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ABSTRACT

ALGEBRAIC SPECTRAL MOMENTS BASED MOVING CLUTTER
PARAMETER ESTIMATION AND CLUTTER SUPPRESSION

Oktar, Onur
M.Sc., Department of Electrical & Electronics Engineering
Supervisor : Prof. Dr. Yalgin Tanik

January 2014, 150 Pages

In many modern radar systems, it is desired to detect the presence of targets in the
interference which includes clutter and noise. Various signal processing techniques
are proposed to effectively suppress the clutter and increase the signal to interference
ratio. To achieve optimum suppression, radar system must know clutter
characteristics and process the radar echoes based on these characteristics. For
ground radars, the clutter environment characteristics are relatively stable and
predictable. These characteristics can be stored in radars memory and optimum
clutter suppression can be achieved. However, for maritime radars, dealing with sea
clutter is a rather big problem since its characteristics changes over time according to
change in velocity vector of wind, grazing angle etc. In such a case, a radar needs to
adapt itself to changing clutter environment to achieve good clutter suppression. The
bigger problem arises when both the rain clutter and the sea clutter coexists since
they are differently affected by environmental conditions and radar parameters. In
these environments, adaptive estimation of both clutter characteristics to suppress the
interference becomes obligatory if high-performance target detection is needed. In
this study, parametric clutter parameter estimation techniques are considered and the
performance of algebraic spectral moments based moving clutter parameter
estimation technique is investigated for different conditions. To compare the clutter
suppression of the algebraic spectral moments based moving clutter parameter
estimation technique with that of more conventional methods, improvement factor
(IF) is used as the figure of merit.

Keywords: K-Distributed Sea Clutter, Rain Clutter, Rain and Sea Clutter
Suppression, Parametric Clutter Parameter Estimation, Improvement Factor
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CEBIRSEL SPEKTRUM MOMENTLERI TABANLI HAREKETLI KARGASA
PARAMETRELERI TAHMINI VE KARGASA BASTIRIMI

Oktar, Onur
Yiiksek Lisans, Elektrik & Elektronik Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. Yalgin Tanik

Ocak 2014, 150 Sayfa

Modern radarlarin biiyiik ¢ogunlugunda, kargasa ve giriiltiiniin dahil oldugu
enterferans icinde hedef tespiti gerceklestirilmeye c¢alisiimaktadir. Kargasanin
bastirilmasi ve sinyal ile enterferans oraninin arttirtmasi i¢in birgok sinyal igleme
teknikleri  Onerilmigtir.  Optimum kargasa bastinmu i¢in radarin kargasa
parametrelerini bilmesi ve bu parametrelere gore radar yansisini islemesi
gerekmektedir. Kara radarlari i¢in, kargasa ortami parametreleri tahmin edilebilir ve
biiyiik oranda kararlidir. Bu parametreler radar hafizasinda saklanabilir ve optimum
kargasa bastirnmi saglanabilmektedir. Fakat deniz radarlarinda deniz kargasasinin
karakteristigi riizgar, siyirma agis1 v.b. etkenlere gore zaman icinde degistigi i¢in
bastirilmasi daha gii¢ bir istir. Bu durumlarda etkin bastirma saglayabilmek i¢in radar
degisken cevreye uyum saglamalidir. Hem deniz hem de yagmur kargasasinin
bulundugu ortamlarda ise, iki kargasa da c¢evresel faktorlerden ve radar
parametrelerinden farkli etkilendigi i¢in kargasa bastirimi daha giic olmaktadir. Bu
tir ortamlarda, iki kargaganin da karakteristiginin uyarlamali sekilde tahmini ve
kargasa bastirimi, yiiksek performansta hedef tespiti i¢in zorunlu olmaktadir. Bu
calismada parametrik kargasa parametreleri tahmin metotlar1 sunulmus ve cebirsel
spektrum momentleri tabanli hareketli kargasa parametreleri tahmini metodunun
performansi farkli durumlarda incelenmistir. Cebirsel spektrum momentleri tabanh
hareketli kargasa parametreleri tahmini metodunun ve klasik yontemlerin kargasa
bastirimi etkinliginin karsilastirilmasi icin iyilestirme faktorleri hesaplanmistir.

Anahtar Kelimeler: K-Dagilimli Deniz Kargagasi, Yagmur Kargasasi, Yagmur ve
Deniz Kargagas1 Bastirimi, Parametrik Kargasa Parametreleri Tahmini, lyilestirme
Faktorii
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CHAPTER 1

INTRODUCTION

1.1 Radar Definition

RADAR (RAdio Detection And Ranging) is a detection system which determines
range, angle and velocity of distant objects by analyzing electromagnetic waves
reflected from their surfaces. The radar antenna transmits high energy radio waves
and the radar receiver measures the amplitude, the direction of arrival and the round-

trip time of the radar pulse to get to the target and return.

It can be used to detect and track aircraft, spacecraft, ships, missiles and weather

formations such as clouds, rain, snow, hail.

1.2 Interference Definition

Interference in radar terminology can be defined as an unwanted signal that may
originate from internal and external sources and obstructs the detection of intended

targets. There are mainly three types of interference: noise, jammer and clutter.

There are two sources of noise: Thermal noise and external noise. Thermal noise
originates mainly from electronics equipment of radar and caused by random
fluctuations in the electric signals. It is the major reason that limits a radar’s

detection performance. It depends mainly on noise figure of the radar receiver and



system temperature. Another source of noise, external noise, is caused by the natural
thermal radiation of the background surrounding the target of interest. Using high
energy radar pulses, matched filtering and Doppler processing are ways to overcome

noise.

Jammers are manmade sources that are used to mask target presences intentionally
by transmitting parasite signals in the frequency band of radar. Jamming is the most
challenging problem for a radar since target signal travels two-way before entering

the radar receiver while jammer signal travels one-way.

Clutter is defined as the nuisance radar echoes reflected from the environment or
scene around the interested target. These radar echoes can originate from any natural
objects like ground, buildings, sea, precipitation (such as rain, snow or hail), insects
and even atmosphere itself. The nuisance radar echoes originated from non-moving
environments with respect to radar can be classified as stationary clutter like ground,
building etc.; while sea, precipitation, insects, atmosphere can be classified as
moving clutter. Clutter is a common problem that must be solved for many types of

radars.

1.3 Optimum Interference Suppression Filtering and Moving Target

Indicator (MTI) and Moving Target Detection (MTD) Algorithms

To increase the signal to clutter ratio (SCR), in other words, to suppress the clutter,
Moving Target Indicator (MTI) and Moving Target Detection (MTD) are two old but
still valid methods. The MTI method uses the stationary property of the clutter and it
is used to separate moving targets from stationary clutter such as buildings, hills,
trees and sea. The phase of the radar echo from a moving target changes from pulse
to pulse since the relative distance between the radar and the target differs while the
clutter echoes reach the radar antenna at the same phase shift. The MTI algorithm

uses this difference and it is mostly implemented as a Single Delay Line Canceler or



a Double Delay Line Canceler in time domain in early radars. Figure 1-1 shows these

implementation techniques for MTI. In Figure 1-1, X(t), y(t) and T shows input

signal, output signal and pulse repetition interval, respectively.

x(t) 0 y(r)
________ > Z\

(1) E_ 3 = Ty Lt 7
[ N 5
[ ! | :
O vy SR &
—| dclay. T |—> delay, T |'—lf

Single Delay Line Canceller Double Delay Line Canceller

Figure 1-1: Implementation Techniques for MTI [1].

Frequency responses of a single delay line canceler and a double delay line canceler

are given in Figure 1-2.
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Figure 1-2: Normalized Frequency Responses for Single and Double Cancellers [1].

Although MTI is a very efficient algorithm to suppress the stationary clutter, it has

some deficiencies [2]:

Low detection probability in the presence of precipitation clutter since the
mean velocity of the rain clutter may not be centered at zero radial velocity
and the rain clutter can leak out of the MTI filter. This results in critical
degradation in a radar’s performance especially in the case that the radar

antenna is looking along the wind direction.

High false alarm rate for systems having a rotating antenna in the presence of
ground clutter (Antenna rotation causes Doppler spread in even stationary
clutter and some of its power leaks through the MTI filter causing false

alarms and decrease in the target detection performance).



e Wide notch around zero and blind speeds limits the detection of the targets
with nearly zero radial velocity or the targets with radial velocity near blind

speeds.

With these needs, a next generation algorithm, MTD, which offers better sub-
optimum filters, was developed and proposed by Lincoln Laboratory to overcome the
limitations of the moving target indicator (MTI) systems [2]. Before addressing the
sub-optimum filters offered by the MTD, it is useful to mention the optimum clutter

suppression filter.

Consider a complex signal Mx1 column vector

y=[y(M-1) y(M-2) . y()] (L.1)

which represents the radar echoes from a range cell including the target, the clutter

and the noise sampled with sampling period T, and a filter defined by an Mx1

column vector

T
h=[h(M-1) h(M-2) .. h(0)] (1.2)
where (D)T designates transpose operation.

The received signal vector y is composed of the target signal vector t and the

interference vector W :

y=t+W. (1_3)

Then, the filtered target signal becomes h't with power h"t*t"h and the filtered

interference becomes h'w with power h"w*w"h where ()" designates Hermitian

transpose operation and (D) designates conjugate operation.

The signal to interference ratio (SIR) at the output of the filter is



h"t"t"h

SR="Fsn (1.4)

where the interference covariance matrix S, is

SI :E{W*WT} . (1.5)

The optimum clutter suppression filter coefficient vector h,, is the filter that

maximizes the signal to interference ratio (SIR) at the output [3].

According to Schwarz inequality

neeh<lanf (A o] =(nsn)(e (s)"t) (16)

where

S, = A"A. (1.7)
After arranging (1.6), the upper bound to the SIR can be expressed as

1

SIR<t"(S,) t". (1.8)

The optimum clutter suppression filter coefficient vector h,, is the vector satisfies

the equality in (1.8):

hy =(S)"t. (1.9)

As seen, to design the optimum clutter suppression filter, a priori knowledge of the
interference covariance matrix and the desired target signal replica to which the filter

1s matched is needed.

Since adaptive estimation of the interference covariance matrix needs high

processing powers and the target signal is unknown a priori, the MTD algorithm



introduces some approximate approaches that simplify the optimum filtering that

leads to a sub-optimum filtering [2]:

The MTD algorithm uses an assumed S, of ground clutter and receiver noise

which is a function of only CNR and antenna scanning modulation [2]. The
CNR can be obtained adaptively by clutter maps and the antenna scanning

modulation can be calculated according to antenna rotation speed.

The target return signal is assumed to be a Swerling-0 target which has unit

power and constant velocity
_ —j2xf T, —j2xf 2T, —j2zfi(M-1)Tg
p—[l e’ e’ . e ] (1.10)

where f, represents the target Doppler frequency, T, represents the PRI and

M represents the number of pulses in CPI.

Parallel Doppler filters tuned to different target velocities covering whole

Doppler Spectra are designed.

An example of frequency responses of the sub-optimum clutter suppression filters

used by the MTD algorithm can be seen from Figure 1-3.
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Figure 1-3: MTD-2 Doppler Filter Characteristics (5-bit coefficients) [2].



The MTD algorithm uses basic principles of the MTI; however it enhances its linear

dynamic range by adding the parallel Doppler filters followed by constant false

alarm rate detectors.

Principle features of the MTD processor presented in Figure 1-4 includes [2]

Use of digital Doppler filters to separate the target returns from the clutter;
the MTD solved this problem by near-optimum filtering. Near-optimum
filtering of the rain clutter can be done as in the case of the ground clutter but
the mean velocity of rain (can be different from zero) should be considered.
The mean velocity of the rain clutter can be measured but it was decided not
to do so because measuring the mean velocity of the rain clutter would bring

complexity to hardware.

Adaptive clutter maps to detect targets having no radial velocity vectors with

respect to radar,

Block-staggered (“multiple PRF”) pulse repetition frequencies to unmask
aircraft masked by precipitation echoes (PRF agility from CPI to CPI assures
that if the radial velocity of aircraft is different from rain, high speed aircraft

falls in to different Doppler filters on different PRF’s),

Pulse to pulse micro-staggered pulse repetition frequency coupled with the

use of a coherent microwave transmitter to eliminate second trip echoes,

A constant false alarm rate thresholding algorithm testing the output of each
range-azimuth-Doppler cell for the presence of a target and clutter (Since
weather and noise are statistically Rayleigh distributed, classic cell averaging
constant false alarm rate algorithms can stabilize false alarm rate in the

Doppler bins which the rain clutter falls in.)

Correlation and centroiding algorithms that generate a single target report

from a cluster of range-azimuth-Doppler target reports.



10
SAMPLES

FROM RAIN AND
22 8-POINT
A/D I 1BITS 8192 18Q MAGNITUDE WEATHER
10 BITS *| ADDER === worops 2B puise “;252?,{5 AND LEVEL
it . CANCELER TRANSFORM WEIGHTING MEASUREMENT
MEMORY
RANGE | 129 L |
ZERO
CELLS Q, ADDER 36 BIT[S — % VELOCITY — ™ MAGHNITUDE
PER | FILTER | |
SWEEP CGRQ[_I-_:_P%% |
LU
1 RESHOLDING
RECURSIVE ™
FILTER
HIT
DISC REPORT
GENERATOR
INFORMATION OUTPUT
{1} AZIMUTH
12) RANGE
(3 VELOCITY
-4-18214 . B t(;: 2I;I:LITUDE

Figure 1-4: MTD-2 (Second Generation MTD) Processor Block Diagram [2]

Superior features of the optimum filters over the pulse cancellers are listed below [2]:

At zero velocity and blind speeds, improvement factor is zero but there is no

worsening as in the case of the 3-pulse canceller.

e Except for the filters tuned to or near the blind speeds, there are very deep
nulls at blind speeds.
e Since the width of notch around blind speeds is determined in an optimum

way with respect to the antenna rotation speed, the width of the notch
increases with the increasing antenna rotation speed. Since optimum weights
are the function of clutter power, the need to memorize the scan to scan

clutter power rises.

A simple detector can be built. The optimum processor can be broken into
two parts; a clutter filter used to multiply the signal by antenna weighting and
by the inverse of the interference covariance matrix and a target filter which

is Discrete Fourier Transform. To decrease the computation load, the near-



optimum filter can be approximated by a digital filter which approximates as
closely as possible the frequency response of clutter filter and the following

target filter which is Discrete Fourier Transform (DFT).

1.4 Thesis Motivation

In many modern radar systems, various signal processing techniques have been
proposed to effectively suppress the clutter and increase the signal to interference
ratio. To achieve optimum suppression, the radar system must know the clutter
characteristics and process the radar echoes based on these characteristics. Knowing

the clutter covariance matrix is the first step of achieving this goal.

For fixed ground radars, the clutter environment characteristics are relatively stable
and predictable. These characteristics can be stored in radars memory and optimum
clutter suppression can be achieved. However, for radars on moving platforms, the
clutter characteristics become diverse due to the relative velocity between radar
platform and clutter. This problem can be solved since the modulation effect of the
relative velocity between the radar platform and the clutter can be cancelled by
measuring the radar platform velocity and adaptive moving target indication (AMTI)
algorithm. The bigger problem arises when both the rain clutter and the ground
clutter exist together in the environment since rain characteristics changes over time
according to change in the velocity vector of wind or the rainfall rate or the
turbulence strength etc. In such a case, the radar needs to adapt itself to changing
clutter environment to achieve good clutter suppression. Adaptation requires
instantaneous characterization of the environment and gives rise to the need of
estimation of clutter parameters adaptively. The MTD algorithm optimizes its clutter
suppression filters for only ground clutter because measuring the mean velocity and
Doppler characteristics of the rain clutter would require high processing power and

bring complexity to hardware.
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A more chaotic environment is the one where both the rain clutter and sea clutter
coexists since they are differently affected by the environmental conditions and the
radar parameters. In these environments, adaptive estimation of the clutter
characteristics to suppress the clutter becomes obligatory if high-performance target

detection is needed.

Suppression of clutter by estimation of the clutter characteristics can be done by
estimating the clutter covariance matrix or estimating the clutter parameters that can
describe the clutter covariance matrix. The estimation of the clutter parameters is
more preferable if they describe whole covariance matrix since they possess a priori

knowledge and reduce the number of unknowns in the estimation process.

The main motivation of the thesis is to investigate performance of recently proposed
clutter spectral parameter estimation techniques that lead to the optimum clutter
suppression filtering in the environment that includes both sea clutter and rain clutter

and compare their main properties.

1.5 Thesis Organization

The main objectives of the thesis can be listed as follows:

e Reviewing the characteristics of K-distributed sea clutter and Rayleigh

distributed rain clutter,
e Reviewing methods to simulate synthetic sea clutter and rain clutter,
e Investigating parametric spectral parameter estimation techniques,

e C(Calculating Cramér-Rao bounds for estimations of the clutter spectral

parameters,
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e Determining the RMS errors and biases to estimate the spectral parameters
that define the spectrum of K-distributed sea clutter and rain clutter using the

algebraic spectral moments estimation technique,

e Comparing the clutter suppression performance of the algebraic spectral
moments estimation technique with more conventional methods in terms of

improvement factor.

There are totally 6 chapters in the thesis. Chapter 1 presents the radar terminology
and interference suppression concepts and outlines the work done in the thesis.
Chapter 2 reviews the characteristics of K-distributed sea clutter and Rayleigh
distributed rain clutter. Chapter 3 covers the parametric spectral estimation
techniques. Chapter 4 investigates the performance of clutter parameter estimation
technique which uses algebraic spectral moments for different CNRs, Doppler
spreads, Doppler separations, the number of observations and shape parameters.
Chapter 5 gives comparisons between the clutter suppression performances of the
algebraic spectral moment estimation technique with more conventional methods in
terms of improvement factor. Finally, Chapter 6 consists of a summary of the work

and main conclusions drawn.
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CHAPTER 2

BACKGROUND

2.1 Problem Statement

In this thesis, the main problem is to estimate the covariance matrix of radar signals
that contain both the K-distributed sea clutter and rain clutter using parametric
spectral estimation methods. Then, the estimated clutter covariance matrix is used to
design a filter to suppress clutter and thus to increase the SIR (signal-to-interference
ratio). To investigate the performance of the estimators, K-distributed sea clutter and
rain clutter are simulated. Then, the parametric estimator performances are
investigated for different clutter parameters and compared to the Cramér-Rao
bounds. The K-distributed sea clutter model, rain clutter model and radar receiver

noise model reviewed in this chapter.

2.2 Sea Clutter

Sea clutter is defined as the unwanted radar echoes from the sea surface. It has a
relatively low backscatterer coefficient than the land clutter and does not extend as
far as the land clutter. It is difficult to form a relationship between sea clutter
characteristics and environmental factors that determine sea clutter characteristics

[4]. Moreover, it is difficult to adapt sea clutter echoes since the sea surface changes
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with time. In other words, the scenario changes with time, while for ground clutter it

stays the same.

The nature of sea echo generally depends upon the sea surface. There are two
fundamental motions on the sea surface: Wind waves and swell waves. Wind waves,
also known as ripples, result in random-appearing height alternation and caused by
wind blowing on the sea surface. They are small waves less than 1.73 cm in
wavelength and their phase velocity is determined by surface tension of the water
[5]. Swell waves are sinusoidal, less random, long-wavelength, low-amplitude waves
and occur when wind waves move out of the region where they were originally

exited.

2.2.1 Characteristics of Sea Clutter

In this section, the sea clutter characteristic, its dependencies and modeling method
are introduced. For this purpose, amplitude distribution, Doppler spectrum properties

of sea clutter shall be covered.

2.2.1.1 Amplitude Characteristics

Unlike white Gaussian radar receiver noise, sea clutter returns exhibit properties of
correlated non-Gaussian processes [6]. For the high-resolution radars, experimental
sea clutter data collected from low grazing angles has significantly higher amplitude
variations than those predicted by the Rayleigh Probability Density Function [6]. For
this purpose, many sea clutter amplitude distributions are proposed to model sea
clutter: Log-Normal, Weibull and K-distribution. In this thesis, K-distribution is used
to model sea clutter returns. The arguments of choice of K-distribution model are as

follows [6]:
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o The statistical investigation of sea clutter returns collected from many
experiments provide evidence that K-distribution can serve as a limiting

distribution for sea clutter.

o Except for the K-distribution, other non-Rayleigh distributions are not
derived from a physical model or scattering mechanism. While other non-
Rayleigh distributions are based on fit to the experimental data, the K-
distribution model are proposed to describe temporal and spatial

characteristics of sea clutter.
According to the compound K distribution model, the pdf of slowly varying

component has root gamma distribution which is

2b -l _p2y2
P(Y)Zm(by) e’ @.1)

where V is the shape parameter, b is the scale parameter and F() is the gamma

function.

The other component of compound K distribution model, namely the fast varying

component, has Rayleigh distribution which is

2
X

TX 42
p(XIy)=2—yze v 2.2)
K-distribution function is the weighted integral of (2.2) with respect to v :
® 2¢ (exY
= == |2 K
o(1)= Pl Py =255 5 K, ) 2

where K, , is a modified Bessel function of the second kind of order v—1 and C is a

v-1

scale parameter whose expression is
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C:%F[V+%). (2.4)

b is related to ¢ through c=2b+/7z/4 and X=E {X} is the mean value of X.

X= C;/(;V)F(v+%j 2.5)

E{x2}= 4 F(v+1)=%. 2.6)

2.2.1.2 Shape Parameter Model for Sea Clutter

The shape parameter is an important parameter of compound K-distribution model
for sea clutter amplitude characteristics since it defines “spikiness” and some of
correlation properties of sea clutter. It is the parameter that affects detection and false

alarm performance of maritime radars.

The parameterization of shape parameter has been provided by Ward [7] and is given

by a simple empirical formula

cos(26,,,)

2 5
logo(v) = 510g10(¢>§r) + §log10(AC) - kpol - 3

Q2.7)

where V is the shape parameter, ¢, is the grazing angle in degrees (0.1°<¢g, <10°),
A_ is the radar resolved area in square meters and 6, is the aspect angle with respect

to the swell direction.

In formula (2.7), k,,; represents polarizations dependence:

e 1.39 for vertical polarization and
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e 2.09 for horizontal polarization.

2.2.1.3 Mean Clutter Reflectivity (o))

Several mean sea clutter reflectivity models have been developed based on different
analytical methods in electromagnetic scattering theory. These models use a lot of
simplifying assumptions and can be used for prediction of the mean sea clutter
reflectivity for a limited number of possible situations since scattering in microwave
frequencies is complex and complicated further when many scattering mechanism of
sea surface is taken in consideration [6]. To characterize sea clutter radar returns,
instead of using purely analytical considerations, semi-empirical models have been
developed. In these models the theoretical relations between model parameters are
defined and experimental data is used to model constants. Sittrop [SIT], the Georgia
Institute of Technology (GIT), the Technology Service Corporation (TSC) and

Dockery (HYB) are examples of these semi-empirical models.

In this thesis the TSC model is used to simulate sea clutter returns since this model
can be used over a broad frequency range (0.5-35 GHz) and provides full direction
dependence from upwind to downwind. This model is suggested instead of SIT and
GIT models when propagation conditions are unknown because it represents
Nathanson’s data which is the average of all look directions and closely represents

average conditions [6].

The TSC model takes grazing angle, radar frequency, look direction with respect to
wind direction, sea state and radar polarization as inputs and gives mean sea clutter

reflectivity as an output.
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2.2.1.4 Doppler Characteristics of Sea Clutter

Sea clutter has generally correlation between pulses reflected from a single resolution
cell. The composite model describes the form of correlation between pulses. Over a
short period of time, radar echoes from any clutter cell including sea clutter are
always Rayleigh-distributed, which point outs that the radar return consists of many
scatterers. Moreover, this speckle component has a Chi-square distribution which

results in variations in the mean level of amplitude of sea clutter.

Speckle component of sea clutter has a short temporal decorrelation period and
becomes fully decorrelated from pulse to pulse by frequency agility [6]. However,
the underlying mean level has strong correlation, long decorrelation time and is not

affected by frequency agility.

If sea clutter is observed with a coherent processing interval that is much less than
decorrelation time of modulation process, the amplitude characteristics of sea clutter
in coherent processing interval is mostly constant as proposed by the composite
model. Then, the correlation caused by modulation process can be considered as
having negligible effect. Correlation is caused by only rapidly varying speckle

component of the composite model.

After removing the sample mean level of clutter, the autocorrelation of speckle

component of sea clutter can be found by the following formula:

N-1 N
Z Xk Xn+k
ACF ="t—— (2.8)

Z Xk Xk
n=0

where * denotes complex conjugate, X, denotes complex radar return from a

resolution cell consisting of sea clutter and N denotes the number of pulses in
coherent processing interval. (2.8) is valid only if the duration of CPI is short when

compared to the decorrelation time of modulation component.
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This autocorrelation function is real and even when sea clutter spectrum is centered
at zero Doppler [8] and it is symmetric. If the spectrum has a Doppler shift, the

autocorrelation function is product of the autocorrelation function of zero Doppler

clutter and complex sinusoid exp( 27 de) where f; represents the Doppler shift of
clutter spectrum and T represents the time lag [8].

The amount of Doppler shift of sea clutter according to wind speed for upwind

conditions is given as follows [5]:

—0.25+0.18U
~0.25+0.2U 2.9

VDoppIerVV

VDoppIerHH

where V. 18 Doppler shift of vertical polarization in m/s, Ve 18 Doppler

shift of horizontal polarization in m/s and U is the wind speed in m/s. As seen from
(2.9), the Doppler shift of sea clutter is independent of the radar frequency and the
grazing angle. Moreover, the constant terms in (2.9) represent the upwind condition
and they can be multiplied by cosine function to address the conditions other than the

upwind condition [5].

Since sea clutter characteristics varies according to frequency, grazing angle,
polarization, sea state, whether the sea is fully developed or not and radar resolution,
fitting models to sea clutter data results in evolving of many sea clutter Doppler
spectrum models in literature. In this thesis, Barlow’s Gaussian spectrum model [9]
is used since it is a classical model which has been used in radar system design for

many decades.

The Doppler spread model of Barlow’s Gaussian spectrum is

o =0.3U
Gy =0.15U (2.10)
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where o, is the Doppler spread of vertical polarization in m/s, o, is the

Doppler spread of horizontal polarization in m/s and U is the wind speed in m/s [5].
2.2.2 Simulation of K-distributed Sea Clutter

Pulse to pulse independent non-Gaussian clutter returns are easy to generate since
their probability density functions are product of marginal probability density
functions. Also, it is straightforward to control the covariance matrix of Gaussian
clutter returns. However, to generate pulse to pulse dependent non-Gaussian sea
clutter is a rather difficult problem since it requires generation of random variables
that have a joint probability density function and a specific covariance matrix. In
the literature, there are two methods proposed to achieve this: Zero memory
nonlinear (ZMNL) transformations and spherically invariant random processes

(SIRP) [6].

Using zero memory nonlinear (ZMNL) transformations is considered to be not
practical for several reasons [6]. In SIRP model, it is possible to control both the

amplitude PDF and the correlation properties of sea clutter at the same time.

In this thesis the SIRP method is used to generate the sea clutter returns. As
mentioned before the sea clutter returns obey the composite scatterer theory and can

be expressed as a product of two independent processes;

X(t)=y(t)v(t) @.11)
where v(t) is a zero-mean complex correlated Gaussian random process

representing the speckle component and y(t) is a non-negative stationary non-

Gaussian random process representing the underlying modulating component.

It is assumed that the decorrelation time of y(t) is much longer than the

decorrelation time of v(t) and the coherent processing interval. As a result, in
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coherent processing interval, y(t) is modeled by a random variable rather than a

process.

Then, the sea clutter returns can be expressed as

X(t)=v(t)y. 2.12)
v(t) can be modeled as a complex white Gaussian process w(t) filtered by a linear

time-invariant system to achieve the desired time correlation properties.

The PDF of'y is Chi-squared [10]:

Vv

f (y) = F(V) y™ exp(—vyz) (2.13)

where v is the shape parameter and I'(-) is the gamma function.
In the SIRP method, K-distributed sea clutter which has a specific covariance matrix
R can be generated by the following steps [6]:

1) Generate a random variable y according to the PDF (2.13).

2) Generate two Nx1 sized uncorreletad white zero-mean Gaussian vectors W, and

W

2.

3) Perform liner transformation to obtain two spherically invariant random Nx1 sized

vector V, and V,.

V, =GW,
V,~GW, (2.14)
where
1
G=ED2, (2.15)
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E is composed of the normalized eigenvectors of the covariance matrix of R and D

is the diagonal matrix of eigenvalues of R.

4) To generate K-distributed sea clutter which has the covariance matrix R, multiply

the V, +jV, by y.

2.3 Rain Clutter

Rain, an important meteorological phenomena, has two major effects on radar
performance: attenuation of radar signals and unwanted echoes reflected from

raindrops which can mask target echoes.

Attenuation and unwanted echoes reflected from raindrops strictly depend on the
rainfall rate. The common rainfall descriptors and rainfall levels defined by The

National Weather Service is given in Table 2-1 and Table 2-2.

Table 2-1 Common Rainfall Descriptors

Type Rainfall rate, I in
mm/hr

Drizzle 0.25

Light Rain 1.0

Moderate Rain 4.0

Heavy Rain 16.0

Excessive Rain >4()

Table 2-2 Rainfall Levels Defined by The National Weather Service

Level 1 1.52-6.09 mm/hr
Level 2 6.09-25.9 mm/hr
Level 3 25.9-53.1 mm/hr
Level 4 53.1-114.3 mm/hr
Level 5 114.3-180.3 mm/hr
Level 6 180.3- mm/hr
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Instantaneous rainfall rate probabilities in Turkey are given in Table 2-3.

Table 2-3 Instantancous Rainfall Probabilities in Turkey

Rainfall rate, r in mm/hr  Instantaneous
Rainfall Probability

in Turkey
1.0 % 1.5
2.0 % 0.7
4.0 % 0.25
20.0 % 0.01

2.3.1 Rain Clutter Attenuation

Rain attenuation is a function of rainfall rate and drop-size distribution model. Since
drop-size distributions differ in different areas of world, a common, approximate

model is used in radar design.

Above 2 GHz, the attenuation effect of rain on electromagnetic waves becomes
significant when the droplets are small compared to the wavelength, in other words,
the size of rain droplets lies in the Rayleigh region [4]. In this region, the rain

attenuation coefficient in terms of dB/km can be calculated by [11]

k=ar (2.16)

where Kk is the attenuation coefficient, r is the rainfall rate in mm/h, a and b are

constants that depends on radar frequency, polarization and temperature.

a and b for different radar frequencies given in Table 2-4. ap, and by, should be
used for the horizontal polarization and aye and by, should be used for the vertical

polarization.
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Table 2-4 Rain Attenuation Model Parameters for Different Radar Frequencies [11]

Frequency (GHz) ay,, Ayer Dhor byer

1 0.0000387 0.0000352 0.912 0.880
3 0.00065 0.000591 1.121 1.075
10 0.0101 0.00887 1.276 1.264
20 0.0751 0.0691 1.099 1.065
40 0.350 0.310 0.939 0.929

2.3.2 Characteristics of Rain Clutter
2.3.2.1 Amplitude Characteristics

The performance of the constant false alarm rate algorithm does not change when the
rain comes into the radar observation area since the statistical distribution of the

amplitude of the rain echo is Rayleigh [2].
2.3.2.2 Mean Clutter Reflectivity (o)

Rain reflectivity is denoted with the symbol Z and is called volume reflectivity. It
relates rain clutter reflectivity to distribution of rain drop sizes and usually expressed

in decibel units.

The relationship between mean rain clutter reflectivity and Z is as follows [11]:

7T5|K|2
n=—p—2Z 2.17)

where 7 is mean rain clutter reflectivity in m’, 1 is the radar wavelength in m, K
depends on the temperature and wavelength, for most weather conditions |K|? is

equal to 0.93 for liquid scatterers and 0.197 for frozen scatterers and Z is in m®/m’.

Z values for different rainfall rates are given in Table 2-5.
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Table 2-5 Z values for different rainfall rates [11]

Rainfall rate, Z,dBz
r in mm/hr

0.25 14

1.0 23

4.0 32
16.0 41

2.3.2.3 Doppler Characteristics

Doppler spectra of radar echoes reflected from rain can be described by four
mechanisms when only inter clutter motion is taken into account: wind shear, beam
broadening, turbulence and fall velocity distribution [12]. A fifth mechanism can be
included if the radar antenna is rotating, namely, antenna rotation effect or antenna

scanning modulation.

Assuming these mechanisms are independent, the variance of Doppler velocity

spectrum o, of rain can be expressed as the sum of the variances from each

mechanism:

2

2 _ 2 2 2
Oy = Oghear T Obeam T Ourp + O a1 - (218)

In fact, these velocity variances are strictly related to the second spectral moment
about the mean of Gaussian spectrum model. The power spectral density function of

rain clutter can be described by a Gaussian spectrum G(f) [13]

G(f)=G,e™ (2.19)

where G, is a constant that depends on the average rain echo power, f is the

Doppler frequency and o is the Gaussian spectrum variance.
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o? and o] are related through

(2.20)

where A is the radar wavelength.

1. Wind shear: Wind shear effect is caused by the change in wind velocity over the
vertical extend of radar beam. Wind velocity changes with altitude and results in a
distribution of radial velocities of rain droplets, and this phenomena has great effect
on spectrum width when extent of radar beam in vertical direction is large. This

mechanism can be the greatest of all mechanisms, especially for ground based radars.

For Gaussian antenna pattern, the effect of wind shear on Doppler spectrum of rain

clutter can be related through

O'shear = 042kR¢2 (2.21)
where K is the velocity gradient in the vertical direction of the beam in m/s/km, R is
the slant range to clutter in km and ¢, is the two-way half power antenna elevation

beamwidth in radians. For pencil beam radars,
e k=4.0 m/s’/km is suggested for averaged over 360° azimuth and

o k=5.7 m/s/km is suggested for along wind direction [14].

2. Beam broadening: The effect of the change of wind speed in vertical direction is
covered by the wind shear effect; however, the distribution of radial velocities caused
by tangential movement of rain droplets over the radar beam induced by the
tangential wind direction is covered by the beam broadening mechanism. In beam
broadening mechanism, only the horizontal component is taken into account because

the vertical component is negligible when compared to wind shear.
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The effect of beam broadening on Doppler spectrum of rain clutter assuming a

Gaussian antenna pattern can be found by
Opeam = 0.42V, 0, sin (2.22)

where V, is the wind speed in the beam center in m/s, 6, is the two-way half power
antenna azimuth beam width in radians and g is the azimuth angle relative to the

wind direction at beam center in radians.

3. Wind turbulence: Since wind speed is a stochastic process, fluctuations in the
mean wind speed causes variation of speed of rain droplets and broadening of rain
clutter spectra. According to a number of experiments, it is found to be independent

of height and up to 1.5 km altitude, o,,, can be approximated as 1 m/s and for higher

altitudes o,,,, can be approximated as 0.6 m/s [14].

4. Fall velocity distribution: A spread in fall velocities of rain droplets due to their
different individual sizes causes a spread of velocity components along the radar

beam. o, is independent from rain intensity and depends on the elevation angle

through

O-fa” :l.OSinl// (2.23)

where  is the elevation angle.

5. Antenna rotation effect: Antenna scanning also causes spread of rain clutter
spectrum caused by the modulation effect of antenna pattern. The resulting antenna

rotation modulation effect o,,,, in Hz can be calculated by [15]

m
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O = (2.24)

where f, is the pulse repetition frequency andnis the number of hits between the

one way 3-dB points of antenna pattern. This effect also added to sea clutter Doppler

spread in the same way as rain clutter.

2.3.3 Simulation of Rayleigh-distributed Rain Clutter

The performance of the constant false alarm rate algorithm does not change when the
rain comes into the radar observation area since the statistical distribution of the
amplitude of the rain echo is Rayleigh [2]. This phenomenon simplifies complexity

of rain clutter generation mechanisms when compared to sea clutter.

Since rain clutter has complex Gaussian distribution, generating rain clutter which

has a specific covariance matrix R is possible by a simple linear transformation.
Rain clutter can be generated by following steps:
1) Generate two Nx1 sized uncorreletad white zero-mean Gaussian vectors W, and

W, .

2) Perform liner transformation to obtain two spherically invariant random Nx1 sized

vector V, and V,.

V, =GW,
2.25
V, =GW, (2.25)
where
1
G=EDZ2. (2.26)
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E is composed of the normalized eigenvectors of the covariance matrix of R and

D is the diagonal matrix of eigenvalues of R.

3) The Gaussian distributed rain clutter which has the covariance matrix R is

Vi+]v, .
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CHAPTER 3

METHODOLOGY

3.1 Signal Model

It is necessary to define signal models for the sea clutter and the rain clutter and the
parameters of them since the methods presented in this thesis are developed to

estimate these parameters.

Let X(t) be a signal received from the environment that includes both the sea clutter

and the rain clutter. The assumption here is that the radar echoes from sea and rain
have Gaussian shaped spectra and are uncorrelated with each other. However, the sea
clutter and the rain clutter are related through wind direction and speed. In order to
generalize the model, we assume that the mean Dopplers and the spectral widths of

the clutters can take any value.

With the assumptions stated above, the power spectrum P (f) of X(t) can be

S

written as
R(f)=35(f)+o 3.1)

with
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5,(f)= J%a exp[_%(f%n (32)

where o, , P, f, and o, are the additive white Gaussian circular noise representing

the radar receiver noise power spectral density, the mean powers of the clutters, the
mean frequencies of the clutters and the standard deviations of the Doppler spectra of

the clutters, respectively.

Visualization of an example P, ( f ) can be seen in Figure 3-1.

Ly(f)

> f
Figure 3-1 Visualization of P,( f)
The autocorrelation function of X(t) is
2
y(t)zZPiexp[(—zﬂzgiztz +j2r fit)J-Hrnz&(t) (3.3)
i=1

where j°=-1and & (t) denotes the Dirac delta function.
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Let X be the Mx1 vector representing the time series formed by sampling X(t) with

sampling period T;:

x=[x(0) x(T.) .. x(M-2)T.) x(M-DT,)] (34

where (D)T designates the transpose operation.
Defining the Mx1 vector n as the additive white Gaussian noise, X can be written as
X=y+n (3.5)

where the Mx1 vector y is a stochastic process which is formed by sampling the

. 2
radar echo whose power spectrum is ¥ S, (f).
i=1
Since n represents the uncorrelated receiver noise, the covariance matrix of n is

R,=0o7l (3.6)

where | represents the MxM identity matrix.

The covariance matrix of y can be written as

RyzE[yy*]zgRyi(R,fi,af) (3.7)

with
Ri(R.f.0')=RA(f)B(c])A"(f,) (3.8)

where
A(fi)=diag(1 el e””fi(M’l)TS) (3.9)
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is an MxM matrix representing the Doppler shift of clutter and B(Jf) is an MxM

matrix representing the Doppler spread of the clutter:
By (07 )=e U 1<k <M (3.10)
After combining (3.6) and (3.7), the covariance matrix of X is obtained
R (u#)=R,(u)+0ol (3.11)

where ﬂ:[P, f o B f, o o ] is the parameter vector. If the elements of

M are known, the power spectrum of the radar echo can be described precisely and

the optimum clutter filter which maximizes the output SIR can be designed.

Actually, it is considered that o can be calculated by the instantaneous radar

receiver bandwidth, the system temperature and the noise figure of the radar receiver.
Then, the parameter vector that defines the power spectrum of the radar echo

becomes

=[P f o0 B f, o] (3.12)

3.2 Simplified Signal Model

The signal model whose parameter vector is defined in (3.12) can be simplified by
eliminating the standard deviation of Gaussian spectra, in other words, we can
assume that the sea clutter and the rain clutter echoes are target-like echoes which

have very narrow Doppler bandwidths.

This assumption can be used to design suboptimum clutter suppression filters that
place notches in the Doppler spectrum where the sea clutter and the rain clutter take

place, without taking care of the Doppler spreads.

34



Actually, the narrow-band assumption is used by two-step algorithms which can

estimate the parameter vector (3.12). In first step, onlyP,, f, P, and f, are

estimated with the assumption that the clutters have very narrow bandwidths and, in

the second step, solution is generalized to find o7 and o . An example for two-step

algorithms can be found in [16].

Under the assumption, the power spectrum P, () of X(t) can be written as

N

P(f)=XPs(f-f)+o; (3.13)

S
I

where o, , P, f; and are the additive white Gaussian circular noise representing the

radar receiver noise, the mean powers of the clutters and the mean frequencies of the

clutters, respectively.

A visualization of an example P,( f) can be seen from Figure 3-2.

P(f)

L

i f

Figure 3-2 Visualization of P,( f)

The corresponding autocorrelation function of X(t) is
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MI\J

y(t)=XPexp[j27 ft]+o.5(t). (3.14)

Following the steps described in Section 3.1, the covariance matrix of X can be

found as

n

R (1) =2PA(f)A (f)+0I (3.15)
where
A(f,)=diag(1 ePf . el (3.16)

is an MxM matrix representing the Doppler shift of clutter and
y7i :[P, f B f o J is the parameter vector. Since o can be calculated by the
instantaneous radar receiver bandwidth, the system temperature and the noise figure

of the radar receiver, the parameter vector which defines the power spectrum of the

radar echo becomes

u=[R f P 1] (3.17)

3.3 Maximum-Likelihood Estimator

One way to estimate the parameter vector in (3.12) is a standard technique in
statistical estimation called the maximum-likelihood (ML) method. In general, this
method is useful since it constitutes a basis of comparison when the performance of a
new estimation method is studied. In the maximum-likelihood method, unknown
parameters which maximize the likelihood function are determined. Negative log-

likelihood function for our case is the following [16]:

L(w)=log(|R, (1)) +Tr{R," (#)R,} (3.18)
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where log(.), |.|, and Tr denote the natural logarithm, the matrix determinant and the

trace operator, respectively. R, is the sample covariance matrix:

1 K H
— 3.19
= kZZIX(k)x(k) (3.19)

where K is the number of observations.

Maximum-likelihood estimate @i of the parameter vector g can be obtained by

solving the following minimization problem:

o= argumin(L(u)). (3.20)

Since analytic solutions to (3.20) do not exist because of its multidimensional
nonlinearity, an easy to implement second-order steepest descent algorithm is

proposed in [16] to solve (3.20).

In [16], it is shown that the statistical performance of the parametric maximum
likelihood estimator fits the Cramér-Rao bound and its optimality is provided.
However, in this method, in every step of the second-order steepest descent
algorithm, a 6x1 sized gradient vector and a 6x6 sized Hessian matrix must be
calculated and these calculations require high computational power. Different
suboptimum methods having lesser computational loads are presented in Section 3.4

and 3.5.

The maximum-likelihood estimator described in this section can be also used to
estimate the parameter vector of the simplified signal model. The only difference is
that the minimization problem defined in (3.20) should be done according to

parameter vector (3.17).
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3.4 Subspace-Based Methods

When investigating the problem of finding the mean powers, the mean Doppler
frequencies and the Doppler spreads of more than one interference signal such as the
sea clutter and the rain clutter, high-resolution subspace-based methods like MUSIC
(Multiple Signal Classification) can be used for their good statistical performances if
the interference signals are assumed to have very narrow spectral widths [17]. They
are also low-cost and suboptimal alternatives to the maximum-likelihood method
when computational resources are important. However, when large Doppler
dispersions of the interference signals are taken into account, DSPE [18] and
DISPARSE [19] algorithms outperform MUSIC. In [20], WPSF (weighted
pseudosubspace fitting) algorithm is developed and it is claimed that it provides

better estimates than the DSPE and the DISPARSE algorithms.

In [20], the solution to the problem of finding the parameter vector

,u=[Pl o o P o o o J starts with the assumption that interference

signals have very narrow spectral widths (o and o, are assumed to be 0) and then

the solution is generalized to find all the elements of the parameter vector. In other
words, in the first step, the radar echo is assumed to be in the form of the simplified
signal model and a solution is found and in the second step, the solution found in first

step is extended to the non-simplified signal model.

The estimation performance of the WPSF method is presented in [16] and it is shown
that it fails when compared to the performance of the parametric maximum
likelihood estimator described in Section 3.3. The performance of WPSF method is
not investigated in this thesis; however, the WPSF method is mentioned for the sake
of completeness and it is just noted that it is a recently developed subspace based

parametric clutter parameter estimation method.
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Consider the signal x(t) corresponding to echo regarding the radar range cell where

the rain and the sea clutter coexists. We assume that the clutter signals are complex-
valued sinusoids (very narrow band signals) corrupted by additive white Gaussian

complex noise n(t):

x(t)= iai exp[jot+ ¢ |+ n(t)= 22: z.exp| jort]+n(t),
i1 il (3.21)
z, = o expl o]

where o exp[p] and @ are representing the complex amplitude and the mean

Doppler frequencies of the clutters, respectively. The complex amplitudes of the

clutters are assumed constant in the CPI and independent from one CPI to another.

As mentioned before, the Mx1 sized vectors X and Nn are obtained by sampling X(t)

and n (t) M times with sampling period T, and can be written as
x=G(w)z+n (3.22)
where G(w) is an Mx2 matrix which is defined as

G(a)):(g(a)]) g(a)z));

3.23
_ joT, jo(M-1)T, T ( )
9(w)= (1 e .. e )

and where z equals the complex amplitudes of the clutter components in a CPI of

the radar,
2=(z, 1z,). (3.24)
The covariance function of X is

R,=E[ X< |=GRG +0;1=R, +0;l (3.25)

X
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where R, is the covariance matrix of z, o

n

is the noise power and R, is the
covariance matrix of noise free signals.
Assuming @, and @, are not equal to each other and are separate enough, the clutter

signals lie in the 2-D plane spanned by the linearly independent columns of G and

denoted by span {G} . This 2-D plane is termed the signal space and contains the

largest two eigenvalues of R, (Since X contains two sinusoidal interference signals,

the rank of R, is two).

The eigendecomposition of R, is as follows:

R =

X

N

Aee =EAE +EAE’ (3.26)

i=1

where A, =o.1=diag([4, 4, v]), A.=diag([4, 4,]) and E, is termed
the noise subspace and is orthogonal to the signal space. The unknown parameters

o, and o, can be extracted from E since span {G} = span { Es} .

If the interfering signals have considerable Doppler spread, the rank of R, increases
and extraction of @, and @, becomes difficult. However, if the assumption that most
of the power in X(t) belongs to clutter is made, 4, and A, are much greater than the
rest of the eigenvalues of R, . Then, one can define a pseudosignal subspace as the

span of eigenvectors corresponding to A, and A, and a pseudonoise subspace as the

span of eigenvectors corresponding to the rest of the eigenvalues.

The eigendecomposition of FAQX is then:

E*+EAE". (3.27)
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In the WPSF algorithm, the key idea is finding g which makes és as orthogonal as

possible to Ién :

a=arg, min p” (4)W p(u) (3.28)

where

p(p)=vec| E,(n)E, | (3.29)

where vec[A] is the column vector obtained by stacking the columns of A, and
where W is a 2(M -2)x2(M-2) sized Hermitian positive definite matrix. The

choice of W takes place in [20] and a second-order steepest descent algorithm which

optimizes the criterion in (3.28) is proposed in [16].

The WPSF algorithm can estimate the parameter vector

p=lo o o, o] (3.30)

but it cannot find P and o because these parameters have no effect on

orthogonality between Iés and én.

From (3.27) an estimate of o can be obtained from [16]

<

AD 1 A
G-t Si (3.31)
"M =2i 3ﬂﬁ

The solution to the estimation problem for P, is also proposed in [16]. The

autocorrelation of sequence of X can be written
y=C(w,0)P+n, (3.32)

where
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T

P=[P, R,

C (a),cr): [C(wl,al) C(a)z,G2 )} >

c(0.0)=[1 a(T.)e"™ . a(M-1T,)e "] (3.33)

v n

n :[02 0 .. O]T and

a. (t) = exp(—27r20i2t2) .

The estimates of P,’s can then be found as
p=[p, ﬁz]:[(c*c)"c*]y. (3.34)

3.5 Algebraic Spectral Moment Based Moving Clutter Parameter Estimation

High-resolution spectral analysis methods are based on trigonometric moment
representation of spectral functions. Many estimators are designed to estimate these
trigonometric moments to describe the spectral properties like MUSIC, periodogram
etc. Algebraic moment representation is another useful way of representing the
spectral functions. However the algebraic moment approach is useless without
suitable methods for statistical estimation techniques for the algebraic moments.
Such methods are recently obtained in [21] and proposed to solve direction of arrival
(DOA) problem of more than one interference signals. This algorithm is calibrated in
order to estimate the clutter parameters and the estimation performances under

different conditions are investigated in this thesis.
The properties and the advantages of this algorithm can be listed as
e [tis based on series representation of the covariance matrix [22],

e [t does not require a priori knowledge of the radar receiver noise power [22],
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e [t is a computationally simpler method than the subspace methods [23],

e It is a high-resolution spectral estimation algorithm, in other words, it
requires much less number of observations to analyse the spectral properties

of an interference [23],

e [t eliminates some mathematical difficulties encountered in the maximum-

likelihood estimation of the spectral moments [21],
e [tis a generalization of the well-known pulse pair algorithms [21].

First of all, the spectral moments of the radar echoes which contain both the sea and
the rain clutter are stated based on the signal models that are described in Sections
3.1 and 3.2. Secondly, the algebraic spectral moment estimation method which is
proposed in [21] is presented and finally, the clutter parameter calculation method

using estimates of the algebraic spectral moments are presented [23].
3.5.1 Spectral Moments of Simplified Narrow Band Interference Signals

With the assumption that the sea and the rain clutter have zero Doppler spread, the
spectral moments of the radar echo are functions of parameter vector (3.17). In this
section, algebraic spectral moments in terms of parameter vector (3.17) are

described.
The spectral moments are defined as

Mg = J7.(f = fo)IS(Fdf, 0<q<eo (335)
where M is the q’th spectral moment and S(f) is the power spectral density of a

process. f, is an arbitrary Doppler frequency and the spectral moments is found with

reference to this frequency. Changing f, will change the spectral moments. One can
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eliminate f, by taking it 0, however, it must be chosen close to the mean clutter

Doppler frequencies. The reason shall be explained in Chapter 4.

Using (3.35), first four moments of the process X(t) described in Section 3.2 are

calculated and presented in Table 3-1:

Table 3-1 Spectral Moments of Simplified Narrow Band Interference Signals

Spectral | Spectral Moment in terms of
Moment Clutter Parameters
2
M, Mo=2R
i=1
2
M, M=% R (fi- 1)
2 2
M, M, =XR(fi-1)
2 3
M, M, =X P (- 1,)

To find the parameter vector shown in Figure 3-1, only the first 4 moments are

needed.

3.5.2 Spectral Moments of Wide Band Interference Signals

Using (3.35), the first six moments of the process X(t) described in Section 3.1 are

calculated and presented in Table 3-2:
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Table 3-2 Spectral Moments of Simplified Wide Band Interference Signals

Spectral Spectral Moment in terms of
Moment Clutter Parameters
2
Mo MO = Z PI
i=1
2
M, M,=2R(fi-f)
2
M, M, =3R[(f,~ 1) +o?]
i=1
M, M =2 R[(f,— ) +3f07 |
i=1
M, M4:§P;[(fi—f0) +6(f—1,) o +30'i}
M; M =2 R[ (1~ f) +10(f,~ £,)' o7 +15(f, - 1, )o |

To find the parameter vector shown in Figure 3-2, only the first 6 moments are

needed.
3.5.3 Estimating Spectral Moments from Estimated Covariance Matrix

Let the radar echo from the clutter be a zero-mean stationary random process £(t),
with the correlation function K(t), The correlation function and the spectrum are

related through Wiener-Khintchine theorem [21]:

K(z) = ij(f)eiZ”ffdf (3.36)
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where S(f) is the spectral density of the process.

Since K(7) = K(—71), with Taylor series expansion of e "™ term in (3.36) in the

vicinity of an arbitrary frequency f,, equation (3.36) turns into

k(o) = ey 2L [ ety (337)
q=0 -

When we define the spectral moments as

M, = [2,(f = fo)IS(Hdf, 0<q<oo (3.38)
and
ag(r) = e~ i2mfot [“Zﬂ (3.39)
(3.37) becomes
K(D) = ) Ma(@). (3.40)
q=0
When we observe the process &(t) with uniform sampling periods Ty, equation (3.40)
turns into
Ky = Z Mg (3.41)
q=0

where Kk, are the samples of the covariance function at time mT and gy, is

(gm = ag(mT,) = e~i2nfomTs [—izz—r'nTs]q. (3.42)

According to the method of moments (MM), the estimates of the spectral moments

are related to the estimates of the covariance function samples at time mT; by
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k=300 Myagm , 0Sm<M-—1 (3.43)

where M is a number of lags in which estimation of the covariance function samples
is performed [21]. In our problem M is the number of coherent radar echoes collected
in the coherent process interval. The reason of using the method of moments is that
the spectral moments are unobservable directly and their weighted sums (the
elements of the covariance matrix) are observable. In the method of moments, the
covariance matrix elements are expressed as functions of the spectral moments and
estimates of the spectral moments can be found by estimating the covariance matrix

and using the inverses of these functions.

The matrix form of (3.43) is

k= Z Ma, (3.44)
q=0

where k = (E, ks, ...,IEW:)T anda, = (aqo, Ag1y e aq(M_l))T.

The linear system corresponding to the equation (3.44) is as follows:
k=Am (3.45)

where 4 is the matrix whose columns are the vector set {aq} and M = {Mq}zo_o .

(00}
q=0
The linear system (3.45) does not have a unique solution because the vector set

{a }OO is not linearly independent. The vector set {a }Oo consists of two linearly
q q:O q q:O

independent subsets [21]. These subsets are vectors with even and odd indexes. Their
independence is due to the fact that even vectors are whole real and odd vectors are

whole imagine if f;, is assumed to be 0. Moreover, the number of linearly
independent vectors in the set {azq}:zo is M and the number of linearly independent

[o0]

vectors in the set {a2q+1}q o is M-1 [21].
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Thus, it is needed to restrict the dimension of the system. If the dimension of the

system is restricted to L < 2M — 1, (3.45) becomes
k= 4,0 (3.46)
: : L-1
where A; is the matrix whose columns are the vector set {aq}(FO.

The system (3.46) can be divided into two independent subsystems:

Re{/l;} = ALeIW\e (3.47)

Im{/k\} = ALom
. . L/2-1 .
where A;, is the matrix whose columns are the vector set {azq}q_o , 4;, is the
L/2-1

. . ~ L/2-1
matrix whose columns are the vector set {Im{a2q+1}} , M, = {qu} / and
q=0 q=0

L/2-1

m = {1‘712q+1}q=0

The solution to equation (3.46) can be obtained by the least-squares method [21]. Let

us define a function

Q(Mo, M1y, Wy, ..., M,y = | S4=b Myag — K| (3.48)

The reason for using the least squares method is that the system is over-determined.
The number of independent set of equations is greater than the number of unknowns
(the spectral moments). In our case, the number of independent set of equations is
2M as can be seen from (3.47) and the number of unknowns is L < 2M — 1. Thus,
overall solution is the one which minimizes the sum of squares of the errors made in

the result of every single equation.

The estimates 1\7Iq,q =0,1,2,..,L —1 will corresponds to the minimum of the

functional Q. In this case, the estimates satisfy following equations:
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Lt M,Re{a," -a,} = Re{a," -k} , p=012,..,.L—1 (3.49)

where a, = (apo,apl, ...,ap(M_l))T, (*) designates the scalar product and (H)

designates the Hermitian transpose.

The matrix form of (3.49) is

-1 o ) __ L-1
where H; = {Re{aqH . ap}} is a finite sized matrix and M; = {Mq} and
q,p=0 q=0

_NL-1
W, = {Re{apH : k}} are finite vectors.
p=0

The solution for the spectral moments using (3.50) is as follows [21]:

M, = H;'w,. (3.51)
Open form of (3.51) is
M, = Yt hpgRe{k! - a,} = Re{k" - Y. b hpqas} . p=012,..,L—1 (3.52)
where l_lpq is the (p , q)th element of matrix Hy 1.

If g,, is defined as

gp =Xt bhpea, . p=012,..,L-1 (3.53)

then, the spectral moments can be calculated as scalar products of the vector k and

vectors g,, p = 0,12,..,L—1.

M, =Refk-g,"} ., p=012,..,L-1 (3.54)

Vectors g,, p =0,1,2,..,L — 1 do not depend on the radar echoes and correlation

between them. The vectors can be stored in radars and used whenever needed.
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3.5.4 Finding Mean Frequencies and Powers of Simplified Narrow Band

Interference Signals Using Spectral Moments

According to Table 3-1 and Table 3-2, we can observe that the clutter parameters are
nonlinear functions of the spectral moments. There is no analytical solution to find

the clutter parameters using the spectral moments.

Fortunately, in [23], a method is proposed to find the directions and the mean powers
of a group of N noncoherent signal sources. In this thesis, this method is used to find
the mean frequencies and the mean powers of simplified narrow band clutter signals

using the spectral moments.

In [23], the performance of this method under wide band interference signals is also
investigated and it is concluded that it has comparable results with MUSIC for much
less computational load. Therefore, in our problem, we use this method to find the

mean frequencies and the mean powers of the sea and the rain clutter.

Because of the narrow band interference signal assumption the spectral moments of

the radar return are given by

M

M, =3PR(f- fo)p where p=0,1,2,.... (3.55)

To find f,’s and P,’s in Table 3-1, a rational function,

MP
p

R(f)=§,0f - where |f|> max, |f} (3.56)

is proposed in [23].

We can relate the rational function in (3.56) to the clutter parameters using (3.55):

R(f):ii, (3.57)
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The poles of the function R(f) are f;’s.

Since the function R( f ) is rational it is possible to write it in the form of

R(f):M (3.58)

where

9(f)=g,f+g, and
(3.59)

h(f)=f>+hf+h

are polynomials.

After extending the rational function (3.56) using the definition (3.59), the following

equation is obtained:

® f2+hf+h,

g,f+g,= pZ::OMp o (3.60)

Open form of (3.60) is

1

R (3.61)

1
g, f +go=(MU)f+(M0hl+Ml)+(M0h0+Mlhl+M2)?+(Mth+M2hl+M3)

Then, comparing coefficients with equal powers of the variable f in both parts of

(3.61), two mutually connected linear systems can be written as

M,h, +Mh +M, =0

(3.62)
M,h, + M,h + M, =0
and
M()hl +M1 =gO (363)
M, =9,
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To find f,’s and P ’s, first, we need to solve system (3.62) to find h,’s and then

solve system (3.63) to find g;’s.

The solution to the equation
fP+hf+h =0 (3.64)

gives f.’s and the P, ’s can be found as

p=9fi*0 (3.65)
2f. +h

3.5.5 Frequency Domain Spectral Moments Estimation

In this section, an alternative way to the spectral moments estimation method

explained in section 3.5.3 is presented.
The spectral moments can be estimated directly from the relation (3.38).
Let X be the Mx1 vector defined in section 3.1. Then, the discrete Fourier transform

(DFT) of X is

—i2

M1 2k
Xe=2xe M, k=01,..M-1 (3.66)
n=0

where X;,X,,...,X,,_; are elements of the vector X.

The relationship between the spectral moments estimates and the DFT based spectral

density estimate of the vector X is given as
M-1

__ 1 —
M, =— Z el (3.67)

k=0
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CHAPTER 4

SIMULATION RESULTS

4.1 Simulations

In this section, the estimation performance of the algebraic spectral moments based

method for different clutter parameters is investigated.
In simulations, the clutter parameters are calculated in two steps:

1) In the first step, the mean powers and the mean Doppler frequencies of sea and
rain clutter are found by the algebraic spectral moments based moving clutter

parameter estimation method.

2) In the second step, using the clutter parameters estimated in the first step,
minimization of the negative log-likelihood function of (3.20) is done by fixing the

mean powers and the mean Doppler frequencies and changing the Doppler spreads.

The estimation performance of the algebraic spectral moments based method is
investigated for different CNR, Doppler separation, Doppler spread, number of
observation and the shape parameter values. Performance results are compared with
the Cramér-Rao bounds and are presented in five subsections. The derivations for the

Cramér-Rao bounds for the clutter parameters are given in Appendix A.
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In all simulations, only 8 coherent radar pulses are used and it is assumed that the
clutter spectrum can be expressed by 14 spectral moments instead of infinity.
Actually, this assumption corresponds to choosing L=14 in (3.50) and it is necessary
to estimate the spectral moments from the estimated covariance matrix [21]. It is
useful to note that the maximum allowable value of L is 15 to find the spectral

moments in this case.

In all simulations, two clutters each having a Gaussian power spectrum are simulated
to represent sea and rain clutter. Clutter-1 is defined as the one having less mean
Doppler frequency. Clutter-1 and clutter-2 are assumed to be uncorrelated with each

other.

The number of Monte Carlo runs is 1000 to calculate the standard deviations and the
biases of the proposed method. In section 4.1.1, sufficiency of number of Monte
Carlo runs is presented in terms of confidence interval of 95% together with the
estimation performance of the proposed method. In other sections, only the

estimation performance of the proposed method is investigated.

4.1.1 Simulations for Different CNR Values

In this simulation, clutter-1 and clutter-2 are located at -0.1 and 0.1 in the normalized
Doppler spectrum, respectively. In other words, the Doppler separation value

corresponds to 20% of the PRF.

Both Doppler spreads (the sigma values of the Doppler spectrums) are assumed to be
equal to 0.01. With the Gaussian Doppler spectrum assumption, this means that

clutter correlations drop to 10% after 34.2 times the PRI.
Amplitude distributions of both clutters are assumed to be Rayleigh.

20 range bins are used for estimation of the clutter covariance matrix using formula

(3.19). The clutter returns in these range bins are assumed to be independent.
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The mean clutter powers are assumed to be 0.5 and the mean power of the additive
white Gaussian noise, which represents the radar receiver noise, is adjusted such that

the CNR varies from -10 dB to 30 dB for both clutters.

The rms errors for the estimates of the first four spectral moments as a function of

CNR can be observed from Figure 4-1 through Figure 4-4.

M, Estimation Performance
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Figure 4-1 M, Estimation Performance as a Function of CNR
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Figure 4-1, Figure 4-2, Figure 4-3 and Figure 4-4 depict that above 0 dB CNR, the
spectral moment estimation performance of the proposed method approaches the

Cramér-Rao bound significantly.

In section 3.5.3, we have already mentioned that the spectral moments are estimated
from the estimated covariance matrix using the method of moments. Disadvantages
of the method of moments when compared with the maximum likelihood method are
that it is often not available and it does not have the desirable asymptotic optimality
properties of the maximum likelihood method and the least squares estimators, as the
CNR or the number of observations increases. Generally, the primary use of the
moment estimates is to obtain initial values for the more precise maximum likelihood
and least squares estimates. However, as Figure 4-1, Figure 4-2, Figure 4-3 and
Figure 4-4 depict, the optimality problem does not show up and we can state that in
this configuration, the method of moments can be used for its computational

advantages.
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Standard deviations for estimates of the clutter parameters as a function of CNR can
be observed from Figure 4-5 through Figure 4-7. Since clutter-1 and clutter-2 are
located symmetrically in the Doppler spectra and other clutter parameters are the

same for both clutters, only the estimation performances for clutter-1 parameters are

presented.
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Figure 4-5 Standard deviations for Mean Clutter Power Estimates as a Function of
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Figure 4-7 Standard deviations for Doppler Spread Estimates as a Function of CNR

Figure 4-5 depicts that the mean power estimation performance approaches the
Cramér-Rao bound for CNR values above 5 dB. Figure 4-7 depicts that the Doppler
spread estimation performance approaches the Cramér-Rao bound for CNR values

above 8 dB.

The estimation performance for the Doppler spread appears to be better than the
Cramér-Rao bound for CNR values below -5 dB. This discrepancy is caused by the
large biased estimates of algebraic spectral moment estimation method, which can be

observed from Figure 4-10.

The mean Doppler frequency estimation performance appears to be increasing with
increasing CNR but there is always an offset between Monte Carlo results and the
Cramér-Rao bound. The reason shall be explained in detail in section 4.2 (Comments

on Simulation Results).
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Biases for estimates of the clutter parameters as a function of CNR can be observed

from Figure 4-8 through Figure 4-10.
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Figure 4-8 Biases for Mean Power Estimates as a Function of CNR
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Figure 4-9 Biases for Mean Doppler Frequency Estimates as a Function of CNR
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Figure 4-10 Biases for Doppler Spread Estimates as a Function of CNR

Figure 4-8, Figure 4-9 and Figure 4-10 depict that the biases on the mean power and
mean Doper frequency estimates vanish for CNR values above 0 dB and the biases

on the Doppler spread estimates vanish for CNR values above 10 dB.

It is conjectured that as CNR decreases from 10 dB, the proposed method perceives
that the radar receiver noise, which spreads over all the spectra, is a part of clutter

and this is why a positive bias is included to the Doppler spread estimates.

4.1.2 Simulations for Different Spectral Separation Values

In this simulation, clutter-1 and clutter-2 are located at the opposite sides of the
Doppler spectra and at the same distance from zero Doppler frequency. The Doppler

separation value is altered from 0.1 to 0.4.

Both Doppler spreads (the sigma values of the Doppler spectrums) are assumed to be
equal to 0.01. With the Gaussian Doppler spectrum assumption, this means that

clutter correlations drop to 10% after 34.2 times the PRI.
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Amplitude distributions of both clutters are assumed to be Rayleigh.

20 range bins are used for estimation of the clutter covariance matrix using formula

(3.19). The clutter returns in these range bins are assumed to be independent.

The mean clutter powers are assumed to be 0.5 and the mean power of the additive
white Gaussian noise, which represents the radar receiver noise, is adjusted such that

the CNR is equal to 20 dB.

The rms errors for the estimates of the first four spectral moments as a function of

Doppler separation can be observed from Figure 4-11.
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Figure 4-11 depicts that for the Doppler separation values from 0.1 to 0.4, the
spectral moment estimation performance of the proposed method approaches the

Cramér-Rao bound significantly.

Moreover, as Figure 4-11 depicts, the standard deviations for the first, the second and
the third moments increase as the Doppler separation increases. The reason for this
outcome is that the first, the second and the third moments are functions of the mean
Doppler frequencies of clutters as can be observed from Table 3-2. They increase as

the mean Doppler frequencies of clutters increase and so do standard deviations.

Standard deviations for estimates of the clutter parameters as a function of Doppler
seperation can be observed from Figure 4-12. Since clutter-1 and clutter-2 are located
symmetrically in the Doppler spectra and other clutter parameters are the same for
both clutters, only the estimation performances for clutter-1 parameters are

presented.
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Figure 4-12 Standard deviations for Estimates of Clutter-1 Parameters as a Function
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As can be observed from Figure 4-12, the mean power estimation performance

approaches the Cramér-Rao bound.
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For the Doppler separation values below 0.15, the estimation performance of the
proposed method drops significantly. This result is related to the Doppler resolution
of this method while using 8 coherent radar pulses for the clutter parameter

estimations.

Moreover, as the Doppler separation increases from 0.1 to 0.4, estimation quality of
the mean Doppler frequency and the Doppler spread oscillates. The reason for the
oscillations in the Doppler spread is the oscillations in the mean Doppler frequency,
since the Doppler spread is calculated in the second step in the proposed algorithm
that uses the estimates of mean Doppler frequencies found in the first step. The
reason for the oscillations in the mean Doppler frequency shall be explained in detail

in section 4.2 (Comments on Simulation Results).

Biases for estimates of the clutter parameters as a function of Doppler spreads can be

observed from Figure 4-13.
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Figure 4-13 depicts that although there are negligible biases on the estimates of the
mean power and the mean Doppler frequency, there is an oscillation on the biases of

the Doppler spread estimates similar to that in standard deviation in Figure 4-12.

4.1.3 Simulations for Different Spectral Spread Values

In this simulation, clutter-1 and clutter-2 are located at -0.15 and 0.15 in the
normalized Doppler spectrum, respectively. In other words, the Doppler separation

value corresponds to 30% of the PRF.

Both Doppler spreads (the sigma values of the Doppler spectrums) are altered from

0.004 to 0.034.
Amplitude distributions of both clutters are assumed to be Rayleigh.

20 range bins are used for estimation of the clutter covariance matrix using formula

(3.19). The clutter returns in these range bins are assumed to be independent.

The mean clutter powers are assumed to be 0.5 and the mean power of the additive
white Gaussian noise, which represents the radar receiver noise, is adjusted such that

the CNR is equal to 20 dB.

The rms errors for the estimates of the first four spectral moments as a Function of

Doppler Spread can be observed from Figure 4-14.
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Figure 4-14 depicts that for the Doppler spread values from 0.004 to 0.034, the
spectral moment estimation performance of the proposed method is very close to the

Cramér-Rao bound.

Standard deviations for estimates of the clutter parameters as a function of Doppler
spread can be observed from Figure 4-15. Since clutter-1 and clutter-2 are located
symmetrically in the Doppler spectra and other clutter parameters are the same for
both clutters, only the estimation performances for clutter-1 parameters are

presented.
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Figure 4-15 depicts that the mean power and the Doppler spread estimation

performances are very close to the Cramér-Rao bound for the Doppler spread values
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of interest. The mean Doppler frequency estimation performance appears to be
increasing with increasing Doppler spread and there is always an offset between the
Monte Carlo results and the Cramér-Rao bound. The reason shall be explained in

detail in Section 4.2 (Comments on Simulation Results).

Biases for estimates of the clutter parameters as a function of Doppler spread can be

observed from Figure 4-16.
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Figure 4-16 Biases for Estimated Clutter-1 Parameters as a Function of Doppler
Spread

Figure 4-16 depicts that changing the Doppler Spread values from 0.004 to 0.034

does not introduce a bias on the clutter parameters estimates.
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4.1.4 Effect of Number of Observations

In this simulation, clutter-1 and clutter-2 are located at -0.1 and 0.1 in the normalized
Doppler spectrum, respectively. In other words, the Doppler separation value

corresponds to 20% of the PRF.

Both Doppler spreads (the sigma values of the Doppler spectrums) are assumed to be
equal to 0.02. With the Gaussian Doppler spectrum assumption, this means that

clutter correlations drop to 10% after 17.1 times the PRI.
Amplitude distributions of both clutters are assumed to be Rayleigh.

The number of range bins that used for estimation of the clutter covariance matrix
using formula (3.25) is changed from 8 to 96. The clutter returns in these range bins

are assumed to be independent.

The mean clutter powers are assumed to be 0.5 and the mean power of the additive
white Gaussian noise, which represents the radar receiver noise, is adjusted such that

the CNR is equal to 20 dB.

The rms errors for the estimates of the first four spectral moments as a function of
observation number can be observed from Figure 4-17. Standard deviations for
estimates of the clutter parameters as a function of observation number can be seen
from Figure 4-18. Biases for estimates of the clutter parameters as a function of

observation number can be seen from Figure 4-19.
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Figure 4-17 and Figure 4-18 depict that as the number of observations increases,
estimation quality also increases in consistent with the Cramér-Rao bound for both

the spectral moments and the clutter parameters.

Figure 4-19 shows that the number of observations does not affect the bias on the

estimates.

4.1.5 Simulations for Different Shape Parameter Values

In this simulation, clutter-1 and clutter-2 are located at -0.1 and 0.1 in the normalized
Doppler spectrum, respectively. In other words, the Doppler separation value

corresponds to 20% of the PRF.

Both Doppler spreads (the sigma values of the Doppler spectrums) are assumed to be
equal to 0.01. With the Gaussian Doppler spectrum assumption, this means that

clutter correlations drop to 10% after 34.2 times the PRI.

The amplitude distribution of clutter-1 is assumed to be K-distributed and the
amplitude distribution of clutter-2 is assumed to be Rayleigh. The shape parameter of

clutter-1 is altered from 0.1 to 15.

20 range bins are used for estimation of clutter the covariance matrix using formula

(3.19). The clutter returns in these range bins are assumed to be independent.

The mean clutter powers are assumed to be 0.5 and the mean power of the additive
white Gaussian noise, which represents the radar receiver noise, is adjusted such that

the CNR is equal to 20 dB.

In section 3.3, we have already mentioned that, in the spectral moment estimation
method, we use (3.19) to estimate the clutter covariance matrix. Actually, this
estimation method is the maximum likelihood estimation if the interference is

Gaussian. For non-Gaussian interference, its performance degrades and different
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kind of estimator should be used [24]. We stick to (3.19) since clutter-2 is correlated

complex Gaussian clutter.

In this simulation, the Cramér-Rao bounds are calculated according to the correlated
complex Gaussian clutter in order to investigate the effect of the shape parameter on

the clutter parameter estimations.

In Figure 4-20, some degradation in the estimation performances for the spectral

moments can be observed for the shape parameters below 3.
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Figure 4-20 Spectral Moment Estimation Performance as a Function of the Shape
Parameter

The estimation performance for the clutter-1 parameters in terms of standard

deviation can be observed from Figure 4-21.
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Figure 4-21 Standard deviations for Estimates of Clutter-1 Parameters as a Function
of Shape Parameter

The estimation performance for the clutter-2 parameters in terms of standard

deviation can be observed from Figure 4-22.
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Figure 4-22 Standard deviations for Estimated Clutter-2 Parameters as a Function of

Shape Parameter

Figure 4-22 depicts that estimation qualities of clutter-2 parameters are not affected

by the shape parameter of clutter-1.

83



The estimation performance for the clutter-1 parameters in terms of bias can be seen

from Figure 4-23.
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The estimation performance for the clutter-2 parameters in terms of bias can be seen

from Figure 4-24.
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Figure 4-23 and Figure 4-24 depict that K-distribution property of clutter-1 does not

introduce a bias on the estimates of the parameters of both clutters.

4.2 Comments on Simulation Results

There are four possible reasons that may explain the difference between the Cramér-
Rao bounds and Monte Carlo analysis of estimation performance of the clutter

powers, the mean Doppler frequencies and the Doppler spreads:

1) Sub-optimum estimations of the spectral moments (M,, M, M,, ...),

2) Zero Doppler spread assumption while estimating the clutter powers and the mean

Doppler frequencies,

3) Errors carried from the estimations of the spectral moments to the estimations of

the clutter powers and the mean Doppler frequencies,

4) Errors carried from the estimations of the clutter powers and the mean Doppler

frequencies to the Doppler spreads.

1) Sub-optimum estimations of the spectral moments: The power spectrum of a

clutter is described completely by infinitely many spectral moments. However, the
method proposed assumes the power spectrum of a clutter can be described by a
finite number of spectral moments. This is the major reason that explains the
difference between the Cramér-Rao bounds and the Monte Carlo analysis of the
estimation performance of the spectral moments and why it is a sub-optimum
approach. As mentioned before, the number of these finite spectral moments is
defined as system order L and the best way to understand the effect of the system
order L to the estimation performance is through moment estimator pattern

functions [22].
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The p th moment estimator pattern function H (f,L) is defined as the mean value

of the estimate 1\7I;, when a deterministic unit power target at Doppler frequency f

with zero Doppler spread is observed when the system order is L.

It is useful to note that

Hy(f0)=1fP. “.1)

In Figure 4-25, the moment estimator pattern functions for p=0,1,2,3 and

L=6,10,14,00 are plotted.
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Figure 4-25 Moment Estimator Pattern Functions

In Figure 4-25, the regions where H (f,L)=H_ (f,o) are the regions that the

estimation of the spectral moments holds true. For L=6, L=10, L=14 and L=

, true estimation of the spectral moments can be done if the clutter Doppler spectrum

lies between +0.06 , +0.1,

+0.25 and £0.5 normalized frequencies, respectively.
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Since the Doppler separation of clutter power spectrums cannot exceed 0.5
normalized frequency because of spectrum folding, it cannot be counted as a limiting

factor.

It is also helpful to note that the valid region of the spectral moment estimation can
be shifted towards any Doppler frequency by simply changing the point f, about
which the Taylor expansion is made. Thus, in order to use this clutter parameter
estimating method effectively, it is necessary to calibrate its moment generating
functions according to data using coarse location of the clutter Doppler spectrum in
the spectra. An example of shifted moment generating functions is plotted in Figure

4-26.
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Figure 4-26 Shifted Moment Generating Functions to 0.2 Normalized Frequency

There are four major consequences that can be deduced by examining the moment

estimator pattern functions [22]:

e Outside the valid regions, the estimates of spectral moments are less than

their actual values and as a result, biases occur. To efficiently run the spectral
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moment estimation method without any biases, L is chosen as 14 to cover all

clutter spectra in simulations.

The width of region where good estimation of the spectral moments can be

achieved increases with the system order L .

Outside the region where true estimation of the spectral moments can be
done, the spectral moments are estimated less than their actual values and the
“proportional” participant of noise increases and biases occur [22]. This leads
to an increase in the standard deviations of the spectral moment estimates. As
the mean frequency of clutter recedes from zero Doppler, increase in standard
deviations of spectral moment estimates occurs. This explains why the
standard deviations of the spectral moment estimates increase when the
Doppler separation of clutters grows. In addition, if the Doppler spread
increases, the tails of power spectrum starts to leak out from the valid region
and this leads to receding of the estimation performance of the spectral

moments from the Cramér-Rao bound.

If the clutter spectra width is less than the region where true estimation of the
spectral moments can be done, excess noise participates in the estimations
and there is always a difference between the standard deviations of the mean
frequencies estimates and the Cramér-Rao bound. If the width of the valid
region is calibrated according to the clutter spectra, it is expected that the

estimation performance approaches the Cramér-Rao bound.

As can be seen from Figure 4-12, the estimation performance (both the bias and the

standard deviation) oscillates as the Doppler separation changes. This case is also

explained by the moment estimator pattern functions. In this case the pth moment

estimator pattern function is modified as H (f,, f,,L) which is an observation of two

deterministic unit power targets at Doppler frequencies f, and f, with zero Doppler

spread. The modified estimator pattern function is plotted for different Doppler
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spreads in Figure 4-27. The spectral moment estimation differs from the true value in

a periodic way as the Doppler separation increases. This leads to the oscillations in

the estimation performance of the clutter parameters.
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2) Zero Doppler spread estimation approach while estimating the clutter powers

and the mean Doppler frequencies: Since the Doppler spreads of interest are

approximately ten times lower than the mean Doppler frequencies, their contribution
to spectral moments is relatively low when compared to the mean Doppler
frequencies. Thus, it is assumed that the effect of Zero Doppler spread estimation

approach has negligible effect on the clutter parameter estimations.

3) Errors carried from the estimations of the spectral moments to the

estimations of the clutter powers and the mean Doppler frequencies: Since the

mean clutter powers and the mean Doppler frequencies are estimated from the
spectral moments, any degradation in the estimation performance of the spectral
moments reflects to the estimation performance of the clutter powers and the mean

Doppler frequencies.

4) Errors carried from estimations of clutter powers and mean Doppler

frequencies to Doppler spreads: Since the Doppler spreads are estimated using the

parametric maximum likelihood estimator by fixing the estimated mean clutter
powers and the mean Doppler frequencies, any degradation in the estimation
performance of the mean clutter powers and the mean Doppler frequencies reflects to

the estimation performance of the Doppler spreads.

4.3 Comparison between Spectral Moments Estimation Methods Described in

3.5

The spectral moments estimation methods described in 3.5 is compared in terms of

the moment estimator pattern functions for different coherent pulse numbers.

The comparison results can be observed from Figure 4-28, Figure 4-29 and Figure

4-30.
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Figure 4-28 Moment Estimator Pattern Functions for 8 Coherent Pulses

According to Figure 4-28, the regions that the estimation of the spectral moments

holds true for the frequency domain spectral moments estimation method cover the
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whole spectra. However biases occur in the spectral moments estimates. These biases

are caused by the DFT process when estimating spectral moments.
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According to Figure 4-29, the regions that the estimation of the spectral moments
holds true for the frequency domain spectral moments estimation method cover the
whole spectra. In this case, the biases are less than 8 coherent pulses case since the
resolution of the estimation method is higher due to increasing number of coherent

pulses.
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Figure 4-30 Moment Estimator Pattern Functions for 128 Coherent Pulses

According to Figure 4-30, the regions that the estimation of the spectral moments
holds true for the frequency domain spectral moments estimation method cover the

whole spectra. In this case, the biases are less than Figure 4-28 and Figure 4-29 since
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the resolution of the estimation method is higher due to increasing number of

coherent pulses.

The spectral moments estimation performances of the methods for different CNR
values are also compared and presented in Figure 4-31, Figure 4-32 and Figure 4-33.

The clutter parameters are the same as those in Section 4.1.1.
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According to Figure 4-31, there is little difference between the estimation
performance of the frequency domain method and the time domain method. The

difference is noticeable especially in M; estimates.
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According to Figure 4-32, the difference between the estimation performances the
methods are less than 8 coherent pulses case due to increasing number of coherent

pulses.
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Figure 4-33 Spectral Moment Estimation Performance as a Function of CNR for 128
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According to Figure 4-33, the difference between the estimation performances the
methods are less than Figure 4-31 and Figure 4-32 due to increasing number of

coherent pulses.
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CHAPTER 5

PERFORMANCE COMPARISON

5.1 Method of Comparison

In this chapter, the clutter suppression performances of the spectral moment
estimation method and more conventional methods are compared in different
simulated scenarios. For this purpose, N coherent radar echoes that include the K-
distributed sea clutter, the Rayleigh-distributed rain clutter, and the radar receiver
noise are simulated. The clutter parameters (the Doppler spreads, the mean Doppler
frequencies, and the mean powers) and the radar receiver noise are simulated
according to next generation airport surveillance radar (ASR-11) according to

predefined wind speed, wind direction and sea state.

N Transversal filter coefficients w =(W0 W Wy )T that are calculated according

to the algebraic spectral moments based clutter parameter estimation method and

more conventional methods are listed below:

e The steered MTI filter for the sea clutter cascaded with the Doppler filter

tuned to a known target Doppler frequency,

e The steered MTI filter for the rain clutter cascaded with the Doppler filter

tuned to a known target Doppler frequency,
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e (Cascaded steered MTI filter for the sea clutter and steered MTI filter for the

rain clutter and the Doppler filter tuned to a known target Doppler frequency,

e The optimum filter obtained from a known interference covariance matrix

and a known target signal,
e The Doppler filter tuned to a known target Doppler frequency,

e The SMI (Sample Matrix Inversion) filter obtained from the estimated
covariance matrix that is obtained by the method given in equation (3.19)

applied on N radar returns.

The performances of the clutter suppression filters are compared in terms of

improvement factor (IF). IF is defined as follows [3]:

"= ((i// II))O: :[Ss_j(:_j 5.1)

.. is the output signal-to-interference ratio, (S/ |)in is the input signal-

where (S/ I )0

to-interference ratio, S, is the output target power, S, is the input target power,

I,, is the input interference power and 1, is the output interference power.

out
The target power B, the sea clutter power P, the rain clutter power P, and the

radar receiver noise P, are required to determine (S/ I )

in "

(S/ |)in can be expressed in terms of P., P,, P, and P, as follows:

P
S/1), =——T—.
=551 (52)

(S/ I)Out can also be expressed in terms of the transversal clutter suppression filter

coefficients W, the Nx1 complex target signal vector S and the interference

covariance matrix R [3]:
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wHss"w

The elements of S is in the form of

S; =\/FTexp(—j27z(i —1) f dt), i=12,..,N (5.4)

where f , is the normalized target Doppler frequency. R is in the form of

R=R;+R; +RI (5.5)

where Ry is the sea clutter covariance matrix, Ry is the rain clutter covariance
matrix and Pyl is the radar receiver covariance matrix where | is the NxN identity

matrix.
5.2 Transversal Filter Coefficients for Processors
Calculations of the transversal filter coefficients are presented in this section.

5.2.1 The steered MTI filter for the sea clutter cascaded with the Doppler

filter tuned to a known target Doppler frequency

In this clutter suppression filter, the steered MTI filter for the sea clutter is cascaded
with the Doppler filter tuned to a known target Doppler frequency. After denoting
the steered MTI filter for the sea clutter as w,

mti _sea

and the Doppler filter tuned to a

known target Doppler frequency as w, , the filter coefficients can be found by

w= Wmtiisea ®Wd (56)

where ® operator designates the convolution procedure.

W

mti _sea

is in the form of a steered single delay line canceller:
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Wmtiisea = |:1 —exp( 127[ fds ):'T (57)

where f, is the normalized mean sea clutter Doppler frequency and the elements of

(N-1)x1 vector w, is in the form of
w (i) =exp(j27(i-1)f,), i=12..,N-1. (5.8)

5.2.2 The steered MTI filter for the rain clutter cascaded with the Doppler

filter tuned to a known target Doppler frequency

In this clutter suppression filter, the steered MTI filter for the rain clutter is cascaded
with the Doppler filter tuned to a known target Doppler frequency. After denoting

the steered MTI filter for the rain clutter as w the filter coefficients can be

mti _rain »

found by

W= Wmtiisea ® W (59)

W,

mti _rain

is in the form of a steered single delay line canceller:

Wmtiirain = |:1 —exp( 127[ fdr ):|T (510)

where f, is the normalized mean rain clutter Doppler frequency and the elements of

(N-1)x1 vector w, is in the form of (5.8).
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5.2.3 Cascaded steered MTI filter for the sea clutter and steered MTI filter for
the rain clutter and the Doppler filter tuned to a known target Doppler

frequency

In this clutter suppression filter, the steered MTI filter for the sea clutter is cascaded
with the steered MTI filter for the rain clutter and the Doppler filter tuned to a known

target Doppler frequency. The transversal filter coefficients can be found by

®w

W=W, mti _rain ®Wd : (511)

mti _sea

In equation (5.11), the elements of (N-2)x1 vector W, is in the form of
w, (i) =exp(j2z(i-1)fy), i=1,2,.,N-2. (5.12)

5.2.4 The optimum filter obtained from a known interference covariance

matrix and a known target signal

Although the sea clutter obeys the compound K-distribution model, the interference
also includes the Rayleigh distributed rain clutter. Thus, with the assumption of
Gaussian interference approach, the optimum filter coefficients can be calculated for

perfectly known target signal as follows:

1%

w=R"s (5.13)

where R™ is the inverse of known interference covariance matrix (sum of the sea
clutter covariance matrix Rg, the rain clutter covariance matrix R; and the radar
receiver covariance matrix Pyl ) and S is the known Swerling-0 target signal vector

which is defined in (5.4).
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5.2.5 The Doppler filter tuned to a known target Doppler frequency

The Doppler filter coefficients without any windowing process are defined by

W, (i)zexp(j27r(i—1) fdt), i=1,2,...,N . (5'14)

5.2.6 The SMI (Sample Matrix Inversion) filter obtained from the estimated

covariance matrix

In this method, the interference clutter covariance matrix is obtained from adjacent
range bins. The assumption is that these adjacent range bins include only the sea

clutter, the rain clutter and the radar receiver noise.

The covariance matrix Ry, is estimated by equation (3.19) and the filter coefficients

are calculated by

1k

Wy = Rgy ' (5.15)

where R, is the inverse of sample estimate of the interference covariance matrix.

5.2.7 The spectral moment estimation method

In this method, the transversal clutter suppression filters are calculated in four steps.

1) In the first step, the mean powers and the mean Doppler frequencies of the sea and
rain clutter are estimated by the algebraic spectral moments based clutter parameter

estimation method.

2) In the second step, using the clutter parameters estimated in the first step,
minimization of the negative log-likelihood function of (3.20) is done by fixing the

mean powers and the mean Doppler frequencies and changing the Doppler spreads.
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3) In the third step, the interference covariance matrix is calculated using the
estimated mean powers, the mean Doppler frequencies and the Doppler spreads of
the sea and rain clutter with the Gaussian power spectrum assumption for both sea

and rain clutter:

where Ry is the estimated covariance matrix of the sea clutter and Ry, is the estimated

covariance matrix of the rain clutter.

The estimated covariance matrix of the sea clutter are calculated according to the

formula (3.8):
Rs(B, fus, 07) = ISSA(fds)B(;Z)A(fds)H (5.17)

where B, fyq, 6';2 are the estimated mean power, the mean Doppler frequency and

the Doppler Spread of the sea clutter, respectively,

A(fds) = dlag(l ejzn'fds ejZTIde(N—l)) (518)
and
3\ _ ,—2n262(k-1)?
Byy(02) = e~2m 8 (e-0”, (5.19)

The estimated covariance matrix of the rain clutter is calculated according to the

formula (3.8):
RR(pR'de'gg) = ﬁRA(de)B((;E)A(de)H (5.20)

where Py, fyr, c/rz are the estimated mean power, the mean Doppler frequency and the

Doppler Spread of rain clutter, respectively,
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A(de) = dlag(1 ejZHde ejZn'de(N—l)) (521)

and

- —om202(k—1)2
Bua(0f) = e R, (5.22)

4) In the final step, the transversal clutter suppression filter is calculated in the

following way:

*

—_ p-1
w=R"s (5.1)

where R~1 is the inverse of the estimated interference covariance matrix.
5.3 Results

The improvement factors are calculated for different environmental scenarios and
compared to each other. The common assumptions used in the simulations are stated

below. Differences between the scenarios take place under related scenario.
e The coherent processing interval (CPI) consists of § pulses.
e In a CPI, the PRF remains constant.
e The target Doppler frequency is known and does not change in CPIL.

e For the spectral moment estimation method and the sample matrix inversion
method, 500 Monte Carlo runs are made and IF is calculated as the average of

the results from each Monte Carlo step.

e The radar used in the simulations is ASR-11 and it is assumed that its
parameters do not change in a CPI. The technical specifications of ASR-11

are given in Table 5-1 [25].
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Table 5-1 ASR technical characteristics

Parameter ASR-11 Value
Peak transmitter 25 kW
power
Transmitter type solid state
Operational 2700-2900 MHz
frequency range
Antenna type modified parabolic
reflector with stacked
feed horns
Antenna gain 34 dBi
Typical antenna 12 m (40 ft)
height above ground
Antenna beam width 2.3° (horizontal)
5° (vertical)
Antenna polarization vertical
Antenna sidelobe At least 25 dB below
levels main-beam gain
Antenna beam- 0 °-360 ° rotational
scanning protocol
Antenna beam- 12.5 rpm (4.8
scanning rate sec/scan)
Transmitted pulse 1 us (CW pulse)
widths 89 us (linear FM)
Transmitted pulse PON and Q3N
modulation (unmodulated CW
pulses paired with
linear FM pulses)
Transmitted pulse 856 pulses/sec

repetition rates

(average) in a 4-
stagger sequence

Receiver target- 1.1 MHz
processing bandwidth
Nominal receiver 2dB
noise figure
Thermal noise level -111.6 dBm

in receiver bandwidth

(computed)

5.3.1 Scenario-1 (Both The Sea and Rain Clutter Coexist.)

In this scenario, ASR-11 is located 100 m above mean sea level and its beam is

directed parallel to earth surface. A target having 1 m® RCS is placed at 40 km range
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from the radar. The rainfall rate is 4 mm/hr (moderate rain) and the wind speed is 7.7

m/s towards the radar (corresponds to Sea State 3 according to the TSC model).

The number of coherent pulses and the number of independent range bins used in the
spectral moment estimator are 8 and 10, respectively. It is assumed that the clutter
power spectrum can be expressed by 14 spectral moments. The spectral moment
estimator is using the assumption that there is both rain and sea clutter existing in the

radar echoes.

The power and the Doppler Characteristics of the target, the rain clutter and the sea

clutter at 40 km are calculated and simulation report is given below:

After Pulse Compression Target and Interference Powers:

Target Echo Power: -75.53 dBm

Sea Clutter Power: -86.97 dBm

Rain Clutter Power: -75.30 dBm

Receiver Noise Power: -111.42 dBm

Sea Clutter to Noise Ratio: 24.45 dB

Rain Clutter to Noise Ratio: 36.11 dB

Sea Clutter Parameters:

Shape Parameter: 1.38

Mean Doppler Frequency: 30.48 Hz

Doppler Spread (sigma) due to Internal Clutter Motion: 10.75 Hz
Doppler Spread (sigma) due to Antenna Scanning Modulation: 8.64 Hz
Overall Doppler Spread (sigma): 13.80 Hz

Normalized Values:

Mean Doppler Frequency: 0.030 (normalized freq.)

Doppler Spread (sigma) due to Internal Clutter Motion: 0.011
(normalized freq.)

Doppler Spread (sigma) due to Antenna Scanning Modulation: 0.0086
(normalized freq.)

Overall Doppler Spread (sigma): 0.0138 (normalized freq.)

Rain Clutter Parameters:

Mean Doppler Frequency: 143.38 Hz

Doppler Spread (sigma) due to Internal Clutter Motion: 57.83 Hz
Doppler Spread (sigma, wind sheer component): 54.73 Hz

Doppler Spread (sigma, turbulence component): 18.67 Hz

Doppler Spread (sigma, beam broadening component): 0.00 Hz

Doppler Spread (sigma, fall velocity distribution component): 0.00 Hz
Doppler Spread (sigma) due to Antenna Scanning Modulation: 8.64 Hz
Overall Doppler Spread (sigma): 58.47 Hz

Normalized Values:

Mean Doppler Frequency: 0.143 (normalized freq.)

Doppler Spread (sigma) due to Internal Clutter Motion: 0.058
(normalized freq.)

Doppler Spread (sigma) due to Antenna Scanning Modulation: 0.0086
(normalized freq.)

Overall Doppler Spread (sigma): 0.0585 (normalized freq.)
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The improvement factors are calculated according to the clutter parameters and the

radar receiver noise level in the simulation report and presented in Figure 5-1.
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Figure 5-1: Improvement Factors for Scenario-1
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According to Figure 5-1, we can observe that the improvement factor of the algebraic
spectral moments based clutter parameter estimation method nearly fits the
improvement factor of the optimum filter. Maximum 1.4 dB secession occurs around

zero Doppler frequency.

The improvement factors of both the spectral moment estimation method and the
optimum filter drop in the area of £0.25 Doppler frequency around 0.15 Doppler
frequency. This result is caused by the sea and the rain clutter Doppler spreads which

are approximately 0.0828 (6 sigma) and 0.351 (6 sigma), respectively.

The methods using the steered MTI have deep nulls at the mean Doppler frequencies
of clutters and in these areas, the improvement factor drops below 0. The Doppler
filter is better around at the mean Doppler frequencies of clutters; however, its
performance is worse than the methods using the steered MTI in exoclutter regions.
This results from the fact that the clutters at the Doppler sidelobes have a negative

effect on the improvement factor.

The SMI method has a better improvement factor than the other methods except for
the optimum filter and the spectral moment estimation method. This shows that
knowing apriori information about the spectral shapes of clutters and estimating the

parameters that describe them result in a better improvement factor.
5.3.2 Scenario-2 (Only Sea Clutter Exists.)

In this scenario, ASR-11 is located 100 m above mean sea level and its beam is
directed parallel to the earth surface. A target having 1 m? RCS is placed at 40 km
range from the radar. There is no rain and the wind speed is 7.7 m/s towards the

radar (corresponds to Sea State 3 according to the TSC model).

The number of coherent pulses and the number of independent range bins used in the
spectral moment estimator are 8 and 10, respectively. It is assumed that the clutter

spectrum can be expressed by 14 spectral moments. The spectral moment
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estimator is using the assumption that there is both the rain and the sea clutter

exist in the radar echoes, in fact only the sea clutter exists.

The power and the Doppler Characteristics of the target, the rain clutter and the sea

clutter at 40 km are calculated and simulation report is given below:

After Pulse Compression Target and Interference Powers:
Target Echo Power: -75.53 dBm

Sea Clutter Power: -86.97 dBm

Rain Clutter Power: -Inf dBm

Receiver Noise Power: -111.42 dBm

Sea Clutter to Noise Ratio: 24.45 dB

Rain Clutter to Noise Ratio: -Inf dB

Sea Clutter Parameters:

Shape Parameter: 1.38

Mean Doppler Frequency: 30.48 Hz

Doppler Spread (sigma) due to Internal Clutter Motion: 10.75 Hz
Doppler Spread (sigma) due to Antenna Scanning Modulation: 8.64 Hz
Overall Doppler Spread (sigma): 13.80 Hz

Normalized Values:

Mean Doppler Frequency: 0.030 (normalized freq.)

Doppler Spread (sigma) due to Internal Clutter Motion: 0.011
(normalized freq.)

Doppler Spread (sigma) due to Antenna Scanning Modulation: 0.0086
(normalized freq.)

Overall Doppler Spread (sigma): 0.0138 (normalized freq.)

The improvement factors are calculated according to the clutter parameters and the

radar receiver noise level in the simulation report and presented in Figure 5-2.
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Figure 5-2: Improvement Factors for Scenario-2
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According to Figure 5-2, we can observe that the improvement factor of the algebraic

spectral moment based clutter parameter estimation and the steered MTI filter nearly
fit the improvement factor of the optimum filter for exoclutter regions. In endoclutter



regions a maximum of 2 dB secession occurs for the spectral moment estimation
method. The improvement factor of the spectral moment estimation is worse than
scenario-1 since in this scenario, this method assumes that the rain and the sea clutter
coexist in the environment, in fact, only the sea clutter exists. This results in that the
spectral moment estimation tries to find two clutters and estimates their parameters
as closely spaced clutters around the mean Doppler frequency of the sea clutter.

Thus, the estimated clutter powers are half of the sea clutter power.

The improvement factors of both the spectral moment estimation method and the
optimum filter drop in the area of +0.1 Doppler frequency around 0.03 Doppler
frequency. This result is caused by the sea clutter Doppler spread which is

approximately 0.0828 (6 sigma).

The steered MTI filter has a deep null at the mean Doppler frequency of the sea
clutter and in this area, the improvement factor drops below 0. The Doppler filter is
better around the mean Doppler frequency of the sea clutter, however, its
performance is worse than the steered MTI filter in exoclutter regions. This results
from the fact that the sea clutter at Doppler sidelobes has a negative effect on the

improvement factor.

The SMI method has a better improvement factor than the other methods except for
the optimum filter and the spectral moment estimation method. This shows that
knowing apriori information about the spectral shape of the clutter and estimating the

parameters that describe it result in a better improvement factor.
5.3.3 Scenario-3 (Only Rain Clutter Exists.)

In this scenario, ASR-11 is located 100 m above mean sea level and its beam is
directed towards the air, thus, the radar echoes do not contain sea clutter. A target
having 1 m® RCS is placed at 40 km range from the radar. The rainfall rate is 4

mm/hr (moderate rain) and the wind speed is 7.7 m/s towards the radar.
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The number of coherent pulses and the number of independent range bins used in the
spectral moment estimator are 8 and 10, respectively. It is assumed that the clutter
spectrum can be expressed by 14 spectral moments. The spectral moment
estimator is using the assumption that there is both the rain and the sea clutter

exist in the radar echoes, in fact only the rain clutter exists.

The power and the Doppler Characteristics of the target, the rain clutter and the sea

clutter at 40 km are calculated and simulation report is given below:

After Pulse Compression Target and Interference Powers:
Target Echo Power: -75.53 dBm

Sea Clutter Power: -Inf dBm

Rain Clutter Power: -75.30 dBm

Receiver Noise Power: -111.42 dBm

Sea Clutter to Noise Ratio: -Inf dB

Rain Clutter to Noise Ratio: 36.11 dB

Rain Clutter Parameters:

Mean Doppler Frequency: 143.38 Hz

Doppler Spread (sigma) due to Internal Clutter Motion: 57.83 Hz
Doppler Spread (sigma, wind sheer component): 54.73 Hz

Doppler Spread (sigma, turbulence component): 18.67 Hz

Doppler Spread (sigma, beam broadening component): 0.00 Hz

Doppler Spread (sigma, fall velocity distribution component): 0.00 Hz
Doppler Spread (sigma) due to Antenna Scanning Modulation: 8.64 Hz
Overall Doppler Spread (sigma): 58.47 Hz

Normalized Values:

Mean Doppler Frequency: 0.143 (normalized freq.)

Doppler Spread (sigma) due to Internal Clutter Motion: 0.058
(normalized freq.)

Doppler Spread (sigma) due to Antenna Scanning Modulation: 0.0086
(normalized freq.)

Overall Doppler Spread (sigma): 0.0585 (normalized freq.)

The improvement factors are calculated according to the clutter parameters and the

radar receiver noise level in the simulation report and presented in Figure 5-3.
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Figure 5-3: Improvement Factors for Scenario

According to Figure 5-3, we can observe that the improvement factor of algebraic

spectral moment based clutter parameter estimation fits the improvement factor of

the optimum filter for the whole range in spite of the fact that, in this scenario, this

121



method assumes the rain and the sea clutter coexist in the environment. The reason is
that in Scenario-2, the sea clutter has a narrow Doppler spread while in Scenario-3,
the rain clutter has a wider Doppler spread. The sum of the covariance matrices of
the clutters found by the spectral moment estimation method is close to the
covariance matrix of the rain since it has a wider Doppler spread. In other words, the
spectral moment estimation method can describe the covariance matrix of the rain
clutter in terms of two different closely spaced clutters since the rain clutter has a

wider Doppler spread.

When compared to Scenario -2, the performance of the steered MTI drops in

Scenario-3 since the rain clutter has a much larger Doppler spread.

The improvement factors of both the spectral moment estimation method and the
optimum filter drop in the area of +0.3 Doppler frequency around 0.15 Doppler
frequency. This result is caused by the rain clutter Doppler spread which is

approximately 0.351 (6 sigma).

The steered MTI filter has a deep null at the mean Doppler frequency of the rain
clutter and in this area, the improvement factor drops below 0. The Doppler filter has
a better performance around the mean Doppler frequency of rain clutter; however, its
performance is worse than the steered MTI filter in exo-clutter regions. This results
from the fact that the rain clutter at Doppler sidelobes has negative effect on

improvement factor.

The SMI method has a better improvement factor than the other methods except for
the optimum filter and the spectral moment estimation method. This shows that
knowing apriori information about the spectral shapes of clutter and estimating

parameters that describe it results in a better improvement factor.
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5.3.4 Scenario-4 (Only Sea Clutter Exists.)

In this scenario, ASR-11 is located 100 m above mean sea level and its beam is

directed parallel to the earth surface. A target having 1 m* RCS is placed at 40 km

range from the radar. There is no rain and the wind speed is 7.7 m/s towards the

radar (corresponds to Sea State 3 according to the TSC model).

The number of coherent pulses and the number of independent range bins used in the

spectral moment estimator are 8 and 10, respectively. It is assumed that the clutter

spectrum can be expressed by 14 spectral moments. The spectral moment

estimator is using the assumption that there is only the sea clutter in the

environment.

The power and the Doppler Characteristics of the target, the rain clutter and the sea

clutter at 40 km are calculated and simulation report is given below:

After Pulse Compression Target and Interference Powers:
Target Echo Power: -75.53 dBm

Sea Clutter Power: -86.97 dBm

Rain Clutter Power: -Inf dBm

Receiver Noise Power: -111.42 dBm

Sea Clutter to Noise Ratio: 24.45 dB

Rain Clutter to Noise Ratio: -Inf dB

Sea Clutter Parameters:

Shape Parameter: 1.38

Mean Doppler Frequency: 30.48 Hz

Doppler Spread (sigma) due to Internal Clutter Motion: 10.75 Hz
Doppler Spread (sigma) due to Antenna Scanning Modulation: 8.64 Hz
Overall Doppler Spread (sigma): 13.80 Hz

Normalized Values:

Mean Doppler Frequency: 0.030 (normalized freq.)

Doppler Spread (sigma) due to Internal Clutter Motion: 0.011
(normalized freq.)

Doppler Spread (sigma) due to Antenna Scanning Modulation: 0.0086
(normalized freq.)

Overall Doppler Spread (sigma): 0.0138 (normalized freq.)
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Figure 5-4: Improvement Factors for Scenario-4



According to Figure 5-4, we can observe that the improvement factor of the algebraic
spectral moment based clutter parameter estimation fits the improvement factor of
the optimum filter for both endo-clutter and exo-clutter clutter regions. The
improvement factor of the spectral moment estimation method is better than

scenario-2 since this method assumes only the sea clutter exists in the environment.

The improvement factors of both the spectral moment estimation method and the
optimum filter drop in the area of £0.1 Doppler frequency around 0.03 Doppler
frequency. This result is caused by the sea clutter Doppler spread which is

approximately 0.0828 (6 sigma).

The Steered MTI filter has a deep null at the mean Doppler frequency of the sea
clutter and in this area the improvement factor drops below 0. The Doppler filter is
better around the mean Doppler frequency of the sea clutter, however, its
performance is worse than the steered MTI filter in exo-clutter regions. This results
from the fact that the sea clutter at Doppler sidelobes has negative effect on

improvement factor.

The SMI method has a better improvement factor than the other methods except for
the optimum filter and the spectral moment estimation method. This shows that
knowing apriori information about the spectral shape of clutter and estimating

parameters that describes it results in a better improvement factor.

5.3.5 Scenario-5 (Only Sea Clutter with Exponential Autocorrelation Function

Exists.)

The mean power and the mean Doppler frequency for the sea clutter in this scenario
are the same as Scenario-4. The spectral moment estimator is using the assumption
that there is only the sea clutter in the environment. However, in this scenario, the

exponential autocorrelation function model for the sea clutter is used. The proposed
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method still uses the assumption that the sea clutter obeys the Gaussian

autocorrelation function model.

The improvement factors are calculated and presented in Figure 5-5.
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Figure 5-5: Improvement Factors for Scenario-5
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According to Figure 5-5, we can observe some degradation in the performance of the
proposed algorithm when compared to Scenario 4. Degradation amount can be
observed from Figure 5-6. Degradation in the clutter suppression performance of the
proposed method is due to the false assumption that the sea clutter obeys the
exponential autocorrelation function model. Moreover, we can observe from Figure
5-5 that the improvement factors in Scenario-5 are less than Scenario-4. The reason
is that in the exponential autocorrelation function model, the clutter correlation
decays faster as the time between the clutter samples increases. This leads to increase

in clutter spread and decrease in the improvement factors.
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Figure 5-6: Degradation in the Performance of the Proposed Method in Scenario 5
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5.3.6 Scenario-6 (Only Rain Clutter with Exponential Autocorrelation

Function Exists.)

The mean power and the mean Doppler frequency for the rain clutter in this scenario
are the same as Scenario-3. The spectral moment estimator is using the assumption
that there is only the rain clutter in the environment. However, in this scenario, the
exponential autocorrelation function model for the rain clutter is used. The proposed
method still uses the assumption that the rain clutter obeys the Gaussian

autocorrelation function model.

The improvement factors are calculated and presented in Figure 5-7.
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Figure 5-

According to Figure 5-7, we can observe some degradation in the performance of the

proposed algorithm when compared to Scenario 3. Degradation amount can be

observed from Figure 5-8. Degradation in the clutter suppression performance of the
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proposed method is due to the false assumption that the rain clutter obeys the
exponential autocorrelation function model. Moreover, we can observe from Figure
5-7 that the improvement factors in Scenario-6 are less than Scenario-3. The reason
is that in the exponential autocorrelation function model, the clutter correlation
decays faster as the time between the clutter samples increases. This leads to increase

in clutter spread and decrease in the improvement factors.
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Figure 5-8: Degradation in the Performance of the Proposed Method in Scenario 6
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5.3.7 Scenario-7 (Both The Sea Clutter and The Rain Clutter with Exponential

Autocorrelation Function Coexist.)

The mean powers and the mean Doppler frequencies for the sea clutter and the rain
clutter in this scenario are the same as Scenario-1. The spectral moment estimator is
using the assumption that there are both the sea clutter and the rain clutter in the
environment. However, in this scenario, the exponential autocorrelation function
model for the sea clutter and the rain clutter is used. The proposed method still uses
the assumption that the sea clutter and the rain clutter obey the Gaussian

autocorrelation function model.

The improvement factors are calculated and presented in Figure 5-9.
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According to Figure 5-9, we can observe some degradation in the performance of the

proposed algorithm when compared to Scenario 1. Degradation amount can be

observed from Figure 5-10. Degradation in the clutter suppression performance of

134



the proposed method is due to the false assumption that the sea clutter and the rain
clutter obey the exponential autocorrelation function model. Moreover, we can
observe from Figure 5-9 that the improvement factors in Scenario-7 are less than
Scenario-1. The reason is that in the exponential autocorrelation function model, the
clutter correlation decays faster as the time between the clutter samples increases.

This leads to increase in clutter spread and decrease in the improvement factors.
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CHAPTER 6

CONCLUSION

6.1 Summary

The main motivation of this thesis work was to investigate the performances of
recently proposed clutter spectral parameter estimation techniques in an environment

that includes both the sea and the rain clutter.

For this purpose, firstly, the definitions of the interference and the optimum
interference suppression filtering were stated. Then, the MTI and the MTD
algorithms, which are widely used algorithms in present radars to suppress the
interference, are reviewed and their deficiencies which differentiate them from the

optimum interference suppression filtering were stated.

Since the parametric methods which can effectively suppress the interference that
includes both the rain and the sea clutter were investigated in this thesis, the
characteristics of the rain clutter and the sea clutter were reviewed. In this context,
the amplitude characteristics, the mean clutter reflectivity behaviours, the Doppler
characteristics of both clutters were summarized. Moreover, the models and the
methods that can be used to simulate synthetic sea and rain clutter that have specific

amplitude distribution and specific time correlation properties were reviewed.
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The parametric maximum-likelihood estimator, the WPSF (weighted
pseudosubspace fitting) algorithm and the algebraic spectral moment estimation
method were listed as the methods which can solve the moving clutter parameter
estimation problem and their clutter parameter estimation performances were
investigated in this thesis. It was noted that the clutter parameter estimation
performance of the parametric maximum-likelihood estimator perfectly fits the
Cramér-Rao bound. However, solving the minimization problem in this estimator
requires high computational power. When compared to the parametric maximum-
likelihood estimator, it was noted that the WPSF (weighted pseudosubspace fitting)
algorithm has less computational power. However it is well shown in the literature
that it fails when compared to the performance of the parametric maximum

likelihood estimator.

On the other hand, the algebraic spectral moment estimation method is recently
proposed to solve direction of arrival (DOA) problem of more than one interference
signals. Original algorithm is developed to find the mean powers and the directions
of more than one signal sources. In this thesis, this algorithm is used to find the mean
powers and the mean Doppler shifts of more than one moving clutters. Since it
provides the mean powers and the mean Doppler frequencies of the clutters only, it is
combined with the parametric maximum-likelihood estimator to find additionally
Doppler spreads of the clutters and it is proposed as a two step method to achieve full
clutter characterization: In the first step, the mean powers and the mean Doppler
frequencies of clutters are estimated using the algebraic spectral moments based
estimation technique and in the second step, using the clutter parameters estimated in
first step, minimization of the negative log-likelihood function is done by fixing the

mean powers and the mean Doppler frequencies and changing the Doppler spreads.

To investigate the performance of the proposed clutter parameters estimation
method, the sea and the rain clutter were simulated and the Monte-Carlo analysis

were done to determine its RMS and bias performance. Then, the performance of the
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proposed method was compared with the Cramér-Rao bounds for different mean
clutter powers, the Doppler separations, the mean Doppler frequencies and the shape
parameters. From the results, it was observed that, for above 10 dB CNR, 0.15
normalized Doppler separation value and above shape parameter value 3, its
performance fits the Cramér-Rao bound. Moreover, the sufficiency of number of
Monte Carlo runs was presented in terms of confidence interval of 95% together with

the estimation performance of the proposed method.

To investigate the clutter suppression performance, the proposed method and
conventional methods (the steering MTI followed by the Doppler filter, the optimum
filter, the Doppler filter, the sample matrix inversion method) were compared in
terms of the improvement factor for realistic radar parameters. In these comparisons,
the technical parameters of next generation airport surveillance radar (ASR-11) were

used.

For clutter environment in which both the rain clutter and the sea clutter coexists, it
was observed that the improvement factor of the proposed method is very close to

the optimum filter and its performance surpasses the more conventional methods.

For the clutter environments in which only the rain clutter exists and only the sea
clutter exists, it was observed that the improvement factor of the proposed method is
slightly decreased by 2 dB since it searches for two clutters in the radar echoes. In
spite of this false assumption, it is observed from the improvement factor comparison
results that the performance of the proposed method is closest to optimum filter when

compared to the conventional methods.

After calibrating the proposed method in such a way that it searches only one clutter
in the radar echoes, the improvement factor again becomes very close to optimum

filter (less than 1 dB).

To investigate the robustness of the proposed algorithm, its clutter suppression

performance under the exponential autocorrelation function model assumption is
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calculated. Since it uses the assumption that the rain clutter and the sea clutter obey
the Gaussian autocorrelation function model, it is observed that its clutter
suppression performance degrades up to 6 dB due to the false assumption mentioned

above.

6.2 Future Work

There are some topics regarding the clutter suppression subject to further develop the

proposed parametric method. These topics are as follows:

e Investigating the performance of the proposed method for an environment

which includes both the ground and the rain clutter,

e Comparing the performance of the proposed method with the subspace
methods for different clutter powers, mean Doppler frequencies, Doppler

spreads and shape parameters,

e Extending the covariance matrix estimation method used in the proposed
method for different amplitude distributions as in the case of sea clutter and

investigating the performance results,

e To reduce computation load, develop a method to find the transversal filter
coefficients as a function of clutter parameters. (In this thesis, we accomplish
this by calculating the interference covariance matrix from the clutter

parameters and taking the inverse of the estimated clutter covariance matrix.)
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APPENDIX A

CRAMER-RAO BOUND CALCULATIONS

It will be useful to calculate the Cramér-Rao bounds for the clutter parameters since
they permit to evaluate ultimate estimation performance and to know if an

improvement for a practical algorithm is possible.

A.1Cramér-Rao Bounds for Spectral Moments and Clutter Parameters of

Simplified Narrow Band Interference Signals

We can model the sea and rain clutter returns as zero mean multivariate Gaussian

random vectors with covariance matrices R, and R,. Forms of R, and R, are the

same as (3.15), however, for the purpose of making the covariance matrices
independent of the radar PRF, we shall use normalized mean Doppler frequency for
the Cramér-Rao bound derivations. Assuming that M observations are made in the

CPI, MxM matrices R, and R, can be written as

Rl(m,n):Plexp(j27zu1(m—n)), mn=1,M, (A1)
R, (m,n) =P, exp( j2zu,(m-n)), mn=1,M (A2)

where P and P, are the clutter powers and u and u, are the normalized frequencies

which corresponds to the mean radial velocities of the clutters.
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Covariance matrix R of the radar return which contains the rain clutter, the sea

clutter and the radar receiver noise can be expressed as following:
R=R +R,+PI (A3)
where P, stands for the power of receiver noise and | is the identity matrix.

We can express the covariance matrix R in terms of the spectral moments:

where A, is an MxM matrix [21]

1 . . q
Aqzaexp(—jZE(m—n)uo)(—j2ﬂ(m—n)) : (A5)
When we define the unknown parameter vector as the first four spectral moments,
0=[M, M, M, M,]. (A.6)

Fisher information matrix for N-variate normal distribution is obtained as [26]

o’ _,au 1 (., R _, R
I(mn)=—R —+—-trfR"—R — |, I<m,n<4
(m.n) 06, a8, 2 [ 06, o6, (A7)

where U is the Nx1 column vector whose elements are the means of the complex

clutter returns and tr(-) is the trace operator.

Since we model the clutters as zero mean multivariate Gaussian random vectors, the

derivatives of the means with respect to the spectral moments are zero and the term

;
2: R‘I% drops. Furthermore, since our data is complex, the information
m n

. . 1
contained in R doubles and the term 5 drops also.
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Hence, the Fisher information matrix for our case becomes

I(m,n):tr(RI%RI%} I<m,n<4. (A.8)

m n

Using (A.4), partial derivative of the covariance matrix with respect to the spectral

moments is equal to

OR

M=Aq,0£q<oo. (A.9)
Using (A.8) and (A.9), the Fisher information matrix can be expressed as
I(m,n):tr(R"AnR‘lﬁ), 1<mn<4. (A.10)
Error covariances must satisfy the Cramér-Rao inequality
cov(My) = I"*(M,) (A.11)
where
I'(My) =1""(q,9),1<q< 4. (A.12)

To find the Cramér-Rao bounds for powers and mean frequencies of clutters, we

need to change our unknown parameter set to

0=[R P, u u]. (A.13)

Then, partial derivatives of the covariance matrix with respect to unknown

parameters in (A.13) become

oR(m,n)

> =exp( j2zu,(m-n)), 1smn<4, (A.14)
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oR(m,n)

» =exp( j2zu, (m-n)), 1<m,n<4,

oR(m,n) :{P] , m=n

1<mn<4 and
au, P j2z(m—n)exp(j2zu,(m-n)) , o.w}’ o

oR(m,n) {Pz , m=n

) 1<mn<4.
ou, P2j27l'(m—n)exp(jzﬂ-uz(m_n)) , o.w}’ m,n

Error covariances must satisfy the Cramér-Rao bounds;

cov(P;) = I"(Py),
cov(P;) = I"1(P,),
cov(y) = I"*(u,) and

cov(z) = I71(uy).

(A.15)

(A.16)

(A.17)

(A.18)

A.2Cramér-Rao Bounds for Spectral Moments and Clutter Parameters of Wide

Band Interference Signals

The Cramér-Rao bound derivations for the clutter signals that have Doppler spreads

differ only in the form of the radar return covariance matrix R and the unknown

parameter vector for the spectral moments and the clutter parameters.

In this case, the MxM matrices R, and R, take form of
R (m,n)=PR exp(—27r20'12 (m- n)2 + j27u, (m— n)) , 1<m,n<4 and

R,(m,n)=P, exp(—271'20'22(m—n)2 + jzzuz(m—n)), 1<mn<4

where o} and o7 represent the Doppler spreads of clutters.

The unknown parameter vector for the spectral moments becomes
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9=[Mo M, M, M; M, Ms]ﬂ (A.21)
and the rest of the derivation for the Cramér-Rao bounds is the same as the simplified
signal model.

To find the Cramér-Rao bounds for the powers, the mean frequencies and the

Doppler spreads of the clutters, the unknown parameter vector changes to

6=[R P u u o o] (A22)

and so the partial derivatives.

Then, the partial derivatives of the covariance matrix with respect to the unknown

parameters in (A.22) become

R
0 égm):em%_zﬂ%ﬁ(m—nf+j2ﬂq(m—n»,ISnLnS4, (A.23)
aR(m’n):exp(_zﬁzo_z(m_n)erjzyru (m—n)) I<mn<4 A24
op, 2 2 - o
oR(m,n) R, m=n
T |Riza(m-njesp(-2x0? (m-n) + j2ru (m-n) L ow]T ()
I<mn<4,

oR(m,n) {Pz » M=n }

au, - P2j27r(m—n)exp(—2ﬂ2c722(m—n)2+j27ru2(m—n)) , OW. (A.26)

1<mn<4,

eR(mn) R . m=n
oo} - F’l(—27[2(m—n)z)exp(—Zﬂzaf(m—n)z+j27zu1(m—n)) , ow. [’ (A.27)

1<m,n<4
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oR(mn) |P . m=n

>

80'22 P2(—2;;2(m—n)2)exp(—2;;20-§(m—n)z+jznuz(m—n)) , Oo.w. (A28)

1<mn<4
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