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SUGGESTION OF A NEW MODEL FOR NEWTONIAN THERMAL ANALYSIS OF 

SOLIDIFICATION 

 

 

 

Erbaş, Kadir Can 

Ph.D., Department of Physics 

Supervisor : Prof. Dr. Ayşe Karasu 

 

 

 

December 2013, 109 pages 

 

Newtonian thermal analysis (NTA) of solidification is a widely used tool to understand 

the solidification kinetics of metals. It depends on cooling curve analysis by using heat 

equations especially Newton’s law of cooling. Calculation of the latent heat of 

solidification and solid fraction evolution are one of the primary goals of NTA. Several 

mathematical models have been proposed in the literature for this purpose. However, 

there are many discussions on the reliability of these models.  

 

In this study, latent heats of pure metals, which are calculated from several models, were 

compared with their literal values. These methods from the literature include Newtonian 

baseline (NBL), dynamic baseline (DBL), and logarithmic relative temperature baseline 

(LRTBL), which produced unreliable results for the latent heat values of four types of 

pure metals (aluminum, lead, tin, and zinc).  

 

The most significant restrictions of NTA were determined as the effect of mold’s 

thermal capacity and variations in the data analysis process. A new model, which was 

named “two-capacitive system baseline (TCSBL)”, was developed in order to take 

thermal capacity of the mold into account. This model also includes the radiative 

contributions and other temperature dependent effects by considering Taylor expansion 

approach. At the end of the application of the model to several experiments, it was seen 

that TCSBL is the most reliable model among other models in the literature.  
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KATILAŞMANIN NEWTONSAL ISI ANALİZİ İÇİN YENİ BİR MODEL ÖNERİSİ 

 

 

 

Erbaş, Kadir Can 

Doktora., Fizik Bölümü 

Tez Yöneticisi : Prof. Dr. Ayşe Karasu 

 

 

 

Aralık 2013, 109 sayfa 

 

Metal dökümlerinde Newton termal analizi (NTA), metalin katılaşma kinetiklerini 

anlamak adına, çok sık kullanılan bir araçtır. Özellikle Newton soğuma yasası olmak 

üzere, ısı denklemlerini kullanarak soğuma eğrisi analizine dayanır. Katılaşma ısısının 

ve katı kesrin hesaplanması NTA nin en öncelikli hedeflerinden biridir. Bunu yapmak 

için, literatürde çeşitli matematiksel modeller önerilmiştir. Fakat bu modellerin 

güvenilirliği hala tartışılmaktadır 

 

Bu çalışmada, çeşitli modellerden hesaplanan saf metallerin katılaşma ısıları 

literatürdeki değerleriyle kıyaslandı. Bu modeller, 4 tip metalin (alüminyum, kurşun, 

kalay, çinko) katılaşma ısıları için tutarsız sonuçlar üreten Newton taban eğrisi (NTE), 

dinamik taban eğrisi (DTE) ve logaritmik bağıl sıcaklık taban eğrisi (LBSTE) dir.  

 

NTA nin en önemli kısıtlamaları kabın ısı kapasitesinin etkisi ve veri analizi sürecindeki 

varyasyonlar olarak tespit edildi. Kabın termal kapasitesini hesaba katabilmek için, ikili 

kapasitif sistem taban eğrisi (İKSTE) adı verilen yeni bir model geliştirildi. Bu model 

radiyatif katkıları ve diğer sıcaklığa bağlı etkileri de Taylor açılımı yaklaşımı kullanarak 

dâhil etti. Bu modelin çeşitli deneylere uygulanması sonrasında, İKSTE nin literatürdeki 

diğer modeller arasında en güvenilir model olduğu görüldü.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 
Thermal analysis searches the thermal properties of a material while its temperature or 

phase is changing. In metallurgical sciences, it especially provides information about the 

evolution of solid fraction and thermal characteristics of the material, such as melting 

temperature, latent heat release, specific heat, thermal diffusivity, and heat transfer 

coefficient between the material and surrounding media.  

  

 

 

 

 

1. 1 General Information about Heat Transfer 

 

Applications of thermal analysis for metal casting are based on the examination of the 

cooling curve. When a material is heated to a higher temperature than its melting point, 

it begins to lose its heat energy through three different ways: conduction, convection, 

and radiation.  

 

Conduction is simply the transfer of heat energy through the interaction of particles. It 

flows from the more energetic particles to the less energetic ones [1]. The heat transfer 

rate or heat flux per unit area in one-dimension is given by: 

 

dx

dT
k

A

Q
q −=−=

&

                                                                                                           (1.1) 

 

where q is heat flux per unit area, Q& is the total rate of heat flowing through the surface, 

A is the area of the surface, k is thermal conductivity, and dT/dx is the temperature 

gradient [1]. The negative sign corresponds to the tendency of heat transfer which flows 

from the hot to the cold region. In a three-dimensional case, the heat may flow through 

three dimensions. Then the equation becomes: 

 

n̂.Tk
dA

Qd
q ∇−=−=

r&

                                                                                                        (1.2) 
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where ∇ is the gradient operator. For a certain closed surface, the net heat flux of the 

body can be calculated by a surface integral. With the use of Green’s theorem, it gives: 

 

( )∫∫ ∇⋅∇=⋅∇=
VS

dVTkAdTkQ
rrrr

&                                                                                        (1.3) 

 

The net heat flux of this portion of the body, enclosed by the closed surface S, is the 

total heat change of volume V. Therefore, the term Q& corresponds to the rate of change 

in heat energy in terms of density (ρ) and specific heat (cp), so it is given by: 

 

dV
t

T
cQ

V

p∫ ∂

∂
= ρ&                                                                                                            (1.4) 

 

Combining Equations 1.3 and 1.4, it yields 

 

T
t

T 2∇=
∂

∂
α                                                                                                                    (1.5) 

 

where α is the diffusivity (α=k/ρcp) of the material. Equation 1.5 is known as Fourier 

heat conduction equation without a heat source in three dimensions. It is widely used by 

researchers to make thermal analysis of a casting process in the name of Fourier thermal 

analysis (FTA).  

 

Another heat transfer phenomena is seen when a body is exposed to a fluid whose 

temperature is different from that of the body. This type of heat transfer is called 

convection. If surface temperature of the body is Ts, and temperature of the fluid is T∞, 

then total heat flux through the surface is given by 

 

( )∞−=−= TThAQq s
&                                                                                                      (1.6) 

 

where h is overall convective heat transfer coefficient, and A is the total surface area of 

the body. Fourier’s law also gives the total heat flux per unit area through the solid-fluid 

interface, e.g., hot metal surface in air. Equation 1.7 is a boundary condition for the 

Fourier heat conduction equation [2].  

 

( )∞−=⋅∇−= TThn̂Tkq s
surface

r
                                                                                     (1.7) 

 

Radiation, unlike conduction and convection, is another heat transfer process which 

transports the heat energy by electromagnetic waves, so it can occur in the vacuum. An 

ideal thermal radiator emits heat rate proportional to the fourth power of its absolute 
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temperature. Such a body is called a blackbody. The radiative heat rate transferred from 

the body is given by 

 

4
ATq σ=

                                                                                                                       (1.8)
 

 

where σ is Stephan-Boltzman constant whose value is 5.67x10
-8

 Wm
-2

K
-4

, A is the 

surface area and T is the absolute temperature of the body [3]. In a special case, if a 

small grey body with temperature T is surrounded by a large isothermal surface whose 

temperature is Tsur, the net rate of radiation heat transfer is: 

 

( )4
sur

4
rad TTAq −= σε

                                                                                                       (1.9)
 

 

where ε is the emissivity of the object with the values varying from zero to unity [1]. 

Radiative cooling may be neglected in comparison with convectional cooling in low 

temperature ranges. Its complicated mathematical formulation prevents frequent use in 

thermal analysis researches.  

 

The energy of metal with respect to a reference point is named as enthalpy. The enthalpy 

of a metal increases with increasing temperature. However, there is a sudden change in 

enthalpy when a transformation process occurs. The jump in the enthalpy at the melting 

temperature is called the latent heat of solidification. In contrast to pure metals, alloys 

solidify in a temperature interval  rather than in a specific temperature [3]. Latent heat of 

fusion (Lf) is the energy required to melt or solidify unit mass of a material, with the unit 

of J/kg in SI [4]. If the total phase transformation energy is represented by ∆H, the 

relationship will be: 

 

fmLH =∆
                                                                                                                    (1.10) 

 

where m is the mass of the substance. Evolution of the phase transformational source 

term in time may be expressed in terms of solid fraction (fs). Solid fraction is a 

percentage measure of how much of a metal is solid. It is denoted by fs, and its value is 

zero for liquid phase but unity for the solid phase. The value of solid fraction changes in 

time, from zero to one, while the melt is solidifying [5]. For a typical cooling session, 

solid fraction can be linearly defined by 
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where ts and te are the start and end times of solidification. During the solidification 

process, there must be a heat source term in terms of rate of heat due to the phase 

transformation. Total energy released per unit time by the phase transformation in a 

material with mass m and latent heat Lf is given by 

 

dt

df
mLQ s

fPT =&
                                                                                                           (1.12)

 

 

If any phase transformation occurs in a given material, the heat equations must be 

rewritten by regarding the energy source term.  

 

PTlossnet QQQ &&& +=
                                                                                                         (1.13)

 

 

where the netQ&  and lossQ&  terms mean the net rate of heat of a given volume and rate of 

heat lost by heat transfer. For a unit volume in a substance, the Fourier equation can be 

rewritten as 

 

t

f
LTk

t

T
c

s
f

2
p

∂

∂
+∇=

∂

∂
ρρ                                                                                        (1.14) 

 

When the conductivity of the material is high, the temperature distribution in it may be 

taken as homogeneous. In this case, the spatial dependence of the temperature may be 

neglected so that the surface temperature is assumed to spread uniformly throughout the 

material. Equation 1.6 becomes an expression for the evolution of this uniform 

temperature in time. 

 

( )∞−−== TThA
dt

dT
cVQ pρ&                                                                                        (1.15) 

 

This equation is called Newton’s law of cooling where T is the uniformly distributed 

instantaneous temperature, which is a function of time. Not only high thermal 

conductivity, but also small Biot number is required for the validity of the 

approximation. Biot number is defined by 

 

1.0L
k

h
Bi c <<=                                                                                                          (1.16) 

 

where Bi is Biot number, h is convective heat transfer coefficient, k is the conductivity 

of material, and Lc is the characteristic length, defined by the ratio of the volume to the 

surface area. If the condition in Equation 1.16 is satisfied, lumped heat capacity model, 

which assumes uniform temperature distribution, is applicable for the thermal setup [6]. 
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1. 2 Newtonian Thermal Analysis for Casting 

 

Thermal analysis is a group of techniques in which thermal properties of a material is 

investigated. It is usually divided into three categories: Computer aided cooling curve 

analysis (CA-CCA), differential scanning calorimetry (DSC), and differential thermal 

analysis (DTA). CA-CCA techniques depend on analyzing temperature or cooling rate 

curves with complicated mathematical tools [7]. It involves Newtonian and Fourier 

thermal analyses according to the thermal gradient. Differential thermal analysis 

measures the temperature difference between a sample and reference material in an 

identical heat treatment [8]. Differential scanning calorimetry uses the same principle, 

but it differs from DTA in that DSC includes a source of heat to balance the 

temperatures of both sample and reference [9]. Newtonian thermal analysis (NTA) is 

widely used in the literature, and it is the main interest of this study.  

 

In Newtonian thermal analysis of a casting process, one thermocouple (TC) measures 

the temperature of the metal at every second, and then the cooling curve is plotted. 

These cooling data show various information about metal characteristics, such as 

melting point, the solidification time, undercooling point, latent heat release, and heat 

transfer coefficient. In a typical Newtonian thermal analysis experiment, one 

thermocouple (TC) is connected to a thermal scanner (data logger), and then its 

temperature readings are recorded by a computer in order to measure the temperature of 

the metal at every second. (Figure 1.1) The output of thermocouple consists of two data 

column; one is time the other is temperature (Table 1.1). After the data is recorded, the 

corresponding temperature vs. time graph can be plotted as in Figure 1.2. 

 

 

 
 

Figure 1.1 : Experimental setup of the Newtonian thermal analysis. 
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Table 1.1: Sample data for the Newtonian thermal analysis. 

 

Newtonian Analysis 

Time (sec.) Temperature (C) 

1 377.3 

2 375.8 

3 375.8 

4 374.3 

5 374.3 

6 373.0 

7 373.0 

8 371.8 

9 371.8 

: 

: 

: 

: 

 

 

 

 
 

Figure 1.2. Temperature vs. time graph of a pure metal. 

 

 

For a pure metal, temperature remains constant at the melting temperature during 

solidification. Some characteristics, such as melting point (Tm), solidification start time 

(ts), end time (te), and undercooling point can be read from the cooling curve. In the 

cooling graph, solidification starts when the temperature falls below the melting point. 

After several steps, such as nucleation, free growth, and impingement; solidification 

ends when the concavity of the curve has changed. The end of solidification is detected 

by the help of the derivative of temperature with respect to time. The inflection point in 
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Figure1.2 (te) corresponds to the point where the second derivative is zero, or the first 

derivative is a local minimum [11, 37]. 

 

 
 

Figure 1.3: Cooling and cooling rate graphs of pure tin. Solidification starts at t=36 s 

and ends at t=368 s.  

 

The boundary times of solidification, start time (ts) and end time (te), are determined by 

analyzing Figure 1.3 with respect to the concavity of the curve. It is seen that the 

temperature curve reaches the arrest point at t=36 second while the dT/dt curve makes a 

local minimum at t=368 second. It means that start and end time of solidification are 36 

and 368 seconds respectively, so the phase transformation process develops between this 

interval. Time derivative of temperature vs. temperature graph may be useful to find a 

relation between temperature and heat flux. It is shown in Figure 1.4.  
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Figure 1.4: Cooling rate vs. temperature graph of Pure Tin.  

 

The main equation used in NTA is Equation 1.15. With the phase transformational 

source term, it gives: 

 

( )
dt

)t(df
LVT)t(ThA

dt

)t(dT
cV)t(Q s

fp ρρ +−−== ∞
&                                                (1.17) 

 

The temperature rate can be written for solidification and no-solidification intervals with 

the initial conditions of solid fraction. 
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The solution of temperature for no-phase transformation region (Equation 1.20) is 

shown in Equation 1.21. The solution for time derivative of temperature is Equation 

1.22.  
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1. 3 Calculations of NTA for the Latent Heat and Solid Fraction in the Literature 

 

In thermal analysis methods, CCA techniques use a reference state or a comparison line, 

which is called the baseline or zero curve. It overlaps the temperature derivative curve 

in the single-phase region, and then goes a different path through the solidification 

region. The zero curve or baseline can be linear or polynomial [12]. Newton law of 

cooling with the assumption of no phase transformation has a solution for temperature 

rate in terms of time as in Equation 1.23. The solution is called Newtonian zero curve or 

Newtonian baseline (NBL) in thermal analysis terminology.  

 

Linear Newtonian zero curve has the form of 

 

bt

zc

ae
dt

dT −=







                                                                                                          (1.23) 

 

where a and b are the parameters that may be calculated experimentally. Their 

expressions are: 

 

( )
p

0

p cV

hA
TTa,

cV

hA
b

ρρ
∞−−==                                                                          (1.24) 

 

Experimental cooling rate data, shown in Figure 1.3, is fitted with a function in Equation 

1.23 for the no phase transformation interval in order to find the parameters of the zero 

curve. Figure 1.5 shows the exclusion of curve fitting. A sample of experimental curve 

and zero curve are plotted in Figure 1.6. The results of curve fitting are in Table 1.2.  
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Figure 1.5: Data exclusion for no solidification region of dT/dt vs. t curve. Lighter 

points, shown with x, are excluded and not accounted by curve fitting tool anymore. 

 

 

 

 
 

Figure 1.6: Experimental cooling rate curve and Newtonian zero curve (NBL).   
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Table 1.2: Curve fitting results of zero-curve. 

 

General model Exp1: 

     dT/dt = a*exp(b*t) 

Coefficients (with 95% confidence bounds): 

       a =      -2.637  (-2.725, -2.549) 

       b =   -0.005101  (-0.005364, -0.004837) 

Goodness of fit: 

  SSE: 26.77 

  R-square: 0.8568 

  Adjusted R-square: 

0.8565 

  RMSE: 0.2333 

 

Following the definition of zero curve, Equations 1.25 and 1.26 are written and solved 

for the solid fraction with the initial conditions of Equation 1.19.  
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Integrating Equation 1.26 between te and ts gives: 
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Latent heat per specific heat is calculated from Equation 1.28. The integral means the 

area between the experimental cooling rate and zero curves. The cumulative area 

between these curves gives the solid fraction function. For this purpose, Equation 1.26 is 

integrated between t and ts [14].  
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This method of zero curve is called linear Newtonian zero curve or Newtonian baseline 

(NBL) since it is derived from a linear differential expression of the zero curve [5]. It 

has a wide range of application in the literature. 

 

Another technique to plot a zero curve is dynamic baseline (DBL). DBL is calculated 

differently from the Newtonian linear baseline. It uses first time derivative of 

temperature (dT/dt) vs. temperature (T) data. In order to find DBL, temperature rate 

(dT/dt) is fitted with a third-degree polynomial in terms of T within the interval of no 

phase transformation.  

 

43
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                                                        (1.31) 

 

After the parameters are calculated by computer, DBL is obtained as a function of time 

[5]. Liang et al. have used the DBL approach, developed by Kierkus and Solowski [5]. 

They found high correlation coefficient for the polynomial curve fit, which is 0.998 

[13]. Figures 1.7-1.9 and Table 1.3 explain the procedure to get a dynamic baseline.  

 

 

 
 

Figure 1.7: Exclusion of Tdot vs. T graph for polynomial curve fitting. Lighter region 

belongs to the solidification interval (Tsol<T<Tliq); therefore, they are excluded from 

curve fitting.  
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Figure 1.8: Temperature derivative vs. temperature curve and its polynomial curve fit.   

 

 

 

Table 1.3: Third degree polynomial curve fitting results of the Tdot vs T graph. 

 

Linear model Poly3: 

     dT/dt = p1*T^3 + p2*T^2 + p3*T + p4 

Coefficients (with 95% confidence bounds): 

       p1 = -1.527e-005 (-1.666e-005,-1.387e-005) 

       p2 =    0.009045  (0.008178, 0.009912) 

       p3 =      -1.785  (-1.964, -1.607) 

       p4 =       117.2  (104.9, 129.4) 

Goodness of fit: 

  SSE: 0.2437 

  R-square: 0.9529 

  Adjusted R-square: 0.9521 

  RMSE: 0.03742 
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Figure 1.9: Experimental temperature derivative vs. time curve and the dynamic 

baseline obtained from Equation 1.31.  

 

As seen in Figure 1.9, DBL overlaps with the experimental curve better than NBL 

(Figure 1.6) because NBL contains an integration constant coming from the initial 

conditions. The integration constant differs in solid and liquid phases, but NBL counts 

them the same. Since DBL uses the differential equation itself, it does not contain any 

parameters coming from the initial conditions. 

 

The third baseline conducted from the literature is the Fourier baseline. It necessitates at 

least two thermocouples in order to include temperature gradient. Among the thermal 

analysis methods, only Fourier analysis regards the thermal gradient within a sample. 

Since multi thermocouple usage is required, Fourier thermal analysis can be applied for 

the dendrite coherency point (DCP) estimation [41, 5]. The derivation of Fourier thermal 

analysis is based on the Fourier heat conduction law, mentioned in Section 1.1. From 

Equation 1.14, a non-homogeneous partial differential equation can be obtained by 

dividing both sides with ρ.cp.  
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where k/ρcp is called diffusivity, represented by α, and ∇2
 is Laplacian operator. In this 

case, the Fourier zero curve corresponds to the temperature Laplacian. 
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where α is calculated by 
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In order to calculate temperature Laplacian, a minimum of three temperature data at 

different locations seem to be voluntary. However, it can be reduced to two temperature 

recordings in a symmetric temperature field [9]. In a cylindrical symmetrical 

experiment, e.g., insulated from top and bottom, the temperature profile depends only on 

the radial position. Therefore, there is a one-dimensional Laplacian for cylindrical 

coordinates:  
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To calculate temperature Laplacian with two thermocouple, one may use thermal 

symmetry around r=0. Consider there are two thermocouples at r=r1 and r=r2 with 

temperature records T1 and T2 respectively. Temperature distribution can be assigned by 

a second order polynomial function of r in a small cup. Then, the temperature function 

satisfying the boundary temperatures (T1, T2) at r1 and r2 and zero derivative at r=0 is 

given by 
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Then, the Laplacian can be calculated as follows:  
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If T1 and T2 are measured by two thermocouples at r1 and r2, Fourier zero curve is 

calculated by Equation 1.33. The detailed explanation of Fourier baseline can be found 

by the study of Fras et al. [9]. 

 

Ekpoom and Heine [7] tried an analysis technique in 1981. They used logarithmic 

relative temperature as a cooling curve. The cooling parameter of Newton law of 

cooling was included as time-dependent during cooling process. At the solidification 

region, the cooling parameter was assumed linear in time. Consider time dependent 

cooling parameter θ(t) in Newton law of cooling [7, 38]. 
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In the non-solidification region, the evolution of θ is defined by: 
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The term in the logarithm is defined as relative temperature and denoted by Y.  
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As a result, the cooling parameter θ can be expressed by the minus slope of the 

logarithm of relative temperature Y. Figure 1.10 shows an example of -lnY vs. t graph. 

The tangents of the angles α and β corresponds to the instantaneous cooling parameter θ 

at ts and te.   
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Figure 1.10: Logarithm of relative temperature vs. time for pure tin.  

 

 

According to Ekpoom and Heine [7], the evolution of θ in the solidification interval is 

linear in time. The evolution can be expressed as: 
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Cooling parameter is the derivative of Figure 1.10 (defined in Equation 1.42), so it can 

be calculated for the solidification region. For the non-solidification region, the 

definition is Equation 1.44. The calculation of the logarithmic relative temperature 

baseline (LRTBL) is given by 
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A sample zero curve for logarithmic method is shown in Figure 1.11, and the 

comparison of three baselines is given in Figure 1.12. The area between the 

experimental cooling rate curve and a baseline in the solidification interval gives the 

latent hat per specific heat (Lf/cp) values of the sample. If the normalized cumulative 

area between t and ts are calculated, solid fraction evolution can be obtained.  
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Figure 1.11: Logarithmic relative temperature zero curve. 

 

 

 

 

 
 

Figure 1.12: Experimental cooling rate curve, linear Newtonian baseline (NBL), 

dynamic baseline (DBL) and logarithmic relative temperature baseline (LRTBL). 
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CHAPTER 2 

 

 

EVALUATION OF NEWTONIAN THERMAL ANALYSIS 

 

 

 
2.1 Application of Newtonian Thermal Analysis Methods 

 

Three different Newtonian analysis methods were mentioned in the previous chapter. 

These methods can be named in terms of their baseline techniques: 

 

1. Linear Newtonian baseline (NBL) 

2. Dynamic baseline (DBL) 

3. Logarithmic relative temperature baseline (LRTBL) 

 

Each baseline techniques were evaluated in both experimental and theoretical 

perspective. In addition, some critical studies were reviewed from the literature.  

 

 

 

 

2.1.1 Experimental Results and Its Evaluations 

 

These baselines are applicable to the data from a Newtonian experiment with one 

thermocouple. They were applied to 12 experiments with 4 types of pure metals with 

several conditions. The experiments are explained in Table 2.1. In each experiment, the 

ratio of latent heat to specific heat values (Lf/cp) was calculated to compare with the 

literal values of the pure metals. The types of metals used in this study are listed in 

Table 2.2 with their thermal properties, found in Perry’s Chemical Engineers’ 

Handbook [16]. 
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Table 2.1: List of the experiments and their explanations. 

 

Experiment Metal Type of cup Insulation 

Al 1 

Aluminum 

Resin-coated sand cup 

Without insulation 

Al 2 

Insulated from base 

Al 3 

Pb 1 Lead 

Sn 1 

Tin 

Sn 2 

Sn 3 Insulated from mold 

Sn 4 
Clay bonded graphite 

crucible Insulated from outer surface 

Sn 5 

Resin-coated sand cup 
Zn 1 

Zinc Insulated from base Zn 2 

Zn 3 

 

 

Table 2.2: Thermal properties of selected pure metals [16]. 

 

Metal 
cp [cal/deg mol] 

(Solid phase) 

cp [cal/deg mol] 

(Liquid phase) 

Lf 

[cal/mol] 

Melting 

Temp. 

[
0
C] 

Lf/cp [deg] 

at melting 

temp. 

Aluminum 4.8+0.00322 T 7.00 2550 660.0 327-364  

Lead  5.8+0.00202 T 6.8 1224 327.4 174-180  

Tin 5.05+0.0048 T 6.6 1720 231.8 230 - 261  

Zinc 5.25+0.0027 T 7.6+0.00055 T 1595 419.5 200 - 224 

 

 

When these three types of baseline, explained in Section 1.3, were applied the 

experiments in Table 2.1, the latent heat (L/c) results were obtained, and tabulated in 

Table 2.3. The percentage errors of the results with respect to literal average value are 

shown in Table 2.4.  
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Table 2.3: The results of latent heat per specific heat (L/c) values in 
0
C from three 

baselines. Literal average of L/c values are averaged for 50 
0
C below and above the 

melting point according to solid and liquid phase specific heat values. 

 

Exp  NBL DBL LRTBL 
Literal 

average 

Al 1 568.32 482.48 228.07 

349 Al 2 297.85 435.51 309.32 

Al 3 327.85 391.11 98.47 

Pb 1 103.53 113.84 16.30 179 

Sn 1 278.86 266.44 181.77 

249 

Sn 2 232.73 198.74 167.83 

Sn 3 216.18 214.00 219.09 

Sn 4 394.68 361.33 109.77 

Sn 5 251.45 191.14 145.84 

Zn 1 260.44 247.27 115.59 

214 Zn 2 359.23 291.36 117.35 

Zn 3 289.22 210.66 134.86 

 

 

 

Table 2.4: Percentage errors of the results. Errors smaller than 0.20 are written in italics.  

 

 NBL DBL LRTBL 

Al 1 0.63 0.38 -0.35 

Al 2 -0.15
 

0.25 -0.11 

Al 3 -0.06 0.12 -0.72 

Pb 1 -0.42 -0.36 -0.91 

Sn 1 0.12 0.07 -0.27 

Sn 2 -0.07 -0.20 -0.33 

Sn 3 -0.13 -0.14 -0.12 

Sn 4 0.59 0.45 -0.56 

Sn 5 0.01 -0.23 -0.41 

Zn 1 0.22 0.16 -0.46 

Zn 2 0.68 0.36 -0.45 

Zn 3 0.35 -0.02 -0.37 

Absolute 

average 
0.29 0.23 0.43 

 

 

According to the results of Table 2.4, in general, none of the methods seems reliable for 

every type of experiment or metal. NBL can be said to be applicable for Al2, Al3, Sn1, 

Sn2, Sn3 and Sn5. It can be said that NBL is more consistent with Tin than Zinc. DBL 
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seems to be more reliable than NBL for averaged absolute value of errors. Among the 

baseline techniques, LRTBL is the least appropriate method for Newtonian thermal 

analysis research. The reason may be the sensitive dependence of the method to take the 

derivative of the data, which requires some modifications on the cooling curve. One of 

the striking results from Table 2.4 is the consistency of Sn 3 for all baselines. This 

experiment was made in a thermally insulated mold, in which there is an insulating 

paper in the metal-mold interface. The thermal capacity of the mold is disregarded, so 

all baselines give proper results for this experiment.  

 

 

 

2.1.2 Theoretical Contradictions of Zero Curve Approach  

 

Arbitrary nature of zero curve calculation in NTA makes the qualitative predictions of 

the latent heat hard. However, it is more reliable on the qualitative identification of 

solidification kinetics although further studies are required [17]. The nature of zero 

curve depends on the estimation of cooling rate curve in terms of time or temperature 

for the non-solidification interval. NBL estimates temperature derivative as a function of 

time, while DBL makes it in terms of temperature. Therefore, NBL considers the 

solution of Newton’s law of cooling without phase transformation. Newtonian 

differential equation (Equation 1.18) can be stated by using Heaviside step function for 

all t. 
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where θ is Heaviside step function. The solution for the whole interval can be made by 

linear ordinary differential equation solution method with integration factor. It can be 

rewritten as: 
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where u is the relative temperature (T-T∞), b is the cooling parameter, and g is the 

source term defined below.  
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Multiplying both sides of Equation 2.2 with integrating factor (exp(bt)), it gives [18]: 
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It is a derivative of multiplication. 
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Integrating both sides between t=0 and t gives: 
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The solution for u(t) is: 
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The solution for temperature T(t) is: 
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If the terms in the square bracket is notated A(t), it yields 
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The general solution format of Newton law of cooling is 
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With the existence of the Heaviside function in A(t), it can be stated as a piecewise 

function in each interval. Three intervals in Equation 2.12 are liquid phase, solidification 

phase, and solid phase respectively.  
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Temperature at the cooling region, that is, no-solidification region, is denoted by Tc(t), 

and it is stated in terms of Heaviside functions because of different integration constant 

at solid and liquid phase. 

 

( ) bt
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∞ −+−+= θθ                                                            (2.13) 

 

where aL and aS are the integration constants, coming from different initial conditions 

caused by interference of phase transformations between phases. The time derivative of 

the temperature at the cooling region, which is also called zero curve, is given by: 

 

( ) bt
eSsLc e)tt(a)tt(ab)t(T

−−+−−= θθ&                                                              (2.14) 

 

Therefore, the zero curve function is actually not a simple exponential. The effect of 

different coefficients for two phases should be included.  

 

The meaning of zero curve is the curve if there is no phase transformation. The virtual 

no phase transformation case develops first by cooling in the liquid state, then continues 

cooling during the solidification interval, and then starts to cool with new initial 

condition for the solid case (Figures 2.1 and 2.2). 
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Figure 2.1: Virtual cooling curve data if there were no phase transformation.  

 

 
 

Figure: 2.2: Virtual condition for cooling rate if there were no phase transformation. 
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A similar approach with the cooling curve can be applied to the cooling rate curve as in 

Figure 2.2. The solid part of the experimental data should be transformed so that it 

complements the liquid part, and then curve fit should be done. For this reason, 

Newtonian baseline method is not appropriate to explain non-transformational case.  

 

Dynamic baseline theory seems to be more reliable than NTA because it considers 

nonlinearity to include radiative or other temperature dependent contributions. It can be 

interpreted as a third degree Taylor series expansion of cooling rate in terms of 

temperature around the melting point. However, Newton’s law of cooling is a first 

degree approximation. The Taylor series expansion of cooling rate is expressed below. 

 

The relation between cooling rate and temperature can be defined by a general function 

including above restrictions. 

 

)T(FT =&                                                                                                                      (2.15) 

 

The function F may be very complex function of T including radiation terms, 

temperature dependence of specific heat (cp(T))  etc. If the temperature interval is 

narrowed, the Taylor series expansion of F(T) around T0  may be used for the first and 

second degree terms.  
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The first, second and third degree expansions can be simplified as 
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The first degree expansion is used in NBL, but the second and third ones are used in 

DBL techniques. A common property for both of the baselines is the choice of freedom 

on the ambient temperature. When the baselines are fitted with a function in some 

interval, they give an ambient temperature output according to the curve fitting interval. 

Ambient temperature value (T∞) can be found by the behavior of the function at infinity. 

Cooling rate and temperature go to zero and ambient temperature when time goes to 

infinity (Equation 2.20). In order to calculate this unreal ambient temperature, root of 

the polynomials must be solved for zero temperature rate (Equations 2.21-2.23). 
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Figure 2.3: Exclusion of dT/dt vs. T data. The full scale of temperature is included 

except for the solidification temperature range.  

 

 

 

Figures 2.3 and 2.4 show the exclusion rules for the curve fitting session of cooling rate 

in terms of temperature. Two different exclusion intervals were defined for both linear 

and polynomial fits. One is include the complete cooling range, but the other includes a 

narrow interval around solidification. The results of fits are shown in Figure 2.5. In the 

figure, unreal ambient temperatures are the points that the fit curves intersect the T axis. 

Linear fit in narrow scale has the highest ambient temperature, while the polynomial in 

narrow scale has no ambient temperature. When the whole scale data is used, the unreal 

ambient temperature gets closer to the real ambient temperature measured.  
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Figure 2.4: Exclusion of dT/dt vs. T data. A narrow scale of temperature is included 

except for the solidification temperature range.  

 

 

 

 
 

Figure 2.5: Curve fitting results of dT/dt vs. T for the full and narrow scales of both 

linear and third order polynomial.  

 

DBL has its own unreal ambient temperature coming from the coefficients of Taylor 

expansion like NBL. The coefficients found by curve fitting do not correspond to the 

actual coefficients containing heat transfer coefficients or heat capacity. One may say 
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that: heat transfer coefficient and heat capacity cannot be related to the parameters of 

curve fitting; only the latent heat may give true outcome because of the narrow scale 

thermal characteristics of the curve fitting around the melting point.  

 

Different from DBL and NBL, LRTBL accounts for the real ambient temperature 

because it has to measure the ambient temperature to use the logarithmic relative 

temperature. Therefore, its interval of interest is so wide that it can not be stated by the 

first degree expansion of the temperature. The unreliable results of LRTBL in Section 

2.1 may be caused from this contradiction.  

 

 

 

2.2 Evaluations and Comparisons with the Literature  

 

Although the basic idea is common for different thermal analysis baselines, they differ 

in methods to obtain. Therefore, some comparisons have been made to evaluate the 

success of these methods. The basic criteria are determination of latent heat and solid 

fraction evolution. Among the methods, NTA and FTA are the most compared 

baselines.  

 

In general NTA produces higher solidification rates than FTA at the onset of 

solidification. A. Çetin reports that the zero curve of FTA exhibits similar trends with 

the experimental cooling rate curves [15]. According to Fras et al., NTA and FTA 

methods give great different predictions for volume fractions of solidified phases [9]. 

 

Number of thermocouples in a thermal analysis may get the results reliable to some 

extent. One of the advantages of using two thermocouples is to make thermal distortion 

less significant. Therefore, FTA with two thermocouples is more consistent than the 

others [41]. Although FTA gives more reliable outputs than NTA, the exact positions of 

two thermocouples are difficult to measure because of thermal contradiction of metals 

[53]. 

 

In a study, DBL is compared with the most popular methods, NTA and FTA. In an 

experiment conducted by Emadi et al., three different methods were studied on the 

commercial A356 (Al-7%Si) alloys. The results of latent heat from the Newtonian 

polynomial, Newtonian linear, and Fourier baselines are 172, 170, and 394 J/g 

respectively. Its DSC method value of the alloy is 432.20 J/g. They also reported that 

FTA was more reliable than NTA, and the type of sampling cup had less effect in a FTA 

experiment [19]. In a different article, Emadi et al. measure latent heat of A356 (Al-

7%Si) 403, 435, 432 J/g from the Newtonian, Fourier, and DSC methods respectively 

[4]. 

 

Conclusions from the literature, in general, state that NTA is the least reliable one 

although it is the simplest analysis method. Several papers investigate the possible 
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restrictions. In a study, conducted by  Çetin and Kalkanlı, the methodology that uses 

exponential zero curve is reported as unreliable to predict latent heat of primary 

solidification. One of the possible sources of errors is the determination of cooling 

parameters, which is affected by many variables, such as pouring temperatures, metal 

mold interaction reactions, and the dependence of specific heat to temperature and 

composition [20].  

 

The procedure of the analysis is based on finding the thermal parameters from curve 

fitting. However, curve fitting results may vary with the choice of exclusion or the 

temperature interval of the experiment. According to Emadi et al., “NBL is too 

dependent upon the fitting method, and therefore, is not a reliable estimate of latent 

heat.” [4]. Moreover, the parameters may differ in the phase of a material. That cooling 

rate is much lower after solidification than before was reported by Loizaga et al. The 

authors also stated that this cooling rate difference could not be explained by the 

different specific heat values of solid and liquid phases [52]. Another limitation of 

Newtonian thermal analysis is the effect of mold’s heat capacity. The capacitive effect 

of the mold may be responsible for the higher cooling rate at liquid phase. Thermal mass 

of the crucible should be very small comparing with the sample. In this case, the 

analysis shows the properties of the sample, not that of crucible-sample system [19].  

 

Heat transfer coefficients assumed constant during the cooling process. Actually, they 

are affected by temperature or interfacial air gaps between metal and mold. The phase of 

the sample may be effective for the value of heat transfer coefficients. Lau et al. explain 

the development of heat transfer coefficient in three stage.Heat transfer coefficient 

decreases rapidly at the beginning of solidification and then reaches a steady value for a 

short time. After the steady stage, it increases in the solidification duration. However, 

for pure aluminum, there is no increase after the steady stage [21]. 

 

The junction between the surfaces of metal and mold creates a temperature drop. With 

the formation of the air gap, the interfacial heat transfer coefficient decreases and 

solidification rate begins to decelerate. The transient heat transfer coefficients are power 

functions of time [22]. According to Santos et al. heat transfer through metal and mold 

surfaces directly affects the solidification process. Because of the good surface 

conformity between melt and cup, the HTC has high a value at the initial stage of 

solidification. At the final stage, air gap forms at the interface, and then the HTC 

decreases rapidly. After a while, relatively constant HTC occurs. The general forms of 

mold-environment HTC (ha) and metal-mold HTC (hi) are: 

 

n
ii

15.0
ma tChtCh

−==                                                                                          (2.24) 

 

Cm, Ci and n are constants, which depend on alloy composition, chill material (mold) 

and super heat [23]. 
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Radiation is one of the determinants of solidification and cooling process. Its nonlinear 

nature makes radiative thermal analysis complex. Some studies show that the effect of 

radiation can not be ignored. Dombrovsky and Dinh reported that both solidification 

character and duration depend on radiation. Actually, accurate determination of 

solidification dynamics require radiative-conductive model [24].  

 

There is no accurate information for the interval of radiation ignorance. For a critical 

threshold, cooling by radiation is significant if the pure conductive heat transfer 

coefficient is smaller than 6 Wm-2K-1 [25]. The study of Vollmer gives some limits to 

the ignorance level of radiation. According to Vollmer, linearization of heat transfer 

equations with radiative contribution is only reliable on small temperature differences. 

The constant heat transfer coefficient assumption does sensitively depends on the ratio 

between convective and radiative heat transfer rates. When convection dominates 

radiation in an experiment, the permitted temperature difference may be 500 K or 

higher. But, if radiation dominates, Newton law of cooling can be valid only small 

temperature differences, e.g. 30 K [26]. 

 

2.3 Investigating the Probable Restrictions 

 

In this section, the basic obstacles in front of NTA were examined. Previous sections 

summarized the probable problems by theoretical evaluation, experimental testing, and 

literature review. These possible restrictions are: 

 

1. Variations in data analysis, such as curve fitting, taking derivative, and selection 

of data interval 

2. Effect of metal-mold interaction, such as a high heat capacity of mold, 

formation of air gap, and the variation in interfacial heat transfer coefficient 

3. Variations of the thermal properties, such as specific heat and heat transfer 

coefficients 

4. Contribution of radiation to the cooling process 

 

In order to examine these restrictions and determine their priority, two simplified 

experiments were made. Especially, metal-mold interactions and the effect of mold’s 

thermal capacity were evaluated by the experiments in which there is no thermal contact 

with mold. The simplest experiment is the hot metal that is left to cool without any 

conductive contact. The temperature range was tried to keep so low that radiative 

contributions can be neglected. The second experiment included solidification in a 

thermally insulated mold to avoid thermal contributions from mold.  

 

2.3.1 Simple Cooling Experiment without Mold 

 

The assumptions for the most ideal and the simplest case are: 

 

1. There is no temperature gradient through solidified metal. 
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2. There is no phase transformational source or sink term that may emerge. 

3. Radiative cooling is assumed to be negligible.  

4. Specific heat is assumed to be constant. 

 

A solid pure tin specimen was heated to 180 
0
C, and left to cool on an insulator by the 

convection with air in order to provide the ideal conditions. Newton’s law of cooling 

assumes a linear relationship for a cooling process, so it can be stated as in Equation 

2.25. Its solutions in terms of the parameters of the differential equation are in Equation 

2.26 and 2.27, where A is the integration constant.  

 

21 pTpT +=&                                                                                                               (2.25) 
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Equations 2.25-2.27 are applied to curve fitting in order to find and compare the 

parameters. The curve fitting results are shown in Figures 2.6-2.8 and Table 2.5.  

 

 

 
 

Figure 2.6: Experimental cooling rate vs. temperature curve and linearly fitted curve for 

pure Sn without mold. 
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Figure 2.7: Experimental cooling curve and exponentially fitted curve for pure Sn 

without mold. 

 

 

 
 

Figure 2.8: Experimental cooling rate vs. time curve and exponentially fitted curve for 

pure Sn without mold. 
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Table 2.5: Curve fitting results of Equations 2.25-2.27. 

 

 p1 (10
-4

) p2 (10
-2

) A R-Square 

Linear fit -8.797 2.523 - 0.9938 

Exponential 

fit of T 
-8.296 2.315 126 0.9994 

Exponential 

fit of Tdot 
-9.124 - 126 0.9961 

 

 

The cooling parameter was calculated 0.0008797, 0.0008296, and 0.0009124 from the 

equations 2.25-2.27 respectively. However, the R-square value is the highest for the 

curve fit of temperature in terms of time. This may be caused by the deformation of data 

while its time derivative (Tdot) is being taken because data smoothing deforms the data 

for the sake of smoothing. Therefore, curve fitting outcomes are more reliable without 

derivative. It is better to solve the differential equation first and then fit the solution on 

the original temperature data in order to find the required parameters.  

 

This analysis is the simplest one to find cooling parameter because of its first order and 

linear differential equation format, but there may be some alternatives to include other 

effects such as radiation and variable specific heat. The approximation of the equation 

by Taylor series may get one step further. Dynamic baseline technique advices a second 

or third degree polynomial fit for Tdot vs. T fit. Equation 2.28 is a quadratic expression 

of the cooling process [5].  
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2

1 pTpTpT ++=&                                                                                                     (2.28) 

 

Equation 2.28 is modified so that it ensures the behavior of temperature at infinity 

(Equation 2.29). When time goes to infinity, rate of temperature must go to zero. 

Therefore, Equation 2.29 may be suggested as an appropriate 2
nd

 degree differential 

form of cooling. 

 

)aTT)(TT(bT +−−−= ∞∞
&                                                                                              (2.29) 

 

where b and a are constants defined below. 

 

∞∞−=−=−= T)Ta(bp,bap,bp 321                                                                         (2.30) 

 

If relative temperature u is defined for T - T∞ , a nonlinear equation and its solution will 

be obtained as shown in Equations 2.31 - 2.33. 
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( )aubu
dt

du
+−=                                                                                                         (2.31) 

1ce

a
u

abt −
=                                                                                                                 (2.32) 

 

∞+
−

= T
1ce

a
T

abt
                                                                                                        (2.33) 

 

In terms of p1, p2 and p3, Equation 2.33 can be rewritten as: 

 

1

231
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2
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p2

ppp4p
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p/p
T
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−−
+

−
=

−
                                                                           (2.34) 

 

There are two ways to find the thermal parameters of the quadratic relation in Equation 

2.28. They may be calculated by the direct curve fitting of Equation 2.28, or 2.33. 

Figures 2.9 and 2.10 show the curve fitting results. Parameters p1, p2, and p3 were 

obtained by two ways, and the results were tabulated in Table 2.6.  

 

 

Table 2.6: Curve fitting results of Equations 2.28 and 2.33. 

 

 p1 (10
-6

) p2 (10
-4

) p3 (10
-2

) c R-square 

Equation 

2.28 
-2.066 -5.534 1.538 - 0.9998 

Equation 

2.34 
-2.341 -6.335 1.440 3.048 1.0000 
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Figure 2.9: Experimental cooling rate vs. temperature curve and quadratically fitted 

curve for pure Sn without mold. 

 

 

 

 

 
 

Figure 2.10: Experimental cooling curve and nonlinear exponential fitted curve for pure 

Sn without mold. 

 

 



37 

 

The R-square value of the fit by Equation 2.33 is very high, and there is no need to time 

derivative data to find the parameters of the cooling. It can be concluded that NLC is not 

perfect even if there is no mold contact. The second degree Taylor series expansion may 

be expanded to third degree. In this case, third degree of dynamic baseline (DBL) told in 

the previous chapter is attained.  

 

 

2.3.2 Solidification in a Thermally Insulated Mold 

 

In the previous section, the quadratic function in terms of temperature gave high 

correlation with the experimental data. The success of the quadratic function was also 

examined for the explanation of solidification by a simplified solidification experiment.  

To exclude the effects of mold, a thermal insulator was placed in the sand mold before 

the casting process, and then molten tin was poured into the mold at 350 
0
C. The 

photograph of the experiment is in Figure 2.11. 

 

 

 
 

Figure 2.11: Thermally insulated melt from the mold. 

 

 

Since there is no heat transfer between the cast and mold, the analysis methods 

explained section 2.3.1 is executed to the pure tin. The temperature and cooling rate 

with respect to time are seen in Figure 2.12. 
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Figure 2.12: Cooling curve and its time derivative. 

 

 

With the abundance of the zero curve alternatives, one may ask a question: “how is the 

best zero curve determined?” This question brings new ones to investigate the 

alternatives. These are:  

 

1. Which type of cooling equation is better? Linear or nonlinear? 

2. Which function will be chosen for curve fitting? The differential equation itself 

or its solutions? 

3. Which curve fitting interval is better? Wide or narrow? 

 

Several alternatives were tried on an experiment made by thermally insulated metal 

from the mold to answer those questions. These alternatives are the choice of cooling 

equation type, the function to apply curve fitting, and the interval of curve fitting.  

 

Two types of differential equations were tried for this experiment: one is linear; the 

other is quadratic. For the derivation of zero curve, three types of function were applied 

to curve fitting: temperature rate as a function of temperature, temperature rate as a 

function of time, and temperature as a function of time. The cooling region temperatures 

(Tc), used in curve fitting are explained below.  

 

The first type of fit function is NLC, which is linear in the non-solidification interval. 

 

2c1c pTpT +=&                                                                                                                (2.35) 
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The solution of Equation 2.35 in cooling regions can be expressed with two different 

integration constants for solid and liquid phases (as and al). The solution is seen below, 

where θ is Heaviside step function.  

 

( ) 12

tp

slesc p/pe)tt(a)tt(aT 1 −−+−= θθ                                                                      (2.36) 

 

Equation 2.36 is directly applied to the T vs. t data to find the required parameters for 

zero curve. Zero curve is calculated by substituting of p1 and p2 in Equation 2.35. 

Alternatively, p1 and p2 can be directly calculated by applying Equation 2.35 to the 

dT/dt vs. T data for curve fitting.  

 

 

NBL is obtained by applying Equation 2.37 to dT/dt vs t data for curve fitting.  

 
bt

c AeT
−=&                                                                                                                     (2.37) 

 

Another application of curve fitting is Equation 2.38 and Equation 2.39 

 

3c2

2

c1c pTpTpT ++=&                                                                                                  (2.38) 

 

The solution of the quadratic differential equation with different integration constants 

for solid and liquid phases is shown in Equation 2.39.  
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= ∞∞ θθ                                          (2.39) 

 

The quadratic baselines can be calculated by curve fitting of both Equations 2.38 and 

2.39.  

 

In summary, there may be lots of zero curve calculation choices for different curve 

fitting intervals. The intervals of curve fittings are divided by two categories as wide and 

narrow. These intervals are defined below in terms of both time and temperature in units 

of second and centigrade. 

 

( ) ( ) ( ) ( )209,91345,232Tor2024,1070237,0t:Iwide ∪∈∪∈                                     (2.40) 

 

( ) ( ) ( ) ( )209,180280,232Tor1333,1070237,114t:Inarrow ∪∈∪∈                          (2.41) 
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where ts and te are 237 and 1070 seconds respectively. The temperatures at the start and 

end times of solidification are taken 232 and 209 
0
C respectively. The pictures of the 

exclusion factors for curve fitting sessions are shown in Figures 2.13-2.15. 

 

           
 

Figure 2.13: Exclusion factors of Tdot vs. T data for wide and narrow scales 

respectively. 

 

           
 

Figure 2.14: Exclusion factors of T vs. t data for wide and narrow scales respectively. 

 

           
 

Figure 2.15: Exclusion factors of Tdot vs. t data for wide and narrow scales 

respectively. 

 

The curve fitting of several methods used in this section are seen in Figures 2.16-2.18. 

Types of curve fittings and their results are shown in Table 2.10. 
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Figure 2.16: Functions of curve fitting tried on cooling curve. Equation 2.36 and 2.39 

were executed on the T vs. t graph, named linear and nonlinear respectively. Each 

choice is repeated for the wide and narrow intervals.  

 

 

 
 

Figure 2.17: Functions of curve fitting tried on cooling curve. Equation 2.37 was 

executed on the Tdot vs. t graph, called exponential fit. Each choice is repeated for the 

wide and narrow intervals.  
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Figure 2.18: Functions of curve fitting tried on cooling curve. Equation 2.35 and 2.38 

were executed on the Tdot vs. T graph, called linear and nonlinear respectively. Each 

choice is repeated for the wide and narrow intervals.  

 

 

Table 2.7: Types of curve fitting with their results. R-square values of each fit, 

calculated latent heat per specific heat values (L/c), and its percentage deviations from 

literal value (error) are seen.  

 

Type of 

Equation 

Data set used 

in 

curve fitting 

Fit 

function 

Type of 

exclusion 

R-

Square 
L/c [

0
C] 

Percentage 

error [%] 

Linear 

Tdot vs. T 
Equation 

2.35 

Wide 0.9518 261.59 5.06 

Narrow 0.9852 241.40 -3.05 

Tdot vs. t 
Equation 

2.37 

Wide 0.9410 222.95 -10.46 

Narrow 0.9552 211.55 -15.04 

T vs. t 
Equation 

2.36 

Wide 0.9979 236.49 -5.02 

Narrow 0.9999 240.32 -3.49 

Quadratic 

Tdot vs. T 
Equation 

2.38 

Wide 0.9989 231.83 -6.90 

Narrow 0.9964 230.42 -7.46 

T vs. t 
Equation 

2.39 

Wide 0.9996 238.12 -4.37 

Narrow 1.0000 234.80 -5.70 
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2.4 Summary of Evaluations  

 

The results of curve fitting from Table 2.7 show us the general profile for thermally 

insulated solidification experiment. The summary of the table may be written as follows: 

 

1. Linear equations are more reliable than nonlinear equations, quadratic and 

cubic, for the closeness of the latent heat calculation although nonlinear 

functions give higher R-Squares in curve fitting.  

2. Traditional Newtonian zero curve (NBL) has significantly different results from 

the other baselines and literal values (Equation 2.37).  

3. There is no significant difference between the usage of derivative data and 

temperature data, unless the initial conditions is assumed the same. 

4. Narrow intervals for the linear approach produce consistent results. 

 

Considering the results of the simplified experiments, some suggestions may be made to 

the possible restrictions in Section 2.3. The most important problem on the variations of 

data analysis is the ignorance of the different initial conditions in curve fitting session. 

Two different integration constants for both phases should be taken into account when 

curve fitting is applied. Using temperature data, rather than temperature derivative, will 

give more reliable outputs. Moreover, the interval of temperature should be so narrow 

that Taylor approximation can be satisfied. By the experience of several trials, including 

50 
0
C below and above the melting temperature may be an ideal interval. The ambient 

temperature should not be limited to the measured room temperature, but it should be set 

free to be calculated by the curve fitting.  

 

Scanning the percentage errors in Table 2.4, it is seen that mold-insulated experiment, 

Sn3, is reliable for all methods. Thermal contact of the metal-mold system violates NLC 

proportional with the thermal mass of the mold [19]. It shows that one of the significant 

restrictions of NTA is the ignorance of thermal capacity of the mold.  

 

Although variations of thermal properties in temperature and radiative contributions 

require high degree polynomial approximation of the cooling rate, the experimental 

outcomes show that the linear approximation is enough for a narrow interval. Linear 

Tdot vs. T and linear T vs. t in Equations 2.35 and 2.36 gave less error than the 

nonlinear equations.  

 

In conclusion, a thermal analysis researcher should 

 

• take the thermal capacity of the mold into account. 

• assume linear approximation, and set free the ambient temperature. 

• take a narrow interval which is in the limit of 50 
0
C below and above melting 

temperature. 

• consider different initial conditions for both phases. 
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CHAPTER 3 

 

 

SUGGESTION OF A NEW MODEL: TWO CAPACITIVE 

SYSTEM BASELINE (TCSBL) 

 

 

 
The effects of mold’s temperature are significant in the cooling curve of the cast; thus, 

its latent heat and solid fraction evolution are determined by considering these effects. 

The temperature of the metal at the initial stages of cooling falls more rapidly than that 

at the final stages because the mold’s temperature is low and absorbs the heat of the 

metal at a high rate. At the final stages, the metal’s and mold’s temperatures become 

close to each other, and cooling rate decreases. Figure 3.1 shows the photo and figure of 

the experimental setup that measures the temperatures of pure tin and sand mold at the 

same time. Figure 3.2 shows the experimental cooling curves of both thermocouples.  

 

 

 

            
 

Figure 3.1: Two thermocouples placed in the metal and mold. 

 

 

 



46 

 

 
 

Figure 3.2: Temperature vs. time graphs of the metal and mold. 

 

It is seen that metal’s temperature falls more rapidly than it should at the beginning of 

the cooling. This phenomenon may be observed better by analyzing Tdot – T graph of 

the metal’s temperature by considering the Newton’s law of cooling. Figure 3.3 shows 

that cooling parameter is very different in the initial and final stages of cooling session. 

 

( )∞−−= TT
cV

hA

dt

dT

pρ
                                                                                             (3.1) 

 

 
 

Figure 3.3: Cooling rate of the metal vs. its temperature. 
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Two mathematical models were proposed in this study to evaluate this effect. One is to 

consider mold as a heat capacitor in a similar way for electrical discharging capacitor 

system; the other is to make a linearization of heat flux function in terms of the 

temperatures of the metal and mold.  

 

 

3.1 Thermal Circuit Analogy: Mold as a Heat Capacitor 

 

3.1.1 Derivation of the equation 

 

Convective heat transfer can be analyzed from 

 

)TT(Ahqconv ∞−=                                                                                                       (3.2) 

 

where qconv is the heat flux through the interface of two media, h is the heat transfer 

coefficient between two media, A is the surface area of the interface, T and T∞ are the 

temperatures of the media. For a simple convectional process, T and T∞ are the 

temperatures of the metal and surroundings. 

 

It can be rewritten to draw an electrical analogy [6].  

 

Ah/1

)TT(
qcov

∞−
=                                                                                                             (3.3) 

 

The terms: qconv, T, and 1/hA remind of electrical current, resistance, and potential in the 

Ohm’s law respectively. Thus, thermal resistance for convectional change of 

temperature is 

 

hA

1
Rth =                                                                                                                        (3.4) 

 

where Rth is thermal resistance [3]. 

 

Another thermal concept that can be transformed from the electrical circuit is heat 

capacity (Equation 3.5). It is obvious that heat capacity corresponds to electrical 

capacity, so the cooling equation (Equation 3.6) is rewritten as in Equation 3.7. 

 

pth cVC ρ=                                                                                                                      (3.5) 

 

)TT(Ah
dt

dT
cV p ∞−−=ρ                                                                                            (3.6) 
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)TT(
RC

1

dt

dT
∞−−=                                                                                                     (3.7) 

 

However, there are two capacitors in a sand mold casting process: One is the hot metal; 

the other is the chill mold. They are represented by full and empty capacitors 

respectively. Figure 3.4 shows the dimensions, thermal resistors, and capacitors on the 

picture of the mold-metal system. 

 

 
 

Figure 3.4: Dimensions of the quick cup and resistance-capacitance representation for 

heat transfer. 

 

 

The abrupt changes in the temperature mean thermal resistance for the heat transfer. 

These changes are seen on the top surface, in the air gap between metal and mold, and 

within the mold itself because of the low thermal conductivity of the mold. The 

electrical representation of this system is shown in Figure 3.5.  

 

 

 
 

Figure 3.5: RC circuit representation of metal-mold system in terms of electrical 

devices. 
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It can be imagined that the metal is a full capacitor, while the mold is an empty 

capacitor. In addition, the heat flux flows through a surface is imagined as electrical 

current. The definitions of terms of Figure 3.5 are explained in Table 3.1 with its 

symbols and units [27].  

 

Table 3.1: Comparison of electrical and thermal quantities [27]. 

 

Electrical quantities  Thermal quantities  

Electrical charge (q) 

[coulomb] 
Thermal energy (Q) [joule] 

Voltage (V) [volt] Relative temperature (u) [kelvin] 

Current (I) [ampere] 
Thermal power through  a surface (P=-

dQ/dt) [watt] 

Electrical capacitance (C) 

[farad] 

Thermal capacitance (C=Vρcp) 

[joule/kelvin] 

Electrical resistance (R) 

[ohm] 
Thermal resistance (kelvin/watt) 

 

In the RC circuit diagram (Figure 3.5), Kirchhoff’s rules may be applied as in Equations 

3.8-3.12. Matrix forms of this linear set of equations with 5 variables are shown in 

Equations 3.13 and 3.14 with its solution.  
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topgapcast III +=                                                                                                          (3.11) 

 

outmoldgap III +=                                                                                                    (3.12) 
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The solution for currents in terms of q, C, and R values of the system is given in 

Equation 3.14. The matrix operations were done by MATLAB Symbolic Math Tool. 

The results are shown in Equations 3.15-3.19. 
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Equations 3.15 and 3.16 are important because it involves information about the 

capacities and temperatures of the metal-mold system. A two dimensional system of the 
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differential equation can be obtained by using the definition of capacitance (Equation 

3.20) and conservation of charge (Equations 3.21 and 3.22). 

 

CVq =                                                                                                                        (3.20) 

 

castcastcastcast VCqI && −=−=                                                                                               (3.21) 

 

moldmoldmoldmold VCqI && ==                                                                                               (3.22) 

 

If Equations 3.21 and 3.22 are written in Equations 3.15 and 3.16, differential equation 

set in terms of voltages are obtained as in Equations 3.23 and 3.24. The coefficients of 

voltages are also named in Equations 3.25-3.28.  
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Thermal correspondence of voltage is the temperature difference with respect to ambient 

temperature. Equations 3.29 and 3.30 transform electrical circuit statement of equations 
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to thermal statement. Equation 3.31, where p1, p2, p3, and p4 are defined above, is the 

final differential equation system in terms of relative temperatures of metal and mold (u1 

and u2 respectively).  

 

1castcast uTTV =−→ ∞                                                                                                 (3.29) 

 

2moldmold uTTV =−→ ∞                                                                                             (3.30) 
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The intended differential equation has been obtained without any phase transformation 

source term. One more modification should be done in order to include phase 

transformational source term containing solid fraction and latent heat. The phase 

transformational heat source occurs in metal as a thermal power term which electrically 

corresponds to a current source. Therefore, in the current of the cast, it appears with the 

same direction with the cast current. These transformations are explained in Equations 

3.32-3.34 where ∆Hf is total enthalpy of solidification, Ccast is thermal capacity of the 

cast and fs is the solid fraction.  

 

sfcastcast fHII &∆+→                                                                                                      (3.32) 

 

sfcastcastcastcast fHVCVC &&& ∆+−→−                                                                                     (3.33) 
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Total enthalpy and heat capacity can be stated in terms of volume (V), density (ρ), latent 

heat of fusion (Lf), and specific heat (cp) as in Equation 3.35, so the transformation in 

Equation 3.34 becomes Equation 3.36. 
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When the transformed temperature derivative in Equation 3.36 is replaced into Equation 

3.31, the general heat equation system with phase transformation is obtained as in 

Equations (3.37-39). The term θPT defines the interval of solidification in which solid 
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fraction occurs. Its definitions are seen in Equation 3.39 where ts and te are start and end 

times of solidification, and θ is Heaviside step function. In this derivation, it is assumed 

that there is no heat sources or sinks in the mold. A burning reaction, maybe, in sand 

molds may be formed. However, it is assumed that its rate of heat is negligible. 
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3.1.2 Calculating Solid Fraction 

 

In the previous section, we have developed a differential equation system in terms of 

metal’s and mold’s relative temperatures: u1 and u2 respectively. Actually, these 

temperatures correspond to the average temperatures of the materials through its 

volume. Therefore, it is hard to measure the temperature of the mold, while the metal’s 

average temperature can be measured because of its high conductivity. In a typical 

Newtonian thermal experiment, a thermocouple is placed at the center of the cup, and it 

records the instantaneous temperature at every second. Therefore, in the heat equation 

generated, u1 is a known data, while u2 is an unknown data. For u2, all we know is its 

initial condition at t=0. At the pouring time, the temperature of the mold is at the 

ambient temperature, so its relative temperature to the ambient, must be zero. Other 

known parameters about the system are: start and end time of solidification (ts and te) 

and solid fraction boundary conditions. All the information is seen in Equations 3.40-

3.42.  
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Finding the solidification parameter (Lf/cp) and solid fraction fs, which are the main aims 

of this study, depends on calculating the parameters of the differential equation 

correctly. Unknown parameters of the suggested equations (Equation 3.40-3.42) are p1, 

p2, p3, p4, Lf/cp, ts, and te. An equation giving solid fraction should be written first in 

order to understand what parameters to find primarily. Mold’s temperature (u2) may be 

written in terms of metal’s temperature (u1) because u2 corresponds the average 

temperature of the mold, which is hard to measure owing to its low thermal 

conductivity. Equation 3.41 is a first order linear differential equation, so it can be 

solved by the help of integrating factor [18]. When Equation 3.44 is multiplied by the 

integrating factor of exp(p4t), it yields a derivative of a multiplication.  
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With the help of Equations 3.47 and 3.48, Equation 3.49, giving the average temperature 

of the mold, is obtained. 
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If Equation 3.49 is replaced in Equation 3.40, it gives 
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If Equation 3.50 is integrated between ts and te, latent heat formulation is obtained by the 

help of the initial conditions in Equation 3.42, 
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Taking integral of Equation 3.51 between t and ts values, solid fraction evolution is 

found. 
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As seen in the formulations of the latent heat and solid fraction, the parameters that will 

be searched are p1, p4, and p2.p3 values. ts and te values are determined from the cooling 

or cooling rate curve mentioned in Chapter 1.  

 

 

3.1.3 Finding the Parameters 

 

Before calculating solid fraction and the solidification parameter (Lf/cp), one should 

calculate the parameters p1, p4, and p2.p3. They can be calculated by two ways: 

theoretical and experimental. Theoretical calculations require information about heat 

transfer coefficients, dimensions and heat capacities by the help of Equations 3.25-3.28. 

However, experimental calculations gather information from the cooling curve analysis. 

 

3.1.3.1 Theoretical Calculations of the Parameters 

 

Thermal resistance and capacitance formulas for convective and conductive heat transfer 

are shown in Equations 3.55 and 3.56 [3]. The definitions of the symbols are given in 

Table 3.2. 
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Table 3.2: Definitions of the symbols used for the calculation of thermal parameters. 

 

Symbol Definition  

hair convectional heat transfer coefficient due to free convection with the medium 

hgap gap heat transfer coefficient 

d Thickness of the mold 

Ain Area of the inside surface of the mold 

Aout Area of the outside surface of the mold 

Atop Area of the top surface of the metal 

Vcast Volume of the casting metal 

Vmold Volume of the mold 

kmold Thermal conductivity of the mold 

ρcast Density of the casting metal 

ρmold Density of the mold 

ccast Specific heat of the casting metal 

cmold Specific heat of the mold 

Rtop Thermal resistance of the top surface due to air convection 

Rout Thermal resistance of the outside surface of the mold due to air convection 

Rmold Thermal resistance of the mold due to conduction 

Rgap Thermal resistance of the side surface of the metal due to gap heat transfer 

 

The convectional heat transfer coefficient was calculated by  

 

L

k
Nuh =                                                                                                                     (3.57) 

 

where Nu is the Nusselt number, k is the thermal conductivity of air and L is the 

characteristic length (L=0.065 m in this experiment). The Nusselt number is calculated 

by 

 
m

Gr)(PrCNu ⋅⋅=                                                                                                        (3.58)

  

where Pr and Gr are Prandtl and Grashof numbers. C and m are the parameters which 

will be found from Table 7 at page 22 of [ref. 19]. Grashof number is given by  
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                                                                                               (3.59) 

 

where g is the gravitational acceleration , β is 1/Tf, (where Tf=(T0+T∞)/2), ρ is the 

density, and µ is the viscosity of air for Tf value (from Table 4 at page 19 of [ref. 19]  ). 

For the cooling experiment of Pure tin, T0 and T∞ were taken 500 K and 289 K. Tf is 

(500+289)/2=394.5. The parameters for 394.5 K are listed in the table below. According 
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to the calculations above, the values of the parameters for the thermal circuit are listed in 

Table 3.4. 

 

 

Table 3.3: Parameters and properties of air at 394.5 K in SI units. 

 

g [m.s
-2

] 9.80 

ββββ [K
-1

] x10
-3 2.54 

ρρρρ [kg.m
-3

] 0.90 

µµµµ [kg.m
-1

.s
-1

] x10
-5 2.265 

k [Wm
-1

K
-1

] x10
-2 3.32 

Pr 0.69 

C 0.59 

m 0.25 

 

 

Table 3.4: Results of the calculations for the thermal circuit in SI units. 

 

h [Wm
-2

K
-1

] 10.70 Rtop [KW
-1

] 68.20 

hgap [Wm
-2

K
-1

] 400.00 Rout [KW
-1

] 7.50 

d [m] 0.01 Rmold [KW
-1

] 2.02 

kmold [Wm
-1

K
-1

] 0.52 Rgap [KW
-1

] 0.38 

Aout [m
2
] x10

-3 1.25e-02 Ccast [JK
-1

] 74.85 

Ain [m
2
] x10

-3 6.50e-03 Cmold [JK
-1

] 130.00 

Atop [m
2
] x10

-3 1.40e-03   

 

 

The matrix and its eigenvectors of Equation 3.31 are finally obtained in Equations 3.60 

and 3.61 with eigenvalues λ1 and λ2 which are -0.0095 and -0.0006 respectively. 
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3.1.3.2 Experimental Calculations of the Parameters 

 

Cooling curve analysis is required to find the parameters experimentally. Since metals 

temperature is known, they can be calculated from curve fitting of the solution of the 

differential equation. The solution for u1 of no phase transformation case of Equation 

3.31 is a typical eigenvalue problem in two dimensions. Its general solution is shown in 

Equation 3.62 in vector format, where λ1 and λ2 are the eigenvalues, v1 and v2 are the 

corresponding eigenvectors of the eigenvalues, A1 and A2 are integration constants 

coming from the initial conditions. However, we know that the eigenvalues must be 

negative numbers because the metal-mold system is a decay system, so the eigenvalues 

can be notated by negative real numbers, for example, –b and –d. Together with the 

initial condition of the mold’s temperature in Equation 3.48, the relative average 

temperatures of metal and mold, u1 and u2, are written in Equations 3.62 and 3.63, where 

a, c and A are the integration constants, representing the initial conditions.  
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However, the integration constants should be different for the solid and liquid phases. 

The phase transformational term between two phases changes the initial conditions, and 

the system goes on with the same thermal parameters but with different start points. 

Therefore, the temperature evolutions must be written by the same eigenvalues (-b and –

d) but different constants (a and c) for two phases. Equation 3.65 is the right statement 

for the temperature of metal, where θ is Heaviside step function.  
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In the expression of u1, al and cl are the integration constants for liquid case, while as and 

cs are for the solid phase. ts and te represent start and end of solidification defining the 

interval of validity for the parameters with the help of Heaviside step function. The 

parameters al, cl, as, cs, b and d was calculated by using curve fitting tool of MATLAB 

R2010a. Actually the main interest is to find p1, p4 and p2.p3 of the matrix and these 

parameters are used in the eigenvalue problem shown in Equation 3.66 [28]. The 

solution of the problem is explained in Equations 3.67-3.71. 
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From the above equations, it is deduced that: 

 

41 ppdb +=+                                                                                                          (3.72) 
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Initial condition for u2 can be used to separate p1 and p4 in Equation 3.72 and 3.73. For 

the no- phase transformation case of Equation 3.37, the equation at t=0 is Equation 3.74.  
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In this equation, u2(0) is zero, and initial temperatures and derivatives can be calculated 

by Equation 3.65. u1 and its derivatives with its initial values in terms of curve fit 

parameters are shown in Equations 3.75-3.78. 
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Writing Equations 3.77 and 3.78 into 3.74, it yields 
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Once p1 is found, other parameters can be calculated by Equations 3.72 and 3.73 as 

follows.  
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The parameters required for latent heat and solid fraction calculation have been found 

(Equations 3.80-82). The formulation of Equations 3.53 and 3.54 can be interpreted by 

the curve fit parameters now. One-step further, we can calculate p2 and p3 

approximately. From Equations 3.27 and 3.28, p3 and p4 are approximately equal 

because of the low resistance of the gap.  
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From Equation 3.25-28, it is obvious that 
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The equation that provides the thermal capacity of cast was derived from the assumption 

of zero gap resistance. Therefore, it is not a reliable specific heat formulation. It only 

gives an idea for the range of specific heat of the metal in terms of heat capacity of the 

mold.  
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3.2 A More General Approach to the Metal-Mold System  

 

In the previous section, we made some assumptions, so restrictions, to propose a linear 

differential model. These restrictions include:  

 

1. Radiation was neglected. 

2. Temperature dependence of the specific heat was not calculated. 

3. Variable heat transfer coefficient due to the contraction or temperature change 

was omitted.  

4. Heat transfer coefficients or specific heats of metals were assumed the same for 

all phases.  

 

To include all these effect is very hard for such a simple thermal analysis. Rather we 

should try to linearize for the sake of simplification.  

 

 

3.2.1 Cooling Rates as a Function of Temperatures 

 

The average temperature derivatives of the metal-mold system may be thought as very 

complicated functions of the temperatures because the average temperatures are 

proportional to the heat fluxes of the elements of the system. These function may be 
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Taylor series expansions of a function with two variables around the point (x0,y0) is [29] 
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According to this general formula, Taylor’s expansion of Equation 3.87 with the first 

degree approximation around melting and the average temperature of the mold during 

solidification (Tm,Ts) is given by 
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where Tm is the melting point of metal, and Ts is the average temperature of the mold 

during solidification. The point (Tm,Ts) was chosen for the center of expansion because 

the solid fraction, which we intend to find, occurs around this point. Equations 3.89 and 

3.90 can be stated more simply as: 
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where the parameters a10, … a22 are constants coming from the Taylor expansion 

coefficients. It is very hard to calculate these parameters theoretically because they 

contain many parameters coming from radiative cooling, temperature dependence of 

specific heat, or heat transfer coefficients etc. One can say; however, these parameters 

do not represent directly the real heat transfer coefficients or thermal resistances 

anymore. One can say that Equations 3.91 and 3.92 are the same with the equation that 

developed in Section 3.1, which is Equation 3.31. They are close to each other in format 

and calculation structure, but the method of parameter determination differs. Since we 

thought the expansion around the melting point, we must consider a narrow temperature 

interval around the melting point for the curve fitting. Maybe, the most important 

difference is the stable points of the matrix system, which are different for two models.  

 

The linear system in Equations 3.91 and 3.92 can be written in matrix notation as 

follows: 
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where M is the 2x2 coefficient matrix, and A0 is the vector of non-homogeneous term. It 

can be made homogeneous by the operations through Equations 3.95-3.99.  
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uM̂u
r&r =                                                                                                                        (3.99) 

 

where u vector is the relative temperatures of metal and mold with respect to their fixed 

points, which have not to be the real ambient temperature anymore. T∞,1 and T∞,2 

represent the virtual asymptotic temperatures of metal and mold. 

 

 

 

 

3.2.2 Finding the Parameters and Solid Fraction Evolution 

 

The linear system constructed in section 3.2.1 has the same structure and solution for 

except for the ambient temperature interpretation. Two additional unknowns, the virtual 

ambient temperatures, must be calculated now. Since the mold has narrow temperature 

interval around the actual ambient temperature, it can be set by 

 

∞∞ =TT 2,                                                                                                                     (3.100) 

 

where T∞ is the actual ambient temperature so it can be measured as room temperature 

in the time of the experiment. However, metal has higher temperatures than that of mold 

around solidification region (Figure 3.6). Therefore, its virtual ambient temperature 

should be higher than the real ambient temperature. The virtual ambient temperature of 

metal is calculated by fitting of Equation 3.101 with the measured temperature data of 

metal.  
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The rest of the procedure is the same with the method discussed in the previous section. 

The point is the fitted function and the part of temperature data for the curve fitting, 

which must be narrowed around the melting point. The method will be discussed in the 

next chapter in detail.  
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Figure 3.6: Temperatures of metal and mold in the solidification experiment of pure 

Aluminum. 
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CHAPTER 4 

 

 

EXPERIMENTAL AND CALCULATIONAL DETAILS 

 

 

 
The aim of Newtonian thermal analysis is to explain solidification process in terms of 

solid fraction evolution as a function of time and finding thermal characteristics, such as 

latent heat per specific heat of the metal. To this end, an appropriate cooling experiment 

setup is prepared for casting process first, and thermal measurements are recorded in a 

way that can be analyzed by a computer. Therefore, a typical thermal analysis 

experiments may be categorized as two main stages: pre-experimental and post-

experimental. The choice of appropriate thermal measurement tools and adjusting the 

setup for the properties of casting metal are typical procedures before the cooling 

process. The analytical procedures, such as smoothing, differentiating, and fitting data 

start with the end of measurements. 

 

 

 

4.1 Taking Thermal Data  

 

Before starting thermal analysis, having ideas about the metal that will be studied is very 

important for the quality of the experiment because there are several types of 

thermocouples and measuring devices that can be used for the different type of metals 

and temperature scales. The main point of pre-experimental process can be listed as 

follows: 

 

1. Choosing the type of thermocouple 

2. Determining the most appropriate type and dimension of the mold 

3. Adjusting the thermal scanner for the most accurate thermal measurements 

4. Determining the pouring temperature of the casting metal 

 

 

Thermocouples are widely used elements of temperature measurements in industry. 

They are produced by welding the terminals of two different alloy wires, but rest of 

them is isolated from each other. Their working principle is voltage production in the 

millivolt range between hot and cold terminals. The welded terminal is the hot point, 

and other two open terminals are cold points. However, the linear relationship between 

the temperature difference and the voltage produced can not always be fulfilled. 

Therefore, different types of thermocouples are produced for different temperature range 
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and media. It is very important that one should determine the types of thermocouple 

according to the temperature range of the experiment before casting. DIN 43710 

standards are widely used guide for researchers for this purpose. Thermocouple types 

and their temperature limits are seen in Table 4.1. [30] 

 

Table4.1: Types of thermocouples and their corresponding temperature limits [30]. 

 

COMPOSITION DIN 43710 
TEMPERATURE 

LIMITS 

Cu-Const T -200  –  +300 
o
C 

Fe-Const J -200  –  +800 
o
C 

Cr-Al K -200  –  +1200 
o
C 

NiCr-Ni K -200  –  +1200 
o
C 

Cr-Const E -200  –  +1200 
o
C 

Nicrosil-Nisil N 0  –  +1200 
o
C 

Pt%10Rh-Pt S 0  –  +1500 
o
C 

Pt%13Rh-Pt R 0  –  +1600 
o
C 

Pt%18Rh-Pt B 0  –  +1800 
o
C 

Tn-Tn%26Re W 0  –  +2000 
o
C 

 

Since this study was carried on low melting point metals (Tin, Zinc, Aluminum), the 

maximum temperature reached is almost 800 
o
C, which can be seen as a maximum 

pouring temperature for pure Al, which melts at 660 
o
C. For this reason, K type NiCr-Ni 

thermocouples were chosen for the experiments. 

 

Another case to consider before experiment is choice of casting cup. As one can prepare 

his own cup, it is found from any purveyor producing molds especially for the thermal 

analysis purpose. In this study, shell molded sand cups with K type thermocouples were 

used. Their photos are seen in Figure 4.1.  

 

                          
 

Figure 4.1: QuiK cups used in this study. 
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The most effective factors that influence the quality of thermal analysis related with the 

mold are its dimensions and thermal properties: specific heat, conductivity etc. 

Thickness of the mold is responsible for high heat capacity, causing rapid cooling and 

insensitive measurement; however, the dimensions determine validity of Newtonian 

thermal analysis. The key concept for validity of Newtonian thermal analysis is Biot 

number, which depends on heat transfer coefficient, thermal conductivity of material, 

and characteristic length of the cooling body. Its mathematical definition is 

 

k

hL
Bi =                                                                                                                        (4.1) 

 

where h is the heat transfer coefficient, L is the characteristic length (volume per surface 

area), and k is thermal conductivity of metal.  

 

If the value of Biot number is high, the temperature distribution within the metal can not 

be assumed uniform, and conduction heat transfer methods are required. For instance, 

less than 5% error will be arisen when lumped capacitance model is assumed with a Biot 

number smaller than 0.1 [1]. The Biot numbers and thermal properties of some pure 

metals surveyed in this study are listed in Table 4.2. 

 

 

Table4.2: Thermal properties of the materials at their melting temperature. 

 

metals h (W/m
2
.K) L (m) k (W/m.K) Bi 

Aluminum (Al) 12.30 

0.065 

220 0.0036 

Lead (Pb) 11.40 31 0.0239 

Tin (Sn) 11.19 60 0.0121 

Zinc (Zn) 11.78 110 0.0070 

 

In general, there are two types of mold materials: insulators and conductors. Insulators 

are plaster full molds, ceramic shell molds, and silica sand molds. The effect of 

temperature on the thermal conductivity of insulating molds depends on AFS sand 

number [3]. Therefore, researchers should consider the variable thermal conductivity of 

insulating molds.  

 

Another factor that influences the quality of thermal analysis is adjustment of thermal 

scanner and computer. For instant and accurate measurement, adjustments for the type 

of thermocouple, temperature range and number of temperature reading digits should be 

introduced to the thermal scanner and computer. One-decimal-digit sensitivity is 

appropriate for the temperature reading at every second. If the temperature is recorded 

with integer numbers, then the cooling graph will seem horizontal steps as in Figure 4.2. 
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Figure 4.2: Cooling curve of pure Sn zoomed to its undercooling point. 

 

 

The repetitive points are caused by the adjustment of the scanner which measures 

temperature with integers. These horizontal dots make differentiation impossible, but it 

can be corrected by data smoothing. Although data smoothing is a helpful tool to modify 

data for differentiation, it deforms the data, and produces deviated data from the actual 

temperature. Therefore, the most accurate measurement mode must be adjusted on the 

thermal scanner in order to be appropriate for the Computer Aided Cooling Curve 

Analysis (CA-CCA).  

 

 

4.2. Data Analysis 

 

The post-experimental part of thermal analysis involves processing thermal data to 

produce information about the sample. Data smoothing, data exclusion, making curve 

fitting, differentiation, integration and solving differential equations are widely used 

computational tools by researchers. In this study, MATLAB 7.10.0 (R2010a) is used for 

this purpose with its curve fitting tool.  

 

The first task is to import the thermal data into the software. A typical Newtonian 

thermal analysis involves time and temperature measurements, so there should be at 

least two data sets as independent and dependent variables. These variables should be 

recorded as column vectors to the computer software. As a sample, the output of the 

thermal scanner used in this study is shown in Table 4.3. 
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Table 4.3: Output of the thermal scanner. 

 

t(s) T(
0
C)  t(s) T(

0
C)  t(s) T(

0
C)  t(s) T(

0
C)  t(s) T(

0
C)  t(s) T(

0
C) 

1 316  14 268.7  27 244.2  40 231  53 231.2  66 231,2 

2 309,2  15 264,3  28 241,6  41 231,1  54 231,2  67 231,2 

3 309.2  16 264.3  29 241.6  42 231.1  55 231.3  68 231.2 

4 299.2  17 264.3  30 238.8  43 231.1  56 231.3  69 231.5 

5 299.2  18 259.6  31 235.6  44 231  57 231.2  70 231.5 

6 292.2  19 259.6  32 235.6  45 231.2  58 231.2  71 231.3 

7 292.2  20 256.2  33 235.6  46 231.2  59 231.2  72 231.3 

8 286.4  21 256.2  34 233.4  47 231.1  60 231.2  73 231.4 

9 286.4  22 252.3  35 231.5  48 231.1  61 231.2  74 231.4 

10 280.7  23 248.3  36 231.5  49 231.3  62 231.2  75 231.4 

11 280.7  24 248.3  37 230.8  50 231.3  63 231.2  76 231.4 

12 273.5  25 248.3  38 230.8  51 231.3  64 231.2  77 231.3 

13 273.5  26 244.2  39 231  52 231.2  65 231.2  78 231.3 

 

The graph of data in Table 4.3 is represented by Figure 4.3. It is noteworthy that the raw 

data have repetitive points, so the graph contains horizontal steps, which complicates 

differentiation and curve fitting. The data should be revised for mathematical analyses 

especially for differentiation.  

 

 
 

Figure 4.3:  Temperature vs. time graph (unrevised). 

 

The result of differentiation looks like Figure 4.4 unless the raw data is not revised. The 

repetitive dots give noisy results for the derivative of temperature with respect to time. 
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Figure 4.4: Time derivative of the raw temperature data. 

 

As seen from Figures 4.3 and 4.4, the directly measured temperature record is not 

appropriate for differentiation, so it needs to be corrected for the sake of smoothness. 

Data smoothing is a kind of modification that attempts to approximate the data set to a 

function in order to modify noisy points. It should not be confused by curve fitting in 

some ways. In contrast to curve fitting, smoothing does not use any functional forms, 

and gives little attention to close matching of data. There are, in general, two types of 

smoothing: filtering and local regression. While filtering methods depend on averaging 

data within a specified number of neighboring points, called as span, but local 

regression methods fit a defined number of points to a function which may be linear or 

quadratic [31]. Among the filtering methods for data smoothing, moving average and 

Savitzky-Golay filtering methods are widely preferred in this study because they work 

most properly for cooling data. Moving average filters work by averaging the 

neighboring points defined in the span. Savitzkty-Golay filtering uses unweighted linear 

least-squares fit using a polynomial of a given degree. Therefore, span must be an odd 

number because of the neighboring average principle [32].  

 

Lowess, loess, robust lowess and robust loess smoothing methods are included to local 

regression data smoothing. All these methods have some special parameters such as 

span and degree. Non-smoothed cooling curve and its corresponding smoothed data 

whose methods are given can be seen in Figures 4.5 – 4.7. In these figures, undercooling 

region of pure Sn is zoomed in order to show the deformation from smoothing.  
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Figure 4.5: Cooling curve and its smoothed curves (filtering methods, MA: Moving 

average, S-G: Savitzky-Golay). 

 

 

 
 

Figure 4.6: Cooling curve and its smoothed curves (local regression methods). 
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Figure 4.7: Cooling curve and its smoothed curves (robust local regression methods). 

 

Differentiation is a valuable mathematical tool to determine the instants of the 

boundaries of the solidification. However, smoothing may deform data and can cause 

wrong but smooth results. Span parameters of data smoothing should be determined so 

as to balance these effects. Higher span factor means smoother but less representative 

curve because span factor determines the validity of the derivative. In Figure 4.8, 

smoothed curves with different span factors are shown. 

 

 
 

Figure 4.8: Non-smoothed and smoothed curves with different spans for moving 

average filtering. 



73 

 

The smoothed curve with span 51 is smoother than the other with span 5, but higher 

spanned curves deviate much more from the original curve. The results of differentiation 

with different smoothed curves are shown in Figure 4.9. 

 

 
 

Figure 4.9: Cooling rate vs. t graphs from different smoothing methods with span 5. 

 

Taking derivative of a data set with respect to the independent variable may be done by 

discrete or fitting methods. Discrete differentiation finds the difference between adjacent 

elements of dependent and independent data, and then divides them. Simple command 

for the derivative of temperature (T) with respect to time (t) in MATLAB is 

 

);t(diff/).T(diffTdot=                                                                                                  (4.2) 

 

In this command, temperature and time measurements must be named as T and t 

respectively in the Matlab workspace. It is possible to take derivative of temperature by 

using curve fitting tool. When cooling curve is fitted by interpolation methods, curve 

fitting tool takes the derivative of the fit by using the analysis tab. Figures 4.10 and 4.11 

shows the cooling curve of pure aluminum and its smoothed curves. Moving average 

smoothing methods with spans 5, 11, 21 and 51 are used, and corresponding smoothed 

data are depicted. It can be seen that higher span values make the curve smoother, but 

less similar to the original curve. Time derivatives of these curves are shown in Figure 

4.12. Before taking derivative, temperature data were fitted to interpolant in the curve 

fitting tool then cubic spline method was chosen. Derivatives were made by analysis tab 

on the curve fitting tool of Matlab.  
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Figure 4.10: Temperature vs. time graph and its smoothed curves made by moving 

average methods with different spans. 

 

 

 

 
 

Figure 4.11: Temperature vs. time graph and its smoothed curves made by moving 

average methods with different spans (focused to undercooling region). 
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Figure 4.12: Derivatives of temperatures obtained by different smoothed curves. 

 

The most proper derived temperature may be chosen from the results in Figure 4.12 by 

comparing them with its own temperature curve. It is obvious that undercooling local 

minimum of the temperature curve has zero derivative at that instant. Moreover, the 

turning point of curvature at the end of solidification means that the second derivative is 

zero, so the first derivative must be a minimum at the saddle point of cooling the graph. 

The critical points are shown in Figures 4.13 and 14. Original temperature vs. time 

graph can be compared with its derivative, which is derived from the smoothed 

temperature data with different spans. Two span numbers are used for comparison: the 

derivative by span 5 and 31 smoothing. It can be seen that undercooling local minimum 

has more deviation when span factor is increased. Local minimum is at t=128 seconds 

on the cooling graph itself, but it corresponds to the point that the derivative is zero 

which corresponds to 129
th
 and 137

th
 seconds for Figures 4.13 and 14 respectively.  
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Figure 4.13: Temperature and its derivative (data is smoothed by moving average 

method with span 5). 

 

 
 

Figure 4.14: Temperature and its derivative (data is smoothed by moving average 

method with span 31). 

 

The difference between local minimum instants from the temperature and derivative 

curves increases with the span number of smoothing, which must be done to be able to 

differentiate the cooling curve. If Figures 4.13 and 14 are compared, it can be seen that 

undercooling point deviates 1 and 9 seconds from the temperature curves when it is 
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found by derivative curves.  Therefore, researchers should consider this deviation and 

deformation when they work on derived curves.  

 

 

 

4.3. Curve Fitting for Thermal Analysis 

 

It is imperative that thermal data be modeled by an expected function in order to find the 

parameters of thermal system or initial conditions. Curve fitting process is a useful 

mathematical tool that may describe a data set in terms of known functions. It involves 

interpolation or smoothing [33]. A simple cooling data is depicted in Figure 4.15 as an 

example of curve fitting process. The graph is obtained by recording the temperature of 

solid tin without mold, so it is expected that an exponential decay explain this data. The 

type of function, which models temperature in terms of time, may be written as: 

 

∞

−
+= TaeT

bt
                                                                                                                (4.3) 

 

or in terms of Matlab default notation: 

 

infT)x*bexp(*ay +−=                                                                                               (4.4) 

 

where x and y are independent and dependent variables. a, b and Tinf are the parameters 

that will be calculated by curve fitting tool. When exponential type of fit is chosen for 

the data set imported to curve fitting toolbox, it yields a graph of the fitted function and 

output which contains information about the fit such as; values of the parameters, R-

square and adjusted R-square etc. The results of this exponential fit are seen in Figure 

4.16 and Table 4.4.  

 

Table 4.4: Output of curve fitting. 

 

 

 

 

 

 

 

 

 

 

General model: 

     f(x) = a*exp(-b*x)+Tinf 

Coefficients (with 95% confidence 

bounds): 

       Tinf =        27.9  (27.85, 27.95) 

       a =         126  (125.9, 126.1) 

       b =   0.0008296  (0.0008283, 

0.000831) 

Goodness of fit: 

  SSE: 2808 

  R-square: 0.9994 

  Adjusted R-square: 

0.9994 

  RMSE: 0.7496 
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Figure 4.15: Temperature vs. time graph of the recorded data.  

 

 

 
 

Figure 4.16: Temperature and its fitted function. 

 

As seen in Table 4.4, the coefficients a and b and goodness of fit indicators are given by 

the curve fitting toolbox. In statistics, goodness of fit refers to the discrepancy between 
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observed values and expected values from a model. These indicators, respectively, 

include the sum of squares due to the error (SSE), R-square, adjusted R-square, and root 

mean squared error (RMSE) [34]. 

 

“SSE measures the total deviation of the response values from the fit to the response 

values. A value closer to 0 indicates that the model has a smaller random error 

component and that the fit will be more useful for prediction.” The statistic R-square 

measures the success of fit in explaining the variation data. It takes any value between 0 

and 1. Its value refers to how many percent of the total variation are explained by the fit. 

It is obvious that increasing the number of fit coefficients in a model increase its R-

square value, but more coefficients may not improve the quality of fit. In this case 

degrees of freedom R-square is the most appropriate parameter to evaluate the success 

of fit [35]. 

 

One of the important points of the curve fitting that researchers can control is 

determining start points and intervals of the coefficients in the fit function. As an 

example, a fit function in Chapter 3, which has 6 coefficients, can be analyzed in detail. 

This fit function is given by: 

 

( ) ( ) ∞

−−
+−+−+−+−= Te)tt(c)tt(ce)tt(a)tt(aT

td
eSsL

tb
eSsL θθθθ                      (4.5)  

 

where T is the temperature, θ is Heaviside step function, and t is time. In Matlab 

notation, this must be written in custom equation from the choice of type of fit as below: 

 

 

 

 

 

This script belongs to temperature of pure Zn whose start and end times of solidification 

are 112 and 526 seconds respectively. The data set was obtained by the difference 

between the temperature of the metal and the ambient temperature. Before applying 

curve fit, the phase transformation region must be excluded by exclusion tool of curve 

fitting toolbox. It is possible to see null results when the fit function is tried to fit with 

the  data set because the start points and bounds of the coefficients may not be 

appropriate for a good fit. When a default setting of the coefficients in Figure 4.17 was 

given, the fitting application was resulted in error. Error message says,“Inf computed by 

model function”. 

 

 

(aL*heaviside(112-x)+aS*heaviside(x-526))*exp(-b*x) 

+(cL*heaviside(112-x)+cS*heaviside(x-526))*exp(-d*x)+Tinf 
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Figure 4.17: Default start points, lower and upper bounds for the curve fitting. 

 

 

Since the intervals that are limited by lower and upper bounds are between minus and 

plus infinity, curve fitting session fails to find the most proper fit. These coefficients’ 

intervals should be narrowed to some extent. In order to estimate the bounds of 

coefficients, some information about these parameters may be useful. First of all, the 

coefficients b and d come from the heat transfer coefficients and thermal capacitances of 

the metals and mold. They may be calculated approximately by heat transfer coefficient 

tables or other thermo physical indices as in Section 3.1.3. The ranges of b and d are in 

the range of 0.0005 and 0.01. Therefore, their bounds can be narrowed to 0 and 1 and 

start points be set around these points. Other coefficients represent initial conditions, so 

their ranges may be calculated by initial conditions for the related differential equation. 

The ranges of parameters chosen for proper curve fitting with different types of metal 

are shown in Figures 4.18-4.20.  

 

 

 
 

Figure 4.18: Start points, lower and upper bounds for the curve fitting of aluminum 

experiments. 
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Figure 4.19: Start points, lower and upper bounds for the curve fitting of lead 

experiments. 

 

 

 
 

Figure 4.20: Start points, lower and upper bounds for the curve fitting of tin 

experiments. 

 

 

 
 

Figure 4.21: Start points, lower and upper bounds for the curve fitting of zinc 

experiments. 

 

Exclusion factor should be set so wide that the interval can let a proper fitting result, but 

so narrow that it cannot break the Taylor series approximation for the first degree. In 

this study, the most appropriate exclusion interval for this criterion is chosen 50 
0
C 

below and above the solidus and liquidus temperatures in the non-solidification region. 

A sample exclusion rule is depicted in Figure 4.22.  
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Figure 4.22: Exclusion rules for the curve fitting of all experiments. 50 
0
C above and 

below the melting point is included. Circles, or darker points, are included; crosses, or 

lighter points, are excluded from the curve fitting.  

 

By the rules of start points and exclusion from Figures 4.18 and 4.22 respectively, a 

curve fitting result of pure aluminium is seen in Figures 4.23 and table 4.5.  

 

 

 
 

Figure 4.23: Sample curve fitting according to the start points in Figure 4.18 and 

exclusion in Figure 4.21. 
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Table 4.5: Curve fitting output. 

 

 

 

4.4. Calculating the Latent Heat and Solid Fraction 

 

Once the parameters of the differential equation have been calculated from curve fitting, 

latent heat and solid fraction can be evaluated for the solution of the differential 

equation for the solid fraction. The two-capacitive system baseline (TCSBL) or zero 

curve can be written by the non-solidification form of Equation 3.50 

 

dte)TT(epp)TT(pT
t

0

tptp

321zc
44 ∫ ∞

−

∞ −+−−=&                                                            (4.6) 

 

where p1, p4 and p2.p3 are Equation 3.80-3.82. T∞ is the parameter coming from curve 

fitting. In the case of phase transformation, it gives: 

 

zcexps

p

f
TT)t(f

c

L
&&& −=                                                                                                     (4.7) 

 

where exp and zc subscripts denote experimental and zero curve. The initial conditions 

of solid fraction are: 

 

1)t(f,0)t(f esss ==                                                                                               (4.8) 

 

Integration of Equation 4.7 between ts and te produces the latent heat as: 

 

( )∫ −=

e

s

t

t

zcexp

p

f
dtTT

c

L
&&                                                                                                     (4.9) 

General model: 

     f(x) = (al*exp(-b*x)+cl*exp(-d*x)+Tinf)*heaviside(42-

x)+(as*exp(-b*x)+cs*exp(- 

                    d*x)+Tinf)*heaviside(x-329) 

Coefficients (with 95% confidence bounds): 

       Tinf =       413.2  (62.86, 763.6) 

       al =       235.2  (-93.31, 563.7) 

       as =       592.1  (347.4, 836.8) 

       b =    0.003021  (-0.002943, 0.008985) 

       cl =       174.7  (153.7, 195.8) 

       cs =  3.804e+005  (-1.257e+006, 2.018e+006) 

       d =     0.03553  (0.02305, 0.04801) 

Goodness of fit: 

  SSE: 50.38 

  R-square: 0.9996 

  Adjusted R-square: 

0.9995 

  RMSE: 0.74 
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A sample Matlab script for this calculation is given below: 

 

 

% Command script for TWO-CAPACITIVE SYSTEM BASELINE METHOD 

 

% Type the start and end times of solidification 

ts=42   ;  te=329    ;   

 

% Type the parameters from the curve fitting 

Tinf = 415.5;     al= 232.6;     b = 0.00306;      cl =173.7;     d = 0.03519 ; 

 

% The matrix elements (Do not type anything below) 

p1=(al*b+cl*d)/(al+cl);           p4=b+d-p1; 

 

% Zero curve calculation (Do not type anything below) 

Tdotzc=-p1*(T-Tinf)+(p1*p4-b*d)*exp(-p4*t).*cumtrapz(t,(T-

Tinf).*exp(p4*t)); 

 

% Integration and outputs (Do not type anything below) 

fsLpc=T-cumtrapz(t,Tdotzc);  

Lpc=fsLpc(te)-fsLpc(ts) 

fs=(fsLpc-fsLpc(ts))/Lpc; 

plot(t,fs,'DisplayName','t vs. fs','XDataSource','t','YDataSource','fs');figure(gcf) 

 

 

4.5 Sample Thermal analysis 

 

In order to understand TCSBL, the procedure is expressed step by step as follows. 

 

 

Prepare experimental setup.  

• Chose a thermocouple appropriate for the casting. 

• Supply a mold appropriate for the metal. 

• Place the thermocouple into the mold, and connect it to the measurement device. 

• Adjust the device for the type of thermocouple and temperature scale. 

• Check the connections and adjustment, and be ready to record. 

 

Start the measurement 

• Melt the sample up to 200 
0
C above its melting point. 

• Press the record button on the measurement device. 

• Pour the melt into the mold. 

• Wait until it cools at least 200 
0
C below its melting temperature. 

• Finish recording, and take the recorded data from the computer. 
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Prepare data to analyze.  

• Save the time and temperature data to MATLAB or any software as a column 

vectors, and name them t and T. 

• Transfer t and T data to curve fitting tool. 

• Smooth the data set (T vs. t) by using smooth tab in the data window of curve 

fitting tool. 

• Continue smoothing until a best no deformed and smoothed data is obtained. 

 

Modify the cooling curve and find time derivative 

• Fit the best-smoothed data to interpolant/cubic spline type of fit. 

• Analyze this fit by pressing analysis button. Check the box first derivative and 

plot the results. 

• Press the apply button and Save to Workspace button. 

• It saves the data sets to the workspace. Chose the dydx vector, and record it as 

Tdot. 

• Determine the end time of temperature from the first derivative data. 

• Determine the start time of temperature from the temperature data. 

 

Exclude some of data for a proper curve fitting 

• Exclude the points of the solidification region on T vs t data set by using 

Exclude button. 

• Exclude ts and te points and those between them. 

• Exclude the points 50 
0
C higher than the liquidus temperature. 

• Exclude the points 50 
0
C lower than the solidus temperature . 

• Record this exclusion as cooling. 

 

Fit excluded curve to find thermal parameters. 

• On the fitting window, check data set as “T vs. t” , type of fit as “custom 

equations” and exclusion rule as “cooling”. 

• Select “new”, and type the equation to be fitted: “(aL*heaviside(112-

x)+aS*heaviside(x-526))*exp(-b*x) +(cL*heaviside(112-x)+cS*heaviside(x-

526))*exp(-d*x)+Tinf” (write your ts and te values in place of 112 and 526 

seconds). 

• Adjust the start point, lower and upper bounds. 

• If the fit is not good, change the start points or bounds. 

• Apply the fitting, and see the results. 

 

Calculate latent heat and solid fraction. 

• Type the parameters from curve fitting output to the command script.  

• Run the command script.  
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CHAPTER 5 

 

 

RESULTS AND DISCUSSION 

 

 

 
5.1 Experiments and Methods Used in this Study 

 

Twelve experiments were conducted with 4 different types of pure metals in order to 

evaluate the reliability of the thermal analysis methods, which are gathered from 

literature or proposed in this study. The types of metal used are aluminum, lead, tin and 

zinc. Some of the experiments were manipulated into different insulation conditions. 

Table 5.1 shows the list of the experiments with their explanations. 

 

 

Table 5.1: List of experiments and their explanations. 

 

Experiment Metal Explanation 

Al 1 

Aluminum 

Resin-coated sand cup without insulation 

Al 2 
Resin-coated sand cup insulated lower base 

Al 3 

Pb 1 Lead 

Resin-coated sand cup insulated lower base Sn 1 

Tin 

Sn 2 

Sn 3 Resin-coated sand cup insulated from mold 

Sn 4 Clay bonded graphite crucible insulated outer surface 

Sn 5 Resin-coated sand cup insulated outer surface 

Zn 1 

Zinc Resin-coated sand cup insulated lower base Zn 2 

Zn 3 

 

All metals were poured into the sand molds (QuiK Cup [36]) except for Sn 4, in which a 

clay bonded graphite crucible was used. The first experiment (Al 1) was made without 

any insulation while the others were insulated between floor and mold. The only 

insulated metal from the mold is Sn 3. Sn 4 and 5 are insulated on the outer surface of 

the mold. To illustrate, Figures 5.1 and 5.2 show the photos of different types of 

insulation in this study.  
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                                        a)                                     b) 

 

Figure 5.1: Experiments a) without insulation, b) insulated from the base. 

 

 

        
                                          a)                                           b) 

 

 
c) 

 

Figure 5.2: Experiments a) insulated from mold, b) insulated outer surface, c) clay 

bonded graphite crucible insulated from the outside surface. 
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The thermal conditions and properties of the metals in the experiments are shown in 

Table 5.2. In the Table, Tm, TL, TS, Ti and, Ta are the melting point, liquidus 

temperature, solidus temperature, initial (pouring) temperature, and the ambient 

temperature respectively.  

 

 

 

Table 5.2: List of experiments and their thermal conditions.  

 

Experiment 
Tm 

(
0
C) 

TL (
0
C) TS (

0
C) Ti (

0
C) 

Ta (
0
C) 

Al 1 

660.0 

660 636 838 10 

Al 2 657 630 773 24 

Al 3 658 630 758 18 

Pb 1 327.4 332 294 405 31 

Sn 1 

231.8 

232 224 316 22 

Sn 2 232 214 412 23 

Sn 3 232 218 392 23 

Sn 4 233 216 339 17 

Sn 5 231 217 468 26 

Zn 1 

419.5 

418 399 594 22 

Zn 2 418 401 551 23 

Zn 3 409 366 602 25 

 

 

These 12 experiments were applied for three different thermal analysis methods, 

discussed earlier. Each method has its own zero curve (baseline) expression and curve 

fitting function. These methods are summarized in Table 5.3 in terms of their zero 

curve, which serves a baseline for the solidification process. Newtonian baseline (NTA) 

and Dynamic baseline (DBL) methods were explained in Chapter 1, while two-

capacitive system baseline (TCSBL) was discovered in Chapter 3, which is a suggestion 

for thermal analysis of the experiments in which high-thermal-capacity molds are used.  
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Table 5.3: List of the methods used in this study. Zero curves and the function for curve 

fitting.  

 

 

Curve fitting function 

(parameters of zero curve is 

calculated from fitting this function 

to the experimental data set) 

Definition of zero curve 

(The equations that zero curves 

are calculated by using the data 

and thermal parameters ) 

Newtonian 

baseline 

(NBL) 

bt
aeT

−
=&  

bt
zc aeT

−
=&  

Dynamic 

baseline 

(DBL) 
43

2
2

3
1 pTpTpTpT +++=&  43

2
2

3
1zc pTpTpTpT +++=&

 

Two-

Capacitive 

system 

baseline 

(TCSBL) 

( )

( ) ∞

−

−

+−+−

+−+−=

Te)tt(c)tt(c

e)tt(a)tt(aT

dt
sles

bt
sles

θθ

θθ
 

dte)TT(epp

)TT(pT

t

0

tptp

32

1zc

44 ∫ ∞

−

∞

−

+−−=&

 

 

 

 

5.2 Results of Latent Heat 

 

From the three methods in Table 5.3, latent heat per specific heat values of each pure 

metal were calculated for the 12 experiments in Table 5.1. The results are summarized 

in Table 5.7, and the curve fitting results are shown in Tables 5.4-5.6. 

 

 

Table 5.4: Curve fitting parameters of NBL.  

 

  b (x10
-3

) a R
2 

Al1 -4.38 -4.38 0.846 

Al2 -2.68 -1.92 0.699 

Al3 -4.48 -2.84 0.856 

Pb1 -5.91 -2.23 0.885 

Sn1 -4.10 -1.85 0.922 

Sn2 -2.33 -1.06 0.920 

Sn3 -0.915 -0.534 0.946 

Sn4 -4.32 -2.22 0.815 

Sn5 -25.6 -5.83 0.974 

Zn1 -2.14 -1.33 0.914 

Zn2 -2.35 -1.67 0.887 

Zn3 -2.22 -1.55 0.889 
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Table 5.5: Curve fitting parameters of DBL.  

 

 p1 (10
-7

) p2 (10
-4

) p3 p4 R
2 

Al1 -3.30 4.91 -0.242 39.16 0.985 

Al2 -6.43 10.1 -0.530 91.83 0.984 

Al3 -2.34 3.22 -0.146 21.54 0.792 

Pb1 -22.9 16.5 -0.398 31.67 0.993 

Sn1 -153 90.5 -1.785 117.20 0.953 

Sn2 -2.45 0.873 -0.010 0.28 0.997 

Sn3 0.255 -0.254 0.005 -0.35 0.999 

Sn4 -94.4 54.2 -1.034 65.40 0.963 

Sn5 -4.63 1.78 -0.023 0.89 0.983 

Zn1 -2.01 1.86 -0.058 5.94 0.999 

Zn2 -2.47 2.20 -0.066 6.29 0.993 

Zn3 -0.608 0.362 -0.007 0.26 0.983 

 

 

 

 

 

Table 5.6: Curve fitting parameters of TCSBL.  

 

 b x(10
-3

) d (x10
-2

) al as cl cs (x10
2
) T∞∞∞∞ R

2 

Al1 3.02 3.55 235 592 175 3800 413 1.000 

Al2 2.51 3.85 287 573 208 1.81 354 1.000 

Al3 2.81 7.64 287 536 228 954 368 0.999 

Pb1 5.94 12.0 196 321 172 21800 145 0.999 

Sn1 2.57 4.09 118 315 136 82600 103 1.000 

Sn2 2.17 2.73 170 458 177 2.35 98 1.000 

Sn3 2.61 0.17 164 162 125 8.27 76 1.000 

Sn4 0.47 8.75 184 294 221 7.00 47 1.000 

Sn5 2.44 1.90 81 244 210 454 142 1.000 

Zn1 1.75 2.82 301 578 153 29700 168 1.000 

Zn2 1.44 2.70 298 553 108 17200 143 1.000 

Zn3 1.33 2.66 363 566 222 0.209 94 1.000 
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Table 5.7: Latent heat per specific heat (L/c) results of the experiments in 
0
C by thermal 

analysis methods. 

 

Exp NBL DBL TCSBL 
Literal 

average 

Al1 568.32 482.48 354.60 

349 Al2 297.85 435.51 340.50 

Al3 327.85 391.11 316.50 

Pb1 103.53 113.84 167.72 179 

Sn1 278.86 266.44 245.18 

249 

Sn2 232.73 198.74 240.29 

Sn3 216.18 214.00 248.89 

Sn4 394.68 361.33 196.57 

Sn5 251.45 191.14 217.23 

Zn1 260.44 247.27 234.37 

214 Zn2 359.23 291.36 224.02 

Zn3 289.22 210.66 202.44 

 

According to the literally averaged L/c values of metals, percentage errors of each 

experiment and methods are listed in Table 5.8. 

 

Table 5.8: Percentage errors of the latent heat per specific heat (L/c) results by thermal 

analysis methods. Experiments with asterisk were insulated by the outer surface of the 

mold. 

 

Exp NBL DBL TCSBL 

Al1 62.84 38.25 1.60 

Al2 -14.66 24.79 -2.44 

Al3 -6.06 12.07 -9.31 

Pb1 -42.16 -36.40 -6.30 

Sn1 11.99 7.00 -1.53 

Sn2 -6.53 -20.18 -3.50 

Sn3 -13.18 -14.06 0.04 

Sn4
* 58.51 45.11 -21.06 

Sn5
* 

0.98 -23.24 -12.76 

Zn1 21.70 15.55 9.52 

Zn2 67.86 36.15 4.68 

Zn3 35.15 -1.56 -5.40 

Absolute 

average  
28.47 22.86 6.51 
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In table 5.8, the last row shows the average of the absolute values of the errors for each 

type of methods. In the average, TCSBL seems the most reliable with its average 

percentage error 6.51 %. Sn4
*
 and Sn5

*
 were insulated from the outside of the mold.  

 

 

5.3 Solid Fraction Evolutions 

 

Once the latent heat is calculated by iterating the area between zero curve and cooling 

rate, solid fraction evolution can be obtained by cumulative iteration of the area. The 

solid fraction evolutions for 12 experiments by two-capacitive-system baseline 

(TCSBL) were plotted with their cooling curve, time derivative (dT/dt), and baseline. 

The results are shown in Figures 5.3-5.14.  

 

 

 

 
 

Figure 5.3: Graphs of Al 1. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

 

 

T dT/dt fs 
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Figure 5.4: Graphs of Al 2. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

 

 
 

Figure 5.5: Graphs of Al 3. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

 

T dT/dt fs 

T dT/dt fs 
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Figure 5.6: Graphs of Pb 1. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

 

 

 
 

Figure 5.7: Graphs of Sn 1. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

T dT/dt fs 

T dT/dt fs 
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Figure 5.8: Graphs of Sn 2. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

 

 

 
 

Figure 5.9: Graphs of Sn 3. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

T dT/dt fs 

T dT/dt fs 



97 

 

 
 

Figure 5.10: Graphs of Sn 4. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

 

 
 

Figure 5.11: Graphs of Sn 5. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

 

T dT/dt fs 

T dT/dt fs 
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Figure 5.12: Graphs of Zn 1. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

 

 
 

Figure 5.13: Graphs of Zn 2. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

 

T dT/dt fs 

T dT/dt fs 
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Figure 5.14: Graphs of Zn 3. ___ Temperature (T), [
0
C], --- Cooling rate (dT/dt), [

0
C/s], 

… baseline (dT/dt)zc, [
0
C/s], _._ solid fraction (fs). 

 

 

5.4 Discussion of the Results 

 

In this study, a new model, named two-capacitive-system baseline (TCSBL) was 

proposed, and it was tested for the prediction of latent heat values. The percentage errors 

of each baseline with respect to the literal latent heats are seen in table 5.8. According to 

the table, TCSBL has the most significant errors in Sn4 and Sn5 experiments, which 

were made in outside-insulated molds. In addition, a clay bonded graphite crucible was 

used in Sn4 rather than sand molds. It may be said that TCSBL gives errors that are 

more significant in outside-insulated molds then the none insulated ones. It also gives 

high errors in a graphite crucible. The reason may be the cooling rate differences 

between solid and liquid phases. When a hot melt is poured into an outside-insulated 

mold, it cools very fast at the initial stage of cooling, but its cooling rate decreases after 

solidification. This effect makes the curve fit hard. Moreover, the determination of the 

end time of solidification (te) gets hard because of low temperature rate at the end stages 

of solidification.  

 

Several correlation analyses were tried between errors and experimental conditions. 

These experimental conditions are: pouring temperature, solidification temperature 

interval, deviation from the melting point, curve fitting parameters etc. The only 

significant correlations in Sn experiments were found between the absolute values of 

percentage errors and absolute deviations of liquidus temperature from the literal 

melting point. R-square of the linear regression of the vectors in Table 5.9 is 0.81. This 

may be caused by impurities in the sample or measurement errors of thermocouples.  

T dT/dt fs 
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Table 5.9: Absolute values of percentage errors of the latent heat per specific heat (L/c) 

results by TCSBL method and deviations from the original melting temperature. 

Experiments with asterisk were insulated by the outer surface of the mold. 

 

Exp 
Measured melting  

temp. (
o
C) 

Deviation from Literal  

melting temp. (
o
C) 

L/c calculation 

Error (%) 

Sn1 231.5 0.3 1.53 

Sn2 231.0 0.8 3.50 

Sn3 232.0 0.2 0.04 

Sn4
* 233.0 1.2 21.06 

Sn5
* 

230.7 1.1 12.76 

 

Table 5.10 shows the average errors of each baseline for each type of metal. Sn 

experiments are the most reliable for each baseline, maybe, because of low melting 

point. For each metal average, TCSBL is the most reliable baseline for every metal.  

 

 

Table 5.10: Absolute values of the percentage errors of each metal in three baselines on 

the ten experiments. Outside insulated experiments (Sn4 and Sn5) are omitted. 

 

 
Al (%) Pb (%) Zn (%) Sn (%) Overall (%) 

NBL 27.85 42.16 41.57 10.57 28.21 

DBL 25.04 36.40 17.75 13.75 20.60 

TCSBL 4.45 6.30 6.53 1.69 4.43 

 

The standard deviations of the errors in three baselines on the ten experiments (except 

Sn4 and Sn5 at Table 5.8) are 35.4, 24.4, and 5.5 % for NBL, DBL, and TCSBL 

respectively. Standard deviations measures how much variation from the average 

emerges [57]. It means that the errors of TCSBL is closer than those of NBL and DBL. 

Therefore, it is the most precise model among the three baselines.   

 

The most powerful advantages of TCSBL is its accurate and precise outputs. Moreover, 

it does not require deriving the data, and so, smoothing. Since smoothing deforms the 

original data in the laboratory, it is tricky for researchers. Although smoothing seems to 

be not ethical, there is no solution for NBL and DBL, which must use derivative in their 

calculations of baselines.  

 

In view of disadvantages, TCSBL has the most complex analysis procedure of the data, 

especially for curve fitting. In a curve fit session of TCSBL, there are too many 

parameters to be computed; in addition, it contains Heaviside step function, which 

makes curve fitting more complicated. It is necessary to predict the range of the 

parameters in order to guide curve fitting. This prediction requires analysis on thermal 

resistances and dimensions of the metal-mold system.  
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CHAPTER 6 

 

 

CONCLUSIONS AND FUTURE SUGGESTIONS 

 

 

 
The main goal of this study was to produce alternative mathematical models for 

Newtonian thermal analysis by criticizing the widely used model: Newton’s law of 

cooling. The findings of the simplified experiments have showed that thermal mass of 

the mold is one of the important determinants on the calculation of latent heat. 

Therefore, it is concluded that two capacitive thermal system should be modeled in 

order to overcome the failure of NTA. The conclusions of this study are summarized 

below.  

 

1. 12 experiments made by 4 types of pure metals (aluminum, lead, tin and zinc) in 

several experimental conditions were applied to the thermal analysis methods in 

the literature. These methods are Newtonian baseline (NBL), dynamic baseline 

(DBL), and logarithmic relative temperature baseline (LRTBL). The latent heat 

calculations resulted in unsatisfactory outputs for all types of methods in 

general. The average percentage errors of these methods are 29%, %23 and %43 

respectively. The distribution of errors through each experiment is so random 

that any correlation between the types of experiment and error could not be 

found.  

 

2. Studies in the literature support the unreliability of the Newtonian baselines. 

The latent heat results are sensitively dependent to the analysis process such as 

curve fitting, data exclusion or smoothing. Assuming the same initial conditions 

for both phases is one of the possible defects of NTA. The different integration 

constants for liquid and solid phases should be taken into account when curve 

fitting is applied. Choice of the temperature interval is also important. 50 
0
C 

below or above the melting point may be preferred an ideal temperature range 

for thermal analysis. Not only the cooling rate function or differential equation 

itself, but also the cooling rate can be applied to curve fitting. However, it 

should be noticed that the ambient temperature should be free to be calculated 

by curve fitting. The real measured room temperature is a meaningless 

parameter because of the contributions coming from Taylor expansion.  

 

3. Critics in the literature show that radiative contributions, thermal capacity of the 

mold, and temperature dependent thermal properties have significant effects on 

the cooling rate. Using nonlinear (quadratic or cubic) forms of Newtonian 
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equation for baseline is not necessary. Linear form in a narrow temperature 

interval is enough to produce similar results if the effect of mold’s thermal 

capacity is blocked.  

 

4. The effect of mold’s thermal capacity may be the most significant restriction of 

Newtonian thermal analysis. In order to evaluate this effect, Two-capacitive 

system baseline (TCSBL) was proposed in this study. It is concluded that 

TCSBL is the most reliable baseline to calculate the latent heat among the 

several methods presented in the literature. Its averaged absolute error on the 12 

experiments was calculated 6.53%, which is the best value among the other 

methods.  

 

 

 

This study concerns with the latent heat and solid fraction computation of pure metals. 

However, it should be tested for different types of alloys in future researches. Moreover, 

the capacitive approach may be generalized to Fourier analysis, which assumes thermal 

gradient important. Therefore, solid fraction evolution in terms of spatial coordinates 

and time.  

 

Another suggestion is about the basic assumption of TCSBL. The unique specific heat 

for both liquid and solid phases is assumed in this study. It may be developed for phase-

dependent thermal properties in order to make detailed analysis.  
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