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ABSTRACT 

 

 

A THREE DIMENSIONAL MIXED FORMULATION NONLINEAR FRAME 

FINITE ELEMENT BASED ON HU-WASHIZU FUNCTIONAL 

 

 

Soydaş, Ozan 

Ph.D., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Afşin Sarıtaş 

 

December 2013, 172 pages 

 

 

 

A three dimensional nonlinear frame finite element is presented in this analytical 

study by utilizing Hu-Washizu principle with three fields of displacement, strain and 

stress in the variational form. Timoshenko beam theory is extended to three 

dimensions in order to derive strains from the displacement field. The finite element 

approximation for the beam uses shape functions for section forces that satisfy 

equilibrium and discontinous section deformations along the beam. Nonlinear 

analyses are performed by considering aggregation of the stress-strain relations along 

certain control sections of the element. Fiber discretization of the sections 

accompanied by adequate material model ensures coupling of the stress resultants 

axial force, shear force, bending moment about both axes and torsion accurately. 

These attributes of the mixed element relax reliance on displacement approximations 

on the control sections of the beam element that are inevitable in displacement based 

elements. As a result, the element is free from shear-locking. Authentication and 

superiority of the proposed 3d element are displayed by comparing the ability of the 

mixed element to capture nonlinear coupling of axial, shear force, bending moments 

and torsion with the results of the similar 3d displacement based elements and exact 

solutions that are readily available in the literature. Moreover, linear elastic free 
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vibration analyses of the proposed mixed element are carried out by using the 

flexibility based consistent mass matrix that is also derived in this study and it is 

pointed out that 3d mixed element has the ability of determining not only the 

fundamental vibration frequency but also higher order frequencies with a 

considerable accuracy by using only a couple of elements per member span.  

 

 

Keywords: Beam finite element, mixed formulation, Hu-Washizu variational, 

inelastic beam, axial-flexure-shear-torsion coupling, consistent mass 

matrix, vibration frequency 
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ÖZ 

 

 

HU-WASHIZU FONKSİYONELİ TEMELLİ ÜÇ BOYUTLU KARMA 

FORMÜLASYON NONLİNEER ÇERÇEVE SONLU ELEMANI 

 

 

Soydaş, Ozan 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Afşin Sarıtaş 

 

Aralık 2013, 172 sayfa 

 

 

 

Bu analitik çalışmada, varyasyonel formunda deplasman, birim şekil değiştirme ve 

gerilme olmak üzere üç alanı kullanan Hu-Washizu prensibinin matematiksel 

teorisini temel alan üç boyutlu nonlineer bir kiriş sonlu elemanı sunulmaktadır. Birim 

şekil değiştirmelerini deplasmanlardan elde etmek için Timoshenko kiriş teorisi 

üçüncü boyuta uyarlanmıştır. Kiriş için varsayılan sonlu eleman yaklaşımı, eleman 

boyunca kiriş kesitlerinin dengesini ve süreksiz kesit deformasyonlarını göz önünde 

bulunduran kesit kuvvetleri için oluşturulmuş şekil fonksiyonlarını kullanır. 

Nonlineer analiz, belirli kesitlerin gerilme-birim şekil değiştirme ilişkilerinin eleman 

boyunca toplanmasıyla yapılır. Uygun bir malzeme modelinin eşlik ettiği kesit 

dilimlemesi, eksenel kuvvet, kesme kuvveti, iki eksen etrafındaki eğilme momentleri 

ve burulma olmak üzere gerilme bileşkelerinin doğru olarak etkileşimine olanak 

verir. Karma elemanın belirtilen bu özellikleri, deplasman temelli elemanların aksine 

eleman boyunca belirli kesitlerde deplasman değerlerine olan ihtiyacı ortadan 

kaldırır. Sonuç olarak, eleman kesme kilitlenmesi yaşamaz. Önerilmekte olan 3b 

elemanın doğrulaması ve üstünlüğü, karma formülasyon elemanın nonlineer eksenel, 

kesme kuvveti, burkulma momentleri ve burulma etkileşimini yakalamadaki 

yeteneğini benzer 3b deplasman temelli ve literatürde halihazırda bulunan kesin 

çözümlerle karşılaştırmak suretiyle gösterilmektedir. Bunun yanında, önerilmekte 
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olan karma elemanın lineer elastik serbest titreşim analizleri, türetimi bu çalışmada 

ayrıca yapılan esneklik temelli tutarlı kütle matrisi kullanılarak yapılmakta ve 3b 

karma formülasyon elemanın sadece temel titreşim frekansını değil yüksek dereceli 

titreşim frekanslarını da kiriş açıklığı boyunca sadece birkaç eleman kullanarak 

kayda değer bir doğrulukla tespit edebildiği gösterilmektedir.  

 

 

Anahtar Kelimeler: Kiriş sonlu elemanı, karma formülasyon, Hu-Washizu 

varyasyoneli, elastik ötesi kiriş, eksenel-eğilme-kesme-

burulma etkileşimi, tutarlı kütle matrisi, titreşim frekansı 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1. GENERAL 

 

There are numerous methods of analysis in the literature utilized in the field of 

structural analysis. These methods extend in a wide range and are named roughly as 

macroscopic and microscopic depending on the simplicity and accuracy of the 

method. Macroscopic methods are simpler than microscopic methods but do not 

offer the accuracy that the latter one provides.  

 

The decision of method that will be used in the analysis of structures should be made 

carefully so as not to use more accurate and time consuming methods for the analysis 

of simple cases unnecessarily or vice versa. Briefly, the choice of the method of 

analysis is case-specific. 

 

The finite element method is a microscopic method which is utilized mostly in the 

linear and nonlinear static and dynamic analysis of structures both in local (element) 

and global (structure) level. Since the method is microscopic, it has some complexity 

due to its nature. In this method, analyses are performed by dividing the geometry of 

the system analyzed into smaller elements.  

 

There are countless finite elements developed for linear and nonlinear static and 

dynamic analysis of structures like truss, beam, plate, brick elements and etc. Type of 
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element that is used in the finite element analysis is also case-specific and selection 

of the proper element is important at least as the method of analysis.  

 

For example, truss elements can only carry loads that are parallel to their axis and 

because of this reason they deform only axially. Therefore, they are solely suitable 

for modeling of structures where forces other than axial force are not the primary 

concern. However, it is also possible to model the structures that are composed of 

truss elements with three dimensional (3d) solid elements and obtain the same results 

that are obtained by using truss elements. But, with this choice, the duration for the 

finite element analysis and the capactiy needed to store the analysis data will increase 

in a considerable amount that will result in an unnecessary effort. 

 

Therefore, suitable finite elements that combines the simplicity and accuracy needed 

from an analysis and still successful in capturing the true behavior of a structural 

system especially for nonlinear static and dynamic analysis should be developed.  

 

Beams are good options for developing such kind of elements since a beam is a 

primitive structural member whose dimension parallel to its axis is such long that it 

is incomparable with its cross-sectional dimensions but yet capable of carrying 

transverse loads perpendicular to its axis and bending moments at the same time. 

Moreover, beam elements are frequently used in daily life in modeling structures or 

their components such as bridge supports, pipelines, crane booms, wind turbine or 

antenna towers. 

  

Although there exists numerous 3d beam finite elements, there is a lack of adequate 

elements that has the ability of modeling coupling of forces and vibration 

characteristics in three dimensions truly in the literature. This ensures the motivation 

of developing a 3d beam element that is especially efficient in nonlinear static and 
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dynamic analysis and superior to other 3d beam elements in the literature both in 

accuracy and robustness. 

 

 

1.2. OBJECTIVE AND SCOPE 

 

The objective of this study is to present the work done to generate a three 

dimensional mixed formulation frame finite element that can be used confidently in 

linear and nonlinear static or dynamic analyses of frame systems and show that the 

proposed 3d mixed element is better by means of accuracy and robustness than other 

3d elements available in the literature.  

 

The proposed 3d mixed formulation beam element is developed by using the three 

field Hu-Washizu functional and can consider the 3d coupling between axial force, 

shear force, bending moments and torsion. Three fields utilized in the formulation 

are displacement, stress and strain. Force interpolation functions are used for section 

forces that satisfy equilibrium and discontinous section deformations along the beam. 

Nonlinear analyses are carried out by taking integral of stress-strain relations along 

limited number of preselected control sections. The formulation of the element cuts 

out the need for approximating displacements for each control sections along the 

beam. Displacement values at the nodes are enough for performing analysis. 

Resulting mixed element is free from shear locking. Superiority of the proposed 

element is highlighted by comparing it with other 3d elements in the literature and 

elements in a finite element program under nonlinear loading. 

 

Another novelty presented in this study is the derivation of force based mass matrix 

which is compatible with the force based stiffness matrix. The advantage of using 

force based mass matrix in the free vibration analysis is displayed by comparing the 
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frequency values obtained by the proposed 3d mixed element with the frequency 

values obtained by explicit methods and as a result of modal analysis by a finite 

element analysis software for members that have different uniformity and various 

cross sections.  

  

There are seven chapters in this thesis. The first chapter is an introductory chapter 

that summarizes the objective and scope of the thesis. Second chapter presents the 

literature survey on the finite element method, nonlinear analysis of mixed beam 

elements and vibration characteristics of beams. Derivation of the three dimensional 

mixed formulation frame finite element is carried out in the third chapter. The 

robustness and superiority of the proposed 3d mixed element are investigated for 

nonlinear loading in the fourth chapter through numerical comparisons. Derivation of 

the three dimensional consistent mass matrix obtained by both displacement and 

force based approaches are given in the fifth chapter emphasizing the advantages of 

the latter in the sixth chapter by numerical comparisons of the free vibration 

frequencies of various uniform and tapered cantilever beams with circular and 

rectangular cross sections. Conclusions are summarized in the last chapter which is 

the seventh chapter.   
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CHAPTER 2  

 

 

LITERATURE SURVEY 

 

 

2.1. INTRODUCTION TO THE FINITE ELEMENTS 

 

Finite element analysis is used commonly in many fields of engineering analysis. 

The ability of the finite element method in offering approximate solutions for real 

systems even for the cases where differential equations of the physical system are 

difficult or impossible to establish made the method to be in great request. 

Developments in finite element procedures and computational mechanics have given 

rise to the popularity of the method. Although the development of the finite element 

method can be traced back to early 1940’s, the name “finite element” was used firstly 

in the paper by Clough [1].  

 

In the finite element method, mathematical model of the physical problem is 

generated with some assumptions on geometry, kinematics, material law, loading, 

boundary conditions and etc. The problem is solved approximately by dividing the 

mathematical model into numerous finite elements and using the assumptions. As a 

result the unknown state variables are obtained and can be used to determine the 

element response. Refinement of analysis can be usually made by increasing the 

number of finite elements if needed. Shortly, the method is a back and forth 

induction and deduction procedure.  

 

Finite element method presents only a mathematical model and solution is correct as 

much as the correctness of the mathematical model. That means, one can not take 

much from the results of the finite element method than it is given for the 
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mathematical model. So it is important to form the mathematical model that is very 

close to the real case to obtain reasonable results. 

 

It is impossible for a mathematical model to anticipate the actual physical situation 

exactly. Therefore, mathematical models should be reliable and capable of predicting 

the behavior as accurate as they can. As a result of this fact, there are two basic types 

of procedures that are used according to the needs of the performer, called 

“displacement based finite element method” and “mixed formulation finite element 

method”.  In the subsequent sections of this chapter the basic concepts related with 

these two methods are discussed.   

 

2.1.1. Finite Element Method 

 

There are two main types of mathematical models named as discrete system (also 

known as lumped parameter system) and continuous system. In a discrete system the 

response is anticipated by solution of the equilibrium equations directly for the 

unknown state variables.  The actual system must be in such a state that the model 

can be generated easily with a finite number of state variables.  A continuous-system 

mathematical model is the one that uses differential elements for obtaining 

differential equations that express the element equilibrium requirements, constitutive 

relations and element interconnectivity requirements [2]. Differentials of the state 

variables are used in the continuous system. Boundary conditions and initial 

conditions in case of dynamic analysis are met throughout the system. Direct and 

variational methods can be used in the solution of both discrete and continuous 

systems.  

 

The variational method forms basis for the finite element method and is superior to 

the discrete method because the equilibrium equations can be generated in a more 

systematic manner by meeting the boundary conditions at the same time. However, 
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due to the automatic nature of the variational method, there is a possibility of 

oversight of the actual physical situation. 

 

In the variational method the aim is to investigate the total potential,   of the system. 

  is a functional of differentials for which the stationarity is invoked with respect to 

the unknown state variables by taking the first variation of it (    ). Since the 

resulting expression includes integrals and derivatives, some manipulations are made 

on    to find a weaker form rather than the “strong form” of the differential to carry 

out more easily the numerical calculations on the “weak form”. Throughout the 

solution, the essential boundary condition (also known as Dirichlet or geometric 

boundary condition) and natural boundary condition (also known as Neumann or 

force boundary condition) are utilized.   

 

Variational method has some advantages. Once the functional is formed, it can be 

used not only for a specific case but also for the similar problems. The functional 

contains scalar quantities rather than vectorial quantities which facilitate numerical 

calculations. In variational method, it is possible to obtain both exact and 

approximate solutions depending on the complexity of the problem. Additionally, 

shape functions can be used in functionals instead of the state variables to be 

determined. Weighted residual method and Ritz Method use these shape functions in 

approximate solution of the system.  

 

In weighted residual method, a residual that is formed by approximate state variables 

of the differential is forced to be minimum in a weighted average sense by meeting 

the boundary conditions at the same time and a coefficient matrix of the constants of 

the approximate solution are obtained. Galerkin, least square, collocation and 

subdomain methods are all weighted residual methods that differ only in 

minimization of the residual and determination of the constants. However, the logic 

is the same for all. A symmetric coefficient matrix is always obtained in the least 
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squares method and a symmetric coefficient matrix is generally derived in the 

Galerkin method depending on the variational form whereas in the collocation and 

subdomain methods non-symmetric shape functions can be attained [2]. This is why 

Galerkin and least squares methods are used more frequently compared to others. 

 

The difference of Ritz method from weighted methods is that it directly minimizes 

the functional,   instead of the residual and should satisfy only the essential 

boundary conditions. Actually the Ritz method is a special case of the weighted 

residual method. 

 

The common property of all the mentioned methods in the previous paragraphs is 

that they can all be used in both linear and nonlinear analysis. More detailed 

information and derivations related with the variational, weighted residual and the 

Ritz methods can be found in [3], [2], [4], [5] and [6]. 

 

Actually all the previously mentioned methods and analysis tools are different forms 

of virtual displacements and/or minimum total energy principle. They are general 

methods used for the analysis of solids and structures. Finite difference method is 

also an option for the analysis. In that case the derivatives in the functional of the 

variational method are approximated by the various finite divided differences and the 

solution is carried out accordingly.  

 

In the subsequent sections, the application of the methods mentioned in this section 

is explained in two types of finite element analysis methods called “displacement 

based” and “force based” (also known as mixed formulation), respectively for linear 

static case by giving much importance to the latter since it comprises main scope of 

the thesis. The methods are also applicable to the dynamic and/or nonlinear case 

since they are an extension of the linear case.  
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2.1.2. Displacement Based Finite Element Analysis 

 

As the name calls displacement based finite element analysis is the method of 

structural analysis that uses displacements as the state variables to be determined by 

utilizing the loading conditions, constitutive models (also known as material 

models), geometry, boundary conditions, and etc. The determined state variables are 

then used to designate other unknown properties of the system like internal forces 

and stresses. Since the procedure is straightforward and easy to computerize by just 

using the geometric coordinates and material properties of the structural system, 

displacement based finite element analysis has been adopted widely over the world 

for the analysis of solids and structures.   

 

The theory behind the displacement based finite element analysis is the principle of 

virtual displacements (also known as the principal of virtual work). The theory states 

that if a virtual small displacement is applied to a system in equilibrium, the total 

internal virtual work done should be equal to the external virtual work done. Internal 

virtual work done is due to the strain energy whereas the external work done might 

be due to combination of body forces (  ), traction forces (  ) or the concentrated 

loads (  ) on the surface. 

       

 

         

 

             
 
      

  

 

(2.1) 

 

Where    corresponds to the virtual strains,    are the virtual displacements and   are 

the stresses that are in equilibrium with the external loads. The integrals are taken in 

the volume,   for the body forces; throughout the surface,   for tractions. According 

to Equation (2.1) if the principle of virtual displacements are satisfied for all 
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admissible virtual displacements, then three basic requirements of mechanics; 

equilibrium, compatibility and constitutive relations are also satisfied [2]. There are 

numerous references in the literature for the constitutive relations [7], [8] and etc.  

 

Actually Equation (2.1) can be written for all the elements considered in the 

mathematical model of the actual system. In this case, instead of the integral the 

expression will necessitate summation symbols in order to assemble each element. 

Instead of the virtual displacements the nodal displacements of the elements and 

shape functions are utilized. As a result of the assembly procedure of the element 

equations the expression will take the well known form; 

     (2.2) 

and 

           (2.3) 

Where   is the stiffness matrix,   is the unknown displacement vector comprised of 

nodal degrees of freedom, and   ,    and    are the body, surface and concentrated 

force vectors of the system, respectively. 

 

The system of matrix equations in Equation (2.2) is solved and the unknown 

displacements are obtained. Then, other unknown quantities are determined by using 

the displacement values.  

 

Above expressions are for the static case. The dynamic case can also easily be 

concerned by incorporation of the mass matrix to the Equation (2.2) and neglecting 

the damping as follows;  
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         (2.4) 

 

Since the dynamic case is a combination of static cases, then the above expression 

can be solved similar to the static case though the expression includes time 

dependent matrices. 

 

No matter the type of analysis is linear or nonlinear, nodal point and element 

equilibrium is always satisfied in displacement based finite element analysis 

although the differential equilibrium is not. Hence, the stress-strain relationship, the 

strain-displacement conditions and the displacement boundary conditions are 

satisfied exactly [2]. Besides, the element nodal forces and externally applied load 

vectors are in equilibrium at any time. Briefly displacement based finite element 

analysis concerns only with equilibrium conditions related with displacements. The 

shortcoming of violating the differential equilibrium is that the force boundary 

conditions are usually not satisfied and this results in the miscalculation of internal 

stresses. Because the continuity of the derivatives in differentials is not paid attention 

in generating the displacement based finite elements. Although this effect can be 

lessened by using a finer mesh or higher order shape functions in the analysis, it 

causes an increase in the analysis duration and necessitates a larger storage capacity.  

 

Besides the stated deficiencies and as a result of them, displacement based finite 

element analysis is insufficient most of the time in plate/shell and incompressible 

media analysis. Therefore, attention was given to the research on new type of 

element formulation that will be used especially in the analysis of shells and 

incompressible media. This is the reason for why the research on mixed formulation 

finite element analysis has emerged. 
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2.1.3. Mixed Formulation Finite Element Analysis 

 

Mixed formulation finite elements make use of not only the displacements as 

unknown state variables but also the strains and/or stresses in the formulation of the 

variational form of the principle of stationary of total potential energy. Mixed 

formulation finite element is also called as force based finite element in some of the 

literature due to the fact that not only displacements are independent but also the 

element forces or stresses, as well.    

 

The general form of the solution for mixed formulation is known as the Hu-Washizu 

variational formulation [9] and it is nothing but the manipulation of the principle of 

virtual displacements that incorporates the strains, stresses and surface tractions into 

the variations. By this way a more general form is constituted for the analysis of 

solids and structures as follows; 

       

 

         

 

                       

  

 

(2.5) 

               

 

     
          

 

   
       

 

 

Where the symbol   designates the variational,    stands for the differential operator 

on   and the vector    symbolizes the prescribed displacements. Other variables are 

the same as the ones in Equation (2.1).  

 

With this expression, the constitutive relation, the compatibility and the equilibrium 

conditions are satisfied in a weak fashion for the volume of the body for each 

variational element and the applied surface tractions and reactions are equilibrated 
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with the stresses for the surface of the body. This nature of the mixed formulation 

makes it flexible to work with different finite elements and enables derivation of 

mixed formulation variationals that use combination of displacement, strain and 

stress. The variational is named two-field (displacement and stress) or three-field 

(displacement, stress and strain) according to the number of state variables used in 

the formulation.  

 

The advantage of using mixed elements becomes perceptible when dealing with 

beams, shells or plates that are under the problem of locking due to shear. In a 

displacement based element the displacements found in the analysis may be smaller 

than the actual case due to locking. However, mixed based elements can eliminate 

that locking problem. Similar situation is observed in the incompressible media but 

in that case the erroneous variables are not the displacements but the pressures [2]. 

 

2.1.4. Comparison of Displacement Based and Mixed Finite Elements 

 

Displacement based and mixed formulation finite elements have both advantages and 

disadvantages that necessitates the usage of them specifically to the type of analysis 

and the accuracy needed. 

 

Displacement based method is easy to implement into the computer analysis. 

Because, the geometric coordinates of the domain that meshing is applied and the 

material properties of the system analyzed suffice to carry out the analysis. Besides, 

it is the preliminary type of finite element analysis and there are numerous studies 

related with both the theory and its implementation to computers. Therefore, most of 

the available commercial analysis programs are designed to perform analysis by 

displacement based elements which make them widely accessible. However, 

displacement based methods sometimes lack the accuracy needed for the analysis of 
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incompressible media and/or shells and plates. In that case, mixed finite elements are 

good options.  

 

Mixed formulation finite elements are more robust and accurate for the elastic and 

inelastic analysis of beams. They provide more accurate results with fewer elements 

per member when material nonlinearities are considered. They are better than 

displacement based methods in the determination of internal stresses. Less number of 

elements is enough in mixed elements to determine internal stresses with sufficient 

accuracy. A disadvantage of mixed finite elements compared to displacements based 

elements may be the increased complexity of formulation and implementation. 

 

No matter the type of formulation is displacement based or mixed formulation, both 

methods are subject to inaccuracies due to the nature of the finite element analysis. 

The errors may be because of appoximate discretization of the geometry, numerical 

integration of the expressions, evaluation of constitutive relations, solution of 

dynamic equilibrium equations, solution of equations by iteration and rounding off 

[2]. 

 

 

2.2. STATIC NONLINEAR ANALYSIS OF MIXED FORMULATION 

BEAM FINITE ELEMENTS 

 

A beam element can be simply defined as a line on which all structural properties are 

condensed and this peculiarity of it facilitates analysis of systems composed of beam 

elements. However, the assumption of condensation of structural properties from 

three dimensions to one dimension may take away the accuracy needed for nonlinear 

analysis of important types of structural systems like pier of a deck or load carrying 

skeleton of a frame building under severe earthquake loading unless the properties in 

three dimensions are conserved. Therefore, beam finite elements that are capable of 
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embodying axial, bending, shear and torsion effects with a considerable accuracy are 

needed to be developed for nonlinear analyses. 

 

Material nonlinearity of beams can be modeled by assuming concentrated or 

distributed inelasticity on the beam element. Concentrated inelasticity necessitates 

utilization of hinges that lump nonlinearity at each end of the beam whereas in order 

to capture distributed inelasticity, control sections composed of plenty of fibers that 

are necessary for defining material constitutive relations are used for the 

accumulation of distributed nonlinearity along the beam element. An important 

drawback of the utilization of strain components that are perpendicular to the control 

sections of the beam in distributed inelasticity is the inability to capture coupling of 

section forces unless a suitable element that eliminates this problem is not benefited 

from.   

 

There are two main methods called displacement based (stiffness) and force based 

(flexibility) approaches in deriving frame elements, where the latter approach also 

falls into the category of mixed finite element method. Fields necessary for the 

determination of shape functions differ and help distinguishing two approaches from 

each other. However, fiber discretization of control sections and integration of 

sectional properties along the beam element is common for performing analysis with 

each approach. 

 

Continuity of differential equations is violated in displacement based elements. 

Therefore, assumed shape functions utilized for the interpolation of displacement 

field along the beam element is only capable of ensuring the element equilibrium at 

the nodes. As a result of the violation of continuity requirement, in order to obtain 

reasonable values for section forces number of nodes per element (order of shape 

functions) or the number of elements should be increased which will result in 

increased computational effort. Moreover, this nature of the displacement based 
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elements may cause shear-locking in thin beam limit; although reduced integration 

methods can solve that phenomena to some extent, it cannot eliminate the accuracy 

problem completely. Hughes et al. [10] offered a reduced integration two-node 

element, for which integration of shear terms are performed with interpolation 

functions having order less than the order of shape functions for bending, required 

the use of at least two elements per span to obtain reasonable results. Yokoyama [11] 

presented a Timoshenko beam element with reduced integration, which has four 

nodes and two degrees of freedom (dofs) per node. Although Yokoyama’s proposed 

element was able to eliminate shear locking, accuracy under linear elastic response 

was still in question with the use of single element discretization per span. A 

consistent interpolation element with three nodes in total was proposed by Reddy [3]. 

This element had two nodes at the ends with two dofs each and a middle node with 

only the transverse deflection as dof. Although this element solved the locking 

problem, it still necessitated the use of several elements per span under linear elastic 

conditions. Both locking and accuracy problems of displacement based elements 

were solved by the element proposed by Friedman and Kosmatka [12], where the 

element had two end nodes and was formulated in 2d by using Hamilton’s principle 

and cubic and quadratic Lagrangian shape functions for transverse and rotational 

displacements. The shape functions in that study were made independent by 

requiring them to satisfy the two homogenous differential equations associated with 

Timoshenko’s beam theory, and the shape functions thus contain sectional geometric 

properties unlike the standard finite element shape functions that are dimensionless. 

With this element, the response of a uniform prismatic beam under linear elastic 

conditions was accurately modeled through single element discretization per span. It 

should also be mentioned that the resulting element stiffness matrix with the use of 

these shape functions were earlier presented by Przemieniecki [13], where the 

stiffness matrix in the latter study was derived through integration of differential 

equilibrium equations under linear elastic material response. The beam finite element 

developed by Friedman and Kosmatka was later used by Mazars et al. [14] for the 

nonlinear analysis and capacity assessment of reinforced concrete columns and 

slender walls, where the effect of shear force and torsion was assumed to be 
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uncoupled. In a recent study, Triantafyllou and Koumousis [15] developed a locking-

free 2d displacement based beam finite element, where the shape functions were 

derived under linear elastic material behavior similar to the effort presented by 

Friedman and Kosmatka [12]. The beam element proposed in that study was used to 

analyze structural members where shear effects were significant under nonlinear 

material response. 

 

Last two decades witnessed the rise of mixed beam finite elements due to the 

computational issues faced with displacement based elements. In mixed finite 

elements, independent stress and strain fields are utilized in addition to the 

displacement field in the variational form of the element, thereby relaxing the strong 

satisfaction of the problem solution statements faced in the displacement based 

elements derived from minimum potential energy principle (Table 2.1, where 

meaning of the symbols are given in the derivation of the proposed beam element 

later in this thesis).  

 

 

Table 2.1. Strong and weak satisfaction of parameters in variational principles 

Varied 

Fields 

Functional 

Name 

Strong 

Satisfaction 
Weak Satisfaction 

  
Potential 

Energy 

      in    

       in    

     on     

 

          in    

     on    

 

    
Hellinger-

Reissner 

      in    

     on    

          in    

       in    

     on    

      Hu-Washizu - 

          in    

      in    

       in    

     on    

     on    
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Mixed elements are advantageous compared to displacement based elements since 

they do not need to cope with shear or membrane locking, and they yield accurate 

results with lesser number of elements under nonlinear conditions [16]. In a recent 

study by Saritas and Soydas [17], the accuracy and robustness of the mixed finite 

elements compared to the displacement based elements were presented in detail with 

examples. 

 

The keystone and highly cited study in the development and use of mixed beam 

finite elements under nonlinear conditions is the paper by Spacone et al. [18]. In that 

study, Hellinger-Reissner principle was used in the derivation of an Euler-Bernoulli 

beam finite element for the analysis and capacity assessment of reinforced concrete 

columns; thus only axial force and bending moment interaction was considered. 

Souza [19] presented a 3d Euler-Bernoulli beam element through the use of 

Hellinger-Reissner principle, where moderate displacements were taken into account 

along element length and large displacements and rotations at the nodes were 

considered through corotational formulation [20]. Nukala and White [21] developed 

a 3d Euler-Bernoulli beam finite element based on Hellinger-Reissner variational 

principle for nonlinear analysis of steel frames having open-walled cross-section by 

including finite rotations and warping of the cross-section due to torsion. In that 

study, nonlinear material behavior was obtained by a decoupled response of axial 

stress and shear stress through the use of a two-space Von Mises constitutive 

relation, where the element cross-section included the axial stress due to axial force, 

biaxial bending and bimoment, and the shear stress due to uniform torsion only, thus 

shear force effect was neglected. 

 

A two dimensional Timoshenko mixed beam element free from shear-locking 

formed by the utilization of the three-field Hu-Washizu variational was proposed by 

Taylor et al. [16] by assuming the effect of shear is linear elastic and uncoupled from 
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axial force and bending moment. In a successor study, Saritas and Filippou [22] 

developed a 2d mixed element that considers the interaction of axial force, shear 

force and moment, where the reliability of the element with regards to experimental 

data was verified with steel shear link elements [23] and reinforced concrete 

members [24]. 

 

Recently, Papachristidis et al. [25] proposed a 3d Timoshenko mixed element for the 

capacity assessment of frame structures under high shear based on natural mode 

method [26] that incorporates axial force, shear force, bending moment and torsion 

to the element formulation. However, in that study the interaction between internal 

forces for the 3d beam element was not demonstrated. Furthermore, Wackerfuss and 

Gruttman [27] developed a three dimensional frame element by using Hu-Washizu 

variational for beams with arbitrary cross-section and nonlinear behavior was 

modeled by defining additional deformation modes for warping and deformations in 

the transverse direction of each node of the element. Verification studies in the latter 

paper comprised mostly of linear material and nonlinear geometric responses of 

members and thus did not provide verification of the nonlinear interaction between 

3d sectional forces present in the element. 

 

In this thesis, three field Hu-Washizu variational principle is used to develop a 3d 

Timoshenko mixed beam finite element that considers the interaction of axial force, 

shear force, biaxial bending moments and torsion through monitoring of responses 

over several control sections along element length and with the fiber discretization of 

the section. Shape functions that satisfy equilibrium and discontinuous strains are 

used for section resultants for the finite element approximation. This nature of the 

element eliminates the necessity of displacement interpolations along the element 

length except at the nodes. Nonlinear interaction between normal and shearing 

stresses is achieved with the use of an inelastic 3d material model. Nonlinear 

analyses of uniform or tapered members with solid and hollow circular sections are 

performed and the proposed 3d Timoshenko mixed element is compared with various 
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3d frame elements under nonlinear conditions, as well as with closed form solutions 

available in the literature. It is observed that the most significant advantage of the 

proposed beam element is its high accuracy through the use of single element 

discretization per span thereby reducing the computational burden of the extra fields 

necessary in the formulation of the mixed finite elements and furthermore the 

element can also accurately simulate the linear and nonlinear responses of tapered 

members without the need for the derivation of new shape functions. 

 

As a part of the research study conducted in this thesis, Soydas and Saritas [28] 

recently published a paper that presented the 3d mixed formulation beam element 

based on Hu-Washizu functional. 

 

 

2.3. VIBRATION CHARACTERISTICS OF BEAMS 

 

Lumped or consistent mass matrices are used in dynamic analyses that are carried out 

by using finite element method. Although it is preferred to use lumped matrices for 

dynamic analyses of residential buildings under earthquake vibrations due to its 

practicality, it is important and necessary to use consistent mass matrices for special 

engineering structures like chimneys, towers of wind turbines, nuclear power plants, 

dams, etc. in order to obtain more accurate results. 

 

There are countless studies regarding the determination of free vibration frequencies 

of structural elements and the development of methods to perform vibration analyses. 

As the abundance and variety of studies on aforementioned subjects are concerned, 

only the literature survey related with vibration characteristics of beam elements is 

presented in this section in order to be compatible with the objective and scope of 

this thesis. 
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Timoshenko indicated in two consecutive studies that the shear correction is more 

important than rotary inertia and both of them become unimportant if the wave-

length of the transverse vibrations is large compared to the dimensions of the section. 

Additionally, the value of shear correction increases with a decrease in the wave-

length [29, 30]. According to Cook et al. [31], the effects of inertia can be neglected 

if the frequency of the excitation the structure is exposed to is less than 

approximately one-third of the structure's lowest natural frequency of vibration. 

Besides, Chopra [32] stated that shear deformation and rotary inertia are important 

for higher vibration frequencies rather than fundamental natural frequency. 

 

The study by Huang [33] showed the effect of shear deformation and rotary inertia 

on a cantilever beam by using a solution scheme for two complete differential 

equations in total deflection and slope. Huang and Kung [34] presented new tables of 

eigenfunctions that embody normal modes of vibration of Timoshenko beam for a 

cantilever beam. Cheng [35] also investigated the effect of rotary inertia and shear 

deformation on the eigenvalues of structural vibrations by comparing various Euler-

Bernoulli and Timoshenko beams. Besides considering the same effects, Tessler and 

Dong [36] used consistent mass matrices in their study and presented vibration 

frequencies for uniform hinged beams.  

 

Grant [37] studied the effect of rotary inertia and shear deformation on the frequency 

of uniform beams carrying a concentrated mass at an arbitrary location on the beam 

element. Swaminadham and Michael [38] derived the frequency equation for a 

cantilever beam with a heavy mass at the free end. In another study by To [39], 

natural frequencies of a cantilever beam with a tip mass attached to the free node and 

exposed to base excitation were calculated by reckoning the gap between the centre 

of gravity of the mass and the point where it was attached. The study that considered 
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the variation of thickness of the cross section of a cantilever member which had a 

concentrated mass at the free end belonged to Rossi et al. [40].  

 

Leissa and So [41] developed a method of 3d analysis for the free vibration analysis 

of solid circular cylinders of elastic material and obtained accurate frequencies even 

for higher vibration modes for beams that had different boundary conditions. They 

also compared the frequencies with the frequencies obtained from known elementary 

and improved 1d theories. 

 

There are numerous studies that include 2d and 3d consistent mass matrices for 

elements with uniform cross-sections obtained by displacement based approaches 

[12, 13, 42, 43]. As explained in the study of Molins et al. [44], it is also possible to 

use flexibility-based approach and come up with the same consistent mass matrix for 

a straight beam with uniform cross section obtained by displacement based approach.  

 

In this thesis, not only a 3d mixed beam element but also a consistent mass matrix is 

derived by using flexibility based approach and the flexibility based consistent mass 

matrix is used for the determination of higher order free vibration frequencies of the 

proposed 3d mixed element in the following chapters. 
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CHAPTER 3  

 

 

FORMULATION OF THREE DIMENSIONAL MIXED ELEMENT 

 

 

3.1. INTRODUCTION 

 

In this chapter the derivation of a three dimensional mixed formulation beam finite 

element is presented by using three-field variational form. Shape functions are used 

for the finite element approximation of the beam section forces that satisfy 

equilibrium in the undeformed configuration. The presented formulation eliminates 

the necessity of displacement variables for sections along element length except the 

nodal displacements. 

 

 

3.2. COORDINATE SYSTEMS AND TRANSFORMATIONS 

 

3.2.1. Basic System 

 

The coordinate system is a right-handed coordinate system both on local and global 

level. The global coordinate system has orthogonal axes as  ,   and   and the local 

coordinate system has orthogonal axes as  ,   and  . 

 

The member has two nodes that the local x-axis is oriented from the node   at the 

beginning of the member to node   at the end of the member such that y-axis is in the 

same plane with the x-axis and z-axis is perpendicular to the planes formed by x and 

y axes and z-axis points out of the x-y plane. Forces, moments, displacements and 
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rotations in the direction of positive axes are considered to be positive. An accent 

“  ” sign is used for variables in local axis to distinguish them from variables in 

global axis. Single headed arrows are used to symbolize forces and axial 

displacements whereas double headed arrows are utilized to represent moments and 

rotations about orthogonal axes hereafter. 

 

It is possible to reduce the number of element end forces that are shown with the 

letter   followed by a subscript in Figure 3.1 by replacing them with interdependent 

element end forces which are called “Basic Element Forces” by utilizing equilibrium 

equations. For each node in a member, number of degrees of freedom is 6 summing 

up to 12 for two end nodes. Therefore, in a 3d system number of element end forces 

is 12 and it is reduced to 6 by separating 6 rigid body modes and 6 deformation 

modes of displacement. 

 

 

 

Figure 3.1. Free body diagram of element end forces 
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Using force and moment equilibrium equations, following equalities can be derived 

according to the Figure 3.1; 

 

       

(3.1) 

            

           

           

            

        

 

If following equalities are assumed; 

                                       (3.2) 

Where   designates basic element forces, then the relationship between element end 

forces and basic element forces are obtained as depicted in Figure 3.2.  

 

 

 

Figure 3.2. Demonstration of basic element forces 
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The relationship between element end forces and basic element forces in matrix form 

can be denoted as follows; 

 

      (3.3) 

 

 

 
 
 
 
 
 
 
 
 

  

  

  

  

  

  

  

  

  

   

   

    

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
       
          
            
       
      
      
      
            
          
      
      
       

 
 
 
 
 
 
 
 
 
 
 

 

  
 

  

  

  

  

  

   

  
 

 

 

Where   is length of the member and   is the transformation matrix.  

 

3.2.2. Section Forces (Internal Forces) 

 

It is possible to establish the relationship between basic element forces and section 

forces (internal forces of the element) by utilizing element equilibrium equations 

neglecting any traction along the member as follows; 

 

           (3.4) 
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                                     (3.5) 

 

                  (3.6) 

 

     

 
 
 
 
 
 
 
 
      

 
 

 
        

    
 

 
       

            
          
       

 
 
 
 
 
 
 

 (3.7) 

 

Where  

     : Internal or section force vector 

     : Matrix of force interpolation functions 

  : Basic element force vector 

     : Axial force in the section 

      : Moment about the z-axis  

      : Moment about the y-axis  

      : Shear force in the y direction  

      : Shear force in the z direction 

     : Torsion about longitudinal axis 

  : Length of the member 

 

Where the section forces are computed by integration of the stress values over the 

cross-section as follows; 
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(3.8) 

         

 

          

 

                  

 

 

 

Where   is the area of the section. 

 

3.2.3. Section Deformations 

 

Element deformations can be obtained by integration of the section deformations 

along the element length and given as follows; 

 

            

 

 

   (3.9) 

 

                  (3.10) 

 

                                      (3.11) 
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Where  

     : Section deformation vector 

  : Basic element deformation vector 

      : Axial deformation of reference axis 

      : Curvature about y-axis 

      : Curvature about z-axis 

      : Shear deformation (distortion angle) about y-axis 

      : Shear deformation (distortion angle) about z-axis 

     : Twist angle around longitudinal axis 

 

  is related to displacement degrees of freedom in local coordinates,    as follows; 

 

      (3.12) 

 

Where   is the transformation matrix as explained presviously and    is defined as 

follows; 

 

                                            
  (3.13) 

 

Displacement degrees of freedom in local coordinates,    are related to the global 

degrees of freedom linearly as follows; 

         (3.14) 

 

Where     demonstrates displacement degrees of freedom in global coordinates such 

that; 
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                                   (3.15) 

 

and    is rotation matrix from global to local reference system given by; 

    

       
       
       
       

  (3.16) 

Where 

               (3.17) 

 

Where    denotes the unit vector in the direction of the   axis formed by the 

difference between global coordinates         of nodes   and   and found as; 

   
 

 
 

     

     

     

 

 

 (3.18) 

 

Since the element is in a 3d coordinate system, the unit vector (or the coordinate of a 

point not existing on the line connecting nodes   and  ) in the direction of   axis,    

should be given as an input in order to determine the unit vector in the direction of   

axis,    from the cross product          . It should be noted that    can be 

interchanged with    in the cross product, i.e. at least one unit vector in addition to 

the unit vector in the direction of the beam axis is needed to define the third unit 

vector in the 3d coordinate system.   

 

If Equation (3.14) is substituted into Equation (3.12), basic element deformation 

vector can be related to displacements as follows; 
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        =      (3.19) 

Transformation of element displacements to deformations can be visualized as 

displayed in Figure 3.3. 

 

 

 

Figure 3.3. Transformation of element displacements to deformations 

Local to Basic 

        =      

         

Global to Local 
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The basic system is chosen as the simply supported beam as shown in Figure 3.3 in 

the derivation presented in this chapter. The alternative choice for the basic system is 

the cantilever basic system, as done in Chapter 5 in the derivation of consistent mass 

matrix. Carrying out the formulation of the element with these alternative choices 

actually results in the same response in the complete system for the finite element 

model. The important physical aspect of the use of a basic system is the elimination 

of the rigid body modes of displacements, thus the element is left with only the 

deformation modes in the basic system. Formulation in the basic system enables the 

possibility of deriving flexibility matrix, which would have been impossible to obtain 

in the complete system due to the singularity caused by rigid body modes. 

 

 

3.3. HU-WASHIZU FUNCTIONAL 

 

The mathematical theory of the proposed 3d beam finite element is based on the Hu-

Washizu [9] functional with three independent fields. These fields are stress field  , 

strain field   , and displacement field  . 

 

                      

  

                  (3.20) 

 

     is the strain energy function from which stresses are derived as; 

 

      
     

  
 (3.21) 
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   is the strain vector that is compatible with the displacements  . 

 

     denotes the potential energy of the external loading due to body forces and 

displacement and traction boundary conditions such that; 

 

            

 

        

  

          

  

   (3.22) 

 

In Equation (3.22),   denotes body forces and       is the dot product of the stress 

tensor with the outward normal   to the boundary, designating forces caused by 

tractions. The imposed values of tractions and displacements are indicated by 

superscript asterisks. It is assumed that the external loading is conservative so that 

the work depends only on the final displacement values of  . Domain of the body 

and traction and displacement boundaries are   ,    and    , respectively. 

 

 

3.4. KINEMATICS OF 3D TIMOSHENKO BEAM ELEMENT 

 

There are two basic beam theories called Euler-Bernoulli (EBT) and Timoshenko 

beam theories (TBT) where the latter has some improvements compared to the 

former. As the name calls, the equation of the elastic curve was formulated by James 

Bernoulli and Leonhard Euler extended its application [45] in EBT. The assumption 

that section plane remains normal to the beam tangential axis after the deformation of 

section brings along the negligence of shear effects in the section in EBT whereas the 

theory considers still the axial and flexural effects. However, TBT counts in shear 

deformations by presuming there exists constant shear deformation in the section. 
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Consequently, section plane does not have to be normal to the axis of the beam after 

deformation as compared to the assumption in EBT although the plane remains plane 

after deformation. But, in TBT, a shear correction factor need to be used in order to 

calculate shear force in the section properly [46] because of the assumption of 

constant shear deformation on the section. It is possible to employ higher order shape 

functions for section deformations for surmounting that issue [47] in higher order 

beam theories (HOBT). However, additional computational effort will be required in 

that circumstance. This fact induced utilization of kinematic relations of TBT in the 

derivation of the 3d mixed beam element in this thesis. Figure 3.4 epitomizes the 

deformation of a beam element according to, EBT, TBT and HOBT, respectively. 

 

 

 

Figure 3.4. Beam deformations according to various beam theories 

 

 

Three field variational principle that is used in Equation (3.20) and (3.22) enables the 

specification of   and   independently which also allows selection of section 

kinematic relations that are independent from beam kinematics. If kinematic relations 

of the Timoshenko beam theory is used for a three dimensional geometry as follows; 
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  (3.23)  

 

Where          ,           and           are the displacements of any point on 

the section in x, y and z directions, respectively.      is the displacement of the point 

        along x-axis and      and      are the transverse deflections of the point 

        from x-axis in y and z directions, respectively.      ,       and       are 

the small rotations of the beam cross section around three orthogonal axes x, y and z, 

respectively. Hence the vector of displacements at a section of the beam can be given 

as; 

 

                                  (3.24) 

 

Strains that are compatible with the displacement field   can be derived from 

Equation (3.23) under small strain assumption as follows; 

 

   
  

          

  
          

        
    

   
  

          

  
 

          

  
                 

    

   
  

          

  
 

          

  
                

    

 (3.25) 

 

It should be noted that    
  ,    

   and     
  are equal to zero as a result of the 

derivation. 
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The strain fields for the beam are selected independently from those in Equation 

(3.25) as follows; 

 

   

   

   

   

   

                   

           

           

  (3.26) 

 

Where       ,       and       are the axial deformation and curvature around y and 

z axes, respectively.       and       are the shear deformations (distortions) of the 

section in y and z directions, respectively.      is the angle of twist of the cross 

section. Hence section deformations,      are given by Equation (3.11). 

 

 

3.5. VARIATION OF HU-WASHIZU FUNCTIONAL 

 

The variation of the Equation (3.20) gives; 

 

                    

  

            

 

          

       

(3.27) 

 

The functional in Equation (3.27) can be generalized for an inelastic material by 

assuming that       describes an inelastic material although the variation in Equation 

(3.21) is based on a strain-energy function that is in accordance with Cauchy elastic 
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material model. If Equations (3.25) and (3.26) are substituted into Equation (3.27) by 

noting that for the 3d beam element                              and 

implementing integration along the length of the beam element;  

 

                                       

 

 

(3.28) 

 

                                             

 

 

 

                          
                

               

 

 

 

                                 
                    

 

 

 

                    
             

 

 

 

                            
                  

                

 

 

 

                                                         

 

 

 

                   
              

 

 

        

The section stress resultants for a 3d beam element are defined as in Equation (3.5) 

and section stress resultants can be computed by taking integration over the section 

area,   as in Equation (3.8). If Equation (3.8) is substituted into Equation (3.28) and 
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the integration is carried out along the length,   of the beam, following expression is 

obtained; 

 

 

 

 

Where   ,     ,     ,    ,     and     are given below as Equation (3.30) and they are the 

section stress resultants such that the stress terms in Equation (3.8) are interchanged 

with the stresses,      ,      and      that are satisfying the material constitutive 

relations. 

     
                              

 

 

                   

(3.29) 
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(3.30) 

 

           

 

            

 

                     

 

 

 

The formulation enables the utilization of constitutive relation          in Equation 

(3.27) for various types of materials. 

 

     in Equtation (3.29) can be defined as the variation of the work-conjugate of the 

displacement and stress resultant fields since it is the variation of external potential 

energy. If it is assumed that the body forces are zero so that they are eliminated from 

the variation of external potential, then;  

 

                                               

 

 

 

(3.31)  

                                            

 

 

 

       

Where       and       ,       , are distributions of longitudinal tractions and 

transverse tractions along x, y and z axes, respectively.        ,        and        

are moment tractions around x, y and z axes, respectively. Since in real structural 

engineering problems moment tractions around y and z axes are negligible, then 

                 (See Figure 3.5) and Equation (3.31) becomes;     
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 (3.32) 

        

 

Where      is the variation of the energy due to boundary conditions. 

 

 

 

Figure 3.5. Assumed traction forces on beam element 

 

 

 

3.6. FINITE ELEMENT APPROXIMATION 

 

If Equation (3.32) is substituted into Equation (3.29) and a typical element of length 

  is considered for the finite element approximation, integration by parts of all terms 

with derivatives on the displacement fields in Equation (3.29) gives; 
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(3.33) 

       
        

                           

 

 

                     
 
 
 

       
                     

        

 

 

 

(3.34) 

       
        

                           

 

 

                     
 
 
 

       
                     

        

 

 

 

(3.35) 

 

      
                                               

 
 
 

 

 

      
              

            

 

 

 

(3.36) 
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(3.37) 

      
        

                                        
 
 
 

 

 

                                

 

 

 

(3.38) 

 

A detailed review of Equation (3.33) to (3.38) arises the question whether it is 

possible to simplify the expressions in those equations. The answer to that question is 

positive if there can be found appropriate shape functions for section forces and their 

variations. If the approximation of the section forces and their variation satisfy the 

following conditions at the same time;  

 

                
                

             
(3.39) 

                 
                

             

 

and 

            
          

              
(3.40) 

            
          

              

 

Then the integral terms on the right hand sides of Equations (3.33) to (3.38) vanish 

and it becomes unnecessary to approximate the displacements  ,     ,        and    



 43 

 

 

along the beam. Displacement values at the end nodes are enough for carrying out 

definite integrals in those equations. Derivation of approximation functions for 

section forces and their variation are summarized in the following part. 

 

For               

Assuming uniform axial traction,          is constant along the whole beam 

length; 

 

                         

 

Where   is the integration constant. 

 

                             (See Figure 3.6) 

                    

                (3.41) 

and 

          (3.42) 
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a. 

 

Complete System 

b. 

 

Basic System 

 

c. 

 

Free Body of Basic 

System 

 

d. 

 

Section Cut from 

Free Body of Basic 

System 

 

Figure 3.6. Element forces for uniform axial traction 

 

 

For   
             and   

              

Assuming uniform transverse traction,           is constant along the whole beam 

length; 
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Where    and      are integration constants. 

 

According to the Figure 3.7.d; 

 

          

           

  

 
   

 

 
  

     

 
    

       
 

 
      

 

 
   

  

 
  

 

 
 

 

 
 

 
    (3.43) 

and 

        
 

 
       

 

 
    (3.44) 

 

      

            

 

 
 

     

 
   

       
 

 
   

 

 
   

 

 
   

  

 
    (3.45) 

and 

        
 

 
    

 

 
    (3.46) 
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a. 

 

Complete System 

 

b. 

 

Basic System 

 

c. 

 

Free Body of Basic System 

 

d. 

 

Section Cut from Free Body 

of Basic System 

 

Figure 3.7. Element forces for uniform transverse traction in y direction 
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For   
             and   

              

Assuming uniform transverse traction,           is constant along the whole beam 

length; 

 

 

a. 

 

Complete System 

 

b. 

 

Basic System 

 

c. 

 

Free Body of Basic 

System 

 

d. 

 

Section Cut from Free 

Body of Basic System 

 

Figure 3.8. Element forces for uniform transverse traction in z direction 
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According to the Figure 3.8.d; 

 

          

           

 

 
  

     

 
    

  

 
   

       
 

 
      

 

 
   

  

 
   

 

 
 

 

 
 

 
    (3.47) 

and 

        
 

 
       

 

 
    (3.48) 

 

      

          
     

 
   

 

 
   

      
 

 
   

 

 
   

 

 
   

  

 
    (3.49) 

and 

       
 

 
    

 

 
    (3.50) 

 

For               , the situation is similar to the case for the uniform axial 

traction. Therefore, assuming           is constant along the beam length and 

switching    with   ; 

 

                (3.51) 
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and  

          (3.52) 

 

By using Equations (3.41) to (3.52), Equation sets (3.39) and (3.40) can be validated. 

If constant axial and transverse tractions are assumed along the beam element and 

Equations (3.41) to (3.52) are used, Equation (3.4) becomes; 

 

                 (3.53) 

 

Where   and      are already given in Equations (3.6) and (3.7), respectively.  

      is the section stress resultants due to element loading,   found as, 

 

      

 
 
 
 
 
 
 
 
 
 
 
 
     

 

 
    

 
  

 
  

 

 
 

 

 
 

 
   

  
  

 
   

 

 
 

 

 
 

 
  

 
 

 
   

  

 
   

      
  

 
  

       
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 

 

  

  

  

  

  (3.54) 

 

The variation of section stress resultants is; 

             (3.55) 
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Boundary Terms 

If the first expression on the right hand side of Equation (3.33) is evaluated as 

follows; 

                
 
 
                                          (3.56) 

 

According to Equations (3.41) and (3.42) and Figure 3.9; 

                                        
(3.57) 

                                        

 

Then Equation (3.56) becomes; 

                
 
 
                                     (3.58) 

 

 

 

Figure 3.9. Nodal displacements for an element 
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If the first expression on the right hand side of Equation (3.34) is evaluated as 

follows; 

 

                    
 
 

   

 

                        

                         
(3.59) 

According to Equations (3.43) and (3.44) and Figure 3.9; 

                                          
(3.60) 

                                              

 

then Equation (3.59) becomes; 

                    
 
 

                                 (3.61) 

 

If the first expression on the right hand side of Equation (3.35) is evaluated as 

follows; 

                    
 
 

   

 

                        

                         
(3.62) 

 

According to Equations (3.47) and (3.48) and Figure 3.9; 

                                          
(3.63) 
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then Equation (3.62) becomes; 

                    
 
 

                                 (3.64) 

 

If the first expression on the right hand side of Equation (3.36) is evaluated as 

follows; 

                  
 
 

   

 

                      

                          
(3.65) 

According to Equations (3.49) and (3.50) and Figure 3.9; 

       
 

 
                 

 

 
          

(3.66) 
      

 

 
          

 

 
       

 

 
          

 

 
 

                                        

 

Then Equation (3.65) becomes; 

                  
 
 

   
 

 
                   

(3.67) 
 

 
 

 
                   

 
   

 

 
            

 

If the first expression on the right hand side of Equation (3.37) is evaluated as 

follows; 
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(3.68) 

            

 

According to Equations (3.45) and (3.46) and Figure 3.9; 

        
 

 
                  

 

 
          

(3.69) 
       

 

 
          

 

 
        

 

 
          

 

 
 

                                        

 

then Equation (3.68) becomes; 

                  
 
 

   

 
                  

 
 

 
                     

 

 
            

(3.70) 

 

The case for the torsion component is similar to the case for the axial component. 

Therefore the first expression on the right hand side of Equation (3.38) is as follows; 

                  
 
 
                                       (3.71) 

 

Equations (3.58), (3.61), (3.64), (3.67), (3.70) and (3.71) can be grouped as follows; 
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                       (3.72) 

                    
 
 

   

                    
 
 

   

                  
 
 

   

                  
 
 

   

                  
 
 
  

 

Where    is the rigid mode of applied tractions at the nodes and defined as; 

 

         

 

 
  

 

 
        

 

 
  

 

 
     (3.73) 

 

Equation (3.29) can be rearranged by utilizing Equations (3.6), (3.7), (3.53), (3.54), 

(3.72) and (3.73) as follows; 

 

                                   

 

 

 

(3.74) 

              

 

 

                               

 

     can be ignored until the assembly of the elements and the Equation (3.74) can 

be written in terms of global displacements by using Equations (3.14) and (3.19) for 

the element as follows; 
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(3.75) 

 
             

 

 

                 
   

  

     
   

    

 

 

3.7. LINEARIZATION OF THE NONLINEAR EQUATION 

 

Equation (3.75) can be minimized by equating the expression to zero. That form of 

the equation will be generally nonlinear and can be linearly approximated to find the 

root of solution by using first order Taylor Series expansion as follows; 

 

                            
            

(3.76) 

  
         

           

    
 
 
      

  
         

           

  
 
 
    

  
         

           

     
 
 
       

 

Where   denotes the last converged values of the variables.  
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According to Equation (3.75); 

 

                 

    
       

(3.77) 

                 

  
                

 

 

    
   

  (3.78) 

                 

     
                

 

 

          

 

 

   (3.79) 

 

And tangent stiffness of the section is given as; 

 

      
      

     
 

(3.80) 

 

If Equations (3.77), (3.78) and (3.79) are substituted into Equation (3.76) and similar 

terms are grouped together following expression is obtained; 

 

                                               

 

 

 

(3.81) 
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It should be noted that three fields of the formulation are disassembled in Equation 

(3.81). Basic element forces and section deformations are internal variables which do 

not need to fulfill inter-element continuity requirements. Additionally, displacement 

field does not have to satisfy continuity requirements along member span except at 

the inter-element nodes. In order to ensure that Equation (3.81) is satisfied for all 

arbitrary values of     ,    , and      , all values that are multiplied with these 

terms should vanish for all equation to be equal to zero at all times as follows;  

 

  
          

    = 0 (3.82) 

                   

 

 

                  (3.83) 

                                      

 

 

   (3.84) 

Equations (3.83) and (3.84) can be rearranged as follows; 

                      
                 

 

 

 

 

                (3.85) 

             

 

 

                            

 

 

 (3.86) 

Equation (3.86) can be substituted into Equation (3.85) as follows; 

                         
                               

 

 

 

 

 

(3.87) 
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Equation (3.87) can be further rearranged as follows; 

                         
             

 

 

 

 

 

(3.88) 

 

         
                          

 

 

              

 

Where   
            is section flexibility matrix, and element flexibility matrix 

in basic system,   can be found as follows; 

 

          
           

 

 

 
(3.89) 

 

Equation (3.88) can be rearranged by using Equations (3.53) and (3.89) as follows; 

                     

 

 

        
                   

 

 

 

(3.90) 

               

 

Section force residual,        can be defined as follows; 

                   (3.91) 

 

And section deformation residual,        can be defined as follows; 
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         (3.92) 

 

Equation (3.90) can be rearranged by using Equation (3.92) as follows; 

                                     

 

 

 (3.93) 

 

Resisting element deformation,    can be defined as follows; 

                       

 

 

 (3.94) 

 

Equations (3.19) and (3.94) can be substituted into Equation (3.93) and the 

expression can be rearranged as follows; 

 

                    (3.95) 

 

Residual element deformation,    can be defined as follows; 

         (3.96) 

 

If Equation (3.96) is substituted into Equation (3.95) and the resulting expression is 

substituted into Equation (3.82); 

  
             

      
            (3.97) 
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Where element stiffness in global coordinates,     is given by; 

      
       (3.98) 

If Equation (3.98) is substituted into Equation (3.97); 

          
      

            (3.99) 

 

The procedure presented up to now tries to condense out all internal variables other 

than nodal displacements by keeping them as internal parameters to the element only. 

By this way, it is possible to implement the condensed reponse of the element to a 

standard finite element software that uses nodal displacement values in the solution 

of structural systems. Since the procedure includes condensation, it becomes easier to 

compute the structure stiffness matrix which in turn results in increased 

computational efficiency. Therefore, this solution scheme is opted for numerical 

validation studies presented in the following parts. There are studies that explain the 

condensation procedure of the element variables in matrix form and the 

corresponding solution algorithms in detail [17, 48]. Anyhow, the resulting form of 

the equation for the whole structural system is the renowned expression given as 

follows; 

 

          (3.100) 

 

In Equation (3.100),   is the stiffness matrix,   is the displacement vector,   is the 

applied force vector and    is the resisting force vector of the structure and those 

parameters are computed by assemblage of the responses of each elements per 

member span. Nonlinear analysis of this configuration of the expression necessitates 

an iterative process. 
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3.8. FIBER DISCRETIZATION OF SECTION RESPONSE 

 

The proposed 3d mixed beam element, derivation of which is given in the previous 

sections possesses a general form in terms of accommodating linear or nonlinear 

material response. Therefore, the proposed mixed element is eligible for the 

nonlinear analysis of 3d structural systems composed of beam type elements having 

any sort of cross-section. Nevertheless, the section geometry of the members utilized 

in the nonlinear analysis presented in the subsequent parts are solid and hollow 

circular sections. Because, that kind of sections has a wide range of application area 

both at micro and macro levels from past to present such as historical pillars, 

nanotubes, machinery parts, pier of a deck, towers of wind turbines and antenna 

towers, pile foundations, pipelines, tunnels, etc. Moreover, it is easier to compare the 

results obtained by nonlinear analysis of the member composed of 3d mixed element 

that have circular cross section with closed form solutions that are readily available 

in the literature. Therefore, section modeling of the 3d mixed beam element is 

performed by using following expressions.  

 

The relationship between the strains at a fiber point on the beam cross-section and 

the section deformations is given in Equation (3.26). This equation can be written in 

an alternative way by defining section compatibility matrix,    as follows; 

 

   

 
 
 
 
 
       

         

         
 
 
 
 

 (3.101) 

 

                      (3.102) 
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In Equation (3.102),      is the same with the one given in Equation (3.11). In 

Equation (3.101),    and    are the shear correction factors in y and z directions, 

respectively and shear correction factors depend on section geometry and material. 

These are introduced in the section compatibility matrix in order to estimate the shear 

strain energy accurately for the linear elastic portion of element response. Shear 

correction factor for solid and hollow circular cross sections is the same about both 

axes in the plane of the section (denoted as  ) and there are a lot of studies regarding 

proper estimation of that coefficient [46, 49, 50]. However, in this thesis, the shear 

correction factor is calculated from the general and more recent expression that is 

stated in the study of Hutchinson [51] for a hollow circular section as given below in 

Equation (3.103) for outer radius,  , inner radius,   and Poisson ratio,  .  

 

  
                

                                                     
 (3.103) 

 

It is important to note that the value of   simplifies to                      

if    , i.e. if the member has solid circular section. According to the Stephen [52], 

that value of the shear correction factor is not only suitable for the static case but also 

for the dynamic case provided that      , a broad range that encloses most of the 

materials including steel which is the preferred material that is used in nonlinear 

analysis in the subsequent parts. However, it was also stated in the same study that 

caution is necessary in case of dynamic analysis of a stubby cantilevered beam.  

 

It should also be emphasized that some kind of higher-order elements do not need to 

cope with shear correction factor. The element that is derived recently by Zhang and 

Fu [53] is that kind of element which makes use of Laurent series expansion form for 

the displacement field to remove the need of shear correction factor for solid and 

hollow circular sections. Additionally, it is also possible to presume the distribution 
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of shear strain a priori in the mixed element formulation and eliminate the necessity 

of shear correction factor as preferred in the study of Saritas and Filippou [22].  

 

Equation (3.5) can be rearranged by using the Equation (3.101) to perform 

integration of stresses that satisfy the material constitutive relations          as 

follows; 

 

              
       

 
    

 

 

 

    

    

    

    (3.104) 

 

If derivative of Equation (3.104) with respect to section deformations is taken, 

tangent stiffness of section,       that is employed to compute the expression in 

Equation (3.81) can be obtained as follows, 

 

      
      

     
    

 

 

      

  
      

 

 

       (3.105) 

 

In Equation (3.105),    is the material tangent modulus that is calculated as follows; 

 

   
      

  
 (3.106) 

 

Gauss-quadrature, midpoint or trapezoidal rule are the numerical integration methods 

that can be implemented on a section for the numerical integration of Equations 
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(3.104) and (3.105). Gauss-quadrature is preferred in numerical analysis due to its 

some advantages as explained where necessary in the subsequent chapters.  

 

 

3.9. THREE DIMENSIONAL MATERIAL MODEL 

 

There are three stress components at a material point of the cross-section of the 

proposed mixed beam element which are not equal to zero. These are normal and 

shear stresses (   ,     and    ) and the rest of the stress components are equal to 

zero on the cross-section. However, there are six stress components in the material 

model. The transverse stress components can be equated to zero (      and 

     ) in order to linearize the residuals that will appear in the expression stated in 

Equation (3.81) with respect to an initial strain which results in an update scheme for 

the unknown transverse strain fields given as follows; 

 

 
          

          
  

    

    
    

   

   
   

               

               
  

    

    

    

  (3.107) 

 

                designates the tensor form of the consistent tangent matrix for a 3d 

material in Equation (3.107). For notational ease, the indices are shown by the letters 

 ,  ,   and   that have values 1, 2 and 3 and these numbers correspond to x, y and z, 

respectively. Transverse strain fields on the left hand side of the equation are updated 

until the norm of the residuals is smaller than a specified tolerance by the help of the 

strain values on the right hand side of the equation, increments of which are obtained 

from the finite element analysis. Since the material model is isotropic, the shear 

stress components can be set equal to zero             by imposing zero shear 

strains in those directions         in a straightforward fashion. 
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The material stiffness for the beam formulation given in Equation (3.106) is 

determined by condensing out the stress and strain components that do not arise in a 

structural mechanics application such as a beam element formulation. For three 

active stress components (   ,     and    ) this condensation should result in the 

following material stiffness matrix. 

 

   

 
 
 
 
 
 
 
    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

     
 
 
 
 
 
 

 (3.108) 

 

It is possible to write the incremental stress-strain relation initially in terms of all six 

components of stress and strain as                and separate the normal strains in 

the transverse direction from others as follows; 

 

    

    

    

   

               

               

               

  

    

    

    

   

          

          

          

  
    

    
  (3.109) 

 

Normal strain increments on the left side of Equation (3.107) are substituted into 

Equation (3.109) for the converged state of the transverse stresses           and 

the resulting expression is the condensed material stiffness matrix given as follows; 

 

    

               

               

               

   

          

          

          

  
          

          
 
  

 
               

               
  (3.110) 
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CHAPTER 4  

 

 

NUMERICAL VALIDATION OF 3D MIXED ELEMENT 

 

 

4.1. INTRODUCTION 

 

Numerical validation of the the 3d mixed finite element, the formulation of which is 

given in the previous parts is presented in this chapter for nonlinear static case. In 

order to be able to use in comparison of the 3d proposed mixed element, a 3d 

displacement based Timoshenko beam element is introduced initially. Then, this 

element and other 3d displacement based elements are used together with the exact 

solutions that exist the literature in comparsion of the nonlinear response of the 

proposed mixed element that has various circular and hollow cross-sections in the 

last part of this chapter. 

 

 

4.2. A 3D DISPLACEMENT BASED TIOMESHENKO FINITE ELEMENT 

 

A 2d two node displacement based Timoshenko beam finite element was developed 

by Friedman and Kosmatka [12] by using Hamilton’s principle and cubic and 

quadratic Lagrangian shape functions for transverse and rotational displacements that 

are made independent by requiring them to satisfy the two homogenous differential 

equations associated with Timoshenko’s beam theory. This requirement makes 

element free from shear-locking. Mazars et al. [14] adapted those shape functions to 

displacement based 3d Timoshenko beam element that considers uncoupled effect of 

shear and torsion by referring to its predecessor study. In a recent study, 

Triantafyllou and Koumousis [15] developed a locking-free 2d displacement based 
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beam finite element, where the shape functions were derived under linear elastic 

material behavior as done by Friedman and Kosmatka [12]. The proposed beam 

element in that study was used to analyze structural members where shear effects are 

significant under nonlinear material response.  

 

The derivation of shape functions included in the study of Przemieniecki [13] was 

demonstrated by Friedman and Kosmatka [12] for 2d and they can be extended to 3d 

as in the study of Luo [54] and rearranged by making slight changes in accordance 

with the coordinate system in this thesis as follows; 

       

(4.1) 
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In Equation set (4.1),       and   is the ratio of the bending stiffness to the shear 

stiffness of the beam calculated in the y and z directions, respectively as follows; 

   
  

  
 

   

    
     

  

  
 

   
    

  (4.2) 

In Equation set (4.2),   is the length of the member and   is the area of the section as 

defined previously.   and   are the Young and shear moduli, respectively,    and    

are moment of inertia in the x and y directions, respectively. 

 

End node displacements,    in Equation (3.13) and the shape functions in Equation 

set (4.1) are used to calculate the displacements along the x axis of the beam,    as 

follows; 

       (4.3) 
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 (4.4) 

 

The shape functions calculated in Equation (4.4) are actually valid in the linear 

elastic range of response for the beam. When the element experiences material 

inelasticity, shape functions calculated for elastic case are used as an approximation. 

 

The section force deformation relation is calculated as follows; 

         (4.5) 

The section stiffness matrix,    in Equation (4.5) is calculated as follows; 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

 

     

 

      

 

   

      

 

       

 

   

      

 

   

      

 

         

 

               

 

       

 

      
         

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.6) 

 

 



 71 

 

 

4.3. VALIDATION OF MIXED ELEMENT IN 3D 

 

Derivation of the 3d mixed element is presented in the third chapter. In this section, 

proposed 3d mixed element is validated under nonlinear conditions by comparing the 

proposed element with 3d displacement based elements that are available in the 

literature for various geometric, loading and support conditions. This is achieved by 

considering four different set of numerical examples where some of them also have 

several sub cases. 

 

The first example in Section 4.3.1 includes comparison of the proposed 3d mixed 

element with the 3d displacement based Friedman and Kosmatka [12] element that is 

presented in Section 4.2 under monotonic loading for a uniform cantilever member 

that has a solid circular section.  

 

The second set of examples in Section 4.3.2 includes three different sub cases where 

application of torsion to a cantilever member that has solid circular section along the 

span is common for all three sub cases. In the first sub case, proposed mixed element 

is compared with the exact solution under pure torsion. In the second sub case, 

proposed mixed element is validated under axial load and torsion by utilizing an 

analytical solution that exists in the literature. In the third sub case, proposed mixed 

element is compared again with the displacement based Friedman and Kosmatka [12] 

element. However in that sub case, the cantilever member is not uniform but tapered 

to its free end.   

 

The effect of coupling of stresses and resulting forces on the nonlinear behavior of a 

cantilever member that has solid and hollow circular sections is investigated for 

different levels of axial and torsional loads considering 3d cyclic bending in the third 

set of examples of Section 4.3.3. The first sub case includes nonlinear analysis of 
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members with solid section and the second sub case includes nonlinear analysis of 

members with hollow sections having various inner and outer radii. 

 

Fourth set of examples in Section 4.3.4, which are also last set of examples for the 

validation of the proposed mixed element under nonlinear conditions, refer to the 

results of the study by Nowzartash and Mohareb [55]. The nonlinear interaction of 

bending and torsion is investigated for a long pipe, and the influence of shear force 

on bending is investigated for a short fixed-fixed pipe where loading is applied at a 

node in the span for both sub cases. 

 

4.3.1. Comparison of 3d Mixed and Displacement Based Elements 

 

In this example, a uniform cantilever steel member that has the same solid circular 

cross-section throughout the span is displaced monotonically in the direction of 

global   (Figure 4.1) by imposing tip displacement at the free end of the member in 

order to compare proposed 3d mixed element with 3d displacement based Friedman 

and Kosmatka [12] element under nonlinear conditions for various cases. 
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a. Orientation of axes b. Tip displacement in the global X direction 

Figure 4.1. Orientation of global and local axes and tip displacement 

 

 

The member is assumed to be perfectly fixed at one end and free at the other end 

having homogenous and isotropic steel material throughout the length,   of the 

element which is 180 units. Member has uniform solid circular cross-section with a 

diameter,   of 18 units, Young modulus,   of 29000 units, Poisson ratio,       

and yield strength,    of 36 units. The geometric and material properties assumed in 

this example are also used in some of the following examples. 

 

The assumed values of geometric and material properties are physically consistent. 

However, they are deliberately left unitless in order to concentrate on the effect of 

some parameters like the type of element, number of elements and integration points 
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on nonlinear behavior rather than the effect of physical quantities. Another 

assumption is the negligence of the self-weight of the member in the analysis. 3d J2 

plasticity model is utilized in the material model for the reponse of steel since that 

model is a good option for ductile materials. Kinematic and isotropic hardening 

values are both assumed to be zero.  

 

Response of the circular cross-section is monitored by numerical integration of the 

parameters with the help of meshing of the section in both radial and circumferential 

directions as shown in Figure 4.2 and using mid-point integration rule. Sensitivity 

analysis are carried out in order to determine the adequate number of meshing in 

each direction and it is identified that odd numbers 11 for both radial and 

circumferential directions are suitable for reflecting the nonlinear response 

accurately.   

 

Response of the whole member is also attained by numerical integration along the 

member. Although there are some other methods like Gauss-Lobatta for numerical 

integration, Gauss quadrature rule is utilized to model the aggregation of the 

response of the several sections along the beam length since the nonlinearity is 

expected to initiate at the fixed end of the member and Gauss quadrature is a good 

option to eliminate probable numerical errors due to location of quadrature points by 

its nature. 
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Figure 4.2. Discretization of circular section in radial and circumferential directions 

in local coordinates 

 

 

The abbreviations "MF" and "DB" are used to denote proposed mixed formulation 

and Friedman and Kosmatka [12] displacement based elements, respectively in the 

following figures and discussions about resulting responses of the elements. 

Although it is not presented in this thesis, linear elastic responses of both MF and DB 

elements are investigated a priori to the investigation of their nonlinear responses. 

Consequently, it is observed that both elements are free from shear-locking 

especially for the case of short members and successful in simulating the linear 

elastic response by giving exact results when the member has uniform cross-section 

along the element length. However, due to the meaninglessness of depicting the same 

responses for both elements, reporting linear elastic responses of them are considered 

to be enough. But, it should also be noted that for the case of varying cross-sections 

as in the case of tapered members, MF is still capable of matching the exact element 

response but DB necessitates derivation of special shape functions as in the studies 

by Friedman and Kosmatka [56],  Murín and Kutiš [57] and Shooshtari and Khajavi 

[58] or it should be paid attention to the discretization of the member by mesh 

refinement especially along the element span. This phenomenon is put forward by a 
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numerical comparison for a tapered member under pure torsion at its free end in the 

last sub case of the next example in Section 4.3.2.3. 

 

Before comparison of MF and DB elements under nonlinear conditions, the effect of 

number of integration points,     that is needed to perform numerical integration 

along the element is investigated in order to determine the convergence of it to an 

optimum value. With this regards,     is varied to be 2, 5, 10, 15 and 20 by keeping 

number of elements,      constant per member for both MF and DB elements and 

Figure 4.3 and Figure 4.4 are plotted. It is inferred from these figures that increasing 

    beyond 5 is not necessary because nonlinear load-displacement curves nearly 

coincide with each other after that limiting value. Another point that can be deduced 

from these figures is that for      , DB overestimates and MF underestimates the 

nonlinear response. 

 

 

 

Figure 4.3. Comparison of the variation of number of integration points on DB 
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Figure 4.4. Comparison of the variation of number of integration points on MF 

 

 

After investigation of the influence of the number of integration points on the 

nonlinear response, the effect of variation of the number of elements per span,    on 

the same response is investigated by keeping       constant for each case and 

monitoring the shear value at the fixed end vs. tip displacement at the free end. 

According to the Figure 4.5, it can be concluded that increasing the number of 

elements per span for MF is insignificant for the nonlinear analysis because its 

behavior does not deviate or improve too much compared to the cases with higher 

number of elements per span. So, it can be inferred from the figure that MF is 

capable of modeling the nonlinear behavior correctly even with only one element per 

span. However, the effect of    for DB is realized prominently from Figure 4.6 that 

depicts comparison of DB and MF for different number of elements. According to 

that figure, even increasing    from 1 to 16 by doubling each time the number of 

elements used in the previous case is not enough to guarantee the accuracy ensured 

with only one element by MF. 
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There is also an important issue that would be better to clarify at this point. The 

duration needed to perform the nonlinear analysis with DB and MF is very close to 

each other if the analyses are carried out with the same number of elements per span 

in each case. Therefore, the superiority of MF to DB does not prevail in this regards. 

However, using MF offers an undeniable opportunity to perform nonlinear analysis 

with lesser number of elements and still obtain more accurate results than DB. This 

advantage of MF may not be perceptible if the nonlinear analysis of only a single 

member is considered but will be obvious if the nonlinear analysis of a frame 

structure that is exposed to strong ground motion is imagined. In this case, utilization 

of lesser number of elements for MF will decrease the solution time dramatically and 

still offer a high accuracy as compared to DB. Additionally, less storage capacity will 

be needed for the case of MF. That kind of a problem for larger structural systems 

was handled in 2d for a frame system [17] and it was concluded that the use of mixed 

formulation elements even for large systems reduces the computation time ensuring 

high accuracy of the results at the same time. This substantiates that proposed MF is 

superior to DB under nonlinear conditions.  

 

 

 

Figure 4.5. Effect of different number of elements on MF 
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Figure 4.6. Comparison of the effect of number of elements on DB and MF  

 

 

4.3.2. Nonlinear Performance of Mixed Element Under Torsion  

 

4.3.2.1. Pure Torsion of a Uniform Cantilever Beam with Solid Circular Section 

 

The expression that is used to obtain the torque,   applied around the element axis at 

the free end of a uniform cantilever beam with solid circular section that has 

elastoplastic material properties can be easily derived explicitly and one can refer to 

the text books for detailed derivation (Such as [59]) since it is out of the scope of this 

thesis. However, the final expression can be given as follows;   
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In Equation (4.7),   is the outer radius of the circular cross-section as defined 

previously in Equation (3.103),    is the shear stress at yield and    is the angle of 

twist at yield calculated as follows;  

 

   
   

  
 (4.8) 

 

In Equation (4.8),   is the shear modulus and   is the length of the member as 

already defined before. If   is sufficiently large as a result of the plastic 

deformations, then      in the right hand side of the Equation (4.7) approaches to 

zero forcing the expression in the brackets to approach to one. Consequently, the 

torque on the section gives the plastic torque,    indicating that the entire section is 

in its plastic state as obtained by the following expression; 

 

    
    

 
    (4.9) 

 

It should also be noted that if   is equal to    then,      in the right hand side of 

the Equation (4.7) becomes one revealing the fact that the elastic limit is 75% of the 

plastic limit for the circular section.  

 

Aforementioned theory is utilized to verify the proposed MF element by applying 

pure torsion around the element axis at the free end of the member and performing 

nonlinear analysis. Geometric and material properties such as length, diameter, 

modulus of elasticity and etc. of the member are assumed to be same with the 

properties of the member in the example in Section 4.3.1 and Figure 4.7 is plotted. 

According to the figure, the nonlinear curve obtained by MF under pure torsion with 
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only one element per member span matches successfully with the exact solution. 

Additionally, MF is capable of not only verifying the phenomenon that the torque at 

yield is 75% of the plastic torque but also capable of simulating correctly the 

initiation of plasticity.     

 

 

 

 

Figure 4.7. Exact solution vs. MF element under pure torsion for uniform cantilever 

member with solid circular section 

 

 

4.3.2.2. Combined Axial Load and Torque on a Uniform Cantilever Beam with 

Solid Circular Section 

 

After verification of the MF element under pure torsion in the previous example, the 

ability of the element to simulate the nonlinear behavior under torque that is 

accompanied by axial load is investigated in this example. Nonlinear analysis of a 

uniform cantilever beam with solid circular section that has same material and 

geometric properties with the element given in Section 4.3.1 is performed by 

applying the same load pattern described in the study of Gaydon [60]. This study 
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includes explicit expressions that are derived by integration of the Reuss equations to 

calculate shear stress and tension in the plastic material of a solid circular cylinder 

for various combinations of torque and tension. Similar loading to that case is 

frequently encountered in critical engineering components, such as bolted joints, 

couplings and rotating shafts [61] and utilized in experimental studies [62]. 

 

At the beginning of the nonlinear analysis, a single MF element per span is given a 

predetermined extension corresponding to a certain tension such that the element 

yields due to plastic deformations immediately after an additional loading is applied. 

At that instant there is not any shear stress on the member. Then, a gradually 

increasing torsion is applied around the axis of the element at the free end of the 

member while keeping the axial extension constant and nonlinear response of the MF 

element is monitored as given in Figure 4.8. That figure depicts the variation of 

normalized axial load by axial load at yield,      and normalized torque by a 

multiple of torque at yield,         similar to the presentation by Gaydon [60]. 

According to that figure, axial load carrying capacity of the member diminishes as 

quick as the torque is applied, reaching asymptotically to zero where the latter 

converges to 2/3 in a synchronized manner without being affected. This example 

shows that MF beam element is able to capture exactly the closed form expressions 

provided by Gaydon [60] with only single element per member span disclosing its 

capabilities on reflecting force coupling correctly.  
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Figure 4.8. Variation of axial load and torque with angle of twist for solid circular 

section by holding extension constant after yield 

 

 

4.3.2.3. Comparison of Tapered MF and DB Elements Under Torsion  

 

Comparison of the MF and DB elements having circular cross sections are given in 
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respectively. Superiority of the MF element compared to DB element is shown by 

performing the nonlinear analysis with using only one element per span for the case 

of MF but varying    as 2, 4 and 8 for the case of DB.  
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given in Sections 4.3.2.1 and 4.3.2.2 will yield the similar results for the case of 

uniform member. But, DB element lacks accuracy for the case of nonlinear analysis 

of tapered members where MF has still favorable response as depicted in Figure 4.9. 

According to that figure,      is not good enough to model even linear portion of 

the total response and should be increased beyond that number in order to compete 

with the nonlinear response provided by MF with only one element per span.         

 

 

 

 

Figure 4.9. Comparison of the effect of number of elements for the analysis of 

tapered members with DB and MF frame elements 
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previous sections with several examples, only MF element is used in the following 

numerical analysis. All of the nonlinear analyses are carried out with one MF 

element per member span with the similar discretization and same assumptions on 

geometric and material properties given in Section 4.3.1 except loading which is 

explained in the subsequent discussions and figures.  

 

4.3.3.1. Nonlinear Analysis of Uniform MF for Solid Circular Section 

  

Two different pseudo-load cases called as "Case A" and "Case B" are defined to 

perform nonlinear analysis. Since analysis with both loading cases are carried out in 

pseudo-time, loading is named as pseudo. The difference between loading cases 

originates from the application of axial load for Case A and torsion for Case B. 

Moreover, each load cases have four sub-cases that are indicated with number 

suffixes attached to the letters "A" and "B" depending on the level of the axial load 

or torsion applied on the member. 

 

For Case A, at    , the member is at rest and there is not any displacement in the 

axis of the member untill      . But in between, the free end of the member is 

loaded axially in the negative global Y-direction (Force History in Figure 4.10), i.e. a 

compressive force is applied increasing gradually up to pseudo time,      . That 

compresive load is kept constant from       to the instant     at when the 

analysis is terminated.  

 

Besides application of the axial load, at the moment       displacement of the free 

end of the member linearly 6 units away from its original position in global X-

direction (Disp. History X in Figure 4.10) until       is initiated. From       to 

   , X coordinate of the member is kept constant. After that instant, linear 
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displacement of the member starts in the negative X-direction until       at when 

the X coordinate becomes zero until the end of the analysis, i.e.    . 

 

The member is displaced not only in the direction of global X-direction but also in 

the direction of global Z-direction but with a time shift that is equal to       being 

exposed to axial load at the same time. At        sec, free end of the member is 

started to be displaced linearly 6 units in global Z-direction (Disp. History Z in 

Figure 4.10) until     and Z coordinate is kept constant until      . After that 

instant, free end of the member is displaced linearly in the negative Z-direction until 

     and the free end of the member returns back to its position at rest following a 

square path (Figure 4.11).  

 

 

 

Figure 4.10. Force and displacement pseudo-time histories imposed on the element 

for Case A2 for 0.25Ny. 
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Since there are four sub-cases of Case A, the loading scheme explained in the 

previous paragraphs are performed four times on the member for different levels of 

axial loading given as 0,        ,        and        that form four sub-cases A1, 

A2, A3 and A4, respectively. Axial force at yield,    is calculated as the area of the 

section times yield strength of the member. Figure 4.10 and Figure 4.11 try to 

illustrate that loading procedure for A2. However, those figures are also valid for 

other sub-cases except the level of axial loading that is interchangeable with 

0,        and       .     

 

 

  

 

i)    , No axial force, 

    ,      

ii)      ,       , 

    ,      

iii)      ,       , 

    ,      

 
 

 

iv)    ,       , 

    ,      

v)      ,       , 

    ,      

vi)    ,       , 

    ,      

Figure 4.11. Illustration of loading history for Case A2 for 0.25Ny  

(View of the free end of the element in the negative global Y-direction). 
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In Figure 4.10, horizontal axis designates pseudo time and vertical axis called "Load 

Factor" shows the portion of the load or displacement imposed on the member at that 

pseudo time. Figure 4.11 is an alternative illustration of the loading sketched in 

Figure 4.10 and it depicts force and displacement history by looking free end of the 

member in the negative global Y-direction. 

  

Application of the aforementioned force and displacement histories for each sub-

cases of Case A will yield Figure 4.12 and Figure 4.13 that give shear force at the 

fixed end of the member vs. displacement of the free end of the member in X and Z 

directions, respectively. In these figures, nonlinearity arises from the inelasticity 

caused by combined effects of axial load and displacements in X and Z directions and 

capacity of the solid circular section decreases as the level of axial load increases. 

 

 

  

Figure 4.12. Base shear vs. tip displacement in global X-direction for Cases A1, A2, 

A3 and A4 for solid section. 
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Figure 4.13. Base shear vs. tip displacement in global Z-direction for Cases A1, A2, 

A3 and A4 for solid section. 

 

 

After nonlinear analyses are performed for Case A, same loading and displacement 

histories are applied for Case B to the same member by only changing the type of 

loading at the free end in that case. In Case B, torsion is applied around global Y-

direction at the free end of the member instead of axial force applied in Case A. 

According to the experiments that are conducted for ductile materials verify that the 

yield stress obtained from a pure torsion test,    is 0.5 to 0.6 times the yield stress,    

that is obtained from a uniaxial tension test [8]. Therefore, utilization of the Von 

Mises yield criterion is ideal for estimation of the yield strength in shear accurately 

because    is equal to         in octahedral shear stress theory. Consequently, 

torsion at yield,    is calculated to be                by assuming there is a 

constant shear stress in the section at yield              and taking integral of this 

stress over the area of the section (Figure 4.14) in Case B. 
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Figure 4.14. Calculation of the shear stress for circular section. 

 

 

Similar to the Case A, Case B has also four sub-cases named as B1, B2, B3 and B4 

according to the level of torque that is applied at the free end of the member. The 

loading and displacement histories that are defined in Figure 4.10 and Figure 4.11 are 

applied to the member by varying torque level as 0,       ,        and        in 

each sub-cases. As a result, nonlinear response of the member is obtained by 

monitoring shear force at the fixed end of the member vs. displacements of the free 

end of the member in X and Z directions, respectively as plotted for solid circular 

section in Figure 4.15 and Figure 4.16.  
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Figure 4.15. Base shear vs. tip displacement in global X-direction for Cases B1, B2, 

B3 and B4 for solid section. 

 

 

 

Figure 4.16. Base shear vs. tip displacement in global Z-direction for Cases B1, B2, 

B3 and B4 for solid section. 
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According to the Figure 4.15 and Figure 4.16, capacity of the solid circular section 

decreases as the level of torsion increases. However, when these figures are 

evaluated together with Figure 4.12 and Figure 4.13, the ifluence of axial load on 

nonlinear behavior is more prominent compared to the effect of torsion for the 3d 

solid member. These figures display also the ability of the proposed 3d mixed 

element to consider strong coupling between axial force, shear, bimoments and 

torsion. Moreover, figures reveal that the element is capable of reflecting the 

dependency of nonlinear behavior on direction of loading since nonlinear curves for 

X and Z directions are not identical for the same level of axial load or torsion in 

Cases A and B.      

 

4.3.3.2. Nonlinear Analysis of Uniform MF for Hollow Circular Section 

 

In the previous section, nonlinear response of the uniform cantilever beam with solid 

circular section is investigated under various loading and displacement histories. In 

this section, nonlinear analysis of the same member is carried out for the same 

loading and displacement histories with the only difference in the type of the circular 

section which is hollow circular section in this case.  

 

The ratio,     of the inner radius   to outer radius   (Figure 4.17) of the hollow 

section is varied as 0.3, 0.7, 0.9, 0.95 and 0.99 in the analysis and Equation (3.103) is 

used for calculation of the shear correction factor in the element response. It should 

also be noted that nonlinear geometric effects such as local buckling especially for 

the thin-walled geometry are not considered in determination of the section response 

of the proposed element. 
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Case A Case B 

Figure 4.17. Loading of hollow circular section for Cases A and B 

 

 

Variation of the nonlinear response with different levels of axial load,    and 

torsion,    is obtained for each     ratio mentioned in the previous paragraph by 

applying the cyclic load and displacement histories defined as Case A and B and 

resulting outputs are plotted in Figure 4.18 to Figure 4.21 by adding the nonlinear 

curves for the ratio       that is already obtained in Section 4.3.3.1 and 

presenting the variation of base shear at the fixed end of the member vs. 

displacements in the X and Z directions, respectively. 

 

If nonlinear geometric effects such as local buckling of especially thin-walled 

sections are neglected, the ability of the proposed 3d mixed element to model the 

nonlinear response correctly can be attested by numerical comparison of the base 

shear values for the case where zero axial load is applied on the member with the 

theoretical values that neglect also the nonlinear geometric effects.  
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In order to make such a comparison base shear values are calculated by dividing 

theoretical values of yield moment under zero axial load on member,        and 

plastic moment,         to the length of member that are obtained for both solid 

and hollow circular sections. In these equalities,   is the elastic section modulus 

which is given as                 and    is the plastic section modulus that is 

found as              . Results are tabulated in Table 4.1 for different     

ratios.       

 

If Table 4.1 and Figure 4.18 to Figure 4.21 are probed into, it will be appreciated that 

the proposed 3d mixed element is successful in modeling nonlinear behavior for 

solid and various hollow sections. 

 

 

Table 4.1. Theoretical shear values calculated from moment at yield and plastic limit 

                         

0 572.56 20611.99 114.51 972.00 34992.00 194.40 

0.3 567.92 20445.03 113.58 945.76 34047.22 189.15 

0.7 435.08 15663.05 87.02 638.60 22989.74 127.72 

0.9 196.90 7088.46 39.38 263.41 9482.83 52.68 

0.95 106.21 3823.40 21.24 138.63 4990.73 27.73 

0.99 22.56 812.19 4.51 28.87 1039.30 5.77 
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a. Case A1 in X for 0*Ny b. Case A1 in Z for 0*Ny 

  

  

c. Case B1 in X for 0*Ty d. Case B1 in Z for 0*Ty 

Figure 4.18. Cases A1 and B1 for X and Z directions for solid and hollow circular 

sections for different     ratio under cyclic loading. 
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a. Case A2 in X for 0.25*Ny b. Case A2 in Z for 0.25*Ny 

  

  

c. Case B2 in X for 0.25*Ty d. Case B2 in Z for 0.25*Ty 

Figure 4.19. Cases A2 and B2 for X and Z directions for solid and hollow circular 

sections for different     ratio under cyclic loading. 
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a. Case A3 in X for 0.50*Ny b. Case A3 in Z for 0.50*Ny 

  

  

c. Case B3 in X for 0.50*Ty d. Case B3 in Z for 0.50*Ty 

Figure 4.20. Cases A3 and B3 for X and Z directions for solid and hollow circular 

sections for different     ratio under cyclic loading. 
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a. Case A4 in X for 0.75*Ny b. Case A4 in Z for 0.75*Ny 

  

  

c. Case B4 in X for 0.75*Ty d. Case B4 in Z for 0.75*Ty 

Figure 4.21. Cases A4 and B4 for X and Z directions for solid and hollow circular 

sections for different     ratio under cyclic loading. 
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response with different level of loading is given in the same figure for each     

ratio.     
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According to the Figure 4.22 to Figure 4.24, as axial load and torsion increase, 

capacity of the section decreases which is a reasonable situation as observed 

previously for member with solid section. However, for thin walled sections, the 

effect of axial load and torsion on nonlinear behavior is more pronounced than the 

effect of same parameters on solid circular section. Dependency of the nonlinear 

response on the direction of loading is more clear in the thin-walled circular sections 

and this can be also seen from the figures.  

 

As mentioned previously, it is observed that the influence of torsion on nonlinear 

behavior is less important compared to the effect of axial load for solid circular 

sections. However, for thin walled sections, coupling of torsion has a worthy effect 

to be considered besides the importance of axial load on nonlinear response of 

members with hollow circular sections. The results of the nonlinear examples 

presented so far confirm that the proposed 3d mixed beam element have the ability of 

capturing this interaction providing a credit for reliable nonlinear analysis of 

members with various sections and under miscellaneous loading and boundary 

conditions.     
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a. Base shear force vs. tip displacement 

in X for different level of Ny and a/b=0.9 

b. Base shear force vs. tip displacement 

in Z for different level of Ny and a/b=0.9 

  

c. Base shear force vs. tip displacement 

in X for different level of Ty and a/b=0.9 

d. Base shear force vs. tip displacement 

in Z for different level of Ty and a/b=0.9 

Figure 4.22. Base shear vs. tip displacement in global X and Z directions under cyclic 

loading for hollow circular sections for     ratio is equal to 0.90. 
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a. Base shear force vs. tip displacement 

in X for different level of Ny and 

a/b=0.95 

b. Base shear force vs. tip displacement 

in Z for different level of Ny and 

a/b=0.95 

  

c. Base shear force vs. tip displacement 

in X for different level of Ty and 

a/b=0.95 

d. Base shear force vs. tip displacement 

in Z for different level of Ty and  

a/b=0.95 

Figure 4.23. Base shear vs. tip displacement in global X and Z directions under cyclic 

loading for hollow circular sections for     ratio is equal to 0.95. 
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a. Base shear force vs. tip displacement 

in X for different level of Ny and 

a/b=0.99 

b. Base shear force vs. tip displacement 

in Z for different level of Ny and 

a/b=0.99 

  

c. Base shear force vs. tip displacement 

in X for different level of Ty and 

a/b=0.99 

d. Base shear force vs. tip displacement 

in Z for different level of Ty and  

a/b=0.99 

Figure 4.24. Base shear vs. tip displacement in global X and Z directions under cyclic 

loading for hollow circular sections for     ratio is equal to 0.99. 
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4.3.4. Nonlinear Analysis of Uniform Fixed-Fixed Pipe 

 

In this section, nonlinear responses of the proposed 3d mixed beam element 

(abbreviated as proposed MF) and Euler-Bernoulli version of the current mixed 

formulation Timoshenko beam element  (abbreviated as EB-MF) are compared with 

some of the examples presented in the study of Nowzartash and Mohareb [55] for the 

same loading, material, geometry and boundary conditions stated in those examples. 

 

The properties of the proposed MF element are already explained in the previous 

parts. When the EB-MF element is considered, it should be noted that that element is 

capable of taking into account the existence of inelasticity due to material for normal 

stress oriented along element length. Moreover, the element assumes that the shear 

stresses on the section are elastic and caused by application of no loads other than 

torsion.  

 

The element presented by Nowzartash and Mohareb [55] is abbreviated as P3D2HE 

in that study where the letter "P" stands for the pipe section that is used in the 

analysis of elevated and submerged steel pipes, "3D" stands for a 3d lumped 

plasticity beam element, "2H" denotes two probable plastic hinges at both nodes and 

"E" designates the yield surface. It is worth mentioning that the element by 

Nowzartash and Mohareb assumes that the response of the element is elastic 

perfectly plastic where the plasticity is lumped at plastic hinges at element end nodes 

having zero length. Hence, a priori calculation/estimation of sectional geometric 

parameters and yield and plastic capacities of section forces is needed due to 

deficiency of the formulation of the element. Therefore in some examples in the 

aforementioned study, only the fomation of first plastic hinge is taken into 

consideration not presenting parameters related with formation of other hinges. 

However, the proposed MF element does not have to cope with that kind of 

hindrances since its formulation is based on fiber discretization model for section 
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state determination and it uses distributed inelasticity formulation for element state 

determination.  

 

The results of the nonlinear analyses which exist in the study of Nowzartash and 

Mohareb that are used to compare the P3D2HE element with the elements B33, 

PIPE31, FRAME3D and ELBOW31 that are readily available in the library of 

ABAQUS [63] are also made use of for the verification of the proposed MF element 

together with the EB-MF element.  

 

It is tedious and needless to mention whole of the features of all elements that are 

used in the comparison of nonlinear response. Therefore, it is preferred only to 

summarize characteristic properties of elements in Table 4.2 and suggested referring 

to the study by Nowzartash and Mohareb [55] for more detailed discussion. Euler-

Bernoulli and Timoshenko beam theories are abbreviated as "EBT" and "TBT", 

respectivelly as mentioned previously in Section 3.4. 

 

 

Table 4.2. Features of elements used in comparison of nonlinear responses 

Element 

Name 
Element Type 

Beam 

Formulation 

Number of nodes / 

element 
Number of dofs 

B33 EBT DB 2 end nodes 6 per node 

PIPE31 
TBT  

(shear elastic) 
DB 2 end nodes 6 per node 

FRAME3D 
EBT  

(lumped plasticity) 
DB 

2 end nodes 

1 intermediate node 

6 per end nodes 

3 for intermediate 

ELBOW31 TBT DB 2 end nodes 6 per node 

P3D2HE 
TBT  

(lumped plasticity) 
DB 2 end nodes 6 per node 

EB-MF EBT MF 2 end nodes 6 per node 

Proposed MF TBT MF 2 end nodes 6 per node 
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Nowzartash and Mohareb dealt with a DN90 STD pipe section that has an outer 

diameter 101.6 mm, thickness 5.74 mm, elastic modulus 200 GPa, yield strength 350 

MPa and Poisson’s ratio 0.3 in their study. Following loading cases for the same pipe 

are presented for verification purposes in this thesis.  

 

4.3.4.1. Combined Bending and Torsion of a Long Fixed-Fixed Pipe 

 

In the first loading case, a vertical load,   (kN) directed towards beam axis 

perpendicularly and torque,     (kN.m) surrounding the beam axis at the same 

point of application of the vertical load are exerted on a 6m fixed-fixed pipe. All the 

loads are applied to the second node which is 4m away from the fixed-end node 1 

and 2m away from the other fixed-end node 3. Nonlinear response of the pipe under 

that loading is investigated by monitoring node 2 as depicted in Figure 4.25. 

 

It can be deduced from the figure that proposed MF is able to appropriately reflect 

the influence of the combined effects of the vertical and torsion loads applied on the 

member with only two elements per span. However, 120 ELBOW31 and 48 B33 or 

PIPE31 displacement based elements are needed to catch similar nonlinear response 

for the case of long member. 

 

Although EB-MF overestimates the nonlinear response, it is successful in modeling 

the elastic portion of the plastic curve with only two elements per member span. 

Main reason of this condition is the dominance of flexural effects rather than shear 

effects since the length of the member is long enough that shear effects do not come 

into prominence. Therefore, it can be used preferably for the elastic analysis of 

sufficiently long beams due to its computational efficiency. 
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Figure 4.25. Comparison of load vs. transverse displacement at node 2 for long pipe. 

 

 

4.3.4.2. Bending of a Short Fixed-Fixed Pipe 

 

In the second loading case, the total length of the pipe is shortened to 1m and only a 

vertical load pointing perpendicularly towards beam axis is applied to the second 

node which is 0.8m from fixed-end node 1 as shown in Figure 4.26.  

 

In this case proposed MF element is the most successful element that captures the 

nonlinear behavior with only two elements per member span by converging the 

theoretical value 189.5 kN-m obtained with upper bound theorem as given by 

Nowzartash and Mohareb [55]. That condition gives evidence that the proposed MF 

element is good at modeling nonlinear behavior not only for long beams but also for 

short beams without any shear locking.  

 

FRAME3D, EB-MF and PIPE31 are incapable of modeling even elastic portion of 

the entire response since the member is short and those elements neglect shear 

deformation effects due to EBT assumption although FRAME3D was successful for 
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the case of long beam in the previous comparison. ELBOW31 elements and P3D2HE 

elements coincide for the elastic portion of the entire response whereas the former 

overestimates even with 100 elements and the latter underestimates with two 

elements per member span the nonlinear response.    

 

  

 

 

Figure 4.26. Comparison of load vs. transverse displacement at node 2 for short pipe. 
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CHAPTER 5  

 

 

FREE VIBRATION OF MIXED ELEMENT 

 

 

5.1. INTRODUCTION 

 

It is important to consider rotatory inertia and shear effects in determination of the 

free vibration response of special types of structures like, chimneys, pier of a deck, 

tower of wind turbines, etc. Therefore, computation of consistent mass and stiffness 

matrices accurately are also important for especially determination of higher order 

vibration modes of structures. 

 

In this chapter, derivation of 3d displacement based and flexibility based consistent 

mass matrices are presented and the advantages of the latter are displayed in the 

subsequent chapter by carrying out linear elastic free vibration analysis of the 

proposed 3d mixed beam element and comparing its several higher order vibration 

frequencies with the closed form solutions and frequencies that are obtained from a 

finite element software.   

 

 

5.2. DISPLACEMENT BASED MASS MATRIX 

 

Dynamic response of an element can be modeled using displacement based approach 

by requiring the work done by external forces is equal to the work done by inertial, 

viscous and internal forces for small displacements as follows [31]; 
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In Equation (5.1),    denotes the concentrated loads acting on "n" different points of 

the member which are usually nodal points,   is the mass density of the material,    

is a parameter that deals with the material-damping, and other parameters are defined 

in the previous sections. The displacement field,   and its first two derivatives with 

respect to time denoted with dotted accent sign can be shown as follows; 

 

In Equation (5.2),   denotes the shape functions components of which are given in 

the previous sections for 3d version of the displacement based element of Friedman 

and Kosmatka [12]. If Equation (5.2) is substituted into Equation (5.1) and necessary 

arrangements are done, then following expression is obtained. 

 

In Equation (5.3), element mass,    and damping,   matrices are defined as follows; 

       

 

        

 

     
 

 

   

                         

 

   (5.1) 

                          (5.2) 

           

 

        

 

              

 

            

 

       

 

    

 

   

    

(5.3) 
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If Equations (5.4) and (5.5) are substituted into Equation (5.3); 

                        (5.6) 

where element internal and external load vectors are      and      , respectively and 

given as follows; 

 

 

No matter the material is linear or nonlinear, Equation (5.6) can be utilized for 

dynamic analysis. If stresses on the element are linear function of strains, then 

internal load vector can be obtained by using the stiffness matrix,   and Equation 

(5.6) becomes; 

    

         

 

 (5.4) 

          

 

 (5.5) 

           

 

 (5.7) 

           

 

       

 

    

 

   

 (5.8) 
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If it is assumed that there is no external load acting on the system that is analyzed 

and damping is negligible, then free vibration analysis of the assembled structure can 

be carried out by using the following expression; 

 

The mass matrix obtained by using the procedure presented above will be "consistent 

mass matrix" because the shape functions used for determining the mass matrix are 

the same with the shape functions used for determination of the stiffness matrix. 

Moreover the mass matrix will be capable of incorporating the effects of shear 

deformations and rotary inertia since shape functions include those effects in the 

formulation. Lumped mass matrix that lumps some portion of the mass to the nodes 

of the element is also an alternative in the dynamic analysis but lumping neglects 

shear deformations and rotary inertia although it is possible to include the latter for 

the rotational dofs.  

 

Consistent mass matrix considers effects that lumped mass matrix does not and they 

can be used interchangeably depending on the analysis case. Lumped mass matrix 

necessitates lower computational effort since it is a diagonal matrix. Although, the 

rotational dofs can be eliminated from a lumped mass matrix by static condensation, 

it is not possible to discard rotational and translational dofs from a consistent mass 

matrix [64]. However, for some types of structures like bridges, chimneys, dams, 

nuclear facilities, and etc., lumped-mass idealization is not preferred much [32].  

 

Although it is not shown separately in this thesis, it is found that the consistent mass 

matrix obtained by using displacement based approach and shape functions of 

                         (5.9) 

         (5.10) 
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Friedman and Kosmatka [12] is the same with the consistent mass matrix obtained by 

using flexibility based approach for a uniform member. However, special shape 

functions are needed to obtain accurate consistent mass matrices by using 

displacement based approach for a member which is not uniform or homogeneous 

whereas flexibility based approach does not necessitate such kind of an additional 

effort since it is possible to obtain accurate consistent mass matrices for members 

with any nonuniformity in geometry or heterogeneity in material with this approach 

due to its nature as explained in the subsequent section. 

 

 

5.3. FLEXIBILITY BASED MASS MATRIX 

 

Flexibility-based approach by Molins et al. [44] is utilized and presented in this part 

in order to derive 3d consistent mass matrix. The procedure enables obtaining not 

only consistent mass matrices of members having uniform sections but also mass 

matrices of members having non-uniform sections by taking into account the actual 

distribution of mass within the member without any need for interpolation of the 

displacement field. 

 

The novelty of this thesis is the utilization of the flexibility based consistent mass 

matrix that is offered by Molins et al. [44] and the stiffness matrix of the proposed 

mixed formulation element to compare the first several free vibration frequencies of 

various cantilever beams having different cross sections and uniformity in the next 

chapter. Therefore, in order to provide integrity and consistency throughout the thesis 

the derivation of the flexibility based consistent mass matrix is presented in 

accordance with the symbolic expressions used in this thesis.  
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5.3.1. Equilibrium of the Element 

 

In the formulation, instead of the simply supported basic system that is explained in 

Section 3.2.1, a cantilever basic system is adapted for formulation, where this beam 

is fixed at node   and free at node  . Therefore, Equation (3.53) remains nearly the 

same with the expression given as Equation (5.11) but the force interpolation matrix 

for the cantilever beam,         and forces due to distributed loads,   
      are 

introduced  as follows; 

                 
     (5.11) 

where 

        

 
 
 
 
 
 
      
      
      
      
          
           

 
 
 
 
 

 (5.12) 

 

  
             

 

 

    (5.13) 

 

Equation (5.11) relates the basic end forces at the free end,    to the internal section 

forces      by the help of force interpolation matrix         that gives the exact 

equilibrium of forces between sections that are   units and   units away from the 

fixed end of the member, respectively. To sum up, the equation relates the forces at 

free end to the forces at any section of the member. In Equation (5.13),   stands for 

the distributed loads on the member. In the following equations, expressions with 
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subscript "  " and " " denote parameters at fixed and free ends of the member, 

respectively. 

 

5.3.2. Element Displacements and Deformations 

 

The beam element in complete system has displacements at node  , as well. 

Displacements at free end of the member,    can be related to the displacements at 

the fixed end of the member,    as follows by using the basic system of cantilever 

beam; 

     
            

            

 

 

 (5.14) 

The term with the integral sign in Equation (5.14) corresponds to the movement of 

the free end caused by the deformation,   of the cantilever beam element that is 

similar to the expression given in Equation (3.9). 

       
            

            

 

 

 (5.15) 

 

5.3.3. Response of the Element 

 

It is possible to relate sectional forces to sectional deformations as given in Equation 

(4.5) through section stiffness matrix under linear elastic material response as 

follows; 
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 (5.16) 

Where   is the modulus of eleasticity of a material point,   is the shear modulus,   is 

the torsional inertia,    
 and    

 are the shear corrected areas.  

 

Equation (4.5) can be rearranged as follows; 

       
          (5.17) 

If Equation (5.17) is substituted into Equation (5.15), following expression is 

obtained; 

       
            

        
           

 

 

 (5.18) 

Basic end forces at the fixed end,    and free end    can be associated with the 

internal section forces at any point along the element with the help of Equation 

(5.11). If Equation (5.11) is substituted into Equation (5.18), following expression is 

obtained; 

      
        

                 
        

       
       

 

 

 (5.19) 
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Equation (5.19) can be given in more compact form as follows; 

         (5.20) 

where element flexibility matrix of the member,   and vector of deformations at free 

end due to the distributed loads in its isostatic case,    is defined as; 

     
        

              

 

 

 (5.21) 

 

      
        

       
    

 

 

   (5.22) 

Stiffness matrix of an element can be obtained by relating forces and end node 

displacements of free end of the element by combining Equation (5.20) and left side 

of Equation (5.15) as follows; 

         
                     (5.23) 

Similar expression is obtained for the fixed end of the element by combining 

Equations (5.11) and (5.23) as follows; 

     
             

                        
  (5.24) 

It is possible to express Equations (5.23) and (5.24) in matrix form as follows; 

 
  

  
   =  

   
           

        
         

      
         

  
  

  
     

              
 

     
  (5.25) 

Equation (5.25) can be given in a more simpler form as follows; 

        (5.26) 
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where    is the vector of end forces,   is the stiffness matrix of the element,   is the 

vector of end displacements and    is the vector of reactions caused by fixed end of 

the element.  

 

5.3.4. Mass Matrix Based on Flexibility Method 

 

Inertia forces that act on a section,       can be calculated by the following 

expression by assuming that cross-sections in the member move as rigid bodies in 

their own plane. 

                 (5.27) 

where 

Sectional mass matrix,       and vector of accelaration of a point on the axis,       

are given as follows; 

       

 
 
 
 
 
 
 

         
        
       

                

            

              
 
 
 
 
 
 

  

 

 (5.28) 

 

                           
      

      
     

 
 (5.29) 

If it is assumed that there is not any distributed loads on the element and Equations 

(5.14), (5.17) and (5.23) are rearranged, following expression is obtained; 

       
                   

                (5.30) 

If Equation (5.30) is substituted into Equation (5.14), following expression is 

obtained; 
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  (5.31) 

Equation (5.31) relates exactly displacements of any point in the axis of the member 

to the nodal displacmenets if the deformation of the member is only due to the end 

node displacements. However, if there are also distributed loads acting on the 

element, then the equation is approximate. The matrix that relates nodal 

displacements to the displacements on the section,      has the following form; 

        
                 

                (5.32) 

 

         
        

              

 

 

 (5.33) 

It is possible to adapt and use the same logic in Equation (5.13) that is valid for static 

condition and use d'Alembert's principle to obtain the inertia forces caused by loads 

distributed on the basic isostatic configuration by replacing   with       as follows; 

  
             

 

 

        (5.34) 

Equations (5.27) and (5.31) can be combined to obtain inertia forces as follows; 

             
   
   

  (5.35) 

Equation (5.34) can be substituted into Equation (5.22) and following expression is 

obtained; 

      
        

     

 

 

        

 

 

          (5.36) 
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If Equations (5.35) and (5.36) are substituted into Equation (5.25), mass matrix,   of 

the whole element can be obtained with the realization of the fact that    is the 

product of the mass matrix by the node accelerations. 

   
      

      
  (5.37) 

 

          
        

     

 

 

         

 

 

                   (5.38) 

 

          
        

     

 

 

         

 

 

        
      

           
             

(5.39) 

 

       
                      

 

 

                (5.40) 

 

               

         

 

 

        
                 

          
(5.41) 

 

Contrary to the derivation given in this thesis, the derivation by Molins et al. [44] 

necessitates taking transpose of the first term after integral sign,         in 

Equations (5.40) and (5.41). However, a step by step derivation reveals that there is 

no need to take transpose. The study by Molins et al. is so neat and straightforward 

that the probability of misprint in that document is higher than a mistake in the 
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formulation. The work presented by Molins et al. by the way did not provide 

elaborate comparisons of the numerical accuracy of the presented consistent mass 

matrix via exact solutions, but only provided numerical analysis on historical bridges 

under seismic action. In that regards, the strength of their formulation remained 

relatively unnoticed in the literature. 

 

There are numerous advantages of the flexibility based mass matrix obtained by the 

above procedure. With this approach, it is possible to obtain accurate mass matrices 

for elements with nonuniform sections such as tapered beams. It is also possible to 

obtain reasonable mass matrices for members that have functionally graded and 

composite materials without any additional effort to derive mass matrices for each 

individual case. 

 

Since, numerical examples and closed form solutions are generally available for the 

linear elastic case in the literature, the mass matrix derivation of which is presented 

above is also obtained under linear elastic conditions for making numerical 

comparisons more effectively in the following chapter. However, it should be noted 

that, the mass matrix obtained by the procedure explained above can also be used in 

nonlinear analysis. 
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CHAPTER 6  

 

 

VALIDATION OF VIBRATION OF MF ELEMENT 

 

 

6.1. INTRODUCTION 

 

In this chapter, validation of the proposed MF element for free vibration analysis is 

presented by including higher order vibration frequencies considering modes that 

originate from three dimensional behavior of a steel cantilever beam with different 

cross-sections and having various uniformity conditions. The mass and stiffness 

matrices that are used in the analyses are both force based and derivation of them are 

presented in the previous chapters. 

 

Numerical analyses are performed for various length over depth ratios       of 

uniform and tapered cantilever members with circular and rectangular cross-sections 

by monitoring first five free vibration frequencies in 3d by using different    per 

member span. Similar analyses are performed also with Abaqus [65] by using solid 

elements and resulting vibration frequencies are plotted for the modes obtained from 

analyses. Vibration freqencies obtained from both analysis with MF element and 

Abaqus are compared with explicit results available in the literature.  

 

It should be noted that nonlinear vibration properties of the proposed mixed element 

could not be investigated due to the lack of explicit or exact solutions in the literature 

that can be used for comparison of the results. Therefore, analyses are performed 

only for linear elastic conditions. 

 



 124 

 

 

 

6.2. UNIFORM MEMBER WITH CIRCULAR SECTION 

 

In this section, first five free vibration frequencies of the proposed 3d MF element 

are investigated by performing free vibration analysis of a uniform cantilever beam 

that has circular cross section and same material and geometric properties with the 

member that is presented in Section 4.3.1. However, length over depth ratios are 

varied as     is equal to 1, 1.5, 2, 3 or 5 by keeping the diameter of the section, 

     units constant and varying the length of the member in the analysis. Then, 

resulting frequencies are compared with the theoretical frequencies obtained by 

explicit methods that exist in two complementary studies of Leissa and So [41, 66]. 

 

In the first study of Leissa and So [41], a method of three dimensional analysis for 

the free vibration freqencies of solid circular cylinders of elastic material was 

developed by assuming displacements as polynomials in the radial and axial 

directions and considering various types of boundary conditions and     ratios. 

Constants that can be used to obtain frequency values were given for the free-free 

and fixed-free boundary conditions and it was stated in the study that frequencies 

were exact to five or six figures for the former case and three or four figures for the 

latter case, respectively. These frequencies were compared with the frequencies that 

were obtained from elementary (Euler-Bernoulli) and improved 1-D theories for 

longitudinal, torsional and bending modes for a variety range of     in that study.  

 

In their complementary study, Leissa and So [66] presented additional data for the 3d 

frequencies of solid circular sections for the same length over depth ratio utilized in 

the analyses with MF element. In that study, it was stated that there was not any 

published results for the 3d vibrations of cantilever beams by emphasizing that this 

problem was more difficult to be dealt compared to the free-free case since stress 

singularities in the corner at the fixed end result in a reduction of convergence of 
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solutions. Moreover, the paper concluded with the statement that the frequency data 

in that work can be used to compare the results obtained by other methods like finite 

element or finite difference. Therefore, Table V in that study which gives the 

constants that can be used to obtain 3d frequencies of a cantilever cylinder is used to 

compare the frequencies obtained by the proposed MF element.   

 

The computer software, Abaqus 6.12, which enables performing finite element 

analysis is also used to determine mode shapes and free vibration frequencies of the 

uniform cantilever member with circular cross-section. Solid elements, named as 

C3D8R that exist in the library of the software are used for modeling the cantilever 

member. Mesh refinement for the member is applied until first five freqencies 

converge to a certain value which does not result in exceedance of the capacity of the 

computer to continue processing analyses. Consequently free vibration frequencies 

and mode shapes of the member are obtained for various     ratios and plotted 

through Figure 6.1 to Figure 6.5 for the first five vibration frequencies by not 

replotting one of the symmetrical modes in the perpendicular direction of the 

member axis due to symmetry in section geometry for each bending mode.  

 

Figure 6.1 that depicts vibration modes for       includes one more mode 

totalling to six as compared to other figures. Because, for that case, fifth frequency of 

the member is warping mode that is combination of axial and bending which is not 

possible to obtain by the proposed MF element due to the assumption of Timoshenko 

beam theory unless a special warping function is assumed for the section of MF 

element. Therefore only this mode is neglected in comparison of the resulsts obtained 

by the proposed MF element, Abaqus and Leissa and So [66] where latter also 

includes constants for warping modes. However, proposed MF element is able to 

capture accurately the modes that do not include warping for all     ratios.      
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Figure 6.1. Free vibration modes obtained by Abaqus for L/d=1 
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Figure 6.2. Free vibration modes obtained by Abaqus for L/d=1.5 
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Figure 6.3. Free vibration modes obtained by Abaqus for L/d=2 

 

 

 



 129 

 

 

 

 

  

a. 1
st
 Mode (1

st
 bending mode) b. 2

nd
 Mode (1

st
 torsion mode) 

  

c. 3
rd

 Mode (2
nd

 bending mode) d. 4
th

 Mode (1
st
 axial mode) 

 

e. 5
th

 Mode (2
nd

 torsion mode) 

Figure 6.4. Free vibration modes obtained by Abaqus for L/d=3 
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Figure 6.5. Free vibration modes obtained by Abaqus for L/d=5 

 

 

According to Figure 6.1 to Figure 6.5, for        , the fundamental mode of 

the uniform cantilever member with solid circular section is bending. This fact is 

stated also by Leissa and So [66]. Moreover, for        , first five modes are in 

the order of 1
st
 bending, 1

st
 torsion, 1

st
 axial, 2

nd
 bending and 2

nd
 torsion. This 

situation is tabulated in Table 6.1 by neglecting warping mode (Figure 6.1.e) for the 

case of      .   
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Table 6.1. Mode shapes for various L/d ratios for uniform cantilever beam with solid 

circular section 

 Mode number 

L/d 1 2 3 4 5 

1 1
st
 bending 1

st
 torsion 1

st
 axial 2

nd
 bending 2

nd
 torsion 

1.5 1
st
 bending 1

st
 torsion 1

st
 axial 2

nd
 bending 2

nd
 torsion 

2 1
st
 bending 1

st
 torsion 1

st
 axial 2

nd
 bending 2

nd
 torsion 

3 1
st
 bending 1

st
 torsion 2

nd
 bending 1

st
 axial 2

nd
 torsion 

5 1
st
 bending 2

nd
 bending 1

st
 torsion 1

st
 axial 3

rd
 bending 

 

 

First five frequency values obtained by the proposed MF element are compared with 

the first five frequencies obtained by frequency constants in the study of Leissa and 

So (abbreviated as LS hereafter) [66] by computing ratio of frequency values 

        for    is equal to 1, 2, 4, 8, 16 and 32 for aforementioned     ratios where 

    and     denote the frequency values obtained by the proposed mixed element 

and study of Leissa and So, respectively. In those comparisons, only one of the 

symmetric modes around an axis is considered. Results are plotted in Figure 6.6 to 

Figure 6.10. All of these plots have logarithmic horizontal and linear vertical axes, 

i.e. they are semilog plots. It should be noted that in those figures fifth vibration 

mode for      is missing because, with only one element per member span, MF 

element can only capture first four vibration frequencies. 
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Figure 6.6. Comparison of vibration frequencies between MF and LS for L/d=1 

(Uniform cantilever beam with solid circular section) 

 

 

 

Figure 6.7. Comparison of vibration frequencies between MF and LS for L/d=1.5 

(Uniform cantilever beam with solid circular section) 
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Figure 6.8. Comparison of vibration frequencies between MF and LS for L/d=2 

(Uniform cantilever beam with solid circular section) 

 

 

 

Figure 6.9. Comparison of vibration frequencies between MF and LS for L/d=3 

(Uniform cantilever beam with solid circular section) 
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Figure 6.10. Comparison of vibration frequencies between MF and LS for L/d=5 

(Uniform cantilever beam with solid circular section) 
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to the value 1 asymptotically for all L/d which is an expected result. In these figures, 
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vertical axis and the expression is multiplied by 100, then the percent difference of 

MF element from LS results can be obtained. Moreover, if the value of         is 

greater than 1, then the percent difference is positive, i.e. values of frequencies 

obtained by MF element are greater than LS results and if the ratio is smaller than 1, 

then the percent difference is negative indicating that frequency values obtained by 

MF element are smaller than LS results. 

 

Another point to be emphasized is the ability of MF element to compute fundamental 

frequency accurately with only one element with a difference from LS results less 

than 2% for all L/d and first three frequencies with a difference less than 10% for all 
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less than 6% from LS results by using only two elements per span. First five 

frequencies are also computed with a difference less than 6% from LS results but this 

time by using four elements per span. Actually, percent differences of MF element 

results from LS results decrease as L/d increases, i.e. the difference is more 

pronounced for a short beam.  

 

Similar comparison is made with the freqeuency values obtained by calculating ratio 

of first five frequency values calculated by LS and Abaqus,             for 

previously stated     ratios and results are plotted in Figure 6.11. Although, 

                  for the warping mode given in Figure 6.1.e for      , it is 

neglected in Figure 6.11 and the next mode is assumed to be the fifth mode as stated 

previously in order to provide consistency with the results obtained by MF element. 

  

 

 

Figure 6.11. Comparison of vibration frequencies between LS and Abaqus for 

various L/d 

 

1 2 3 4 5
0.999

1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

1.008

n
th

 mode


L

S
/

A
b

a
q

u
s

L/d=1

L/d=1.5

L/d=2

L/d=3

L/d=5



 136 

 

 

 

According to the Figure 6.11, maximum percent differences of LS and Abaqus 

results are less than 0.5% percent in the positive side and %0.1 in the negative side. 

But, the constants which are given in the study of Leissa and So that are used to 

obtain first five frequnecies are given correct to three figures after decimal. Although 

the percent differences of LS and Abaqus results are very low, the difference may be 

originated from both the numerical computation by using those constants and the size 

of the meshing used in Abaqus. The chaotic nature of the curves that connect values 

of ratios rather than a trend line in the figure strenghens this idea. Therefore, it is 

thought that those differences can be tolerated in the comparisons given in Figure 6.6 

to Figure 6.10. It should also be noted that, if         ratios in Figure 6.6 to Figure 

6.10 are multiplied with the corresponding             values in Figure 6.11, then 

ratio of MF element and Abaqus results,             can be obtained. So, there is 

no need to present             in a plot in addition to the comparisons of MF 

element results with LS results.  

 

 

6.3. TAPERED MEMBER WITH CIRCULAR SECTION 

 

In this section, first five free vibration frequencies of the proposed 3d MF element 

are investigated by performing free vibration analysis of a tapered cantilever beam 

that has solid circular cross section and same material properties with the member 

that is presented in Section 4.3.1. However, since the member is tapered linearly to 

the free end of the member, the geometry of the member is defined as in Figure 6.12. 

Ratio of the length of the member to the depth of fixed end,    is varied as       is 

equal to 1 and 3 by keeping the diameter of the section at the fixed end,       

units constant and varying the length and diameter of the member in the analysis. 

Another parameter that is kept constant in the anlysis is the ratio of the diameter of 

the free end of the member,    to the diameter of the fixed end of the member,       
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which is equal to 0.5. Then, resulting frequencies obtained by MF element are 

compared with the frequencies obtained by Abaqus. 

 

Although there exists studies related with determination of free vibration frequencies 

of 3d tapered members with solid circular sections [67, 68], these studies do not 

include the boundary conditions for the cantilever beam analyzed in this thesis. There 

exists several studies giving tables for vibration frequencies of tapered cantilever 

members with solid circular sections but, these studies are in 2d [69-71]. Therefore, 

Abaqus results are thought to be enough for numerical comparison.    

 

 

 

Figure 6.12. Tapered cantilever beam with circular cross section 

 

 

Mode shapes obtained by Abaqus are plotted in Figure 6.13 and Figure 6.14 for 

L/d0=1 and 3 where d1/d0=0.5 for both cases. Symmetrical modes, like bending 

around two perpendicular axes are considered only once in plotting mode shapes and 

counting mode numbers.  
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Figure 6.13. Free vibration modes obtained by Abaqus for L/d0=1 and d1/d0=0.5  
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Figure 6.14. Free vibration modes obtained by Abaqus for L/d0=3 and d1/d0=0.5  
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First five frequency values obtained by the proposed MF element are compared with 

the first five frequencies obtained by Abaqus by computing ratio of frequency values 

            for    is equal to 1, 2, 4, 8, 16 and 32 for aforementioned      ratio is 

equal to 1 and 3, respectively. Symmetric modes are counted only once in those 

comparisons and results are depicted in Figure 6.15 and Figure 6.16 in semilog plots. 

Frequency values are missing in the plots for the fifth in Figure 6.15 and for the 

second mode in Figure 6.16 for     , because MF element can not capture those 

modes with only one element per span. 

 

 

 

Figure 6.15. Comparison of vibration frequencies between MF and Abaqus for 

L/d0=1 and d1/d0=0.5 (Tapered cantilever beam with solid circular section) 

 

1 2 4 8 16 32
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

n
e


M

F
/

A
b

a
q

u
s

1st mode (1st bending)

2nd mode (1st torsion)

3rd mode (1st axial)

4th mode (2nd bending)

5th mode (2nd torsion)



 141 

 

 

 

Figure 6.16. Comparison of vibration frequencies between MF and Abaqus for 

L/d0=3 and d1/d0=0.5 (Tapered cantilever beam with solid circular section) 
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the proposed MF element is suitable for determination of free vibration frequencies 

of tapered cantilever member with circular solid section. 
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6.4. UNIFORM MEMBER WITH RECTANGULAR SECTION 

 

First four or five free vibration frequencies of the proposed 3d MF element are 

investigated by performing free vibration analysis of a uniform cantilever beam that 

has solid rectangular cross section and same material properties with the member that 

is presented in Section 4.3.1. However, since the member has rectangular section, the 

geometry of the member is defined as in Figure 6.17. Three different cases are 

analyzed by varying dimensions of the member. Width and height of the section are 

kept constant to be        units in all analyses, whereas the ratio of lenght of 

the member,   to the height of the member,     is varied as 1, 2 and 5. Then, 

resulting frequencies obtained by MF element are compared with the frequencies 

obtained by using the frequency constants in Leissa and Zhang [72] and Abaqus for 

    is equal to 1 and 2. However, there is not any constant for the case of long beam 

in the study of Leissa and Zhang, therefore comparsion of the MF element for     = 

5 is made only with results of Abaqus. 

 

 

 

Figure 6.17. Uniform cantilever beam with rectangular cross section 
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Leissa and Zhang (abbreviated as LZ hereafter) [72] used Ritz method in their study 

where the displacements were assumed in the form of polynomials and presented a 

solution for the three-dimensional problem of determining the free vibration 

frequencies and mode shapes for a uniform cantilever beam with various rectangular 

sections where they called that kind of an element as parallelepiped. However, Leissa 

and So [66] noted that for this configuration, all three rectangular coordinates 

remained coupled preventing determination of the 3d frequencies not as accurate as 

for the case of circular sections analyzed in their study. 

 

Free vibration analyses are carried out by Abaqus as defined in Section 6.2 and mode 

shapes that are obtained are plotted in Figure 6.18 to Figure 6.20 for     is equal to 

1, 2 and 5, respectively. Symmetrical modes, like bending around two perpendicular 

axes are considered only once in plotting mode shapes and counting mode numbers 

as in the previous sections.  

 

Fifth vibration frequencies for     is equal to 1 and 2 are warping modes and can not 

be captured with the proposed MF element. Therefore, comparisons of the 

frequencies of the MF element with LZ and Abaqus results are made for only first 

four vibration frequencies for these     ratios. But, MF element is able to capture all 

other modes that do not contain warping of the section for     is equal to 1, 2 and 5. 

Thus, comparison of the frequency values obtained by MF element with Abaqus 

results are made up to fifth vibration frequency for the case of     is equal to 5. 
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Figure 6.18. Free vibration modes obtained by Abaqus for a/c=1 
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Figure 6.19. Free vibration modes obtained by Abaqus for a/c=2 
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Figure 6.20. Free vibration modes obtained by Abaqus for a/c=5 
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First four frequency values obtained by proposed MF element are compared with the 

first four frequencies obtained by LZ by computing ratio of frequency values 

        for    is equal to 1, 2, 4, 8, 16 and 32 for aforementioned     ratio is 

equal to 1 and 2, respectively and by computing the ratio             for the same 

number of elements, but this time for      . Symmetric modes are counted only 

once in those comparisons and results are depicted in Figure 6.21 to Figure 6.23 in 

semilog plots. Frequency values are missing in the plots for the fifth mode in Figure 

6.23 for     , because MF element can not capture those modes with only one 

element per span. 

 

 

 

 

Figure 6.21. Comparison of vibration frequencies between MF and LZ for a/c=1 

(Uniform cantilever beam with solid rectangular section) 

 

 

1 2 4 8 16 32
0.9

1

1.1

1.2

1.3

1.4

n
e


M

F
/

L
Z

1st mode (1st bending)

2nd mode (1st torsion)

3rd mode (1st axial)

4th mode (2nd bending)



 148 

 

 

 

Figure 6.22. Comparison of vibration frequencies between MF and LZ for a/c=2 

(Uniform cantilever beam with solid rectangular section) 

 

 

 

Figure 6.23. Comparison of vibration frequencies between MF and Abaqus for a/c=5 

(Uniform cantilever beam with solid rectangular section) 
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According to Figure 6.21 to Figure 6.23, as    increases, then         and 

            converges to the value 1 asymptotically for all a/c values, but modes 

other than second mode which is also the first torsion mode converges more rapidly. 

 

It can be deduced from figures that,      is suitable for capturing first three 

frequencies except first torsion mode with less than 3% difference from LZ results 

for the short beam case which is a/c=1 and less than 10% difference for the first 

torsion mode. The same number of elements can be used to capture first three 

frequencies except first torsion mode with less than 2.5% difference from LZ results 

for a/c=2 and less than 10% difference for the first torsion mode. By the way, MF 

element presented in this thesis did not consider warping effects present in 

rectangular sections, thus the first torsion mode was estimated with 10% error due to 

this assumption in the formulation. In order to reduce this error, warping functions 

should be incorporated to get better estimation for rectangular sections. 

 

Similar situation is valid in the comparison of MF element and Abaqus results. In 

that case first five frequencies except first torsion mode can be captured with MF 

element with less than 3.5% difference from Abaqus results and less than 10% 

difference for the first torsion mode. 

 

Therefore it can be concluded that proposed MF element is suitable for determination 

of free vibration frequencies of uniform cantilever member with rectangular section 

with lesser accuracy in torsion mode. However, if it is paid attention to implement 

warping function in the derivation of the MF element, then it is possible to obtain 

torsion frequencies as accurate as other modes for the case of rectangular section. 

 

Similar comparison is made with the freqeuency values obtained by calculating ratio 

of first five frequency values calculated by LZ and Abaqus,             for     is 
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equal to 1 and 2 and results are plotted in Figure 6.24. According to the figure, LZ 

and Abaqus results do not deviate too much where the maximum difference is less 

than 1.5% and LZ results can capture the warping mode. The deviation may be due 

to the number of figures after decimals in constants used in the study of LZ and 

meshing size used in the analyses with Abaqus. 

 

One can easily obtain the ratio of             by multiplying         ratios in 

Figure 6.21 and Figure 6.22 with             ratios in Figure 6.24. 

 

 

 

Figure 6.24. Comparison of vibration frequencies between LZ and Abaqus for 

various a/c 
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6.5. TAPERED MEMBER WITH RECTANGULAR SECTION 

 

First five free vibration frequencies of the proposed 3d MF element are investigated 

by performing free vibration analysis of a tapered cantilever beam which is actually a 

truncated wedge that has solid rectangular cross section and same material properties 

with the member that is presented in Section 4.3.1. The geometry of the member is 

defined as in Figure 6.25 and it is linearly tapered only in the direction of its axis. 

Two different cases are analyzed by varying dimensions of the member. Width,   

and the ratio of the height of the free end,    to the height of the fixed end,    of the 

member are kept constant to be      units and             in all analyses, 

whereas the ratio of lenght of the member,   to the height at fixed end,    of the 

member,      is varied as 1 and 3 by assuming       units in each cases. Then, 

resulting frequencies obtained by MF element are compared with the frequencies 

obtained by Abaqus for      is equal to 1 and 3.  

 

 

 

 

Figure 6.25. Tapered cantilever beam with rectangular cross section 
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There exists numerous studies and great effort related with determination of free 

vibration frequencies of tapered members with solid or hollow rectangular sections in 

2d in the literature [40, 73-80]. These studies consider different types of boundary 

conditions and present various solution methods to deal with the free vibration 

problem. However, there is not any available study in the literature that can be taken 

as reference to compare the free vibration frequencies for 3d. Therefore, Abaqus 

results are thought to be a good option and enough for numerical comparison of 

vibration frequencies in 3d.    

 

Mode shapes obtained by Abaqus are plotted in Figure 6.26 and Figure 6.27 for 

L/h0=1 and 3 where h1/h0=0.5 for both cases. Since the member is tapered to the free 

end and dimensions of the section at the free end are not the same in two 

perpendicular directions, there is not any symmetrical mode in the plots. Because of 

that reason, bending modes are excessive in number compared to other modes in the 

analyses.  
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Figure 6.26. Free vibration modes obtained by Abaqus for L/h0=1 and h1/h0=0.5  
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Figure 6.27. Free vibration modes obtained by Abaqus for L/h0=3 and h1/h0=0.5  
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First five frequency values obtained by the proposed MF element are compared with 

the first five frequencies obtained by Abaqus by computing ratio of frequency values 

            for    is equal to 1, 2, 4, 8, 16 and 32 for aforementioned      ratio is 

equal to 1 and 3, respectively. Results are depicted in Figure 6.28 and Figure 6.29 in 

semilog plots by considering each bending mode in two perpendicular directions as 

separately. It should be noted that, although its accuracy is low except for axial and 

torsion modes, MF element is able to capture first five frequencies even for      

which is not the case in the previous sections of that section. 

 

 

 

 

Figure 6.28. Comparison of vibration frequencies between MF and Abaqus for 

L/h0=1 and h1/h0=0.5 (Tapered cantilever beam with rectangular section) 
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Figure 6.29. Comparison of vibration frequencies between MF and Abaqus for 

L/h0=3 and h1/h0=0.5 (Tapered cantilever beam with rectangular section) 
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At this point it should be noted that free vibration analyses with MF element provide 

considerable reduction in analyses duration as compared to the analyses with Abaqus 

for the numerical validation studies given in Section 6.2 to 6.5. Because, for both 

uniform and tapered members with low and high length over depth ratios,      for 

member span is enough to capture fundamental mode with an accuracy that can be 

tolerated in the vibration analyses of structural systems. Moreover,      is 

sufficient for most of the cases analyzed for determination of the first five 

frequencies with a considerable accuracy.  
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CHAPTER 7  

 

 

CONCLUSIONS 

 

 

7.1. SUMMARY 

 

In this thesis, the derivation of an accurate 3d mixed formulation nonlinear frame 

finite element that is based on three field Hu-Washizu functional was presented. The 

accuracy of the element stemmed from the utilization of force interpolation functions 

in the predetermined control sections instead of using displacement interpolation 

functions along the span of the beam element. Displacement values that were needed 

to perform analyses were only the displacements of the end nodes that existed at each 

end of the member rather than inter element displacements. 

  

The accuracy of the proposed 3d mixed element was validated by carrying out 

nonlinear analyses of members with solid and hollow circular sections under various 

types of loading, boundary and uniformity conditions. Comparison of the results of 

nonlinear analyses of the 3d mixed element with exact solutions and 3d displacement 

based elements that are already available in the literature corroborated the superiority 

and ability of the mixed element to consider the 3d interaction of axial force, bending 

moment, shear force and torsion accurately.    

 

The capability of the proposed 3d mixed element to determine linear elastic vibration 

modes with a considerable accuracy was also pointed out by performing free 

vibration analyses of uniform and tapered cantilever beams with circular and 

rectangular sections for various length over depth ratios. Mass and stiffness matrices 

that were used in the free vibration analyses were derived by employing flexibility 
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based approach as presented in this thesis. Comparison of the vibration frequencies 

obtained by using the proposed 3d mixed element with the frequencies obtained from 

closed-form solutions in the literature and the frequencies obtained by a finite 

element software established the ability of the proposed mixed element to determine 

first five vibration frequencies of a beam element accurately provided that warping 

was neglected in the analyses. 

 

 

7.2. CONCLUSIONS 

 

Conclusions that were extracted from the studies performed throughout the thesis 

were discussed by summarizing the main findings as follows; 

 A 3d nonlinear mixed beam element based on the Hu-Washizu functional 

that is free from shear locking and capable of incorporating 3d interaction of 

stresses caused by axial force, shear force, bending moments and torsion 

accurately was developed. 

 The mixed element was tested under nonlinear conditions for various types 

of loading configurations and it was concluded that behavior of the element 

under nonlinear conditions matched quite well with the exact solutions that 

are available in the literature even with only one element per member span. 

 It was also shown that the 3d mixed element is superior to its 3d 

displacement based counterpart and some elements available in the library of 

a finite element software in nonlinear analyses through numerical 

comparisons by means of reflecting nonlinear behavior with lesser number 

of elements as compared to other displacement based elements. 

 It was emphasized that both the effect of axial load and torsion is important 

in nonlinear behavior of members with solid and hollow circular sections. 

However, the effect of torsion was more pronounced and seemed to be more 
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important for members with hollow circular sections as compared to 

members with solid circular sections under nonlinear conditions. 

 It was pointed out that increasing number of integration points on the section 

beyond some limiting value was unnecessary in nonlinear analyses since it 

did not provide any further accuracy other than increase in solution time and 

storage of data. 

 A 3d flexibility based consistent mass matrix was derived referring to an 

article available in the literature and it was highlighted that consistent mass 

matrix was the same as the consistent mass matrix obtained from 

displacement based approach for a uniform element. However, it was 

explained that flexibility based mass matrix was superior to displacement 

based mass matrix for cases such as elements with nonuniform section or 

nonhomogenous material since displacement based mass matrix necessitates 

special shape functions in order to obtain reasonable mass matrices for such 

cases. But, flexibility based mass matrix did not need special attention for 

interpolation of section forces because it considered distribution of mass 

inside the element during derivation of the matrix and used force 

interpolation functions that were actually exact under small deformations. 

 The 3d mixed element was used to evaluate first five linear elastic free 

vibration frequencies of uniform and tapered members with solid circular 

and rectangular sections by neglecting vibration modes that contain warping.  

It was concluded that the mixed element was capable of calculating those 

frequencies with a high accuracy by using two or four elements per span 

depending on the member type as compared with the frequencies obtained by 

using solid elements of a finite element program and using frequency 

constants that exist in the literature.  

 

 



 162 

 

 

7.3. RECOMMENDATIONS FOR FUTURE STUDY 

 

The proposed 3d mixed element, derivation of which was presented in this thesis was 

tested for nonlinear analyses of uniform and tapered members with some type of 

sections and boundary conditions. Authentication of the proposed element might be 

further made for different types of sections and boundary conditions other than the 

ones examined in this thesis.  

 

Verification studies were carried out by considering material nonlinearity of only one 

type of material by neglecting nonlinear geometric effects. Other material types and 

nonlinear effects caused by geometry can also be incorporated to the proposed 

element in the subsequent studies. 

 

Comparison of the proposed element with other displacement based elements and 

explicit solutions that exist in the literature for both nonlinear static and free 

vibration analyses were performed at element level in 3d. However, it is also possible 

to display the superiority of the proposed mixed element for 3d for these cases at 

structural level but this time it will be difficult to find explicit solutions that can be 

used as benchmark studies in comparisons. 

 

Last but not the least, the proposed mixed element neglected warping modes in free 

vibration analysis. But, implementing warping function in the derivation of the 

element will solve this issue. Such an effort will provide valuable contribution in 

obtaining accurate response of wide-flange, channel or any other type of irregular 

sections as a part of finite element analysis of structural systems in 3d.      
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