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ABSTRACT 

 

 

MULTIOBJECTIVE AERIAL SURVEILLANCE PROBLEM 

 

 

 

MaraĢ, Güliz 

M.Sc., Department of Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Esra KARASAKAL 

Co-Supervisor: Assoc. Prof. Dr. Orhan KARASAKAL 

 

 

December 2013, 132 pages 

 

 

In this study, we address mission planning for aerial reconnaissance and surveillance 

platforms. In Aerial Surveillance Problem (ASP), an air platform with surveillance 

sensors searches a specified number of rectangular areas once by covering inside of 

rectangles in strips and turns back to base where it starts. This study proposes 

methods to solve ASP with two conflicting objectives, minimizing distance travelled 

and maximizing minimum probability of target detection. Computational results 

show that the proposed methods produce high quality solutions. We propose an 

interactive procedure to help decision maker choose the most satisfying solution 

among all the pareto optimal solutions. 

Keywords:  Travelling Salesman Problem, Aerial Surveillance, Multiobjective 

Optimization, ε-Constraint Method 
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ÖZ 

 

 

ÇOK AMAÇLI HAVADAN GÖZETLEME PROBLEMİ 

 

 

 

MaraĢ, Güliz 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Esra KARASAKAL 

Ortak Tez Yöneticisi: Doç. Dr. Orhan KARASAKAL 

 

 

Aralık 2013, 132 sayfa 

 

 

Bu çalıĢmada, havadan keĢif ve gözetleme yapan platformlar için görev planlaması 

yapılması ele alınmıĢtır. Havadan Gözetleme Problemi’nde (HGP), gözetleme amaçlı 

kullanılan sensörlerle donatılmıĢ bir hava aracı bir kalkıĢ noktasından göreve baĢlar, 

belirli bir sayıdaki dikdörtgen Ģeklindeki alanı Ģeritler halinde kapsayacak Ģekilde 

tarama yapar ve kalkıĢ noktasına geri döner. Bu çalıĢmada, birbiri ile çeliĢen iki 

amaçlı bir Havadan Gözetleme Problemi’ni çözmek için yöntemler önerilmiĢtir. Bu 

amaçlar, görev boyunca dolaĢılan mesafeyi enazlamak ve en küçük hedef tespiti 

olasılığını ençoklamaktır. Performans metrikleri ile alınan sonuçlar, önerilen 

yöntemlerin yüksek kaliteli sonuçlar ürettiğini göstermiĢtir. Son olarak, önerilen 

yöntemlerle oluĢturulan etkin sınırlardaki çözümlerden karar vericinin isteklerini en 

iyi karĢılayan çözümü seçmesi için karar vericiyi yönlendirecek bir yöntem 

sunulmuĢtur.  

 

Keywords:  Gezgin Satıcı Problemi, Havadan Gözetleme, Çok Amaçlı Eniyileme, ε-

Kısıt Methodu 
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CHAPTER 1 

 

 

1. INTRODUCTION  

 

 

 

Aerial Surveillance is conducted by manned or unmanned air vehicles with the aim 

of reconnaissance and surveillance in many military and civilian applications such as 

land and coastal border security applications to detect and track illegal activities, 

search and rescue operations, mapping of surface topology, oil spill detection, traffic 

monitoring etc. Sensors like electro-optics and radars are mounted on air vehicles 

and used for surveillance missions.  

Aerial surveillance can be performed in two ways. Either the search area is 

monitored entirely or only the most interested areas in the region are monitored. In 

this study, the focus is on the latter. In the latter case, the regions where the target is 

supposed to be are searched. Target can be a smuggler in border security 

applications, a lost person in search and rescue operations or a vessel discharging oil 

to the sea in oil spill detection. In all these operations, air vehicle takes off from a 

base station, visits the regions to be searched and turns back to the base station again.  

While planning these operations, one of the aims is to minimize cost due to high 

operational costs of aerial surveillance. Moreover, time is another important concern 

in target detection. As operation cost and operation time of an aircraft are 

proportional to the distance travelled, the main objective is to minimize the distance 

travelled. 

In border security applications, search and rescue operations and oil spill detection, 

goal of the operation is to detect the target. Therefore, another important objective in 

aerial surveillance is maximization of the target detection probability.  
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For planning aerial surveillance operations, Aerial Surveillance Problem (ASP) is 

defined by Ng & Sancho (2009) and Karasakal (2013). ASP is to find a path for an 

air platform that starts to travel from a base station, visits each rectangular area, 

conducts a search in strips in each rectangle and turns back to the base station. ASP 

can be considered as an extension of Travelling Salesman Problem (TSP). The 

difference between TSP and ASP is the visiting points. In TSP, only points are 

visited. On the other hand, in ASP rectangles are visited and each rectangle is 

searched in strips.  

Two mixed integer linear programming models are developed for solving two single 

objective ASPs with the objectives of minimizing distance travelled and maximizing 

minimum probability of target detection (Karasakal, 2013).   

In this study, we try to optimize these two objectives simultaneously. We formulate a 

Multiobjective ASP by combining the models developed by Karasakal (2013). An 

exact method and heuristic methods are proposed to solve Multiobjective ASP. 

Moreover, an interactive solution procedure is proposed to guide decision maker 

while selecting one solution from the pareto optimal set. To the best of our 

knowledge, our study is the first attempt to solve Multiobjective Aerial Surveillance 

Problem. 

Organization of the thesis is as follows: In Chapter 2, a literature review on Aerial 

Surveillance and Multiobjective Travelling Salesman Problem (MOTSP) is given. 

MOTSP literature is reviewed as ASP and TSP are similar problems. Problem is 

defined and formulated in Chapter 3. An exact method and a heuristic method are 

proposed to solve Biobjective ASP in Chapter 4. Computational results are reported 

in Chapter 5.  In Chapter 6, an interactive solution procedure is presented. The study 

is concluded in Chapter 7 with some remarks. 
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CHAPTER 2 

 

 

2. LITERATURE SURVEY 

 

 

 

This chapter aims to make a review of the previous works done on Aerial 

Surveillance and Multiobjective Travelling Salesman Problem. Some definitions 

about Multiobjective Optimization are given in the second section of the chapter. 

2.1 Aerial Surveillance 

The literature is sparse on aerial surveillance in the literature. The first study about 

aerial surveillance is conducted by Panton and Elbers (1999). They develop an 

optimization software for a military organization to plan flight of an aircraft with 

synthetic aperture radar with the aim of minimizing distance travelled. Aircraft takes 

off from a base, flies over up to 20 rectangular regions named as swaths and lands to 

a possibly different base. Swaths are of same width and variable length and 

orientation. Aircraft travels along the length of swath with four different possible 

patterns. An IP formulation is proposed for the problem. The method also 

incorporate with constrains about mandatory runs and no fly zones. The weakness of 

their method is that it is specific to be used for search zones that are like strips. 

Panton et al. (2001) divides a region to swaths for regional surveillance. Regional 

surveillance means systematically monitoring of an entire region. The aim of the 

study is to minimize the distance travelled while searching over entire region. Two 

aspects make the problem harder to solve. The first one is that regions of interest 

generally are not rectangular areas. The second one is that the aircraft travels over 

rectangular areas as swaths. Therefore, the problem is to divide the region to swaths 

and plan the sequence of travelling the swaths. An IP formulation and a heuristic 

method with three variations of genetic algorithm are developed for the problem. 
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There are also some studies of aerial surveillance that focus on maritime 

surveillance. Maritime aerial surveillance is to monitor surface vehicles at sea with 

an air platform. Gihanmi (2002) develops a maritime surface surveillance system to 

detect and track illegal vessels. The system composes of three subsystems. The first 

one is used to generate and update the probability map for target position when a 

target is detected. The area to be searched is decided based on that probability map. 

Then, the target’s position is assumed to be distributed over the selected area to be 

searched. The second subsystem decides the way of searching the area. Two different 

heuristics are used for rectangular regions and irregular regions. If the target is close 

to the boundary of search area and target cannot be detected by area search, with 

third subsystem, barrier search is applied on the boundary.  

Maritime surface surveillance is also studied by Grob (2006). The aim of the study is 

to get as much information as possible about surface ships at sea. A mathematical 

formulation is described for planning operation of a single surveillance unit. 

Operation of the unit is changed continuously according to the current state of 

surface ships. As current state changes very rapidly, it is not possible to solve the 

problem optimally for each state. Therefore, a heuristic method is proposed to solve 

problem and it is tested on a simulation tool.  

In some cases, using just a single surveillance unit may not be feasible and multiple 

surveillance units are needed. There are some studies which focus on aerial 

surveillance with multiple platforms. Jacobson et al. (2006) offer a method for 

routing of multiple aerial search platforms that are used with the aim of 

reconnaissance and surveillance. The difference in their method is that they plan 

multiple search platforms simultaneously. Moreover, search area is not divided into 

swaths or small regions as in previous works, because there is no need for full 

coverage of region. Instead, search platforms have to visit a number of points in the 

search area. Therefore, the problem is modeled as Multiple Travelling Salesman 

Problem. A simultaneous generalized hill climbing algorithm is used to solve the 

problem.  
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Simonin et al. (2008) consider planning of multi-sensors in multi-zones. The aim is 

to maximize the probability of detection for a moving target.  A bi-level solution 

procedure is proposed. In the first level, sensors are assigned to search areas and in 

the second level, the best search strategy for each sensor is found. Extension of the 

proposed method to multi-period search is also given.  

The first study on ASP is done by Ng and Sancho (2009). A dynamic programming 

formulation is proposed for ASP with the aim of minimizing distance travelled. The 

method can solve problems with up to 6-7 rectangles. The problems with more 

rectangles cannot be solved due to curse of dimensionality. The approach used in the 

model to define the travel in the rectangles has a weakness as the width of search 

strips in each rectangle is equal. This results in surveillance of unnecessary regions if 

the rectangle’s width is not divisible by the width of search strips. 

Karasakal (2013) proposes efficient solution models that contribute to the study of 

Ng and Sancho (2009). Two mixed integer linear programming models are 

introduced to solve ASP with two different objectives, minimizing distance and 

maximizing the minimum probability of target detection.  Both of the models can 

solve problems up to 40 rectangles in reasonable times using a commercial solver. 

Moreover, the models allow search strips with different widths in each rectangle to 

eliminate surveillance of unnecessary regions. The details of the models are given in 

Chapter 3. 

2.2 Multiobjective Travelling Salesman Problem (MOTSP) 

In this chapter, we provide a literature review on MOTSP. There are many different 

approaches such as local search methods, evolutionary algorithms and memetic 

algorithms that are used to solve multiobjective travelling salesman problem.  

We provide a short introduction to multiobjective optimization before the survey of 

literature on MOTSP below: 
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In multiobjective optimization, there is more than one objective to be optimized 

simultaneously. In general, multiple objectives are in conflict with each other and for 

only trivial cases, there is only one global optimum solution for multiobjective 

optimization problems. Generally, there is a set of solutions none of which are better 

than the other solutions in the set for all objectives. This results in trade-offs between 

objectives.  

A multiobjective optimization problem with p objectives is formulated as  

Minimize  (z1(x) , z2(x),…., zp(x)) 

   

 subject to x ∈ X; 

where zk(x)  represents the k
th

 objective function and X is the set of feasible solutions 

or decision space.  Z = {z(x) : x ∈ X} is the image of X in the objective space. 

Definition 1. A feasible solution x ∈ X dominates x’ ∈ X if and only if, zk(x) ≥ zk(x’) 

∀k ∈ {1, . . ., p}, with at least one index k for which the inequality is strict. The 

image of solution x in objective space Z is called a non-dominated solution or 

efficient solution. 

Definition 2.  A feasible solution x ∈ X is a weakly efficient or weakly 

nondominated solution if and only if there is no x’∈ X such that zk(x) > zk(x’) ∀k ∈ 

{1, . . ., p}. 

The set of all nondominated solutions is defined as “Pareto Optimal Set”, “Efficient 

Frontier” and “Efficient Solutions Set”.  

In general, MOTSP can be formulated as follows:  

Minimize  (z1(x) , z2(x),…., zp(x) ) where zk(x) =  ck
𝐱 i ,𝐱(i+1)

+n−1
i=1 ck

𝐱 n ,𝐱(1)
 

 subject to x ∈ X; 
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In the formulation, there are p objectives defined by cost matrix ck and x is the cyclic 

permutation of n cities. Different objectives can be represented in the formulation by 

cost matrix. The cost matrix can be related with distance, cost, time, profit, safety 

etc.  

One of the first studies about MOTSP is conducted by Hansen (2000). In local search 

based heuristic optimization problems, the effects of metrics that are used to guide 

the search are analyzed. Two substitute scalarizing functions that are based on 

Tchebycheff metric and weighted sum are tested by using tabu search method. It is 

shown that substitute scalarizing functions gives better results over the Tchebycheff 

metric.  However, it is not possible to generalize that outcome for all MOTSP 

instances as just a few instances are studied. 

Genetic Algorithm is a widely used method in MOTSP. Genetic algorithm is 

generally combined with a local search method. In that sense, Multi-Objective 

Genetic Local Search (MOGLS) is proposed by Jaszkiewicz (2002) to generate 

approximately efficient solutions for multiobjective combinatorial optimization 

problems. MOTSP is used to present the results of the algorithm. The method tries to 

optimize a randomly selected utility function at each iteration.  Firstly, an initial 

population is generated. Then, a temporary population is constructed by the selection 

of best solutions among initial population according to randomly selected utility 

function. A pair of solutions is selected from this population as offsprings. A local 

search procedure is applied to these offsprings. If the solution found is better than the 

worst solution in temporary population, solution is added to the population. Local 

search used in the method for MOTSP is 2-opt neighborhood method. Weighted 

linear functions are used as utility functions instead of weighted Tchebycheff 

functions relying on Hansen’s research (2000). The model is solvable even for 3 

objective problems with 100 cities.  

Samanlioglu et al. (2008) proposes a memetic random-key genetic algorithm that is 

inspired by MOGLS (Jaszkiewicz, 2002). The method combines Genetic Algorithm 
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with 2-opt move as in MOGLS. In the method, as opposed to MOGLS, search is 

guided by weighted Tchebycheff metric. At the initialization process of the 

algorithm, 2-opt is applied to all chromosomes and also 2-opt is applied after 

implementation of each genetic operator. The algorithm aims to solve TSPs with five 

or more objectives. The results of the method are compared with the results that 

found by Hansen (2000) for 2, 3, and 5 objective problems. It is shown that their 

method gives results superior to or at least as good as those found by Hansen. 

Another advantage of the method is that random-key genetic algorithm eliminates the 

infeasible tours in crossovers which are encountered commonly in other GA 

approaches. 

Another method that uses Genetic Algorithm and 2-opt local search method is 

proposed by Agrawal (2011). The method uses Elitist Non-dominated Sorting 

Genetic Algorithm (NSGA-II) with a modified 2-Opt and Jumping Gene adaptation 

to solve MOTSP. Firstly, an initial population is generated and the population is 

ranked based on non-domination. Then, first N solutions are selected and this 

population is called as Pi. Then, crossover and Jumping Gene mutation is applied to 

Pi. In Jumping Gene mutation, two points are chosen randomly on chromosome and 

the part between these two places is replaced with a random same length gene. Then, 

2-opt is applied to the population. This modified population is called as Qi. Pi and Qi 

are combined. The combined population is sorted again according to non-domination 

to construct Pi+1 and this continues until a stopping condition is achieved. 

Instead of 2-opt local search, Kumar and Singh (2007) used 3-opt move with Genetic 

algorithm. They introduce a method by hybridizing Pareto Converging Genetic 

Algorithm (PCGA) with 3-opt local search to find pareto optimal set of biobjective 

TSP. By using steepest local search with 3-opt move, an initial population which is 

clustered at the extreme points of both objectives is generated. Then, PCGA is 

applied to initial population and all offsprings are improved by steepest local search. 

It is concluded that hybridization improves the quality of solution set compared to 

using just PCGA method.  
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A quite different method based on Genetic Algorithm is proposed by Yan et al. 

(2003). Multi-objective Evolutionary Algorithm (MOEA) starts searching with a 

randomly generated population and each solution in that population is modified by 

both crossover and mutation operators to generate the new individuals. New 

individuals are selected by two different selection operators, namely Family 

Competition and Population Competition. Family Competition compares new 

individual with only father of it and selects if it is better than its father. Population 

Competition compares new individual with whole population and selects if it is 

better than any solution in the population. “Better” property is used instead of fitness 

functions.  

There are some other studies that are based on mainly Local Search Methods. Two-

Phase Local Search (TPLS) method is an example for these methods. It is introduced 

by Paquete and Stützle (2003) for finding an approximate set of efficient solutions 

for biobjective combinatorial optimization problems. In the first phase of the 

procedure, an initial solution is found out by optimizing only one single objective. 

This initial solution is used in the first iteration of second phase. In second phase, 

Iterated Local Search method is applied on the initial solution. The search is guided 

by weighted sum of two objective functions. The outcome of local search is used as 

the initial solution of upcoming iteration of second phase. The objective function of 

second phase is modified at each iteration by changing the weights of two objectives. 

The solution found at each iteration is saved as an efficient solution. The second 

phase is repeated until all combinations of weights are searched. Computational 

experiment is done on symmetric biobjective TSP. Method is compared with 

Jaszkiewicz’s MOGLS method and it is shown that this method outperforms 

MOGLS in terms of solution quality for the test problems. However, TPLS is 

specific to biobjective problems while MOGLS can be used for problems with 3 

objectives. 

Another local search method based heuristic, Pareto Local Search (PLS), is proposed 

by Paquete et al. (2004) for biobjective TSPs. PLS starts with a random initial tour 
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and searches the neighborhood of it. When a nondominated neighbor is found, it is 

saved as an efficient solution and added to the archive. The algorithm continues until 

all solutions’ neighborhood in the archive is searched. 3-opt is used to define the 

neighborhood. The results indicate that PLS has a good performance comparable to 

MOGLS method proposed by Jaszkiewicz. However, the disadvantage of PLS is that 

the computation times are much higher. 

As a more complex neighborhood search technique, dynasearch is used by Angel et 

al. (2004) to find pareto optimal set for biobjective TSP. Dynasearch allows a series 

of moves at each iteration. ds-2-opt is used as neighborhood structure in algorithm. 

The ds-2-opt neighborhood is defined by set of a series of independent 2-opt moves. 

Two 2-opt moves are independent if the vertices involved are distinct. Algorithm 

uses dynamic programming to search the neighborhood. 

For biobjective TSPs, Li (2005) proposes a method using 2-opt local search method 

to find pareto optimal sets by using attractors of each single objective. Proposed 

method firstly attempts to find attractors of each single objective and then merges 

them to find pareto optimal set. To find the attractors, 2-opt local search method is 

applied on randomly generated tours. The edges involved in the local optimal 

solutions are recorded in a hit frequency matrix. Hit frequency matrix gives the arcs 

that will be most probably in the optimal solution of the single objective problem. 

Then, attractors of two objectives are merged and searched to find out a non-

dominated solutions set. 

Path-relinking concept is applied together with 2-opt local search and tabu search in 

Pareto Memetic Algorithm (PMA) for biobjective TSPs (Jaszkiewicz et. al., 2009). 

The algorithm firstly uses Lin–Kernighan algorithm to optimize each objective 

separately and found solutions are saved in solution set. Then, with same method, 

whole solution set is constructed based on optimizing weighted sum of objectives 

with randomized weights. After that, a sample set is chosen out of solution set and 

the best and the second best solutions are selected according to randomly selected 
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weighted sum of objectives. These two solutions are combined by path relinking and 

improved by a local search method. Local search used in this step is composed of 

two stages, 2-opt local search method and a short run of tabu search. If the solution is 

better than the second best solution, solution set is updated. Finally, all solutions’ 2-

opt neighborhood is searched by Pareto Local Search. The performance of algorithm 

is compared with Paquete and Stützle’s (2003) Two-Phase Local Search method. 

Presented solutions suggest that PMA generates better solutions, although further 

analysis is needed to prove that.  

There are many heuristic methods introduced above for MOTSP. However, these 

heuristic methods are tested on only a set of sample problems. Thus, their 

performance is not guaranteed for all instances. To cope with this uncertainty, 

approximation algorithms are introduced. Approximation algorithms produce 

solutions that are guaranteed to be within a specific range of optimum solution. 

Manthey et al.(2009) proposes approximation algorithms to find approximate pareto 

curves for MOTSPs that have both maximization and minimization objectives. The 

algorithms can be used for any number of max and min objectives. As maximization 

and minimization objectives have different properties, maximization objectives are 

firstly dealt and the paths that have sufficient weight for maximization objectives are 

collected. Then, these paths are connected to get a Hamiltonian cycle while only 

minimization objectives are considered in this step. These algorithms have 

polynomial running-time. 

Another approximation algorithm is proposed by Bazgan et al. (2012) to find a single 

tour instead of finding the efficient set for biobjective TSPs whose objectives are of 

maximization type. In algorithm, firstly the set of edges having maximum weights 

for both objectives are found and then they are connected in a systematic way.  

Stochastic Local Search (SLS) algorithms are proposed to deal with the weaknesses 

of local search methods. As getting stuck in local optima is a typical problem of 

Local Search, in SLS, randomized initialization and search steps are used to 
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overcome this problem. Paquete and Stützle (2009) study the effects of components 

used in the SLS algorithms for MOTSP on the algorithms’ performance. The 

components analyzed are search strategy, component-wise step, neighborhood 

structure, number of scalarizations and search length. As search strategy, they 

analyze Two-Phase Local Search Strategy, where at each iteration of algorithm 

previous iteration’s outcome is used as initial solution in the next iteration, and 

Restart Strategy, where at each iteration search starts with a random initial solution. 

They compare both strategies with some experiments and show that Two-Phase 

strategy gives better results. As component-wise step, they analyze the effect of 

including all nondominated solutions in the neighborhood of the solution returned at 

each iteration. This strategy increases number of nondominated solutions in the 

search, while causing a slight increase in computation time. For neighborhood 

structure, using an iterative improvement algorithm, like starting with 2-opt 

exchange and continuing search with 3-opt exchange afterwards, is recommended. 

As the number of scalarizations (using different weights of objectives) and the search 

length increases, algorithm gives better results. An SLS algorithm constructed by 

using these recommended components is compared with MOGLS (Jaszkiewicz, 

2002). For the test problems, it is shown that SLS algorithm outperforms MOGLS.  

Lust et al. (2010) make a survey to introduce existing works on MOTSP literature. 

Interested readers are referred to this study for additional information on MOTSP. 

They also propose a two phase method for finding efficient solutions of MOTSP. In 

the first phase, supported efficient solutions are found by solving single objective 

TSPs where objective is the weighted sum of the objectives of MOTSP. Single 

objective TSP is solved by Lin Kernighan heuristic with all set of weights. In the 

second phase, aim is to find the efficient solutions that are between supported 

efficient solutions. A Pareto Local Search similar to Paquete et al. (2004)’s work is 

used. The proposed method gives better solutions than Paquete et al.’s PLS method 

and gives comparable results with respect to Jaszkiewicz et al. (2007)’s PMA and 

Paquete and Stützle (2003)’s TPLS.  
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The literature on MOTSP reviewed up to now includes studies done on MOTSPs that 

include only static parameters. The classification of solution methods reviewed up to 

now is given in Table 1. The first classification is done on number of objectives as 

biobjective and multiobjective. “Multiobjective” is used to represent methods to 

solve problems with more than 2 objectives. It is observed that there is almost equal 

number of biobjective and multiobjective studies. Second classification is done on 

Search Strategy; local search, evolutionary, memetic and other. In literature, methods 

to find pareto optimal solutions of MOTSP generally relies on local search methods. 

If evolutionary methods are used, they are also combined with local search methods 

as in memetic methods. As local search methods are dominant in MOTSP literature, 

neighborhood structure is also investigated and given in Table 1. It is observed that 

2-opt and/or 3-opt neighborhood structure is used commonly in MOTSP literature. 

Moreover, there are some studies on MOTSPs which include dynamic features such 

as cost matrices, number of cities and number of objectives. Dynamic characters of 

the problem make it harder to solve. To tackle this complexity, Yang et al. (2008) 

introduce Multi-Algorithm Co-evolution Strategy (MACS). MACS uses multiple 

algorithms to get advantage of each algorithm’s powerful properties. The algorithms 

embedded in MACS separately are good at optimizing the population locally, 

optimizing the population globally, finding optimal for each objective and making 

the population close to the Pareto optimal front. MACS selects which algorithms to 

use as the problem parameters changes.  

Another method is proposed for MOTSPs with dynamic features by Li et al. (2012). 

In the method, by using parallel processors, extreme solutions of k objectives are 

found at the same time and send to another processor to be merged into a solution 

matrix. Then, this solution matrix is analyzed to find non-dominated solutions. When 

decision maker asks for a solution, nondominated solutions are presented. Whenever 

a change in problem parameters occurs, changes are sent to processors and procedure 

starts again. The method is tested with randomly generated number of cities in the 

range of [10, 100] and randomly selected 2 or 3 objectives. 
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TSP with profits is a variant of multiobjective travelling salesman problem. It has 

two conflicting objectives; the minimization of the tour length and the maximization 

of the collected profits. Salesman gains profits when a city is visited. TSP with 

profits differs from multiobjective travelling salesman problem, as salesman does not 

have to visit all cities in the network. Instead, a trade-off between distance travelled 

and collected profits is done. A survey of the studies on TSP with profit is done by 

Feillet (2005). According to the survey, TSPs with profit is classified on the way the 

two objectives are addressed. Two objectives are either combined in one objective or 

one objective is used as constraint while other is optimized. These problems are 

referred in literature as Profitable Tour Problem, Orienteering Problem, Selective 

TSP and Prize Collecting TSP. After that survey, there are some other studies relying 

on multiobjective approaches that do not treat the problem as it is single-objective. 

As an early work, Keller and Goodchild (1988) propose a method to solve TSP with 

profit. The heuristic proposed starts with an initial solution and tries to reduce the 

distance travelled by eliminating crossing paths and changing the place of each node 

in the tour. When no further improvement can be achieved on distance travelled, 

profit is tried to be maximized while ensuring that distance travelled does not exceed 

a predefined distance limit. In this step, node insertion methods are used. If an 

improvement is achieved, distance travelled is tried to be decreased again. If no 

improvement can be achieved, then eliminating every single node in the tour and 

eliminating the isolated node clusters are tried. The heuristic is tested on a 25 city 

problem.  

ε-constrained method is used to convert multiobjective problems into single objective 

ones. One objective is selected as objective function and all other objectives are 

added to the problem as constraints. It is applied to TSP with profits in different 

ways. A multiobjective approach is developed (ġimsek, 2007) by combining ε-

constrained method with a heuristic method in order to find the efficient frontier for 

the TSP with profit. Maximizing profit is chosen as objective and distance travelled 

is used as constraint. The method used to solve that single objective problem is CGW 
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(Chao, Golden, and Wasil) heuristic. CGW heuristic finds an initial solution with a 

greedy algorithm. Then, two-point exchange, one point movement and 2-opt 

procedures are applied to the initial solution in succession. The computational results 

show that proposed method gives good results for test problems. Even though, run 

times increase significantly for problems larger than 50 cities. 

 

Berube et al. (2009) also use ε-constraint method to find pareto-optimal set of 

solutions for TSP with profits. As opposed to ġimĢek’s study (2007), minimization 

of distance travelled is used as objective function and profit is used as constraint. The 

problem is solved by branch and cut procedure. To speed up the method, some 

heuristic improvements are proposed on branch and cut algorithm. Improvements 

includes removing dominated points and improving the initial feasible solutions by 

using similarities of consecutive problems 

 

Jozefowiez et al. (2008) proposes a new approach for TSP with profits that does not 

convert the problem into single-objective problems. They introduce a method that 

uses ejection chain local search combined with a multiobjective evolutionary 

algorithm that is a variant of NSGA II. The method is compared with a ε-constraint 

method and it is shown that their method has advantages when city size increases up 

to 150s. 

 

Another study that also tries to optimize two objectives simultaneously is done by 

Karademir (2008).  A modified Multiobjective Genetic Algorithm NSGA II and the 

Lin-Kernighan Heuristic is used to find pareto optimal solutions for TSP with profit. 

With the proposed method, pareto optimal set for problems including less than 150 

cities are found and Pareto-optimal set with at most 2% deviation is found for larger 

problem sizes. 
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Table 1 : Classification of MOTSP with Static Parameters 

 
# of Objectives Search Strategy 

 

 
Biobjective Multiobjective Evolutionary Local Search Memetic Other 

Neighborhood 

Structure 

Hansen (2000)   x   x     2-opt 

Jaszkiewicz (2002)    x     x   2-opt 

Paquete and Stützle (2003) X     x     2-opt / 3-opt 

Yan et al. (2003)   x x       - 

Paquete et al. (2004) X     x     3-opt 

Angel et al.  (2004) X     x     ds-2-opt 

Li (2005) X     x     2-opt 

Kumar and Singh (2007) X       x   3-opt 

Samanlıoğlu (2008)   x     x   2-opt 

Jaszkiewicz et al. (2009)  X       x   2-opt 

Paquete and Stützle (2009)   x   x     2-opt/3-opt 

Manthey (2009)   x       x   

Lust et al. (2010) X     x     2-opt 

Agrawal (2011)   x     x   2-opt 

Bazgan et al. (2012) X         x   
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       CHAPTER 3 

 

 

3. PROBLEM DEFINITION AND MODEL 

 

 

 

In Aerial Surveillance Problem (ASP), an air platform with surveillance sensors 

visits a specified number of rectangles and inside of each rectangle is covered in 

strips. Then, air platform turns back to the base where it starts the travel. 

In this chapter, two existing models proposed to solve single objective ASPs are 

reviewed and a model to solve biobjective ASP is introduced. In Section 3.1, two 

models developed by Karasakal (2013) to solve single objective ASP are examined 

in details. In Section 3.2, a new model is proposed to solve biobjective ASP.  

3.1 Single Objective Aerial Surveillance Problem Definition and Models 

Karasakal (2013) develops two mixed integer linear programming models to solve 

single objective Aerial Surveillance Problems. The first problem is minisum ASP 

with the objective of minimizing total distance travelled. The second problem is 

maximin ASP with objective of maximizing the minimum probability of target 

detection of all rectangles. 

In this section, firstly, some definitions and assumptions, that are common in both of 

the models, are given. Then, detailed explanation of the models is made in 

subsections 3.1.1 and 3.1.2.  

The proposed models for minisum ASP and maximin ASP are based on Travelling 

Salesman Problem formulation. As it is already stated, the main difference between 

ASP and TSP is the visiting points. In TSP, points are visited and no time is spent on 

these points. In ASP, visiting points are rectangular areas and these areas are 
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searched with specified patterns. Therefore, ASP can be considered as a more 

complicated version of TSP.  

Minisum ASP and maximin ASP also rely on the assumption that the areas to be 

searched are in rectangular shape. However, areas to be searched may not be 

rectangular in real life applications. To represent such areas, the smallest 

circumscribed rectangle can be used.  

In the models, there are some specified patterns for travelling in the rectangles. Each 

pattern has different target detection probability and length. All target detection 

probabilities and travel distances related with each pattern of each rectangle are 

calculated in advance and feed into the models as parameters. 

In calculation of target detection probabilities in the rectangles, target’s characteristic 

plays an important role. In ASP, it is assumed that target is non-evading and 

uniformly distributed over the area to be searched. By relying on this assumption, 

Koopman’s area search equation is used to calculate target detection probabilities: 

(Wagner, 1999) 

 

P= 1 - 
W-

Se  where W is sweep width and S is track spacing. 

 

P is the probability of detecting a target when sweep width is W and track spacing is 

S with the assumption that target is uniformly distributed over the area. 

Sweep width is a metric that is used to measure detection ability. It is the width of 

the swath where the number of targets not detected inside the swath is equal to the 

number of targets that are detected outside the swath. (Koester et al., 2004). An 

example is given in Figure 1 to illustrate sweep width. Sweep width is the width on 

lateral range curve where sum of areas A and sum of areas B are equal. 
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Figure 1  : A lateral range curve showing sweep width (Koester et al., 2004) 

 

Sweep width is specific to the sensor used for surveillance missions. The sensor 

having larger sweep width is more capable in detection. Sweep width of a sensor can 

change in different environmental conditions such as rain, snow and fog. Therefore, 

it should be measured under a specific set of environmental conditions. In addition, 

as can be seen from Figure 1, when the lateral range between the target and sensor 

increases, probability of target detection decreases. 

Track Spacing (S) is the width of each strip that the rectangular area to be searched is 

divided into.  It directly affects target detection probability and distance travelled in 

the area. It should be chosen to ensure that the rectangular area is fully covered by 

the strips and no unnecessary area is covered. Moreover, if there is a lower limit on 

target detection probability in the area, track spacing should ensure that the 

probability of target detection is larger or equal to the lower limit. 

Therefore, track spacing should be determined according to the following limitations: 

 Track spacing is larger or equal to sweep width. (S≥W) 

 Length / width of the rectangle is divisible by track spacing (If aircraft travels 

parallel to the length of the rectangle, width should be divisible by S. If 
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aircraft travels parallel to the width of the rectangle, length should be 

divisible by S.) 

 Track spacing ensures that minimum acceptable probability of target 

detection (Pmin) is satisfied.  

There are usually more than one track spacing values that assure the above 

limitations for one entry point. 

It is also assumed that air platform always enters to the rectangular area from one of 

the corners. Then, it travels in the middle of strips which are parallel to the width or 

length of the rectangle. While travelling in a strip, when air platform comes to the 

end of the rectangular area, it makes two turns with 90˚ angle and continues to search 

in opposite direction. Turning radius of the air platforms is ignored in calculation of 

the distance travelled in the rectangles.  

In Figure 2, an example search over a rectangle is given. In the example, width of the 

rectangle is divided to 6 equal strips.  

 
 

Figure 2 : An example search over a rectangle (Karasakal, 2013) 
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When aircraft enters the rectangular area from one edge of corner point and the 

selected track spacing value results in odd numbered strips, aircraft leaves the area 

from a place on the same edge in opposite direction. If the selected track spacing 

value results in even numbered strips, it leaves the area on the reciprocal edge in 

same direction. Two examples are given in Figure 3 to show it.  

 

 

 

Figure 3 : Two different travelling examples starting from same entry point in the 

same rectangle and resulting in different exit points. 

 

When air platform enters to the rectangular area from one edge of one corner, the 

entry and exit points are different for each track spacing value. This results in a 

number of entry/exit points in one edge of one corner. The distance between 

exit/entry points on one edge of one corner is small with respect to the distance 

travelled in the rectangle. So that, different exit/entry points on one edge of one 

corner are aggregated to decrease computational effort. Then, there is 8 entry and 

exit points for each rectangle. In Figure 4, an example showing entry and exit points 

is given. 

Although aircraft uses same entry point and same exit point, it can travel in the 

rectangle in a different way due to different track spacing values. This different 
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travels are referred as Search Pattern. In addition, entry point, exit point and search 

pattern for a rectangle constitutes a Search Scenario. 

 

 

Figure 4  : An example representation of Entry and Exit points on a sample rectangle 

 

3.1.1 Model 1: Minisum ASP  

One of the major objectives in Aerial Surveillance is to minimize the operation cost 

of the flight. Flight operations are costly due to high fuel rates and high maintenance 

costs. Especially in border security operations, periodical surveillance of same areas 

is needed. Any decrease in the cost of these flight operations can result in remarkable 

decreases in surveillance costs as the number of operations increases.  

Another important objective in Aerial Surveillance is to minimize the flight duration. 

In search and rescue operations, this objective becomes vital, because any time spent 

unnecessarily can cost someone’s life.  

These two goals are in line with minimizing distance travelled. Hence, in Minisum 

ASP, aim is to find the shortest path of visiting all rectangles to be searched, 

travelling in all rectangles and turning back to the base.  
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In addition, the operations should guarantee a minimum probability of target 

detection to ensure that the operation is efficient. In Minisum ASP, feasible search 

patterns are determined according to minimum acceptable probability of target 

detection. Therefore, no extra constraint is needed to be added to the model for 

minimum probability of target detection. Minisum ASP model is given below: 

(Karasakal, 2013) 

Indices: 

i, j
 : index of disjoint rectangles, i=1 and j=1  represent the base station.   

l, k
 : index of entry and exit points of rectangles, l 1,...,8  and k 1,...,8 . 

s  : index of the search pattern within a rectangle for each feasible combination of 

entry and exit points of the rectangle.  

Parameters: 

N  :  total number of disjoint rectangles plus the base station. 

iljkD : distance from point l of rectangle i to point k of rectangle j.  

ilksD : distance from point l to point k of rectangle i using search pattern s.   

ilksP
 
: probability of detecting target by flying from point l to point k in the rectangle i 

using search pattern s. 

iu
 

: node potential of  rectangle i that indicates the order of the corresponding 

rectangle in the tour. 

 

Decision Variables: 

iljk

1, if  the air platform flies from point l of  rectangle i to point k of rectangle j

0, otherwise
y


 

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ilks

1, if  the air platform flies from point l to point k of rectangle  i using search pattern s

0, otherwise
z


 


 

(Minisum ASP)  

iljk iljk ilks ilks

iljk ilks

Min D y D z   (1) 

Subject to 

iljk

ilk

y 1 j 1,..., N    (2) 

iljk

jlk

y 1 i 1,..., N    (3) 

ilks

lks

1 i 2,..., Nz    (4) 

ilks jkil

ks jk

z y l 1,...,8, i 2,..., N      (5) 

ilks ikjl

ls jl

z y k 1,...,8, i 2,..., N      (6) 

i j iljk

lk

u u N 1 i 2,..., N j 2,..., N i jN y         (7) 

   iljky 0,1 iljk (i, l, j,k) | i j,i 1 l 1,j 1 k 1           (8) 

   ilksz 0,1 ilks (i, l,k,s) | i 1, l k      (9) 

iu 0 i 1,..., N    (10) 

Equation (1) represents the objective function that is minimization of the total 

distance travelled.  The first part of the objective function is the distance travelled 

between rectangles and the origin. The second part is the total distance travelled in 

rectangles.  Constraint set (2) ensures that air platform leaves each rectangle from 

one exit point and it leaves the base station once. Constraint set (3) ensures that air 
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platform enters each rectangle from one entry point and it enters to the base station 

once. Constraint set (4) ensures that one search pattern is selected for each 

rectangular area.  Constraint set (5) ensures that if an exit point is chosen for a city, a 

search pattern compatible with that exit point is chosen for the city. Constraint set (6) 

ensures that if an entry point is chosen for a city, a search pattern compatible with 

that entry point is chosen for the city. Constraint set (7) represents a set of constraints 

that ensure subtours are not constructed. Constraint sets (8) and (9) enforce binary 

restriction on decision variables. Constraint set (10) represents nonnegativity 

restrictions for related variables. 

3.1.2 Model 2: Maximin ASP  

In aerial surveillance, money and time may not be the first concern every time. In 

such cases, maximizing efficiency of the search becomes more important. For that 

purpose, Minisum ASP is modified to maximize efficiency of the operation. To 

guarantee at least same efficiency in all rectangles, maximizing the minimum 

probability of target detection of all rectangles is used as the objective function of 

Maximin ASP. Nevertheless, as aircrafts have a limitation on flight time due to fuel 

restrictions, maximum flight distance of the aircraft is added to the problem as a 

constraint. Maximin ASP model is given below: (Karasakal, 2013) 

M  : maximum distance the air platform can fly. 

(Maximin ASP)  

Max α   (11) 

Subject to 

Constraints (2) – (10) 

iljk iljk ilks ilks

iljk ilks

D y + D z M     (12) 

ilks ilks

lks

P z i     (13) 

0    (14) 
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Equation (11) represents the objective function that is the maximization of the 

minimum probability of target detection of all rectangles (α).  Constraint (12) ensures 

that total distance travelled by aircraft cannot exceed M. Constraint set (13) ensures 

that probability of target detection corresponding to the selected scenario for each 

rectangle is larger or equal to (α). Constraint (14) represents nonnegativity restriction 

for (α).   

 

3.2 Multiobjective Aerial Surveillance Problem Definition and Model 

Minisum ASP and Maximin ASP can be used effectively to solve single objective 

ASPs with objectives of minimizing total distance travelled and maximizing the 

minimum probability of target detection in all rectangles, respectively. Both of the 

models can be solved for problems up to 40 rectangles in reasonable times using 

commercial MIP solvers. Nonetheless, there is a need of simultaneously optimizing 

the conflicting objectives of Minisum ASP and Maximin ASP. To find solutions in 

this multiobjective case, Multiobjective Aerial Surveillance Problem (MASP) is 

defined. 

Mathematical model for MASP is given below: 

(MASP)  

iljk iljk ilks ilks

iljk ilks

Min D y D z         (1) 

Max            (11) 

Subject to 

Constraints (2) – (10) 

ilks ilks

lks

P z i           (13) 

0            (14) 

 

Proposed methods to solve MASP are given in Chapter 4.   
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CHAPTER 4 

 

 

4. PROPOSED BIOBJECTIVE APPROACH 

 

 

 

In this chapter, we propose an exact method and heuristic methods to find the pareto 

optimal set for MASP. Firstly, an exact method is introduced in Section 4.1 and then, 

in Section 4.2 heuristic methods are presented.  

4.1 ε-Constraint Method 

ε-Constraint Method is used to find nondominated solutions in Multiobjective 

Problems. In this method, an objective is chosen to be optimized while other 

objectives are given as constraints. For the multiobjective problem with p objectives 

given below,  

Minimize  (z1(x), z2(x), …., zp(x)) 

Subject to  

x Є X 

 

ε-Constraint Method is applied as follows: 

Minimize      zk(x) 

Subject to  

zi(x) ≤ εi i=1,2,….k-1,k+1,….,p  

x ∈ X 

zi(x) represents the i
th

 objective function and X is the set of feasible solutions. The 

vector (ε1, ε2, … εk-1, εk+1,.., εp) denotes the upper bounds of corresponding 

objectives.  
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In multiobjective optimization, objectives are generally in conflict with each other. 

When zk(x) is tried to be optimized, the objective functions other than zk(x) usually 

get worse. In other words, zi(x) i≠k values usually increases as the objectives are of 

minimization type. Therefore, an upper bound is set for each zi(x) i≠k to define the 

maximum value that they can have.  

The weakness of ε-Constraint Method is that the optimal solution found can be a 

weakly efficient solution.  If all of the constraints related with objective functions are 

not binding, there can be alternative optimal solutions that result in lower values of 

objective functions whose constraints are not binding. To deal with that weakness, 

Augmented ε-Constraint Method is proposed (Mavrotas, 2009). 

Augmented ε-Constraint Method (AUGMECON) is applied as follows: 

Minimize      zk(x) - 
i

i k

d


  

Subject to  

zi(x) + di = ε i  i=1,2,….k-1,k+1,….,p  

x ∈ X 

di ≥ 0 

where μ is a very small number and di is the slack variable of i
th

 objective function. 

In AUGMECON, slack variables (di) are added to the constraints related with 

objective functions. In model’s objective function, slack variables are maximized as 

they are extracted from zk(x).  When slack variables are maximized, related objective 

functions are minimized. As slack variables are multiplied by a small number (μ), 

their effect on the model’s objective function is small with respect to zk(x). 

Therefore, zk(x) is minimized while it is guaranteed that the other objective values 

are at their possible minimum value. μ should be selected with respect to objective 

function values’ range and it should be a sufficiently small constant. 

In biobjective problems, one objective is selected to be optimized and the other is 

transformed to a constraint. In MASP, “minimizing total distance travelled” is 
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chosen as objective function and “maximizing minimum probability of target 

detection” is used as constraint.  

ε-Constraint Method is applied to MASP as given below : 

iljk iljk ilks ilks

iljk ilks

Min D y D z     (1) 

Subject to 

Constraints (2) – (10) 

ilks ilks

lks

P z  ε     i   (16) 

As the objective of “maximizing minimum probability of target detection” is of 

maximization type, it is converted to minimization type by taking negative of it.  

To eliminate weakly efficient solutions, Augmented ε-Constraint Method is applied 

to MASP as given below (it is referred as ε-MASP): 

(ε-MASP) 
iljk iljk ilks ilks

iljk ilks

Min D y D z  + μ d    (17) 

Subject to 

Constraints (2) – (10) 

ilks ilks

lks

P z d   ε  i        (18) 

d   0           (19) 

As “d” is minimized, minimum probability of target detection is forced to get its 

possible maximum value. 

Solution of ε-MASP gives a single nondominated solution for an lower bound ε. To 

find complete set of pareto optimal solutions, ε-MASP should be solved iteratively 

with different lower bounds (ε). The algorithm for finding Efficient Solutions with    

ε-MASP is given below: 
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EfficientSolutions : set of nondominated solutions 

MinProbability : minimum of the target detection probabilities of all 

rectangles 

StepSize : Constant value  

 

Step 1 : Set EfficientSolutions= Ø  

Step 2 : Set  ε =Minimum Acceptable Probability of Target Detection 

Step 3 : Solve ε-MASP with ε. 

Step 4 : If a feasible solution is found, add  this solution to EfficientSolutions.         

Otherwise, STOP.  

Step 5 : Set MinProbability to the minimum of the target detection probabilities of 

the selected search scenarios for all rectangles in the current solution of ε-

MASP.  

Step 6 : Set ε = MinProbability + StepSize and Go to Step 3.  

StepSize  is used to increase the lower bound “ε”. It ensures that the solution found in 

next iteration has a MinProbability value larger than the solution found in current 

iteration. StepSize is a value between 0 and 1. It should be a very small positive 

constant close to 0 to generate whole pareto optimal set. If whole pareto optimal set 

is not needed to be found, StepSize can be arranged accordingly. 

4.2 Heuristic Methods 

 

In real life applications, MASP is to be solved repeatedly in short times even up to 40 

rectangles. However, MASP is NP-Hard and search space of ASP increases 

exponentially as the number of rectangles in the problem increases. An example 

calculation of number of solutions in search space is given below:  

 Problem with 10 rectangles and 8 different scenarios for each rectangle 

  Number of possible solutions= (10-1)! / 2 * 10 * 8 =  14.515.200 

 Problem with 11 rectangles and 8 different scenarios for each rectangle 

  Number of possible solutions= (11-1)! / 2 * 11 * 8 = 159.667.200 
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As the number of rectangles in ASP increases, problem cannot be solved by exact 

methods. Therefore, in this section, we propose heuristic methods to solve MASP. 

As the number of rectangles in ASP increases, problem cannot be solved by exact 

methods. Therefore, in this chapter, we propose heuristic methods to solve MASP. 

Three construction methods and an improvement method are defined to find efficient 

solution set for MASP. Construction methods find an initial solution and 

improvement method tries to find set of efficient solutions by searching 

neighborhood of the initial solution. 

In Section 4.2.1, Construction Methods are explained and in Section 4.2.2, details 

about Improvement Method are given. 

4.2.1 Construction Methods 

In this study, three construction methods are defined to find the initial solution for 

MASP.   

4.2.1.1 Construction Method 1 

In Construction Method 1, firstly, the sequence of rectangles in the tour is found. 

Then, for each rectangle, a search scenario is selected. Thus, an initial feasible 

solution is found.  

Construction Method 1 uses the similarity between ASP and TSP. Optimal TSP 

sequence of rectangles is used to set the sequence in the initial tour. Optimal TSP 

tour is found based on midpoints of the rectangles by using Concorde TSP Solver 

(Cook, 2010). Then, for all rectangles, Search Scenario (entry point, exit point and 

search pattern) resulting in largest probability of target detection is selected.  

Figure 5 shows a flow chart for Construction Method 1. 
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Figure 5 : Flow Chart for Construction Method 1 

4.2.1.2 Construction Method 2 

Construction Method 2 relies on an optimal solution. An optimal solution for 

Minisum ASP is used as initial tour. Minisum ASP is solved optimally in GAMS 

(General Algebraic Modeling Language) utilizing CPLEX MIP solver.  To reduce 

the computation time, instead of solving the problem optimally for a number of times 

as in ε-MASP, it is solved optimally for only once and then Improvement Heuristic is 

applied.  

Figure 6 shows a flow chart for Construction Method 2. 

 

Figure 6 : Flow Chart for Construction Method 2 
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4.2.1.3 Construction Method 3  

In Construction Method 3, a good initial solution is tried to be found randomly. In 

this method, a specified number of random sequences of rectangles are generated.  

Total distance of the sequences is calculated based on midpoints of rectangles. The 

sequence that results in minimum distance is selected and it is used as the sequence 

in the initial tour. Then, for all rectangles, Search Scenario (entry point, exit point 

and search pattern) resulting in largest probability of target detection is selected. In 

this method, the use of Concorde TSP Solver in Construction Method 1 is tried to be 

eliminated. 

Figure 7 shows a flow chart for Construction Method 3. 

 

Figure 7 : Flow Chart for Construction Method 3 
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Algorithm of Construction Methods is given in APPPENDIX A.  

4.2.2 Improvement Method 

In improvement method, the aim is to search the neighborhood of the initial solution 

by directing the search to find nondominated solutions. We define an improvement 

method that uses an approach similar to Pareto Local Search that is introduced by 

Paquete (2004) to solve biobjective TSPs.  

Firstly, neighborhood of the initial solution found by Construction Method is 

searched. Then, along the search for each nondominated solution found so far, 

neighborhood search is done again. 

Neighborhood search relies on the rectangles’ sequence in the tour and search 

scenarios of the rectangles. Two-Opt exchange move is used to change the sequence 

of rectangles. For each new solution found with Two-Opt exchange move, a set of 

solutions having different “minimum of target detection probability of all rectangles” 

values are generated by changing Search Scenarios of rectangles.  Search Scenarios 

are selected in accordance with the aim of minimizing the distance travelled.  

Figure 8 shows flow chart for the improvement method. 
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Figure 8 : Flow Chart for Improvement Method 

 

Improvement algorithm is explained below: 

Step 1 : Initial solution found by the Construction Method is added to 

EfficientSolutions Set. 

Step 2 : The first solution that is not selected before in EfficientSolutions is 

selected and set as CurrentSolution. If the all solutions in the set are 

selected before, algorithm finishes. 

Step 3 : Apply 2-opt move. 

 All possible 2-opt moves are applied on CurrentSolution. Each new 

solution found is named as CandidateSolution1.  
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In 2-opt move, two rectangles are selected as Rectangle 1 and Rectangle 3. In 

the tour, next rectangles of Rectangle 1 and Rectangle 3 are named as 

Rectangle 2 and Rectangle 4, respectively. The edges between Rectangle 1 - 

Rectangle 2 and Rectangle 3 - Rectangle 4 are broken and the edges between 

Rectangle 1 - Rectangle 3 and Rectangle 2 - Rectangle 4 are added. In this 

move, Search Scenarios (entry point, exit point and search pattern) of all 

rectangles stay same.  

Figure 9 and Figure 10 are given to explain 2-opt move.  

 

 

Figure 9 : Representation of a tour before 2-opt move 
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Figure 10 : Representation of a tour after 2-opt move 

 

Step 4 : Change search scenarios in the rectangles. 

This step is applied for each CandidateSolution1 found in Step 3. The aim is 

to explore the neighborhood of CandidateSolution1 by changing the Search 

Scenarios (Entry Point, Exit Point and Search Pattern) of rectangles. Each 

solution generated by changing the Search Scenarios of rectangles in 

CandidateSolution1 is called as CandidateSolution2. In this step, the 

sequence of rectangles are not changed, in other words, it is kept same as in 

the CandidateSolution1.   

For a fixed sequence of rectangles, a set of solutions having different 

“minimum of target detection probability of all rectangles” values is 

generated.   

Probability is used to control the target detection probabilities of the 

selected Search Scenarios for rectangles. This step is repeated for each 
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possible Probability value.  Starting from “Minimum acceptable probability 

of target detection” value, Probability is increased iteratively until it reaches 

its maximum value.  

For each rectangle, Search Scenario that minimizes the distance travelled in 

the path starting from previous rectangle’s exit point and ending in next 

rectangle’s entry point is selected. It is ensured that the selected Search 

Scenario’s target detection probability is larger than Probability value. For 

each Probability value, a new CandidateSolution2 is found. 

Step 5 : Update EfficientSolutions set. 

Each CandidateSolution2 found in Step 4 is compared with the solutions in 

EfficientSolutions Set to check nondominance relation.  If none of the 

solutions in EfficientSolutions Set dominates CandidateSolution2, 

CandidateSolution2 is added to EfficientSolutions Set and the solutions 

dominated by CandidateSolution2 are deleted from the set. If a solution that 

dominates CandidateSolution2 is found, any update in EfficientSolutions is 

not made. Then, search continues with Step 2 where a new CurrentSolution 

is selected. 

Detailed algorithm of Improvement Method is given in APPPENDIX B.  

Combination of Construction Method 1 and Improvement Method is called as 

Heuristic Method 1 (HM1). Combination of Construction Method 2 and 

Improvement Method is called as Heuristic Method 2 (HM2). Combination of 

Construction Method 3 and Improvement Method is called as Heuristic Method 3 

(HM3).  
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CHAPTER 5 

 

 

5. COMPUTATIONAL RESULTS 

 

 

 

In previous chapter, an exact method and a heuristic method with 3 different 

construction steps are introduced. As MASP is a new problem, there are no previous 

results reported that can be used to compare the results and the performance of the 

proposed methods. Heuristic solutions are compared with optimal solutions found by 

ε-MASP. Moreover, performance of the heuristic methods is compared with each 

other. 

In Section 5.1, performance measures that are used to evaluate the performance of 

the methods are introduced. Then, generation of the test problems are explained in 

Section 5.2. In Section 3, the results are given and discussed. 

5.1 Performance Measures 

To measure the performance of the proposed heuristic methods, some performance 

metrics are used. Simple performance measures that are used for each feasible 

solution are given below: 

DT: Acronym for DistanceTravelled, which is total distance travelled in the tour 

(including the distance travelled between rectangles and in rectangles). 

MDP: Acronym for MinDetectionProbabillity, which is minimum of the target 

detection probabilities for all rectangles based on selected search scenarios. 

%GAP: Percentage deviation of the DT found by HM1 or HM2 from optimal DT of 

corresponding MDP.  
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In multiobjective optimization, there are two different goals for generating the pareto 

optimal set: 

1. Minimizing the distance of the generated solutions from pareto optimal 

solutions. (Convergence) 

2. Maximizing the diversity of the generated solutions on pareto front. 

(Diversity) 

There are many performance metrics to quantify the performance of multiobjective 

evolutionary algorithms. Some of them are specific to measure one of the goals.  

However, some of them are used to measure both convergence and diversity in one 

measure. 

From the literature, Generational Distance (GD) is selected to measure convergence. 

Additionally, Hypervolume (HV) is used to measure both diversity and convergence 

simultaneously. Total run time of the methods is also presented to quantify the 

performance of the methods.  

Generational Distance (GD) 

GD is used to calculate the average distance of solutions generated by heuristic 

methods from their corresponding optimal solutions (Deb, 2001). Generally, 

Euclidian distance is used to calculate the distances between solutions. As the ranges 

of the objectives are different, aggregating the objectives in one distance measure can 

cause loss of information. Therefore, Percent GD metric is used to measure average 

distance in each objective separately (Karademir, 2008). The metrics are given 

below: 

dist dist*|Q|

t t

dist*
t 1% t

dist

| z z

z
GD 100

Q

|

*
| |








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prob prob*|Q|

t t

prob*
t 1% t

prob

| z z

z
GD 100

Q

|

*
| |








 

 

%

distGD  : average percentage deviation in “minimizing the distance travelled” 

objective. 

%

probGD  : average percentage deviation in “maximizing the minimum of target 

detection probabilities of all rectangles” objective. 

dist*

tz  : total distance travelled in optimal solution t. 

dist

tz  : total distance travelled in heuristic solution t corresponding to  
dist*

tz . 

prob*

tz  : minimum of target detection probabilities of all rectangles in optimal 

solution t. 

prob

tz  : minimum of target detection probabilities of all rectangles in heuristic 

solution t corresponding to  
prob*

tz . 

Hypervolume 

Hypervolume is used to evaluate convergence and diversity together. It calculates the 

volume covered by the solutions generated in objective space. Volume constituted by 

each solution is calculated with respect to a reference point. This reference point is 

nadir point. Nadir point is the point in objective space, which is a vector of the worst 

feasible objective values.  HV is calculated as follows: (Deb, 2001) 

|Q|

t 1

HV Volume(t)


  

Figure 11 shows the hypervolume enclosed by solutions generated for a biobjective 

problem in which objective 1 is of minimization type and objective 2 is of 

maximization type as in MASP.  
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Figure 11 : An example representation of Hypervolume 

To eliminate the effect of the scales of the objectives on the measure, measure is 

normalized and Hypervolume Ratio (HVR) metric is used. HVR is calculated as 

follows: (Deb, 2001) 

HV(Q)
HVR

HV(P)
  

P : Set of optimal solutions. 

Q: Set of solutions found by heuristic methods. 

HV(Q) : Hypervolume enclosed by Q. 

HV(P) : Hypervolume enclosed by P. 

If HVR is closer to 1, q is closer to the pareto optimal set. 

 

5.2 Problem Generation 

A set of test problems are needed to evaluate the results of the proposed methods. 

For that purpose, test set generated by Karasakal (2013) is used.   
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60 disjoint rectangles are drawn randomly on a plane. 5, 10, 20, 30 and 40 rectangles 

are selected randomly from these 60 rectangles. Two values, 0.25 and 0.35, are used 

for sweep width. Three values, 0.30, 0.40 and 0.50, are used for minimum acceptable 

target detection probability. Each combination of these settings constitutes a problem 

instance. Therefore, 5*2*3=30 different problems are solved and their solutions are 

evaluated. The parameter setting for the problems are given in Table 2.  

5.3 Results 

Firstly, we solved the test problems optimally by using ε-MASP. ε-MASP is written 

and solved optimally in GAMS (Brook et al., 1996) utilizing CPLEX MIP solver 

with zero absolute and relative gap. Heuristic Methods are written in C Programming 

Language.  In construction method of HM1, Concorde TSP Solver is used. In 

construction method of HM2, GAMS is used. Runs are performed using a computer 

with Intel Core i5 2.30 GHz processor and 6 GB of RAM. 

As an example, the results of a test problem found by HM1 and HM2 are given in 

Table 3 and Figure 12. This test problem is Ins2_10 with 10 rectangles, 0.4 minimum 

acceptable target detection probability and 0.25 sweep width. 
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Table 2: Parameter Settings for Test Problems 

Problem 

Name 

Number 

of 

Rectangles 

Minimum Acceptable 

Target Detection 

Probability 

Sweep 

Width 

Ins1_5 5 0.50 0.25 

Ins1_10 10 0.50 0.25 

Ins1_20 20 0.50 0.25 

Ins1_30 30 0.50 0.25 

Ins1_40 40 0.50 0.25 

Ins2_5 5 0.40 0.25 

Ins2_10 10 0.40 0.25 

Ins2_20 20 0.40 0.25 

Ins2_30 30 0.40 0.25 

Ins2_40 40 0.40 0.25 

Ins3_5 5 0.30 0.25 

Ins3_10 10 0.30 0.25 

Ins3_20 20 0.30 0.25 

Ins3_30 30 0.30 0.25 

Ins3_40 40 0.30 0.25 

Ins4_5 5 0.50 0.35 

Ins4_10 10 0.50 0.35 

Ins4_20 20 0.50 0.35 

Ins4_30 30 0.50 0.35 

Ins4_40 40 0.50 0.35 

Ins5_5 5 0.40 0.35 

Ins5_10 10 0.40 0.35 

Ins5_20 20 0.40 0.35 

Ins5_30 30 0.40 0.35 

Ins5_40 40 0.40 0.35 

Ins6_5 5 0.30 0.35 

Ins6_10 10 0.30 0.35 

Ins6_20 20 0.30 0.35 

Ins6_30 30 0.30 0.35 

Ins6_40 40 0.30 0.35 
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Table 3 : Results for problem Ins2_10 

ε -MASP HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

149,25 0,4052 152,28 0,4052 2,03   149,25 0,4052 0,00   

151,30 0,4092 152,44 0,4171 0,57   151,30 0,4092 0,00   

151,58 0,4171 156,23 0,4262 1,09   151,58 0,4171 0,00   

154,55 0,4262 159,55 0,4447 0,36   154,55 0,4262 0,00   

158,98 0,4447 161,46 0,4450 1,05   159,19 0,4447 0,13   

159,78 0,4450 161,60 0,4512 0,58   159,78 0,4450 0,00   

160,66 0,4512 165,47 0,4541 0,00   160,66 0,4512 0,00   

165,47 0,4541 165,98 0,4545 0,00   167,61 0,4700 0,70   

165,98 0,4545 166,45 0,4700 0,00   170,46 0,4715 0,76   

166,45 0,4700 169,17 0,4715 0,00   171,08 0,4776 0,61   

169,17 0,4715 170,04 0,4776 0,00   173,43 0,4866 0,27   

170,04 0,4776 172,97 0,4866 0,00   173,77 0,4969 0,00   

172,97 0,4866 173,92 0,4969 0,09   174,65 0,5034 0,39   

173,77 0,4969 173,97 0,5034 0,00   176,37 0,5105 0,00   

173,97 0,5034 177,47 0,5105 0,62   177,73 0,5209 0,00   

176,37 0,5105 179,22 0,5209 0,83   178,37 0,5276 0,00   

177,73 0,5209 181,77 0,5276 1,90   180,59 0,5312 0,00   

178,37 0,5276 184,66 0,5312 2,26   182,89 0,5406 0,00   

180,59 0,5312 186,79 0,5406 2,13   183,81 0,5412 0,00   

182,89 0,5406 187,55 0,5412 2,03   186,34 0,5439 0,00   

183,81 0,5412 189,01 0,5439 1,43   187,23 0,5459 0,00   

186,34 0,5439 189,06 0,5459 0,98   187,56 0,5478 0,00   

187,23 0,5459 189,47 0,5478 1,02   190,29 0,5507 0,00   

187,56 0,5478 192,20 0,5507 1,00   196,17 0,5654 0,38   

190,29 0,5507 195,43 0,5654 0,00   197,40 0,5657 0,42   

195,43 0,5654 196,58 0,5657 0,00   200,36 0,5823 0,21   

196,58 0,5657 199,94 0,5823 0,00   204,08 0,5862 * 

199,94 0,5823 202,91 0,5889 0,00   204,51 0,5865 * 

202,91 0,5889 203,89 0,5934 0,00   204,64 0,5889 0,85   

203,89 0,5934 211,03 0,5966 0,95   204,98 0,5934 0,54   

209,04 0,5966 

   

209,04 0,5966 0,00  
* For that solution, there is no corresponding optimal solution that has same MPD value. Therefore, 

%GAP cannot be calculated. 
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Figure 12: The objective space of Ins2_10 showing solution sets found 
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As can be seen from Table 3 and Figure 12, %GAP is below 2.5 % for all solutions. 

To see the differences of the solutions found by the methods HM1 and HM2 from the 

optimal solution found by ε-MASP, one of the solutions from efficient set is selected 

and represented graphically. The selected efficient solution of Ins2_10 is given in 

Table 4. We call this problem is as “sample problem”. The solutions in sample 

problem have same MDP value.  

 

Table 4: Solutions of the Sample problem of Ins2_10 

ε –MASP HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

158.98 0.4447 159.55 0.4447 0.36 159.19 0.4447 0.13 

 

The solution found by ε-MASP for the sample problem is given in Figure 13.  

The initial solution of Ins2_10 found by Construction Method 1 is given in Figure 

14. This initial solution is improved by Improvement Method and the solution given 

in Figure 15 is found for sample problem.  

The initial solution of Ins2_10 found by Construction Method 2 is given in Figure 

16. This initial solution is improved by Improvement Method and the solution given 

in Figure 17 is found for sample problem. 

The results for 30 test problems are given in APPENDIX C in figures. For each test 

problem, the figure includes the pareto optimal set found by ε-MASP and solution 

sets found by HM1 and HM2.  

The results on test problems show that HM1 and HM2 produce high quality 

solutions. However, HM3 fails to produce results that enable us to produce pareto 

optimal solutions.  The reason is that Construction Method 3 does not produce 

promising initial solutions. Construction Method 3 is proposed to eliminate the use of 

Concorde TSP Solver in HM1. It tries to find the sequence of rectangles that has 
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minimum length by generating a specified number of random sequences of 

rectangles. However, the solutions generated randomly are not close to the solutions 

generated by Construction Method 1. 

As an example, for the problems of Instance 1, the initial solution found by 

Construction Method 1 and the initial solutions found by Construction Method 3 for 

different number of random sequences are given in Table 5. As can be seen from the 

results given, there is large gap between the initial solutions found by Construction 

Method 1 and Construction Method 3. Moreover, by relying on the runs performed 

on test problems, it is observed that HM3 does not give results that can be used to 

solve MASP. Therefore, the results of HM3 are not included in the rest of the 

computational results. 

 

 

Figure 13: The optimal solution of sample problem found by ε-MASP. 
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Figure 14: The initial solution of sample problem found by Construction Method 1 

 

 

Figure 15: The solution found for sample problem by HM1. 
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Figure 16 : The initial solution of sample problem found by Construction Method 2. 

 

 
Figure 17: The solution found for sample problem by HM2. 
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Table 5: DT values of initial solutions of problems in Instance 1 found by 

Construction Method 1 and 3. 

 

 
Construction 

Method 1* 

Construction Method 3* 

 

Number of Random Solutions 

 

100 500 1,000 5,000 10,000 100,000 

R
ec

ta
n
g
le

 N
o

 5 128.415 128.415 128.415 128.415 128.415 128.415 128.415 

10 238.769 254.424 245.285 245.285 244.309 244.309 244.309 

20 394.216 530.691 527.355 513.527 493.828 493.828 480.945 

30 577.685 781.328 781.328 781.328 781.328 764.991 733.031 

40 795.095 1131.679 1115.704 1106.150 1090.123 1075.968 1050.315 

 * MPD value of all initial solutions given in the table is 0.5966 

 

To measure the performance of the proposed approaches, the performance measures 

defined in Section 5.1 are used. Only 3 of the test problems with 40 rectangles cannot 

be solved optimally due to resource limitation of the computer used. The results of 

performance measures do not include the problems that cannot be solved optimally, 

which are Ins3_40, Ins5_40 and Ins6_40. These problems are examined separately. 

For each number of rectangles (5, 10, 20, 30 and 40), average of all performance 

measures is calculated in Table 6, Table 7 and Table 9. Average values in 

performance measures are calculated by averaging the performance measures of 6 

instances with same number of rectangles and the problems that are not solved 

optimally are not included.   

In Table 6, for the test problems with different number of rectangles, average 

computation times are given. Computation times for all test problems are given in 

Appendix D. According to the results, it can be concluded that ε-MASP is solved in 

higher computation times compared to HM1 and HM2. For real life applications,         

ε-MASP can be used for the problems with 10 or less rectangles. For the cases with 

more rectangles, computation times of ε-MASP are not suitable to be used 

periodically. The computation times for HM2 include the time spent for finding the 

initial solution with GAMS. Finding initial solution by Construction Method 2 
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consumes approximately 0.70% of the total computation time of HM2. In HM1, 

applying Construction Method 1 with Concorde TSP Solver takes only a few 

seconds. Therefore, HM2 has higher computation times than HM1. 

Table 6: Average computation times for test problems with different number of 

rectangles 

Rectangle 

No 

ε –MASP HM1 HM2 

Computation 

Time (sec) 

Computation 

Time (sec) 

Computation 

Time (sec) 

5 304.49    2.70 5.40 

10 3,590.79 4.10 72.32 

20 2,000.35 23.29 105.99 

30 44,195.83 104.94 2,541.39 

40 74,586.63 355.47 2,029.02 

 

HM1 and HM2 are able to find approximately all MDP values on pareto optimal set. 

Deviation occurs in DT values for corresponding MDPs. Therefore, for Percent GD 

metric, only average percentage deviation in “minimizing the distance travelled” 

objective is examined, 
%

distGD
. In Table 7, firstly average Percent GD of the problems 

with different number of rectangles is given. It is observed that both HM1 and HM2 

results in average Percentage GD’s lower than 2.5%. For the results of average 

percentage GD, it is not possible to conclude that one heuristic is superior to the 

other. Moreover, in Table 7 total number of solutions found and total number of 

optimal solutions found is given. According to the reported results on test problems, 

HM2 finds more optimal solutions than HM1. The results for all problems are given 

in Appendix E. 
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Table 7 : Average Percent GD, total number of solutions found and total number of 

optimal solutions found for test problems with different number of rectangles 

Rectangle 

No 

HM1 HM2 

%

distGD  

Total # of 

solutions 

found 

Total # 

of 

optimal 

solutions 

found 

%

distGD  

Total # 

of 

solutions 

found 

Total # 

of 

optimal 

solutions 

found 

5 0.00 87 83 0.00 87 83 

10 0.72 134 40 0.35 134 74 

20 0.03 206 177 0.02 205 179 

30 1.65 232 13 0.60 230 55 

40 0.98 132 0 1.30 136 14 

 

To further analyze the performance of HM1 and HM2 in terms of deviation from 

optimal solution, we examine how close the solutions found by heuristic methods to 

the optimal solutions. Therefore, in Table 8, total number of solutions, found by 

HM1 and HM2 for all instances, whose %GAP is in specified intervals is given. As 

can be seen from the table, there is only one solution whose %GAP is higher than 

4%. Moreover, 99% of the solutions found have %GAP values that are lower than 

%3. In terms of performance, although HM2 does generally better than HM1, it is 

not possible conclude that one heuristic dominates the other. The results for all 

problems are given in Appendix F. 

In Table 9, Average Hypervolume and Hypervolume Ratio for test problems with 

different number of rectangles are given. HM1 and HM2 have HV and HVR values 

that are very close to each other. As all HVR values of the heuristic methods are very 

close to or equal to 1, we can conclude that both heuristics find solutions that are 

very close to Pareto Optimal Set. The results for all problems are given in Appendix 

G. 
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Table 8: Total number of solutions found whose %GAP is in a specified interval 

Rectangle 

No 
Method 

# of  

solutions 

found 

# of 

optimal 

solutions 

found 

A B C D E 

5 
HM1 87 83 4 0 0 0 0 

HM2 87 83 4 0 0 0 0 

10 
HM1 134 40 52 32 10 0 0 

HM2 134 74 49 8 3 0 0 

20 
HM1 206 177 29 0 0 0 0 

HM2 205 179 26 0 0 0 0 

30 
HM1 232 13 35 114 48 21 1 

HM2 230 55 119 52 4 0 0 

40 
HM1 132 0 87 45 0 0 0 

HM2 136 14 61 36 21 4 0 

A : # of  solutions found whose %GAP is between 0% and 1% (0 %< %GAP <=1%) 

B : # of  solutions found whose %GAP is between 1% and 2% (1 %< %GAP <=2%) 

C : # of  solutions found whose %GAP is between 2% and 3% (2 %< %GAP <=3%) 

D : # of  solutions found whose %GAP is between 3% and 4% (3 %< %GAP <=4%) 

E : # of  solutions found whose %GAP is more than 4% (4 %< %GAP) 

 

 

Table 9 : Average Hypervolume and Hypervolume Ratio for test problems with 

different number of rectangles 

Rectangle 

No 

Average HV Average HVR 

HM1 HM2 HM1 HM2 

5 2.39 2.39 1.00 1.00 

10 5.03 5.10 0.95 0.97 

20 10.96 10.96 1.00 1.00 

30 16.12 16.79 0.90 0.96 

40 11.34 11.27 0.91 0.88 

 

 

Three of the test problems with 40 rectangles (Ins3_40, Ins5_40 and Ins6_40) cannot 

be solved optimally. These problems are solved in GAMS with 5% relative gap and 

compared with the results of heuristic methods. It is observed that both of the 
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heuristic methods find solutions that are equal to and better than the solutions found 

with 5% relative gap. Therefore, for those problems, HM1 and HM2 produce results 

which have at most 5% percent deviation from optimal. The results for those 

problems are given in Appendix H in Table 26, Table 27 and Table 28. 

According to the results reported, HM2 does generally better than HM1 in terms of 

solutions. However, the results do not warrant us to claim dominance of HM2 over 

HM1. The only significant difference between them is computation times. As HM2 

has higher computation times, HM1 can be preferred over HM2.  
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CHAPTER 6 

 

 

6. INTERACTIVE SOLUTION PROCEDURE 

 

 

 

In multiobjective optimization problems, finding and presenting the pareto optimal 

set to decision maker (DM) is not the final step. After that, DM has to make a 

selection from the pareto optimal set. To aid DM in selection, an interactive solution 

procedure is proposed in this chapter.  

The proposed procedure relies on pairwise comparisons of the solutions in the pareto 

optimal set. Firstly, whole pareto optimal set is divided into groups. This divison 

induces partitioning of decision space into subspaces. These subspaces are called 

cells (Köksalan et al., 1995). The number of cells changes between 2 and 9 for the 

solution sets with different number of solutions. The reason for limiting the number 

of cells with 9 is that the experiments have shown that individuals can compare at 

most nine pieces of information simultaneously (Miller, 1956). For each cell, ideal 

point of the cell (cell ideal) is presented to DM. After that, DM makes a selection 

form the cell ideals. Then, the cell corresponding to the selected cell ideal is 

scrutinized. The solutions in the selected cell are shown on two different graphs to 

present the tradeoff between the objectives to DM. The first graph is drawn by 

showing one of the objectives in right axis and the other in left axis. The second 

graph is same as the first graph, except in the second graph normalized objective 

values are used to show the DM marginal gain and loss more clearly. Normalization 

is done by setting maximum objective value to 1 and minimum objective value to 0 

and scaling the other objective values between 0 and 1. After examining the graphs, 

DM is expected to make a selection from the solutions shown.  The selected solution 

and its adjacent solutions are presented to DM and she/he makes another preference 

between these 3 solutions. If DM is satisfied with the solution, algorithm stops. If 
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not, DM can choose to search the adjacent solutions of the last selected solution or to 

change the cell that is selected at the beginning of the algorithm. Algorithm 

continues in this way, until DM is satisfied with the solution.  

The proposed algorithm is given below: 

Step 0: Initialization. 

a. Rank the solution set according to one of the objectives in ascending order. 

b. Divide the solution set into cells. In the following table, for solution sets 

with different number of solutions the number of cells to be divided is given. 

Table 10: Number of Cells to be divided 

Number of 

solutions in the 

solution set  

( |Q| ) 

Number of Cells 

   0 <  |Q|  ≤ 10 2 

10 < |Q|  ≤ 20 3 

20 < |Q|  ≤ 30 4 

30 < |Q|  ≤ 40 5 

40 < |Q|  ≤ 50 6 

50 < |Q|  ≤ 60 7 

60 < |Q|  ≤ 70 8 

  70 < |Q| 9 

 

c. Find the ideal points of the solutions in all of the cells. Set these solutions as 

cell ideals. 

Step 1: Ask Decision Maker to select one of the cell ideals. Remove the selected 

cell ideal from the cell ideals list. 

Step 2: Present the solutions in the cell corresponding to the selected cell ideal in 

Step 1 with two different graphs. The first graph is drawn by showing one of the 

objectives (DT) in right axis and the other (MDP) in left axis. The second graph 

uses normalized values of the objectives and drawn by showing one of the 

normalized objectives in right axis and the other in left axis. 
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Step 3: Ask Decision Maker to select a solution shown on the graphs. Set the 

selected solution as SelectedSolution1. 

Step 4: Show the objective function values of SelectedSolution1 and its adjacent 

solutions to Decision Maker. Set these 3 solutions as CandidateSolutions. 

Step 5: Ask Decision Maker to make a preference between CandidateSolutions. 

Set the selected solution as SelectedSolution2. 

If Decision Maker is satisfied with SelectedSolution2, STOP. Otherwise, go 

to Step 6. 

Step 6: If SelectedSolution1 and SelectedSolution2 are the same solution, go to 

Step 1.  

Else, ask Decision Maker to select searching a new cell or the adjacent 

solutions of SelectedSolution2.  

If Decision Maker selects searching a new cell go to Step1,  

Otherwise set SelectedSolution1=SelectedSolution2 and go to Step 4. 

The proposed algorithm is applied on two examples. The results of HM1on the test 

problems Ins2_5 and Ins2_40 are used as examples.  

Example 1: Application of the algorithm on the results of HM1on Ins2_5 

 

Step 0: Initialization. 

The solution set is ranked according to DT values in ascending order and 

divided into 3 cells as |Q|=18. 

 Cell ideals are presented to Decision Maker as given in Table 11. 

 

Table 11: Cell ideals for cells of the results of HM1on Ins2_5 

Cell 
Cell Ideal 

DT MDP 

1 107.06 0.4866 

2 107.06 0.5507 

3 115.85 0.6142 

 

Step 1: Decision Maker selects the 2
nd

 cell ideal.  
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Step 2: The solutions in the 2
nd

 cell are presented to Decision Maker by Figure 

18 and Figure 19. 

 

Figure 18 : Tradeoff between the objectives of solutions in 2
nd

 cell of the results of 

HM1on Ins2_5. (Numbers at the top of the graph shows each distinct solution within 

the selected cell.) 

 

Figure 19 : Tradeoff between the normalized objectives of solutions in 2
nd

 cell of the 

results of HM1on Ins2_5 
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Step 3: Decision Maker selects the 5
th

 solution. 5
th

 solution is set as 

SelectedSolution1. 

Step 4: CandidateSolutions are presented to Decision Maker as in Table 12. 

Table 12 : CandidateSolutions selected from the results of HM1on Ins2_40 

No DT MDP 

1 110.38 0.5406 

2 111.26 0.5478 

3 113.03 0.5507 

 

Step 5: Decision Maker selects the 3
rd

 solution. The 3
rd

 solution is set as 

SelectedSolution2.  

Decision Maker is not satisfied with the solution. 

Step 6: Decision Maker prefers to search a new cell. 

Step 1: Decision Maker selects the 1
st
 cell ideal.  

Step 2: The solutions in the 1
st
 cell are presented to Decision Maker by Figure 20 

and Figure 21. 

 

Figure 20 : Tradeoff between the objectives of solutions in 1
st
 cell of the results of 

HM1on Ins2_5 
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Figure 21 : Tradeoff between the normalized objectives of solutions in 1
st
 cell of the 

results of HM1on Ins2_5 
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rd

 solution. 3
rd

 solution is set as 

SelectedSolution1. 

Step 4: CandidateSolutions are presented to Decision Maker as in Table 13. 

Table 13 : CandidateSolutions selected from the results of HM1on Ins2_5 

No DT MDP 

1 98.25 0.4447 

2 98.57 0.4512 

3 102.57 0.4545 

 

Step 5: Decision Maker selects the 2
nd

 solution. The 2
nd

 solution is set as 

SelectedSolution2.  

Decision Maker is satisfied with the solution. Therefore, SelectedSolution2 is the 

solution that is selected to be used. 
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Example 2: Application of the algorithm on the results of HM1on Ins2_40 

Step 0: Initialization. 

The solution set is ranked according to DT values in ascending order and  

divided into 9 cells as |Q|=72. 

 Cell ideals are presented to Decision Maker as given in Table 14. 
 

Table 14: Cell ideals for cells of the results of HM1on Ins2_40 

Cell 
Cell Ideal 

DT MDP 

1 448.76 0.4262 

2 469.82 0.4475 

3 481.76 0.4715 

4 523.02 0.4996 

5 548.74 0.5276 

6 589.05 0.5439 

7 604.37 0.5569 

8 662.69 0.5823 

9 689.43 0.5966 

 

Step 1: Decision Maker selects the 3
rd

 cell ideal.  

Step 2: The solutions in the 3
rd

 cell are presented to Decision Maker by Figure 22 

and Figure 23. 

Step 3: Decision Maker selects the 7
th

 solution. 7
th

 solution is set as 

SelectedSolution1. 

Step 4: CandidateSolutions are presented to Decision Maker as in Table 15. 

Table 15 : CandidateSolutions selected from the results of HM1on Ins2_40 

No DT MDP 

1 510.42 0.4596 

2 510.90 0.4700 

3 522.09 0.4715 
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Step 5: Decision Maker selects the 1
st
 solution. The 1

st
 solution is set as 

SelectedSolution2.  

Decision Maker is not satisfied with the solution.  

 

Figure 22 : Tradeoff between the objectives of solutions in 3rd
 cell of the results of 

HM1on Ins2_40 

 

Figure 23 : Tradeoff between the normalized objectives of solutions in 3rd
 cell of the 

results of HM1on Ins2_40 
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Step 6: Decision Maker prefers to select searching the adjacent solutions of 

SelectedSolution2.  

Step 4: CandidateSolutions are presented to Decision Maker as in Table 16. 

Table 16 : CandidateSolutions selected from the results of HM1on Ins2_40 

No DT MDP 

1 501.90 0.4545 

2 510.42 0.4596 

3 510.90 0.4700 

 

Step 5: Decision Maker selects the 1
st
 solution. The 1

st
 solution is set as 

SelectedSolution2.  

Decision Maker is satisfied with the solution. Therefore, SelectedSolution2 is the 

solution that is selected to be used. 
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CHAPTER 7 

 

 

7. CONCLUSION 

 

 

 

In this study, we consider a new problem in literature as Multiobjective Aerial 

Surveillance Problem. Although ASP is not well studied in literature, there are many 

civilian and military operations that ASP can be applied. 

We study Multiobjective Aerial Surveillance Problem (MASP) with two objectives 

that are minimizing distance travelled and maximizing the minimum target detection 

probability of all rectangles. These two objectives are the most important two goals 

in the applications of ASP. We generate Pareto Optimal Set by using several 

methods. We use ε-MASP to solve MASP optimally. This method produced Pareto 

Optimal Set for all of the 30 test problems except 3 problems with 40 rectangles. 

However, ε-constraint method requires high computation times for problems with 

more than 10 rectangles. Therefore, heuristic methods are developed to cope with 

this disadvantage of ε-MASP. Three heuristic methods are introduced for solving 

MASP. The difference between the heuristic methods is in the construction of initial 

solution. After initial solution is found, all proposed heuristic methods use same 

improvement step. In construction step, HM1 uses optimal TSP sequence of the 

rectangles. HM2 uses an optimal solution of single objective ASP. HM3 produces 

random solutions and uses the best of them. 

Our experimental results show that HM1 and HM2 find a set of solutions that are 

very close to the Pareto Optimal Set found by ε-MASP. On the other hand, it is 

observed that HM3 does not give good results and it is disregarded in the rest of the 

study.  In terms of the performance measures calculated, HM1 and HM2 produce 

similar results. Both HM1 and HM2 find solutions with at most 2.5% deviation from 
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optimal solution. The only significant difference between them is computation times. 

As HM2 has higher computation times, HM1 can be preferred over HM2. 

Finally, we propose an interactive solution procedure based on pairwise comparisons 

for decision maker to give support in making a selection among the generated pareto 

optimal solutions. 

In conclusion, in this study an exact method, two effective heuristic methods and an 

interactive solution procedure are proposed for MASP. To the best of our knowledge, 

our study is the first attempt to solve Multiobjective Aerial Surveillance Problem.  
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APPENDIX A 

 

 

A. ALGORITHM OF CONSTRUCTION METHODS 

 

 

 

Indices: 

i,j : index of disjoint rectangles,  i=0 is  base station.  

l,k : index of entry and exit points of rectangles, l=1,2,..,8 and k=1,2,..,8. 

s : index of search pattern within a rectangle, s=1,…S. 

Parameters: 

Diljk : distance from point l of rectangle i to point k of rectangle j. 

DPilks : distance from point l to point k of rectangle i using search pattern s. 

Pilks  : probability of detecting target by flying from point l to point k in the rectangle 

i using search pattern s. 

N     : number of rectangles. 

Variables:  

CurrentNode   : The rectangle whose search scenario is being decided. 

CurrentNodeEntry   : Selected entry point of CurrentNode. 

CurrentNodeExit  : Selected exit point of CurrentNode. 

CurrentNodeSearchPattern  : Selected search pattern of CurrentNode. 
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MinofMaxProbability  : Minimum of maximum target detection probability for 

all rectangles.  

MaximumProbabillity  : Maximum target detection probability that is found for 

CurrentNode. 

DistanceTravelled  : Total distance travelled in the tour (including the 

distance travelled between rectangles and in 

rectangles).  

MinDetectionProbabillity   : Minimum of the target detection probabilities for all 

rectangles based on selected search scenarios. 

Construction Method 1:  

Step 1: Find optimal TSP tour based on middle points of the rectangles by using 

Concorde TSP Solver. Set sequence of rectangles in the initial tour according to 

optimal TSP sequence. 

Step 2: Select the entry point, exit point and search pattern resulting in largest 

probability of target detection for all rectangles (CurrentNode). 

           Set MaximumProbabillity=0. 

Repeat for CurrentNode=1 to CurrentNode=N 

Repeat for  all valid sets of l, k and s for CurrentNode  

If PCurrentNode,l,k,s>MaximumProbabillity  

Set CurrentNodeEntry=l 

Set CurrentNodeExit=k 

Set CurrentNodeSearchPattern=s 

Set MaximumProbabillity= PCurrentNode,l,k,s 
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Construction Method 2:  

Set MinofMaxProbability to minimum acceptable target detection probability and 

solve Minisum ASP optimally with the constraint below by using GAMS.  

Pilks ≥ MinofMaxProbability 

Set sequence and search scenarios of rectangles in the initial tour according to 

optimal sequence found. 

Construction Method 3 :  

Step 1: Generate a specified number of random sequences of all rectangles and base 

station. Connect the first and the last node in the sequence to generate a tour.  

Step 2: For each tour, calculate the total length of the tour by using the midpoints of 

rectangles. 

Step 3: Select the tour having minimum length. Set the sequences in the initial tour 

according to the tour having minimum length. 

Step 4: Select the entry point, exit point and search pattern resulting in largest 

probability of target detection for all rectangles (CurrentNode). 

           Set MaximumProbabillity=0. 

Repeat for CurrentNode=1 to CurrentNode=N 

Repeat for  all valid sets of l, k and s for CurrentNode  

If PCurrentNode,l,k,s>MaximumProbabillity  

Set CurrentNodeEntry=l 

Set CurrentNodeExit=k 

Set CurrentNodeSearchPattern=s 

Set MaximumProbabillity= PCurrentNode,l,k,s 
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APPENDIX B 

 

 

B. ALGORITHM OF IMPROVEMENT METHOD 

 

 

 

Indices: 

i,j : index of disjoint rectangles,  i=0 is base station.  

l,k : index of entry and exit points of rectangles, l=1,2,..,8 and k=1,2,..,8. 

s : index of search pattern within a rectangle, s=1,…S. 

Parameters: 

Diljk : distance from point l of rectangle i to point k of rectangle j. 

DPilks : distance from point l to point k of rectangle i using search pattern s. 

Pilks  : probability of detecting target by flying from point l to point k in the rectangle 

i using search pattern s. 

N : number of rectangles. 

Set: 

EfficientSolutions : Set of nondominated solutions. 

Variables:  

CurrentSolution : A solution chosen from EfficientSolutions to be improved. 

CandidateSolution1 : A solution found when 2-opt move is applied to 

CurrentSolution. 

CandidateSolution2 : A solution found when search scenarios of the rectangles 

are changed on CandidateSolution1. 
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Probability : Target detection probability that is used to restrict the 

rectangles’ target detection probability in 

CandidateSolution2. 

MinofMaxProbability : Minimum of maximum target detection probability for 

all rectangles.  

DistanceTravelled : Total distance travelled in the tour (including the 

distance travelled between rectangles and in rectangles). 

MinDetectionProbabillity : Minimum of the target detection probabilities for all 

rectangles based on selected search scenarios. 

Rectangle1-4 : Rectangles chosen to apply 2-opt move. 

 

Step 1: Start with an initial feasible solution found by one of the Construction 

Methods and add it to EfficientSolutions.  

 

Step 2: Pick the first solution from EfficientSolutions which is not flagged as visited 

and set it as CurrentSolution. If all solutions in EfficientSolutions set is flagged as 

visited, STOP. 

 

Step 3: Flag CurrentSolution as visited. 

 

Step 4: Repeat for Rectangle1=0 to Rectangle1=N 

 

Step 4.1: Repeat for Rectangle3=N to Rectangle3=0 

 

Step 4.1.1:  

If it is feasible, apply 2-opt move on CurrentSolution by using the edges 

connecting Rectangle1 and Rectangle3 to their next nodes in the tour, which are 

Rectangle2 and Rectangle4. 
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Else, Go to Step 4.1. 

 

Step 4.1.2: Save new solution found after 2-opt move as CandidateSolution1 

 

Step 4.1.3: Set MinofMaxProbability as the minimum of maximum target 

detection probability for all rectangles. 

 

Step 4.1.4: Set Probability to the minimum acceptable target detection. 

 

Step 4.1.5: If Probability<=MinofMaxProbability, go to Step 4.1.6. 

          Else, Go to Step 4.1. 

 

Step 4.1.6: Search alternative ways of travelling in the rectangles.  

For all rectangles i=1 to i=N in CandidateSolution1, select the way of travelling 

in the rectangle for which probability Pilks is larger than Probability and which 

results in minimum distance for travelling from  previous rectangle to rectangle 

i, travelling in rectangle i and travelling from rectangle i to the next rectangle. 

Save new solution as CandidateSolution2. 

Set MinDetectionProbabillity to the minimum of 

PCurrentNode,CurrentNoEntry,CurrentNodeExit,CurrentNodeSearchPattern for all rectangles in 

CandidateSolution2. 

Find total distance travelled (DistanceTravelled) by summing Diljk and DPilks 

values of the tour in CandidateSolution2. 

 

If CandidateSolution2 is not dominated by any solution in EfficientSolutions  

 

Add CandidateSolution2 to EfficientSolutions. 
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Update EfficientSolutions by deleting solutions from EfficientSolutions set if 

they are dominated by CandidateSolution2 

 

Step 4.1.7:  Set Probabillity to the minimum of selected Pilks values in 

CandidateSolution2. Go to Step 4.1.5. 

  

Step 5: Go to Step 2. 
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APPENDIX C 

 

 

C. RESULTS OF TEST PROBLEMS 

 
 

Figure 24 : The objective space of Ins1_5 showing solution sets found  
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Figure 25: The objective space of Ins1_10 showing solution sets found  
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Figure 26 : The objective space of Ins1_20 showing solution sets found  
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Figure 27 : The objective space of Ins1_30 showing solution sets found  
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Figure 28 : The objective space of Ins1_40 showing solution sets found  
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Figure 29 : The objective space of Ins2_5 showing solution sets found   
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Figure 30 : The objective space of Ins2_10 showing solution sets found  
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Figure 31 : The objective space of Ins2_20 showing solution sets found  
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Figure 32 : The objective space of Ins2_30 showing solution sets found  
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Figure 33 : The objective space of Ins2_40 showing solution sets found 
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Figure 34 : The objective space of Ins3_5 showing solution sets found 
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Figure 35 : The objective space of Ins3_10 showing solution sets found 
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Figure 36 : The objective space of Ins3_20 showing solution sets found 
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Figure 37 : The objective space of Ins3_30 showing solution sets found  
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Figure 38 : The objective space of Ins3_40 showing solution sets found  
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Figure 39 : The objective space of Ins4_5 showing solution sets found  
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Figure 40 : The objective space of Ins4_10 showing solution sets found  
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Figure 41 : The objective space of Ins4_20 showing solution sets found  
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Figure 42 : The objective space of Ins4_30 showing solution sets found  
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Figure 43 : The objective space of Ins4_40 showing solution sets found   
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Figure 44 : The objective space of Ins5_5 showing solution sets found 
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Figure 45 : The objective space of Ins5_10 showing solution sets found 
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Figure 46 : The objective space of Ins5_20 showing solution sets found 
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Figure 47 : The objective space of Ins5_30 showing solution sets found 
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Figure 48 : The objective space of Ins5_40 showing solution sets found 
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Figure 49 : The objective space of Ins6_5 showing solution sets found 
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Figure 50 : The objective space of Ins6_10 showing solution sets found 
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Figure 51 : The objective space of Ins6_20 showing solution sets found   
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Figure 52 : The objective space of Ins6_30 showing solution sets found 
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Figure 53 : The objective space of Ins6_40 showing solution sets found 
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APPENDIX D 

 

 

D. COMPUTATION TIMES OF THE METHODS 

 

 

 

Table 17 : Computation Times of The Methods 

Problem  ε-MASP HM1 HM2 

Ins1_5 259.92 2.45 6.09 

Ins1_10 824.21 3.11 139.73 

Ins1_20 881.89 8.65 173.40 

Ins1_30 10,382.30 40.79 704.43 

Ins1_40 58,247.71 149.35 2,730.16 

Ins2_5 326.30 2.25 4.95 

Ins2_10 2,189.11 5.09 50.40 

Ins2_20 1,108.99 26.74 116.88 

Ins2_30 144,385.02 113.90 12,198.44 

Ins2_40 154,008.49 867.90 3,266.60 

Ins3_5 623.61 2.84 7.05 

Ins3_10 5,259.27 6.34 111.57 

Ins3_20 3,371.86 61.40 287.83 

Ins3_30 34,612.14 319.89 1,333.05 

Ins3_40* 17,918.37 1,846.81 1,846.26 

Ins4_5 88.25 3.57 4.86 

Ins4_10 2,418.27 2.67 34.17 

Ins4_20 450.56 5.34 10.41 

Ins4_30 18,812.07 12.13 408.09 

Ins4_40 11,503.69 49.15 90.28 

Ins5_5 199.21 2.56 4.44 

Ins5_10 4,516.99 2.73 28.78 

Ins5_20 2,524.56 12.11 16.07 

Ins5_30 23,867.45 40.72 135.81 

Ins5_40* 13,206.29 268.09 261.23 

Ins6_5 329.62 2.51 4.98 

Ins6_10 6,336.87 4.68 69.26 

Ins6_20 3,664.23 25.49 31.32 

Ins6_30 33,116.01 102.21 468.53 

Ins6_40* 23,595.16 667.40 924.67 

* In these problems, ε-MASP is solved with %5 relative gap. 
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APPENDIX E 

 

 

E. PERCENT GD MEASURE AND NUMBER OF OPTIMAL SOLUTIONS 

FOUND OF THE METHODS 

 

Table 18 : Percent GD Measure and Number of Optimal Solutions Found of the 

Methods  

Problem 

HM1 HM2 

%

distGD  

Total # of 

solutions 

found 

Total # of 

optimal 

solutions 

found 

%

distGD  

Total # of 

solutions 

found 

Total # of 

optimal 

solutions 

found 

Ins1_5 0.00  12 12 0.00  12 12 

Ins1_10 0.92  17 6 0.92  17 6 

Ins1_20 0.00  26 26 0.00  26 26 

Ins1_30 1.80  30 0 0.84  28 2 

Ins1_40 0.89  37 0 0.59  39 5 

Ins2_5 0.00  18 18 0.00  18 18 

Ins2_10 0.70  30 12 0.18  29 18 

Ins2_20 0.00  43 43 0.00  43 43 

Ins2_30 1.43  50 0 0.30  50 14 

Ins2_40 0.86  71 0 1.06  74 8 

Ins3_5 0.00  23 23 0.00  23 23 

Ins3_10 0.70  38 13 0.19  37 22 

Ins3_20 0.02  57 52 0.04  57 49 

Ins3_30 1.51  66 4 0.34  65 16 

Ins4_5 0.00  7 7 0.00  7 7 

Ins4_10 0.69  8 1 0.49  9 2 

Ins4_20 0.04  14 11 0.01  13 12 

Ins4_30 1.52  15 0 0.74  15 2 

Ins4_40 1.19  24 0 2.24  23 1 

Ins5_5 0.00  11 9 0.00  11 9 

Ins5_10 0.70  16 2 0.18  17 11 

Ins5_20 0.06  26 15 0.07  26 19 

Ins5_30 1.84  28 1 0.42  28 14 

Ins6_5 0.00  16 14 0.00  16 14 

Ins6_10 0.60  25 6 0.16  25 15 

Ins6_20 0.03  40 30 0.03  40 30 

Ins6_30 1.78  43 8 0.95  44 7 



 

 116  

 

 

  



 

 117  

 

APPENDIX F 

 

 

F. NUMBER OF SOLUTIONS FOUND WHOSE %GAP IS IN A SPECIFIED 

INTERVAL 

 

 

 

Table 19: Number of solutions found whose %GAP is in a specified interval in 

Instance 1 

Rectangle 

No Method 

# of  

solutions 

found 

# of 

optimal 

solutions 

found A B C D E 

5 

HM1 12 12 0 0 0 0 0 

HM2 12 12 0 0 0 0 0 

10 

HM1 17 6 3 5 3 0 0 

HM2 17 6 3 5 3 0 0 

20 

HM1 26 26 0 0 0 0 0 

HM2 26 26 0 0 0 0 0 

30 

HM1 30 0 4 15 8 2 1 

HM2 28 2 17 7 2 0 0 

40 

HM1 37 0 24 13 0 0 0 

HM2 39 5 24 10 0 0 0 

A : # of  solutions found whose %GAP is between 0% and 1% (0 %< %GAP <=1%) 

B : # of  solutions found whose %GAP is between 1% and 2% (1 %< %GAP <=2%) 

C : # of  solutions found whose %GAP is between 2% and 3% (2 %< %GAP <=3%) 

D : # of  solutions found whose %GAP is between 3% and 4% (3 %< %GAP <=4%) 

E : # of  solutions found whose %GAP is more than 4% (4 %< %GAP) 
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Table 20: Number of solutions found whose %GAP is in a specified interval in 

Instance 2 

Rectangl

e No Method 

# of  

solutions 

found 

# of 

optimal 

solution

s found A B C D E 

5 

HM1 18 18 0 0 0 0 0 

HM2 18 18 0 0 0 0 0 

10 

HM1 30 12 8 6 4 0 0 

HM2 29 18 11 0 0 0 0 

20 

HM1 43 43 0 0 0 0 0 

HM2 43 43 0 0 0 0 0 

30 

HM1 50 0 11 29 10 0 0 

HM2 50 14 31 5 0 0 0 

40 

HM1 71 0 54 17 0 0 0 

HM2 74 8 36 21 9 0 0 

A : # of  solutions found whose %GAP is between 0% and 1% (0 %< %GAP <=1%) 

B : # of  solutions found whose %GAP is between 1% and 2% (1 %< %GAP <=2%) 

C : # of  solutions found whose %GAP is between 2% and 3% (2 %< %GAP <=3%) 

D : # of  solutions found whose %GAP is between 3% and 4% (3 %< %GAP <=4%) 

E : # of  solutions found whose %GAP is more than 4% (4 %< %GAP) 
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Table 21: Number of solutions found whose %GAP is in a specified interval in 

Instance 3 

Rectangle 

No Method 

# of  

solutions 

found 

# of 

optimal 

solutions 

found A B C D E 

5 

HM1 23 23 0 0 0 0 0 

HM2 23 23 0 0 0 0 0 

10 

HM1 38 13 14 8 3 0 0 

HM2 37 22 15 0 0 0 0 

20 

HM1 57 52 5 0 0 0 0 

HM2 57 49 8 0 0 0 0 

30 

HM1 66 4 13 34 9 6 0 

HM2 65 16 42 7 0 0 0 

A : # of  solutions found whose %GAP is between 0% and 1% (0 %< %GAP <=1%) 

B : # of  solutions found whose %GAP is between 1% and 2% (1 %< %GAP <=2%) 

C : # of  solutions found whose %GAP is between 2% and 3% (2 %< %GAP <=3%) 

D : # of  solutions found whose %GAP is between 3% and 4% (3 %< %GAP <=4%) 

E : # of  solutions found whose %GAP is more than 4% (4 %< %GAP) 
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Table 22: Number of solutions found whose %GAP is in a specified interval in 

Instance 4 

Rectangle 

No Method 

# of  

solutions 

found 

# of 

optimal 

solutions 

found A B C D E 

5 

HM1 7 7 0 0 0 0 0 

HM2 7 7 0 0 0 0 0 

10 

HM1 8 1 5 2 0 0 0 

HM2 9 2 6 1 0 0 0 

20 

HM1 14 11 3 0 0 0 0 

HM2 13 12 1 0 0 0 0 

30 

HM1 15 0 2 8 5 0 0 

HM2 15 2 7 6 0 0 0 

40 

HM1 24 0 9 15 0 0 0 

HM2 23 1 1 5 12 4 0 

A : # of  solutions found whose %GAP is between 0% and 1% (0 %< %GAP <=1%) 

B : # of  solutions found whose %GAP is between 1% and 2% (1 %< %GAP <=2%) 

C : # of  solutions found whose %GAP is between 2% and 3% (2 %< %GAP <=3%) 

D : # of  solutions found whose %GAP is between 3% and 4% (3 %< %GAP <=4%) 

E : # of  solutions found whose %GAP is more than 4% (4 %< %GAP) 
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Table 23: Number of solutions found whose %GAP is in a specified interval in 

Instance 5 

Rectangle 

No Method 

# of  

solutions 

found 

# of 

optimal 

solutions 

found A B C D E 

5 

HM1 11 9 2 0 0 0 0 

HM2 11 9 2 0 0 0 0 

10 

HM1 16 2 10 4 0 0 0 

HM2 17 11 5 1 0 0 0 

20 

HM1 26 15 11 0 0 0 0 

HM2 26 19 7 0 0 0 0 

30 

HM1 28 1 4 13 4 6 0 

HM2 28 14 7 7 0 0 0 

A : # of  solutions found whose %GAP is between 0% and 1% (0 %< %GAP <=1%) 

B : # of  solutions found whose %GAP is between 1% and 2% (1 %< %GAP <=2%) 

C : # of  solutions found whose %GAP is between 2% and 3% (2 %< %GAP <=3%) 

D : # of  solutions found whose %GAP is between 3% and 4% (3 %< %GAP <=4%) 

E : # of  solutions found whose %GAP is more than 4% (4 %< %GAP) 
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Table 24: Number of solutions found whose %GAP is in a specified interval in 

Instance 6 

Rectangle 

No Method 

# of  

solutions 

found 

# of 

optimal 

solutions 

found A B C D E 

5 

HM1 16 14 2 0 0 0 0 

HM2 16 14 2 0 0 0 0 

10 

HM1 25 6 12 7 0 0 0 

HM2 25 15 9 1 0 0 0 

20 

HM1 40 30 10 0 0 0 0 

HM2 40 30 10 0 0 0 0 

30 

HM1 43 8 1 15 12 7 0 

HM2 44 7 15 20 2 0 0 

A : # of  solutions found whose %GAP is between 0% and 1% (0 %< %GAP <=1%) 

B : # of  solutions found whose %GAP is between 1% and 2% (1 %< %GAP <=2%) 

C : # of  solutions found whose %GAP is between 2% and 3% (2 %< %GAP <=3%) 

D : # of  solutions found whose %GAP is between 3% and 4% (3 %< %GAP <=4%) 

E : # of  solutions found whose %GAP is more than 4% (4 %< %GAP) 
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APPENDIX G  

 

 

G. HV AND HVR MEASURE OF THE METHODS 

 

 

 

Table 25 : HV and HVR Measure of The Methods 

Problem 

ε –MASP HM1 HM2 HM1 HM2 

HV(P) HV(Q) HV(Q) HVR HVR 

Ins1_5 0.84 0.84 0.84 1.00 1.00 

Ins1_10 1.74 1.62 1.62 0.93 0.93 

Ins1_20 3.52 3.52 3.52 1.00 1.00 

Ins1_30 5.35 4.56 5.02 0.85 0.94 

Ins1_40 6.83 6.30 6.55 0.92 0.96 

Ins2_5 2.31 2.31 2.31 1.00 1.00 

Ins2_10 6.19 6.02 6.11 0.97 0.99 

Ins2_20 12.13 12.13 12.13 1.00 1.00 

Ins2_30 18.42 17.28 18.21 0.94 0.99 

Ins2_40 26.17 25.23 25.11 0.96 0.96 

Ins3_5 5.13 5.13 5.13 1.00 1.00 

Ins3_10 11.84 11.61 11.71 0.98 0.99 

Ins3_20 25.31 25.29 25.28 1.00 1.00 

Ins3_30 40.86 39.27 40.51 0.96 0.99 

Ins4_5 0.65 0.65 0.65 1.00 1.00 

Ins4_10 0.68 0.59 0.65 0.88 0.96 

Ins4_20 1.61 1.61 1.61 1.00 1.00 

Ins4_30 2.28 1.85 2.05 0.81 0.90 

Ins4_40 2.91 2.49 2.14 0.86 0.74 

Ins5_5 1.78 1.78 1.78 1.00 1.00 

Ins5_10 2.84 2.73 2.79 0.96 0.98 

Ins5_20 7.11 7.08 7.08 1.00 1.00 

Ins5_30 10.89 10.00 10.66 0.92 0.98 

Ins6_5 3.65 3.65 3.65 1.00 1.00 

Ins6_10 7.79 7.58 7.73 0.97 0.99 

Ins6_20 16.15 16.13 16.13 1.00 1.00 

Ins6_30 25.05 23.74 24.27 0.95 0.97 
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APPENDIX H 

 

 

H. RESULTS FOR THE PROBLEMS NOT SOLVED OPTIMALLY  

 

40 

Table 26: Results for Ins3_40 (continued) 

ε-MASP  
(5% Relative Gap) 

HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

348.17 0.3003 337.74 0.3003 -2.99  334.27 0.3003 -3.99  

351.73 0.3039 345.24 0.3039 -1.85  340.09 0.3039 -3.31  

351.19 0.3095 347.76 0.3095 -0.97  342.56 0.3095 -2.46  

352.81 0.3114 348.80 0.3114 -1.14  343.59 0.3114 -2.61  

349.51 0.3127 350.72 0.3127 0.35  345.51 0.3127 -1.14  

354.11 0.3193 352.23 0.3193 -0.53  346.65 0.3193 -2.11  

355.55 0.3227 356.50 0.3227 0.27  349.20 0.3227 -1.79  

348.47 0.3246 357.87 0.3246 2.70  350.60 0.3246 0.61  

359.77 0.3274 358.00 0.3275 2.09  350.70 0.3274 -2.52  

350.68 0.3275 364.54 0.3297 -2.58  350.70 0.3275 0.00  

374.19 0.3297 380.86 0.3408 0.11  357.35 0.3297 -4.50  

380.43 0.3408 383.36 0.3454 * 374.50 0.3408 -1.56  

391.26 0.3486 385.03 0.3486 -1.59  377.46 0.3454 * 

392.04 0.3502 385.93 0.3502 -1.56  379.14 0.3486   

390.94 0.3526 387.85 0.3526 -0.79  383.58 0.3502 -2.16  

399.76 0.3570 391.59 0.3570 -2.04  385.51 0.3526 -1.39  

399.08 0.3588 395.25 0.3588 -0.96  389.18 0.3570 -2.65  

402.08 0.3609 398.85 0.3609 -0.81  392.84 0.3588 -1.56  

406.26 0.3616 398.94 0.3616 -1.80  397.75 0.3609 -1.08  

409.54 0.3653 401.58 0.3653 -1.94  397.84 0.3616 -2.07  

416.22 0.3687 404.82 0.3697 -2.93  400.48 0.3653 -2.21  

417.06 0.3697 405.40 0.3719 -3.19  405.31 0.3697 -2.82  

418.77 0.3719 405.63 0.3789 -3.12  406.64 0.3719 -2.90  

418.69 0.3789 414.55 0.3878 -3.05  406.87 0.3789 -2.82  

427.61 0.3878 414.75 0.3909 -2.93  415.61 0.3878 -2.81  

427.28 0.3909 416.80 0.3935 -2.59  415.80 0.3909 -2.69  

427.91 0.3935 445.45 0.3978 -0.32  417.70 0.3935 -2.39  



 

 126  

 

Table 26: Results for Ins3_40 (continued) 

ε-MASP  
(5% Relative Gap) 

HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

446.86 0.3978 449.09 0.3986 -3.48  443.43 0.3978 -0.77  

465.29 0.3986 449.41 0.4012 -1.92  447.07 0.3986 -3.92  

458.21 0.4012 453.01 0.4038 1.11  447.40 0.4012 -2.36  

448.03 0.4038 454.07 0.4069 -3.65  450.27 0.4038 0.50  

471.25 0.4069 455.68 0.4092 -3.41  451.49 0.4069 -4.19  

471.78 0.4092 457.32 0.4164 -1.09  453.11 0.4092 -3.96  

462.35 0.4164 458.18 0.4171 -0.56  453.45 0.4164 -1.92  

460.76 0.4171 461.94 0.4193 -0.52  453.66 0.4171 -1.54  

464.33 0.4193 463.35 0.4262 -2.61  456.34 0.4193 -1.72  

475.75 0.4262 472.53 0.4353 -0.77  457.75 0.4262 -3.78  

476.20 0.4353 472.61 0.4373 -2.69  469.51 0.4353 -1.40  

485.66 0.4373 473.12 0.4384 -2.73  473.84 0.4373 -2.43  

486.42 0.4384 476.45 0.4409 -2.42  474.36 0.4384 -2.48  

488.25 0.4409 478.65 0.4420 -1.93  477.86 0.4409 -2.13  

488.06 0.4420 481.22 0.4447 -2.39  480.12 0.4420 -1.63  

493.02 0.4447 481.29 0.4450 -1.92  481.94 0.4450 -1.78  

490.70 0.4450 481.43 0.4475 * 483.99 0.4475 * 

498.74 0.4495 482.71 0.4495 -3.21  484.34 0.4495 -2.89  

499.61 0.4512 484.48 0.4512 -3.03  485.15 0.4512 -2.89  

519.23 0.4531 500.99 0.4531 -3.51  502.64 0.4531 -3.19  

501.62 0.4541 503.68 0.4541 0.41  505.33 0.4541 0.74  

518.75 0.4545 503.96 0.4545 -2.85  507.07 0.4545 -2.25  

508.46 0.4596 511.13 0.4596 0.53  512.11 0.4596 0.72  

524.00 0.4700 511.62 0.4700 -2.36  513.45 0.4700 -2.01  

532.58 0.4715 522.76 0.4715 -1.84  522.35 0.4715 -1.92  

541.44 0.4742 523.75 0.4742 -3.27  523.35 0.4742 -3.34  

539.16 0.4776 534.07 0.4776 -0.94  529.79 0.4776 -1.74  

554.51 0.4791 536.84 0.4791 -3.19  532.56 0.4791 -3.96  

553.27 0.4866 540.56 0.4866 -2.30  536.43 0.4866 -3.04  

565.28 0.4891 547.25 0.4891 -3.19  543.32 0.4891 -3.88  

565.07 0.4924 548.62 0.4924 -2.91  544.71 0.4924 -3.60  

558.23 0.4969 548.95 0.4969 -1.66  545.03 0.4969 -2.36  

550.97 0.4983 549.04 0.4996 -2.70  545.13 0.4996 -3.39  
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Table 26: Results for Ins3_40 (continued) 

ε-MASP  
(5% Relative Gap) 

HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

568.07 0.4984 549.65 0.5004 -1.63  545.54 0.5004 -2.37  

564.26 0.4996 552.01 0.5023 -3.37  547.89 0.5023 * 

558.78 0.5004 555.22 0.5034 -3.39  551.10 0.5034 -4.11  

571.24 0.5023 566.52 0.5060 -3.12  560.04 0.5060 -4.23  

574.70 0.5034 570.12 0.5105 -2.85  562.09 0.5105 -4.22  

584.80 0.5060 576.28 0.5209 -3.54  573.32 0.5209 -4.03  

586.84 0.5105 579.72 0.5276 -3.10  576.75 0.5276 -3.59  

597.42 0.5209 589.69 0.5312 -3.79  587.77 0.5312 -4.10  

598.26 0.5276 594.92 0.5327 -2.95  594.86 0.5327 -2.95  

612.89 0.5312 596.59 0.5336 -1.47  596.53 0.5336 -1.48  

612.97 0.5327 598.26 0.5366 -1.09  598.20 0.5366 -1.10  

605.47 0.5336 598.82 0.5397 -1.52  599.76 0.5397 -1.37  

604.83 0.5366 601.16 0.5406 -2.49  602.10 0.5406 -2.33  

608.08 0.5397 604.79 0.5439 -1.55  604.83 0.5412 -1.52  

616.48 0.5406 604.98 0.5442 -3.33  604.90 0.5439 -1.54  

614.15 0.5412 614.71 0.5459 -2.40  604.99 0.5442 -3.32  

614.33 0.5439 615.07 0.5476 -2.63  612.62 0.5459 -2.73  

625.80 0.5442 616.18 0.5478 -2.18  613.37 0.5476 -2.90  

629.80 0.5459 626.08 0.5494 -3.42  614.48 0.5478 -2.45  

631.70 0.5476 628.18 0.5507 -2.62  623.32 0.5494 -3.85  

629.90 0.5478 641.58 0.5529 -3.42  623.71 0.5507 -3.31  

648.28 0.5494 644.17 0.5569 -3.00  637.93 0.5529 -3.97  

645.08 0.5507 644.80 0.5600 -3.28  640.37 0.5569 -3.57  

664.31 0.5529 645.93 0.5654 -3.50  641.00 0.5600 -3.85  

664.07 0.5569 655.62 0.5657 -3.34  642.31 0.5654 -4.04  

666.64 0.5600 659.10 0.5709 * 650.24 0.5657 -4.13  

669.38 0.5654 659.64 0.5715 -2.99  653.73 0.5709 * 

678.28 0.5657 659.98 0.5756 -3.04  654.13 0.5715 -3.80  

679.96 0.5715 662.28 0.5809 -2.51  654.46 0.5756 -3.85  

680.67 0.5756 663.90 0.5823 0.09  662.81 0.5809 -2.43  

679.31 0.5809 667.14 0.5831 -2.87  664.60 0.5823 0.20  

663.28 0.5823 669.11 0.5862 -2.22  671.63 0.5831 -2.22  

686.85 0.5831 670.10 0.5889 -0.50  673.60 0.5865 1.24  
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Table 26: Results for Ins3_40 (continued) 

ε-MASP  
(5% Relative Gap) 

HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

684.33 0.5862 671.97 0.5903 -2.43  673.87 0.5889 0.06  

665.36 0.5865 673.57 0.5916 -3.73  676.86 0.5903 -1.72  

673.45 0.5889 675.34 0.5934 -2.34  678.46 0.5916 -3.03  

688.72 0.5903 691.91 0.5966 -0.23  679.65 0.5934 -1.72  

699.68 0.5916       696.44 0.5966 * 

700.04 0.5924             

691.52 0.5934             

693.51 0.5966             

* For that solution, there is no corresponding optimal solution that has same MPD 

value. Therefore, %GAP cannot be calculated. 

 

 

Table 27: Results for Ins5_40 (continued) 

ε-MASP  
(5% Relative Gap) 

HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

359.83 0.4046 349.26 0.4046 -2.94 343.69 0.4046 -4.49 

356.66 0.4069 350.28 0.4069 -1.79 344.71 0.4069 -3.35 

363.25 0.4084 352.19 0.4084 -3.04 346.62 0.4084 -4.58 

356.74 0.4164 353.60 0.4164 -0.88 347.66 0.4164 -2.55 

349.86 0.4204 357.88 0.4204 2.29 350.20 0.4204 0.10 

352.86 0.4228 359.14 0.4228 1.78 351.52 0.4228 -0.38 

363.33 0.4260 359.27 0.4262 1.65 351.60 0.4262 -0.52 

353.45 0.4262 365.87 0.4288 -1.80 358.20 0.4288 -3.86 

372.57 0.4288 382.34 0.4420 -2.15 376.31 0.4420 -3.70 

390.76 0.4420 384.76 0.4475 * 379.54 0.4475 * 

381.57 0.4512 386.41 0.4512 1.27 381.20 0.4512 -0.10 

389.88 0.4531 387.32 0.4531 -0.66 384.41 0.4531 -1.40 

395.97 0.4559 389.26 0.4559 -1.70 386.37 0.4559 -2.43 

397.47 0.4611 392.92 0.4611 -1.14 389.84 0.4611 -1.92 

400.96 0.4633 396.58 0.4633 -1.09 393.50 0.4633 -1.86 

407.34 0.4657 399.94 0.4657 -1.82 398.64 0.4657 -2.14 

407.55 0.4665 400.05 0.4665 -1.84 398.75 0.4665 -2.16 
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Table 27: Results for Ins5_40 (continued) 

ε-MASP  
(5% Relative Gap) 

HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

412.43 0.4708 402.65 0.4708 -2.37 401.35 0.4708 -2.69 

417.05 0.4748 406.06 0.4759 -3.03 407.24 0.4759 -2.74 

418.73 0.4759 406.56 0.4786 -2.63 408.40 0.4786 -2.19 

417.56 0.4786 406.85 0.4866 -2.68 408.70 0.4866 -2.24 

418.06 0.4866 415.54 0.4969 -3.37 416.59 0.4969 -3.13 

430.04 0.4969 415.74 0.5004 -2.10 416.79 0.5004 -1.85 

424.63 0.5004 417.78 0.5034 -2.95 418.67 0.5034 -2.74 

430.48 0.5034 446.52 0.5084 0.52 444.46 0.5084 0.05 

444.23 0.5084 450.25 0.5093 -0.91 448.19 0.5093 -1.36 

454.37 0.5093 450.59 0.5122 0.64 448.54 0.5122 0.18 

447.71 0.5122 454.19 0.5153 -1.53 451.39 0.5153 -2.14 

461.24 0.5153 455.23 0.5187 -3.51 452.59 0.5187 -4.08 

471.82 0.5187 456.92 0.5214 -3.36 454.28 0.5214 -3.92 

472.83 0.5214 458.48 0.5294 1.18 454.72 0.5294 0.35 

453.13 0.5294 459.38 0.5303 -2.21 454.91 0.5303 -3.16 

469.77 0.5303 463.15 0.5327 1.47 457.74 0.5327 0.29 

456.43 0.5327 464.61 0.5406 -1.61 459.20 0.5406 -2.76 

472.21 0.5406 473.91 0.5507 -1.57 470.59 0.5507 -2.26 

481.46 0.5507 474.01 0.5529 -0.74 474.18 0.5529 -0.71 

477.56 0.5529 474.70 0.5541 -1.44 474.88 0.5541 -1.40 

481.62 0.5541 477.98 0.5569 -1.10 478.35 0.5569 -1.02 

483.29 0.5569 480.22 0.5581 -1.31 480.59 0.5581 -1.23 

486.58 0.5581 482.71 0.5611 -1.77 483.08 0.5614 -2.02 

491.40 0.5611 482.75 0.5614 -2.09 485.09 0.5642 -3.19 

493.06 0.5614 482.90 0.5642 -3.62 485.46 0.5665 -3.13 

501.05 0.5642 484.13 0.5665 -3.40 486.27 0.5683 -2.18 

501.14 0.5665 485.87 0.5683 -2.26 504.21 0.5704 -1.82 

497.09 0.5683 502.28 0.5704 -2.19 506.93 0.5715 -2.05 

513.55 0.5704 504.99 0.5715     

517.55 0.5715             

* For that solution, there is no corresponding optimal solution that has same MPD 

value. Therefore, %GAP cannot be calculated. 
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Table 28 : Results for Ins6_40 (continued) 

ε-MASP  
(5% Relative Gap) 

HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

284.47 0.3016 279.20 0.3016 -1.85  275.38 0.3016 -3.19  

289.89 0.3038 282.80 0.3038 -2.45  280.75 0.3038 -3.15  

289.95 0.3082 283.98 0.3049 * 281.74 0.3297 -2.38  

288.60 0.3297 284.87 0.3297 -1.29  285.33 0.3336 -2.55  

292.79 0.3336 284.99 0.3336 -2.66  286.08 0.3375 -2.64  

293.84 0.3375 285.25 0.3375 -2.93  286.57 0.3378 -2.67  

294.42 0.3378 285.30 0.3378 -3.10  288.29 0.3406 -1.48  

292.61 0.3406 285.37 0.3406 -2.48  289.45 0.3416 -0.64  

291.32 0.3416 288.18 0.3416 -1.08  291.20 0.3430 -1.64  

296.06 0.3430 289.81 0.3430 -2.11  306.79 0.3454 -0.73  

309.05 0.3454 302.48 0.3454 -2.12  308.90 0.3457 1.26  

305.06 0.3457 304.66 0.3457 -0.13  316.65 0.3500 -0.54  

318.37 0.3500 309.69 0.3500 -2.72  317.65 0.3588 0.03  

317.56 0.3588 310.26 0.3588 -2.30  328.19 0.3616 -1.26  

332.37 0.3616 321.23 0.3616 -3.35  329.89 0.3665 -1.24  

334.03 0.3665 322.93 0.3665 -3.32  330.97 0.3729 -0.44  

332.44 0.3729 324.03 0.3729 -2.53  337.74 0.3779 -0.24  

338.56 0.3779 331.52 0.3779 -2.08  338.14 0.3817 -0.89  

341.19 0.3817 331.88 0.3817 -2.73  340.08 0.3829 -1.47  

345.16 0.3829 334.46 0.3829 -3.10  342.78 0.3831 -0.19  

343.45 0.3831 335.62 0.3831 -2.28  344.46 0.3864 -0.39  

345.82 0.3864 337.61 0.3864 -2.37  345.17 0.3935 -1.16  

349.22 0.3935 340.18 0.3935 -2.59  353.63 0.3978 2.29  

345.72 0.3978 348.09 0.3978 0.68  355.81 0.4046 1.46  

350.70 0.4046 350.73 0.4046 0.01  357.16 0.4069 1.41  

352.20 0.4069 351.76 0.4069 -0.12  357.28 0.4084 2.25  

349.43 0.4084 353.67 0.4084 1.21  358.00 0.4164 0.10  

357.65 0.4164 355.13 0.4164 -0.70  362.73 0.4204 0.68  

360.29 0.4204 359.42 0.4204 -0.24  362.92 0.4228 3.31  

351.29 0.4228 360.56 0.4228 2.64  364.64 0.4262 3.32  

352.91 0.4262 360.69 0.4262 2.20  370.20 0.4288 -1.76  

376.81 0.4288 367.38 0.4288 -2.50  382.12 0.4420 -2.51  

391.95 0.4420 383.85 0.4420 -2.07  384.10 0.4475 -1.84  
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Table 28 : Results for Ins6_40 (continued) 

ε-MASP  
(5% Relative Gap) 

HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

391.29 0.4475 386.26 0.4475 -1.29  385.71 0.4512 -2.23  

394.52 0.4512 387.90 0.4512 -1.68  386.43 0.4531 -2.70  

397.15 0.4531 388.80 0.4531 -2.10  388.18 0.4559 -1.81  

395.34 0.4559 390.72 0.4559 -1.17  391.21 0.4611 -0.97  

395.05 0.4611 394.40 0.4611 -0.16  393.34 0.4633 -2.03  

401.48 0.4633 398.05 0.4633 -0.86  396.59 0.4657 -3.10  

409.26 0.4657 401.31 0.4657 -1.94  398.52 0.4665 -2.99  

410.79 0.4665 401.43 0.4665 -2.28  401.02 0.4708 -1.40  

406.73 0.4708 403.93 0.4708 -0.69  405.41 0.4759 -1.47  

417.68 0.4748 407.15 0.4759 -1.04  406.47 0.4786 -3.35  

411.44 0.4759 407.66 0.4786 -3.07  409.79 0.4866 -0.95  

420.56 0.4786 408.03 0.4866 -1.37  419.03 0.4969 -1.92  

413.71 0.4866 416.62 0.4969 -2.49  420.75 0.5004 -2.37  

427.25 0.4969 416.82 0.5004 -3.28  420.83 0.5034 -1.87  

430.97 0.5004 418.87 0.5034 -2.32  450.71 0.5084 -1.18  

428.83 0.5034 447.76 0.5084 -1.82  453.88 0.5093 -0.43  

456.07 0.5084 451.57 0.5093 -0.94  455.43 0.5122 -2.66  

455.86 0.5093 451.93 0.5122 -3.41  459.02 0.5153 -2.64  

467.90 0.5122 455.52 0.5153 -3.38  462.38 0.5187 1.12  

471.47 0.5153 456.57 0.5187 -0.15  462.76 0.5214 1.01  

470.89 0.5168 458.35 0.5214 0.05  464.07 0.5294 1.53  

457.27 0.5187 459.61 0.5294 0.55  464.27 0.5303 2.23  

458.13 0.5214 460.53 0.5303 1.41  466.33 0.5327 -0.11  

457.08 0.5294 464.32 0.5327 -0.54  468.03 0.5406 -1.98  

454.14 0.5303 465.82 0.5406 -2.45  475.34 0.5507 -1.07  

466.85 0.5327 475.40 0.5507 -1.05  479.88 0.5529 -0.67  

477.51 0.5406 475.52 0.5529 -1.57  480.90 0.5541 -1.14  

480.46 0.5507 476.31 0.5541 -2.08  484.12 0.5569 -0.83  

483.12 0.5529 479.53 0.5569 -1.77  484.92 0.5581 -1.11  

486.43 0.5541 481.79 0.5581 -1.75  487.75 0.5611 1.26  

488.17 0.5569 484.25 0.5614 -3.17  488.36 0.5614 -2.35  

490.36 0.5581 484.40 0.5642 -3.70  490.14 0.5642 -2.56  

481.70 0.5611 485.60 0.5665 -0.99  490.34 0.5665 -0.02  

500.12 0.5614 487.31 0.5683 -2.25  492.09 0.5683 -1.29  
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Table 28 : Results for Ins6_40 (continued) 

ε-MASP  
(5% Relative Gap) 

HM1 HM2 

DT MDP DT MDP %GAP DT MDP %GAP 

503.03 0.5642 503.65 0.5704 -1.06  505.08 0.5704 -0.77  

490.45 0.5665 506.34 0.5715 -1.49  506.77 0.5715 -1.41  

498.51 0.5683             

509.02 0.5704 

      514.01 0.5715 

      * For that solution, there is no corresponding optimal solution that has same MPD 

value. Therefore, %GAP cannot be calculated. 

 

 


