

DECISION SUPPORT FOR MULTI-ATTRIBUTE AUCTIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜLŞAH KARAKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

INDUSTRIAL ENGINEERING

DECEMBER 2013

Approval of the thesis:

DECISION SUPPORT FOR MULTI-ATTRIBUTE AUCTIONS

submitted by GÜLŞAH KARAKAYA in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Industrial Engineering Department,

Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Murat Köksalan

Head of Department, Industrial Engineering

Prof. Dr. Murat Köksalan

Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Canan Sepil

Industrial Engineering Dept., METU

Prof. Dr. Murat Köksalan

Industrial Engineering Dept., METU

Assoc. Prof. Dr. Pelin Bayındır

Industrial Engineering Dept., METU

Assoc. Prof. Dr. Serhan Duran

Industrial Engineering Dept., METU

Assoc. Prof. Dr. Osman Alp

Industrial Engineering Dept., TEDU

 Date: 26.12.2013

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name : Gülşah KARAKAYA

Signature :

v

ABSTRACT

DECISION SUPPORT FOR MULTI-ATTRIBUTE AUCTIONS

Karakaya, Gülşah

Ph.D., Department of Industrial Engineering

 Supervisor: Prof. Dr. Murat Köksalan

December 2013, 156 pages

In this study, we address multi-attribute, multi-item auction problems. In multi-

attribute auctions there are additional attributes to the price and the comparison of

bids is not straightforward. In multi-item auctions which are also known as

combinatorial auctions, it is not so trivial to determine the winning bidders.

We develop an auction decision support system (ADSS) that supports sellers to

bid on multiple items. We demonstrate our approach in a multi-attribute, multi-

item reverse auction setting. The approach is also directly applicable to forward

auctions. During the auction process, ADSS estimates the underlying preference

function of the buyer and supports sellers providing them information based on

these estimations. We first assume that the sellers do not share their cost functions

with ADSS and develop interactive algorithms for underlying linear preference

functions as well as for underlying quasiconvex preference functions. The aim of

the developed approaches is to have the more competitive bidders eventually end

vi

up winning the auction, with predetermined reasonable mark-up values. We

demonstrate that our algorithms work well on a variety of test problems.

We also develop an interactive algorithm for the case that sellers explicitly make

their cost functions available to ADSS. In this approach, ADSS tries to find the

best possible combinations considering both the estimated preference function of

the buyer and the cost functions of the sellers. The experiments show that our

algorithm finds the optimal winners (achieved with exact parameters of the

underlying preference function).

Keywords: multi-attribute auctions, multi-item auctions, interactive approach,

combinatorial auctions

vii

ÖZ

ÇOK ÖLÇÜTLÜ AÇIK ARTTIRMALAR İÇİN KARAR DESTEK

Karakaya, Gülşah

 Doktora, Endüstri Mühendisliği Bölümü

 Tez Yöneticisi: Prof. Dr. Murat Köksalan

Aralık 2013, 156 sayfa

Bu çalışmada çok ölçütlü, çok ürünlü ihale problemlerini ele alıyoruz. Çok

ölçütlü ihalelerde fiyat dışında düşünülmesi gereken başka ölçütler de vardır ve

tekliflerin değerlendirilmesi zordur. Kombinatoryal ihaleler olarak da bilinen çok

ürünlü ihalelerde kazananları belirlemek özellikle zordur.

Satıcıların birden çok ürün için teklif vermelerini destekleyen bir ihale karar

destek sistemi (İKDS) geliştirdik. Yaklaşımımızı çok ölçütlü, çok ürünlü açık

eksiltme problemleri üzerinde gösterdik. Yaklaşımımız açık arttırma

problemlerine de doğrudan uygulanabilir. İhalede, İKDS alıcının tercih

fonksiyonunu tahmin edip satıcılara tahminler hakkında bilgi verir. İlk olarak

satıcıların maliyet fonksiyonları bilgilerini İKDS ile paylaşmadığı durumu

inceledik ve alıcının tercih fonksiyonunun hem doğrusal olduğu hem de doğrusal

olmadığı durumlar için etkileşimli algoritmalar geliştirdik. Bu algoritmalar,

maliyetleri daha rekabetçi olan satıcıların ihaleyi kazanmalarını hedeflemektedir.

viii

Algoritmalarımızı test etmek için çözdüğümüz tüm problemlerde iyi sonuçlar elde

ettik.

Ayrıca satıcıların maliyet fonksiyonları bilgisini İKDS’ye verdiği durum için de

etkileşimli bir yaklaşım geliştirdik. Bu yaklaşımda, İKDS alıcının tahmin edilen

tercih fonksiyonu ile satıcıların maliyet fonksiyonlarını göz önünde bulundurarak,

en iyi teklifleri bulmaya çalışır. Yaptığımız testlerde algoritmamızın optimal

kazananları (alıcının tercih fonksiyonunun açık olarak bilindiği durumda bulunan

kazananlar) bulduğunu gördük.

Anahtar kelimeler: çok ölçütlü açık arttırmalar, çok ürünlü açık arttırmalar,

etkileşimli yaklaşım, kombinatoryal açık arttırmalar

ix

To my family...

x

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Professor Murat Köksalan

not only for his invaluable guidance and supervision but also his understanding

and encouragement throughout this study. I have learned a lot from him and it has

been a pleasure for me to work with him.

I would like to thank to my families for their endless and unconditional love and

trust throughout my life. I am thankful to my friends Diclehan Tezcaner Öztürk

and Ceren Tuncer Şakar. I feel myself lucky to feel their existence whenever I

need their ideas and support.

I owe thanks to Associate Professor Canan Sepil, Associate Professor Osman Alp,

Associate Professor Pelin Bayındır and Associate Professor Serhan Duran for

their valuable comments and suggestions.

I also would like to thank to TÜBİTAK for providing a financial support during

my Ph.D. study.

Lastly, I am grateful to my husband Ahmet Fatih Karakaya for being in my life

and for his support in my graduate studies. Nothing would be possible without the

complimentary love and encouragement of him. Nothing would be meaningful

without our daughter Zeynep.

xi

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS ... xi

LIST OF TABLES .. xiii

LIST OF FIGURES .. xvi

CHAPTERS ... 1

1 INTRODUCTION .. 1

2 DEFINITIONS, BACKGROUND AND PROBLEM CHARACTERISTICS 5

2.1 Definitions .. 5

2.2 Auction Process .. 8

2.3 Literature Review ... 10

2.4 The Approach ... 14

2.5 Problem Characteristics .. 16

2.6 Auction Design ... 20

2.7 Implementation Issues .. 21

3 AN APPROACH FOR MULTI-ATTRIBUTE MULTI-ITEM AUCTIONS 23

3.1 The Approach ... 23

3.2 The Efficient Combination Model ... 24

3.3 The Parameter Estimation Model ... 26

3.4 Sellers’ Model .. 29

3.5 The Algorithm (ALL-e) .. 33

3.6 The Modified Algorithm (ELIM-e) .. 34

3.7 Experimental Setting .. 37

3.7.1 Test Problem Generation ... 37

3.7.2 Parameter Setting .. 41

xii

3.8 A Numerical Example for the 2-attribute Case .. 42

3.9 The 3-attribute Case .. 61

3.10 Local Linear Approximation for Nonlinear Preference Functions 65

4 AN INTERACTIVE METHOD TO FIND THE BEST BID COMBINATION

 .. 69

4.1 The Interactive Approach ... 69

4.2 An Interactive Algorithm (LIN-u)... 70

4.3 Interactive LIN-u for Multi-round... 78

4.3.1 Bid Update .. 79

4.3.2 Status of the Solution (SoS) .. 79

4.4 A Heuristic for Underlying Nonlinear Functions ... 86

5 AN INTERACTIVE APPROACH FOR BI-ATTRIBUTE MULTI-ITEM

AUCTIONS UNDER QUASICONVEX PREFERENCE FUNCTIONS 91

5.1 The Interactive Algorithm (QCX-u) ... 91

5.2 Experimental Results for QCX-u .. 104

5.3 Modified Algorithm (-u) .. 106

5.4 Results ... 117

6 AN INTERACTIVE APPROACH FOR COORDINATED BIDDING 121

6.1 The Interactive Algorithm (CO-u) .. 121

6.2 CO-u in Discretized Space .. 126

6.3 Results ... 127

7 EXTENSIONS TO PREVIOUS WORK ... 131

8 CONCLUSIONS ... 135

REFERENCES ... 139

APPENDICES .. 145

A. PARAMETER SETTING IN EFFCOM MODEL .. 145

B. RESULTS OF THE EVOLUTIONARY ALGORITHM 147

CIRRICULUM VITAE .. 155

xiii

LIST OF TABLES

TABLES

Table 2.1 Bids of sellers .. 19

Table 2.2 Buyer’s preference function for the bids in each round 19

Table 3.1 Initial bids .. 43

Table 3.2 Efficient bid combinations for Round 1 .. 44

Table 3.3 Efficient bid combinations with estimated preference function values

for Round 1 .. 45

Table 3.4 Estimated preference function values at the end of Round 1 45

Table 3.5 Bids for Round 2 ... 46

Table 3.6 Efficient bid combinations for Round 2 .. 47

Table 3.7 Estimated preference function values at the end of Round 2 48

Table 3.8 Bids for Round 3 ... 49

Table 3.9 Efficient bid combinations for Round 3 .. 50

Table 3.10 Estimated preference function values at the end of Round 3 51

Table 3.11 Bids for Round 4 ... 51

Table 3.12 Efficient bid combinations for R4 ... 52

Table 3.13 Estimated preference function values at the end of Round 4 52

Table 3.14 Bids for Round5 .. 53

Table 3.15 Efficient bid combinations for Round 5 .. 54

Table 3.16 Estimated preference function values at the end of Round 5 54

Table 3.17 Bids for Round 6 ... 55

Table 3.18 Efficient bid combinations for Round 6 .. 55

Table 3.19 Estimated preference function values at the end of Round 6 56

Table 3.20 Bids for Round 7 ... 57

Table 3.21 Efficient bid combinations for Round 7 .. 57

xiv

Table 3.22 The results of the ELIM-e ... 58

Table 3.23 Buyer’s preference function value in each round 58

Table 3.24 Number of bid combinations .. 58

Table 3.25 Estimated bounds for the weight of the price and estimated weights in

each round ... 59

Table 3.26 The results for the Decentralized case .. 60

Table 3.27 Percentage deviations between the results of ELIM-e and the

decentralized optimal solution .. 61

Table 3.28 Preference function values of the combinations found by ELIM-e and

the decentralized optimal solution (3-attribute case) .. 64

Table 3.29 Percentage deviations between the results of ELIM-e and the

decentralized optimal solution (3-attribute case) .. 64

Table 3.30 Percentage deviations between the results of the algorithm and

decentralized optimal solution under weighted Euclidean preference function ... 67

Table 3.31 Percentage deviations between the results of the algorithm and

decentralized optimal solution under weighted Tchebycheff preference function 67

Table 3.32 Attribute values for each bid separately ... 68

Table 4.1 Percentage deviations between the results of the LIN-u and the

decentralized optimal solution .. 85

Table 4.2 Percentage deviations between the results of the algorithm and

decentralized optimal solution under weighted Euclidean preference function ... 89

Table 4.3 Percentage deviations between the results of the algorithm and

decentralized optimal solution under weighted Tchebycheff preference function 89

Table 5.1 Average percentage deviations between the results of different versions

of QCX-u and decentralized optimal solution*... 105

Table 5.2 Average number of comparisons w.r.t. different versions of QCX-u* 105

Table 5.3 Average percentage deviations between the results of different versions

of -u and decentralized optimal solution* .. 118

Table 5.4 Average number of comparisons w.r.t. different versions of -u* .. 118

Table 5.5 Average percentage deviations between the results of algorithms and

decentralized optimal solution* .. 119

xv

Table 5.6 Average number of comparisons in different versions of the

algorithms* .. 119

Table 6.1 Average number of comparisons
*
 ... 128

Table 6.2 Percentage deviations of decentralized from centralized optimal

solutions under weighted Euclidean preference function 129

Table 6.3 Percentage deviations of decentralized from centralized optimal

solutions under weighted Tchebycheff preference function 129

Table B.1 Results for Original Case Problem Set (10,20) (300 Generations)* .. 149

Table B.2 Statistical Comparison of Seeding two Extremes with its Contenders

for Original Case Problem Set (10,20) .. 149

Table B.3 Performance Measures for Original Case Problem Set (30,30) (2000

Generations)* .. 150

Table B.4 Statistical Comparison of Seeding two Extremes with its Contenders

for Original Case Problem Set (30,30) .. 150

Table B.5 Performance Measures for Original Case Problem Set (30,100) (4000

Generations)* .. 150

Table B.6 Statistical Comparison of Seeding two Extremes with its Contenders

for Original Case Problem Set (30,100) .. 150

Table B.7 Performance Measures for Discounted Case Problem Set (10,20) (300

Generations)* .. 151

Table B.8 Statistical Comparison of Seeding two Extremes with its Contenders

for Discounted Case Problem Set (10,20) ... 151

Table B.9 Performance Measures for Discounted Case Problem Set (30,30) (4000

Generations)* .. 152

Table B.10 Statistical Comparison of Seeding two Extremes with its Contenders

for Discounted Case Problem Set (30,30) ... 152

Table B.11 Performance Measures for Discounted Case Problem Set (30,100)

(7000 Generations)* .. 152

Table B.12 Statistical Comparison of Seeding two Extremes with its Contenders

for Discounted Case Problem Set (30,100) ... 153

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 Classification of the solutions ... 7

Figure 2.2 Auction types with respect to the number of sellers and buyers 9

Figure 2.3 The stages of the approach .. 16

Figure 3.1 The stages of the approach with the corresponding models 24

Figure 3.2 function for different q values .. 31

Figure 4.1 The stages of the interactive approach .. 70

Figure 4.2 The possible regions for .. 80

Figure 4.3 The search region in Step 1 ... 81

Figure 4.4 The search region in Step 2 ... 82

Figure 4.5 The search region in Step 3 ... 83

Figure 4.6 Counter example for Theorem 3 .. 85

Figure 4.7 Reduced search space .. 87

Figure 4.8 Ideal and nadir points .. 87

Figure 5.1 An example for two-point cones ... 92

Figure 5.2 Some examples for Theorem 6 .. 97

Figure 5.3 An example reduced region in band version 103

Figure 5.4 Search space reduction with estimated Tchebycheff functions 115

 1

CHAPTERS

CHAPTER 1

1 INTRODUCTION

An auction is a way of buying and selling goods and services. The traditional

auction process used to take place in a room or a square where an object was

shown to the bidders by the auctioneer. The advances in the technological

infrastructure and the Internet make it possible to conduct online auctions that

eliminate the need for being present in the auction place physically. There are

specialized websites that mediate between buyers and sellers and facilitate huge

amounts of goods being traded between parties. With the online auction sites,

people buy/sell various types of products/services.

Auctions are commonly used by companies and governments. Hohner et al.

(2003) and Sandholm et al. (2006) report the implementation of auctions in Mars

Inc. and Procter&Gamble, respectively. Metty et al. (2005) state that Motorola

enjoy savings by implementing an online negotiation program. The government

of Chile has used auctions for the procurement of school meals in Chile for many

years (Catalán et al. 2009). Auctions have been commonly utilized in the

transportation industry (Sheffi, 2004; De Vries et al. 2003).

Online auctions are becoming popular with the advances in the Internet and there

is a growing amount of literature in this area. In single-attribute auctions

generally the price is used as the attribute. In multi-attribute auctions, there are

additional attributes and the comparison of bids is not straightforward. Multi-item

auctions also bring additional complexity over single-item auctions. In the single-

 2

item auctions, the winning bidder supplies the item with the committed attribute

values. On the other hand, in multi-item case it is not trivial to determine the

winning bidders. In these auctions, generally bidders offer a combination of

items – a bundle – they wish to supply. They specify the attribute values of the

bundle and make their bids. Multi-item auctions are known as combinatorial

auctions (CAs).

In this thesis, we study multi-attribute multi-item (MAMI) auction problems. We

first develop an exact approach that provides aid both to the buyer and the sellers

for MAMI multi-round auctions where the buyer has an underlying linear

preference function. The approach estimates the parameters of a preference

function representing the buyer’s preferences evaluated on multiple attributes and

informs the sellers about the estimations to update their bids for the next round.

We set different weight values to the attributes and generate different problems.

We test the performance of the algorithm for both two and three attribute cases

when the underlying preference function is linear. We also make a local linear

approximation for nonlinear preference functions and report the results. We then

develop an interactive method to support the buyer to find the best bid

combination among the given bids for two attribute problems. This method

decreases the number of comparisons made by the buyer. We use this method as

an exact method for underlying linear preference functions, and as a heuristic for

underlying nonlinear preference functions. We also develop an interactive method

for underlying quasiconvex preference functions. We try different versions for

this method and report the results for two attribute problems. Furthermore, in all

of the mentioned methods above we assume that we do not know the cost

functions of the sellers. We then address the case where sellers explicitly make

their cost functions available to us (the independent party mediating the auction).

By using their cost functions, we find favorable combinations to present the

buyer. We refer to this case as “Coordinated Bidding” case. We also test the

performance of the approach for this case. Lastly, we made modifications to

improve the Evolutionary Algorithm (EA) developed in Karakaya (2009) for

 3

MAMI reverse auctions in order to overcome the computational difficulties. We

approximately generate the whole Pareto front using the EA. We test the EA on a

number of randomly generated problems and report our findings.

The structure of the thesis is as follows: In Chapter 2, we give some definitions on

multi-objective decision making, we present the background of the auction theory

and relevant literature, and explain the general structure of our approach and

define the problem specifications. In Chapter 3, we develop an approach that

finds a set of efficient bid combinations to present the buyer. We develop an

interactive method to support the buyer to find the best bid combination in

Chapter 4. In Chapter 5, we develop an interactive method to find the most

preferred bid combination of a buyer having a quasiconvex preference function.

In Chapter 6, we describe the “Coordinated Bidding” case where we create good

combinations to present the buyer by using the cost functions of sellers. We

discuss extension we made to our previous work in Chapter 7. Lastly, we present

future study issues and conclusive remarks in Chapter 8.

 4

 5

CHAPTER 2

2 DEFINITIONS, BACKGROUND AND PROBLEM

CHARACTERISTICS

In this chapter we first give some definitions on multi-objective decision making.

We then explain the auction process and summarize relevant literature. Lastly,

we describe our approach and give the problem characteristics.

2.1 Definitions

In multi-objective optimization problems there are two or more, generally

conflicting, objectives subject to a set of constraints. The general multi-objective

optimization problem can be formulated as follows:

“Minimize” { () () ()}

subject to

where,

 : decision variable vector

 : feasible decision space

 : j
th

 objective function

and the quotation marks are used to indicate that the minimization of a vector is

not a well-defined mathematical operation.

A solution is said to be efficient, if and only if there does not exist

such that (
) () for all j and (

) () for at least one j. Otherwise,

 6

 is said to be inefficient. If is efficient, then () (() () ()) is

said to be nondominated, whereas if is inefficient, then () is said to be

dominated. () is said to be strictly dominated, if and only if (
) () for

all j whereas () is said to be weakly nondominated, if and only if there does not

exist such that () strictly dominates ().

Consider distinct solutions , Let

 { ∑

 ∑

 } be the set of all convex

combinations of A solution is said to be convex dominated, if there

exists such that () () for all j.

An efficient solution, , is said to be unsupported efficient if and only if there

exists such that () () for all j and () () for at

least one j. An efficient solution, , is said to be nonextreme supported efficient if

and only if there exists such that () () for all j. An

efficient solution, , is said to be extreme supported efficient if and only if there

does not exist such that convex dominates .

It is well-known in the multi-objective literature that any supported nondominated

solution can be found by using a suitable weighted linear combination of the

objective functions. However, finding unsupported nondominated solutions is not

straightforward.

In Figure 2.1 the classification of the solutions based on the domination rules

where both objectives to be minimized are represented.

 7

Figure 2.1 Classification of the solutions

A pair of solutions are adjacent efficient to each other if their convex

combinations are not dominated by the convex combinations of other solutions. In

bi-objective problems, an extreme supported solution can have at most two

distinct adjacent efficient solutions (see Ramesh et al., 1990). We specify these

adjacent efficient solutions as east and west based on their positions relative to the

reference solution. An adjacent efficient solution having a larger value than the

reference solution in objective 1 is called its east adjacent efficient solution;

whereas an adjacent solution having a larger value than the reference solution in

objective 2 is called its west adjacent efficient solution. To demonstrate, consider

alternative F in Figure 2.1. It has two adjacent efficient alternatives: A and G. We

refer to G as the east adjacent efficient alternative of F and A as the west adjacent

efficient alternative of F.

Let . We will use the notation to imply that the decision maker

(DM) prefers to and to imply that the DM is indifferent between

and .

Let be a quasiconvex function. By definition (∑

)

 () for ∑

 where are distinct

Dominated Solutions: B, C, D

Strictly Dominated Solutions: C, D

Weakly Nondominated but Dominated

Solutions: B

Nondominated Solutions: A, E, F, G

Supported Nondominated Solutions: A,

F, G

Unsupported Nondominated Solutions:

E

Objective 2

Objective 1

A B C

D

G F

E

 8

alternatives. The weighted metric is a quasiconvex function that measures the

weighted distance between two vectors as follows:

‖ ‖
 (∑ (| |)

)

 where { } { } and .

Commonly used weighted metrics are the weighted rectilinear distance, the

weighted Euclidean distance, and the weighted Tchebycheff distance,

corresponding to , respectively.

Within the context of an auction, from a buyer’s perspective, () refers to the

value of attribute j of bid . The buyer’s problem, then, is to choose the bid that

minimizes his/her underlying preference function. In this thesis we use the terms

bid combination, solution and alternative interchangeably to refer to a

combination of bids that satisfy the whole requirements of the buyer. We also use

the terms buyer and DM interchangeably.

2.2 Auction Process

In the literature, auctions are categorized with respect to different properties. For

instance, they can be classified based on the number of buyers and sellers. If there

is one buyer and one seller, it is called negotiation. If there are many buyers and

many sellers it is called a double auction as in the case of a stock market. In

forward auctions there are one seller and many buyers. The auction for art objects

is an example of the forward auction. The last type is reverse auctions where the

buyer is the auctioneer and the sellers are the bidders. It is a common auction type

for procurement processes in the literature. To exemplify, a manufacturer selects

the suppliers of some products where the manufacturer is the auctioneer who will

buy the products and suppliers sell their products. Karakaya and Köksalan (2011)

represent the classification of the auctions with respect to the number of sellers

and buyers as follows:

 9

 Figure 2.2 Auction types with respect to the number of sellers and buyers

McAfee and McMillan (1987) group the auction mechanisms into four: the

English auction, the Dutch auction, the first-price sealed-bid auction and the

second-price sealed-bid auction (Vickrey auction). In an English auction, bidders

increase their bids during the action and the one who bids the highest price is the

winner. In these auctions, all bidders know each others’ bids. This is a property of

open-cry auctions. In Dutch auction, the auction starts with a relatively high price

and the auctioneer decreases it until a bidder accepts the current price. In the first-

price sealed-bid auction, bidders do not know each other’s bids. It is not an

iterative process. The bidder offering the highest (lowest) price for the forward

(reverse) process wins and he/she pays the highest (lowest) price. The second-

price sealed-bid auction is similar to the first-price sealed-bid auction except that

the winner pays the second highest (lowest) price.

Auctions are also classified with respect to the number of different items and the

number of units for each item auctioned. In single-item, single-unit auctions, there

Double Auction

Reverse

Auction

.

.

.

Seller 2

Seller 1

Seller m

Negotiation

One Seller One Buyer

Forward

Auction

Buyer 1

Buyer 2

.

.

.

Buyer n

 10

exists one unit of an item to be auctioned. If there are two or more units for the

item auctioned, it is called a single-item, multi-unit auction. In single-item

auctions, the bidder who values the item most is the winner. However, in the

multi-item case where the items are complements or substitutes, it is not trivial to

determine the winning bidder(s). These auctions are also known as CAs where

bidders compose combinations of items, bundles, to sell/buy.

The number of attributes in the auction process is another classification. Price is a

typical attribute in auctions and if only price is considered, it is a single-attribute

auction. On the other hand, if there are additional attributes (quality, lead time,

warranty, etc.) to the price, it is a multi-attribute auction. Multi-attribute auctions

bring additional complexity over single-attribute auctions as the comparison of

bids is not straightforward in multi-attribute auctions.

If the bidders submit their bids at different rounds during an auction, it is called a

multi-round (iterative, progressive) auction. Multi-round combinatorial auctions

have important advantages over single-round versions. Bidders do not have to

submit bids for every possible combination in advance. It also allows bidders to

behave in a dynamic manner. Moreover, additional information can be collected

and utilized in a multi-round setting (see De Vries and Vohra, 2003). An

application for multi-round combinatorial auction in Mars Inc. is reported by

Hohner et al. (2003).

In this thesis, we deal with MAMI auction problems and the relevant literature is

summarized next.

2.3 Literature Review

In single-attribute auctions there is one attribute, typically the price. Choosing the

winner of such auctions is simple (Rothkopf and Park 2001). On the other hand,

in multi-attribute auctions comparison of the bids is not so simple. To evaluate

bids of multi-attribute auctions, typically a value or a scoring function is applied.

 11

Commonly, such value functions are in the form of weighted linear functions. The

winner of the auction is determined by solving the Winner Determination

Problem (WDP) that maximizes the value/scoring function.

To evaluate bids of multi-attribute auctions, Bichler and Kalagnanam (2005)

suggest a weighted-sum scoring function. Although using such functions is very

common, as Bellosta et al. (2004) state, it has some drawbacks such as the

difficulty of determining weights. Also, the solutions that can be found are limited

with a weighted-sum scoring function. Bichler and Kalagnanam (2005) study

multi-sourcing, i.e. demand can be supplied by multiple suppliers. They limit the

number of winners by setting a lower and an upper bound on the number of

winners.

Another approach to multi-attribute auctions is using the ‘pricing out’ technique

as in Teich et al. (2006). In this technique, all attributes are converted into

monetary values (see Keeney and Raiffa 1993, pp.125-127). Teich et al. (2006)

solve the resulting problem with a single attribute, namely the price. They

propose ‘suggested price’ tool for bidders. Bidders make the combination by

deciding on the quantities. Then the best price that makes the bidder’s bid among

the provisional winners is determined by using the ‘suggested price’ tool. Leskelä

et al. (2007) formulate a single-attribute auction problem and argue that the

formulation can be extended to the multi-attribute case by the pricing out

approach. They develop a Quantity Support Mechanism (QSM) that provides

bidders not only the suggested price for a new bid, but also quantity decision

support. They refer to a bid as “active” if it is among the provisional winners and

“inactive” otherwise. An inactive bid can become active if an entering bid groups

with it. Köksalan et al. (2009) improve the QSM and develop a Group Support

Mechanism (GSM). In QSM only one incoming bid can complement the existing

bids; whereas in the GSM a group of inactive bids can make a combination with

active bids or with inactive bids. Sandholm and Suri (2006) propose a weighting

function to evaluate bids in multi-attribute auctions. In the weighting

 12

function (⃗), refers to the price and ⃗ refers to the vector of nonprice

attributes of bid j. This function is introduced to represent all other attributes in

terms of price, although the details are not explained. This approach is similar to

the pricing out technique in Teich et al. (2006).

Talluri et al. (2007) use data envelopment analysis (DEA) to propose a decision

support system tool for a multi-sourcing, single-round auction. They try to reflect

the correlation between the attributes in the value function. They define weights

for each attribute. To reflect the decision maker’s (DM’s) preference information

for attributes, they define ranges instead of exact weights. They divide the DEA

model into two stages. In stage I, scores of each bid are evaluated whereas in

stage II, the winning bids are determined.

In the above approaches, simple functions that combine multiple attributes are

used to estimate value functions. However, determining the weights and

converting all attributes into a composite value are not easy.

Bellosta et al. (2004) suggest a multi-criteria model based on reference points for

single-item auctions. The DM defines an aspiration point at the beginning of the

auction. He/she also defines a dynamic reservation point based on which sellers

update their bids. Bids are evaluated using the scaled deviations from the

aspiration levels. Tchebycheff method is applied; the maximum scaled deviation

among all attributes is the deviation of that bid. Baykal (2007) studies

combinatorial auctions and applies a variation of Korhonen and Laakso’s (1986)

approach to the multi-attribute, multi-item auctions. She tries to find the best

combination of bids for a single round. Determination of aspiration and/or

reference points is not an easy task for the DM. Therefore, these methods may not

well represent the preferences of the DM.

Karakaya and Köksalan (2011) propose an interactive method for multi-attribute,

single-item reverse auctions. They estimate the underlying preference function of

 13

the buyer considering his/her past preferences. At each round, they only require

the buyer to select the most preferred bid among a set of bids. Then they inform

the sellers about the estimations and facilitate the sellers to update their bids

accordingly. They test the performance of the algorithm on a number of test

problems and conclude that the suggested mechanism supports the sellers well.

The buyer also benefits with the improvement in his/her preference function value

over the progress of the auction.

Sandholm et al. (2002) study the complexity of winner determination in

combinatorial auctions. They consider a single-attribute, price, and experiment on

different types of combinatorial auctions using a general purpose mixed integer

program solver, CPLEX. Sandholm (2002) proposes a tree search algorithm that

branches on items to find the optimal solution for combinatorial auctions. The

algorithm is a depth-first algorithm and allows finding feasible solutions quickly.

Also several preprocessing methods are suggested to speed up the algorithm.

Sandholm and Suri (2003) improve the algorithm in Sandholm (2002). They

suggest to branch on bids (BOB) instead of branching on items as in Sandholm

(2002). Besides computational advantages to the proposed algorithm in Sandholm

(2002), BOB can also be used for multi-unit combinatorial auctions. Sandholm et

al. (2005) suggest CABOB which is mainly based on the BOB algorithm. They

compare CABOB and CPLEX and report results. They claim that CABOB is

often drastically faster and seldom drastically slower than CPLEX.

Catalan et al. (2009) report the multi-attribute combinatorial auction for the

procurement of school meals in Chile. The Chilean government is the auction

owner and sets several criteria for the supply of foods. The bid selection is based

on the fulfillment of those criteria. After applying a single-round auction,

combination of bids supplying the whole demand at minimum cost is selected.

 14

2.4 The Approach

Karakaya and Köksalan (2011) provide aid to both the buyer and the sellers in a

multi-attribute, single-item, multi-round reverse auction environment. We extend

their approach to multi-item auction problems. We develop an approach that

supports sellers to bid on single items or bundles of items. The approach estimates

the parameters of a preference function representing the buyer’s preferences

evaluated on multiple attributes and informs the sellers about the estimations to

update their bids for the next round.

We present the approach for MAMI multi-round reverse auctions; however it is

directly applicable to forward auctions. We consider an environment where each

seller bids independently. We assume that no gaming issues are applicable and

each seller bids based on his/her underlying cost function. We consider revenue

maximization and allocative efficiency which are desirable properties of an

auction mechanism. As stated in Ervasti and Leskelä (2010), in revenue

maximization the buyer wants to maximize his/her revenue whereas in allocative

efficiency the winners are the ones who have the lowest production cost. Since we

consider multiple attributes in a reverse auction setting, we can consider

preference function value minimization. We design our approach to support both

the buyer and the sellers. We will refer to our approach as an auction decision

support system (ADSS). This system is intended to act as a neutral third party

independent from both the buyer and the sellers. During the auction process, we

try to estimate the underlying preference function of the buyer and support sellers

providing them information based on our estimations. At each round, the

preference function value of the buyer is improved while the sellers update their

bids to maximize their profits. Although sellers’ profit may decrease as rounds

progress, we expect sellers to update their bids in order to be among the winners.

At the end of the auction, we expect the buyer to end up with a highly preferred

solution and the competitive bidders to be the winners of the auction.

 15

We consider two variations of the problem: single-round and multi-round. In the

single-round case sellers compose their bids and the buyer selects the most

preferred combination by evaluating the given bids. There would be no update of

bids. On the other hand, in the multi-round case sellers compose their bids and the

buyer selects the most preferred combination at each round. Then the sellers

update their bids and the auction continues. In the single-round case, the buyer

uses ADSS once to determine the most preferred combination. In the multi-round

case we try to estimate the underlying preference function of the buyer based on

his/her past preferences, without requiring any extra information. Then, we use

this estimation to guide the sellers in updating their bids.

We summarize the stages of our approach for problems where price and defect

rate are the two attributes in Figure 2.3. The process is similar for problems with

more than two attributes.

 16

 Figure 2.3 The stages of the approach

In the next chapters we explain the models that we solve in each stage in detail.

2.5 Problem Characteristics

We consider an environment where there are I sellers, M items, J attributes. We

assume that all units of an item are supplied by a single seller. We use Tih to

represent the number of bids offered by seller i at round h. First M bids of each

seller represents these singletons and the remaining Tih-M bids represent seller i’s

bundled bids at round h. We represent the bid of seller i as

 () where stands for the level of attribute j

Sellers give their bids at the first round. At other rounds, sellers,

- based on the provided information update their bids to maximize their

profits.

ADSS

- considers all given bids for the current round and finds a set of efficient

bid combinations,

- combines these with the best bid combination(s) up to now if they are

still efficient,

- presents the buyer the efficient combinations for the current round.

Buyer determines the provisional winners (best combination).

ADSS

- estimates the weight values of attributes, the preference function value of

each item separately and improves the estimated preference function

value of the buyer,

- informs sellers about the estimated weight values of attributes and

estimated preference function value of each item.

 17

offered by seller i for bid t. We use () to represent the

items that bid t of seller i consists of where takes the value of 1 if bid t of

seller i includes item m; otherwise it is 0. We omit subscripts indicating rounds

for simplicity. The preference function value of the buyer evaluated for bid t of

seller i is depicted as () We use a weighted metric to represent the

underlying preference of the buyer for the bids. This function minimizes the

weighted distance of a point from the ideal point in terms of an metric. We

estimate the weight values based on the past preferences of the buyer fitting the

following preference function as an estimate of the preference to at any round:

 () (∑ ((
))

)

where

 : weight of attribute j

 : ideal (best attainable) level of attribute j

 : parameter of the metric

The preference function measures the weighted distance from the ideal point.

Therefore, smaller () values are preferred by the buyer. If an attribute is of

maximization type, we would simply replace (
) with (

) in the

distance function.
 values are typically the best attainable values for each

attribute and can usually be extracted from the problem context. For simplicity we

assume that
 and () (∑ ()

)

We note that the weights capture the relative importances of the attributes to the

buyer and the scaling of attributes.

When we estimate the underlying preference function of the buyer with a linear

preference function, we set α = 1 and estimate the weight value of each attribute.

Otherwise, we estimate both α and the weight values of each attribute.

 18

In the approach, sellers give their bids for single items as well as for bundles. We

find some efficient combinations of bids that satisfy all the auctioned items and

present these combinations to the buyer. We estimate the parameter values of the

preference function of the buyer based on his/her preferences. We use a small

positive constant threshold, “ ” to represent a minimum preference difference by

which the buyer can distinguish between bids as suggested by Karakaya and

Köksalan (2011). For instance, if the buyer prefers A to B, then we require

 () ()

Moreover, at each round, we expect the sellers to improve their bids in such a

way that the resulting combinations of the next round have improved preference

function values of approximately “100γ” percent of the estimated value of the

best combination of the current round as in Karakaya and Köksalan (2011).

Therefore, after estimating a preference function based on the past preferences of

the buyer, we provide information to the sellers about a possible way of

improving their bids. According to these information and their cost functions,

sellers update their bids for the next round. The auction continues until a

termination condition is met. The possible termination conditions will be

discussed later.

To demonstrate a simplified version of the approach, consider the following

example. For the sake of simplicity, suppose that there are two sellers, one buyer,

and one item to be auctioned with two attributes. Suppose each seller has two

equally desirable bids as follows (, for seller X and , for seller

Y):

 ()

 ()

 ()

 ()

where i = X,Y, t = 1,2 and j = 1,2.

 19

Since we there is a single item to be auctioned, there is no item information in

Table 2.1.

Table 2.1 Bids of sellers

 Seller X Seller Y

Attribute 1 2.0 4.0 3.2 7.0

Attribute 2 5.0 1.0 3.2 0.5

Assume at the beginning the sellers have no information about the preference

function of the buyer and seller X gives bid and seller Y gives bid by

considering a linear preference function with equal weights for the buyer.

Suppose the buyer has a linear preference function with weights 0.9 and 0.1 for

attributes 1 and 2, respectively. Then he/she prefers . We set ∆ to zero and

estimate the weights of attributes as 0.8 and 0.2 for attributes 1 and 2,

respectively. Then seller X updates his/her bid and gives bid while seller Y

keeps bidding on . Based on the underlying preference function of the buyer,

he/she chooses and suppose the auction ends. The bids given in each round

and the corresponding preference function values are given in Table 2.2.

Table 2.2 Buyer’s preference function for the bids in each round

 Bid Buyer’s preference function value Winner

Round 1
 3.7

 3.2

Round 2
 2.3

 3.2

If there is no information, the auction may end at the first round and the winner

would be seller Y with bid . The preference function value of the buyer would

be 3.2. On the other hand, if the auction continues and ends at the second round,

the winner would be seller X and the preference function value of the buyer would

be 2.3. The estimated weights lead the sellers to converge the preferred bids.

Normally, the situation is more complex with many possible potential bids for

each seller. The process would continue for multiple iterations and more

 20

preference information would be collected to guide the sellers. In such cases the

estimated weights would help sellers update their bids and guide them to better

bids in complex environments. The above example demonstrates that our

approach can be useful even when implemented without its full potential. It does

not use the improvement requirement that may be imposed on the sellers over the

rounds. This requirement would lead to further improvements from the buyer’s

perspective and help reach allocative efficiency.

2.6 Auction Design

In our experiments we consider an environment where sellers have underlying

cost functions based on which they bid and the buyer has an underlying

preference function with which his/her preferences are consistent. As stated

before, we assume that there are no strategic bidding or gaming and sellers always

bid independently with their true valuations. Our mechanism aims to achieve

allocative efficiency. It tries to improve the buyer’s preference function value in

each round and eventually to converge the most preferred combination.

Therefore, neither the buyer nor the sellers can gain by acting against their true

valuations. We also assume that there is no collaboration between sellers; i.e.

sellers do not collude.

We assume that the attribute values of bid combinations are additive. For

example, to represent the total price of a bid combination, we sum up the offered

prices of singletons and bundle bids in the combination. When we consider defect

rate as an attribute, we sum up the individual defect rates of singletons and bundle

bids to determine the overall defect rate of the combination. This may not be

realistic, especially in manufacturing environments. An alternative strategy could

be to consider the maximum of the offered defect rates as the defect rate of the

combination. In some situations weighted average could also be a viable option.

Another alternative could be to penalize the larger defect rates more than

proportionately. We should note that any implementation other than an additive

aggregation of attribute values in a combination brings difficulties in the

 21

disaggregation when trying to assign the buyer’s preference information to the

components of a combination. In 3-attribute problems, in addition to price and

defect rate, we consider lead time as the third attribute and we calculate the lead

time value for the combination by summing up the lead time values of singletons

and bundle bids in the combination.

2.7 Implementation Issues

Our approach can be implemented in various settings including the procurement

processes of companies in the automotive, food, and medical supplies industries.

We consider a platform where the sellers place their bids until a certain deadline.

The bids can be for single items or multiple items. ADSS would identify bid

combinations that are expected to be desirable to the buyer. The buyer would

select the best combination among the presented combinations and ADSS would

provide updated preference information to the sellers to help them update their

bids for the next round.

We suppose that all participants of the auction would use ADSS and relevant

information (bids, estimated preference function values, etc.) is transferred via

ADSS. As an alternative, we consider the case where sellers share their cost

function information with ADSS. ADSS keeps creating desirable combinations

using the sellers’ cost functions and the buyer‘s estimated preference function

throughout the auction process.

An example environment where our approach would be applicable would be the

super market chains. The super market chains sell different varieties of products

under different brands. They also sell some products with their own brands. They

contract the production of these items to different firms. Dairy products (different

cheese types, butter, yogurt) or oils (different types of vegetable and olive oils)

produced by different firms are examples of these cases. Typically, these auctions

are not conducted frequently and the supplying firms have the flexibility to offer

different versions of their products. Therefore, in addition to the price, defect rate

 22

can be considered as the second attribute in the auctions where the suppliers can

differentiate their quality. For the auctions in the supply chain management where

a manufacturer selects the suppliers of some products/services, lead time can also

be considered as an additional attribute. Suppliers can make different bids with

different attribute value combinations. The auction in the transportation industry

may be another major area of application. On-time delivery performance can be

considered as an attribute in such auctions.

Our decision support mechanism, ADSS, can be utilized in assigning

product/service combinations to suppliers through online auctions.

 23

CHAPTER 3

3 AN APPROACH FOR MULTI-ATTRIBUTE MULTI-ITEM

AUCTIONS

In this chapter we develop an approach that provides aid both to the buyer and the

sellers in a MAMI multi-round reverse auction environment. We first give an

overview of the approach and the models used. We then discuss the details of the

algorithm. We next provide the experimental setting and demonstrate the

algorithm for the 2-attribute case numerically. We then discuss the algorithm for

3-attribute linear problems. Lastly, we present a heuristic approach in a 2-attribute

nonlinear problem setting.

3.1 The Approach

We develop an auction decision support system (ADSS) that supports sellers to

bid on multiple items. We assume a linear preference function and in each round

we find all efficient bid combinations. For the sake of completeness, we provide

the stages of the approach and the corresponding models used in each stage, in

Figure 3.1.

 24

Figure 3.1 The stages of the approach with the corresponding models

3.2 The Efficient Combination Model

After taking the updated bids from the sellers, we solve the following (EFFCOM)

model to find the efficient combination(s) where all the auctioned items are

supplied. We apply a variation of the ε-constraint method of Haimes et al. (1971).

Parameters:

 : level of attribute j offered by seller i in bid t

 : 1 if bid t of seller i includes item m; 0 otherwise

 : the number of bids offered by seller i

Sellers give their bids at the first round. In succeeding rounds,

sellers,

- based on the provided information update their bids to maximize

their profits by solving their (MAKE_BID) model.

ADSS

- considers all given bids for the current round and solves the model

(EFFCOM) to find efficient bid combinations,

- combines these with the best bid combination(s) up to now if they

are still efficient,

- presents the buyer the efficient combinations for the current round.

Buyer determines preferred and nonpreferred bid combinations.

ADSS

- solves (Wt) model to estimate the weight values of attributes,

- estimates the preference function value of each item separately and

improves the estimated preference function value of the buyer,

- informs sellers about the estimated weight values of attributes and

estimated preference function value of each item.

 25

 : a small positive constant

 : upper bound level for attribute j and it changes from solution to solution

Decision Variables:

 : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise

Price is a typical attribute in auctions and we define it as attribute 1 for

convenience of notation, without loss of generality.

Model (EFFCOM)

Min∑ ∑

 ∑ ∑ ∑

 (1.1)

s.to

∑ ∑

 (1.2)

∑ ∑

 (1.3)

 { } (1.4)

We optimize one objective and in (1.3) restrict the other to some upper bound

value. In order to guarantee an efficient solution, we augment the objective

function of the standard ε-constraint method. We multiply sum of the constrained

objectives with a small positive constant as the augmented part. Constraint set

(1.2) guarantees satisfying the demand for each item. We use (1.4) to enforce that

bids are indivisible.

We systematically change and solve (EFFCOM) repeatedly to obtain different

efficient solutions. If there are more than two attributes, finding a representative

set of efficient solutions is more cumbersome by systematically changing . For

the two-attribute case, we systematically change values to generate all efficient

solutions. We derive the suitable value that does not cause any trade-offs with

the first term, in the objective function and only has an effect of breaking ties (see

Appendix A for details of the reduction in values and setting). We solve the

 26

(EFFCOM) by using GAMS 23.8 for two attribute problems. For three attribute

problems we use the algorithm suggested by Lokman and Köksalan (2012) to find

all the efficient solutions for three attribute problems.

We assume that the attribute values of combinations of bids are additive. Here, to

find the efficient bid combinations we need to consider different combinations of

the available bids. When the total number of bids is large, the computational

burden may become excessive.

We find the efficient combinations by solving (EFFCOM) and assign them index

values to keep track of them. Let the index set of efficient combinations for the

current round be We assume that the buyer determines the preferred and

nonpreferred bid combinations in We recognize the fact that the buyer may not

be able to state very precise preference statements when bid combinations are

close to each other in terms of buyer’s preferences. In such cases, the buyer could

indicate indifference between such bid combinations. It is sufficient for our

purposes that the buyer determines only the preferred and nonpreferred

combinations. To illustrate, consider four alternatives (bid combinations) ,

and and assume the buyer is indifferent between and , and , and prefers

 to , to and to The buyer may not identify alternative as the best

alternative and we assume that he/she provides us with the information that and

 are the preferred combinations and combination is worse than both and .

Based on the preferences of the buyer, we solve the parameter estimation model

(Wt) explained in the following section.

3.3 The Parameter Estimation Model

We assume a linear preference function. Therefore the weighted Lα metric that

represents the underlying preferences of the buyer approximately (explained in

Section 2.5) is reduced to () ∑ ()

 We estimate the parameters

(weights) of the preference function by solving the following (Wt) model.

 27

For simplicity, we omit the subscripts indicating rounds. An efficient combination

is composed of bids of several sellers. For the sake of simplicity, we introduce the

notation to represent the k
th

 efficient combination, where is the index

set of efficient combinations presented to the buyer for the corresponding round.

Parameters:

 : predetermined threshold level by which the buyer can distinguish between bid

combinations

 : a small positive constant

 : level of attribute j in efficient combination k

 : index set of efficient combinations

Decision Variables:

 : an auxiliary variable (to measure the estimated value difference between

alternatives and bound the weights)

 ̂ : estimated weight of attribute j

Model (Wt)

Max (2.1)

s.to

∑ ̂
 (2.2)

 ̂ (2.3)

 () ∑ ̂

 Ek (2.4)

 () () for each (2.5)

 () () () for each (2.6)

 (2.7)

The objective (2.1) is to find the maximum value that satisfies the constraints.

This leads the solution to be at a central point of the feasible weight space; i.e. it

tries to locate the weights as far from each preference constraint as possible. We

 28

use normalized weights by constraint (2.2). (2.3) imposes lower bounds on ̂ .

Bid combinations are evaluated in terms of a weighted linear preference function

(2.4). The past preferences of the buyer are modeled by (2.5) and (2.6). We make

sure in (2.5) that the value difference between the preferred alternative and the

inferior alternative is at least as big as the threshold, . Similarly, (2.6) guarantees

that the value difference between indifferent alternatives do not exceed . The

value has to be positive in order to make sure that there will be a difference in the

estimated preference values of the preferred and inferior combinations.

We provide sellers with the weight values found from (Wt), ̂ as well as the

estimated preference function value of each item separately. Since some of the

items in the preferred bid combination are given as bundles, in our simulations we

determine the preference function value of the items in each bundle. To estimate

the preference function value of the items in the bundle, we use the estimated

preference function value of the items given by the seller of that bundle for the

current round. We assign preference function values to the items in the bundle

proportional to their estimated preference function values as singletons. We take

the average of the estimations of the current and the previous rounds. We impose

an improvement to the new estimated values and provide the resulting

information to the sellers. Assume, for example, that seller i’s bundled bid given

for items 1 and 2 is in the winning combination of the current round. Let the

estimated preference function value of the bundle be 12 and the estimated

preference function value of items 1 and 2 proposed by seller i be 5 and 10,

respectively for the current round. Then we estimate the preference function value

of item 1 to be 4 and item 2 to be 8 for the current round. Suppose that in the

previous round we inform the sellers that the estimated preference function values

for items 1 and 2 should be at most 5 and 9, respectively. Suppose that the current

round is round 3. Then we inform the sellers that the estimated preference

function value for items 1 and 2 should be at most,(

) () and

(

) () respectively. In this method, besides the estimations in the

current round we also consider the previous rounds’ estimations. We then apply

 29

 improvement in order to end up with an improved combination in the

next round. Different techniques could also be devised to estimate the preference

function value of the items in the bundle.

3.4 Sellers’ Model

We assume that each seller determines a minimum mark-up percentage that

he/she uses and he/she solves the MAKE_BID model below to find the most

profitable bids (bundle and singletons) for him/her based on our estimations. If

there are feasible bids with extra profit, then the seller gives the best possible bids

with his/her predetermined mark-up. Suppose that seller i has a minimum mark-

up of , that is, if the cost of a bid at a specified defect rate is C, then the price

of the corresponding bid should be at least (⁄) We assume that

sellers do not incur losses and therefore, we use nonnegative mark-ups.

We first provide the seller’s model for the 2-attribute case where the attributes are

price and defect rate.

Parameters:

 : estimated weight of price

 : estimated preference function value for bid t (ADSS provides the estimated

preference function value for each item separately and the estimated preference

function of a bundle is calculated by summing up the estimated preference

function values of the items in the bundle)

: minimum mark-up percentage for seller i; if it is 0, then seller i may bid

with zero profit. For the sake of simplicity let
 ⁄ .

 : the cost function of seller i for bid t

 () (((

)

)

) (

)

where

 : maximum defect rate value that can be offered by seller i for bid t

 : minimum defect rate value that can be offered by seller i for bid t

 30

 : maximum cost of bid t for seller i (at

)

 : minimum cost of bid t for seller i (at

)

 : parameter of the Lq cost function for seller i

Decision Variables:

 = price offered by seller i for bid t

 = defect rate offered by seller i for bid t

Model (MAKE_BIDit)

Max () () (3.1)

s.to

 (3.2)

 () (3.3)

The objective (3.1) is to maximize the profit value for bid t of seller i considering

his/her mark-up value. We consider the feasible defect rate range for the

corresponding bid in (3.2). (3.3) guarantees that the estimated preference function

value with the updated bids does not exceed the estimated preference function

value of bid t.

In our experiments we simulate the cost functions of the sellers using convex

functions, specifically Lq functions (see Köksalan, 1999). We show the

function for different q values in Figure 3.2.

 31

cost

defect rate

L1.5

L1

L2

L4

L∞

Figure 3.2 function for different q values

In these functions, there is an inverse relation between cost and defect rate. That

is less defect rate (better quality) costs more. For larger q values, the extreme

values in each attribute gets harder to achieve. To achieve better values in one

attribute, the amount you need to sacrifice from other attribute increases as you

are close to the more preferred values (extremes).

The model is nonlinear due to the objective function which is equivalent to

Max ()
 ()

 () ().

The first term in the objective function is linear and linear functions are special

cases of concave functions. In the second term, the convex cost function is

multiplied with a negative constant and () () is concave. Since the

weighted sum of concave functions, with positive weights, is concave, () is

concave. Instead of using a solver, we utilize the properties of concave functions

and determine the updated bids as follows:

The objective function can be rewritten as follows:

 ()
 ()

 () (((

)

)

) (

) ()

 32

Since (
) is concave, to find the optimal defect rate value,

 , we check the

stationary and the boundary points.

At stationary point: (
)

()

()(

)

 (
)

 ((

) (
)

)() ⁄

After some manipulations, we obtain

() ()⁄ (

)

 ()⁄

((()(

))
 ()⁄

 ((

)())
 ()⁄

)

 ⁄

 is the only stationary point of the function and the boundary points are

 and

 . Indeed, from the equation above we see that

 . Therefore,

there is no need to check the boundary points and the optimal defect rate value is

since (

) .

If
 ()

 () (

),

 ()

 and seller bids profitably.

Otherwise,
 () (

) and seller bids with his/her predetermined

mark-up only and no extra profit is possible.

We discuss the 2-attribute case here explicitly. The procedure is also directly

applicable for more than two attributes. For more than two attribute case, we

assume that all non-price attributes are reflected in the cost function and therefore

cost function is depicted as () where is the vector of non-price attribute

values of bid t of seller i, () The optimal non-price

attribute values, (

) can be found by setting (
)

The 3-attribute case is discussed in Section 3.9 in detail.

After obtaining the updated bids from the sellers, we find the set of efficient bid

combinations of the current round using the estimated weights found at the end of

the previous round and continue.

 33

3.5 The Algorithm (ALL-e)

We provide the steps of the algorithm below:

Recall that denotes the index set of efficient bid combinations presented to the

buyer for the corresponding round, denote the k
th

 efficient bid combination,

,Ek and () be the estimated preference function value of the buyer for

Let denote the set of constraints derived from the preferences of the buyer in

round h and let We assume that the buyer’s underlying preference

function is linear and sellers are informed about this.

Step 1: Sellers place initial bids. Set the round counter h = 1.

Step 2: Solve (EFFCOM) to find the efficient bid combination(s) for round h and

also consider the best combination(s) up to current round. Place the efficient

combinations in set . Present the buyer all combinations in set and ask him/her

to choose the preferred and nonpreferred bid combinations. If a termination

condition is met, go to Step 5. Otherwise go to Step 3.

Step 3: Update the preference constraint set;

 {
 () ()

 () () ()
}

Solve (Wt) to fit a preference function that satisfies the constraint set Let the

estimated preference function value of the best bid combination of the current

round be

Step 4: Move to a 100γ% improved contour with an estimated preference

function value of , i.e., (). Find the preference function value of

each item separately and provide the bidders with this information in addition to

the current estimated weight values. Let sellers update their bids by solving their

own (MAKE_BID) problem. Set and go to Step 2.

Step 5: Stop. The preferred combination(s), , is (are) the winning

combination(s) for The sellers providing items in the winning combination

are the winning sellers.

 34

If there are more than one winning combinations in Step 5, the buyer selects one

of them using additional information.

Sellers can give bids for single items or for bundles. They update their bids and

the auction continues until a termination condition is met. For multi-item case, we

modify Steps 2 and 4 of the original algorithm in Karakaya and Köksalan (2011).

In Step 2, we find all efficient bid combinations before presenting to the buyer. In

Step 4, we find the preference function value of each item to support the sellers.

3.6 The Modified Algorithm (ELIM-e)

We make some modifications to ALL-e and develop ELIM-e. In ALL-e, we find

all efficient combinations and present them to the buyer. In the modified version,

we eliminate the combinations that would be considered inferior by the buyer

based on his/her past preferences, before presenting those to the buyer.

Elimination by Weight Space Reduction Models

We keep the most preferred combination up to the current round and add it to the

set of efficient combinations for the current round. Let the index set of efficient

combinations for the current round be We solve (ELIMINATION) model to

eliminate combinations that would be inferior based on the information derived

from the buyer’s previous selections and based on the assumed form of his/her

preference function.

Parameters:

 : predetermined threshold level by which the buyer can distinguish between bid

combinations

G : index set of efficient combinations for the current round before elimination

 : level of attribute j in efficient combination k

 35

Decision Variable:

 : an auxiliary variable (to measure the estimated value difference between

alternatives)

 : possible weight of attribute j

Model (ELIMINATIONv)

Min (4.1)

s.to

∑

 (4.2)

 () ∑

 (4.3)

 () () (4.4)

 () () for each (4.5)

 () () () for each (4.6)

 (4.7)

In the model, combination v is compared to other combinations in G. In each

comparison we try to find a weight vector in the feasible weight space that makes

combination v better than each of the remaining combinations. The feasible

weight space is determined based on the past preferences of the buyer (constraint

sets 4.5 and 4.6). If we can find a feasible solution with positive value, we say

that there exist weights in the feasible weight space that makes combination v to

be preferred by the buyer. Otherwise, we say that combination v cannot be

preferred by the buyer.

We solve (ELIMINATIONv) model for each v in G. If we can find a feasible

solution to (ELIMINATIONv) with positive value, we place v in set E where E

is the index set of efficient combinations for the current round that will be

presented to the buyer. In the two attribute case, we can construct E by using the

following procedure where is a small positive constant, subscript 1 and 2 refer

to price and defect rate, respectively.

 36

Since there are only two attributes, it is sufficient to specify bounds on the weight

of attribute 1. Let and be the estimated lower and upper bounds for the

weight of attribute 1, respectively, based on the past preference of the buyer, and

let K be the cardinality of set G.

In the procedure, for each pairwise comparison of combination v with other

combinations in G, we check whether the resulting weight space is feasible or not.

If it is feasible we place v in set E; otherwise we delete v from G due to Theorem

1 and the procedure is continued.

Theorem 1: Let and be two alternatives such that

 be the weight of attribute 1 that makes and have

equal preference values. If and or if and

 , then cannot be preferred to by the DM based on his/her

past preferences, where is a sufficiently small positive constant.

Proof: If , then is the smallest possible value of weight of

attribute 1 that makes preferred to ; whereas if , then

is the largest possible value of weight of attribute 1 that makes preferred to

 . Based on the past preferences of the DM, the estimated lower and upper

bounds of weight of attribute 1 are and , respectively. If and

 or if and , then there are no

weights in the feasible weight space that make preferred to . □

The procedure used to solve (ELIMINATIONv)

Step 0: Set , v = 1, s = 1 and .

Step 1: Set If , go to Step 2, else if go to Step 4; otherwise

go to Step 1.

Step 2: If go to Step 1. Otherwise, set

 and if

 go to Step 2.1; otherwise go Step 2.2.

 37

Step 2.1: If go to Step 3. Otherwise go to Step 1.

Step 2.2: If go to Step 3. Otherwise go to Step 1.

Step 3: Set { } and go to Step 5.

Step 4: Set { } and go to Step 5.

Step 5: If set and set go to Step 1; otherwise stop.

We apply the procedure for each v in G and after the eliminations, we present all

combinations in E to the buyer. The rest of the procedure is the same as ALL-e.

3.7 Experimental Setting

To test the performance of the algorithm we generate test problems. We consider

two versions of the test problems in terms of the number of attributes: 2-attribute

and 3-attribute cases. In the 2-attribute case, we consider two specific attributes,

price, and defect rate. In the 3-attribute case, we include lead time as the third

attribute. In both cases, all attributes are to be minimized.

We consider two different versions of the test problems in terms of the underlying

preference function of the buyer: linear and nonlinear cases.

3.7.1 Test Problem Generation

We demonstrate the performance of our algorithm by generating test problems. In

the literature combinatorial auction test suites are available for single attribute

auctions (Fujishima et al., 1999; Leyton-Brown et al., 2000; Sandholm et al.,

2005). Buer and Pankratz (2010), generate their test instances for two attribute

transportation problems. To the best of our knowledge, all the combinatorial

auction test problems are generated to determine the winner of the single round

auctions. We modify the technique proposed by Buer and Pankratz (2010) to

generate the cost functions of the sellers. We use these generated cost functions

during the multi-round auction process.

 38

As mentioned before, we consider two specific attributes, price, and defect rate,

where smaller values are preferred in both attributes by the buyer. We suppose

that each seller has his/her own competitive item combinations and he/she makes

bids for these combinations. We use , and to denote the set of singleton

bids, bundled bids and total bids, respectively, given by seller i where

 We replace the original notation of the non-price attribute, defect rate, with

 (
) where is the defect rate value of bid t offered

by seller i. Each seller identifies a price and defect rate for each bid he/she offers.

Here defect rate is used as an indicator of quality; smaller defect rate values stand

for higher quality. We later discuss how we evaluate the quality of a bundle.

As Leyton-Brown et al. (2000) state, some items may be more suitable to group

together and this may differ from seller to seller. To capture this property, we

generate a relation matrix for each seller like the synergy matrix in Buer and

Pankratz (2010). This matrix consists of 0’s and 1’s. “1” indicates that grouping

the corresponding items decreases the cost of the seller, whereas “0” indicates

that grouping the corresponding items does not have an effect on the seller’s cost.

We consider a cost function that takes economies of scope into account.

We randomly generate a relation matrix for each seller. For each seller-item pair

we assign defect rate and resource requirement values that will determine which

items the seller can combine to create bundles. Buer and Pankratz (2010) use

resource requirement as an indicator of the difficulty of supplying an item for a

seller. This difficulty may reflect itself in the cost of the item. The resource

requirement of an item may differ from seller to seller due to reasons such as the

differences in the technologic infrastructures of the firms. Defect rate levels and

resource requirement values are generated randomly from uniform distributions in

the ranges [] and [] respectively. We assume that the cost and defect

rate are inversely proportional, whereas the cost and resource requirement are

directly proportional. That is, smaller defect rates and higher resource

requirement levels will result in higher cost values.

 39

Generating cost values of singletons

Recall that denotes the defect rate value of singleton bid t for seller i. Let

and be the resource requirement and cost of singleton t, respectively. Let

 () ⁄ be the mean of the uniform distribution used to generate

values and
 () ()

 be the mean of the distribution that generates ⁄

values. Let max_cost and min_cost be the maximum and minimum values that a

singleton t can take, respectively. We generate the costs of bids as follows:

Step 0: Set i = 1.

Step 1: Set t = 1.

Step 2:

 ⁄

Step 3: Generate a random variate, v, from normal distribution with mean and

variance 1.

Step 4: If min_cost v max_cost, set = v. Otherwise go to Step 3.

Step 5: If t < M, then set and go to Step 2.

Step 6: If i < I, then set and go to Step 1. Otherwise, stop.

The cost value of singleton t for seller i, , is randomly generated based on its

defect rate value and resource requirement. We set =0.1, =0.5, min_cost =

0.5 and max_cost = 1.5 as in Buer and Pankratz (2010). Buer and Pankratz (2010)

generate quality values directly, whereas we generate defect rate as an indicator

of quality using = 0.2 and =1.

As stated above, each seller is assumed to have his/her own suitable item

combinations. While computing the defect rate and the resource requirement

levels of a bundle, we sum the defect rate and the resource requirement levels of

the items that the bundle consists of, respectively. As stated before, the resource

requirement levels are somewhat artificial values generated to restrict the item

combinations that can be bundled together. They also have impact on costs. We

assume that the resource requirement of a bid cannot exceed 1, that is the sum of

 40

the resource requirement levels of the items in a bundle should be less than or

equal to 1 as suggested by Buer and Pankratz (2010). We assign a lower and

upper bound to a bundled bid according to the costs of the singletons and the

bundles it consists of. Then we randomly generate a cost value for the bundled

bid between its lower and upper bounds.

Generating cost values for bundles

Recall that and denote the set of bundled bids and total bids given by seller

i. Let nit be the number of items in bid t of seller i. Let be the set of singletons

and bundled bids that contains all possible subsets of bundled bid t of seller i. Let

 be the set of bid compositions whose unions constitute bundled bid t of seller i

and whose intersections are empty. For example, let bundled bid t composed of

items 1, 2 and 3. Then, {() () () () () ()} and

 {[() () ()] [() ()] [() ()] [() ()]} The cost value of a

composition in is the sum of cost values of the bids it contains. We describe

how we generate the cost values for the bundles next.

Step 0: Set i = 1

Step 1: Set z = 2.

Step 2: for which set
{ } and

{ } Generate a random variate, v, from uniform distribution in the

interval () Set

Step 3: Set . If there are no bundled bids in with size , then stop.

Otherwise, go to Step 2.

Step 4: If i < I, then set and go to Step 1. Otherwise, stop.

After generating the sellers’ bids and their corresponding attribute values, we use

 functions (see Köksalan, 1999) to generate cost and defect rate pairs for which

the seller would be indifferent. The function can be written as:

 41

(
) (

) where ,
 and

 refer to the scaled defect rate

and cost values.

Commonly used functions use q values of 1, 2, and , , and

 correspond to rectilinear, Euclidean, and Tchebycheff distance functions,

respectively.

To generate different cost functions for the sellers, we randomly generate a q

value to represent the cost function of each seller. After generating the cost

function we randomly assign initial mark-up percentages (explained in Section

3.4) between mpl and mpu to the sellers for the first round.

We develop above the general framework of the cost function to experiment with.

We also consider cost functions with three attributes (Section 3.9).

3.7.2 Parameter Setting

We present our approach in an environment where there are three sellers and five

items where seller 1 has 11, seller 2 has 7 and seller 3 has 10 preferred

combinations. Based on our preliminary experiments, we set the threshold,

 and implying a required improvement of 10% in each round. We

use an ideal point for each attribute in our estimated preference function. Since

we minimize all attributes, we set the ideal point to the point where both attributes

are zero in this thesis. Without loss of generality, we set minimum mark-up

values to zero for each seller. That is, all sellers can bid with zero profits. We

terminate at the round when each seller bids with zero profit in all his/her bids.

There may be alternative termination conditions. For instance the buyer could

decide to terminate, for example, when he/she finds the improvement between

rounds to be small. It is also possible for some sellers to stop bidding if he/she

cannot be among provisional winners for a number of rounds.

 42

We use this problem setting to test the performance of the algorithms throughout

this thesis.

3.8 A Numerical Example for the 2-attribute Case

We provide a numerical example for ELIM-e. Both ALL-e and ELIM-e have

similar steps and since ELIM-e also includes an elimination procedure, we give an

example for this version only. In our experiments, we assume that the buyer has a

specific underlying true preference function, which we use to simulate his/her

preferences. In this example, we assume that the weights of attributes of the

buyer’s underlying preference function are 0.55 and 0.45 for price and defect rate,

respectively.

We round the values to four significant digits. We use the buyer’s underlying

preference function to report the preference values. We also report the estimated

preference values. In this chapter, we present the buyer efficient bid combinations

and we assume that he/she identifies the preferred and nonpreferred bid

combinations. Initial bids are given in Table 3.1.

 43

Table 3.1 Initial bids

In the tables, the items constituting a bid are given under the “Item” column. The

“Profitable” column represents whether the bid is profitable for the seller or not.

As soon as all sellers have zero in this column, indicating all sellers bid

unprofitably, the algorithm stops.

Round 1

Seller Bid Item Price Defect Rate Profitable

1 1 1 0.7707 0.8325 1

1 2 2 1.9295 0.6873 1

1 3 3 1.7187 0.65 1

1 4 4 1.2476 0.5149 1

1 5 5 0.7534 0.4734 1

1 6 1,3 2.1041 1.4825 1

1 7 2,5 2.5209 1.1607 1

1 8 3,5 2.2412 1.1234 1

1 9 1,3,5 2.563 1.9559 1

1 10 2,3,5, 3.3081 1.8107 1

1 11 1,2,3,5 3.9188 2.6432 1

2 1 1 0.9578 0.3709 1

2 2 2 1.4626 0.5018 1

2 3 3 0.8558 0.7844 1

2 4 4 1.8825 0.2289 1

2 5 5 1.4358 0.5573 1

2 6 1,3 1.4015 1.1553 1

2 7 2,5 2.0246 1.0591 1

3 1 1 1.6854 0.8493 1

3 2 2 1.7669 0.2768 1

3 3 3 1.7157 0.6529 1

3 4 4 1.6948 0.4581 1

3 5 5 2.0264 0.4346 1

3 6 1,3 3.181 1.5022 1

3 7 1,4 2.9701 1.3074 1

3 8 2,4 3.2017 0.7349 1

3 9 2,5 2.8067 0.7114 1

3 10 1,3,4 3.8325 1.9603 1

 44

Table 3.2 Efficient bid combinations for Round 1

We highlight the provisional winners and their corresponding bids in bold. In

Round 1, based on the bids in Table 3.1, we find 10 efficient combinations,

however, after applying (ELIMINATION) procedure we are left with 6 efficient

combinations given in Table 3.2. Among them, the buyer selects combination 6 as

best (remaining combinations are nonpreferred combinations). Based on this

information we estimate the weight values of the attributes. In fact estimating one

attribute’s weight is sufficient since the other weight can be estimated by

subtracting the estimated weight from 1. By solving (Wt) we find the following

values where and are the estimated weights of price and defect rate,

respectively:

 and

Round 1

Combination Seller Bid Item Price
Defect

Rate

Buyer’s True

Pref. Fn.

Value

1

1 3 3 1.7187 0.6500

4.9337
2 1 1 0.9578 0.3709

2 4 4 1.8825 0.2289

3 9 2,5 2.8067 0.7114

2

1 8 3,5 2.2412 1.1234

4.6666
2 1 1 0.9578 0.3709

2 4 4 1.8825 0.2289

3 2 2 1.7669 0.2768

3

2 4 4 1.8825 0.2289

4.2929 2 6 1,3 1.4015 1.1553

3 9 2,5 2.8067 0.7114

4

1 5 5 0.7534 0.4734

4.1528
2 4 4 1.8825 0.2289

2 6 1,3 1.4015 1.1553

3 2 2 1.7669 0.2768

5

1 4 4 1.2476 0.5149

3.9324
1 5 5 0.7534 0.4734

2 6 1,3 1.4015 1.1553

3 2 2 1.7669 0.2768

6

1 4 4 1.2476 0.5149

3.7987 2 6 1,3 1.4015 1.1553

2 7 2,5 2.0246 1.0591

 45

The estimated preference function values are calculated using the estimated

weight values and given under “Estimated Pref. Fn. Value” column in the tables.

The estimated preference function values for Round 1 are provided in Table 3.3.

Table 3.3 Efficient bid combinations with estimated preference function values

for Round 1

 and after improvement ()
() For

each item we estimate the following preference function values:

Table 3.4 Estimated preference function values at the end of Round 1

Round 1

Item Estimated Pref. Fn. Value

1 0.5874

2 0.7957

3 0.6143

4 0.9454

5 0.7926

Round 1

Combination Seller Bid Item Price
Defect

Rate

Buyer’s

True Pref.

Fn. Value

Estimated

Pref. Fn.

Value

1

1 3 3 1.7187 0.6500

4.9337 5.9111
2 1 1 0.9578 0.3709

2 4 4 1.8825 0.2289

3 9 2,5 2.8067 0.7114

2

1 8 3,5 2.2412 1.1234

4.6666 5.5435
2 1 1 0.9578 0.3709

2 4 4 1.8825 0.2289

3 2 2 1.7669 0.2768

3

2 4 4 1.8825 0.2289

4.2929 5.0154 2 6 1,3 1.4015 1.1553

3 9 2,5 2.8067 0.7114

4

1 5 5 0.7534 0.4734

4.1528 4.8166
2 4 4 1.8825 0.2289

2 6 1,3 1.4015 1.1553

3 2 2 1.7669 0.2768

5

1 4 4 1.2476 0.5149

3.9324 4.4295
1 5 5 0.7534 0.4734

2 6 1,3 1.4015 1.1553

3 2 2 1.7669 0.2768

6

1 4 4 1.2476 0.5149

3.7987 4.1504 2 6 1,3 1.4015 1.1553

2 7 2,5 2.0246 1.0591

 46

We inform the sellers about the estimated weights of attributes. We recommend

each seller that the updated preference function value of a combination should not

exceed and we also give the estimated preference function value for each

item separately.

Afterwards, each seller solves his/her own (MAKE_BID) model and the resulting

bids are provided in Table 3.5.

Table 3.5 Bids for Round 2

Round 2

Seller Bid Item Price Defect Rate Profitable

1 1 1 0.5034 0.955 0

1 2 2 0.7234 0.9919 1

1 3 3 0.6485 0.9829 0

1 4 4 1.0786 0.5836 1

1 5 5 1.0059 0.2133 1

1 6 1,3 0.9218 1.9618 1

1 7 2,5 1.4563 1.9467 1

1 8 3,5 1.2753 1.7644 1

1 9 1,3,5 1.7199 2.7394 1

1 10 2,3,5, 1.9562 2.8716 1

1 11 1,2,3,5 2.3916 3.8717 1

2 1 1 0.6582 0.4002 0

2 2 2 1.0349 0.2013 0

2 3 3 0.4818 0.9743 1

2 4 4 0.9988 0.8003 1

2 5 5 0.7325 0.9558 1

2 6 1,3 1.1734 1.2786 1

2 7 2,5 1.6442 1.4365 1

3 1 1 0.4372 0.9951 1

3 2 2 0.8156 0.7416 1

3 3 3 1.0789 0.8557 0

3 4 4 0.9625 0.8988 1

3 5 5 0.7388 0.9386 1

3 6 1,3 1.0699 1.9563 0

3 7 1,4 1.3862 1.9307 1

3 8 2,4 1.7743 1.6508 1

3 9 2,5 1.5662 1.6482 1

3 10 1,3,4 1.8852 2.8582 1

 47

Table 3.6 Efficient bid combinations for Round 2

In Round 2, using the bids in Table 3.5, we find 176 efficient combinations in

addition to the best combination saved from the previous round. The best

combination up to the current round turns out to be dominated by some efficient

combinations of the current round and we end up with 176 efficient combinations.

By applying (ELIMINATION) procedure we find out that 168 of the 176

combinations would not be preferred by the buyer and we present the remaining 8

Round 2

Combination Seller Bid Item Price
Defect

Rate

Buyer’s

True Pref.

Fn. Value

Estimated

Pref. Fn.

Value

1

1 4 4 1.0786 0.5836

3.3850 3.3713
1 5 5 1.0059 0.2133

2 2 2 1.0349 0.2013

2 6 1,3 1.1734 1.2786

2

1 4 4 1.0786 0.5836

3.5081 3.4992
1 5 5 1.0059 0.2133

2 6 1,3 1.1734 1.2786

3 2 2 0.8156 0.7416

3

1 2 1 0.7234 0.9919

3.5700 3.5636
1 4 4 1.0786 0.5836

1 5 5 1.0059 0.2133

2 6 1,3 1.1734 1.2786

4

1 2 2 0.7234 0.9919

3.6480 3.6446
1 5 5 1.0059 0.2133

2 6 1,3 1.1734 1.2786

3 4 4 0.9625 0.8988

5

1 10 2,3,5 1.9562 2.8716

3.9902 4.0002 3 1 1 0.4372 0.9951

3 4 4 0.9625 0.8988

6

1 2 2 0.7234 0.9919

3.9985 4.0088

2 3 3 0.4818 0.9743

3 1 1 0.4372 0.9951

3 4 4 0.9625 0.8988

3 5 5 0.7388 0.9386

7

1 2 2 0.7234 0.9919

4.0076 4.0183
2 3 3 0.4818 0.9743

3 5 5 0.7388 0.9386

3 7 1,4 1.3862 1.9307

8

1 2 2 0.7234 0.9919

4.0119 4.0227
2 3 3 0.4818 0.9743

2 5 5 0.7325 0.9558

3 7 1,4 1.3862 1.9307

 48

bids to the buyer. The buyer prefers combination 1 to the remaining seven

combinations. Incorporating this information into (Wt) and find the following

values:

 and

For each item we estimate the preference function values given in Table 3.7.

Table 3.7 Estimated preference function values at the end of Round 2

Round 2

Item Estimated Pref. Fn. Value

1 0.5024

2 0.6523

3 0.5880

4 0.8090

5 0.6463

The updated bids for Round 3 are given in Table 3.8.

 49

Table 3.8 Bids for Round 3

Round 3

Seller Bid Item Price Defect Rate Profitable

1 1 1 0.5638 0.8568 0

1 2 2 0.5687 0.9736 0

1 3 3 0.6723 0.9445 0

1 4 4 1.2328 0.3056 1

1 5 5 1.0205 0.2018 1

1 6 1,3 0.9459 1.8759 0

1 7 2,5 0.8531 1.8278 1

1 8 3,5 1.5091 1.3247 0

1 9 1,3,5 1.6990 2.2149 0

1 10 2,3,5, 1.4081 2.5910 0

1 11 1,2,3,5 1.5741 3.5873 0

2 1 1 0.7368 0.2534 0

2 2 2 1.0354 0.2003 0

2 3 3 0.2908 0.9410 1

2 4 4 0.9911 0.5927 1

2 5 5 0.4333 0.8993 1

2 6 1,3 1.3444 0.7888 1

2 7 2,5 1.5883 0.9545 1

3 1 1 0.1875 0.9892 0

3 2 2 0.9139 0.5186 0

3 3 3 1.1712 0.7010 0

3 4 4 0.8296 0.7845 1

3 5 5 0.4605 0.8670 1

3 6 1,3 1.1011 1.9045 0

3 7 1,4 0.8589 1.8489 1

3 8 2,4 1.6024 1.2937 1

3 9 2,5 1.3065 1.2892 1

3 10 1,3,4 1.2394 2.6916 0

 50

Table 3.9 Efficient bid combinations for Round 3

In Round 3, using the bids in Table 3.8, we find 50 efficient combinations and

from the previous rounds we have one more combination as the best combination

up to the current round which is dominated by some efficient combinations of the

current round. We end up with 50 efficient combinations. By applying

(ELIMINATION) procedure we eliminate 45 combinations and we are left with 5

efficient combinations. Among these 5 combinations the buyer finds

combinations 4 and 5 as best because the preference function value of the buyer

for these combinations are smallest and are within the threshold value of each

other. Combinations 1,2 and 3 are found as nonpreferred. By solving (Wt), we

find the following values:

 and

Round 3

Combination Seller Bid Item Price
Defect

Rate

Buyer’s

True Pref.

Fn. Value

Estimated

Pref. Fn.

Value

1

1 4 4 1.2328 0.3056

3.2216 3.2140
1 5 5 1.0205 0.2018

2 2 2 1.0354 0.2003

2 6 1,3 1.3444 0.7888

2

1 4 4 1.2328 0.3056

3.2130 3.2079 2 6 1,3 1.3444 0.7888

2 7 2,5 1.5883 0.9545

3

1 5 5 1.0205 0.2018

3.2100 3.2059 2 6 1,3 1.3444 0.7888

3 8 2,4 1.6024 1.2937

4

2 3 3 0.2908 0.941

3.1865 3.1904 3 7 1,4 0.8589 1.8489

3 9 2,5 1.3065 1.2892

5

1 7 2,5 0.8531 1.8278

3.1795 3.1859 2 3 3 0.2908 0.941

3 7 1,4 0.8589 1.8489

 51

Table 3.10 Estimated preference function values at the end of Round 3

Round 3

Item Estimated Pref. Fn. Value

1 0.4601

2 0.5993

3 0.5283

4 0.7188

5 0.5688

The updated bids for Round 4 are given in Table 3.11.

Table 3.11 Bids for Round 4

Round 4

Seller Bid Item Price Defect Rate Profitable

1 1 1 0.5608 0.8604 0

1 2 2 0.5681 0.9743 0

1 3 3 0.6711 0.946 0

1 4 4 1.0694 0.3096 0

1 5 5 0.8719 0.2019 1

1 6 1,3 0.9431 1.8792 0

1 7 2,5 0.6488 1.8322 0

1 8 3,5 1.4975 1.3386 0

1 9 1,3,5 1.6841 2.2328 0

1 10 2,3,5, 1.3995 2.6014 0

1 11 1,2,3,5 1.5652 3.5979 0

2 1 1 0.7352 0.2553 0

2 2 2 1.0354 0.2003 0

2 3 3 0.2865 0.9421 0

2 4 4 0.8182 0.5984 1

2 5 5 0.2942 0.9011 1

2 6 1,3 1.1996 0.7987 0

2 7 2,5 1.4869 0.9658 0

3 1 1 0.1873 0.9894 0

3 2 2 0.9092 0.5242 0

3 3 3 1.1674 0.7056 0

3 4 4 0.6615 0.7881 1

3 5 5 0.3205 0.8693 1

3 6 1,3 1.0997 1.9062 0

3 7 1,4 0.6827 1.8515 0

3 8 2,4 1.4622 1.3039 0

3 9 2,5 1.1379 1.2994 0

3 10 1,3,4 1.2349 2.6969 0

 52

Table 3.12 Efficient bid combinations for R4

In Round 4, using the bids in Table 3.11, we find 31 efficient combinations some

of which dominate the best combinations saved from the previous round. From

these 31 combinations, 29 combinations are eliminated by using

(ELIMINATION) procedure. We are left with two efficient combinations. The

buyer states indifference between these two combinations and with this additional

information; the estimated weight values turn out to be the same as those found in

Round 3. By providing improvement for each item we estimate the preference

function values given in Table 3.13.

Table 3.13 Estimated preference function values at the end of Round 4

Round 4

Item Estimated Pref. Fn. Value

1 0.4184

2 0.5562

3 0.4779

4 0.6469

5 0.4987

Round 4

Combination Seller Bid Item Price
Defect

Rate

Buyer’s

True Pref.

Fn. Value

Estimated

Pref. Fn.

Value

1

1 7 2,5 0.6488 1.8322

2.9198 2.9212 2 4 4 0.8182 0.5984

2 6 1,3 1.1996 0.7987

2

1 7 2,5 0.6488 1.8322

2.9190 2.9212 2 6 1,3 1.1996 0.7987

3 4 4 0.6615 0.7881

 53

Table 3.14 Bids for Round5

We set the termination condition to the event that all sellers bid with zero profit in

all their bids. Therefore, seller 3 continues bidding although he bids with zero

profit for each item.

Round 5

Seller Bid Item Price Defect Rate Profitable

1 1 1 0.5608 0.8604 0

1 2 2 0.5681 0.9743 0

1 3 3 0.6711 0.946 0

1 4 4 1.0694 0.3096 0

1 5 5 0.7439 0.2019 1

1 6 1,3 0.9431 1.8792 0

1 7 2,5 0.6488 1.8322 0

1 8 3,5 1.4975 1.3386 0

1 9 1,3,5 1.6841 2.2328 0

1 10 2,3,5, 1.3995 2.6014 0

1 11 1,2,3,5 1.5652 3.5979 0

2 1 1 0.7352 0.2553 0

2 2 2 1.0354 0.2003 0

2 3 3 0.2865 0.9421 0

2 4 4 0.6870 0.5984 1

2 5 5 0.1662 0.9011 1

2 6 1,3 1.1996 0.7987 0

2 7 2,5 1.4869 0.9658 0

3 1 1 0.1873 0.9894 0

3 2 2 0.9092 0.5242 0

3 3 3 1.1674 0.7056 0

3 4 4 0.6311 0.7881 0

3 5 5 0.2533 0.8693 0

3 6 1,3 1.0997 1.9062 0

3 7 1,4 0.6827 1.8515 0

3 8 2,4 1.4622 1.3039 0

3 9 2,5 1.1379 1.2994 0

3 10 1,3,4 1.2349 2.6969 0

 54

Table 3.15 Efficient bid combinations for Round 5

In Round 5, we find 30 efficient combinations using the updated bids in addition

to the best combinations saved from the previous round. From these 32

combinations, two combinations are dominated, two had been previously

presented, and 26 are eliminated using (ELIMINATION) procedure. The buyer

states indifference between the remaining two combinations. We incorporate this

information to solve (Wt). The estimated preference function values for each item

and the updated bids for Round 6 are given in Tables 3.16 and 3.17, respectively.

Table 3.16 Estimated preference function values at the end of Round 5

Round 5

Item Estimated Pref. Fn. Value

1 0.3875

2 0.5188

3 0.4411

4 0.5822

5 0.4488

Round 5

Combination Seller Bid Item Price
Defect

Rate

Buyer’s

True Pref.

Fn. Value

Estimated

Pref. Fn.

Value

1

1 5 5 0.7439 0.2019

2.8259 2.8214
2 2 2 1.0354 0.2003

2 4 4 0.6870 0.5984

2 6 1,3 1.1996 0.7987

2

2 2 2 1.0354 0.2003

2.8228 2.8214
2 4 4 0.6870 0.5984

2 5 5 0.1662 0.9011

2 6 1,3 1.1996 0.7987

 55

Table 3.17 Bids for Round 6

Table 3.18 Efficient bid combinations for Round 6

In Round 6, we find 29 efficient combinations using the updated bids in addition

to the two best combinations saved from the previous round. From these 31

combinations, two are dominated, five had been previously presented, and 23 are

eliminated using (ELIMINATION) procedure. As the possible weight range is

Round 6

Seller Bid Item Price Defect Rate Profitable

1 1 1 0.5608 0.8604 0

1 2 2 0.5681 0.9743 0

1 3 3 0.6711 0.946 0

1 4 4 1.0694 0.3096 0

1 5 5 0.6528 0.2019 1

1 6 1,3 0.9431 1.8792 0

1 7 2,5 0.6488 1.8322 0

1 8 3,5 1.4975 1.3386 0

1 9 1,3,5 1.6841 2.2328 0

1 10 2,3,5, 1.3995 2.6014 0

1 11 1,2,3,5 1.5652 3.5979 0

2 1 1 0.7352 0.2553 0

2 2 2 1.0354 0.2003 0

2 3 3 0.2865 0.9421 0

2 4 4 0.6366 0.5984 0

2 5 5 0.1627 0.9011 0

2 6 1,3 1.1996 0.7987 0

2 7 2,5 1.4869 0.9658 0

3 1 1 0.1873 0.9894 0

3 2 2 0.9092 0.5242 0

3 3 3 1.1674 0.7056 0

3 4 4 0.6311 0.7881 0

3 5 5 0.2533 0.8693 0

3 6 1,3 1.0997 1.9062 0

3 7 1,4 0.6827 1.8515 0

3 8 2,4 1.4622 1.3039 0

3 9 2,5 1.1379 1.2994 0

3 10 1,3,4 1.2349 2.6969 0

Round 6

Combination Seller Bid Item Price
Defect

Rate

Buyer’s

True Pref.

Fn. Value

Estimated

Pref. Fn.

Value

1

1 5 5 0.6528 0.2019

2.7481 2.7439
2 2 2 1.0354 0.2003

2 4 4 0.6366 0.5984

2 6 1,3 1.1996 0.7987

 56

narrowed considerably (lower and upper bounds of the weight of price are 0.5459

and 0.5530, respectively), the model can anticipate the best of 24 combinations

without asking the buyer. Since there is only one efficient combination, this will

not bring us any new information for estimation of weights. Therefore, we use

estimated weight values found in Round 5 and by providing improvement for

each item we estimate the preference function values given in Table 3.19.

Table 3.19 Estimated preference function values at the end of Round 6

Round 6

Item Estimated Pref. Fn. Value

1 0.3625

2 0.4877

3 0.4117

4 0.5295

5 0.4039

The updated bids for Round 7 are given in Table 3.20.

 57

Table 3.20 Bids for Round 7

Table 3.21 Efficient bid combinations for Round 7

In Round 7, we find 29 efficient combinations using the updated bids in addition

to the best combination saved from the previous round. From these 30

combinations, one is dominated, 17 had been previously presented and 11 are

eliminated using (ELIMINATION) procedure. We are left with a single efficient

Round 7

Seller Bid Item Price Defect Rate Profitable

1 1 1 0.5608 0.8604 0

1 2 2 0.5681 0.9743 0

1 3 3 0.6711 0.946 0

1 4 4 1.0694 0.3096 0

1 5 5 0.6158 0.2019 0

1 6 1,3 0.9431 1.8792 0

1 7 2,5 0.6488 1.8322 0

1 8 3,5 1.4975 1.3386 0

1 9 1,3,5 1.6841 2.2328 0

1 10 2,3,5, 1.3995 2.6014 0

1 11 1,2,3,5 1.5652 3.5979 0

2 1 1 0.7352 0.2553 0

2 2 2 1.0354 0.2003 0

2 3 3 0.2865 0.9421 0

2 4 4 0.6366 0.5984 0

2 5 5 0.1627 0.9011 0

2 6 1,3 1.1996 0.7987 0

2 7 2,5 1.4869 0.9658 0

3 1 1 0.1873 0.9894 0

3 2 2 0.9092 0.5242 0

3 3 3 1.1674 0.7056 0

3 4 4 0.6311 0.7881 0

3 5 5 0.2533 0.8693 0

3 6 1,3 1.0997 1.9062 0

3 7 1,4 0.6827 1.8515 0

3 8 2,4 1.4622 1.3039 0

3 9 2,5 1.1379 1.2994 0

3 10 1,3,4 1.2349 2.6969 0

Round 7

Combination Seller Bid Item Price
Defect

Rate

Buyer’s

True Pref.

Fn. Value

Estimated

Pref. Fn.

Value

1

1 5 5 0.6158 0.2020

2.7278 2.7237
2 2 2 1.0354 0.2003

2 4 4 0.6366 0.5984

2 6 1,3 1.1996 0.7987

 58

combination. We see that all profit values are zero at this time, indicating that no

seller can bid profitably. Therefore, the algorithm stops and the winners of the

auction are the winners of Round 7.

Table 3.22 The results of the ELIM-e

The true preference function value of each round is reported In Table 3.22.

Table 3.23 Buyer’s preference function value in each round

In Table 3.24, we provide the number of combinations before and after

(ELIMINATION) procedure for each round.

Table 3.24 Number of bid combinations

Winners of the Auction (ELIM-e)

Seller Bid Item Price Defect Rate

1 5 5 0.6158 0.2019

2 2 2 1.0354 0.2003

2 4 4 0.6366 0.5984

2 6 1,3 1.1996 0.7987

Round No
Buyer’s True Pref. Fn.

Value
Improvement (%)

1 3.7987 -

2 3.3856 10.8748

3 3.1795 6.0875

4 2.9190 8.1931

5 2.8228 3.2956

6 2.7481 2.6463

7 2.7278 0.7387

Round

No

Number of

Combinations

before Elimination

Number of

Combinations

found previously

Elimination

due to

Domination

Elimination due

to Weight Space

Reduction

1 10 0 0 4

2 177 0 1 168

3 51 0 1 45

4 33 0 2 29

5 32 2 2 26

6 31 5 2 23

7 30 17 1 11

 59

We also report the estimated weights and estimated bounds for the weight of the

price attribute in each round in Table 3.25.

Table 3.25 Estimated bounds for the weight of the price and estimated weights in

each round

To show the performance of the algorithm, we compare the results of the

algorithm with the ones found using the exact parameter values. We find what the

results would have been had the sellers known the buyer’s true preference

function explicitly, assuming, without loss of generality, that the sellers would bid

zero profit as in the case of the algorithm’s solution. We also assume that sellers

bid independently of each other as in our experiments. Recall that, by

construction, each seller has bid combinations in which he/she is competitive,

based on his/her cost function. Now that we make calculations with full

information (on the sellers’ cost functions and buyer’s preference function), we

can find the optimal attribute values for all bids of all sellers in which they are

competitive by solving the (MAKE_BID) problem under the zero profit

assumption. Then using these bids we solve the (EFFCOM) problem and find the

possible best combination(s). This case is reported as “Decentralized.” The results

for Decentralized case for the numerical example are provided in Table 3.26.

Round

No

Estimated LB for

Weight of Price

Estimated UB for

Weight of Price

Estimated

Weight of

Price

Estimated

Weight of

Defect Rate

1 0.3963 1.0000 0.7309 0.2691

2 0.3963 0.6981 0.5429 0.4571

3 0.5459 0.5530 0.5476 0.4524

4 0.5459 0.5530 0.5476 0.4524

5 0.5459 0.5530 0.5476 0.4524

6 0.5459 0.5530 0.5476 0.4524

7 0.5459 0.5530 0.5476 0.4524

 60

Table 3.26 The results for the Decentralized case

When we compare the results found by the algorithm and the Decentralized case,

we see that we find the same winners with the same bids as we estimate the true

weights very closely. This is expected, and the estimations would keep improving

with the amount of preference information and converge to the true weights with

sufficient information.

We also compare the preference function values of the buyer for the winning

bidders found with the algorithm and in the Decentralized case. We check the

percent deviations of the algorithm from Decentralized using the following

formula:

 () ()

 ()

where () and () refer to the

preference function value s of the final bid combination found by the ELIM-e and

Decentralized, respectively.

We use 10 different weight values for the price attribute () to generate different

problems for both linear and nonlinear cases. The percentage deviations for the

linear case are reported in Table 3.27.

Winners of the Auction (Decentralized)

Seller Bid Item Price
Defect

Rate

Combination

Price

Combination

Defect Rate

Buyer’s

True Pref.

Fn. Value

1 5 5 0.6158 0.2020

3.4807 1.8075 2.7278
2 2 2 1.0354 0.2003

2 4 4 0.6341 0.6014

2 6 1,3 1.1954 0.8038

 61

Table 3.27 Percentage deviations between the results of ELIM-e and the

decentralized optimal solution

In all problems the winning bidders found by the algorithm and Decentralized are

the same, i.e. allocative efficiency is satisfied. As can be seen from Table 3.27,

the percentage deviations are very small, i.e. for all problems the buyer’s

preference function found with the algorithm is close to that found by

Decentralized. Moreover, with (ELIMINATION) procedure we substantially

decrease the number of alternatives presented to the buyer. These imply that the

estimation and guidance mechanisms of our approach worked well in all the test

problems.

3.9 The 3-attribute Case

We consider lead time as the third attribute. In this case, we construct the cost

function in such a way that improvements in the defect rate and lead time both

increase the cost in different magnitudes. The relation of the defect rate with cost

is the same as that of the two attribute case. For the three attribute case, we

generate a convex cost function and apply a procedure similar to MAKE_BID

procedure to determine the updated bids. For the sake of completeness, we

provide the whole procedure below:

Parameters:

 : estimated weight of price where

 : estimated weight of defect rate where >0

 : estimated weight of lead time where >0

 : estimated preference function value for bid t (ADSS provides the estimated

preference function value for each item separately and the estimated preference

function of a bundle is calculated by adding up the estimated preference function

values of the items in the bundle)

 =0.05 =0.15 =0.25 =0.35 =0.45 =0.55 =0.65 =0.75 =0.85 =0.95

0.0084 0.0064 0.0000 0.0000 0.0040 0.0000 0.0075 0.0043 0.0000 0.0245

 62

: minimum mark-up percentage for seller i; if it is 0, then seller i may bid

with zero profit. For the sake of simplicity let
 ⁄ .

 the cost function of seller i for bid t

 () (((

)

)

) (

)

 (

)

 (
)

where

 : maximum defect rate value that can be offered by seller i for bid t

 : minimum defect rate value that can be offered by seller i for bid t

 : maximum cost of bid t for seller i (at

)

 : minimum cost of bid t for seller i (at

)

 : maximum lead time value that can be offered by seller i for bid t

 : minimum lead time value that can be offered by seller i for bid t

 : parameter of the Lq cost function for seller i

 : positive constant

Decision Variables:

 = price offered by seller i for bid t

 = defect rate offered by seller i for bid t

 = lead time value offered by seller i for bid t

Each seller tries to maximize his/her profit by solving the following problem.

Problem (MAKE_BIDit)

Max () () (5.1)

s.to

 (5.2)

 (5.3)

 (5.4)

 (5.5)

The objective function is equivalent to

 63

Max ()

 () ().

Similar to Section 3.4, we conclude that () is concave and we utilize the

properties of concave functions and determine the updated bids as follows:

The objective function can be rewritten as follows:

 ()

 () (((

)

)

) (

) ()

 ()
 (

)(

)

Since (

) is concave, to find the optimal defect rate and lead time values

we check the stationary and boundary points.

At stationary point:

(

()(

)

 (
)

 ((

) (
)

)() ⁄

 ()

(

)(
)

)

After some manipulations, we obtain

() ()⁄ (

) ()⁄

(((

))
 ()⁄

 ((

)())
 ()⁄

)
 ⁄

 (
 ()

 (

)

)
 ⁄

 is same with that of in 2-attribute case. For

 we also check the upper bound.

If

 () (

)

 and seller bids

profitably. Otherwise,
 () (

) and seller bids with his/her

predetermined mark-up only and no extra profit is possible.

 64

All the steps are the same as the 2-attribute case except that to find the efficient

solutions for 3-attribute problems we use the algorithm suggested by Lokman and

Köksalan (2012).

We set K=10, and set minimum and maximum lead time values for each item to 1

and 2, respectively. We calculate the lead time value of a bundle by summing up

the lead time values of the items that constitute the combination. Other

parameters take the same values as in the 2-attribute case. We use 10 different

weight values for the attributes to generate different 3-attribute problems. We use

ELIM-e and report the results for 7 problems in Tables 3.28 and 3.29.

Table 3.28 Preference function values of the combinations found by ELIM-e and

the decentralized optimal solution (3-attribute case)

Table 3.29 Percentage deviations between the results of ELIM-e and the

decentralized optimal solution (3-attribute case)

In all problems, the winning bidders found by the algorithm and Decentralized are

the same. The largest percentage deviation of the preference values obtained by

the winning bidders of the algorithm from that of Decentralized is 0.3973%.

Therefore, we say that our algorithm works well in all the problems solved for the

3-attribute case.

 =0.1

 =0.1

 =0.8

 =0.1

 =0.8

 =0.1

 =0.8

 =0.1

 =0.1

 =0.1

 =0.45

 =0.45

 =0.45

 =0.1

 =0.45

 =0.45

 =0.45

 =0.1

 =0.33

 =0.33

 =0.33

ELIM-e 5.0957 2.0285 2.6424 3.6972 4.1667 3.3715 4.2205

Decentralized 5.094 2.0284 2.6422 3.6953 4.1667 3.371 4.2038

 =0.1

 =0.1

 =0.8

 =0.1

 =0.8

 =0.1

 =0.8

 =0.1

 =0.1

 =0.1

 =0.45

 =0.45

 =0.45

 =0.1

 =0.45

 =0.45

 =0.45

 =0.1

 =0.33

 =0.33

 =0.33

0.0334 0.0049 0.0076 0.0514 0.0000 0.0148 0.3973

 65

3.10 Local Linear Approximation for Nonlinear Preference Functions

So far, we tested the algorithm for underlying linear preference functions. In this

section, we assume that the buyer has an underlying decreasing quasiconvex

preference function. We locally approximate the buyer’s preference function with

a linear function. We estimate the weight values using a variation of (Wt) model.

If the model is feasible, we use the weights that solve (Wt). However, if there are

no weights satisfying the constraints, we relax the constraints that cause

infeasibility and solve the problem again. There are many ways of choosing

which constraints to remove (see for example Chinneck 2008). In our infeasibility

reduction heuristic, we solve the following (IR) problem to identify a set of

constraints causing infeasibility.

Recall that represents the k
th

 efficient combination presented to the buyer for

the current round. () denotes the estimated preference function value of the

buyer for and denotes the level of attribute j of

Parameters:

 : predetermined threshold level by which the buyer can distinguish between bid

combinations

 : a small positive constant

 : level of attribute j in efficient combination k

Decision Variables:

 : maximum amount of infeasibility

 ̂: estimated weight of attribute 1

 : amount of infeasibility in the preference constraint for each preferred to

each

 : amount of infeasibility in the preference constraint for each and the

buyer is indifferent between

 66

Model (IR)

Min ∑ ()

 (6.1)

s.to

 () ̂ +(̂) (6.2)

 () () for each (6.3)

 () () () for each (6.4)

 for each (6.5)

 for each (6.6)

 for each (6.7)

 for each , (6.8)

 ̂ (6.9)

In the original (Wt) model, we assume that all constraints are feasible and we try

to maximize . In the (IR) model we remove variable and add nonnegative

 and for each , . We try to minimize the maximum

contribution to infeasibility. We also use an augmented part that is the sum of

infeasibility contributions to break the ties. The (IR) model is always feasible as

for each preference constraint there is a variable that captures the amount of

violation, while keeping the constraint feasible. If the objective is strictly positive,

the constraints with strictly positive or contribute to infeasibility.

Instead of deleting these constraints, we allow them to be violated while

minimizing the violation of the constraint that has the maximum violation.

In the nonlinear case, we apply ELIMINATION procedure to eliminate some of

the efficient combinations in the initial phases since we assume linearity for the

buyer’s preference function. We stop using ELIMINATION when the (IR)

problem has a positive objective function value. The reason is that when the (IR)

problem has a positive objective function value, it is discovered that the linearity

assumption for the buyer’s preference function is violated. Continuing with

ELIMINATION can lead to the elimination of some of the efficient combinations

that might be preferred by the buyer. Therefore, until the (IR) model has a

positive objective function value, we apply ELIMINATION but afterwards we

 67

present the buyer all the efficient combinations of the succeeding rounds without

applying ELIMINATION. In this approach, as we apply ELIMINATION

procedure at the beginning of the rounds, we may eliminate good solutions before

observing the violation of the linearity assumption. To avoid such deficiencies

some repairing methods can be used. For instance, when the linearity assumption

failed, the alternatives eliminated at the beginning of the corresponding round

may also be presented to the buyer.

We test the performance of the algorithm by simulating the preferences of the

buyer having an L preference function; specifically we use the weighted

Euclidean () and the weighted Tchebycheff () functions.

We use 10 different weight values for the attributes to generate different 2-

attribute problems. The results are given in Table 3.30.

Table 3.30 Percentage deviations between the results of the algorithm and

decentralized optimal solution under weighted Euclidean preference function

Table 3.31 Percentage deviations between the results of the algorithm and

decentralized optimal solution under weighted Tchebycheff preference function

When we look at the results in Table 3.30 the percent deviations are very small.

In Table 3.31, however, the highest percent deviation is 8.2693. When we check

the reason for such a high percent deviation, we see that between rounds we

eliminate the best of the previous round as we apply ELIMINATION procedure

until discovering that the underlying preference function is not linear. As

suggested before some repairing operations may be applied. Even in this case, the

average percent deviation is 0.3612. Moreover, in both tables we see in some test

 =0.05 =0.15 =0.25 =0.35 =0.45 =0.55 =0.65 =0.75 =0.85 =0.95

0.0306 0.0090 -0.0869 0.2911 -0.3593 -1.0399 -0.0052 0.1155 0.0208 0.0000

 =0.05 =0.15 =0.25 =0.35 =0.45 =0.55 =0.65 =0.75 =0.85 =0.95

0.0421 8.2693 -3.3448 -2.0733 -0.4471 -0.1517 -4.8684 6.1857 0.0000 0.0000

 68

problems that our algorithm performed better than Decentralized. We conclude

that the estimation and guidance mechanisms of our approach worked well when

the buyer has a nonlinear preference function. Although Decentralized finds

better preference function values for each bid separately, when a combination is

constructed, the preference function of a combination for the Decentralized case

may be worse than that of ours for the considered nonlinear preference functions.

This result is not surprising when the underlying preference function is nonlinear.

We demonstrate this situation with a simple example with two bids. Suppose the

buyer has a weighted Euclidean preference function with equal weights for price

and defect rate. Consider the attribute values of the bids presented in Table 3.32.

Table 3.32 Attribute values for each bid separately

 Decentralized Algorithm

 price
defect

rate

Buyer’s

preference

function value

price
defect

rate

Buyer’s

preference

function value

Item 1 1.0 2.0 1.1180 1.7 1.5 1.1336

Item 2 1.0 2.0 1.1180 1.2 1.9 1.1236

Combination 2.0 4.0 1.2361 2.9 3.4 1.2344

In Table 3.32, we see that Decentralized finds better preference function values

for each bid separately. However, when a combination is constructed, the

preference function of a combination for the Decentralized case is worse than that

of the algorithm.

 69

CHAPTER 4

4 AN INTERACTIVE METHOD TO FIND THE BEST BID

COMBINATION

In Chapter 3, we used ELIMINATION procedure to decrease the number of

efficient combinations presented to the buyer. However, even after applying this

procedure, the number of remaining efficient combinations may be high and it

might be difficult for the buyer to evaluate them all. Therefore, we apply a multi-

criteria decision making (MCDM)-based method to support the buyer to find the

best bid combination among the given bid combinations. In this chapter we

develop an interactive algorithm for the case where the underlying preference

function is linear. We first give an overview of the approach. We then explain the

algorithm and discuss the results. Lastly, we present a heuristic approach for

underlying nonlinear preference functions.

4.1 The Interactive Approach

The stages of the approach are similar to those in Section 3.1. The main

difference is that in ELIM-e, in each round we first find a set of efficient

combinations and then ask the buyer to compare them; whereas in this method

these processes are not sequential but interactive. For the sake of completeness,

we provide the stages of the new interactive approach in Figure 4.1.

 70

Figure 4.1 The stages of the interactive approach

4.2 An Interactive Algorithm (LIN-u)

We introduce an interactive algorithm, LIN-u, to find the most preferred

combination of a buyer for the 2-attribute case. We assume an underlying linear

preference function and apply a variation of the algorithm developed by Zionts

(1981). Since we assume a linear preference function, the most preferred solution

of the buyer is a supported efficient solution. Thus we deal with only the extreme

supported efficient solutions. In the algorithm, the buyer compares an incumbent

efficient solution with its adjacent efficient alternatives. We reduce the weight

space based on the preferences of the buyer. If an adjacent efficient alternative is

preferred to the current incumbent, a new incumbent is generated and the

algorithm continues until an incumbent is preferred to all its adjacent efficient

alternatives. Since we assume an underlying linear preference function, the

Sellers give their bids at the first round. In succeeding rounds,

sellers,

- based on the provided information update their bids to maximize

their profits by solving their (MAKE_BID) model.

ADSS

- considers all given bids for the current round and applies an

interactive method to support the buyer to find the best bid

combination and to estimate weights.

ADSS

- solves (Wt) model to estimate the weight values of attributes,

- estimates the preference function value of each item separately and

improves the estimated preference function value of the buyer,

- informs sellers about the estimated weight values of attributes and

estimated preference function value of each item.

 71

resulting solution at the end of the algorithm is the best solution of the current

round (see Zionts 1981). Zionts (1981) does not consider the case where the buyer

expresses indifference between two alternatives. In our algorithm, we consider

such cases as well. Moreover, unlike Zionts (1981), we do not have all solutions

at hand at the outset but we rather generate each solution to be presented to the

buyer as needed.

We note that it is also possible to find all efficient combinations first and then

apply the interactive method.

LIN-u algorithm is a generalization of Zionts’ method and is applicable for the

general bi-objective integer programming problems. As mentioned before, we use

the terms DM and buyer interchangeably. The algorithm for the single-round

linear case follows:

LIN-u

In our indifference relations we do not assume transitivity; that is, if the DM

indicates indifference between alternatives A and B as well as between

alternatives B and C, we do not automatically assume indifference between A and

C. However, we construct a set, IN, that contains indifferent alternatives based on

direct comparisons and transitivity relations. Let and be the alternatives

having the maximum values in attributes 1 and 2 among the alternatives in IN,

respectively. These alternatives correspond to the extremes of set IN in the two

attributes. Since an alternative can have at most two distinct adjacent efficient

alternatives in the two attribute case, we classify them as the east and west

adjacent efficient alternatives. Let and be the east and west adjacent

efficient alternatives to the incumbent, respectively. Select an arbitrary direction

(DIR) to search an adjacent efficient alternative to the incumbent. Let DIR=east

correspond to searching for and DIR=west correspond to searching for .

Set iteration counter i = 1. Without loss of generality set DIR=east and

 Let and be the values of attributes 1 and 2 of the corresponding

 72

solution, respectively, () where is the estimated weight of

attribute 1 and be a small positive constant. Recall that and are the

estimated lower and upper bounds for the weight of attribute 1, respectively.

In the algorithm, after the DM expresses his/her preferences, we construct the

corresponding preference constraint(s) which constitute the feasible weight space

of the (Wt) model explained in Section 3.3.

We first discuss the details of various aspects of the algorithm and then give the

steps.

At the beginning, we select arbitrary weights to find an alternative. In the auction

example, at the beginning of Round 1, we assume equal weights for attributes

since we have no information. We solve the following (ALT) model to find a new

alternative with the estimated weights:

Parameters:

 : level of attribute j offered by seller i in bid t

 : 1 if bid t of seller i includes item m; 0 otherwise

 : the number of bids offered by seller i

 : estimated weight of attribute 1

Decision Variables:

 : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise

 ̂ : level of attribute j of the optimal alternative

 73

Model (ALT)

Min ̂ () ̂ (7.1)

s.to

∑ ∑

 (7.2)

 ̂ ∑ ∑

 (7.3)

 { } (7.4)

In (ALT), we aim to minimize the estimated preference function value by using

the estimated weights. Constraint set (7.2) guarantees satisfying the demand for

each item.

After finding an incumbent, we then find the adjacent efficient alternative of the

incumbent based on the search direction. We adapt the method proposed by Aneja

and Nair (1979). They find all supported efficient solutions of a bi-objective

problem by minimizing a linear function of the two objectives whose weights

they systematically change. We next explain the procedure to find east adjacent

efficient alternative of an incumbent. The procedure for finding the west adjacent

efficient alternative is similar.

Finding east adjacent efficient alternative (ADJ_E)

Recall that and be the incumbent, east and west adjacent efficient

alternatives, respectively, and and be the estimated lower and upper

bounds for estimated weight of attribute 1, respectively. Let be the eastmost

alternative having the maximum price value that bounds the search region. If

has not been found previously, set where is a small positive constant and

solve (ALT). Set the solution of (ALT) to Afterwards, as the DM expresses

his/her preferences the value of will be updated if necessary. For instance if

the DM prefers to , then set .

We note that if at the beginning it indicates that there is no east

adjacent efficient alternative of In this case, we skip the following steps.

 74

Step 1: Set

 Solve (ALT) using and considering the

following additional constraints to bound the search region:

 ̂
 (7.5)

 ̂
 (7.6)

 ̂ () ̂
 ()

 (7.7)

where is a small positive constant and is the slack variable of the

corresponding constraint. If there is a feasible solution, ̂ having a positive

value, set ̂ and go to Step 1. Otherwise go to Step 2.

Step 2: Set . Stop.

In Step 1, we calculate the weights of the linear function passing through the

incumbent and the eastmost alternative. Then we find the solution that minimizes

the estimated preference function with the corresponding weights applying (ALT)

and additional constraints. Although (ALT) itself is always feasible, with the

additional constraints we cannot guarantee to find feasible solutions. Since both

 and are supported efficient solutions, we use and bound the search

region with constraints (7.5) and (7.6). Although these two constraints are

redundant, to emphasize the search region we keep them in the model. In (7.7) we

check the slack variable value. If it is zero or negative, then the solution, ̂, is

convex dominated by the points on the line passing through the incumbent and

 . We continue to search if there is a feasible solution with a positive slack

variable value.

After finding an adjacent alternative we check whether the adjacent alternative

can be preferred to the incumbent based on past preference information. To do

this, we check whether the weights making the adjacent alternative preferred to

the incumbent are in the feasible weight region or not. If the weights favoring the

adjacent alternative are in the feasible weight space we ask the DM to compare

the incumbent and the adjacent alternative. Otherwise, we conclude that the

adjacent alternative cannot be preferred by the DM based on his/her past

preferences due to Theorem 1 in Chapter 3. In the algorithm, we find the

 75

incumbent using the estimated (feasible) weights. However, we do not know

whether the weights favoring the adjacent alternative are in the feasible weight

space or not. Therefore, we check which refers to the weight of attribute 1

that makes equivalent to . If the direction is west and is greater

than the upper bound of the weight of attribute 1 or if the direction is east and

 is smaller than the lower bound of the weight of attribute 1, we say

that there does not exist weights in the feasible weight space that make the

adjacent alternative preferable to the incumbent.

We next provide the steps of the algorithm LIN-u.

Step 1: Select an arbitrary set of weights, find an incumbent, and go to Step 3.

Step 2: Set Find a solution, using If or go to

Step 3. Else, if , go to Step 2.1. Else go to Step 2.2.

Step 2.1: If
 , set DIR=west; otherwise set DIR=east. Ask the DM

 versus If

- is preferred to , add a constraint () Set and

go to Step3.

- is preferred to , add a constraint () Switch the value

of DIR (i.e. set DIR=east if it is equal to west and set DIR=west if it is equal

to east) and go to Step 3.

- the DM is indifferent between and , add constraints ()

 and () Set { }, update and go

to Step 3.

Step 2.2: If
 set and DIR=west. Else set and

DIR=east.

Ask the DM versus . If

- is preferred to , add a constraint () Set

{ } If set otherwise set Ask the DM versus

 . If

 76

 is preferred to , add a constraint () Set

 , and go to Step 3.

 the DM is indifferent between and , add constraints (

) and () Set { },

check (i.e. if update otherwise update if

necessary) and go to Step 3.

- is preferred to , add a constraint () Switch the value

of DIR.

- the DM is indifferent between and , add constraints ()

 and () Set { } and check .

Step 3: If DIR=east, find and set ; otherwise find and set

 . If there does not exist or () pair has been compared

previously, go to Step 3.1. Otherwise, set =

 and if

DIR=east go to Step 3.2; otherwise go to Step 3.3.

Step 3.1: If both and have been evaluated before, go to Step 5.

Otherwise, switch the value of DIR and go to Step 3.

Step 3.2: If , go to Step 3.1; otherwise go to Step 4.

Step 3.3: If , go to Step 3.1; otherwise go to Step 4.

Step 4: If , go to Step 4.1.Else go to Step 4.2.

Step 4.1: Ask the DM versus . If

- is preferred to , add a constraint () Set

 and go to Step 6.

- is preferred to , add a constraint () If both

and have been evaluated go to Step 5. Otherwise switch the value of DIR

and go to Step 3.

- the DM is indifferent between and , add constraints ()

 and () . Set { } and update

 If both and have been evaluated go to Step 5. Otherwise switch

the value of DIR and go to Step 3.

 77

Step 4.2: If DIR=west, set ; otherwise set . Ask the DM

versus . If

- is preferred to , add a constraint () Set

 { }, if DIR=west, set otherwise set Ask the DM

versus . If

 is preferred to , add a constraint ()

Set , and go to Step 6.

 the DM is indifferent between and , add constraints

 () and () Set

 { } and check . If both and have been

evaluated go to Step 5. Otherwise switch the value of DIR and go to

Step 3.

- is preferred to , add a constraint () If both

and have been evaluated go to Step 5. Otherwise switch the value of DIR

and go to Step 3.

- the DM is indifferent between and , add constraints ()

 and () . Set { } and check

 If both and have been evaluated go to Step 5. Otherwise switch

the value of DIR and go to Step 3.

Step 5: If any of the following three conditions are satisfied, go to Step 7.

Otherwise go to Step 6.

- incumbent has no adjacent efficient alternative

- and is preferred to all its adjacent efficient alternatives

- and both and are at least as preferable as their adjacent

efficient alternatives

Step 6: Find a feasible set of weights satisfying all constraints corresponding to

past preferences of the DM by solving the (Wt) and go to Step 2.

Step 7: If , is the most preferred solution. Otherwise, present the DM

the solutions in set . Stop.

 78

In Step 2.2, if is preferred to after making necessary updates, we then

consider 2 possibilities: “ is preferred to ” or “the DM is indifferent between

 and ”. Using the following theorem, we omit “ is preferred to ” case

which is not possible. In Step 4.2, a similar situation exists. For the sake of

completeness, we show this result with the following theorem.

Theorem 2: Let be the minimum value difference between alternatives to

warrant preference between two alternatives. Consider three alternatives , and

 , and assume the DM is indifferent between and , and prefers to . Then

 cannot be preferred to .

Proof: If the DM is indifferent between and , then () ()

 () . If is preferred to , then () () . () ()

 () () (). Therefore, cannot be preferred to . □

So far, we have discussed the interactive LIN-u algorithm for a single round. In

the next section, we discuss the multi-round case.

4.3 Interactive LIN-u for Multi-round

In the multi-round case, at each round, we expect the sellers to improve their bids

in such a way that the resulting combinations of the next round have improved

preference function values of approximately “100γ” percent of the estimated

value of the best combination of the current round as in Karakaya and Köksalan

(2011). Therefore, after estimating a preference function based on past

preferences of the buyer, we provide information to the sellers about a possible

way of improving their bids. Using the information together with their cost

functions, sellers update their bids for the next round. The auction continues until

a termination condition is met.

 79

4.3.1 Bid Update

At the end of each round, sellers update their bids for the next round according to

their cost functions. Each seller solves his/her own mathematical model

(explained in Section 3.4) to update his/her bids. If there are feasible bids with

extra profit, then the seller gives the best possible bids with his/her predetermined

mark-up.

After taking the updated bids from the sellers, we find a new bid combination as

the incumbent of the current round using the estimated weights found at the end

of the previous round and continue.

We next discuss checking the status of the previous best solution (whether it is

extreme or nonextreme supported, or unsupported nondominated, or dominated).

4.3.2 Status of the Solution (SoS)

We guarantee to find the most preferred bid combination of the current round by

applying LIN-u under the linear preference function assumption. In Step 1 of LIN-

u we select arbitrary weights from the feasible weight space and find an

incumbent. Then we progress by checking the adjacent efficient alternatives of

the incumbent. In the multi-round case we keep the best alternative(s) up to the

current round to be compared with the new incumbent of the current round. In

this section, we explain the method for the multi-round case. For the sake of

simplicity, we assume that we have a single best alternative at the end of any

round. That is in Step 7 of LIN-u, we assume .

Let be the best alternative up to the current round. At the beginning of the

current round, after finding an incumbent with the estimated weights and updated

bids, we check whether is extreme supported or not.

Here, we utilize the notation of LIN-u. We consider an additional step, Step 0, at

the beginning of the algorithm. The remaining steps are the same as LIN-u.

 80

Step 0: Find a solution, using . Check whether is extreme supported

or not by applying SoS procedure (below). If it is extreme supported, set

 and go to Step 2.1 (of LIN-u). Otherwise, set and go to Step 3 (of

LIN-u).

We consider Figure 4.2 to visualize the possible regions where bid may be

located.

Figure 4.2 The possible regions for

We check whether an alternative is extreme supported or not by applying the

following SoS procedure:

The steps of SoS:

Step 1: Check the dominance relations between and If is in Region

2, go to Step 5. Otherwise, if there exists ̂ such that ̂ and convex dominate

 go to Step 5.

Step 2: If is in Region 1 find the east adjacent alternative of otherwise

find the west adjacent alternative of If there does not exist an adjacent

alternative, go to Step 4. Otherwise go to Step 3.

Step 3: Check whether there exists ̂ such that ̂ and the adjacent alternative

convex dominate If there does not exist ̂ go to Step 4. Otherwise go to

Step 5.

Step 4: Set and stop.

Step 5: Set and stop.

Attribute 2

Attribute 1

𝒆𝑃𝑅𝐸𝑉
Region 1

Region 2

Region 3

 81

In Step 1, if is in Region 2, dominates Therefore we stop and

continue with the new found alternative, If is in Region 1 or Region 3 we

need an iterative procedure. We explain the procedure for the case that is in

Region 1 and the procedure is similar for Region 3.

If is in Region 1, we search for an ̂ such that ̂ and convex dominate

We set

, bound the search region as in Figure 4.3 and

solve model (SoS_S1).

Figure 4.3 The search region in Step 1

Model (SoS_S1)

Min ̂ () ̂ ̂ (8.1)

s.to

∑ ∑

 (8.2)

 ̂ ∑ ∑

 (8.3)

 ̂ () ̂
 ()

 (8.4)

 ̂ (8.5)

 ̂
 (8.6)

 { } (8.7)

where is a small positive constant.

Attribute 1

Attribute 2

(8.4)

(8.6)

(8.5)

Attribute 2

Attribute 1

 82

The augmented part (̂) in the objective function is used to break ties between a

candidate solution on the line passing through and , and First two

constraints are the same as the first two constraints of (ALT). (8.4), (8.5) and

(8.6) bound the search region. Since is a supported solution, (8.5) is redundant;

however to emphasize the search region we keep it in the model. We note that

instead of using an augmented part, the problem can also be solved in a

lexicographic manner. First, the problem can be solved to minimize ̂

() ̂ If ̂
 then the problem can be solved to minimize ̂ without

sacrificing from the optimal value of the former objective. If there is a feasible

solution, ̂ different than , we conclude that is unsupported or

nonextreme supported, and we continue with Otherwise we keep searching

with Step 2 of SoS.

In Step 2, we search for an east adjacent efficient alternative of in the

shaded region in Figure 4.4 by using ADJ_E. If there does not exist an adjacent

alternative on the east of we conclude that is extreme supported and

continue with Otherwise we keep searching with Step 3 of SoS.

Figure 4.4 The search region in Step 2

In Step 3, we search for an ̂ such that ̂ and convex dominate We set

, bound the search region as in Figure 4.5 and solve

model (SoS_S2).

Search region

Attribute 1

Attribute 2

 83

Figure 4.5 The search region in Step 3

Model (SoS_S2)

Min ̂ () ̂ (9.1)

s.to

∑ ∑

 (9.2)

 ̂ ∑ ∑

 (9.3)

 ̂ () ̂
 ()

 (9.4)

 ̂ (9.5)

 ̂
 (9.6)

 { } (9.7)

where is a small positive constant.

In SoS_S2, we aim at finding a feasible solution in the search region. Therefore

any objective function can be used in the model. First two constraints are the

same as the first two constraints of (ALT). (9.4), (9.5) and (9.6) bound the search

region. As stated before, since is a supported solution, (9.5) is redundant. If

there is a feasible solution, ̂ we conclude that is unsupported or

nonextreme supported; otherwise, we say that is extreme supported. The

SoS procedure ends with this step.

Attribute 1

Attribute 2

(9.4)

(9.6)

(9.5)

Attribute 2

Attribute 1

 84

In Step 2 of SoS, we choose the east adjacent alternative of to search as we

assume that is in Region 1. Finding west adjacent alternative of will give

similar results. If has no east or west adjacent alternative in the search

region, we simply conclude that is extreme supported. If has an

adjacent alternative, we can determine whether is extreme supported or not

with an additional step. We use the adjacent alternative to enlarge the search

region as much as possible for finding an ̂ such that ̂ and convex dominate

 For the sake of completeness, we show this result with the following

theorem considering the east adjacent alternative.

Theorem 3: Consider Regions 4 and 5 in Figure 4.6. If there exist ̂ in Region 4

and in Region 5 such that ̂ and convex dominate then ̂ and

 also convex dominate . The reverse is not necessarily true.

Proof: If ̂ and convex dominate then (

) ̂ Since is the east adjacent alternative to
(

)

(
)

(
)

(
)

 Therefore the following two inequalities hold for
(

)

(
)

 (

) ̂ (1)

 (

) ̂ (2)

(1) is equivalent to
 (

) ̂ and since
(

)

(
)

(
)

(
)

 (2) holds. Using (1) and (2) we conclude that ̂ and also convex

dominate

We show that the reverse is not true with a counter example. Consider the

alternatives in Figure 5. Although ̂ and convex dominate ̂ and

cannot convex dominate □

 85

ei

eE

Figure 4.6 Counter example for Theorem 3

In the multi-round case, we add the following constraint in (ALT) to avoid

inferior solutions:

 ̂ () ̂
 ()

The constraint indicates that the estimated preference function value of the new

solution should be at most as big as that of the incumbent.

To test the performance of LIN-u, we use 10 different weight values for the price

attribute to generate different problems considering an underlying linear

preference function for the buyer. The percent deviations for the linear case are

reported in Table 4.1.

Table 4.1 Percentage deviations between the results of the LIN-u and the

decentralized optimal solution

In all problems for the linear case, the winning bidders found with the algorithm

and Decentralized are the same, i.e. allocative efficiency is satisfied. The

percentage deviations in Table 4.1 are very small, i.e., for all problems the

buyer’s preference function found with the algorithm is very close to that found

 =0.05 =0.15 =0.25 =0.35 =0.45 =0.55 =0.65 =0.75 =0.85 =0.95

0.0084 0.0064 0.0000 0.0000 0.0040 0.0073 0.0000 0.0000 0.0050 0.0061

A
�̂�

Region 4

Region 5

Attribute 1

Attribute 2

 86

by Decentralized. Moreover, the average number of pairwise comparisons the

buyer is required to make is 14.8 over the 10 problems with different weights.

4.4 A Heuristic for Underlying Nonlinear Functions

In this section, we assume that the buyer has an underlying decreasing

quasiconvex preference function. As in Section 3.10, we locally approximate the

buyer’s preference function with a linear function. We use the (IR) model to

estimate the weight values.

At the end of Step 7 of the LIN-u algorithm, we continue searching to find some

unsupported solutions to present the DM. To do this, after reducing the search

space we solve weighted Tchebycheff programs to find some unsupported

alternatives. Lemma 1 gives the theory and Figure 4.7 demonstrates how we

reduce the search space. For the sake of simplicity, we first assume that there is a

single current best alternative at the end of Step 7 of LIN-u, i.e. .

Lemma 1 in Korhonen et al. (1984) reduces the objective space based on the

preferences of the DM under the assumption that the DM has a quasiconcave

preference function to be maximized. The result directly applies to the case of

minimizing a quasiconvex function and we present the lemma in the latter

context.

Lemma 1: Let u: be a decreasing quasiconvex preference function and

 Let () () Let {

∑ ()

 } Then, () ().

Z is referred as the cone of inferior solutions. We demonstrate Lemma 1 in Figure

4.7. Consider three supported nondominated solutions , and , where ,

and , are adjacent efficient alternatives. Assume the DM prefers to both

and .

 87

A

B

C

Figure 4.7 Reduced search space

We next search for an unsupported nondominated solution using the Tchebycheff

program in one of the triangles in Figure 4.7. If there is a solution that is preferred

to , the new cone of inferior solutions made up of the new solution and

contains the remaining triangle and we do not need to search it based on Lemma

1. However, if there is no solution in the triangle or if is preferred to the new

solution, we search for a new unsupported nondominated solution in the other

triangle. This procedure requires at most two additional comparisons if there is a

single best alternative at the end of Step 7 of LIN-u. Otherwise, besides the

triangles of the extremes of set IN, we also search the triangle in the middle of the

region.

To find a solution in one of the triangles, we first find the local ideal and nadir

points of the two solutions, say and , as in Figure 4.8 and solve the (TCH)

problem to find an unsupported nondominated solution in the triangle.

C

B

Nadir point

C

B

Ideal point

Figure 4.8 Ideal and nadir points

Attribute 1

Solutions in these

regions are inferior to

B due to Lemma 1,

therefore eliminated.

There are no solutions in this

region, as A,B and B,C are

adjacent efficient solutions.

Dominated by at least

one of A,B or C.

The admissable search

region

Attribute 2

Attribute 2 Attribute 2

Attribute 1 Attribute 1

 88

Parameters:

 : a small positive constant

 : level of attribute j offered by seller i in bid t

 : 1 if bid t of seller i includes item m; 0 otherwise

 : the number of bids offered by seller i

 :level of attribute j of the ideal point

 :level of attribute j of the nadir point

 : calculated weight of attribute 1 where (
) (

)⁄

Decision Variables:

 : the Tchebycheff distance value of the solution from the ideal point

 ̂ : level of attribute j of the optimal alternative

 : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise

Model (TCH)

Min (̂ ̂) (10.1)

s.to

∑ ∑

 (10.2)

 ̂ ∑ ∑

 (10.3)

 (̂
) (10.4)

 ()(̂
) (10.5)

 ̂ (10.6)

 ̂ (10.7)

 { } (10.8)

In (TCH), we try to minimize the weighted Tchebycheff distance from the ideal

point. To avoid weakly nondominated but dominated solutions, we use the

augmented part in objective function. Constraints (10.6) and (10.7) bound the

search region.

 89

Although there may be several alternatives in the triangle, we find only one of

them to limit the number of questions asked to the DM.

In the linear case, while finding an adjacent efficient alternative to an incumbent,

we only consider those candidate incumbents that could be preferred based on the

available weight space. Although this is a valid procedure when the underlying

preference function is linear, it does not apply for underlying nonlinear preference

functions. Therefore, we do not eliminate such alternatives in this case.

Furthermore, in the linear multi-round case, we apply the SoS procedure and if

 is not an extreme supported solution, we eliminate it. However, in the

nonlinear case we keep that solution until the end of the corresponding round.

After solving the Tchebycheff program, we check whether is in a cone-

inferior region or not. If is not in a cone-inferior region, we also ask the

DM to compare the incumbent and .

We next provide the results of LIN-u when the buyer has an underlying nonlinear

preference function. In the nonlinear case, we test the performance of the

algorithm by simulating the preferences of the buyer using weighted

preference functions; specifically we use the weighted Euclidean () and the

weighted Tchebycheff () functions. The percent deviations for the

nonlinear case are reported in Tables 4.2 and 4.3.

Table 4.2 Percentage deviations between the results of the algorithm and

decentralized optimal solution under weighted Euclidean preference function

Table 4.3 Percentage deviations between the results of the algorithm and

decentralized optimal solution under weighted Tchebycheff preference function

 =0.05 =0.15 =0.25 =0.35 =0.45 =0.55 =0.65 =0.75 =0.85 =0.95

0.0408 0.0090 -0.0796 -0.0303 -0.2306 -0.2971 0.1356 0.2492 0.0208 0.0000

 =0.05 =0.15 =0.25 =0.35 =0.45 =0.55 =0.65 =0.75 =0.85 =0.95

0.0316 0.6988 1.0351 0.2601 4.8190 -0.6618 -4.4448 6.1772 0.0000 0.0000

 90

When we look at the results in Tables 4.2 and 4.3, we see that in some problems

our algorithm performed even better than Decentralized. As discussed in Chapter

3, this is due to the nonlinear nature of the preference function and round off

errors. Although Decentralized finds slightly better preference function values for

each bid separately, when a combination is constructed, the preference function of

a combination for the Decentralized case may be worse than that of ours for the

considered nonlinear preference functions. The average percent deviations are

-0.0182% and 0.7915% for and , respectively. Furthermore, the

buyer compares 45.7 and 45.1 pairs on the average of 10 problems with different

weights for and , respectively. Applying the interactive method

decreases the number of possible efficient combinations to be evaluated by the

buyer substantially.

The experiments show that in all test problems the percent deviations are very

small, i.e. the buyer’s preference function value corresponding to the solution

found with the algorithm is close to that of Decentralized. Moreover, the number

of questions asked to the buyer with the interactive method is small. These imply

that the estimation and guidance mechanisms of our approach worked well in all

the test problems.

 91

CHAPTER 5

5 AN INTERACTIVE APPROACH FOR BI-ATTRIBUTE

MULTI-ITEM AUCTIONS UNDER QUASICONVEX

PREFERENCE FUNCTIONS

In this chapter, we develop an interactive method to find the most preferred bid

combination of a buyer having a quasiconvex preference function. We first

explain the QCX-u algorithm and its versions. We then discuss the -u

algorithm which estimates both alpha and weight values of the underlying

preference function. In each algorithm, we provide the results of the performance

tests.

5.1 The Interactive Algorithm (QCX-u)

We develop an interactive algorithm, QCX-u, to find the most preferred

combination of a buyer having a quasiconvex preference function for the 2-

attribute case. In this case we assume that the buyer can distinguish between bids,

i.e. We modify and extend the LIN-u algorithm.

Similar to the heuristic approach in Section 4.4, at the end of each round we

continue searching in the reduced search space using Lemma 1 to find the most

preferred solution of the DM in the current round. As discussed in Section 4.4, the

reduced space consists of two triangles.

 92

We consider different versions of the algorithm and test their performances

against the Decentralized case. The versions are each round, last round, band,

and limited number of questions. In the each round case, we search the whole

triangle(s) in each round to find the most preferred alternative. In the last round

case, we apply LIN-u algorithm for the multi-round case and search the whole

triangle(s) only in the last round. In the band case, in each round, instead of the

whole triangle(s) we search some portion of the triangle. In the limited number of

questions case, while searching the triangle(s) in each round we limit the number

of unsupported solutions visited.

In QCX-u algorithm, based on the preferences of the DM we reduce the search

space and conduct our search in the reduced region. To do this we use Lemma 1

(in Section 4.4) and construct cones with two alternatives based on the pairwise

comparisons of the DM. We use the notation to depict two-point cones

where is preferred to

Figure 5.1 An example for two-point cones

To illustrate, consider the three alternatives in Figure 5.1 and assume that the DM

prefers A to B and B to C. We generate two cones, and . We detect

and eliminate redundant cones. For instance, we eliminate since the

inferior region implied by this cone is a subset of that of cone

For the example above (), to reduce the search space we write the

following cone constraints:

Attribute 2

Attribute 1

 93

 ̂ (Cons1)

 ̂ () ̂ () () (Cons2)

where is a small positive constant, is a big positive number, is a binary

variable and

 (i.e. and () are the weights of the

linear function passing through alternatives and .)

In the constraints above we use a binary variable to enforce that if the first

attribute value of the candidate solution is at least as big as then (Cons2)

becomes active indicating that the candidate solution should be below the line

passing through alternatives and With these two constraints we aim to

reduce the search region and avoid the inferior solutions. Although we exemplify

the cone constraints for the preferred alternative having smaller attribute 1 value,

the constraints are similar for the case where the preferred alternative has a

smaller attribute 2 value. In our models, for each valid cone we write such

constraint pairs by defining a binary variable. To reduce the number of binary

variables, we eliminate redundant cones.

Elimination of redundant cones

Consider alternatives , , and Assume that the DM prefers to B and C to

D. If we want to check whether is redundant relative to , we check

whether each point in is dominated by a point in That is, if there

exists () () for each , then

 is redundant. Instead of solving a mathematical model, we use a simple

procedure to determine whether a cone is redundant or not.

After taking the preferences of the DM and generating a new cone, we apply the

following procedure to detect the redundant cones with respect to the new cone.

For each existing cone, we make pairwise cone validity check with the new cone.

For the sake of simplicity we use the cones and to explain the

 94

procedure. Since we consider nonnegative attribute values in our test problems,

suppose all four alternatives have positive attribute values.

Cone Validity Check

Step 1: If and go to Step 2; else if and , go to

Step 3. Otherwise go to Step 6.

Step 2: If and

 set

,

 and go to Step

4. Otherwise go to Step 6.

Step 3: If and

 set

,

 and go to Step 4.

Otherwise go to Step 6.

Step 4: If () (), go to Step 5; otherwise go to Step 6.

Step 5: is redundant, go to Step 6.

Step 6: Stop.

In Step 1, we check the directions of the cones (i.e. compare the first attribute

values of preferred and nonpreferred alternatives in each cone). If cones have

different directions, by using Theorem 4 (below), cannot be redundant

with respect to the new cone, and the procedure stops. If both cones have

the same directions, we also check attribute 1 or 2 values (based on the direction)

of the nonpreferred alternatives in each cone. Suppose that and

then we check whether or not. If , due to Theorem 5 (below) we

conclude that cannot be redundant. On the other hand, if , we

check some conditions (stated in Theorem 6 below) and if these conditions are

satisfied we conclude that is redundant. Otherwise, we conclude that

 cannot be redundant relative to and the procedure stops.

Theorem 4: Consider two cones and where the cones have

different directions. Then cannot be redundant.

 95

Proof: If the cones have different directions there can be 2 cases:

Case 1: and

Case 2: and

Case 1

Since and for

, there does not exist any

 satisfying () ()

Case 2

Since and for

, there does not exist any

 satisfying () () □

Theorem 5: Consider the cones in Theorem 4. Suppose that and

 If , then cannot be redundant.

Proof:

As stated above, is redundant if and only if each point in is

dominated by a point in That is, if ()

 () for each , then is redundant. Since and

 , for , there does not exist any satisfying (

) () □

Theorem 6: Consider the cones in Theorem 5. If ,

 and

()

(), then is

redundant.

Proof:

 is redundant if and only if both starting and ending points of are

dominated by the points in as we consider linear functions. Therefore, we

check whether both starting and ending points of are dominated or not.

 () () can be rewritten as follows:

 96

 () ()

 () ()

The starting point of is (), that is set For , we check

whether there exists such that () . If there exists feasible

 values, i.e. if

, then the requirement for the starting points is

satisfied. On the other hand, if no such exists, no need to check the ending

point.

Without loss of generality, consider the minimum attainable attribute 2 value as

zero. Then, set

 and the ending point of is (

(

)). We compare it with the ending point of (

(

)). If

()

(), then the ending point

of is dominated by the ending point of

If both starting and ending points of are dominated by the points in ,

then , is redundant. Otherwise, it cannot be redundant. □

We demonstrate some possible cases in Figure 5.2.

Since both starting and

ending points are dominated,

 is redundant.

a)

Attribute 1

Attribute 2

 97

Figure 5.2 Some examples for Theorem 6

The steps of QCX-u

Recall that and are the east and west adjacent efficient alternatives to the

incumbent, respectively. Select an arbitrary direction (DIR) to search an adjacent

efficient alternative to the incumbent where DIR=east corresponds to searching

for and DIR=west corresponds to searching for . Set iteration counter i = 1

and without loss of generality set DIR=east Recall that is the best

alternative up to the current round, and are the values of attributes 1 and 2

of the corresponding solution, respectively, () where is the

estimated weight of attribute 1.

For the sake of simplicity, we first provide the steps to find the best supported

solution in a single round. We then discuss the variations of the algorithm.

Step 1: Select an arbitrary set of weights, find an incumbent, and go to Step 3.

Step 2: Set Find a solution, using If it is the first round or there

does not exist a new , go to Step 3. Otherwise, if a new round is started, check

the status of and if is not extreme supported, set and go to

Since starting point is not

dominated, is not

redundant.

Since ending point is not

dominated, is not

redundant.

b)

c)

Attribute 1

Attribute 1

Attribute 2

Attribute 2

 98

Step 3. Otherwise, if
 , set DIR=west; otherwise set DIR=east. Ask the

DM versus If

- is preferred to , add a constraint () add

check the validity of the existing cones and write the relevant cone

constraints. Set and go to Step3.

- is preferred to , add a constraint () add

check the validity of the existing cones and write the relevant cone

constraints. Switch the value of DIR (i.e. set DIR=east if it is equal to west

and set DIR=west if it is equal to east) and go to Step 3.

Step 3: If DIR=east, find and set ; otherwise find and set

 . If there exists , go to Step 4. Otherwise, if both and have

been evaluated before, go to Step 6; otherwise, switch the value of DIR and go to

Step 3.

Step 4: Ask the DM versus . If

- is preferred to , add a constraint () add

 check the validity of the existing cones and write the relevant cone

constraints. Set and go to Step 5.

- is preferred to , add a constraint () add

 check the validity of the existing cones and write the relevant

cone constraints. If both and have been evaluated, go to Step 6.

Otherwise switch the value of DIR and go to Step 3.

Step 5: Find a feasible set of weights satisfying all constraints corresponding to

past preferences of the DM by solving the (IR) and go to Step 2.

Step 6: Depending on the version of the algorithm find some candidate solutions,

ask the DM and write necessary constraints based on the preferences of the DM.

If it is not the first round, while finding candidate solutions if is not in a

cone-inferior region, also consider The details of this procedure will be

discussed later. Set and go to Step 7.

Step 7: If it is the final round, go to Step 8; otherwise inform the sellers about

estimations, get the updated bids and go to Step 2.

Step 8: Stop.

 99

In Steps 1 and 2, we add cone constraints to the (ALT) model in Section 4.2 to

find a new alternative with the estimated weights. For the sake of completeness,

we provide the updated model (ALT') below:

Parameters:

 : a big number

 : a small positive constant

 : level of attribute j offered by seller i in bid t

 : 1 if bid t of seller i includes item m; 0 otherwise

 : the number of bids offered by seller i

 : estimated weight of attribute 1

 : calculated weight of attribute 1 where
()

()

 : level of attribute j in efficient combination k

Decision Variables:

 : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise

 ̂ : level of attribute j of the optimal alternative

: 1 if constraint (11.6) is active; 0 otherwise

:1 if constraint (11.8) is active; 0 otherwise

 100

Model (ALT')

Min ̂ () ̂ (11.1)

s.to

∑ ∑

 (11.2)

 ̂ ∑ ∑

 (11.3)

 ̂ () ̂
 ()

 (11.4)

 ̂
 for each , (11.5)

 ̂ (

) ̂
 (

) (

) for each , (11.6)

 ̂
 for each , (11.7)

 ̂ (

) ̂
 (

) (
)

for each , (11.8)

 { } (11.9)

In (ALT'), the objective function and the first two constraints are the same with

the objective function and the first two constraints of (ALT). (11.4) indicates that

the estimated preference function value of the new solution should be at most as

big as that of the incumbent. Remaining constraints are the cone constraints and

are used to avoid inferior solutions.

In Step 2 of QCX-u, at the beginning of each round except for the first round, we

apply the SoS procedure (explained in Section 4.3.2) to determine whether the

best alternative up to the current round, is an extreme supported solution

or not. If it is extreme supported, we ask the DM to compare the incumbent and

 . If it is dominated, we eliminate ; whereas if it is unsupported or

nonextreme supported, we keep that solution until the end of the corresponding

round. While finding some alternatives to ask the DM based on the version of the

algorithm, we check whether is in a cone-inferior region or not. If

is not in a cone-inferior region, we also ask the DM to compare the incumbent

with in Step 6.

 101

In Step 3, to find adjacent alternatives of an incumbent we apply a similar

procedure explained in Section 4.2. The only difference is that we reduce the

search region using the cone constraints to avoid nonpreferable alternatives.

Therefore in QCX-u we do not find an adjacent alternative that is previously

asked to the DM, as we eliminate inferior solutions.

In Step 6 of QCX-u, we apply different procedures for different versions. We note

that in this step we deal with unsupported solutions and therefore we use

“neighbor” instead of “adjacent”. We explain the procedures as follows:

Each Round Version

In the algorithm, we first deal with the supported solutions and at the beginning of

Step 6 of QCX-u, we have the most preferred supported solution. During the

algorithm, we reduce the search region using the preferences of the DM and

continue our search in the reduced region. With this, we eliminate inferior

alternatives and find unsupported solutions in the admissible search region.

In the single-round case, as shown in Section 4.4, the reduced space consists of

two triangles. However, in multi-round case due to the cone constraints in the

previous rounds, the reduced region may be smaller.

In the each round version, we conduct our search in the whole reduced region.

We apply a similar procedure to that in Step 3. The only difference is that, in Step

6 we exclude the eastmost or westmost alternative and find an adjacent alternative

to the incumbent in the reduced search region (i.e., in the triangle), and refer to

this alternative as the “neighbor”. After finding a neighbor to the incumbent in the

search region, we ask the DM to compare them as usual and write the relevant

cone constraints. We progress our search until there is no neighbor to be

compared. We note that during our search, if the best alternative up to the current

round, , is not found in a cone-inferior region, we also consider .

 102

In this version, at the end of each round we find the most preferred alternative of

the corresponding round since we consider the whole reduced region.

Last Round Version

In this version of the algorithm, until the final round of the auction, we only check

whether is in a cone-inferior region or not in Step 6. If is not in a

cone-inferior region, we also ask the DM to compare the incumbent and .

With this we aim to hold on to the best alternative during rounds. In the final

round, as in the each round version, we search the whole reduced region.

In the each round version, we find the most preferred alternative in each round by

searching the whole reduced region. In the last round version, we aim to ask a

smaller number of questions and therefore we do not search the reduced region in

Step 6. However, in the final round we want to find the most preferred alternative

and search the whole reduced region.

Band Version

In the band version, we search some portion of the reduced region in Step 6. By

searching some part of the reduced region, we aim to find good alternatives.

However, we also want to keep the number of questions asked to the DM low.

Therefore, in each round instead of searching the whole reduced region, we

systematically search some portion of the reduced region.

As stated before, in the multi-round case due to the cone constraints in the

previous rounds, the reduced region may be smaller than the triangle(s). In this

version, in early rounds we search small portions of the corresponding triangle(s)

and in succeeding rounds we increase the searched portions of the triangles. We

explain the procedure to define the east search region in each round.

 103

We use the similarity of triangles to define the portion of the triangle to be

searched. Suppose at the beginning of Step 6, we have the following search

region in Figure 5.3 a.

Figure 5.3 An example reduced region in band version

Let Th be the predetermined round number when the whole triangle will be

searched and assume that we increase the search region the same amount in each

iteration. Suppose that we are in round h, then we expect that the area of the

dashed region to be ⁄ of the total area of the triangle. We calculate point X to

bound the search region where and using similarity (

)√ ⁄ . To find neighbor alternatives in Step 6, we apply a similar procedure

as in each round version by adding the following constraint to bound the search

region.

 ̂ () ̂ () where

As can be seen from Figure 5.3.b, the reduced region is in the form of a band and

hence it name band.

If or if it is the final round of the auction, we search the whole triangle as

in each round version. We note that while finding neighbor alternatives, we also

consider the cone constraints and during our search, if the best alternative up to

the current round, , is not found in a cone-inferior region, we also consider

 .

a) b)

Attribute 2 Attribute 2

Attribute 1 Attribute 1

 104

Limited Number of Questions Version

This version is similar to the band version. In the band version, if the solutions

are crowded in a region, the number of solutions found in the determined portion

of the triangle(s) may be large. Therefore, we develop limited number of

questions version in which we limit the number of alternatives found in each

round.

Similar to band version, we increase the number of alternatives found in the

reduced region in each round. Let LNQ be the predetermined number used to limit

the number of alternatives found in the triangle(s). In round h, we find at most

h* LNQ alternatives (including the best alternative up to the current round) in the

triangles.

In Step 7 of QCX-u, if it is not the final round, we solve (IR) to estimate the

weight values and inform sellers with this information as well as the estimated

preference function value of each item separately (for details please refer to

Section 3.3). Then, the sellers update their bids and the algorithm continues with

Step 2 of QCX-u.

5.2 Experimental Results for QCX-u

To test the performance of QCX-u, we use 10 different weight values for the price

attribute to generate different problems. We simulate the preferences of the buyer

using weighted linear, weighted Euclidean and weighted Tchebycheff functions.

Based on our preliminary experiments in band version we set Th, the

predetermined round number that whole triangle will be searched, to 10 and in

limited number of questions version LNQ, predetermined number used to limit the

number of alternatives found in the triangle(s), to 1 and 2. We use LNQ=1 and

LNQ=2 to refer to limited number of questions version with LNQ equal to1 and 2,

respectively.

 105

The average percent deviations and the average number of comparisons are

reported in Tables 5.1 and 5.2, respectively.

Table 5.1 Average percentage deviations between the results of different versions

of QCX-u and decentralized optimal solution*

* Based on 10 instances with different weight values

Table 5.2 Average number of comparisons w.r.t. different versions of QCX-u*

 * Based on 10 instances with different weight values

The results in Table 5.1 show that in all problems the percent deviations are very

small in each version. Moreover, for underlying nonlinear preference functions,

our algorithm performed better than the Decentralized case except for the last

round version for underlying Tchebycheff function which is 0.7273%. The

number of questions asked to the DM is smallest in last round and highest in

band versions. In the band version we ask a relatively large number of questions,

indicating that the unsupported alternatives in the defined band are dense. To

decrease the number of questions asked, we can use the idea of Karahan and

Köksalan (2010) and define territories around alternatives to get diverse pairs. As

 Underlying Utility Function

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff

Each round 0.0490 -0.0532 -0.8943

Last round 0.0120 -0.0962 0.7273

Band 0.0171 -0.0251 -0.5145

LNQ=1 0.0250 -0.0723 -0.9277

LNQ=2 0.0258 -0.0532 -0.9039

 Underlying Utility Function

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff

Each round 31.6 46.7 43.2

Last round 19.3 26.5 32.3

Band 39.3 70.1 64.3

LNQ=1 29.9 38.0 37.0

LNQ=2 32.5 43.1 40.9

 106

expected, LNQ=1 requires fewer questions than LNQ=2 on the average. Each

round requires more questions than last round, but the performances are not so

different in terms of percent deviations. Although the percent deviations are very

small in each version, considering both the percent deviations and the number of

questions asked to the DM, we can say that last round and LNQ=1 performs

slightly better than other versions.

5.3 Modified Algorithm (-u)

We modify QCX-u and develop -u which estimates both alpha and weight

values of the underlying preference function. In -u, the buyer’s preference

function is estimated with an function as stated in Section 2.5. Let be the

estimated parameter value of the underlying preference function of the DM. The

algorithm starts with the linear case where and increases as necessary.

Step 1: Set select an arbitrary set of weights and find an incumbent,

solving the following (ALT-α) model.

Parameters:

 : level of attribute j offered by seller i in bid t

 : 1 if bid t of seller i includes item m; 0 otherwise

 : the number of bids offered by seller i

 : estimated weight of attribute 1

 : estimated parameter value of the function

Decision Variables:

 : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise

 ̂ : level of attribute j of the optimal alternative

 107

Model (ALT-α)

Min (̂)
 (() ̂)

 (12.1)

s.to

∑ ∑

 (12.2)

 ̂ ∑ ∑

 (12.3)

(̂)
 (() ̂)

 (
) (()

) (12.4)

 { } (12.5)

In (ALT-α), if we solve a mixed-integer programming problem; otherwise

we solve a mixed-integer nonlinear programming problem. We include constraint

(12.4) in the model for the sake of completeness, but during the first time we

search for an incumbent, we do not enforce (12.4). After finding the optimal

solution of the problem, we set the solution to and go to Step 3.

We note that although in (ALT') we use cone constraints, we do not use them in

(ALT-α) due to Theorem 7.

Theorem 7: Let the underlying preference function be quasiconvex and let and

 ̂ be the current best and optimal alternative of (ALT-α), respectively, estimate

with a quasiconvex preference function u. Let be the set of cone inferior

solutions. Then ̂ cannot be cone inferior solution, i.e. ̂ .

Proof:

Suppose ̂ , then by definition in Lemma 1 () (̂) which contradicts

constraint (12.4) of (ALT-α). □

We note that this situation may not be valid for (ALT'). The reason is that in

QCX-u although the linearity assumption is violated we continue to estimate the

preference function as linear. Therefore, the estimated preference function may

not fit the preferences of the DM.

 108

Step 2: Set Find a solution, solving (ALT-α). If it is the first round

or there does not exist a solution, go to Step 3. Otherwise set the solution to . If

a new round is started, check the status of and if is not extreme supported,

set and go to Step 3. Otherwise, if
 , set DIR=west; otherwise set

DIR=east. Ask the DM versus If

- is preferred to , add a constraint () add

check the validity of the existing cones and write the relevant cone

constraints. Set and go to Step 3.

- is preferred to , add a constraint () add

check the validity of the existing cones and write the relevant cone

constraints. Switch the value of DIR (i.e. set DIR=east if it is equal to west

and set DIR=west if it is equal to east) and go to Step 3.

Step 3: If DIR=east, find and set ; otherwise find and set

 . If there exists , go to Step 4. Otherwise, if go to Step 3.1;

otherwise go to Step 3.2.

Step 3.1: If both and have been evaluated before, go to Step 6;

otherwise, switch the value of DIR and go to Step 3.

Step 3.2: If incumbent has no neighbor alternative, solve (Walpha) and go to

Step 8; otherwise, switch the value of DIR and go to Step 3.

Step 4: Ask the DM versus . If

- is preferred to , add a constraint () add

 check the validity of the existing cones and write the relevant cone

constraints. Set , if go to Step 5; otherwise switch the value

of DIR and go to Step 3.

- is preferred to , add a constraint () add

 check the validity of the existing cones and write the relevant

cone constraints. If and both and have been evaluated, go to

Step 6. Otherwise switch the value of DIR and go to Step 3.

Step 5: Find a feasible set of weights satisfying all constraints corresponding to

past preferences of the DM for the corresponding feasible by solving the

following (Walpha) model.

 109

Parameters:

 : a small positive constant

 : level of attribute j in efficient combination k

 : estimated parameter value of the function

Decision Variables:

 : an auxiliary variable (to measure the estimated value difference between

alternatives and bound the weights)

 ̂ : estimated weight of attribute j

Model (Walpha)

Max (13.1)

s.to

 ̂ (13.2)

 () ((̂)
 ((̂))

) ⁄ (13.3)

 () () for each (13.4)

 (13.5)

The (Walpha) model is similar to (Wt) model except that in (Wt) we set

and only estimate the weight values. On the other hand, in (Walpha) we estimate

both and the corresponding weight values. For given values we solve

(Walpha) model. As in Karakaya and Köksalan (2011), we take the smallest

value to fit a function satisfying all constraints but having the least curvature. At

the beginning we set to 1 (i.e. we start with a weighted linear preference

function) and increase by 1 if necessary.

After finding the estimated parameters and , if go to Step 2; otherwise

switch the value of DIR and go to Step 3.

Step 6: If is in a cone-inferior region, go to Step 7. Otherwise, if

 , set DIR=west; otherwise set DIR=east. Ask the DM versus . If

 110

- is preferred to , add a constraint () add

 check the validity of the existing cones and write the relevant

cone constraints. Set and go to Step 7.

- is preferred to , add a constraint () add

 check the validity of the existing cones and write the relevant

cone constraints. Switch the value of DIR and go to Step 7.

Step 7: Solve (Walpha). If , go to Step 3; otherwise go to Step 8.

Step 8: If it is the final round, go to Step 9; otherwise solve (IR) to inform the

sellers, get the updated bids and go to Step 2.

Step 9: Stop.

In Step 2 of Lα-u, if a new round is started while checking the status of the best

alternative up to the current round, , if we follow the procedure in

QCX-u. Else if , we check the dominance of , by solving the

following (DOM) model.

Parameters:

 : level of attribute j offered by seller i in bid t

 : 1 if bid t of seller i includes item m; 0 otherwise

 : the number of bids offered by seller i

Decision Variables:

 : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise

 ̂ : level of attribute j of the alternative

 : the difference between ̂ and in attribute j

 111

Model (DOM)

Max (14.1)

s.to

∑ ∑

 (14.2)

 ̂ ∑ ∑

 (14.3)

 ̂
 (14.4)

 ̂
 (14.5)

 (14.6)

 (14.7)

 { } (14.8)

In (DOM), we search for an alternative that dominates . Constraint set

(14.2) guarantees to satisfy the demand for each item. (14.4) and (14.5) are used

to force the resulting solution to dominate . If the problem is optimal with a

positive objective function value, we conclude that is dominated and we

eliminate Otherwise, we say that there is no solution dominating

and we ask the DM to compare the incumbent and in Step 2.

In Step 3, if we apply the procedure in Step 3 of QCX-u; whereas if

we apply the procedure in Step 6 of QCX-u with the following additional

constraints:

If DIR=east

 ̂

If DIR=west

 ̂

Based on the direction of the search we add a new constraint. The reason is that in

 -u, the incumbent neighbor of which is searched can be an unsupported

solution. If we do not consider this additional constraint, although the direction is

 112

east(west), we may end up a dominated solution or a solution in the west(east) of

the incumbent.

In the case that there are different ways of finding neighbor alternatives.

For instance, we can find the alternatives those are closest to the incumbent in

each attribute as neighbor alternatives. Keeping the other steps as they are, we

apply this procedure in Step 3 if and call this version as -NN to indicate

that the alternatives found are the nearest neighbors in each attribute.

We note that during our neighbor alternative search, if the best alternative up to

the current round, , is not found in a cone-inferior region, we also consider

 .

In the algorithm, as in QCX-u after solving (IR) we inform sellers about the

estimated weight values of the linear function as well as the estimated preference

function value of each item separately in Step 8.

Modifications for underlying Tchebycheff Preference Functions

The -u algorithm is a general algorithm for underlying quasiconvex preference

functions. If we know that the DM has a Tchebycheff preference function at the

beginning or at any step of the algorithm, we use the properties of the

Tchebycheff functions and make some modifications to -u .

Modifications in ()

We solve the following model to find a new solution based on the estimated

Tchebycheff function.

Parameters:

 : a small positive constant

 : level of attribute j offered by seller i in bid t

 : 1 if bid t of seller i includes item m; 0 otherwise

 113

 : the number of bids offered by seller i

 : estimated weight of attribute 1

 (): estimated Tchebycheff function value of

where () {
 ()

 }

Decision Variables:

 : the Tchebycheff distance value of the solution

 : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise

 ̂ : level of attribute j of the optimal alternative

Model ()

Min (̂ ̂) (15.1)

s.to

∑ ∑

 (15.2)

 ̂ ∑ ∑

 (15.3)

 ̂ (15.4)

 () ̂ (15.5)

 () (15.6)

 { } (15.7)

In (), we try to minimize the weighted Tchebycheff distance. To avoid

weakly nondominated but dominated solutions, we use the augmented part in

objective function. A suitable value should be selected to make sure that the

second term in the objective function does not cause any trade-offs with the first

term, and only has an effect of breaking ties. Constraint (15.6) indicates that the

estimated preference function value of the new solution should not be worse than

that of the incumbent.

Instead of using an augmented part in the objective function, we solve the

problem in a lexicographic manner. First, we minimize . By fixing the value of

 114

the attribute whose value multiplied by the corresponding weight is equal to , we

then solve the problem again to minimize the other attribute.

Modifications in Cone Constraints

In -u we write the general cone constraints. However, for Tchebycheff

preference function case we modify the cone constraints and reduce the search

space accordingly.

Consider two alternatives and where the DM prefers to . We write the

cone, and the corresponding cone constraint as follows:

 ̂

With this constraint we eliminate all the alternatives having attribute 1 value of

or more. Compared to the general cone constraints, here we eliminate a greater

region and we do not need to use binary variables.

Modifications in Finding Neighbor Alternatives

As stated above, we try -NN version where we find the alternatives those are

closest to the incumbent in each attribute as neighbor alternatives when is

estimated as greater than 1. This method is beneficial when the underlying

preference function is Tchebycheff.

To illustrate consider the alternatives in Figure 5.4. Suppose is found as

incumbent by solving () and then we look for east neighbor alternative of

If we apply the procedure in Step 6 of QCX-u, we will find ; whereas if we find

the nearest neighbor in attribute 1, we will find If is preferred to its east

neighbor, with selecting as east neighbor more search region will be eliminated

than selecting On the other hand, if east neighbor is preferred to , the reduced

search region will be the same. Since is found as incumbent based on the

estimations, is likely to be preferred to its east neighbor. Therefore, we say that

 115

finding the nearest neighbor of incumbent in each attribute is more suitable when

the underlying preference function is Tchebycheff.

Figure 5.4 Search space reduction with estimated Tchebycheff functions

Modifications in (Walpha)

Since we assume that the underlying preference function is Tchebycheff, we only

estimate the weight values by solving the following () model:

Parameters:

 : a small positive constant

 : level of attribute j in efficient combination k

Decision Variables:

 : an auxiliary variable (to measure the estimated value difference between

alternatives and bound the weights)

 ̂ : estimated weight of attribute j

If , in addition to

the region eliminated by

 , this region is

also eliminated.

Attribute 2

Attribute 1

 116

Model ()

Max (16.1)

s.to

 ̂ (16.2)

(̂) ̂ for each and (16.3)

(̂) (̂) for each and (16.4)

 ̂ ̂ for each and (16.5)

 ̂ (̂) for each and (16.6)

 (16.7)

The objective (16.1) and the first constraint of () are the same as the

objective function and the first constraint of (Walpha). We only modify the

preference constraints (16.3-16.6) considering the Tchebycheff function. In these

constraints we reduce the feasible weight space using the preferences of the buyer

as well as the attribute values of the alternatives in each pairwise comparison (see

Bozkurt et al. 2010 for a general coverage of weight space reduction for

Tchebycheff functions).

We use the weights found by (), to find a new incumbent in Step 2. We

apply the -u algorithm by starting a linear estimated preference functions. As

the rounds progresses, if the estimated parameter of the underlying preference

function, is greater than a predetermined threshold value, we assume that

the underlying preference function is Tchebycheff. The reason is that as the of

the function increases, it converges to Tchebycheff function. To utilize the

properties of the Tchebycheff functions, if is greater than , we assume the

that the underlying preference function is Tchebycheff and we apply

modifications stated above.

If the underlying preference function of the DM is linear, -u algorithm deals

with the supported efficient solutions only. On the other hand if the exact

parameter of the underlying preference function is greater than 1, we expect to

 117

capture this with the preferences of the DM and utilize properties of the -u

algorithm. To understand the curvature of the underlying preference function of

the DM (i.e., if the underlying preference function is not linear, we aim to detect

it as soon as possible) at the early rounds in addition to the supported solutions we

also consider unsupported solutions. We set a threshold number above

which we stop searching for unsupported solutions if the estimated parameter of

the underlying preference function, is 1. That is, although we estimate a linear

function, we continue searching as in Step 6 of QCX-u (searching the triangles) to

understand whether the underlying preference is linear or not. By asking about

unsupported solutions we aim to rule out the linearity assumption if the

underlying preference function is not linear. While doing this, to avoid high

number of comparisons, we limit the number of alternatives found at the end of

each round by searching the triangles. If the total number of unsupported

solutions visited is and the linearity assumption still holds, we stop

searching the triangles.

Understanding the curvature of the underlying preference function is important as

the algorithm can be more beneficial with this information. To achieve this, we

consider unsupported solutions in addition to the supported solutions. Different

methods can be tried to understand the form of the underlying preference function

(see for example Köksalan and Sagala 1995).

5.4 Results

We test the performance of the -u algorithm using 10 problems generated with

different weight values for the price attribute. We simulate the preferences of the

buyer using weighted linear, weighted Euclidean and weighted Tchebycheff

functions. We consider two versions of the algorithm: -uQ where the neighbor

alternative search is as in Step 6 of QCX-u when and -NN where the

alternatives closest to the incumbent in each attribute are found as neighbor

alternatives when We set the predetermined threshold value for above

which we assume that the underlying preference function is Tchebycheff to =4

 118

and the number of questions above which we stop searching for unsupported

solutions if to =10 based on our preliminary experiments.

The average percent deviations and the average number of comparisons are

provided in Tables 5.3 and 5.4, respectively.

Table 5.3 Average percentage deviations between the results of different versions

of -u and decentralized optimal solution*

 * Based on 10 instances with different weight values

Table 5.4 Average number of comparisons w.r.t. different versions of -u*

 * Based on 10 instances with different weight values

In all problems, the percent deviations are very small in both versions of -u.

Indeed, when the underlying preference function is weighted linear, both versions

of the algorithm are exactly the same. The algorithms only differ in Step 3 when

the estimated parameter value, , is greater than one. The algorithms are identical

for underlying weighted linear functions as is 1 in this case. Although the

number of questions asked to the DM varies slightly in some problems, they are

the same on the average for underlying weighted Euclidean preference functions.

As expected when the underlying function is weighted Tchebycheff, the -NN

version requires fewer questions.

 Underlying Preference Function

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff

 -uQ 0.0248 -0.0196 -0.6122

 -NN 0.0248 -0.0196 -0.2858

 Underlying Preference Function

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff

 -uQ 25.8 38.8 31.3

 -NN 25.8 38.8 26.0

 119

For the sake of completeness in the following tables we provide the results of all

versions of QCX-u and -u together.

Table 5.5 Average percentage deviations between the results of algorithms and

decentralized optimal solution*

 * Based on 10 instances with different weight values

Table 5.6 Average number of comparisons in different versions of the

algorithms*

 * Based on 10 instances with different weight values

The results show that in each version of each algorithm the percent deviations are

very small, i.e. our algorithms perform well. As stated before last round and

LNQ=1 performs slightly better than other versions in QCX-u. -NN which is a

general algorithm for underlying quasiconvex preference functions also performs

 Underlying Preference Function

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff

Each round 0.0490 -0.0532 -0.8943

Last round 0.0120 -0.0962 0.7273

Band 0.0171 -0.0251 -0.5145

LNQ=1 0.0250 -0.0723 -0.9277

LNQ=2 0.0258 -0.0532 -0.9039

 -uQ 0.0248 -0.0196 -0.6122

 -NN 0.0248 -0.0196 -0.2858

 Underlying Preference Function

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff

Each round 31.6 46.7 43.2

Last round 19.3 26.5 32.3

Band 39.3 70.1 64.3

LNQ=1 29.9 38.0 37.0

LNQ=2 32.5 43.1 40.9

 -uQ 25.8 38.8 31.3

 -NN 25.8 38.8 26.0

 120

well among others. In -NN version, even if we estimate the value to be

greater than 1, while informing sellers we treat it as 1 as it is not straightforward

to figure out the contributions of different sellers of a combination of bids to the

overall value of the bid combination when >1. There can be room for

improvement by informing the sellers about the estimated value, rather than

treating as if =1. How this information can be utilized awaits future research.

 121

CHAPTER 6

6 AN INTERACTIVE APPROACH FOR COORDINATED

BIDDING

In the previous chapters, we assume that we do not know the cost functions of the

sellers. In this chapter, we assume that all sellers disclose their cost functions to

the auction decision support system. By using their cost functions, we create good

combinations to present the buyer. We refer to this case as “Coordinated

Bidding” and we develop an interactive algorithm for this case in Section 6.1. We

discuss the algorithm considering a discretized search space in Section 6.2 and we

provide experimental results in Section 6.3.

6.1 The Interactive Algorithm (CO-u)

We develop an interactive algorithm, CO-u that finds good combinations

knowing the cost functions of the sellers, when the buyer’s preference function is

quasiconvex and there are two attributes. As in Chapter 5, we assume that the

buyer can distinguish between bids even when their preference function values

are close. Similar to -u, we estimate both alpha and weight values of the

underlying preference function.

We assume that the sellers give their initial bids at the beginning of the auction.

After finding the most preferred supported bid combination using these bids, we

then compose bid combinations using the sellers’ cost functions. Our algorithm

 122

continues until there is no alternative bid combination with predetermined mark-

up percentages.

The steps of CO-u

In addition to the notation used in previous chapters, we define and as a

challenger alternative to the incumbent and the estimated weight of attribute 1

used to find respectively.

We provide the steps of the algorithm as follows:

Step 1: Apply Steps 1-5 of QCX-u to find the most preferred supported

alternative,

Step 2: Find a feasible set of weights satisfying all constraints corresponding to

past preferences of the DM for the corresponding feasible by solving (Walpha)

model. Set and go to Step 3.

Step 3: Find a solution by solving the (Min_u) model below.

Parameters:

 : 1 if bid t of seller i includes item m; 0 otherwise

 : the number of bids offered by seller i

 : estimated weight of attribute 1

 : estimated parameter value of the function

 (): cost function of seller i for bid t for given

: minimum mark-up percentage for seller i; if it is 0, then seller i may bid

with zero profit. For the sake of simplicity let
 ⁄ .

Decision Variables:

 : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise

 ̂ : level of defect rate suggested to seller i for bid t

 ̂ : level of attribute j of the optimal alternative

 123

Model (Min_u)

Min ((̂)
 (() ̂)

) ⁄ (17.1)

s.to

∑ ∑

 (17.2)

 ̂ ∑ ∑ (̂)()

 (17.3)

 ̂ ∑ ∑ ̂

 (17.4)

 { } (17.5)

By solving (Min_u) we find the combination with minimum estimated preference

function value. (Min_u) is always feasible when there are bids to satisfy the

demand constraint. Set the optimal solution of the problem to and go to Step 4.

Step 4: If DIR=east, set

; otherwise set

. Solve the

following (Challenger) model to find an alternative, .

Parameters:

 : a big number

 : small positive constant

 : 1 if bid t of seller i includes item m; 0 otherwise

 : the number of bids offered by seller i

 : estimated weight of attribute 1 to find a challenger alternative

 : calculated weight of attribute 1 where
()

()

 : estimated parameter value of the function

 (): cost function of seller i for bid t for given

: minimum mark-up percentage for seller i; if it is 0, then seller i may bid

with zero profit. For the sake of simplicity let
 ⁄ .

Decision Variables:

 : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise

 ̂ : level of defect rate suggested to seller i for bid t

 ̂ : level of attribute j of the optimal alternative

 124

: 1 if constraint (18.6) is active; 0 otherwise

:1 if constraint (18.8) is active; 0 otherwise

Model (Challenger)

Min ((̂)
 (() ̂)

) ⁄ (18.1)

s.to

∑ ∑

 (18.2)

 ̂ ∑ ∑ (̂)()

 (19.3)

 ̂ ∑ ∑ ̂

 (18.4)

 ̂
 for each , (18.6)

 ̂ (

) ̂
 (

) (

) for each , (18.7)

 ̂
 for each , (18.8)

 ̂ (

) ̂
 (

) (
)

for each , (18.9)

 { } (18.10)

The objective is to minimize the estimated preference function using the updated

weight values. Constraints (18.6) - (18.9) are the cone constraints and are used to

avoid inferior solutions. Moreover, to restrict the search region based on the

direction, we add the following constraints:

If DIR=east

 ̂

 ̂

If DIR=west

 ̂

 ̂

 125

We eliminate with these constraints. Therefore, if there exists an optimal

solution set to that solution and go to Step 5. Otherwise, if both directions

have been evaluated before, go to Step 6; otherwise switch the value of DIR and

go to Step 4.

Step 5: Ask the DM versus If

- is preferred to , add a constraint () add

check the validity of the existing cones and write the relevant cone

constraints. Set and go to Step 6.

- is preferred to , add a constraint () add

check the validity of the existing cones and write the relevant cone

constraints. If both directions have been evaluated before, go to Step 6;

otherwise switch the value of DIR and go to Step 4.

Step 6: If is in a cone-inferior region, go to Step 7. Otherwise, ask the DM

 versus and if

- is preferred to , add a constraint () add

 check the validity of the existing cones and write the relevant

cone constraints. Set and go to Step 2.

- is preferred to , add a constraint () add

 check the validity of the existing cones and write the relevant

cone constraints. Go to Step 2.

Step 7: If incumbent has no challenger alternative, stop is the most preferred

alternative. Otherwise go to Step 2.

Similar to the previous versions, at the beginning of the auction, sellers first give

their bids. In Step 1 we find the most preferred supported alternative. Based on

the preference of the buyer, (Walpha) model is solved. Here we note that since we

deal with supported solutions in Step, (Wt) model can also be solved.

After estimating the parameters of the preference function of the buyer, in Step 3

considering the sellers’ mark-up percentages we find a combination in the

reduced search space that minimized the estimated preference function value. The

 126

algorithm continues with Step 4 where we search for challenger alternatives in

different directions with different weight values.

We note that since the problems are nonlinear, instead of using binary variables

we can use nonnegative values with the following constraint:

 ()

As in -u, to utilize the properties of the Tchebycheff functions, if is greater

than the predetermined threshold value, , we assume that the underlying

preference function is Tchebycheff and modify our models.

In the algorithm, except from Step 1, while finding a new bid combination we use

the cost functions and the mark-up percentages of the sellers as we assume that

they explicitly give them to us. At the end of the auction, each winner will get the

profit with his/her predetermined mark-up percentage.

We try to solve these models using GAMS 22.8 and the global optimization

solver, BARON. However, due to nonlinearity in a continuous space, the run time

of the algorithm turns out to be long. Moreover, for some problems BARON

could not find solutions. Therefore we discretize the bid space and apply the CO-

u algorithm in Section 6.2.

6.2 CO-u in Discretized Space

In Section 6.1 we provide the models considering a continuous search space.

Here, we assume a discretized space which is reasonable in real life examples.

For each bid of each seller, we divide the possible defect rate range into K equal

intervals. Therefore, we consider K+1 possible defect rate-price value

combination for each seller in all his/her bids. In our updated models we consider

only these values. Here, we provide the modified parameters and decision

variables only. For the sake of completeness, we provide the updated (Min_u)

model. The changes are similar for (Challenger) model.

 127

Modifications in (Min_u)

Parameters:

 (): cost function of seller i for bid t for given

 : defect rate value corresponding to the k
th

 point in bid t of seller i

Decision Variables:

 : 1 if bid t of seller i with defect rate value of point k is selected to be in the

efficient combination; 0 otherwise

Model (Min_u')

Min (̂)
 (() ̂)

 (17'.1)

s.to

∑ ∑ ∑

 (17'.2)

 ̂ ∑ ∑ ∑ ()

 (17'.3)

 ̂ ∑ ∑ ∑

 (17'.4)

 { } (17'.5)

We use GAMS 22.8 and the global optimization solver, BARON to solve the

updated model. We next provide the experiment results.

6.3 Results

To test the performance of the CO-u algorithm in discretized space, we solve

(Min_u) with exact parameter values and report its results as “Centralized.” This

corresponds to the best possible solutions that can be obtained under full

information. Similar to the previous chapters we compare the preference function

values of the buyer for the winning combination found with the algorithm against

that of Centralized. To evaluate the performance of the algorithm for these values

we use % deviations:

 () ()

 ()

 128

In our experiments, without loss of generality we set the mark-up percentages to

zero. We set K=10, i.e. we divide the possible defect rate range into 10 equal

intervals and there are 11 possible defect rate-price value combination for all

sellers in all their bids. We set the predetermined threshold value to 4, above

which we treat the underlying preference function as a Tchebycheff function.

We use 10 different weight values for the price attribute of the underlying

preference function to consider different problems. We simulate the preferences

of the buyer using weighted linear, weighted Euclidean and weighted

Tchebycheff functions.

In all problems, the winning seller-bid pairs and the corresponding attribute

values found with CO-u and Centralized are the same, i.e. allocative efficiency is

satisfied and the percent deviations are zero. Therefore, we report only the

average number of questions asked to the buyer in Table 6.1.

Table 6.1 Average number of comparisons
*

 * Based on 10 instances with different weight values

As can be seen from Table 6.1, the average number of pairwise comparisons the

buyer is required to make is 6.4, 8.1 and 9.7 for underlying weighted linear,

weighted Euclidean and weighted Tchebycheff functions, respectively. We also

report the number of questions asked to the buyer to find the most preferred

supported alternative using the initial bids of the sellers in Step 1 of CO-u. We

observe that our algorithm performs well, as it finds the optimal winning bids

requiring a small number of questions.

 Underlying Preference Function

 Weighted Linear Weighted Euclidean Weighted Tchebycheff

Step 1 1.9 2.1 2.2

Total 6.4 8.1 9.7

 129

We also find the optimal bids when the sellers bid independently of each other

(Decentralized) in the discretized space and compare the results with Centralized.

Centralized is guaranteed to have at least as good results as that of Decentralized,

since in the former case we consider a centralized approach suitably matching the

sellers to create the best combination. As expected, when the buyer has an

underlying weighted linear preference function both Decentralized and

Centralized are equivalent. In the nonlinear case, we test the performance of the

algorithm by simulating the preferences of the buyer using weighted Euclidean

and the weighted Tchebycheff preference functions. The percent deviations of

Decentralized from Centralized are reported in Tables 6.2 and 6.3.

Table 6.2 Percentage deviations of decentralized from centralized optimal

solutions under weighted Euclidean preference function

Table 6.3 Percentage deviations of decentralized from centralized optimal

solutions under weighted Tchebycheff preference function

As can be seen from the tables, Centralized finds better solutions in many cases.

In the Coordinated Bidding case where the sellers disclose their cost functions to

ADSS, the buyer will benefit as his/her preference function value for the resulting

bid combination is at least as good as that of Decentralized. Sellers will also

benefit in the sense that the more competitive sellers will be matched through

coordination. Therefore, both parties (buyer and the sellers) will benefit more

when the sellers share their cost functions with ADSS.

 =0.05 =0.15 =0.25 =0.35 =0.45 =0.55 =0.65 =0.75 =0.85 =0.95

0.0000 0.0000 0.0000 0.0000 0.5978 1.7231 0.3873 0.0000 0.0000 0.0000

 =0.05 =0.15 =0.25 =0.35 =0.45 =0.55 =0.65 =0.75 =0.85 =0.95

0.0000 0.0000 3.6321 4.2553 4.9567 2.5316 5.3631 1.8655 0.0000 0.0000

 130

 131

CHAPTER 7

7 EXTENSIONS TO PREVIOUS WORK

In this chapter we discuss modifications we made to improve the Evolutionary

Algorithm (EA) developed in Karakaya (2009) for MAMI auctions in order to

overcome the computational difficulties.

The application of EAs in multi-objective optimization is beneficial as the EAs

maintain a population of solutions in a single run and there are examples in the

literature (see for example Deb et al. 2002, Zitzler et al. 2001, Soylu and

Köksalan 2010, Karahan and Köksalan 2010).

Karakaya (2009) adapted the Non-Dominated Sorting Genetic Algorithm NSGA-

II (Deb et al. 2002) to solve a MAMI reverse auction problem. The developed EA

is used to approximate the Pareto front. Karakaya (2009) considers a MAMI

auction environment with two attributes: price and defect rate. She assumes that

all units of an item should be supplied by a single seller and each seller gives bids

for each item. She considers two variations of the problem. The base case

corresponds to a simpler version in terms of the prices, whereas the discounted

case introduces price discounts in the bids that supply several items. She ran

different versions of the algorithm considering different procedures to seed

several initial solutions in the initial population and tested their performances

against the true Pareto frontier for both original and discounted cases. She uses

different problems with different combinations of the number of items and sellers:

 132

(10,20), (30,30), and (30,100) where in the parentheses the former and latter

values refer to the number of items and the number of sellers, respectively.

In the modified version, we made 10 replications for each instance by randomly

generating problems. We try to synchronize the random numbers we use for the

same purpose in each version of the algorithm to reduce the variation due to

randomness. We consider an additional version, in which the initial population is

seeded with all supported efficient solutions of the original case. We apply the

procedure of Aneja and Nair (1979) to find all supported efficient solutions for

the original case. As stated in Chapter 4, this procedure minimizes a weighted

linear objective that combines the two objectives. Systematically changing the

weights at each iteration, it guarantees obtaining all supported efficient solutions.

Once we get the weights from this procedure at each iteration, we find the

solution that minimizes the weighted objective function employing an efficient

sorting procedure. We first calculate the value of each seller for each item by

multiplying the attribute values of the item of the seller with the corresponding

weights and summing them up. Then, for each item we choose the seller having

the minimum value as the winner. We try this new version in both original and

discounted cases. As expected this version of the algorithm performs well as the

algorithm starts with good solutions. However, its performance is not good in the

discounted case as the problem structures are different. Karakaya (2009)

considers two performance measures to test the algorithm. We apply paired-t test

to statistically compare different versions of the algorithm in terms of these two

performance measures. The results of the experiments can be seen in Appendix B.

In the manuscript, although we demonstrated our algorithm for a single round, it

is directly applicable in a multi-round setting as well. After the bidders update

their bids based on the feedback mechanism of the auction, our algorithm can be

employed to find the new approximate efficient front in the next round. We intend

to incorporate our algorithm into such multi-round settings as future research.

 133

For single as well as multiple round auctions it would be useful to develop

preference-based EAs that explore only the parts of the Pareto front that are of

interest to the decision maker.

 134

 135

CHAPTER 8

8 CONCLUSIONS

In this study, we address multi-attribute multi-item auction problems. We develop

auction decision support systems, ADSSs, that provide aid to the buyer in single-

round auctions whereas it provides aid to both parties in multi-round auctions. We

first develop an approach that finds a set of efficient bid combinations to present

to the buyer. The buyer determines the preferred and nonpreferred combinations.

Based on the preferences of the buyer, ADSS estimates the parameter values of

the underlying preference function of the buyer as well as the estimated

preference function value for each item separately, and inform sellers about these

estimations. In the succeeding rounds sellers update their bids and the auction

continues until a termination condition is met. We generate a number of test

problems and test our algorithm for both two and three attribute problems for an

underlying linear preference function. Our algorithm finds the same winning

sellers that are found using exact parameter values, i.e. allocative efficiency is

reached. Also the buyer’s preference function is closely approximated. We also

use the algorithm as a heuristic for nonlinear preference functions. The results

also indicate that our algorithm performs well.

We then develop an interactive algorithm, LIN-u, to support the buyer to find the

most preferred bid combination for underlying linear preference functions. The

results show that with LIN-u we guide the sellers well and both the buyer and the

sellers can benefit. We also modify the algorithm and develop a heuristic method

 136

for underlying quasiconvex preference functions. The experiments show that our

algorithm performs well.

For underlying quasiconvex preference functions we develop two algorithms

QCX-u and Lα-u, with different version of each algorithm. Based on our

experiments, we conclude that our guidance mechanism works well for

underlying quasiconvex preference functions.

In the algorithms above, we assume that we do not know the cost functions of the

sellers. We also develop an interactive approach assuming that all sellers disclose

their cost functions explicitly to us. We refer to this case as “Coordinated

Bidding” and develop the interactive CO-u algorithm. Our algorithm finds the

optimal winning sellers requiring only a small number of preference comparisons

from the buyer.

In Karakaya (2009), an Evolutionary Algorithm (EA) was developed for the case

of multi-attribute, multi-item reverse auctions in order to overcome the

computational difficulties. We made some modifications and improved the

algorithm. We approximately generate the whole Pareto front using the EA. We

also develop heuristic procedures to find several good initial solutions and insert

those in the initial population of the EA. We test the EA on a number of randomly

generated problems and report our findings.

When the number of possible bid combinations is too high to find the efficient bid

combinations within a reasonable computational effort, heuristics such as EAs

can be utilized. Developing a preference-based EA that finds some parts of the

Pareto front based on the preferences of the buyer could be beneficial as this

would avoid generating the whole Pareto front. As a future study, the interactive

approaches we developed in this thesis can be utilized in the development of a

preference-based EA.

 137

When we do not know the cost functions of the sellers, we estimate the preference

function value of each item in a combination of bids to inform the sellers. We

intend to work on procedures to assign meaningful contribution values to the

components of a bid combination.

In Chapter 5, we develop algorithms for underlying quasiconvex preference

functions. Understanding the form of the underlying preference function is

important to utilize these algorithms more beneficially. We aim to work on

different methods to identify the form of the underlying preference function;

specifically we intend to apply the procedure in Köksalan and Sagala (1995) as a

future study.

The experiments show that our guidance mechanism works well and both the

sellers and the buyer can benefit from using ADSSs. The implementation of this

decision support system in a web-based platform and implementing it in practice

are important future challenges.

 138

 139

REFERENCES

Aneja, Y.P., and Nair, K.P.K., 1979, Bicriteria Transportation Problem,

Management Science, 25(1), 73–78.

Bapna, R., Wolfgang, J. and Shmueli, G., 2008, Price formation and its dynamics

in online auctions, Decision Support Systems, 44 (3), 641-656.

Baykal, Ş., Combinatorial Auction Problems, Master’s Thesis, Department of

Industrial Engineering, Middle East Technical University, 2007.

Bellosta, M.J., Brigui, I., Kornman, S. and Vanderpooten, D., 2004, A Multi-

criteria Model for Electronic Auctions, In Proceedings of ACM Symposium on

Applied Computing, 759-765, March 14-17, Nicosia, Cyprus.

Bichler, M. and Kalagnanam, J., 2005, Configurable offers and winner

determination in multi-attribute auctions, European Journal of Operational

Research, 160(2), 380-394.

Bozkurt, B., Fowler, J.W., Gel, E.S., Kim, B., Köksalan, M. and Wallenius, J.,

2010, Quantitative comparison of approximate solution sets for multicriteria

optimization problems with weighted Tchebycheff preference function,

Operations Research, 58(3), 650-659.

Buer, T., and Pankratz, G., 2010, Solving a bi-objective winner determination

problem in a transportation procurement auction, Logistics Research, 2, 65–78.

 140

Catalán, J., Epstein, R., Guajardo, M., Yung, D. and Martínez, C., 2009, Solving

multiple scenarios in a combinatorial auction, Computers & Operations Research,

36(10), 2752–2758.

Chinneck, J.W., 2008, Feasibility and infeasibility in optimization: algorithms

and computational methods, New York: Springer.

De Vries, S. and Vohra, R., 2003, Combinatorial Auctions: A Survey, INFORMS

Journal on Computing, 15(3), 284–309.

Deb, K., Pratap, A., Agrawal, S. and Meyarivan, T., 2002, A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary

Computation, 6(2), 182–197.

Ervasti, V. and Leskelä, R.L., 2010, Allocative efficiency in simulated multiple-

unit combinatorial auctions with quantity support, European Journal of

Operational Research, 203(1), 251–260.

Fujishima, Y., Leyton-Brown, K. and Shoham, Y., 1999, Taming the

Computational Complexity of Combinatorial Auctions: Optimal and Approximate

Approaches, International Joint Conference on Artificial Intelligence (IJCAI),

548–553.

Haimes, Y., Lasdon, L. and Wismer, D., 1971, On a Bicriterion Formulation of

the Problems of Integrated System Identification and System Optimization, IEEE

Transactions on Systems, Man, and Cybernetics 1, 296–297.

Hohner, G., Rich, J., Ng, E., Reid, G., Davenport, A.J., Kalagnanam, J.R., Lee,

H.S. and An, C., 2003, Combinatorial and quantity–discount procurement

auctions benefit, Mars, Incorporated and its suppliers, Interfaces, 33(1), 23–35.

 141

Karahan, İ. and Köksalan, M., 2010, A Territory Defining Multiobjective

Evolutionary Algorithms and Preference Incorporation, IEEE Transactions on

Evolutionary Computation, 14 (4), 636–664.

Karakaya, G. and Köksalan, M., 2011, An interactive approach for multi-attribute

auctions, Decision Support Systems, 51(2), 299–306.

Karakaya, G., 2009, Approaches for multi-attribute auctions, Master’s Thesis,

Department of Industrial Engineering, Middle East Technical University.

Keeney, R.L. and Raiffa, H., 1993, Decision Making with Multiple Objectives:

Preferences and Value Tradeoffs, Cambridge University Press, Cambridge.

Koppius, O.R., Van Heck, E. and Wolters, M.J.J., 2004, The importance of

product representation online: empirical results and implications for electronic

markets, Decision Support Systems, 38 (2), 161-169.

Korhonen P., Wallenius J. and Zionts, S., 1984, Solving the discrete multiple

criteria problem using convex cones, Management Science, 30(1), 1336–1345.

Korhonen, P.J. and Laakso, J., 1986, A visual interactive method for solving the

multiple criteria problem, European Journal of Operational Research, 24(2), pp.

277-287.

Köksalan, M. and Sagala, P.N.S., 1995, An approach to and computational results

on testing the form of a decision maker’s utility function, Journal of Multi-

criteria Decision Analysis, 4, 189-202.

Köksalan, M., 1999, A heuristic approach to bicriteria scheduling, Naval

Research Logistics, 46(7), 777–789.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235

 142

Köksalan, M., Leskelä, R.L., Wallenius, H. and Wallenius, J., 2009, Improving

efficiency in multiple-unit combinatorial auctions: bundling bids from multiple

bidders, Decision Support Systems, 48(1), 103–111.

Lehmann, D., Mueller, R. and Sandholm, T., 2006, The Winner Determination

Problem, In: Cramton, P., Shoham, Y., Steinberg, R. (Eds.), Combinatorial

Auctions, Chapter 12. MIT Press.

Leskelä, R.L., Teich, J.E., Wallenius, H. and Wallenius, J., 2007, Decision

support for multi-unit combinatorial bundle auctions, Decision Support Systems,

43(2), 420–434.

Leyton-Brown, K., Pearson, M. and Shoam, Y., 2000, Towards a universal test

suite for combinatorial auction algorithms, ACM Conference on Electronic

Commerce, 66–76.

Lokman, B. and Köksalan, M., 2012, Finding All Nondominated Points of Multi-

objective Integer Programs, Journal of Global Optimization, 57, 347–365.

McAfee, R. and McMillan, J., 1987, Auctions and Bidding, Journal of Economic

Literature, 25(2), 699–738.

Metty, T., Harlan, R., Samelson, Q., Moore, T., Morris, T., Sorensen, R.,

Schneur, A., Raskina, O., Schneur, R., Kanner, J., Potts, K. and Robbins J., 2005,

Reinventing the Supplier Negotiation Process at Motorola, Interfaces, 35(1), 7–

23.

Ramesh, R., Karwan, M.H. and Zionts, S., 1990, An interactive method for

bicriteria integer programming, IEEE Transactions on Systems, Man, and

Cybernetics, 20(2), 395–403.

 143

Rothkopf, M.H. and Park, S., 2001, An Elementary Introduction to Auctions,

Interfaces, 31(6), 83–97.

Sandholm, T. and Suri, S., 2003, BOB: Improved winner determination in

combinatorial auctions and generalizations, Artificial Intelligence, 145(1-2), 33–

58.

Sandholm, T. and Suri, S., 2006, Side constraints and non-price attributes in

markets, Games and Economic Behavior, 55, 321–330.

Sandholm, T., 2002, Algorithm for optimal winner determination in

combinatorial auctions, Artificial Intelligence, 135(1-2), 1–54.

Sandholm, T., Levine, D., Concordia, M., Martyn, P., Hughes, R., Jacobs, J., &

Begg, D., 2006, Changing the Game in Strategic Sourcing at Procter & Gamble:

Expressive Competition Enabled by Optimization, Interfaces, 36(1), 55–68.

Sandholm, T., Suri, S., Gilpin, A. and Levine, D., 2002, Winner determination in

combinatorial auction generalizations, In Proceedings of the first International

Conference on Autonomous and Multi-agent Systems, 69-76, Bologna, Italy.

Sandholm, T., Suri, S., Gilpin, A. and Levine, D., 2005, CABOB: A Fast Optimal

Algorithm for Winner Determination in Combinatorial Auctions, Management

Science, 51(3), 374–390.

Sheffi, Y., 2004, Combinatorial Auctions in the Procurement of Transportation

Services, Interfaces, 34(4), 245–252.

Soylu, B. and Köksalan, M., 2010, A Favorable Weight Based Evolutionary

Algorithm for Multiple Criteria Problems, IEEE Transactions on Evolutionary

Computation, 14 (2), 191–205.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235

 144

Talluri, S., Narasimhan, R. and Viswanathan, S., 2007, Information technologies

for procurement decisions: a decision support system for multi-attribute e-reverse

auctions, International Journal of Production Research, 45(11), 2615–2628.

Teich, J.E., Wallenius, H., Wallenius, J. and Zaitsev, A., 2006, A multi-attribute

e-auction mechanism for procurement: theoretical foundations, Journal of

Operational Research, 175(1), 90–100.

Teich, J.E., Wallenius, H., Wallenius, J. and Koppius, O.R., 2004, Emerging

multiple issue e-auctions, European Journal of Operational Research, 159, 1–16.

Van Veldhuizen, D. A. and Lamont, G. B., 2000, On measuring multiobjective

evolutionary algorithm performance, Proceedings of the 2000 Congress on

Evolutionary Computation, IEEE, 1, 204–211.

Zionts, S., 1981, A multiple criteria method for choosing among discrete

alternatives, European Journal of Operational Research, 7(2), 143–147.

Zitzler, E. and Thiele, L., 1998, Multiobjective Optimization Using Evolutionary

Algorithms - A Comparative Case Study, Parallel Problem Solving from Nature,

PPSN V, 292–301.

Zitzler, E., Laumanns, M., and Thiele, L., 2001, SPEA2: Improving the Strength

Pareto Evolutionary Algorithm, TIK-Report, 103, Swiss Federal Institute of

Technology, Switzerland.

 145

APPENDICES

APPENDIX A

A. PARAMETER SETTING IN EFFCOM MODEL

In our experiments, we round the attribute values to four significant digits. Thus,

the minimum increments of the objectives (attributes of a bid combination) are

10
-4

. For the two-attribute case, by setting a suitable value in the objective

function and systematically changing value, we generate all efficient solutions.

We first solve the EFFCOM model to minimize only the second objective. The

objective function value of the optimal solution is the is the smallest possible

value for . To obtain the largest possible value for , we solve the EFFCOM

model in a lexicographic manner. We minimize the first objective. By fixing

attribute 1 value of the corresponding solution, we then solve the model again to

minimize the second objective. Attribute 2 value of the optimal solution is the

largest possible value for .

Let mn and mx be the smallest and largest possible values for . Since the

minimum increment between the attribute 1 values is 10
-4

, we set such that

 () . With this we guarantee that the maximum increment in

the second objective would not cause any trade-offs between the first and second

objectives. The augment part only serves for breaking ties.

After setting value, we solve EFFCOM model repeatedly by changing the

value.We start with the largest possible value (mx) for and systematically

reduce it until its smallest possible value (mn). We reduce the second attribute

 146

value obtained in the most recent solution of EFFCOM by 10
-4

, which is the

minimum increment between the attribute 2 values as we round the attribute

values to four significant digits. This guarantees generating all efficient solutions.

 147

APPENDIX B

B. RESULTS OF THE EVOLUTIONARY ALGORITHM

Karakaya (2009) developed an Evolutionary Algorithm (EA) with different

variations. In the original case, she considers two versions of the algorithm:

without seeding, seeding by sorting. In the without seeding case, all members of

the initial population are generated randomly. In the seeding by sorting case, the

initial population is seeded with two solutions corresponding to the best solutions

for each objective for the original case. In the discounted case, she considers three

versions of the algorithm: without seeding, optimal seeding and rank heuristic.

Without seeding is as in the original case. Optimal seeding is similar to seeding

by sorting but in the discounted case the initial population is seeded with the best

solutions for each objective for the discounted case. In the last version she applies

rank heuristic to find an approximate nondominated solution considering the

price objective in the discounted case and uses a simple sorting procedure to find

a good solution in terms of the defect rate objective. She then uses these two

combinations to seed the initial population. As stated in Chapter 7, in the

modified version we consider an additional version, supported seeding, in which

the initial population is seeded with all supported efficient solutions of the

original case. We refer to the version that the initial population is seeded with two

solutions corresponding to the best solutions for each objective in the

corresponding case as seeding two extremes in both cases.

Karakaya (2009) compares the results of the different version of the algorithm

with the true Pareto optimal front obtained by solving a series of integer

programs. She considers two performance measures to test the algorithm;

 148

Hypervolume Indicator (Zitzler and Thiele, 1998) which measures the dominated

hypervolume to a given reference point and the Inverted Generational Distance

Metric (Van Veldhuizen and Lamont, 2000) which measures the Euclidean

distance of each solution in the true Pareto front to the closest solution in the

population generated by the algorithm. The average of these distances are used

and for the Inverted Generational Distance Metric (IGDM) smaller values are

desirable.

Let *

vHI to represent the ratio of the hypervolumes of the v
th

 version of the

algorithm to that of the true Pareto front (i.e., *

vHI = hypervolume of the v
th

version of the algorithm/hypervolume of the true Pareto front) where v

corresponds to seeding two extremes, without seeding, supported seeding, and

rank heuristic. When an algorithm generates the true Pareto front exactly, *

vHI

takes its best possible value of 1, and it takes smaller values as the algorithm’s

performance deteriorates, with a minimum possible value of 0.

We conduct experiments and the preliminary results show that seeding two

extremes performs well in both cases. We apply paired-t test to statistically

compare this version with the other versions. We compute the sample means

__ _______
*,v vHI IGDM

and the sample deviations *(), ()v vSD HI SD IGDM for both metrics. At

a 99% significance level we test the following hypothesis:

0 1

1 1

:

:

m m

v

m m

v

H

H

v= without seeding, supported seeding for the original case

v= without seeding, supported seeding, rank heuristic for the discounted case

where v is the version of the algorithm as before and m stands for the performance

metric (*HI and IGDM). The null hypothesis states that there is no statistical

difference between seeding two extremes and its contender. When we fail to

 149

reject the null hypothesis at 99% significance level, we indicate the winner as

“none” in the corresponding tables. On the other hand, if the statistical test

indicates a significant difference, we report the winner in the table based on the

corresponding 99% confidence interval.

For each problem set, we find the difference

*
__ __ _______ _______

* *

1 1andHI IGDM

v v v vHI HI IGDM IGDM

between the average

performance metrics of the seeding two extremes and its contenders. The

performance of the algorithm for each version in terms of HI*, IGDM, CPU time,

and statistical test results for each problem set are reported in the following tables.

We also give the CPU time of the ε-constraint method used to generate the true

Pareto front as a benchmark. We report the results for the original and discounted

cases in Tables B.1-B.6 and in Tables B.7-B.12, respectively.

Table B.1 Results for Original Case Problem Set (10,20) (300 Generations)*

Version (v)
__

*

vHI
*()vSD HI

vIGDM ()vSD IGDM

Average

CPU time

(sec)

seeding two extremes 0.9990 0.0010 0.00164 0.00120 0.8244

without seeding 0.7087 0.1793 0.02806 0.02656 0.8361

supported seeding 0.9995 0.0007 0.00112 0.00089 0.8222

true Pareto - 5.3415

*Based on 10 instances

Table B.2 Statistical Comparison of Seeding two Extremes with its Contenders

for Original Case Problem Set (10,20)

Contender
*HI

v p-value Winner
IGDM

v p-value Winner

without seeding 0.2903 0.001
seeding two

extremes
-0.02643 0.013 None

supported seeding -0.0005 0.027 none 0.00052 0.111 None

 150

Table B.3 Performance Measures for Original Case Problem Set (30,30) (2000

Generations)*

Version (v)
__

*

vHI
*()vSD HI

vIGDM ()vSD IGDM

Average

CPU time

(sec)

seeding two extremes 0.9925 0.0013 0.00723 0.00081 8.1884

without seeding 0.6922 0.0694 0.01901 0.00462 8.3148

supported seeding 0.9927 0.0009 0.00708 0.00046 8.1901

true Pareto - 39.5942

*Based on 10 instances

Table B.4 Statistical Comparison of Seeding two Extremes with its Contenders

for Original Case Problem Set (30,30)

Contender
*HI

v p-value Winner
IGDM

v p-value Winner

without seeding 0.3003 0.000
seeding two

extremes
-0.01179 0.000

seeding two

extremes

supported seeding -0.0002 0.496 none 0.00015 0.463 none

Table B.5 Performance Measures for Original Case Problem Set (30,100) (4000

Generations)*

Version (v)
__

*

vHI
*()vSD HI

vIGDM ()vSD IGDM

Average

CPU time

(sec)

seeding two extremes 0.9908 0.0019 0.00999 0.00137 19.4171

without seeding 0.5325 0.0620 0.04268 0.01546 19.3516

supported seeding 0.9929 0.0015 0.00845 0.00107 20.3645

true Pareto - 87.7548

*Based on 10 instances

Table B.6 Statistical Comparison of Seeding two Extremes with its Contenders

for Original Case Problem Set (30,100)

Contender
*HI

v p-value Winner
IGDM

v p-value Winner

without seeding 0.4582 0.000
seeding two

extremes
-0.03268 0.000

seeding two

extremes

supported seeding -0.0021 0.004
supported

seeding
0.00155 0.004

supported

seeding

 151

The results show that for the original case both seeding two extremes and

supported seeding performs well. It is an expected result for the supported

seeding version to work well as many solutions of the true Pareto front is seeded

in the initial population. In Table B.6, we observe that supported seeding

outperforms seeding two extremes however the results of both algorithms are

very close to each other in both HI* and IGDM values. Seeding two extremes

requires only two extreme solutions to seed in the initial population whereas

supported seeding requires all supported efficient solutions. Although finding all

supported efficient solutions was easy for the original case, it may prove difficult

in general and one may need to find approximations of these solutions to seed in

the initial population as will be the case in our discounted problem.

Table B.7 Performance Measures for Discounted Case Problem Set (10,20) (300

Generations)*

Version (v)
__

*

vHI
*()vSD HI

vIGDM ()vSD IGDM
Average CPU

time (sec)

seeding two extremes 0.9952 0.0061 0.00495 0.00405 1.0221

without seeding 0.7140 0.1465 0.02770 0.01578 0.8378

rank heuristic 0.7415 0.1696 0.02611 0.01526 0.8377

supported seeding 0.7654 0.1475 0.02198 0.01363 0.8255

true Pareto - 10.4410

*Based on 10 instances

Table B.8 Statistical Comparison of Seeding two Extremes with its Contenders

for Discounted Case Problem Set (10,20)

Contender
*HI

v p-value Winner
IGDM

v p-value Winner

without seeding 0.2812 0.000
seeding two

extremes
-0.02274 0.001

seeding two

extremes

rank heuristic 0.2537 0.001
seeding two

extremes
-0.02116 0.002

seeding two

extremes

supported seeding 0.2298 0.001
seeding two

extremes
-0.01703 0.002

seeding two

extremes

 152

Table B.9 Performance Measures for Discounted Case Problem Set (30,30) (4000

Generations)*

Version (v)
__

*

vHI
*()vSD HI

vIGDM ()vSD IGDM

Average

CPU time

(sec)

seeding two extremes 0.9811 0.0081 0.01335 0.00485 17.1414

without seeding 0.7259 0.1075 0.04016 0.01808 16.5237

rank heuristic 0.7332 0.1238 0.03197 0.01493 16.5298

supported seeding 0.6965 0.1465 0.04031 0.01266 16.5874

true Pareto - 332.8922

*Based on 10 instances

Table B.10 Statistical Comparison of Seeding two Extremes with its Contenders

for Discounted Case Problem Set (30,30)

Contender
*HI

v p-value Winner
IGDM

v p-value Winner

without seeding 0.2551 0.000
seeding two

extremes
-0.02680 0.000

seeding two

extremes

rank heuristic 0.2478 0.000
seeding two

extremes
-0.01862 0.003

seeding two

extremes

supported seeding 0.2846 0.000
seeding two

extremes
-0.02696 0.000

seeding two

extremes

Table B.11 Performance Measures for Discounted Case Problem Set (30,100)

(7000 Generations)*

Version (v)
__

*

vHI
*()vSD HI

vIGDM ()vSD IGDM

Average

CPU time

(sec)

seeding two extremes 0.9709 0.0124 0.02244 0.01033 36.5301

without seeding 0.6478 0.1298 0.07746 0.01918 33.6851

rank heuristic 0.6656 0.0684 0.06801 0.0209 34.0037

supported seeding 0.6413 0.0670 0.07878 0.01502 34.3830

true Pareto - 1241.0686

*Based on 10 instances

 153

Table B.12 Statistical Comparison of Seeding two Extremes with its Contenders

for Discounted Case Problem Set (30,100)

Contender
*HI

v p-value Winner
IGDM

v p-value Winner

without seeding 0.3231 0.000
seeding two

extremes
-0.05502 0.000

seeding two

extremes

rank heuristic 0.3053 0.000
seeding two

extremes
-0.04557 0.000

seeding two

extremes

supported seeding 0.3296 0.000
seeding two

extremes
-0.05635 0.000

seeding two

extremes

The results show that in all test problems seeding two extremes is significantly

better than the other version for the discounted case. Seeding two extremes

represents the true Pareto front well in a fraction of the time required to generate

the true Pareto front. Moreover, for the largest problem set (30,100), seeding two

extremes has HI* value of 97% and a small IGDM value. Although with rank

heuristic and supported seeding the best solution for the defect objective can be

found, the best solution for the price objective cannot be found.

We expect that as the number of good solutions seeded in the initial population

increases, the performance of the algorithm further improves. The main tradeoff

is the computational time to find the good solutions. Therefore, it may be

worthwhile to develop fast heuristics that give good seed solutions.

 154

 155

CIRRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Karakaya, Gülşah

Nationality: Turkish (TC)

Date and Place of Birth: 5 November 1983, Akşehir

Marital Status: Married

Phone: +90 312 210 29 56

email: kgulsah@metu.edu.tr

EDUCATION

Degree Institution Year of Graduation

MS METU Industrial Engineering 2009

BS METU Industrial Engineering 2007

High School Konya Meram Science High School 2002

WORK EXPERIENCE

Year Place Enrollment

2007-Present METU Dept. of Industrial Eng. Research Assistant

2006-2007 METU Dept. of Industrial Eng. Undergraduate Assistant

2006 July Bosch Intern Engineering Student

2005 July Vestel Intern Engineering Student

PUBLICATIONS

Karakaya, G. and M. Köksalan, “An Interactive Approach for Bi-attribute Multi-

Item Auctions,” under review in Annals of Operations Research.

Köksalan, M. and G. Karakaya, “An Evolutionary Algorithm for Finding

Efficient Solutions in Multi-Attribute Auctions,” under review in International

Journal of Information Technology & Decision Making.

Karakaya, G. and M. Köksalan, “An Interactive Approach for Multi-attribute

Auctions,” Decision Support Systems, 51, 299-306, (2011).

 156

CONFERENCE PRESENTATIONS

Karakaya, G. and M. Köksalan, “Decision Support for Multi-attribute Multi-item

Reverse Auctions,” 22
nd

 International Conference on MCDM, Málaga, Spain,

June 2013.

Karakaya, G. and M. Köksalan, “An Approach for Multi-attribute Multi-item

Reverse Auctions,” 1
st
 International IIE Conference, İstanbul, Turkey, June 2013.

Karakaya, G. and M. Köksalan, “Decision Support for Multi-attribute Multi-item

Reverse Auctions,” 21
st

International Symposium on Mathematical Programming

(ISMP), Berlin, Germany, August 2012.

Karakaya, G. and M. Köksalan, “An Interactive Approach for Multi-attribute

Multi-item Reverse Auctions,” 21
st
 International Conference on MCDM,

Jyvӓskylӓ, Finland, June 2011.

Karakaya, G. and M. Köksalan, “An Approach for Multi-attribute Reverse

Auctions,” 20
th

 International Conference on MCDM, Chengdu, China, June 2009.

SEMINARS

Karakaya, G., “Decision Support for Multi-attribute Reverse Auctions,”

Department of Industrial Engineering, Middle East Technical University, Ankara,

Turkey, April 2012.

Karakaya, G., “Approaches for Multi-attribute Reverse Auctions,” Department of

Industrial Engineering, Middle East Technical University, Ankara, Turkey, May

2010.

Karakaya, G., “Approaches for Multi-attribute Auctions,” Aalto University

School of Science and Technology, Helsinki, Finland, October 2010.

AWARDS

METU Graduate Courses Performance Award 2011

Ph.D. Scholarship, The Scientific and Technological Research Council of Turkey

(TÜBİTAK) 2009 - 2013

M.S. Scholarship, The Scientific and Technological Research Council of Turkey

(TÜBİTAK) 2007 - 2009

Bosch Engineering Scholarship 2005 - 2007

FOREIGN LANGUAGES

Advanced English, Intermediate German

