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ABSTRACT

ALGEBRAIC GEOMETRIC METHODS IN STUDYING SPLINES

Sipahi, Neslihan Ös

Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Mohan Lal Bhupal

Co-Supervisor : Assoc. Prof. Dr. Selma Altınok Bhupal

December 2013, 103 pages

In this thesis, our main objects of interest are piecewise polynomial functions (splines).
For a polyhedral complex ∆ in Rn, Cr(∆) denotes the set of piecewise polynomial
functions defined on ∆. Determining the dimension of the space of splines with poly-
nomials having degree at most k, denoted by Cr

k(∆), is an important problem, which
has many applications. In this thesis, we first give an exposition on splines and intro-
duce different algebraic geometric methods used to compute the dimension of splines
both on polyhedral and simplicial complexes. Then we generalize the important re-
sult of Mcdonald and Schenck [23] on planar splines on a polyhedral complex. Also,
by using the method in [18], we make generalizations on the dimension of the spaces
of splines on simplicial complexes in dimension three. This generalizaton includes
simplicial complexes having no interior points, and octahedrons with one interior
point. In the latter case, we make some generalizations by considering the number of
linearly independent interior planes.

Keywords: Spline, Polyhedral complex, Dimension formula, Hilbert polynomial, Ho-
mology modules
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ÖZ

PARÇALI POLİNOM FONKSİYONLARINI ÇALIŞMAK İÇİN CEBİRSEL
GEOMETRİK YÖNTEMLER

Sipahi, Neslihan Ös

Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Mohan Lal Bhupal

Ortak Tez Yöneticisi : Doç. Dr. Selma Altınok Bhupal

Aralık 2013 , 103 sayfa

Bu tezde odaklanacağımız temel nesneler parçalı tanımlı polinom fonksiyonlardır. ∆,
Rn’de çok yüzlü bir bölge belirtmek üzere, ∆ üzerindeki düzgünlük derecesi r olan
parçalı tanımlı polinom fonksiyonlar Cr(∆) ile gösterilir. Cr

k(∆), Cr(∆)’nın derecesi
en fazla k olan polinomları içeren bir alt kümesidir ve bir vektör uzayı oluşturur
ve bu vektör uzayının boyutunun hesaplanması, birçok uygulaması olan önemli bir
problemdir. Bu tezde, öncelikle parçalı tanımlı polinom fonksiyonları hakkındaki ça-
lışmaları özetleyip, hem polihedral, hem de simpleksler kompleksleri üzerindeki par-
çalı tanımlı polinom fonksiyonların boyut hesaplamasında kullanılan farklı cebirsel
geometrik yöntemleri tanımlıyoruz. Daha sonra, Mcdonald ve Schenck’in [23], bir
polihedral kompleks ∆ üzerinde tanımlı düzlemsel parçalı polinom fonksiyonlarının
oluşturduğu vektör uzayının boyutuna ilişkin önemli sonucunu genelleştiriyoruz. Ay-
rıca, [18] makalesindeki metodu kullanarak, üç boyuttaki bir simpleksler kompleksi
üzerindeki parçalı polinom fonksiyonlarının boyutlarına ilişkin genelleştirmeler yapı-
yoruz. Bu genelleştirmeler, hiç iç noktası olmayan simpleksler komplekslerini ve bir
iç noktası olan sekizyüzlüleri kapsıyor. Sekizyüzlüler durumunda, üzerinde tanımlı
spline uzaylarının boyutlarını inceleyip onların lineer bağımsız iç düzlemlerinin sayı-
sına bakarak boyutları konusunda bazı genelleştirmeler yapıyoruz.
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Anahtar Kelimeler: Spline, Polihedral kompleks, Boyut formülü, Hilbert polinomu,
Modül homolojileri
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CHAPTER 1

INTRODUCTION

Our main objects of interest in this thesis are piecewise polynomial functions, which

are also called splines or finite elements. For a polyhedral complex ∆ in Rn, Cr(∆) is

the set of piecewise polynomial functions (splines) defined on ∆ that are continuously

differentiable up to order r. For each k in N, Cr
k(∆) is the subset of Cr(∆) consisting of

the piecewise polynomial functions (splines) on ∆, such that on each face σ of ∆, the

restriction of the piecewise polynomial function to σ has degree less than or equal to

k. Determining the dimension of the vector space Cr
k(∆) has crucial importance, espe-

cially in geometric modelling and approximation theory. Splines are used in several

areas related with geometric design, graphics, and robotics supported by computers.

They increase the power to control of the shape of a surface. Computing the dimen-

sion of Cr
k(∆) involves several different branches of mathematics such as algebra and

geometry.

In this thesis we utilize not only the combinatorics, but also the geometry of ∆ and

the algebraic properties of the functions forming the splines in order to compute the

dimension of Cr
k(∆). This is not an easy computation especially when the dimension

of the space in which ∆ embedded is greater than 2. We present several algebraic

geometric methods to compute the dimensions of the vector spaces of splines on

2 and 3 dimensional polyhedral complexes. We make some generalizations on the

dimensions of the vector spaces of splines on some special complexes.

In [11], Billera and Rose presented a homological approach in the study of splines.

They showed that for a polyhedral complex ∆ and fixed smoothness degree r, Cr
k(∆) '

Cr(∆̂)k, and Cr(∆̂) = ∪k≥0Cr(∆̂)k, where ∆̂ is defined to be the homogenization of ∆.

1



(Homogenization is explained in Chapter 2). Hence the dimension of the vector space

of splines is given as the Hilbert function of a graded algebra. Thus dim Cr
k(∆) is given

by a polynomial in k, f (∆, r, k), for sufficiently large k, which is called the Hilbert

polynomial. Consequently, throughout the thesis, we are interested in computing

Hilbert series and Hilbert functions. Computation of Hilbert series is very important

for computational commutative algebra and algebraic geometry and appear in various

contexts.

In [18], Geramita and Schenck, presented a connection between fat points and the

inverse systems and using this gave the free resolution of an ideal generated by the

mixed powers of homogeneous linear forms. Using the latter together with the Hilbert

function, they were able to compute the dimension of planar splines on simplicial

complexes for any mixed smoothness degree r. In this thesis, we apply this method

to splines in 3-space to obtain new results.

In [8], Alfeld and Schumaker obtain all three coefficients of the polynomial giving

the dimension of the vector space of splines on a simplicial complex ∆ for dimension

2. Later, in [23], Mcdonald and Schenck improve their result and determine three

coefficients of the polynomial f (∆, r, k), which gives the dimension of the vector space

of splines on a d-dimensional polyhedral complex ∆ with fixed smoothness degree

r, for sufficiently large k. In this thesis, one of our aims is to refine the formula

given by Mcdonald and Schenck to mixed smoothness degrees. We obtain all three

coefficients of the polynomial f (∆, α, k) giving the dimension of the vector space

of splines with mixed smoothness degrees α = (α1, α2, . . . , α f 0
1
) on a 2-dimensional

polyhedral complex ∆, each αi is the smoothness degree on the corresponding interior

1-face of ∆, and f 0
1 is the number of the interior 1-faces of ∆. More precisely, we prove

the following theorem:

Theorem 1.0.1 For a 2-dimensional hereditary, pure polyhedral complex ∆, we have

HP(Cr(∆̂), k) = ( f2 − f 0
1 )

(
k + 2

2

)
+

f 0
1∑

i=1

(
k + 2 − αi − 1

2

)
+ a0(N)

= ( f2 − f 0
1 )

(
k + 2

2

)
+

f 0
1∑

i=1

(
k + 2 − αi − 1

2

)
+

∑
ψ j∈H1(Gξi (∆))

c j,

(1.1)

2



where c j = a0(HP(R̂/Iψ j)) for Iψ j = (lα1+1
1 , lα2+1

2 , · · · , l
αn j +1
n j ).

In Chapter 2, we give some preliminaries and theoretical background necessary for

understanding the computations and generalizations contained in this thesis. We also

give a survey of the literature on splines.

In Chapter 3, we present methods contained in the literature to compute the dimen-

sions of splines and give a detailed review of the article of Geramita and Schenck

[18], since the techniques and results will be used both in Chapters 4 and 5 to ob-

tain new results. In this article, a formula for the dimension of planar splines for any

2-dimensional simplicial complex is given. Their method depends on constructing a

special chain complex, and it transforms the computation of the dimensions of the

vector spaces of splines on ∆ of degree less than or equal to k to the problem of com-

puting the Hilbert functions of ideals generated by powers of homogeneous linear

forms.

In Chapter 4, by using the results of Geramita and Schenck [18] together with the

results of McDonald and Schenck [23] for polyhedral complexes with fixed r smooth-

ness, we obtain a formula defining all three coefficients of the Hilbert polynomials of

the vector spaces corresponding to mixed degree splines. In this sense, we generalize

the formula in [23] to the case of mixed smoothness degree.

In Chapter 5, by modifying the method developed in [18] to 3-dimensional simplicial

complexes, we obtain a general formula giving the dimensions of the space of splines

defined on n-gons with no interior points. Furthermore, we give a formulae for the

dimensions of the spaces of splines on octahedrons by considering the number of their

linearly independent interior hyperplanes.

3
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CHAPTER 2

THEORETICAL BACKGROUND

In this chapter, we present preliminary definitions and the necessary theoretical back-

ground.

2.1 Polyhedral Complexes

Let C be a subspace of Rd. If, for any two elements c1, c2 ∈ C, we have tc1 +(1−t)c2 ∈

C for t ∈ I = [0, 1], then C is called a convex set. The convex hull, Conv(S ), of a set

S consisting of finitely many points in Rd is the smallest convex set that contains S ,

which is given as a set by

Conv(S )

 |S |∑
i=1

αixi : αi ≥ 0 and
|S|∑
i=1

αi = 1

 ,
where |S | is the number of points xi ∈ S .

The convex hull of a finite set in Rd is called a polytope. The lower dimensional

boundaries of a polytope are called its faces. For example, any triangle and any line

of an octahedron is a face of it.

Definition 2.1.1 ([22]) ∆ ∈ Rd which is the finite union of polytopes is a polyhedral

complex, if the faces of each elements of ∆ are elements of ∆, and the intersection of

any two elements of ∆ is an element of ∆. 3-dimensional polyhedral complexes are

called as polyhedron.

Note that a k-dimensional element is called as a k-cell and we can think of a complex

as the union its cells.

5



Example 2.1.2 Fig. 2.1 is an example of a planar polyhedral complex, which has

three 2-cells, seven 1-cells, five 0-cells and the empty set.

σ1
σ2

σ3

Figure 2.1: Example of a 2-dimensional polyhedral complex

In contrast to the polyhedral complex above, Fig. 2.2 is not a polyhedral complex,

since the intersection of some of its elements is not an element of the complex again.

Figure 2.2: Example of a non-polyhedral complex

Definition 2.1.3 If each maximal element of a polyhedral complex ∆ ⊂ Rd is d-

dimensional (with respect to inclusion), then ∆ is called pure d-dimensional.

Example 2.1.4 Here is an example of a non-pure complex, since σ2 has dimension

one:

σ1
σ2

Figure 2.3: Example of a non-pure complex

Definition 2.1.5 In a complex ∆, if two d-dimensional polytopes intersect along a

common d − 1 dimensional face, they are called adjacent. ∆ is called a hereditary

6



complex if, for any τ in ∆ (including the empty set), any d-dimensional polytopes σ

and σ
′

in ∆ that contain τ can be connected by a sequence of d-dimensional polytopes

in ∆ such that σ = σ1, σ2, · · · , σm = σ
′

, where each σi contains τ and for each i, σi

and σi+1 are adjacent.

Example 2.1.6 In Fig. 2.4 given below, the left one is not hereditary, since p is con-

tained in both σ1 and σ2, but there is no sequence of 2-cells containing p connecting

σ1 and σ2. On the other hand, the figure on the right is a hereditary complex.

σ1 σ2 τ1
τ2

τ3
τ4p

Figure 2.4: Example of a hereditary and non-hereditary complexes

2.2 Simplicial Complexes

A simplicial complex is a special polyhedral complex. Polyhedral complexes are

constructed by using polytopes, while simplicial complexes are constructed as the

finite union of simplices, which are special polytopes. Hence, all the definitions given

for polyhedral complexes are also valid for simplicial complexes.

A d-simplex is a d-dimensional polytope, which is the convex hull of its d +1 vertices

v0, v1, · · · , vd satisfying the condition that {v1 − v0, v2 − v0, · · · , vd − v0} are linearly

independent. In particular, a d-simplex is the set of points

C = {a0v0 + a1v1 + · · · + advd : ai ≥ 0, for 0 ≤ i ≤ d, and
d∑

i=0

ai = 1}.

We can denote a d-simplex by {v0, v1, · · · , vd}. If we give an ordering to the vertices

of the simplex we show this by using the notation 〈v0, v1, · · · , vd〉. For example, a

1-simplex is a line, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. When

we write 〈v0, v1, v2〉, we work on a triangle with rotation sense as in the Fig. 2.5.

7



q

q

qv0

v1

v2

�

Figure 2.5: Directed simplex

Example 2.2.1 Fig. 2.6 below demonstrates the difference between a polyhedral

complex and a simplicial complex:

Figure 2.6: The difference between a simplicial complex and the polyhedral complex

Here the figure on the left is a polyhedral complex, but it is not a simplicial complex,

since it contains some elements that are not triangles. On the other hand, the figure on

the right is a simplicial complex, since each element of it is a simplex and obviously,

it is a polyhedral complex.

In this thesis, we focus on both simplicial and polyhedral complexes. In fact, making

generalizations about splines over simplicial complexes is much easier than that in

the polyhedral complex case. Some results about splines over simplicial complexes

are still open in the polyhedral case. In the next chapter, we give some methods that

we use to compute the dimension of the vector spaces of splines, but we will see that

some of these methods work only in the simplicial complex case.

2.3 Simplicial Homology

A chain complex is a sequence of abelian groups or modules, which are connected by

homomorphisms satisfying
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· · · → Ad+1
∂d+1
→ Ad

∂d
→ · · · → A1

∂1
→ A0 → 0,

∂i ◦ ∂i+1 = 0.

For a (d + 1)-simplex σ = 〈v0, v1, · · · , vd〉, where vi’s are the vertices, we define the

boundary map ∂d as

∂n(σ) =

d∑
i=0

(−1)iσ|〈v0,v1,··· ,v̂i,··· ,vd〉.

Here ˆ denotes a deleted vertex.

An open simplex is a simplex with all its proper faces deleted. Let ∆0
i denote the set

of i-dimensional interior faces. Given a complex κ of R-modules on the interior faces

of ∆,

0→ ⊕σ∈∆dκ(σ)
∂d
→ ⊕γ∈∆0

d−1
κ(γ)

∂d−1
→ · · · → ⊕β∈∆0

0
κ(β)→ 0,

the ith homology of this complex is defined to be Hi(κ) = ker ∂i/ im ∂i+1.

2.4 Univariate Splines

Referring to [22], we now give the basic definitions and theory about splines. We use

the notation and theory in . First, we give the definition of a univariate spline (a spline

defined over a polyhedral complex ∆ on the real line). Let ∆ be the interval [a, b] in

R. Consider the piecewise function F on the interval [a, b], defined by

F(x) =


f1(x) if x ∈ [a, c],

f2(x) if x ∈ [c, b].
(2.1)

where f1 and f2 are polynomials in R[x], and c satisfies a < c < b. In this case,

F is called a spline or piecewise polynomial function. By well-definedness of F,

f1(c) = f2(c), and this makes F continuous on [a, b]. The trivial case f1 = f2 is not

interesting. If we take different polynomials, we get extra control over the graph of

the function. Since f1 and f2 are polynomials, they have derivatives of any orders,

hence, for any r ≥ 0, we can consider splines differentiable up to order r:

F(r)(x) =


f (r)
1 (x) if x ∈ [a, c],

f (r)
2 (x) if x ∈ [c, b].
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If we want F to be a Cr function (namely, F to be differentiable up to order r) on

[a, b], we should have f (k)
1 (c) = f (k)

2 (c) for any k, where 0 ≤ k ≤ r. Algebraically, this

property is equivalent to the next proposition.

Proposition 2.4.1 ([22, Proposition 3.2]) The piecewise polynomial function F de-

fined in Eqn. (2.1) is a Cr function on [a, b] if and only if the polynomial f1 − f2 is

divisible by (x − c)r+1.

Proof. Suppose F ∈ Cr. We need to show that (x−c)r+1 divides f1− f2. We prove this

by induction on r. For r = 0 we have f1(c) = f2(c). Hence, f1(x)− f2(x) = (x− c)p(x)

for some p(x) ∈ R[x]. For the induction step, assume that F ∈ Cr−1, since F ∈ Cr−1,

there exists a polynomial h(x) satisfying, f1(x) − f2(x) = (x − c)rh(x). We take the

rth derivatives of both sides. Every term on the right-hand side, except the one r!h(x)

contains (x − c). Since f (r)
1 (c) − f (r)

2 (c) = 0, (x − c) divides h(x), so (x − c)r+1 divides

f1(x) − f2(x).

Conversely, suppose that f1(x) − f2(x) is divisible by (x − c)r+1, then ( f1 − f2)(x) =

(x − c)r+1 p(x) for some p(x) ∈ R[x]. When we take any tth derivative of the equality

with 0 ≤ t ≤ r, each term in the right-hand side contains (x − c), which implies that

F ∈ Cr. �

We denote the piecewise polynomial function F in Eqn. (2.1) by the ordered pair

( f1, f2) ∈ R[x]2. In this sense, Cr splines form a subspace of R[x]2, under compo-

nentwise addition and scalar multiplication. The set of all splines ( f1, f2) with the

degrees of the polynomials f1 and f2 less than or equal to k is a finite dimensional

vector space Cr
k ⊂ R[x]2. Any spline ( f1, f2) in Cr

k can be rewritten as a sum of pairs

( f1, f1) + (0, f2 − f1), in which each summand still has degree less than or equal to

k. Here ( f1, f1) is obviously a Cr spline for any r ≥ 0. But the spline (0, f2 − f1)

is not always Cr. By Prop. 2.4.1, (0, f2 − f1) is Cr spline if and only if (x − c)r+1

divides f2 − f1. If this spline is not trivial ( f1 , f2), a necessary condition for

(x − c)r+1 to divide f2 − f1 is that r + 1 ≤ k. If r + 1 ≤ k, linear combinations of

(0, (x − c)r+1), (0, (x − c)r+2), · · · , (0, (x − c)k) are elements of Cr
k. This gives us the

following proposition.
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Proposition 2.4.2 ([22, Proposition 3.4]) In a subdivided interval [a, b] = [a, c] ∪

[c, b], the dimension of the space Cr
k for one-variable spline functions is equal to

dimR Cr
k =


k + 1 if r + 1 > k,

2k − r + 1 if r + 1 ≤ k.

Note that, if r + 1 > k, Cr
k contains only the trivial splines, so it has (1, 1), (x, x), · · · ,

(xk, xk) as basis elements. But if r + 1 ≤ k, in addition to the trivial splines, we also

have non trivial ones, and they are linear combinations of (0, (x−c)r+1), (0, (x−c)r+2),

· · · , (0, (x − c)k), which are also among the basis elements.

Proposition 2.4.3 ([25, Önerme 3.3]) Let [a, b] be a closed interval divided into s

subintervals in such a way that [a, b] = [x0, x1]∪ [x1, x2]∪· · ·∪ [xs−2, xs−1]∪ [xs−1, xs].

i-) For an s tuple of polynomials ( f1, f2, · · · , fs), define a function F on the inter-

val [a, b] such that fi = F|[xi−1,xi]. Then F ∈ Cr if and only if for 1 ≤ i ≤ s − 1,

fi+1 − fi ∈ 〈(x − xi)r+1〉.

ii-) The dimension of the space of Cr splines with polynomials having at most k degree

is equal to

dim Cr
k =


k + 1 if r + 1 > k,

s(k − r) + r + 1 if r + 1 ≤ k.

Proof. For a detailed proof, see [25, Önerme 3.3]. �

2.5 Multivariate Splines

While working on R, we divided intervals into subintervals that intersect at common

endpoints. We apply the same idea to polyhedral complexes in Rd by dividing them

into polytopes intersecting along common faces. Hence, we work on d-dimensional

pure and hereditary polyhedral complexes (and sometimes on simplicial complexes

having these properties) in Rd. Ordering the d-cells of the complex σ1, σ2, · · · , σm,

we consider a polyhedral complex ∆ as the union of the d-cells: ∆ = ∪m
i=1σi. For a

d-complex ∆ and i ≤ d, let ∆i, ∆0, ∆0
i , fi(∆) and f 0

i (∆) denote the set of i-dimensional
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faces, the set of interior faces, the set of i-dimensional interior faces, the number of

i-dimensional faces and the number of i-dimensional interior faces of ∆, respectively.

Note that d-faces are always considered as interior.

For a d-complex ∆ and r ∈ N, Cr(∆) is the set of the functions F : ∆→ R satisfying:

i) For each σ ∈ ∆d, F|σ is in R[x1, · · · , xd]. (In fact F|σi is equal to the polynomial fi.)

ii) F is continuously differentiable up to order r on ∆.

Cr
k(∆) is a subset of Cr(∆). It consists of elements F ∈ Cr(∆) satisfying F|σ is a

polynomial of degree at most k for any σ ∈ ∆d. F is defined to have r smoothness at

a point p if for each σ ∈ ∆d containing p, F|σ has the same value up to order r at p.

Adjacent d-cells σi and σ j intersect along a (d − 1)-cell, since we work on hered-

itary complexes. The intersection is denoted as τi j, which is contained in an affine

hyperplane V(li j), where li j ∈ R[x1, x2, · · · , xd] is a polynomial of degree one.

2.5.1 Literature on multivariate splines

In [2], Courant gave the idea of using continuous splines in approximation theory.

Influenced by Courant’s idea, Strang introduced the problem of finding the dimension

of the spaces of splines in [3], [4]. Strang made the following conjecture: For a

generically embedded planar 2-manifold ∆,

dim C1
m(∆) =

(
m + 2

2

)
f2 − (2m + 1) f 0

1 + 3 f 0
0 , (2.2)

where f2 is the number of triangles in ∆, f 0
1 and f 0

0 the number of interior edges and

interior vertices, respectively. In [5], Morgan and Scott showed that for m ≥ 5 and

for any embedding of ∆, the dimension of C1
m(∆) is equal to the right hand side of

Eqn. (2.2) plus the number of rectangles triangulated by crossing diagonals. They

also gave an explicit basis for C1
m(∆) for m ≥ 5. In [6], they showed that their solution

was not true for m = 2 by an example. The Morgan-Scott formula was shown to be a

lower bound for all m ≥ 2 by Schumaker, see [7]. Also, he gave a lower bound for the

dimension of Cr
m(∆) for m ≥ r + 1. By improving Morgan and Scott’s result, Alfeld

and Schumaker showed that Schumaker’s lower bound gives exactly the dimension

of Cr
m for m ≥ 4r + 1 for all r [8].
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In [10], Billera considered the problem in a homological way, and by using the ho-

mological approach on the triangulated manifolds ∆ in R2. He gave lower bounds on

the dimension of Cr
m(∆) for all r. He proved Strang’s Conjecture in the affirmative

in the case r = 1 over a triangulated manifold in R2. In [11], Billera and Rose gave

computational techniques to find bases for the spaces Cr(∆) by using the Gröbner

basis methods. Defining Cr(∆) as the kernel of a map between free modules, they

gave an exact sequence of graded modules. In [12], Billera and Rose focused on the

freeness of Cr(∆) depending on ∆, r, and d as an R-module, because in the case of

freeness of Cr(∆), the dimension is independent of the embedding of ∆ in Rd just on

its combinatorics. When d = 2, they proved that Cr(∆) is free if and only if ∆ is a

manifold with boundary. They also showed that the module Cr(∆̂) is free if and only

if Cr(star(σ)) is free for all faces σ of ∆ (This has great importance, because ∆̂ is the

star of the origin.).

In [13], Schenck and Stillman showed that for dimension 2, Cr(∆̂) is free if and only if

H1(R/J) vanishes. They also gave a non-freeness result for 2-dimensional complexes

having interior edges, such that edges which do not reach the boundary. In this case,

there exists an r0 satisfying that Cr(∆̂) is non-free for all r > r0.

In [14], Schenk and Stillman showed that the dimensions of the splines given by

Billera and Rose were the same with the bounds on dimensions given by Alfeld and

Schumaker. They extended the Alfeld and Schumaker’s bounds for all degrees in

d = 2 case.

In [16], Schenck defined a complex, top homology module of which was isomorphic

to Cr(∆̂) and he determined bounds on the dimension of the homology modules. He

showed that for all i < d, dimR Hi(R/J) ≤ i − 1.

Geramita and Schenck, in [18], searched the relation between the ideals of fat points

and splines on a d-dimensional simplicial complex ∆ embedded in Rd. Moreover, by

using this relation, they derived a formula, which gave the number of planar splines

for sufficiently high degree.

In [17], Dalbec and Schenck focused on Rose conjecture saying that for a fixed sim-

plicial complex ∆, the freeness of Cr(∆̂) implies the freeness of Cr−1(∆̂). They showed
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that the conjecture is true for d = 2, but they gave a counter example in d = 3. Dalbec

and Schenck’s results are still not known to be true, when ∆̂ is a polyhedral complex.

In [21], Rose considered the spline modules on polyhedral complexes as the syzygy

module of its dual graph with edges weighted by powers of linear forms. By using

some techniques without changing the isomorphism class of the syzygy module, Rose

took the dual graph into pieces and by these pieces, she calculated the homological

dimension of the Hilbert series of the module.

McDonald and Schenck, in [23], extended the formula of Alfeld and Schumaker,

giving the dimension of the splines on a simplicial complex in R2 by a polynomial

f (∆, r, k), depending on the complex ∆, smoothness r and degree k (for sufficiently

large k). They gave the first three coefficients of the polynomial f (∆, r, k) for poly-

hedral complexes of any dimension. In d = 2 case, they give the dimension of the

splines.

2.5.2 Main techniques for multivariate splines

The theorem given for univariate splines is generalized to multivariate spline case as

follows in [22]:

Proposition 2.5.1 ([22, Proposition 3.7]) Let ∆ be a pure and hereditary complex

that contains m d-cells σi and F ∈ Cr(∆) such that fi = F|σi ∈ R[x1, · · · , xd] for

1 ≤ i ≤ m. Then for each adjacent pair σi, σ j in ∆, fi − f j ∈ 〈lr+1
i j 〉. Conversely, any

m-tuple of polynomials ( f1, · · · , fm) satisfying fi − f j ∈ 〈lr+1
i j 〉 for each adjacent pair

σi, σ j of d-cells in ∆ defines an element F ∈ Cr(∆) by setting F|σi = fi.

Proof. For a detailed proof, see [25, Önerme 3.6]. �

From now on, we consider F ∈ Cr(∆) as an m-tuple of R-polynomials such as

F = ( f1, f2, · · · , fm), where fi = F|σi and R = R[x1, x2, · · · , xd]. By this representation

Cr(∆) can be regarded as an R-module under the pointwise addition and multiplica-

tion.

For h ∈ R, ( f1, f2, · · · , fm) and (g1, g2, · · · , gm) ∈ Cr(∆),

14



( f1, f2, · · · , fm) + (g1, g2, · · · , gm) = ( f1 + g1, f2 + g2, · · · , fm + gm) and

h.( f1, f2, · · · , fm) = (h. f1, h. f2, · · · , h. fm).

We embed ∆ into Rd+1 by sending any element (a1, a2, · · · , ad) in Rd to

(a1, a2, · · · , ad, 1) in Rd+1. In other words, we embed ∆ to the hyperplane xd+1 = 1,

and construct the convex hull of each σ in ∆d with the origin p = (0, 0, · · · , 0) in Rd+1.

Hence, we get ∆̂ = ∆.p, join of ∆ with p.

We can give an example demonstrating the homogenization of a polyhedral complex

∆:

∆

∆̂ q
q

q
q

qq

v

Figure 2.7: Homogenization of the polyhedral complex ∆

Example 2.5.2 Here ∆ is a simplicial complex, which is a quadrilateral splited into

4 triangles by its diagonals. We embed ∆ ∈ R2 into R3. In this process, any point

(a, b) in ∆ converts to (a, b, 1) in R3 and by joining these points with v, we derived ∆̂

which is a pentahedron.

In this way Cr(∆̂) becomes an R̂-module, where R̂ = R[xd+1]. And any function on ∆

can be carried to a cone over ∆̂, by taking the homogenization of itself. We define the

homogenization h f of f (x1, x2, · · · , xd) ∈ R as follows: h f = x∂ f
d+1 f ( x1

xd+1
, x2

xd+1
, · · · , xd

xd+1
).

Here ∂ f defines the total degree of f . We define the set of Cr-splines over ∆̂ as Cr(∆̂).

In [11], Billera and Rose showed that if F = ( f1, f2, · · · , fm) ∈ Cr(∆) then hF ∈ Cr(∆̂),

and it is defined as
hF =h ( f1, f2, · · · , fm) = (x∂F−∂ f1

d+1 (h f1), x∂F−∂ f2
d+1 (h f2), · · · , x∂F−∂ fm

d+1 (h fm)), where ∂F means

the maximum of the ∂ fi’s.

Billera and Rose in [11] proved Cr(∆̂) is a finitely generated graded module over

R̂. Moreover, they have shown that there is a vector space isomorphism between

Cr
k(∆) and Cr(∆̂)k, which is the set of functions defined on ∆̂ having degree exactly k.

Hence, we can consider the graded module Cr(∆̂) as the union of Cr(∆̂)k’s. Namely,
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Cr(∆̂) = ∪k≥0Cr(∆̂)k. Instead of calculating dimR Cr
k(∆), we will generally be inter-

ested in finding the dimension of Cr(∆̂)k. This leads us to Hilbert function and series

computations. Hence, let us recall the basic definitions and theorems about Hilbert

functions and series.

2.5.3 Hilbert function, Hilbert series and Hilbert polynomial

A finitely generated graded k[x1, · · · , xd]-module S can be written as
⊕

i≥0 S i such

that S 0 = k, where k is a field and S i denotes the ith degree graded part of S . The

Hilbert function of S , HF(S , k) : Z→ Z is defined by

HF : i 7→ dimk S i

mapping i to the dimension of the k-vector space S i.

Hilbert series of S , HS (S , t), is defined to be the generating function

HS (S , t) =
∑
i≥0

HF(S , i)ti.

Theorem 2.5.3 ([24]) Hilbert Series of any graded ring S can be given in rational

forms as:

1-)HS (S , t) =
Q(t)

(1 − t)d , where Q(t) ∈ Z[t] and d = dim k[x1, · · · , xd].

2-)HS (S , t) =
G(t)

(1 − t)s , where G(t) ∈ Z[t] is not divisible by (1 − t) and s = dim S .

For i sufficiently large, the Hilbert function of S is equal to a polynomial with rational

coefficients having degree d − 1. This polynomial is called as Hilbert polynomial

HP(S , t).

Now, since we have seen above that Cr(∆̂) is a finitely generated graded R̂-module,

the dimension of its graded pieces can be determined by using the Hilbert series:

16



HS (Cr(∆̂), t) =
∑
k≥0

HF(Cr(∆̂), k)tk,

=
∑
k≥0

dimR Cr(∆̂)ktk,

=
∑
k≥0

dimR Cr
k(∆)tk.
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CHAPTER 3

ALGEBRAIC METHODS TO CALCULATE THE DIMENSION

OF SPLINES

3.1 Matrix Method

In this section, we first present the main technique, which can be used both for poly-

hedral and simplicial complexes. As we have mentioned before, we work with pure

and hereditary complexes. Let F ∈ Cr(∆) be a spline, where ∆ is a d-dimensional

complex. Two adjacent d-cells σi and σ j of ∆ intersect along a (d − 1)-dimensional

interior face τi j, which is contained in the hyperplane li j. This can be written alge-

braically as follows:

fi − f j + gi jlr+1
i j = 0, where gij ∈ R[x1, · · · , xd],

and here we denote F|σi and F|σ j by fi and f j.

Example 3.1.1 We apply these ideas to compute the splines over the simplicial com-

plex ∆ given in the Fig. 3.1. ∆ is a 2-dimensional simplicial complex with four

2-cells. We label these cells as σ1, ..., σ4 in a clockwise fashion. An element F in

Cr(∆) is represented as ( f1, f2, f3, f4), where fi = F|σi for 1 ≤ i ≤ 4. Here σ1 and σ2

intersect along a line segment contained in the y = 0 plane. Hence we can express all

the intersections as below:

f1 − f2 + g1yr+1 = 0,

f2 − f3 + g2(x − y)r+1 = 0,

f3 − f4 + g3yr+1 = 0,

f1 − f4 + g4xr+1 = 0.

(3.1)
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σ1

σ2σ3

σ4

(-1,0) (1,0)

(-1,-1)

(0,1)

(0,0)

Figure 3.1: 2-dimensional simplicial complex with four 2-cells

where gi(x, y) ∈ R[x, y]. We can rewrite these equations in a matrix form as follows.


1 −1 0 0 (y)r+1 0 0 0

0 1 −1 0 0 (x − y)r+1 0 0

0 0 1 −1 0 0 (y)r+1 0

1 0 0 −1 0 0 0 (x)r+1





f1

f2

f3

f4

g1

g2

g3

g4



=


0

0

0

0


. (3.2)

Here the elements of Cr(∆) are given as ( f1, f2, f3, f4). If we consider the map R[x, y]8 →

R[x, y]4 given by the matrix,

M(∆, r) =


1 −1 0 0 (y)r+1 0 0 0

0 1 −1 0 0 (x − y)r+1 0 0

0 0 1 −1 0 0 (y)r+1 0

1 0 0 −1 0 0 0 (x)r+1


,

the first four components of the elements of the kernel of this map give the elements

of Cr(∆).

We can now generalize these arguments. Suppose ∆ is a d-dimensional complex in

R[x1, · · · , xd] having m d-dimensional cells, then by labeling these cells as σ1, σ2,
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· · · , σm, a spline F ∈ Cr(∆) can be given as ( f1, f2, · · · , fm). The d-cells intersect

along (d − 1)-cells, which we denote by τi j and are contained in hyperplanes li j. We

fix an order and rename these hyperplanes as l1, l2, · · · , le. Then we get the M(∆, r),the

e × (m + e) matrix, which is represented by:

M(∆, r) = (∂(∆)|D). (3.3)

Here the e × m matrix ∂(∆) part of M contains only 1, -1 and 0 as components. In

its sth row, we check the τs, if it is σi ∩ σ j, and if i < j, then it takes 1 in its ∂(∆)si

component and -1 in its ∂(∆)s j component and all the other entries in this row are

zero. The D part of M is an e × e diagonal matrix containing lr+1
i in its diagonals:

lr+1
1 0 · · · 0

0 lr+1
2 · · · 0

...
...

. . .
...

0 0 · · · lr+1
e


.

This construction leads to the following results given in [22, Proposition 3.10].

Proposition 3.1.2 [22, Proposition 3.10] For a pure and hereditary complex ∆ in Rd,

let M(∆, r) be defined as in Eqn. 3.3:

(i) An m-tuple ( f1, f2, · · · , fm) is in Cr(∆), if and only if there exists (g1, g2, · · · , ge)

satisfying ( f1, f2, · · · , fm, g1, g2, · · · , ge) is in the kernel of the map

R[x1, x2, · · · , xd]m+e → R[x1, x2, · · · , xd]e,

defined by the matrix M(∆, r).

(ii) Cr(∆) is a module over R[x1, x2, · · · , xd]. If we construct the module of syzygies

on the columns of M(∆, r), then the projection homomorphism

R[x1, x2, · · · , xd]m+e → R[x1, x2, · · · , xd]m,

of the syzygy module onto the first m components gives Cr(∆).

(iii) Cr
k(∆) is a finite dimensional vector subspace of Cr(∆).
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Proof. See [22, p.395]. �

Since Cr(∆) has a module structure over R[x1, x2, · · · , xd], we can use Gröbner basis
to determine the kernel of M(∆, r), and we can calculate the dimensions of Cr

k(∆), for
any r, if Cr(∆) is free (we will explain the reason of this in the homology method
section). Consider the Ex. 3.1.1. By using CoCoA, we find a Gröbner basis for
ker(M(∆, 1)) as below:

Use R::=QQ[x,y];

M:=Module([1,0,0,1],[-1,1,0,0],[0,-1,1,0],[0,0,-1,-1],[y^2,0,0,0],

[0,(x-y)^2,0,0],[0,0,y^2,0],[0,0,0,x^2]);

SyzOfGens(M);

Hence, the kernel of the map is given as:

Module([[1, 1, 1, 1, 0, 0, 0, 0], [0, y2, y2, 0, 1, 0,−1, 0], [0,−xy2 +

1/2y3,−1/2x2y,−1/2x2y,−x + 1/2y,−1/2y, 0,−1/2y], [0, 1/2xy2,−1/2x3 +

x2y,−1/2x3 + x2y, 1/2x,−1/2x, 0,−1/2x + y]]),

In [12, Theorem 3.5], Billera and Rose have shown that for a 2-complex ∆, Cr(∆)

is free if and only if ∆ is a manifold with boundary. In Ex. 3.1.1, ∆ is a man-

ifold with boundary and hence, C1(∆) is a free module, so h1 = (1, 1, 1, 1), h2 =

(0, 0, y,2 , y2), h3 = (0,−xy2 + 1/2y3,−1/2x2y,−1/2x2y) and h4 = (0, 1/2xy2,−1/2x3 +

x2y,−1/2x3 + x2y) construct a basis for C1(∆). Any element of C1(∆) can be written

in the form:

t1(1, 1, 1, 1) + t2(0, 0, y2, y2) + t3(0,−xy2 + 1/2y3,−1/2x2y,−1/2x2y)+

t4(0, 1/2xy2,−1/2x3 + x2y,−1/2x3 + x2y),

where ti ∈ R[x, y] for all 1 ≤ i ≤ 4.

We can now compute the dimension of C1
k (∆) for each k. For k < 2, C1

k (∆) contains

only the splines t1(1, 1, 1, 1). Hence, for k = 0, the only generator is (1,1,1,1) and

dim C1
0 = 1. For k = 1, the generators are 〈(1, 1, 1, 1), (x, x, x, x), (y, y, y, y)〉 and

dim C1
1 = 3. For k ≥ 2, by counting the monomials, which give degree k multiplied
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with the generators, we get the following general dimension formula for C1
k (∆):

dim C1
k (∆) =


1 if k = 0,

3 if k = 1,(
k+2

2

)
+

(
k+2−2

2

)
+ 2

(
k+2−3

2

)
if k ≥ 2.

Hence if we make the calculations we get dimR C1
k = 2k2 − 2k + 3 for k ≥ 1.

Note once again that, this method is applicable, only in the case Cr(∆) is free.

3.2 Hilbert Series Method

If we don’t need to find a generating set for Cr(∆), we can determine the dimen-

sion of the spline space by a computation of a Hilbert series. To do this, we con-

sider the homogenized polyhedral complex ∆̂, which has been presented in the pre-

vious chapter. Hence, Cr(∆̂) becomes a graded R-algebra and by using the iso-

morphism Cr
k(∆) � Cr(∆̂)k given by Billera and Rose in [11], we can determine

dimR Cr
k(∆) for each k. In the previous section, we have defined M(∆, r). Recall-

ing that, M(∆, r) = (∂(∆)|D), if we take the homogenizations of the entries of this

matrix, only D, the e × e part changes, because the ∂(∆) part is homogeneous. The

li j’s, which correspond to entries of the diagonal of D, may not be homogeneous,

and we denote their homogenizations as Li j. Hence the matrix defining the map from

R̂m+e to R̂e is denoted by M(∆̂, r). ∆̂ is still hereditary by the construction of homog-

enization (since we have a cone of d-dimensional ∆ in d + 1-space with the top point

v =origin). Then [11, Proposition 4.3] implies that Cr(∆̂) � ker(M(∆̂, r)), since ∆̂ is

hereditary. Also we have the following exact sequence of R̂-modules:

0→ ker(M(∆̂, r))→ R̂m ⊕ R̂(−r − 1)e → im M(∆̂, r)→ 0,

where R̂ = R[x1, x2, · · · , xd+1].

We use the additivity of Hilbert series, and we have the equality:

HS (ker(M(∆̂, r)), t) = HS (R̂m ⊕ R̂(−r − 1)e, t) − HS (im M(∆̂, r), t).

Thus, we obtain:

HS (Cr(∆̂), t) = HS (R̂m ⊕ R̂(−r − 1)e, t) − HS (im M(∆̂, r), t).
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Note that HS (R̂, t) =
1

(1 − t)d+1 and HS (R̂m, t) =
m

(1 − t)d+1 . For the shifted graded

module R̂(−r − 1), we have R̂(−r − 1)k = R̂k−r−1 for k ∈ N satisfying k − r − 1 ≥ 0, so

HS (R̂(−r − 1), t) = tr+1HS (R̂, t) =
tr+1

(1 − t)d+1 . Then we can express the Hilbert series

of R̂m ⊕ R̂(−r − 1)e as HS (R̂m ⊕ R̂(−r − 1)e, t) =
m + etr+1

(1 − t)d+1 . We also need to determine

the Hilbert series HS (im M(∆̂, r)). Since the columns of M(∆̂, r) construct a basis for
im M(∆̂, r), we can compute the Hilbert series of this module by using Buchberger
algorithm. By using CoCoA, we compute the Hilbert series of the Ex. 3.1.1.

Use R :: = QQ [x,y,z];

M : = [[1,0,0,1],[-1,1,0,0],[0,-1,1,0],[0,0,-1,-1],[y^2,0,0,0],

[0,(x-y)^2,0,0],[0,0,y^2,0],[0,0,0,x^2]];

N : = Module (M);

I : = LT(N);

Hilbert(I);

H(0) = 3

H(t) = 2t^2 + 6t + 1 for t >= 1.

Then the Hilbert series of im M(∆̂, 1) is the infinite sum:

HS (im M(∆̂, 1), t) = 3 + (22 + 6. + 1)t + (8 + 12 + 1)t2 + · · ·

+ (2n2 + 6n + 1)tn + · · ·

= 3 + 9t + 21t2 + · · · + (2n2 + 6n + 1)tn + · · ·

(3.4)

We can now compute the Hilbert series of C1(∆̂):

HS (C1(∆̂), t) = HS (R̂4 ⊕ R̂(−1 − 1)4, t) − HS (im M(∆̂, 1), t)

=
4 + 4t2

(1 − t)3 − (3 + 9t + 21t2 + · · · + (2n2 + 6n + 1)tn + · · · ).
(3.5)

To compute the Hilbert series of C1(∆̂), we need to compute
4 + 4t2

(1 − t)3 . Since

1
(1 − t)

= 1 + t + t2 + t3 + · · · + tn + · · · , we have

4 + 4t2

(1 − t)3 = (4 + 4t2)(1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + · · · )

= 4 + 12t + 28t2 + 52t3 + 84t4 + 124t5 + · · ·
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Then the result is

HS (C1(∆̂), t) = (4 + 12t + 28t2 + 52t3 + 84t4 + 124t5 + · · · ) − (3 + 9t + 21t2

+ 37t3 + 57t4 + 81t5 · · · + (2n2 + 6n + 1)tn + · · · )

= 1 + 3t + 7t2 + 15t3 + 27t4 + 43t5 + · · ·

In the above infinite sum, each coefficient of tk gives the dimR Cr(∆̂)k. By using

Eqn. (3.5), we can also compute the Hilbert function. For the ring

R̂ = R[x1, x2, · · · , xd+1], the Hilbert function is HF(R̂) =

(
k + d

d

)
and HF(R̂(−i)) =(

k + d − i
d

)
. Hence,

HF(C1(∆̂), k) = HF(R̂4 ⊕ R̂(−1 − 1)4, k) − HF(im M(∆̂, 1), k)

= 4
(
k + 2

2

)
+ 4

(
k + 2 − 1 − 1

2

)
− (2k2 + 6k + 1), k ≥ 1

= 4
(
k + 2

2

)
+ 4

(
k
2

)
− (2k2 + 6k + 1), k ≥ 1

= 2k2 − 2k + 3, k ≥ 1.

3.3 Homology Method

In [10], Billera has introduced the homological view to focus on the splines. Recall

that for a simplicial complex ∆, σ ∈ ∆0 denotes the set of interior faces of ∆. Billera

defined Lσ to be the homogeneous ideal of σ̂, whose generators are homogeneous

linear polynomials. Then for a fixed r ≥ 0, he has defined a complex J of ideals on

∆:

J := R/Îr+1
σ .

Hence J is a subcomplex of the constant complex R on ∆0 satisfying that R(σ) = R

for any σ ∈ ∆0. Then the quotient of R by J gives the short exact sequence:

0→ J→ R → R/J→ 0,

which gives a long exact sequence in homology,

· · · → Hi(J)→ Hi(R)→ Hi(R/J)→ Hi−1(J)→ Hi−1(R)→ Hi−1(R/J)→ · · ·
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Billera showed that the spline module is isomorphic to the top homology module

Hd(R/J). Thus, he was able to compute the dimension of the splines by the compu-

tation of the dimension of a homology module.

Later, Schenck in [16] has described a complex J of ideals on interior faces of ∆:

J(σ) = 0 for σ ∈ ∆d,

J(τ) = Îr+1
τ for τ ∈ ∆0

d−1,

J(ξ) =
∑
ξ∈τ

Îr+1
τ for ξ ∈ ∆0

d−2, τ ∈ ∆0
d−1,

...
...

J(ν) =
∑
ν∈τ

Îr+1
τ for ν ∈ ∆0

0, τ ∈ ∆0
d−1.

Then, there is a short exact sequence

0→ J → R → R/J → 0.

This sequence corresponds to a long exact homology sequence:

· · · → Hi(J)→ Hi(R)→ Hi(R/J)→ Hi−1(J)→ Hi−1(R)→ Hi−1(R/J)→ · · ·

We have Hd(R/J) = Hd(R/J), since on d and d − 1-interior faces J and J are equal.

In [16], Schenck has proved that for all i < d, the dimension of Hi(R/J) is ≤ i − 1.

Then in d = 3 case, we have H1(R/J) = 0 and H2(R/J) is at most one.

As we have mentioned before, one method for determining the dimension of a spline

was to compute the Hilbert series and Schenck has shown that it depends on the

modules ⊕β∈∆0
i
R/J(β) for i = d, d − 1, d − 2.

In [13] and [14], Schenck and Stillman worked on the d = 2 case and they have shown

that the module Cr(∆̂) is free if and only if H1(R/J) vanishes, and Cr(∆̂) can be free

only, if ∆ is a topological disk. Note that if ∆ is a d-ball, Hi(R) = 0, for i , d. By the

long exact sequence, Cr(∆̂) ' R ⊕ Hd−1(J) and Hi(R/J) ' Hi−1(J) for all i ≤ d − 1.

Hence, as a conclusion, Hi(J) has dimension less than or equal to i, for i < d− 1. So,

26



we can restrict the study of spline modules to the study of Hd−1(J), which is much

easier.

In [16], Schenck shows that, for a complex ∆ satisfying Hi(R) = 0 for all i < d, then

Cr(∆̂) is free if and only if Hi(J) = 0 for all i < d − 1. If we know that the module

Cr(∆̂) is free, then we can determine Cr(∆̂) just by the computation of the Hilbert

series of the R/J(σ), σ ∈ ∆0
i .

In this section, we have shown that the dimension of splines is known, if the homology

modules can be computed, but this is not always easy. Hence, in the next section, we

give another method to find dimR Cα(∆̂)k by using the Euler characteristic equation.

3.4 The Method of Using Relations Among Fat Points, Inverse Systems and

Splines

In this section, we give the method given in the article [18] of Geramita and Schenck.

In this article, by showing the connection between fat points and the inverse systems,

they give the free resolution of an ideal generated by the mixed powers of homo-

geneous linear forms. By using this, they compute the dimension of 2-dimensional

splines. We will also observe that this method does not work in higher dimensions.

3.4.1 Fat Points and Inverse Systems

Let X = {P1, · · · , Ps} be a finite set of points such that Pi = [pi0 : pi1 : · · · : pid] ∈ Pd,

I(Pi) = ℘i ⊆ R = k[x0, · · · , xd], and LPi =
∑d

j=0 pi jy j. The ideal I = ∩m
i=1℘

αi
i , αi ≥ 1

is defined to be a fat points ideal. For S = k[y0, · · · , yd], R acts on S by partial

differentiation, such that x jyi = ∂(yi)/∂(y j). Since I is a submodule of R, it also

acts on S , so we can determine the elements of S annihilated by I, and define as

I−1 = { f ∈ S |I. f = 0}, in other words annS (I). The connection between I−1 and

fat points ideals can be understood by the following theorem (Note that the notation

presented here will be used throughout the section):

Theorem 3.4.1 [[19]] Let I = ℘n1+1
1 ∩℘n2+1

2 · · ·∩℘ns+1
s be an ideal of fat points defined
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as above:

(I−1)t =


S t if t ≤ max{ni},

Lt−n1
P1

S n1 + · · · + Lt−ns
Ps

S ns if t ≥ max{ni + 1}.

and

dimk(I−1)t = dimk(R/I, t) = HF(R/I, t).

Proof. See [20], p.22. �

Here Lt−n1
P1

S n1 + · · · + Lt−ns
Ps

S ns represents the tth graded part of the ideal generated by

Lt−n1
P1

, · · · , Lt−ns
Ps

in S .

By this theorem, we obtain a relation between fat points and the ideals generated by

powers of homogeneous linear forms.

Corollary 3.4.2 ([18, Corollary 2.3]) For any pairwise linearly independent homo-

geneous linear forms L1, · · · , Ls in S = k[y0, y1], where 0 < α1 ≤ · · · ≤ αs in Z, let

J be the ideal generated by the elements Lα1
1 , · · · , L

αs
s . Then for each integer t, the

dimension of the vector space Jt is given by the equality:

dimk Jt = min{t + 1,
s∑

i=1

max{t − αi + 1, 0}}.

Proof.. Since α1 ≤ · · · ≤ αs, there exists an integer q, which is the largest one,

satisfying the inequality t − αi + 1 > 0, then we can arrange the summation as:

min{t + 1,
s∑

i=1

max{t − αi + 1, 0}} = min{t + 1,
q∑

i=1

(t − αi + 1)}.

The integers larger than q, satisfy t−αi + 1 < 0 then t−αi ≤ 0, hence S t−αi = 0. Since

Jt = Lα1
1 S t−α1 + · · · + Lαs

s S t−αs , it turns to, Jt = Lα1
1 S t−α1 + · · · + Lαq

q S t−αq . By Theo.

3.4.1 if we choose ni = t − αi for I = ℘t−α1+1
1 ∩ ℘t−α2+1

2 · · · ∩ ℘
t−αq+1
q , we have

(I−1)t =


S t if t ≤ max{t − αi},

Lα1
1 S t−α1 + · · · + Lαq

q S t−αq if t ≥ max{t − αi + 1}.

Since t is always greater than t − αi, we obtain for (I−1)t = Jt and by using Theo.

3.4.1, dimk Jt = dimk(R/I, t) = dimk(Rt/It) = t + 1 − dimk It.

28



Her, I is a principal ideal generated by a linear form F having degree
∑q

i=1(t−αi + 1).

Hence,

dimk It =


0 if t <

∑q
i=1(t − αi + 1),

dimk S (−
∑q

i=1(t − αi + 1))t if t ≥
∑q

i=1(t − αi + 1).

The case t <
∑q

i=1(t − αi + 1) is equivalent to saying that t + 1 ≤
∑q

i=1(t − αi + 1),

which gives dimk Jt = t + 1. The other case t ≥
∑q

i=1(t − αi + 1) is equivalent to

t + 1 >
∑q

i=1(t − αi + 1) and dimk Jt =
∑q

i=1(t − αi + 1). When we combine these two

results, we reach the conclusion:

dimk Jt = min{t + 1,
q∑

i=1

(t − αi + 1)}.

�

By this corollary, we obtain the conclusion that the dimension of the ideals generated

by the pairwise linearly independent linear forms do not depend on the linear forms,

but on their powers. We can also use this corollary in deciding the minimal generator

set of an ideal generated by powers of homogeneous linear forms in k[y0, y1].

Example 3.4.3 Let L1, L2, L3, L4, L5 ∈ k[y0, y1] be pairwise linearly independent ho-

mogeneous linear forms. For J = (L5
1, L

7
2, L

8
3, L

8
4, L

9
5), dimk J9 = min{9 + 1, (9 − 5 +

1) + (9 − 7 + 1) + (9 − 8 + 1) + (9 − 8 + 1) + (9 − 9 + 1)} = 10. If we construct an

ideal J
′

= (L5
1, L

7
2, L

8
3, L

8
4), then dimk(J

′

)9 = min{9 + 1, (9 − 5 + 1) + (9 − 7 + 1) + (9 −

8 + 1) + (9 − 8 + 1))} = 10. This implies that L9
5 ∈ J

′

, hence J = J
′

. In the same way,

we can show that L7
2 < (L5

1), L8
3 < (L5

1, L
7
2) and L8

4 < (L5
1, L

7
2, L

8
3). Hence, the minimal

generator set of J is J
′

= (L5
1, L

7
2, L

8
3, L

8
4).

Corollary 3.4.4 Let J = (Lα1
1 , · · · , L

αs
s ), where 0 < α1 ≤ α2 ≤ · · · ≤ αs, then for

m ≥ 2,

Lαm+1
m+1 < (Lα1

1 , · · · , L
αm
m )⇔ αm+1 ≤

∑m
i=1 αi − m
m − 1

.

Proof. Let Ji = (Lα1
1 , · · · , L

αi
i ), then Lαm+1

m+1 < Jm if and only if (Jm)αm+1 , (Jm+1)αm+1 . By

Cor. 3.4.2,

dimk(Jm)αm+1 = min {αm+1 + 1,
∑m

i=1(αm+1 − αi + 1)},

dimk(Jm+1)αm+1 = min {αm+1 + 1,
∑m+1

i=1 (αm+1 − αi + 1)}.
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Then we see that (Jm)αm+1 , (Jm+1)αm+1 if and only if αm+1 + 1 >
∑m

i=1(αm+1 − αi + 1),

which implies that αm+1(m − 1) <
∑m

i=1 αi − m + 1 and that gives, αm+1(m − 1) ≤∑m
i=1 αi − m. Hence, αm+1 ≤

∑m
i+1 αi − m
m − 1

. �

From now on, when we write an ideal J = (Lα1
1 , · · · , L

αt
t ), we suppose that it has a

minimal set of generators. For the inequality
∑t

i=1(r − αi + 1) > r, Ω is defined to be

the least integer r satisfying the inequality. Hence,

Ω =

⌊∑t
i=1 αi − t
t − 1

⌋
+ 1.

Theorem 3.4.5 ([18]) Let J = (Lα1
1 , · · · , L

αt
t ). Then,

H(S/J, i) =


i + 1 if 0 ≤ i < α1,

(i + 1) −
∑
{ j|α j≤i}(i − α j + 1) if α1 ≤ i < Ω,

0 if i ≥ Ω.

Proof. [25, Teorem 3.4] �

Theorem 3.4.6 ([18]) For a minimally generated ideal J = (Lα1
1 , · · · , L

αt
t ), so that

Ω =

⌊∑t
i=1 αi − t
t − 1

⌋
+ 1, J has a resolution:

0→ S (−Ω)NΩ ⊕ S (−Ω − 1)NΩ+1 → ⊕t
i=1S (−αi)→ J → 0,

where NΩ =
∑t

i=1(Ω − αi + 1) − (Ω + 1) and NΩ+1 =
∑t

i=1 αi + (1 − t)Ω.

Proof. [25, Teorem 3.5] �

Example 3.4.7 Recall Ex. 3.4.3, where we have shown that J is minimally generated

by (L5
1, L

7
2, L

8
3, L

8
4). Then Ω =

⌊
5 + 7 + 8 + 8 − 4

4 − 1

⌋
+ 1 = 9, NΩ = (9− 5 + 1) + (9− 7 +

1) + (9 − 8 + 1) + (9 − 8 + 1) − (9 + 1) = 2, and NΩ+1 = 5 + 7 + 8 + 8 + (1 − 4)9 = 1.

Hence, J has the resolution:

0→ S (−9)2 ⊕ S (−10)→ S (−5) ⊕ S (−7) ⊕ S (−8)2 → J → 0.
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3.4.2 Piecewise Polynomial Functions on Simplicial Complexes

In this section, we use the notation in the multivariable splines section. We denote by

R the chain complex defined by Ri = R f 0
i , where R = R[x1, · · · , xd, xd+1]. Here, ∂i

denotes the ordinary simplicial boundary map:

R : · · · → ⊕α∈∆0
i+1

R(= R f 0
i+1)

∂i+1
→ ⊕β∈∆0

i
R

∂i
→ ⊕γ∈∆0

i−1
R

∂i−1
→ · · ·

Here the homology of the chain complex R is the simplicial relative homology with

coefficients in R. For any interior face γ, J(γ) is defined to be the ideal gener-

ated by mixed powers of linear forms, which define hyperplanes incident to γ̂, i.e.,

J(γ) =
∑
γ⊆τi∈∆

0
d−1

Lαi+1
τi . If we constrict the chain complex R to the ideals J we get

the following chain complex:

J : · · · → ⊕α∈∆0
i+1
J(α)

∂i+1
→ ⊕β∈∆0

i
J(β)

∂i
→ ⊕γ∈∆0

i−1
J(γ)

∂i−1
→ · · ·

Hence, we can define the quotient of R by J , and we get a chain complex R/J :

R/J : · · · → ⊕α∈∆0
i+1
R/J(α)

∂i+1
→ ⊕β∈∆0

i
R/J(β)

∂i
→ ⊕γ∈∆0

i−1
R/J(γ)

∂i−1
→ · · ·

The top homology of this complex Hd(R/J) is equal to the module Cα(∆̂). This

equality has been shown for equal αi’s in [16]. But, it has also been verified for

mixed αi’s. By using Euler characteristic equation, we can understand Cα(∆̂), if we

understand modules and the lower homology modules of the complex. Here under-

standing the modules in the chain complex is equivalent to understanding the ideals

generated by the powers of linear forms, in other words, fat points ideals.

In [16], by using localization techniques, it has been shown that, for fixed αi’s,

Hi(R/J) has dimension at most i − 1 as an R-module. These techniques work also

for the case, when αi’s are mixed.

We now consider the planar case, ∆ embedded in R2. Then, H1(R/J) is a zero

dimensional R[x, y, z] module, so vanishes in sufficiently high degrees. The short

exact sequence of complexes:

0→ J → R → R/J → 0,

gives a long exact sequence of homology modules:

· · · → Hi(J)→ Hi(R)→ Hi(R/J)→ Hi−1(J)→ · · ·
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Since every interior vertex is connected to at least one outer vertex via an edge, then

〈vb, vi〉 is meaningful for an inner vertex vi and an outer vertex vb which are connected

to each other. And ∂1(〈vb, vi〉) = 〈vi〉 − 〈vb〉 = 〈vi〉 ∈ im ∂1, thus 〈vi〉 + im ∂1 = im ∂1.

Which means that under the module of im ∂1 every vertex is equivalent to a vertex on

the boundary. Hence, H0(R) = 0. Then by the long exact sequence, H0(R/J) is also

equal to zero.

Theorem 3.4.8 With the notation given above, for sufficiently large k,

dimR Cα(∆̂)k = dimR

2∑
i=0

(−1)i ⊕β∈∆0
2−i
R/J(β)k. (3.6)

Proof. By applying Euler characteristic equation to the complex:

χ(H(R/J)) = χ(R/J),

we get

dimR H2(R/J)k = dim
2∑

i=0

(−1)i ⊕β∈∆0
2−i
R/J(β)k + dimR

1∑
i=0

(−1)iH1−i(R/J)k.

As mentioned before, we know that H0(R/J) = 0 and for sufficiently large k,

H1(R/J) = 0. Since H2(R/J) is equal to the spline module Cα(∆̂), we obtain

the conclusion. �

Since we know,

dimR ⊕σ∈∆0
2
Rk = f 0

2

(
k + 2

2

)
,

and

dimR ⊕τ∈∆0
1
R/J(τ)k =

f 0
1∑

i=1

[(
k + 2

2

)
−

(
k + 2 − αi − 1

2

)]
,

we need to find

dimR ⊕γ∈∆0
0
R/J(γ)k.

In fact, we have computed this in the previous subsection. Here, we can translate γi

to the origin, so J(γi) contains linear forms in variables x and y. Thus,

R/J(γi) ' R[z] ⊗R R[x, y]/J(γi).
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By naming β j as α j+1, let βi = (β1, ..., βt) be the exponent vector of J(γi) with min-

imal generator set Lβ1
1 , · · · , L

βt
t . Then Ωi =

∑t
j=1 β j − t

t − 1

 + 1. Hence, by the above

isomorphism and Theo. 4.1.11, R/J(γi) has the following free resolution:

0→ R(−Ωi)N
Ωi ⊕ R(−Ωi − 1)N

Ωi+1 → ⊕t
j=1R(−β j)→ R → R/J(γi)→ 0,

where NΩi =
∑t

j=1(Ωi − β j + 1) − (Ωi + 1) and NΩi+1 =
∑t

j=1 β j + (1 − t)Ωi.

By the constriction of the resolution to the degree k and using the additivity of the

Hilbert polynomial we obtain the equality:

dimR ⊕γi∈∆
0
0
R/J(γi)k =

(
k + 2

2

)
−
∑
β j∈βi

(
k + 2 − β j

2

)
+NΩi

(
k −Ωi + 2

2

)
+NΩi+1

(
k −Ωi − 1 + 2

2

)
.

Theorem 3.4.9 For a simplicial complex ∆ embedded in R2, we have

dimR Cα(∆̂)k = ( f 0
2 − f 0

1 + f 0
0 )

(
k + 2

2

)
+

f 0
1∑

i=1

(
k + 2 − αi − 1

2

)

−

f 0
0∑

i=1

∑
β j∈βi

(
k + 2 − β j

2

)
− NΩi

(
k + 2 −Ωi

2

)
− NΩi+1

(
k + 2 −Ωi − 1

2

) ,
for k >> 0.

(3.7)

Proof. The Hilbert polynomial of each graded module can be determined and then

by applying Theo. 3.4.8, the conclusion can be drawn. �

Example 3.4.10 Let’s apply this result to Ex. 3.1.1. ∆ has points at (1, 0), (0, 1),

(−1, 0), (−1,−1) and α = (1, 1, 1, 1) and it has only one interior vertex γ (the origin)

and J(γ) = 〈y2, x2, (y + x − 2z)2〉, which is the minimal generating set for J(γ).

Then Ω = b(2 + 2 + 2 − 3)/(3 − 1)c + 1 = 2 and N2 = (2 − 2 + 1).3 − (2 + 1) = 0,

N2+1 = 2 + 2 + 2 + (1 − 3).2 = 2. By Theo. 3.4.9,

dimR Cα(∆̂)k = (4 − 4 + 1)
(
k + 2

2

)
+ 4.

(
k + 2 − 1 − 1

2

)
−

[
3.
(
k + 2 − 2

2

)
− 0.

(
k + 2 − 2

2

)
− 2.

(
k + 2 − 2 − 1

2

)]
=

(
k + 2

2

)
+

(
k
2

)
+ 2.

(
k − 1

2

)
.
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for k >> 0.

Example 3.4.11 Let ∆ be a planar simplicial complex with vertices at (0, 0), (−1, 2),

(−1,−2), (−3, 0), (5, 0) and α = (1, 2, 2, 3).

Figure 3.2: Planar simplicial complex

In this example, ∆ has only one interior vertex γ (the origin) and J(γ) = 〈(2x +

y)2, y3, (2x − y)3, y4〉, which has the minimal generating set 〈(2x + y)2, y3, (2x − y)3〉.

Then, Ω = b(2 + 3 + 3 − 3)/(3 − 1)c+1 = 3 and N3 = (3−2+1)+2.(3−3+1)−(3+1) =

0, N3+1 = 2 + 3 + 3 + (1 − 3).3 = 2. By Theo. 3.4.9,

dimR Cα(∆̂)k = (4 − 4 + 1)
(
k + 2

2

)
+

(
k + 2 − 1 − 1

2

)
+ 2.

(
k + 2 − 2 − 1

2

)
−

[(
k + 2 − 2

2

)
+ 2.

(
k + 2 − 3

2

)
− 0.

(
k + 2 − 3

2

)
− 2.

(
k + 2 − 3 − 1

2

)]
=

(
k + 2

2

)
+ 2.

(
k − 2

2

)
for k >> 0.

Example 3.4.12 In this example, we have a more complicated figure:

Figure 3.3: Complicated figure
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On the three edges of the interior vertices, we take αi = 2 and on the six edges

connecting the interior vertices to the boundary vertices, we have αi = 3. Hence, for

each of the interior vertices J(γ) = (L3
1, L

3
2, L

4
3, L

4
4) where each Li are distinct linear

forms. Then, J(γ) is minimally generated by (L3
1, L

3
2, L

4
3). Then,

Ω = b(3 + 3 + 4 + 4 − 4)/(4 − 1)c + 1 = 4 and

N4 = (4−3+1)+ (4−3+1)+ (4−4+1)− (4+1) = 0, N4+1 = 3+3+4+ (1−3).4 = 2.

By Theo. 3.4.9,

dimR Cα(∆̂)k = (7 − 9 + 3)
(
k + 2

2

)
+ 3

(
k + 2 − 2 − 1

2

)
+ 6

(
k + 2 − 3 − 1

2

)
− 3

[
2
(
k + 2 − 3

2

)
+

(
k + 2 − 4

2

)
− 0

(
k + 2 − 4

2

)
− 2

(
k + 2 − 4 − 1

2

)]
=

(
k + 2

2

)
− 3

(
k − 1

2

)
+ 3

(
k − 2

2

)
+ 6

(
k − 3

2

)
for k >> 0.

If we try to apply the method given by Geramita and Schenck in dimension 3, we have

two important problems to consider: one is the Hilbert function of the corresponding

fat points, which is much harder to compute than the case P1, and the second is the

second homology of the corresponding chain complex, which is not always zero. In

Chapter 5, we will use this method to obtain some new results.
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CHAPTER 4

SPLINES WITH MIXED SMOOTHNESS DEGREE ON

POLYHEDRAL COMPLEXES1

4.1 Splines with Mixed Smoothness Degrees on Polyhedral Complexes

In [11], Billera and Rose give a homological approaches to splines. They show

that for a polyhedral complex ∆ and fixed smoothness degree r, Cr
k(∆) ' Cr(∆̂)k,

and Cr(∆̂) = ∪Cr(∆̂)k. Hence the dimension of the vector space of splines becomes

the Hilbert function of a graded algebra. This means that dim Cr
k(∆) is given by a

polynomial in k, f (∆, r, k), for sufficiently large k, called the Hilbert polynomial. In

[23], McDonald and Schenck give a method to determine the first three coefficients

of the polynomial f (∆, r, k). In case of dimension 2, their method gives the exact

polynomial. In this chapter we will extend their method by the techniques given

in [18] for the splines having different smoothness degree α = {α1, . . . , α f 0
d−1
} on 2-

dimensional polyhedral complex ∆.

In [11], for a d-dimensional polyhedral complex ∆, Billera and Rose give the exact

sequence

0→ Cr(∆̂)→ R̂ f d
⊕ R̂ f 0

d−1(−r − 1)
φ
→ R̂ f 0

d−1 → N → 0,

where

φ =

 ∂d

∣∣∣∣∣∣∣∣∣∣∣∣
lr+1
τ1

. . .

lr+1
f 0
d−1

 .
and N is the cokernel of φ and R̂ = R[x, y, z]. By applying Hilbert polynomial HP()

1This work has been done under the supervision of co-advisor Selma Altınok; see [1].
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to the sequence we get

HP(Cr(∆̂), k) = fdHP(R̂, k) + f 0
d−1HP(R̂(−r − 1), k) − f 0

d−1HP(R̂, k) + HP(N), k).

In [11], Billera and Rose show that N is supported on primes of codimension at least 2.

Hence calculating the kd−2 coefficient of the Hilbert polynomial of Cr(∆̂) is equivalent

to calculating the kd−2 coefficient of the Hilbert polynomial of N since the contribution

of the other terms of the kd−2 coefficient of the Hilbert polynomial of Cr(∆̂) can be

calculated combinatorially. Moreover Billera and Rose’s result implies that N has a

Hilbert polynomial of degree d − 2. Because of that in d = 2 case HP(N, k) becomes

a constant, (we will use ad−2(M) to denote the kd−2 coefficient of any graded module

M), hence we represent it as a0(N).

In the exact sequence N is the cokernel of the map φ, so

N ' (
⊕
τ∈∆0

d−1

R/lr+1
τ )/∂d.

Using localization techniques, Mcdonald and Schenck show that any codimension-

2 associated primes of N are linear. This result produces a list of candidates for

codimension-2 linear primes. As a result of this, they describe the submodule of N

supported in dimension (d − 2). The only contribution to the kd−2 coefficient of the

Hilbert polynomial of N comes from the elements of that submodule. The work of

Mcdonald and Schenck is done for the fixed smoothness degree r, that is, all d-faces

intersect along (d − 1)- interior faces with the same smoothness degree r.

In [23] Mcdonald and Schenck states the following equality;

HP(Cr(∆̂), k) = ( f2 − f 0
1 )

(
k + 2

2

)
+ f 0

1

(
k + 2 − r − 1

2

)
+ a0(N)

=
f2

2
k2 + 3

f2 − 2(r + 1) f 0
1

2
k + f2 + (

(
r
2

)
− 1) f 0

1 +
∑

ψ j∈H1(Gξi (∆))

c j,
(4.1)

where c j = a0(HP(R̂/Iψ j)).

Here a0 gives the constant term of the Hilbert polynomial of R/Iψ j , where Iψ j =

(lr+1
1 , lr+1

2 , . . . , lr+1
n j

).

In [23, Lemma 3.13], for a codimension-2 minimally generated ideal

Iψ = (lr+1
1 , lr+1

2 , . . . , lr+1
n j

),
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R̂/Iψ has the free resolution:

0→ R̂(−r − 1 − α(ψ))s1(ψ) ⊕ R̂(−r − 2 − α(ψ))s2(ψ) → R̂(−r − 1)n → R̂→ R̂/I,

where α(ψ) =
⌊

r+1
n−1

⌋
, s1(ψ) = (n − 1)α(ψ) + n − r − 2, and s2(ψ) = r + 1 − (n − 1)α(ψ).

Here we are interested in a free resolution of R̂/Iψ for a codimension-2 minimally

generated ideal Iψ j = (lα1+1
1 , lα2+1

2 , . . . , l
αn j +1
n j ).

Our aim is to refine Eqn. (4.1) for different smoothness degrees of polynomials.

Theorem 4.1.1 For a 2-dimensional hereditary, pure polyhedral complex ∆, we have

HP(Cr(∆̂), k) = ( f2 − f 0
1 )

(
k + 2

2

)
+

f 0
1∑

i=1

(
k + 2 − αi − 1

2

)
+ a0(N)

= ( f2 − f 0
1 )

(
k + 2

2

)
+

f 0
1∑

i=1

(
k + 2 − αi − 1

2

)
+

∑
ψ j∈H1(Gξi (∆))

c j,

(4.2)

where c j = a0(HP(R̂/Iψ j)) for Iψ j = (lα1+1
1 , lα2+1

2 , . . . , l
αn j +1
n j ) will be given explicitly.

From now on we suppose that the smoothness degree is mixed, that is,

α = (α1, . . . , α f 0
d−1

),where the αi are not necessarily all equal. Then the exact sequence

changes into the following one:

0→ Cr(∆̂)→ R̂ f d
⊕

f 0
d−1⊕

i=0

R̂(−αi − 1)
φ
→ R̂ f 0

d−1 → N → 0,

where

φ =

 ∂d

∣∣∣∣∣∣∣∣∣∣∣∣∣
lα1+1
τ1

. . .

l
α f 0

d−1
+1

τ f 0
d−1

 .
The cokernel N of φ is isomorphic to

N ' (
⊕
τi∈∆

0
d−1

R/lri+1
τi

)/∂d.

We can start to convert the theory constructed in [23] for a mixed smoothness degree.
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Lemma 4.1.2 If J is a codimension-2 associated prime ideal of N, then J contains a

linear form 〈lτ〉, where τ ∈ ∆0
d−1.

Proof.([23, Lemma 3.1]) Suppose that J contains no lτ, then lτ becomes invertible

in RJ, and this implies that NJ = 0. Since J is an associated prime of N, it is not

possible. �

Lemma 4.1.3 (Version of [23, Lemma 3.2] for a mixed order) For a codimension-

2 linear space ξ, if σ ∈ ∆d has at most one facet whose linear span contains ξ, then

in the localization NI(ξ), every generator of N corresponding to a facet of σ goes to

zero

Proof. Suppose that lτ1 is the linear span of the facet of σ that contains ξ, then all the

other facets of σ become invertible in RI(ξ). The generators of N corresponding to σ

are as follows:

〈1 + lα1+1
τ1

, lα2+1
τ2

, . . . , lα j+1
τ j 〉 + im ∂d,

〈lα1+1
τ1

, 1 + lα2+1
τ2

, . . . , lα j+1
τ j 〉 + im ∂d,

...

〈lα1+1
τ1

, lα2+1
τ2

, . . . ,1 + lα j+1
τ j 〉 + im ∂d.

Here it is clear that R − I(ξ) annihilates the generators of N except the first one, since

it contains all lτi , for i ≥ 2. But if we multiply the first component of N with the

element f1− f2 of R− I(ξ) then it falls into im ∂d. So R− I(ξ) annihilates N, i.e., in the

localization NI(ξ) every generators of N corresponding to a facet of σ goes to zero. �

Theorem 4.1.4 If J is a codimension-2 associated prime ideal of N then it has the

form 〈lτi , lτ j〉 for τi, τ j ∈ ∆0
d−1.

Proof. Suppose that there is only one lτ in J, then by Lem. 4.1.2 only one hyperplane

which is the linear span of τ ∈ ∆0
d−1 contains V(J). Then, except for lτ, all the linear

forms lτi becomes invertible in RJ, by Lem. 4.1.3 NJ vanishes. This contradicts the

fact that J is an associated prime. �

To determine the codimension-2 associated primes on a polyhedral complex we need

more geometric knowledge than in case of a simplicial complex. In the simplicial
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case, the codimension-2 associated primes are the vertices of the complex. In light of

the above information we can determine the candidates of the codimension-2 associ-

ated primes of N. To decide exactly which codimension-2 associated primes exist we

will give a kind of dual graph definition which is related to both the combinatorics

and the geometry of a complex ∆.

Definition 4.1.5 ([23, Definition 3.5]) For ∆ a d-dimensional polyhedral complex and

ξ a codimension-2 linear subspace, Gξ(∆) is defined to be the graph whose vertices

correspond to σ ∈ ∆d which has a (d − 1)-dimensional face whose linear span con-

tains ξ. Two vertices of Gξ(∆) are connected if and only if the corresponding d-faces

intersect along a (d − 1)-face whose linear span contains ξ.

Illustrate the definition, I will give here the example given in [23] by Mcdonald and

Schenck.

Example 4.1.6 Let ∆ be the polyhedral complex drawn as in the Fig. 4.1.

uu
u u

u

u

σ1 σ2

σ3

σ4

Figure 4.1: Polyhedral complex containing extra codimension-2 space except the in-
terior vertices

In this example, for every interior vertex v, Gv(∆) is a triangle. Apart from the interior

vertices, there is another codimension-2 space which is the intersection point of the

edges connecting the interior vertices with the boundary vertices. If we name this

point as p0, then Gp0(∆) is also a triangle and depicted as in the Fig. 4.2

In Fig. 4.1, if we move the top point of the outer triangle we get another polyhedral
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uu

u

v1 v2

v3

Figure 4.2: Associated dual graph Gp0(∆) for the point p0 in Fig. 4.1

complex ∆
′

having the same combinatorial properties as ∆. But in the new figure

there is no additional codimension-2 space as above.

Corollary 4.1.7 ([23, Corollary 3.8]) Gξ(∆) is homotopic to a disjoint union of cir-

cles and segments

Proof. This corollary is a consequence of [23, Lemma 3.7]. �

By this stage, we get all the candidates of the codimension-2 associated primes of

N, but we are not sure which of them exactly exist. Mcdonald and Schenck give two

important results [23, Theorem 3.9, Proposition 3.10] which we now restate for mixed

smoothness degree but we will use the same technique with them in their proof.

Theorem 4.1.8 ([23], Theorem 3.9) Let ∆ be a polyhedral complex and ξ a codimension-

2 linear prime, then

NI(ξ) '
⊕

ψ∈H1(Gξ(∆))

(R/Iψ)I(ξ),

where ψ ∈ H1(Gξ(∆)) denotes the set of components of Gξ(∆) that are homotopic to a

circle, and

Iψ =
〈
lαi+1
τi | τi ∈ ∆0

d−1corresponds to an edge of ψ
〉
.

Proof. By Cor. 4.1.7, Gξ(∆) is formed from circles and segments but the generators of

N lying on segments in the localization NI(ξ) go to zero by Lem. 4.1.3. Then for any

σ ∈ ∆ corresponding to a vertex having valence two, there are elements τi, τ j ∈ ∆0
d−1

such that in the localization RI(ξ), lτi , lτ j are not invertible but all the other linear forms
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of facets of σ become units. If we eliminate the column corresponding to σ in ∂d

with the unit entries of the columns of DI(ξ) we get a column having nonzero entries

only in the row corresponding to τi, τ j. Repeating these steps we see that the cycle

corresponds to an essential submodule of NI(ξ), with the generator quotiented by the

(αk + 1) powers of the forms corresponding to the edges of the cycle. �

Proposition 4.1.9 ([23, Proposition 3.10]) Let P be the set of all codimension 2 as-

sociated primes of N. Then there is a graded exact sequence

0 −→ K −→ N −→
⊕

ψ∈H1(Gξ(∆))
Q∈P

R̂/Iψ −→ C −→ 0,

where K and C are supported in codimension at least 3. �

Corollary 4.1.10 Let P be the set of all codimension-2 associated primes of N. Then

ad−2(Cα(∆̂)) =ad−2(R̂ fd− f 0
d−1) +

f 0
d−1∑

i=1

ad−2(R̂(−αi − 1))

+
∑
Q∈P

∑
ψ j∈H1(GV(Q)(∆))

ad−2(R̂/Iψ j).

�

We take Iψ as the ideal minimally generated by
〈
lα1+1
1 , lα2+1

2 , . . . , lαn+1
n

〉
with different

exponents. In [18], Geramita and Schenck give the following lemma:

Lemma 4.1.11 Any minimally generated ideal Iψ = 〈lα1+1
1 , lα2+1

2 , . . . , lαn+1
n 〉 ⊂

R[x0, x1, x2] = R̂, R̂/Iψ has a resolution as follows:

0→ R̂(−Ω)NΩ ⊕ R̂(−Ω − 1)NΩ+1 → ⊕n
i=1R̂(−αi − 1)→ R̂→ R̂/Iψ → 0,

where Ω =
⌊∑n

i=1(αi+1)−n
n−1

⌋
+ 1, NΩ =

∑n
i=1(Ω − (αi + 1) + 1) − (Ω + 1) and

NΩ+1 =
∑n

i=1(αi + 1) + (1 − n)Ω.

It follows that the Hilbert polynomial of R̂/Iψ is

HP(R̂/Iψ, k) =

(
k + 2

2

)
−

n∑
i=1

(
k + 2 − αi − 1

2

)
+

NΩ

(
k + 2 −Ω

2

)
+ NΩ+1

(
k −Ω − 1 + 2

2

)
. (4.3)
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Hence, it gives that:

a1(R̂/Iψ, k) = a2(R̂/Iψ, k) = 0,

a0(R̂/Iψ, k) = 1 −
n∑
i

(
αi

2

)
+ NΩ

(
Ω − 1

2

)
+ NΩ+1

(
Ω

2

)
.

Proof of Theo. 4.1.1. We have

HP(Cα(∆̂), k) = ( f2 − f 0
1 )

(
k + 2

2

)
+

f 0
1∑

j=1

(
k + 2 − α j − 1

2

)
+ a0(N),

where a0(N) = HP(N, k). We need to determine a0(N). By Prop. 4.1.9, we obtain

a0(N) =
∑
Q∈P

∑
ψ j∈H1(GV(Q)(∆))

a0(R̂/Iψ j).

Hence the theorem follows. �

As a result of this, we obtain

Corollary 4.1.12 Under the same assumption of Theo. 4.1.1,

HP(Cr(∆̂), k) =
f2

2
k2 +

1
2

(3 f2 − 2
f 0
1∑

i=1

(αi + 1))k + f2 +

f 0
1∑

i=1

(
(
αi

2

)
− 1)

+
∑
Q∈P

∑
ψ j∈H1(GV(Q)(∆))

1 −
n j∑
i

(
αi

2

)
+ NΩ j

(
Ω j − 1

2

)
+ NΩ j+1

(
Ω j

2

)
.

In the planer simplicial case, the codimension 2 associated primes J corresponding

to a codimension 2 space ξ are vertices of a simplex. We are interested in ξ such that

H1(Gξ(∆)) , 0, which are exactly the interior vertices. For each interior vertex there

is only one corresponding cycle in the dual graph Gξ(∆). Hence we obtain a formula

for planer mixed splines on a simplicial complex as follows.

Corollary 4.1.13 For mixed splines on a simplicial planer complex ∆,

HP(Cα(∆̂), k) = ( f2 − f 0
1 + f 0

0 )
(
k + 2

2

)
+

f 0
1∑

i=1

(
k + 2 − αi − 1

2

)

−

f 0
0∑

j=1

 n j∑
i=1

(
k + 2 − αi − 1

2

)
− NΩ j

(
k + 2 −Ω j

2

)
− NΩ j+1

(
k −Ω j − 1 + 2

2

) , (4.4)

for k sufficiently large.
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This equality coincide with the formula given by Geramita and Schenk in [18].

4.2 Examples

Example 4.2.1 In this example we will apply Theo. 4.1.1 to the complex ∆ with

four 2-faces, six interior 1-faces and three interior vertices as given in the Fig. 4.1.

We choose p1 = (0, 2), p2 = (2,−1), p3 = −(2,−1), p4 = (0, 4), p5 = (4,−2),

u u
u

u

u

u
u

p1

p2p3

p4

p5p6

Figure 4.3: ∆ with four 2-faces, six interior 1-faces and three interior vertices

p6 = (−4,−2). In the Fig. 4.3, p0 is the intersection of the lines connecting the

interior vertices with the boundary vertices, that is, the intersection point of the dotted

lines. Here li implies the homogenized form of the linear space li. Then we have

l1

l2l3

l4 l5

l6

Figure 4.4: Ordered form of the linear forms of the Fig. 4.1
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l1 : x = 0, l2 : x + 2y = 0, l3 : x − 2y = 0,

l4 : 2y − 3x − 4z = 0, l5 : 2y + 3x − 4z = 0, l6 : y + z = 0.

2-faces intersect along the interior 1-faces with smoothness degree αi. Here α is given

as

α = (α1, α2, α3, α4, α5, α6)

= (1, 2, 1, 1, 1, 2).

Let F = ( f1, f2, f3, f4) ∈ R[x, y, z]4 satisfying F|σ̂i = fi. Then F ∈ Cr(∆̂) if and only if

it satisfies the algebraic property given below;

f1 − f2 + g1x2 = 0, f1 − f4 + g4(2y − 3x − 4z)2 = 0,

f2 − f3 + g2(x + 2y)3 = 0, f2 − f4 + g5(2y + 3x − 4z)2 = 0,

f1 − f3 + g3(x − 2y)2 = 0, f3 − f4 + g6(y + z)3 = 0.

If we rewrite these equations in a matrix form we get φ as follows

φ.( f1, f2, f3, f4, g1, g2, g3, g4, g5, g6)T = 0,

where

We can write down the graded exact sequence:

0→ Cr(∆̂)→ R̂4 ⊕ R̂(−2)4 ⊕ R̂(−3)2 φ
→ R̂6 → N → 0.

By using the additivity of Hilbert polynomial on exact sequences we get

HP(Cr(∆̂)) = −2
(
k + 2

2

)
+ 4

(
k
2

)
+ 2

(
k − 1

2

)
+ HP(N, k),

= 2k2 − 8k + HP(N, k).
(4.5)

To find the elements of N contributing to the k0 coefficient of the Hilbert polyno-

mial, we define the codimension-2 prime ideals associated to N. By [23] possible

candidates of the codimension-2 prime ideals associated to N can be determined as
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φ
=

                                     1
−

1
0

0
x2

0
0

0
0

0

0
0
−

1
0

0
(x

+
2y

)3
0

0
0

1
0
−

1
0

0
0

(x
−

2y
)2

0
0

0

1
0

0
−

1
0

0
0

(2
y
−

3x
−

4z
)2

0
0

0
0

0
−

1
0

0
0

0
(2

y
+

3x
−

4z
)2

0

0
0

1
−

1
0

0
0

0
0

(y
+

z)
3                                     .
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follows:

Q1 : 〈l1, l2〉 = 〈x, 2y + x〉, Q9 : 〈l2, l6〉 = 〈2y + x, y + z〉,

Q2 : 〈l1, l3〉 = 〈x, 2y − x〉, Q10 : 〈l3, l4〉 = 〈2y − x, 2y − 3x − 4z〉,

Q3 : 〈l1, l4〉 = 〈x, 2y − 3x − 4z〉, Q11 : 〈l3, l5〉 = 〈2y − x, 2y + 3x − 4z〉,

Q4 : 〈l1, l5〉 = 〈x, 2y + 3x − 4z〉, Q7 : 〈l2, l4〉 = 〈2y + x, 2y − 3x − 4z〉,

Q5 : 〈l1, l6〉 = 〈x, y + z〉, Q8 : 〈l2, l5〉 = 〈2y + x, 2y + 3x − 4z〉,

Q6 : 〈l2, l3〉 = 〈2y + x, 2y − x〉, Q14 : 〈l4, l6〉 = 〈2y − 3x − 4z, y + z〉,

Q12 : 〈l3, l6〉 = 〈2y − x, y + z〉, Q15 : 〈l5, l6〉 = 〈2y + 3x − 4z, y + z〉,

Q13 : 〈l4, l5〉 = 〈2y − 3x − 4z, 2y + 3x − 4z〉.

Now we need to decide which codimension-2 associated primes of N has non-zero

H1(GV(Q)(∆)). By [23, Corollary 3.11], it is shown that

a0(Cr(∆̂)) = a0(R̂ f2− f 0
1 ) +

∑
Q∈℘

∑
ψ j∈H1(GV(Q)(∆))

a0(R̂/Iψ j).

Here ψ ∈ H1(GV(Q)(∆) means that ψ is a component of GV(Q)(∆) homotopic to S 1, and

Iψ = 〈lαi+1
τ |τ ∈ ∆̂0

d−1 corresponds to an edge of ψ〉.

For Q1 = 〈x, 2y + x〉 ∈ ℘,V(Q1) = V(Q2) = V(Q6) = p0 and then Gp0 is as follows:

This figure is homotopic to S 1. For the ideal Iψ0 = 〈x2, (x + 2y)3, (x − 2y)3〉, it is the

uu

u

v1 v3

v2

Figure 4.5: Gp0(∆)

minimally generated ideal 〈x2, (x − 2y)2〉. Hence R̂/Iψ0 has the following resolution

by Lem. 4.1.11:

0→ R̂(−4)→ R̂(−2)2 → R̂→ R̂/Iψ0 → 0,
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where Ωp0 = 3, NΩp0
= 0 and NΩp0 +1 = 1. Then the constant term of the Hilbert

polynomial of R̂/Iψp0
is equal to

HP(R̂/Iψ0 , k) =

(
k + 2

2

)
− 2

(
k
2

)
+

(
k − 2

2

)
=

1
2

[(k + 2).(k + 1) − 2.k.(k − 1) + (k − 2).(k − 3)]

= 4.

Similarly, for Q3 = 〈x, 2y−3x−4〉 ∈ ℘,V(Q3) = p1 = V(Q4) = V(Q13) and then Gp1 is

as follows: Again, it is homotopic to S 1. The ideal Iψ1 = 〈x2, (2y+3x−4z)2, (2y−3x−

uu

u

v1 v4

v2

Figure 4.6: Gp1(∆)

4z)2〉 is itself a minimally generated ideal. Hence, R̂/Iψ1 has the following resolution

by Lem. 4.1.11:

0→ R̂(−2)0 ⊕ R̂(−3)2 → R̂(−2)3 → R̂→ R̂/Iψ1 → 0,

where Ωp1 = 2, NΩp1
= 0 and NΩp1 +1 = 2. Then the constant term of the Hilbert

polynomial of R̂/Iψp1
is:

HP(R̂/Iψ1 , k) =

(
k + 2

2

)
− 3

(
k
2

)
+ 2

(
k − 1

2

)
=

1
2

[(k + 2)(k + 1) − 3k(k − 1) + 2(k − 1)(k − 2)]

= 3.

For Q8 = 〈x + 2y, 2y + 3x − 4〉 ∈ ℘,V(Q8) = p2 = V(Q9) = V(Q15), and then

Gp2 becomes a triangle means that it is homotopic to S 1. The ideal Iψ2 = 〈(x +

2y)3, (y+z)3, (2y+3x−4z)2〉 is minimally generated ideal. Then R̂/Iψ2 has the following

resolution by Lem. 4.1.11:

0→ R̂(−4)2 → R̂(−2) ⊕ R̂(−3)2 → R̂→ R̂/Iψ2 → 0,
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where Ωp2 = 3, NΩp2
= 0 and NΩp2 +1 = 2. Then the constant term of the Hilbert

polynomial of R̂/Iψp2
is equal to

HP(R̂/Iψ2 , k) =

(
k + 2

2

)
−

(
k
2

)
− 2

(
k − 1

2

)
+ 2

(
k − 2

2

)
,

=
1
2

[(k + 2).(k + 1) − k.(k − 1) − 2.(k − 1).(k − 2) + 2.(k − 2).(k − 3)],

= 5.

For Q10 = 〈x − 2y, 2y − 3x − 4〉 ∈ ℘,V(Q10) = p3 = V(Q12) = V(Q14), and then Gp3

is homotopic to S 1. The ideal Iψ3 = 〈(2y − 3x − 4z)2, (y + z)3, (x − 2y)2〉 is minimally

generated ideal 〈(x − 2y)2, (2y − 3x − 4z)2〉. Then the constant term of the Hilbert

polynomial of R̂/Iψp3
is equal to R̂/Iψp0

, hence it has HP(R̂/Iψp3
, k) = 4. Then by the

Eqn. (4.5) HP(Cr(∆̂), k) is equivalent to:

HP(Cr(∆̂), k) = −2
(
k + 2

2

)2

+ 4
(
k
2

)
+ 2

(
k − 1

2

)
+ HP(N, k),

= 2k2 − 8k + 4 + 3 + 5 + 4,

= 2k2 − 8k + 16.

To check whether the result is true we use the exact sequence

0→ ker(M(∆̂, α))→ R̂4 ⊕ R̂(−2)4 ⊕ R̂(−3)2 → im(M(∆̂, α))→ 0,

and calculate HP(ker(M(∆̂, α)), k) since it is equivalent to HP(Cr(∆̂), k). Firstly we

calculate HP(im(M(∆̂, α)), k) by using CoCoA as follows:

Use R ::= QQ[x,y,z];

M:=[[1,0,1,1,0,0],[-1,1,0,0,1,0],[0,-1,-1,0,0,1],[0,0,0,1,1,1],

[x^2,0,0,0,0,0],[0,(x+2y)^3,0,0,0,0],[0,0,(x-2y)^2,0,0,0],

[0,0,0,(2y-3x-4z)^2,0,0],[0,0,0,0,(2y+3x-4z)^2,0],[0,0,0,0,0,

(y+z)^3]];

N:=Module(M);

I:=LT(N);

Hilbert(I);

H(0) = 3

H(1) = 9

H(2) = 22

H(t) = 3t^2 + 9t - 10 for t >= 3
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Then HP(im(M(∆̂, α)), k) = 3k2 + 9k − 10 for k ≥ 3. By the above exact sequence we

have

HP(ker(M(∆̂, α)), k) = 4
(
k + 2

2

)
+ 4

(
k
2

)
+ 2

(
k − 1

2

)
− HP(im(M(∆̂, α)), k)

= 2(k2 + 3k + 2) + 2(k2 − k) + (k2 − 3k + 2) − (3k2 + 9k − 10)

= 2k2 − 8k + 16.

As we see two results coincide.

Example 4.2.2 In this example, we work on the polyhedral complex ∆ given in the

Fig. 4.7: ∆ has thirteen 2-faces and twenty interior 1-faces. We choose,

u

u
u

u

u

u

u

u
u

u

u

u

σ1

σ2
σ3

σ4

σ5
σ6

σ7

σ8

σ9

σ10

σ11

σ12

σ13

Figure 4.7: Polyhedral complex with thirteen 2-faces and twenty interior 1-faces

p1 = (−2, 1), p2 = (2, 1), p3 = (2,−1), p4 = (−2,−1), p5 = (−4, 2),

p6 = (4, 2), p7 = (4,−2), p8 = (−4,−2), p9 = (−8, 4), p10 = (8, 4),

p11 = (8,−4), p12 = (−8,−4),
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u
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u

u

u
u

u

u

u

up0

p1 p2

p3p4

p5 p6

p7p8

p9 p10

p11p12

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

l12

l13l14

Figure 4.8: Ordered forms of the points and the linear forms of the Fig. 4.7

and smoothness degree

r = (r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20)

= (1, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 2, 2, 1, 3, 2, 3, 2, 1, 2).

And ( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13) ∈ R[x, y]13 gives an element of Cr(∆̂)
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if and only if

f2 − f3 + g1(x + 6y − 8z)2 = 0, f5 − f11 + g11(x − 4z)4 = 0,

f3 − f4 + g2(x − 2y)2 = 0, f11 − f12 + g12(x + 2y)3 = 0,

f4 − f5 + g3(3x − 2y − 8z)3 = 0, f7 − f12 + g13(y + 2z)3 = 0,

f5 − f6 + g4(x + 2y)2 = 0, f12 − f13 + g14(x − 2y)2 = 0,

f6 − f7 + g5(x + 6y + 8z)3 = 0, f9 − f13 + g15(x + 4z)4 = 0,

f7 − f8 + g6(x − 2y)3 = 0, f10 − f13 + g16(x + 2y)3 = 0,

f8 − f9 + g7(3x − 2y + 8z)4 = 0, f1 − f2 + g17(y − z)4 = 0,

f2 − f9 + g8(x + 2y)3 = 0, f1 − f4 + g18(x − 2z)3 = 0,

f3 − f10 + g9(y − 2z)3 = 0, f1 − f6 + g19(y + z)2 = 0,

f10 − f11 + g10(x − 2y)2 = 0, f1 − f8 + g20(x + 2z)3 = 0.

Hence the matrix form φ satisfies:

φ( f1, f2, . . . , f13, g1, g2, . . . , g20)T = 0,

where

φ =

 ∂d

∣∣∣∣∣∣∣∣∣∣∣∣
lα1+1
τ1

. . .

lα20+1
τ20

 .
So, we have the graded exact sequence:

0→ Cr(∆̂)→ R̂13 ⊕ R̂(−2)6 ⊕ R̂(−3)10 ⊕ R̂(−4)4 φ
→ R̂20 → N → 0.

By using the additivity of Hilbert polynomial on exact sequences we get

HP(Cr(∆̂, k)) = −7
(
k + 2

2

)
+ 6

(
k
2

)
+ 10

(
k − 1

2

)
+ 4

(
k − 2

2

)
+ HP(N, k)

=
13
2

k2 −
77
2

k + 15 + HP(N, k).
(4.6)

To find the elements of N contributing to the k0 coefficient of the Hilbert polyno-

mial of Cr(∆̂), we find the codimension-2 prime ideals associated to N satisfying that

H1(GV(Q)(∆)) , 0. At the points p1, p2, p3, p4, p5, p6, p7, p8 in ∆ together with the

point p0 which is not contained in ∆, H1(GV(Q)) is homotopic to a circle. Hence by

the Theo. 4.1.1 we get

HP(N, k) =a0(R̂/Iψ0) + a0(R̂/Iψ1) + a0(R̂/Iψ2) + a0(R̂/Iψ3) + a0(R̂/Iψ4) + a0(R̂/Iψ5)

+ a0(R̂/Iψ6) + a0(R̂/Iψ7) + a0(R̂/Iψ8).
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For example, for p0, Gp0(∆) is as follows: Gp0(∆) consists of a tetrahedron and four

s s s s s s
s s s s s s

v13

v10 v11

v12

v5 v6v2 v9

v7 v8 v3 v4

Figure 4.9: Gp0(∆) for p0

line segments. In case of the tetrahedron component, Gp0(∆) is homotopic to a circle.

So Iψp0
= 〈(x−2y)2, (x+2y)3〉, and it is minimally generated. Then it has the following

resolution:

0→ R̂(−4)0 ⊕ R̂(−5)→ R̂(−2) ⊕ R̂(−3)→ R̂→ R̂/Iψ0 → 0,

where Ωp0 = 4, NΩp0
= 0 and NΩp0 +1 = 1. Then the constant term of the Hilbert

polynomial of R̂/Iψp0
is equal to

HP(R̂/Iψp0
, k) =

(
k + 2

2

)
−

(
k
2

)
−

(
k − 1

2

)
+

(
k − 3

2

)
=

1
2

[(k + 2).(k + 1) − k.(k − 1) − (k − 1).(k − 2) + (k − 3).(k − 4)]

=6.

We find the result in a similar way at the other points, and we obtain the table: When

we replace all the calculations in Eqn. (4.6) we find HP(Cr(∆̂), k) as follows:

HP(Cr(∆̂), k) =
13
2

k2 −
77
2

k + 15 + HP(N, k)

=
13
2

k2 −
77
2

k + 15 + 6 + 8 + 4 + 4 + 5 + 5 + 5 + 5 + 6

=
13
2

k2 −
77
2

k + 63.

for sufficiently large k.
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Figure 4.10: Polyhedral complex resembling to a spider web
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Figure 4.11: Ordered forms of the points and the linear forms of the Fig. 4.10
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Table 4.1: Table giving the some properties of Gp(∆)

p ∈ ∆0
0 Gp(∆) Iψ m.g.ideal HP(R/Iψ, k)

p0 a tetrahedron and 4 line segments 〈l2
14, l

3
13〉 6

p1 a tetrahedron and 3 line segments 〈l3
4, l

3
13, l

4
3〉 8

p2 a tetrahedron and 3 line segments 〈l2
5, l

2
14〉 4

p3 a tetrahedron and 3 line segments 〈l2
3, l

2
4〉 4

p4 a tetrahedron and 3 line segments 〈l2
1, l

3
7, l

3
14〉 5

p5 a pentagon and 2 line segments 〈l2
5, l

3
13, l

3
9〉 5

p6 a pentagon and 2 line segments 〈l2
14, l

3
6, l

3
9〉 5

p7 a pentagon and 2 line segments 〈l2
13, l

3
7, l

3
11〉 5

p8 a pentagon and 2 line segments 〈l2
2, l

3
11〉 6

Example 4.2.3 In this example, we work on the polyhedral complex ∆ given in the

Fig. 4.10: ∆ has seventeen 2-faces, and thirty two interior 1-faces. We choose

p1 = (3, 3), p2 = (4, 0), p3 = (3,−3), p4 = (0,−4), p5 = (−3,−3),

p6 = (−4, 0), p7 = (−3, 3), p8 = (0, 4), p9 = (6, 6), p10 = (8, 0),

p11 = (6,−6), p12 = (0,−8), p13 = (−6,−6), p14 = (−8, 0), p15 = (−6, 6),

p16 = (0, 8), p17 = (9, 9), p18 = (12, 0), p19 = (9,−9), p20 = (0,−12),

p21 = (−9,−9), p22 = (−12, 0), p23 = (−9, 9), p24 = (0, 12),

and smoothness degree

r =(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21,

r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32)

=(3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2).

Then ( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17) ∈ R[x, y]17 gives an
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element of Cr(∆̂) if and only if

f1 − f2 + g1.(x + 3y − 12z)4 = 0, f2 − f10 + g17.(x + 3y − 24z)4 = 0,

f1 − f3 + g2.(3x + y − 12z)4 = 0, f3 − f11 + g18.(3x + y − 24z)3 = 0,

f1 − f4 + g3.(3x − y − 12z)4 = 0, f4 − f12 + g19.(3x − y − 24z)3 = 0,

f1 − f5 + g4.(x − 3y − 12z)3 = 0, f5 − f13 + g20.(x − 3y − 24z)4 = 0,

f1 − f6 + g5.(x + 3y + 12z)4 = 0, f6 − f14 + g21.(x + 3y + 24z)3 = 0,

f1 − f7 + g6.(3x + y + 12z)4 = 0, f7 − f15 + g22.(3x + y + 24z)4 = 0,

f1 − f8 + g7.(3x − y + 12z)3 = 0, f8 − f16 + g23.(3x − y + 24z)4 = 0,

f1 − f9 + g8.(x − 3y + 12z)3 = 0, f9 − f17 + g24.(x − 3y + 24z)3 = 0,

f2 − f3 + g9.(x − y)4 = 0, f10 − f11 + g25.(x − y)3 = 0,

f3 − f4 + g10.y4 = 0, f11 − f12 + g26.y3 = 0,

f4 − f5 + g11.(x + y)3 = 0, f12 − f13 + g27.(x + y)4 = 0,

f5 − f6 + g12.x3 = 0, f13 − f14 + g28.x4 = 0,

f6 − f7 + g13.(x − y)3 = 0, f14 − f15 + g29.(x − y)4 = 0,

f7 − f8 + g14.y4 = 0, f15 − f16 + g30.y4 = 0,

f8 − f9 + g15.(x + y)3 = 0, f16 − f17 + g31.(x + y)3 = 0,

f2 − f9 + g16.x4 = 0, f10 − f17 + g32.x3 = 0.

Hence the matrix form φ satisfies:

φ( f1, f2, . . . , f17, g1, g2, . . . , g32)T = 0,

where

φ =

 ∂d

∣∣∣∣∣∣∣∣∣∣∣∣
lα1+1
τ1

. . .

lα32+1
τ32

 .
Then we have the graded exact sequence:

0→ Cr(∆̂)→ R̂17 ⊕ R̂(−3)15 ⊕ R̂(−4)17 φ
→ R̂32 → N → 0.

By using the additivity of Hilbert polynomial on exact sequences we get

HP(Cr(∆̂)) = −15
(
k + 2

2

)
+ 15

(
k − 1

2

)
+ 17

(
k − 2

2

)
+ HP(N, k)

=
17
2

k2 −
175
2

k + 51 + HP(N, k).
(4.7)
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To find the elements of N contributing to the k0 coefficient of the Hilbert polynomial,

we determine the possible candidates for codimension-2 prime ideals associated to

N:

l1 : x − y = 0, l8 : x − 3y − 12z = 0, l15 : 3x − y − 24z = 0,

l2 : y = 0, l9 : x + 3y + 12z = 0, l16 : x − 3y − 24z = 0,

l3 : x + y = 0, l10 : 3x + y + 12z = 0, l17 : x + 3y + 24z = 0,

l4 : x = 0, l11 : 3x − y + 12z = 0, l18 : 3x + y + 24z = 0,

l5 : x + 3y − 12z = 0, l12 : x − 3y + 12z = 0, l19 : 3x − y + 24z = 0,

l6 : 3x + y − 12z = 0, l13 : x + 3y − 24z = 0, l20 : x − 3y + 24z = 0,

l7 : 3x − y − 12z = 0, l14 : 3x + y − 24z = 0.

To find the elements of N contributing to the k0 coefficient of the Hilbert polyno-

mial of Cr(∆̂), we find the codimension-2 prime ideals associated to N satisfying that

H1(GV(Q)(∆)) , 0. At the points p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13,

p14, p15, p16 in ∆ together with the point p0 which is not contained in ∆, H1(GV(Q)) is

homotopic to a circle. Hence by Theo. 4.1.1 we get

HP(N, k) =a0(R̂/Iψ0) + a0(R̂/Iψ1) + a0(R̂/Iψ2) + a0(R̂/Iψ3) + a0(R̂/Iψ4) + a0(R̂/Iψ5)

+ a0(R̂/Iψ6) + a0(R̂/Iψ7) + a0(R̂/Iψ8) + a0(R̂/Iψ9) + a0(R̂/Iψ10) + a0(R̂/Iψ11)

+ a0(R̂/Iψ12) + a0(R̂/Iψ13) + a0(R̂/Iψ14) + a0(R̂/Iψ15) + a0(R̂/Iψ16).

For example, for p0, Gp0(∆) is as follows:

Both figures are homotopic to cycles. For the left one we get the ideal,

Iψ0,1 = 〈(x − y)4, y4, (x + y)3, x3, (x − y)3, y4, (x + y)3, x4〉.

It is minimally generated by 〈x3, (x − y)3, (x + y)3〉. Then R̂/Iψ0,1 has the following

resolution:

0→ R̂(−4) ⊕ R̂(−5)→ R̂(−3)3 → R̂→ R̂/Iψ0,1 → 0,

where Ωp0,1 = 4, NΩp0,1
= 1 and NΩp0,1 +1 = 1. The Hilbert polynomial of R̂/Iψp0,1

is

constant:
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Figure 4.12: Associated dual graph of p0

HP(R̂/Iψ0,1 , k) =

(
k + 2

2

)
− 3

(
k − 1

2

)
+

(
k − 2

2

)
+

(
k − 3

2

)
=

1
2

[(k + 2)(k + 1) − 3(k − 1)(k − 2) + (k − 2)(k − 3)+

2(k − 3)(k − 4)]

=7.

For the figure on the right we have the ideal,

Iψ0,2 = 〈(x − y)3, y3, (x + y)4, x4, (x − y)4, y4, (x + y)3, x3〉.

It is minimally generated by 〈x3, y3, (x − y)3, (x + y)3〉. Then R̂/Iψ0,2 has the following

resolution:

0→ R̂(−4)3 → R̂(−3)4 → R̂→ R̂/Iψ0,2 → 0,

where Ωp0,2 = 3, NΩp0,2
= 0 and NΩp0,2 +1 = 3. The Hilbert polynomial of R̂/Iψp0,2

is

constant:

HP(R̂/Iψ0,2 , k) =

(
k + 2

2

)
− 4

(
k − 1

2

)
+ 3

(
k − 2

2

)
,

=
1
2

[(k + 2).(k + 1) − 4.(k − 1).(k − 2) + 3.(k − 2).(k − 3)],

= 6.

By applying the same method to the other points, we obtain:

When we replace all the calculations in Eqn. (4.7) we find HP(Cr(∆̂), k) as follows:
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Table 4.2: Table giving the some properties of Gp(∆)

p ∈ ∆0
0 Gp(∆) Iψ m.g.ideal HP(R/Iψ, k)

p0 2 octagons 〈l3
4, l

3
1, l

3
3〉and〈l3

1, l
3
2, l

3
3, l

3
4〉 7 and 6

p1 a triangle and 3 line segments 〈l4
1, l

4
5, l

4
6〉 12

p2 a triangle and 3 line segments 〈l4
2, l

4
6, l

4
7〉 12

p3 a triangle and 3 line segments 〈l3
3, l

3
8, l

3
7〉 8

p4 a triangle and 3 line segments 〈l3
4, l

3
8, l

4
9〉 8

p5 a triangle and 3 line segments 〈l3
1, l

4
9, l

4
10〉 10

p6 a triangle and 3 line segments 〈l3
11, l

4
2, l

4
10〉 10

p7 a triangle and 3 line segments 〈l3
3, l

3
11, l

3
12〉 7

p8 a triangle and 3 line segments 〈l3
12, l

4
4, l

4
5〉 10

p9 a quadrilateral and 2 line segments 〈l3
1, l

4
14, l

4
13〉 8

p10 a quadrilateral and 2 line segments 〈l3
2, l

3
14, l

3
15〉 7

p11 a quadrilateral and 2 line segments 〈l3
3, l

3
15, l

4
16〉 8

p12 a quadrilateral and 2 line segments 〈l3
4, l

3
17, l

4
16〉 8

p13 a quadrilateral and 2 line segments 〈l3
1, l

3
17, l

4
18〉 8

p14 a quadrilateral and 2 line segments 〈l4
2, l

4
18, l

4
19〉 12

p15 a quadrilateral and 2 line segments 〈l3
3, l

3
20, l

4
19〉 8

p16 a quadrilateral and 2 line segments 〈l3
4, l

3
20, l

4
13〉 8

HP(Cr(∆̂), k) =
17
2

k2 −
175
2

k + 51 + HP(N, k)

=
17
2

k2 −
175
2

k + 51 + 7 + 6 + 12 + 12 + 8 + 8 + 10 + 10 + 7 + 10 + 8

+ 7 + 8 + 8 + 8 + 12 + 8 + 8

=
17
2

k2 −
175
2

k + 208,

for sufficiently large k.
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CHAPTER 5

RESULTS IN DIMENSION THREE

In this Chapter, we apply the method for planar splines given by Geramita and Schenck

[18] to dimension 3. While applying the method, we have two important problems to

consider: one of them is the computation of the Hilbert function of the correspond-

ing fat points, which is much harder than the case P1, corresponding to the planar

splines. The other problem is the second homology of the corresponding chain com-

plex, which is not always zero.

First, we develop a formula for simplicial complexes with no interior points.

5.1 Simplicial complexes with no interior point

In this section, we first show that the dimension of the vector space of a spline defined

on an n-gon base, ∆, in R3 having no interior point is just related with the geometry

of ∆. In other words, it has H2(R/J) = 0. Suppose ∆ is the convex hull of the vertices

v0, v1, v2, v3, ..., vn+1 having no interior point with an n-gon base designed as in the

below picture, where n ∈ N. ∆ is a pure, hereditary polyhedral complex with

n interior 3-cells, n interior 2-cells, 1 interior 1-cell and 0 interior 0-cell. We can
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Figure 5.1: Simplicial complex with n-gon base having no interior point

number the 3-cells as σ1, σ2, ..., σn in the following way.

σ1 = Conv({v0, v1, v2, vn+1}),

σ2 = Conv({v0, v2, v3, vn+1}),

σ3 = Conv({v0, v3, v4, vn+1}),
...

σn = Conv({v0, vn, v1, vn+1}).

We embed ∆ into the hyperplane x4 = 1 ⊆ R4, thus we can form ∆̂ over ∆ with the

vertex (v) at the origin.

The homology of the chain complex R is the simplicial relative homology with coef-

ficients in R = R[x, y, z,w].

R : 0→ Rn ∂3
→ ⊕α∈∆0

2
R

∂2
→ ⊕α∈∆0

1
R

∂1
→ 0.

The interior faces of the simplicial complex are:

∆0
2 = {〈v0, v1, vn+1〉, 〈v0, v2, vn+1〉, ..., 〈v0, vn, vn+1〉},

∆0
1 = {〈vn+1, v0〉},

∆0
0 = {}.
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As we have defined in Chapter 3, for any interior face γ the idealJ(γ) =
∑
γ⊆τi∈∆

0
2

Lαi
τi .

For γ ∈ ∆0
2, J(γ)’s are given as:

J(〈v0, v1, vn+1〉) =〈p2
1〉,

J(〈v0, v2, vn+1〉) =〈p2
2〉,

J(〈v0, v3, vn+1〉) =〈p2
3〉,

...

J(〈v0, vn, vn+1〉) =〈p2
n〉.

and for γ ∈ ∆0
1, J(〈vn+1, v0〉) = 〈p2

1, p2
2, ..., p2

n〉. Here, pi’s denote the linear polynomi-

als corresponding to the planes.

If we take the quotient of R by J , we obtain the following chain complex:

R/J : 0→ Rn ∂3
→ R/〈p2

1〉 ⊕ R/〈p2
2〉 ⊕ ... ⊕ R/〈p2

n〉
∂2
→ R/〈p2

1, p2
2, ..., p2

n〉
∂1
→ 0.

Note that, ∂3 acts on each σ as:

∂3(〈v0, v1, v2, vn+1〉) =〈v1, v2, vn+1〉 − 〈v0, v2, vn+1〉 + 〈v0, v1, vn+1〉−

〈v0, v1, v2〉,

∂3(〈v0, v2, v3, vn+1〉) =〈v2, v3, vn+1〉 − 〈v0, v3, vn+1〉 + 〈v0, v2, vn+1〉−

〈v0, v2, v3〉,

...

∂3(〈v0, vn, v1, vn+1〉) =〈vn, v1, vn+1〉 − 〈v0, v1, vn+1〉 + 〈v0, vn, vn+1〉−

〈v0, vn, v1〉.

Hence,

∂3(g1, g2, ..., gn) =(g1 − gn)〈v0, v1, vn+1〉 + (−g1 + g2)〈v0, v2, vn+1〉

+ (−g2 + g3)〈v0, v3, vn+1〉 + ... + (−gn−1 + gn)〈v0, v1, vn+1〉

=((g1 − gn), (−g1 + g2), (−g2 + g3), ..., (−gn−1 + gn)).

Also, note that ∂2 acts on ∆0
2 as:
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∂2(〈v0, v1, vn+1〉) =〈v1, vn+1〉 − 〈v0, vn+1〉 + 〈v0, v1〉,

∂2(〈v0, v2, vn+1〉) =〈v2, vn+1〉 − 〈v0, vn+1〉 + 〈v0, v2〉,

∂2(〈v0, v3, vn+1〉) =〈v3, vn+1〉 − 〈v0, vn+1〉 + 〈v0, v3〉,

...

∂2(〈v0, vn, vn+1〉) =〈vn, vn+1〉 − 〈v0, vn+1〉 + 〈v0, vn〉.

Thus, we have:

∂2(g1, g2, ..., gn) = (g1 + g2 + ... + gn)〈vn+1, v0〉.

Now, it is easy to check that R/J is a complex:

∂2(∂3) = ∂2((g1 − gn), (−g1 + g2), ..., (−gn−1 + gn))

= g1 − gn − g1 + g2 − ... − gn−1 + gn

= 0.

∂1(∂2) = 0, since ∂1 = 0.

By applying the Euler characteristic equation (Eqn. (3.4.8)) to the complex R/J , we

obtain the formula

dimR H3(R/J)k = dim
∑3

i=0(−1)i ⊕β∈∆0
3−i
R/J(β)k + dimR

∑2
i=0(−1)iH2−i(R/J)k, in

which the top homology dimR H3(R/J)k is precisely the module dimR Cα(∆̂)k.

To compute dimR Cα(∆̂)k, we need to calculate dimR(H2(R/J))k and dimR(H1(R/J))k.

But for the complexes constructed above, H1(R/J)k = 0, since ker ∂0 = 0. We claim

that dimR(H2(R/J))k is also 0 for all k. Since H2(R/J) = H1(J) = ker ∂1/im∂2, we

want to show that the map ∂2 is onto. To check the surjectivity of ∂2, we take any

f ∈ ⊕λ∈∆0
2
J(λ) = 〈p2

1, p2
2, ..., p2

n〉 such that f = h1 p2
1 + h2 p2

2 + ... + hn p2
n. We should

check that there is a g = (g1, g2, ..., gn) ∈ ⊕λ∈∆0
3
J(λ) satisfying ∂2(g) = f . If we choose

g1 = −h1, g2 = −h2,..., gn = −hn, then g = (g1, g2, ..., gn) satisfies this condition. Thus

∂2 is onto, which implies that dimR(H1(J)) = 0, and hence dimR(H2(R/J)) = 0.

As a result, for the simplicial complexes not containing any interior point, we obtain

the formula 5.1:

dimR Cα(∆̂)k = dim
d∑

i=0

(−1)i ⊕β∈∆0
d−i
R/J(β)k. (5.1)
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For these type of simplical complexes, the planes defined by p1, ..., pn form a pencil

of planes with the intersection line containing 〈vn+1, v0〉. The plane defined by pi is a

linear combination of the planes defined by p j and pk, if pi, p j and pk define distinct

planes. Hence, we have 2 situations:

a) R/〈p2
1, p2

2, ..., p2
n〉 = R/〈p2

i , p2
j〉 case, resulting with the formula:

dim Cα
k (∆̂) = n

(
k + 3

3

)
− n(

(
k + 3

3

)
−

(
k + 1

3

)
) + 4k

= n
(
k + 1

3

)
+ 4k ∀ k ≥ 0.

b) R/〈p2
1, p2

2, ..., p2
n〉 = R/〈p2

i , p2
j , pi p j〉 case, resulting with the formula:

dim Cα
k (∆̂) = n

(
k + 3

3

)
− n(

(
k + 3

3

)
−

(
k + 1

3

)
) + 3k + 1

= n
(
k + 1

3

)
+ 1 + 3k ∀ k ≥ 0.

Remark 5.1.1 Note that, all the arguments are still valid, if the points v0, v1, ..., vn do

not lie on the same plane.

5.1.1 Dimension of a general tetrahedron

We can now give the detailed computations for the dimension of Cα
k (∆), when ∆ is

a tetrahedron with no interior point. Let ∆ be a tetrahedron having vertices at the

u
u

u u

u

v0

v1 v2

v3

v4

Figure 5.2: Tetrahedron with no interior point

points v0 = (a0, b0, c0), v1 = (a1, b1, c1),
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v2 = (a2, b2, c2), v3 = (a3, b3, c3), v4 = (a4, b4, c4). Hence, ∆, Conv({v1, v2, v3, v4}), is

a pure and a hereditary polyhedral complex with three 3-cells, three interior 2-cells,

one interior 1-cell and zero interior 0-cell. Let’s number the 3-cells as σ1, σ2, σ3 in

the following way:

σ1 = Conv({v0, v1, v2, v4}), σ2 = Conv({v0, v2, v3, v4}), σ3 = Conv({v0, v3, v1, v4}).

In the figure, there is no interior point hence ⊕γ∈∆0
0
R/J(γ) = 0. By embedding ∆ into

the hyperplane x4 = 1 ⊆ R4, we can form ∆̂ over ∆ with the vertex v = (0, 0, 0, 0). In

that case, the chain complex becomes:

R/J : 0→ R3 ∂3
→ ⊕α∈∆0

2
R/J(α)

∂2
→ ⊕β∈∆0

1
R/J(β)

∂1
→ 0.

For the interior faces, we have:

J(γ) = {Lαi+1
τi

: γ ⊂ τi ⊆ ∆0
2},

J(〈v0, v1, v4〉) = [(b0c1 − b0c4 − b1c0 + b1c4 + b4c0 − b4c1)x + (−a0c1 + a0c4 + a1c0 −

a1c4 − a4c0 + a4c1)y + (a0b1 − a0b4 − a1b0 + a1b4 + a4b0 − a4b1)z + (−a0b1c4 + a0b4c1 +

a1b0c4 − a1b4c0 − a4b0c1 + a4b1c0)]2(= p2
1),

J(〈v0, v2, v4〉) = [(b0c2 − b0c4 − b2c0 + b2c4 + b4c0 − b4c2)x + (−a0c2 + a0c4 + a2c0 −

a2c4 − a4c0 + a4c2)y + (a0b2 − a0b4 − a2b0 + a2b4 + a4b0 − a4b2)z + (−a0b2c4 + a0b4c2 +

a2b0c4 − a2b4c0 − a4b0c2 + a4b2c0)]2(= p2
2),

J(〈v0, v3, v4〉) = [(b0c3 − b0c4 − b3c0 + b3c4 + b4c0 − b4c3)x + (−a0c3 + a0c4 + a3c0 −

a3c4 − a4c0 + a4c3)y + (a0b3 − a0b4 − a3b0 + a3b4 + a4b0 − a4b3)z + (−a0b3c4 + a0b4c3 +

a3b0c4 − a3b4c0 − a4b0c3 + a4b3c0)]2(= p2
3),

J(〈v4, v0〉) = 〈p2
1, p2

2, p2
3〉.

In this case, R/J is the following complex:

R/J : 0→ R3 ∂3
→ R/〈p2

1〉 ⊕ R/〈p
2
2〉 ⊕ R/〈p

2
3〉

∂2
→ R/〈p2

1, p2
2, p2

3〉
∂1
→ 0.
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Hence, we have the formula:

dim Cα(∆̂)k = dim
3∑

i=0

(−1)i+1
∑
β∈∆0

i

(R/J(β))k

= dim
∑
k∈∆0

3

Rk − dim
∑
β∈∆0

2

(R/J(β))k + dim
∑
β∈∆0

1

(R/J(β))k

= 3
(
k + 3

3

)
− 3(

(
k + 3

3

)
−

(
k + 1

3

)
) + dim(R/〈p2

1, p2
2, p2

3〉)k.

We need to calculate dim(R/〈p2
1, p2

2, p2
3〉)k. We write the defining equations of the

planes,

p2
1 = [(b0c1 − b0c4 − b1c0 + b1c4 + b4c0 − b4c1)x + (−a0c1 + a0c4 + a1c0 − a1c4 − a4c0 +

a4c1)y + (a0b1 − a0b4 − a1b0 + a1b4 + a4b0 − a4b1)z + (−a0b1c4 + a0b4c1 + a1b0c4 −

a1b4c0 − a4b0c1 + a4b1c0)]2,

p2
2 = [(b0c2 − b0c4 − b2c0 + b2c4 + b4c0 − b4c2)x + (−a0c2 + a0c4 + a2c0 − a2c4 − a4c0 +

a4c2)y + (a0b2 − a0b4 − a2b0 + a2b4 + a4b0 − a4b2)z + (−a0b2c4 + a0b4c2 + a2b0c4 −

a2b4c0 − a4b0c2 + a4b2c0)]2,

p2
3 = [(b0c3 − b0c4 − b3c0 + b3c4 + b4c0 − b4c3)x + (−a0c3 + a0c4 + a3c0 − a3c4 − a4c0 +

a4c3)y + (a0b3 − a0b4 − a3b0 + a3b4 + a4b0 − a4b3)z + (−a0b3c4 + a0b4c3 + a3b0c4 −

a3b4c0 − a4b0c3 + a4b3c0)]2.

in the matrix form:
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A
= 

b
0 (c1
−

c4 )
+

b
1 (c4
−

c0 )
+

b
4 (c0
−

c1 )
a

0 (c4
−

c1 )
+

a
1 (c0
−

c4 )
+

a
4 (c1
−

c0 )
a

0 (b
1
−

b
4 )

+
a

1 (b
4
−

b
0 )

+
a

4 (b
0
−

b
1 )

a
0 (b

1 c4
−

b
4 c1 )

+
a

1 (b
4 c0
−

b
0 c4 )

+
a

4 (b
0 c1
−

b
1 c0 )

b
0 (c2
−

c4 )
+

b
2 (c4
−

c0 )
+

b
4 (c0
−

c2 )
a

0 (c4
−

c2 )
+

a
2 (c0
−

c4 )
+

a
4 (c2
−

c0 )
a

0 (b
2
−

b
4 )

+
a

2 (b
4
−

b
0 )

+
a

4 (b
0
−

b
2 )

a
0 (b

2 c4
−

b
4 c2 )

+
a

2 (b
4 c0
−

b
0 c4 )

+
a

4 (b
0 c2
−

b
2 c0 )

b
0 (c3
−

c4 )
+

b
3 (c4
−

c0 )
+

b
4 (c0
−

c3 )
a

0 (c4
−

c3 )
+

a
3 (c0
−

c4 )
+

a
4 (c3
−

c0 )
a

0 (b
3
−

b
4 )

+
a

3 (b
4
−

b
0 )

+
a

4 (b
0
−

b
3 )

a
0 (b

3 c4
−

b
4 c3 )

+
a

3 (b
4 c0
−

b
0 c4 )

+
a

4 (b
0 c3
−

b
3 c0 ) 

.
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By using Singular, we can calculate the row reduced echelon form of the matrix A:

rowred(A) =


1 0 (−a0 + a4)/(c0 − c4) (−a0c4 + a4c0)/(c0 − c4)

0 1 (−b0 + b4)/(c0 − c4) (−b0c4 + b4c0)/(c0 − c4)

0 0 0 0

 .

Here, we should consider the case c0 = c4. We can write c0 instead of c4 in A, and it

gives the following row reduced form of A:

rowred(A) =


1 (−a0 + a4)/(b0 − b4) 0 (−a0b4 + a4b0)/(b0 − b4)

0 0 1 c0

0 0 0 0

 .

Again, we have one more case c0 = c4 and b0 = b4, and by replacing c4 by c0 and b4

by b0 in A, we get the following row reduced form:

rowred(A) =


0 1 0 b0

0 0 1 c0

0 0 0 0

 .

These three cases show that p3 can be written by a linear combination of, p1 and p2

which means dim(R/〈p2
1, p2

2, p2
3〉)k = dim(R/〈p2

1, p2
2, p1 p2〉)k.

Hence, we have the formula (The second case explained in the previous section):

dim Cα(∆̂)k = 3
(
k + 3

3

)
− 3(

(
k + 3

3

)
−

(
k + 1

3

)
) + 3k + 1

= 3
(
k + 1

3

)
+ 1 + 3k ∀ k ≥ 0.

Remark 5.1.2 Again, note that, all the arguments are valid, if the points v0, v1, v2, v3

do not lie on the same plane.
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5.2 All Possible Dimensions for an Octahedron

In this section, we examine all possible situations for the dimension of Cα
k (∆), when

∆ is an octahedron with one interior point. The dimension depends on the number

of interior two faces contained in the plane defined by Li j. This plane contains the

interior 2-cell σi j, which is the intersection of the adjacent 2-cells σi and σ j. Hence,

an octahedron with one interior point can have from 3 to 12 different interior hyper-

planes. Here, we consider each case and try to give a formula for dimR Cα
k (∆), when

the smoothness degree is 1, such that r = 1. In our calculations, we take the interior

vertex of the octahedron v0 as (0, 0, 0), since by a change of coordinates, it is always

possible to translate a point to the origin.

5.2.1 Octahedrons Having 3 Interior Hyperplanes

If we consider a regular octahedron, then the octahedron has three interior hyper-

planes. For such a construction H1(J) is always zero, [16]. Thus, we can calculate

the dimension of Cα
k (∆) just by combinatorial calculations. Below we work on a

specific octahedron having three interior hyperplanes, but we will show that any oc-

tahedron having three interior hyperplanes have the same dimension for Cα
k (∆).

Here, we work on an octahedron having vertices at v0 = (0, 0, 0), v1 = (1, 0, 0), v2 =

(0, 1, 0), v3 = (−1, 0, 0), v4 = (0,−1, 0), v5 = (0, 0, 1), v6 = (0, 0,−1), given as: ∆ has

u u

u

u uu

u

v0

v1 v2

v3v4

v5

v6

Figure 5.3: Regular octahedron
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eight 3-cells which we name as:

σ1 = Conv({v0, v1, v2, v5}), σ5 = Conv({v6, v0, v1, v2}),

σ2 = Conv({v0, v2, v3, v5}), σ6 = Conv({v6, v0, v2, v3}),

σ3 = Conv({v0, v3, v4, v5}), σ7 = Conv({v6, v0, v3, v4}),

σ4 = Conv({v0, v4, v1, v5}), σ8 = Conv({v6, v0, v4, v1}).

∆0
2 is the set of the interior two faces of ∆, and it has 12 elements.

∆0
2 ={〈v0, v1, v2〉, 〈v0, v2, v3〉, 〈v0, v3, v4〉, 〈v0, v4, v1〉, 〈v0, v2, v5〉,

〈v0, v3, v5〉, 〈v0, v4, v5〉, 〈v0, v1, v5〉, 〈v6, v0, v2〉, 〈v6, v0, v3〉,

〈v6, v0, v4〉, 〈v6, v0, v1〉}.

The set of the interior one faces, ∆0
1, contains 6 elements:

∆0
1 = {〈v0, v1〉, 〈v0, v2〉, 〈v0, v3〉, 〈v0, v4〉, 〈v5, v0〉, 〈v6, v0〉}.

∆0
0, which is the set of the interior vertices has only one element, such that

∆0
0 = {〈v0〉}.

Let, ∂i be the relative simplicial boundary map, R is the chain complex defined by

Ri = R f 0
i . So the homology of R is the relative simplicial homology, with coefficients

in R.

R : 0→ 〈v0, v1, v2, v5〉 ⊕ 〈v0, v2, v3, v5〉 ⊕ 〈v0, v3, v4, v5〉 ⊕ 〈v0, v4, v1, v5〉

⊕ 〈v6, v0, v1, v2〉 ⊕ 〈v6, v0, v2, v3〉 ⊕ 〈v6, v0, v3, v4〉 ⊕ 〈v6, v0, v4, v1〉

∂3
→ 〈v0, v1, v2〉 ⊕ 〈v0, v2, v3〉 ⊕ 〈v0, v3, v4〉 ⊕ 〈v0, v4, v1〉

⊕ 〈v0, v2, v5〉 ⊕ 〈v0, v3, v5〉 ⊕ 〈v0, v4, v5〉 ⊕ 〈v0, v1, v5〉 ⊕ 〈v6, v0, v2〉

⊕ 〈v6, v0, v3〉 ⊕ 〈v6, v0, v4〉 ⊕ 〈v6, v0, v1〉
∂2
→ 〈v0, v1〉 ⊕ 〈v0, v2〉

⊕ 〈v0, v3〉 ⊕ 〈v0, v4〉 ⊕ 〈v5, v0〉 ⊕ 〈v6, v0〉
∂1
→ 〈v0〉

∂0
→ 0.
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∂3 acts on the three faces of ∆ as in the following way:

∂3(〈v0, v1, v2, v5〉) =〈v1, v2, v5〉 − 〈v0, v2, v5〉 + 〈v0, v1, v5〉−

〈v0, v1, v2〉,

∂3(〈v0, v2, v3, v5〉) =〈v2, v3, v5〉 − 〈v0, v3, v5〉 + 〈v0, v2, v5〉−

〈v0, v2, v3〉,

∂3(〈v0, v3, v4, v5〉) =〈v3, v4, v5〉 − 〈v0, v4, v5〉 + 〈v0, v3, v5〉−

〈v0, v3, v4〉,

∂3(〈v0, v4, v1, v5〉) =〈v4, v1, v5〉 − 〈v0, v1, v5〉 + 〈v0, v4, v5〉−

〈v0, v4, v1〉,

∂3(〈v6, v0, v1, v2〉) =〈v0, v1, v2〉 − 〈v6, v1, v2〉 + 〈v6, v0, v2〉−

〈v6, v0, v1〉,

∂3(〈v6, v0, v2, v3〉) =〈v0, v2, v3〉 − 〈v6, v2, v3〉 + 〈v6, v0, v3〉−

〈v6, v0, v2〉,

∂3(〈v6, v0, v3, v4〉) =〈v0, v3, v4〉 − 〈v6, v3, v4〉 + 〈v6, v0, v4〉−

〈v6, v0, v3〉,

∂3(〈v6, v0, v4, v1〉) =〈v0, v4, v1〉 − 〈v6, v4, v1〉 + 〈v6, v0, v1〉−

〈v6, v0, v4〉.

Hence, the image of an element (g1, g2, g3, g4, g5, g6, g7, g8) under the map ∂3 is:

∂3(g1, g2, g3, g4, g5, g6, g7, g8) =(g5 − g1)〈v0, v1, v2〉 + (g6 − g2)〈v0, v2, v3〉

+ (g7 − g3)〈v0, v3, v4〉 + (g8 − g4)〈v0, v4, v1〉

+ (g2 − g1)〈v0, v2, v5〉 + (g3 − g2)〈v0, v3, v5〉

+ (g4 − g3)〈v0, v4, v5〉 + (g1 − g4)〈v0, v1, v5〉

+ (g5 − g6)〈v6, v0, v2〉 + (g6 − g7)〈v6, v0, v3〉

+ (g7 − g8)〈v6, v0, v4〉 + (g8 − g5)〈v6, v0, v1〉,

∂3(g1, g2, g3, g4, g5, g6, g7, g8) =((g5 − g1), (g6 − g2), (g7 − g3), (g8 − g4), (g2 − g1), (g3 − g2),

(g4 − g3), (g1 − g4), (g5 − g6), (g6 − g7), (g7 − g8), (g8 − g5)).

The actions of ∂2 on the interior two faces are given below:

∂2(〈v0, v1, v2〉) = 〈v1, v2〉 − 〈v0, v2〉 + 〈v0, v1〉,
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∂2(〈v0, v2, v3〉) = 〈v2, v3〉 − 〈v0, v3〉 + 〈v0, v2〉,

∂2(〈v0, v3, v4〉) = 〈v3, v4〉 − 〈v0, v4〉 + 〈v0, v3〉,

∂2(〈v0, v4, v1〉) = 〈v4, v1〉 − 〈v0, v1〉 + 〈v0, v4〉,

∂2(〈v0, v2, v5〉) = 〈v2, v5〉 − 〈v0, v5〉 + 〈v0, v2〉,

∂2(〈v0, v3, v5〉) = 〈v3, v5〉 − 〈v0, v5〉 + 〈v0, v3〉,

∂2(〈v0, v4, v5〉) = 〈v4, v5〉 − 〈v0, v5〉 + 〈v0, v4〉,

∂2(〈v0, v1, v5〉) = 〈v1, v5〉 − 〈v0, v5〉 + 〈v0, v1〉,

∂2(〈v6, v0, v2〉) = 〈v0, v2〉 − 〈v6, v2〉 + 〈v6, v0〉,

∂2(〈v6, v0, v3〉) = 〈v0, v3〉 − 〈v6, v3〉 + 〈v6, v0〉,

∂2(〈v6, v0, v4〉) = 〈v0, v4〉 − 〈v6, v4〉 + 〈v6, v0〉,

∂2(〈v6, v0, v1〉) = 〈v0, v1〉 − 〈v6, v1〉 + 〈v6, v0〉.

So the image of an element (h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12) under the map

∂2 is:

∂2(h1, h2, h3,h4, h5, h6, h7, h8, h9, h10, h11, h12) = (h1 − h4 + h8 + h12)〈v0, v1〉

+ (−h1 + h2 + h5 + h9)〈v0, v2〉 + (−h2 + h3 + h6 + h10)〈v0, v3〉

+ (−h3 + h4 + h7 + h11)〈v0, v4〉 + ( h5 + h6 + h7 + h8)〈v5, v0〉

+ (h9 + h10 + h11 + h12)〈v6, v0〉.

The action of ∂1 is:

∂1(c1, c2, c3, c4, c5, c6) = (−c1 − c2 − c3 − c4 + c5 + c6)〈v0〉.

Now, we are able to show that R is a complex.

∂2(∂3) = ∂2((g5 − g1), (g6 − g2), (g7 − g3), (g8 − g4), (g2 − g1), (g3 − g2), (g4 − g3),

(g1 − g4), (g5 − g6), (g6 − g7), (g7 − g8), (g8 − g5)),

=((g5 − g1) − (g8 − g4) + (g1 − g4) + (g8 − g5),−(g5 − g1) + (g6 − g2)+

(g2 − g1) + (g5 − g6),−(g6 − g2) + (g7 − g3) + (g3 − g2) + (g6 − g7),

−(g7 − g3) + (g8 − g4) + (g4 − g3) + (g7 − g8), (g2 − g1) + (g3 − g2)+

(g4 − g3) + (g1 − g4), (g5 − g6) + (g6 − g7) + (g7 − g8) + (g8 − g5)),

=(0, 0, 0, 0, 0, 0).
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∂1(∂2) = ∂1((h1 − h4 + h8 + h12), (−h1 + h2 + h5 + h9), (−h2 + h3 + h6 + h10),

(−h3 + h4 + h7 + h11), (h5 + h6 + h7 + h8), (h9 + h10 + h11 + h12)),

= −(h1 − h4 + h8 + h12) − (−h1 + h2 + h5 + h9) − (−h2 + h3 + h6 + h10)

−(−h3 + h4 + h7 + h11) + (h5 + h6 + h7 + h8) + (h9 + h10 + h11 + h12) = 0.

Hence, R is a complex. We define for any interior face γ the idealJ(γ) =
∑
γ⊆τi∈∆

0
2

Lαi
τi .

J(γ) is an ideal generated by the powers of homogeneous linear forms. In our exam-

ples, because of the choice of v0 all the linear forms will be homogeneous.

J(〈v0, v1, v2〉) = z2, J(〈v0, v2, v5〉) = x2, J(〈v6, v0, v2〉) = x2,

J(〈v0, v2, v3〉) = z2, J(〈v0, v3, v5〉) = y2, J(〈v6, v0, v3〉) = y2,

J(〈v0, v3, v4〉) = z2, J(〈v0, v4, v5〉) = x2, J(〈v6, v0, v4〉) = x2,

J(〈v0, v4, v1〉) = z2, J(〈v0, v1, v5〉) = y2, J(〈v6, v0, v1〉) = y2,

J(〈v0, v1〉) = 〈y2, z2〉, J(〈v0, v2〉) = 〈x2, z2〉,

J(〈v0, v3〉) = 〈y2, z2〉, J(〈v0, v4〉) = 〈x2, z2〉,

J(〈v5, v0〉) = 〈x2, y2〉, J(〈v6, v0〉) = 〈x2, y2〉,

J(〈v0〉) = 〈x2, y2, z2〉.

Taking ∆̂ instead of ∆ makes calculations easier, but it makes no change in the linear

forms, since they are all homogeneous. So, we will be working in R = R[x, y, z,w].

∂i also gives us a map on the quotient of R by J . There is a short exact sequence of

complexes:

0→ J → R → R/J → 0.

This sequence gives us the long exact sequence of homology modules:

0→ H2(J)→ H2(R)→H2(R/J)→ H1(J)→ H1(R)→

H1(R/J)→ H0(J)→ H0(R)→ H0(R/J)→ 0.

Here, R is a manifold. Hence, Hi(R) = 0 ∀i < d. By [16, Theorem 4.10], if

∆ is a complex such that Hi(R) = 0 ∀i < d, then Cr(∆) is free if and only if

Hi(J) = 0 ∀i < d − 1. Since Hi(R) = 0 ∀i < d, we get the following equalities:

H2(R/J) = H1(J), H1(R/J) = H0(J).
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Working with Hi(J) makes our calculations easier, hence instead of finding Hi(R/J),

we will be interested in Hi(J).

For the case i = 0, H0(J) = ker ∂0/ im ∂1. Here, our question is that ‘is ∂1 onto?’ So

we should check that ∀ f = f1x2 + f2y2 + f3z2 ∈ 〈x2, y2, z2〉, is there any

g = (g1, g2, g3, g4, g5, g6) ∈〈y2, z2〉 ⊕ 〈x2, z2〉 ⊕ 〈y2, z2〉⊕

〈x2, z2〉 ⊕ 〈x2, y2〉 ⊕ 〈x2, y2〉,

satisfying

∂1(g1, g2, g3, g4, g5, g6) = f1x2 + f2y2 + f3z2,

which implies that

−g1 − g2 − g3 − g4 + g5 + g6 = f1x2 + f2y2 + f3z2,

where

g1 ∈ 〈y2, z2〉 ⇒ g1 = a1y2 + b1z2,

g2 ∈ 〈x2, z2〉 ⇒ g2 = a2x2 + b2z2,

g3 ∈ 〈y2, z2〉 ⇒ g3 = a3y2 + b3z2,

g4 ∈ 〈x2, z2〉 ⇒ g4 = a4x2 + b4z2,

g5 ∈ 〈x2, y2〉 ⇒ g5 = a5x2 + b5y2,

g6 ∈ 〈x2, y2〉 ⇒ g6 = a6x2 + b6y2.

If we choose

g3 = g4 = g5 = g6 = 0,

and

a1 = − f2, a2 = − f1, b1 = − f3, b2 = c1 = c2 = 0,

then the equality is satisfied. Thus,

∂1(g1, g2, g3, g4, g5, g6) = −g1 − g2

= f1x2 + f2y2 + f3z2.

This result implies that ∂1 is onto. So, H0(J) = 0.

77



By the Euler characteristic equation, χ(H(R/J)) = χ(R/J), we obtain the following

equality, since H3(R/J) is the homogeneous spline module Cα(∆̂).

dimR Cα(∆̂)k = dimR

3∑
i=0

(−1)i+1
∑
β∈∆0

i

(R/J(β))k + dimR H2(R/J)k

= dimR

∑
k∈∆0

3

Rk − dimR

∑
β∈∆0

2

(R/J(β))k + dimR

∑
β∈∆0

1

(R/J(β))k

− dimR

∑
β∈∆0

0

(R/J(β))k + dimR H2(R/J)k

=8
(
k + 3

3

)
− 12 dimR R/〈x2〉 + 2 dimR(R/〈y2, z2〉)k

+ 2 dimR(R/〈x2, z2〉)k + dimR(R/〈x2, y2〉)k

− dimR(R/〈x2, y2, z2〉)k + dimR H2(R/J)k.

But by [16] we know H1(J) = H2(R/J) and it is zero. Hence, the dimension of

Cr(∆̂)k depends only on combinatorial calculations. When we compute these dimen-

sions, we get the following results:

dimR(R/〈x2〉)k = (k + 1)2,

dimR(R/〈y2, z2〉)k =


1 if k = 0,

4k if k ≥ 1.

dimR(R/〈x2, z2〉)k =


1 if k = 0,

4k if k ≥ 1.

dimR(R/〈x2, y2〉)k =


1 if k = 0,

4k if k ≥ 1.

dimR(R/〈x2, y2, z2〉)k =



1 if k = 0,

4 if k = 1,

7 if k = 2,

8 if k ≥ 3.

Replacing these in the equality, we reach the conclusion:

dimR Cα(∆̂)k = 8
(
k + 3

3

)
− 12(k + 1)2 + 6.4k − 8 + dimR H2(R/J)k,

= 8
(
k + 3

3

)
− 12k2 − 20 ∀ k ≥ 3.
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In fact, this formula is valid for any octahedron having 3 interior two faces, since dur-

ing the calculations, we need only to know
∑
β∈∆0

1
dimR(R/J(β))k and dimR(R/J(v0))k,

but for the first dimension any interior line can only be contained in two different hy-

perplanes and this always gives the same result with ours. For the last calculation,

we should consider the hyperplanes containing v0 and by our configuration, it is con-

tained in 3 hyperplanes that intersect at a point, v0, which implies that we can’t rewrite

any of them by the linear combinations of the others (If it was possible, we would be

able to put all the vertices in a space having dimension 2, which would never give an

octahedron). Hence the dimension is uniquely determined for a regular octahedron

with one interior point.

5.2.2 Octahedrons Having 4 Interior Hyperplanes

We can construct an octahedron with four hyperplanes by moving any boundary ver-

tex of a regular octahedron on one of the four boundary edges of the chosen vertex. To

be able to make a generalization, we consider the case that we obtain by moving one

of the vertices of the figure above. Hence, ∆ = Conv({v0, v1, v2, v3, v4, v5, v6}), where

v0 = (0, 0, 0), v1 = (1/2,−1/2, 0), v2 = (0, 1, 0), v3 = (−1, 0, 0), v4 = (0,−1, 0), v5 =

(0, 0, 1), v6 = (0, 0,−1), in which we move vertex v1 on the v1v4 edge.

u u

u

u uu

u

v0v1

v2

v3v4

v5

v6

Figure 5.4: Octahedron having four hyperplanes
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For any interior face γ of the simplex, we determine the ideal J(γ):

J(〈v0, v1, v2〉) = z2, J(〈v0, v2, v5〉) = x2, J(〈v6, v0, v2〉) = x2,

J(〈v0, v2, v3〉) = z2, J(〈v0, v3, v5〉) = y2, J(〈v6, v0, v3〉) = y2,

J(〈v0, v3, v4〉) = z2, J(〈v0, v4, v5〉) = x2, J(〈v6, v0, v4〉) = x2,

J(〈v0, v4, v1〉) = z2, J(〈v0, v1, v5〉) = (x + y)2, J(〈v6, v0, v1〉) = (x + y)2,

J(〈v0, v1〉) = 〈(x + y)2, z2〉, J(〈v0, v2〉) = 〈x2, z2〉,

J(〈v0, v3〉) = 〈y2, z2〉, J(〈v0, v4〉) = 〈x2, z2〉,

J(〈v5, v0〉) = 〈x2, y2, (x + y)2〉, J(〈v6, v0〉) = 〈x2, y2, (x + y)2〉,

J(〈v0〉) = 〈x2, y2, z2, (x + y)2〉.

We can show that ∂1 is onto. So, H0(J) = 0. By χ(H(R/J)) = χ(R/J), we get the

following equality:

dimR Cα(∆̂)k = 8.
(
k + 3

3

)
− 12.(k + 1)2 + 4.4k + 2.(3k + 1) − 6 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 2k − 16 + dimR H2(R/J)k ∀ k ≥ 2.

In this nongeneric configuration, we know dimR H2(R/J) = H1(J) = 0 for all r by

[16]. So the dimension of our simplex, dimR Cα(∆̂)k is computable just by combina-

torial calculations and is equal to:

dimR Cα(∆̂)k = 8
(
k + 3

3

)
− 12k2 − 2k − 16 ∀ k ≥ 2.

In fact, we can generalize this to any point over the v4v1 line. First of all, let’s consider

the regular octahedron with hyperplanes {x, y, z}. Hence moving v1 to any point along

the line v4v1, we have v
′

1 = (1, 0, 0) + t[(0,−1, 0) − (1, 0, 0)], where t ∈ [0, 1], thus

v
′

1 = (1 − t,−t, 0). We need to find the ideal J(γ) for any interior face γ of the

simplex:

J(〈v0, v
′

1, v2〉) = z2, J(〈v0, v2, v5〉) = x2, J(〈v6, v0, v2〉) = x2,

J(〈v0, v2, v3〉) = z2, J(〈v0, v3, v5〉) = y2, J(〈v6, v0, v3〉) = y2,

J(〈v0, v3, v4〉) = z2, J(〈v0, v4, v5〉) = x2, J(〈v6, v0, v4〉) = x2,

J(〈v0, v4, v
′

1〉) = z2,

80



u u

u

u uu

u

v0v
′

1

v2

v3v4

v5

v6

Figure 5.5: Octahedron constructed by moving a vertex of a regular octahedron
through a line

J(〈v0, v
′

1, v5〉) = (xt − y(t − 1))2,

J(〈v6, v0, v
′

1〉) = (xt − y(t − 1))2.

J(〈v0, v
′

1〉) = 〈(xt − y(t − 1))2, z2〉, J(〈v0, v2〉) = 〈x2, z2〉,

J(〈v0, v3〉) = 〈y2, z2〉, J(〈v0, v4〉) = 〈x2, z2〉,

J(〈v5, v0〉) = 〈x2, y2, (xt − y(t − 1))2〉,

J(〈v6, v0〉) = 〈x2, y2, (xt − y(t − 1))2〉,

J(〈v0〉) = 〈x2, y2, z2, (xt − y(t − 1))2〉.

∂1 is onto and so, H0(J) = 0.

By χ(H(R/J)) = χ(R/J), we get the result:

dimR Cα(∆̂)k = 8.
(
k + 3

3

)
− 12.(k + 1)2 + 4.4k + 2.(3k + 1) − 6 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 2k − 16 + dimR H2(R/J)k ∀ k ≥ 2.

Since dimR H2(R/J) = 0 for all r, the dimension of our simplex, dimR Cα(∆̂)k is

computable just by combinatorial calculations and is equal to:

dimR Cα(∆̂)k = 8
(
k + 3

3

)
− 12k2 − 2k − 16 ∀ k ≥ 2.

Here, the result is independent of the boundary vertex we’ve chosen to move, since

when we move any boundary vertex through one of the incident edges of its hyper-

planes (for a better comprehension, one can rename the vertices and call the moved
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vertex as v1), we get a hyperplane which can be written as a linear combination of the

other two and when r = 1, this gives the opportunity to decide the dimension in the

same way as in our example.

We can generalize the above cases. Let’s take the regular octahedron having three

interior hyperplanes {x, y, z} and move its vertex v2 to a new point, remaining still

in the same plane with Conv({v0, v2, v3, v4}) (When we take a point in the regular

octahedron, it is contained exactly in two hyperplanes. Here, by moving, we mean

to leave it in one of the hyperplanes and move it out of the other). Thus, I choose

∆ = Conv({v0, v1, v2, v3, v4, v5, v6}), where v0 = (0, 0, 0), v1 = (1, 0, 0), v2 = (2, 3, 0),

v3 = (−1, 0, 0), v4 = (0,−1, 0), v5 = (0, 0, 1), v6 = (0, 0,−1). The calculation of the

u u

u

u uu

u

v0v1

v2

v3v4

v5

v6

Figure 5.6: Octahedron constructed by moving a vertex of a regular octahedron leav-
ing in a plane

ideal J(γ) for any interior face γ is as follows:

J(〈v0, v1, v2〉) = z2, J(〈v0, v2, v5〉) = (3x − 2y)2, J(〈v0, v3, v5〉) = y2

J(〈v0, v2, v3〉) = z2, J(〈v6, v0, v2〉) = (3x − 2y)2, J(〈v6, v0, v3〉) = y2,

J(〈v0, v3, v4〉) = z2, J(〈v0, v4, v5〉) = x2, J(〈v6, v0, v4〉) = x2,

J(〈v0, v4, v1〉) = z2, J(〈v0, v1, v5〉) = y2, J(〈v6, v0, v1〉) = y2,

J(〈v0, v1〉) = 〈y2, z2〉, J(〈v0, v2〉) = 〈(3x − 2y)2, z2〉,

J(〈v0, v3〉) = 〈y2, z2〉, J(〈v0, v4〉) = 〈x2, z2〉,

J(〈v5, v0〉) = 〈x2, y2, (3x − 2y)2〉, J(〈v6, v0〉) = 〈x2, y2, (3x − 2y)2〉,

J(〈v0〉) = 〈x2, y2, z2, (3x − 2y)2〉.
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∂1 is onto and so, H0(J) = 0. By χ(H(R/J)) = χ(R/J), we get the following

equality:

dimR Cα(∆̂)k = 8
(
k + 3

3

)
− 12.(k + 1)2 + 4.4k + 2.(3k + 1) − 6 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 2k − 16 + dimR H2(R/J)k ∀ k ≥ 2.

In this nongeneric octahedron, we don’t know whether dimR H2(R/J) is 0, so we use

an algebraic calculation to compute dimR Cα(∆̂)k.

Interior faces are given as:

τ1 ∩ τ2 ⊂ V(3x − 2y), σ1 ∩ σ2 ⊂ V(3x − 2y), σ1 ∩ τ1 ⊂ V(z),

τ2 ∩ τ3 ⊂ V(y), σ2 ∩ σ3 ⊂ V(y), σ2 ∩ τ2 ⊂ V(z),

τ3 ∩ τ4 ⊂ V(x), σ3 ∩ σ4 ⊂ V(x), σ3 ∩ τ3 ⊂ V(z),

τ1 ∩ τ4 ⊂ V(y), σ1 ∩ σ4 ⊂ V(y), σ4 ∩ τ4 ⊂ V(z).

An element ( f1, f2, f3, f4, f5, f6, f7, f8) ∈ R[x, y, z,w]8 gives an element of Cr(∆̂) if and

only if

f1 − f2 + (3x − 2y)2 f9 = 0, f5 − f6 + (3x − 2y)2 f13 = 0, f1 − f5 + z2 f17 = 0,

f2 − f3 + y2 f10 = 0, f6 − f7 + y2 f14 = 0, f2 − f6 + z2 f18 = 0,

f3 − f4 + x2 f11 = 0, f7 − f8 + x2 f15 = 0, f3 − f7 + z2 f19 = 0,

f1 − f4 + y2 f12 = 0, f5 − f8 + y2 f16 = 0, f4 − f8 + z2 f20 = 0.

for some f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20 ∈ R[x, y, z,w]. These equa-

tions can be rewritten again in the vector matrix form.
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M
(∆̂
,r)

=  1
−

1
0

0
0

0
0

0
(3x
−

2y) 2
0

0
0

0
0

0
0

0
0

0
0

0
1
−

1
0

0
0

0
0

0
y

2
0

0
0

0
0

0
0

0
0

0

0
0

1
−

1
0

0
0

0
0

0
x

2
0

0
0

0
0

0
0

0
0

1
0

0
−

1
0

0
0

0
0

0
0

y
2

0
0

0
0

0
0

0
0

0
0

0
0

1
−

1
0

0
0

0
0

0
(3x
−

2y) 2
0

0
0

0
0

0
0

0
0

0
0

0
1
−

1
0

0
0

0
0

0
y

2
0

0
0

0
0

0

0
0

0
0

0
0

1
−

1
0

0
0

0
0

0
x

2
0

0
0

0
0

0
0

0
0

1
0

0
−

1
0

0
0

0
0

0
0

y
2

0
0

0
0

1
0

0
0
−

1
0

0
0

0
0

0
0

0
0

0
0

z 2
0

0
0

0
1

0
0

0
−

1
0

0
0

0
0

0
0

0
0

0
0

z 2
0

0

0
0

1
0

0
0

0
−

1
0

0
0

0
0

0
0

0
0

0
z 2

0

0
0

0
1

0
0

0
−

1
0

0
0

0
0

0
0

0
0

0
0

z 2 

.
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Thus, the elements of Cr(∆̂) are projections onto the first eight components of ele-

ments of the kernel of the map R[x, y, z,w]20 → R[x, y, z,w]8 defined by the matrix

M(∆̂, r). The graded R[x, y, z,w]-modules construct the following exact sequence

(Let R̂ be R[x, y, z,w]):

0→ ker M(∆̂, 1)→ R̂8 ⊕ R̂(−2)12 → im M(∆̂, 1)→ 0.

Since the Hilbert series of M module and the LT(M) are the same, to calculate the
Hilbert series of im M(∆̂), we apply the Buchberger algorithm, and we can calculate
the Hilbert series of the M module generated by the columns of the M(∆̂) . By using
the CoCoA program, we calculate the Hilbert series of im M(∆̂):

Use R :: = QQ [x,y,z,w];

M : = [[1,0,0,1,0,0,0,0,1,0,0,0,],[-1,1,0,0,0,0,0,0,0,1,0,0],

[0,-1,1,0,0,0,0,0,0,0,1,0],[0,0,-1,-1,0,0,0,0,0,0,0,1],

[0,0,0,0,1,0,0,1,-1,0,0,0],[0,0,0,0,-1,1,0,0,0,-1,0,0],

[0,0,0,0,0,-1,1,0,0,0,-1,0],[0,0,0,0,0,0,-1,-1,0,0,0,-1],

[(3x-2y)^2,0,0,0,0,0,0,0,0,0,0,0],[0,y^2,0,0,0,0,0,0,0,0,0,0],

[0,0,x^2,0,0,0,0,0,0,0,0,0],[0,0,0,y^2,0,0,0,0,0,0,0,0],

[0,0,0,0,(3x-2y)^2,0,0,0,0,0,0,0],[0,0,0,0,0,y^2,0,0,0,0,0,0],

[0,0,0,0,0,0,x^2,0,0,0,0,0],[0,0,0,0,0,0,0,y^2,0,0,0,0],

[0,0,0,0,0,0,0,0,z^2,0,0,0],[0,0,0,0,0,0,0,0,0,z^2,0,0],

[0,0,0,0,0,0,0,0,0,0,z^2,0],[0,0,0,0,0,0,0,0,0,0,0,z^2] ];

N : = Module (M);

I : = LT(N);

Hilbert(I);

H(0)=7

H(1)=28

H(t)=2t^3+12t^2+16 for t>=2

The Hilbert series’s of the graded module ker M(∆̂) is the following

H(ker M(∆̂, r), u) = H(R̂m ⊕ R̂(−r − 1)e, u) − H(im M(∆̂, r), u).

Here we need to calculate H(R̂m ⊕ R̂(−r − 1)e, u) which is equal to:

H(R̂8 ⊕ R̂(−2)12, u) = 8/(1 − u)n+1 + 12u2/(1 − u)n+1, n = 3

= 8 + 12u2/(1 − u)4.
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Thus

H(ker M(∆̂, 1), u) =8 + 12u2/(1 − u)4 − (7 + 28u + · · · + (2t3 + 12t2 + 1)ut + ....)

=1 + 4u + 12u2 + 30u3 + 64u4 + 122u5 + 212u6 + ...

Here, H(ker M(∆̂, 1), u) = dimR Cr
u(∆̂). When we compare the two results, we see

that dimR(H1(J)) = 0, i.e., the dimension of ∆ depends only on combinatorial calcu-

lations.

Moving v2 by leaving it in the same plane with the Conv({v0, v3, v4, v1}) and preserv-

ing the convexity of the octahedron always give the same result with this example.

Because, under all circumstances, we get an hyperplane which is a linear combina-

tion of the others two (p1 = ap2 + bp3, where a, b ∈ R). In fact, in the last method

the important thing is the relation among the columns (or rows) of the matrix, but

changing a and b in the equation (ax + by)2 does not result with a change. (And

also we can choose any vertex to move, not specifically v2). Hence for such kind of

configurations, we know that

dimR Cα(∆̂)k = 8.
(
k + 3

3

)
− 12k2 − 2k − 16.

5.2.3 Octahedrons Having 5 Interior Hyperplanes

The way of getting an octahedron having five hyperplanes is moving any boundary

vertex of a regular octahedron, in such a way that the vertex no more stays in both of

the hyperplanes containing it. Hence we can consider the example moving one of the

vertices of the first figure.

In this example we consider the case ∆ = Conv({v0, v1, v2, v3, v4, v5, v6}), where v0 =

(0, 0, 0), v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (−1, 0, 0), v4 = (0,−1, 0), v5 = (1, 1, 1), v6 =

(0, 0,−1) in which we move vertex v5 not through any incident edges of it. For any

interior face γ the ideal J(γ) is as below.

J(〈v0, v1, v2〉) = z2, J(〈v0, v2, v5〉) = (x − z)2, J(〈v6, v0, v3〉) = y2,

J(〈v0, v2, v3〉) = z2, J(〈v0, v3, v5〉) = (y − z)2, J(〈v6, v0, v4〉) = x2,

J(〈v0, v3, v4〉) = z2, J(〈v0, v4, v5〉) = (x − z)2, J(〈v6, v0, v1〉) = y2,

J(〈v0, v4, v1〉) = z2, J(〈v0, v1, v5〉) = (y − z)2, J(〈v6, v0, v2〉) = x2,
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Figure 5.7: Octahedron having 5 interior hyperplanes

J(〈v0, v1〉) = 〈y2, z2, (y − z)2〉, J(〈v0, v2〉) = 〈x2, z2, (x − z)2〉,

J(〈v0, v3〉) = 〈y2, z2, (y − z)2〉, J(〈v0, v4〉) = 〈x2, z2, (x − z)2〉,

J(〈v5, v0〉) = 〈(x − z)2, (y − z)2〉, J(〈v6, v0〉) = 〈x2, y2〉,

J(〈v0〉) = 〈x2, y2, z2, (x − z)2, (y − z)2〉.

Since we are working on a manifold we know that Hi(R) = 0 ∀i < d. And we can

show that ∂1 is onto. So, H0(J) = 0.

By the Euler characteristic equation, χ(H(R/J)) = χ(R/J) we get the equality

dimR Cα(∆̂)k = 8
(
k + 3

3

)
− 12(k + 1)2 + 4(3k + 1) + 2.4k − 5 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 4k − 13 + dimR H2(R/J)k ∀ k > 1.

Here we don’t know what dimR H2(R/J) is, and to calculate it we use the matrix

method.

By using the CoCoA program we calculate the dimR C1(∆̂)u as the following

dimR C1(∆̂)u = 1 + 4u + 11u2 + 28u3 + 61u4 + 117u5 + 205u6 + 333u7 + ...

When we compare two results we see that dimR(H1(J)) , 0. And we reach the

following conclusion

dimR(H1(J))0 = 0, dimR(H1(J))1 = 0,

dimR(H1(J))2 = 0, dimR(H1(J))3 = 1,

dimR(H1(J))t = 2 for all t ≥ 4.
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We can generalize this special example. In the example three planes intersect along a

line three times, which means that one of the planes can be written as a linear combi-

nation of the others two. Hence the dimension of R/〈p2
1, p2

2, (a1.p1 + a2.p2)2〉 in R is

equal to 3k + 1 (since it is isomorphic to (R/〈x2, y2, xy〉)), where a1, a2 ∈ R. For the

ideal J(〈v0〉) the generators can be identified as {p2
1, p2

2, p2
3, p4 = (a.p1 + b.p3)2, p5 =

(c.p2 + d.p3)2} where a, b, c, d ∈ R, by using the property of three planes intersecting

along a line, which has the same dimension with the ideal 〈x2, y2, z2, xz, yz〉. For the

combinatoric part knowing these dimensions are enough but what can be said about

the dimR(H1(J))k. In fact, in the second part of the calculation we used a special

matrix identifying our simplex. For any octahedron having five interior faces we can

rename the vertices to make the moved vertex v5, after that we will have M(∆̂, r) sim-

ilar to the previous one, it is obvious that p4 and p5 will be different but they will

still be the linear combinations of the others as given in the example. Hence the rela-

tion among the rows of the matrix M(∆̂, r) will be the same as the previous example.

Hence for this case we have

dimRCr(∆̂)k = 8
(
k + 3

3

)
− 12(k + 1)2 + 4(3k + 1) + 2.4k − 5 + 2for all k ≥ 4,

dimRCr(∆̂)k = 8
(
k + 3

3

)
− 12(k + 1)2 + 4(3k + 1) + 2.4k − 3for all k ≥ 4.

5.2.4 Octahedrons Having 6 interior Hyperplanes

In a regular octahedron any boundary vertex is contained in two inner hyperplanes,

and any two of the vertices share at least one of these hyperplanes. To obtain an octa-

hedron having 6 hyperplanes we move two vertices of the octahedron that contained

in three inner hyperplanes, through one of their four boundary edges in such a way

that they don’t stay in any of their comman hyperplanes after the movement (Here I

won’t consider the case that vertices and v0 lie on the same line, since their movement

considered in the case ‘octahedrons having 4 interior hyperplanes’).

We consider the example for ∆ = Conv({v0, v1, v2, v3, v4, v5, v6}), where v0 = (0, 0, 0),

v1 = (1/2,−1/2, 0), v2 = (0, 1/2,−1/2), v3 = (−1, 0, 0), v4 = (0,−1, 0), v5 = (0, 0, 1),

v6 = (0, 0,−1) in which we move vertex v1 through the v1v4 edge, and v2 through the

v2v6 edge. We will find the ideal J(γ) for any interior face γ.
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Figure 5.8: Octahedron with six hyperplanes

J(〈v0, v1, v2〉) = (x + y + z)2, J(〈v0, v2, v5〉) = x2,

J(〈v0, v2, v3〉) = (y + z)2, J(〈v0, v3, v5〉) = y2,

J(〈v0, v3, v4〉) = z2, J(〈v0, v4, v5〉) = x2,

J(〈v0, v4, v1〉) = z2, J(〈v0, v1, v5〉) = (x + y)2,

J(〈v6, v0, v1〉) = (x + y)2, J(〈v6, v0, v2〉) = x2,

J(〈v6, v0, v3〉) = y2 J(〈v6, v0, v4〉) = x2,

J(〈v0, v4〉) = 〈x2, z2〉, J(〈v0, v2〉) = 〈x2, (y + z)2, (x + y + z)2〉,

J(〈v0, v3〉) = 〈y2, z2, (y + z)2〉, J(〈v0, v1〉) = 〈(x + y + z)2, (x + y)2, z2〉,

J(〈v5, v0〉) = 〈x2, y2, (x + y)2〉, J(〈v6, v0〉) = 〈x2, y2, (x + y)2〉,

J(〈v0〉) = 〈x2, y2, z2, (x + y)2, (y + z)2, (x + y + z)2〉.

We show that ∂1 is onto. So, H0(J) = 0.

By χ(H(R/J)) = χ(R/J) we get the following equality.

dimR Cα(∆̂)k = 8.
(
k + 3

3

)
− 12.(k + 1)2 + 5(3k + 1) + 4k − 4 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 5k − 11 + dimR H2(R/J)k ∀ k ≥ 1.

Schenck in [16] obtains this case and says that dimR H1(J)k = 0. By the movement,

5 interior lines contained in three hyperplanes such that one of them is the linear

combination of the others hence the combinatoric equality is unique.

dimR Cα(∆̂)k = 8
(
k + 3

3

)
− 12k2 − 5k − 11 ∀ k ≥ 1.
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5.2.5 Octahedrons Having 7 interior Hyperplanes

We give a sample of an octahedron with seven hyperplanes. In this example, one

boundary vertex of the regular octahedron was removed not leaving it in any inner

hyperplanes incident to itself, and another vertex which share an edge with the first

one was removed through one of the four boundary lines incident to it. We consider

the case ∆ = Conv({v0, v1, v2, v3, v4, v5, v6}), where v0 = (0, 0, 0), v1 = (1, 0, 0), v2 =

(−1/2, 1/2, 0), v3 = (−1, 0, 0), v4 = (0,−1, 0), v5 = (1, 1, 1), v6 = (0, 0,−1). For any

u u

u

u uu

u

v0

v1 v2

v3v4

v5

v6

Figure 5.9: Octahedron with 7 hyperplanes

interior face γ the ideal J(γ) is decided below.

J(〈v0, v1, v2〉) = z2, J(〈v6, v0, v3〉) = y2, J(〈v6, v0, v2〉) = (x + y)2,

J(〈v0, v2, v3〉) = z2, J(〈v6, v0, v4〉) = x2, J(〈v0, v2, v5〉) = (x + y − 2z)2,

J(〈v0, v3, v4〉) = z2, J(〈v0, v4, v5〉) = (x − z)2, J(〈v0, v3, v5〉) = (y − z)2,

J(〈v0, v4, v1〉) = z2, J(〈v0, v1, v5〉) = (y − z)2, J(〈v6, v0, v1〉) = x2,

J(〈v0, v1〉) = 〈y2, z2, (y − z)2〉, J(〈v0, v2〉) = 〈(x + y)2, z2, (x + y − 2z)2〉,

J(〈v0, v3〉) = 〈y2, z2, (y − z)2〉, J(〈v0, v4〉) = 〈x2, z2, (x − z)2〉,

J(〈v6, v0〉) = 〈x2, y2, (x + y)2〉, J(〈v5, v0〉) = 〈(x − z)2, (y − z)2, (x + y − 2z)2〉,

J(〈v0〉) = 〈x2, y2, z2, (x − z)2, (y − z)2, (x + y)2, (x + y − 2z)2〉.

Hi(R) = 0 ∀i < d, and ∂1 is onto. So, H0(J) = 0.

By the Euler characteristic equation, χ(H(R/J)) = χ(R/J) we get the following
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equality.

dimR Cα(∆̂)k = 8
(
k + 3

3

)
− 12(k + 1)2 + 6(3k + 1) − 4 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 6k − 10 + dimR H2(R/J)k ∀ k > 0.

Here we don’t know what dimR H2(R/J) is. And we use the matrix method to calcu-

late the dimR Cα(∆̂)k. By using CoCoA we find that

dimR Cr(∆̂)u = 1 + 4u + 11u2 + 26u3 + 56u4 + 110u5 + 196u6 + ...

When we compare two results we see that dimR(H1(J)) , 0. And we reach the

following conculusion

dimR(H1(J)k =


0 if k = 0, 1,

1 if k = 2,

2 if k ≥ 3.

5.2.6 Octahedrons Having 8 Interior Hyperplanes

In this subsection we consider a ∆ with eight hyperplanes in a specialized sam-

ple. ∆ = Conv({v0, v1, v2, v3, v4, v5, v6}) where v0 = (0, 0, 0), v1 = (2,−2,−1), v2 =

(1, 3,−2), v3 = (−2, 1, 1), v4 = (−1,−2, 2), v5 = (0, 0, 3), v6 = (0, 0,−3). For any

interior face γ the ideal J(γ) is decided below.

J(〈v0, v1, v2〉) = (7x + 3y + 8z)2, J(〈v0, v2, v5〉) = (3x − y)2,

J(〈v0, v2, v3〉) = (5x + 3y + 7z)2, J(〈v0, v3, v5〉) = (x + 2y)2,

J(〈v0, v3, v4〉) = (4x + 3y + 5z)2, J(〈v0, v4, v5〉) = (2x − y)2,

J(〈v0, v4, v1〉) = (2x + y + 2z)2, J(〈v0, v1, v5〉) = (x + y)2,

J(〈v6, v0, v2〉) = (3x − y)2, J(〈v6, v0, v3〉) = (x + 2y)2,

J(〈v6, v0, v4〉) = (2x − y)2, J(〈v6, v0, v1〉) = (x + y)2,
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J(〈v0, v1〉) =〈(7x + 3y + 8z)2, (2x + y + 2z)2, (x + y)2〉,

J(〈v0, v2〉) =〈(7x + 3y + 8z)2, (5x + 3y + 7z)2, (3x − y)2〉,

J(〈v0, v3〉) =〈(5x + 3y + 7z)2, (4x + 3y + 5z)2, (x + 2y)2〉,

J(〈v0, v4〉) =〈(4x + 3y + 5z)2, (2x + y + 2z)2, (2x − y)2〉,

J(〈v5, v0〉) =〈(3x − y)2, (x + 2y)2, (2x − y)2, (x + y)2〉,

J(〈v6, v0〉) =〈(3x − y)2, (x + 2y)2, (2x − y)2, (x + y)2〉,

J(〈v0〉) = 〈(7x + 3y + 8z)2, (5x + 3y + 7z)2, (4x + 3y + 5z)2, (2x + y + 2z)2.

(3x − y)2, (x + 2y)2, (2x − y)2, (x + y)2〉

We know that Hi(R) = 0 ∀i < d. and we can show that H0(J) = ker ∂0/ im ∂1 = 0.

By using the Euler characteristic equation, χ(H(R/J)) = χ(R/J) we get that

dimR Cα(∆̂)k = 8
(
k + 3

3

)
− 12(k + 1)2 + 6(3k + 1) − 4 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 6k − 10 + dimR H2(R/J)k ∀ k > 0

Here we don’t know what dimR H2(R/J) is. Here we use the matrix method to cal-

culate the dimR Cα(∆̂)k, and we find that

dimR Cr
u(∆̂) = 1 + 4u + 11u2 + 26u3 + 56u4 + 110u5 + 196u6 + ...

When we compare two results we see that dimR(H1(J)) , 0. And we reach the

following conclusion

dimR(H1(J))k =


0 if k = 0, 1,

1 if k = 2,

2 if k ≥ 3.

By the examples given in the latter two subsections, we see that dimension of an

octahedron having seven and eight hyperplanes depend not on combinatoric only, but

also on the dimension of H2(R/J). And most interestingly, even they have different

constructions, they have the same result. Another important situation need to be

mentioned here is that any octahedron having more than six hyperplanes will have

the same combinatoric part for r = 1. Since each line have to be contained at least
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three hyperplanes in each cases and there are six interior lines that brings the 6.(3k+1)

into the calculation. Hence calculating dimension of C1
k (∆̂) is depend on calculation

of the dimension of the H2(R/J).

5.2.7 Octahedrons Having 9 Interior Hyperplanes

We will consider a ∆ having nine hyperplanes by the following sample.

∆ = Conv({v0, v1, v2, v3, v4, v5, v6}) where v0 = (0, 0, 0), v1 = (3/2, 3/2, 0), v2 =

(0, 1,−1), v3 = (−3, 0, 0), v4 = (0,−3, 0), v5 = (−2, 0, 2), v6 = (0, 0,−3). For any

interior face γ the ideal J(γ) is decided below.

J(〈v0, v1, v2〉) = (x − y − z)2, J(〈v0, v2, v5〉) = (x + y + z)2,

J(〈v0, v2, v3〉) = (y + z)2, J(〈v0, v3, v5〉) = (y)2,

J(〈v0, v3, v4〉) = (z)2, J(〈v0, v4, v5〉) = (x + z)2,

J(〈v6, v0, v2〉) = (x)2, J(〈v6, v0, v3〉) = (y)2,

J(〈v0, v4, v1〉) = (z)2, J(〈v0, v1, v5〉) = (x − y + z)2,

J(〈v6, v0, v4〉) = (x)2, J(〈v6, v0, v1〉) = (x − y)2,

J(〈v0, v1〉) = 〈(x − y − z)2, z2, (x − y + z)2, (x − y)2〉,

J(〈v0, v2〉) = 〈(x − y − z)2, (y + z)2, (x + y + z)2, x2〉,

J(〈v0, v3〉) = 〈(y + z)2, z2, y2〉,

J(〈v0, v4〉) = 〈z2, (x + z)2, x2〉,

J(〈v5, v0〉) = 〈(x + y + z)2, y2, (x + z)2, (x − y + z)2〉,

J(〈v6, v0〉) = 〈x2, y2, (x − y)2〉,

J(〈v0〉) = 〈(x − y − z)2, (y + z)2, z2, (x + y + z)2, y2, (x + z)2, (x − y + z)2, x2, (x − y)2〉.

We know that Hi(R) = 0 ∀i < d. and also we can show that H0(J) = ker ∂0/ im ∂1 =

0.

By the Euler characteristic equation, χ(H(R/J)) = χ(R/J) get the following equal-
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ity.

dimR C1(∆̂)k = 8
(
k + 3

3

)
− 12(k + 1)2 + 6(3k + 1) − 4 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 6k − 10 + dimR H2(R/J)k, ∀ k > 0.

Here we don’t know what dimR H2(R/J) is. Thus we apply the matrix method to

calculate the dimR Cα(∆̂)k.

By using the CoCoA program we calculate the Hilbert series’s of the graded module

dimR Cr(∆̂)k.

dimR Cr(∆̂)k = 1 + 4u + 10u2 + 24u3 + 54u4 + 108u5 + 194u6 + ...

When we compare two results we see that dimR(H1(J)) = 0. And the dimension of

C1(∆̂) is computed by combinatoric relations.

dimR C1(∆̂)k = 8
(
k + 3

3

)
− 12k2 − 6k − 10.

5.2.8 Octahedrons Having 10 Interior Hyperplanes

In this part we will consider ∆ with ten hyperplanes in a special example.

∆ = Conv({v0, v1, v2, v3, v4, v5, v6}) where v0 = (0, 0, 0), v1 = (−4,−3,−1), v2 =

(1,−3, 1), v3 = (2, 1, 2), v4 = (−1, 1,−1), v5 = (0,−1, 3), v6 = (−1,−1,−2). For

any interior face γ the ideal J(γ) is decided below.

J(〈v0, v1, v2〉) = (2x − y − 5z)2, J(〈v0, v2, v5〉) = (8x + 3y + z)2,

J(〈v0, v2, v3〉) = (x − z)2, J(〈v0, v3, v5〉) = (5x − 6y − 2z)2,

J(〈v0, v3, v4〉) = (x − z)2, J(〈v0, v4, v5〉) = (2x + 3y + z)2,

J(〈v0, v4, v1〉) = (4x − 3y − 7z)2, J(〈v0, v1, v5〉) = (5x − 6y − 2z)2,

J(〈v6, v0, v2〉) = (7x + y − 4z)2, J(〈v6, v0, v4〉) = (3x + y − 2z)2,

J(〈v6, v0, v3〉) = (2y − z)2, J(〈v6, v0, v1〉) = (5x − 7y + z)2,
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J(〈v0, v1〉) = 〈(2x − y − 5z)2, (4x − 3y − 7z)2, (5x − 6y − 2z)2, (5x − 7y + z)2〉,

J(〈v0, v2〉) = 〈(2x − y − 5z)2, (x − z)2, (8x + 3y + z)2, (7x + y − 4z)2〉,

J(〈v0, v3〉) = 〈(x − z)2, (5x − 6y − 2z)2, (2y − z)2〉,

J(〈v0, v4〉) = 〈(x − z)2, (4x − 3y − 7z)2, (2x + 3y + z)2, (3x + y − 2z)2〉,

J(〈v5, v0〉) = 〈7(8x + 3y + z)2, y2, (5x − 6y − 2z)2, (2x + 3y + z)2〉,

J(〈v6, v0〉) = 〈(7x + y − 4z)2, (2y − z)2, (3x + y − 2z)2, (5x − 7y + z)2〉,

J(〈v0〉) = 〈(2x − y − 5z)2, (x − z)2, (4x − 3y − 7z)2, (8x + 3y + z)2, (5x − 6y − 2z)2,

(2x + 3y + z)2, (5x − 7y + z)2, (7x + y − 4z)2, (2y − z)2, (3x + y − 2z)2〉.

We know that Hi(R) = 0 ∀i < d, and we show that H0(J) = ker ∂0/ im ∂1 = 0.

By the Euler characteristic equation, χ(H(R/J)) = χ(R/J) gives the following

equality

dimR C1(∆̂)k = 8
(
k + 3

3

)
− 12(k + 1)2 + 6(3k + 1) − 4 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 6k − 10 + dimR H2(R/J)k ∀ k > 0.

Here we don’t know what dimR H2(R/J) is. Thus we use the matrix method to

calculate it.

By using the CoCoA program we calculate the Hilbert series’s of the graded module

dimR Cr
u(∆̂) as follows.

dimR Cr
u(∆̂) = 1 + 4u + 10u2 + 24u3 + 54u4 + 108u5 + 194u6 + ...

When we compare two results we see that dimR(H1(J)) = 0. And The dimension of

C1(∆̂) is computed by combinatoric relations.

dimR C1(∆̂)k = 8
(
k + 3

3

)
− 12k2 − 6k − 10.

5.2.9 Octahedrons Having 11 Interior Hyperplanes

In this section we will consider an example with ∆ having eleven hyperplanes.

∆ = Conv(v0, v1, v2, v3, v4, v5, v6) where v0 = (0, 0, 0), v1 = (2, 0, 0), v2 = (1, 2,−1),
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v3 = (−2,−1, 0), v4 = (0,−2, 0), v5 = (2, 3, 2), v6 = (1, 0,−2). For any interior face γ

the ideal J(γ) is decided below.

J(〈v0, v1, v2〉) = (y + 2z)2, J(〈v0, v2, v5〉) = (7x − 4y − z)2,

J(〈v0, v2, v3〉) = (x − 2y − 3z)2, J(〈v0, v3, v5〉) = (x − 2y + 2z)2,

J(〈v0, v3, v4〉) = (z)2, J(〈v0, v4, v5〉) = (x − z)2,

J(〈v0, v4, v1〉) = (z)2, J(〈v0, v1, v5〉) = (2y − 3z)2,

J(〈v6, v0, v2〉) = (4x − y + 2z)2, J(〈v6, v0, v4〉) = (2x + z)2,

J(〈v6, v0, v3〉) = (2x − 4y + z)2, J(〈v6, v0, v1〉) = (y)2,

J(〈v0, v1〉) = 〈(y + 2z)2, (z)2, (2y − 3z)2, (y)2〉,

J(〈v0, v2〉) = 〈(y + 2z)2, (x − 2y − 3z)2, (7x − 4y − z)2, (4x − y + 2z)2〉,

J(〈v0, v3〉) = 〈(x − 2y − 3z)2, (z)2, (x − 2y + 2z)2, (2x − 4y + z)2〉,

J(〈v0, v4〉) = 〈(z)2, (x − z)2, (2x + z)2〉,

J(〈v5, v0〉) = 〈(7x − 4y − z)2, (x − 2y + 2z)2, (x − z)2, (2y − 3z)2〉,

J(〈v6, v0〉) = 〈(4x − y + 2z)2, (2x − 4y + z)2, (2x + z)2, (y)2〉,

J(〈v0〉) = 〈(y + 2z)2, (x − 2y − 3z)2, z2, (7x − 4y − z)2, (x − 2y + 2z)2, (x − z)2,

(2y − 3z)2, (y)2, (4x − y + 2z)2, (2x − 4y + z)2, (2x + z)2〉.

We know that Hi(R) = 0 ∀i < d, and we can show that H0(J) = ker ∂0/ im ∂1 = 0.

By applying the Euler characteristic equation, χ(H(R/J)) = χ(R/J) we get the

following equality.

dimR C1(∆̂)k = 8
(
k + 3

3

)
− 12(k + 1)2 + 6(3k + 1) − 4 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 6k − 10 + dimR H2(R/J)k ∀ k > 0.

Here we don’t know what dimR H2(R/J) is. Thus we use the matrix method to

calculate the dimR Cα(∆̂)k.

By using the CoCoA program we calculate the Hilbert series of the graded module

dimR Cr(∆̂)u as following

dimR Cr(∆̂)u = 1 + 4u + 10u2 + 24u3 + 54u4 + 108u5 + 194u6 + ...
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When we compare two results we see that dimR(H1(J)) = 0. So the dimension of

C1(∆̂) is computed by combinatoric relations.

dimR C1(∆̂)k = 8
(
k + 3

3

)
− 12k2 − 6k − 10.

5.2.10 Octahedrons Having 12 Interior Hyperplanes

An octahedron can have at most twelve hyperplanes, in this part we will consider this

nongeneric case. In [15], Schenck remarks that in nongeneric octahedrons dimR H1(J) =

0 when r = 1. Thus dimension of that octahedron can be find by the combinatorial

calculations. Now we will calculate dimension of a nongeneric octahedron and ex-

tend it to the general nongeneric octahedrons. We consider the example for

∆ = Conv({v0, v1, v2, v3, v4, v5, v6}), where v1 = (3, 1, 1), v2 = (5,−3, 2), v3 = (−3,−2,−1),

v4 = (−2, 2, 0), v5 = (1, 1, 3), v6 = (0, 1, 3) and v0 = (0, 0, 0).

We find for any interior face γ of the simplex the ideal J(γ).

J(〈v0, v1, v2〉) = (5x − y − 14z)2, J(〈v0, v2, v5〉) = (11x + 13y − 8z)2,

J(〈v0, v2, v3〉) = (7x − y − 19z)2, J(〈v0, v3, v5〉) = (5x − 8y + z)2,

J(〈v0, v3, v4〉) = (x + y − 5z)2, J(〈v0, v4, v5〉) = (3x + 3y − 2z)2,

J(〈v0, v4, v1〉) = (x + y − 4z)2, J(〈v0, v1, v5〉) = (x − 4y + z)2,

J(〈v6, v0, v2〉) = (11x + 15y − 5z)2, J(〈v6, v0, v3〉) = (5x − 9y + 3z)2,

J(〈v6, v0, v4〉) = (3x + 3y − z)2, J(〈v6, v0, v1〉) = (2x − 9y + 3z)2,

J(〈v0, v1〉) = 〈(5x − y − 14z)2, (x + y − 4z)2, (x − 4y + z)2, (2x − 9y + 3z)2〉,

J(〈v0, v2〉) = 〈(5x − y − 14z)2, (7x − y − 19z)2, (11x + 13y − 8z)2,

(11x + 15y − 5z)2〉,

J(〈v0, v3〉) = 〈(7x − y − 19z)2, (x + y − 5z)2, (5x − 8y + z)2, (5x − 9y + 3z)2〉,

J(〈v0, v4〉) = 〈(x + y − 5z)2, (x + y − 4z)2, (3x + 3y − 2z)2, (3x + 3y − z)2〉,

J(〈v5, v0〉) = 〈(11x + 13y − 8z)2, (5x − 8y + z)2, (3x + 3y − 2z)2, (x − 4y + z)2〉,

J(〈v6, v0〉) = 〈(11x + 15y − 5z)2, (5x − 9y + 3z)2, (3x + 3y − z)2, (2x − 9y + 3z)2〉,
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J(〈v0〉) = 〈(5x − y − 14z)2, (7x − y − 19z)2, (x + y − 5z)2, (x + y − 4z)2,

(11x + 13y − 8z)2, (5x − 8y + z)2, (3x + 3y − 2z)2, (x − 4y + z)2,

(11x + 15y − 5z)2, (5x − 9y + 3z)2, (3x + 3y − z)2, (2x − 9y + 3z)2〉.

We can show that ∂1 is onto. So, H0(J) = 0.

By χ(H(R/J)) = χ(R/J) we write the following equality.

dimR Cα(∆̂)k = 8.
(
k + 3

3

)
− 12.(k + 1)2 + 6(3k + 1) − 4 + dimR H2(R/J)k

= 8
(
k + 3

3

)
− 12k2 − 6k − 10 + dimR H2(R/J)k ∀ k ≥ 1.

Since dimR H1(J)k = 0, we can find the dimension of the octahedron just by combi-

natorial calculations. Here the combination is unique for any nongeneric case since

any interior line is contained in 4 hyperplanes and two of the hyperplanes generate the

other two hence dimR(R/J〈vi, v j〉)k = 3k + 1. Also v0 is contained in 12 hyperplanes

which are intersecting through 6 lines hence dimR(R/J〈v0〉)k = 4 for k ≥ 1. Thus,

dimR Cα(∆̂)k = 8
(
k + 3

3

)
− 12k2 − 6k − 10 ∀ k ≥ 1.

In cases, after octahedrons having six hyperplanes case, in our calculations, we get the

same combinatorial part. But, in the examples having seven and eight hyperplanes,

the combinatorial part was different for the dimension of Cα(∆̂), but for the rest they

were equal.
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CHAPTER 6

CONCLUSION

In this thesis, we studied splines on simplicial and polyhedral complexes. After pre-

senting some results of Geramita and Schenck given in [18] in two dimension case,

we tried to extend their results to three dimension. To do this, we needed to extra ho-

mology that need to be calculated, which was not easy at all. We considered several

methods to calculate the dimension of splines, and by comparing their results, we tried

to obtain a way of controlling the dimension of the homology module (H2(R / J)). We

proved that on pure and hereditary simplicial complexes, if the dimension of the sec-

ond homology module is zero, then the result depends only on the geometry of the

complexes, and could be calculated by some combinatorial calculations. That made it

possible to make some generalizations. We have given a formula for the dimension of

the splines on n-gons having no interior points. Also, by using results given in [16],

we give explicit formulas for the dimensions of the splines on octahedrons with one

interior point. The formulas depend on the number of interior 2-faces.

Also in this thesis, one of our aims was to generalize a result of Mcdonald and

Schenck [23]. Their result gives the coefficients of the polynomial showing the di-

mension of a spline space defined on a 2-dimensional polyhedral complex with the

fixed smoothness degree r. By connecting these ideas, with the work of [18], we

gave a formula for the coefficients of the Hilbert polynomial of a spline for the mixed

smoothness degree case, α = (α1, α2, . . . , α f 0
1
).

In dimension 3, still very little is known for splines on a simplicial complex. Hence

there are many open problems in dimension 3, which we plan to attack in the future.
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In this thesis, we have seen that different branches of mathematics are unexpectedly

connected, in our study it was among the geometry, algebra and combinatorics, so

that by interaction between seemingly distant branches may yield with new results.
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F. Arslan, N. Sipahi, N. Şahin, Monomial curve families supporting Rossi’s conjec-

ture, Journal of Symbolic Computation, 55 (2013), 10-18.

103


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Theoretical Background
	Polyhedral Complexes
	Simplicial Complexes
	Simplicial Homology
	Univariate Splines
	Multivariate Splines
	Literature on multivariate splines
	Main techniques for multivariate splines
	Hilbert function, Hilbert series and Hilbert polynomial


	Algebraic Methods To Calculate The Dimension of Splines
	Matrix Method
	Hilbert Series Method
	Homology Method
	The Method of Using Relations Among Fat Points, Inverse Systems and Splines
	Fat Points and Inverse Systems
	Piecewise Polynomial Functions on Simplicial Complexes


	Splines with Mixed Smoothness Degree on Polyhedral Complexes
	Splines with Mixed Smoothness Degrees on Polyhedral Complexes
	Examples

	Results in dimension three
	Simplicial complexes with no interior point
	Dimension of a general tetrahedron

	All Possible Dimensions for an Octahedron
	Octahedrons Having 3 Interior Hyperplanes
	Octahedrons Having 4 Interior Hyperplanes
	Octahedrons Having 5 Interior Hyperplanes
	Octahedrons Having 6 interior Hyperplanes
	Octahedrons Having 7 interior Hyperplanes
	Octahedrons Having 8 Interior Hyperplanes
	Octahedrons Having 9 Interior Hyperplanes
	Octahedrons Having 10 Interior Hyperplanes
	Octahedrons Having 11 Interior Hyperplanes
	Octahedrons Having 12 Interior Hyperplanes


	Conclusion
	REFERENCES
	CURRICULUM VITAE

