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ABSTRACT 

 

 

DECISION SUPPORT FOR MULTI-ATTRIBUTE AUCTIONS 

 

 

 

Karakaya, Gülşah 

Ph.D., Department of Industrial Engineering 

      Supervisor: Prof. Dr. Murat Köksalan 

 

December 2013, 156 pages 

 

 

In this study, we address multi-attribute, multi-item auction problems. In multi-

attribute auctions there are additional attributes to the price and the comparison of 

bids is not straightforward. In multi-item auctions which are also known as 

combinatorial auctions, it is not so trivial to determine the winning bidders.  

 

We develop an auction decision support system (ADSS) that supports sellers to 

bid on multiple items. We demonstrate our approach in a multi-attribute, multi-

item reverse auction setting. The approach is also directly applicable to forward 

auctions. During the auction process, ADSS estimates the underlying preference 

function of the buyer and supports sellers providing them information based on 

these estimations. We first assume that the sellers do not share their cost functions 

with ADSS and develop interactive algorithms for underlying linear preference 

functions as well as for underlying quasiconvex preference functions. The aim of 

the developed approaches is to have the more competitive bidders eventually end 
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up winning the auction, with predetermined reasonable mark-up values. We 

demonstrate that our algorithms work well on a variety of test problems. 

 

We also develop an interactive algorithm for the case that sellers explicitly make 

their cost functions available to ADSS. In this approach, ADSS tries to find the 

best possible combinations considering both the estimated preference function of 

the buyer and the cost functions of the sellers. The experiments show that our 

algorithm finds the optimal winners (achieved with exact parameters of the 

underlying preference function).    

 

Keywords: multi-attribute auctions, multi-item auctions, interactive approach, 

combinatorial auctions 
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ÖZ 

 

 

ÇOK ÖLÇÜTLÜ AÇIK ARTTIRMALAR İÇİN KARAR DESTEK 

 

 

 

Karakaya, Gülşah 

     Doktora, Endüstri Mühendisliği Bölümü 

     Tez Yöneticisi: Prof. Dr. Murat Köksalan 

 

Aralık 2013, 156 sayfa 

 

 

Bu çalışmada çok ölçütlü, çok ürünlü ihale problemlerini ele alıyoruz. Çok 

ölçütlü ihalelerde fiyat dışında düşünülmesi gereken başka ölçütler de vardır ve 

tekliflerin değerlendirilmesi zordur. Kombinatoryal ihaleler olarak da bilinen çok 

ürünlü ihalelerde kazananları belirlemek özellikle zordur.  

 

Satıcıların birden çok ürün için teklif vermelerini destekleyen bir ihale karar 

destek sistemi (İKDS) geliştirdik. Yaklaşımımızı çok ölçütlü, çok ürünlü açık 

eksiltme problemleri üzerinde gösterdik. Yaklaşımımız açık arttırma 

problemlerine de doğrudan uygulanabilir. İhalede, İKDS alıcının tercih 

fonksiyonunu tahmin edip satıcılara tahminler hakkında bilgi verir. İlk olarak 

satıcıların maliyet fonksiyonları bilgilerini İKDS ile paylaşmadığı durumu 

inceledik ve alıcının tercih fonksiyonunun hem doğrusal olduğu hem de doğrusal 

olmadığı durumlar için etkileşimli algoritmalar geliştirdik. Bu algoritmalar, 

maliyetleri daha rekabetçi olan satıcıların ihaleyi kazanmalarını hedeflemektedir. 
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Algoritmalarımızı test etmek için çözdüğümüz tüm problemlerde iyi sonuçlar elde 

ettik. 

 

Ayrıca satıcıların maliyet fonksiyonları bilgisini İKDS’ye verdiği durum için de 

etkileşimli bir yaklaşım geliştirdik.  Bu yaklaşımda, İKDS alıcının tahmin edilen 

tercih fonksiyonu ile satıcıların maliyet fonksiyonlarını göz önünde bulundurarak, 

en iyi teklifleri bulmaya çalışır. Yaptığımız testlerde algoritmamızın optimal 

kazananları (alıcının tercih fonksiyonunun açık olarak bilindiği durumda bulunan 

kazananlar) bulduğunu gördük. 

 

Anahtar kelimeler: çok ölçütlü açık arttırmalar, çok ürünlü açık arttırmalar, 

etkileşimli yaklaşım, kombinatoryal açık arttırmalar 
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CHAPTERS 

CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

An auction is a way of buying and selling goods and services.  The traditional 

auction process used to take place in a room or a square where an object was 

shown to the bidders by the auctioneer. The advances in the technological 

infrastructure and the Internet make it possible to conduct online auctions that 

eliminate the need for being present in the auction place physically. There are 

specialized websites that mediate between buyers and sellers and facilitate huge 

amounts of goods being traded between parties. With the online auction sites, 

people buy/sell various types of products/services.  

 

Auctions are commonly used by companies and governments. Hohner et al. 

(2003) and Sandholm et al. (2006) report the implementation of auctions in Mars 

Inc. and Procter&Gamble, respectively.  Metty et al. (2005) state that Motorola 

enjoy savings by implementing an online negotiation program. The government 

of Chile has used auctions for the procurement of school meals in Chile for many 

years (Catalán et al. 2009). Auctions have been commonly utilized in the 

transportation industry (Sheffi, 2004; De Vries et al. 2003).  

 

Online auctions are becoming popular with the advances in the Internet and there 

is a growing amount of literature in this area. In single-attribute auctions 

generally the price is used as the attribute. In multi-attribute auctions, there are 

additional attributes and the comparison of bids is not straightforward. Multi-item 

auctions also bring additional complexity over single-item auctions. In the single-
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item auctions, the winning bidder supplies the item with the committed attribute 

values. On the other hand, in multi-item case it is not trivial to determine the 

winning bidders.  In these auctions, generally bidders offer a combination of 

items – a bundle – they wish to supply. They specify the attribute values of the 

bundle and make their bids. Multi-item auctions are known as combinatorial 

auctions (CAs).  

 

In this thesis, we study multi-attribute multi-item (MAMI) auction problems. We 

first develop an exact approach that provides aid both to the buyer and the sellers 

for MAMI multi-round auctions where the buyer has an underlying linear 

preference function. The approach estimates the parameters of a preference 

function representing the buyer’s preferences evaluated on multiple attributes and 

informs the sellers about the estimations to update their bids for the next round.  

We set different weight values to the attributes and generate different problems. 

We test the performance of the algorithm for both two and three attribute cases 

when the underlying preference function is linear. We also make a local linear 

approximation for nonlinear preference functions and report the results. We then 

develop an interactive method to support the buyer to find the best bid 

combination among the given bids for two attribute problems. This method 

decreases the number of comparisons made by the buyer. We use this method as 

an exact method for underlying linear preference functions, and as a heuristic for 

underlying nonlinear preference functions. We also develop an interactive method 

for underlying quasiconvex preference functions. We try different versions for 

this method and report the results for two attribute problems. Furthermore, in all 

of the mentioned methods above we assume that we do not know the cost 

functions of the sellers. We then address the case where sellers explicitly make 

their cost functions available to us (the independent party mediating the auction). 

By using their cost functions, we find favorable combinations to present the 

buyer. We refer to this case as “Coordinated Bidding” case. We also test the 

performance of the approach for this case. Lastly, we made modifications to 

improve the Evolutionary Algorithm (EA) developed in Karakaya (2009) for 



  

 3 

MAMI reverse auctions in order to overcome the computational difficulties. We 

approximately generate the whole Pareto front using the EA. We test the EA on a 

number of randomly generated problems and report our findings. 

 

The structure of the thesis is as follows: In Chapter 2, we give some definitions on 

multi-objective decision making, we present the background of the auction theory 

and relevant literature, and explain the general structure of our approach and 

define the problem specifications. In Chapter 3, we develop an approach that 

finds a set of efficient bid combinations to present the buyer. We develop an 

interactive method to support the buyer to find the best bid combination in 

Chapter 4. In Chapter 5, we develop an interactive method to find the most 

preferred bid combination of a buyer having a quasiconvex preference function. 

In Chapter 6, we describe the “Coordinated Bidding” case where we create good 

combinations to present the buyer by using the cost functions of sellers. We 

discuss extension we made to our previous work in Chapter 7. Lastly, we present 

future study issues and conclusive remarks in Chapter 8.  
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CHAPTER 2 

 

 

2 DEFINITIONS, BACKGROUND AND PROBLEM 

CHARACTERISTICS 

 

 

 

In this chapter we first give some definitions on multi-objective decision making. 

We then explain the auction process and summarize relevant literature.  Lastly, 

we describe our approach and give the problem characteristics.  

2.1 Definitions 

In multi-objective optimization problems there are two or more, generally 

conflicting, objectives subject to a set of constraints. The general multi-objective 

optimization problem can be formulated as follows: 

“Minimize” {  ( )   ( )     ( )}  

subject to 

       

where, 

  : decision variable vector 

  : feasible decision space 

  : j
th

 objective function 

and the quotation marks are used to indicate that the minimization of a vector is 

not a well-defined mathematical operation. 

 

A solution     is said to be efficient, if and only if there does not exist      

such that   ( 
 )    ( ) for all j and   ( 

 )    ( ) for at least one j. Otherwise, 
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  is said to be inefficient. If   is efficient, then  ( )  (  ( )   ( )     ( )) is 

said to be nondominated, whereas if   is inefficient, then  ( ) is said to be 

dominated.  ( ) is said to be strictly dominated, if and only if    ( 
 )    ( ) for 

all j whereas  ( ) is said to be weakly nondominated, if and only if there does not 

exist      such that  (  ) strictly dominates  ( ).  

 

Consider distinct solutions     ,            Let 

  {    ∑     
 
    ∑      

        } be the set of all convex 

combinations of     A solution    is said to be convex dominated, if there 

exists           such that   ( )    (  ) for all j.  

 

An efficient solution,  , is said to be unsupported efficient if and only if there 

exists          such that   ( )    ( ) for all j and   ( )    ( ) for at 

least one j. An efficient solution,  , is said to be nonextreme supported efficient if 

and only if there exists          such that   ( )    ( ) for all j. An 

efficient solution,  , is said to be extreme supported efficient if and only if there 

does not exist          such that   convex dominates  . 

 

It is well-known in the multi-objective literature that any supported nondominated 

solution can be found by using a suitable weighted linear combination of the 

objective functions. However, finding unsupported nondominated solutions is not 

straightforward. 

 

In Figure 2.1 the classification of the solutions based on the domination rules 

where both objectives to be minimized are represented. 
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Figure 2.1 Classification of the solutions 

 

A pair of solutions are adjacent efficient to each other if their convex 

combinations are not dominated by the convex combinations of other solutions. In 

bi-objective problems, an extreme supported solution can have at most two 

distinct adjacent efficient solutions (see Ramesh et al., 1990). We specify these 

adjacent efficient solutions as east and west based on their positions relative to the 

reference solution. An adjacent efficient solution having a larger value than the 

reference solution in objective 1 is called its east adjacent efficient solution; 

whereas an adjacent solution having a larger value than the reference solution in 

objective 2 is called its west adjacent efficient solution. To demonstrate, consider 

alternative F in Figure 2.1. It has two adjacent efficient alternatives: A and G. We 

refer to G as the east adjacent efficient alternative of F and A as the west adjacent 

efficient alternative of F. 

 

Let        . We will use the notation       to imply that the decision maker 

(DM) prefers    to    and       to imply that the DM is indifferent between    

and   . 

 

Let         be a quasiconvex function. By definition   (∑     
 
   )  

     (  ) for ∑   
 
           where                are distinct 

Dominated Solutions: B, C, D 
 

Strictly Dominated Solutions: C, D 

 

Weakly Nondominated but Dominated 

Solutions: B 
 

Nondominated Solutions: A, E, F, G 
 

Supported Nondominated Solutions: A, 

F, G 
 

Unsupported Nondominated Solutions: 

E 

 

Objective 2 

Objective 1 

A B C 

D 

G F 

E 
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alternatives. The weighted    metric is a quasiconvex function that measures the 

weighted distance between two vectors        as follows: 

 

‖   ‖ 
  (∑ (  |     |)

  
   )

   
 where   {     }  { } and     . 

 

Commonly used weighted    metrics are the weighted rectilinear distance, the 

weighted Euclidean distance, and the weighted Tchebycheff distance, 

corresponding to                   , respectively. 

 

Within the context of an auction, from a buyer’s perspective,   ( ) refers to the 

value of attribute j of bid  . The buyer’s problem, then, is to choose the bid that 

minimizes his/her underlying preference function. In this thesis we use the terms 

bid combination, solution and alternative interchangeably to refer to a 

combination of bids that satisfy the whole requirements of the buyer. We also use 

the terms buyer and DM interchangeably. 

2.2 Auction Process 

In the literature, auctions are categorized with respect to different properties. For 

instance, they can be classified based on the number of buyers and sellers. If there 

is one buyer and one seller, it is called negotiation. If there are many buyers and 

many sellers it is called a double auction as in the case of a stock market. In 

forward auctions there are one seller and many buyers. The auction for art objects 

is an example of the forward auction. The last type is reverse auctions where the 

buyer is the auctioneer and the sellers are the bidders. It is a common auction type 

for procurement processes in the literature. To exemplify, a manufacturer selects 

the suppliers of some products where the manufacturer is the auctioneer who will 

buy the products and suppliers sell their products. Karakaya and Köksalan (2011) 

represent the classification of the auctions with respect to the number of sellers 

and buyers as follows: 
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   Figure 2.2 Auction types with respect to the number of sellers and buyers 

 

McAfee and McMillan (1987) group the auction mechanisms into four: the 

English auction, the Dutch auction, the first-price sealed-bid auction and the 

second-price sealed-bid auction (Vickrey auction). In an English auction, bidders 

increase their bids during the action and the one who bids the highest price is the 

winner. In these auctions, all bidders know each others’ bids. This is a property of 

open-cry auctions. In Dutch auction, the auction starts with a relatively high price 

and the auctioneer decreases it until a bidder accepts the current price. In the first-

price sealed-bid auction, bidders do not know each other’s bids. It is not an 

iterative process. The bidder offering the highest (lowest) price for the forward 

(reverse) process wins and he/she pays the highest (lowest) price. The second-

price sealed-bid auction is similar to the first-price sealed-bid auction except that 

the winner pays the second highest (lowest) price. 

 

Auctions are also classified with respect to the number of different items and the 

number of units for each item auctioned. In single-item, single-unit auctions, there 
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exists one unit of an item to be auctioned. If there are two or more units for the 

item auctioned, it is called a single-item, multi-unit auction. In single-item 

auctions, the bidder who values the item most is the winner. However, in the 

multi-item case where the items are complements or substitutes, it is not trivial to 

determine the winning bidder(s). These auctions are also known as CAs where 

bidders compose combinations of items, bundles, to sell/buy.  

 

The number of attributes in the auction process is another classification. Price is a 

typical attribute in auctions and if only price is considered, it is a single-attribute 

auction. On the other hand, if there are additional attributes (quality, lead time, 

warranty, etc.) to the price, it is a multi-attribute auction. Multi-attribute auctions 

bring additional complexity over single-attribute auctions as the comparison of 

bids is not straightforward in multi-attribute auctions. 

 

If the bidders submit their bids at different rounds during an auction, it is called a 

multi-round (iterative, progressive) auction. Multi-round combinatorial auctions 

have important advantages over single-round versions. Bidders do not have to 

submit bids for every possible combination in advance. It also allows bidders to 

behave in a dynamic manner. Moreover, additional information can be collected 

and utilized in a multi-round setting (see De Vries and Vohra, 2003). An 

application for multi-round combinatorial auction in Mars Inc. is reported by 

Hohner et al. (2003).  

 

In this thesis, we deal with MAMI auction problems and the relevant literature is 

summarized next. 

2.3 Literature Review 

In single-attribute auctions there is one attribute, typically the price. Choosing the 

winner of such auctions is simple (Rothkopf and Park 2001). On the other hand, 

in multi-attribute auctions comparison of the bids is not so simple. To evaluate 

bids of multi-attribute auctions, typically a value or a scoring function is applied. 
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Commonly, such value functions are in the form of weighted linear functions. The 

winner of the auction is determined by solving the Winner Determination 

Problem (WDP) that maximizes the value/scoring function. 

 

To evaluate bids of multi-attribute auctions, Bichler and Kalagnanam (2005) 

suggest a weighted-sum scoring function. Although using such functions is very 

common, as Bellosta et al. (2004) state, it has some drawbacks such as the 

difficulty of determining weights. Also, the solutions that can be found are limited 

with a weighted-sum scoring function. Bichler and Kalagnanam (2005) study 

multi-sourcing, i.e. demand can be supplied by multiple suppliers. They limit the 

number of winners by setting a lower and an upper bound on the number of 

winners.  

 

Another approach to multi-attribute auctions is using the ‘pricing out’ technique 

as in Teich et al. (2006). In this technique, all attributes are converted into 

monetary values (see Keeney and Raiffa 1993, pp.125-127). Teich et al. (2006) 

solve the resulting problem with a single attribute, namely the price. They 

propose ‘suggested price’ tool for bidders. Bidders make the combination by 

deciding on the quantities. Then the best price that makes the bidder’s bid among 

the provisional winners is determined by using the ‘suggested price’ tool. Leskelä 

et al. (2007) formulate a single-attribute auction problem and argue that the 

formulation can be extended to the multi-attribute case by the pricing out 

approach. They develop a Quantity Support Mechanism (QSM) that provides 

bidders not only the suggested price for a new bid, but also quantity decision 

support. They refer to a bid as “active” if it is among the provisional winners and 

“inactive” otherwise. An inactive bid can become active if an entering bid groups 

with it. Köksalan et al. (2009) improve the QSM and develop a Group Support 

Mechanism (GSM). In QSM only one incoming bid can complement the existing 

bids; whereas in the GSM a group of inactive bids can make a combination with 

active bids or with inactive bids.  Sandholm and Suri (2006) propose a weighting 

function to evaluate bids in multi-attribute auctions. In the weighting 
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function (    ⃗ ),    refers to the price and  ⃗  refers to the vector of nonprice 

attributes of bid j. This function is introduced to represent all other attributes in 

terms of price, although the details are not explained.  This approach is similar to 

the pricing out technique in Teich et al. (2006). 

 

Talluri et al. (2007) use data envelopment analysis (DEA) to propose a decision 

support system tool for a multi-sourcing, single-round auction. They try to reflect 

the correlation between the attributes in the value function. They define weights 

for each attribute. To reflect the decision maker’s (DM’s) preference information 

for attributes, they define ranges instead of exact weights. They divide the DEA 

model into two stages. In stage I, scores of each bid are evaluated whereas in 

stage II, the winning bids are determined.  

 

In the above approaches, simple functions that combine multiple attributes are 

used to estimate value functions. However, determining the weights and 

converting all attributes into a composite value are not easy.  

 

Bellosta et al. (2004) suggest a multi-criteria model based on reference points for 

single-item auctions. The DM defines an aspiration point at the beginning of the 

auction. He/she also defines a dynamic reservation point based on which sellers 

update their bids. Bids are evaluated using the scaled deviations from the 

aspiration levels. Tchebycheff method is applied; the maximum scaled deviation 

among all attributes is the deviation of that bid. Baykal (2007) studies 

combinatorial auctions and applies a variation of Korhonen and Laakso’s (1986) 

approach to the multi-attribute, multi-item auctions. She tries to find the best 

combination of bids for a single round. Determination of aspiration and/or 

reference points is not an easy task for the DM. Therefore, these methods may not 

well represent the preferences of the DM.   

 

Karakaya and Köksalan (2011) propose an interactive method for multi-attribute, 

single-item reverse auctions. They estimate the underlying preference function of 
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the buyer considering his/her past preferences. At each round, they only require 

the buyer to select the most preferred bid among a set of bids. Then they inform 

the sellers about the estimations and facilitate the sellers to update their bids 

accordingly. They test the performance of the algorithm on a number of test 

problems and conclude that the suggested mechanism supports the sellers well. 

The buyer also benefits with the improvement in his/her preference function value 

over the progress of the auction.  

 

Sandholm et al. (2002) study the complexity of winner determination in 

combinatorial auctions. They consider a single-attribute, price, and experiment on 

different types of combinatorial auctions using a general purpose mixed integer 

program solver, CPLEX.  Sandholm (2002) proposes a tree search algorithm that 

branches on items to find the optimal solution for combinatorial auctions. The 

algorithm is a depth-first algorithm and allows finding feasible solutions quickly. 

Also several preprocessing methods are suggested to speed up the algorithm. 

Sandholm and Suri (2003) improve the algorithm in Sandholm (2002). They 

suggest to branch on bids (BOB) instead of branching on items as in Sandholm 

(2002). Besides computational advantages to the proposed algorithm in Sandholm 

(2002), BOB can also be used for multi-unit combinatorial auctions. Sandholm et 

al. (2005) suggest CABOB which is mainly based on the BOB algorithm. They 

compare CABOB and CPLEX and report results. They claim that CABOB is 

often drastically faster and seldom drastically slower than CPLEX. 

 

Catalan et al. (2009) report the multi-attribute combinatorial auction for the 

procurement of school meals in Chile. The Chilean government is the auction 

owner and sets several criteria for the supply of foods. The bid selection is based 

on the fulfillment of those criteria. After applying a single-round auction, 

combination of bids supplying the whole demand at minimum cost is selected. 
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2.4 The Approach 

Karakaya and Köksalan (2011) provide aid to both the buyer and the sellers in a 

multi-attribute, single-item, multi-round reverse auction environment. We extend 

their approach to multi-item auction problems. We develop an approach that 

supports sellers to bid on single items or bundles of items. The approach estimates 

the parameters of a preference function representing the buyer’s preferences 

evaluated on multiple attributes and informs the sellers about the estimations to 

update their bids for the next round. 

 

We present the approach for MAMI multi-round reverse auctions; however it is 

directly applicable to forward auctions. We consider an environment where each 

seller bids independently. We assume that no gaming issues are applicable and 

each seller bids based on his/her underlying cost function. We consider revenue 

maximization and allocative efficiency which are desirable properties of an 

auction mechanism. As stated in Ervasti and Leskelä (2010), in revenue 

maximization the buyer wants to maximize his/her revenue whereas in allocative 

efficiency the winners are the ones who have the lowest production cost. Since we 

consider multiple attributes in a reverse auction setting, we can consider 

preference function value minimization. We design our approach to support both 

the buyer and the sellers. We will refer to our approach as an auction decision 

support system (ADSS).  This system is intended to act as a neutral third party 

independent from both the buyer and the sellers. During the auction process, we 

try to estimate the underlying preference function of the buyer and support sellers 

providing them information based on our estimations. At each round, the 

preference function value of the buyer is improved while the sellers update their 

bids to maximize their profits. Although sellers’ profit may decrease as rounds 

progress, we expect sellers to update their bids in order to be among the winners. 

At the end of the auction, we expect the buyer to end up with a highly preferred 

solution and the competitive bidders to be the winners of the auction.  
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We consider two variations of the problem: single-round and multi-round.  In the 

single-round case sellers compose their bids and the buyer selects the most 

preferred combination by evaluating the given bids. There would be no update of 

bids. On the other hand, in the multi-round case sellers compose their bids and the 

buyer selects the most preferred combination at each round. Then the sellers 

update their bids and the auction continues. In the single-round case, the buyer 

uses ADSS once to determine the most preferred combination. In the multi-round 

case we try to estimate the underlying preference function of the buyer based on 

his/her past preferences, without requiring any extra information. Then, we use 

this estimation to guide the sellers in updating their bids.  

 

We summarize the stages of our approach for problems where price and defect 

rate are the two attributes in Figure 2.3. The process is similar for problems with 

more than two attributes. 
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 Figure 2.3 The stages of the approach 

 

In the next chapters we explain the models that we solve in each stage in detail.  

2.5 Problem Characteristics  

We consider an environment where there are I sellers, M items, J attributes. We 

assume that all units of an item are supplied by a single seller. We use Tih to 

represent the number of bids offered by seller i at round h. First M bids of each 

seller represents these singletons and the remaining Tih-M bids represent seller i’s 

bundled bids at round h. We represent the bid of seller i as 

    (                       )  where       stands for the level of attribute j 

Sellers give their bids at the first round. At other rounds, sellers, 

- based on the provided information update their bids to maximize their 

profits. 

 

ADSS 

- considers all given bids for the current round and finds a set of efficient 

bid combinations, 

- combines these with the best bid combination(s) up to now if they are 

still efficient, 

- presents the buyer the efficient combinations for the current round. 

Buyer determines the provisional winners (best combination). 

ADSS 

- estimates the weight values of attributes, the preference function value of 

each item separately and improves the estimated preference function 

value of the buyer, 

- informs sellers about the estimated weight values of attributes and 

estimated preference function value of each item. 
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offered by seller i for bid t. We use     (                ) to represent the 

items that bid t of seller i consists of where      takes the value of 1 if bid t of 

seller i includes item m; otherwise it is 0. We omit subscripts indicating rounds 

for simplicity. The preference function value of the buyer evaluated for bid t of 

seller i is depicted as  (   )  We use a weighted    metric to represent the 

underlying preference of the buyer for the bids. This function minimizes the 

weighted distance of a point from the ideal point in terms of an    metric. We 

estimate the weight values based on the past preferences of the buyer fitting the 

following preference function as an estimate of the preference to     at any round:  

 

 (   )  (∑ (  (       
 ))

 
 
   )

   

  

 

where  

   : weight of attribute j  

  
 : ideal (best attainable) level of attribute j  

  : parameter of the    metric 

 

The preference function measures the weighted distance from the ideal point. 

Therefore, smaller  (   ) values are preferred by the buyer. If an attribute is of 

maximization type, we would simply replace (       
 ) with (  

      ) in the 

distance function.   
  values are typically the best attainable values for each 

attribute and can usually be extracted from the problem context. For simplicity we 

assume that   
        and  (   )  (∑ (      )

  
   )

   
   

 

We note that the weights capture the relative importances of the attributes to the 

buyer and the scaling of attributes. 

 

When we estimate the underlying preference function of the buyer with a linear 

preference function, we set α = 1 and estimate the weight value of each attribute. 

Otherwise, we estimate both α and the weight values of each attribute. 
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In the approach, sellers give their bids for single items as well as for bundles. We 

find some efficient combinations of bids that satisfy all the auctioned items and 

present these combinations to the buyer. We estimate the parameter values of the 

preference function of the buyer based on his/her preferences. We use a small 

positive constant threshold, “ ” to represent a minimum preference difference by 

which the buyer can distinguish between bids as suggested by Karakaya and 

Köksalan (2011). For instance, if the buyer prefers A to B, then we require 

 ( )   ( )     

 

Moreover, at each round, we expect the sellers to improve their bids in such a 

way that the resulting combinations of the next round have improved preference 

function values of approximately “100γ” percent of the estimated value of the 

best combination of the current round as in Karakaya and Köksalan (2011).  

Therefore, after estimating a preference function based on the past preferences of 

the buyer, we provide information to the sellers about a possible way of 

improving their bids. According to these information and their cost functions, 

sellers update their bids for the next round. The auction continues until a 

termination condition is met. The possible termination conditions will be 

discussed later. 

 

To demonstrate a simplified version of the approach, consider the following 

example. For the sake of simplicity, suppose that there are two sellers, one buyer, 

and one item to be auctioned with two attributes. Suppose each seller has two 

equally desirable bids as follows (   ,       for seller X and    ,      for seller 

Y): 

 

    (   )  

    (   )  

    (       )  

      (     )  

where i = X,Y, t = 1,2 and j = 1,2. 
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Since we there is a single item to be auctioned, there is no item information in 

Table 2.1.  

Table 2.1 Bids of sellers 

 Seller X Seller Y 

                 

Attribute 1 2.0 4.0 3.2 7.0 

Attribute 2 5.0 1.0 3.2 0.5 

 

Assume at the beginning the sellers have no information about the preference 

function of the buyer and seller X gives bid     and seller Y gives bid     by 

considering a linear preference function with equal weights for the buyer. 

Suppose the buyer has a linear preference function with weights 0.9 and 0.1 for 

attributes 1 and 2, respectively. Then he/she prefers    . We set ∆ to zero and 

estimate the weights of attributes as 0.8 and 0.2 for attributes 1 and 2, 

respectively. Then seller X updates his/her bid and gives bid     while seller Y 

keeps bidding on    . Based on the underlying preference function of the buyer, 

he/she chooses     and suppose the auction ends. The bids given in each round 

and the corresponding preference function values are given in Table 2.2.  

 

Table 2.2 Buyer’s preference function for the bids in each round 

 Bid Buyer’s preference function value Winner 

Round 1 
    3.7 

    
    3.2 

Round 2 
    2.3 

    
    3.2 

 

If there is no information, the auction may end at the first round and the winner 

would be seller Y with bid    . The preference function value of the buyer would 

be 3.2. On the other hand, if the auction continues and ends at the second round, 

the winner would be seller X and the preference function value of the buyer would 

be 2.3. The estimated weights lead the sellers to converge the preferred bids. 

Normally, the situation is more complex with many possible potential bids for 

each seller. The process would continue for multiple iterations and more 
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preference information would be collected to guide the sellers.  In such cases the 

estimated weights would help sellers update their bids and guide them to better 

bids in complex environments. The above example demonstrates that our 

approach can be useful even when implemented without its full potential. It does 

not use the improvement requirement that may be imposed on the sellers over the 

rounds. This requirement would lead to further improvements from the buyer’s 

perspective and help reach allocative efficiency. 

2.6 Auction Design  

In our experiments we consider an environment where sellers have underlying 

cost functions based on which they bid and the buyer has an underlying 

preference function with which his/her preferences are consistent. As stated 

before, we assume that there are no strategic bidding or gaming and sellers always 

bid independently with their true valuations. Our mechanism aims to achieve 

allocative efficiency. It tries to improve the buyer’s preference function value in 

each round and eventually to converge the most preferred combination. 

Therefore, neither the buyer nor the sellers can gain by acting against their true 

valuations. We also assume that there is no collaboration between sellers; i.e. 

sellers do not collude.  

 

We assume that the attribute values of bid combinations are additive. For 

example, to represent the total price of a bid combination, we sum up the offered 

prices of singletons and bundle bids in the combination. When we consider defect 

rate as an attribute, we sum up the individual defect rates of singletons and bundle 

bids to determine the overall defect rate of the combination. This may not be 

realistic, especially in manufacturing environments. An alternative strategy could 

be to consider the maximum of the offered defect rates as the defect rate of the 

combination. In some situations weighted average could also be a viable option. 

Another alternative could be to penalize the larger defect rates more than 

proportionately. We should note that any implementation other than an additive 

aggregation of attribute values in a combination brings difficulties in the 
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disaggregation when trying to assign the buyer’s preference information to the 

components of a combination. In 3-attribute problems, in addition to price and 

defect rate, we consider lead time as the third attribute and we calculate the lead 

time value for the combination by summing up the lead time values of singletons 

and bundle bids in the combination. 

2.7 Implementation Issues 

Our approach can be implemented in various settings including the procurement 

processes of companies in the automotive, food, and medical supplies industries. 

We consider a platform where the sellers place their bids until a certain deadline. 

The bids can be for single items or multiple items. ADSS would identify bid 

combinations that are expected to be desirable to the buyer. The buyer would 

select the best combination among the presented combinations and ADSS would 

provide updated preference information to the sellers to help them update their 

bids for the next round.  

 

We suppose that all participants of the auction would use ADSS and relevant 

information (bids, estimated preference function values, etc.) is transferred via 

ADSS. As an alternative, we consider the case where sellers share their cost 

function information with ADSS. ADSS keeps creating desirable combinations 

using the sellers’ cost functions and the buyer‘s estimated preference function 

throughout the auction process.  

 

An example environment where our approach would be applicable would be the 

super market chains. The super market chains sell different varieties of products 

under different brands. They also sell some products with their own brands. They 

contract the production of these items to different firms. Dairy products (different 

cheese types, butter, yogurt) or oils (different types of vegetable and olive oils) 

produced by different firms are examples of these cases. Typically, these auctions 

are not conducted frequently and the supplying firms have the flexibility to offer 

different versions of their products. Therefore, in addition to the price, defect rate 
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can be considered as the second attribute in the auctions where the suppliers can 

differentiate their quality. For the auctions in the supply chain management where 

a manufacturer selects the suppliers of some products/services, lead time can also 

be considered as an additional attribute. Suppliers can make different bids with 

different attribute value combinations. The auction in the transportation industry 

may be another major area of application. On-time delivery performance can be 

considered as an attribute in such auctions. 

 

Our decision support mechanism, ADSS, can be utilized in assigning 

product/service combinations to suppliers through online auctions. 
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CHAPTER 3 

 

 

3 AN APPROACH FOR MULTI-ATTRIBUTE MULTI-ITEM 

AUCTIONS 

 

 

 

In this chapter we develop an approach that provides aid both to the buyer and the 

sellers in a MAMI multi-round reverse auction environment. We first give an 

overview of the approach and the models used. We then discuss the details of the 

algorithm. We next provide the experimental setting and demonstrate the 

algorithm for the 2-attribute case numerically. We then discuss the algorithm for 

3-attribute linear problems. Lastly, we present a heuristic approach in a 2-attribute 

nonlinear problem setting. 

3.1 The Approach  

We develop an auction decision support system (ADSS) that supports sellers to 

bid on multiple items.  We assume a linear preference function and in each round 

we find all efficient bid combinations. For the sake of completeness, we provide 

the stages of the approach and the corresponding models used in each stage, in 

Figure 3.1.  
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Figure 3.1 The stages of the approach with the corresponding models 

3.2 The Efficient Combination Model 

After taking the updated bids from the sellers, we solve the following (EFFCOM) 

model to find the efficient combination(s) where all the auctioned items are 

supplied. We apply a variation of the ε-constraint method of Haimes et al. (1971).  

 

Parameters:  

    : level of attribute j offered by seller i in bid t   

    : 1 if bid t of seller i includes item m; 0 otherwise 

  : the number of bids offered by seller i 

Sellers give their bids at the first round. In succeeding rounds, 

sellers, 

- based on the provided information update their bids to maximize 

their profits by solving their (MAKE_BID) model. 

ADSS 

- considers all given bids for the current round and solves  the model 

(EFFCOM) to find efficient bid combinations, 

- combines these with the best bid combination(s) up to now if they 

are still efficient, 

- presents the buyer the efficient combinations for the current round. 

Buyer determines preferred and nonpreferred bid combinations. 

ADSS 

- solves (Wt) model to estimate the weight values of attributes, 

- estimates the preference function value of each item separately and 

improves the estimated preference function value of the buyer, 

- informs sellers about the estimated weight values of attributes and 

estimated preference function value of each item. 
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 : a small positive constant  

  : upper bound level for attribute j and it changes from solution to solution  

 

Decision Variables: 

   : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise  

 

Price is a typical attribute in auctions and we define it as attribute 1 for 

convenience of notation, without loss of generality. 

 

Model (EFFCOM) 

Min∑ ∑        
  
   

 
     ∑ ∑ ∑        

 
   

  
   

 
      (1.1)  

s.to   

∑ ∑        
  
   

 
             (1.2)  

∑ ∑        
  
   

 
                (1.3)   

    {   }        (1.4) 

  

We optimize one objective and in (1.3) restrict the other to some upper bound 

value. In order to guarantee an efficient solution, we augment the objective 

function of the standard ε-constraint method. We multiply sum of the constrained 

objectives with a small positive constant as the augmented part. Constraint set 

(1.2) guarantees satisfying the demand for each item. We use (1.4) to enforce that 

bids are indivisible. 

 

We systematically change    and solve (EFFCOM) repeatedly to obtain different 

efficient solutions. If there are more than two attributes, finding a representative 

set of efficient solutions is more cumbersome by systematically changing   . For 

the two-attribute case, we systematically change     values to generate all efficient 

solutions. We derive the suitable   value that does not cause any trade-offs with 

the first term, in the objective function and only has an effect of breaking ties (see 

Appendix A for details of the reduction in    values and setting  ). We solve the 
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(EFFCOM) by using GAMS 23.8 for two attribute problems. For three attribute 

problems we use the algorithm suggested by Lokman and Köksalan (2012) to find 

all the efficient solutions for three attribute problems. 

 

We assume that the attribute values of combinations of bids are additive. Here, to 

find the efficient bid combinations we need to consider different combinations of 

the available bids. When the total number of bids is large, the computational 

burden may become excessive. 

 

We find the efficient combinations by solving (EFFCOM) and assign them index 

values to keep track of them. Let the index set of efficient combinations for the 

current round be    We assume that the buyer determines the preferred and 

nonpreferred bid combinations in    We recognize the fact that the buyer may not 

be able to state very precise preference statements when bid combinations are 

close to each other in terms of buyer’s preferences.  In such cases, the buyer could 

indicate indifference between such bid combinations. It is sufficient for our 

purposes that the buyer determines only the preferred and nonpreferred 

combinations. To illustrate, consider four alternatives (bid combinations)  ,      

and   and assume the buyer is indifferent between   and  ,   and  , and prefers 

  to  ,   to    and   to    The buyer may not identify alternative   as the best 

alternative and we assume that he/she provides us with the information that   and 

  are the preferred combinations and combination   is worse than both   and  . 

 

Based on the preferences of the buyer, we solve the parameter estimation model 

(Wt) explained in the following section. 

3.3 The Parameter Estimation Model 

We assume a linear preference function. Therefore the weighted Lα metric that 

represents the underlying preferences of the buyer approximately (explained in 

Section 2.5) is reduced to  (   )  ∑ (      )
 
     We estimate the parameters 

(weights) of the preference function by solving the following (Wt) model. 
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For simplicity, we omit the subscripts indicating rounds. An efficient combination 

is composed of bids of several sellers. For the sake of simplicity, we introduce the 

notation    to represent the k
th

 efficient combination,      where   is the index 

set of efficient combinations presented to the buyer for the corresponding round.  

 

Parameters:  

 : predetermined threshold level by which the buyer can distinguish between bid 

combinations 

 : a small positive constant 

   : level of attribute j in efficient combination k 

 : index set of efficient combinations  

 

Decision Variables: 

  : an auxiliary variable (to measure the estimated value difference between 

alternatives and bound the weights) 

 ̂ : estimated weight of attribute j  

 

Model (Wt) 

Max                            (2.1) 

s.to   

∑  ̂    
                             (2.2) 

 ̂                        (2.3) 

 (  )  ∑  ̂    
 
      Ek                  (2.4) 

 (  )   (  )        for each            (2.5) 

 (  )         (  )   (  )         for each              (2.6) 

                   (2.7) 

 

The objective (2.1) is to find the maximum   value that satisfies the constraints. 

This leads the solution to be at a central point of the feasible weight space; i.e. it 

tries to locate the weights as far from each preference constraint as possible. We 
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use normalized weights by constraint (2.2). (2.3) imposes lower bounds on  ̂ . 

Bid combinations are evaluated in terms of a weighted linear preference function 

(2.4). The past preferences of the buyer are modeled by (2.5) and (2.6). We make 

sure in (2.5) that the value difference between the preferred alternative and the 

inferior alternative is at least as big as the threshold,  . Similarly, (2.6) guarantees 

that the value difference between indifferent alternatives do not exceed  . The   

value has to be positive in order to make sure that there will be a difference in the 

estimated preference values of the preferred and inferior combinations.  

 

We provide sellers with the weight values found from (Wt),  ̂  as well as the 

estimated preference function value of each item separately. Since some of the 

items in the preferred bid combination are given as bundles, in our simulations we 

determine the preference function value of the items in each bundle. To estimate 

the preference function value of the items in the bundle, we use the estimated 

preference function value of the items given by the seller of that bundle for the 

current round. We assign preference function values to the items in the bundle 

proportional to their estimated preference function values as singletons. We take 

the average of the estimations of the current and the previous rounds. We impose 

an improvement to the new estimated values and provide the resulting 

information to the sellers. Assume, for example, that seller i’s bundled bid given 

for items 1 and 2 is in the winning combination of the current round. Let the 

estimated preference function value of the bundle be 12 and the estimated 

preference function value of items 1 and 2 proposed by seller i be 5 and 10, 

respectively for the current round. Then we estimate the preference function value 

of item 1 to be 4 and item 2 to be 8 for the current round. Suppose that in the 

previous round we inform the sellers that the estimated preference function values 

for items 1 and 2 should be at most 5 and 9, respectively. Suppose that the current 

round is round 3. Then we inform the sellers that the estimated preference 

function value for items 1 and 2 should be at most,( 
     

 
) (   ) and 

( 
     

 
) (   )   respectively. In this method, besides the estimations in the 

current round we also consider the previous rounds’ estimations. We then apply 
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      improvement in order to end up with an improved combination in the 

next round. Different techniques could also be devised to estimate the preference 

function value of the items in the bundle. 

3.4 Sellers’ Model 

We assume that each seller determines a minimum mark-up percentage that 

he/she uses and he/she solves the MAKE_BID model below to find the most 

profitable bids (bundle and singletons) for him/her based on our estimations. If 

there are feasible bids with extra profit, then the seller gives the best possible bids 

with his/her predetermined mark-up. Suppose that seller i has a minimum mark-

up of    , that is, if the cost of a bid at a specified defect rate is C, then the price 

of the corresponding bid should be at least (       ⁄ )   We assume that 

sellers do not incur  losses and therefore, we use nonnegative mark-ups.   

 

We first provide the seller’s model for the 2-attribute case where the attributes are 

price and defect rate. 

  

Parameters:  

 : estimated weight of price  

   : estimated preference function value for bid t (ADSS provides the estimated 

preference function value for each item separately and the estimated preference 

function of a bundle is calculated by summing up the estimated preference 

function values of the items in the bundle) 

  
    

: minimum mark-up percentage for seller i; if it is 0, then seller i may bid 

with zero profit. For the sake of simplicity let      
       ⁄ .  

   : the cost function of seller i for bid t
 

   (   )  (  (  (  
       

 

   
     

 )
  

)
    

) (   
     

 )     
   

where 

   
 : maximum defect rate value that can be offered by seller i for bid t  

   
 : minimum defect rate value that can be offered by seller i for bid t  
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 : maximum cost of bid t for seller i (at    

 ) 

   
 : minimum cost of bid t for seller i (at    

 ) 

  : parameter of the Lq cost function for seller i 

 

Decision Variables: 

    = price offered by seller i for bid t 

    = defect rate offered by seller i for bid t  

 

Model (MAKE_BIDit) 

Max     (    )   (   )  (3.1)     

s.to   

   
         

     (3.2)  

      (   )          (3.3) 

 

The objective (3.1) is to maximize the profit value for bid t of seller i considering 

his/her mark-up value. We consider the feasible defect rate range for the 

corresponding bid in (3.2). (3.3) guarantees that the estimated preference function 

value with the updated bids does not exceed the estimated preference function 

value of bid t.  

 

In our experiments we simulate the cost functions of the sellers using convex 

functions, specifically Lq functions (see Köksalan, 1999). We show the    

function for different q values in Figure 3.2. 
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Figure 3.2    function for different q values 

 

In these functions, there is an inverse relation between cost and defect rate. That 

is less defect rate (better quality) costs more.  For larger q values, the extreme 

values in each attribute gets harder to achieve. To achieve better values in one 

attribute, the amount you need to sacrifice from other attribute increases as you 

are close to the more preferred values (extremes).   

 

The model is nonlinear due to the objective function which is equivalent to  

Max  (   )  
    (   )   

 
 (    )   (   ).

 
 

The first term in the objective function is linear and linear functions are special 

cases of concave functions. In the second term, the convex cost function is 

multiplied with a negative constant and  (    )   (   ) is concave. Since the 

weighted sum of concave functions, with positive weights, is concave,  (   ) is 

concave. Instead of using a solver, we utilize the properties of concave functions 

and determine the updated bids as follows:     

 

The objective function can be rewritten as follows:  

    (   )  
    (   )   

 
 (    ) (  (  (  

       
 

   
     

 )
  

)
    

) (   
     

 )  (    )   
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Since  (   
 )  is concave, to find the optimal defect rate value,    

 , we check the 

stationary and the boundary points. 

At stationary point:  (   
 )      

    
(   )

 
 

(    )(   
     

 )

   
     

 (   
     )

    ((   
     

 )   (   
     )

  )(    )   ⁄   

 

After some manipulations, we obtain 

   
     

  
(   ) (    )⁄ (   

     
 )

  (    )⁄

(((   )(   
     

 ))
  (    )⁄

 ( (   
     

 )(    ))
  (    )⁄

)

   ⁄    

   
  is the only stationary point of the function and the boundary points are    

  and 

   
 . Indeed, from the equation above we see that     

     
     

  . Therefore, 

there is no need to check the boundary points and the optimal defect rate value is 

   
 

 
since   (   

 )   . 

 

If 
    (   )   

 

 
 (    )   (   

 ),    
  

    (   )   
 

 
 and seller bids profitably. 

Otherwise,    
  (    )   (   

 ) and seller bids with his/her predetermined 

mark-up only and no extra profit is possible.  

 

We discuss the 2-attribute case here explicitly. The procedure is also directly 

applicable for more than two attributes. For more than two attribute case, we 

assume that all non-price attributes are reflected in the cost function and therefore 

cost function is depicted as    (   ) where     is the vector of non-price attribute 

values of bid t of seller i,     (                       )  The optimal non-price 

attribute values, (    
      

        
        

 )  can be found by setting   (   
 )     

The 3-attribute case is discussed in Section 3.9 in detail. 

 

After obtaining the updated bids from the sellers, we find the set of efficient bid 

combinations of the current round using the estimated weights found at the end of 

the previous round and continue.  
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3.5 The Algorithm (ALL-e) 

We provide the steps of the algorithm below: 

 

Recall that   denotes the index set of efficient bid combinations presented to the 

buyer for the corresponding round,    denote the k
th

 efficient bid combination, 

,Ek  and  (  ) be the estimated preference function value of the buyer for      

Let    denote the set of constraints derived from the preferences of the buyer in 

round h and let       We assume that the buyer’s underlying preference 

function is linear and sellers are informed about this.  

 

Step 1: Sellers place initial bids. Set the round counter h = 1. 

Step 2: Solve (EFFCOM) to find the efficient bid combination(s) for round h and 

also consider the best combination(s) up to current round. Place the efficient 

combinations in set  . Present the buyer all combinations in set   and ask him/her 

to choose the preferred and nonpreferred bid combinations. If a termination 

condition is met, go to Step 5. Otherwise go to Step 3.   

Step 3: Update the preference constraint set; 

        {
 (  )   (  )                                 

 (  )         (  )   (  )                                  
} 

Solve (Wt) to fit a preference function that satisfies the constraint set     Let the 

estimated preference function value of the best bid combination of the current 

round be     

Step 4: Move to a 100γ% improved contour with an estimated preference 

function value of   , i.e.,      (   ). Find the preference function value of 

each item separately and provide the bidders with this information in addition to 

the current estimated weight values. Let sellers update their bids by solving their 

own (MAKE_BID) problem. Set       and go to Step 2. 

Step 5: Stop. The preferred combination(s),   , is (are) the winning 

combination(s) for      The sellers providing items in the winning combination 

are the winning sellers. 
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If there are more than one winning combinations in Step 5, the buyer selects one 

of them using additional information. 

 

Sellers can give bids for single items or for bundles. They update their bids and 

the auction continues until a termination condition is met. For multi-item case, we 

modify Steps 2 and 4 of the original algorithm in Karakaya and Köksalan (2011). 

In Step 2, we find all efficient bid combinations before presenting to the buyer. In 

Step 4, we find the preference function value of each item to support the sellers. 

3.6 The Modified Algorithm (ELIM-e) 

We make some modifications to ALL-e and develop ELIM-e. In ALL-e, we find 

all efficient combinations and present them to the buyer. In the modified version, 

we eliminate the combinations that would be considered inferior by the buyer 

based on his/her past preferences, before presenting those to the buyer. 

Elimination by Weight Space Reduction Models   

We keep the most preferred combination up to the current round and add it to the 

set of efficient combinations for the current round. Let the index set of efficient 

combinations for the current round be    We solve (ELIMINATION) model to 

eliminate combinations that would be inferior based on the information derived 

from the buyer’s previous selections and based on the assumed form of his/her 

preference function. 

 

Parameters:  

 : predetermined threshold level by which the buyer can distinguish between bid 

combinations 

G : index set of efficient combinations for the current round before elimination 

   : level of attribute j in efficient combination k 
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Decision Variable: 

  : an auxiliary variable (to measure the estimated value difference between 

alternatives) 

  
 : possible weight of attribute j 

 

Model (ELIMINATIONv) 

Min            (4.1) 

s.to    

∑   
    

                             (4.2) 

 (  )  ∑   
    

 
              (4.3) 

 (  )   (  )                    (4.4) 

 (  )   (  )      for each            (4.5) 

 (  )       (  )   (  )       for each                (4.6) 

  
               (4.7) 

 

In the model, combination v is compared to other combinations in G. In each 

comparison we try to find a weight vector in the feasible weight space that makes 

combination v better than each of the remaining combinations. The feasible 

weight space is determined based on the past preferences of the buyer (constraint 

sets 4.5 and 4.6). If we can find a feasible solution with positive   value, we say 

that there exist weights in the feasible weight space that makes combination v to 

be preferred by the buyer. Otherwise, we say that combination v cannot be 

preferred by the buyer.  

 

We solve (ELIMINATIONv) model for each v in G. If we can find a feasible 

solution to (ELIMINATIONv) with positive   value, we place v in set E where E 

is the index set of efficient combinations for the current round that will be 

presented to the buyer. In the two attribute case, we can construct E by using the 

following procedure where   is a small positive constant, subscript 1 and 2 refer 

to price and defect rate, respectively. 
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Since there are only two attributes, it is sufficient to specify bounds on the weight 

of attribute 1. Let    and    be the estimated lower and upper bounds for the 

weight of attribute 1, respectively, based on the past preference of the buyer, and 

let K be the cardinality of set G. 

 

In the procedure, for each pairwise comparison of combination v with other 

combinations in G, we check whether the resulting weight space is feasible or not. 

If it is feasible we place v in set E; otherwise we delete v from G due to Theorem 

1 and the procedure is continued.  

 

Theorem 1: Let    and    be two alternatives such that 

      
       

               
 be the weight of attribute 1 that makes    and     have 

equal preference values. If         and            or if         and 

          , then    cannot be preferred to    by the DM based on his/her 

past preferences, where   is a sufficiently small positive constant.  

 

Proof: If        , then         is the smallest possible value of weight of 

attribute 1 that makes     preferred to   ; whereas if         , then         

is the largest possible value of weight of attribute 1 that makes     preferred to  

  . Based on the past preferences of the DM, the estimated lower and upper 

bounds of weight of attribute 1 are    and   , respectively. If         and  

             or if         and            , then there are no 

weights in the feasible weight space that make    preferred to   .        □ 

 

The procedure used to solve (ELIMINATIONv)  

Step 0: Set    , v = 1, s = 1 and      . 

Step 1: Set        If    , go to Step 2, else if     go to Step 4; otherwise 

go to Step 1. 

Step 2: If     go to Step 1. Otherwise, set       
       

               
 and if 

                  go to Step 2.1; otherwise go Step 2.2.  
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Step 2.1: If             go to Step 3. Otherwise go to Step 1. 

Step 2.2: If             go to Step 3. Otherwise go to Step 1. 

Step 3: Set     { }       and go to Step 5.  

Step 4: Set     { }       and go to Step 5. 

Step 5: If      set     and set go to Step 1; otherwise stop. 

 

We apply the procedure for each v in G and after the eliminations, we present all 

combinations in E to the buyer. The rest of the procedure is the same as ALL-e. 

3.7 Experimental Setting 

To test the performance of the algorithm we generate test problems. We consider 

two versions of the test problems in terms of the number of attributes: 2-attribute 

and 3-attribute cases. In the 2-attribute case, we consider two specific attributes, 

price, and defect rate. In the 3-attribute case, we include lead time as the third 

attribute. In both cases, all attributes are to be minimized. 

 

We consider two different versions of the test problems in terms of the underlying 

preference function of the buyer: linear and nonlinear cases.   

3.7.1 Test Problem Generation 

We demonstrate the performance of our algorithm by generating test problems. In 

the literature combinatorial auction test suites are available for single attribute 

auctions (Fujishima et al., 1999; Leyton-Brown et al., 2000; Sandholm et al., 

2005). Buer and Pankratz (2010), generate their test instances for two attribute 

transportation problems. To the best of our knowledge, all the combinatorial 

auction test problems are generated to determine the winner of the single round 

auctions. We modify the technique proposed by Buer and Pankratz (2010) to 

generate the cost functions of the sellers. We use these generated cost functions 

during the multi-round auction process.  
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As mentioned before, we consider two specific attributes, price, and defect rate, 

where smaller values are preferred in both attributes by the buyer. We suppose 

that each seller has his/her own competitive item combinations and he/she makes 

bids for these combinations. We use    ,     and    to denote the set of singleton 

bids, bundled bids and total bids, respectively, given by seller i where        

     We replace the original notation of the non-price attribute, defect rate, with 

   (                    
) where     is the defect rate value of bid t offered 

by seller i. Each seller identifies a price and defect rate for each bid he/she offers. 

Here defect rate is used as an indicator of quality; smaller defect rate values stand 

for higher quality. We later discuss how we evaluate the quality of a bundle. 

 

As Leyton-Brown et al. (2000) state, some items may be more suitable to group 

together and this may differ from seller to seller. To capture this property, we 

generate a relation matrix for each seller like the synergy matrix in Buer and 

Pankratz (2010). This matrix consists of 0’s and 1’s. “1” indicates that grouping 

the corresponding items decreases the cost of the seller, whereas “0” indicates 

that grouping the corresponding items does not have an effect on the seller’s cost.  

We consider a cost function that takes economies of scope into account.  

 

We randomly generate a relation matrix for each seller. For each seller-item pair 

we assign defect rate and resource requirement values that will determine which 

items the seller can combine to create bundles. Buer and Pankratz (2010) use 

resource requirement as an indicator of the difficulty of supplying an item for a 

seller. This difficulty may reflect itself in the cost of the item. The resource 

requirement of an item may differ from seller to seller due to reasons such as the 

differences in the technologic infrastructures of the firms. Defect rate levels and 

resource requirement values are generated randomly from uniform distributions in 

the ranges [     ] and [     ] respectively. We assume that the cost and defect 

rate are inversely proportional, whereas the cost and resource requirement are 

directly proportional. That is, smaller defect rates and higher resource 

requirement levels will result in higher cost values.      
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Generating cost values of singletons 

Recall that     denotes the defect rate value of singleton bid t for seller i. Let     

and       be the resource requirement and cost of singleton t, respectively. Let 

  (     )  ⁄  be the mean of the uniform distribution used to generate     

values and   
  (  )    (  )

     
 be the mean of the distribution that generates     ⁄  

values. Let max_cost and min_cost be the maximum and minimum values that a 

singleton t can take, respectively.  We generate the costs of bids as follows: 

 

Step 0:  Set i = 1. 

Step 1:  Set t = 1. 

Step 2:       
   

 

    ⁄

 
  

Step 3:  Generate a random variate, v, from normal distribution with mean     and 

variance 1. 

Step 4:  If min_cost   v   max_cost,  set      = v. Otherwise go to Step 3. 

Step 5:  If t < M, then set       and go to Step 2.  

Step 6:  If i < I, then set       and go to Step 1. Otherwise, stop. 

  

The cost value of singleton t for seller i,      , is randomly generated based on its 

defect rate value and resource requirement. We set   =0.1,   =0.5, min_cost = 

0.5 and max_cost = 1.5 as in Buer and Pankratz (2010). Buer and Pankratz (2010) 

generate quality values directly, whereas we generate defect rate as an indicator 

of quality using    = 0.2 and   =1.  

 

As stated above, each seller is assumed to have his/her own suitable item 

combinations. While computing the defect rate and the resource requirement 

levels of a bundle, we sum the defect rate and the resource requirement levels of 

the items that the bundle consists of, respectively. As stated before, the resource 

requirement levels are somewhat artificial values generated to restrict the item 

combinations that can be bundled together.  They also have impact on costs. We 

assume that the resource requirement of a bid cannot exceed 1, that is the sum of 
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the resource requirement levels of the items in a bundle should be less than or 

equal to 1 as suggested by Buer and Pankratz (2010). We assign a lower and 

upper bound to a bundled bid according to the costs of the singletons and the 

bundles it consists of. Then we randomly generate a cost value for the bundled 

bid between its lower and upper bounds.  

 

Generating cost values for bundles 

Recall that     and    denote the set of bundled bids and total bids given by seller 

i. Let nit be the number of items in bid t of seller i. Let     be the set of singletons 

and bundled bids that contains all possible subsets of bundled bid t of seller i. Let 

    be the set of bid compositions whose unions constitute bundled bid t of seller i 

and whose intersections are empty. For example, let bundled bid t composed of 

items 1, 2 and 3. Then,     {( ) ( ) ( ) (   ) (   ) (   )} and                

    {[( ) ( ) ( )] [( ) (   )] [( ) (   )] [( ) (   )]}  The cost value of a 

composition in     is the sum of cost values of the bids it contains.  We describe 

how we generate the cost values for the bundles next. 

  

Step 0: Set i = 1  

Step 1: Set z = 2. 

Step 2:        for which        set               
{     } and      

        
{     }  Generate a random variate, v, from uniform distribution in the 

interval (         )  Set          

Step 3: Set      . If there are no bundled bids in    with size  , then stop. 

Otherwise, go to Step 2. 

Step 4:  If i < I, then set        and go to Step 1. Otherwise, stop. 

 

After generating the sellers’ bids and their corresponding attribute values, we use 

    functions (see Köksalan, 1999) to generate cost and defect rate pairs for which 

the seller would be indifferent. The    function can be written as: 
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(     
 )  (     

 )    where    ,    
  and    

  refer to the scaled defect rate 

and cost values.  

 

Commonly used    functions use q values of 1, 2, and       ,    , and 

    correspond to rectilinear, Euclidean, and Tchebycheff distance functions, 

respectively.  

 

To generate different cost functions for the sellers, we randomly generate a q 

value to represent the cost function of each seller. After generating the cost 

function we randomly assign initial mark-up percentages (explained in Section 

3.4) between mpl and mpu to the sellers for the first round.    

   

We develop above the general framework of the cost function to experiment with. 

We also consider cost functions with three attributes (Section 3.9).  

3.7.2 Parameter Setting  

We present our approach in an environment where there are three sellers and five 

items where seller 1 has 11, seller 2 has 7 and seller 3 has 10 preferred 

combinations. Based on our preliminary experiments, we set the threshold,   

     and       implying a required improvement of 10% in each round. We 

use an ideal point for each attribute in our estimated preference function.  Since 

we minimize all attributes, we set the ideal point to the point where both attributes 

are zero in this thesis. Without loss of generality, we set minimum mark-up 

values to zero for each seller. That is, all sellers can bid with zero profits. We 

terminate at the round when each seller bids with zero profit in all his/her bids. 

 

There may be alternative termination conditions. For instance the buyer could 

decide to terminate, for example, when he/she finds the improvement between 

rounds to be small. It is also possible for some sellers to stop bidding if he/she 

cannot be among provisional winners for a number of rounds.  
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We use this problem setting to test the performance of the algorithms throughout 

this thesis.  

3.8 A Numerical Example for the 2-attribute Case 

We provide a numerical example for ELIM-e. Both ALL-e and ELIM-e have 

similar steps and since ELIM-e also includes an elimination procedure, we give an 

example for this version only.  In our experiments, we assume that the buyer has a 

specific underlying true preference function, which we use to simulate his/her 

preferences.  In this example, we assume that the weights of attributes of the 

buyer’s underlying preference function are 0.55 and 0.45 for price and defect rate, 

respectively. 

 

We round the values to four significant digits. We use the buyer’s underlying 

preference function to report the preference values. We also report the estimated 

preference values. In this chapter, we present the buyer efficient bid combinations 

and we assume that he/she identifies the preferred and nonpreferred bid 

combinations. Initial bids are given in Table 3.1.  
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Table 3.1 Initial bids 

 

In the tables, the items constituting a bid are given under the “Item” column. The 

“Profitable” column represents whether the bid is profitable for the seller or not. 

As soon as all sellers have zero in this column, indicating all sellers bid 

unprofitably, the algorithm stops. 

 

 

 

 

  

Round 1      

Seller Bid Item Price Defect Rate Profitable 

1 1 1 0.7707 0.8325 1 

1 2 2 1.9295 0.6873 1 

1 3 3 1.7187 0.65 1 

1 4 4 1.2476 0.5149 1 

1 5 5 0.7534 0.4734 1 

1 6 1,3 2.1041 1.4825 1 

1 7 2,5 2.5209 1.1607 1 

1 8 3,5 2.2412 1.1234 1 

1 9 1,3,5 2.563 1.9559 1 

1 10 2,3,5, 3.3081 1.8107 1 

1 11 1,2,3,5 3.9188 2.6432 1 

2 1 1 0.9578 0.3709 1 

2 2 2 1.4626 0.5018 1 

2 3 3 0.8558 0.7844 1 

2 4 4 1.8825 0.2289 1 

2 5 5 1.4358 0.5573 1 

2 6 1,3 1.4015 1.1553 1 

2 7 2,5 2.0246 1.0591 1 

3 1 1 1.6854 0.8493 1 

3 2 2 1.7669 0.2768 1 

3 3 3 1.7157 0.6529 1 

3 4 4 1.6948 0.4581 1 

3 5 5 2.0264 0.4346 1 

3 6 1,3 3.181 1.5022 1 

3 7 1,4 2.9701 1.3074 1 

3 8 2,4 3.2017 0.7349 1 

3 9 2,5 2.8067 0.7114 1 

3 10 1,3,4 3.8325 1.9603 1 
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Table 3.2 Efficient bid combinations for Round 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We highlight the provisional winners and their corresponding bids in bold. In 

Round 1, based on the bids in Table 3.1, we find 10 efficient combinations, 

however, after applying (ELIMINATION) procedure we are left with 6 efficient 

combinations given in Table 3.2. Among them, the buyer selects combination 6 as 

best (remaining combinations are nonpreferred combinations). Based on this 

information we estimate the weight values of the attributes. In fact estimating one 

attribute’s weight is sufficient since the other weight can be estimated by 

subtracting the estimated weight from 1. By solving (Wt) we find the following 

values where    and    are the estimated weights of price and defect rate, 

respectively: 

 

           and           

 

Round 1 

Combination Seller Bid Item Price 
Defect 

Rate 

Buyer’s True 

Pref. Fn. 

Value 

1 

1 3 3 1.7187 0.6500 

4.9337 
2 1 1 0.9578 0.3709 

2 4 4 1.8825 0.2289 

3 9 2,5 2.8067 0.7114 

2 

1 8 3,5 2.2412 1.1234 

4.6666 
2 1 1 0.9578 0.3709 

2 4 4 1.8825 0.2289 

3 2 2 1.7669 0.2768 

3 

2 4 4 1.8825 0.2289 

4.2929 2 6 1,3 1.4015 1.1553 

3 9 2,5 2.8067 0.7114 

4 

1 5 5 0.7534 0.4734 

4.1528 
2 4 4 1.8825 0.2289 

2 6 1,3 1.4015 1.1553 

3 2 2 1.7669 0.2768 

5 

1 4 4 1.2476 0.5149 

3.9324 
1 5 5 0.7534 0.4734 

2 6 1,3 1.4015 1.1553 

3 2 2 1.7669 0.2768 

6 

1 4 4 1.2476 0.5149 

3.7987 2 6 1,3 1.4015 1.1553 

2 7 2,5 2.0246 1.0591 



  

 45 

The estimated preference function values are calculated using the estimated 

weight values and given under “Estimated Pref. Fn. Value” column in the tables. 

The estimated preference function values for Round 1 are provided in Table 3.3. 

 

Table 3.3 Efficient bid combinations with estimated preference function values 

for Round 1 

 

           and after improvement  ( )          
(     )          For 

each item we estimate the following preference function values: 

 

Table 3.4 Estimated preference function values at the end of Round 1 

Round 1  

Item Estimated Pref. Fn. Value 

1 0.5874 

2 0.7957 

3 0.6143 

4 0.9454 

5 0.7926 

Round 1 

Combination Seller Bid Item Price 
Defect 

Rate 

Buyer’s 

True Pref. 

Fn. Value 

Estimated 

Pref. Fn.  

Value 

1 

1 3 3 1.7187 0.6500 

4.9337 5.9111 
2 1 1 0.9578 0.3709 

2 4 4 1.8825 0.2289 

3 9 2,5 2.8067 0.7114 

2 

1 8 3,5 2.2412 1.1234 

4.6666 5.5435 
2 1 1 0.9578 0.3709 

2 4 4 1.8825 0.2289 

3 2 2 1.7669 0.2768 

3 

2 4 4 1.8825 0.2289 

4.2929 5.0154 2 6 1,3 1.4015 1.1553 

3 9 2,5 2.8067 0.7114 

4 

1 5 5 0.7534 0.4734 

4.1528 4.8166 
2 4 4 1.8825 0.2289 

2 6 1,3 1.4015 1.1553 

3 2 2 1.7669 0.2768 

5 

1 4 4 1.2476 0.5149 

3.9324 4.4295 
1 5 5 0.7534 0.4734 

2 6 1,3 1.4015 1.1553 

3 2 2 1.7669 0.2768 

6 

1 4 4 1.2476 0.5149 

3.7987 4.1504 2 6 1,3 1.4015 1.1553 

2 7 2,5 2.0246 1.0591 
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We inform the sellers about the estimated weights of attributes. We recommend 

each seller that the updated preference function value of a combination should not 

exceed        and we also give the estimated preference function value for each 

item separately. 

 

Afterwards, each seller solves his/her own (MAKE_BID) model and the resulting 

bids are provided in Table 3.5. 

 

Table 3.5 Bids for Round 2 

 

 

  

Round 2      

Seller Bid Item Price Defect Rate Profitable 

1 1 1 0.5034 0.955 0 

1 2 2 0.7234 0.9919 1 

1 3 3 0.6485 0.9829 0 

1 4 4 1.0786 0.5836 1 

1 5 5 1.0059 0.2133 1 

1 6 1,3 0.9218 1.9618 1 

1 7 2,5 1.4563 1.9467 1 

1 8 3,5 1.2753 1.7644 1 

1 9 1,3,5 1.7199 2.7394 1 

1 10 2,3,5, 1.9562 2.8716 1 

1 11 1,2,3,5 2.3916 3.8717 1 

2 1 1 0.6582 0.4002 0 

2 2 2 1.0349 0.2013 0 

2 3 3 0.4818 0.9743 1 

2 4 4 0.9988 0.8003 1 

2 5 5 0.7325 0.9558 1 

2 6 1,3 1.1734 1.2786 1 

2 7 2,5 1.6442 1.4365 1 

3 1 1 0.4372 0.9951 1 

3 2 2 0.8156 0.7416 1 

3 3 3 1.0789 0.8557 0 

3 4 4 0.9625 0.8988 1 

3 5 5 0.7388 0.9386 1 

3 6 1,3 1.0699 1.9563 0 

3 7 1,4 1.3862 1.9307 1 

3 8 2,4 1.7743 1.6508 1 

3 9 2,5 1.5662 1.6482 1 

3 10 1,3,4 1.8852 2.8582 1 
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Table 3.6 Efficient bid combinations for Round 2 

 

In Round 2, using the bids in Table 3.5, we find 176 efficient combinations in 

addition to the best combination saved from the previous round. The best 

combination up to the current round turns out to be dominated by some efficient 

combinations of the current round and we end up with 176 efficient combinations.  

By applying (ELIMINATION) procedure we find out that 168 of the 176 

combinations would not be preferred by the buyer and we present the remaining 8 

Round 2 

Combination Seller Bid Item Price 
Defect 

Rate 

Buyer’s 

True Pref. 

Fn. Value 

Estimated 

Pref. Fn. 

Value 

1 

1 4 4 1.0786 0.5836 

3.3850 3.3713 
1 5 5 1.0059 0.2133 

2 2 2 1.0349 0.2013 

2 6 1,3 1.1734 1.2786 

2 

1 4 4 1.0786 0.5836 

3.5081 3.4992 
1 5 5 1.0059 0.2133 

2 6 1,3 1.1734 1.2786 

3 2 2 0.8156 0.7416 

3 

1 2 1 0.7234 0.9919 

3.5700 3.5636 
1 4 4 1.0786 0.5836 

1 5 5 1.0059 0.2133 

2 6 1,3 1.1734 1.2786 

4 

1 2 2 0.7234 0.9919 

3.6480 3.6446 
1 5 5 1.0059 0.2133 

2 6 1,3 1.1734 1.2786 

3 4 4 0.9625 0.8988 

5 

1 10 2,3,5 1.9562 2.8716 

3.9902 4.0002 3 1 1 0.4372 0.9951 

3 4 4 0.9625 0.8988 

6 

1 2 2 0.7234 0.9919 

3.9985 4.0088 

2 3 3 0.4818 0.9743 

3 1 1 0.4372 0.9951 

3 4 4 0.9625 0.8988 

3 5 5 0.7388 0.9386 

7 

1 2 2 0.7234 0.9919 

4.0076 4.0183 
2 3 3 0.4818 0.9743 

3 5 5 0.7388 0.9386 

3 7 1,4 1.3862 1.9307 

8 

1 2 2 0.7234 0.9919 

4.0119 4.0227 
2 3 3 0.4818 0.9743 

2 5 5 0.7325 0.9558 

3 7 1,4 1.3862 1.9307 
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bids to the buyer. The buyer prefers combination 1 to the remaining seven 

combinations. Incorporating this information into (Wt) and find the following 

values: 

 

           and           

 

For each item we estimate the preference function values given in Table 3.7. 

 

Table 3.7 Estimated preference function values at the end of Round 2 

Round 2  

Item Estimated Pref. Fn. Value 

1 0.5024 

2 0.6523 

3 0.5880 

4 0.8090 

5 0.6463 

 

The updated bids for Round 3 are given in Table 3.8.  
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Table 3.8 Bids for Round 3 

 

  

Round 3      

Seller Bid Item Price Defect Rate Profitable 

1 1 1 0.5638 0.8568 0 

1 2 2 0.5687 0.9736 0 

1 3 3 0.6723 0.9445 0 

1 4 4 1.2328 0.3056 1 

1 5 5 1.0205 0.2018 1 

1 6 1,3 0.9459 1.8759 0 

1 7 2,5 0.8531 1.8278 1 

1 8 3,5 1.5091 1.3247 0 

1 9 1,3,5 1.6990 2.2149 0 

1 10 2,3,5, 1.4081 2.5910 0 

1 11 1,2,3,5 1.5741 3.5873 0 

2 1 1 0.7368 0.2534 0 

2 2 2 1.0354 0.2003 0 

2 3 3 0.2908 0.9410 1 

2 4 4 0.9911 0.5927 1 

2 5 5 0.4333 0.8993 1 

2 6 1,3 1.3444 0.7888 1 

2 7 2,5 1.5883 0.9545 1 

3 1 1 0.1875 0.9892 0 

3 2 2 0.9139 0.5186 0 

3 3 3 1.1712 0.7010 0 

3 4 4 0.8296 0.7845 1 

3 5 5 0.4605 0.8670 1 

3 6 1,3 1.1011 1.9045 0 

3 7 1,4 0.8589 1.8489 1 

3 8 2,4 1.6024 1.2937 1 

3 9 2,5 1.3065 1.2892 1 

3 10 1,3,4 1.2394 2.6916 0 
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Table 3.9 Efficient bid combinations for Round 3 

 

In Round 3, using the bids in Table 3.8, we find 50 efficient combinations and 

from the previous rounds we have one more combination as the best combination 

up to the current round which is dominated by some efficient combinations of the 

current round. We end up with 50 efficient combinations. By applying 

(ELIMINATION) procedure we eliminate 45 combinations and we are left with 5 

efficient combinations. Among these 5 combinations the buyer finds 

combinations 4 and 5 as best because the preference function value of the buyer 

for these combinations are smallest and are within the threshold   value of each 

other. Combinations 1,2 and 3 are found as nonpreferred. By solving (Wt), we 

find the following values: 

 

           and           

 

 

 

 

 

 

 

 

Round 3 

Combination Seller Bid Item Price 
Defect 

Rate 

Buyer’s 

True Pref. 

Fn. Value 

Estimated 

Pref. Fn. 

Value 

1 

1 4 4 1.2328 0.3056 

3.2216 3.2140 
1 5 5 1.0205 0.2018 

2 2 2 1.0354 0.2003 

2 6 1,3 1.3444 0.7888 

2 

1 4 4 1.2328 0.3056 

3.2130 3.2079 2 6 1,3 1.3444 0.7888 

2 7 2,5 1.5883 0.9545 

3 

1 5 5 1.0205 0.2018 

3.2100 3.2059 2 6 1,3 1.3444 0.7888 

3 8 2,4 1.6024 1.2937 

4 

2 3 3 0.2908 0.941 

3.1865 3.1904 3 7 1,4 0.8589 1.8489 

3 9 2,5 1.3065 1.2892 

5 

1 7 2,5 0.8531 1.8278 

3.1795 3.1859 2 3 3 0.2908 0.941 

3 7 1,4 0.8589 1.8489 
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Table 3.10 Estimated preference function values at the end of Round 3 

Round 3  

Item Estimated Pref. Fn. Value  

1 0.4601 

2 0.5993 

3 0.5283 

4 0.7188 

5 0.5688 

 

The updated bids for Round 4 are given in Table 3.11.  

 

Table 3.11 Bids for Round 4 

 

 

 

 

Round 4      

Seller Bid Item Price Defect Rate Profitable 

1 1 1 0.5608 0.8604 0 

1 2 2 0.5681 0.9743 0 

1 3 3 0.6711 0.946 0 

1 4 4 1.0694 0.3096 0 

1 5 5 0.8719 0.2019 1 

1 6 1,3 0.9431 1.8792 0 

1 7 2,5 0.6488 1.8322 0 

1 8 3,5 1.4975 1.3386 0 

1 9 1,3,5 1.6841 2.2328 0 

1 10 2,3,5, 1.3995 2.6014 0 

1 11 1,2,3,5 1.5652 3.5979 0 

2 1 1 0.7352 0.2553 0 

2 2 2 1.0354 0.2003 0 

2 3 3 0.2865 0.9421 0 

2 4 4 0.8182 0.5984 1 

2 5 5 0.2942 0.9011 1 

2 6 1,3 1.1996 0.7987 0 

2 7 2,5 1.4869 0.9658 0 

3 1 1 0.1873 0.9894 0 

3 2 2 0.9092 0.5242 0 

3 3 3 1.1674 0.7056 0 

3 4 4 0.6615 0.7881 1 

3 5 5 0.3205 0.8693 1 

3 6 1,3 1.0997 1.9062 0 

3 7 1,4 0.6827 1.8515 0 

3 8 2,4 1.4622 1.3039 0 

3 9 2,5 1.1379 1.2994 0 

3 10 1,3,4 1.2349 2.6969 0 
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Table 3.12 Efficient bid combinations for R4 

 

In Round 4, using the bids in Table 3.11, we find 31 efficient combinations some 

of which dominate the best combinations saved from the previous round. From 

these 31 combinations, 29 combinations are eliminated by using 

(ELIMINATION) procedure. We are left with two efficient combinations. The 

buyer states indifference between these two combinations and with this additional 

information; the estimated weight values turn out to be the same as those found in 

Round 3. By providing improvement for each item we estimate the preference 

function values given in Table 3.13. 

 

Table 3.13 Estimated preference function values at the end of Round 4 

Round 4  

Item Estimated Pref. Fn. Value 

1 0.4184 

2 0.5562 

3 0.4779 

4 0.6469 

5 0.4987 

 

 

 

 

 

 

 

 

 

 

Round 4 

Combination Seller Bid Item Price 
Defect 

Rate 

Buyer’s 

True Pref. 

Fn. Value 

Estimated 

Pref. Fn. 

Value 

1 

1 7 2,5 0.6488 1.8322 

2.9198 2.9212 2 4 4 0.8182 0.5984 

2 6 1,3 1.1996 0.7987 

2 

1 7 2,5 0.6488 1.8322 

2.9190 2.9212 2 6 1,3 1.1996 0.7987 

3 4 4 0.6615 0.7881 
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Table 3.14 Bids for Round5 

 

We set the termination condition to the event that all sellers bid with zero profit in 

all their bids. Therefore, seller 3 continues bidding although he bids with zero 

profit for each item.  

 

 

 

 

 

 

 

 

 

 

 

Round 5      

Seller Bid Item Price Defect Rate Profitable 

1 1 1 0.5608 0.8604 0 

1 2 2 0.5681 0.9743 0 

1 3 3 0.6711 0.946 0 

1 4 4 1.0694 0.3096 0 

1 5 5 0.7439 0.2019 1 

1 6 1,3 0.9431 1.8792 0 

1 7 2,5 0.6488 1.8322 0 

1 8 3,5 1.4975 1.3386 0 

1 9 1,3,5 1.6841 2.2328 0 

1 10 2,3,5, 1.3995 2.6014 0 

1 11 1,2,3,5 1.5652 3.5979 0 

2 1 1 0.7352 0.2553 0 

2 2 2 1.0354 0.2003 0 

2 3 3 0.2865 0.9421 0 

2 4 4 0.6870 0.5984 1 

2 5 5 0.1662 0.9011 1 

2 6 1,3 1.1996 0.7987 0 

2 7 2,5 1.4869 0.9658 0 

3 1 1 0.1873 0.9894 0 

3 2 2 0.9092 0.5242 0 

3 3 3 1.1674 0.7056 0 

3 4 4 0.6311 0.7881 0 

3 5 5 0.2533 0.8693 0 

3 6 1,3 1.0997 1.9062 0 

3 7 1,4 0.6827 1.8515 0 

3 8 2,4 1.4622 1.3039 0 

3 9 2,5 1.1379 1.2994 0 

3 10 1,3,4 1.2349 2.6969 0 
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Table 3.15 Efficient bid combinations for Round 5 

 

In Round 5, we find 30 efficient combinations using the updated bids in addition 

to the best combinations saved from the previous round. From these 32 

combinations, two combinations are dominated, two had been previously 

presented, and 26 are eliminated using (ELIMINATION) procedure. The buyer 

states indifference between the remaining two combinations. We incorporate this 

information to solve (Wt). The estimated preference function values for each item 

and the updated bids for Round 6 are given in Tables 3.16 and 3.17, respectively. 

 

Table 3.16 Estimated preference function values at the end of Round 5 

Round 5  

Item Estimated Pref. Fn. Value 

1 0.3875 

2 0.5188 

3 0.4411 

4 0.5822 

5 0.4488 

 

  

Round 5 

Combination Seller Bid Item Price 
Defect 

Rate 

Buyer’s 

True Pref. 

Fn. Value 

Estimated 

Pref. Fn. 

Value 

1 

1 5 5 0.7439 0.2019 

2.8259 2.8214 
2 2 2 1.0354 0.2003 

2 4 4 0.6870 0.5984 

2 6 1,3 1.1996 0.7987 

2 

2 2 2 1.0354 0.2003 

2.8228 2.8214 
2 4 4 0.6870 0.5984 

2 5 5 0.1662 0.9011 

2 6 1,3 1.1996 0.7987 



  

 55 

Table 3.17 Bids for Round 6 

 

Table 3.18 Efficient bid combinations for Round 6 

 

In Round 6, we find 29 efficient combinations using the updated bids in addition 

to the two best combinations saved from the previous round. From these 31 

combinations, two are dominated, five had been previously presented, and 23 are 

eliminated using (ELIMINATION) procedure. As the possible weight range is 

Round 6      

Seller Bid Item Price Defect Rate Profitable 

1 1 1 0.5608 0.8604 0 

1 2 2 0.5681 0.9743 0 

1 3 3 0.6711 0.946 0 

1 4 4 1.0694 0.3096 0 

1 5 5 0.6528 0.2019 1 

1 6 1,3 0.9431 1.8792 0 

1 7 2,5 0.6488 1.8322 0 

1 8 3,5 1.4975 1.3386 0 

1 9 1,3,5 1.6841 2.2328 0 

1 10 2,3,5, 1.3995 2.6014 0 

1 11 1,2,3,5 1.5652 3.5979 0 

2 1 1 0.7352 0.2553 0 

2 2 2 1.0354 0.2003 0 

2 3 3 0.2865 0.9421 0 

2 4 4 0.6366 0.5984 0 

2 5 5 0.1627 0.9011 0 

2 6 1,3 1.1996 0.7987 0 

2 7 2,5 1.4869 0.9658 0 

3 1 1 0.1873 0.9894 0 

3 2 2 0.9092 0.5242 0 

3 3 3 1.1674 0.7056 0 

3 4 4 0.6311 0.7881 0 

3 5 5 0.2533 0.8693 0 

3 6 1,3 1.0997 1.9062 0 

3 7 1,4 0.6827 1.8515 0 

3 8 2,4 1.4622 1.3039 0 

3 9 2,5 1.1379 1.2994 0 

3 10 1,3,4 1.2349 2.6969 0 

Round 6 

Combination Seller Bid Item Price 
Defect 

Rate 

Buyer’s 

True Pref. 

Fn. Value 

Estimated 

Pref. Fn. 

Value 

1 

1 5 5 0.6528 0.2019 

2.7481 2.7439 
2 2 2 1.0354 0.2003 

2 4 4 0.6366 0.5984 

2 6 1,3 1.1996 0.7987 
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narrowed considerably (lower and upper bounds of the weight of price are 0.5459 

and 0.5530, respectively), the model can anticipate the best of 24 combinations 

without asking the buyer. Since there is only one efficient combination, this will 

not bring us any new information for estimation of weights. Therefore, we use 

estimated weight values found in Round 5 and by providing improvement for 

each item we estimate the preference function values given in Table 3.19. 

 

Table 3.19 Estimated preference function values at the end of Round 6 

Round 6  

Item Estimated Pref. Fn. Value 

1 0.3625 

2 0.4877 

3 0.4117 

4 0.5295 

5 0.4039 

 

The updated bids for Round 7 are given in Table 3.20.  
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Table 3.20 Bids for Round 7 

 

Table 3.21 Efficient bid combinations for Round 7 

 

In Round 7, we find 29 efficient combinations using the updated bids in addition 

to the best combination saved from the previous round. From these 30 

combinations, one is dominated, 17 had been previously presented and 11 are 

eliminated using (ELIMINATION) procedure. We are left with a single efficient 

Round 7      

Seller Bid Item Price Defect Rate Profitable 

1 1 1 0.5608 0.8604 0 

1 2 2 0.5681 0.9743 0 

1 3 3 0.6711 0.946 0 

1 4 4 1.0694 0.3096 0 

1 5 5 0.6158 0.2019 0 

1 6 1,3 0.9431 1.8792 0 

1 7 2,5 0.6488 1.8322 0 

1 8 3,5 1.4975 1.3386 0 

1 9 1,3,5 1.6841 2.2328 0 

1 10 2,3,5, 1.3995 2.6014 0 

1 11 1,2,3,5 1.5652 3.5979 0 

2 1 1 0.7352 0.2553 0 

2 2 2 1.0354 0.2003 0 

2 3 3 0.2865 0.9421 0 

2 4 4 0.6366 0.5984 0 

2 5 5 0.1627 0.9011 0 

2 6 1,3 1.1996 0.7987 0 

2 7 2,5 1.4869 0.9658 0 

3 1 1 0.1873 0.9894 0 

3 2 2 0.9092 0.5242 0 

3 3 3 1.1674 0.7056 0 

3 4 4 0.6311 0.7881 0 

3 5 5 0.2533 0.8693 0 

3 6 1,3 1.0997 1.9062 0 

3 7 1,4 0.6827 1.8515 0 

3 8 2,4 1.4622 1.3039 0 

3 9 2,5 1.1379 1.2994 0 

3 10 1,3,4 1.2349 2.6969 0 

Round 7 

Combination Seller Bid Item Price 
Defect 

Rate 

Buyer’s 

True Pref. 

Fn. Value 

Estimated 

Pref. Fn. 

Value 

1 

1 5 5 0.6158 0.2020 

2.7278 2.7237 
2 2 2 1.0354 0.2003 

2 4 4 0.6366 0.5984 

2 6 1,3 1.1996 0.7987 
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combination. We see that all profit values are zero at this time, indicating that no 

seller can bid profitably. Therefore, the algorithm stops and the winners of the 

auction are the winners of Round 7.  

 

Table 3.22 The results of the ELIM-e 

 

 

 

 

 

The true preference function value of each round is reported In Table 3.22. 

 

Table 3.23 Buyer’s preference function value in each round 

 

 

 

 

 

 

 

In Table 3.24, we provide the number of combinations before and after 

(ELIMINATION) procedure for each round.  

 

Table 3.24 Number of bid combinations 

 

Winners of the Auction ( ELIM-e ) 

Seller Bid Item Price Defect Rate 

1 5 5 0.6158 0.2019 

2 2 2 1.0354 0.2003 

2 4 4 0.6366 0.5984 

2 6 1,3 1.1996 0.7987 

Round No 
Buyer’s True Pref. Fn. 

Value 
Improvement (%) 

1 3.7987 - 

2 3.3856 10.8748 

3 3.1795 6.0875 

4 2.9190 8.1931 

5 2.8228 3.2956 

6 2.7481 2.6463 

7 2.7278 0.7387 

Round 

No 

Number of 

Combinations 

before Elimination 

Number of 

Combinations 

found previously 

Elimination 

due to 

Domination 

Elimination due 

to Weight Space 

Reduction 

1 10 0 0 4 

2 177 0 1 168 

3 51 0 1 45 

4 33 0 2 29 

5 32 2 2 26 

6 31 5 2 23 

7 30 17 1 11 
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We also report the estimated weights and estimated bounds for the weight of the 

price attribute in each round in Table 3.25. 

 

Table 3.25 Estimated bounds for the weight of the price and estimated weights in 

each round 

 

To show the performance of the algorithm, we compare the results of the 

algorithm with the ones found using the exact parameter values. We find what the 

results would have been had the sellers known the buyer’s true preference 

function explicitly, assuming, without loss of generality, that the sellers would bid 

zero profit as in the case of the algorithm’s solution. We also assume that sellers 

bid independently of each other as in our experiments. Recall that, by 

construction, each seller has bid combinations in which he/she is competitive, 

based on his/her cost function. Now that we make calculations with full 

information (on the sellers’ cost functions and buyer’s preference function), we 

can find the optimal attribute values for all bids of all sellers in which they are 

competitive by solving the (MAKE_BID) problem under the zero profit 

assumption. Then using these bids we solve the (EFFCOM) problem and find the 

possible best combination(s). This case is reported as “Decentralized.” The results 

for Decentralized case for the numerical example are provided in Table 3.26. 

 

 

 

 

 

 

 

Round 

No 

Estimated LB for  

Weight of Price 

Estimated UB for 

Weight of Price 

Estimated 

Weight of 

Price 

Estimated 

Weight of 

Defect Rate 

1 0.3963 1.0000 0.7309 0.2691 

2 0.3963 0.6981 0.5429 0.4571 

3 0.5459 0.5530 0.5476 0.4524 

4 0.5459 0.5530 0.5476 0.4524 

5 0.5459 0.5530 0.5476 0.4524 

6 0.5459 0.5530 0.5476 0.4524 

7 0.5459 0.5530 0.5476 0.4524 
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Table 3.26 The results for the Decentralized case 

 

When we compare the results found by the algorithm and the Decentralized case, 

we see that we find the same winners with the same bids as we estimate the true 

weights very closely. This is expected, and the estimations would keep improving 

with the amount of preference information and converge to the true weights with 

sufficient information. 

 

We also compare the preference function values of the buyer for the winning 

bidders found with the algorithm and in the Decentralized case. We check the 

percent deviations of the algorithm from Decentralized using the following 

formula:  

 

            
 (                           )   (             )

 (             )
    

 

where  (                           ) and  (             ) refer to the 

preference function value s of the final bid combination found by the ELIM-e and 

Decentralized, respectively. 

 

We use 10 different weight values for the price attribute ( ) to generate different 

problems for both linear and nonlinear cases. The percentage deviations for the 

linear case are reported in Table 3.27. 

 

 

Winners of the Auction (Decentralized) 

Seller Bid Item Price 
Defect 

Rate 

Combination 

Price 

Combination 

Defect Rate 

Buyer’s 

True Pref. 

Fn. Value 

1 5 5 0.6158 0.2020 

3.4807 1.8075 2.7278 
2 2 2 1.0354 0.2003 

2 4 4 0.6341 0.6014 

2 6 1,3 1.1954 0.8038 
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Table 3.27 Percentage deviations between the results of ELIM-e and the 

decentralized optimal solution 

 

In all problems the winning bidders found by the algorithm and Decentralized are 

the same, i.e. allocative efficiency is satisfied. As can be seen from Table 3.27, 

the percentage deviations are very small, i.e. for all problems the buyer’s 

preference function found with the algorithm is close to that found by 

Decentralized.  Moreover, with (ELIMINATION) procedure we substantially 

decrease the number of alternatives presented to the buyer. These imply that the 

estimation and guidance mechanisms of our approach worked well in all the test 

problems. 

3.9 The 3-attribute Case 

We consider lead time as the third attribute. In this case, we construct the cost 

function in such a way that improvements in the defect rate and lead time both 

increase the cost in different magnitudes. The relation of the defect rate with cost 

is the same as that of the two attribute case. For the three attribute case, we 

generate a convex cost function and apply a procedure similar to MAKE_BID 

procedure to determine the updated bids. For the sake of completeness, we 

provide the whole procedure below: 

 

Parameters:  

  : estimated weight of price where      

  : estimated weight of defect rate where   >0
 

  : estimated weight of lead time where   >0 

   : estimated preference function value for bid t (ADSS provides the estimated 

preference function value for each item separately and the estimated preference 

function of a bundle is calculated by adding up the estimated preference function 

values of the items in the bundle) 

 =0.05  =0.15  =0.25  =0.35  =0.45  =0.55  =0.65  =0.75  =0.85  =0.95 

0.0084 0.0064 0.0000 0.0000 0.0040 0.0000 0.0075 0.0043 0.0000 0.0245 
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: minimum mark-up percentage for seller i; if it is 0, then seller i may bid 

with zero profit. For the sake of simplicity let      
       ⁄ .  

     the cost function of seller i for bid t  

   (       )  (  (  (  
       

 

   
     

 )
  

)
    

) (   
     

 )     
     

 (   
     

 )

 (       
 )

 
 

where 

   
 : maximum defect rate value that can be offered by seller i for bid t  

   
 : minimum defect rate value that can be offered by seller i for bid t  

   
 : maximum cost of bid t for seller i (at    

 ) 

   
 : minimum cost of bid t for seller i (at    

 ) 

   
 : maximum lead time value that can be offered by seller i for bid t  

   
 : minimum lead time value that can be offered by seller i for bid t  

  : parameter of the Lq cost function for seller i 

 : positive constant 

 

Decision Variables: 

    = price offered by seller i for bid t 

    = defect rate offered by seller i for bid t  

    = lead time value offered by seller i for bid t  

 

Each seller tries to maximize his/her profit by solving the following problem. 

 

Problem (MAKE_BIDit) 

Max     (    )   (       )   (5.1)    

s.to   

   
         

       (5.2) 

   
         

       (5.3) 

                            (5.4) 

                (5.5) 

 

The objective function is equivalent to 
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Max  (       )  
               

  
 (    )   (       ).

 
 

Similar to Section 3.4, we conclude that  (       ) is concave and we utilize the 

properties of concave functions and determine the updated bids as follows:      

 

The objective function can be rewritten as follows:  

    (       )  
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Since  (   
     

 ) is concave, to find the optimal defect rate and lead time values 

we check the stationary and boundary points. 

 

At stationary point:        
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After some manipulations, we obtain 
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  is same with that of in 2-attribute case. For    

   we also check the upper bound. 
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 and seller bids 

profitably. Otherwise,    
  (    )   (   

     
 ) and seller bids with his/her 

predetermined mark-up only and no extra profit is possible.  
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All the steps are the same as the 2-attribute case except that to find the efficient 

solutions for 3-attribute problems we use the algorithm suggested by Lokman and 

Köksalan (2012).  

 

We set K=10, and set minimum and maximum lead time values for each item to 1 

and 2, respectively. We calculate the lead time value of a bundle by summing up 

the lead time values of the items that constitute the combination. Other 

parameters take the same values as in the 2-attribute case. We use 10 different 

weight values for the attributes to generate different 3-attribute problems. We use 

ELIM-e and report the results for 7 problems in Tables 3.28 and 3.29. 

  

Table 3.28 Preference function values of the combinations found by ELIM-e and 

the decentralized optimal solution (3-attribute case) 

 

Table 3.29 Percentage deviations between the results of ELIM-e and the 

decentralized optimal solution (3-attribute case) 

 

 

 

 

 

In all problems, the winning bidders found by the algorithm and Decentralized are 

the same. The largest percentage deviation of the preference values obtained by 

the winning bidders of the algorithm from that of Decentralized is 0.3973%. 

Therefore, we say that our algorithm works well in all the problems solved for the 

3-attribute case.  

 

  =0.1 
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  =0.33 

ELIM-e 5.0957 2.0285 2.6424 3.6972 4.1667 3.3715 4.2205 

Decentralized 5.094 2.0284 2.6422 3.6953 4.1667 3.371 4.2038 

  =0.1 

  =0.1 

  =0.8 

  =0.1 

  =0.8 

  =0.1 

  =0.8 

  =0.1 

  =0.1 

  =0.1 
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  =0.1 

  =0.45 

  =0.45 

  =0.45 

  =0.1 

  =0.33 

  =0.33 

  =0.33 

0.0334 0.0049 0.0076 0.0514 0.0000 0.0148 0.3973 
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3.10 Local Linear Approximation for Nonlinear Preference Functions 

So far, we tested the algorithm for underlying linear preference functions. In this 

section, we assume that the buyer has an underlying decreasing quasiconvex 

preference function. We locally approximate the buyer’s preference function with 

a linear function.  We estimate the weight values using a variation of (Wt) model. 

If the model is feasible, we use the weights that solve (Wt). However, if there are 

no weights satisfying the constraints, we relax the constraints that cause 

infeasibility and solve the problem again. There are many ways of choosing 

which constraints to remove (see for example Chinneck 2008). In our infeasibility 

reduction heuristic, we solve the following (IR) problem to identify a set of 

constraints causing infeasibility.  

 

Recall that    represents the k
th

 efficient combination presented to the buyer for 

the current round.  (  ) denotes the estimated preference function value of the 

buyer for    and     denotes the level of attribute j of     

 

Parameters:  

 : predetermined threshold level by which the buyer can distinguish between bid 

combinations 

 : a small positive constant 

   : level of attribute j in efficient combination k 

 

Decision Variables: 

 : maximum amount of infeasibility  

 ̂: estimated weight of attribute 1 

   : amount of infeasibility in the preference constraint for each    preferred to 

each       

       : amount of infeasibility in the preference constraint for each    and    the 

buyer is indifferent between 
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Model (IR) 

Min    ∑ (            )
 
           

       (6.1) 

s.to   

 (  )   ̂   +(   ̂)              (6.2) 

 (  )   (  )                      for each              (6.3) 

 (  )           (  )   (  )             for each         (6.4) 

                        for each        (6.5) 

                       for each          (6.6) 

                       for each          (6.7) 

                             for each      ,       (6.8) 

 ̂               (6.9) 

 

In the original (Wt) model, we assume that all constraints are feasible and we try 

to maximize  . In the (IR) model we remove variable   and add nonnegative 

         and      for each      ,      . We try to minimize the maximum 

contribution to infeasibility. We also use an augmented part that is the sum of 

infeasibility contributions to break the ties. The (IR) model is always feasible as 

for each preference constraint there is a variable that captures the amount of 

violation, while keeping the constraint feasible. If the objective is strictly positive, 

the constraints with strictly positive          or     contribute to infeasibility. 

Instead of deleting these constraints, we allow them to be violated while 

minimizing the violation of the constraint that has the maximum violation.  

 

In the nonlinear case, we apply ELIMINATION procedure to eliminate some of 

the efficient combinations in the initial phases since we assume linearity for the 

buyer’s preference function. We stop using ELIMINATION when the (IR) 

problem has a positive objective function value. The reason is that when the (IR) 

problem has a positive objective function value, it is discovered that the linearity 

assumption for the buyer’s preference function is violated. Continuing with 

ELIMINATION can lead to the elimination of some of the efficient combinations 

that might be preferred by the buyer. Therefore, until the (IR) model has a 

positive objective function value, we apply ELIMINATION but afterwards we 
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present the buyer all the efficient combinations of the succeeding rounds without 

applying ELIMINATION. In this approach, as we apply ELIMINATION 

procedure at the beginning of the rounds, we may eliminate good solutions before 

observing the violation of the linearity assumption. To avoid such deficiencies 

some repairing methods can be used. For instance, when the linearity assumption 

failed, the alternatives eliminated at the beginning of the corresponding round 

may also be presented to the buyer. 

 

We test the performance of the algorithm by simulating the preferences of the 

buyer having an L  preference function; specifically we use the weighted 

Euclidean (   )  and the weighted Tchebycheff (   ) functions.  

 

We use 10 different weight values for the attributes to generate different 2-

attribute problems. The results are given in Table 3.30. 

 

Table 3.30 Percentage deviations between the results of the algorithm and 

decentralized optimal solution under weighted Euclidean preference function 

 

Table 3.31 Percentage deviations between the results of the algorithm and 

decentralized optimal solution under weighted Tchebycheff preference function 

 

When we look at the results in Table 3.30 the percent deviations are very small. 

In Table 3.31, however, the highest percent deviation is 8.2693. When we check 

the reason for such a high percent deviation, we see that between rounds we 

eliminate the best of the previous round as we apply ELIMINATION procedure 

until discovering that the underlying preference function is not linear. As 

suggested before some repairing operations may be applied. Even in this case, the 

average percent deviation is 0.3612. Moreover, in both tables we see in some test 

 =0.05  =0.15  =0.25  =0.35  =0.45  =0.55  =0.65  =0.75  =0.85  =0.95 

0.0306 0.0090 -0.0869 0.2911 -0.3593 -1.0399 -0.0052 0.1155 0.0208 0.0000 

 =0.05  =0.15  =0.25  =0.35  =0.45  =0.55  =0.65  =0.75  =0.85  =0.95 

0.0421 8.2693 -3.3448 -2.0733 -0.4471 -0.1517 -4.8684 6.1857 0.0000 0.0000 
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problems that our algorithm performed better than Decentralized. We conclude 

that the estimation and guidance mechanisms of our approach worked well when 

the buyer has a nonlinear preference function. Although Decentralized finds 

better preference function values for each bid separately, when a combination is 

constructed, the preference function of a combination for the Decentralized case 

may be worse than that of ours for the considered nonlinear preference functions.  

This result is not surprising when the underlying preference function is nonlinear. 

 

We demonstrate this situation with a simple example with two bids. Suppose the 

buyer has a weighted Euclidean preference function with equal weights for price 

and defect rate. Consider the attribute values of the bids presented in Table 3.32. 

 

Table 3.32 Attribute values for each bid separately 

 Decentralized Algorithm 

 price 
defect 

rate 

Buyer’s 

preference 

function value 

price 
defect 

rate 

Buyer’s 

preference 

function value 

Item 1 1.0 2.0 1.1180 1.7 1.5 1.1336 

Item 2 1.0 2.0 1.1180 1.2 1.9 1.1236 

Combination 2.0 4.0 1.2361 2.9 3.4 1.2344 

 

In Table 3.32, we see that Decentralized finds better preference function values 

for each bid separately. However, when a combination is constructed, the 

preference function of a combination for the Decentralized case is worse than that 

of the algorithm. 
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CHAPTER 4 

 

 

4 AN INTERACTIVE METHOD TO FIND THE BEST BID 

COMBINATION 

 

 

 

In Chapter 3, we used ELIMINATION procedure to decrease the number of 

efficient combinations presented to the buyer. However, even after applying this 

procedure, the number of remaining efficient combinations may be high and it 

might be difficult for the buyer to evaluate them all. Therefore, we apply a multi-

criteria decision making (MCDM)-based method to support the buyer to find the 

best bid combination among the given bid combinations. In this chapter we 

develop an interactive algorithm for the case where the underlying preference 

function is linear. We first give an overview of the approach. We then explain the 

algorithm and discuss the results. Lastly, we present a heuristic approach for 

underlying nonlinear preference functions. 

4.1 The Interactive Approach  

The stages of the approach are similar to those in Section 3.1. The main 

difference is that in ELIM-e, in each round we first find a set of efficient 

combinations and then ask the buyer to compare them; whereas in this method 

these processes are not sequential but interactive. For the sake of completeness, 

we provide the stages of the new interactive approach in Figure 4.1.  
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Figure 4.1 The stages of the interactive approach  

4.2 An Interactive Algorithm (LIN-u) 

We introduce an interactive algorithm, LIN-u, to find the most preferred 

combination of a buyer for the 2-attribute case. We assume an underlying linear 

preference function and apply a variation of the algorithm developed by Zionts 

(1981). Since we assume a linear preference function, the most preferred solution 

of the buyer is a supported efficient solution. Thus we deal with only the extreme 

supported efficient solutions. In the algorithm, the buyer compares an incumbent 

efficient solution with its adjacent efficient alternatives. We reduce the weight 

space based on the preferences of the buyer. If an adjacent efficient alternative is 

preferred to the current incumbent, a new incumbent is generated and the 

algorithm continues until an incumbent is preferred to all its adjacent efficient 

alternatives. Since we assume an underlying linear preference function, the 

Sellers give their bids at the first round. In succeeding rounds, 

sellers, 

- based on the provided information update their bids to maximize 

their profits by solving their (MAKE_BID) model. 

 

ADSS 

- considers all given bids for the current round and applies an 

interactive method to support the buyer  to find the best bid 

combination and to estimate weights. 

ADSS 

- solves (Wt) model to estimate the weight values of attributes, 

- estimates the preference function value of each item separately and 

improves the estimated preference function value of the buyer, 

- informs sellers about the estimated weight values of attributes and 

estimated preference function value of each item. 
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resulting solution at the end of the algorithm is the best solution of the current 

round (see Zionts 1981). Zionts (1981) does not consider the case where the buyer 

expresses indifference between two alternatives. In our algorithm, we consider 

such cases as well. Moreover, unlike Zionts (1981), we do not have all solutions 

at hand at the outset but we rather generate each solution to be presented to the 

buyer as needed.  

 

We note that it is also possible to find all efficient combinations first and then 

apply the interactive method.  

 

LIN-u algorithm is a generalization of Zionts’ method and is applicable for the 

general bi-objective integer programming problems. As mentioned before, we use 

the terms DM and buyer interchangeably. The algorithm for the single-round 

linear case follows: 

 

LIN-u 

In our indifference relations we do not assume transitivity; that is, if the DM 

indicates indifference between alternatives A and B as well as between 

alternatives B and C, we do not automatically assume indifference between A and 

C. However, we construct a set, IN, that contains indifferent alternatives based on 

direct comparisons and transitivity relations. Let    and    be the alternatives 

having the maximum values in attributes 1 and 2 among the alternatives in IN, 

respectively. These alternatives correspond to the extremes of set IN in the two 

attributes. Since an alternative can have at most two distinct adjacent efficient 

alternatives in the two attribute case, we classify them as the east and west 

adjacent efficient alternatives. Let    and    be the east and west adjacent 

efficient alternatives to the incumbent, respectively. Select an arbitrary direction 

(DIR) to search an adjacent efficient alternative to the incumbent. Let DIR=east 

correspond to searching for     and DIR=west correspond to searching for   . 

Set iteration counter i = 1. Without loss of generality set DIR=east and       

   Let     and     be the values of attributes 1 and 2 of the corresponding 
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solution,     respectively,    (     ) where   is the estimated weight of 

attribute 1 and   be a small positive constant. Recall that    and    are the 

estimated lower and upper bounds for the weight of attribute 1, respectively. 

 

In the algorithm, after the DM expresses his/her preferences, we construct the 

corresponding preference constraint(s) which constitute the feasible weight space 

of the (Wt) model explained in Section 3.3.  

 

We first discuss the details of various aspects of the algorithm and then give the 

steps. 

 

At the beginning, we select arbitrary weights to find an alternative. In the auction 

example, at the beginning of Round 1, we assume equal weights for attributes 

since we have no information. We solve the following (ALT) model to find a new 

alternative with the estimated weights: 

 

Parameters:  

    : level of attribute j offered by seller i in bid t   

    : 1 if bid t of seller i includes item m; 0 otherwise 

  : the number of bids offered by seller i 

 : estimated weight of attribute 1 

 

Decision Variables: 

   : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise  

 ̂ : level of attribute j of the optimal alternative 
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Model (ALT) 

Min   ̂  (   ) ̂       (7.1) 

s.to   

∑ ∑        
  
   

 
            (7.2) 

 ̂  ∑ ∑        
  
   

 
                         (7.3) 

    {   }       (7.4)  

  

In (ALT), we aim to minimize the estimated preference function value by using 

the estimated weights. Constraint set (7.2) guarantees satisfying the demand for 

each item. 

 

After finding an incumbent, we then find the adjacent efficient alternative of the 

incumbent based on the search direction. We adapt the method proposed by Aneja 

and Nair (1979). They find all supported efficient solutions of a bi-objective 

problem by minimizing a linear function of the two objectives whose weights 

they systematically change. We next explain the procedure to find east adjacent 

efficient alternative of an incumbent. The procedure for finding the west adjacent 

efficient alternative is similar.  

 

Finding east adjacent efficient alternative (ADJ_E) 

Recall that         and    be the incumbent, east and west adjacent efficient 

alternatives, respectively, and    and    be the estimated lower and upper 

bounds for estimated weight of attribute 1, respectively. Let      be the eastmost 

alternative having the maximum price value that bounds the search region. If     

has not been found previously, set     where    is a small positive constant and 

solve (ALT). Set the solution of (ALT) to      Afterwards, as the DM expresses 

his/her preferences the value of     will be updated if necessary. For instance if 

the DM prefers    to   , then set       . 

 

We note that if at the beginning         it indicates that there is no east 

adjacent efficient alternative of     In this case, we skip the following steps. 
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Step 1: Set   
  

    
  

  
     

     
    

   Solve (ALT) using   and considering the 

following additional constraints to bound the search region:  

 ̂    
          (7.5) 

 ̂    
           (7.6) 

  ̂  (   ) ̂       
  (   )  

    (7.7) 

where   is a small positive constant and   is the slack variable of the 

corresponding constraint. If there is a feasible solution,  ̂  having a positive   

value, set      ̂ and go to Step 1. Otherwise go to Step 2.  

Step 2: Set       . Stop. 

 

In Step 1, we calculate the weights of the linear function passing through the 

incumbent and the eastmost alternative. Then we find the solution that minimizes 

the estimated preference function with the corresponding weights applying (ALT) 

and additional constraints. Although (ALT) itself is always feasible, with the 

additional constraints we cannot guarantee to find feasible solutions. Since both 

   and     are supported efficient solutions, we use  and bound the search 

region with constraints (7.5) and (7.6). Although these two constraints are 

redundant, to emphasize the search region we keep them in the model. In (7.7) we 

check the slack variable value. If it is zero or negative, then the solution,  ̂, is 

convex dominated by the points on the line passing through the incumbent and 

   . We continue to search if there is a feasible solution with a positive slack 

variable value. 

 

After finding an adjacent alternative we check whether the adjacent alternative 

can be preferred to the incumbent based on past preference information. To do 

this, we check whether the weights making the adjacent alternative preferred to 

the incumbent are in the feasible weight region or not. If the weights favoring the 

adjacent alternative are in the feasible weight space we ask the DM to compare 

the incumbent and the adjacent alternative. Otherwise, we conclude that the 

adjacent alternative cannot be preferred by the DM based on his/her past 

preferences due to Theorem 1 in Chapter 3. In the algorithm, we find the 
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incumbent using the estimated (feasible) weights. However, we do not know 

whether the weights favoring the adjacent alternative are in the feasible weight 

space or not. Therefore, we check       which refers to the weight of attribute 1 

that makes      equivalent to   . If the direction is west and         is greater 

than the upper bound of the weight of attribute 1 or if the direction is east and 

        is smaller than the lower bound of the weight of attribute 1, we say 

that there does not exist weights in the feasible weight space that make the 

adjacent alternative preferable to the incumbent. 

 

We next provide the steps of the algorithm LIN-u. 

 

Step 1: Select an arbitrary set of weights, find an incumbent,     and go to Step 3. 

Step 2: Set        Find a solution,     using    If          or        go to 

Step 3. Else, if      , go to Step 2.1. Else go to Step 2.2. 

Step 2.1: If       
 , set DIR=west; otherwise set DIR=east. Ask the DM 

   versus     If 

-    is preferred to   , add a constraint  (     )       Set       and 

go to Step3. 

-    is preferred to   , add a constraint  (     )        Switch the value 

of DIR (i.e. set DIR=east if it is equal to west and set DIR=west if it is equal 

to east) and go to Step 3. 

- the DM is indifferent between    and   , add constraints  (     )    

    and  (     )         Set    {     }, update       and go 

to Step 3. 

Step 2.2: If       
   set        and DIR=west. Else set       and 

DIR=east.  

Ask the DM    versus   . If  

-    is preferred to   , add a constraint  (     )        Set       

{  }  If        set        otherwise set        Ask the DM    versus 

  . If 



  

 76 

    is preferred to   , add a constraint  (     )        Set 

     ,               and go to Step 3. 

 the DM is indifferent between    and   , add constraints  (   

  )        and  (     )          Set       {  }, 

check       (i.e. if       update     otherwise update    if 

necessary ) and go to Step 3. 

-    is preferred to   , add a constraint  (     )       Switch the value 

of DIR. 

- the DM is indifferent between    and   , add constraints  (     )    

    and  (     )          Set       {  } and check      . 

Step 3: If DIR=east, find    and set        ; otherwise find     and set  

       . If there does not exist      or (       ) pair has been compared 

previously, go to Step 3.1. Otherwise, set      = 
  

        

                
    

   and if 

DIR=east go to Step 3.2; otherwise go to Step 3.3.  

Step 3.1: If both    and    have been evaluated before, go to Step 5. 

Otherwise, switch the value of DIR and go to Step 3. 

Step 3.2: If             , go to Step 3.1; otherwise go to Step 4.  

Step 3.3: If             , go to Step 3.1; otherwise go to Step 4. 

Step 4: If     , go to Step 4.1.Else go to Step 4.2. 

Step 4.1: Ask the DM    versus     . If  

-      is preferred to   , add a constraint  (       )       Set    

     and go to Step 6. 

-    is preferred to     , add a constraint  (       )       If both    

and    have been evaluated go to Step 5. Otherwise switch the value of DIR 

and go to Step 3.  

- the DM is indifferent between    and     , add constraints  (       )  

      and  (       )       . Set    {       } and update 

       If both    and    have been evaluated go to Step 5. Otherwise switch 

the value of DIR and go to Step 3.  
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Step 4.2: If DIR=west, set      ; otherwise set      . Ask the DM    

versus     . If 

-      is preferred to   , add a constraint  (       )       Set    

   {  }, if DIR=west, set         otherwise set        Ask the DM    

versus     . If 

      is preferred to   , add a constraint  (       )       

Set        ,               and go to Step 6. 

 the DM is indifferent between    and     , add constraints 

 (       )        and  (       )         Set 

      {    } and check      . If both    and    have been 

evaluated go to Step 5. Otherwise switch the value of DIR and go to 

Step 3.  

-    is preferred to     , add a constraint  (       )       If both    

and    have been evaluated go to Step 5. Otherwise switch the value of DIR 

and go to Step 3.  

- the DM is indifferent between    and     , add constraints  (       )  

      and  (       )       . Set       {    } and check 

       If both    and    have been evaluated go to Step 5. Otherwise switch 

the value of DIR and go to Step 3.  

Step 5: If any of the following three conditions are satisfied, go to Step 7. 

Otherwise go to Step 6.  

- incumbent has no adjacent efficient alternative 

-      and    is preferred to all its adjacent efficient alternatives 

-       and both    and    are at least as preferable as their adjacent 

efficient alternatives 

Step 6: Find a feasible set of weights satisfying all constraints corresponding to 

past preferences of the DM by solving the (Wt) and go to Step 2. 

Step 7: If     ,    is the most preferred solution. Otherwise, present the DM 

the solutions in set   . Stop.  
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In Step 2.2, if    is preferred to    after making necessary updates, we then 

consider 2 possibilities: “    is preferred to   ” or “the DM is indifferent between 

   and   ”. Using the following theorem, we omit “   is preferred to   ” case 

which is not possible. In Step 4.2, a similar situation exists. For the sake of 

completeness, we show this result with the following theorem. 

 

Theorem 2: Let   be the minimum value difference between alternatives to 

warrant preference between two alternatives. Consider three alternatives  ,   and 

 , and assume the DM is indifferent between   and  , and prefers   to  . Then 

  cannot be preferred to  . 

 

Proof: If the DM is indifferent between   and  , then  ( )     ( )  

 ( )   . If   is preferred to  , then  ( )   ( )   .  ( )   ( )    

 ( )   ( )   ( ). Therefore,   cannot be preferred to  .  □ 

 

So far, we have discussed the interactive LIN-u algorithm for a single round. In 

the next section, we discuss the multi-round case. 

4.3 Interactive LIN-u for Multi-round 

In the multi-round case, at each round, we expect the sellers to improve their bids 

in such a way that the resulting combinations of the next round have improved 

preference function values of approximately “100γ” percent of the estimated 

value of the best combination of the current round as in Karakaya and Köksalan 

(2011). Therefore, after estimating a preference function based on past 

preferences of the buyer, we provide information to the sellers about a possible 

way of improving their bids. Using the information together with their cost 

functions, sellers update their bids for the next round. The auction continues until 

a termination condition is met.  
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4.3.1 Bid Update 

At the end of each round, sellers update their bids for the next round according to 

their cost functions. Each seller solves his/her own mathematical model 

(explained in Section 3.4) to update his/her bids. If there are feasible bids with 

extra profit, then the seller gives the best possible bids with his/her predetermined 

mark-up.  

 

After taking the updated bids from the sellers, we find a new bid combination as 

the incumbent of the current round using the estimated weights found at the end 

of the previous round and continue.  

 

We next discuss checking the status of the previous best solution (whether it is 

extreme or nonextreme supported, or unsupported nondominated, or dominated).  

4.3.2 Status of the Solution (SoS) 

We guarantee to find the most preferred bid combination of the current round by 

applying LIN-u under the linear preference function assumption. In Step 1 of LIN-

u we select arbitrary weights from the feasible weight space and find an 

incumbent. Then we progress by checking the adjacent efficient alternatives of 

the incumbent. In the multi-round case we keep the best alternative(s) up to the 

current round to be compared with the new incumbent of the current round. In 

this section, we explain the method for the multi-round case. For the sake of 

simplicity, we assume that we have a single best alternative at the end of any 

round. That is in Step 7 of LIN-u, we assume     . 

 

Let       be the best alternative up to the current round. At the beginning of the 

current round, after finding an incumbent with the estimated weights and updated 

bids, we check whether       is extreme supported or not.  

 

Here, we utilize the notation of LIN-u. We consider an additional step, Step 0, at 

the beginning of the algorithm. The remaining steps are the same as LIN-u.  
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Step 0: Find a solution,     using  . Check whether       is extreme supported 

or not by applying SoS procedure (below). If it is extreme supported, set     

      and go to Step 2.1 (of LIN-u). Otherwise, set        and go to Step 3 (of 

LIN-u).  

 

We consider Figure 4.2 to visualize the possible regions where bid    may be 

located. 

 

 

Figure 4.2 The possible regions for    

 

We check whether an alternative is extreme supported or not by applying the 

following SoS procedure: 

 

The steps of SoS: 

Step 1: Check the dominance relations between    and        If    is in Region 

2, go to Step 5. Otherwise, if there exists  ̂ such that  ̂ and    convex dominate 

       go to Step 5.  

Step 2: If    is in Region 1 find the east adjacent alternative of        otherwise 

find the west adjacent alternative of        If there does not exist an adjacent 

alternative, go to Step 4. Otherwise go to Step 3.  

Step 3: Check whether there exists  ̂ such that  ̂ and the adjacent alternative 

convex dominate        If there does not exist  ̂  go to Step 4. Otherwise go to 

Step 5. 

Step 4: Set          and stop.  

Step 5: Set       and stop.  

 

Attribute 2 

Attribute 1 

𝒆𝑃𝑅𝐸𝑉  
Region 1

 

Region 2
 

Region 3
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In Step 1, if    is in Region 2,    dominates        Therefore we stop and 

continue with the new found alternative,     If    is in Region 1 or Region 3 we 

need an iterative procedure. We explain the procedure for the case that    is in 

Region 1 and the procedure is similar for Region 3.  

 

If    is in Region 1, we search for an  ̂ such that  ̂ and    convex dominate        

We set   
      

    

  
       

            
, bound the search region as in Figure 4.3 and 

solve model (SoS_S1). 

 

 

       

 

Figure 4.3 The search region in Step 1 

 

Model (SoS_S1) 

Min   ̂  (   ) ̂     ̂       (8.1) 

s.to   

∑ ∑        
  
   

 
             (8.2) 

 ̂  ∑ ∑        
  
   

 
                        (8.3) 

  ̂  (   ) ̂     
     (   )  

              (8.4) 

 ̂                     (8.5) 

 ̂    
                  (8.6) 

    {   }              (8.7) 

 

where    is a small positive constant. 

 

Attribute 1 

Attribute 2 

(8.4) 

  

     

(8.6) 

(8.5) 

Attribute 2 

Attribute 1 
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The augmented part (  ̂ ) in the objective function is used to break ties between a 

candidate solution on the line passing through       and   , and        First two 

constraints are the same as the first two constraints of (ALT). (8.4), (8.5) and 

(8.6) bound the search region. Since    is a supported solution, (8.5) is redundant; 

however to emphasize the search region we keep it in the model. We note that 

instead of using an augmented part, the problem can also be solved in a 

lexicographic manner. First, the problem can be solved to minimize   ̂  

(   ) ̂   If  ̂    
      then the problem can be solved to minimize  ̂   without 

sacrificing from the optimal value of the former objective. If there is a feasible 

solution,  ̂  different than      , we conclude that       is unsupported or 

nonextreme supported, and we continue with     Otherwise we keep searching 

with Step 2 of SoS. 

 

In Step 2, we search for an east adjacent efficient alternative of       in the 

shaded region in Figure 4.4 by using ADJ_E. If there does not exist an adjacent 

alternative on the east of        we conclude that       is extreme supported and 

continue with        Otherwise we keep searching with Step 3 of SoS. 

 

 

Figure 4.4 The search region in Step 2 

 

In Step 3, we search for an  ̂ such that  ̂ and    convex dominate        We set 

  
      

    

  
       

            
, bound the search region as in Figure 4.5 and solve 

model (SoS_S2). 

 

 

Search region 

Attribute 1 

Attribute 2 
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Figure 4.5 The search region in Step 3 

 

Model (SoS_S2)  

Min   ̂  (   ) ̂        (9.1) 

s.to   

∑ ∑        
  
   

 
             (9.2) 

 ̂  ∑ ∑        
  
   

 
                        (9.3) 

  ̂  (   ) ̂     
     (   )  

              (9.4) 

 ̂                     (9.5) 

 ̂    
                    (9.6) 

    {   }              (9.7) 

 

where    is a small positive constant. 

 

In SoS_S2, we aim at finding a feasible solution in the search region. Therefore 

any objective function can be used in the model. First two constraints are the 

same as the first two constraints of (ALT). (9.4), (9.5) and (9.6) bound the search 

region. As stated before, since    is a supported solution, (9.5) is redundant. If 

there is a feasible solution,  ̂  we conclude that       is unsupported or 

nonextreme supported; otherwise, we say that       is extreme supported. The 

SoS procedure ends with this step. 

 

Attribute 1 

Attribute 2 

(9.4) 

(9.6) 
     

  

  

(9.5) 

Attribute 2 

Attribute 1 



  

 84 

In Step 2 of SoS, we choose the east adjacent alternative of       to search as we 

assume that    is in Region 1. Finding west adjacent alternative of       will give 

similar results. If       has no east or west adjacent alternative in the search 

region, we simply conclude that       is extreme supported. If      has an 

adjacent alternative, we can determine whether       is extreme supported or not 

with an additional step. We use the adjacent alternative to enlarge the search 

region as much as possible for finding an  ̂ such that  ̂ and    convex dominate 

       For the sake of completeness, we show this result with the following 

theorem considering the east adjacent alternative. 

 

Theorem 3: Consider Regions 4 and 5 in Figure 4.6. If there exist  ̂ in Region 4 

and        in Region 5 such that  ̂ and   convex dominate        then  ̂ and 

   also convex dominate      . The reverse is not necessarily true.  

 

Proof: If  ̂ and   convex dominate        then             (      

 )   ̂  Since    is the east adjacent alternative to        
(  

       )

(     
    )

 

(  
         )

(       
    )

  Therefore the following two inequalities hold for     
(     

    )

(       
    )

  

  
       (  

         )   ̂  (1) 

  
       (  

         )   ̂  (2) 

(1) is equivalent to   
      (  

       )   ̂  and since  
(  

       )

(     
    )

 

(  
         )

(       
    )

  (2) holds. Using (1) and (2) we conclude that  ̂ and    also convex 

dominate         

 

We show that the reverse is not true with a counter example. Consider the 

alternatives in Figure 5. Although  ̂ and    convex dominate        ̂ and   

cannot convex dominate         □ 
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ei

eE

 

Figure 4.6  Counter example for Theorem 3 

 

In the multi-round case, we add the following constraint in (ALT) to avoid 

inferior solutions: 

 

  ̂  (   ) ̂     
  (   )  

      

 

The constraint indicates that the estimated preference function value of the new 

solution should be at most as big as that of the incumbent.  

 

To test the performance of LIN-u, we use 10 different weight values for the price 

attribute to generate different problems considering an underlying linear 

preference function for the buyer. The percent deviations for the linear case are 

reported in Table 4.1. 

 

Table 4.1 Percentage deviations between the results of the LIN-u and the 

decentralized optimal solution 

 

In all problems for the linear case, the winning bidders found with the algorithm 

and Decentralized are the same, i.e. allocative efficiency is satisfied. The 

percentage deviations in Table 4.1 are very small, i.e., for all problems the 

buyer’s preference function found with the algorithm is very close to that found 

 =0.05  =0.15  =0.25  =0.35  =0.45  =0.55  =0.65  =0.75  =0.85  =0.95 

0.0084 0.0064 0.0000 0.0000 0.0040 0.0073 0.0000 0.0000 0.0050 0.0061 

A 
�̂� 

Region 4 

Region 5 

Attribute 1 

Attribute 2 
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by Decentralized. Moreover, the average number of pairwise comparisons the 

buyer is required to make is 14.8 over the 10 problems with different weights.  

4.4 A Heuristic for Underlying Nonlinear Functions 

In this section, we assume that the buyer has an underlying decreasing 

quasiconvex preference function. As in Section 3.10, we locally approximate the 

buyer’s preference function with a linear function. We use the (IR) model to 

estimate the weight values.  

 

At the end of Step 7 of the LIN-u algorithm, we continue searching to find some 

unsupported solutions to present the DM. To do this, after reducing the search 

space we solve weighted Tchebycheff programs to find some unsupported 

alternatives. Lemma 1 gives the theory and Figure 4.7 demonstrates how we 

reduce the search space. For the sake of simplicity, we first assume that there is a 

single current best alternative at the end of Step 7 of LIN-u, i.e.     . 

Lemma 1 in Korhonen et al. (1984) reduces the objective space based on the 

preferences of the DM under the assumption that the DM has a quasiconcave 

preference function to be maximized. The result directly applies to the case of 

minimizing a quasiconvex function and we present the lemma in the latter 

context. 

 

Lemma 1: Let u:       be a decreasing quasiconvex preference function and 

                 Let  (  )   (  )       Let   {       

∑   (     ) 
 
           }   Then,  ( )   (  ).  

 

Z is referred as the cone of inferior solutions. We demonstrate Lemma 1 in Figure 

4.7. Consider three supported nondominated solutions  ,   and  , where  ,    

and  ,   are adjacent efficient alternatives. Assume the DM prefers   to both   

and  .  

 

 



  

 87 

 

A

B

C

 
  

Figure 4.7 Reduced search space 

 

We next search for an unsupported nondominated solution using the Tchebycheff 

program in one of the triangles in Figure 4.7. If there is a solution that is preferred 

to  , the new cone of inferior solutions made up of the new solution and   

contains the remaining triangle and we do not need to search it based on Lemma 

1. However, if there is no solution in the triangle or if   is preferred to the new 

solution, we search for a new unsupported nondominated solution in the other 

triangle. This procedure requires at most two additional comparisons if there is a 

single best alternative at the end of Step 7 of LIN-u. Otherwise, besides the 

triangles of the extremes of set IN, we also search the triangle in the middle of the 

region. 

 

To find a solution in one of the triangles, we first find the local ideal and nadir 

points of  the two solutions, say   and  , as in Figure 4.8 and solve the (TCH) 

problem to find an unsupported nondominated solution in the triangle. 

 

C

B

              

Nadir point

C

B

Ideal point

 
 

Figure 4.8 Ideal and nadir points 

Attribute 1 

Solutions in these 

regions are inferior to 

B due to Lemma 1, 

therefore eliminated. 

There are no solutions in this 

region, as A,B and B,C are 

adjacent efficient solutions. 

Dominated by at least 

one of A,B or C. 

The admissable search 

region 

Attribute 2 

Attribute 2 Attribute 2 

Attribute 1 Attribute 1 
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Parameters:  

 : a small positive constant 

    : level of attribute j offered by seller i in bid t   

    : 1 if bid t of seller i includes item m; 0 otherwise 

  : the number of bids offered by seller i 

  
 :level of attribute j of the ideal point 

   :level of attribute j of the nadir point 

 : calculated weight of attribute 1 where   (     
 ) (     

       
 )⁄  

 

Decision Variables: 

  : the Tchebycheff distance value of the solution from the ideal point 

 ̂ : level of attribute j of the optimal alternative 

   : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise  

 

Model (TCH) 

Min    ( ̂   ̂ )      (10.1) 

s.to   

∑ ∑        
  
   

 
            (10.2) 

 ̂  ∑ ∑        
  
   

 
                         (10.3) 

   ( ̂    
 )       (10.4) 

  (   )( ̂    
 )      (10.5) 

 ̂              (10.6) 

 ̂              (10.7)  

    {   }       (10.8)  

 

In (TCH), we try to minimize the weighted Tchebycheff distance from the ideal 

point. To avoid weakly nondominated but dominated solutions, we use the 

augmented part in objective function. Constraints (10.6) and (10.7) bound the 

search region. 
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Although there may be several alternatives in the triangle, we find only one of 

them to limit the number of questions asked to the DM.  

 

In the linear case, while finding an adjacent efficient alternative to an incumbent, 

we only consider those candidate incumbents that could be preferred based on the 

available weight space. Although this is a valid procedure when the underlying 

preference function is linear, it does not apply for underlying nonlinear preference 

functions. Therefore, we do not eliminate such alternatives in this case. 

Furthermore, in the linear multi-round case, we apply the SoS procedure and if 

      is not an extreme supported solution, we eliminate it. However, in the 

nonlinear case we keep that solution until the end of the corresponding round. 

After solving the Tchebycheff program, we check whether       is in a cone-

inferior region or not.  If        is not in a cone-inferior region, we also ask the 

DM to compare the incumbent and      . 

 

We next provide the results of LIN-u when the buyer has an underlying nonlinear 

preference function. In the nonlinear case, we test the performance of the 

algorithm by simulating the preferences of the buyer using weighted    

preference functions; specifically we use the weighted Euclidean (   )  and the 

weighted Tchebycheff (   ) functions. The percent deviations for the 

nonlinear case are reported in Tables 4.2 and 4.3.  

 

Table 4.2 Percentage deviations between the results of the algorithm and 

decentralized optimal solution under weighted Euclidean preference function 

 

Table 4.3 Percentage deviations between the results of the algorithm and 

decentralized optimal solution under weighted Tchebycheff preference function 

 =0.05  =0.15  =0.25  =0.35  =0.45  =0.55  =0.65  =0.75  =0.85  =0.95 

0.0408 0.0090 -0.0796 -0.0303 -0.2306 -0.2971 0.1356 0.2492 0.0208 0.0000 

 =0.05  =0.15  =0.25  =0.35  =0.45  =0.55  =0.65  =0.75  =0.85  =0.95 

0.0316 0.6988 1.0351 0.2601 4.8190 -0.6618 -4.4448 6.1772 0.0000 0.0000 
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When we look at the results in Tables 4.2 and 4.3, we see that in some problems 

our algorithm performed even better than Decentralized. As discussed in Chapter 

3, this is due to the nonlinear nature of the preference function and round off 

errors. Although Decentralized finds slightly better preference function values for 

each bid separately, when a combination is constructed, the preference function of 

a combination for the Decentralized case may be worse than that of ours for the 

considered nonlinear preference functions. The average percent deviations are      

-0.0182% and 0.7915% for     and    , respectively. Furthermore, the 

buyer compares 45.7 and 45.1 pairs on the average of 10 problems with different 

weights for     and    , respectively. Applying the interactive method 

decreases the number of possible efficient combinations to be evaluated by the 

buyer substantially. 

 

The experiments show that in all test problems the percent deviations are very 

small, i.e. the buyer’s preference function value corresponding to the solution 

found with the algorithm is close to that of Decentralized. Moreover, the number 

of questions asked to the buyer with the interactive method is small. These imply 

that the estimation and guidance mechanisms of our approach worked well in all 

the test problems. 
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CHAPTER 5 

 

 

5 AN INTERACTIVE APPROACH FOR BI-ATTRIBUTE 

MULTI-ITEM AUCTIONS UNDER QUASICONVEX 

PREFERENCE FUNCTIONS 

 

 

 

In this chapter, we develop an interactive method to find the most preferred bid 

combination of a buyer having a quasiconvex preference function. We first 

explain the QCX-u algorithm and its versions. We then discuss the   -u 

algorithm which estimates both alpha and weight values of the underlying 

preference function.  In each algorithm, we provide the results of the performance 

tests. 

5.1 The Interactive Algorithm (QCX-u) 

We develop an interactive algorithm, QCX-u, to find the most preferred 

combination of a buyer having a quasiconvex preference function for the 2-

attribute case. In this case we assume that the buyer can distinguish between bids, 

i.e.      We modify and extend the LIN-u algorithm.  

 

Similar to the heuristic approach in Section 4.4, at the end of each round we 

continue searching in the reduced search space using Lemma 1 to find the most 

preferred solution of the DM in the current round. As discussed in Section 4.4, the 

reduced space consists of two triangles.  
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We consider different versions of the algorithm and test their performances 

against the Decentralized case. The versions are each round, last round, band, 

and limited number of questions. In the each round case, we search the whole 

triangle(s) in each round to find the most preferred alternative. In the last round 

case, we apply LIN-u algorithm for the multi-round case and search the whole 

triangle(s) only in the last round. In the band case, in each round, instead of the 

whole triangle(s) we search some portion of the triangle. In the limited number of 

questions case, while searching the triangle(s) in each round we limit the number 

of unsupported solutions visited.  

 

In QCX-u algorithm, based on the preferences of the DM we reduce the search 

space and conduct our search in the reduced region. To do this we use Lemma 1 

(in Section 4.4) and construct cones with two alternatives based on the pairwise 

comparisons of the DM. We use the notation     to depict two-point cones 

where   is preferred to     

 

 

Figure 5.1 An example for two-point cones 

 

To illustrate, consider the three alternatives in Figure 5.1 and assume that the DM 

prefers A to B and B to C. We generate two cones,     and    . We detect 

and eliminate redundant cones. For instance, we eliminate     since the 

inferior region implied by this cone is a subset of that of cone       

 

For the example above (   ), to reduce the search space we write the 

following cone constraints: 

Attribute 2 

Attribute 1 
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 ̂                (Cons1) 

    ̂  (     ) ̂        (     )      (   )  (Cons2) 

 

where   is a small positive constant,   is a big positive number,   is a binary 

variable and     
     

           
 (i.e.     and (     ) are the weights of the 

linear function passing through alternatives   and  .) 

 

In the constraints above we use a binary variable   to enforce that if the first 

attribute value of the candidate solution is at least as big as     then (Cons2) 

becomes active indicating that the candidate solution should be below the line 

passing through alternatives   and    With these two constraints we aim to 

reduce the search region and avoid the inferior solutions. Although we exemplify 

the cone constraints for the preferred alternative having smaller attribute 1 value, 

the constraints are similar for the case where the preferred alternative has a 

smaller attribute 2 value. In our models, for each valid cone we write such 

constraint pairs by defining a binary variable. To reduce the number of binary 

variables, we eliminate redundant cones. 

 

Elimination of redundant cones 

Consider alternatives  ,  ,   and     Assume that the DM prefers   to B and C to 

D. If we want to check whether     is redundant relative to    , we check 

whether each point in     is dominated by a point in      That is, if there 

exists                   (   )      (   ) for each     , then 

    is redundant. Instead of solving a mathematical model, we use a simple 

procedure to determine whether a cone is redundant or not. 

 

After taking the preferences of the DM and generating a new cone, we apply the 

following procedure to detect the redundant cones with respect to the new cone. 

For each existing cone, we make pairwise cone validity check with the new cone. 

For the sake of simplicity we use the cones      and     to explain the 
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procedure. Since we consider nonnegative attribute values in our test problems, 

suppose all four alternatives have positive attribute values. 

 

Cone Validity Check 

Step 1: If       and       go to Step 2; else if       and      , go to 

Step 3. Otherwise go to Step 6. 

Step 2: If       and  
     

     
 

     

     
  set   

   

     
,    

   

     
  and go to Step 

4. Otherwise go to Step 6. 

Step 3: If       and 
     

     
 

     

     
  set   

   

     
,    

   

     
 and go to Step 4. 

Otherwise go to Step 6.  

Step 4: If    (   )      (   ), go to Step 5; otherwise go to Step 6. 

Step 5:     is redundant, go to Step 6. 

Step 6: Stop. 

 

In Step 1, we check the directions of the cones (i.e. compare the first attribute 

values of preferred and nonpreferred alternatives in each cone). If cones have 

different directions, by using Theorem 4 (below),     cannot be redundant 

with respect to the new cone,      and the procedure stops. If both cones have 

the same directions, we also check attribute 1 or 2 values (based on the direction) 

of the nonpreferred alternatives in each cone. Suppose that       and        

then we check whether       or not. If      , due to Theorem 5 (below) we 

conclude that     cannot be redundant. On the other hand, if      , we 

check some conditions (stated in Theorem 6 below) and if these conditions are 

satisfied we conclude that     is redundant. Otherwise, we conclude that   

  cannot be redundant relative to     and the procedure stops. 

 

Theorem 4: Consider two cones     and     where the cones have 

different directions. Then     cannot be redundant. 
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Proof: If the cones have different directions there can be 2 cases: 

Case 1:       and       

Case 2:       and       

Case 1 

Since         and       for    
   

     
, there does not exist any   

  satisfying    (   )      (   )  

Case 2 

Since         and       for    
   

     
, there does not exist any   

  satisfying    (   )      (   )   □ 

 

Theorem 5: Consider the cones in Theorem 4. Suppose that       and 

       If      , then     cannot be redundant. 

 

Proof:  

As stated above,     is redundant if and only if each point in     is 

dominated by a point in      That is, if            (   )    

  (   ) for each     , then     is redundant. Since         and 

       , for     , there does not exist any     satisfying    (  

 )      (   )   □ 

 

Theorem 6: Consider the cones in Theorem 5. If      ,  

     

     
 

     

     
 and   

   

     
(   )    

   

     
(   ), then     is 

redundant. 

 

Proof:  

    is redundant if and only if both starting and ending points of     are 

dominated by the points in     as we consider linear functions. Therefore, we 

check whether both starting and ending points of     are dominated or not. 

 

   (   )      (   ) can be rewritten as follows: 
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    (     )       (     )  

    (     )       (     )  

 

The starting point of     is (     ), that is set       For     , we check 

whether there exists     such that     (   )   . If there exists feasible 

  values, i.e. if  
     

     
 

     

     
, then the requirement for the starting points is 

satisfied. On the other hand, if no such   exists, no need to check the ending 

point. 

 

Without loss of generality, consider the minimum attainable attribute 2 value as 

zero. Then, set    
   

     
 and the ending point of     is (   

   

     
(   

  )  ). We compare it with the ending point of      (   
   

     
(   

  )  ). If    
   

     
(     )     

   

     
(     ), then the ending point 

of      is dominated by the ending point of       

 

If both starting and ending points of     are dominated by the points in    , 

then ,     is redundant. Otherwise, it cannot be redundant. □ 

 

We demonstrate some possible cases in Figure 5.2. 

 

 

 

  

 

 

 

Since both starting and 

ending points are dominated, 

    is redundant. 

a)  

Attribute 1 

Attribute 2 
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Figure 5.2 Some examples for Theorem 6 

 

The steps of QCX-u  

Recall that    and    are the east and west adjacent efficient alternatives to the 

incumbent, respectively. Select an arbitrary direction (DIR) to search an adjacent 

efficient alternative to the incumbent where DIR=east corresponds to searching 

for     and DIR=west corresponds to searching for   . Set iteration counter i = 1 

and without loss of generality set DIR=east  Recall that       is the best 

alternative up to the current round,     and     are the values of attributes 1 and 2 

of the corresponding solution,     respectively,   (     ) where   is the 

estimated weight of attribute 1. 

 

For the sake of simplicity, we first provide the steps to find the best supported 

solution in a single round. We then discuss the variations of the algorithm. 

 

Step 1: Select an arbitrary set of weights, find an incumbent,     and go to Step 3. 

Step 2: Set        Find a solution,     using    If it is the first round or there 

does not exist a new   , go to Step 3. Otherwise, if a new round is started, check 

the status of        and if        is not extreme supported, set       and go to 

Since starting point is not 

dominated,     is not 

redundant. 

Since ending point is not 

dominated,     is not 

redundant. 

b)  

c)  

Attribute 1 

Attribute 1 

Attribute 2 

Attribute 2 
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Step 3. Otherwise, if       
 , set DIR=west; otherwise set DIR=east. Ask the 

DM    versus     If 

-    is preferred to   , add a constraint  (     )       add        

check the validity of the existing cones and write the relevant cone 

constraints. Set       and go to Step3. 

-    is preferred to   , add a constraint  (     )        add        

check the validity of the existing cones and write the relevant cone 

constraints. Switch the value of DIR (i.e. set DIR=east if it is equal to west 

and set DIR=west if it is equal to east) and go to Step 3. 

Step 3: If DIR=east, find    and set        ; otherwise find     and set  

       . If there exists     , go to Step 4. Otherwise, if both    and    have 

been evaluated before, go to Step 6; otherwise, switch the value of DIR and go to 

Step 3. 

Step 4: Ask the DM    versus     . If  

-      is preferred to   , add a constraint  (       )       add      

    check the validity of the existing cones and write the relevant cone 

constraints. Set         and go to Step 5. 

-    is preferred to     , add a constraint  (       )        add 

          check the validity of the existing cones and write the relevant 

cone constraints. If both    and    have been evaluated, go to Step 6. 

Otherwise switch the value of DIR and go to Step 3.  

Step 5: Find a feasible set of weights satisfying all constraints corresponding to 

past preferences of the DM by solving the (IR) and go to Step 2. 

Step 6: Depending on the version of the algorithm find some candidate solutions, 

ask the DM and write necessary constraints based on the preferences of the DM. 

If it is not the first round, while finding candidate solutions if       is not in a 

cone-inferior region, also consider         The details of this procedure will be 

discussed later. Set          and go to Step 7. 

Step 7: If it is the final round, go to Step 8; otherwise inform the sellers about 

estimations, get the updated bids and go to Step 2. 

Step 8: Stop. 
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In Steps 1 and 2, we add cone constraints to the (ALT) model in Section 4.2 to 

find a new alternative with the estimated weights. For the sake of completeness, 

we provide the updated model (ALT') below: 

 

Parameters:  

 : a big number 

 : a small positive constant 

    : level of attribute j offered by seller i in bid t   

    : 1 if bid t of seller i includes item m; 0 otherwise 

  : the number of bids offered by seller i 

 : estimated weight of attribute 1 

    : calculated weight of attribute 1 where      
(     )

(           )
 

   : level of attribute j in efficient combination k 

 

Decision Variables: 

   : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise  

 ̂ : level of attribute j of the optimal alternative 

      
: 1 if constraint (11.6) is active; 0 otherwise 

      
:1 if constraint (11.8) is active; 0 otherwise 
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Model (ALT') 

Min   ̂  (   ) ̂         (11.1) 

s.to   

∑ ∑        
  
   

 
              (11.2) 

 ̂  ∑ ∑        
  
   

 
                           (11.3) 

  ̂  (   ) ̂     
  (   )  

         (11.4) 

 ̂               
  for each      ,          (11.5) 

      
 ̂  (        

) ̂        
    (        

)       (  

      
) for each      ,              (11.6) 

 ̂               
  for each      ,          (11.7) 

      
 ̂  (        

) ̂        
    (        

)       (        
) 

for each      ,               (11.8) 

    {   }         (11.9) 

 

In (ALT'), the objective function and the first two constraints are the same with 

the objective function and the first two constraints of (ALT). (11.4) indicates that 

the estimated preference function value of the new solution should be at most as 

big as that of the incumbent. Remaining constraints are the cone constraints and 

are used to avoid inferior solutions. 

 

In Step 2 of QCX-u, at the beginning of each round except for the first round, we 

apply the SoS procedure (explained in Section 4.3.2) to determine whether the 

best alternative up to the current round,        is an extreme supported solution 

or not. If it is extreme supported, we ask the DM to compare the incumbent and 

     . If it is dominated, we eliminate      ; whereas if it is unsupported or 

nonextreme supported, we keep that solution until the end of the corresponding 

round. While finding some alternatives to ask the DM based on the version of the 

algorithm, we check whether       is in a cone-inferior region or not.  If        

is not in a cone-inferior region, we also ask the DM to compare the incumbent 

with       in Step 6. 
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In Step 3, to find adjacent alternatives of an incumbent we apply a similar 

procedure explained in Section 4.2. The only difference is that we reduce the 

search region using the cone constraints to avoid nonpreferable alternatives. 

Therefore in QCX-u we do not find an adjacent alternative that is previously 

asked to the DM, as we eliminate inferior solutions. 

 

In Step 6 of QCX-u, we apply different procedures for different versions. We note 

that in this step we deal with unsupported solutions and therefore we use 

“neighbor” instead of “adjacent”. We explain the procedures as follows:   

 

Each Round Version 

In the algorithm, we first deal with the supported solutions and at the beginning of 

Step 6 of QCX-u, we have the most preferred supported solution. During the 

algorithm, we reduce the search region using the preferences of the DM and 

continue our search in the reduced region. With this, we eliminate inferior 

alternatives and find unsupported solutions in the admissible search region. 

 

In the single-round case, as shown in Section 4.4, the reduced space consists of 

two triangles. However, in multi-round case due to the cone constraints in the 

previous rounds, the reduced region may be smaller.   

 

In the each round version, we conduct our search in the whole reduced region. 

We apply a similar procedure to that in Step 3. The only difference is that, in Step 

6 we exclude the eastmost or westmost alternative and find an adjacent alternative 

to the incumbent in the reduced search region (i.e., in the triangle), and refer to 

this alternative as the “neighbor”. After finding a neighbor to the incumbent in the 

search region, we ask the DM to compare them as usual and write the relevant 

cone constraints. We progress our search until there is no neighbor to be 

compared. We note that during our search, if the best alternative up to the current 

round,      , is not found in a cone-inferior region, we also consider      .  
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In this version, at the end of each round we find the most preferred alternative of 

the corresponding round since we consider the whole reduced region. 

 

Last Round Version 

In this version of the algorithm, until the final round of the auction, we only check   

whether       is in a cone-inferior region or not in Step 6.  If        is not in a 

cone-inferior region, we also ask the DM to compare the incumbent and      . 

With this we aim to hold on to the best alternative during rounds. In the final 

round, as in the each round version, we search the whole reduced region. 

 

In the each round version, we find the most preferred alternative in each round by 

searching the whole reduced region. In the last round version, we aim to ask a 

smaller number of questions and therefore we do not search the reduced region in 

Step 6. However, in the final round we want to find the most preferred alternative 

and search the whole reduced region. 

 

Band Version 

In the band version, we search some portion of the reduced region in Step 6. By 

searching some part of the reduced region, we aim to find good alternatives. 

However, we also want to keep the number of questions asked to the DM low. 

Therefore, in each round instead of searching the whole reduced region, we 

systematically search some portion of the reduced region.     

 

As stated before, in the multi-round case due to the cone constraints in the 

previous rounds, the reduced region may be smaller than the triangle(s). In this 

version, in early rounds we search small portions of the corresponding triangle(s) 

and in succeeding rounds we increase the searched portions of the triangles. We 

explain the procedure to define the east search region in each round. 
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We use the similarity of triangles to define the portion of the triangle to be 

searched. Suppose at the beginning of Step 6, we have the following search 

region in Figure 5.3 a.   

 

 

Figure 5.3 An example reduced region in band version 

 

Let Th be the predetermined round number when the whole triangle will be 

searched and assume that we increase the search region the same amount in each 

iteration. Suppose that we are in round h, then we expect that the area of the 

dashed region to be    ⁄  of the total area of the triangle. We calculate point X to 

bound the search region where       and using similarity       (   

  )√   ⁄ . To find neighbor alternatives in Step 6, we apply a similar procedure 

as in each round version by adding the following constraint to bound the search 

region. 

 

   ̂  (    ) ̂       (    )     where    
     

           
  

 

As can be seen from Figure 5.3.b, the reduced region is in the form of a band and 

hence it name band.  

 

If       or if it is the final round of the auction, we search the whole triangle as 

in each round version. We note that while finding neighbor alternatives, we also 

consider the cone constraints and during our search, if the best alternative up to 

the current round,      , is not found in a cone-inferior region, we also consider 

     .  

a) b) 

Attribute 2 Attribute 2 

Attribute 1 Attribute 1 
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Limited Number of Questions Version 

This version is similar to the band version. In the band version, if the solutions 

are crowded in a region, the number of solutions found in the determined portion 

of the triangle(s) may be large. Therefore, we develop limited number of 

questions version in which we limit the number of alternatives found in each 

round. 

 

Similar to band version, we increase the number of alternatives found in the 

reduced region in each round. Let LNQ be the predetermined number used to limit 

the number of alternatives found in the triangle(s). In round h, we find at most   

h* LNQ alternatives (including the best alternative up to the current round) in the 

triangles. 

 

In Step 7 of QCX-u, if it is not the final round, we solve (IR) to estimate the 

weight values and inform sellers with this information as well as the estimated 

preference function value of each item separately (for details please refer to 

Section 3.3). Then, the sellers update their bids and the algorithm continues with 

Step 2 of QCX-u. 

5.2 Experimental Results for QCX-u 

To test the performance of QCX-u, we use 10 different weight values for the price 

attribute to generate different problems. We simulate the preferences of the buyer 

using weighted linear, weighted Euclidean and weighted Tchebycheff functions. 

Based on our preliminary experiments in band version we set Th, the 

predetermined round number that whole triangle will be searched, to 10 and in 

limited number of questions version LNQ, predetermined number used to limit the 

number of alternatives found in the triangle(s), to 1 and 2. We use LNQ=1 and 

LNQ=2 to refer to limited number of questions version with LNQ equal to1 and 2, 

respectively. 
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The average percent deviations and the average number of comparisons are 

reported in Tables 5.1 and 5.2, respectively. 

 

Table 5.1 Average percentage deviations between the results of different versions 

of QCX-u and decentralized optimal solution* 

* Based on 10 instances with different weight values 

 

Table 5.2 Average number of comparisons w.r.t. different versions of QCX-u*  

  * Based on 10 instances with different weight values 

 

The results in Table 5.1 show that in all problems the percent deviations are very 

small in each version. Moreover, for underlying nonlinear preference functions, 

our algorithm performed better than the Decentralized case except for the last 

round version for underlying Tchebycheff function which is 0.7273%. The 

number of questions asked to the DM is smallest in last round and highest in 

band versions. In the band version we ask a relatively large number of questions, 

indicating that the unsupported alternatives in the defined band are dense. To 

decrease the number of questions asked, we can use the idea of Karahan and 

Köksalan (2010) and define territories around alternatives to get diverse pairs. As 

 Underlying Utility Function 

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff 

Each round 0.0490 -0.0532 -0.8943 

Last round 0.0120 -0.0962 0.7273 

Band 0.0171 -0.0251 -0.5145 

LNQ=1 0.0250 -0.0723 -0.9277 

LNQ=2 0.0258 -0.0532 -0.9039 

 Underlying Utility Function 

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff 

Each round 31.6 46.7 43.2 

Last round 19.3 26.5 32.3 

Band 39.3 70.1 64.3 

LNQ=1 29.9 38.0 37.0 

LNQ=2 32.5 43.1 40.9 
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expected, LNQ=1 requires fewer questions than LNQ=2 on the average. Each 

round requires more questions than last round, but the performances are not so 

different in terms of percent deviations. Although the percent deviations are very 

small in each version, considering both the percent deviations and the number of 

questions asked to the DM, we can say that last round and LNQ=1 performs 

slightly better than other versions. 

5.3 Modified Algorithm (  -u) 

We modify QCX-u and develop   -u which estimates both alpha and weight 

values of the underlying preference function. In   -u, the buyer’s preference 

function is estimated with an    function as stated in Section 2.5. Let   be the 

estimated parameter value of the underlying preference function of the DM. The 

algorithm starts with the linear case where     and increases   as necessary. 

  

Step 1: Set      select an arbitrary set of weights and find an incumbent,       

solving the following (ALT-α) model.  

 

Parameters:  

    : level of attribute j offered by seller i in bid t   

    : 1 if bid t of seller i includes item m; 0 otherwise 

  : the number of bids offered by seller i 

 : estimated weight of attribute 1 

 : estimated parameter value of the    function 

 

Decision Variables: 

   : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise  

 ̂ : level of attribute j of the optimal alternative 
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Model (ALT-α) 

Min (  ̂ )
  ((   ) ̂ )

      (12.1) 

s.to   

∑ ∑        
    
   

 
            (12.2) 

 ̂  ∑ ∑        
    
   

 
                       (12.3) 

(  ̂ )
  ((   ) ̂ )

  (   
 )  ((   )  

 )   (12.4) 

    {   }       (12.5)  

 

In (ALT-α), if      we solve a mixed-integer programming problem; otherwise 

we solve a mixed-integer nonlinear programming problem. We include constraint 

(12.4) in the model for the sake of completeness, but during the first time we 

search for an incumbent, we do not enforce (12.4). After finding the optimal 

solution of the problem, we set the solution to    and go to Step 3. 

 

We note that although in (ALT') we use cone constraints, we do not use them in 

(ALT-α) due to Theorem 7. 

 

Theorem 7: Let the underlying preference function be quasiconvex and let    and 

 ̂ be the current best and optimal alternative of (ALT-α), respectively, estimate 

with a quasiconvex preference function u. Let   be the set of cone inferior 

solutions. Then  ̂ cannot be cone inferior solution, i.e.  ̂   . 

  

Proof:  

Suppose  ̂   , then by definition in Lemma 1  (  )    ( ̂) which contradicts 

constraint (12.4) of (ALT-α).  □ 

 

We note that this situation may not be valid for (ALT'). The reason is that in 

QCX-u although the linearity assumption is violated we continue to estimate the 

preference function as linear. Therefore, the estimated preference function may 

not fit the preferences of the DM. 
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Step 2: Set        Find a solution,     solving (ALT-α). If it is the first round 

or there does not exist a solution, go to Step 3. Otherwise set the solution to   . If 

a new round is started, check the status of    and if    is not extreme supported, 

set       and go to Step 3. Otherwise, if       
 , set DIR=west; otherwise set 

DIR=east. Ask the DM    versus     If 

-    is preferred to   , add a constraint  (     )       add        

check the validity of the existing cones and write the relevant cone 

constraints. Set       and go to Step 3. 

-    is preferred to   , add a constraint  (     )        add        

check the validity of the existing cones and write the relevant cone 

constraints. Switch the value of DIR (i.e. set DIR=east if it is equal to west 

and set DIR=west if it is equal to east) and go to Step 3. 

Step 3: If DIR=east, find    and set        ; otherwise find     and set  

       . If there exists     , go to Step 4. Otherwise, if     go to Step 3.1; 

otherwise go to Step 3.2. 

Step 3.1: If both    and    have been evaluated before, go to Step 6; 

otherwise, switch the value of DIR and go to Step 3. 

Step 3.2: If incumbent has no neighbor alternative, solve (Walpha) and go to 

Step 8; otherwise, switch the value of DIR and go to Step 3. 

Step 4: Ask the DM    versus     . If  

-      is preferred to   , add a constraint  (       )       add      

    check the validity of the existing cones and write the relevant cone 

constraints. Set        , if     go to Step 5; otherwise switch the value 

of DIR and go to Step 3.  

-    is preferred to     , add a constraint  (       )        add 

          check the validity of the existing cones and write the relevant 

cone constraints. If     and both    and    have been evaluated, go to 

Step 6. Otherwise switch the value of DIR and go to Step 3.  

Step 5: Find a feasible set of weights satisfying all constraints corresponding to 

past preferences of the DM for the corresponding feasible    by solving the 

following (Walpha) model. 
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Parameters:  

 : a small positive constant 

   : level of attribute j in efficient combination k 

 : estimated parameter value of the    function 

 

Decision Variables: 

  : an auxiliary variable (to measure the estimated value difference between 

alternatives and bound the weights) 

 ̂ : estimated weight of attribute j  

 

Model (Walpha) 

Max                           (13.1) 

s.to   

   ̂            (13.2) 

 (  )  (( ̂   )
  ((   ̂)   )

 )  ⁄     (13.3)     

 (  )   (  )         for each               (13.4) 

            (13.5)  

 

The (Walpha) model is similar to (Wt) model except that in (Wt) we set     

and only estimate the weight values. On the other hand, in (Walpha) we estimate 

both   and the corresponding weight values. For given   values we solve 

(Walpha) model. As in Karakaya and Köksalan (2011), we take the smallest   

value to fit a function satisfying all constraints but having the least curvature. At 

the beginning we set   to 1 (i.e. we start with a weighted linear preference 

function) and increase   by 1 if necessary. 

 

After finding the estimated parameters   and  , if     go to Step 2; otherwise  

switch the value of DIR and go to Step 3. 

Step 6: If       is in a cone-inferior region, go to Step 7. Otherwise, if     
     

  
 , set DIR=west; otherwise set DIR=east. Ask the DM    versus      . If 
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-       is preferred to   , add a constraint  (        )       add 

          check the validity of the existing cones and write the relevant 

cone constraints. Set          and go to Step 7. 

-    is preferred to      , add a constraint  (        )        add 

          check the validity of the existing cones and write the relevant 

cone constraints. Switch the value of DIR and go to Step 7. 

Step 7: Solve (Walpha). If    , go to Step 3; otherwise go to Step 8.  

Step 8: If it is the final round, go to Step 9; otherwise solve (IR) to inform the 

sellers, get the updated bids and go to Step 2. 

Step 9: Stop. 

 

In Step 2 of Lα-u, if a new round is started while checking the status of the best 

alternative up to the current round,      , if      we follow the procedure in 

QCX-u. Else if    , we check the dominance of      ,  by solving the 

following (DOM) model.  

 

Parameters:  

    : level of attribute j offered by seller i in bid t   

    : 1 if bid t of seller i includes item m; 0 otherwise 

  : the number of bids offered by seller i 

 

Decision Variables: 

   : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise  

 ̂ : level of attribute j of the alternative 

  : the difference between   ̂ and       in attribute j 
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Model (DOM) 

Max               (14.1) 

s.to   

∑ ∑        
    
   

 
             (14.2) 

 ̂  ∑ ∑        
    
   

 
                        (14.3) 

 ̂    
                    (14.4) 

 ̂    
                (14.5) 

              (14.6) 

             (14.7) 

    {   }              (14.8) 

 

In (DOM), we search for an alternative that dominates      . Constraint set 

(14.2) guarantees to satisfy the demand for each item. (14.4) and (14.5) are used 

to force the resulting solution to dominate      . If the problem is optimal with a 

positive objective function value, we conclude that       is dominated and we 

eliminate         Otherwise, we say that there is no solution dominating        

and we ask the DM to compare the incumbent and       in Step 2. 

 

In Step 3, if     we apply the procedure in Step 3 of QCX-u; whereas if     

we apply the procedure in Step 6 of QCX-u with the following additional 

constraints: 

 

If DIR=east 

 ̂    
     

If DIR=west 

 ̂    
     

 

Based on the direction of the search we add a new constraint. The reason is that in 

  -u, the incumbent neighbor of which is searched can be an unsupported 

solution. If we do not consider this additional constraint, although the direction is 
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east(west), we may end up a dominated solution or a solution in the west(east) of 

the incumbent.  

 

In the case that      there are different ways of finding neighbor alternatives. 

For instance, we can find the alternatives those are closest to the incumbent in 

each attribute as neighbor alternatives. Keeping the other steps as they are, we 

apply this procedure in Step 3 if      and call this version as   -NN to indicate 

that the alternatives found are the nearest neighbors in each attribute. 

 

We note that during our neighbor alternative search, if the best alternative up to 

the current round,      , is not found in a cone-inferior region, we also consider 

     .  

 

In the algorithm, as in QCX-u after solving (IR) we inform sellers about the 

estimated weight values of the linear function as well as the estimated preference 

function value of each item separately in Step 8.  

 

Modifications for underlying Tchebycheff Preference Functions  

The   -u algorithm is a general algorithm for underlying quasiconvex preference 

functions. If we know that the DM has a Tchebycheff preference function at the 

beginning or at any step of the algorithm, we use the properties of the 

Tchebycheff functions and make some modifications to   -u .  

 

Modifications in (    ) 

We solve the following model to find a new solution based on the estimated 

Tchebycheff function.  

 

Parameters:  

 : a small positive constant   

    : level of attribute j offered by seller i in bid t   

    : 1 if bid t of seller i includes item m; 0 otherwise 
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  : the number of bids offered by seller i 

 : estimated weight of attribute 1 

 (  ): estimated Tchebycheff function value of    

where  (  )     {   
  (   )  

 } 

 

Decision Variables: 

  : the Tchebycheff distance value of the solution  

   : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise  

 ̂ : level of attribute j of the optimal alternative 

 

Model (    ) 

Min    ( ̂   ̂ )       (15.1) 

s.to   

∑ ∑        
    
   

 
            (15.2) 

 ̂  ∑ ∑        
    
   

 
                         (15.3) 

    ̂         (15.4)   

  (   ) ̂        (15.5) 

   (  )        (15.6) 

    {   }       (15.7)  

 

In (    ), we try to minimize the weighted Tchebycheff distance. To avoid 

weakly nondominated but dominated solutions, we use the augmented part in 

objective function. A suitable   value should be selected to make sure that the 

second term in the objective function does not cause any trade-offs with the first 

term, and only has an effect of breaking ties. Constraint (15.6) indicates that the 

estimated preference function value of the new solution should not be worse than 

that of the incumbent.  

 

Instead of using an augmented part in the objective function, we solve the 

problem in a lexicographic manner. First, we minimize  . By fixing the value of 
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the attribute whose value multiplied by the corresponding weight is equal to  , we 

then solve the problem again to minimize the other attribute. 

 

Modifications in Cone Constraints 

In   -u we write the general cone constraints. However, for Tchebycheff 

preference function case we modify the cone constraints and reduce the search 

space accordingly.  

 

Consider two alternatives   and   where the DM prefers   to  . We write the 

cone,      and the corresponding cone constraint as follows:  

 ̂            

 

With this constraint we eliminate all the alternatives having attribute 1 value of    

or more. Compared to the general cone constraints, here we eliminate a greater 

region and we do not need to use binary variables.  

 

Modifications in Finding Neighbor Alternatives 

As stated above, we try   -NN version where we find the alternatives those are 

closest to the incumbent in each attribute as neighbor alternatives when   is 

estimated as greater than 1. This method is beneficial when the underlying 

preference function is Tchebycheff.  

 

To illustrate consider the alternatives in Figure 5.4. Suppose   is found as 

incumbent by solving (    ) and then we look for east neighbor alternative of    

If we apply the procedure in Step 6 of QCX-u, we will find  ; whereas if we find 

the nearest neighbor in attribute 1, we will find    If   is preferred to its east 

neighbor, with selecting   as east neighbor more search region will be eliminated 

than selecting    On the other hand, if east neighbor is preferred to  , the reduced 

search region will be the same. Since   is found as incumbent based on the 

estimations,   is likely to be preferred to its east neighbor. Therefore, we say that 
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finding the nearest neighbor of incumbent in each attribute is more suitable when 

the underlying preference function is Tchebycheff. 

 

                        

Figure 5.4 Search space reduction with estimated Tchebycheff functions 

 

Modifications in (Walpha) 

Since we assume that the underlying preference function is Tchebycheff, we only 

estimate the weight values by solving the following (   ) model: 

 

Parameters:  

 : a small positive constant 

   : level of attribute j in efficient combination k 

 

Decision Variables: 

  : an auxiliary variable (to measure the estimated value difference between 

alternatives and bound the weights) 

 ̂ : estimated weight of attribute j  

If     , in addition to 

the region eliminated by 

   , this region is 

also eliminated. 

Attribute 2 

Attribute 1 
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Model (   ) 

Max                            (16.1) 

s.to   

   ̂             (16.2) 

(   ̂)     ̂          for each         and          (16.3) 

(   ̂)    (   ̂)          for each         and          (16.4) 

 ̂     ̂           for each         and          (16.5) 

 ̂    (   ̂)           for each         and          (16.6) 

             (16.7) 

 

The objective (16.1) and the first constraint of (   ) are the same as the 

objective function and the first constraint of (Walpha). We only modify the 

preference constraints (16.3-16.6) considering the Tchebycheff function. In these 

constraints we reduce the feasible weight space using the preferences of the buyer 

as well as the attribute values of the alternatives in each pairwise comparison (see 

Bozkurt et al. 2010 for a general coverage of weight space reduction for 

Tchebycheff functions).  

 

We use the weights found by (   ), to find a new incumbent in Step 2. We 

apply the   -u algorithm by starting a linear estimated preference functions. As 

the rounds progresses, if the estimated parameter of the underlying preference 

function,    is greater than a predetermined threshold value,     we assume that 

the underlying preference function is Tchebycheff. The reason is that as the   of 

the    function increases, it converges to Tchebycheff function. To utilize the 

properties of the Tchebycheff functions, if   is greater than   , we assume the 

that the underlying preference function is Tchebycheff and we apply 

modifications stated above. 

 

If the underlying preference function of the DM is linear,   -u algorithm deals 

with the supported efficient solutions only. On the other hand if the exact 

parameter of the underlying preference function is greater than 1, we expect to 
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capture this with the preferences of the DM and utilize properties of the   -u 

algorithm. To understand the curvature of the underlying preference function of 

the DM (i.e., if the underlying preference function is not linear, we aim to detect 

it as soon as possible) at the early rounds in addition to the supported solutions we 

also consider unsupported solutions. We set a threshold number           above 

which we stop searching for unsupported solutions if the estimated parameter of 

the underlying preference function,    is 1. That is, although we estimate a linear 

function, we continue searching as in Step 6 of QCX-u (searching the triangles) to 

understand whether the underlying preference is linear or not. By asking about 

unsupported solutions we aim to rule out the linearity assumption if the 

underlying preference function is not linear. While doing this, to avoid high 

number of comparisons, we limit the number of alternatives found at the end of 

each round by searching the triangles. If the total number of unsupported 

solutions visited is            and the linearity assumption still holds, we stop 

searching the triangles.  

 

Understanding the curvature of the underlying preference function is important as 

the algorithm can be more beneficial with this information. To achieve this, we 

consider unsupported solutions in addition to the supported solutions. Different 

methods can be tried to understand the form of the underlying preference function 

(see for example Köksalan and Sagala 1995). 

5.4 Results  

We test the performance of the    -u algorithm using 10 problems generated with 

different weight values for the price attribute. We simulate the preferences of the 

buyer using weighted linear, weighted Euclidean and weighted Tchebycheff 

functions. We consider two versions of the algorithm:   -uQ where the neighbor 

alternative search is as in Step 6 of QCX-u when     and   -NN where the 

alternatives closest to the incumbent in each attribute are found as neighbor 

alternatives when      We set the predetermined threshold value for     above 

which we assume that the underlying preference function is Tchebycheff to   =4 



  

 118 

and the number of questions above which we stop searching for unsupported 

solutions if      to          =10 based on our preliminary experiments. 

 

The average percent deviations and the average number of comparisons are 

provided in Tables 5.3 and 5.4, respectively. 

 

Table 5.3 Average percentage deviations between the results of different versions 

of   -u and decentralized optimal solution* 

  * Based on 10 instances with different weight values 

 

Table 5.4 Average number of comparisons w.r.t. different versions of   -u* 

  * Based on 10 instances with different weight values 

 

In all problems, the percent deviations are very small in both versions of   -u. 

Indeed, when the underlying preference function is weighted linear, both versions 

of the algorithm are exactly the same. The algorithms only differ in Step 3 when 

the estimated parameter value,  , is greater than one. The algorithms are identical 

for underlying weighted linear functions as   is 1 in this case. Although the 

number of questions asked to the DM varies slightly in some problems, they are 

the same on the average for underlying weighted Euclidean preference functions. 

As expected when the underlying function is weighted Tchebycheff, the   -NN 

version requires fewer questions. 

 

 Underlying Preference Function 

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff 

  -uQ 0.0248 -0.0196 -0.6122 

  -NN 0.0248 -0.0196 -0.2858 

 Underlying  Preference  Function 

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff 

  -uQ 25.8 38.8 31.3 

  -NN 25.8 38.8 26.0 



  

 119 

For the sake of completeness in the following tables we provide the results of all 

versions of QCX-u and   -u together. 

 

Table 5.5 Average percentage deviations between the results of algorithms and 

decentralized optimal solution* 

  * Based on 10 instances with different weight values 

 

Table 5.6 Average number of comparisons in different versions of the 

algorithms*  

  * Based on 10 instances with different weight values 

 

The results show that in each version of each algorithm the percent deviations are 

very small, i.e. our algorithms perform well. As stated before last round and 

LNQ=1 performs slightly better than other versions in QCX-u.   -NN which is a 

general algorithm for underlying quasiconvex preference functions also performs 

 Underlying Preference Function 

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff 

Each round 0.0490 -0.0532 -0.8943 

Last round 0.0120 -0.0962 0.7273 

Band 0.0171 -0.0251 -0.5145 

LNQ=1 0.0250 -0.0723 -0.9277 

LNQ=2 0.0258 -0.0532 -0.9039 

  -uQ 0.0248 -0.0196 -0.6122 

  -NN 0.0248 -0.0196 -0.2858 

 Underlying Preference Function 

Version Weighted Linear Weighted Euclidean Weighted Tchebycheff 

Each round 31.6 46.7 43.2 

Last round 19.3 26.5 32.3 

Band 39.3 70.1 64.3 

LNQ=1 29.9 38.0 37.0 

LNQ=2 32.5 43.1 40.9 

  -uQ 25.8 38.8 31.3 

  -NN 25.8 38.8 26.0 
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well among others. In   -NN version, even if we estimate the   value to be 

greater than 1, while informing sellers we treat it as 1 as it is not straightforward 

to figure out the contributions of different sellers of a combination of bids to the 

overall value of the bid combination when  >1. There can be room for 

improvement by informing the sellers about the estimated   value, rather than 

treating as if   =1. How this information can be utilized awaits future research.  
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CHAPTER 6 

 

 

6 AN INTERACTIVE APPROACH FOR COORDINATED 

BIDDING 

 

 

 

In the previous chapters, we assume that we do not know the cost functions of the 

sellers. In this chapter, we assume that all sellers disclose their cost functions to 

the auction decision support system. By using their cost functions, we create good 

combinations to present the buyer. We refer to this case as “Coordinated 

Bidding” and we develop an interactive algorithm for this case in Section 6.1. We 

discuss the algorithm considering a discretized search space in Section 6.2 and we 

provide experimental results in Section 6.3. 

6.1 The Interactive Algorithm (CO-u) 

We develop an interactive algorithm, CO-u that finds good combinations 

knowing the cost functions of the sellers, when the buyer’s preference function is 

quasiconvex and there are two attributes. As in Chapter 5, we assume that the 

buyer can distinguish between bids even when their preference function values 

are close. Similar to   -u, we estimate both alpha and weight values of the 

underlying preference function. 

 

We assume that the sellers give their initial bids at the beginning of the auction. 

After finding the most preferred supported bid combination using these bids, we 

then compose bid combinations using the sellers’ cost functions. Our algorithm 
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continues until there is no alternative bid combination with predetermined mark-

up percentages.  

 

The steps of CO-u  

In addition to the notation used in previous chapters, we define     and     as a 

challenger alternative to the incumbent and the estimated weight of attribute 1 

used to find      respectively.   

 

We provide the steps of the algorithm as follows: 

 

Step 1: Apply Steps 1-5 of QCX-u to find the most preferred supported 

alternative,      

Step 2: Find a feasible set of weights satisfying all constraints corresponding to 

past preferences of the DM for the corresponding feasible    by solving (Walpha) 

model. Set          and go to Step 3. 

Step 3: Find a solution by solving the (Min_u) model below. 

 

Parameters:  

    : 1 if bid t of seller i includes item m; 0 otherwise 

  : the number of bids offered by seller i 

 : estimated weight of attribute 1 

 : estimated parameter value of the    function 

   (   ): cost function of seller i for bid t for given     

  
    

: minimum mark-up percentage for seller i; if it is 0, then seller i may bid 

with zero profit. For the sake of simplicity let      
       ⁄ .  

 

Decision Variables: 

   : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise  

 ̂  : level of defect rate suggested to seller i for bid t  

 ̂ : level of attribute j of the optimal alternative 
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Model (Min_u) 

Min ((  ̂ )
  ((   ) ̂ )

 )  ⁄      (17.1) 

s.to   

∑ ∑        
  
   

 
             (17.2) 

 ̂  ∑ ∑    ( ̂  )(    )   
  
   

 
                    (17.3) 

 ̂  ∑ ∑  ̂     
  
   

 
                      (17.4) 

    {   }        (17.5)  

 

By solving (Min_u) we find the combination with minimum estimated preference 

function value. (Min_u) is always feasible when there are bids to satisfy the 

demand constraint. Set the optimal solution of the problem to    and go to Step 4.  

Step 4: If DIR=east, set     
    

 
; otherwise set     

    

 
. Solve the 

following (Challenger) model to find an alternative,    .  

 

Parameters:  

 : a big number 

 : small positive constant 

    : 1 if bid t of seller i includes item m; 0 otherwise 

  : the number of bids offered by seller i 

   : estimated weight of attribute 1 to find a challenger alternative 

    : calculated weight of attribute 1 where      
(     )

(           )
 

 : estimated parameter value of the    function 

   (   ): cost function of seller i for bid t for given     

  
    

: minimum mark-up percentage for seller i; if it is 0, then seller i may bid 

with zero profit. For the sake of simplicity let      
       ⁄ .  

 

Decision Variables: 

   : 1 if bid t of seller i is selected to be in the efficient combination; 0 otherwise  

 ̂  : level of defect rate suggested to seller i for bid t  

 ̂ : level of attribute j of the optimal alternative 
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: 1 if constraint (18.6) is active; 0 otherwise 

      
:1 if constraint (18.8) is active; 0 otherwise 

 

Model (Challenger) 

Min ((    ̂ )
  ((     ) ̂ )

 )  ⁄      (18.1) 

s.to   

∑ ∑        
  
   

 
              (18.2) 

 ̂  ∑ ∑     ( ̂  )(    )   
  
   

 
                     (19.3) 

 ̂  ∑ ∑  ̂     
  
   

 
                       (18.4) 

 ̂               
  for each      ,          (18.6) 

      
 ̂  (        

) ̂        
    (        

)       (  

      
) for each      ,              (18.7) 

 ̂               
  for each      ,          (18.8) 

      
 ̂  (        

) ̂        
    (        

)       (        
) 

for each      ,               (18.9) 

    {   }         (18.10) 

 

The objective is to minimize the estimated preference function using the updated 

weight values. Constraints (18.6) - (18.9) are the cone constraints and are used to 

avoid inferior solutions. Moreover, to restrict the search region based on the 

direction, we add the following constraints: 

 

If DIR=east  

 ̂    
           

 ̂    
             

 

If DIR=west 

 ̂    
             

 ̂    
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We eliminate    with these constraints. Therefore, if there exists an optimal 

solution set     to that solution and go to Step 5. Otherwise, if both directions 

have been evaluated before, go to Step 6; otherwise switch the value of DIR and 

go to Step 4. 

Step 5: Ask the DM    versus      If 

-     is preferred to   , add a constraint  (      )       add         

check the validity of the existing cones and write the relevant cone 

constraints. Set        and go to Step 6. 

-    is preferred to    , add a constraint  (      )        add         

check the validity of the existing cones and write the relevant cone 

constraints. If both directions have been evaluated before, go to Step 6; 

otherwise switch the value of DIR and go to Step 4. 

Step 6: If       is in a cone-inferior region, go to Step 7. Otherwise, ask the DM 

   versus       and if 

-       is preferred to   , add a constraint  (        )       add 

          check the validity of the existing cones and write the relevant 

cone constraints. Set          and go to Step 2. 

-    is preferred to      , add a constraint  (        )        add 

         check the validity of the existing cones and write the relevant 

cone constraints. Go to Step 2. 

Step 7: If incumbent has no challenger alternative, stop     is the most preferred 

alternative. Otherwise go to Step 2.  

 

Similar to the previous versions, at the beginning of the auction, sellers first give 

their bids. In Step 1 we find the most preferred supported alternative. Based on 

the preference of the buyer, (Walpha) model is solved. Here we note that since we 

deal with supported solutions in Step, (Wt) model can also be solved.  

 

After estimating the parameters of the preference function of the buyer, in Step 3 

considering the sellers’ mark-up percentages we find a combination in the 

reduced search space that minimized the estimated preference function value. The 
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algorithm continues with Step 4 where we search for challenger alternatives in 

different directions with different weight values.  

We note that since the problems are nonlinear, instead of using binary variables 

we can use nonnegative     values with the following constraint: 

 

   (     )     

 

As in   -u, to utilize the properties of the Tchebycheff functions, if   is greater 

than the predetermined threshold value,   , we assume that the underlying 

preference function is Tchebycheff and modify our models. 

 

In the algorithm, except from Step 1, while finding a new bid combination we use 

the cost functions and the mark-up percentages of the sellers as we assume that 

they explicitly give them to us. At the end of the auction, each winner will get the 

profit with his/her predetermined mark-up percentage.  

 

We try to solve these models using GAMS 22.8 and the global optimization 

solver, BARON. However, due to nonlinearity in a continuous space, the run time 

of the algorithm turns out to be long. Moreover, for some problems BARON 

could not find solutions. Therefore we discretize the bid space and apply the CO-

u algorithm in Section 6.2.  

6.2 CO-u in Discretized Space 

In Section 6.1 we provide the models considering a continuous search space. 

Here, we assume a discretized space which is reasonable in real life examples. 

For each bid of each seller, we divide the possible defect rate range into K equal 

intervals. Therefore, we consider K+1 possible defect rate-price value 

combination for each seller in all his/her bids. In our updated models we consider 

only these values. Here, we provide the modified parameters and decision 

variables only. For the sake of completeness, we provide the updated (Min_u) 

model. The changes are similar for (Challenger) model.  
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Modifications in (Min_u) 

Parameters:  

   (    ): cost function of seller i for bid t for given      

    : defect rate value corresponding to the k
th

  point in bid t of seller i  

 

Decision Variables: 

    : 1 if bid t of seller i with defect rate value of point k is selected to be in the 

efficient combination; 0 otherwise  

 

Model (Min_u') 

Min (  ̂ )
  ((   ) ̂ )

       (17'.1) 

s.to   

∑ ∑ ∑         
  
   

 
   

 
             (17'.2) 

 ̂  ∑ ∑ ∑    (    )    
  
   

 
   

 
                    (17'.3) 

 ̂  ∑ ∑ ∑         
  
   

 
   

 
                     (17'.4) 

     {   }        (17'.5)  

 

We use GAMS 22.8 and the global optimization solver, BARON to solve the 

updated model. We next provide the experiment results. 

6.3 Results 

To test the performance of the CO-u algorithm in discretized space, we solve 

(Min_u) with exact parameter values and report its results as “Centralized.” This 

corresponds to the best possible solutions that can be obtained under full 

information. Similar to the previous chapters we compare the preference function 

values of the buyer for the winning combination found with the algorithm against 

that of Centralized. To evaluate the performance of the algorithm for these values 

we use % deviations:  

 

            
 (                           )   (           )

 (           )
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In our experiments, without loss of generality we set the mark-up percentages to 

zero. We set K=10, i.e. we divide the possible defect rate range into 10 equal 

intervals and there are 11 possible defect rate-price value combination for all 

sellers in all their bids. We set     the predetermined threshold value to 4, above 

which we treat the underlying preference function as a Tchebycheff function.  

  

We use 10 different weight values for the price attribute of the underlying 

preference function to consider different problems. We simulate the preferences 

of the buyer using weighted linear, weighted Euclidean and weighted 

Tchebycheff functions. 

 

In all problems, the winning seller-bid pairs and the corresponding attribute 

values found with CO-u and Centralized are the same, i.e. allocative efficiency is 

satisfied and the percent deviations are zero. Therefore, we report only the 

average number of questions asked to the buyer in Table 6.1. 

 

Table 6.1 Average number of comparisons
*
  

   * Based on 10 instances with different weight values 

 

As can be seen from Table 6.1, the average number of pairwise comparisons the 

buyer is required to make is 6.4, 8.1 and 9.7 for underlying weighted linear, 

weighted Euclidean and weighted Tchebycheff functions, respectively. We also 

report the number of questions asked to the buyer to find the most preferred 

supported alternative using the initial bids of the sellers in Step 1 of CO-u. We 

observe that our algorithm performs well, as it finds the optimal winning bids 

requiring a small number of questions.  

 

 Underlying Preference Function 

 Weighted Linear Weighted Euclidean Weighted Tchebycheff 

Step 1 1.9 2.1 2.2 

Total 6.4 8.1 9.7 
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We also find the optimal bids when the sellers bid independently of each other 

(Decentralized) in the discretized space and compare the results with Centralized. 

Centralized is guaranteed to have at least as good results as that of Decentralized, 

since in the former case we consider a centralized approach suitably matching the 

sellers to create the best combination. As expected, when the buyer has an 

underlying weighted linear preference function both Decentralized and 

Centralized are equivalent. In the nonlinear case, we test the performance of the 

algorithm by simulating the preferences of the buyer using weighted Euclidean 

and the weighted Tchebycheff preference functions. The percent deviations of 

Decentralized from Centralized are reported in Tables 6.2 and 6.3. 

 

Table 6.2 Percentage deviations of decentralized from centralized optimal 

solutions under weighted Euclidean preference function 

 

Table 6.3 Percentage deviations of decentralized from centralized optimal 

solutions under weighted Tchebycheff preference function 

 

As can be seen from the tables, Centralized finds better solutions in many cases. 

In the Coordinated Bidding case where the sellers disclose their cost functions to 

ADSS, the buyer will benefit as his/her preference function value for the resulting 

bid combination is at least as good as that of Decentralized. Sellers will also 

benefit in the sense that the more competitive sellers will be matched through 

coordination. Therefore, both parties (buyer and the sellers) will benefit more 

when the sellers share their cost functions with ADSS. 

  

 =0.05  =0.15  =0.25  =0.35  =0.45  =0.55  =0.65  =0.75  =0.85  =0.95 

0.0000 0.0000 0.0000 0.0000 0.5978 1.7231 0.3873 0.0000 0.0000 0.0000 

 =0.05  =0.15  =0.25  =0.35  =0.45  =0.55  =0.65  =0.75  =0.85  =0.95 

0.0000 0.0000 3.6321 4.2553 4.9567 2.5316 5.3631 1.8655 0.0000 0.0000 
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CHAPTER 7 

 

 

7 EXTENSIONS TO PREVIOUS WORK 

 

 

 

In this chapter we discuss modifications we made to improve the Evolutionary 

Algorithm (EA) developed in Karakaya (2009) for MAMI auctions in order to 

overcome the computational difficulties. 

 

The application of EAs in multi-objective optimization is beneficial as the EAs 

maintain a population of solutions in a single run and there are examples in the 

literature (see for example Deb et al. 2002, Zitzler et al. 2001, Soylu and 

Köksalan 2010, Karahan and Köksalan 2010).  

 

Karakaya (2009) adapted the Non-Dominated Sorting Genetic Algorithm NSGA-

II (Deb et al. 2002) to solve a MAMI reverse auction problem. The developed EA 

is used to approximate the Pareto front. Karakaya (2009) considers a MAMI 

auction environment with two attributes: price and defect rate. She assumes that 

all units of an item should be supplied by a single seller and each seller gives bids 

for each item. She considers two variations of the problem.  The base case 

corresponds to a simpler version in terms of the prices, whereas the discounted 

case introduces price discounts in the bids that supply several items. She ran 

different versions of the algorithm considering different procedures to seed 

several initial solutions in the initial population and tested their performances 

against the true Pareto frontier for both original and discounted cases. She uses 

different problems with different combinations of the number of items and sellers: 
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(10,20), (30,30), and (30,100) where in the parentheses the former and latter 

values refer to the number of items and the number of sellers, respectively.  

 

In the modified version, we made 10 replications for each instance by randomly 

generating problems. We try to synchronize the random numbers we use for the 

same purpose in each version of the algorithm to reduce the variation due to 

randomness. We consider an additional version, in which the initial population is 

seeded with all supported efficient solutions of the original case. We apply the 

procedure of Aneja and Nair (1979) to find all supported efficient solutions for 

the original case. As stated in Chapter 4, this procedure minimizes a weighted 

linear objective that combines the two objectives. Systematically changing the 

weights at each iteration, it guarantees obtaining all supported efficient solutions. 

Once we get the weights from this procedure at each iteration, we find the 

solution that minimizes the weighted objective function employing an efficient 

sorting procedure. We first calculate the value of each seller for each item by 

multiplying the attribute values of the item of the seller with the corresponding 

weights and summing them up. Then, for each item we choose the seller having 

the minimum value as the winner. We try this new version in both original and 

discounted cases. As expected this version of the algorithm performs well as the 

algorithm starts with good solutions. However, its performance is not good in the 

discounted case as the problem structures are different. Karakaya (2009) 

considers two performance measures to test the algorithm. We apply paired-t test 

to statistically compare different versions of the algorithm in terms of these two 

performance measures. The results of the experiments can be seen in Appendix B. 

 

In the manuscript, although we demonstrated our algorithm for a single round, it 

is directly applicable in a multi-round setting as well. After the bidders update 

their bids based on the feedback mechanism of the auction, our algorithm can be 

employed to find the new approximate efficient front in the next round. We intend 

to incorporate our algorithm into such multi-round settings as future research. 
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For single as well as multiple round auctions it would be useful to develop 

preference-based EAs that explore only the parts of the Pareto front that are of 

interest to the decision maker.  
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CHAPTER 8 

 

 

8 CONCLUSIONS 

 

 

 

In this study, we address multi-attribute multi-item auction problems. We develop 

auction decision support systems, ADSSs, that provide aid to the buyer in single-

round auctions whereas it provides aid to both parties in multi-round auctions. We 

first develop an approach that finds a set of efficient bid combinations to present 

to the buyer. The buyer determines the preferred and nonpreferred combinations. 

Based on the preferences of the buyer, ADSS estimates the parameter values of 

the underlying preference function of the buyer as well as the estimated 

preference function value for each item separately, and inform sellers about these 

estimations. In the succeeding rounds sellers update their bids and the auction 

continues until a termination condition is met. We generate a number of test 

problems and test our algorithm for both two and three attribute problems for an 

underlying linear preference function. Our algorithm finds the same winning 

sellers that are found using exact parameter values, i.e. allocative efficiency is 

reached. Also the buyer’s preference function is closely approximated. We also 

use the algorithm as a heuristic for nonlinear preference functions.  The results 

also indicate that our algorithm performs well. 

 

We then develop an interactive algorithm, LIN-u, to support the buyer to find the 

most preferred bid combination for underlying linear preference functions. The 

results show that with LIN-u we guide the sellers well and both the buyer and the 

sellers can benefit. We also modify the algorithm and develop a heuristic method 
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for underlying quasiconvex preference functions. The experiments show that our 

algorithm performs well. 

 

For underlying quasiconvex preference functions we develop two algorithms 

QCX-u and Lα-u, with different version of each algorithm. Based on our 

experiments, we conclude that our guidance mechanism works well for 

underlying quasiconvex preference functions. 

 

In the algorithms above, we assume that we do not know the cost functions of the 

sellers. We also develop an interactive approach assuming that all sellers disclose 

their cost functions explicitly to us. We refer to this case as “Coordinated 

Bidding” and develop the interactive CO-u algorithm. Our algorithm finds the 

optimal winning sellers requiring only a small number of preference comparisons 

from the buyer.  

 

In Karakaya (2009), an Evolutionary Algorithm (EA) was developed for the case 

of multi-attribute, multi-item reverse auctions in order to overcome the 

computational difficulties. We made some modifications and improved the 

algorithm. We approximately generate the whole Pareto front using the EA. We 

also develop heuristic procedures to find several good initial solutions and insert 

those in the initial population of the EA. We test the EA on a number of randomly 

generated problems and report our findings. 

 

When the number of possible bid combinations is too high to find the efficient bid 

combinations within a reasonable computational effort, heuristics such as EAs 

can be utilized. Developing a preference-based EA that finds some parts of the 

Pareto front based on the preferences of the buyer could be beneficial as this 

would avoid generating the whole Pareto front. As a future study, the interactive 

approaches we developed in this thesis can be utilized in the development of a 

preference-based EA. 
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When we do not know the cost functions of the sellers, we estimate the preference 

function value of each item in a combination of bids to inform the sellers. We 

intend to work on procedures to assign meaningful contribution values to the 

components of a bid combination.  

 

In Chapter 5, we develop algorithms for underlying quasiconvex preference 

functions. Understanding the form of the underlying preference function is 

important to utilize these algorithms more beneficially. We aim to work on 

different methods to identify the form of the underlying preference function; 

specifically we intend to apply the procedure in Köksalan and Sagala (1995) as a 

future study. 

 

The experiments show that our guidance mechanism works well and both the 

sellers and the buyer can benefit from using ADSSs. The implementation of this 

decision support system in a web-based platform and implementing it in practice 

are important future challenges.    
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APPENDICES 

APPENDIX A 

 

 

A. PARAMETER SETTING IN EFFCOM MODEL 

 

 

 

In our experiments, we round the attribute values to four significant digits. Thus, 

the minimum increments of the objectives (attributes of a bid combination) are 

10
-4

. For the two-attribute case, by setting a suitable   value in the objective 

function and systematically changing     value, we generate all efficient solutions.   

 

We first solve the EFFCOM model to minimize only the second objective. The 

objective function value of the optimal solution is the is the smallest possible 

value for   . To obtain the largest possible value for   , we solve the EFFCOM 

model in a lexicographic manner. We minimize the first objective. By fixing 

attribute 1 value of the corresponding solution, we then solve the model again to 

minimize the second objective. Attribute 2 value of the optimal solution is the 

largest possible value for   . 

 

Let mn and mx be the smallest and largest possible values for   . Since the 

minimum increment between the attribute 1 values is 10
-4

, we set    such that 

  (     )      . With this we guarantee that the maximum increment in 

the second objective would not cause any trade-offs between the first and second 

objectives. The augment part only serves for breaking ties. 

 

After setting   value, we solve EFFCOM model repeatedly by changing the    

value.We start with the largest possible value (mx) for    and systematically 

reduce it until its smallest possible value (mn). We reduce the second attribute 
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value obtained in the most recent solution of EFFCOM by 10
-4

, which is the 

minimum increment between the attribute 2 values as we round the attribute 

values to four significant digits. This guarantees generating all efficient solutions. 
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APPENDIX B 

 

 

B. RESULTS OF THE EVOLUTIONARY ALGORITHM 

 

 

 

Karakaya (2009) developed an Evolutionary Algorithm (EA) with different 

variations. In the original case, she considers two versions of the algorithm: 

without seeding, seeding by sorting. In the without seeding case, all members of 

the initial population are generated randomly. In the seeding by sorting case, the 

initial population is seeded with two solutions corresponding to the best solutions 

for each objective for the original case. In the discounted case, she considers three 

versions of the algorithm: without seeding, optimal seeding and rank heuristic. 

Without seeding is as in the original case. Optimal seeding is similar to seeding 

by sorting but in the discounted case the initial population is seeded with the best 

solutions for each objective for the discounted case. In the last version she applies 

rank heuristic to find an approximate nondominated solution considering the 

price objective in the discounted case and uses a simple sorting procedure to find 

a good solution in terms of the defect rate objective. She then uses these two 

combinations to seed the initial population. As stated in Chapter 7, in the 

modified version we consider an additional version, supported seeding, in which 

the initial population is seeded with all supported efficient solutions of the 

original case. We refer to the version that the initial population is seeded with two 

solutions corresponding to the best solutions for each objective in the 

corresponding case as seeding two extremes in both cases. 

 

Karakaya (2009) compares the results of the different version of the algorithm 

with the true Pareto optimal front obtained by solving a series of integer 

programs. She considers two performance measures to test the algorithm; 
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Hypervolume Indicator (Zitzler and Thiele, 1998) which measures the dominated 

hypervolume to a given reference point and the Inverted Generational Distance 

Metric (Van Veldhuizen and Lamont, 2000) which measures the Euclidean 

distance of each solution in the true Pareto front to the closest solution in the 

population generated by the algorithm. The average of these distances are used 

and for the Inverted Generational Distance Metric (IGDM) smaller values are 

desirable. 

 

Let *

vHI  to represent the ratio of the hypervolumes of the v
th

 version of the 

algorithm to that of the true Pareto front (i.e., *

vHI = hypervolume of the v
th

 

version of the algorithm/hypervolume of the true Pareto front) where v 

corresponds to seeding two extremes, without seeding, supported seeding, and 

rank heuristic. When an algorithm generates the true Pareto front exactly, *

vHI  

takes its best possible value of 1, and it takes smaller values as the algorithm’s 

performance deteriorates, with a minimum possible value of 0.  

 

We conduct experiments and the preliminary results show that seeding two 

extremes performs well in both cases. We apply paired-t test to statistically 

compare this version with the other versions. We compute the sample means 

__ _______
*,v vHI IGDM  

and the sample deviations *( ), ( )v vSD HI SD IGDM  for both metrics. At 

a 99% significance level we test the following hypothesis: 

 

0 1

1 1

:

:

m m

v

m m

v

H

H

 

 




 

v= without seeding, supported seeding                   for the original case  

v= without seeding, supported seeding, rank heuristic   for the discounted case  

 

where v is the version of the algorithm as before and m stands for the performance 

metric ( *HI and IGDM). The null hypothesis states that there is no statistical 

difference between seeding two extremes and its contender. When we fail to 
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reject the null hypothesis at 99% significance level, we indicate the winner as 

“none” in the corresponding tables. On the other hand, if the statistical test 

indicates a significant difference, we report the winner in the table based on the 

corresponding 99% confidence interval.  

 

For each problem set, we find the difference 

*
__ __ _______ _______

* *

1 1andHI IGDM

v v v vHI HI IGDM IGDM
 
      
 

between the average 

performance metrics of the seeding two extremes and its contenders. The 

performance of the algorithm for each version in terms of HI*, IGDM, CPU time, 

and statistical test results for each problem set are reported in the following tables. 

We also give the CPU time of the ε-constraint method used to generate the true 

Pareto front as a benchmark. We report the results for the original and discounted 

cases in Tables B.1-B.6 and in Tables B.7-B.12, respectively. 

 

Table B.1 Results for Original Case Problem Set (10,20) (300 Generations)* 

Version (v) 
__

*

vHI  
*( )vSD HI  

_______

vIGDM  ( )vSD IGDM  

Average 

CPU time 

(sec) 

seeding two extremes 0.9990 0.0010 0.00164 0.00120 0.8244 

without seeding 0.7087 0.1793 0.02806 0.02656 0.8361 

supported seeding 0.9995 0.0007 0.00112 0.00089 0.8222 

true Pareto - 5.3415 

*Based on 10 instances 

 

Table B.2 Statistical Comparison of Seeding two Extremes with its Contenders 

for Original Case Problem Set (10,20) 

Contender 
*HI

v  p-value Winner 
IGDM

v  p-value Winner 

without seeding 0.2903 0.001 
seeding two 

extremes 
-0.02643 0.013 None 

supported seeding -0.0005 0.027 none 0.00052 0.111 None 
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Table B.3 Performance Measures for Original Case Problem Set (30,30) (2000 

Generations)* 

Version (v) 
__

*

vHI  
*( )vSD HI  

_______

vIGDM  ( )vSD IGDM  

Average 

CPU time 

(sec) 

seeding two extremes 0.9925 0.0013 0.00723 0.00081 8.1884 

without seeding 0.6922 0.0694 0.01901 0.00462 8.3148 

supported seeding 0.9927 0.0009 0.00708 0.00046 8.1901 

true Pareto - 39.5942 

*Based on 10 instances 

 

Table B.4 Statistical Comparison of Seeding two Extremes with its Contenders 

for Original   Case Problem Set (30,30) 

Contender 
*HI

v  p-value Winner 
IGDM

v  p-value Winner 

without seeding 0.3003 0.000 
seeding two 

extremes 
-0.01179 0.000 

seeding two 

extremes 

supported seeding -0.0002 0.496 none 0.00015 0.463 none 

 

Table B.5 Performance Measures for Original Case Problem Set (30,100) (4000 

Generations)* 

Version (v) 
__

*

vHI  
*( )vSD HI  

_______

vIGDM  ( )vSD IGDM  

Average 

CPU time 

(sec) 

seeding two extremes 0.9908 0.0019 0.00999 0.00137 19.4171 

without seeding 0.5325 0.0620 0.04268 0.01546 19.3516 

supported seeding 0.9929 0.0015 0.00845 0.00107 20.3645 

true Pareto - 87.7548 

*Based on 10 instances 

 

Table B.6 Statistical Comparison of Seeding two Extremes with its Contenders 

for Original Case Problem Set (30,100) 

Contender 
*HI

v  p-value Winner 
IGDM

v  p-value Winner 

without seeding 0.4582 0.000 
seeding two 

extremes 
-0.03268 0.000 

seeding two 

extremes 

supported seeding -0.0021 0.004 
supported 

seeding 
0.00155 0.004 

supported 

seeding 
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The results show that for the original case both seeding two extremes and 

supported seeding performs well. It is an expected result for the supported 

seeding version to work well as many solutions of the true Pareto front is seeded 

in the initial population. In Table B.6, we observe that supported seeding 

outperforms seeding two extremes however the results of both algorithms  are 

very close to each other in both HI* and IGDM values. Seeding two extremes 

requires only two extreme solutions to seed in the initial population whereas 

supported seeding requires all supported efficient solutions. Although finding all 

supported efficient solutions was easy for the original case, it may prove difficult 

in general and one may need to find approximations of these solutions to seed in 

the initial population as will be the case in our discounted problem.  

 

Table B.7 Performance Measures for Discounted Case Problem Set (10,20) (300 

Generations)* 

Version (v) 
__

*

vHI  
*( )vSD HI  

_______

vIGDM  ( )vSD IGDM  
Average CPU 

time (sec) 

seeding two extremes 0.9952 0.0061 0.00495 0.00405 1.0221 

without seeding 0.7140 0.1465 0.02770 0.01578 0.8378 

rank heuristic 0.7415 0.1696 0.02611 0.01526 0.8377 

supported seeding 0.7654 0.1475 0.02198 0.01363 0.8255 

true Pareto - 10.4410 

*Based on 10 instances 

 

Table B.8 Statistical Comparison of Seeding two Extremes with its Contenders 

for Discounted Case Problem Set (10,20) 

Contender 
*HI

v  p-value Winner 
IGDM

v  p-value Winner 

without seeding 0.2812 0.000 
seeding two 

extremes 
-0.02274 0.001 

seeding two 

extremes 

rank heuristic 0.2537 0.001 
seeding two 

extremes 
-0.02116 0.002 

seeding two 

extremes 

supported seeding 0.2298 0.001 
seeding two 

extremes 
-0.01703 0.002 

seeding two 

extremes 
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Table B.9 Performance Measures for Discounted Case Problem Set (30,30) (4000 

Generations)* 

Version (v) 
__

*

vHI  
*( )vSD HI  

_______

vIGDM  ( )vSD IGDM  

Average 

CPU time 

(sec) 

seeding two extremes 0.9811 0.0081 0.01335 0.00485 17.1414 

without seeding 0.7259 0.1075 0.04016 0.01808 16.5237 

rank heuristic 0.7332 0.1238 0.03197 0.01493 16.5298 

supported seeding 0.6965 0.1465 0.04031 0.01266 16.5874 

true Pareto - 332.8922 

*Based on 10 instances 

 

Table B.10 Statistical Comparison of Seeding two Extremes with its Contenders 

for Discounted Case Problem Set (30,30) 

Contender 
*HI

v  p-value Winner 
IGDM

v  p-value Winner 

without seeding 0.2551 0.000 
seeding two 

extremes 
-0.02680 0.000 

seeding two 

extremes 

rank heuristic 0.2478 0.000 
seeding two 

extremes 
-0.01862 0.003 

seeding two 

extremes 

supported seeding 0.2846 0.000 
seeding two 

extremes 
-0.02696 0.000 

seeding two 

extremes 

 

Table B.11 Performance Measures for Discounted Case Problem Set (30,100) 

(7000 Generations)* 

Version (v) 
__

*

vHI  
*( )vSD HI  

_______

vIGDM  ( )vSD IGDM  

Average 

CPU time 

(sec) 

seeding two extremes 0.9709 0.0124 0.02244 0.01033 36.5301 

without seeding 0.6478 0.1298 0.07746 0.01918 33.6851 

rank heuristic 0.6656 0.0684 0.06801 0.0209 34.0037 

supported seeding 0.6413 0.0670 0.07878 0.01502 34.3830 

true Pareto - 1241.0686 

*Based on 10 instances 
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Table B.12 Statistical Comparison of Seeding two Extremes with its Contenders 

for Discounted Case Problem Set (30,100) 

Contender 
*HI

v  p-value Winner 
IGDM

v  p-value Winner 

without seeding 0.3231 0.000 
seeding two 

extremes 
-0.05502 0.000 

seeding two 

extremes 

rank heuristic 0.3053 0.000 
seeding two 

extremes 
-0.04557 0.000 

seeding two 

extremes 

supported seeding 0.3296 0.000 
seeding two 

extremes 
-0.05635 0.000 

seeding two 

extremes 

 

The results show that in all test problems seeding two extremes is significantly 

better than the other version for the discounted case. Seeding two extremes 

represents the true Pareto front well in a fraction of the time required to generate 

the true Pareto front. Moreover, for the largest problem set (30,100), seeding two 

extremes has HI* value of 97% and a small IGDM value. Although with rank 

heuristic and supported seeding the best solution for the defect objective can be 

found, the best solution for the price objective cannot be found.  

 

We expect that as the number of good solutions seeded in the initial population 

increases, the performance of the algorithm further improves. The main tradeoff 

is the computational time to find the good solutions. Therefore, it may be 

worthwhile to develop fast heuristics that give good seed solutions. 
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