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ABSTRACT

DECISION SUPPORT FOR MULTI-ATTRIBUTE AUCTIONS

Karakaya, Giilsah
Ph.D., Department of Industrial Engineering

Supervisor: Prof. Dr. Murat Koksalan

December 2013, 156 pages

In this study, we address multi-attribute, multi-item auction problems. In multi-
attribute auctions there are additional attributes to the price and the comparison of
bids is not straightforward. In multi-item auctions which are also known as

combinatorial auctions, it is not so trivial to determine the winning bidders.

We develop an auction decision support system (ADSS) that supports sellers to
bid on multiple items. We demonstrate our approach in a multi-attribute, multi-
item reverse auction setting. The approach is also directly applicable to forward
auctions. During the auction process, ADSS estimates the underlying preference
function of the buyer and supports sellers providing them information based on
these estimations. We first assume that the sellers do not share their cost functions
with ADSS and develop interactive algorithms for underlying linear preference
functions as well as for underlying quasiconvex preference functions. The aim of

the developed approaches is to have the more competitive bidders eventually end



up winning the auction, with predetermined reasonable mark-up values. We

demonstrate that our algorithms work well on a variety of test problems.

We also develop an interactive algorithm for the case that sellers explicitly make
their cost functions available to ADSS. In this approach, ADSS tries to find the
best possible combinations considering both the estimated preference function of
the buyer and the cost functions of the sellers. The experiments show that our
algorithm finds the optimal winners (achieved with exact parameters of the
underlying preference function).

Keywords: multi-attribute auctions, multi-item auctions, interactive approach,

combinatorial auctions
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Oz

COK OLCUTLU ACIK ARTTIRMALAR ICIN KARAR DESTEK

Karakaya, Giilsah
Doktora, Endiistri Miithendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Murat Kdksalan

Aralik 2013, 156 sayfa

Bu ¢alismada ¢ok Olcitll, ¢ok iriinlii ihale problemlerini ele aliyoruz. Cok
Olcutll ihalelerde fiyat disinda diistiniilmesi gereken baska Olcitler de vardir ve
tekliflerin degerlendirilmesi zordur. Kombinatoryal ihaleler olarak da bilinen ¢ok

Urtinli ihalelerde kazananlar belirlemek 6zellikle zordur.

Saticilarin birden ¢ok iiriin icin teklif vermelerini destekleyen bir ihale karar
destek sistemi (IKDS) gelistirdik. Yaklasimimizi ¢ok OlcUtli, ¢ok iiriinlii acik
eksiltme problemleri Uzerinde goOsterdik. Yaklasimimiz agik  arttirma
problemlerine de dogrudan uygulanabilir. Thalede, IKDS alicinin tercih
fonksiyonunu tahmin edip saticilara tahminler hakkinda bilgi verir. Ilk olarak
saticilarin  maliyet fonksiyonlar: bilgilerini IKDS ile paylagsmadigi durumu
inceledik ve alicinin tercih fonksiyonunun hem dogrusal oldugu hem de dogrusal
olmadigr durumlar i¢in etkilesimli algoritmalar gelistirdik. Bu algoritmalar,

maliyetleri daha rekabetci olan saticilarin ihaleyi kazanmalarin1 hedeflemektedir.

vii



Algoritmalarimizi test etmek i¢in ¢6zdiiglimiiz tiim problemlerde iyi sonuglar elde
ettik.

Ayrica saticilarm maliyet fonksiyonlari bilgisini IKDS’ye verdigi durum igin de
etkilesimli bir yaklasim gelistirdik. Bu yaklasimda, IKDS alicinin tahmin edilen
tercih fonksiyonu ile saticilarin maliyet fonksiyonlarini géz 6niinde bulundurarak,
en iyi teklifleri bulmaya calisir. Yaptigimiz testlerde algoritmamizin optimal
kazananlar1 (alicinin tercih fonksiyonunun agik olarak bilindigi durumda bulunan

kazananlar) buldugunu gordiik.

Anahtar kelimeler: cok o6lcutlli agik arttirmalar, ¢ok triinli agik arttirmalar,

etkilesimli yaklasim, kombinatoryal a¢ik arttirmalar
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CHAPTER 1

INTRODUCTION

An auction is a way of buying and selling goods and services. The traditional
auction process used to take place in a room or a square where an object was
shown to the bidders by the auctioneer. The advances in the technological
infrastructure and the Internet make it possible to conduct online auctions that
eliminate the need for being present in the auction place physically. There are
specialized websites that mediate between buyers and sellers and facilitate huge
amounts of goods being traded between parties. With the online auction sites,

people buy/sell various types of products/services.

Auctions are commonly used by companies and governments. Hohner et al.
(2003) and Sandholm et al. (2006) report the implementation of auctions in Mars
Inc. and Procter&Gamble, respectively. Metty et al. (2005) state that Motorola
enjoy savings by implementing an online negotiation program. The government
of Chile has used auctions for the procurement of school meals in Chile for many
years (Catalan et al. 2009). Auctions have been commonly utilized in the
transportation industry (Sheffi, 2004; De Vries et al. 2003).

Online auctions are becoming popular with the advances in the Internet and there
is a growing amount of literature in this area. In single-attribute auctions
generally the price is used as the attribute. In multi-attribute auctions, there are
additional attributes and the comparison of bids is not straightforward. Multi-item

auctions also bring additional complexity over single-item auctions. In the single-



item auctions, the winning bidder supplies the item with the committed attribute
values. On the other hand, in multi-item case it is not trivial to determine the
winning bidders. In these auctions, generally bidders offer a combination of
items — a bundle — they wish to supply. They specify the attribute values of the
bundle and make their bids. Multi-item auctions are known as combinatorial
auctions (CAs).

In this thesis, we study multi-attribute multi-item (MAMI) auction problems. We
first develop an exact approach that provides aid both to the buyer and the sellers
for MAMI multi-round auctions where the buyer has an underlying linear
preference function. The approach estimates the parameters of a preference
function representing the buyer’s preferences evaluated on multiple attributes and
informs the sellers about the estimations to update their bids for the next round.
We set different weight values to the attributes and generate different problems.
We test the performance of the algorithm for both two and three attribute cases
when the underlying preference function is linear. We also make a local linear
approximation for nonlinear preference functions and report the results. We then
develop an interactive method to support the buyer to find the best bid
combination among the given bids for two attribute problems. This method
decreases the number of comparisons made by the buyer. We use this method as
an exact method for underlying linear preference functions, and as a heuristic for
underlying nonlinear preference functions. We also develop an interactive method
for underlying quasiconvex preference functions. We try different versions for
this method and report the results for two attribute problems. Furthermore, in all
of the mentioned methods above we assume that we do not know the cost
functions of the sellers. We then address the case where sellers explicitly make
their cost functions available to us (the independent party mediating the auction).
By using their cost functions, we find favorable combinations to present the
buyer. We refer to this case as “Coordinated Bidding” case. We also test the
performance of the approach for this case. Lastly, we made modifications to

improve the Evolutionary Algorithm (EA) developed in Karakaya (2009) for



MAMI reverse auctions in order to overcome the computational difficulties. We
approximately generate the whole Pareto front using the EA. We test the EA on a

number of randomly generated problems and report our findings.

The structure of the thesis is as follows: In Chapter 2, we give some definitions on
multi-objective decision making, we present the background of the auction theory
and relevant literature, and explain the general structure of our approach and
define the problem specifications. In Chapter 3, we develop an approach that
finds a set of efficient bid combinations to present the buyer. We develop an
interactive method to support the buyer to find the best bid combination in
Chapter 4. In Chapter 5, we develop an interactive method to find the most
preferred bid combination of a buyer having a quasiconvex preference function.
In Chapter 6, we describe the “Coordinated Bidding” case where we create good
combinations to present the buyer by using the cost functions of sellers. We
discuss extension we made to our previous work in Chapter 7. Lastly, we present

future study issues and conclusive remarks in Chapter 8.






CHAPTER 2

DEFINITIONS, BACKGROUND AND PROBLEM
CHARACTERISTICS

In this chapter we first give some definitions on multi-objective decision making.
We then explain the auction process and summarize relevant literature. Lastly,

we describe our approach and give the problem characteristics.

2.1 Definitions

In multi-objective optimization problems there are two or more, generally
conflicting, objectives subject to a set of constraints. The general multi-objective
optimization problem can be formulated as follows:

“Minimize” {21 (x), 2,(x), ..., z; (x)}

subject to
xeEX

where,

x : decision variable vector

X : feasible decision space

z;: | objective function
and the quotation marks are used to indicate that the minimization of a vector is

not a well-defined mathematical operation.

A solution x € X is said to be efficient, if and only if there does not exist x’ € X

such that z;(x") < z;(x) for all j and z;(x") < z;(x) for at least one j. Otherwise,



x is said to be inefficient. If x is efficient, then z(x) = (z;(x), z;(x), ..., z;(x)) is
said to be nondominated, whereas if x is inefficient, then z(x) is said to be
dominated. z(x) is said to be strictly dominated, if and only if z;(x') < z;(x) for
all j whereas z(x) is said to be weakly nondominated, if and only if there does not

exist x' € X such that z(x") strictly dominates z(x).

Consider distinct solutions x; € X, i=12,..,n Let
Y={yiy=Y"wx;, X i =1,4;, =0} be the set of all convex
combinations of x;. A solution x; is said to be convex dominated, if there

existsy € Y,y # x; such that z;(y) < z;(x;) forall j.

An efficient solution, x, is said to be unsupported efficient if and only if there
existsy €Y,y # x such that z;(y) < z;(x) for all j and z;(y) < z;(x) for at
least one j. An efficient solution, x, is said to be nonextreme supported efficient if
and only if there existsy € Y,y # x such that z;(y) = zj(x) for all j. An
efficient solution, x, is said to be extreme supported efficient if and only if there

does not existy € Y,y # x such that y convex dominates x.

It is well-known in the multi-objective literature that any supported nondominated
solution can be found by using a suitable weighted linear combination of the
objective functions. However, finding unsupported nondominated solutions is not

straightforward.

In Figure 2.1 the classification of the solutions based on the domination rules

where both objectives to be minimized are represented.



Objective 2

A Dominated Solutions: B, C, D

Strictly Dominated Solutions: C, D

A B C Weakly Nondominated but Dominated
* Solutions: B

E P Nondominated Solutions: A, E, F, G

J Supported Nondominated Solutions: A,
F G F,G
Unsupported Nondominated Solutions:

> E

.

Objective 1

Figure 2.1 Classification of the solutions

A pair of solutions are adjacent efficient to each other if their convex
combinations are not dominated by the convex combinations of other solutions. In
bi-objective problems, an extreme supported solution can have at most two
distinct adjacent efficient solutions (see Ramesh et al., 1990). We specify these
adjacent efficient solutions as east and west based on their positions relative to the
reference solution. An adjacent efficient solution having a larger value than the
reference solution in objective 1 is called its east adjacent efficient solution;
whereas an adjacent solution having a larger value than the reference solution in
objective 2 is called its west adjacent efficient solution. To demonstrate, consider
alternative F in Figure 2.1. It has two adjacent efficient alternatives: A and G. We
refer to G as the east adjacent efficient alternative of F and A as the west adjacent
efficient alternative of F.

Let x;,x, € X. We will use the notation x; > x, to imply that the decision maker
(DM) prefers x; to x, and x;~x, to imply that the DM is indifferent between x;

and x,.

Let f:R/ - R'be a quasiconvex function. By definition f(X, wix;) <

max;f(x;) for X u; =1,u; >0 where x; €R/, i=1,..,n are distinct



alternatives. The weighted L, metric is a quasiconvex function that measures the

weighted distance between two vectors p, q € R’ as follows:

1/
b, qll = (Z)_, (wilp; — ¢;]))" where a = {1,2,...} U {oo} and w; > 0.

Commonly used weighted L, metrics are the weighted rectilinear distance, the
weighted Euclidean distance, and the weighted Tchebycheff distance,

correspondingto @« =1, @ = 2,and «a = oo, respectively.

Within the context of an auction, from a buyer’s perspective, z;(x) refers to the

value of attribute j of bid x. The buyer’s problem, then, is to choose the bid that
minimizes his/her underlying preference function. In this thesis we use the terms
bid combination, solution and alternative interchangeably to refer to a
combination of bids that satisfy the whole requirements of the buyer. We also use
the terms buyer and DM interchangeably.

2.2 Auction Process

In the literature, auctions are categorized with respect to different properties. For
instance, they can be classified based on the number of buyers and sellers. If there
is one buyer and one seller, it is called negotiation. If there are many buyers and
many sellers it is called a double auction as in the case of a stock market. In
forward auctions there are one seller and many buyers. The auction for art objects
is an example of the forward auction. The last type is reverse auctions where the
buyer is the auctioneer and the sellers are the bidders. It is a common auction type
for procurement processes in the literature. To exemplify, a manufacturer selects
the suppliers of some products where the manufacturer is the auctioneer who will
buy the products and suppliers sell their products. Karakaya and Koksalan (2011)
represent the classification of the auctions with respect to the number of sellers

and buyers as follows:



One Seller - - One Buyer
Negotiation
Buyer 1 [«
> < Seller 1
Forward Reverse
Auction Auction
Buyer 2 |«
> < Seller 2
> < Seller m
Buyer n [«

Double Auction

Figure 2.2 Auction types with respect to the number of sellers and buyers

McAfee and McMillan (1987) group the auction mechanisms into four: the
English auction, the Dutch auction, the first-price sealed-bid auction and the
second-price sealed-bid auction (Vickrey auction). In an English auction, bidders
increase their bids during the action and the one who bids the highest price is the
winner. In these auctions, all bidders know each others’ bids. This is a property of
open-cry auctions. In Dutch auction, the auction starts with a relatively high price
and the auctioneer decreases it until a bidder accepts the current price. In the first-
price sealed-bid auction, bidders do not know each other’s bids. It is not an
iterative process. The bidder offering the highest (lowest) price for the forward
(reverse) process wins and he/she pays the highest (lowest) price. The second-
price sealed-bid auction is similar to the first-price sealed-bid auction except that
the winner pays the second highest (lowest) price.

Auctions are also classified with respect to the number of different items and the

number of units for each item auctioned. In single-item, single-unit auctions, there



exists one unit of an item to be auctioned. If there are two or more units for the
item auctioned, it is called a single-item, multi-unit auction. In single-item
auctions, the bidder who values the item most is the winner. However, in the
multi-item case where the items are complements or substitutes, it is not trivial to
determine the winning bidder(s). These auctions are also known as CAs where

bidders compose combinations of items, bundles, to sell/buy.

The number of attributes in the auction process is another classification. Price is a
typical attribute in auctions and if only price is considered, it is a single-attribute
auction. On the other hand, if there are additional attributes (quality, lead time,
warranty, etc.) to the price, it is a multi-attribute auction. Multi-attribute auctions
bring additional complexity over single-attribute auctions as the comparison of
bids is not straightforward in multi-attribute auctions.

If the bidders submit their bids at different rounds during an auction, it is called a
multi-round (iterative, progressive) auction. Multi-round combinatorial auctions
have important advantages over single-round versions. Bidders do not have to
submit bids for every possible combination in advance. It also allows bidders to
behave in a dynamic manner. Moreover, additional information can be collected
and utilized in a multi-round setting (see De Vries and Vohra, 2003). An
application for multi-round combinatorial auction in Mars Inc. is reported by
Hohner et al. (2003).

In this thesis, we deal with MAMI auction problems and the relevant literature is

summarized next.

2.3 Literature Review

In single-attribute auctions there is one attribute, typically the price. Choosing the
winner of such auctions is simple (Rothkopf and Park 2001). On the other hand,
in multi-attribute auctions comparison of the bids is not so simple. To evaluate

bids of multi-attribute auctions, typically a value or a scoring function is applied.
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Commonly, such value functions are in the form of weighted linear functions. The
winner of the auction is determined by solving the Winner Determination

Problem (WDP) that maximizes the value/scoring function.

To evaluate bids of multi-attribute auctions, Bichler and Kalagnanam (2005)
suggest a weighted-sum scoring function. Although using such functions is very
common, as Bellosta et al. (2004) state, it has some drawbacks such as the
difficulty of determining weights. Also, the solutions that can be found are limited
with a weighted-sum scoring function. Bichler and Kalagnanam (2005) study
multi-sourcing, i.e. demand can be supplied by multiple suppliers. They limit the
number of winners by setting a lower and an upper bound on the number of

winners.

Another approach to multi-attribute auctions is using the ‘pricing out’ technique
as in Teich et al. (2006). In this technique, all attributes are converted into
monetary values (see Keeney and Raiffa 1993, pp.125-127). Teich et al. (2006)
solve the resulting problem with a single attribute, namely the price. They
propose ‘suggested price’ tool for bidders. Bidders make the combination by
deciding on the quantities. Then the best price that makes the bidder’s bid among
the provisional winners is determined by using the ‘suggested price’ tool. Leskeld
et al. (2007) formulate a single-attribute auction problem and argue that the
formulation can be extended to the multi-attribute case by the pricing out
approach. They develop a Quantity Support Mechanism (QSM) that provides
bidders not only the suggested price for a new bid, but also quantity decision
support. They refer to a bid as “active” if it is among the provisional winners and
“inactive” otherwise. An inactive bid can become active if an entering bid groups
with it. Koksalan et al. (2009) improve the QSM and develop a Group Support
Mechanism (GSM). In QSM only one incoming bid can complement the existing
bids; whereas in the GSM a group of inactive bids can make a combination with
active bids or with inactive bids. Sandholm and Suri (2006) propose a weighting

function to evaluate bids in multi-attribute auctions. In the weighting
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functionf (p;, d;), p; refers to the price and d; refers to the vector of nonprice
attributes of bid j. This function is introduced to represent all other attributes in
terms of price, although the details are not explained. This approach is similar to

the pricing out technique in Teich et al. (2006).

Talluri et al. (2007) use data envelopment analysis (DEA) to propose a decision
support system tool for a multi-sourcing, single-round auction. They try to reflect
the correlation between the attributes in the value function. They define weights
for each attribute. To reflect the decision maker’s (DM’s) preference information
for attributes, they define ranges instead of exact weights. They divide the DEA
model into two stages. In stage I, scores of each bid are evaluated whereas in

stage Il, the winning bids are determined.

In the above approaches, simple functions that combine multiple attributes are
used to estimate value functions. However, determining the weights and

converting all attributes into a composite value are not easy.

Bellosta et al. (2004) suggest a multi-criteria model based on reference points for
single-item auctions. The DM defines an aspiration point at the beginning of the
auction. He/she also defines a dynamic reservation point based on which sellers
update their bids. Bids are evaluated using the scaled deviations from the
aspiration levels. Tchebycheff method is applied; the maximum scaled deviation
among all attributes is the deviation of that bid. Baykal (2007) studies
combinatorial auctions and applies a variation of Korhonen and Laakso’s (1986)
approach to the multi-attribute, multi-item auctions. She tries to find the best
combination of bids for a single round. Determination of aspiration and/or
reference points is not an easy task for the DM. Therefore, these methods may not

well represent the preferences of the DM.

Karakaya and Koksalan (2011) propose an interactive method for multi-attribute,

single-item reverse auctions. They estimate the underlying preference function of
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the buyer considering his/her past preferences. At each round, they only require
the buyer to select the most preferred bid among a set of bids. Then they inform
the sellers about the estimations and facilitate the sellers to update their bids
accordingly. They test the performance of the algorithm on a number of test
problems and conclude that the suggested mechanism supports the sellers well.
The buyer also benefits with the improvement in his/her preference function value

over the progress of the auction.

Sandholm et al. (2002) study the complexity of winner determination in
combinatorial auctions. They consider a single-attribute, price, and experiment on
different types of combinatorial auctions using a general purpose mixed integer
program solver, CPLEX. Sandholm (2002) proposes a tree search algorithm that
branches on items to find the optimal solution for combinatorial auctions. The
algorithm is a depth-first algorithm and allows finding feasible solutions quickly.
Also several preprocessing methods are suggested to speed up the algorithm.
Sandholm and Suri (2003) improve the algorithm in Sandholm (2002). They
suggest to branch on bids (BOB) instead of branching on items as in Sandholm
(2002). Besides computational advantages to the proposed algorithm in Sandholm
(2002), BOB can also be used for multi-unit combinatorial auctions. Sandholm et
al. (2005) suggest CABOB which is mainly based on the BOB algorithm. They
compare CABOB and CPLEX and report results. They claim that CABOB is

often drastically faster and seldom drastically slower than CPLEX.

Catalan et al. (2009) report the multi-attribute combinatorial auction for the
procurement of school meals in Chile. The Chilean government is the auction
owner and sets several criteria for the supply of foods. The bid selection is based
on the fulfillment of those criteria. After applying a single-round auction,

combination of bids supplying the whole demand at minimum cost is selected.
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2.4 The Approach

Karakaya and Koksalan (2011) provide aid to both the buyer and the sellers in a
multi-attribute, single-item, multi-round reverse auction environment. We extend
their approach to multi-item auction problems. We develop an approach that
supports sellers to bid on single items or bundles of items. The approach estimates
the parameters of a preference function representing the buyer’s preferences
evaluated on multiple attributes and informs the sellers about the estimations to
update their bids for the next round.

We present the approach for MAMI multi-round reverse auctions; however it is
directly applicable to forward auctions. We consider an environment where each
seller bids independently. We assume that no gaming issues are applicable and
each seller bids based on his/her underlying cost function. We consider revenue
maximization and allocative efficiency which are desirable properties of an
auction mechanism. As stated in Ervasti and Leskeld (2010), in revenue
maximization the buyer wants to maximize his/her revenue whereas in allocative
efficiency the winners are the ones who have the lowest production cost. Since we
consider multiple attributes in a reverse auction setting, we can consider
preference function value minimization. We design our approach to support both
the buyer and the sellers. We will refer to our approach as an auction decision
support system (ADSS). This system is intended to act as a neutral third party
independent from both the buyer and the sellers. During the auction process, we
try to estimate the underlying preference function of the buyer and support sellers
providing them information based on our estimations. At each round, the
preference function value of the buyer is improved while the sellers update their
bids to maximize their profits. Although sellers’ profit may decrease as rounds
progress, we expect sellers to update their bids in order to be among the winners.
At the end of the auction, we expect the buyer to end up with a highly preferred
solution and the competitive bidders to be the winners of the auction.
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We consider two variations of the problem: single-round and multi-round. In the
single-round case sellers compose their bids and the buyer selects the most
preferred combination by evaluating the given bids. There would be no update of
bids. On the other hand, in the multi-round case sellers compose their bids and the
buyer selects the most preferred combination at each round. Then the sellers
update their bids and the auction continues. In the single-round case, the buyer
uses ADSS once to determine the most preferred combination. In the multi-round
case we try to estimate the underlying preference function of the buyer based on
his/her past preferences, without requiring any extra information. Then, we use

this estimation to guide the sellers in updating their bids.
We summarize the stages of our approach for problems where price and defect

rate are the two attributes in Figure 2.3. The process is similar for problems with

more than two attributes.
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Sellers give their bids at the first round. At other rounds, sellers,
- based on the provided information update their bids to maximize their |<
profits.

ADSS
- considers all given bids for the current round and finds a set of efficient
bid combinations,
- combines these with the best bid combination(s) up to now if they are
still efficient,
- presents the buyer the efficient combinations for the current round.

Buyer determines the provisional winners (best combination).

ADSS

- estimates the weight values of attributes, the preference function value of
each item separately and improves the estimated preference function
value of the buyer,

- informs sellers about the estimated weight values of attributes and
estimated preference function value of each item.

Figure 2.3 The stages of the approach

In the next chapters we explain the models that we solve in each stage in detail.

2.5 Problem Characteristics

We consider an environment where there are | sellers, M items, J attributes. We
assume that all units of an item are supplied by a single seller. We use Tj, to
represent the number of bids offered by seller i at round h. First M bids of each
seller represents these singletons and the remaining Ti,-M bids represent seller i’s
bundled bids at round h. We represent the bid of seller i as

b;; = (aitl,al-tz, s Qit ) ...,ait,) where a;;; stands for the level of attribute j
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offered by seller i for bid t. We use [];; = (¢4, Wit --» Tienr) tO represent the
items that bid t of seller i consists of where m;;,, takes the value of 1 if bid t of
seller i includes item m; otherwise it is 0. We omit subscripts indicating rounds
for simplicity. The preference function value of the buyer evaluated for bid t of
seller i is depicted as u(b;.). We use a weighted L, metric to represent the
underlying preference of the buyer for the bids. This function minimizes the
weighted distance of a point from the ideal point in terms of an L, metric. We
estimate the weight values based on the past preferences of the buyer fitting the

following preference function as an estimate of the preference to b;; at any round:

1/a

u(b;) = (Zf:l (Wj(aitj - Z;))“)

where
w; : weight of attribute
z;: ideal (best attainable) level of attribute j

a : parameter of the L, metric

The preference function measures the weighted distance from the ideal point.
Therefore, smaller u(b;;) values are preferred by the buyer. If an attribute is of
maximization type, we would simply replace (a;;; — z') with (z;" — a;;) in the

distance function. z; values are typically the best attainable values for each

attribute and can usually be extracted from the problem context. For simplicity we

. ) a 1/“
assume that z; = 0,Vj and u(b;,) = (Z§=1(Wjaitj) ) .

We note that the weights capture the relative importances of the attributes to the

buyer and the scaling of attributes.

When we estimate the underlying preference function of the buyer with a linear
preference function, we set a = 1 and estimate the weight value of each attribute.

Otherwise, we estimate both a and the weight values of each attribute.
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In the approach, sellers give their bids for single items as well as for bundles. We
find some efficient combinations of bids that satisfy all the auctioned items and
present these combinations to the buyer. We estimate the parameter values of the
preference function of the buyer based on his/her preferences. We use a small
positive constant threshold, “A” to represent a minimum preference difference by
which the buyer can distinguish between bids as suggested by Karakaya and
Koksalan (2011). For instance, if the buyer prefers A to B, then we require
u(B) = u(A) + A.

Moreover, at each round, we expect the sellers to improve their bids in such a
way that the resulting combinations of the next round have improved preference
function values of approximately “100y” percent of the estimated value of the
best combination of the current round as in Karakaya and Koksalan (2011).
Therefore, after estimating a preference function based on the past preferences of
the buyer, we provide information to the sellers about a possible way of
improving their bids. According to these information and their cost functions,
sellers update their bids for the next round. The auction continues until a
termination condition is met. The possible termination conditions will be

discussed later.

To demonstrate a simplified version of the approach, consider the following
example. For the sake of simplicity, suppose that there are two sellers, one buyer,
and one item to be auctioned with two attributes. Suppose each seller has two
equally desirable bids as follows (b4, by,, for seller X and by, by, for seller
Y):

bx, = (2,5)
bx, = (4,1)
by, = (3.2,3.2)
by, =(7,0.5)

wherei=X)Y,t=12andj=12.
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Since we there is a single item to be auctioned, there is no item information in
Table 2.1.

Table 2.1 Bids of sellers

Seller X Seller Y
by, by by, by,
Attribute 1 2.0 4.0 3.2 7.0
Attribute 2 5.0 1.0 3.2 0.5

Assume at the beginning the sellers have no information about the preference
function of the buyer and seller X gives bid by, and seller Y gives bid by, by
considering a linear preference function with equal weights for the buyer.
Suppose the buyer has a linear preference function with weights 0.9 and 0.1 for
attributes 1 and 2, respectively. Then he/she prefers by;. We set A to zero and
estimate the weights of attributes as 0.8 and 0.2 for attributes 1 and 2,
respectively. Then seller X updates his/her bid and gives bid by, while seller Y
keeps bidding on by;. Based on the underlying preference function of the buyer,
he/she chooses by, and suppose the auction ends. The bids given in each round

and the corresponding preference function values are given in Table 2.2.

Table 2.2 Buyer’s preference function for the bids in each round

Bid Buyer’s preference function value | Winner
Round 1 b
by, 3.2 1
by, 2.3
Round 2
by, 3.2 by

If there is no information, the auction may end at the first round and the winner
would be seller Y with bid by,. The preference function value of the buyer would
be 3.2. On the other hand, if the auction continues and ends at the second round,
the winner would be seller X and the preference function value of the buyer would
be 2.3. The estimated weights lead the sellers to converge the preferred bids.
Normally, the situation is more complex with many possible potential bids for

each seller. The process would continue for multiple iterations and more
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preference information would be collected to guide the sellers. In such cases the
estimated weights would help sellers update their bids and guide them to better
bids in complex environments. The above example demonstrates that our
approach can be useful even when implemented without its full potential. It does
not use the improvement requirement that may be imposed on the sellers over the
rounds. This requirement would lead to further improvements from the buyer’s

perspective and help reach allocative efficiency.

2.6 Auction Design

In our experiments we consider an environment where sellers have underlying
cost functions based on which they bid and the buyer has an underlying
preference function with which his/her preferences are consistent. As stated
before, we assume that there are no strategic bidding or gaming and sellers always
bid independently with their true valuations. Our mechanism aims to achieve
allocative efficiency. It tries to improve the buyer’s preference function value in
each round and eventually to converge the most preferred combination.
Therefore, neither the buyer nor the sellers can gain by acting against their true
valuations. We also assume that there is no collaboration between sellers; i.e.

sellers do not collude.

We assume that the attribute values of bid combinations are additive. For
example, to represent the total price of a bid combination, we sum up the offered
prices of singletons and bundle bids in the combination. When we consider defect
rate as an attribute, we sum up the individual defect rates of singletons and bundle
bids to determine the overall defect rate of the combination. This may not be
realistic, especially in manufacturing environments. An alternative strategy could
be to consider the maximum of the offered defect rates as the defect rate of the
combination. In some situations weighted average could also be a viable option.
Another alternative could be to penalize the larger defect rates more than
proportionately. We should note that any implementation other than an additive

aggregation of attribute values in a combination brings difficulties in the
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disaggregation when trying to assign the buyer’s preference information to the
components of a combination. In 3-attribute problems, in addition to price and
defect rate, we consider lead time as the third attribute and we calculate the lead
time value for the combination by summing up the lead time values of singletons

and bundle bids in the combination.

2.7 Implementation Issues

Our approach can be implemented in various settings including the procurement
processes of companies in the automotive, food, and medical supplies industries.
We consider a platform where the sellers place their bids until a certain deadline.
The bids can be for single items or multiple items. ADSS would identify bid
combinations that are expected to be desirable to the buyer. The buyer would
select the best combination among the presented combinations and ADSS would
provide updated preference information to the sellers to help them update their

bids for the next round.

We suppose that all participants of the auction would use ADSS and relevant
information (bids, estimated preference function values, etc.) is transferred via
ADSS. As an alternative, we consider the case where sellers share their cost
function information with ADSS. ADSS keeps creating desirable combinations
using the sellers’ cost functions and the buyer‘s estimated preference function

throughout the auction process.

An example environment where our approach would be applicable would be the
super market chains. The super market chains sell different varieties of products
under different brands. They also sell some products with their own brands. They
contract the production of these items to different firms. Dairy products (different
cheese types, butter, yogurt) or oils (different types of vegetable and olive oils)
produced by different firms are examples of these cases. Typically, these auctions
are not conducted frequently and the supplying firms have the flexibility to offer

different versions of their products. Therefore, in addition to the price, defect rate
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can be considered as the second attribute in the auctions where the suppliers can
differentiate their quality. For the auctions in the supply chain management where
a manufacturer selects the suppliers of some products/services, lead time can also
be considered as an additional attribute. Suppliers can make different bids with
different attribute value combinations. The auction in the transportation industry
may be another major area of application. On-time delivery performance can be

considered as an attribute in such auctions.

Our decision support mechanism, ADSS, can be utilized in assigning

product/service combinations to suppliers through online auctions.
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CHAPTER 3

AN APPROACH FOR MULTI-ATTRIBUTE MULTI-ITEM
AUCTIONS

In this chapter we develop an approach that provides aid both to the buyer and the
sellers in a MAMI multi-round reverse auction environment. We first give an
overview of the approach and the models used. We then discuss the details of the
algorithm. We next provide the experimental setting and demonstrate the
algorithm for the 2-attribute case numerically. We then discuss the algorithm for
3-attribute linear problems. Lastly, we present a heuristic approach in a 2-attribute

nonlinear problem setting.

3.1 The Approach

We develop an auction decision support system (ADSS) that supports sellers to
bid on multiple items. We assume a linear preference function and in each round
we find all efficient bid combinations. For the sake of completeness, we provide
the stages of the approach and the corresponding models used in each stage, in

Figure 3.1.
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Sellers give their bids at the first round. In succeeding rounds,
sellers,

- based on the provided information update their bids to maximize
their profits by solving their (MAKE_BID) model.

ADSS

- considers all given bids for the current round and solves the model
(EFFCOM) to find efficient bid combinations,

- combines these with the best bid combination(s) up to now if they
are still efficient,

- presents the buyer the efficient combinations for the current round.

Buyer determines preferred and nonpreferred bid combinations.

ADSS

- solves (Wt) model to estimate the weight values of attributes,

- estimates the preference function value of each item separately and
improves the estimated preference function value of the buyer,

- informs sellers about the estimated weight values of attributes and
estimated preference function value of each item.

Figure 3.1 The stages of the approach with the corresponding models

3.2 The Efficient Combination Model

After taking the updated bids from the sellers, we solve the following (EFFCOM)

model to find the efficient combination(s) where all the auctioned items are

supplied. We apply a variation of the e-constraint method of Haimes et al. (1971).

Parameters:

a;j- level of attribute j offered by seller i in bid t

Titm- 1 1f bid t of seller i includes item m; O otherwise

T;: the number of bids offered by seller i
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p: a small positive constant

&> upper bound level for attribute j and it changes from solution to solution

Decision Variables:

vit- 1 if bid t of seller i is selected to be in the efficient combination; O otherwise

Price is a typical attribute in auctions and we define it as attribute 1 for
convenience of notation, without loss of generality.

Model (EFFCOM)

Min2§=1 Z:;l Ait1Yit T P Z§=1 Zfil Z§=2 AitjYie (1.1)

s.to

2%:1 Z:;l TiemYit = 1 vm (1.2)
=1 Zfil QitjYie < & j#*1 (1.3)

yie € {0,1} (1.4)

We optimize one objective and in (1.3) restrict the other to some upper bound
value. In order to guarantee an efficient solution, we augment the objective
function of the standard e-constraint method. We multiply sum of the constrained
objectives with a small positive constant as the augmented part. Constraint set
(1.2) guarantees satisfying the demand for each item. We use (1.4) to enforce that

bids are indivisible.

We systematically change ¢; and solve (EFFCOM) repeatedly to obtain different
efficient solutions. If there are more than two attributes, finding a representative
set of efficient solutions is more cumbersome by systematically changing ¢;. For
the two-attribute case, we systematically change ¢; values to generate all efficient
solutions. We derive the suitable p value that does not cause any trade-offs with
the first term, in the objective function and only has an effect of breaking ties (see

Appendix A for details of the reduction in ¢; values and setting p). We solve the
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(EFFCOM) by using GAMS 23.8 for two attribute problems. For three attribute
problems we use the algorithm suggested by Lokman and Kdksalan (2012) to find

all the efficient solutions for three attribute problems.

We assume that the attribute values of combinations of bids are additive. Here, to
find the efficient bid combinations we need to consider different combinations of
the available bids. When the total number of bids is large, the computational

burden may become excessive.

We find the efficient combinations by solving (EFFCOM) and assign them index
values to keep track of them. Let the index set of efficient combinations for the
current round be E. We assume that the buyer determines the preferred and
nonpreferred bid combinations in E. We recognize the fact that the buyer may not
be able to state very precise preference statements when bid combinations are
close to each other in terms of buyer’s preferences. In such cases, the buyer could
indicate indifference between such bid combinations. It is sufficient for our
purposes that the buyer determines only the preferred and nonpreferred
combinations. To illustrate, consider four alternatives (bid combinations) 4, B, C
and D and assume the buyer is indifferent between A and B, B and C, and prefers
Ato C, BtoD,and C to D. The buyer may not identify alternative A as the best
alternative and we assume that he/she provides us with the information that A and

B are the preferred combinations and combination D is worse than both 4 and B.

Based on the preferences of the buyer, we solve the parameter estimation model

(Wt) explained in the following section.

3.3 The Parameter Estimation Model

We assume a linear preference function. Therefore the weighted L, metric that
represents the underlying preferences of the buyer approximately (explained in

Section 2.5) is reduced to u(b;) = Zle(wjal-tj). We estimate the parameters

(weights) of the preference function by solving the following (Wt) model.
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For simplicity, we omit the subscripts indicating rounds. An efficient combination
is composed of bids of several sellers. For the sake of simplicity, we introduce the
notation ey, to represent the k™ efficient combination, k € E, where E is the index

set of efficient combinations presented to the buyer for the corresponding round.

Parameters:

A: predetermined threshold level by which the buyer can distinguish between bid
combinations

p: a small positive constant

ex;- level of attribute j in efficient combination k

E: index set of efficient combinations

Decision Variables:
u : an auxiliary variable (to measure the estimated value difference between
alternatives and bound the weights)

w;: estimated weight of attribute

Model (Wt)

Max u (2.1)
s.to

T W =1 (2.2)
w; > (2.3)
u(e) = Th_, Wey; keE (2.4)
u(e,) >u(e,)+A+u  foreache, > e, (2.5)
u(ep)) —A+p+u<u(e,) <u(e)+A—p—pu foreach e;~e, (2.6)
u=0 2.7)

The objective (2.1) is to find the maximum u value that satisfies the constraints.
This leads the solution to be at a central point of the feasible weight space; i.e. it

tries to locate the weights as far from each preference constraint as possible. We
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use normalized weights by constraint (2.2). (2.3) imposes lower bounds on w;.
Bid combinations are evaluated in terms of a weighted linear preference function
(2.4). The past preferences of the buyer are modeled by (2.5) and (2.6). We make
sure in (2.5) that the value difference between the preferred alternative and the
inferior alternative is at least as big as the threshold, A. Similarly, (2.6) guarantees
that the value difference between indifferent alternatives do not exceed A. The A
value has to be positive in order to make sure that there will be a difference in the
estimated preference values of the preferred and inferior combinations.

We provide sellers with the weight values found from (Wt), w; as well as the
estimated preference function value of each item separately. Since some of the
items in the preferred bid combination are given as bundles, in our simulations we
determine the preference function value of the items in each bundle. To estimate
the preference function value of the items in the bundle, we use the estimated
preference function value of the items given by the seller of that bundle for the
current round. We assign preference function values to the items in the bundle
proportional to their estimated preference function values as singletons. We take
the average of the estimations of the current and the previous rounds. We impose
an improvement to the new estimated values and provide the resulting
information to the sellers. Assume, for example, that seller i’s bundled bid given
for items 1 and 2 is in the winning combination of the current round. Let the
estimated preference function value of the bundle be 12 and the estimated
preference function value of items 1 and 2 proposed by seller i be 5 and 10,
respectively for the current round. Then we estimate the preference function value
of item 1 to be 4 and item 2 to be 8 for the current round. Suppose that in the
previous round we inform the sellers that the estimated preference function values
for items 1 and 2 should be at most 5 and 9, respectively. Suppose that the current

round is round 3. Then we inform the sellers that the estimated preference

)(1—)/) and

442%5
3

function value for items 1 and 2 should be at most,(

( 8+2%9
3

)(1 —v), respectively. In this method, besides the estimations in the

current round we also consider the previous rounds’ estimations. We then apply
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100y% improvement in order to end up with an improved combination in the
next round. Different techniques could also be devised to estimate the preference

function value of the items in the bundle.

3.4 Sellers’ Model

We assume that each seller determines a minimum mark-up percentage that
he/she uses and he/she solves the MAKE_BID model below to find the most
profitable bids (bundle and singletons) for him/her based on our estimations. If
there are feasible bids with extra profit, then the seller gives the best possible bids
with his/her predetermined mark-up. Suppose that seller i has a minimum mark-
up of v;%, that is, if the cost of a bid at a specified defect rate is C, then the price
of the corresponding bid should be at least (1 + v;/100)C. We assume that

sellers do not incur losses and therefore, we use nonnegative mark-ups.

We first provide the seller’s model for the 2-attribute case where the attributes are

price and defect rate.

Parameters:

w: estimated weight of price

EP,: estimated preference function value for bid t (ADSS provides the estimated
preference function value for each item separately and the estimated preference
function of a bundle is calculated by summing up the estimated preference

function values of the items in the bundle)

perc.
i .

v minimum mark-up percentage for seller i; if it is O, then seller i may bid
with zero profit. For the sake of simplicity let v; = v7*"“/100.
fit: the cost function of seller i for bid t

d't—D~_ qi 1/q; + _ _
fildi) = (1= (1 - (1 - ﬁ) ) (Cit = Cie) + Cy

it it

where
Dt : maximum defect rate value that can be offered by seller i for bid t

D;;: minimum defect rate value that can be offered by seller i for bid t
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C;t: maximum cost of bid t for seller i (at D;;)
C;z: minimum cost of bid t for seller i (at D;})

q;: parameter of the L, cost function for seller i
Decision Variables:
p;: = price offered by seller i for bid t

d;; = defect rate offered by seller i for bid t

Model (MAKE_BIDj;)

Max p; — (1 + v;) fir (dir) (3.1)
s.to

D; <d; <D} (3.2)
w.p;; + (1 —w)d;; < EP; (3.3)

The objective (3.1) is to maximize the profit value for bid t of seller i considering

his/her mark-up value. We consider the feasible defect rate range for the

corresponding bid in (3.2). (3.3) guarantees that the estimated preference function

value with the updated bids does not exceed the estimated preference function

value of bid t.

In our experiments we simulate the cost functions of the sellers using convex

functions, specifically L, functions (see Koksalan, 1999). We show the L,

function for different q values in Figure 3.2.
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N

> defect rate

Figure 3.2 L, function for different g values

In these functions, there is an inverse relation between cost and defect rate. That
is less defect rate (better quality) costs more. For larger q values, the extreme
values in each attribute gets harder to achieve. To achieve better values in one
attribute, the amount you need to sacrifice from other attribute increases as you

are close to the more preferred values (extremes).

The model is nonlinear due to the objective function which is equivalent to

(1 + v fie(dir).

EPt—(1-w)d;¢
w

Max z(d;;) =

The first term in the objective function is linear and linear functions are special
cases of concave functions. In the second term, the convex cost function is
multiplied with a negative constant and —(1 + v;)f;:(d;;) is concave. Since the
weighted sum of concave functions, with positive weights, is concave, z(d;;) is
concave. Instead of using a solver, we utilize the properties of concave functions

and determine the updated bids as follows:

The objective function can be rewritten as follows:

—
Dit—Die

1 ) - _n=\4i 1/q;
Max 2(dy)) = LU (14 1) <1 - (1-(1- =) ) (it =€) = (1 +w)Ci
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Since z(d;;) is concave, to find the optimal defect rate value, d;;, we check the

stationary and the boundary points.

At stationary point: z(d;,) = 0

,_ -w) A+ - C) - v Na/an
7= - ey i — di) (D — D)% = (Df — dy) ")/t = 0
w it — Vit

After some manipulations, we obtain

—w)/(ai=1) (p* _p=)i/(@i=1)
d;‘t = Dl-'i; — (a-w) (Dlt th)

(g RN
(((1—w)(D;—Di‘t))ql/(ql 1)+(w(ci+t—ci‘t)(1+vi))q‘/(q‘ 1)>

d;; is the only stationary point of the function and the boundary points are D;; and
Dj. Indeed, from the equation above we see that D;; < d}, < D;i . Therefore,
there is no need to check the boundary points and the optimal defect rate value is
d;; since z'(d;;) = 0.

If EP—(1-w)d; _ EP=(1-w)d;,
w

“> (1 +v)fie(dip), piy = ————— and seller bids profitably.
Otherwise, p;; = (1 + v;)f;;(d;;) and seller bids with his/her predetermined

mark-up only and no extra profit is possible.

We discuss the 2-attribute case here explicitly. The procedure is also directly
applicable for more than two attributes. For more than two attribute case, we
assume that all non-price attributes are reflected in the cost function and therefore
cost function is depicted as f;;(a;;) where a;; is the vector of non-price attribute
values of bid t of seller i, a;; = (aitz, A3y s Aitjy oo s ait]). The optimal non-price
attribute values, (ajy, ajs, ..., @jyj, .-, ajy; ), can be found by setting Vz(a;,) = 0.

The 3-attribute case is discussed in Section 3.9 in detail.
After obtaining the updated bids from the sellers, we find the set of efficient bid

combinations of the current round using the estimated weights found at the end of

the previous round and continue.
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3.5 The Algorithm (ALL-e)

We provide the steps of the algorithm below:

Recall that E denotes the index set of efficient bid combinations presented to the
buyer for the corresponding round, e, denote the k™ efficient bid combination,

k e E, and u(ey) be the estimated preference function value of the buyer for e,.

Let X; denote the set of constraints derived from the preferences of the buyer in
round h and let X, = @. We assume that the buyer’s underlying preference

function is linear and sellers are informed about this.

Step 1: Sellers place initial bids. Set the round counter h = 1.

Step 2: Solve (EFFCOM) to find the efficient bid combination(s) for round h and
also consider the best combination(s) up to current round. Place the efficient
combinations in set E. Present the buyer all combinations in set E and ask him/her
to choose the preferred and nonpreferred bid combinations. If a termination
condition is met, go to Step 5. Otherwise go to Step 3.

Step 3: Update the preference constraint set;

u(e,) > u(e,) + A+ u foreach e, > e, andp,n € E
u(e) —A+p+u<u(e,) <u(e)+A—p—u foreach e,~e,and ,r € E

Xp=X,_1 U {
Solve (W) to fit a preference function that satisfies the constraint set X;,. Let the
estimated preference function value of the best bid combination of the current
round be u”.

Step 4: Move to a 100y% improved contour with an estimated preference
function value of u”, i.e., u" = u*(1 — y). Find the preference function value of
each item separately and provide the bidders with this information in addition to
the current estimated weight values. Let sellers update their bids by solving their
own (MAKE_BID) problem. Set h < h + 1 and go to Step 2.

Step 5: Stop. The preferred combination(s), e,, is (are) the winning

pv
combination(s) for p € E. The sellers providing items in the winning combination

are the winning sellers.
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If there are more than one winning combinations in Step 5, the buyer selects one

of them using additional information.

Sellers can give bids for single items or for bundles. They update their bids and
the auction continues until a termination condition is met. For multi-item case, we
modify Steps 2 and 4 of the original algorithm in Karakaya and Kdksalan (2011).
In Step 2, we find all efficient bid combinations before presenting to the buyer. In

Step 4, we find the preference function value of each item to support the sellers.

3.6 The Modified Algorithm (ELIM-e)

We make some modifications to ALL-e and develop ELIM-e. In ALL-e, we find
all efficient combinations and present them to the buyer. In the modified version,
we eliminate the combinations that would be considered inferior by the buyer

based on his/her past preferences, before presenting those to the buyer.

Elimination by Weight Space Reduction Models

We keep the most preferred combination up to the current round and add it to the
set of efficient combinations for the current round. Let the index set of efficient
combinations for the current round be G. We solve (ELIMINATION) model to
eliminate combinations that would be inferior based on the information derived
from the buyer’s previous selections and based on the assumed form of his/her

preference function.

Parameters:

A: predetermined threshold level by which the buyer can distinguish between bid
combinations

G : index set of efficient combinations for the current round before elimination

ex;- level of attribute j in efficient combination k
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Decision Variable:
u  an auxiliary variable (to measure the estimated value difference between
alternatives)

w; : possible weight of attribute j

Model (ELIMINATION,)

Min p (4.1)
s.to

Tjaw =1 (4.2)
u(ey) = X)_, wiey; keG (4.3)
u(ey,) <u(eg)— u Vs#v (4.4)
u(e,) >u(e,)+A foreache, > e, (4.5)
u(e)) —A+p<u(e,) <u(e)+A—-p foreache,~e, (4.6)
wj =0 vj (4.7)

In the model, combination v is compared to other combinations in G. In each
comparison we try to find a weight vector in the feasible weight space that makes
combination v better than each of the remaining combinations. The feasible
weight space is determined based on the past preferences of the buyer (constraint
sets 4.5 and 4.6). If we can find a feasible solution with positive u value, we say
that there exist weights in the feasible weight space that makes combination v to
be preferred by the buyer. Otherwise, we say that combination v cannot be

preferred by the buyer.

We solve (ELIMINATION,) model for each v in G. If we can find a feasible
solution to (ELIMINATION,) with positive u value, we place v in set E where E
is the index set of efficient combinations for the current round that will be
presented to the buyer. In the two attribute case, we can construct E by using the
following procedure where p is a small positive constant, subscript 1 and 2 refer

to price and defect rate, respectively.
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Since there are only two attributes, it is sufficient to specify bounds on the weight
of attribute 1. Let WL and WU be the estimated lower and upper bounds for the
weight of attribute 1, respectively, based on the past preference of the buyer, and
let K be the cardinality of set G.

In the procedure, for each pairwise comparison of combination v with other
combinations in G, we check whether the resulting weight space is feasible or not.
If it is feasible we place v in set E; otherwise we delete v from G due to Theorem

1 and the procedure is continued.

Theorem 1: Let e, and ey be two alternatives such that

wtemp — ___°B27%42 e the weight of attribute 1 that makes e, and e have
ea1—esz—epitep:

equal preference values. If e,; < eg; and wt™P + p > WU or if e4; > ep; and
wtemP — n < WL, then e, cannot be preferred to ez by the DM based on his/her

past preferences, where p is a sufficiently small positive constant.

Proof: If e4; < epq, then wi™? + p is the smallest possible value of weight of
attribute 1 that makes e, preferred to eg; whereas if e,; > egq, then wt™? — p
is the largest possible value of weight of attribute 1 that makes e, preferred to
ep. Based on the past preferences of the DM, the estimated lower and upper
bounds of weight of attribute 1 are WL and WU, respectively. If e,; < eg; and
wtemP + p > WU or if ey > ep; and wt™ — p < WL, then there are no

weights in the feasible weight space that make e, preferred to e. m

The procedure used to solve (ELIMINATION,)

Step0: SetE =@,v=1,s=1and K = |G]|.

Stepl: Sets « s+ 1. If s € G, go to Step 2, else if s > K go to Step 4; otherwise
go to Step 1.

Step 2: If s=v go to Step 1. Otherwise, set wiemP = 2722 __ anq jf

ey1—epz2—es1tes2

ey1 — €y — €51 + €5, > 0.go to Step 2.1; otherwise go Step 2.2.
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Step 2.1: If wt*™P — p < WL, go to Step 3. Otherwise go to Step 1.
Step 2.2: If wt*™P + p > WU, go to Step 3. Otherwise go to Step 1.
Step 3: Set G = G — {v},v « v+ 1 and go to Step 5.
Step 4: Set E = E U {v},v < v+ 1 and go to Step 5.
Step 5: If v € G, set s = 0 and set go to Step 1; otherwise stop.

We apply the procedure for each v in G and after the eliminations, we present all

combinations in E to the buyer. The rest of the procedure is the same as ALL-e.

3.7 Experimental Setting

To test the performance of the algorithm we generate test problems. We consider
two versions of the test problems in terms of the number of attributes: 2-attribute
and 3-attribute cases. In the 2-attribute case, we consider two specific attributes,
price, and defect rate. In the 3-attribute case, we include lead time as the third
attribute. In both cases, all attributes are to be minimized.

We consider two different versions of the test problems in terms of the underlying

preference function of the buyer: linear and nonlinear cases.

3.7.1 Test Problem Generation

We demonstrate the performance of our algorithm by generating test problems. In
the literature combinatorial auction test suites are available for single attribute
auctions (Fujishima et al., 1999; Leyton-Brown et al., 2000; Sandholm et al.,
2005). Buer and Pankratz (2010), generate their test instances for two attribute
transportation problems. To the best of our knowledge, all the combinatorial
auction test problems are generated to determine the winner of the single round
auctions. We modify the technique proposed by Buer and Pankratz (2010) to
generate the cost functions of the sellers. We use these generated cost functions

during the multi-round auction process.
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As mentioned before, we consider two specific attributes, price, and defect rate,
where smaller values are preferred in both attributes by the buyer. We suppose
that each seller has his/her own competitive item combinations and he/she makes
bids for these combinations. We use TS;, TB; and T; to denote the set of singleton
bids, bundled bids and total bids, respectively, given by seller i where T; = T'S; U
TB;. We replace the original notation of the non-price attribute, defect rate, with
d; = (di1,dip, ., dig, -, di7;) Where d;; is the defect rate value of bid t offered
by seller i. Each seller identifies a price and defect rate for each bid he/she offers.
Here defect rate is used as an indicator of quality; smaller defect rate values stand
for higher quality. We later discuss how we evaluate the quality of a bundle.

As Leyton-Brown et al. (2000) state, some items may be more suitable to group
together and this may differ from seller to seller. To capture this property, we
generate a relation matrix for each seller like the synergy matrix in Buer and
Pankratz (2010). This matrix consists of 0’s and 1’s. “1” indicates that grouping
the corresponding items decreases the cost of the seller, whereas “0” indicates
that grouping the corresponding items does not have an effect on the seller’s cost.

We consider a cost function that takes economies of scope into account.

We randomly generate a relation matrix for each seller. For each seller-item pair
we assign defect rate and resource requirement values that will determine which
items the seller can combine to create bundles. Buer and Pankratz (2010) use
resource requirement as an indicator of the difficulty of supplying an item for a
seller. This difficulty may reflect itself in the cost of the item. The resource
requirement of an item may differ from seller to seller due to reasons such as the
differences in the technologic infrastructures of the firms. Defect rate levels and
resource requirement values are generated randomly from uniform distributions in
the ranges [dl, du] and [rl, ru] respectively. We assume that the cost and defect
rate are inversely proportional, whereas the cost and resource requirement are
directly proportional. That is, smaller defect rates and higher resource

requirement levels will result in higher cost values.
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Generating cost values of singletons
Recall that d;; denotes the defect rate value of singleton bid t for seller i. Let r;;
and cst;; be the resource requirement and cost of singleton t, respectively. Let

R = (rl +ru)/2 be the mean of the uniform distribution used to generate r;;

values and D = % be the mean of the distribution that generates 1/d;;

values. Let max_cost and min_cost be the maximum and minimum values that a

singleton t can take, respectively. We generate the costs of bids as follows:

Step 0: Seti=1.
Step 1: Sett=1.

Step 2: i = 14 %%

Step 3: Generate a random variate, v, from normal distribution with mean y;, and
variance 1.

Step 4: If min_cost < v < max_cost, set cst;;= V. Otherwise go to Step 3.

Step 5: Ift <M, thensett « t + 1 and go to Step 2.
Step 6: Ifi<|,thenseti < i + 1 and go to Step 1. Otherwise, stop.

The cost value of singleton t for seller i, cst;;, is randomly generated based on its
defect rate value and resource requirement. We set r1=0.1, ru=0.5, min_cost =
0.5 and max_cost = 1.5 as in Buer and Pankratz (2010). Buer and Pankratz (2010)
generate quality values directly, whereas we generate defect rate as an indicator
of quality using dl = 0.2 and du=L1.

As stated above, each seller is assumed to have his/her own suitable item
combinations. While computing the defect rate and the resource requirement
levels of a bundle, we sum the defect rate and the resource requirement levels of
the items that the bundle consists of, respectively. As stated before, the resource
requirement levels are somewhat artificial values generated to restrict the item
combinations that can be bundled together. They also have impact on costs. We

assume that the resource requirement of a bid cannot exceed 1, that is the sum of
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the resource requirement levels of the items in a bundle should be less than or
equal to 1 as suggested by Buer and Pankratz (2010). We assign a lower and
upper bound to a bundled bid according to the costs of the singletons and the
bundles it consists of. Then we randomly generate a cost value for the bundled
bid between its lower and upper bounds.

Generating cost values for bundles

Recall that TB; and T; denote the set of bundled bids and total bids given by seller
i. Let nj; be the number of items in bid t of seller i. Let H;; be the set of singletons
and bundled bids that contains all possible subsets of bundled bid t of seller i. Let
P;; be the set of bid compositions whose unions constitute bundled bid t of seller i
and whose intersections are empty. For example, let bundled bid t composed of
items 1, 2 and 3. Then, H; ={(1),(2),(3),(1,2),(1,3),(2,3)}and
Py = {[(1),(2), (3], [(1), (2,3)],[(2),(1,3)], [(3),(1,2)]}. The cost value of a
composition in P;; is the sum of cost values of the bids it contains. We describe

how we generate the cost values for the bundles next.

Step 0: Seti=1

Step 1: Setz = 2.

Step 2: vVt € TB; for which n;, = z, set LB;; = maxyep, {csty} and UB; =
MiNyep, {cstyy}. Generate a random variate, v, from uniform distribution in the
interval (LB;;, UB;;). Set cst;; = v.

Step 3: Set z « z + 1. If there are no bundled bids in T; with size z, then stop.
Otherwise, go to Step 2.

Step4: Ifi<lI thenseti « i+ 1 and go to Step 1. Otherwise, stop.

After generating the sellers’ bids and their corresponding attribute values, we use

L, functions (see Koksalan, 1999) to generate cost and defect rate pairs for which

the seller would be indifferent. The Lq function can be written as:
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(1—-4d;)%+1 —c;)? = 1 where g = 1, d;, and c;, refer to the scaled defect rate

and cost values.

Commonly used L, functions use g values of 1, 2, and «. g =1, q = 2, and
q = oo correspond to rectilinear, Euclidean, and Tchebycheff distance functions,

respectively.

To generate different cost functions for the sellers, we randomly generate a q
value to represent the cost function of each seller. After generating the cost
function we randomly assign initial mark-up percentages (explained in Section

3.4) between mpl and mpu to the sellers for the first round.

We develop above the general framework of the cost function to experiment with.

We also consider cost functions with three attributes (Section 3.9).

3.7.2 Parameter Setting

We present our approach in an environment where there are three sellers and five
items where seller 1 has 11, seller 2 has 7 and seller 3 has 10 preferred
combinations. Based on our preliminary experiments, we set the threshold, A=
0.01 and y = 0.1 implying a required improvement of 10% in each round. We
use an ideal point for each attribute in our estimated preference function. Since
we minimize all attributes, we set the ideal point to the point where both attributes
are zero in this thesis. Without loss of generality, we set minimum mark-up
values to zero for each seller. That is, all sellers can bid with zero profits. We

terminate at the round when each seller bids with zero profit in all his/her bids.

There may be alternative termination conditions. For instance the buyer could
decide to terminate, for example, when he/she finds the improvement between
rounds to be small. It is also possible for some sellers to stop bidding if he/she

cannot be among provisional winners for a number of rounds.
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We use this problem setting to test the performance of the algorithms throughout
this thesis.

3.8 A Numerical Example for the 2-attribute Case

We provide a numerical example for ELIM-e. Both ALL-e and ELIM-e have
similar steps and since ELIM-e also includes an elimination procedure, we give an
example for this version only. In our experiments, we assume that the buyer has a
specific underlying true preference function, which we use to simulate his/her
preferences. In this example, we assume that the weights of attributes of the
buyer’s underlying preference function are 0.55 and 0.45 for price and defect rate,

respectively.

We round the values to four significant digits. We use the buyer’s underlying
preference function to report the preference values. We also report the estimated
preference values. In this chapter, we present the buyer efficient bid combinations
and we assume that he/she identifies the preferred and nonpreferred bid
combinations. Initial bids are given in Table 3.1.
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Table 3.1 Initial bids

Round 1
Seller Bid Item Price Defect Rate Profitable
1 1 1 0.7707 0.8325 1
1 2 2 1.9295 0.6873 1
1 3 3 1.7187 0.65 1
1 4 4 1.2476 0.5149 1
1 5 5 0.7534 0.4734 1
1 6 1,3 2.1041 1.4825 1
1 7 2,5 2.5209 1.1607 1
1 8 35 2.2412 1.1234 1
1 9 1,35 2.563 1.9559 1
1 10 2,3,5, 3.3081 1.8107 1
1 11 1,2,3,5 3.9188 2.6432 1
2 1 1 0.9578 0.3709 1
2 2 2 1.4626 0.5018 1
2 3 3 0.8558 0.7844 1
2 4 4 1.8825 0.2289 1
2 5 5 1.4358 0.5573 1
2 6 1,3 1.4015 1.1553 1
2 7 2,5 2.0246 1.0591 1
3 1 1 1.6854 0.8493 1
3 2 2 1.7669 0.2768 1
3 3 3 1.7157 0.6529 1
3 4 4 1.6948 0.4581 1
3 5 5 2.0264 0.4346 1
3 6 1,3 3.181 1.5022 1
3 7 1,4 2.9701 1.3074 1
3 8 2,4 3.2017 0.7349 1
3 9 2,5 2.8067 0.7114 1
3 10 1,34 3.8325 1.9603 1

In the tables, the items constituting a bid are given under the “Item” column. The
“Profitable” column represents whether the bid is profitable for the seller or not.
As soon as all sellers have zero in this column, indicating all sellers bid
unprofitably, the algorithm stops.
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Table 3.2 Efficient bid combinations for Round 1

Round 1
Buyer’s True
Combination | Seller | Bid | Item | Price Defect Pyref. Fn.
Rate

Value
1 3 3 | 1.7187 | 0.6500
2 1 1 |0.9578 | 0.3709

1 2 4 4 |1.8825 | 0.2289 4.9337
3 9 2,5 | 2.8067 | 0.7114
1 8 3,5 | 22412 | 1.1234
2 1 1 ]0.9578 | 0.3709

2 2 4 4 |1.8825 | 0.2289 4.6666
3 2 2 |1.7669 | 0.2768
2 4 4 |1.8825 | 0.2289

3 2 6 1,3 | 1.4015 | 1.1553 4.,2929
3 9 2,5 | 2.8067 | 0.7114
1 5 5 |0.7534 | 0.4734
2 4 4 |1.8825 | 0.2289

4 2 6 1,3 | 1.4015 | 1.1553 4.1528
3 2 2 |1.7669 | 0.2768
1 4 4 | 1.2476 | 0.5149
1 5 5 |0.7534 | 0.4734

5 2 6 1,3 | 1.4015 | 1.1553 3.9324
3 2 2 |1.7669 | 0.2768
1 4 4 1.2476 | 0.5149

6 2 6 1,3 | 1.4015 | 1.1553 3.7987
2 7 2,5 | 2.0246 | 1.0591

We highlight the provisional winners and their corresponding bids in bold. In
Round 1, based on the bids in Table 3.1, we find 10 efficient combinations,
however, after applying (ELIMINATION) procedure we are left with 6 efficient
combinations given in Table 3.2. Among them, the buyer selects combination 6 as
best (remaining combinations are nonpreferred combinations). Based on this
information we estimate the weight values of the attributes. In fact estimating one
attribute’s weight is sufficient since the other weight can be estimated by
subtracting the estimated weight from 1. By solving (Wt) we find the following

values where w, and w, are the estimated weights of price and defect rate,

respectively:

wy, = 0.7309 and wy = 0.2691
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The estimated preference function values are calculated using the estimated
weight values and given under “Estimated Pref. Fn. Value” column in the tables.

The estimated preference function values for Round 1 are provided in Table 3.3.

Table 3.3 Efficient bid combinations with estimated preference function values

for Round 1
Round 1
o _ ' Defect Buyer’s Estimated
Combination | Seller | Bid | Item | Price True Pref. Pref. Fn.
Rate
Fn. Value Value
1 3 3 1.7187 | 0.6500
2 1 1 |0.9578 | 0.3709
! 2 | 24 | 4 [18825 02289 4937 59111
3 9 2,5 | 2.8067 | 0.7114
1 8 35 | 2.2412 | 1.1234
2 1 1 0.9578 | 0.3709
2 2 | 4 | 4 [18825 02289 40096 55435
3 2 2 1.7669 | 0.2768
2 4 4 1.8825 | 0.2289
3 2 6 1,3 | 1.4015 | 1.1553 4.2929 5.0154
3 9 2,5 | 2.8067 | 0.7114
1 5 5 0.7534 | 0.4734
2 4 4 |1.8825 | 0.2289
4 2 6 1,3 | 1.4015 | 1.1553 4.1528 4.8166
3 2 2 1.7669 | 0.2768
1 4 4 1.2476 | 0.5149
1 5 5 0.7534 | 0.4734
5 2 6 1,3 | 1.4015 | 1.1553 3.9324 4.4295
3 2 2 1.7669 | 0.2768
1 4 4 1.2476 | 0.5149
6 2 6 1,3 | 1.4015 | 1.1553 3.7987 4.1504
2 7 2,5 | 2.0246 | 1.0591

u* = 4.1504 and after improvement u(® = 4,1504 (1 — 0.1) = 3.7353. For

each item we estimate the following preference function values:

Table 3.4 Estimated preference function values at the end of Round 1

Round 1
Item Estimated Pref. Fn. Value
1 0.5874
2 0.7957
3 0.6143
4 0.9454
5 0.7926
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We inform the sellers about the estimated weights of attributes. We recommend
each seller that the updated preference function value of a combination should not
exceed 3.7353 and we also give the estimated preference function value for each

item separately.

Afterwards, each seller solves his/her own (MAKE_BID) model and the resulting

bids are provided in Table 3.5.

Table 3.5 Bids for Round 2

Round 2
Seller Bid Item Price Defect Rate Profitable
1 1 1 0.5034 0.955 0
1 2 2 0.7234 0.9919 1
1 3 3 0.6485 0.9829 0
1 4 4 1.0786 0.5836 1
1 5 5 1.0059 0.2133 1
1 6 1,3 0.9218 1.9618 1
1 7 25 1.4563 1.9467 1
1 8 3,5 1.2753 1.7644 1
1 9 1,35 1.7199 2.7394 1
1 10 2,3,5, 1.9562 2.8716 1
1 11 1,2,35 2.3916 3.8717 1
2 1 1 0.6582 0.4002 0
2 2 2 1.0349 0.2013 0
2 3 3 0.4818 0.9743 1
2 4 4 0.9988 0.8003 1
2 5 5 0.7325 0.9558 1
2 6 1,3 1.1734 1.2786 1
2 7 25 1.6442 1.4365 1
3 1 1 0.4372 0.9951 1
3 2 2 0.8156 0.7416 1
3 3 3 1.0789 0.8557 0
3 4 4 0.9625 0.8988 1
3 5 5 0.7388 0.9386 1
3 6 1,3 1.0699 1.9563 0
3 7 14 1.3862 1.9307 1
3 8 2,4 1.7743 1.6508 1
3 9 2,5 1.5662 1.6482 1
3 10 1,34 1.8852 2.8582 1
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Table 3.6 Efficient bid combinations for Round 2

Round 2
o . _ Defect Buyer’s | Estimated
Combination | Seller | Bid | Item Price True Pref. | Pref. Fn.
Rate
Fn. Value Value
1 4 4 1.0786 | 0.5836
1 5 5 1.0059 | 0.2133
1 2 2 2 1.0349 | 0.2013 3.3850 3.3713
2 6 1,3 1.1734 | 1.2786
1 4 4 1.0786 | 0.5836
1 5 5 1.0059 | 0.2133
2 2 6 1,3 1.1734 | 1.2786 3.5081 3.4992
3 2 2 0.8156 | 0.7416
1 2 1 0.7234 | 0.9919
1 4 4 1.0786 | 0.5836
3 1 5 5 1.0059 | 0.2133 3.5700 3.5636
2 6 1,3 1.1734 | 1.2786
1 2 2 0.7234 | 0.9919
1 5 5 1.0059 | 0.2133
4 2 6 1,3 1.1734 | 1.2786 3.6480 3.6446
3 4 4 0.9625 | 0.8988
1 10 | 2,35 | 1.9562 | 2.8716
5 3 1 1 0.4372 | 0.9951 3.9902 4.0002
3 4 4 0.9625 | 0.8988
1 2 2 0.7234 | 0.9919
2 3 3 0.4818 | 0.9743
6 3 1 1 0.4372 | 0.9951 3.9985 4.0088
3 4 4 0.9625 | 0.8988
3 5 5 0.7388 | 0.9386
1 2 2 0.7234 | 0.9919
2 3 3 0.4818 | 0.9743
! 3 | 5 | 5 | 07388 | 0.0386 | 0076 | 40183
3 7 1,4 1.3862 | 1.9307
1 2 2 0.7234 | 0.9919
2 3 3 0.4818 | 0.9743
8 2 | 5 | 5 | 07325 | 09558 | +OH9 | 40227
3 7 14 1.3862 | 1.9307

In Round 2, using the bids in Table 3.5, we find 176 efficient combinations in

addition to the best combination saved from the previous round. The best

combination up to the current round turns out to be dominated by some efficient

combinations of the current round and we end up with 176 efficient combinations.
By applying (ELIMINATION) procedure we find out that 168 of the 176
combinations would not be preferred by the buyer and we present the remaining 8
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bids to the buyer. The buyer prefers combination 1 to the remaining seven
combinations. Incorporating this information into (Wt) and find the following

values:

wy, = 0.5429 and wy = 0.4571

For each item we estimate the preference function values given in Table 3.7.

Table 3.7 Estimated preference function values at the end of Round 2

Round 2
Item Estimated Pref. Fn. Value
1 0.5024
2 0.6523
3 0.5880
4 0.8090
5 0.6463

The updated bids for Round 3 are given in Table 3.8.
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Table 3.8 Bids for Round 3

Round 3
Seller Bid Item Price Defect Rate Profitable
1 1 1 0.5638 0.8568 0
1 2 2 0.5687 0.9736 0
1 3 3 0.6723 0.9445 0
1 4 4 1.2328 0.3056 1
1 5 5 1.0205 0.2018 1
1 6 1,3 0.9459 1.8759 0
1 7 2,5 0.8531 1.8278 1
1 8 35 1.5091 1.3247 0
1 9 1,35 1.6990 2.2149 0
1 10 2,3,5, 1.4081 2.5910 0
1 11 1,2,3,5 1.5741 3.5873 0
2 1 1 0.7368 0.2534 0
2 2 2 1.0354 0.2003 0
2 3 3 0.2908 0.9410 1
2 4 4 0.9911 0.5927 1
2 5 5 0.4333 0.8993 1
2 6 1,3 1.3444 0.7888 1
2 7 2,5 1.5883 0.9545 1
3 1 1 0.1875 0.9892 0
3 2 2 0.9139 0.5186 0
3 3 3 1.1712 0.7010 0
3 4 4 0.8296 0.7845 1
3 5 5 0.4605 0.8670 1
3 6 1,3 1.1011 1.9045 0
3 7 1,4 0.8589 1.8489 1
3 8 2,4 1.6024 1.2937 1
3 9 2,5 1.3065 1.2892 1
3 10 1,34 1.2394 2.6916 0
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Table 3.9 Efficient bid combinations for Round 3

Round 3
o . _ Defect Buyer’s | Estimated
Combination | Seller | Bid | Iltem Price True Pref. | Pref. Fn.
Rate
Fn. Value Value
1 4 4 1.2328 | 0.3056
1 5 5 1.0205 | 0.2018
1 2 [ 2 | 2 | 10354 | 02003 | >%216 | 32140
2 6 1,3 1.3444 | 0.7888
1 4 4 1.2328 | 0.3056
2 2 6 1,3 1.3444 | 0.7888 3.2130 3.2079
2 7 2,5 1.5883 | 0.9545
1 5 5 1.0205 | 0.2018
3 2 6 1,3 1.3444 | 0.7888 3.2100 3.2059
3 8 2,4 1.6024 | 1.2937
2 3 3 0.2908 0.941
4 3 7 14 0.8589 | 1.8489 3.1865 3.1904
3 9 2,5 1.3065 | 1.2892
1 7 2,5 0.8531 | 1.8278
5 2 3 3 0.2908 0.941 3.1795 3.1859
3 7 14 0.8589 | 1.8489

In Round 3, using the bids in Table 3.8, we find 50 efficient combinations and
from the previous rounds we have one more combination as the best combination
up to the current round which is dominated by some efficient combinations of the
current round. We end up with 50 efficient combinations. By applying
(ELIMINATION) procedure we eliminate 45 combinations and we are left with 5
efficient combinations. Among these 5 combinations the buyer finds
combinations 4 and 5 as best because the preference function value of the buyer
for these combinations are smallest and are within the threshold A value of each
other. Combinations 1,2 and 3 are found as nonpreferred. By solving (Wt), we

find the following values:

w, = 0.5476 and wy = 0.4524

50



Table 3.10 Estimated preference function values at the end of Round 3

Round 3
Item Estimated Pref. Fn. Value
1 0.4601
2 0.5993
3 0.5283
4 0.7188
5 0.5688

The updated bids for Round 4 are given in Table 3.11.

Table 3.11 Bids for Round 4

Round 4
Seller Bid Item Price Defect Rate Profitable
1 1 1 0.5608 0.8604 0
1 2 2 0.5681 0.9743 0
1 3 3 0.6711 0.946 0
1 4 4 1.0694 0.3096 0
1 5 5 0.8719 0.2019 1
1 6 1,3 0.9431 1.8792 0
1 7 2,5 0.6488 1.8322 0
1 8 3,5 1.4975 1.3386 0
1 9 1,35 1.6841 2.2328 0
1 10 2,3,5, 1.3995 2.6014 0
1 11 12,35 1.5652 3.5979 0
2 1 1 0.7352 0.2553 0
2 2 2 1.0354 0.2003 0
2 3 3 0.2865 0.9421 0
2 4 4 0.8182 0.5984 1
2 5 5 0.2942 0.9011 1
2 6 1,3 1.1996 0.7987 0
2 7 2,5 1.4869 0.9658 0
3 1 1 0.1873 0.9894 0
3 2 2 0.9092 0.5242 0
3 3 3 1.1674 0.7056 0
3 4 4 0.6615 0.7881 1
3 5 5 0.3205 0.8693 1
3 6 1,3 1.0997 1.9062 0
3 7 1,4 0.6827 1.8515 0
3 8 2,4 1.4622 1.3039 0
3 9 2,5 1.1379 1.2994 0
3 10 1,34 1.2349 2.6969 0
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Table 3.12 Efficient bid combinations for R4

Round 4

Defect | _Buver's | Estimated
Combination | Seller | Bid | Item | Price True Pref. | Pref. Fn.

Rate Fn. Value Value
1 7 2,5 0.6488 | 1.8322

1 2 4 4 0.8182 | 0.5984 2.9198 2.9212
2 6 1,3 1.1996 | 0.7987
1 7 2,5 0.6488 | 1.8322

2 2 6 1,3 1.1996 | 0.7987 2.9190 2.9212
3 4 4 0.6615 | 0.7881

In Round 4, using the bids in Table 3.11, we find 31 efficient combinations some
of which dominate the best combinations saved from the previous round. From
these 31 combinations, 29 combinations are eliminated by using
(ELIMINATION) procedure. We are left with two efficient combinations. The
buyer states indifference between these two combinations and with this additional
information; the estimated weight values turn out to be the same as those found in
Round 3. By providing improvement for each item we estimate the preference

function values given in Table 3.13.

Table 3.13 Estimated preference function values at the end of Round 4

Round 4
Item Estimated Pref. Fn. Value
1 0.4184
2 0.5562
3 0.4779
4 0.6469
5 0.4987
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Table 3.14 Bids for Round5

Round 5
Seller Bid Item Price Defect Rate Profitable
1 1 1 0.5608 0.8604 0
1 2 2 0.5681 0.9743 0
1 3 3 0.6711 0.946 0
1 4 4 1.0694 0.3096 0
1 5 5 0.7439 0.2019 1
1 6 1,3 0.9431 1.8792 0
1 7 2,5 0.6488 1.8322 0
1 8 35 1.4975 1.3386 0
1 9 1,35 1.6841 2.2328 0
1 10 2,3,5, 1.3995 2.6014 0
1 11 1,2,3,5 1.5652 3.5979 0
2 1 1 0.7352 0.2553 0
2 2 2 1.0354 0.2003 0
2 3 3 0.2865 0.9421 0
2 4 4 0.6870 0.5984 1
2 5 5 0.1662 0.9011 1
2 6 1,3 1.1996 0.7987 0
2 7 2,5 1.4869 0.9658 0
3 1 1 0.1873 0.9894 0
3 2 2 0.9092 0.5242 0
3 3 3 1.1674 0.7056 0
3 4 4 0.6311 0.7881 0
3 5 5 0.2533 0.8693 0
3 6 1,3 1.0997 1.9062 0
3 7 1,4 0.6827 1.8515 0
3 8 2,4 1.4622 1.3039 0
3 9 2,5 1.1379 1.2994 0
3 10 1,34 1.2349 2.6969 0

We set the termination condition to the event that all sellers bid with zero profit in
all their bids. Therefore, seller 3 continues bidding although he bids with zero

profit for each item.
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Table 3.15 Efficient bid combinations for Round 5

Round 5
o . . Defect Buyer’s Estimated
Combination | Seller | Bid | Item Price True Pref. Pref. Fn.
Rate
Fn. Value Value
1 5 5 0.7439 | 0.2019
2 2 2 1.0354 | 0.2003
1 2 4 4 0.6870 | 0.5984 2.8259 2.8214
2 6 1,3 1.1996 | 0.7987
2 2 2 1.0354 | 0.2003
2 4 4 0.6870 | 0.5984
2 2 5 5 0.1662 | 0.9011 2.8228 2.8214
2 6 1,3 1.1996 | 0.7987

In Round 5, we find 30 efficient combinations using the updated bids in addition

to the best combinations saved from the previous round. From these 32

combinations, two combinations are dominated, two had been previously

presented, and 26 are eliminated using (ELIMINATION) procedure. The buyer

states indifference between the remaining two combinations. We incorporate this

information to solve (Wt). The estimated preference function values for each item

and the updated bids for Round 6 are given in Tables 3.16 and 3.17, respectively.

Table 3.16 Estimated preference function values at the end of Round 5

Round 5
Item Estimated Pref. Fn. Value
1 0.3875
2 0.5188
3 0.4411
4 0.5822
5 0.4488
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Table 3.17 Bids for Round 6

Round 6
Seller Bid Item Price Defect Rate Profitable
1 1 1 0.5608 0.8604 0
1 2 2 0.5681 0.9743 0
1 3 3 0.6711 0.946 0
1 4 4 1.0694 0.3096 0
1 5 5 0.6528 0.2019 1
1 6 1,3 0.9431 1.8792 0
1 7 2,5 0.6488 1.8322 0
1 8 35 1.4975 1.3386 0
1 9 1,35 1.6841 2.2328 0
1 10 2,3,5, 1.3995 2.6014 0
1 11 1,2,3,5 1.5652 3.5979 0
2 1 1 0.7352 0.2553 0
2 2 2 1.0354 0.2003 0
2 3 3 0.2865 0.9421 0
2 4 4 0.6366 0.5984 0
2 5 5 0.1627 0.9011 0
2 6 1,3 1.1996 0.7987 0
2 7 2,5 1.4869 0.9658 0
3 1 1 0.1873 0.9894 0
3 2 2 0.9092 0.5242 0
3 3 3 1.1674 0.7056 0
3 4 4 0.6311 0.7881 0
3 5 5 0.2533 0.8693 0
3 6 1,3 1.0997 1.9062 0
3 7 1,4 0.6827 1.8515 0
3 8 2,4 1.4622 1.3039 0
3 9 2,5 1.1379 1.2994 0
3 10 1,34 1.2349 2.6969 0

Table 3.18 Efficient bid combinations for Round 6

Round 6
Defect Buyer’s Estimated
Combination | Seller | Bid | ltem Price True Pref. Pref. Fn.
Rate
Fn. Value Value
1 5 5 0.6528 | 0.2019
2 2 2 1.0354 | 0.2003
1 2 | 4 | 4 | 06366 |0508s | 27481 2.7439
2 6 1,3 1.1996 | 0.7987

In Round 6, we find 29 efficient combinations using the updated bids in addition

to the two best combinations saved from the previous round. From these 31

combinations, two are dominated, five had been previously presented, and 23 are

eliminated using (ELIMINATION) procedure. As the possible weight range is
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narrowed considerably (lower and upper bounds of the weight of price are 0.5459
and 0.5530, respectively), the model can anticipate the best of 24 combinations
without asking the buyer. Since there is only one efficient combination, this will
not bring us any new information for estimation of weights. Therefore, we use
estimated weight values found in Round 5 and by providing improvement for

each item we estimate the preference function values given in Table 3.19.

Table 3.19 Estimated preference function values at the end of Round 6

Round 6
Item Estimated Pref. Fn. VValue
1 0.3625
2 0.4877
3 0.4117
4 0.5295
5 0.4039

The updated bids for Round 7 are given in Table 3.20.
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Table 3.20 Bids for Round 7

Round 7
Seller Bid Item Price Defect Rate Profitable
1 1 1 0.5608 0.8604 0
1 2 2 0.5681 0.9743 0
1 3 3 0.6711 0.946 0
1 4 4 1.0694 0.3096 0
1 5 5 0.6158 0.2019 0
1 6 1,3 0.9431 1.8792 0
1 7 2,5 0.6488 1.8322 0
1 8 35 1.4975 1.3386 0
1 9 1,35 1.6841 2.2328 0
1 10 2,3,5, 1.3995 2.6014 0
1 11 1,2,3,5 1.5652 3.5979 0
2 1 1 0.7352 0.2553 0
2 2 2 1.0354 0.2003 0
2 3 3 0.2865 0.9421 0
2 4 4 0.6366 0.5984 0
2 5 5 0.1627 0.9011 0
2 6 1,3 1.1996 0.7987 0
2 7 2,5 1.4869 0.9658 0
3 1 1 0.1873 0.9894 0
3 2 2 0.9092 0.5242 0
3 3 3 1.1674 0.7056 0
3 4 4 0.6311 0.7881 0
3 5 5 0.2533 0.8693 0
3 6 1,3 1.0997 1.9062 0
3 7 1,4 0.6827 1.8515 0
3 8 2,4 1.4622 1.3039 0
3 9 2,5 1.1379 1.2994 0
3 10 1,34 1.2349 2.6969 0

Table 3.21 Efficient bid combinations for Round 7

Round 7
Defect Buyer’s Estimated
Combination | Seller | Bid | Item Price True Pref. Pref. Fn.
Rate
Fn. Value Value
1 5 5 0.6158 | 0.2020
2 2 2 1.0354 | 0.2003
1 2 4 4 0.6366 | 0.5984 2.7218 2.7231
2 6 1,3 1.1996 | 0.7987

In Round 7, we find 29 efficient combinations using the updated bids in addition

to the best combination saved from the previous round. From these 30

combinations, one is dominated, 17 had been previously presented and 11 are

eliminated using (ELIMINATION) procedure. We are left with a single efficient
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combination. We see that all profit values are zero at this time, indicating that no

seller can bid profitably. Therefore, the algorithm stops and the winners of the

auction are the winners of Round 7.

Table 3.22 The results of the ELIM-e

Winners of the Auction ( ELIM-e)
Seller Bid Item Price Defect Rate
1 5 5 0.6158 0.2019
2 2 2 1.0354 0.2003
2 4 4 0.6366 0.5984
2 6 1,3 1.1996 0.7987

The true preference function value of each round is reported In Table 3.22.

Table 3.23 Buyer’s preference function value in each round

Round No Buyer S\-E;?Sepref' Fn. Improvement (%)

1 3.7987 -

2 3.3856 10.8748
3 3.1795 6.0875
4 2.9190 8.1931
5 2.8228 3.2956
6 2.7481 2.6463
7 2.7278 0.7387

In Table 3.24, we provide the number of combinations before and after
(ELIMINATION) procedure for each round.

Table 3.24 Number of bid combinations

Round Num_ber_of Num_ber_of Elimination EIimir_lation due
No Comblr.1at.|on§ Comblnat_lons du.e to to Weight _Space
before Elimination | found previously Domination Reduction
1 10 0 0 4
2 177 0 1 168
3 51 0 1 45
4 33 0 2 29
5 32 2 2 26
6 31 5 2 23
7 30 17 1 11
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We also report the estimated weights and estimated bounds for the weight of the

price attribute in each round in Table 3.25.

Table 3.25 Estimated bounds for the weight of the price and estimated weights in

each round
Round | Estimated LB for | Estimated UB for Estl_mated Estl_mated
No Weight of Price Weight of Price Welght of Weight of
Price Defect Rate
1 0.3963 1.0000 0.7309 0.2691
2 0.3963 0.6981 0.5429 0.4571
3 0.5459 0.5530 0.5476 0.4524
4 0.5459 0.5530 0.5476 0.4524
5 0.5459 0.5530 0.5476 0.4524
6 0.5459 0.5530 0.5476 0.4524
7 0.5459 0.5530 0.5476 0.4524

To show the performance of the algorithm, we compare the results of the
algorithm with the ones found using the exact parameter values. We find what the
results would have been had the sellers known the buyer’s true preference
function explicitly, assuming, without loss of generality, that the sellers would bid
zero profit as in the case of the algorithm’s solution. We also assume that sellers
bid independently of each other as in our experiments. Recall that, by
construction, each seller has bid combinations in which he/she is competitive,
based on his/her cost function. Now that we make calculations with full
information (on the sellers’ cost functions and buyer’s preference function), we
can find the optimal attribute values for all bids of all sellers in which they are
competitive by solving the (MAKE_BID) problem under the zero profit
assumption. Then using these bids we solve the (EFFCOM) problem and find the
possible best combination(s). This case is reported as “Decentralized.” The results

for Decentralized case for the numerical example are provided in Table 3.26.
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Table 3.26 The results for the Decentralized case

Winners of the Auction (Decentralized)
L S Buyer’s
Seller | Bid | 1tem | Price Defect Combl_natlon Combination True Pref.
Rate Price Defect Rate

Fn. Value
1 5 5 10.6158 | 0.2020
2 2 2 1.0354 | 0.2003

> 4 4 106341 | 0.6014 3.4807 1.8075 2.7278
2 6 1,3 | 1.1954 | 0.8038

When we compare the results found by the algorithm and the Decentralized case,
we see that we find the same winners with the same bids as we estimate the true
weights very closely. This is expected, and the estimations would keep improving
with the amount of preference information and converge to the true weights with

sufficient information.

We also compare the preference function values of the buyer for the winning
bidders found with the algorithm and in the Decentralized case. We check the
percent deviations of the algorithm from Decentralized using the following

formula:

u(final_combination_algorithm) — u(Decentralized) 100

% deviation =
0 u(Decentralized)

where u(final_combination_algorithm) and u(Decentralized) refer to the
preference function value s of the final bid combination found by the ELIM-e and

Decentralized, respectively.
We use 10 different weight values for the price attribute (1) to generate different

problems for both linear and nonlinear cases. The percentage deviations for the

linear case are reported in Table 3.27.
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Table 3.27 Percentage deviations between the results of ELIM-e and the
decentralized optimal solution

2=0.05 | 2=0.15 | A=0.25 | A=0.35 | A=0.45 | A=0.55 | A=0.65 | A=0.75 | 21=0.85 | A=0.95

0.0084 | 0.0064 | 0.0000 | 0.0000 | 0.0040 | 0.0000 | 0.0075 | 0.0043 | 0.0000 | 0.0245

In all problems the winning bidders found by the algorithm and Decentralized are
the same, i.e. allocative efficiency is satisfied. As can be seen from Table 3.27,
the percentage deviations are very small, i.e. for all problems the buyer’s
preference function found with the algorithm is close to that found by
Decentralized. Moreover, with (ELIMINATION) procedure we substantially
decrease the number of alternatives presented to the buyer. These imply that the
estimation and guidance mechanisms of our approach worked well in all the test

problems.

3.9 The 3-attribute Case

We consider lead time as the third attribute. In this case, we construct the cost
function in such a way that improvements in the defect rate and lead time both
increase the cost in different magnitudes. The relation of the defect rate with cost
is the same as that of the two attribute case. For the three attribute case, we
generate a convex cost function and apply a procedure similar to MAKE_BID
procedure to determine the updated bids. For the sake of completeness, we

provide the whole procedure below:

Parameters:

wy,: estimated weight of price where w,, > 0

w, . estimated weight of defect rate where w;>0

w;: estimated weight of lead time where w;>0

EP;: estimated preference function value for bid t (ADSS provides the estimated
preference function value for each item separately and the estimated preference
function of a bundle is calculated by adding up the estimated preference function

values of the items in the bundle)
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vP": minimum mark-up percentage for seller i; if it is 0, then seller i may bid

with zero profit. For the sake of simplicity let v; = v7"“/100.
fit: the cost function of seller i for bid t
- 1/q; _
Fie(dior L) = <1 - (1 - (1 - %)q) : ) (C—C) +Cq+Ch %_LL%
where
D maximum defect rate value that can be offered by seller i for bid t
D;;: minimum defect rate value that can be offered by seller i for bid t
C;+: maximum cost of bid t for seller i (at D;;)
C;7: minimum cost of bid t for seller i (at D;})
L}, maximum lead time value that can be offered by seller i for bid t
L;;: minimum lead time value that can be offered by seller i for bid t
q;: parameter of the L, cost function for seller i

K positive constant

Decision Variables:

p;: = price offered by seller i for bid t

d;; = defect rate offered by seller i for bid t

l;; = lead time value offered by seller i for bid t

Each seller tries to maximize his/her profit by solving the following problem.

Problem (MAKE_BIDy)

Max p;; — (1 + v) fir (dit, Li) (5.1)
s.to

D;i; < d; < D} (5.2)
Ly <l < LY (5.3)
Wp. Dir + Wg. diy + Wil < EP, (5.4)
wp,+wg+w; =1 (5.5)

The objective function is equivalent to
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EPt—wadt—wil;
Max z(dip, L) = == = (14 0 fur(dies L),

Similar to Section 3.4, we conclude that z(d,;, ;) is concave and we utilize the

properties of concave functions and determine the updated bids as follows:

The objective function can be rewritten as follows:

1

N _p\diNg
Maxz(dit,lit)=%:Wll”—(1+vi)<1—<1—<l—d”—l)f> )q)(c;—

+
Dy =Dy

t - _ () (i)~
Since z(d},, I;,) is concave, to find the optimal defect rate and lead time values

we check the stationary and boundary points.

At stationary point: Vz = 0

wa (L )(CE =€) . _. e
-y ST T (g — dg) (D — D)% — (D — dy) 1) 490/
Wp it ~ Vit

Vz = =0
w, Ly — L)y — L)~
\ _ l + (1 + Vi)Ci; it lt)( it lt) }

wy, K

After some manipulations, we obtain
(1 —wy)V@-D(pt — p;)a/@-D

diy = Dit —
qi/(q;i-1) qi/(qi-1\ /4
((Wd (D - Di_t)) + (Wp (Gt — G+ Vi)) )
oo (Lt -1\ M2
l;‘t =L;+ (Wp(l*'”lz(c‘:vtl(’ﬁt th))

d;; is same with that of in 2-attribute case. For [;;, we also check the upper bound.

EPi—wqd},—wil] EP—wadj—wil; i
If FHRRRC > (14 v) fie(di i), Pl = TS and seller bids
P p

profitably. Otherwise, p;; = (1 + v;)fi:(dj., l;;) and seller bids with his/her

predetermined mark-up only and no extra profit is possible.
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All the steps are the same as the 2-attribute case except that to find the efficient
solutions for 3-attribute problems we use the algorithm suggested by Lokman and
Koksalan (2012).

We set K=10, and set minimum and maximum lead time values for each item to 1
and 2, respectively. We calculate the lead time value of a bundle by summing up
the lead time values of the items that constitute the combination. Other
parameters take the same values as in the 2-attribute case. We use 10 different
weight values for the attributes to generate different 3-attribute problems. We use
ELIM-e and report the results for 7 problems in Tables 3.28 and 3.29.

Table 3.28 Preference function values of the combinations found by ELIM-e and
the decentralized optimal solution (3-attribute case)

2,=0.1 | 3,=0.1 | 4,=0.8 | A,=0.1 | A,=0.45 | A,,=0.45 | 2,=0.33
24=0.1 | 2,=0.8 | 24=0.1 | A,=0.45 | A;=0.1 | A,=0.45 | 1;,=0.33
3,=0.8 | A,=0.1 | 4,=0.1 | 4,=0.45 | 4,=0.45 | A,=0.1 | A,=0.33

ELIM-e 5.0957 | 2.0285 | 2.6424 | 3.6972 | 4.1667 | 3.3715 | 4.2205
Decentralized | 5.094 | 2.0284 | 2.6422 | 3.6953 | 4.1667 3.371 4.2038

Table 3.29 Percentage deviations between the results of ELIM-e and the
decentralized optimal solution (3-attribute case)

A,=0.1 | 2,=0.1 | 1,=0.8 | A,=0.1 | A,=0.45 | 1,=0.45 | A,,=0.33
Aa=0.1 | 24=0.8 | A4=0.1 | A,=0.45 | A,=0.1 | ,=0.45 | 1,=0.33
A=08 | A=01 | A,=0.1 | A,=0.45 | 3,=0.45 | A,=0.1 | %,=0.33
0.0334 | 0.0049 | 0.0076 | 0.0514 | 0.0000 | 0.0148 | 0.3973

In all problems, the winning bidders found by the algorithm and Decentralized are
the same. The largest percentage deviation of the preference values obtained by
the winning bidders of the algorithm from that of Decentralized is 0.3973%.
Therefore, we say that our algorithm works well in all the problems solved for the

3-attribute case.
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3.10 Local Linear Approximation for Nonlinear Preference Functions

So far, we tested the algorithm for underlying linear preference functions. In this
section, we assume that the buyer has an underlying decreasing quasiconvex
preference function. We locally approximate the buyer’s preference function with
a linear function. We estimate the weight values using a variation of (Wt) model.
If the model is feasible, we use the weights that solve (Wt). However, if there are
no weights satisfying the constraints, we relax the constraints that cause
infeasibility and solve the problem again. There are many ways of choosing
which constraints to remove (see for example Chinneck 2008). In our infeasibility
reduction heuristic, we solve the following (IR) problem to identify a set of

constraints causing infeasibility.

Recall that e, represents the k™ efficient combination presented to the buyer for
the current round. u(e;) denotes the estimated preference function value of the

buyer for e), and e, ; denotes the level of attribute j of e.

Parameters:

A: predetermined threshold level by which the buyer can distinguish between bid
combinations

p: a small positive constant

ey ;- level of attribute j in efficient combination k

Decision Variables:

z. maximum amount of infeasibility

w: estimated weight of attribute 1

Jpn: amount of infeasibility in the preference constraint for each e, preferred to
each e,

91 9r1- @amount of infeasibility in the preference constraint for each e; and e, the

buyer is indifferent between
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Model (IR)

Minz+p%e, . o o (Gpn + Gur + gr1) (6.1)
s.to

u(ey) = wepH(1 — W)ey, keE (6.2)
u(e,) = u(e,) + A — gpn foreache, > e, (6.3)
u(e) —A+p—g, <u(e,) <u(e)+A—-p+g, fFforeache,~e, (6.4)
Z 2 Gpn foreach e, > e, (6.5)
Z 2y for each e;~e, (6.6)
Z2=9p for each e;~e, (6.7)
Ipnr Jir Gr1 = 0 for each e, > e, e,~e, (6.8)
w=0 (6.9)

In the original (Wt) model, we assume that all constraints are feasible and we try
to maximize u. In the (IR) model we remove variable u and add nonnegative
Ipn, gir and g, for each e, > e,, e,~e,. We try to minimize the maximum
contribution to infeasibility. We also use an augmented part that is the sum of
infeasibility contributions to break the ties. The (IR) model is always feasible as
for each preference constraint there is a variable that captures the amount of
violation, while keeping the constraint feasible. If the objective is strictly positive,
the constraints with strictly positive g,,, gi, Or g, contribute to infeasibility.
Instead of deleting these constraints, we allow them to be violated while

minimizing the violation of the constraint that has the maximum violation.

In the nonlinear case, we apply ELIMINATION procedure to eliminate some of
the efficient combinations in the initial phases since we assume linearity for the
buyer’s preference function. We stop using ELIMINATION when the (IR)
problem has a positive objective function value. The reason is that when the (IR)
problem has a positive objective function value, it is discovered that the linearity
assumption for the buyer’s preference function is violated. Continuing with
ELIMINATION can lead to the elimination of some of the efficient combinations
that might be preferred by the buyer. Therefore, until the (IR) model has a
positive objective function value, we apply ELIMINATION but afterwards we
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present the buyer all the efficient combinations of the succeeding rounds without
applying ELIMINATION. In this approach, as we apply ELIMINATION
procedure at the beginning of the rounds, we may eliminate good solutions before
observing the violation of the linearity assumption. To avoid such deficiencies
some repairing methods can be used. For instance, when the linearity assumption
failed, the alternatives eliminated at the beginning of the corresponding round

may also be presented to the buyer.

We test the performance of the algorithm by simulating the preferences of the
buyer having an L, preference function; specifically we use the weighted

Euclidean (a = 2) and the weighted Tchebycheff (a¢ = o) functions.

We use 10 different weight values for the attributes to generate different 2-
attribute problems. The results are given in Table 3.30.

Table 3.30 Percentage deviations between the results of the algorithm and
decentralized optimal solution under weighted Euclidean preference function

A=0.05 | A=0.15 | A=0.25 | A=0.35 | A=0.45 | A=0.55 | A=0.65 | A=0.75 | A=0.85 | A=0.95

0.0306 | 0.0090 | -0.0869 | 0.2911 | -0.3593 | -1.0399 | -0.0052 | 0.1155 | 0.0208 | 0.0000

Table 3.31 Percentage deviations between the results of the algorithm and
decentralized optimal solution under weighted Tchebycheff preference function

A=0.05 | A=0.15 | A=0.25 | A=0.35 | A=0.45 | A=0.55 | A=0.65 | A=0.75 | A=0.85 | A=0.95

0.0421 | 8.2693 | -3.3448 | -2.0733 | -0.4471 | -0.1517 | -4.8684 | 6.1857 | 0.0000 | 0.0000

When we look at the results in Table 3.30 the percent deviations are very small.
In Table 3.31, however, the highest percent deviation is 8.2693. When we check
the reason for such a high percent deviation, we see that between rounds we
eliminate the best of the previous round as we apply ELIMINATION procedure
until discovering that the underlying preference function is not linear. As
suggested before some repairing operations may be applied. Even in this case, the
average percent deviation is 0.3612. Moreover, in both tables we see in some test
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problems that our algorithm performed better than Decentralized. We conclude
that the estimation and guidance mechanisms of our approach worked well when
the buyer has a nonlinear preference function. Although Decentralized finds
better preference function values for each bid separately, when a combination is
constructed, the preference function of a combination for the Decentralized case
may be worse than that of ours for the considered nonlinear preference functions.

This result is not surprising when the underlying preference function is nonlinear.
We demonstrate this situation with a simple example with two bids. Suppose the

buyer has a weighted Euclidean preference function with equal weights for price

and defect rate. Consider the attribute values of the bids presented in Table 3.32.

Table 3.32 Attribute values for each bid separately

Decentralized Algorithm
. defect Buyer’s . defect Buyer’s
price preference price preference
rate . rate )
function value function value

Item 1 1.0 2.0 1.1180 1.7 15 1.1336
Item 2 1.0 2.0 1.1180 1.2 1.9 1.1236
Combination | 2.0 4.0 1.2361 2.9 34 1.2344

In Table 3.32, we see that Decentralized finds better preference function values
for each bid separately. However, when a combination is constructed, the
preference function of a combination for the Decentralized case is worse than that

of the algorithm.
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CHAPTER 4

AN INTERACTIVE METHOD TO FIND THE BEST BID
COMBINATION

In Chapter 3, we used ELIMINATION procedure to decrease the number of
efficient combinations presented to the buyer. However, even after applying this
procedure, the number of remaining efficient combinations may be high and it
might be difficult for the buyer to evaluate them all. Therefore, we apply a multi-
criteria decision making (MCDM)-based method to support the buyer to find the
best bid combination among the given bid combinations. In this chapter we
develop an interactive algorithm for the case where the underlying preference
function is linear. We first give an overview of the approach. We then explain the
algorithm and discuss the results. Lastly, we present a heuristic approach for

underlying nonlinear preference functions.

4.1 The Interactive Approach

The stages of the approach are similar to those in Section 3.1. The main
difference is that in ELIM-e, in each round we first find a set of efficient
combinations and then ask the buyer to compare them; whereas in this method
these processes are not sequential but interactive. For the sake of completeness,

we provide the stages of the new interactive approach in Figure 4.1.
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Sellers give their bids at the first round. In succeeding rounds,
sellers,

- based on the provided information update their bids to maximize
their profits by solving their (MAKE_BID) model.

ADSS

- considers all given bids for the current round and applies an
interactive method to support the buyer to find the best bid
combination and to estimate weights.

ADSS

- solves (Wt) model to estimate the weight values of attributes,

- estimates the preference function value of each item separately and
improves the estimated preference function value of the buyer,

- informs sellers about the estimated weight values of attributes and
estimated preference function value of each item.

Figure 4.1 The stages of the interactive approach

4.2 An Interactive Algorithm (LIN-u)

We introduce an interactive algorithm, LIN-u, to find the most preferred
combination of a buyer for the 2-attribute case. We assume an underlying linear
preference function and apply a variation of the algorithm developed by Zionts
(1981). Since we assume a linear preference function, the most preferred solution
of the buyer is a supported efficient solution. Thus we deal with only the extreme
supported efficient solutions. In the algorithm, the buyer compares an incumbent
efficient solution with its adjacent efficient alternatives. We reduce the weight
space based on the preferences of the buyer. If an adjacent efficient alternative is
preferred to the current incumbent, a new incumbent is generated and the
algorithm continues until an incumbent is preferred to all its adjacent efficient

alternatives. Since we assume an underlying linear preference function, the
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resulting solution at the end of the algorithm is the best solution of the current
round (see Zionts 1981). Zionts (1981) does not consider the case where the buyer
expresses indifference between two alternatives. In our algorithm, we consider
such cases as well. Moreover, unlike Zionts (1981), we do not have all solutions
at hand at the outset but we rather generate each solution to be presented to the

buyer as needed.

We note that it is also possible to find all efficient combinations first and then

apply the interactive method.

LIN-u algorithm is a generalization of Zionts’ method and is applicable for the
general bi-objective integer programming problems. As mentioned before, we use
the terms DM and buyer interchangeably. The algorithm for the single-round

linear case follows:

LIN-u
In our indifference relations we do not assume transitivity; that is, if the DM

indicates indifference between alternatives A and B as well as between
alternatives B and C, we do not automatically assume indifference between A and
C. However, we construct a set, IN, that contains indifferent alternatives based on
direct comparisons and transitivity relations. Let e! and e? be the alternatives
having the maximum values in attributes 1 and 2 among the alternatives in IN,
respectively. These alternatives correspond to the extremes of set IN in the two
attributes. Since an alternative can have at most two distinct adjacent efficient
alternatives in the two attribute case, we classify them as the east and west
adjacent efficient alternatives. Let ey and e, be the east and west adjacent
efficient alternatives to the incumbent, respectively. Select an arbitrary direction
(DIR) to search an adjacent efficient alternative to the incumbent. Let DIR=east
correspond to searching for ey and DIR=west correspond to searching for ey, .
Set iteration counter i = 1. Without loss of generality set DIR=east and e® = e? =

0. Let e, and ey, be the values of attributes 1 and 2 of the corresponding
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solution, ey, respectively, w = (w,1 —w) where w is the estimated weight of
attribute 1 and p be a small positive constant. Recall that WL and WU are the

estimated lower and upper bounds for the weight of attribute 1, respectively.

In the algorithm, after the DM expresses his/her preferences, we construct the
corresponding preference constraint(s) which constitute the feasible weight space
of the (Wt) model explained in Section 3.3.

We first discuss the details of various aspects of the algorithm and then give the

steps.

At the beginning, we select arbitrary weights to find an alternative. In the auction
example, at the beginning of Round 1, we assume equal weights for attributes
since we have no information. We solve the following (ALT) model to find a new

alternative with the estimated weights:

Parameters:

a;. ;- level of attribute j offered by seller i in bid t
Titm- 1 1f bid t of seller i includes item m; O otherwise
T;: the number of bids offered by seller i

w: estimated weight of attribute 1
Decision Variables:

vi¢- 1 if bid t of seller i is selected to be in the efficient combination; O otherwise

é;: level of attribute j of the optimal alternative
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Model (ALT)

Minwé; + (1 —w)é, (7.1)
s.to

f=1 23;1 TiemYit = 1 vm (7.2)
& = Xizg ZZL AitjYit j=12 (7.3)
yic € {0,1} (7.4)

In (ALT), we aim to minimize the estimated preference function value by using
the estimated weights. Constraint set (7.2) guarantees satisfying the demand for

each item.

After finding an incumbent, we then find the adjacent efficient alternative of the
incumbent based on the search direction. We adapt the method proposed by Aneja
and Nair (1979). They find all supported efficient solutions of a bi-objective
problem by minimizing a linear function of the two objectives whose weights
they systematically change. We next explain the procedure to find east adjacent
efficient alternative of an incumbent. The procedure for finding the west adjacent

efficient alternative is similar.

Finding east adjacent efficient alternative (ADJ_E)

Recall that e*, e and ey, be the incumbent, east and west adjacent efficient
alternatives, respectively, and WL and WU be the estimated lower and upper
bounds for estimated weight of attribute 1, respectively. Let ef™ be the eastmost
alternative having the maximum price value that bounds the search region. If eE™
has not been found previously, set w = & where ¢ is a small positive constant and
solve (ALT). Set the solution of (ALT) to e™. Afterwards, as the DM expresses
his/her preferences the value of eZ™ will be updated if necessary. For instance if

the DM prefers ey, to e*, then set e£M = e*.

We note that if at the beginning e®™ = e*, it indicates that there is no east

adjacent efficient alternative of e*. In this case, we skip the following steps.

73



* EM
€2—€3
—efM_gxy

Step 1: Set W = —5y = Solve (ALT) usingw and considering the
1 2

following additional constraints to bound the search region:

& =>el+p (7.5)
é,=>efM+4p (7.6)
wé,+(1—-w)é,+s=we; +(1—w)e; (7.7)

where p is a small positive constant and s is the slack variable of the
corresponding constraint. If there is a feasible solution, &, having a positive s
value, set e = & and go to Step 1. Otherwise go to Step 2.

Step 2: Set e = e£M. Stop.

In Step 1, we calculate the weights of the linear function passing through the
incumbent and the eastmost alternative. Then we find the solution that minimizes
the estimated preference function with the corresponding weights applying (ALT)
and additional constraints. Although (ALT) itself is always feasible, with the
additional constraints we cannot guarantee to find feasible solutions. Since both

e* and efM are supported efficient solutions, we use p and bound the search

region with constraints (7.5) and (7.6). Although these two constraints are
redundant, to emphasize the search region we keep them in the model. In (7.7) we
check the slack variable value. If it is zero or negative, then the solution, &, is
convex dominated by the points on the line passing through the incumbent and
efM™. We continue to search if there is a feasible solution with a positive slack

variable value.

After finding an adjacent alternative we check whether the adjacent alternative
can be preferred to the incumbent based on past preference information. To do
this, we check whether the weights making the adjacent alternative preferred to
the incumbent are in the feasible weight region or not. If the weights favoring the
adjacent alternative are in the feasible weight space we ask the DM to compare
the incumbent and the adjacent alternative. Otherwise, we conclude that the
adjacent alternative cannot be preferred by the DM based on his/her past

preferences due to Theorem 1 in Chapter 3. In the algorithm, we find the
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incumbent using the estimated (feasible) weights. However, we do not know
whether the weights favoring the adjacent alternative are in the feasible weight
space or not. Therefore, we check w*¢™? which refers to the weight of attribute 1
that makes e,q; equivalent to e*. If the direction is west and w**™ + p is greater
than the upper bound of the weight of attribute 1 or if the direction is east and
wtemP — 5 js smaller than the lower bound of the weight of attribute 1, we say
that there does not exist weights in the feasible weight space that make the
adjacent alternative preferable to the incumbent.

We next provide the steps of the algorithm LIN-u.

Step 1: Select an arbitrary set of weights, find an incumbent, e*, and go to Step 3.
Step 2: Seti « i + 1. Find a solution, e;, using w. If e*,e; € IN or e; = e*, go to
Step 3. Else, if IN = @, go to Step 2.1. Else go to Step 2.2.
Step 2.1: If e;; < ef, set DIR=west; otherwise set DIR=east. Ask the DM
e* versus e;. If
- e; is preferred to e*, add a constraint w(e* —e;) = A + u. Set e* = e; and
go to Step3.
- e” is preferred to e;, add a constraint w(e; — e*) = A + u. Switch the value
of DIR (i.e. set DIR=east if it is equal to west and set DIR=west if it is equal
to east) and go to Step 3.
- the DM is indifferent between e* and e;, add constraints w(e; —e*) < A —
p—uand w(e* —e;)) <A—p—u. Set IN = {e* e;}, update el,e? and go
to Step 3.
Step 2.2: If e;; <ej, set e* =e' and DIR=west. Else set e* = e? and
DIR=east.
Ask the DM e* versus e;. If
- e; is preferred to e*, add a constraint w(e* —e;) = A+ u. SetIN =IN —
{e*}. If e* = el, set e* = e?; otherwise set e* = el. Ask the DM e* versus

e;. If
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= e; is preferred to e*, add a constraint w(e* —e;) > A+ u. Set
e*=e;, IN =@, e' =e?=0andgoto Step 3.
= the DM is indifferent between e* and e;, add constraints w(e; —
e)<A—p—puandw(e*—e;)) <A—p—u. SetIN =IN U {e;},
check el/e? (i.e. if e* = e! update e?, otherwise update e! if
necessary ) and go to Step 3.
- e* is preferred to e;, add a constraint w(e; — e*) = A + u. Switch the value
of DIR.
- the DM is indifferent between e* and e;, add constraints w(e; —e*) < A —
p—uandw(e* —e;)) <A—p—pu SetIN =IN U {e;} and check el/e?.
Step 3: If DIR=east, find er and set eq,4; = eg; otherwise find e, and set

€qqj = ey. If there does not exist ey, or (e*,eadj) pair has been compared

. . e;—eqdi .
previously, go to Step 3.1. Otherwise, set wte™P= 2 adjz ___ and if
€adj1~€adj2~€11€2

DIR=east go to Step 3.2; otherwise go to Step 3.3.
Step 3.1: If both ez and ey, have been evaluated before, go to Step 5.
Otherwise, switch the value of DIR and go to Step 3.
Step 3.2: If wt™P — p < WL, go to Step 3.1; otherwise go to Step 4.
Step 3.3: If wt™ + p > WU, go to Step 3.1; otherwise go to Step 4.
Step 4: If IN = @, go to Step 4.1.Else go to Step 4.2.
Step 4.1: Ask the DM e” versus e, ;. If

- €44; is preferred to e*, add a constraint w(e* - eadj) >A+pu. Set e* =
eqq; and go to Step 6.

- e” is preferred to e,q;, add a constraint W(eadj - e*) > A+ u. If both ey
and ey, have been evaluated go to Step 5. Otherwise switch the value of DIR
and go to Step 3.

- the DM is indifferent between e* and e, ;, add constraints w(eadj — e*) <
A—p—pand w(e' —eqq;) <A—p—p. Set IN ={e", ey} and update
el,e?. If both e; and e, have been evaluated go to Step 5. Otherwise switch

the value of DIR and go to Step 3.
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Step 4.2: If DIR=west, set e* = e!; otherwise set e* = e2. Ask the DM e*

VErsus egq;. If

- eqqj is preferred to e*, add a constraint w(e* — eadj) >A+pu. SetIN =
IN — {e*}, if DIR=west, set e* = e?; otherwise set e* = e’. Ask the DM e*
VErsus egq;. If

" eqq; Is preferred to e*, add a constraint w(e* —eadj) > A+
Sete* = eyq, IN = @, ' = e? = 0 and go to Step 6.

= the DM s indifferent between e* and eqq;, add constraints
w(egaj—€e)<A—p—pu and w(e' —eyqj) <A—p—pu. Set
IN = IN U {eyq,} and check e'/e?. If both e and ey, have been
evaluated go to Step 5. Otherwise switch the value of DIR and go to
Step 3.

- e* is preferred to e,4;, add a constraint W(eadj - e*) > A+ u. If both ey
and ey, have been evaluated go to Step 5. Otherwise switch the value of DIR
and go to Step 3.

- the DM is indifferent between e* and e,;, add constraints w(eadj - e*) <
A—p—pand w(e* —eqq;) <A—p—p. Set IN =IN U{eyq;} and check
el/e?. If both ez and ey, have been evaluated go to Step 5. Otherwise switch

the value of DIR and go to Step 3.

Step 5: If any of the following three conditions are satisfied, go to Step 7.

Otherwise go to Step 6.

- incumbent has no adjacent efficient alternative
-IN = @ and e” is preferred to all its adjacent efficient alternatives
-e* € IN and both e! and e? are at least as preferable as their adjacent

efficient alternatives

Step 6: Find a feasible set of weights satisfying all constraints corresponding to

past preferences of the DM by solving the (Wt) and go to Step 2.

Step 7: If IN = @, e* is the most preferred solution. Otherwise, present the DM

the solutions in set IN. Stop.
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In Step 2.2, if e; is preferred to e* after making necessary updates, we then
consider 2 possibilities: “e; is preferred to e*” or “the DM is indifferent between
e” and e;”. Using the following theorem, we omit “e* is preferred to e;” case
which is not possible. In Step 4.2, a similar situation exists. For the sake of

completeness, we show this result with the following theorem.

Theorem 2: Let A be the minimum value difference between alternatives to
warrant preference between two alternatives. Consider three alternatives A, B and
C, and assume the DM is indifferent between A and B, and prefers € to A. Then

B cannot be preferred to C.

Proof: If the DM is indifferent between A and B, thenu(B) — A< u(4) <
u(B) + A. If C is preferred to A, then u(C) < u(A) — A. u(C) < u(4) — A<
u(B) = u(C€) < u(B). Therefore, B cannot be preferred to C. |

So far, we have discussed the interactive LIN-u algorithm for a single round. In

the next section, we discuss the multi-round case.

4.3 Interactive LIN-u for Multi-round

In the multi-round case, at each round, we expect the sellers to improve their bids
in such a way that the resulting combinations of the next round have improved
preference function values of approximately “100y” percent of the estimated
value of the best combination of the current round as in Karakaya and Koksalan
(2011). Therefore, after estimating a preference function based on past
preferences of the buyer, we provide information to the sellers about a possible
way of improving their bids. Using the information together with their cost
functions, sellers update their bids for the next round. The auction continues until

a termination condition is met.
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4.3.1 Bid Update

At the end of each round, sellers update their bids for the next round according to
their cost functions. Each seller solves his/her own mathematical model
(explained in Section 3.4) to update his/her bids. If there are feasible bids with
extra profit, then the seller gives the best possible bids with his/her predetermined

mark-up.

After taking the updated bids from the sellers, we find a new bid combination as
the incumbent of the current round using the estimated weights found at the end

of the previous round and continue.

We next discuss checking the status of the previous best solution (whether it is

extreme or nonextreme supported, or unsupported nondominated, or dominated).

4.3.2 Status of the Solution (SoS)

We guarantee to find the most preferred bid combination of the current round by
applying LIN-u under the linear preference function assumption. In Step 1 of LIN-
u we select arbitrary weights from the feasible weight space and find an
incumbent. Then we progress by checking the adjacent efficient alternatives of
the incumbent. In the multi-round case we keep the best alternative(s) up to the
current round to be compared with the new incumbent of the current round. In
this section, we explain the method for the multi-round case. For the sake of
simplicity, we assume that we have a single best alternative at the end of any

round. That is in Step 7 of LIN-u, we assume IN = @.

Let ePREV pe the best alternative up to the current round. At the beginning of the
current round, after finding an incumbent with the estimated weights and updated

bids, we check whether ePREV is extreme supported or not.

Here, we utilize the notation of LIN-u. We consider an additional step, Step 0, at

the beginning of the algorithm. The remaining steps are the same as LIN-u.
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Step 0: Find a solution, e;, using w. Check whether e’REV s extreme supported
or not by applying SoS procedure (below). If it is extreme supported, set e* =
ePREV and go to Step 2.1 (of LIN-u). Otherwise, set e* = e; and go to Step 3 (of
LIN-u).

We consider Figure 4.2 to visualize the possible regions where bid e; may be

located.

Attribute 2

r

Region:2

Attr=ibute 1

Figure 4.2 The possible regions for e;

We check whether an alternative is extreme supported or not by applying the

following SoS procedure:

The steps of SoS:

Step 1: Check the dominance relations between e; and eREV_ If e; is in Region
2, go to Step 5. Otherwise, if there exists @ such that & and e; convex dominate
ePREV g0 to Step 5.

Step 2: If e; is in Region 1 find the east adjacent alternative of e”REV, otherwise
find the west adjacent alternative of e”REV, If there does not exist an adjacent
alternative, go to Step 4. Otherwise go to Step 3.

Step 3: Check whether there exists @ such that e and the adjacent alternative
convex dominate eREV_ If there does not exist &, go to Step 4. Otherwise go to
Step 5.

Step 4: Set e* = ePREV and stop.

Step 5: Set e* = e; and stop.
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In Step 1, if e; is in Region 2, e; dominates e’REV. Therefore we stop and
continue with the new found alternative, e;. If e; is in Region 1 or Region 3 we
need an iterative procedure. We explain the procedure for the case that e; is in

Region 1 and the procedure is similar for Region 3.

If e; is in Region 1, we search for an @ such that & and e; convex dominate e”REV,

. _p,PREV A . )
We set w = efREVe-l%:i"V o~ bound the search region as in Figure 4.3 and

—€j1tejz

solve model (SoS_S1).

Attribute 2
y %

| \ N

Attri:bute 1 (8.5) (8.4)

Attribute 2

Figure 4.3 The search region in Step 1

Model (SoS_S1)

Minweé, + (1 —w)é, +pé, (8.1)
s.to

i=1 Zél TitmYie = 1 vm (8.2)
& =i Z:il QitjYit vj (8.3)
wé; + (1 —w)é, < wefREV + (1 — w)elREV (8.4)
é1=ej+p (8.5)
&, < eyt (8.6)
yie € {0,1} (8.7)

where p is a small positive constant.
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The augmented part (pé,) in the objective function is used to break ties between a
candidate solution on the line passing through e?*EV and e;, and e”REV. First two
constraints are the same as the first two constraints of (ALT). (8.4), (8.5) and
(8.6) bound the search region. Since e; is a supported solution, (8.5) is redundant;
however to emphasize the search region we keep it in the model. We note that
instead of using an augmented part, the problem can also be solved in a
lexicographic manner. First, the problem can be solved to minimize wé; +
(1 —w)é,. If &, = eFREV, then the problem can be solved to minimize é,, without
sacrificing from the optimal value of the former objective. If there is a feasible
solution, &, different than ePREV we conclude that e?REV is unsupported or
nonextreme supported, and we continue with e;. Otherwise we keep searching
with Step 2 of SoS.

In Step 2, we search for an east adjacent efficient alternative of e’®EV in the
shaded region in Figure 4.4 by using ADJ_E. If there does not exist an adjacent
alternative on the east of e?EV, we conclude that e”REV is extreme supported and

continue with e”REV, Otherwise we keep searching with Step 3 of SoS.

Attribute 2
y y

€;

\e”REV ﬁ Search region

Attrit;ute 1

Figure 4.4 The search region in Step 2

In Step 3, we search for an & such that & and e convex dominate e??EV, We set

_,PREV . i B
w = ePREVf’Zi,RZZV_e — bound the search region as in Figure 4.5 and solve
1 2 E1T€E2

model (SoS_S2).
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Attribute 2

Attribute 2 A
A
e €i e
o /I\ ‘/\ PREV
PREV
€ ex (9.6)
€g
(9.4)
. Ls Attribute 1
Attribute 1 (9.5)
Figure 4.5 The search region in Step 3

Model (SoS_S2)
Minwé; + (1 —w)é, (9.1)
s.to

{=1 Z:;l TiemYit = 1 vm 9.2)
& =Yl Dk, QiejVie vj (9.3)
wé; + (1 —w)é, < wePREV 4+ (1 — w)elREV (9.4)
é1=2ey+p (9.5)
é, = eFREV 4+ p (9.6)
yie € {0,1} (9.7)

where p is a small positive constant.

In SoS_S2, we aim at finding a feasible solution in the search region. Therefore
any objective function can be used in the model. First two constraints are the
same as the first two constraints of (ALT). (9.4), (9.5) and (9.6) bound the search
region. As stated before, since e; is a supported solution, (9.5) is redundant. If
there is a feasible solution, & we conclude that e”REV is unsupported or
nonextreme supported; otherwise, we say that eP*EV is extreme supported. The

SoS procedure ends with this step.
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In Step 2 of SoS, we choose the east adjacent alternative of e”REV to search as we
assume that e; is in Region 1. Finding west adjacent alternative of e?REV will give
similar results. If ePREV has no east or west adjacent alternative in the search
region, we simply conclude that ePREV is extreme supported. If e?®EVhas an
adjacent alternative, we can determine whether ePREV is extreme supported or not
with an additional step. We use the adjacent alternative to enlarge the search
region as much as possible for finding an & such that e and ez convex dominate
ePREV For the sake of completeness, we show this result with the following

theorem considering the east adjacent alternative.

Theorem 3: Consider Regions 4 and 5 in Figure 4.6. If there exist @ in Region 4
and A # ey in Region 5 such that & and A convex dominate e"*EV, then & and

e also convex dominate e”REV, The reverse is not necessarily true.

Proof: If @ and A convex dominate e”REV, then 30 > 0 3 ePREV + g(ePREV —

(e3RFV—4,)
(Al—efREV)

A) >&. Since e is the east adjacent alternative to e’REV, <

(esR*V—ep ;) - - " , (A1—efREV)

——rev~ 1herefore the following two inequalities hold for 8" = 6 —— 5z~
(eg1—eg ) (ep1—eq )
e]I_JREV + 9'(efREV - eE,l) 2 él (1)

efREV + 9’(e§REV — eE,Z) > é, (2)

_ _ . ) PREV _ 4
(1) is equivalent to elREV + 9 (ePREV — A)) = &, and since (ZT{’RE;; <

PREV _
%, (2) holds. Using (1) and (2) we conclude that & and ey also convex
E1—61

dominate ePREV,
We show that the reverse is not true with a counter example. Consider the

alternatives in Figure 5. Although & and ey convex dominate e”REV gand A

cannot convex dominate e”REV o
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p ePREV
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>

Attribute 1

Figure 4.6 Counter example for Theorem 3

In the multi-round case, we add the following constraint in (ALT) to avoid

inferior solutions:

wéi+(1—-w)é, <we; +(1—w)e,

The constraint indicates that the estimated preference function value of the new
solution should be at most as big as that of the incumbent.

To test the performance of LIN-u, we use 10 different weight values for the price
attribute to generate different problems considering an underlying linear
preference function for the buyer. The percent deviations for the linear case are

reported in Table 4.1.

Table 4.1 Percentage deviations between the results of the LIN-u and the
decentralized optimal solution

A=0.05 | 2=0.15 | A=0.25 | A=0.35 | A=0.45 | A=0.55 | A=0.65 | A=0.75 | 2=0.85 | A=0.95

0.0084 | 0.0064 | 0.0000 | 0.0000 | 0.0040 | 0.0073 | 0.0000 | 0.0000 | 0.0050 | 0.0061

In all problems for the linear case, the winning bidders found with the algorithm
and Decentralized are the same, i.e. allocative efficiency is satisfied. The
percentage deviations in Table 4.1 are very small, i.e., for all problems the

buyer’s preference function found with the algorithm is very close to that found
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by Decentralized. Moreover, the average number of pairwise comparisons the

buyer is required to make is 14.8 over the 10 problems with different weights.

4.4 A Heuristic for Underlying Nonlinear Functions

In this section, we assume that the buyer has an underlying decreasing
quasiconvex preference function. As in Section 3.10, we locally approximate the
buyer’s preference function with a linear function. We use the (IR) model to

estimate the weight values.

At the end of Step 7 of the LIN-u algorithm, we continue searching to find some
unsupported solutions to present the DM. To do this, after reducing the search
space we solve weighted Tchebycheff programs to find some unsupported
alternatives. Lemma 1 gives the theory and Figure 4.7 demonstrates how we
reduce the search space. For the sake of simplicity, we first assume that there is a
single current best alternative at the end of Step 7 of LIN-u, i.e. IN = @.

Lemma 1 in Korhonen et al. (1984) reduces the objective space based on the
preferences of the DM under the assumption that the DM has a quasiconcave
preference function to be maximized. The result directly applies to the case of
minimizing a quasiconvex function and we present the lemma in the latter

context.

Lemma 1: Let u: R/ —» R? be a decreasing quasiconvex preference function and
x; €R,i=12,..,nLetu(x) <u(xy), i #k. LetZ={z:z=x; +

Yimyier i (o — X, 1y = 0}. Then, u(z) = u(xy).

Z is referred as the cone of inferior solutions. We demonstrate Lemma 1 in Figure
4.7. Consider three supported nondominated solutions A4, B and C, where A, B
and B, C are adjacent efficient alternatives. Assume the DM prefers B to both A
and C.
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Attribute 2

Solutions in these

regions are inferior to

B due to Lemma 1, <
therefore eliminated. <

There are no solutions in this
region, as A,B and B,C are <«
adjacent efficient solutions.

4

: Dominated by at least
A':': > oneof ABorC.
[

‘Be -~ P The admissable search
region

I

Attribute 1

Figure 4.7 Reduced search space

We next search for an unsupported nondominated solution using the Tchebycheff
program in one of the triangles in Figure 4.7. If there is a solution that is preferred
to B, the new cone of inferior solutions made up of the new solution and B
contains the remaining triangle and we do not need to search it based on Lemma
1. However, if there is no solution in the triangle or if B is preferred to the new
solution, we search for a new unsupported nondominated solution in the other
triangle. This procedure requires at most two additional comparisons if there is a
single best alternative at the end of Step 7 of LIN-u. Otherwise, besides the

triangles of the extremes of set IN, we also search the triangle in the middle of the

region.

To find a solution in one of the triangles, we first find the local ideal and nadir

points of the two solutions, say B and C, as in Figure 4.8 and solve the (TCH)

problem to find an unsupported nondominated solution in the triangle.

Attribute 2

A

ce

Attribute 2
A
Nadir point

L C

Ideal point

Attribute 1 Attribute 1

Figure 4.8 ldeal and nadir points
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Parameters:

p: a small positive constant

a;. ;- level of attribute j offered by seller i in bid t
;m. 1 1T bid t of seller i includes item m; O otherwise
T;: the number of bids offered by seller i

I;:level of attribute j of the ideal point

N; :level of attribute j of the nadir point

B calculated weight of attribute 1 where 8 = (N, — I;)/(N; — I{ + N, — 1)

Decision Variables:
z . the Tchebycheff distance value of the solution from the ideal point
é;: level of attribute j of the optimal alternative

vie. 1if bid t of seller i is selected to be in the efficient combination; 0 otherwise

Model (TCH)
Min z + p(&; + é,) (10.1)
s.to

e D MiemYie = 1 vm (10.2)
& =Yl Tk, QiejVie Jj=12 (10.3)
z=p(é - 1) (10.4)
zz2(1-p)é—13) (10.5)
ég <N —p (10.6)
& <N;—p (10.7)
vir €{0,1} (10.8)

In (TCH), we try to minimize the weighted Tchebycheff distance from the ideal
point. To avoid weakly nondominated but dominated solutions, we use the
augmented part in objective function. Constraints (10.6) and (10.7) bound the

search region.
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Although there may be several alternatives in the triangle, we find only one of

them to limit the number of questions asked to the DM.

In the linear case, while finding an adjacent efficient alternative to an incumbent,
we only consider those candidate incumbents that could be preferred based on the
available weight space. Although this is a valid procedure when the underlying
preference function is linear, it does not apply for underlying nonlinear preference
functions. Therefore, we do not eliminate such alternatives in this case.
Furthermore, in the linear multi-round case, we apply the SoS procedure and if
ePREV is not an extreme supported solution, we eliminate it. However, in the
nonlinear case we keep that solution until the end of the corresponding round.
After solving the Tchebycheff program, we check whether ePREV is in a cone-
inferior region or not. If ePXEV is not in a cone-inferior region, we also ask the

DM to compare the incumbent and ePREV

We next provide the results of LIN-u when the buyer has an underlying nonlinear
preference function. In the nonlinear case, we test the performance of the
algorithm by simulating the preferences of the buyer using weighted L,
preference functions; specifically we use the weighted Euclidean (o« = 2) and the
weighted Tchebycheff (a = o) functions. The percent deviations for the

nonlinear case are reported in Tables 4.2 and 4.3.

Table 4.2 Percentage deviations between the results of the algorithm and
decentralized optimal solution under weighted Euclidean preference function

A=0.05 | A=0.15 | A=0.25 | A=0.35 | A=0.45 | A=0.55 | A=0.65 | A=0.75 | A=0.85 | A=0.95

0.0408 | 0.0090 | -0.0796 | -0.0303 | -0.2306 | -0.2971 | 0.1356 | 0.2492 | 0.0208 | 0.0000

Table 4.3 Percentage deviations between the results of the algorithm and
decentralized optimal solution under weighted Tchebycheff preference function

A=0.05 | 2=0.15 | A=0.25 | 2=0.35 | A=0.45 | A=0.55 | A=0.65 | A=0.75 | A=0.85 | A=0.95
0.0316 | 0.6988 | 1.0351 | 0.2601 | 4.8190 | -0.6618 | -4.4448 | 6.1772 | 0.0000 | 0.0000
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When we look at the results in Tables 4.2 and 4.3, we see that in some problems
our algorithm performed even better than Decentralized. As discussed in Chapter
3, this is due to the nonlinear nature of the preference function and round off
errors. Although Decentralized finds slightly better preference function values for
each bid separately, when a combination is constructed, the preference function of
a combination for the Decentralized case may be worse than that of ours for the
considered nonlinear preference functions. The average percent deviations are
-0.0182% and 0.7915% for a = 2 and a = oo, respectively. Furthermore, the
buyer compares 45.7 and 45.1 pairs on the average of 10 problems with different
weights for @« = 2 and a = oo, respectively. Applying the interactive method
decreases the number of possible efficient combinations to be evaluated by the

buyer substantially.

The experiments show that in all test problems the percent deviations are very
small, i.e. the buyer’s preference function value corresponding to the solution
found with the algorithm is close to that of Decentralized. Moreover, the number
of questions asked to the buyer with the interactive method is small. These imply
that the estimation and guidance mechanisms of our approach worked well in all

the test problems.
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CHAPTER 5

AN INTERACTIVE APPROACH FOR BI-ATTRIBUTE
MULTI-ITEM AUCTIONS UNDER QUASICONVEX
PREFERENCE FUNCTIONS

In this chapter, we develop an interactive method to find the most preferred bid
combination of a buyer having a quasiconvex preference function. We first
explain the QCX-u algorithm and its versions. We then discuss the L,-u
algorithm which estimates both alpha and weight values of the underlying
preference function. In each algorithm, we provide the results of the performance

tests.

5.1 The Interactive Algorithm (QCX-u)

We develop an interactive algorithm, QCX-u, to find the most preferred
combination of a buyer having a quasiconvex preference function for the 2-
attribute case. In this case we assume that the buyer can distinguish between bids,
i.e. A= 0. We modify and extend the LIN-u algorithm.

Similar to the heuristic approach in Section 4.4, at the end of each round we
continue searching in the reduced search space using Lemma 1 to find the most
preferred solution of the DM in the current round. As discussed in Section 4.4, the

reduced space consists of two triangles.
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We consider different versions of the algorithm and test their performances
against the Decentralized case. The versions are each round, last round, band,
and limited number of questions. In the each round case, we search the whole
triangle(s) in each round to find the most preferred alternative. In the last round
case, we apply LIN-u algorithm for the multi-round case and search the whole
triangle(s) only in the last round. In the band case, in each round, instead of the
whole triangle(s) we search some portion of the triangle. In the limited number of
questions case, while searching the triangle(s) in each round we limit the number

of unsupported solutions visited.

In QCX-u algorithm, based on the preferences of the DM we reduce the search
space and conduct our search in the reduced region. To do this we use Lemma 1
(in Section 4.4) and construct cones with two alternatives based on the pairwise
comparisons of the DM. We use the notation 4 > B to depict two-point cones

where A is preferred to B.

Attribute 2

A

A

> Attribute 1

Figure 5.1 An example for two-point cones

To illustrate, consider the three alternatives in Figure 5.1 and assume that the DM
prefers A to B and B to C. We generate two cones, A > B and B > C. We detect
and eliminate redundant cones. For instance, we eliminate B = C since the

inferior region implied by this cone is a subset of that of cone A > B.

For the example above (A = B), to reduce the search space we write the

following cone constraints:
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é1<B;—p+ Mz (Consl)
Wupés + (1 —wyp)éy S wyugBy + (1 —wyp)B, —p+ M(1 —2) (Cons2)

where p is a small positive constant, M is a big positive number, z is a binary

A;—-B;

variable and wyg = BB A TA
1~B2—A1+4;

(i.e. wyg and (1 — wyp) are the weights of the

linear function passing through alternatives 4 and B.)

In the constraints above we use a binary variable z to enforce that if the first
attribute value of the candidate solution is at least as big as B,, then (Cons2)
becomes active indicating that the candidate solution should be below the line
passing through alternatives A and B. With these two constraints we aim to
reduce the search region and avoid the inferior solutions. Although we exemplify
the cone constraints for the preferred alternative having smaller attribute 1 value,
the constraints are similar for the case where the preferred alternative has a
smaller attribute 2 value. In our models, for each valid cone we write such
constraint pairs by defining a binary variable. To reduce the number of binary

variables, we eliminate redundant cones.

Elimination of redundant cones
Consider alternatives A4, B, € and D. Assume that the DM prefers A to B and C to

D. If we want to check whether € = D is redundant relative to A > B, we check
whether each point in € = D is dominated by a point in A o B. That is, if there
exists § = 0 satisfying B+ (B —A) < D + f'(D — C) for each 8’ = 0, then
C = D is redundant. Instead of solving a mathematical model, we use a simple

procedure to determine whether a cone is redundant or not.

After taking the preferences of the DM and generating a new cone, we apply the
following procedure to detect the redundant cones with respect to the new cone.
For each existing cone, we make pairwise cone validity check with the new cone.

For the sake of simplicity we use the cones A = B and C = D to explain the
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procedure. Since we consider nonnegative attribute values in our test problems,

suppose all four alternatives have positive attribute values.

Cone Validity Check
Step 1: If A; < B; and C; < D; go to Step 2; else if A; > B, and C; > D;, go to
Step 3. Otherwise go to Step 6.

D1 1 _ —Dp
Step 2: If B, < D, and 2 _Bz 2 < 5o set B = B, B = 51-Cs and go to Step
4. Otherwise go to Step 6.
Bl I __ _Dl
Step3: If B, < D, and —A1 <2 Bz set B = B A1 B = brC and go to Step 4.

Otherwise go to Step 6.

Step4: If B+ B(B—A) <D + B'(D — C), go to Step 5; otherwise go to Step 6.
Step 5: € = D is redundant, go to Step 6.

Step 6: Stop.

In Step 1, we check the directions of the cones (i.e. compare the first attribute
values of preferred and nonpreferred alternatives in each cone). If cones have
different directions, by using Theorem 4 (below), € = D cannot be redundant
with respect to the new cone, A = B, and the procedure stops. If both cones have
the same directions, we also check attribute 1 or 2 values (based on the direction)
of the nonpreferred alternatives in each cone. Suppose that A; < B; and C; < D;,
then we check whether B; < D, or not. If B; > D;, due to Theorem 5 (below) we
conclude that € = D cannot be redundant. On the other hand, if B, < D;, we
check some conditions (stated in Theorem 6 below) and if these conditions are
satisfied we conclude that € = D is redundant. Otherwise, we conclude that C >

D cannot be redundant relative to A = B and the procedure stops.

Theorem 4: Consider two cones A B and € > D where the cones have

different directions. Then € = D cannot be redundant.
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Proof: If the cones have different directions there can be 2 cases:
Casel:A; <B;and C; > D,

Case2: Ay > B;and C; < D,

Case 1

2L there does not exist any § >
D1-C1

Since By —A; >0 and B, >0, for g’ =

0 satisfying B+ B(B—A) < D + B'(D — C).

Case 2

-D2
D2-C2’

Since B, —A, >0 and B, >0, for B’ = there does not exist any § >

0 satisfying B+ B(B—A) <D+ B'(D - C). m

Theorem 5: Consider the cones in Theorem 4. Suppose that A; < B; and
C; < D,.If By > Dy, then € > D cannot be redundant.

Proof:

As stated above, € = D is redundant if and only if each point in € > D is
dominated by a point in A B. That is, if 3>0eB+3(B—A) <D+
B'(D — C) for each B’ = 0, then € = D is redundant. Since B, — A; > 0 and
B; —D; > 0, for B’ =0, there does not exist any g > 0 satisfying B + S(B —
A) <D+ p'(D-0C). 0

Theorem 6: Consider the cones in Theorem 5. If B; <D,

B,—-D, _ Di—B; -B, _ -D, _ .
. < B and B+ 5a, (B-A) <D+ DiCs (D-C), then C>D is
redundant.

Proof:

C = D is redundant if and only if both starting and ending points of C = D are
dominated by the points in A = B as we consider linear functions. Therefore, we

check whether both starting and ending points of € = D are dominated or not.

B+ B(B—A) <D+ p'(D — C) can be rewritten as follows:
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By +B(By —Ay) <Dy +B'(Dy — Cy)
B, + B(By; —Ay) < D, + ' (D, — Cy)

The starting point of € = D is (D,, D,), that is set 8’ = 0. For 8’ = 0, we check
whether there exists § > 0 such that B + (B — A) < D. If there exists feasible

p values, i.e. if jz_—DZ < u, then the requirement for the starting points is

2=B2 T B1—4A1
satisfied. On the other hand, if no such B exists, no need to check the ending

point.

Without loss of generality, consider the minimum attainable attribute 2 value as

_D2

—D
zero. Then, set ' = — 2

D,—C;

and the ending point of C = D is (D1 + (D, —

2—C>

By—A;

Cl),O). We compare it with the ending point of A > B, (B1+ (B, —

By—-A;

D,-C;

41),0). If By + 22 (B, — Ay) < Dy + =22 (D, — Cy), then the ending point

of € = D is dominated by the ending point of A > B.

If both starting and ending points of € = D are dominated by the pointsin A > B,

then , € = D is redundant. Otherwise, it cannot be redundant. O

We demonstrate some possible cases in Figure 5.2.

Attribute 2
A . -
oA Since both starting and
L e C : : .
NN, ending points are dominated,
N el C > D is redundant.
\\B\
AttribIJte 1
a)
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Attribute 2 - - —
4+ oa Since starting point is not
dominated, € = D is not
Ce B redundant.
D
Attribute 1
b)
Attribute 2
1 Since ending point is not
dominated, € = D is not
4. c redundant.
\\\\.\
B\
C) Attribute 1

Figure 5.2 Some examples for Theorem 6

The steps of QCX-u

Recall that e and ey, are the east and west adjacent efficient alternatives to the

incumbent, respectively. Select an arbitrary direction (DIR) to search an adjacent
efficient alternative to the incumbent where DIR=east corresponds to searching
for ey and DIR=west corresponds to searching for ey,. Set iteration counter i =1
and without loss of generality set DIR=east. Recall that e’REV is the best
alternative up to the current round, e;, and ey, are the values of attributes 1 and 2
of the corresponding solution, ey, respectively, w = (w,1 — w) where w is the

estimated weight of attribute 1.

For the sake of simplicity, we first provide the steps to find the best supported

solution in a single round. We then discuss the variations of the algorithm.

Step 1: Select an arbitrary set of weights, find an incumbent, e*, and go to Step 3.
Step 2: Seti « i + 1. Find a solution, e;, using w. If it is the first round or there
does not exist a new e;, go to Step 3. Otherwise, if a new round is started, check

the status of e”REV and if ePREV is not extreme supported, set e* = e; and go to
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Step 3. Otherwise, if e;; < e], set DIR=west; otherwise set DIR=east. Ask the
DM e” versus e;. If

- e; is preferred to e*, add a constraint w(e* —e;) = p +u, add e; > e”,
check the validity of the existing cones and write the relevant cone
constraints. Set e* = e; and go to Step3.

- e” is preferred to e;, add a constraint w(e; —e*) > p +yu, add e* > e,
check the validity of the existing cones and write the relevant cone
constraints. Switch the value of DIR (i.e. set DIR=east if it is equal to west
and set DIR=west if it is equal to east) and go to Step 3.

Step 3: If DIR=east, find er and set e,q; = eg; otherwise find ey, and set
eqqj = ey. If there exists e,q;, go to Step 4. Otherwise, if both e, and ey, have
been evaluated before, go to Step 6; otherwise, switch the value of DIR and go to
Step 3.

Step 4: Ask the DM e” versus e ;. If

- €44, is preferred to e*, add a constraint w(e* — egq;) = p + p, add egq; &
e, check the validity of the existing cones and write the relevant cone
constraints. Set e” = e,4; and go to Step 5.

-e" is preferred to e,q;, add a constraint W(eadj - e*) >p+yu, add
e’ = euq;, check the validity of the existing cones and write the relevant
cone constraints. If both ez and e, have been evaluated, go to Step 6.
Otherwise switch the value of DIR and go to Step 3.

Step 5: Find a feasible set of weights satisfying all constraints corresponding to
past preferences of the DM by solving the (IR) and go to Step 2.

Step 6: Depending on the version of the algorithm find some candidate solutions,
ask the DM and write necessary constraints based on the preferences of the DM.
If it is not the first round, while finding candidate solutions if e”REV is not in a
cone-inferior region, also consider ePREV, The details of this procedure will be
discussed later. Set ePREV = e* and go to Step 7.

Step 7: If it is the final round, go to Step 8; otherwise inform the sellers about
estimations, get the updated bids and go to Step 2.

Step 8: Stop.
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In Steps 1 and 2, we add cone constraints to the (ALT) model in Section 4.2 to
find a new alternative with the estimated weights. For the sake of completeness,

we provide the updated model (ALT") below:

Parameters:

M: a big number

p: a small positive constant

a;. ;- level of attribute j offered by seller i in bid t
Tim. 1 if bid t of seller i includes item m; 0 otherwise
T;: the number of bids offered by seller i

w: estimated weight of attribute 1

(A2-B3)

Wwyepg- Calculated weight of attribute 1 where wy.p = BoBAt D)

ex;- level of attribute j in efficient combination k

Decision Variables:
vt 1if bid t of seller i is selected to be in the efficient combination; 0 otherwise
é;: level of attribute j of the optimal alternative

Ze we. . 1 if constraint (11.6) is active; 0 otherwise
p=Cfn

Z,e,-1 if cOnstraint (11.8) is active; 0 otherwise
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Model (ALT")

Minwé; + (1 —w)é, (11.2)
s.to

{=1 Z:;l TiemYit = 1 vm (11.2)
éj = {=1 Z:;l AitjYit j=12 (11.3)
wé, +(1—w)é, <we; +(1—w)e, (11.4)
é1<ey—p+ Mz se, foreach e, = ey, e,1 > ey (11.5)

We,oen €1+ (1= We e, )82 < We ce,n1 + (1 — Weyoe,Jenz —p + M(1 -

Ze,oey) foreach e, = e,, e,; > ep (11.6)
€y <erp—p+tMzy,, foreach e, > e,, e < ey (11.7)
Weme, €11 (1 = Wepe, )82 < Wepne €71+ (1 — Weppe,)erz —p + M(1 — Zg ne,)
foreach e, > e,, e;; < e (11.8)
vie € {0,1} (11.9)

In (ALT"), the objective function and the first two constraints are the same with
the objective function and the first two constraints of (ALT). (11.4) indicates that
the estimated preference function value of the new solution should be at most as
big as that of the incumbent. Remaining constraints are the cone constraints and

are used to avoid inferior solutions.

In Step 2 of QCX-u, at the beginning of each round except for the first round, we
apply the SoS procedure (explained in Section 4.3.2) to determine whether the
best alternative up to the current round, ePREV, is an extreme supported solution
or not. If it is extreme supported, we ask the DM to compare the incumbent and
ePREV If it is dominated, we eliminate ePRE; whereas if it is unsupported or
nonextreme supported, we keep that solution until the end of the corresponding
round. While finding some alternatives to ask the DM based on the version of the
algorithm, we check whether eP*EV is in a cone-inferior region or not. If e”REV
Is not in a cone-inferior region, we also ask the DM to compare the incumbent

with e”REV in Step 6.
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In Step 3, to find adjacent alternatives of an incumbent we apply a similar
procedure explained in Section 4.2. The only difference is that we reduce the
search region using the cone constraints to avoid nonpreferable alternatives.
Therefore in QCX-u we do not find an adjacent alternative that is previously
asked to the DM, as we eliminate inferior solutions.

In Step 6 of QCX-u, we apply different procedures for different versions. We note
that in this step we deal with unsupported solutions and therefore we use

“neighbor” instead of “adjacent”. We explain the procedures as follows:

Each Round Version

In the algorithm, we first deal with the supported solutions and at the beginning of
Step 6 of QCX-u, we have the most preferred supported solution. During the
algorithm, we reduce the search region using the preferences of the DM and
continue our search in the reduced region. With this, we eliminate inferior

alternatives and find unsupported solutions in the admissible search region.

In the single-round case, as shown in Section 4.4, the reduced space consists of
two triangles. However, in multi-round case due to the cone constraints in the

previous rounds, the reduced region may be smaller.

In the each round version, we conduct our search in the whole reduced region.
We apply a similar procedure to that in Step 3. The only difference is that, in Step
6 we exclude the eastmost or westmost alternative and find an adjacent alternative
to the incumbent in the reduced search region (i.e., in the triangle), and refer to
this alternative as the “neighbor”. After finding a neighbor to the incumbent in the
search region, we ask the DM to compare them as usual and write the relevant
cone constraints. We progress our search until there is no neighbor to be
compared. We note that during our search, if the best alternative up to the current

round, ePXEV is not found in a cone-inferior region, we also consider e”REV,
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In this version, at the end of each round we find the most preferred alternative of

the corresponding round since we consider the whole reduced region.

Last Round Version

In this version of the algorithm, until the final round of the auction, we only check
whether e’RE is in a cone-inferior region or not in Step 6. If ePREV is not in a
cone-inferior region, we also ask the DM to compare the incumbent and eREV,
With this we aim to hold on to the best alternative during rounds. In the final

round, as in the each round version, we search the whole reduced region.

In the each round version, we find the most preferred alternative in each round by
searching the whole reduced region. In the last round version, we aim to ask a
smaller number of questions and therefore we do not search the reduced region in
Step 6. However, in the final round we want to find the most preferred alternative

and search the whole reduced region.

Band Version

In the band version, we search some portion of the reduced region in Step 6. By
searching some part of the reduced region, we aim to find good alternatives.
However, we also want to keep the number of questions asked to the DM low.
Therefore, in each round instead of searching the whole reduced region, we

systematically search some portion of the reduced region.

As stated before, in the multi-round case due to the cone constraints in the
previous rounds, the reduced region may be smaller than the triangle(s). In this
version, in early rounds we search small portions of the corresponding triangle(s)
and in succeeding rounds we increase the searched portions of the triangles. We

explain the procedure to define the east search region in each round.
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We use the similarity of triangles to define the portion of the triangle to be
searched. Suppose at the beginning of Step 6, we have the following search

region in Figure 5.3 a.

Attribute 2 Attribute 2

A A

A A

B B

>

a)  Atribute1 b) Attribute 1

Figure 5.3 An example reduced region in band version

Let Th be the predetermined round number when the whole triangle will be
searched and assume that we increase the search region the same amount in each
iteration. Suppose that we are in round h, then we expect that the area of the
dashed region to be h/Th of the total area of the triangle. We calculate point X to

bound the search region where X, = A, and using similarity X; = B; — (B, —

A;)+/h/Th. To find neighbor alternatives in Step 6, we apply a similar procedure
as in each round version by adding the following constraint to bound the search

region.

Az—B;
Bi—By—A1+A,

weé, +(1—-w)é, <wX;+ (1 —-w)X, wherew' =
As can be seen from Figure 5.3.b, the reduced region is in the form of a band and

hence it name band.

If h > Thorifitis the final round of the auction, we search the whole triangle as
in each round version. We note that while finding neighbor alternatives, we also
consider the cone constraints and during our search, if the best alternative up to
the current round, ePREV | is not found in a cone-inferior region, we also consider

ePREV_
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Limited Number of Questions Version

This version is similar to the band version. In the band version, if the solutions
are crowded in a region, the number of solutions found in the determined portion
of the triangle(s) may be large. Therefore, we develop limited number of
questions version in which we limit the number of alternatives found in each

round.

Similar to band version, we increase the number of alternatives found in the
reduced region in each round. Let LNQ be the predetermined number used to limit
the number of alternatives found in the triangle(s). In round h, we find at most
h* LNQ alternatives (including the best alternative up to the current round) in the

triangles.

In Step 7 of QCX-u, if it is not the final round, we solve (IR) to estimate the
weight values and inform sellers with this information as well as the estimated
preference function value of each item separately (for details please refer to
Section 3.3). Then, the sellers update their bids and the algorithm continues with
Step 2 of QCX-u.

5.2 Experimental Results for QCX-u

To test the performance of QCX-u, we use 10 different weight values for the price
attribute to generate different problems. We simulate the preferences of the buyer
using weighted linear, weighted Euclidean and weighted Tchebycheff functions.
Based on our preliminary experiments in band version we set Th, the
predetermined round number that whole triangle will be searched, to 10 and in
limited number of questions version LNQ, predetermined number used to limit the
number of alternatives found in the triangle(s), to 1 and 2. We use LNQ=1 and
LNQ=2 to refer to limited number of questions version with LNQ equal tol and 2,

respectively.
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The average percent deviations and the average number of comparisons are

reported in Tables 5.1 and 5.2, respectively.

Table 5.1 Average percentage deviations between the results of different versions
of QCX-u and decentralized optimal solution*

Underlying Utility Function
Version Weighted Linear | Weighted Euclidean | Weighted Tchebycheff
Each round 0.0490 -0.0532 -0.8943
Last round 0.0120 -0.0962 0.7273
Band 0.0171 -0.0251 -0.5145
LNQ=1 0.0250 -0.0723 -0.9277
LNQ=2 0.0258 -0.0532 -0.9039

* Based on 10 instances with different weight values

Table 5.2 Average number of comparisons w.r.t. different versions of QCX-u*

Underlying Utility Function
Version Weighted Linear | Weighted Euclidean | Weighted Tchebycheff
Each round 31.6 46.7 43.2
Last round 19.3 26.5 32.3
Band 39.3 70.1 64.3
LNQ=1 29.9 38.0 37.0
LNQ=2 325 43.1 40.9

* Based on 10 instances with different weight values

The results in Table 5.1 show that in all problems the percent deviations are very
small in each version. Moreover, for underlying nonlinear preference functions,
our algorithm performed better than the Decentralized case except for the last
round version for underlying Tchebycheff function which is 0.7273%. The
number of questions asked to the DM is smallest in last round and highest in
band versions. In the band version we ask a relatively large number of questions,
indicating that the unsupported alternatives in the defined band are dense. To
decrease the number of questions asked, we can use the idea of Karahan and

Koksalan (2010) and define territories around alternatives to get diverse pairs. As
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expected, LNQ=1 requires fewer questions than LNQ=2 on the average. Each
round requires more questions than last round, but the performances are not so
different in terms of percent deviations. Although the percent deviations are very
small in each version, considering both the percent deviations and the number of
questions asked to the DM, we can say that last round and LNQ=1 performs

slightly better than other versions.

5.3 Modified Algorithm (L,-u)

We modify QCX-u and develop L,-u which estimates both alpha and weight
values of the underlying preference function. In L,-u, the buyer’s preference
function is estimated with an L, function as stated in Section 2.5. Let a be the
estimated parameter value of the underlying preference function of the DM. The

algorithm starts with the linear case where @ = 1 and increases a as necessary.

Step 1: Set a = 1, select an arbitrary set of weights and find an incumbent, e”,

solving the following (ALT-a) model.

Parameters:

a; ;- level of attribute j offered by seller i in bid t
Tim. 1 if bid t of seller i includes item m; 0 otherwise
T;: the number of bids offered by seller i

w: estimated weight of attribute 1

a: estimated parameter value of the L, function
Decision Variables:

vi¢- 1 if bid t of seller i is selected to be in the efficient combination; O otherwise

é;: level of attribute j of the optimal alternative
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Model (ALT-a)

Min (wé,)% + ((1 — w)&,)* (12.1)
s.to

L 2 iy 2 1 vm (12.2)
& =Y X iy vj (12.3)
Wé))* + (1 —w)é)* < (we))* + (1 —w)ez)* (12.4)
vir €{0,1} (12.5)

In (ALT-a), if « = 1, we solve a mixed-integer programming problem; otherwise
we solve a mixed-integer nonlinear programming problem. We include constraint
(12.4) in the model for the sake of completeness, but during the first time we
search for an incumbent, we do not enforce (12.4). After finding the optimal

solution of the problem, we set the solution to e* and go to Step 3.

We note that although in (ALT") we use cone constraints, we do not use them in
(ALT-a) due to Theorem 7.

Theorem 7: Let the underlying preference function be quasiconvex and let e* and
e be the current best and optimal alternative of (ALT-a), respectively, estimate
with a quasiconvex preference function u. Let K be the set of cone inferior

solutions. Then @ cannot be cone inferior solution, i.e. & € K.

Proof:
Suppose e € K, then by definition in Lemma 1 u(e*) < u(e) which contradicts
constraint (12.4) of (ALT-a). o

We note that this situation may not be valid for (ALT"). The reason is that in
QCX-u although the linearity assumption is violated we continue to estimate the
preference function as linear. Therefore, the estimated preference function may

not fit the preferences of the DM.
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Step 2: Set i « i + 1. Find a solution, e;, solving (ALT-a). If it is the first round
or there does not exist a solution, go to Step 3. Otherwise set the solution to e;. If
a new round is started, check the status of e* and if e* is not extreme supported,
set e* = e; and go to Step 3. Otherwise, if e;; < e}, set DIR=west; otherwise set
DIR=east. Ask the DM e* versus e;. If

- e; is preferred to e*, add a constraint w(e* —e;) = p +u, add e; > e”,
check the validity of the existing cones and write the relevant cone
constraints. Set e* = e; and go to Step 3.

- e* is preferred to e;, add a constraint w(e; —e*) > p+pu, add e* o e,
check the validity of the existing cones and write the relevant cone
constraints. Switch the value of DIR (i.e. set DIR=east if it is equal to west
and set DIR=west if it is equal to east) and go to Step 3.

Step 3: If DIR=east, find er and set e,q; = eg; otherwise find ey, and set
eqqj = ey. If there exists e,q;, go to Step 4. Otherwise, if @ = 1 go to Step 3.1;
otherwise go to Step 3.2.

Step 3.1: If both ez and ey, have been evaluated before, go to Step 6;

otherwise, switch the value of DIR and go to Step 3.

Step 3.2: If incumbent has no neighbor alternative, solve (Walpha) and go to

Step 8; otherwise, switch the value of DIR and go to Step 3.

Step 4: Ask the DM e” versus e ;. If

- @44, is preferred to e*, add a constraint w(e* — egq;) = p + p, add egq; &
e*, check the validity of the existing cones and write the relevant cone
constraints. Set e = e,q;, if @ = 1 go to Step 5; otherwise switch the value
of DIR and go to Step 3.

-e" is preferred to e,q;, add a constraint w(eadj — e*) >p+u add
e’ © eqqj, check the validity of the existing cones and write the relevant
cone constraints. If « = 1 and both ey and e, have been evaluated, go to
Step 6. Otherwise switch the value of DIR and go to Step 3.

Step 5: Find a feasible set of weights satisfying all constraints corresponding to
past preferences of the DM for the corresponding feasible « by solving the

following (Walpha) model.
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Parameters:
p: a small positive constant
ey level of attribute j in efficient combination k

a: estimated parameter value of the L, function

Decision Variables:
u . an auxiliary variable (to measure the estimated value difference between
alternatives and bound the weights)

w;: estimated weight of attribute

Model (Walpha)

Max u (13.1)
s.to

u<w<1l-u (13.2)
u(er) = (Wey)®* + ((1 = Weyz)*) (13.3)
u(ey) = u(e,) +p+u foreach e, > e, (13.4)
u=0 (13.5)

The (Walpha) model is similar to (Wt) model except that in (Wt) we set @ = 1
and only estimate the weight values. On the other hand, in (Walpha) we estimate
both « and the corresponding weight values. For given a values we solve
(Walpha) model. As in Karakaya and Koksalan (2011), we take the smallest a
value to fit a function satisfying all constraints but having the least curvature. At
the beginning we seta to 1 (i.e. we start with a weighted linear preference

function) and increase a by 1 if necessary.

After finding the estimated parameters a and w, if @ = 1 go to Step 2; otherwise
switch the value of DIR and go to Step 3.
Step 6: If e”REV is in a cone-inferior region, go to Step 7. Otherwise, if e FREV <

e;, set DIR=west; otherwise set DIR=east. Ask the DM e* versus e"REV _ If
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- ePREV s preferred to e*, add a constraint w(e* — ePREY) > p + p, add
ePREV = e*, check the validity of the existing cones and write the relevant
cone constraints. Set e* = ePREV and go to Step 7.

- e* is preferred to ePREV add a constraint w(ePREY —e*) > p +pu, add
e* > ePREV check the validity of the existing cones and write the relevant
cone constraints. Switch the value of DIR and go to Step 7.

Step 7: Solve (Walpha). If @ > 1, go to Step 3; otherwise go to Step 8.

Step 8: If it is the final round, go to Step 9; otherwise solve (IR) to inform the
sellers, get the updated bids and go to Step 2.

Step 9: Stop.

In Step 2 of L,-u, if a new round is started while checking the status of the best
alternative up to the current round, e?REV if « = 1, we follow the procedure in
QCX-u. Else if a > 1, we check the dominance of eREV, by solving the
following (DOM) model.

Parameters:
a; ;- level of attribute j offered by seller i in bid t
Tim. 1 if bid t of seller i includes item m; 0 otherwise

T;: the number of bids offered by seller i

Decision Variables:
vit. 1if bid t of seller i is selected to be in the efficient combination; 0 otherwise
é;: level of attribute j of the alternative

p;: the difference between & and e”**" in attribute j
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Model (DOM)

Max uy + u;
s.to

1 T

i=1 2peq TitmYie = 1 vm
R o) [T;] .
€j = D=1 =1 LitjVit vj

Q>

PREV
1Se; T Ty

5 PREV
e = — U2
Uy
Uy

Vit € {0!1}

e;
>0
>0

In (DOM), we search for an alternative that dominates eP*EV. Constraint set
(14.2) guarantees to satisfy the demand for each item. (14.4) and (14.5) are used
to force the resulting solution to dominate e”REV If the problem is optimal with a
positive objective function value, we conclude that e?®*EV is dominated and we
eliminate e”REV. Otherwise, we say that there is no solution dominating e?REV,

and we ask the DM to compare the incumbent and ePREV in Step 2.

In Step 3, if @ = 1 we apply the procedure in Step 3 of QCX-u; whereas if @ > 1
we apply the procedure in Step 6 of QCX-u with the following additional

constraints:

If DIR=east
éz < e; — p
If DIR=west

A *
e.<e —p

Based on the direction of the search we add a new constraint. The reason is that in
Lq-u, the incumbent neighbor of which is searched can be an unsupported

solution. If we do not consider this additional constraint, although the direction is
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east(west), we may end up a dominated solution or a solution in the west(east) of

the incumbent.

In the case that a > 1, there are different ways of finding neighbor alternatives.
For instance, we can find the alternatives those are closest to the incumbent in
each attribute as neighbor alternatives. Keeping the other steps as they are, we
apply this procedure in Step 3 if @ > 1 and call this version as L,-NN to indicate

that the alternatives found are the nearest neighbors in each attribute.

We note that during our neighbor alternative search, if the best alternative up to
the current round, eP*EV | is not found in a cone-inferior region, we also consider

ePREV_

In the algorithm, as in QCX-u after solving (IR) we inform sellers about the
estimated weight values of the linear function as well as the estimated preference

function value of each item separately in Step 8.

Modifications for underlying Tchebycheff Preference Functions

The L,-u algorithm is a general algorithm for underlying quasiconvex preference
functions. If we know that the DM has a Tchebycheff preference function at the
beginning or at any step of the algorithm, we use the properties of the

Tchebycheff functions and make some modifications to L,-u .

Modifications in (ALT.,,)

We solve the following model to find a new solution based on the estimated
Tchebycheff function.

Parameters:
p: a small positive constant
a;j- level of attribute j offered by seller i in bid t

itm. 1 1T bid t of seller i includes item m; O otherwise
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T;: the number of bids offered by seller i
w: estimated weight of attribute 1
u(e”): estimated Tchebycheff function value of e

where u(e*) = max{we;j, (1 —w)e;}

Decision Variables:
z : the Tchebycheff distance value of the solution
vt 1if bid t of seller i is selected to be in the efficient combination; O otherwise

é;: level of attribute j of the optimal alternative

Model (ALT,,)

Minz + p(é; + é;) (15.1)
s.to

L S iy 2 1 vm (15.2)
& =Xi |t7;l|1 AitjYit j=12 (15.3)
z 2 wé (15.4)
z > (1—-w)é, (15.5)
z < u(e”) (15.6)
vir € {0,1} (15.7)

In (ALT,), we try to minimize the weighted Tchebycheff distance. To avoid
weakly nondominated but dominated solutions, we use the augmented part in
objective function. A suitable p value should be selected to make sure that the
second term in the objective function does not cause any trade-offs with the first
term, and only has an effect of breaking ties. Constraint (15.6) indicates that the
estimated preference function value of the new solution should not be worse than

that of the incumbent.

Instead of using an augmented part in the objective function, we solve the

problem in a lexicographic manner. First, we minimize z. By fixing the value of
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the attribute whose value multiplied by the corresponding weight is equal to z, we

then solve the problem again to minimize the other attribute.

Modifications in Cone Constraints

In L,-u we write the general cone constraints. However, for Tchebycheff
preference function case we modify the cone constraints and reduce the search

space accordingly.

Consider two alternatives A and B where the DM prefers A to B. We write the
cone, A = B, and the corresponding cone constraint as follows:

él < Bl —pP
With this constraint we eliminate all the alternatives having attribute 1 value of B;
or more. Compared to the general cone constraints, here we eliminate a greater

region and we do not need to use binary variables.

Modifications in Finding Neighbor Alternatives

As stated above, we try L,-NN version where we find the alternatives those are
closest to the incumbent in each attribute as neighbor alternatives when « is
estimated as greater than 1. This method is beneficial when the underlying

preference function is Tchebycheff.

To illustrate consider the alternatives in Figure 5.4. Suppose B is found as
incumbent by solving (ALT,,) and then we look for east neighbor alternative of B.
If we apply the procedure in Step 6 of QCX-u, we will find D; whereas if we find
the nearest neighbor in attribute 1, we will find C. If B is preferred to its east
neighbor, with selecting C as east neighbor more search region will be eliminated
than selecting D. On the other hand, if east neighbor is preferred to B, the reduced
search region will be the same. Since B is found as incumbent based on the

estimations, B is likely to be preferred to its east neighbor. Therefore, we say that
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finding the nearest neighbor of incumbent in each attribute is more suitable when

the underlying preference function is Tchebycheff.

Attribute 2
4 If B > C, in addition to
B . o
° ¢ the region eliminated by
—> B > D, thisregion is
*D also eliminated.
Attribute 1

Figure 5.4 Search space reduction with estimated Tchebycheff functions

Modifications in (Walpha)
Since we assume that the underlying preference function is Tchebycheff, we only

estimate the weight values by solving the following (Wt,,) model:

Parameters:
p: a small positive constant

ex;- level of attribute j in efficient combination k

Decision Variables:
u : an auxiliary variable (to measure the estimated value difference between

alternatives and bound the weights)

w;: estimated weight of attribute
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Model (Wt,,)

Max u (16.1)
s.to

usw<l-—up (16.2)
(1—=W)ep, = Wep +p+p foreach e, > e, and e,; >e,; (16.3)

(1-=W)ep, = (1 —W)ey,, +p+pu foreache, >e, and e,y >e,; (16.4)

we,, =Wey+p+u foreache; > e, and ey < e (16.5)
we, = (1—Wep+p+u foreache; > e, and ey < e,y (16.6)
u=0 (16.7)

The objective (16.1) and the first constraint of (Wt.) are the same as the
objective function and the first constraint of (Walpha). We only modify the
preference constraints (16.3-16.6) considering the Tchebycheff function. In these
constraints we reduce the feasible weight space using the preferences of the buyer
as well as the attribute values of the alternatives in each pairwise comparison (see
Bozkurt et al. 2010 for a general coverage of weight space reduction for

Tchebycheff functions).

We use the weights found by (Wt,,), to find a new incumbent in Step 2. We
apply the L,-u algorithm by starting a linear estimated preference functions. As
the rounds progresses, if the estimated parameter of the underlying preference
function, «, is greater than a predetermined threshold value, Ta, we assume that
the underlying preference function is Tchebycheff. The reason is that as the a of
the L, function increases, it converges to Tchebycheff function. To utilize the
properties of the Tchebycheff functions, if a is greater than Ta, we assume the
that the underlying preference function is Tchebycheff and we apply

modifications stated above.

If the underlying preference function of the DM is linear, L,-u algorithm deals
with the supported efficient solutions only. On the other hand if the exact
parameter of the underlying preference function is greater than 1, we expect to
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capture this with the preferences of the DM and utilize properties of the L,-u
algorithm. To understand the curvature of the underlying preference function of
the DM (i.e., if the underlying preference function is not linear, we aim to detect
it as soon as possible) at the early rounds in addition to the supported solutions we
also consider unsupported solutions. We set a threshold number Tquestion above
which we stop searching for unsupported solutions if the estimated parameter of
the underlying preference function, «, is 1. That is, although we estimate a linear
function, we continue searching as in Step 6 of QCX-u (searching the triangles) to
understand whether the underlying preference is linear or not. By asking about
unsupported solutions we aim to rule out the linearity assumption if the
underlying preference function is not linear. While doing this, to avoid high
number of comparisons, we limit the number of alternatives found at the end of
each round by searching the triangles. If the total number of unsupported
solutions visited is Tquestion and the linearity assumption still holds, we stop

searching the triangles.

Understanding the curvature of the underlying preference function is important as
the algorithm can be more beneficial with this information. To achieve this, we
consider unsupported solutions in addition to the supported solutions. Different
methods can be tried to understand the form of the underlying preference function

(see for example Koksalan and Sagala 1995).

5.4 Results

We test the performance of the L,-u algorithm using 10 problems generated with
different weight values for the price attribute. We simulate the preferences of the
buyer using weighted linear, weighted Euclidean and weighted Tchebycheff
functions. We consider two versions of the algorithm: L,-uQ where the neighbor
alternative search is as in Step 6 of QCX-u when a > 1 and L,-NN where the
alternatives closest to the incumbent in each attribute are found as neighbor
alternatives when a > 1. We set the predetermined threshold value for « , above

which we assume that the underlying preference function is Tchebycheff to Ta=4
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and the number of questions above which we stop searching for unsupported

solutions if @« = 1 to Tquestion=10 based on our preliminary experiments.

The average percent deviations and the average number of comparisons are

provided in Tables 5.3 and 5.4, respectively.

Table 5.3 Average percentage deviations between the results of different versions
of L,-u and decentralized optimal solution*

Underlying Preference Function
Version Weighted Linear | Weighted Euclidean | Weighted Tchebycheff
Lo-uQ 0.0248 -0.0196 -0.6122

L,-NN 0.0248 -0.0196 -0.2858
* Based on 10 instances with different weight values

Table 5.4 Average number of comparisons w.r.t. different versions of L,-u*

Underlying Preference Function
Version Weighted Linear | Weighted Euclidean | Weighted Tchebycheff
Lo-uQ 25.8 38.8 31.3

L,-NN 25.8 38.8 26.0
* Based on 10 instances with different weight values

In all problems, the percent deviations are very small in both versions of L,-u.
Indeed, when the underlying preference function is weighted linear, both versions
of the algorithm are exactly the same. The algorithms only differ in Step 3 when
the estimated parameter value, a, is greater than one. The algorithms are identical
for underlying weighted linear functions as« is 1 in this case. Although the
number of questions asked to the DM varies slightly in some problems, they are
the same on the average for underlying weighted Euclidean preference functions.
As expected when the underlying function is weighted Tchebycheff, the L,-NN

version requires fewer questions.
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For the sake of completeness in the following tables we provide the results of all
versions of QCX-u and L,-u together.

Table 5.5 Average percentage deviations between the results of algorithms and
decentralized optimal solution*

Underlying Preference Function

Version Weighted Linear | Weighted Euclidean | Weighted Tchebycheff
Each round 0.0490 -0.0532 -0.8943
Last round 0.0120 -0.0962 0.7273
Band 0.0171 -0.0251 -0.5145
LNQ=1 0.0250 -0.0723 -0.9277
LNQ=2 0.0258 -0.0532 -0.9039
Lo-uQ 0.0248 -0.0196 -0.6122
Lo-NN 0.0248 -0.0196 -0.2858

* Based on 10 instances with different weight values

Table 5.6 Average number of comparisons in different versions of the

algorithms™>
Underlying Preference Function

Version Weighted Linear | Weighted Euclidean | Weighted Tchebycheff
Each round 31.6 46.7 43.2
Last round 19.3 26.5 32.3
Band 39.3 70.1 64.3
LNQ=1 29.9 38.0 37.0
LNQ=2 32.5 43.1 40.9
Lo-uQ 25.8 38.8 313
L,-NN 25.8 38.8 26.0

* Based on 10 instances with different weight values

The results show that in each version of each algorithm the percent deviations are
very small, i.e. our algorithms perform well. As stated before last round and
LNQ=1 performs slightly better than other versions in QCX-u. L,-NN which is a

general algorithm for underlying quasiconvex preference functions also performs
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well among others. In L,-NN version, even if we estimate the a value to be
greater than 1, while informing sellers we treat it as 1 as it is not straightforward
to figure out the contributions of different sellers of a combination of bids to the
overall value of the bid combination when a>1. There can be room for
improvement by informing the sellers about the estimated « value, rather than

treating as if @ =1. How this information can be utilized awaits future research.
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CHAPTER 6

AN INTERACTIVE APPROACH FOR COORDINATED
BIDDING

In the previous chapters, we assume that we do not know the cost functions of the
sellers. In this chapter, we assume that all sellers disclose their cost functions to
the auction decision support system. By using their cost functions, we create good
combinations to present the buyer. We refer to this case as “Coordinated
Bidding” and we develop an interactive algorithm for this case in Section 6.1. We
discuss the algorithm considering a discretized search space in Section 6.2 and we

provide experimental results in Section 6.3.

6.1 The Interactive Algorithm (CO-u)

We develop an interactive algorithm, CO-u that finds good combinations
knowing the cost functions of the sellers, when the buyer’s preference function is
quasiconvex and there are two attributes. As in Chapter 5, we assume that the
buyer can distinguish between bids even when their preference function values
are close. Similar to L,-u, we estimate both alpha and weight values of the

underlying preference function.
We assume that the sellers give their initial bids at the beginning of the auction.

After finding the most preferred supported bid combination using these bids, we

then compose bid combinations using the sellers’ cost functions. Our algorithm
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continues until there is no alternative bid combination with predetermined mark-

up percentages.

The steps of CO-u

In addition to the notation used in previous chapters, we define e, and w,;, as a
challenger alternative to the incumbent and the estimated weight of attribute 1

used to find ey, respectively.
We provide the steps of the algorithm as follows:

Step 1: Apply Steps 1-5 of QCX-u to find the most preferred supported
alternative, e*.

Step 2: Find a feasible set of weights satisfying all constraints corresponding to
past preferences of the DM for the corresponding feasible « by solving (Walpha)
model. Set ePXEV = e* and go to Step 3.

Step 3: Find a solution by solving the (Min_u) model below.

Parameters:

Titm- 1 1f bid t of seller i includes item m; O otherwise
T;: the number of bids offered by seller i

w: estimated weight of attribute 1

a: estimated parameter value of the L, function

fi:(d;+): cost function of seller i for bid t for given d;;

perc.
i .

v minimum mark-up percentage for seller i; if it is O, then seller i may bid

with zero profit. For the sake of simplicity let v; = v7"“/100.

Decision Variables:

vi¢- 1 if bid t of seller i is selected to be in the efficient combination; O otherwise

d;;: level of defect rate suggested to seller i for bid t

é;: level of attribute j of the optimal alternative
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Model (Min_u)

Min (Wwé,)* + ((1 — w)é,)*) Ve (17.1)
s.to

I Z:il TitmYie = 1 vm (17.2)
é1 =TI Xy fie(die) (1 + vy (17.3)
&= i Xity dueyie (17.4)
y;e €{0,1} (17.5)

By solving (Min_u) we find the combination with minimum estimated preference
function value. (Min_u) is always feasible when there are bids to satisfy the

demand constraint. Set the optimal solution of the problem to e* and go to Step 4.

w+WL w+WU

Step 4: If DIR=east, set w,, = TW; otherwise set w,, = . Solve the

following (Challenger) model to find an alternative, e .

Parameters:

M: a big number

p: small positive constant

Titm- 1 1f bid t of seller i includes item m; O otherwise
T;: the number of bids offered by seller i

w,y,. estimated weight of attribute 1 to find a challenger alternative

Wwyepg- Calculated weight of attribute 1 where wy.p = %
1—Db2741 2
a: estimated parameter value of the L, function

fi:(d;+): cost function of seller i for bid t for given d;;

perc.
i -

v minimum mark-up percentage for seller i; if it is 0, then seller i may bid

with zero profit. For the sake of simplicity let v; = v7*"“/100.

Decision Variables:
vit. 1if bid t of seller i is selected to be in the efficient combination; 0 otherwise

d;:: level of defect rate suggested to seller i for bid t

é;: level of attribute j of the optimal alternative
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Ze se. . 1 if constraint (18.6) is active; 0 otherwise
p=Cn

Ze,e,-1 if cONstraint (18.8) is active; 0 otherwise

Model (Challenger)

Min (wepé)® + (1 — wep)é)M)® (18.1)
s.to

o1 Doy TiemYie 2 1 vm (18.2)
&1 =TI Zely fie(die) (A + vy (19.3)
&= Yio1 oty dicie (18.4)
é1<ey—p+ Mz, e, foreach e, = ey, e,; > ey (18.6)

We,oen €1+ (1= We e, )82 < Wece,n1 + (1 — Weyoe,Jenz —p + M(1 -
Ze,ep) foreach e, = e,, e,; > ey, (18.7)
€y <er—p+tMzy,, foreach e, > e,, e < e, (18.8)
Wee, €1+ (1 — Wene, ) €2 < Wepne, €01 + (1 — Weipe, )er — p + M(1 — Zgne,)
foreach e, > e,, e;; < eqq (18.9)
vie € {0,1} (18.10)

The objective is to minimize the estimated preference function using the updated
weight values. Constraints (18.6) - (18.9) are the cone constraints and are used to
avoid inferior solutions. Moreover, to restrict the search region based on the

direction, we add the following constraints:

If DIR=east
é,=>e;
é,<e,—p
If DIR=west
é1<e —p
é, >e,
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We eliminate e* with these constraints. Therefore, if there exists an optimal
solution set e.; to that solution and go to Step 5. Otherwise, if both directions
have been evaluated before, go to Step 6; otherwise switch the value of DIR and
go to Step 4.

Step 5: Ask the DM e* versus ey,. If

- ey, is preferred to e*, add a constraint w(e* —e.;,) = p + 1, add e, > e”,
check the validity of the existing cones and write the relevant cone
constraints. Set e* = e_;, and go to Step 6.

- e” is preferred to e.,, add a constraint w(e., —e*) = p+pu, add e* = ey,
check the validity of the existing cones and write the relevant cone
constraints. If both directions have been evaluated before, go to Step 6;
otherwise switch the value of DIR and go to Step 4.

Step 6: If ePREV is in a cone-inferior region, go to Step 7. Otherwise, ask the DM
e* versus ePREV and if

- ePREV is preferred to e*, add a constraint w(e* — e"REY) > p + u, add
ePREV & e* check the validity of the existing cones and write the relevant
cone constraints. Set e* = e"*EV and go to Step 2.

- e* is preferred to ePREV add a constraint w(ePREY —e*) > p +pu, add
e* = ePREV check the validity of the existing cones and write the relevant
cone constraints. Go to Step 2.

Step 7: If incumbent has no challenger alternative, stop e* is the most preferred

alternative. Otherwise go to Step 2.

Similar to the previous versions, at the beginning of the auction, sellers first give
their bids. In Step 1 we find the most preferred supported alternative. Based on
the preference of the buyer, (Walpha) model is solved. Here we note that since we
deal with supported solutions in Step, (Wt) model can also be solved.

After estimating the parameters of the preference function of the buyer, in Step 3
considering the sellers’ mark-up percentages we find a combination in the

reduced search space that minimized the estimated preference function value. The
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algorithm continues with Step 4 where we search for challenger alternatives in
different directions with different weight values.
We note that since the problems are nonlinear, instead of using binary variables

we can use nonnegative y;; values with the following constraint:

Yie(L—y;) =0

As in L,-u, to utilize the properties of the Tchebycheff functions, if « is greater
than the predetermined threshold value, Ta, we assume that the underlying

preference function is Tchebycheff and modify our models.

In the algorithm, except from Step 1, while finding a new bid combination we use
the cost functions and the mark-up percentages of the sellers as we assume that
they explicitly give them to us. At the end of the auction, each winner will get the

profit with his/her predetermined mark-up percentage.

We try to solve these models using GAMS 22.8 and the global optimization
solver, BARON. However, due to nonlinearity in a continuous space, the run time
of the algorithm turns out to be long. Moreover, for some problems BARON
could not find solutions. Therefore we discretize the bid space and apply the CO-

u algorithm in Section 6.2.

6.2 CO-u in Discretized Space

In Section 6.1 we provide the models considering a continuous search space.
Here, we assume a discretized space which is reasonable in real life examples.
For each bid of each seller, we divide the possible defect rate range into K equal
intervals. Therefore, we consider K+1 possible defect rate-price value
combination for each seller in all his/her bids. In our updated models we consider
only these values. Here, we provide the modified parameters and decision
variables only. For the sake of completeness, we provide the updated (Min_u)
model. The changes are similar for (Challenger) model.
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Modifications in (Min u)

Parameters:
fi:(dia): cost function of seller i for bid t for given d;;

d;:: defect rate value corresponding to the Kt point in bid t of seller i

Decision Variables:
viek. 1 if bid t of seller i with defect rate value of point k is selected to be in the

efficient combination; 0 otherwise

Model (Min_u")
Min (wé;)® + (1 — w)é,)" (17'.1)
s.to

K1 T Dl TiemYiere = 1 vm (17'2)
&1 = XK1 Tiea Zoly fie (i) View (173)
& = Yhoa Thoa Tely dieeViek (17'4)
Yiex € {0,1} (17".5)

We use GAMS 22.8 and the global optimization solver, BARON to solve the

updated model. We next provide the experiment results.

6.3 Results

To test the performance of the CO-u algorithm in discretized space, we solve
(Min_u) with exact parameter values and report its results as “Centralized.” This
corresponds to the best possible solutions that can be obtained under full
information. Similar to the previous chapters we compare the preference function
values of the buyer for the winning combination found with the algorithm against
that of Centralized. To evaluate the performance of the algorithm for these values

we use % deviations:

o u(final_combination_algorithm) — u(Centralized)
% deviation = “(Centralized) 100
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In our experiments, without loss of generality we set the mark-up percentages to
zero. We set K=10, i.e. we divide the possible defect rate range into 10 equal
intervals and there are 11 possible defect rate-price value combination for all
sellers in all their bids. We set T, the predetermined threshold value to 4, above

which we treat the underlying preference function as a Tchebycheff function.

We use 10 different weight values for the price attribute of the underlying
preference function to consider different problems. We simulate the preferences
of the buyer using weighted linear, weighted Euclidean and weighted

Tchebycheff functions.

In all problems, the winning seller-bid pairs and the corresponding attribute
values found with CO-u and Centralized are the same, i.e. allocative efficiency is
satisfied and the percent deviations are zero. Therefore, we report only the

average number of questions asked to the buyer in Table 6.1.

Table 6.1 Average number of comparisons”

Underlying Preference Function
Weighted Linear | Weighted Euclidean | Weighted Tchebycheff
Step 1 1.9 2.1 2.2

Total 6.4 8.1 9.7
* Based on 10 instances with different weight values

As can be seen from Table 6.1, the average number of pairwise comparisons the
buyer is required to make is 6.4, 8.1 and 9.7 for underlying weighted linear,
weighted Euclidean and weighted Tchebycheff functions, respectively. We also
report the number of questions asked to the buyer to find the most preferred
supported alternative using the initial bids of the sellers in Step 1 of CO-u. We
observe that our algorithm performs well, as it finds the optimal winning bids

requiring a small number of questions.
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We also find the optimal bids when the sellers bid independently of each other
(Decentralized) in the discretized space and compare the results with Centralized.
Centralized is guaranteed to have at least as good results as that of Decentralized,
since in the former case we consider a centralized approach suitably matching the
sellers to create the best combination. As expected, when the buyer has an
underlying weighted linear preference function both Decentralized and
Centralized are equivalent. In the nonlinear case, we test the performance of the
algorithm by simulating the preferences of the buyer using weighted Euclidean
and the weighted Tchebycheff preference functions. The percent deviations of

Decentralized from Centralized are reported in Tables 6.2 and 6.3.

Table 6.2 Percentage deviations of decentralized from centralized optimal
solutions under weighted Euclidean preference function

A=0.05 | 2=0.15 | A=0.25 | 2=0.35 | A=0.45 | 2=0.55 | A=0.65 | A=0.75 | A=0.85 | A1=0.95

0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5978 | 1.7231 | 0.3873 | 0.0000 | 0.0000 | 0.0000

Table 6.3 Percentage deviations of decentralized from centralized optimal
solutions under weighted Tchebycheff preference function

A=0.05 | 2=0.15 | A=0.25 | A=0.35 | A=0.45 | A=0.55 | A=0.65 | A=0.75 | 2=0.85 | A=0.95

0.0000 | 0.0000 | 3.6321 | 4.2553 | 4.9567 | 2.5316 | 5.3631 | 1.8655 | 0.0000 | 0.0000

As can be seen from the tables, Centralized finds better solutions in many cases.
In the Coordinated Bidding case where the sellers disclose their cost functions to
ADSS, the buyer will benefit as his/her preference function value for the resulting
bid combination is at least as good as that of Decentralized. Sellers will also
benefit in the sense that the more competitive sellers will be matched through
coordination. Therefore, both parties (buyer and the sellers) will benefit more
when the sellers share their cost functions with ADSS.
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CHAPTER 7

EXTENSIONS TO PREVIOUS WORK

In this chapter we discuss modifications we made to improve the Evolutionary
Algorithm (EA) developed in Karakaya (2009) for MAMI auctions in order to

overcome the computational difficulties.

The application of EAs in multi-objective optimization is beneficial as the EAs
maintain a population of solutions in a single run and there are examples in the
literature (see for example Deb et al. 2002, Zitzler et al. 2001, Soylu and
Koksalan 2010, Karahan and Kdksalan 2010).

Karakaya (2009) adapted the Non-Dominated Sorting Genetic Algorithm NSGA-
Il (Deb et al. 2002) to solve a MAMI reverse auction problem. The developed EA
is used to approximate the Pareto front. Karakaya (2009) considers a MAMI
auction environment with two attributes: price and defect rate. She assumes that
all units of an item should be supplied by a single seller and each seller gives bids
for each item. She considers two variations of the problem. The base case
corresponds to a simpler version in terms of the prices, whereas the discounted
case introduces price discounts in the bids that supply several items. She ran
different versions of the algorithm considering different procedures to seed
several initial solutions in the initial population and tested their performances
against the true Pareto frontier for both original and discounted cases. She uses
different problems with different combinations of the number of items and sellers:
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(10,20), (30,30), and (30,100) where in the parentheses the former and latter

values refer to the number of items and the number of sellers, respectively.

In the modified version, we made 10 replications for each instance by randomly
generating problems. We try to synchronize the random numbers we use for the
same purpose in each version of the algorithm to reduce the variation due to
randomness. We consider an additional version, in which the initial population is
seeded with all supported efficient solutions of the original case. We apply the
procedure of Aneja and Nair (1979) to find all supported efficient solutions for
the original case. As stated in Chapter 4, this procedure minimizes a weighted
linear objective that combines the two objectives. Systematically changing the
weights at each iteration, it guarantees obtaining all supported efficient solutions.
Once we get the weights from this procedure at each iteration, we find the
solution that minimizes the weighted objective function employing an efficient
sorting procedure. We first calculate the value of each seller for each item by
multiplying the attribute values of the item of the seller with the corresponding
weights and summing them up. Then, for each item we choose the seller having
the minimum value as the winner. We try this new version in both original and
discounted cases. As expected this version of the algorithm performs well as the
algorithm starts with good solutions. However, its performance is not good in the
discounted case as the problem structures are different. Karakaya (2009)
considers two performance measures to test the algorithm. We apply paired-t test
to statistically compare different versions of the algorithm in terms of these two

performance measures. The results of the experiments can be seen in Appendix B.

In the manuscript, although we demonstrated our algorithm for a single round, it
is directly applicable in a multi-round setting as well. After the bidders update
their bids based on the feedback mechanism of the auction, our algorithm can be
employed to find the new approximate efficient front in the next round. We intend

to incorporate our algorithm into such multi-round settings as future research.
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For single as well as multiple round auctions it would be useful to develop
preference-based EAs that explore only the parts of the Pareto front that are of

interest to the decision maker.
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CHAPTER 8

CONCLUSIONS

In this study, we address multi-attribute multi-item auction problems. We develop
auction decision support systems, ADSSs, that provide aid to the buyer in single-
round auctions whereas it provides aid to both parties in multi-round auctions. We
first develop an approach that finds a set of efficient bid combinations to present
to the buyer. The buyer determines the preferred and nonpreferred combinations.
Based on the preferences of the buyer, ADSS estimates the parameter values of
the underlying preference function of the buyer as well as the estimated
preference function value for each item separately, and inform sellers about these
estimations. In the succeeding rounds sellers update their bids and the auction
continues until a termination condition is met. We generate a number of test
problems and test our algorithm for both two and three attribute problems for an
underlying linear preference function. Our algorithm finds the same winning
sellers that are found using exact parameter values, i.e. allocative efficiency is
reached. Also the buyer’s preference function is closely approximated. We also
use the algorithm as a heuristic for nonlinear preference functions. The results

also indicate that our algorithm performs well.

We then develop an interactive algorithm, LIN-u, to support the buyer to find the
most preferred bid combination for underlying linear preference functions. The
results show that with LIN-u we guide the sellers well and both the buyer and the
sellers can benefit. We also modify the algorithm and develop a heuristic method
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for underlying quasiconvex preference functions. The experiments show that our

algorithm performs well.

For underlying quasiconvex preference functions we develop two algorithms
QCX-u and L,-u, with different version of each algorithm. Based on our
experiments, we conclude that our guidance mechanism works well for

underlying quasiconvex preference functions.

In the algorithms above, we assume that we do not know the cost functions of the
sellers. We also develop an interactive approach assuming that all sellers disclose
their cost functions explicitly to us. We refer to this case as “Coordinated
Bidding” and develop the interactive CO-u algorithm. Our algorithm finds the
optimal winning sellers requiring only a small number of preference comparisons

from the buyer.

In Karakaya (2009), an Evolutionary Algorithm (EA) was developed for the case
of multi-attribute, multi-item reverse auctions in order to overcome the
computational difficulties. We made some modifications and improved the
algorithm. We approximately generate the whole Pareto front using the EA. We
also develop heuristic procedures to find several good initial solutions and insert
those in the initial population of the EA. We test the EA on a number of randomly

generated problems and report our findings.

When the number of possible bid combinations is too high to find the efficient bid
combinations within a reasonable computational effort, heuristics such as EAs
can be utilized. Developing a preference-based EA that finds some parts of the
Pareto front based on the preferences of the buyer could be beneficial as this
would avoid generating the whole Pareto front. As a future study, the interactive
approaches we developed in this thesis can be utilized in the development of a

preference-based EA.
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When we do not know the cost functions of the sellers, we estimate the preference
function value of each item in a combination of bids to inform the sellers. We
intend to work on procedures to assign meaningful contribution values to the

components of a bid combination.

In Chapter 5, we develop algorithms for underlying quasiconvex preference
functions. Understanding the form of the underlying preference function is
important to utilize these algorithms more beneficially. We aim to work on
different methods to identify the form of the underlying preference function;
specifically we intend to apply the procedure in Kdksalan and Sagala (1995) as a

future study.

The experiments show that our guidance mechanism works well and both the
sellers and the buyer can benefit from using ADSSs. The implementation of this
decision support system in a web-based platform and implementing it in practice

are important future challenges.
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APPENDIX A

PARAMETER SETTING IN EFFCOM MODEL

In our experiments, we round the attribute values to four significant digits. Thus,
the minimum increments of the objectives (attributes of a bid combination) are
10™. For the two-attribute case, by setting a suitable p value in the objective

function and systematically changing ¢; value, we generate all efficient solutions.

We first solve the EFFCOM model to minimize only the second objective. The
objective function value of the optimal solution is the is the smallest possible
value for ¢;. To obtain the largest possible value for ¢;, we solve the EFFCOM
model in a lexicographic manner. We minimize the first objective. By fixing
attribute 1 value of the corresponding solution, we then solve the model again to
minimize the second objective. Attribute 2 value of the optimal solution is the

largest possible value for ¢;.

Let mn and mx be the smallest and largest possible values for ¢;. Since the
minimum increment between the attribute 1 values is 10, we set p such that
p.(mx —mn) < 10™*. With this we guarantee that the maximum increment in
the second objective would not cause any trade-offs between the first and second

objectives. The augment part only serves for breaking ties.

After setting p value, we solve EFFCOM model repeatedly by changing the g;
value.We start with the largest possible value (mx) for ¢ and systematically

reduce it until its smallest possible value (mn). We reduce the second attribute
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value obtained in the most recent solution of EFFCOM by 10 which is the
minimum increment between the attribute 2 values as we round the attribute

values to four significant digits. This guarantees generating all efficient solutions.
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APPENDIX B

RESULTS OF THE EVOLUTIONARY ALGORITHM

Karakaya (2009) developed an Evolutionary Algorithm (EA) with different
variations. In the original case, she considers two versions of the algorithm:
without seeding, seeding by sorting. In the without seeding case, all members of
the initial population are generated randomly. In the seeding by sorting case, the
initial population is seeded with two solutions corresponding to the best solutions
for each objective for the original case. In the discounted case, she considers three
versions of the algorithm: without seeding, optimal seeding and rank heuristic.
Without seeding is as in the original case. Optimal seeding is similar to seeding
by sorting but in the discounted case the initial population is seeded with the best
solutions for each objective for the discounted case. In the last version she applies
rank heuristic to find an approximate nondominated solution considering the
price objective in the discounted case and uses a simple sorting procedure to find
a good solution in terms of the defect rate objective. She then uses these two
combinations to seed the initial population. As stated in Chapter 7, in the
modified version we consider an additional version, supported seeding, in which
the initial population is seeded with all supported efficient solutions of the
original case. We refer to the version that the initial population is seeded with two
solutions corresponding to the best solutions for each objective in the

corresponding case as seeding two extremes in both cases.

Karakaya (2009) compares the results of the different version of the algorithm
with the true Pareto optimal front obtained by solving a series of integer

programs. She considers two performance measures to test the algorithm;
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Hypervolume Indicator (Zitzler and Thiele, 1998) which measures the dominated
hypervolume to a given reference point and the Inverted Generational Distance
Metric (Van Veldhuizen and Lamont, 2000) which measures the Euclidean
distance of each solution in the true Pareto front to the closest solution in the
population generated by the algorithm. The average of these distances are used
and for the Inverted Generational Distance Metric (IGDM) smaller values are

desirable.

Let HI  to represent the ratio of the hypervolumes of the v™ version of the

algorithm to that of the true Pareto front (i.e., HI = hypervolume of the v
version of the algorithm/hypervolume of the true Pareto front) where v
corresponds to seeding two extremes, without seeding, supported seeding, and
rank heuristic. When an algorithm generates the true Pareto front exactly, HI_

takes its best possible value of 1, and it takes smaller values as the algorithm’s

performance deteriorates, with a minimum possible value of 0.

We conduct experiments and the preliminary results show that seeding two
extremes performs well in both cases. We apply paired-t test to statistically

compare this version with the other versions. We compute the sample means

HI.,1IGDM, and the sample deviations SD(HI), SD(IGDM,) for both metrics. At

a 99% significance level we test the following hypothesis:

Hoipy' =14
Hyo i # )
v= without seeding, supported seeding for the original case

v= without seeding, supported seeding, rank heuristic for the discounted case

where v is the version of the algorithm as before and m stands for the performance

metric (HI and IGDM). The null hypothesis states that there is no statistical

difference between seeding two extremes and its contender. When we fail to
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reject the null hypothesis at 99% significance level, we indicate the winner as
“none” in the corresponding tables. On the other hand, if the statistical test
indicates a significant difference, we report the winner in the table based on the

corresponding 99% confidence interval.

For each problem set, we find the difference
[Aﬁ'* = HI;—HI; and A’*®™ = IGDM, - |GDMV}between the average

performance metrics of the seeding two extremes and its contenders. The
performance of the algorithm for each version in terms of HI*, IGDM, CPU time,
and statistical test results for each problem set are reported in the following tables.
We also give the CPU time of the e-constraint method used to generate the true
Pareto front as a benchmark. We report the results for the original and discounted

cases in Tables B.1-B.6 and in Tables B.7-B.12, respectively.

Table B.1 Results for Original Case Problem Set (10,20) (300 Generations)*

_ _ Average

Version (v) HI; | SD(HI]) | IGDM, | SD(IGDM,) CP(lSJeS)me
seeding two extremes 0.9990 0.0010 0.00164 0.00120 0.8244
without seeding 0.7087 0.1793 0.02806 0.02656 0.8361
supported seeding 0.9995 0.0007 0.00112 0.00089 0.8222
true Pareto - 5.3415

*Based on 10 instances

Table B.2 Statistical Comparison of Seeding two Extremes with its Contenders
for Original Case Problem Set (10,20)

Contender AT | p-value Winner AP | p-value | Winner
without seeding | 0.2903 | 0001 | S€€dINGWO | oea3 | 0013 | None
extremes
supported seeding | -0.0005 0.027 none 0.00052 0.111 None
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Table B.3 Performance Measures for Original Case Problem Set (30,30) (2000
Generations)*

L Average

Version (v) HI; | SD(HI)) | IGDM, | SD(IGDM,) CP(LSJeEi)me
seeding two extremes 0.9925 0.0013 0.00723 0.00081 8.1884
without seeding 0.6922 0.0694 0.01901 0.00462 8.3148
supported seeding 0.9927 0.0009 0.00708 0.00046 8.1901
true Pareto - 39.5942

*Based on 10 instances

Table B.4 Statistical Comparison of Seeding two Extremes with its Contenders
for Original Case Problem Set (30,30)

Contender A" | p-value Winner APPY | p-value Winner
without seeding | 0.3003 | 0.000 | S€€dINGWO | 441979 | gogo | Seeding two
extremes extremes
supported seeding | -0.0002 0.496 none 0.00015 0.463 none

Table B.5 Performance Measures for Original Case Problem Set (30,100) (4000
Generations)*

B L Average
Version (v) HI; | SD(HI)) | IGDM, | SD(IGDM,) CP(LSJeEi)me
seeding two extremes 0.9908 0.0019 0.00999 0.00137 19.4171
without seeding 0.5325 0.0620 0.04268 0.01546 19.3516
supported seeding 0.9929 0.0015 0.00845 0.00107 20.3645
true Pareto - 87.7548

*Based on 10 instances

Table B.6 Statistical Comparison of Seeding two Extremes with its Contenders
for Original Case Problem Set (30,100)

Contender AT | p-value Winner AN p-value Winner
without seeding | 04582 | 0.000 | SEediNG™WO | 443068 | gopo | S€ding two
extremes extremes
supported seeding | -0.0021 | 0.004 suppo_rted 0.00155 0.004 suppo_rted
seeding seeding
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The results show that for the original case both seeding two extremes and
supported seeding performs well. It is an expected result for the supported
seeding version to work well as many solutions of the true Pareto front is seeded
in the initial population. In Table B.6, we observe that supported seeding
outperforms seeding two extremes however the results of both algorithms are
very close to each other in both HI* and IGDM values. Seeding two extremes
requires only two extreme solutions to seed in the initial population whereas
supported seeding requires all supported efficient solutions. Although finding all
supported efficient solutions was easy for the original case, it may prove difficult
in general and one may need to find approximations of these solutions to seed in

the initial population as will be the case in our discounted problem.

Table B.7 Performance Measures for Discounted Case Problem Set (10,20) (300
Generations)*

Version (v) —, N e Average CPU
HIV SD(HIV) IGDMV SD(IGDMV) t|me (SEC)
seeding two extremes | 0.9952 0.0061 0.00495 0.00405 1.0221
without seeding 0.7140 0.1465 0.02770 0.01578 0.8378
rank heuristic 0.7415 0.1696 0.02611 0.01526 0.8377
supported seeding 0.7654 0.1475 0.02198 0.01363 0.8255
true Pareto - 10.4410

*Based on 10 instances

Table B.8 Statistical Comparison of Seeding two Extremes with its Contenders
for Discounted Case Problem Set (10,20)

Contender A" | p-value Winner AP p-value Winner

without seeding | 02812 | 0.000 | S€ediNGMWO | o574 | goo1 | Se€ding two
extremes extremes

rank heuristic | 0.2537 | 0001 | Se€diNOWO | 405196 | oo | Seedingtwo
extremes extremes

supported seeding | 02298 | 0001 | S€€INGWO | 01703 | gopp | Seeding two
extremes extremes
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Table B.9 Performance Measures for Discounted Case Problem Set (30,30) (4000
Generations)*

_ B L Avera}ge

Version (v) HI; | SD(HI)) | IGDM, | SD(IGDM,) CP(lsJeg)me
seeding two extremes 0.9811 0.0081 0.01335 0.00485 17.1414
without seeding 0.7259 0.1075 0.04016 0.01808 16.5237
rank heuristic 0.7332 0.1238 0.03197 0.01493 16.5298
supported seeding 0.6965 0.1465 0.04031 0.01266 16.5874
true Pareto - 332.8922

*Based on 10 instances

Table B.10 Statistical Comparison of Seeding two Extremes with its Contenders
for Discounted Case Problem Set (30,30)

Contender AT | p-value Winner AP | povalue Winner
without seeding | 0.2551 0.000 seeding two -0.02680 0.000 seeding two
eXtI’emeS extremes
rank heuristic | 0.2478 | 0,000 | S€UINGMWO I 541855 | o3 | Sceding two
eXtI’emeS extremes
supported seeding | 0.2846 0.000 seeding two -0.02696 0.000 seeding two
extremes extremes

Table B.11 Performance Measures for Discounted Case Problem Set (30,100)

(7000 Generations)*
_ L Average
Version (v) HI. | SD(HI)) | IGDM, | SD(IGDM,) CP(LSJeg)me
seeding two extremes | 0.9709 0.0124 0.02244 0.01033 36.5301
without seeding 0.6478 0.1298 0.07746 0.01918 33.6851
rank heuristic 0.6656 0.0684 0.06801 0.0209 34.0037
supported seeding 0.6413 0.0670 0.07878 0.01502 34.3830
true Pareto - 1241.0686

*Based on 10 instances
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Table B.12 Statistical Comparison of Seeding two Extremes with its Contenders
for Discounted Case Problem Set (30,100)

Contender AT | p-value | Winner APPY | p-value Winner
without seeding | 0.3231 | 0000 | Se€dINGMWO | 44550y | gopp | Seeding two
extremes extremes
- seeding two seeding two
rank heuristic 0.3053 0.000 extremes -0.04557 0.000 extremes
supported seeding | 0.3296 | 0.000 | S€4INGWO | egas | oo | Seeding two
extremes extremes

The results show that in all test problems seeding two extremes is significantly

better than the other version for the discounted case. Seeding two extremes

represents the true Pareto front well in a fraction of the time required to generate

the true Pareto front. Moreover, for the largest problem set (30,100), seeding two

extremes has HI* value of 97% and a small IGDM value. Although with rank

heuristic and supported seeding the best solution for the defect objective can be

found, the best solution for the price objective cannot be found.

We expect that as the number of good solutions seeded in the initial population

increases, the performance of the algorithm further improves. The main tradeoff

is the computational time to find the good solutions. Therefore, it may be

worthwhile to develop fast heuristics that give good seed solutions.
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