 

LT        Luby Transform 

MD4        Message Digest Algorithm 4 

ML        Maximum Likelihood 

QAM        Quadrature Amplitude Modulation 

RNG        Random Number Generator 

SHA        Secure Hash Algorithm 

SNR        Signal to Noise Ratio 

 

 

 

 

 

 

 

 



  

 1 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Communication systems aim to transfer information between communicating 

peers in an error-free manner. To achieve this goal, most digital communication 

systems use error correction techniques to combat with the effects of noise and 

interference at the receiver end. The error correction techniques are started to be 

developed after Claude Shannon’s pioneering work that established the 

information theory field [Shannon-1948]. In his paper, Shannon proved that, for 

a communication channel, there exists a quantity C, called the capacity of the 

channel, such that for rates smaller than the capacity of the channel, one can 

achieve arbitrarily low probability of error in transmission by using powerful 

enough channel codes. Shannon proved that an additive white Gaussian channel 

of bandwidth W has capacity given as [Proakis-1995] 

       (   
 

   
)                                              (   ) 

where P denotes the average transmitted power and    denotes the power 

spectral density of the noise. 

 

The design of error correcting codes developed with block codes like, Hamming, 

[Hamming-1950], BCH [Bose-Chaudhuri-1960] & [Hocquenghem-1959], RS 

[Reed-Solomon-1960] codes, closely followed by tree and convolutional codes 

[Elias-1955], [Wozencraft-1957], [Massey-1963], [Viterbi-1967]. Since then, 

more and more powerful channel codes were discovered and implemented in 

practical communication systems. Two of the most important error correction 

codes discovered are the LDPC codes of Gallager [Gallager-1962] and the 

Turbo codes [Berrou-Glavieux-Thitimajshima-1993]. These two channel codes 

are shown to operate at rates very close to the channel capacity for AWGN 
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channels. They both have efficient decoding algorithms; hence they are 

efficiently implemented in practice, including a variety of communication 

standards. 

 

The error correction codes mentioned above are fixed-rate codes, that is, they 

take k input symbols and generate n coded symbols with a fixed-rate of n/k. The 

rate of the fixed-rate codes is determined according to the communication 

channel’s conditions either at the design time or at the instant of communication.  

The communication protocols that use the latter technique should have 

information about the channel conditions continuously at the transmitter side, so 

that the transmitter can adapt its coding rate to the environment conditions. 

 

1.1. Rateless Codes 

 

A rateless code is defined as a channel code such that the higher rate codes are 

prefixes of the lower rate codes [Erez-Trott-Wornell-2012]. The transmitter 

that uses a rateless encoder generates encoded symbols until the receivers 

acknowledge that the transmission is successful or a timeout for transmission 

time is reached. This makes the rateless transmission’s coding rate subject to 

change at each transmission. In other words, a higher code rate is possible when 

the channel conditions are good and a lower rate when the channel conditions are 

bad. Since the coding rate is not fixed ahead of transmission, the coding process 

adapts itself nearly perfect to the changing channel conditions. 

 

The first rateless codes that are developed, are designed specifically for erasure 

channel models. The most important two of them, which are discussed also in 

Chapter 2, are LT (Luby Transform) [Luby-2002] and Raptor [Shokrollahi-

2006] codes, which are also known as fountain codes. The online codes are also 

rateless codes developed at the same time. [Maymounkov-2002]. The encoder 

of fountain codes is like a metaphorical fountain that generates an infinite 

number of encoded symbols [MacKay-2005]. This way, the coding rate is 
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determined according to the channel conditions, making the fountain codes 

rateless.  

 

 

The LT codes use a specially designed probability distribution to choose the 

degree of an encoded packet that shows how many packets to exclusive-or with 

each other. This distribution makes encoding and decoding of LT codes practical 

to implement with large code block sizes. The Raptor code is the concatenation 

of a weak LT code with a precoder to compensate for the deficiencies of the 

weakened LT code. The Raptor codes have lower encoding and decoding 

complexity as compared to LT codes. 

 

1.2. Rateless Spinal Codes 

 

A recently proposed rateless code is the rateless spinal code [Perry-Iannucci-

Fleming-Balakrishnan-Shah-2012]. The spinal codes generate encoding 

symbols or modulation symbols by sequentially applying a hash function to 

smaller portions of the message to be transmitted. Applying the hash function 

creates encoded symbols very different from each other even when the two 

messages differ only in a single bit. This in turn makes spinal codes robust to 

noise and interference effects. In [Perry-Iannucci-Fleming-Balakrishnan-

Shah-2012], it is shown through simulations that the spinal decoders are better 

performing than the Raptor, LDPC and Strider codes at a large range of SNR 

values [Gudipati-Katti-2011]. In [Balakrishnan-Iannucci-Perry-Shah-2012], 

it is also shown that spinal codes achieve Shannon capacity in AWGN and binary 

symmetric channels with a polynomial-time encoder and decoder. 

  

The high rate values achieved with spinal codes can be observed in Figure 1.1 

which is reproduced from [Perry-Iannucci-Fleming-Balakrishnan-Shah-

2012]. The spinal codes achieve close to capacity rate values for a large range of 

SNR values. 
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Figure 1.1 –Rate achieved with spinal codes[Perry-Iannucci-Fleming-

Balakrishnan-Shah-2012] 

 

Using a hash function to generate encoded symbols makes the decoding of spinal 

codes harder by inverting the encoder structure. Perry et al. propose an 

approximate maximum-likelihood decoder, called bubble-decoder [Perry-

Iannucci-Fleming-Balakrishnan-Shah-2012], to efficiently decode spinal 

codes. The bubble decoder traverses the tree of possible transmitted symbols in a 

breadth-first manner. While traversing the tree, the decoder prunes the least 

likely paths so that the decoding operation can be completed with reasonable 

complexity instead of the exponential complexity of the maximum-likelihood 

decoder. 

As mentioned in [Perry-Iannucci-Fleming-Balakrishnan-Shah-2012], spinal 

code’s decoder performance gets better when the decoder is more like the 

maximum-likelihood decoder. This can be realized if the decoder prunes fewer 

paths at every symbol interval, which in turn increases the complexity and the 

processing load of the decoder. Since there is a physical limit on the 

computational complexity of a practical decoder, one cannot continuously 

increase the number of paths to be maintained at the decoder to get better 

performance. On the other hand, the speed of the spinal decoder is inversely 

affected by its computational load, the more the decoder prunes less likely paths, 

the higher decoding speeds can be achieved. 
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1.3. Aim and Organization of the Thesis 

 

All practical decoders are limited by the hardware cost, energy expenditure and 

complexity; hence, more competent ways of decoding spinal codes are highly 

desirable. In this work, we first investigate the effects of using different values 

for some parameters of the spinal codes. After that we propose an efficient 

decoder that improves the performance of bubble decoder by maintaining the 

possible paths only when it is necessary. Our work focuses on making the spinal 

decoder algorithm more efficient in terms of computation, while achieving the 

same rate values for a range of SNR values.  

 

The organization of the thesis is as follows. 

 

Chapter 2 reviews the basics of rateless channel coding and gives brief 

information about two most important rateless codes, namely the LT and Raptor 

codes. 

 

In Chapter 3, we review rateless spinal codes. The encoder and decoder of spinal 

codes are explained in detail. We also give brief information about the 

puncturing scheme proposed in [Perry-Iannucci-Fleming-Balakrishnan-Shah-

2012] and the hash function used in the encoder and decoder. 

 

In Chapter 4, we propose an algorithm to efficiently decode the spinal codes. Our 

algorithm builds up on the bubble decoder and saves computational expenditure 

up to 70% as shown in the following chapter by simulation results 

 

Chapter 5 gives the simulation results that we obtain by investigating the 

parameters of the spinal encoder and decoder. We also present the results of 

applying our decoder algorithm proposed in Chapter 4, and compare them with 

those of the bubble decoder. 

 

In Chapter 6, we comment on the results and discuss future work. 
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CHAPTER 2 

 

 

RATELESS CODES 

 

 

 

In this chapter, we present a general overview of the concept of rateless channel 

coding by discussing important rateless codes. In Section 2.1, we review the 

traditional way of channel coding and its drawbacks in general. In Section 2.2, 

we introduce the rateless coding concept and point out differences from fixed-

rate codes. Section 2.3 covers an important type of rateless codes, called the 

Luby Transform (LT) code, for which we give the encoding and decoding 

principles. In Section 2.4 we discuss the Raptor code, which is an improvement 

over LT codes in terms of the encoder and decoder complexity. 

 

2.1. Fixed-Rate Channel Codes 

 

Traditional channel codes that are found to reach rates very close to Shannon 

capacity, such as Turbo or Low Density Parity Check (LDPC) codes are 

examples of fixed rate forward error correction (FEC) codes; i.e., their encoders 

generate a sequence of n symbols given a sequence of k input symbols. Thus, 

they have fixed code rates of k/n, which means they have fixed number of 

additional error correction symbols per source symbol. These codes are shown to 

operate well when the transmitter and the receiver know the channel conditions. 

While it is a reasonable assumption in some cases that the communicating peers 

know the state of the channel, in some situations it can be hard or even 

impossible to track the channel conditions. This complexity of getting channel 

information opens up an application area for rateless codes. 

 

To reach high rates in time-varying channels, transmitter-receiver pairs that use 

traditional fixed-rate codes, should use a reactive approach to choose an 
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encoding method, coding rate and modulation type that is suitable for the actual 

channel. This reactive approach includes the receiver’s sensing the channel state 

and giving feedback to the transmitter. The transmitter then selects a suitable 

coding/rate/modulation choice to reach the best possible rate. The reactive 

method of sensing the channel and sending feedback to the transmitter has two 

major drawbacks.  

 

First, for the receiver to sense the channel state, the transmitter should send pilot 

symbols, whose values are known in advance by the receiver. Since some of the 

channel time is used for sending pilot symbols, this naturally decreases the 

achieved rate [Goldsmith-2004]. Sending feedback from the receiver to the 

transmitter also uses the channel resources and prevents the system from 

achieving the maximum possible rate.  

 

Also, in fast time-varying channels or when the estimation of channel state is not 

of enough quality, the estimated channel state can be different from the actual 

condition, leading the transmitter to use a suboptimum encoding type/code rate 

or modulation format. Consequently, the rate achieved by the transmitter will be 

suboptimum.  

 

The second drawback of using a reactive approach for transmitter parameter 

selection is that this approach will result in encoders and decoders having large 

number of alternatives for coding and modulation types, which increases 

complexity in both the transmitter and the receiver.  Also, the need for choosing 

among different coding/modulation parameters forces the design of related 

protocols, which also increases the complexity of transmitters and receivers. 
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2.2. Overview of Rateless Coding 

 

Another approach to reach rates that are close to capacity on rapidly varying 

channel conditions, or when the reactive approach cannot be applied, is to use 

rateless codes. A rateless code is defined to be a code such that, the higher rate 

code is the prefix of the lower rate code [Erez-Trott-Wornell-2012]. When the 

communicating parties are using rateless codes, they are working in a different 

manner than when they are using fixed-rate codes. The rateless transmitter sends 

the coded message until the decoder successfully decodes it, or some timeout is 

reached. This is different from fixed-rate encoding operation where the 

transmitter should retransmit the message if the receiver could not get the 

message. 

 

In a receiver using rateless codes, the decoder decodes the message when the rate 

of the transmission drops below the Shannon capacity value, and it possibly 

replies with an acknowledgement message. In other words, transmitter initially 

sends the coded symbols at a rate higher than the channel can carry. By this 

operation, with each transmitted symbol (or packet), the transmitter sends the 

information to the receiver incrementally, which resembles the Type II Hybrid 

ARQ approach, where the parity bits of the encoded message are sent to the 

receiver incrementally [Lott-Milenkovic-Soljanin-2007]. In this concept, the 

rateless codes can be seen as filling an imaginary bucket with water drops from a 

fountain (Hence the name fountain codes) [Mackay-2005]. The rateless 

transmission continues until either the transmitter gives up transmitting or the 

receiver announces the successful decoding of the message. 
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Figure 2.1 – Random linear coding [Mackay-2005] (with lost packets shown in gray). 

 

As an example to rateless codes, random linear coding approach is shown in 

Figure 2.1. At each transmission time, a packet is transmitted which is created 

according to the following equation 

  

   ∑      

 

   

                                                         (   ) 

 

where    is the transmitted packet,    is the k
th

 message packet and     is the 

generator matrix of the random linear encoder. The transmitted packet consists of 

the modulo-2 bitwise sum of each message sub-packet where the     value is  
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equal to 1. The transmitter can create the generator matrix on the fly or prior to 

the transmission. The receiver should use the same generator matrix to 

successfully decode the message, so either the     vector is sent at each 

transmission or the seed value of a random number generator is sent to the 

receiver before the transmission of packets. The randomness in the coding 

process is because of the random generation of the code generator matrix.  

 

In case of packet loss at any point of transmission of the message, the transmitter 

and the receiver are unaware of this and the transmission continues. After getting 

N packets from the transmitter, the receiver decodes the message by inverting the 

K-by-N matrix, where N is equal to or larger than K. This is possible when the K-

by-N matrix contains a K-by-K sub-matrix, which is invertible. The probability 

of failed decoding is exponentially decreasing with the number of packets sent in 

excess, namely N−K. The encoding and decoding costs of random linear coding 

led the researchers invent new coding methods, one of which is the LT codes 

[Luby-2002] discussed below. 

 

2.3. LT Codes 

 

The LT (Luby Transform) codes are the first practical rateless codes, and they 

are able to generate symbols (packets) endlessly. The encoding principle is 

similar to the random linear coding method, the difference being in the generator 

matrix. The generator matrix is sparse; i.e., the number of ones in each column of 

the generator matrix is significantly smaller than the value column length,  . 

 

The encoding algorithm of the LT encoder can be summarized as follows: 

 

 Randomly choose the degree,  , of the packet that will be transmitted, 

from the designed degree distribution, 

 Uniformly select d packets from the message and calculate modulo-2 

bitwise sum of them. 
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The designed degree distribution is the key component in LT codes. In [Luby-

2002], Luby proposed a distribution called Robust Soliton Distribution, which 

makes the code stable, and be able to be decoded with a simple decoding 

algorithm. The decoding algorithm is described as follows: 

 

 Find a transmitted packet that is a function of only one source packet, 

 Add the packet to all the coded packets that have the same source 

packet’s contribution, 

 Repeat the procedure until all source packets are found.  

 

The LT codes have encoder and decoder complexity scaling as       where   

is the number of packets in the source message. In the following section, we 

briefly review Raptor codes [Shokrollahi-2006], which have linear encoder and 

decoder complexity while having superior performance to the LT codes. 

 

2.4. Raptor Codes 

 

Raptor codes are based on LT codes, instead of using them alone, a Raptor code 

concatenates the LT code with an outer fixed-rate pre-code. The Raptor codes 

use a sparse generator matrix like the LT codes, but the degree of each column is 

constant. This leads Raptor codes to have linear encoding and decoding 

complexity. As the rateless code that is used at the inner part of the Raptor code 

is somewhat weaker than an ordinary LT code, some of the source packets of the 

transmitted message are not included in any of the transmitted packets. To cope 

with this deficiency, in [Shokrollahi-2006], an irregular low-density parity-

check (LDPC) code is used as the outer code. An example for the encoding of 

Raptor codes is shown in Figure 2.2. The gray-colored circles in Figure 2.2 

represent the symbols that are not included at the output of the inner LT code. 

One can compensate for this effect by using a sufficiently powerful outer code. 
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Figure 2.2 – Raptor encoding [Mackay-2005] 

 

The decoding of the Raptor codes is the serial decoding of the outer and inner 

codes, respectively, so the decoder for LT codes and the decoder for the outer 

code can be used. For the inner part, one can use the algorithm as described in 

Section 2.3. In [Shokrollahi-Luby-2009], authors describe another decoding 

algorithm, called inactivation decoding, which combines Gaussian elimination 

with the belief-propagation algorithm. 

 

In addition to erasure channels, Raptor codes’ performance on AWGN and 

Binary Symmetric channels are investigated in literature. In [Palanki-Yedidia-

2004] it is shown through simulations that Raptor codes outperform LT codes on 

noisy channels. 

 

In this chapter we reviewed the rateless coding concept, discussed the differences 

from the fixed-rate channel codes and briefly introduced two important classes of 

rateless codes. Asymptotically, the complexity of the LT codes varies with 

      and that of the Raptor codes is linear in K. 
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CHAPTER 3 

 

 

RATELESS SPINAL CODES 

 

 

 

In this chapter, we present rateless spinal codes, which is a new class of rateless 

codes that achieve very high rates at a large range of channel conditions. Spinal 

codes are non-linear; they have an efficient decoder and reach rates very close to 

Shannon capacity.  

 

Spinal encoding algorithm encodes a message by applying a hash function to the 

non-overlapping portions of the message bits sequentially, producing a spine 

value - output of the hash function - for each non-overlapping message part. It 

uses this spine value to form the symbols to be transmitted by means of a 

constellation mapping function. The hash function makes the spine values 

pseudo-random, which makes the code robust to noise.   

 

Since the encoding function of the spinal encoder uses a hash function, it is not 

easily invertible. The proposed decoder in [Perry-Iannucci-Fleming-

Balakrishnan-Shah-2012] makes a breadth first search over a tree, replaying the 

encoder for a portion of all possible messages that can be sent. It then compares 

the replayed (possible) messages with the received symbols and keeps the most 

probable (i.e. most likely, with the lower path metrics) messages at each symbol 

time. The replaying of the encoder only for a portion of the all-possible messages 

is a practical solution to cope with the exponential complexity of the ML 

decoder. The proposed decoder approximates the ML decoder as close as desired 

by setting its parameters. 

 

In Section 3.1 we review the details of the spinal encoder. Section 3.2 discusses 

the details of the spinal decoder that is presented in [Perry-Iannucci-Fleming-

Balakrishnan-Shah-2012], together with the channel model. In Section 3.3, 
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puncturing of spinal codes, which is very important for practical applications, is 

explained. In Section 3.4, we discuss the choice of the hash function and the 

effect it has on the performance of spinal codes.  Finally, in Section 3.5 we give 

some definitions about spinal codes. 

 

3.1. Spinal Encoder 

 

The spinal encoder can be used in two modes of operation. The transmitter can 

use it for generating coded bits from source bits and then apply a known 

constellation function, e.g. 4-QAM, which produces symbols. Or the spinal 

encoder can generate the modulated symbols to be transmitted from the source 

bits directly. In this section we will present the spinal encoder working in the 

latter operation mode [Perry-Iannucci-Fleming-Balakrishnan-Shah-2012], 

shown in Figure 3.1. 

 

The encoder has three sub-blocks, namely Message Splitter, Spine Generator and 

Constellation Mapper. It gets the input message, represented by M (shown by 1 

in Figure 3.1) and produces a sequence of complex symbols (shown by 4 in 

Figure 3.1) as long as the transmission continues. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – Inner structure of the spinal encoder 
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3.1.1. Message Splitter 

 

Let the overall message to be transmitted as being composed of n bits.  Note that 

since the spinal decoder needs the cyclic redundancy check (CRC) of the 

message to check its correctness, this n-bit message should have CRC data 

inside. The encoder splits n-bit message into k-bit chunks, where k is a parameter 

of the encoder and decoder.  This step is shown in Figure 3.1 as the message 

splitting part. The split data shown as “2” is the output of the message splitting 

process, the vector of  k-bit chunks which has a length of n/k. As we will discuss 

in the following sections, k is a parameter that affects the complexity of the 

spinal decoder, so the value of k is generally selected as smaller than 8. 

 

3.1.2. Spine Generator 

 

The second step is the spine generation, which uses each k-bit block to generate 

the spine value - the output of the hash function - to produce the symbol to be 

transmitted after the constellation-mapping step. The spine generator generates 

the output by applying a hash function to the corresponding k-bit block and the 

previous spine value. The formula for spine generation is 

 

  s0 = 0                                                                                  (   ) 

si = h(si−1 , mi) for i =1,…, n/k 

 

where si is the v-bit spine generated for the i
th

 k-bit chunk, and h(.) is the hash 

function used to generate the spine.  

 

The hash function takes two arguments, the first one is the spine value calculated 

at the previous step, and the second is the k-bit chunk, which is represented by 

mi.  

 

                     
 
→                                            (   ) 
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Note that the spine in the first step is selected to be the all zero vector 0. The 

initial spine value, s0, can be selected as any other vector of length v, provided 

that the decoder also knows this initial value.  

 

The spine generator produces spine values for each k-bit message segment, 

therefore a total of n/k spine values for the entire message are to be transmitted. 

The vector of n/k spine values is shown as “3” in the Figure 3.1. The spine that is 

generated at each symbol time is used for symbol generation at the constellation-

mapping step.  Since the spine generated at any step is dependent on the spine of 

the previous step, it can be concluded that a spine value at any step depends on 

the message portion up to that instant; i.e., the spine si depends on the message 

bits 1 to ik. This property that the spine value’s being dependent on every bit up 

to that instant, gives the spinal encoder a large memory, which can be thought of 

as a large constraint length in terms of convolutional coding. 

 

The use of the hash function makes the spine values generated for two messages 

very different from each other, even when there is only one bit difference. So the 

distance between codewords is made large, which results in a code that is very 

resilient to noise and errors especially in bad channel conditions. The properties 

of the hash functions that result in this code behavior are further investigated and 

explained in Section 3.4. 

3.1.3. Constellation-Mapping 

 

After the spine generation phase is over, at the constellation-mapping step, for 

each pass, the encoder generates a symbol using the spine. At the beginning of 

the transmission, the constellation-mapper uses the spine value to generate the 

mapped symbols. If the spine length v is not long enough, the constellation 

mapper sub-block may apply a random number generator (RNG) function to the 

spine value during the transmission to generate new random bits so that it can 

map new symbols. The RNG function takes the hash output (spine) as the input 

parameter and generates a random number. As more symbols are needed to be 

transmitted, the RNG function takes the previously generated random number as 
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its input and generates a new random number. In other words, the RNG function 

generates new random numbers recursively and starts with the spine value as its 

initial input.  

 

After generating the RNG output, the constellation-mapper maps the least 

significant 2c bits of the RNG output as a symbol. The constellation mapping is 

done by using each c bit-segment for one of the in-phase (I) and quadrature (Q) 

channels. This mapping can be performed uniformly or using a truncated 

Gaussian cdf as explained in [Perry-Iannucci-Fleming-Balakrishnan-Shah-

2012]. 

 

The encoder makes this operation for each pass, where a “pass” is defined as the 

collection of n/k symbols. A constellation symbol is called xij, where the first 

subscript i refers to the index of message block mi or the corresponding the spine 

si to be sent; and the second index j denotes the pass number. So, 2c bits of the 

RNG output picks up a symbol xij from the constellation map, for i=1,…, n/k in 

each pass. One pass therefore gives information about all n bits of the message to 

be transmitted. The spinal encoder details of generating symbols for successive 

k-bit chunks and for successive passes can be seen in Figure 3.2. 

 

Since spinal codes are rateless, the transmission probably will not finish after one 

pass, in fact it continues until the receiver acknowledges the transmitter or the 

transmitter gives up sending. So, the encoder transmits symbols xi1 for i=1,…, n/k 

in the first pass, and continues with the 2
nd

 pass symbols xi2 for i=1,…, n/k, 

followed by the 3
rd

 pass symbols xi3 for i=1,…, n/k, etc; hence the rate of 

transmission falls at low SNR’s as the number of passes increases. The 

generation of new symbols for each new pass requires the constellation-mapping 

sub-block to work recursively like the hash function does.   

 

The uniform constellation mapping results in a 2
2c

-QAM constellation (for 

example c=2 results in 16-QAM constellation). As one can see, selecting a larger 

value for the parameter c results in a denser constellation, which leads the 
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transmitter to reach higher rates when the channel conditions are good. The best 

value to use for the parameter c can be determined by simulations of different 

values. Some findings about the parameter c as well as the other encoder/decoder 

parameters are given in Chapter 5. 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Pass 1              x11(2c bits)         x21(2c bits)            x31(2c bits)          xn/k,1       (2c bits) 
     Pass 2              x12(2c bits)         x22(2c bits)            x32(2c bits)          xn/k,2       (2c bits) 
     Pass 3              x13(2c bits)         x23(2c bits)            x33(2c bits)          xn/k,3       (2c bits) 

 

 

 

Figure 3.2 – Spinal encoder’s generation of symbols in successive passes 
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3.2. Spinal Decoder 

 

In this section, we review the decoding principles of spinal codes, as presented in 

[Perry-Iannucci-Fleming-Balakrishnan-Shah-2012]. Perry et.al call the spinal 

decoder a “bubble decoder”, using a generalized version of the M-algorithm 

[Anderson-Mohan-1984]. The decoder is said to efficiently decode the encoded 

symbols by replaying the encoder’s job for a subset of all possible messages. 

The decoder mainly replays the encoder’s job for each possible k-bit vector as a 

new symbol arrives. Since doing that computation is infeasible for 2
n
 possible 

messages, the decoder simply maintains B best (i.e., the smallest metric) paths, 

which are the ancestors of the candidate paths after each symbol transmission. 

The decoder just does not care the paths that have path metrics larger than the 

smallest B paths. In this manner the decoder proposed can be viewed as an 

approximate maximum likelihood decoder. Performance arbitrarily close to that 

of an ML decoder can be achieved by increasing the value of B. 

 

Although better performance can be achieved by increasing the paths to be 

maintained at each symbol transmission step, this will make the decoder 

increasingly complex. Since in practice, the receiver to be designed has 

complexity and power limitations, we only consider linear-time spinal decoders 

in this work. In [Balakrishnan-Iannucci-Perry-Shah-2012], Balakrishnan et.al 

proved that a polynomial-time spinal decoder achieves the capacity on AWGN 

and binary symmetric channels.  

 

The maximum-likelihood decoder finds the most likely message  ̂  among all 

possible messages   , given the received vector  ̅ . The maximum-likelihood 

decoder for AWGN channels is the closest candidate symbol vector  ̅(  ), to the 

received vector  ̅: 

 

 ̂                     | ̅   ̅(  )|    (3.3) 
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One can write the argument of (3.3) as the sum of each received symbols as 

follows: [Perry-Iannucci-Fleming-Balakrishnan-Shah-2012] 

 

| ̅   ̅(  )|   ∑ |  ̅    ̅(  )|
    

       (3.4) 

 

The spinal decoder can make this calculation cumulatively at each pass, thanks to 

the spinal encoding principle.  

So, the ML decoder calculates (3.4) for all possible messages and selects the 

minimum. However, computation of (3.4)    many times is not feasible in many 

practical cases. 

Instead of keeping all possible paths, the bubble decoder maintains a fixed-

number of paths that are most probable up to that instant. And with reception of 

every encoded symbol, it creates new paths that are children of the current 

possible ones. The possible paths form a beam, and the parameter B is called the 

beam-width. 

 

Simulation results and hardware experiments in [Perry-Iannucci-Fleming-

Balakrishnan-Shah-2012] show that a moderate B value of 256 (for n=256, 

k=4, c=6) can reach very high rates in AWGN channels. The decoder also 

accepts another parameter, represented by d, which shows how deep up the tree 

the decoder will traverse when pruning the possible paths. The bubble decoder 

algorithm is given as follows: 
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Algorithm of the Bubble Decoder 

 

Operation of the spinal decoder is shown in Figure 3.3. The parameters are 

chosen as B=2, d=1, k=1 and n=3 for illustration purposes. For the sake of 

simplicity, the parameter c and the generation of constellation symbols is not 

considered in Figure 3.3. Notice that each transmitted symbol carries 1 bit of 

information since k=1. Upon receiving the first symbol, the decoder calculates 

path metrics for each of the possible paths. After that, since B=2 in this example, 

both paths are recorded in memory and the decoder waits for the next symbol. 

 

 

 

 

 

 

 

 

 

 

 

input: B, d=1, c, n, k 

output: Message M 

Candidates ← [ ] 

 

 Receive symbol 

 Expand the tree by calculating all possible path metrics 

 Prune candidates according to value of B 

 If n/k symbols are received, check CRC of the candidates 

o If the CRC checks for only one candidate, the decoding is 

successful, output the message 

o Else wait for next symbol 

 Else If not enough symbols received, wait for next symbol 
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Figure 3.3 – Operation of spinal bubble decoder 

 

Similarly, after getting the second symbol, the decoder calculates all possible 

metrics, this time generating a total of 4 candidates. Since B = 2, the decoder 

prunes the 2 least likely ones and keeps the 2 paths that have lower path metric 

values. After getting the third symbol, the decoder selects the best path as its 

estimation of transmitted message, shown by the black arrowed candidate in 

Figure 3.3.  

 

Note that in practical use of spinal codes and also in our simulations, the encoded 

data has CRC information inside it. The decoder uses this information to check 

whether the message is acceptable or not. If it is not acceptable, a successive pass 

starts by computing the new metrics in a new tree. In this manner, the 
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computation of the new metrics can be performed cumulatively so that the 

decoder makes use of previously received symbols. 

 

3.3. Puncturing 

 

The encoder and decoder pair defined above permits a maximum rate of k 

bits/symbol, which is achieved when the message is successfully decoded after 

the first pass. In fact, only rates of k / (# of passes) can be achieved in this 

setting. This can prevent the transmission to reach high rates when SNR is very 

high. For example, when k = 4, the maximum rate is 4 bits/symbol, which is 

inefficient above 12 dB SNR where the Shannon capacity (calculated using the 

formula log(1+SNR)) is approximately 4.074 bits/symbol. 

 

One can achieve higher rates by simply increasing the value of the parameter k. 

But since the complexity of the decoder is exponential in the parameter k, rather 

than increasing the value of k, one can apply a puncturing scheme as proposed in 

[Perry-Iannucci-Fleming-Balakrishnan-Shah-2012] to achieve higher rates 

than k bits/symbol.  

 

The puncturing scheme defined in [Perry-Iannucci-Fleming-Balakrishnan-

Shah-2012] is shown in Figure 3.4 for n/k=32. Each pass (which is the collection 

of n/k symbols) is divided into eight subpasses. In each subpass, only the 

symbols corresponding to dark circles are transmitted. 

Figure 3.4 – Puncturing schedule offered in [Perry-Iannucci-Fleming-Balakrishnan-

Shah-2012] 



 26 

The decoder algorithm works in the same manner as the “no puncturing” scheme. 

For each symbol time, if there is a received symbol, the decoder calculates all 

possible spines using the paths in the candidate list, and for each possible 

message it calculates the distance between the received and the generated 

symbols. Following this step, the decoder prunes the candidate list down to size 

B. The decoder maintains the path metrics of each possible path in B, with the 

corresponding spine values of each one.  

 

If there is no received symbol at the corresponding symbol time (for example the 

symbols 1 through 7 in Subpass 1 of Pass 1), the decoder only calculates the 

spines for the possible messages and prunes the candidate list. In the case of ties 

of the path metrics of different paths, the choice of pruning is made arbitrarily.  

So the decoder does not make any computation for the symbols not transmitted 

when using the puncturing scheme. 

 

Using the puncturing scheme, one can achieve both higher maximum rates and 

rates with finer resolution. Since the decoder tries to decode the message after 

each subpass, the maximum rate that can be achieved is as high as 8k. For 

example, if the message is decoded after the first subpass of the first pass, then 

the rate will be 32 bits/symbol. 

 

The decoder algorithm does not change when puncturing is used. The decoder 

expands the B paths to B2
k
 paths as usual, and for any missing symbol, it 

assumes the path metric of each path is the same as the last step. Using a larger B 

value makes the puncturing scheme more efficient in terms of rate achieved on 

the channel. 

3.4. Hash Function 

 

The spinal encoder uses a hash function to generate spine values, which RNG 

makes encoded symbols out of.  The purpose of the hash function is to magnify 

the distance between messages, which are close in terms of the Hamming 

distance. Thus, the hash function to be used should be a function with good 
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mixing properties; i.e., a 1-bit difference in two messages should make 

approximately half of the bits of the spine value different from each other after 

that bit’s position. 

 

Since the hash function is applied to all k-bit chunks of the message sequentially, 

the spine value at any point is dependent of the k-bit chunks up to that point. This 

gives spinal codes a large memory or “constraint length” in terms of 

convolutional coding concepts. 

 

In [Perry-Iannucci-Fleming-Balakrishnan-Shah-2012], Lookup3 and One-At-

A-Time hash functions are used in decoder and encoder. In this work, we use 

Lookup3 hash function unless otherwise stated. In Chapter 5, where we look at 

some other cryptographic-strength hash functions, we will compare the 

performance of Lookup3 hash function with them. 

 

3.5. List of Symbols Used for Spinal Codes 

 
In this section, we give a list of symbols that we use for spinal codes. The list can 

be used as a quick reference. 

 

M = Message to be transmitted 

n = Size of the message to be transmitted, in bits 

k = Size of the chunk of each part that is used to generate a spine, in bits 

si = Spine generated at the output of the hash function for the i
th

 k-bit chunk 

v = Size in bits of each spine value 

2c = Number of bits to be used when generating a symbol 

n/k = Number of symbols at each pass 

Pass = Time needed to send/receive n/k symbols, and also the collection of n/k 

symbols 

Subpass = 1/8
th

 of a pass 

B = Size of the beam-width that shows how many possible paths are maintained 

at each step 
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CHAPTER 4 

 

 

THE ALGORITHM FOR EFFICIENT DECODING OF SPINAL 

CODES 

 

 

 

While rateless spinal codes reach a high percentage of Shannon channel capacity 

for a large range of SNR values, the decoding complexity is high. When the 

bubble decoder proposed in [Perry-Iannucci-Fleming-Balakrishnan-Shah-

2012] is used, instead of the optimum ML decoder, the algorithm still requires 

excessive number of operations per message especially for channels with small 

SNR values. 

 

In this work, we state the problem that we want to solve as to design a simple 

decoding algorithm for spinal codes that needs less number of operations, 

especially on bad channel conditions, without sacrificing from the rate achieved 

on the channel. In other words, we aim at a decoding algorithm that is 

competitive with the original bubble decoder in terms of the achieved rate while 

having less complexity. 

 

Therefore, we propose an algorithm that decreases the number of decoding 

operations per message with the help of some observations obtained via offline 

simulations; and by estimating the channel quality when the transmission is in 

progress. Our algorithm mainly keeps the value of the beam-width parameter B 

small when the decoding operation is likely to fail and increases the value of B 

up to an upper limit otherwise. In Section 4.1, we state and discuss our 

observations made by analyzing offline simulations of the bubble decoder. 

Section 4.2 presents our decoding algorithm for spinal codes, which is a 

modified form of the bubble decoder based on these observations.  
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4.1. Observations via Offline Simulations 

4.1.1. Observation 1 

 

Our first observation while using the bubble decoder is, for every SNR value, the 

decoding operation reaches ‘success’ at subpass values that directly depend on 

the SNR value. By definition, the rate achieved at smaller SNR values (worse 

channel conditions) is smaller than the rate achieved at high SNR values; i.e., 

when the channel is good. Since the rate is inversely proportional to the decoding 

time of the message, one can expect that as the SNR increases, the decoding 

operation takes less time.   

 

We have obtained the minimum subpass values of successful decoding 

operations versus channel SNR by computer simulations. The complexity of the 

spinal decoder is exponential in the value of the parameter k and linear in the 

value of the parameter B. To reach rates close to capacity, B values between 64 

and 256 are suggested in [Perry-Iannucci-Fleming-Balakrishnan-Shah-2012] 

for k=4.  

 

In our simulations with n=96, k=4, c=6 and d=1, the subpass values where 

successful decoding starts are found and given in Table 4.1 for B=256 and Table 

4.2 for B=16 for SNR values between 0 and 30 dB. 

 

Table 4.1 – Subpasses  ( ) at which successful decoding starts versus SNR = i, for 

n=96, k=4, c=6, B=256 and d=1  

SNR 0 1 2 3 4 5 6 7 8 9 10 

StartingSubpass 23 19 17 15 13 12 11 11 10 9 8 

 

SNR 11 12 13 14 15 16 17 18 19 20 

StartingSubpass 8 7 7 6 6 6 6 6 5 5 

 
SNR 21 22 23 24 25 26 27 28 29 30 

StartingSubpass 5 5 5 4 4 4 4 4 4 4 
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Table 4.2 – Subpasses  ( ) at which successful decoding starts versus SNR = i, for 

n=96, k=4, c=6, B=16 and d=1  

SNR 0 1 2 3 4 5 6 7 8 9 10 

StartingSubpass 25 21 18 15 15 14 13 11 11 10

0 

9 

 

SNR 11 12 13 14 15 16 17 18 19 20 

StartingSubpass 8 8 7 7 7 6 6 6 6 6 

 
SNR 21 22 23 24 25 26 27 28 29 30 

StartingSubpass 6 6 6 6 6 6 6 6 6 6 

 

As can be seen in Table 4.1, for SNR values between 0 and 30 dB, the decoding 

operation cannot reach success before the 4
th

 subpass for B=256, which means 

the half of the first pass. Also, for small SNR values (for example 0 dB < SNR < 

5 dB), a large number of decoding attempts are useless; i.e., the decoding 

operation will fail until enough number of symbols are received, since the 

channel is not good enough to achieve high rates. In the light of this observation, 

we attempt to define two rules that will help us through the design of our 

algorithm to reduce decoder complexity. The two rules that we obtain based 

upon Observation 1 are as follows. 

 

Rule 1: The spinal decoder need not use large B values before the 

symbols belonging to the 4
th

 subpass are received. 

 

Rule 2: Provided that the channel conditions are estimated, the spinal 

decoder can defer the use of large B values until the receiver receives enough 

number of symbols for successful decoding. 

 

Note that the first rule is for the parameters of the spinal code that are mentioned 

above. Similar rules with slight modifications can be obtained for other set of 

parameters. 
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To use the above mentioned “Rule 2”, one should estimate the channel quality 

during transmission. One can get channel state information in a transmission by 

several methods. In this section we also propose a channel quality estimation 

method for spinal codes. The method we recommend does not use pilot symbols 

to estimate channel quality, so the rate is not affected due to pilot symbol 

overhead. Since we are transmitting messages ratelessly, we do not need to 

inform the transmitter about the channel state, so the rate is also not affected by 

feedback transmission to the transmitter. Instead, the method uses the path metric 

values in the decoder’s candidate list at the end of every subpass, to estimate the 

SNR, with minor additional computation compared to the bubble decoder.  This 

leads us to the second observation that we make using offline simulations. 

 

4.1.2. Observation 2 

 

The second observation that we make is that the distribution of the best path 

metrics at the end of each subpass depends on the channel state. Note that the 

best path metric value is defined to be the path metric whose value is the least 

among all candidate paths. To gain information about the distribution of the best 

path metrics versus SNR, we have run a series of simulations for SNR values 

between 0 and 30 dB. We have obtained the best path metric values at the end of 

each subpass until successful decoding occurs. The parameters of the spinal code 

during the simulations are B=256, d=1, c=6, n=96. 

 

In Figure 4.1, the histograms of the best path metric values at the end of subpass 

1 for the SNR values of 0, 5, 10 and 15 dB are shown. Similarly in Figure 4.2, 

the histograms of the best path metric values at the end of subpass 6 are shown 

for the same set of SNR values. 

 

The y-axes in Figures 4.1 and 4.2, show the frequency of each path metric value, 

the x-axes show the best path metric values for the given SNR values, with the 

above mentioned spinal code parameters. Note that the actual path metric values 
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seen on these figures are subject to change when another set of parameters is 

used for encoding and decoding; however the differences will remain similar. 

 

As can be seen from the figures, the distributions of the best path metrics differ 

for each SNR value. In Figure 4.1, as the SNR increases, the path metric 

histograms of Subpass 1 become narrower; i.e., they have smaller variance. Also 

the maximum value of the best path metric gets smaller as the SNR increases. 

Similarly, in Figure 4.2, at SNR=5 dB, Subpass 6 best path metric can get values 

between 1200 and 11000; while for SNR=10 dB they are between 1600 and 

3200, and for SNR=15 dB, they are getting values between 1200 and 2800. So, 

in both figures, the best path metrics for smaller SNR values can take values 

larger than the maximum values obtained for large SNR values.  

 

These differences in the distribution of best path metric values are the key 

observation in the application of the algorithm we propose. 

 

 

Figure 4.1 – Histogram of Subpass 1 best path metrics at {0, 5, 10, 15} dB for B=256 
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Figure 4.2 – Histogram of Subpass 6 best path metrics at {0, 5, 10, 15} dB for B=256 

 

In Appendix A, we give cdf plots of best path metrics at subpasses 1 to 6 for 

SNR values 0, 5, 10 and 15 dB. Note that the distributions of the best path 

metrics given in Appendix A are for B=1. As expected, these values are different 

from the ones in Figures 4.1 and 4.2 obtained for B=256.  The algorithm that we 

introduce in the next section needs these distributions for B=1 since we start with 

a value of 1 and increase the number of candidate paths when necessary. 

 

If we model the path metric as a random variable X, metric distributions found 

for each subpass and each SNR can be considered as the estimates of the 

corresponding probability density functions   ( ) , abbreviated as pdf. The 

integral of the pdf is called the cumulative distribution function   ( )         

  ), abbreviated as cdf. The cdf of the best path metric values at the end of 

subpass 6 at SNR=10 dB with B=1 together with that of B=256 is given in Figure 

4.3. As one can see, the best path metrics for B = 256 take much smaller values 

than the one for B = 1.. Also, the best path metrics for B = 256 are confined to a 

narrower region compared to the one for B = 1.   

 

0

0,1

0,2
0

6
0

0

1
2

0
0

1
8

0
0

2
4

0
0

3
0

0
0

3
6

0
0

4
2

0
0

4
8

0
0

5
4

0
0

6
0

0
0

6
6

0
0

7
2

0
0

7
8

0
0

8
4

0
0

9
0

0
0

9
6

0
0

1
0

2
0

0

1
0

8
0

0

1
1

4
0

0

1
2

0
0

0

1
2

6
0

0

Fr
e

q
u

e
n

cy
 

Path Metric 

Histogram-Subpass6_SNR0 Histogram_Subpass6_SNR5

Histogram_Subpass6_SNR10 Histogram_Subpass6_SNR15



  

 35 

 

Figure 4.3 – Estimated cdf of Subpass 6 best path metrics at SNR=10 dB  

for B=1 and B=256 

 
 
Our decoding algorithm to be presented in the next section strongly depends on a 

parameter L that we call the ‘LimitValue’, which shows the value of the path 

metric for which the cumulative distribution function    ( )           ) , 

abbreviated as cdf, reaches a given value a; i.e.,   ( )    . The choice of a (say 

as 0.95, 0.8 or 0.6) is crucial since it affects both the rate performance and the 

computational load of the proposed algorithm. Note that, the value of L is 

dependent on the SNR value of the channel, the subpass number     of the 

algorithm, the cdf parameter a and the size of the candidate list B; hence, 

 (           ) is a list that needs to be initially prepared for all SNR,    , a 

and B values of interest. 

 

Using the path metric distributions for B=1, we find the ‘LimitValue - L’ of the 

path metric X such that a given fraction a of the path metric X is smaller than L; 

in other words,    ( )         )    . We have repeated these simulations 

for all subpasses and all SNR values in the range [0,30] dB, and obtained all L 

values corresponding to   ( )   0.5, 0.6, 0.7, 0.8, 0.9 and 0.95. 
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As an example, we have tabulated some of these results in Table 4.3, for the 6th 

subpass, SNR values 0 to 10 dB and   ( )   0.95, 0.8, 0.6. One can see 

Appendix B for more results with B=1. 

 
Table 4.3 – Limit values for different   ( ) and SNR’s at the end of subpass 6 for B=1 

 

SNR 
LimitValue L for 

  ( )   0.95 

LimitValue L for 

  ( )   0.8 

LimitValue L for 

  ( )   0.6 

0 36364 27266 21219 

1 30041 23628 17202 

2 25273 19901 16296 

3 21775 15578 14007 

4 18914 14172 12609 

5 16238 12520 11261 

6 14264 11898 9519 

7 13776 10625 9570 

8 12649 10736 8783 

9 12313 9471 8526 

10 11658 9346 8102 

 
Observing Table 4.3, one can deduce that  

 

i) The limit value L, below which say 95% of the path metric values remain, 

decreases as the SNR increases,  

 

ii) For   ( )   0.8 and   ( )   0.6, bold entries of Table 4.3 indicate small 

discrepancies from the behavior stated in (i).  

 

iii) Rough estimation of the channel quality (in terms of the SNR) can be done by 

means of a rough classification of L values in Table 4.3, found by the bubble 

decoder. 

 

The insertion of the channel estimation into the decoding algorithm in a proper 

way to speed up computations is the subject of the next section. 
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4.2. The Algorithm for Efficient Decoding of Spinal Codes 

 

Based upon the above-mentioned Observations 1 and 2, we propose an algorithm 

that uses the information obtained by guessing the successful decoding time and 

exploiting the distributions of the best path metrics at the end of subpasses for 

every SNR value. This information is used for increasing the value of B 

whenever necessary. Since successful decoding is not possible before Subpass 4 

for SNR values smaller than 30 dB, we use the starting value of the parameter B 

as 1. By starting with B = 1, we minimize the cost of the bubble decoding 

algorithm while still gaining information about the channel state.  

 

Since for each SNR value, we have found that successful decoding starts after 

some subpass, we propose a decoding algorithm that basically keeps the size of 

the candidate list, in other words the value of B, small until the estimated channel 

quality permits successful decoding of the transmitted message. 

 

The algorithm we propose uses the LimitValue -  (           ) lists obtained 

for a specific   ( )     and B=1 for all SNR and subpass values     of interest, 

while deciding whether to increase the value of B or not. At the end of each 

subpass of decoding, we estimate the channel SNR to decide whether we should 

increase B or not. To estimate the SNR, we compare the best path metric Xbest 

obtained at the    ’th subpass with all LimitValue’s belonging to that subpass at 

different SNR’s. Whenever Xbest falls into the interval  (           )  

         (         ); then the estimated iRNS ˆ . 

 

For example, suppose the best path metric at the end of Subpass 6 is 18000 and 

we have chosen to use our algorithm for   ( ) = 0.95. Table 4.3 that shows 

Subpass 6 distributions for B=1, indicates that for   ( )   0.95, the minimum L 

value larger than 18000 is L=18914, corresponding to SNR = 4 dB. So, we 

estimate the SNR to be 4 dB.  
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We then use Table 4.1 that shows the subpasses  ( ) at which the successful 

decoding starts for each SNR=i value. If the current subpass number     is less 

than the starting subpass number ( ( )   ), we keep B=1. On the other hand, if 

     ( )   , we increase B to Bmax to get prepared against the possibility of 

successful decoding at the next subpass. We note that, since for the SNR range of 

[0,30] dB one cannot decode before the 4
th

 subpass, our algorithm does not 

increase the value of B before the end of the 3
rd

 subpass regardless of the best 

path metric values.  In other words, we propose an algorithm that starts with a 

beam-width value B=1 and increases B only when the decoder is close to 

“successful decoding”. Starting with B=1 is due to the fact that a successful 

decoding is not possible at the first 3 subpasses for the SNR values and spinal 

code parameters mentioned in Rule 1. The algorithm does not change B when 

there is not enough chance of successful decoding. The cdf value a that will be 

used to find the LimitValue L, such that   ( )   , is determined by running 

simulations at different parameter values. The results of those simulations and 

the best choice for the cdf values a are explained in Chapter 5, where we present 

our simulation results. 

 

Our modified decoding algorithm also assigns a maximum value for B, which 

cannot be exceeded, denoted by Bmax which can be selected as 256 for example. 

This limiting is essential since there will always be a limit on the computational 

complexity in real life scenarios. The modified decoding algorithm is stated as 

follows: 
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Modified Decoding Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

The function increase_beamwidth(.) function compares the BestPathMetric, 

Xbest with the LimitValue -  (           ) obtained from offline simulations 

for each subpass and SNR value, and returns ‘true’ if the next subpass is the 

starting subpass for successful decoding for the estimated SNR. The algorithm 

for the increase_beamwidth(.) function is summarized as follows: 

 

‘increase_beamwidth(.)’  Function 

 

 

 

 

 

 

 

 

The function snr_estimation(.) returns the estimate iRNS ˆ , if  the best path 

metric,      , satisfies  (           )           (         ) . For the 

estimate iRNS ˆ , the function starting_subpass(.) returns the starting subpass 

input: Bmax , d, c, n, k, a,  (   )      (           ) for all SNR’s &    ’s  

output: Message M 

B ← 1 
 

while (decoding is not successful) 

 DecodingResult = bubble_decoder(B, d, c, n, k) 

 if DecodingResult is not successful  

  if increase_beamwidth(   , Xbest, a, K, L)  

true, B ← Bmax 

false, B ← B 

 

 else // Decoding is successful 

  M 

 

 

input:    , Xbest, a,  (   ) and   (           ) for all SNR’s and    ’s 

output: Decision to increase the value of B 

 RNS ˆ  = snr_estimation(   , Xbest, a, L) 

 

 StartingSubpass = K( RNS ˆ ) 

 

 return (StartingSubpass =< (   +1)) 
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number  ( ) of successful decoding, according to Table 4.1. Then, the decoder 

decides whether to increase the value of B or keep it the same according to the 

following rule: 

                                   ( )  ⇒             

                                                      ⇒                                                        (   ) 

 

The reason we compare the current subpass number with the starting subpass 

value with a ‘≤’ sign (instead of  only ‘=’ sign) is a precaution against estimated 

SNR changes. Suppose that at the end of subpass 4, we have estimated an SNR1 

and concluded that the starting subpass of successful decoding is 7. In this case 

the decoder will not increase the value of B and continue operation with B = 1. 

Following this, suppose at the end of subpass 5, we have estimated an SNR2 > 

SNR1 and concluded that the starting subpass of successful decoding is 5. In this 

case, since the starting subpass value (5) is smaller than the next subpass value 

(6), the decoder should certainly increase the value of B to Bmax. If the algorithm 

included ‘=’ sign instead of ‘≤’ sign, the value of B would be stuck at 1 and 

sudden increases in SNR estimates would not be treated properly. 

 

SNR estimation of our modified decoding algorithm can be better understood 

with the help of Figure 4.4, where the leftmost distribution is for the largest SNR 

value and the  (           )  values at each       (corresponding to the 

same subpass    and a specific cdf value a) are shortly denoted by  (   ),  ( ) 

and  (   )  from left to right. The plotted distributions are for illustration 

purposes and not derived from offline simulations. 

 

As explained above, the modified algorithm estimates the SNR to be equal to i 

dB, if the best path metric value        obtained at the current subpass falls into 

the interval  (   )           ( )  shown in Figure 4.4. 
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Figure 4.4 – Typical probability densities of best path metrics at different SNR values 

 

Including the details of the increase_beamwidth(.) function, the overall 

decoding algorithm can be stated as follows:  

 

input: Bmax , d, c, n, k, a,  (   )      (           ) for all SNR’s &    ’s 

output: Message M 

B ← 1 
(1) 

while (decoding is not successful) 

 DecodingResult = bubble_decoder(B, d, c, n, k) 

 if DecodingResult is not successful  

            RNS ˆ  = snr_estimation(   , Xbest, a, L) 

 StartingSubpass = K( RNS ˆ ) 

 

 if (StartingSubpass =< (   +1)) 

true, B ← Bmax 

false, B ← B 

  end if 

 else // Decoding is successful 

  M 

 end if 

end while 
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The flowchart version of our modified algorithm is illustrated in Figure 4.5. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 – Modified decoding algorithm flowchart 
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In the next chapter, we discuss the simulation results obtained by using our 

modified decoding algorithm proposed in this section. Also we will compare 

spinal coding performance when we use different values for parameters c, k, B, n, 

or apply different hash functions. Finally we will compare the performance gain 

obtained when we use the puncturing scheme. 
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CHAPTER 5 

 

 

SIMULATION RESULTS 

 

 

 

In this chapter, several simulation results about the effect of spinal code 

parameters, namely the message length n, message segment length k, 

constellation size 2
2c

, and the beam-width B are presented. Secondly, we 

investigate the effect of the hash function on the performance of the spinal code.  

Then, we discuss the effect of using puncturing during the transmission by 

comparing it to the case without puncturing.  

 

In the second part, we present the results obtained through computer simulation 

of our modified decoding algorithm introduced in Chapter 4, and compare its 

performance with that of the bubble decoder. Our comments on the results of the 

modified algorithm are given by inspecting two important performance criteria, 

namely the number of operations made by the decoder to decode a message and 

the achieved rate. These two performance criteria are subject to change with 

changing input parameters, namely the channel SNR and the cdf value a that 

determines the limit values of the path metrics at each subpass.  

 

In Section 5.1, we describe the implementation details of the simulation 

environment. Sections 5.2 to 5.5 examine the effects of the parameters c, k, B, n 

respectively, on the performance of spinal codes. Section 5.6 summarizes the 

effect of the hash function and Section 5.7 discusses the effect of puncturing on 

the performance. In Section 5.8, we present the results obtained by applying our 

modified decoding algorithm, and make a comparison with the bubble decoder. 
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5.1. Simulation Environment 

 

Before going into the details of the results, first we explain the high level 

structure of the simulation model. 

 

The simulation model is composed of the encoder, channel, decoder and the test 

manager. The encoder module is implemented in the same way as explained in 

Chapter 3. For Sections 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 the decoder is the bubble 

decoder introduced in [Perry-Iannucci-Fleming-Balakrishnan-Shah-2012] and 

explained in Section 3.1. For Section 5.8, the decoder module is the bubble 

decoder that uses our modified algorithm for decreasing the number of 

operations per message.  

 

The channel is assumed to be Additive White Gaussian Noise (AWGN) channel 

with the noise power defined as 

 

         (     )                                                     (   ) 

 

for I and Q channels, where    is the symbol energy.  

 

Throughout the simulations, the energy of the symbol is kept constant and the 

noise energy is calculated using (5.1). 

 

The puncturing scheme used, whenever it is applicable, is similar to the one 

mentioned in [Perry-Iannucci-Fleming-Balakrishnan-Shah-2012] with each 

pass composed of 8 subpasses as explained in Section 3.3. The two performance 

criteria; the rate and the number of operations per message are averaged over 

1000 simulation runs. In the simulation setting, the transmission continues until 

the decoder sends the encoder an acknowledgement message. The test manager 

module controls the messages that are sent between the encoder, channel and 

decoder processes and logs the result of each simulation run. 
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Figure 5.1 – Structure of the simulation software 

 

The structure of the simulation software is shown in Figure 5.1. For each 

message to be transmitted, the spinal encoder block works as presented in 

Chapter 3 and generates complex encoded symbols as long as the transmission 

continues. The generated symbols are sent to the AWGN channel block.  

 

The AWGN channel block generates random samples from a Gaussian 

distribution with the noise power given as in (5.1). It then adds these noise 

samples to each of the I and Q channel symbols and sends the output to the 

spinal decoder block.  

 

The decoder (using our modified algorithm for Section 5.8) uses spinal code 

parameters given at the beginning of the simulation to decode the message. It 

then acknowledges the encoder by the help of the test manager module. The 

simulation loop continues until the given number of messages are transmitted to 

the receiver. The test manager module also logs the results of each transmission 

for further inspection. 

 

As mentioned in [Perry-Iannucci-Fleming-Balakrishnan-Shah-2012], the 

linear-time decoder should use B and d parameters as constant, so both for 

simplicity and linearity of decoder we take d =1 in our simulations. 

 

Spinal Encoder  AWGN Channel Spinal Decoder 

    Test Manager 
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In Chapter 3, we have considered the RNG function at the constellation-mapping 

step. In the simulations, we use the hash function that is used to generate the 

spine value, to also function as the RNG block that is present in the constellation-

mapping step of the encoder. We discuss the results obtained by simulations that 

examine the effect of the parameter c on the performance of the spinal codes in 

the next section.  

5.2. Effect of the Parameter c on the Performance 

 

In this section, we present the results obtained by changing the parameter c in the 

spinal encoding and decoding process. The parameter c is affecting how many 

bits of the RNG output at the encoder will be used, when the encoder is 

generating the symbols at the constellation-mapping step. In our implementation 

of spinal codes simulation software, we simply take the least significant 2c bits 

of the RNG output at the encoder and decoder. Since the output of the RNG 

function is a finite-length bit sequence, as the transmission continues the encoder 

needs new coded-bits to generate new modulated symbols. So, the encoder 

generates more coded-bits using the RNG function recursively.  

 

For example, when one uses Lookup3 hash function for the RNG, the output 

value is a 32-bit number. If we select c = 8, we take each 16-bit segment of the 

output value to generate symbols. So we can use the RNG output to create 2 

symbols. One can use a larger portion of the RNG output; however doing so 

increases the decoder complexity since more RNG operations should be 

performed for the same number of encoded symbols. 

 

Table 5.1 – Simulation parameters for Section 5.2 

Parameter Value 

c {1,2,3,4,5,6,7,8} 

B 256 

n 96 

k {2,3,4} 

SNR {5,10,15,20,25,30} 

Hash Function Lookup3 Hash Function 

Puncturing Active 
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For each different value of parameters c, k and SNR, 1000 simulations were run 

and averaged. We set other parameters as having constant values as written in 

Table 5.1. The simulations were run for SNR values of 5 dB spacing, from 5 dB 

to 30 dB. 

 

We present the graphical result of simulations with k = 2, in Figure 5.2. One 

observes that as the SNR increases, all of the achieved rate versus SNR curves 

start to get saturated. The saturation levels are monitored at SNR >20 dB for all 

values of c, except c = 5. We conclude that c = 5 is the best choice for k = 2 and 

for the parameters in Table 5.1. 

 

Secondly, we give the simulation results for k = 3 in Figure 5.3 with the other 

parameters as in Table 5.1. Saturated curves of Figure 5.3 show the existence of 

the rate limiting effect for c values of 1, 2, 3. However, as c gets larger, the 

saturation disappears and the achieved rate versus SNR curves increase almost 

linearly for 4 ≤ c ≤ 8. Hence, all c values greater than 3 can be used in order to 

maximize the achieved rate. 

 

Finally, the simulation results for k = 4 are plotted in Figure 5.4. One can observe 

that saturated regions exist for c = 1, 2, 3, 4 and 5. For the spinal code to work 

efficiently between 0 and 30 dB, a c value of at least 6 should be used not to limit 

the rate achieved. So, c = 6, 7 and 8 can be used for k = 4 and in the above 

mentioned SNR range and for the parameters as in Table 5.1. 
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Figure 5.2 – Rate achieved for different c values when k=2 

 

 

 
 

Figure 5.3 – Rate achieved for different c values when k=3 
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Figure 5.4 – Rate achieved for different c values when k=4 

 

 

It seems that for message chunk lengths 2 ≤ k ≤ 4, one should avoid small values 

of c like 1, 2 or 3.  However, noting that different results can be obtained by 

using different values especially for the parameter n, which is discussed in 

Section 5.5; we will postpone our comments on the choice of optimum c values 

to a later section. In the next section, we will investigate the effect of different 

values for k on spinal code performance. 
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5.3. Effect of the Parameter k on the Performance 

 

The simulation parameters for this section are summarized in Table 5.2. 

 

Table 5.2 – Simulation parameters for Section 5.3 

Parameter Value 

c See Note 1 

d 1 

B 256 

n 96 

k {2,3,4} 

SNR {5,10,15,20,25,30} 

Hash Function Lookup3 Hash Function 

Puncturing Active 

 

Note 1: Value of the parameter c is chosen such that it is the best selection 

among the other options; so, it is 5 for k = 2 and 7 for k = 3, 4. 

 

We plot the achieved rate values obtained over 1000 simulations in Fig. 5.5. As 

one can see in Figure 5.5, there is not much difference in the achieved rate for 

SNR values smaller than 20 dB. For larger SNR values, k = 3 is slightly better 

than k = 4, while k = 2 is a slightly worse choice for the parameters given in 

Table 5.2. Since using smaller values of k decreases the complexity of the 

encoder, one can choose to use k = 3 in this setting. 
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Figure 5.5 – Rate achieved for different k values 

 

5.4. Effect of the Parameter B on the Performance 

 
In this section, we present simulation results that are obtained by using different 

beam-width values, B, to decode the transmitted message.  

 

Table 5.3 – Simulation parameters for Section 5.4 

Parameter Value 

{k ,c} {3,4} and {4,6} 

B {2,4,8,16,32,64,128,256,512} 

n 96 

SNR {5,10,15,20,25,30} 

Hash Function Lookup3 Hash Function 

Puncturing Active 
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We tried B values from 2 to 512 and chose {k ,c} values of {3, 4} and {4, 6} 

with n = 96, as shown in Table 5.3. We run the simulations at SNR values of 5 to 

30 dB. The other parameter values used in this section are given in Table 5.3. 

 

If one operates on small message chunks like k = 3; Figure 5.6 shows that the 

beam-width value B = 256 is as good as B = 512. On the other hand, as observed 

from Figure 5.7 obtained for k = 4, the beam-width value B = 512 gives the best 

results. The former case seems to be more advantageous, since the value of B 

directly affects the number of operations made per message. Moreover, the rate 

performance versus SNR in the best curves of Figure 5.6 and 5.7 are quite 

similar, showing that the message segment length k = 3 does not bring any 

weakness with respect to k = 4. Hence k = 3 should be preferable for the 

simplicity of the decoding tree. 

 

We also observe that, if one designs a code for an application that restricts the 

SNR to smaller values, smaller B values can be selected since the value of B 

directly affects the number of operations made per message. 

 

In the next section, we will discuss the effect of the message length on the spinal 

code performance. 
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Figure 5.6 – Rate achieved for different B values for k = 3, c = 4  

 

 

 
 

Figure 5.7 – Rate achieved for different B values for k = 4, c = 6 
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5.5. Effect of the Parameter n on the Performance 

 

In this section, we will present the results of simulations when we change the 

length of the transmitted message. In [Perry-Iannucci-Fleming-Balakrishnan-

Shah-2012], it is mentioned that, as the length of the message increases, the 

probability of the correct path to be lost also increases. So we expect smaller 

values for the achieved rate for longer messages, which is partially supported by 

our simulation results. 

 

The simulation parameters for this section are shown in Table 5.4.  

 

Table 5.4 – Simulation parameters for Section 5.5 

Parameter Value 

{k ,c} {3,4} and {4,6} 

B 256 

n {64,72,96,120,128,192,240,288} 

SNR {5,10,15,20,25,30} 

Hash Function Lookup3 Hash Function 

Puncturing Active 

 

We plot the results of k = 3, c = 4 with n values of 72, 96, 120, 192, 240 and 288 

in Figure 5.8. One observes that only for n = 96, the achieved rate is not limited 

for SNR values larger than 25 dB, so 96 bits seems to be the best choice.  Also 

one can conclude that selecting 72 bits, which is the smallest message length in 

the given set for k = 3, is a bad choice. 

 

In Figure 5.9, we present the results of k = 4, c = 6 with n values of 64, 96, 128, 

192, 256 and 288. Although there are no appreciable differences, we observe that 

n = 64 has the smallest rate achieved among these alternatives, followed by n = 

96 and 128. Also we can say that the best choice for the message length is 192 

bits for these set of parameters. 
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Figure 5.8 – Rate achieved for different n values for k = 3, c = 4 
 
 

 
 

Figure 5.9 – Rate achieved for different n values at k = 4, c = 6 
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5.6. Effect of the Hash Function on the Performance 

 

In this section we discuss the effect of different hash functions on the 

performance of the spinal code. The hash function used in [Perry-Iannucci-

Fleming-Balakrishnan-Shah-2012] is “one-at-a-time” hash. We used Lookup3 

hash function in our simulations when examining the effect of other spinal code 

parameters to the performance throughout Chapter 5. In this section we compare 

the results obtained by using two standard cryptographic hash functions, the 

MD4 (Message Digest Algorithm 4) and the SHA (Secure Hash Algorithm). 

 

The MD4 (RFC 1320) hash function creates a 128-bit hash value while the SHA 

(FIPS 180-2) hash function creates a 160-bit hash value. Simulation parameters 

for this section are given in Table 5.5.  

 
Table 5.5 – Simulation parameters for Section 5.6 

Parameter Value 

{k ,c} {4,6} for Lookup3 and SHA, {4,7} for MD4 

B {256} 

n 96 

SNR {5,10,15,20,25,30} 

Hash Function Lookup3, MD4 and SHA 

Puncturing Active 

 
 
As we can see by inspecting Figure 5.10, one can get an average of 7% increase 

in the rate achieved by using the MD4 hash function instead of using the 

Lookup3 hash function. The increase is over 10% for some SNR values. We also 

observe that not much gain can be achieved by using the SHA hash function 

instead of Lookup3. To comment on the reasons of this difference in relative 

behaviors of MD4 and SHA as elements of spinal encoder/decoder is quite 

difficult and beyond the scope of this work. 
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Figure 5.10 – Achieved rate ratio of the MD4 and SHA hash functions to Lookup3  

 

 
 

5.7. Effect of the Puncturing on the Performance 

 

In this section, we discuss the gain in the achieved rate of the spinal codes 

brought by puncturing. The parameters we use in simulations for this section are 

as given in Table 5.6. 

 

We expect large gains in the achieved rate for large SNR values for which the 

channel capacity is high, but the information rate is limited by the value of k 

when the puncturing scheme is not used.  
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Table 5.6 – Simulation parameters for Section 5.7 

Parameter Value 

{k ,c} {3,4} and {4,6} 

B {256} 

n 96 

SNR {5,10,15,20,25,30} 

Hash Function Lookup3 

Puncturing Active and Not Active 

 

 

In Figures 5.11 and 5.12 we present the ratio of the achieved rate when 

puncturing is active to the rate when puncturing is not active, for {k, c} pairs of 

{3,4} and {4,6} respectively. The results are found by averaging over 1000 

simulations, similarly to the previous sections. 

 

As indicated by the curves in Figures 5.11 and 5.12, the rate is increased with 

puncturing at least by 15% for k = 4 at SNR = 15 dB, and by 10% for k = 3 at 

SNR = 10 dB. It is interesting to see that puncturing is advantageous at small 

SNR values as well, as the 35-40% gains of both curves at SNR = 5 dB 

demonstrate. The maximum rate gains obtained build up to 85% for k = 4 and 

170% for k = 3, both at SNR = 30 dB. Hence, we conclude that puncturing is a 

practical requirement that brings a lot of rate gain especially for large SNR 

values. 

 

The local maximum point in Figure 5.12 is due to the low rate resolution of no 

puncturing scheme. For example at SNR = 10 dB with k = 4 and no puncturing, 

one can decode the message no earlier than the end of the 2
nd

 pass. So, with no 

puncturing, one can achieve 2 bits/symbol at 10 dB, while with puncturing, 

because of the increased rate resolution, a much higher rate can be achieved. 
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Figure 5.11 – Achieved rate ratio of ‘puncturing to no puncturing’, k = 3, c = 4 

 

 

 

Figure 5.12 – Achieved rate ratio of ‘puncturing to no puncturing’, k =4, c = 6 
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5.8. Simulation Results of the Spinal Decoder that Uses Our Modified 

Algorithm at a Fixed SNR 

 

In this section, we discuss the results obtained using our modified spinal decoder 

algorithm that is presented in Chapter 4. Simulations have been performed for 

SNR values between 0 and 30 dB in steps of 1 dB, with spinal code parameters 

Bmax = 256, d = 1, n = 96, c = 6, and k = 4. The cdf  parameter a can take values 

of {0.5, 0.6, 0.7, 0.8, 0.9 and 0.95}.  The hash function is chosen to be the 

Lookup3 function and the puncturing is active. For each SNR and cdf pair, 1000 

simulations are run for the decoder using our modified algorithm. For 

comparison, reference values of the achieved rate and number of operations per 

message are created using the bubble decoder with the beam-width value B 

chosen as 256.  

 

In Figures 5.13 to 5.20, simulation outputs are plotted for various cases. Figure 

5.13 gives the ratio of the number of operations made by our modified algorithm 

to the reference number of operations, per message. Since the modified algorithm 

uses different L values for each cdf value a, the ratio of the number of operations 

differs with a. More specifically, this ratio increases with increasing values of a, 

but does not exceed 0.7 even for a = 0.95. 

 

In Figure 5.14, we plot the absolute number of operations per message with the 

reference decoder and with the modified algorithm using different values for the 

cdf parameter a. 

 

Similarly Figure 5.15 gives the ratio of the achieved rate with the modified 

algorithm for the same set of a values, to the achieved rate of the reference 

bubble decoder.  

 

Figure 5.16 is the detailed version of Figure 5.15 for better observation of the 

achieved rates with cdf values of 0.8, 0.9 and 0.95.  
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Figure 5.13 - Number of operations ratio of our modified algorithm to the reference 

decoder, with Bmax =256. 
 

 
 

 Figure 5.14 - Number of operations per message of our modified algorithm with 

different cdf values and that of the reference decoder, with Bmax =256 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
a

ti
o

 

SNR 
Ratio of No of Operations at cdf=0.5 Ratio of No of Operations at cdf=0.6

Ratio of No of Operations at cdf=0.7 Ratio of No of Operations at cdf=0.8

Ratio of No of Operations at cdf=0.9 Ratio of No of Operations at cdf=0.95

0

500000

1000000

1500000

2000000

2500000

3000000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N
u

m
b

e
r 

o
f 

O
p

e
ra

ti
o

n
s 

P
e

r 
M

e
ss

a
g

e
 

SNR 

No Opr for Ref No Opr at cdf=0.95 No Opr at cdf=0.9
No Opr at cdf=0.8 No Opr at cdf=0.7 No Opr at cdf=0.6
No Opr at cdf=0.5



 64 

Examining Figure 5.13, we see that for the mentioned SNR range, a reduction on 

the number of operations per message of at least 30% (for a = 0.95 and SNR = 6-

7 dB) is possible by using the modified algorithm. This reduction in decoder 

complexity can be as high as 60% for most values of the SNR in the given range. 

An interesting observation is that, as the SNR increases beyond 25 dB, the ratio 

of the number of operations for different cdf values all approach to 0.3. This 

leads one to use larger a values for the cdf, since higher information rates can be 

reached with larger values of the cdf.  

 

Another observation that can be concluded from Figure 5.13 is that as the SNR 

increases from 0 to 30 dB, the amount of reduction in the number of operations 

per message with respect to the reference bubble decoder, which is equal to ‘1 

minus the plotted ratio’; makes a minimum around 6-9 dB and increases almost 

to 70% at 30 dB as mentioned above. By inspecting Figure 5.14, we can see that 

the number of operations made per message for the reference decoder decreases 

faster at SNR values between 0 and 6 dB. Conversely, one can say that the 

relatively slow decrease in the number of operations of our algorithm in 0-6 dB 

range is a result of its small initial values at 0 dB, which in turn confirms the 

power of our algorithm at the lowest SNR values. This difference between initial 

slopes also explains why the operation reduction capability of our algorithm 

experiences a minimum around 6-9 dB as mentioned in the previous paragraph, 

corresponding to the maxima of the curves in Figure 5.13. 

 

We now present the results of simulations that show the ratio of the achieved rate 

of the modified algorithm to that of the bubble decoder on the given SNR range. 

We aimed an algorithm that reduces the decoder complexity, while being 

competitive with the reference decoder in terms of the achieved rate. As can be 

seen in Figure 5.15, the rate achieved with the modified algorithm for cdf values 

of especially 0.95, 0.9 and 0.8 is very competitive with the reference bubble 

decoder of [Perry-Iannucci-Fleming-Balakrishnan-Shah-2012]. This effect 

can also be seen in a closer view in Figure 5.16, where some loss in achieved rate 

is observed for SNR’s larger than 26 dB, only for the cdf value of 0.8. 
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Figure 5.15 - Achieved rate ratio of our modified algorithm to the reference decoder, 

with Bmax =256 
 

 
 

Figure 5.16 - Achieved rate ratio of our modified algorithm to the reference decoder – 

closer view, with Bmax =256 
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It is also of interest to investigate the performance of our algorithm with a 

different value of the maximum beam-width parameter Bmax. In the following, we 

present the simulation results for the decoder that uses the modified algorithm 

when Bmax is selected as 16. The remaining parameters are chosen the same, 

namely d = 1, n = 96, c = 6 and k = 4. The hash function is the Lookup3 function 

and the puncturing is active. The outputs of the simulations are averaged over 

1000 runs of the algorithm at each SNR. 

 

Figure 5.17 gives the ratio of number of operations made on each run of our 

algorithm with different cdf values, to that of the reference decoder with B = 16, 

per message.  

 

In Figure 5.18, we plot the absolute number of operations made per message by 

the reference decoder with B = 16, and by our algorithm with Bmax = 16, using 

different values for the cdf parameter a. 

 

Figure 5.19 gives the ratio of the achieved rate of our algorithm with Bmax = 16, 

for different values of the cdf parameter a, to that of the reference bubble decoder 

with B = 16.  

 

Lastly, Figure 5.20 is a detailed version of Figure 5.19, to better observe the 

achieved rates for the cdf values of 0.7, 0.8, 0.9 and 0.95.  

 

Similar observations to the Bmax = 256 case can be drawn for the Bmax = 16 case 

from Figure 5.17. One can reduce the number of operations per message at least 

by 37% (see a = 0.95 curve), and an average reduction of 58% is possible in the 

given SNR range.  

 

The difference from the Bmax = 256 case is emphasized in Figure 5.20, where a 

wider range of the cdf values, namely a = 0.7, 0.8, 0.9 and 0.95, all prove very 

competitive rates with the reference decoder. 
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Figure 5.17 - Number of operations ratio of our modified algorithm to the reference 

decoder, with Bmax =16 
 

 

 
 

Figure 5.18 - Number of operations per message of our modified algorithm with 

different cdf values and that of the reference decoder, with Bmax =16 
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Figure 5.19 - Achieved rate ratio of our modified algorithm to the reference decoder,  

with Bmax =16 
 

 
Figure 5.20 - Achieved rate ratio of our modified algorithm to the reference decoder – 

closer view, with Bmax =16 
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In order to obtain a rough idea on the performance of our algorithm, we have 

averaged the number of operations and the achieved rate values over the 

specified SNR range. Tables 5.7 and 5.8 summarize the average values for each 

cdf value for the ratio of number of operations and the ratio of achieved rates 

respectively, when Bmax is equal to 256. Note that all ratios are with respect to the 

reference bubble decoder given in [Perry-Iannucci-Fleming-Balakrishnan-

Shah-2012] with the spinal code parameters mentioned in this section. 

 

Table 5.7 – (Modified to reference) ratio of number of operations per message averaged 

over the SNR range of [0, 30] dB for Bmax = 256 

cdf 0.5 0.6 0.7 0.8 0.9 0.95 

Ratio 0.319 0.363 0.396 0.443 0.486 0.522 

 

Table 5.8– (Modified to reference) ratio of achieved rates 

averaged over the SNR range of [0, 30] dB for Bmax =256 

cdf 0.5 0.6 0.7 0.8 0.9 0.95 

Ratio 0.940 0.968 0.981 0.991 0.998 0.998 

 

 

Similarly, for Bmax = 16, we present the average number of operations and 

achieved rate values over the given SNR range in Tables 5.9 and 5.10. 

 

Table 5.9 – (Modified to reference) ratio of number of operations per message averaged 

over the SNR range of [0, 30] dB for Bmax = 16 

cdf 0.5 0.6 0.7 0.8 0.9 0.95 

Ratio 0.336 0.350 0.370 0.385 0.410 0.423 

 

Table 5.10– (Modified to reference) ratio of achieved rates 

averaged over the SNR range of [0, 30] dB for Bmax =16 

cdf 0.5 0.6 0.7 0.8 0.9 0.95 

Ratio 0.953 0.967 0.987 0.995 0.997 0.998 
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Tables 5.7 and 5.8 given for Bmax = 256 show that an average reduction; i.e., 

(1−ratio), of 52%  in the number of operations per message is possible with an 

average 0.2% loss in the achieved rate, by using the cdf value of 0.9. One can 

gain more reduction in decoder’s computational effort by using smaller values of 

the cdf parameter a; i.e., by pruning more possible paths when traversing the 

decoding tree. At the cdf value of 0.5, we can get 68% reduction in computations 

made per message while sacrificing only 6% of the achieved rate with respect to 

the reference bubble decoder. 

 

Similar observations can be concluded inspecting Tables 5.9 and 5.10. For Bmax = 

16, an average reduction of 58% in the number of operations per message is 

possible with an average 0.2% loss in the achieved rate, by using the cdf value of 

0.95. The highest reduction in decoder complexity is obtained with the smallest 

cdf parameter in our simulation set; namely, a = 0.5 case provides 67% reduction 

in the computational load, while losing 4.7% of the rate achieved with the bubble 

decoder. 

 

Finally, we can compare our results with a related work that aims to decrease the 

computational load of the decoder for graph-based rateless codes [Harrison-

Jamieson-2012]. Our work focuses on rateless spinal codes, where we propose a 

modified decoding algorithm to significantly reduce the decoder complexity, 

while Harrison et al. present a simpler decoding algorithm for graph-based codes. 

They compare the performance of the decoding algorithm for graph-based codes 

to that of spinal codes. The results of [Harrison-Jamieson-2012] show 

complexity reductions of the message decoding cost of graph-based rateless 

codes compared to spinal codes for SNR values larger than 20 dB, reaching an 

order of magnitude reduction for SNR values above 25 dB, while for smaller 

SNR values the spinal codes have a lower message decoding complexity. Our 

modified algorithm offers a complexity reduction on the order of 40-50% 

average for the entire range of SNR values from 0 to 30 dB, while achieving the 

same rate values with the spinal codes.  
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5.9 Simulation Results of the Modified Spinal Decoder for Changing SNR 

Conditions 

 

In this section, we compare performances of the reference bubble decoder with 

our modified decoding algorithm when the SNR changes abruptly from one level 

to another during the transmission. We run simulations on a simple channel 

model such that during a portion of the transmission time denoted by t subpasses, 

the SNR is constant at SNR1; then it changes to a different value denoted by SNR2 

and remains constant until the end of the transmission. We have considered two 

cases with {SNR1, SNR2} = {20, 10} dB and {SNR1, SNR2} = {10, 20} dB, for 

several t values. The other parameters of spinal encoder and decoder are as given 

in Table 5.11. 

 

Table 5.11 – Simulation parameters for Section 5.9 

Parameter Value 

{k ,c} {4,6} 

B 256 

n 96 

Hash Function Lookup3 

Puncturing Active 

t {3,4,5,6,7,8,9} 

 

The achieved rates and the number of operations made per message metrics are 

averaged over 1000 simulation runs. For the first set of runs, SNR1 = 20 dB in the 

first t subpasses, and then SNR2 = 10 dB. With cdf values changing from 0.5 to 

0.95, the achieved rate ratio and the number of operations made per message 

ratio are given respectively in Figures 5.21 and 5.22, with respect to the bubble 

decoder for t values changing between 3 and 9, which are chosen in this range 

since the starting subpasses obtained from Table 4.1 are K(20dB)=5 and 

K(10dB)=8. We observe that, for cdf values of 0.8 and above, the average 

achieved rate ratios with respect to the bubble decoder for the wide range of t 

values mentioned above is larger than 99%. The corresponding number of 
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operations made per message ratios with respect to the bubble decoder can be as 

low as 42% (for a cdf value equal to 0.8).  

 

 

Figure 5.21 - Achieved rate ratio of modified / reference decoders for an abrupt change 

from SNR1 = 20 dB in the first t subpasses to SNR2 = 10 dB 

 

Figure 5.22 - Number of operations ratio of modified / reference decoders for an abrupt 

change from SNR1 = 20 dB in the first t subpasses to SNR2 = 10 dB 
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The results of {SNR1, SNR2} = {10, 20} dB with the same parameters as in Table 

5.11 are given in Figures 5.23 and 5.24 for the achieved rate ratio and number of 

operations made per message ratio respectively, as compared to the bubble 

decoder. 

 

Figure 5.23 - Achieved rate ratio of modified / reference decoders for an abrupt change 

from SNR1 = 10 dB in the first t subpasses to SNR2 = 20 dB 

 

 

Figure 5.24 - Number of operations ratio of modified / reference decoders for an abrupt 

change from SNR1 = 10 dB in the first t subpasses to SNR2 = 20 dB 
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Figures 5.23 and 5.24 show that the case of an abrupt rise from 10 dB to 20 dB 

gives very similar results to the previous case of an abrupt fall from 20 dB to 10 

dB: For cdf values of 0.8 and above, the average achieved rate ratios with respect 

to the bubble decoder for the wide range of t values mentioned above is larger 

than 99%. The corresponding number of operations made per message ratios 

with respect to the bubble decoder for these cdf values can be as low as 48% (for 

cdf = 0.8). 

 

By comparing the results of this section with Tables 5.7 and 5.8 obtained for the 

case of a fixed SNR during transmission, which indicate an average ratio of 

48.6% in the number of operations per message with an average ratio of 99.8% 

in the achieved rate (for cdf =0.9); we conclude that the performance of our 

modified decoding algorithm is not affected negatively by the presence of an 

abrupt SNR change. Comparison of this section’s results with Table 5.7 may 

look somewhat unfair since Table 5.7 is obtained by averaging 31 different 

simulation results obtained for the 1dB-separated SNR values in the range [0, 30] 

dB. However, the same result is justified in Figure 5.13 as well, where the 

modified/reference ratio of the number of operations is approximately 60% and 

43% for 10 dB and 20 dB respectively (at cdf =0.9).  
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

In this thesis, the performance of rateless spinal codes over an additive white 

Gaussian noise channel is investigated. Since the decoding complexity of the 

spinal decoder is high, we have designed an algorithm to reduce the 

computational load of the decoder. We have made software simulations in order 

to explore the effects of the code parameters on the performance of the spinal 

codes and also for evaluating the advantages of our decoding algorithm over the 

bubble decoder. 

 

Before the performance assessment of our algorithm, we have investigated the 

effects of parameters c, k, B, n; in addition to the consequences of using different 

hash functions and puncturing on the performance of the original bubble decoder 

for spinal codes. The simulations are run for the SNR values of 5 to 30 dB in 5 

dB steps. Performance is measured in terms of the number of operations per 

message made by the decoder and the achieved rate, averaged over 1000 

simulation runs. 

 

 For the parameter c that determines the constellation size, we have found 

that it should be somewhat larger than k, which is the length of the 

message segments. It seems that c = 6 when k = 4, and c = 4 when k = 3, 

are appropriate choices for the given SNR range. 

 

 For the message length parameter k chosen from the set {2, 3, 4}, 

considering the results presented in Sections 5.3 and 5.5, k = 4 is the best 

choice in the given SNR range. Higher values of k are not considered in 

order to keep the decoding tree complexity at a reasonable level. 
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 For the beam-width parameter B, if the application is over the full SNR 

range of [0, 30] dB, it is best to use at least B = 256 so that the rate is not 

limited. However, if the application is supposed to work at bad channel 

conditions all the time, smaller values of B can be chosen. 

 

 For the parameter n, which is the total message length of one pass, it is 

reasonable to choose n = 192 for k = 4, and n = 96 is for k = 3. 

 

 For the hash functions, we state that using the MD4 hash function instead 

of the Lookup3 hash function provides an average 7% gain in the 

achieved rate; however, the decoder’s computational work is increased as 

well. 

 

 For the puncturing, we find that it is essential especially for large SNR 

values. However, it also provides gains in the achieved rate at worse 

channel conditions. 

 

Afterwards, the results obtained by our modified decoder algorithm proposed in 

Chapter 4 are presented and compared with those of the bubble decoder. Our 

algorithm guesses the channel SNR and the corresponding successful decoding 

time by exploiting the pre-computed distributions of the best path metrics at the 

end of each subpass for all SNR’s. This information is used for increasing the 

value of B whenever necessary. In other words, our algorithm starts with a beam-

width value B=1 and increases B only when the decoder is close to “successful 

decoding”. 

 

LimitValue’s obtained for each SNR value in the range [0,30] dB for each 

subpass are used to estimate the channel SNR, while deciding whether to 

increase the value of B or not. LimitValue lists are prepared by using the metric 

distributions collected offline. To estimate the channel SNR, we compare the 

best path metric at the end of each subpass with the LimitValue’s of different 
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SNR’s belonging to that subpass. We then predict the SNR as approximately the 

value that has the closest LimitValue larger than the obtained best path metric.  

 

In our simulations, the performance of our decoding algorithm that keeps the 

beam-width at B=1 and changes it to B=Bmax, is compared with that of the bubble 

decoder constantly working at B=Bmax. Performance is measured in terms of two 

ratios; namely, the modified / reference decoder’s ratio of 1) the number of 

operations per message, 2) the achieved rate. Each measurement is made by 

averaging over 1000 simulation runs. 

 

We have found that our decoder provides a reduction of 52% for Bmax =256, and 

a reduction of 58% for Bmax =16 in the number of operations per message, with 

nearly the same achieved rates. More precisely, the achieved rate of our decoder 

is within 0.2% of the rate achieved by the reference bubble decoder. Another 

conclusion that can be drawn is that, one can use lower values (for example 0.5) 

for the cdf parameter a for less energy expenditure, with some loss in the 

achieved rate that can be tolerable in some applications. The loss in the achieved 

rate is 6% and 4.7%, whereas the reduction in the number of operations is 68% 

and 67% for Bmax =256 and Bmax =16 respectively, if the cdf parameter a is 

chosen as 0.5. The choice of the cdf value a depends on the specific application 

and it can be selected among different cdf values ranging from 0.5 to 0.95, to 

fulfill needs of the user. 

 

We also conclude that using our algorithm, one can achieve a reduction of 70% 

in the number of operations per message made by the decoder as the SNR 

increases to 30 dB regardless of the value of the cdf parameter a when Bmax =256. 

The same characteristic is also seen when Bmax =16, the reduction with increasing 

SNR converges to 78% independent of the value used for the cdf parameter a.  

 

We have also run simulations in case of an abrupt SNR increase or decrease by 

10 dB during the transmission. We have compared the performance of our 

decoding algorithm to the reference bubble decoder and concluded that our 
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algorithm is resistant against changing channel conditions. Even when the SNR 

changes abruptly during the transmission of the message, our decoder saves a 

considerable amount of decoder computational resources that reaches 60% with 

negligible loss in the achieved rate values. 

 

As future research directions, the performance of the proposed decoder on fading 

channels can be investigated. To implement the proposed decoder in hardware 

and to test its performance in real-life scenarios is another challenging idea. 
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APPENDIX A 

 

 

CDF PLOTS OF SUBPASS 1-6 PATH METRIC VALUES FOR B=1 AT 

VARIOUS SNR’S 

 
 
 

 
 

Figure A.1 – Path metric cdf’s in Subpasses 1 to 6 for SNR = 0 dB 

 
 

 
Figure A.2 – Path metric cdf’s in Subpasses 1 to 6 for SNR = 5 dB 
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Figure A.3 – Path metric cdf’s in Subpasses 1 to 6 for SNR = 10 dB 

 
 
 

 
Figure A.4 – Path metric cdf’s in Subpasses 1 to 6 for SNR = 15 dB 
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Figure A.5 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 1 

 
 
 

 
Figure A.6 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 2 
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Figure A.7 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 3 

 
 
 

 
Figure A.8 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 4 
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Figure A.9 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 5 

 
 
 

 
Figure A.10 – Path metric cdf’s  at {0, 5, 10, 15} dB for Subpass 6 
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APPENDIX B 

 

 

LIMIT VALUES OF SUBPASS 1-6 PATH METRIC VALUES FOR B=1 

AT VARIOUS SNR’S 

 

 

 

Table B.1 – Limit values for our modified algorithm over the SNR range of [0, 30] dB 

for subpasses 1 to 6 when the path metric cdf reaches a = 0.95 

a = 0.95 Subpass1 Subpass2 Subpass3 Subpass4 Subpass5 Subpass6 

SNR0 8422 16475 20008 25850 31946 36364 

SNR1 8214 12868 16679 22877 25459 30041 

SNR2 6128 10637 14134 19387 21602 25273 

SNR3 4831 8433 11582 15169 17329 21775 

SNR4 4119 7121 10384 14195 16050 18914 

SNR5 3212 6042 9969 11539 13379 16238 

SNR6 2917 5532 8802 11431 12539 14264 

SNR7 2469 4805 8199 10446 11143 13776 

SNR8 2112 4436 7524 9593 11232 12649 

SNR9 1901 3863 6637 8796 9934 12313 

SNR10 1621 3987 6778 8785 9818 11658 

SNR11 1478 3703 6752 8007 9138 11322 

SNR12 1324 3538 6469 8151 9089 10725 

SNR13 1231 3369 6384 7433 8524 10061 

SNR14 1157 3244 6011 7295 8533 9574 

SNR15 1041 3123 5840 7017 8491 9262 

SNR16 933 3228 5627 7794 8411 8788 

SNR17 944 3044 5455 7851 7883 9181 

SNR18 878 3072 5350 7681 7130 8702 

SNR19 834 2956 5349 7278 7121 8144 

SNR20 811 3006 5449 6767 7420 7601 

SNR21 763 3107 5229 6839 7003 7392 

SNR22 751 3000 4640 6174 6934 7875 

SNR23 719 3109 5167 6033 6844 7561 

SNR24 739 2939 4654 5746 6264 7257 

SNR25 719 2994 4562 5359 6241 6986 

SNR26 710 3019 3880 3817 6037 6033 

SNR27 713 2790 3980 3800 6212 5601 

SNR28 714 2754 3797 3796 6173 4984 

SNR29 672 2753 3734 3422 6150 4935 

SNR30 685 2782 3838 3543 5930 4825 
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Table B.2– Limit values for our modified algorithm over the SNR range of [0, 15] dB 

for subpasses 1 to 6 when the path metric cdf reaches a = 0.9 

a = 0.9 Subpass1 Subpass2 Subpass3 Subpass4 Subpass5 Subpass6 

SNR0 7006 13753 17661 23657 26965 33336 

SNR1 5851 10516 15154 19254 21474 25771 

SNR2 4758 8496 13009 16421 18557 21700 

SNR3 3631 6941 10517 13804 15952 18684 

SNR4 3592 5921 9350 12771 14463 15761 

SNR5 2361 4837 8315 10596 12051 15023 

SNR6 2310 4542 7475 9350 10450 13084 

SNR7 1926 3931 6944 8879 9713 12757 

SNR8 1645 3716 6921 8004 9183 11697 

SNR9 1585 3435 6028 7974 8322 10424 

SNR10 1291 3315 6279 7355 7805 10833 

SNR11 1197 3359 5703 7347 7799 9919 

SNR12 1155 2968 5469 6797 7924 9888 

SNR13 1100 3062 5817 6814 7073 9213 

SNR14 965 2975 5026 6675 7766 8912 

SNR15 935 2887 5433 6896 7305 8474 
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Table B.3 – Limit values for our modified algorithm over the SNR range of [0, 15] dB 

for subpasses 1 to 6 when the path metric cdf reaches a = 0.8 

a = 0.8 Subpass1 Subpass2 Subpass3 Subpass4 Subpass5 Subpass6 

SNR0 4209 9606 15577 19412 22086 27266 

SNR1 4130 8253 12131 15373 19600 23628 

SNR2 3399 6390 10652 13450 15459 19901 

SNR3 2417 5403 8423 11019 13030 15578 

SNR4 2569 4755 7275 9975 11258 14172 

SNR5 1765 4223 6654 8682 10704 12520 

SNR6 1752 3527 5993 8302 9406 11898 

SNR7 1371 3486 5553 8086 8573 10625 

SNR8 1175 3346 5520 7192 8235 10736 

SNR9 1273 3009 4837 6398 7647 9471 

SNR10 968 2988 4713 6611 7562 9346 

SNR11 897 2694 4672 6677 7191 9192 

SNR12 826 2669 4478 6126 7160 8246 

SNR13 822 2761 4796 5580 6393 8391 

SNR14 772 2440 4530 5482 6705 7543 

SNR15 733 2644 4602 5748 6369 7826 
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Table B.4 – Limit values for our modified algorithm over the SNR range of [0, 15] dB 

for subpasses 1 to 6 when the path metric cdf reaches a = 0.7 

a = 0.7 Subpass1 Subpass2 Subpass3 Subpass4 Subpass5 Subpass6 

SNR0 2801 8260 13353 17230 19632 24253 

SNR1 3324 7066 10610 13469 15678 21436 

SNR2 2732 5322 8288 11941 13911 18060 

SNR3 2057 4647 7378 9666 11599 14007 

SNR4 1817 4159 7275 8549 11258 14172 

SNR5 1476 3626 5819 7717 9360 11261 

SNR6 1464 3027 5244 7275 8364 10697 

SNR7 1095 3058 4860 7279 7708 10625 

SNR8 937 2603 4845 6399 7488 9761 

SNR9 953 2576 4234 6398 6882 8526 

SNR10 808 2327 4184 5885 6802 8335 

SNR11 748 2357 4157 6009 6534 8502 

SNR12 662 2374 3978 5447 6510 7420 

SNR13 688 2453 4260 4960 6393 7551 

SNR14 673 2440 4027 4872 6092 6861 

SNR15 628 2404 3761 5162 5660 7164 
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Table B.5 – Limit values for our modified algorithm over the SNR range of [0, 15] dB 

for subpasses 1 to 6 when the path metric cdf reaches a = 0.6 

a = 0.6 Subpass1 Subpass2 Subpass3 Subpass4 Subpass5 Subpass6 

SNR0 2801 6878 11121 15120 17183 21219 

SNR1 2503 5889 9098 11550 15678 17202 

SNR2 2045 4259 7093 10458 12353 16296 

SNR3 1213 3871 6326 9666 11599 14007 

SNR4 1547 3566 6220 7115 9645 12609 

SNR5 1181 3024 4984 6753 8037 11261 

SNR6 1170 3027 4493 6234 8364 9519 

SNR7 822 2620 4164 6468 7708 9570 

SNR8 937 2603 4159 5600 6739 8783 

SNR9 629 2147 3627 5595 6882 8526 

SNR10 648 2327 3662 5146 6048 8102 

SNR11 598 2357 3625 5341 5882 7766 

SNR12 662 2076 3472 4755 5849 7420 

SNR13 549 2142 3725 4960 5684 6713 

SNR14 579 2170 3521 4264 5477 6861 

SNR15 523 2165 3348 4598 5660 6510 
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Table B.6 – Limit values for our modified algorithm over the SNR range of [0, 15] dB 

for subpasses 1 to 6 when the path metric cdf reaches a = 0.5 

a = 0.5 Subpass1 Subpass2 Subpass3 Subpass4 Subpass5 Subpass6 

SNR0 1404 5495 8897 12962 17183 21219 

SNR1 1672 4700 7567 11550 13695 17202 

SNR2 1362 4259 7093 8965 12353 14491 

SNR3 1213 3098 5269 8286 10156 12462 

SNR4 1031 2960 5199 7115 8042 11026 

SNR5 881 2420 4159 6753 8037 10015 

SNR6 877 2521 4493 6234 7301 9519 

SNR7 822 2184 4164 5663 6856 8507 

SNR8 704 2230 3463 5600 6739 7808 

SNR9 629 2147 3627 4792 6111 7569 

SNR10 648 1994 3662 4413 6048 7500 

SNR11 598 2019 3625 4676 5882 7076 

SNR12 496 1781 2984 4755 5205 6595 

SNR13 551 1841 3197 4343 5684 6713 

SNR14 482 1898 3009 4264 5477 6168 

SNR15 467 1925 2927 4025 4955 5869 

 
 


