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ABSTRACT

NUMERICAL MODELING OF GENERAL COMPRESSIBLE MULTI-PHASE
FLOWS

Kalpakli, Bora
Ph.D., Department of Engineering Sciences
Supervisor : Prof. Dr. Hakan I. Tarman

Co-Supervisor : Prof. Dr. Yusuf Ozyoriik

October 2013, [T49|pages

In this thesis, some novel methods for solution of compressible, multi-phase flows on
unstructured grids were developed. The developed methods are especially advanta-
geous for interface problems, while they are also applicable to multi-phase flows con-
taining mixtures as well as particle suspensions. The first method studied was a multi-
dimensional, multi-phase Godunov method for compressible multi-phase flows. This
method is based on the solution of a hyperbolic equation system for compressible
multi-phase flows. There are several difficulties with this hyperbolic equation sys-
tem due to non-conservative volume fraction equation and non-conservative terms
also known as throttling therms existing in momentum and energy equations. Ro-
bust and accurate multi-dimensional discretization of these terms were derived based
on Abgrall [1] criterion. Next a new method based on discrete equations for multi-
dimensional and multiphase problems on unstructured grids was developed. This
method resolves all the problems associated with the non-conservative equations and
terms. The high artificial numerical mixing of phase interfaces associated with avail-

able compressible schemes was resolved with a novel volume fraction differencing

v



scheme. The developed differencing scheme used for volume fraction is the only
scheme providing comparable resolution of the interfaces with tracking methods on
multi-dimensional unstructured grids and very robust compared to other interface
capturing methods studied in the related literature. The resulting methods provide
ignorable numerical mixing of phase interfaces on ustructured solution grids while
giving physically correct results for pressure and energy in contrast to other methods

available in the literature.

In addition to these solution methods, some special boundary conditions and pre-
conditioning methods for low speed steady flows were applied. For high spatial res-
olution, combinations of linear reconstruction and Weighted Average Flux (WAF)

methods were also applied in some problems.

Keywords: Compressible flow, Multi-phase , Particulate, Shock waves, Interface

Capturing



(0Y/

GENEL SIKISTIRILABILIR COK FAZLI AKISLARIN SAYISAL
MODELLENMESI

Kalpakli, Bora
Doktora, Miihendislik Bilimleri Boliimii
Tez YOneticisi : Prof. Dr. Hakan I. Tarman

Ortak Tez Yoneticisi : Prof. Dr. Yusuf Ozy6riik

Ekim 2013 , [[49]sayfa

Bu tezde, sikistirilabilir cok fazli akiglarin ¢oziimii icin yeni sayisal yontemler gelis-
tirilerek yapisal olmayan ¢oziim aglarina uygulanmistir. Gelistirilen yontemler 6zel-
likle arayiiz problemleri icin uygun olmasina ragmen karigim ve partikiillii akiglara
da uygulanabilmektedir. Calismada ilk olarak bazi matematiksek ve sayisal formii-
lasyonlarin ¢ikarilmasi icin c¢alisildi. Bu ¢alisma sonucunda elde edilen yontemler
tic baglikta toplanabilir; 1. Cok fazl sikistirilabilir akiglar: tanimlayan bir hiperbolik
denklem sisteminin ¢oziimii, 2. Seyreltik faz yakalsiminin yapildig1 bir ¢oziicii, 3.
Ayrik korunum denklemlerine dayanan sonlu hacimler ¢oziiciisii. Ek olarak yiiksek
¢Oziiniirliklil bir arayiiz yakalama yontemi gelistirilerek ayrik korunum denklemle-
rine uygulanmistir. Elde edilen yontemlerin kararli oldugu ve fiziksel olarak dogru
sonuglar sagladig1 gozlenmistir. Literatiirde var olan ara yiiz yakalama yontemlerinin
tersine, faz ara yiizleri miimkiin olan en yiiksek c¢oziiniirliikte arayiiz izleme yontem-
leri ile karslastirilabilir dogrulukta ¢oziilebilmektedir. Bu tiir skistirilabilir ¢cok fazli

problemler i¢in gelistirilmis olan yotemlerde karsilasilan ve korunumsuz denklem ve
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terimlerle iligkilendirilen sorunlar, bu tezde gelistirilen yontemlerle saf dis1 birakil-

miglardir.

Bunlara ek olarak bazi 6zel sinir kosullar1 ve diisiik Mach sayil1 akislar icin 6n kosul-
landirma yontemleri uygulanmistir. Uzaysal yliksek ¢Oziiniirliik i¢in dogrusal yeniden

yapilandirma ve agirlikli ortalama aki yontemleri birlestirilmistir.

Anahtar Kelimeler: Sikistirlabilir akis, Cok fazli, Par¢ikl akis, Sok dalgalari, Arayiiz

yakalama
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CHAPTER 1

INTRODUCTION

The use of computational methods especially in fluid dynamics applications is ex-
panding throughout industry, academia, defense and research community. The flow
fields of interest are becoming more complicated requiring complex three and two
dimensional geometric modeling capabilities with high order spatial accuracy. Many
applications include flow problems ranging from incompressible, low Mach number
flows to supersonic compressible flows at the same time. The field of compressible
multi-phase flow is one of the most complex research areas in computational fluid

dynamics.

In compressible multi-phase flows, fluids have different physical states and thermo-
dynamical properties and are separated by interfaces. Each phase may have different
pressure, velocity and temperature values along with different thermophysical prop-

erties such as different equation of states.

1.1 Categorization of Compressible Multi-phase Problems

Compressible multi-phase flows are encountered in many situations in industrial and
especially in ballistic applications. Explosions, blast waves propagating in multi-
phase media, particles in a rocket motor and some nuclear energy systems are few
examples. Although all these examples are categorized as compressible multi-phase
flows, they may consist of one or more of the three different multi-phase flow regimes.
The first multi-phase system we can distinguish from others is multi-material inter-

faces separating two or more different compressible materials with different physical

1



and thermodynamical properties. In an interface problem, there are well defined or
resolved interfaces which have an important impact in behavior of the physical sys-
tem. Blast waves propagating through these interfaces may be encountered in ex-
plosion research. The second flow regime which can be categorized in the scope of
compressible multi-phase flows is compressible mixtures. In a mixture, there are no
well defined interfaces between phases and the effect of the inter-facial topologies
are taken into account only for some bulk physical interactions between the com-
pressible phases. Bubbly flow in a pressurized water nuclear reactor channel may
be considered as a compressible mixture provided that we can define interactions be-
tween water and vapor bubbles in terms of volume fractions and bubble diameters.
In many cases, even there may not be any topological information such as diameters
of the secondary phases and the only information may be volume fractions. These
can be considered as real mixtures. Some schematic representations of multi-phase

topologies are shown in Fig. [I.1]

Fhud 2
A Dropplets
y Fhud 1 \
\ } Bubbles
N L

Intermedliate

Figure 1.1: Schematic representation of different multi-phase flows. [42].

In computational practice, categorization of multi-phase flows is done according to
required grid resolution of interfaces in a problem. For instance, using sufficiently
fine solution grid, interfaces of microscopic particles suspended on a gas can be re-
solved and approached as an interface problem, although this may require some ten
billions of grid points for a small region of three dimensional problem. Thus, the
method one may approach a multi-phase problem is partly related to computational
resources. In practice, microscopic particles in a primary gas or liquid phase can be

approached as dilute particles in which phase interactions can be modeled with some
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simple momentum drag and heat transfer correlations. These particle models provide

sufficient accuracy for practical engineering.

1.2 Characteristics of Compressible Multi-phase Flows From Computational

Point of View

The main characteristic of the compressible flows is the occurrence of discontinu-
ities (high and very rapid changes) in flow variables and also in fluid properties. In
compressible multi-phase flows there are additional discontinuities which are the in-
terfaces between phases. The occurrence of discontinuities and their interactions may
have strong effects on flow characteristics. The continuous pressure waves (acoustic

waves) also have complicated physics in a multi-phase flow [47]].

Numerical simulation of multi-phase flows are mostly based on the Euler or Navier-
Stokes equations augmented by one or several species of conservation equations. The
classical one pressure two-fluid models in literature and in currently available com-
mercial CFD codes are in this category. All these classical numerical methods pro-
duce artificial diffusion of contact discontinuities resulting in inaccurate pressure and
temperature [42]. In addition, these methods show bad convergence characteristics
and mostly it is impossible to get a convergent solution for the phases with very dif-
ferent properties. Some models utilize a dilute approximation in which the volume
fraction of the primary phase is assumed to be unity, however this approximations

leads to degenerate hyperbolic systems [43]].

Well posed hyperbolic models for compressible two-phase models include non-conservative
products. The occurrence of non-conservative terms is one of the most significant dif-
ficulties in these type of models. Non-conservative terms appear in momentum and
energy equations, and generally one of the equations is written in non-conservative

form.

Since discontinuous solutions are considered in these type of problems, non-conservative
formulations lead to numerical and mathematical problems. Numerical solution may

be very sensitive to the treatment of non-conservative terms and equations [25} 2]].
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The compressible multi-phase models with assumption of different pressure and equa-
tion of states for each phase have some nice mathematical properties listed below

[29, 42];

e They are strictly hyperbolic. This means that equation system defining com-
pressible multi-phase models admits distinct real Eigen values (wave speeds)
for each state variable (momentum, density, energy) for each phase in all flow
conditions. This property simplifies the development of proper numerical schemes
such as Godunov type finite volume methods based on the flux calculations on

the control volume faces for conserved variables (mass, momentum, energy).

e They apply to both interface and mixture problems.

e Unique formulation for all types of multi-phase problems allows solving the
full set of equations with the same numerical method at each computational

cell.

e Energy conservation is ensured at the interfaces with a pressure relaxation
procedure. This pressure relaxation procedure must be added to the solution
scheme due to the physical fact that each phase has the same pressure on the

interface separating the phase materials.

e These models use pure material equation of states for each phase instead of a
mixture equation of state which is based on unphysical equilibrium assump-

tions.

These models have also some drawbacks and difficulties in application;

e System of partial differential equations cannot be written in conservative form.

e [t is not easy to derive robust and accurate numerical schemes even in one

dimension.

e Solution steps for velocity and pressure relaxations are required.
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1.3 Related Literature

Common way of treating multi-phase problems has been based on solution of con-
servation equations for the fractions of each phase’s properties; density, momentum,
energy and pressure. These fractions are naturally introduced into well known con-
servation equations through a volume fraction value a defined for each phase, and
the interactions, such as phase conversion, momentum and energy exchanges, be-
tween the phases are introduced into the equations through proper right-hand side
sources. Additional constraining equations such as sum of the volume fractions being
unity, and substantial derivative of a phase volume fraction being zero, accompany
the mass, momentum, and energy conservation equations. Of course, the additional
terms modeling the multi-phasic effects make numerical solution approach of such an
equation system really different than that of conventional single-phase flow problems.
The numerical solution of hyperbolic compressible multi-phase models including in-
terfaces requires several ingredients [30, 29]. The numerical procedure involves a
non-conservative hyperbolic hydrodynamic solver, an instantaneous velocity relax-
ation procedure and an instantaneous pressure relaxation procedure. A good example
is the work of Saurel and Abgrall [42]]. In their work, they proposed a multi-phase
Godunov method for compressible multi-phase flows. This method is studied and

extended to for more than one dimensions in Chapter [3]in this thesis.

Saurel and Abgrall’s [42] multi-phase Godunov method with proper handling of non-
conservative terms and application of relaxation procedures was able to solve the
seven equation compressible two-phase flow model of [[12, 44]. Although the missing
data problem associated with missing waves, resulting from the averaging procedure,
across the material interfaces was overcome by relaxation procedures, the method is
not robust in some conditions especially when high gradients of flow variables such
as shocks interact with volume fraction discontinuities (phase interfaces). This issue
can be explained by considering the method’s approach for handling the information
flow across a phase interface. A material interface in this method may only be de-
fined using very small volume fractions for one of the phases. The method passes
information across the interface between the same phases first, and then propagates

to the other phases by relaxation procedures. In this way the missing waves (missing
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information) are recovered. However, because the phase with a very small volume
fraction such as 107° is to get the whole information on an interface first, the method
is very prone to numerical difficulties related to the limits of the equation of state used
for this phase. This problem becomes more significant especially when high pressure

gradients such as shock waves interact with the material interfaces.

Massoni et al. [36] and Allaire et al. [3]proposed five equation models for two-
phase compressible mixtures. The advantage of these models were simplicity and
less computational requirements compared to seven equation two phase model of
[12]44]] which was used in [42]. Murrone et al. [37] proposed a similar five equation
model. In contrast to works of Massoni and Allaire [36, 3], they derive the five
equation model by an asymptotic analysis of the seven equation model in the limit of
zero relaxation times instead of using a priori closures [37]. The main disadvantage
of these approaches is similar to that of the seven equation models due to lack of a
conservative form. Also, artificial diffusion zones over the phase interfaces become
very large with poor spatial resolution used in computations. Murrone at al. tried
to overcome this high artificial diffusion by increasing order of the other solution

variables using very high order methods in their test cases.

In fact, the problem with the methods mentioned above originates from the employed
system of equations. This system is a pure Eulerian multi-phase model describing
each phase as a continuum without a material discontinuity such as a phase interface.
In principle, the difficulty can be overcome by approaching the problem at a more
basic level. Discrete equations can be produced at material interfaces to supply a Go-
dunov method with required numerical fluxes averaged over the cell faces. In fact,
Abgrall and Saurel used this approach in a successful and mathematically elegant
way (2] to overcome the problems existing in their previous study [42]. With Dis-
crete Equations Method they were also able to solve difficulties associated with the
non-conservative products that appear in the seven equations model. In their method,
interface topology on the cell interfaces was reconstructed using a stratified equiva-
lence of the real interface (see Figll.2] which was used in [2]]). Mathematically this
reconstruction with addition of the Lagrangian fluxes as source terms eliminates the
problematic non-conservative throttling terms. However, in their reconstruction of

new interface topology and calculation of Lagrangian fluxes, macro scale flow condi-



tions are not considered. This results in a high artificial mixing of the volume fractions
inhibiting tracking of the sharp interfaces. Actually, derivation of such a method even
in one dimension is not straightforward and unstructured multi-dimensional counter-

part of the method was left unclear in the work of Abgrall and Saurel [2].

In this thesis, methods developed in Chapters [3] [] and [6] provides more powerful
and robust schemes for multi-dimensional applications. All the problems associated
with the methods given in cited studies are resolved in this thesis study. In Chap-
ter [3] the method given in [42] is extended to multidimensional problems with more
than two phases. Multidimensional and multi-phase versions of the artificial viscos-
ity terms are derived to stabilize the solution of seven equation model used in [42].
Non-conservative terms are discretized with similar methods in the same Chapter. In
Chapter 4] a new method based on discrete equations is introduced. This method re-
solves all the problems associated with the non-conservative equations and terms. In
contrast to the method given in [2], the application of the method derived in Chapter
M) to multi-dimensional and multi-phase problems is very straightforward. The high
artificial mixing of interfaces associated with the methods given in [3} 36, 2| [37] are
fully resolved in Chapter [0l The volume fraction discretization method derived in
Chapter [0] provides the highest possible resolution of phase interfaces (in one cell)
when used with the interface capturing method derived in Chapter[d A more detailed

outline of the study is given in the next section.

yACD@
0 < i

©) b

i-1/2 i+1/2 i-1/2 i+1/2

Figure 1.2: Schematic representation of the equivalence between a bubbly flow or a
droplet flow with a stratified flow [2].



1.4 Methodology and Outline of The Thesis

In Chapter 3] the method proposed by Saurel and Abgrall [42] is extended to multi
dimensional unstructured grids and the solution procedure is explained. Two different
mathematical and numerical models in addition to a dilute phase solver is developed.
Constructing the models is not straightforward even for one dimensional cases stud-
ied in the cited papers. Some symbolic calculation packages (mainly Maple [35])
was utilized to develop multidimensional unstructured counterparts of the models. In
thesis study, the steps below are followed for constructing and testing the developed

methods.

e The complex numerical methods for compressible multi-phase flows are in fact
extensions of methods for compressible single phase flows. Before studying
on multi-phase flows, single phase flows should be well defined and tested.
In Chapter [2] basic numerical methods are defined which will be used in de-
veloping multi-phase methods in later chapters. In Section [2.11] some impor-
tant numerical boundary condition schemes are explained for general Godunov
methods. Finally, these methods explained in first two Sections applicable to

single phase flows are tested in Section[2.12]

e In Chapter 3] the first multi-phase method for solution of compressible multi-
phase flows is developed. This method is based on the one dimensional scheme
given in [42]. In Chapter 3] multi-dimensional counterparts of the formulations
are derived and other basic processes such as pressure and velocity relaxations
are explained in detail. In Chapter[4] a discrete equations based approach is in-
troduced. This approach is introduced as an alternative to continuous approach
given in Chapter 3] These two methods are compared in Section {5 using two

test problems.

e Since both continuous and discrete approaches developed in Chapters [3| are not
applicable to diluted particle phases, a dilute phase approach for particulate
flows and suspensions is introduced in Chapter [5| This numerical is validated

against some tests cases in Chapter[5.5]

e The discretization method of volume fraction on sharp phase interfaces is cru-
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cial for successful implementation of the interface capturing schemes devel-
oped in Chapters [3] and ] Thus a novel high resolution volume fraction dis-
cretization method which is applicable to compressible interface, mixture and
particulate problems is developed in Chapter [f] This method is validated in

Chapter [6.5]for some test cases which are also used in previous chapters.

1.5 Basic Numerical And Coding Framework

The goal of this study was to develop methods for the solution of multidimensional

compressible multi-phase flows. Due to complexity of the physical problem, special

numerical and mathematical models were developed in addition to the methods devel-

oped for multi-phase flows. The developed code framework is named as CMPS and

used for testing the models developed in this study. CMPS code framework utilizes

the following methods;

Unsplit Godunov finite volume method
HLLC numerical fluxes (approximate Riemann solvers)

Combination of Weighted Average Flux (WAF) and MUSCLE reconstruction

methods for high order spatial accuracy

Preconditioning for near incompressible secondary phases and low Mach num-

ber flows
All speed versions of flux solvers for preconditioned equations

Combination of low-Mach-number preconditioning and artificial compressibil-

ity methods for incompressible fluids

Unstructured, multi domain, multi zone, mixed element, 2-D, 3-D and axisym-

metric solver

Object-oriented methods in C++.
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CHAPTER 2

NUMERICAL METHODS FOR SINGLE PHASE FLOWS

The complex numerical methods for compressible multi-phase flows are in fact exten-
sions of methods for compressible single phase flows. Before studying on multi-phase
flows, single phase flows should be well defined and tested. In this chapter basic nu-
merical methods are defined which will be used in developing multi-phase methods

in later chapters.

2.1 Discretization of Euler Equations With Finite Volume Method (FVM)

FVM is a powerful approach which can be used with complex multidimensional un-
structured grids. In FVM, the integral equations for governing conservation laws are
discretized directly in physical space with reference to a Cartesian coordinate frame.
Detailed information about application of FVM on fluid dynamics can be found in the
books [23], 9]. For a more brief description of the method, reference [48]] is recom-
mended. A general fully discrete explicit scheme using FVM for a general computing

cell Cy (see Fig. is written as,

N
At .
Ut =yt - = § ATVET 2.1
V S:O S S ( )

In Eq. (2.1), n and s specifies the time and cell face indexes respectively. At is the
time step and V is the volume of the computational cell. A; is the area of the cell face
s. F'; is the inter-cell flux at cell face s. F is calculated with an exact or approximate

Riemann solver using the left and right state vectors rotated to to local coordinate
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Figure 2.1: Example of two dimensional quadrilateral and triangular computational
cells.

frame aligned with the face normal of face s. This will be explained in the next
section. T is the rotation matrix for face s. U is the vector of conserved variables

given below for two and three dimensions respectively.

ou
U= (2.2)

pv

| PE |

pou
U=| pv (2.3)

oW

| pE |

here p is density, u is x-velocity, v is y- velocity, w is z-velocity and E is the total

energy per unit volume
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1
E = 'DE (u2 +v 4+ wz) + pe (2.4)

where e is the internal energy.

2.1.1 Coordinate Rotation

In Eq. F, is calculated using left and right states denoted by the indexes 0 and
1 respectively. O always denotes the current computational cell while the index 1
denotes neighboring cell. Figure shows this notation. In calculation of £, we
used Rotational Invariance property of the Euler equations. This property is used to
deal with domains that are not aligned with Cartesian coordinate frames. Interested
reader can see the reference [48] for a proof of this property of Euler equations. For
the assessment of this property in a computational algorithm, one should calculate
rotation matrices T for each face. These rotation matrices are used to rotate data
vectors Uy and U, in such a way that the new X coordinate is aligned with the face

normal. The positive % direction is from left cell Cy to the right cell C; (see Figure

2.1).

The rotation matrices in two and three dimensions are given as

B 0 0 0]

e)

cos (6,) sin(6,)
T = (2.5)

)

0 —sin(dy) cos(dy) O
| 0 0 0 1
[ 1 0 0 0 0]
0 cos (Hy) cos(f,) cos (Hy) sin(f,) sin (Gy) 0
T=|0 —sin (6,) cos (6.,) 0 0 (2.6)
0 -—sin (Qy) cos(#,) —sin (Hy) sin (6,) cos (Hy) 0
| 0 0 0 0 I
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In Eq. [2.5] 6, is the angle between the face normal vector of face s and the x coordinate
in the counterclockwise direction. The application of three dimensional coordinate
rotation is more complicated and interested reader can see some books such as on

computer graphics. The methodology used in this study is explained below.

In three dimensions, one need only two rotations not three and the rotation matrix can

be written as product two rotation matrices

T=T,T, 2.7)
with
1 0 0O 0 0]
0 cos (Qy) 0 sin (9},) 0
T,=|0 0 1 0 0 (2.8)
0 -sin (9},) 0 cos Gy) 0
0 0 0 0 1
and

1 0 0 00
0 cos(d,) sin(g,) 0 O
T,=]10 —sin(8,) cos(@,) 0 O (2.9)
0 0 0 1 0
0 0 0 01

where 6, and 6, are angles of rotation about y and z coordinates. Rotations are done
in counter clockwise. Below simple and efficient methods are given for calculation of

rotation matrices using face normal vectors 7.

In two dimensions
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n ny

cos () = —, sin (6) = — (2.10)
7 7
Then the two dimensional rotation matrix becomes,
1 0 00
0 n ny 0
T = (2.11)
0 —ny N 0
0O 0 0 1

For three dimensional cases the trigonometric functions in rotation matrices can be
defined in terms of the face normal vectors in two steps. First the elements of the 7,

are calculated as,

cos (6,) = il sin (6,) = e

I’L]z + I’l22 n

(2.12)

+ I’l22

Then the elements of the rotation matrix T, is calculated using the face normal vector

in the new coordinate system rotated about the z — axis,

ns n12 + I’lz2

cos (6,) = sin (6,) = (2.13)

V12 + np? + ns? V2 + ny? + nj3?

The inter-cell flux £, is calculated using rotated data vectors Uy = T,Uy and U, =
T,U,. After calculating inter-cell fluxes on each face, calculated fluxes should be
rotated back to original Cartesian frame using the inverses of the rotation matrices

given below.

For two dimensions
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1 0 0 O
0 n —np 0
T7! = (2.14)
0 ny n 0
0O 0 0 1
For three dimensions
T =(T,T)" =T.'T}" (2.15)
with
1 0 0 0 0
0 cos 9)) 0 —sin (Qy) 0
r7'=fo 0 1 0 0 (2.16)
0 sin (Gy) 0 cos (6’),) 0
| 0 0 0 0 1
and

(1 0 0 0 0]

0 cos(fd,) —sin(@,) 0 O

T;'=]0 sin(@,) cos@®) 0 0 (2.17)
0 0 0 10
[0 0 0 0 1|

2.2 The Split Multi-Dimensional Riemann Problem

In a Godunov type Finite Volume Method as in Section [2.1] one requires the solution
of split Riemann problems at cell faces. The x — split Riemann problem for the Euler

equations can be written as the initial value problem given below,
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oU  oF(0) _

— + 0
ot A%
. U, if %<0,
0G,00=1 ° ! (2.18)
Ur if £>0,
where
P pit
pit pii> + P
0 = p\’} R ﬁ = puy (219)
oW piw
| pE | | Qi(pE + P) |

The structure of the similarity solution for initial value problem [2.18]is shown in Fig.
[2.2] The solution of Riemann problem for split three dimensional Euler equations is
fundamentally the same as the solution for corresponding one-dimensional problem.
There are two additional characteristic fields associated with the two eigen values
having the values ii. These are two shear waves across which the tangential velocity
components v and w change discontinuously. The region between the right and left
waves is usually denoted as the Star Region. Both pressure P and the normal velocity

it are constant across the middle wave in the Star Region.

In sections 2.3]and [2.4] some approximate solution methods of split Riemann problem

are given for calculation of inter-cell fluxes.

2.3 Explicit Scheme with Rusanov and Lax-Friedrich Fluxes

The numerical flux F, can be approximated by Rusanov flux [41]] as

N 1A N N N
Fi=y [P0+ Foy =S (051 = Uy (2.20)
where the index s, 0 refers to the current computational cell side of face s, and the
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Figure 2.2: Structure of the solution of the three-dimensional % split Riemann prob-

lem.

index s, 1 refers to the neighboring cell side of face s. U is the rotated state vector of

conserved variables calculated as U = TU,
Je
0
pl
.| Pl .
U= U=| pd (2.21)
oV
oW
| PE |
N— | pE ]
2D
In3D
with &t = un; + vn, and ¥ = —un, + vn; in two dimensions. For three dimensional
calculations

ii = cos (Qy) cos (6,) u + cos (Hy) sin (6,) v + sin (Hy) w

v = —sin(6,) u+cos(6,) v (2.22)

w = —sin (Hy) cos (6,) u — sin (0},) sin (6,) v + cos (Hy) w

with
cos (6.) = ——1 sin (6,) = ——2 (2.23)
ni2 + ny? ni2 + ny?
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ns \/I’l]z + I’l22
\/nlz + I’l22 + I’l32 \H’le + I’l22 + I’l32

While # is the real rotated value of the u velocity, ¥ and W are not, since we only

cos (Hy) = sin (9),) = (2.24)

need to solve split three-dimensional Riemann problem in the direction of rotated %

coordinate. The flux vector £ is written as below in split form

pi
pi
pi> + P
A pii> + P R
F = , F= piv (2.25)
piv
piw
a(pE + P) |
~ | i(pE + P) |
In3D
The wave speed S in Eq. (2.20) can be calculated according to Davis [[11]
S = max{liy — arl,lig — agl, |oip, + azl, it + agl) (2.26)

where a is the speed of sound. Another possibility for the speed $ is the maximum

wave speed S .., found by imposing the stability condition Eq. 1} with Cepy = 1,

S max = (2.27)

(01 = Us0) (2.28)

2.4 HLL and HLLC Approximate Riemann Solvers for Approximate Godunov
Methods

For the purpose of computing a Godunov flux, Harten, Lax and Leer [20] presented a

method for solving the Riemann problem. The resulting Riemann solvers are known
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as HLL Riemann solvers. The main idea in these solvers is the assumption of a
wave configuration which consists of two waves instead of three. The resulting HLL
Riemann solvers form the bases of very efficient and robust approximate Godunov
type methods [48]]. The inter-cell flux at a face s for the approximate Godunov method

based on HLL Riemann solvers is given by

Fio if 0<S8,
2 S51F50-S8 s0F 14850851 (Us1-Us ) o A
pit = ¢ SubaSuba St Calu) po g, <058, (2.29)
- S.y.l_Ss,O ’ ’
£y if 08,

One shortcoming of these schemes is the assumption of two-wave configuration. As
a consequence of this assumption, the resolution of physical features such as contact
discontinuity, shear waves and material interfaces can be very inaccurate. In view of
these shortcomings Toro, Spruce and Speares [49] put forward a modification called
the HLLC Riemann solver where C stands for contact. In this scheme the missing
middle waves are put back into the structure of the approximate Riemann solver. The

HLLC flux for the approximate Godunov method is given by

ﬁs,O lf 0< SASO
pue | Fio=Fuo+ . (Uig=0u) if S8:p=<0s85, 2.30)
Fio=Fa+8.(U;, -U0.) if §:<0<8,,,
F, if 0>38,,
where U;"’K for K = 0 and K = 1 is calculated as below
1
) $:
Ss - As
Uik =p1<( o ”A’K) vk 2.31)
s, K — St
Wk
Eg G * G * Pk
| (S1 ) [$1+ |

The middle wave speed §j can be calculated by the expression [6]
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Py — Ps, 0+ psofis0 (S 51— Ms,o) — Ps,1Us1 (S 51— us,l)

A _ (2.32)
Ps,0 (S 5,0 — l,’\ts,O) — Ps,1 (S s, 1 — ﬁs,l)

The left and right wave speeds S 50 and S 5.1 can be calculated by simple direct esti-

mates below suggested by Davis [11]

SS,O = min (ﬁS,O - aS,O’ as,l - as,l)

Ss,l = max (ﬁs,O + as 0, I’/\ts’l + as,l) (233)

Another method based on Roe eigenvalues [40] for wave speed estimation is proposed
by Einfeldt [15]. These estimations are reported to lead effective and robust schemes

[48].

O
1)
=)

Il
I
|
K
O

Nl
1l
Ny}
+
ISWY

(2.34)

2 2
~ Ps,0d; + Ps, 10 1 s, s,
P = Y0l sy o VOONP (235)

Voo + VP 2 (ypo+ ps,l)2

Where i is the Roe averaged speed of fluid normal to the cell face.

Vps,Oﬁs,O + Vps,lﬁs,l
Vps,O + ps,l

(2.36)

u=

2.5 Axisymmetric Flows

In axisymmetry, the domain is symmetric about a coordinate axis. This symmetry
axis in axial direction is chosen as the x — axis. The second coordinate is the radial
direction which is measured from the axis of symmetry x. The Euler equations in
axisymmetric coordinates are written as

G_U N OF (U) N 0G (U)
ot 0x or

=S (U) (2.37)
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where

p pu
u u? + P
U= P . F= P
oV ouv
| pE | | u(pE + P) |
(2.38)
oV ] » oV
uy uy
G=| ” ,os=-1] F
oV + P ov?
| V(OE + P) | | V(oE + P) |

In axisymmetric coordinate system, finite volumes are represented by 3D axisymmet-
ric rings created by rotation of the 2D surfaces around the x-axis. Analogously, cell
faces are created by rotation of 2D edges around the x-axis. Cell volumes and face
areas are calculated by multiplying their areas or lengths by radial coordinate of their

centroids.

Ve = 2nr.A
Ay = 21r L

(2.39)

If geometric quantities are calculated as in Eq. [2.39] the source terms in Eq. [2.3§]
are not calculated and the solution procedure is the same as in 2D case. In this case
a source term defined in Eq. [2.40|should be added to the radial momentum equation
which is the net effect of of the balancing force in the radial direction due to normal
stresses in the azimuthal direction [57, 51]]. This method has its attractions from a

numerical point of view [48]].

0 0
0 1o

S = == (2.40)
e
0 0
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2.6 Explicit Time Stepping

An explicit scheme starts from a known solution U" at time # and employs the Eq. [2.1]
to obtain a new solution U™*! at time (t+Af). The new solution U™*! depends solely on
the values already known. The most popular and wide spread explicit methods are the
Runge-Kutta multi stage time-stepping schemes. The multistage scheme advances the
solution in a number of steps called stages. Applied to fully discrete explicit scheme

of Eq. a four stages Runge-Kutta scheme is written as

yo — pr
N
v = U<°>—a1§ZAsT;1F§°)
4 s=0
At & .
U - U(O)—azvasTs_ngl) (2.41)
s=0

N
U = U<°>—a3§ZAST;1ﬁ§2)
4 s=0

N

At A
ntl _ 770 -1p503)
U = U y S:EOASTS F

where « are the stage coefficients. The stage coefficients can be tuned to increase
maximum time step and to improve the stability for a spatial discretization. For a
first order upwind spatial discretization the values below are recommended for stage

coefficients [31]], which increase the CF L number to 2.

a; =0.0833 a; =0.2069 a3 =04265 a4 =1.000 (2.42)

For second order spatial discretization following values for stage coefficients are rec-

ommended [31]],

a; =0.1084 a; =0.2602 a3 =0.5052 @4 = 1.000 (2.43)

2.7 Preconditioning For Low-Mach Number Flows

The density based methods provide good stability and convergence characteristics

when solving compressible flows at transonic and supersonic speeds. However, in
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general, these methods are not suitable for efficiently solving low Mach number or

incompressible flows due to large ratio of acoustic and convective timescales at the

low-speed flow regimes. To alleviate this stiffness problem a time-derivative precon-

ditioning of the flow equations is applied.

The preconditioning matrix applied to time derivative of the Euler equations is given

below [55]],

C) 0O 0 O or
Ou p 0 0 oru
I'= Ov 0 p O oTV

Ow 0O 0 p oTw

| OH -1 pu pv pw prH+pC, |

(2.44)

The total enthalpy H is related to total energy E by E = H—p/p, where H = h+ul* /2

and h = C,T. And pr is defined as

o
pT_@T

p

The term O is defined as,
1
0=~ _Frr
Uy pC,
Here U, is the reference velocity defined as follows for an ideal gas,

ec if |ul<ec
U =3 lul if ec<lul<c

c i ul>c
f |ul

(2.45)

(2.46)

(2.47)

In the preceding expressions, € is a small number (z 10‘5) included to prevent sin-

gularities at stagnation points. The preconditioned system in conservation form is

obtained as,
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F:gffodV+ffF-dX:O (2.48)

Q is the vector of primitive variables where Q = [P, u, v, w, T1". The resultant eigen-

values of the preconditioned system are given by

oF
Pl (F‘IE) =u,u,u, i+ a,i—a (2.49)
where

u=u-i=1i (2.50)
i=u(l-a) (2.51)
a = \/a*u? + U? (2.52)
a=(1-pU})/2 (2.53)

Pr
B = (p + —) (2.54)

)4 pCp

2.8 Calculation of Time Steps
In Eq. At 1s calculated for each cell according to stability condition [54] as,

Ccﬂ‘/l
At; = (2.55)
(Ac+ A +A)

where C.f; and V; are the CFL number and the volume of the cell i respectively. A are

the convective spectral radii calculated as,

Ac=(ul+a)A,, Ay=M+a)A,, A =(wl+a)A; (2.56)

where a is the speed of sound. The variables A,, Ay and A, represent projections of
the control volume on the y — z, x — z and y — z plane respectively. They are given by

the following formulas,
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(2.57)

where A, ff‘ XZ are the x, y and z components of the face normal vector A,

2.9 Weighted Average Flux (WAF) Methods For High-Order Accuracy

In the WAF method the inter-cell flux is an integral average of the physical flux across
the full structure of the solution of a local Riemann problem [48]. The structured
multidimensional versions of this method can be found in reference [7]. Here multi-
dimensional unstructured versions of the WAF fluxes are developed. The WAF flux

is given by

. 1 w At
F,=— — f F(U,(x, =))dx (2.58)
XR — XL Jz, 2

where X; and Xy are the positions of cell centers on the X coordinate in the rotated
coordinate system. So the integral is evaluated on the X coordinate line which is per-
pendicular to the cell surface s. U, is the solution of the % split multi-dimensional
Riemann problem. The solution of the split Riemann problem across the surface s
consists of four constant states U', U?, U> and U* separated by the lines correspond-
ing to the three wave speeds $1.S, and S5 (see section . The left wave S, and
the right wave S 3 may be shock or rarefaction waves. Using these constant states the

integral [2.58]is calculated as (see Figure [2.3)
N+1
Fo= Y pFWw®) (2.59)
=1
2.9.1 WATF Version of HLL Riemann Solver

There are two waves S and S, in a HLL based solution of Riemann problem. In

formula[2.59] B, values for three constant states are calculated as
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Figure 2.3: The solution of the Riemann problem and the domain of the integral.

8 = 28 — 28, + S 1At
1 2(% — 1)

AI(SAQ — S 1)
= 2.60
B2 2Ge =30 (2.60)

A

2Xp — 2)?0 - SHAt
B = —
2(Xg — £1)

Using equations [2.60, WAF version of HLL inter-cell flux is written as

N 1 R A . A
= —[(XO—XL)F1+(XR—X0)F3]

b=
1[AtSAl(ﬁz—ﬁ'])+AAtiz(F3—ﬁ2)]

2.61)

The TVD version of the equation [2.61] can be written as

1

2 o = 30 Fy + (e = 20) £
-= [Sign(cl)fﬁ(sl) (ﬁz - Fl) + sign(c2)$t (F3 - ﬁz)] (2.62)

:11>
Il
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where ¢, is the Courant number for wave k with speed S, and defined as

_ Alﬁk
 Ax

Ck (2.63)

F, and F;5 are flux vectors F(U,) and F(Uy). Flux vector F) is calculated using HLL

Riemann solver

SzﬁL—§1FR+§1S2(0R—0L)

F, = M—
? $,-8,

(2.64)

WAF limiter functions ¢ in equation can be calculated by four different ap-

proaches written below [48]

1 if <0,
¢mh(rk, |Ck|) = 1- (1 - |Ck|) 'k lf 0< e < 1, (265)
|Ck| lf re = 1.
Bualris i) 1 Sones0 (2.66)
va\ ks |Ckl) = .
ks 1Ck 1— (1—|Ck1|):li+rk)rk lf 0< ) <1.
1 lf ry < 0,
Guri, lexl) = (e (2.67)
1- e lf 0< ry < 1.
1 if r.<0,
1-20-lehre if 0<re<y,
Gsp(ri, lerl) = |cxl if Y<n>1, (2.68)

I-—=leDre if 1<r<2,

el — 1 if r>2.

The WAF limiter functions are related and equivalent to conventional flux limiters.
dmp 1s related to MINBEE, ¢,, is related to van Albada’s limiter, ¢,; is related to
van Leer’s limiter and ¢y, is related to SUPERBEE. The flow parameter r; in limiter
functions refers to wave k in the solution of the Riemann problem is defined as the

ratio,
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Aq(Lkz .
a0 f ¢ >0,

e = (2.69)

ARy .
I i f ¢ < 0.

Ag®

where Aq(LkL) is the jump in g across the wave k in the solution of Riemann problem for
states U;; and Uj, Aqgil is the jump in g across the wave k in the solution of Riemann
problem for states Uy and Ugg and Ag® is the jump across the wave k in solution

of Riemann problem for states U, and Uy (see Figure [2.3). For the Euler equations

the choice g = p (density) gives satisfactory results. ensity values p(LkL) and Pgek])e are

(%) (k)

needed for calculating the jumps Ap;; RR-

and Ap,.. These values are calculated by a

weighted averaging process described below.

M _ Dl (0s) (A - A
LL ~ > S
VA A

(2.70)

where N is the number of neighboring cells of left cell. The index s refers to the

neighboring cells, and A, are the face normal vectors directed into the left cell. A

3

is the face normal vector directed to the the right cell. p;;

is calculated using HLL

solver,

&(2) () (1) | A~ (1) A
Q@ _ SpPL—SpPrp o — WpL

PrL = 52 _ o)
SLL - SLL

2.71)

1)

Equation is written assuming p(L3L) = p. and u(LSL) = uy. The unknown values u;,,

S (LZL), and § (LIL) in equation are calculated by a method similar to the one in equation

2.70, The jump Apglg = p(LZL) - p(LlZ across wave S (LIL) is found

& (2) (1) A (1) A
S (pL _pLL) + Uy Pry — ULPL

LL
Ao =
LL A A
57-50)

(2.72)

Similarly, the jump Ap(LZL) =pr — P(LZL) is found as

' The index k over scalars (not jumps or waves) refers to the constant state zones in solution of Riemann
problem.
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g (1) A1) (D), A
Sir (pLL - pL) —UpPrp T ULPL

6@ &)
SLL _SLL

2
Aply =

(2.73)

The jumps Apg; and Apglé are calculated with the same methods described above,

82 (3 . NOWE)
Ay = DRR (pRR _pR) + URPR — UppPrg 574
PrR = REERD (2.74)
RR RR
Sien (—Plen + Pr) = itk + Agpoien
ApG) = (2.75)

&(2) &)
SRR - SRR

Also in the same way, the jumps Ap'" and Ap® across the solution of the Riemann

problem at the face shown in the figure[2.3]are calculated as

S@ (g — pr) + ftLpr, — figpr
S _3M

A = (2.76)

o _ SY oL = pr) = lpL + itrpr

Ap SO _Sm

2.77)

2.10 Unstructured Data Reconstruction for Higher Order Accuracy

High order accuracy can be achieved by reconstructing cell-centered data within hy-
brid cells (including polyhedral) to cell faces for flux computation. The face value ¢,

is reconstructed by the following expression:

pr=¢+Vo-7 (2.78)

where ¢ and V¢ are the cell centered value and its gradient at the cell center. 7is the
vector from cell centroid to the face centroid. The gradient of the scalar ¢ at the cell

center c0 is calculated by Green-Gauss theorem,
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1 -
(Voo = 3 ) BrAy (2.79)
f

¢ is the value of ¢ at the face centroid and X ¢ 1s the face area normal vector. The

face value ¢, is calculated simply by averaging.

7 ¢CO +¢cl

bs ) (2.80)

The gradient V¢ should be limited near high gradients to prevent oscillations and
spurious solutions. One of the widely used limiter functions for unstructured grids is

of Barth and Jespersen [5]. The limiter for the cell ¢ is defined as

min (1, 222=0) if Ay >0

We = mingy min(1,222%) if Ay <0 (2.81)
1 if Ay=0
where,
AZ = V¢c : ?cs
Omax = max(p., maxspy) (2.82)

¢min = min (¢ca mins¢x)

In Eq. 2.82] 7., denotes the vector from centroid of the cell ¢ to the mid point of the
face between cell ¢ and cell s. max; and min, means the maximum and minimum

value of all direct neighbors s of cell c. A, is modified as Sign (A;) (|A;| + w).

Another more popular limiter is of Venkatakrishnan’s [52]. This limiter is widely

used due to its better convergence properties.
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1 (A%,mux+62)+2A%A1‘max lf A S O
A2 A%,max_"ZA%+A1,maxA2+52 2
2 2 2
W = ming ) L[ Wt | ey (2.83)
Ay [ AT, 23+ A1 inlro+€2 2
1 if Ay=0

where

Al,max = ¢max - ¢c
Al,min = ¢min - ¢c

(2.84)

In Eq. 2.84] ¢4 and ¢, denote maximum or minimum values of all neighboring

cells s and the cell c itself. The parameter € controls the amount of limiting.

2.11 Boundary Conditions

In this section, discratization and calculation procedures for some important boundary
condition types are explained. Correct formulation of boundary conditions is crucial

for robust simulations and also for physically correct results.

2.11.1 Mass Flow Inlet

Mass flow boundary condition can be used to provide a prescribed mass flow rate at
a boundary face zone. The user provided total mass flow rate is used to calculate a
mass flux for each face in the boundary zone. Mass flux 77 is calculated by dividing
the total mass flow rate rizp with the total area Ap of the boundary face zone. The mass
flux is at the same direction with the face normal vector and equal to pii. Density is

calculated with the procedure described below.

For an ideal gas, density is calculated using static pressure P and static temperature

T,
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= — 2.
P =27 (2.85)

Where the static pressure is calculated according to sign of the local wave speeds. If
the inlet is supersonic the static pressure is equal to the user specified supersonic inlet
pressure. Otherwise it is calculated from interior cells. The total temperature and the

static temperature are related with the equation,

T 1l
70:1+7—”— (2.86)

2 a?

The below relations for sound speed a and normal speed u can be used to derive a

second order equation for density p

(2.87)

Putting the right hand sides of the equations in to the Eq. [2.86] the equation

below is found,

2RTp*y —2pyP — (y — 1)in® =0 (2.88)

Solving the above equation for density p,

vP+ \/72P2 + 2 RTyy*m? — 2 RTyy m?
p =

2.
2RTyy (2.89)

In a more compact form,

yP+ \y\2Rm*(y - )Ty +y P*
p= 2RTyy

(2.90)

The implementation of this boundary condition is done using the far field methods

described in Section
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2.11.2 Pressure Outlet

At a pressure outlet face zone, a specified static pressure is used to calculate the
pressures at the faces. The face pressures are calculated by a method based on the
AUS M™* scheme [34]. In all the AUS M-family schemes, a general interface pressure

formula [33] is used,

Pl/QZP;(ML)PL'FP;(MR)PR (291)

where #, are the n’th order polynomials. M; and My are the face normal Mach

numbers defined as,

ML/R = — (292)

where i@ is the normal velocity. For the boundary faces, Eq. [2.91]is used in the

following form (see Picture [2.5)),

Pr =P (M,) Pp + P35 (M,) Pg (2.93)

where M, is the face normal Mach number. Then the face pressure Py is a function of
interior cell pressure Pp, specified boundary pressure Pg and normal Mach number

M,,. The fifth order polynomials 73255) are given by the following formula,

1 + .

ALY if M, >1

SDELS): /Y _ f M, (2.94)
M(iz)[(iz -M,)F 16C¥MnM(+2)] otherwise

where a were set to be 3/16 in [|33]] under the conditions described in the same ref-
erence. The split Mach numbers M | are polynomial functions of degree m as given

in [33]:

34



1
M(il)(Mn) = E(Mnianl)

(2.95)
M (M) = i%(Mnil)z

2.11.3 Pressure Inlet
2.11.4 Subsonic Pressure Inlet

In this boundary condition, total pressure, total temperature is specified by user. The
outgoing Riemann invariant is employed to determine speed of sound at the boundary

[24, 9]. The outgoing Riemann invariant is defined as

Zad

(2.96)

where the index d denotes the state inside the domain (Figures [2.4|and [2.5). The unit
normal vector 77 is assumed to point outwards of the domain. The speed of sound at

the boundary for subsonic inlets is calculated as

ap

R (y-1) {1+co 9¢[(y—1)cos29+2]a(2) y-1

) (y —1)cos?6 +2 (y—1) (R—z) -5 (2.97)

where 6 is the flow angle relative to the boundary and ay is the stagnation speed of

sound,

cos 6 = —Vi 7 (2.98)
ol
-1
aj = aj + =l (2.99)

Other quantities like static temperature T, static pressure Py, density p, and absolute

velocity which are required to calculate fluxes on the boundary are found as,
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a;
Ty =To|— (2.100)
dy

T, \0D
P, = po(_b) (2.101)
Ty
Py
=— 2.102
Po = R ( )

lul = J2C, (To — T}) (2.103)

2.11.4.1 Supersonic Pressure Inlet

If the inlet flow becomes supersonic the flow information comes from the boundary
only. In this case static pressure P, given by the user is used in addition to defined

values of total pressure P, and total temperature 7.

P Y
T, = T, (—b) (2.104)
Py
Py
= 2.105
Pb RT, ( )

lul = J2C, (To — T}) (2.106)

2.11.5 Inviscid Wall

Wall boundary conditions are used to bound fluid zones. This boundary condition
can also be used to separate two fluid zones or fluid and solid zones. For unstructured
grids it was suggested to employ one layer of dummy cells in Ref. [[17] and [16]. The
velocity vector ¥, in a dummy cell were obtained by reflecting the velocity vector v,

in the boundary cell at the wall. The velocity vector would become

36



Vp = —2|Vp - | i (2.107)

where 71 is the wall face unit normal vector (see Picl2.4)) . Since the coordinate system
was rotated so that the X — axis is aligned with the face normal, the state vector Uy in

the dummy cell is calculated easily as,

—pilp
ovp (2.108)

PWD

[
>~
Il

2.11.6 Symmetry Boundary Condition

The implementation of the symmetry boundary condition is done by employing dummy
cells. The flow variables in the dummy cells are reflected while the scalar quantities
like density and pressure are set equal to the values in the interior cells. The velocity

components are reflected as indicated in Eq.

2.11.7 Far Field Boundary Conditions
2.11.8 Far Field Supersonic Inflow
For supersonic inflow, all eigenvalues have the same sign. The conservative variables

in the state on the boundary are determined by free stream values only (see Fig[2.4).

Thus,

Ur=Usg (2.109)
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Boundary face

ﬁ
Flow direction / Interior cell

Figure 2.4: Far field inflow boundary.

2.11.8.1 Far Field Subsonic Inflow

In a subsonic inlet, four characteristics enter and one leaves the domain. Therefore
four characteristic variables are prescribed based on the free stream values. One char-
acteristic variable is extrapolated from the interior of the domain [9]. This leads to

the following set of boundary conditions written in the local coordinate system [S56]]

(see Fig. [2.5)).

1 ..
Pr = =[Pg+ Pp—poao(iip—iip)]

2
Pp—P
oF = pB+—( F . 5) (2.110)
a
0
. (Pg—Pp)
U = lp— ———
Poco

where subscripts 0 represents reference state which is set equal to the state at the

interior cell.
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Flow direction

Interior cell

Figure 2.5: Far field outflow boundary.

2.11.8.2 Far Field Subsonic Outflow

For subsonic outflow boundary conditions, the static pressure must be defined by the
user (see Fig. [2.5). Other flow variables are extrapolated from the interior of the so-

lution domain [56]].

PF = PB
PP
pF = PD"‘M (2.111)
o
Pp—-P
= AD+( p— Pr)
Podo

2.12 Single Phase Test Cases

An explicit compressible flow solver named CMPS is developed based on the meth-
ods given previous chapters. This solver is validated against some test cases in the

following sections.
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2.12.1 Cylindrical Explosion in Two-Space Dimension

This test problem is like a two-dimensional counterpart of the shock tube problem.
The two dimensional Euler equations are solved on a square domain of two zones.
The square is 2.0 X 2.0 in the x — y plane and there is a circle with radius R = 0.4
at center of the square. Initially the flow variables takes constant values in each zone
and joined by a circular discontinuity at the zone boundaries at time # = 0 as shown
in Fig. [2.6] The initial two constant states for two-dimensional Euler equations are

chosen to be

Py, =1x10%Pa , P,,=101325Pa

T, = 375K , T, =300K

(2.112)
u;, = 0.0 , Uy =0.0
vin = 0-0 ) Vom = 0.0

Subscripts in and out denote the values inside and outside the circle respectively.

2

Pressure Pa
950000
850000
750000
650000
550000
450000
350000
250000
150000

15

05

Figure 2.6: The unstructured multi zone grid structure and initial gauge pressure
distribution.

The full two-dimensional Euler equations are solved by the CMPS code based on
methods explained in previous sections in this chapter. The solution is repeated
with Rusanov, Lax-Friedrichs, HLL and HLLC Riemann solvers with CFL number
Ccrr = 2.0. Additionally the same solution is repeated with commercial CFD soft-

ware FLUENT with its first order explicit Roe solver. The pressure, density and x
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velocity contours at time ¢ = 7.7 x 107 calculated with HLLC Riemann solver are
shown in Figures [2.7] 2.8 and 2.9 respectively. The effects of the mesh on the solu-
tion can be seen in the all contours. The same effects are also observed with FLUENT
and the results are indistinguishable from the results obtained by CMPS with HLLC

Riemann solver.

Pressure Pa

770000
710000
650000
590000
530000
470000
410000
350000
290000
230000
170000
110000

Figure 2.7: Cylindrical explosion in two-space dimensions. Pressure distribution at
7.7 x 10~ seconds calculated by the first order solver using HLLC Riemann solver.

Density

Figure 2.8: Cylindrical explosion in two-space dimensions. Density distribution at
7.7x107* seconds calculated by the first order solver of CMPS using HLLC Riemann
solver.
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X Velocity

280
225
170
115
60
5
-50
-105
-160
-215
-270
-325

Figure 2.9: Cylindrical explosion in two-space dimensions. x velocity distribution at
7.7%107* seconds calculated by the first order solver of CMPS using HLLC Riemann
solver.

The solution exhibits a circular shock wave traveling away from the center, a circular
contact surface traveling in the same direction and a circular rarefaction traveling

toward the origin.

8.0E+05 |-
7.0E+05 |-
I Roe
@ C HLL
O 6.0E+05 [ HLLC
o I - Lax-Friedrichs
? [ Rusanov
0 5.0E+05 -
a C
— -
o -
% 4.0E+05 [
o B
2 B
< 30E+05 |
2.0E+05 |-
1.0E+05 b= L i
0 2

Figure 2.10: Cylindrical explosion in two-space dimensions. Pressure distributions at
7.7 x 10~* seconds calculated by the first order solvers of CMPS using different flux
functions. The solution with Roe solver is the result of FLUENTs first order explicit
solver.

Fig. shows a comparison between the solutions obtained with different flux
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functions and also the result of FLUENTs first order explicit Roe solver. The Roe
and HLL and HLLC Riemann solvers gave similar results. Due to its high diffusive
character of Lax-Friedrichs, its results are not sharp as the Roe, HLL and HLLC.

Rusanov is too diffusive to be used for practical purposes.

u HLL+WAF+LR

A
"00" A HLL+WAF
o . HLLC+LR

RCM(one dimensional solution)

Pressure
o
(4]
T

L L L | . L L
01 1.5 2

Position

Figure 2.11: Cylindrical explosion in two-space dimensions. x pressure distribution
at 7.7 x 10~ seconds calculated by the high order solvers of CMPS.

The problem is also solved with high order methods. In CMPS, it is possible to use
WAF and linear reconstruction (LR) methods at the same time which provides higher

spatial resolution than using WAF or LR methods alone. Results are shown in Fig.

211

2.12.2 Spherical Explosion In Three Space Dimensions

The three dimensional Euler equations are solved on a cube 2.0 x2.0x2.0inx—y—z
space with first order solver of the CMPS code using HLLC Riemann solver. The
domain consists of two zones with a spherical zone with radius R = 0.4 at the center
of the cube. Grid includes 406000 tetrahedral elements. The initial state values take
constant values in each zone and are the same as those in section Z.12.1l The initial

pressure distribution is shown in Fig. [2.12] Pressure, density and internal energy

contours at time ¢ = 7.7 X 10~* are shown in Figures [2.13| [2.14]and [2.15| respectively.
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Pressure Pa

930000
855000
780000
705000
630000
555000
480000
405000
330000
255000
180000
105000

Figure 2.12: Spherical explosion in three space dimensions. Initial pressure distribu-
tion and grid structure. The spherical zone at the center is the initial high pressure
region.

Pressure Pa

645000
600000
555000
510000
465000
420000
375000
330000
285000
240000
195000
150000
105000

Figure 2.13: Spherical explosion in three space dimensions. Pressure distribution at
time t = 4.7 x 10~* calculated with first order solver of CMPS using HLLC Riemann
solver.
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Figure 2.14: Spherical explosion in three space dimensions. Density distribution at
time ¢ = 4.7 x 10~ calculated with first order solver of CMPS using HLLC Riemann
solver.

Z

L

Internal Energy J

260000
251000
242000
233000
224000
215000
206000
197000
188000
179000
170000
161000
152000

Figure 2.15: Spherical explosion in three space dimensions. Internal energy distribu-
tion at time t = 4.7 x 10~ calculated with first order solver of CMPS using HLLC
Riemann solver.
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The problem is also solved with high order methods. In CMPS, it is possible to use
WAF and linear reconstruction (LR) methods at the same time which provides higher
spatial resolution than using WAF or LR methods alone. Results are shown in Fig.

.17/l These solution are compared to a one dimensional solution in spherical coor-
dinates obtained with Random Choice Method (RCM) of Chorin [10]. RCM method
provides exact solution of Riemann problems in one dimension but not applicable to

multidimensional problems.

Density

I
T 1 1 I T 1 1 1 I T 1 1 1 I T 1 1 1 I T 1 T 1 I UL

Figure 2.16: Spherical explosion in three space dimensions. Density distributions at
time ¢ = 4.7 x 107* calculated with first order solver of CMPS using HLLC Riemann
solver and first order solver of FLUENT using Roe.
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0 0.2 0.4 06 08 1

Position

Figure 2.17: Cylindrical explosion in two-space dimensions. x pressure distribution
at 7.7 x 10™* seconds calculated by the high order solvers of CMPS.

2.12.3 Supersonic Flow Over a Circular Arc Bump

The solution of Euler equations for a supersonic flow over a circular bump is studied.
The flow entering the channel is supersonic at 1.88 Mach. The Mach number contours
calculated with first order HLLC Riemann solver of the CMPS code are shown in Fig.
[2.18] A shock is generated as flow reaches the bump. This shock is reflected by the
upper wall then crosses the another shock which issues from the end of the bump.
The two shock meets again before exiting the supersonic channel. The calculations
are repeated with Rusanov, Lax-Friedrich and HLL flux functions also with first or-
der Roe solver of FLUENT for comparison. HLL and HLLC solvers of the CMPS
code give indistinguishable results in good agreement with Roe solver of FLUENT.
Lax-Friedrich solver of the CMPS code is more diffusive as expected. Rusanov was
unsuccessful to provide a meaningful result for comparison. The Mach number and

pressure profiles along the channel are shown in Figures and respectively.
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Il N N

Mach Number: 0.7 1.06 1.42 1.78 2.14

-

Figure 2.18: Mach number contours for supersonic flow over a circular bump calcu-
lated with first order HLLC Riemann solver of CMPS code.

19F
18}
. |
o i
-g |
5 1.7 B
4 |
i |
g |
15}
i HLLC/CMPS
i e Roe/FLUENT
9 - — — — - Lax-Friedrich/CMPS
’ L L L 1 L . 1 L I ]
0 5 10 15
X

Figure 2.19: Mach number along the supersonic flow over a circular bump shown in

Fig. 2.18,

2.12.4 Transonic Flow Over Circular Bump

In this test case the solution of Euler equations is studied for a transonic flow over a
circular bump. Air enters the channel at 0.67 Mach then becomes supersonic over the
bump ans a shock develops behind the bump. The Mach number contours are shown
in Fig. 2.21] The line plot of Mach numbers through the channel calculated by CMPS
and FLUENT are shown in Fig. [2.22]
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200000 |~
180000 |- HLLC/CMPS
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Figure 2.20: Pressure profile along the supersonic flow over a circular bump shown

in Fig. 2.1§]

BT .

Mach Number: 0.36 0.64 0.92 1.2 1.48

Figure 2.21: Mach number contours for transonic flow over a circular bump calcu-
lated with first order HLLC Riemann solver of CMPS code.
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Properties Initial conditions

Mass specific energy Density Mass | Pressure Temperature
(kj/kg) (kg/m*) (kg) | Pa K

4870 1580 0.185 | 3077840000 6937

Table2.1: Properties of plastic explosive and the calculated initial values for modeling
the explosion.
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Figure 2.22: Mach number along the transonic flow over the bump shown in Fig.
221

2.12.5 Blast Propagation In A Three Dimensional L-Shaped Tunnel

In this test case an air blast propagation was studied in the L-shaped tunnel. The ge-
ometry of the solution domain is shown in Fig. [2.23] During the solution pressure
values are monitored in three points shown in Fig. [2.23] For this test case experimen-
tal results are available, in the original experiment a plastic explosive was used. This
explosive is modeled as a spherical air volume with initial conditions calculated using
ideal gas law. The properties of the plastic explosive and calculated initial conditions
are given in Table Some contour plots at times r = 0.30 x 10~ seconds and
t = 0.43 x 107 seconds are shown in Figures [2.23| 2.24} 2.26|and 2.27]

The experimental results and the results recorded at probe locations shown in figure
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[2.23| during simulation are compared in Figures [2.28] [2.29 2.30] Although the sim-

ulation results are sufficiently in agreement with the experimental results, there are

some differences especially at probe 2. The source of these differences may result

from the physical assumptions made during the simulation. These assumptions are,

e The properties of the explosion gases were unknown, they were modeled as air.

e Air was modeled as ideal gas although it behaved as real gas.

e The walls of the test unit were assumed to be adiabatic. This assumption pre-

vents the damping effect of the walls on the blast waves.

explosive

Figure 2.23: Geometry of the test case for blast wave propagation in L-Shaped tunnel.
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Figure 2.24: Mach number contours at time ¢ = 0.30 x 10~* seconds.
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Figure 2.25: Absolute pressure contours at time ¢ = 0.30 x 10~ seconds.
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Figure 2.26: Mach number contours at time 7 = 0.43 x 10~ seconds

Figure 2.27: Absolute pressure contours at time ¢ = 0.43 x 10~ seconds.
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Figure 2.28: Pressure probe at probe 1.
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Figure 2.29: Pressure probe at probe 2.
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Figure 2.30: Pressure probe at probe 3.
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CHAPTER 3

MULTIDIMENSIONAL MULTI-PHASE GODUNOV
METHODS FOR COMPRESSIBLE MULTI-PHASE FLOWS

In this chapter, the method proposed by Saurel and Abgrall [42] is extended to multi
dimensional unstructured grids and the solution procedure is explained. This Go-
dunov scheme is based on the solution of an averaged system of equations similar to

the equation system derived in [4]. This system of eqautions is given below in[3.1]

Oa, oa,
O At -0
at ' ox
0agp, + Oagpgity —
ot ox
8a/gpgug 8 ((Igng§ + a(ng) 6a/g
+ = PI—+mV;+F
o1 x oy T
da.0.E. Ougla.p.E, +a,P oa
gpg il + g( e il g) = P[VI—g+mE1+FdV]+Q1 (31)
ot 0x ox
Oa Py N Oaspstg .
= —m
ot ox
2
8a'sp¥us 6(a/spsus + a'sPs) 3%
— + = —P— -—-mV;,-F
o1 x oy ~ 1T
8 S, vEs 8 K K SEY+ vPs aa
0. + “ (ap . . ) = —P[VI—g—I’hEI—FdV[—QI
ot 0x 0x
where,

@ 1s volume fraction, and @, + ay = 1,
V; is inter facial velocity,

P, is inter facial pressure,
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E; is Total energy, Ey = e, + u?,

F; is the momentum transfer term between the phases.

The equation system (3.1) include non-conservative terms; —P;0a,/0x and —P;V;0a,/0x.
The pressure P; and the velocity V; represent averaged values of the inter facial pres-

sure and velocity over the two-phase control volume.

Often, some closure models necessitate determination of characteristic size parame-
ters of individual particles such as particle sizes. In these situations a new equation
may be added to the existing ones to determine the particle sizes and inter facial areas,

which may be in the form of inter facial area transport equation(IATE).

oa; 2 (ar\(0a; 5
B +ViaVy) = 3 (Cl_s)( ot + Vau, - Uph) + Z,: &j+ dpn (3.2)

where q; is inter facial area concentration and the terms ¢; and ¢,, source terms.

Particle sizes can be related to a; and a; for spherical particles as

_ ba;

Dy, (3.3)

aj

Equations [3.2] and [3.3] can be solved uncoupled from the system Equations [3.1] So,

they do not change its mathematical properties, nor its solution.

Inter facial velocity V; can be modeled as mass averaged;

vV, = 2 Qpxly (3.4)
2 P
Inter facial pressure P; is modeled as mixture pressure,
P[ = Z akPk (35)
k

P, are given by appropriate equations of state (EOS) of the form P, = Py(ex, pr). The

most classical equation of states generally used are given below;
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1. Ideal gas EOS:

P=ep(y—-1) (3.6)

where v is the specific heat ratio y = C,,/C,. The speed of sound in an ideal gas

is given by

P
a= = 3.7)
P
2. Stiffened gas EOS:
P=p(y-De-vyPs (3.8)

where P, is a constant parameter. The speed of sound is

ao [YPHP) (3.9)
o

3.1 Numerical Method

3.1.1 Non-conservative Terms

The discretization of non-conservative terms —P;0a,/dx and —P;V;0a,/dx need spe-
cial methods. These methods can be developed according to Abgrall[ll] criterion. It
states that: “A two phase flow, uniform in pressure and velocity must remain uniform
on the same variables during its temporal evolution”. If u = u, = u, = V; and as well
as P = P, = P, = P; at time ¢ = 0 then the velocities and the pressure will keep the

same values [42]. Most spatial derivatives cancel and we get;

o TUg =Y
0p, dpg
o T4 70
(9ug_
or



Ou
ot
0P,
ot

For one dimensional cases, discretization of non-conservative terms can be found in

reference [42]. Here two dimensional cases are considered.

3.1.1.1 Godunov-Rusanov Scheme

Here we consider only the volume fraction, gas continuity, gas momentum and gas

energy equations in[3.1]
oa
E +V,Va =0 (3.10)
ou OoFWU) 0G(U)
T T oy H(U)Va (3.11)

where U is the state vector, F(U), and G(U) are flux vectors, and H is the coeflicients

of the non-conservative terms Va;

ap - _ apu - — apv

apu apu® + aP apuy
U= , F= , G=
apv apuy apv’ + aP
| apE | | au(pE + P) | | av(pE + P) |
0 O
P 0 ge
H = , Va = (3.12)
oa
0o P F
i Pu] PV] ]

The finite volume scheme for solving equation can be written as,
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n+1 n At S -1 fmn
Ul = g - VZASTS Er (3.13)
s=0

In Eq. [3.13] s is the index of cell faces, A, is the area of cell faces. T;" is the inverse

of the rotation matrix 7,

B 0 0 0] (10 0 0]

o
o
o

cos(f,) sin(fy) O cos (6,) —sin(6y)
T = , T'= (3.14)
—sin(6,) cos(d,) O sin(6,) cos(6;)

)
o
o

0 0 0 1] 0 0 0 1

F, is the flux at the face, which is the function of transformed state vectors £, =
E (U s.c) defined as US,C = TU,,.. Index s refers to the faces of the cell. ¢ is O for the

host cell and 1 for the neighboring cell. For the Rusanov flux, F " 1s calculated as,

Bl = B0, 00 = 5 [Frg+ o = 87(00, - 03)] 3a19)

where 8§ = max{liy, — al,\ig — agl, |fi, + arl, |iig + agl}
3.1.1.2 Gradient of Gas Volume Fraction «

Using the equation and uniformity of velocity #"*! = u", v'*! = v"(Abgrall[1]

criterion) following relations can be written for x velocity u;

uU™'1] = U™'[2] (3.16)
vU™'[1] = U™'[3] (3.17)
Solving the above equations, following formulas are found for g—“ and g—“;
x Y
" 1 & 1"
T ;Ascos @) (g + ) = W 2 A[0](eg + o) (3.18)
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N-1

ﬁa/”

1 S i i
5 =2y ZA sin (6,) (e + o)) = W 2 A1) (aty+ ) (3.19)
where X ; 1s the area normal vector of surface and A = ”KH Above equations can be
written in the following compact form,
| N
Va =) A (g +02)) (3.20)

|I
(=)

s

3.1.1.3 Discretization of Volume Fraction Equation

Heuze[22] showed that nearly all equation of states can be written in the Mia-Gruneisen

form

pe =B (p) P +1(p) (3.21)

with 8 =1/(y — 1) and n = ym (y — 1). Now replacing the terms pe in state and flux
vectors with 8P + i and using Eq[3.13] following formula can be written(see [42]),

1
| (BP + 1) + p! 3 (u? +v?)| = U™'14] (3.22)
Eq[3.22]can be rewritten in the form,
1

" (BP + 1) + U™ [115 (u? +v?) = U™'14] (3.23)

Solving Eq for a"*!, following formula is found

At 5 o At S,
n+l _ n _ 2% .pyn . ” a"
o = a2 3 (A, - V) (g + o)) - v ;Avss ay—aty)  (3.24)
Convective Term Viscosity Term
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Equation[3.24]gives the numerical scheme that must be used to solve the non-conservative
volume fraction equation in [3.1] The scheme is strictly related to the flux function
used for conservative terms. The second term on the right hand side of the Eq. [3.24]
is the classical discretized form of the convective term. Third term on the right hand
side of the Eq. [3.24]represent a viscosity term, which is also a direct function of the

flux functions written for the conservative terms.
The summary of Godunov-Rusanov scheme is below,

Conservation equation:

At al A n
Ul =U"- =Y AT:'F, 3.25
- Z(; ; (3.25)
Flux function:
Fn 1 Fon Fn an (Fm rn
Fi=3 |Frg+ Fry =87 (O, - 07| (3.26)

Non-conservative source terms:

=
=57 A a/so +a (3.27)
s=0
Volume-fraction equation:
At s o At S,
n+l _ n __ —% . n n n\_ = nfn _ . n
" =a X SZ:(; (AS Vi )(Qs,o + ozS’l) 2 2. A S (04;,0 ozs’l) (3.28)

The equations and [3.28] are multidimensional counterparts of one dimensional

results in reference [42]].

3.1.1.4 Godunov-HLL Scheme

The numerical flux of HLL approximate Riemann solver is

Ss,]ﬁs,o - SS,OFS,I + SS,OSS,I (Us,l - US,O)
FHLL = ~ ~ (329)
Ss,l - Ss,O

where indexes 1 and O refers to right and left states respectively.
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Following the same procedure of previous section the non-conservative terms are

found as,

aa 1 S Sslaso_SSOQSI

— =5 ) Ascos(ly) ————F—— (3.30)
(9X 14 ; Ss,l - SS,O

0 1 & Ss K _Ss K

2= = 3 Agsin (g 2Rt a0 (3.31)
ay 14 =0 S s,1 — Ss,O

Y S SAS S
Z lcf 0 7 9 50%s 1 (3.32)

Equation [3.32] gives the scheme to discretize the non-conservative source terms for
HLL flux function.

Similarly the solution method for volume fraction equation is found,

At " A Vn(Snlaso Snoa’sl AtNlAS n, -y )Sm S?,l
4 St =84, v =81,

(3.33)

Equation [3.33] gives the required scheme to solve the non-conservative volume frac-
tion equation in [3.1] along with the HLL flux function. The second term at the right
hand side of the Eq. [3.33]is the convective term. Third term at the right hand side is

the viscosity term.

3.2 Velocity Relaxation Procedure For Interface Problems

The velocity relaxation terms for multi-phase mixtures are given in section [5.1] in
terms drag forces between particles and the main phase. These drag force terms are

written in the form given below;
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Fi= " A (- u)) (3.34)

where the velocity relaxation coefficient A is a function of local flow variables and
topology. This coefficient is usually a finite value characterizing the drag forces be-

tween a main phase and particle phases.

For a multi fluid problem including interfaces separating two pure fluids, an approach
similar to the one for multi-phase mixtures is not possible. Physically the interface
condition imposes velocity equality at the interface. An instantaneous velocity relax-
ation is required to satisfy this condition. For an instantaneous relaxation, the coeffi-
cient A in equation [3.34] tends to infinity. Velocity relaxation procedure requires the

solution of following ODE system when A;; — oo forall j=1,..,Nandi=1,.,N.

0
0
N
j=1
N
Z V]/l,'j (I/tj — I/tl')

—_

Jj=

For simplicity a one dimensional interface problem separating two different phases is

considered. In this case the ODE in equation [3.35]is written as,

% =0 (3.36)
% =0 (3.37)
a“épt"”i = A(u; - u) (3.38)
aaiapt"E" = Vi (u; - u) (3.39)
% =0 (3.40)
% = (- u) (3.41)

% = AV, (- uy) (3.42)
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The procedure for the solution of above ODE system for 4 — oo is given in refer-
ences [42, 29]. The value ap is constant during relaxation, which can be seen from

equations (3.37) and (3.40). The value ap is constant during relaxation, which can be

seen from equations (3.37)) and (3.40). Using equations [3.37] [3.38] [3.40|and [3.41],

0141' A
E = Ipl u;— I/l,') (343)
ou; A
— = u; = ;) (3.44)
o ap;
Subtracting equation [3.43|from equation [3.44] and integrating results
1 1
Uj—u; = (Ltjo — l/li()) exp —Al—+ (3.45)
aipi ;|

where uy and u;y are initial values before velocity relaxation process. When A tends

to infinity, equation [3.45|becomes

uj—u; =0 (3.46)
Summing equations [3.43| and [3.44] gives
8ul~ 01/{]
LN 3.47
Integration of equation gives
aip; (u; = o) + ;p; (u; = upp) = 0 (3.48)

Using equations [3.45]and [3.46|

b=y = a;pilip + ;P U jo (3.49)
Y aip;i + a;p; '

This result can be generalized for N phases for N > 2,
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N
Z AkPrUko

W= = =y = (3.50)

N
Z (07993
k=1

Above equation shows that all the relaxed velocities at the interface are equal to the
interface velocity given in equation [3.4] This result justifies the choice of inter-facial

velocity formulation.

3.3 Pressure Relaxation

When the fluids in a multi fluid system are in a non-equilibrium pressure state (such
as after a wave propagation) (P ;i # Pifor j # i), a pressure relaxation process devel-
ops and the pressure tends to equilibrium, (P; = Py = P, = ... = Py) [42]. For most
interface problems, the time scale for the pressure relaxation process is very small
compared to other processes such as the velocity drag and thermal relaxation pro-
cesses [29, 130, 42]. Pressure relaxation process leads to pressure equilibrium at the
phasic interface almost instantaneously for most compressible multi-fluid systems.
For a system with instantaneous velocity relaxation, an instantaneous pressure relax-

ation leading to pressure equilibrium is very natural and necessary [29, 30].

The ODE system describing the pressure relaxation process is defined as;

(90/j al
E = Z,Llﬂ(Pj—Pl) (351)
oo
% =0 (3.52)
dajpju;
—— =0 3.53
o (3.53)
8a/jp,-Ej al
T = —P]leluj[(Pj—Pl) (354)

Above equations can also be written in a form consistent with equation[3.1T}and[3.12]

as given below,
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oU; 0 )
— = , forall j=1,..,.N (3.55)
ot 0

N
—PIZ,U]'Z(PJ' - Pz)
7

The homogenization parameter (dynamic compaction viscosity) u;; controls the rate
at which pressure tends to equilibrium [4]. For instantaneous pressure relaxation the

homogenization parameter y; tends to infinity.

Both partial density ap; and velocity u; remain constant during pressure relaxation
process. This can be deduced from equations [3.52] and [3.53] Equation [3.53]is ex-
panded to see that,

ou; oap;
ajpja—t’ + u,-a—’t’ =0 (3.56)
Using equation [3.52] we deduce % = 0. This result is physical because pressure

relaxation is a result of internal pressure forces which can not lead to a net momentum

change. Using equations [3.51]and[3.54] following can be written,

— _p,—! (3.57)

Denoting the initial and final times of the pressure relaxation process by 1 and #*

respectively, the assumption below can be safely made.

=10 << At (3.58)

where At is the time step size used for the solution of the transport part of the multi-

fluid system.

Again using equations and [3.53] the equation is rewritten as
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aipi— = —P,—2 3.59
iPj ot 1 ot ( )
It was shown above that the value ap; is constant during pressure relaxation. Inte-

grating equation [3.59]

* 0 d (9a/j .
p;(er—e") = - P tdi forall j=1,..N (3.60)
t

By using the change of variables da; = %dt,

ajpj(e*—eo):—f’P,daj forall j=1,.,N (3.61)

?
Equation [3.61] can be rewritten in differential form as [29];

a;p; = —PIdClj for all ] = 1, ..,N (362)

The differential terms de; and da; can be written in different forms. Since a;p; is

constant during process,

a; a;p;
daj:d( L ’):_ ’f’dpj forall j=1,.,N (3.63)
Pj P;
then
P, P
dej=-——=—dp;  forallj=1,.,N (3.64)
apj  p;

de; can also be written using equation of state of the form e; = ¢; (p i» P j)

aej
Ip;

Hej
dp; + —L

dej: P
J

dP; forall j=1,.,.N (3.65)

Lj

Pj
Again using the fact that @ ;p; is constant during pressure relaxation,
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Cl/ . . a . .
dp; = d(ﬂ) =-Bga;  forall j=1,.,N (3.66)
a; Clj
Then
ap; de; de;
dej=-"B1 200 go 4 ) gp, forallj=1,.,N  (3.67)
@ Opjlp, OPjl,,
Py %
2 j|p.
Using the definition of jth phase interfacial speed of sound ci i = o 7 "% and equa-
i,
tions .66, ’
a . .
dP;= -2 do;  forall j=1,.,N (3.68)
(07
J
Integration of equation leads to an equation equivalent to[3.61]
R % ajpicy .
P,—P;=- Pl da; forall j=1,.,N (3.69)

J

where P’ is the final pressure after relaxation process and P? is the initial pressure

before pressure relaxation process.

Equations and @ can be integrated to give final values e; or P;. Some other

different efficient procedures and this one is explained in references [29, 30].

3.3.1 Solution Procedure

The details of the procedure can be found in reference [29]. The integral of the right
hand side of equation [3.69|can be approximated as

2 0
aipicCy .
Pj.—pgz_( ’ fz“] A, forall j=1,.,N (3.70)
(o
J

If relaxation is reached, the following should hold
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P, =P; =P, forall jm=1,..,.N (3.71)

J m
or
P, =P, =P forall j=2,..,.N (3.72)
Using
P} - d)Ad; = P) - a}Acr; (3.73)
where a; = 223

J

Using the saturation condition Z?’: 1A =0

N
paj=- > Ao (3.74)
=
From equations and
PY-P)
Ag® Zy:z( 4 ) (3.75)
X =ToN a '
T

Using equations and all volume fractions after relaxation can be calculated.
However admissibility of these values should be verified. Volume fractions are ad-

missible if 0 < ozj < 1forall j=1,..,N. This condition can also be written as,

-~} <Aei<1-0) (3.76)

Using equation [3.73]

—-al < <1l- 040- (3.77)



or in a more useful form [29]]

i
J
0

ma_x{ P?—P(l)+a0.a’0.
1

|

min

<Aaj<j
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CHAPTER 4

DISCRETE APPROACH FOR COMPRESSIBLE
MULTI-PHASE FLOWS

In Chapter 3] the method given in reference [42] was extended to unstructured grids.
This method with proper handling of non-conservative terms and relaxation proce-
dures was able to solve equations However, although the missing data problem
due to missing waves across the material interfaces was overcome by relaxation pro-
cedures, the method is not robust in some conditions. This issue can be explained by
considering the method’s approach for the wave structure at a material interface. In
this method the only way to define an interface is to use very small volume fractions
of the different phases at each side of the interface. The information across the in-
terface is carried between the same phases then the information is propagated to the
other phases by relaxation procedures. In this way the missing waves are recovered.
However because the phase with a very small volume fraction such as 107 is first
to get the whole information, the method is very prone to numerical difficulties re-
lated to the limits of EOS formulations used for this phase. This problem becomes

important for shock waves across the material interfaces.

In fact the problem with this method originates from the equation system solved.
This equation system is a pure Eulerian multi-phase model describing each phase as a
continuum without a material discontinuity such as a phasic interface. In principle the
difficulty can be overcome by approaching the problem at a more basic level. Discrete
equations can be produced at material interfaces to supply a Godunov method with
required numerical fluxes averaged over the cell faces. Abgrall and Saurell [2] used

this approach to overcome the problems existing in their previous study [42]. With
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Discrete Equations Method they were also able to solve non-conservative products
that appear in seven equations model studied in chapter [3| In this chapter I propose

a similar but more simple and effective approach for constructing a Godunov scheme
by adapting HLLC flux for phasic interfaces. The proposed method can be applied to

both multi-fluid and multi-phase mixtures without any modification.

4.1 Wave Patterns in a multi-phase Mixture

In a multi-phase mixture approach, an interface separating two pure materials is not

defined. The averaged equations define such a mixture. However, it is still possible to

define material interfaces by defining mixtures containing negligible amounts of the
other phases on each side [42]]. For example to define a pure liquid phase the volume

fraction of the liquid can be initialized as @; = 1 — €, where € is equal to a very small
value such as 1078, A typical wave configuration of a Riemann problem solution for

such a mixture defined by an averaged equation system is shown schematically in

Fig. @.1] In fact the configuration in Fig[4.T| depicts the states before the velocity and
pressure relaxation procedures. Since the solution of the Riemann problem is realized

after velocity and pressure relaxations, the possible number of wave configurations is

equal to that of single phase problems. This property furnishes one to utilize single

phase Riemann solvers for the problem.

REI
! c?
I ‘/t Sg

\ 4

A

Figure 4.1: Rarefaction (R), contact (C) and shock (S) wave pattern in a compressible
two phase mixture. Superscripts | and g denote liquid and gas phases respectively.
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4.2 Wave Patterns at an Interface Separating Two Pure Fluids

A possible Riemann problem solution for an interface initially separating two pure
fluids is depicted in Fig. #.2] It is evident from the figure that the two fluids remain
on two sides of the contact wave which corresponds to the interface moving to the
right. The possible wave configurations are again the same as those of the single
phase problem. Therefore, these type problems can be solved by utilizing any ex-
plicit method in conjunction with an interface tracking method. HLLC type Riemann
solvers are especially advantageous in these type of problems due to exact resolution

of the contact waves.

R' /
us s9

r 3
A\ 4

Figure 4.2: Rarefaction (R), contact (C) and shock (S) wave pattern at an interface.
Superscripts 1 and g denote liquid and gas phases respectively.

4.3 Definitions and Assumptions

The numerical scheme is a finite volume method and hence the computational domain
consists of discretized control volumes (cells) Q.. Each pure fluid in a discrete control
volume is governed by the Euler equations. For each pure fluid X;, the flow states and

associated fluxes are given as below:
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i il )

P pu pVv
. piui . piui2 4 pi . piuivi
U' = , F'= , G'= “4.1)
i i i i2 i
P pu'v oV + P
i piEi | _ Lti(piEi-l-Pi) | i vi(piEi+Pi) |

For a Godunov type finite volume method one needs to represent cell averaged fluid
states for each control volume. This can be done by an averaging procedure as in
[13] and [2]]. A characteristic function X' is introduced for this purpose. X' is defined
as X' (%, ¢) = 1 if Xlies in fluid ¥;, otherwise 0. An average state W'’ for phase X; is

defined as,

Wi=— f XU dR 4.2)
Va. Jo,

where Vg, is the volume of the solution cell. The result of this averaging procedure

can be written in terms of volume fractions «; as,

Wi = e (4.3)

i a,ipiEi |

For a multi-phase mixture and multi-fluid problem with definite interfaces the veloci-
ties ' and v' and pressures P’ of each phase become equal after relaxation procedures
as defined in Section [3.2] When one or more phases are in the form of particles,
phase velocities may be different. In this case, the right side of the Eq. (3.35) is

usually written in the form of momentum transfer terms.

There may be interfaces in the cells. The total interfacial area in a cell volume is not
known nor correlated to volume fractions except particulate phases. Thus, interface

is tracked by a diffuse interface approach.

Interfacial areas of phases at cell faces are correlated to volume fractions and this
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feature will be used to calculate Godunov fluxes across the cell faces for each phase
Y,;. There may be many interface configurations at the cell faces, and therefore, it is
assumed that phase interfaces are randomly positioned at a cell face. This situation is

illustrated in Fig. 4.3]

[ I
! | I : \ ]
1 1
[ [
9 g
| g ‘ |
| \
I | | L
g
g : 9 9 I }
‘ |
[ | ! g

Figure 4.3: Some of possible phase interface configurations at cell face.

4.3.1 Riemann Problem at a Cell Face

The Riemann problem for a cell face with multiple phase interfaces can be defined

with initial condition at # = 0 as described by

Ui if x<0
Ui if x>0

Ul =

A ‘ (4.4)
Pi=P;, u =u, i=2,.,N

i _ pl i _ 1 . _
P,=Py, up=u, i=2,.,N

The equilibrium states of phase pressures P' and phase velocities u' defined in Eq.
4.4l is justified by assuming micro scale relaxation processes are completed before
time r = 0. A possible way of solving this shock tube type problem is to temporarily
ignore relaxation processes for a sufficiently short time after # = 0. This situation
is illustrated for a possible interface configuration in Fig. .4] Actually, rather than
ignoring the relaxation processes for a short time, one can suggest to use a well known

method "time splitting”. Time splitting is more generally used in explicit methods
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for updating source terms. However, micro scale pressure and velocity relaxation
processes on a phase interface are completed almost infinitely fast compared to other
processes. This is in contrast to source terms such as momentum and heat transfer

which are time dependent processes.

Interface att> 0

Figure 4.4: Wave and phase patterns ignoring relaxation processes at a short time
after r = 0.

4.4 Solution of Riemann Problem By Utilizing HLL.C Solver

For a Godunov type solution for phase %;, one needs to calculate fluxes for all possible
interface and wave configurations. It is assumed that all the N phases present on each
side of the cell face and phasic interfaces may have all possible random configurations
at the cell face. Defining (Z,-, z j) as one type of possible interfaces which separates the
phase X; on left and the phase X; on right, we can calculate the number for all possible
interface configurations including phase %;. This number for phasic interfaces turns
out to be 2N — 1. These possible interfaces for phase X; is categorized in three general

groups:

L (2, %)
2. (5.%), i#)
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3. (5.%). j#i

In the following sections, Godunov fluxes are calculated for each possible interface
configuration with each possible wave pattern for phase ;. It is assumed that the
fluxes are calculated for the left cell 2, which is on the negative side of the X axis on
the local, rotated coordinate system (coordinate rotation methods for non-Cartesian

domains was reviewed in [48]]).

44.1 (%, Interface

Since this interface defines a single phase problem, the flux F'(Z;,X;) across this
interface can be calculated with the HLLC solver without any modification. In the

following equations (i, j) is used in superscripts instead of (Z,-, z j).

Fi if 0<sSy
PERIT) Ry g (U(i’i) _ Ui) if §% <0< )
R R *R R x = > N
Fy if 0>8%"

Where S ; are S are left and right wave velocities respectively. S . is the contact wave
velocity which is also the advection velocity of the phase interface information. The
subscript *L denotes the region between left wave and contact wave. Similarly the
subscript *R denotes the region between the right wave and the contact wave. The
volume fraction o' of the phase X; is not affected by the processes on the interface
(Z;, X;) before any relaxation processes in the cell. Therefore, the flux F:;i) carrying

information for volume fraction of phase ' is zero across any single phase interface.

442 (2.3;).i# jInterface

For this type interface there are two different situations according to the direction of
the contact wave which carries the interface position. For a right going contact wave,

the HLLC formulation is still valid for phase X;,. However, for a left going contact
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wave there is no information carried by convective terms for phase Z;. This flux can

be simply defined, in two dimensions, as

0
NI Py Y
FeO#i (Ui, Uf) = if S& <0 (4.6)
0

» uii,j) Pii,j) |

One can also reach this result (Eq.(4.6)) by using the HLLC Riemann solver. The
flux on the right of the contact wave can be written, using the HLLC solution of the

Riemann problem [48]], as

@) _ ) @) (9))
F& =F + s (U - UY) 4.7)

Subtracting the convective part S\ Uii}j) from F i’gj) , we find

POR (U, Uf) = Y - SOOUSP, if S <0 @8)

L

This result is consistent with the formulation used in [2]. The HLLC flux for the

interface (Zi, )y j) ,1 # jis written as

Fi if 0<Sy’
FO®#i (U, up) =1 Fi+s& (U - ui) if s& <0<s™ (4.9)
F —s&ytn if  S¢7<0

A similar formulation can be written for volume fraction o,

; @)
L (4.10)
—s%if s% <0 '

80



44.3 (Z j,Z,-) , j # i Interface

In this case for a right going contact wave SV > 0, and the flux F' (U kL UIQ) is zero.
For $Y” < 0 and SU) > 0, only convective flux of the %R region exists, which is
s Ug;”. For the supersonic case S g’i) > 0, again the HLLC solution can be used
to find the flux for Z; on left of the interface. By subtracting the flux F iﬁi) in the *R
region from F’ and adding the convective part of the =R region, we find the net flux

for phase X; at the left cell. The HLLC solver for this interface is then written as,

0 if  0<SY)
FUP# (U, up) =4 97U if SV <0<sy’ @11

OO - F99 4 590090 if 99 <0

The flux for volume fraction «' for this interface is written as,

1o if sY9>0
FUD# - 5 / y (4.12)
« S i §U <

4.4.4 Fluxes For Godunov Method

The HLLC fluxes defined above can be used for an interface tracking method. How-
ever we use these for constructing a Godunov method with diffuse interfaces. Since
the method allows the interface to be in a computational cell, velocity and pressure
relaxation processes are required after updating all conserved variables. Defining

P (Z,-, ) J-) as the probability of this interface taking place at the cell face (.

1 L
P(202) = - f X XpdS = aia; (4.13)
Ay Ly

Then, the Godunov flux for phase %; is found to be,

F' = q;a;F (U;, U;;) + i jFODF (U;, Ué) + ajo FU# (Ui, U;;) (4.14)
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F. = aiang;j)’#j + ajaiF;{’i)’j¢i (4.15)

4.5 Multifluid Test Cases

4.5.1 Water/Air Shock Tube Problem

This test problem is defined in reference [29] to test different pressure relaxation
methods. A 1 m shock tube is considered, filled by high pressure liquid water at the
left x < 0.7 and by low pressure air at the right x > 0.7. Liquid water is modeled
with a stiffened EOS, and air is ideal gas. The initial data for shock tube problem are;
p' =10° kg/m*, P' = 10° Pa, ' = 0 m/s, y' = 4.4, Pjo, = 6 X 10%, @} = 1 —107® for
x < 0.7and p* = 50 kg/m3, P¢ = 10°, u® = 0m/s, ¥ = 1.4, % = 1 - 1078 for x > 0.7.

For this test case both discrete method defined in Chapter 4 and the Godunov method
described in Chapter [3] are used. Velocity and pressure relaxation methods given in
Sections and are also applied. The solutions at time ¢ = 229 x 107° are given
in Figures [4.5|and .6] These solutions are obtained with 1000 computational cells.
The discrete approach provides more physical results for pressure solution and is less
diffusive for volume fraction. Another problem with the continuous method is the
stiffness of the solution near material interfaces especially when a powerful shock
wave interacts with the interface. Due this problem CFL number should be decreased
very small values in the initial times of the simulation. This numerical scheme is never
stable even with CFL number of 0.5. On the other hand discrete algorithm is stable
with CFL number of 2.0 when used with a four stage Runge-Kutta time advancing

scheme.

4.5.2 Under Water Explosion

A two dimensional underwater explosion problem is considered. This problem is sim-
ilar to the one previously simulated in references [26],[19] and [46]. An underwater
cylindrical bubble of gaseous explosive products expands and drives the air-water in-

terface. The details of the test problem is given in section Some results can be
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Figure 4.5: Solutions for water/air shock tube test problem at t = 229 x 107 s,
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Figure 4.6: Solutions for water/air shock tube test problem at t = 229 X 107 s,
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seen in Figures 4.7 4.8]and d.9] As can be seen in the previous one dimensional test
case in this two dimensional test case, phase interfaces are lost due to high numerical
diffusion in the solution of volume fractions. Due to this diffusion, interfaces evolves

to a artificial mixture region. This diffusion problem is addressed in Chapter [6]

Water Volume Fraction

Figure 4.7: Volume fractions of water at times ¢+ = 100 x 107%, t = 240 x 1079,
t =340 x 1079 and ¢t = 680 x 107°® seconds.
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Figure 4.8: Water mixture densities at times t = 100 X 1075, ¢ = 240 x 107, ¢ =
340 x 107 and 7 = 680 x 107 seconds
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Figure 4.9: Mixture pressures at times ¢ = 100x107%, t = 240x107° and ¢ = 340x107°
seconds
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Figure 4.10: Mixture velocities at times ¢ = 100 x 107, t = 240 x 10¢ and ¢t =
340 x 107° seconds
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CHAPTER 5

METHODS FOR HIGHLY DILUTED MULTI-PHASE FLOWS

The methods developed in Chapters [3] and [ provides robust solution methods for
multi-phase mixture and interface problems. However these methods are based on
the solution of volume fractions for each phase along with pressure and velocity re-
laxation procedures. In some multi-phase flows, several phases may be present with
very small volume fractions but with high influence on overall flow field. Exam-
ples to these phases may include liquid or solid particles suspended in a primary gas
phase. Due to very low volume fraction and low compressibility of these phases,
pressure and velocity relaxation procedures may not be valid. Pressure relaxation
procedure may be completely ignored while heat transfer mechanisms may become
important. Similarly, velocity equality assumption on phase interfaces is not valid for
small particles, instead a slip velocity approach is required for momentum transfer
terms between the particles and the primary phase. In this chapter, methods for com-
pressible multi-phase flows with highly diluted secondary phases are discussed. The
results of this Chapter will also be used for testing the applicability of the discretiza-

tion methods developed in Chapter [6] for dilute particles in a primary gas phase.

In a dilute mixture, the volume occupied by the dilute phase may be ignored. The di-
lute approximation leads to another assumption which assumes there is no interaction
between dilute particles. With these assumptions, volume fraction and pressure terms

are dropped from Equations[3.1]

s, ot

= 1 1
or " ox " G-

&9



Oty N 0 (pgu§ + P)

- = iy + F (5.2)
% ;tEg L2 (pig +F) = E; + Fau, + O; (5.3)
‘%’ + % - (5.4)
% 2 a,;,f >y~ F, (5.5)
% é’tE” n 6””5)’C’EP = —E; — Fau, — O; (5.6)

where,
E,=e,+ % lul?, e,=T,C, (5.7)

The two equation systems are coupled only via phase interaction terms due to lack of
volume fractions. The equation system for gas phase is the same with classical single
phase gas equations except the momentum source term. However equation system for
the dilute phase without volume fraction and pressure terms is a degenerate hyperbolic
system mainly due to lack of particle interaction terms. As a result of ignoring particle
interaction and volume fraction of particles, the particle trajectories may cross which

is not true for classical gas dynamics.

While the equation system for gas phase admits three different real eigenvalues 4; =
u, —a,dy = ug, A3 = u, + a with three different eigen vectors, the second system of
equations for particle phase admits only one characteristic speed A456 = u, with two
linearly independent Eigen vectors instead of three. The degeneracy of the system is

due to this missing eigenvector associated with the eigenvalue d¢ = u,. In fact the
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main implications of this degeneracy are the known physical assumptions. Due to
lack of pressure terms in particle equations particle vacuums can exist and particle
trajectories may cross [43]. When the two particle groups cross, a new family of
particles is formed due to average representation in particle equations which results

in loss of particle history information.

The solution of the particle phase equations is based on a particle phase Riemann

solver similar to the explained in [43]].

S,UL if S,20 & Sgz0
SrRU if S0 & Sp<0

Ff: RYR f L R (58)
0 if SL<0<Sg
(UL + UR) (p—Lf)iiﬁl;SR) lf SR <0< SL

5.1 Interface Drag

The drag force exerted by a single particle on the continuous phase is calculated by

- 1 — — — —
Fis = 3CopeAy 0, - 0,(7,-0,) (5.9)
where Cp and A, are the drag coefficient end surface area of a single particle projected
in the flow direction. In Equation [5.9] subscripts g and p refer to continuous fluid
phase and the secondary particle phases respectively. For the computational purposes,

the number of particles in the cell ¢ with volume V, may be calculated as,

_ 6V,
- pod;

(5.10)

ne

where p; is the density of the particle phase material and d,, is the diameter of the

particles.

Using Equations [5.9)and [5.10] the volumetric momentum source term due to particle

drag is calculated as,
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d,-0,|(0, - 0,) (5.11)

5.2 Drag Models

Using the model of Schiller and Naumann [45] model, drag coefficient Cp, can be

calculated as,

24 0.687 .
Cp = max{R—ep (1+0.15R¢57);0.445 (5.12)
where Reynolds number Re,, is defined as

_ o ‘Ug - Up'

Rey= ——— (5.13)
u

Schiller Naumann drag model is applicable to sparsely distributed spherical solid par-

ticles where both viscous and inertial are important.

At low particle Reynolds numbers (Re << 1), the drag force for small particles may

be calculated analytically [8]] by Stoke’s law.

Fj=——7-—+ (5.14)

where 7, is dynamic relaxation time of the particle defined as,

__ P,
47 18u

(5.15)

Stoke’s law finds use in the motion of colloidal particles under the influence of an
electric field, in the theory of sedimentation, and in the study of movement of aerosol

particles. It is valid up to a Reynolds number of about 0.1.
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5.3 Inter-phase Heat Transfer

The heat transfer between dilute particles and the fluid phase occurs due to thermal
non-equilibrium across phase interfaces. Heat transfer rate per unit volume is propor-

tional to the temperature difference as,

Qi = ha, (T, - T,) (5.16)

where £ is the heat transfer coefficient between particle and fluid phases and a,, is the

inter-facial area per unit volume which is calculated for spherical particles as

6p,
= 5.17
ap .01 (5.17)
Heat transfer rate is rewritten as,
6k,0,Nu
_ _eFpttp (Tp _ Tg) (5.18)

;=
dps

Here k, is the thermal conductivity of the fluid phase. The particle Nusselt number
Nu, is determined from a proper correlation. The default one used is the correlation

of Ranz and Marshall [39, 38] which is the most well tested correlation for flow past

a spherical particle,

Nu, = 2.0 +0.6Re,/>Pr'”? (5.19)

where Pr is the Prandtl number of the fluid phase:

Cp e

Pr =
ke

(5.20)

This model is applicable in the ranges 0 < Re < 200 and 0 < Pr < 250.

For low Reynolds, Nusselt number is given by Nu = 2, which can be derived analyti-

cally [8]] for a sphere in a stagnant fluid. This is also the limiting value of Eq. for
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low Reynolds numbers. This result finds application in many processes that involve

sprays of bubbles or droplets.

5.4 Particle Phase Boundary Conditions

As pointed earlier in this section, the system of equations for particle phase admits
only one characteristic speed. This simplifies the almost all boundary conditions with

the exception of reflection boundary condition [43].

5.4.1 Inlet Conditions

The following combinations of inlet conditions may be imposed at the boundaries:

. — . -
m, and p,, or ii, and p,, or ri, and if,,.

5.4.2 Outlet Conditions

The absorption conditions for particles are suitable which are similar to the trans-
missive conditions for gas phase. At an absorption boundary, the state in a phantom

boundary cell is taken equal to the one in the neighboring boundary cell.

5.5 Test Cases of Dilute Particle Phase Model

5.5.1 Attenuation and Dispersion of Acoustic Waves by Particulate-relaxation

Processes [27]]

In this test case, attenuation and dispersion of acoustic waves by particulate-relaxation
processes is studied The temperature and velocity of a particle suspended in an
acoustic field are subject to fluctuations that may lag behind those of the surrounding
fluid [47]. This test case is based on the theory of Temkin and Dobbins [47]. In

their original paper, a theory for acoustic attenuation and dispersion in an aerosol

I This test case is done as a part of NATO-RTO AVT T-005 SUPPORT PROJECT between ROKETSAN
(Turkey) and ONERA (France).
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based on particulate relaxation processes is given. The particulate-relaxation theory
predicts attenuation and dispersion by small, heavy particles, in close agreement with
more detailed theories, for values of wt, ( w is the circular acoustic frequency, 74
is the dynamic relaxation time of the particle) smaller than and including unity [47].
Comparison with existing experimental data of attenuation and dispersion shows good

agreement with their theory [47]].

5.5.1.1 Main Hypothesis

Theoretical development of this test case is based on the following assumptions [47];

e The gas is thermally and calorically perfect.
e The density of the particles is much greater than the density of the surrounding
e Mass transfer between particles and gas is absent.

e The total heat and momentum transfer rate between particulate phase and gas
phase is the sum of the effects due to each particle. This implies that the particle

diameter is assumed to be much smaller than the distance between the particles.

e The heat transfer between gas and particles and the resistance force to the mo-
tion of the particles are given by expression applicable in the limit of zero

Reynolds number.

e The fluctuations of pressure, density, and temperature produced by the acoustic
wave are assumed to be so small as compared with their mean values that their
squares of their cross products can be neglected. Similarly, the fluid velocity is

much smaller than the speed of sound.

e (as dissipation terms are assumed to be small with respect to two-phase dissi-

pation terms [1].
— Gas viscous stress and inside heat conduction are neglected.

e The particles are rigid (no surface tension effects), spherical and uniform tem-

perature and size.

— No heat conduction inside the dispersed phase.
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5.5.1.2 Theoretical Development of The Test Case

The general one dimensional equation for two-phase flow consisting of gas and par-

ticle phases is given below. Equations for the gas phase are;
op opu __
ot =0
Oox

p [g—”l‘ + u(%)] + 2 = iiF, (5.21)

PO + (L] + B (%) = Q, +AF, (u - u,)
Equations for the particulate phase are;

9Py Ppttp _
ot + ox 0

B |G +up (52)] = -7F, (5.22)

The perfect gas law is

p=RpT (5.23)

The governing equations above are linearized by substituting perturbed values of vari-
ables. Since perturbations of variables are small quantities their squares and cross

products can be neglected. The conservation equations for the gas phase reduce to;

%"‘Po(g—ﬁ)zo

po (%) + % = noF, (5.24)

a )
Po [3—?] + Py (a_i) =noQ)p
The conservation equations for the particulate phase are given by
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Opp yOup
o, tnm’' 2L =0

m' (52) = —F, (5.25)

ot

m'C, () = -2,

The linearized perfect-gas law takes the form

P=R (pTo +p0T) (5.26)

If the drag force and heat transfer are specified, equations represent seven
simultaneous partial differential equations in seven unknowns. It is assumed that the
drag is given by Stoke’s law for motion of a sphere in a viscous fluid. Similarly the
heat transfer coefficient £ is assumed equal to k/R. Also applicable for low-Reynolds-

number flows. With these assumptions, F',, and Q, are given by

F, = 67R (u, - u) (5.27)

and

Q, = 4nRk(T, - T) (5.28)

When considering a droplet oscillating in an acoustic field, two parameters having
dimensions of time appear. One of these is the dynamic relaxation time of the droplet

defined

2R2 ’
1= =P (5.29)
I
The other is the thermal relaxation time of the particle and is denoted by
PrC'R*} 3C’
=B 2 rpg, (5.30)

3uC, 2C,

97



Assuming that all the unknown quantities depend on x and ¢ through a factor

@ (x,1) = A ek (5.31)

where

K =k + ik (5.32)

The result is a system of four homogeneous, algebraic equations. The system has a
solution only if the determinant vanishes. Equating the resulting determinate to zero,

it is found that K should satisfy the following equation:

K 2
(ﬂ) 1+
w

Equation [5.33] can be solved in favor of k; and k,, which in turn are connected with

CuCy[CyY G YCuC,[C,
1 —iwt, | 1 —-iwty 1 —iwT,

) (5.33)

the speed of sound and attenuation coefficients by

w
= — 5.34
a I (5.34)

and
a = 2k (5.35)

The attenuation coefficient a gives the energy dissipated per unit length.

Another important coefficient is related to dispersion of acoustic energy;

ao

2
B=k - (2) (5.36)

The physical interpretation of attenuation coefficient and dispersion coeflicient can

be inferred from the Figure a 1s the coeflicient of decreasing exponential and
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[ characterizes the velocity of the wave in the two-phase medium compared to the

sound velocity in the pure gas.
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Figure 5.1: Attenuation of sound waves due to 15um diameter particles [14].

5.5.1.3 Attenuation and Dispersion Due to Numerical Diffusion

All practical numerical schemes for solving fluid flow contain a finite amount of nu-
merical diffusion. The amount of numerical diffusion is inversely related to the mesh
resolution. It is always advantageous to use high order schemes to reduce numerical
diffusion. In Figure[5.2] the results of numerical simulation with different flux solvers
of CMPS code are shown. In these simulations 16 cells per wave length are used. The

HLL-WAF+MUSCLE scheme results in the lowest numerical diffusion.

5.5.1.4 Numerical Test Case

The aim of this test case is to reproduce the results of the analysis explained in Section
[5.5.1.2]by numerical simulation. The propagation of sound waves in a channel includ-

ing suspended particles is simulated. The attenuation and dispersion characteristics
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Figure 5.2: Attenuation of sound waves due to numerical diffusion with different
numerical schemes.

of particles of different sizes are studied.

Figure 5.3: Schematic representation of the test case for propagation of sound waves
in a channel including suspended particles.

The frequency of the sound waves entering the channel is 1000Hz with relative am-
plitude of 0.01% about Py = 50bar. Parametric study is done on the sizes of par-
ticles between 5 — 120um. In the simulations 20 cells per wave length were used
which provides sufficient resolution for negligible numerical diffusion with HLL-

WAF+MUSCLE scheme.

The gas and particle properties are given below;

For momentum and heat transfer terms Stokes law (Equations [5.27] and [5.28)) were

used. The momentum transfer was formulated as;
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Gas Particle
Density Ideal gas. 1550kg/m’
C, 2440J/kg. K 1176J/kg. K
Thermal conductivity k | 0.5551W/m.K 202.4W/m.K
Molecular weight 27.7469kg /moles | -
Viscosity 9.1 x 1073 Pa.s -

Table5.1: Gas and particle properties.

F,= p,(u+d_u) (5.37)

The heat transfer term was formulated as;

6kp’'Nu
0, = RZ—SP (1,-T1) (5.38)
For low Reynolds numbers, Nusselt number is given by Nu = 2 which is used for this

test case.

The acoustic wave introduced to the computation domain by subsonic pressure inlet
boundary condition available in CMPS code. In this boundary condition, the out go-
ing Riemann invariant is used to determine the speed of sound. Then other quantities
like temperature, pressure, density or the absolute velocity at the boundary are evalu-
ated. For the outlet boundary pressure outlet condition available in CMPS was used.

This condition is based on the AUSM scheme [33]] (see Section|2.11.3)).

5.5.1.5 Results

The simulations were repeated for particles with diameters of R = 5, 8, 10, 12, 15,
18, 20, 30, 40, 80 and 120 um. The stiff source terms due to small particles did not

lead to numerical difficulties with multi stage time stepping with source splitting.

The solutions of equation [5.33] for particles of different sizes (that is for wt, values)
give attenuation and dispersion of the acoustic energy which are written in a non-

dimensional form as;
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Figure 5.4: Attenuation by particles of different diameters.
@ = (@)a (5.39)
w
. _ (o
B =) (5.40)
w
and
2 R?
wry = ZIP0 (5.41)
18u

In Figure [5.4] and Figure [5.5] the results of CMPS simulations and theory are com-
pared. The theory and simulation results show good agreement. As expected there
is an attenuation peak at wty; ~ 1. Although this test case shows the potential use
of these numerical methods for analyzing the acoustic phenomena such as acoustic
instabilities in complex rocket motor geometries, high computational cost of such

transient calculations for complex geometries should be considered well.
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Figure 5.5: Dispersion by particles of different diameters.

5.5.2 Simulation of Two Phase Inert Tep [27]

In this test caseﬂ a representative model for solid propellant motor geometries is
studied. Test is based on code-to-code comparison. The code SIERRA (ONERA,
France) is well tested software for these types of simple systems. This test case is
proposed and defined by ONERA in the scope of an NATO RTO project between
ONERA and ROKETSAN (Turkey) who supported the dilute phase solver of the
CMPS code. In this section the results of the test problem belong to this project and
will be named as ONERA (SIERRA) or ROKETSAN (CMPS) results.

5.5.2.1 Geometry and Grid

Geometry consists of a single domain with 99x16 grid points shown in Figure [5.6
Due to numerical methods used in CMPS code, this domain can also be defined as
a 98x15 grid cells. Problem is axisymmetric two-dimensional. Grid is given by

ONERA.

2 This test case is done as a part of NATO-RTO AVT T-005 SUPPORT PROJECT between ROKETSAN
(Turkey) and ONERA (France). The dilute phase solver of the CMPS is validated for solid rocket motors.
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Figure 5.7: Boundary zones[14]
5.5.2.2 Boundary Conditions

Boundary conditions are applied as shown in Figure[5.7] Injection wall is used until
point 34 in Figure [5.7] (see Section 2.11.T). Injection is normal to the face. For gas
phase, mass flow inlet boundary available in CMPS code is used. In this boundary
condition, static temperature and mass flow rate are given by user. If the flow is
subsonic, static pressure is extrapolated from the domain; otherwise total pressure is
also given by the user. This information is used to construct a second order equation
for density, which is solved to calculate velocity components. For the particle phase,
mass flow rate, velocity and temperature are given by the user. Particles and gas are
not in dynamic or thermal equilibrium. For wall surfaces, slip boundary is used for
both gas and particle phases. Walls are adiabatic for both phases. The x-axis in 2D

coordinate system is used as a symmetry axis. For out flow boundary, all variables are

first order extrapolated in SIERRA code. In CMPS, pressure outlet boundary based
on AUSM scheme [33]] (see Section2.11.2} scheme was used. Because the flow in

this zone is supersonic, the two boundary conditions lead to the same calculational

results.

104



Gas Particle
1. Propellant Surface | 0.44893kg/s | 0.098546kg/s

3387K 2600K
- 0.01m/s
4. Outflow AUSM All variables are extrapolated.

Table5.2: Boundary conditions.

Gas Particle
Density Ideal gas 1803kg/m’
C, 2437J/kg. K 1177J/kg. K
Thermal conductivity k | 0.45618W/m.K | 202.4W/m.K
Molecular Weight 27.78 -
Viscosity 9.06 x 107 Pa.s | -
Diameter 30um

Table5.3: Material Properties.

5.5.2.3 Material Properties

Material properties of gas and particle phases are given in table[5.3]

5.5.2.4 Heat and Momentum Transfer Terms

See the sections [5.1] and [5.3] for more details about the implementations of the equa-

tions given below in CMPS. The heat transfer between phases is calculated as;

6kp’Nu
b=y (1r=T) (5.42)
where
1/3
Nu, = 2.0 + 0.6Re,”* Pr (5.43)
C
Pr = % (5.44)

105



The momentum transfer term is calculated between gas and particle phases are calcu-

lated as;

3p'Cpp
F,= m |up - u| (up - u) (5.45)
Drag coefficient Cj, is defined as
24
Cp = max {— (1+0.15Re™7) ;0.445} (5.46)
Re
where
Rlu, —u
Re = PRy —u] (5.47)

u

5.5.2.5 Results

The results of the CMPS (ROKETSAN) and SIERRA (ONERA) are compared on

two selected planes. These planes are shown in Figure[5.§|

5.5.2.6 Comparison of Data on Plane i=10

The comparison of results from CMPS (ROKETSAN) and SIERRA (ONERA) codes
are shown in Figures The lines labeled as ONERA (L) are results of La-
grangian solver in SIERRA code.

5.5.2.7 Comparison of Data on Plane i=98

The comparison of results from CMPS (ROKETSAN) and SIERRA (ONERA) codes
on the plane i=98 are shown in Figures[5.18H5.26 below. The lines labeled as ONERA
(L) are results of Lagrangian solver in SIERRA code.
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Figure 5.11: Gas temperatures over line i=10 [27]
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Figure 5.17: Particle densities over line i=10 [27]
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Figure 5.21: Gas densities over line i=98 [27]

113




0.03 .
0.025 - ;
0.02f 4
I ROKETSAN | |
€ ONERA

=0.015 ONERA (L) T
> . N
001} -
0.005 |- . -
r -~ ]
I ! N
I ! ]

L 1 L L L 1 L L 1 L 1 L

4000 48000 50000 52000 54000

Pressure (Pa)
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5.5.2.8 Discussion of TEP Test Case Results

In this test case, a representative model for solid propellant motor geometries was
studied. The dilute phase model was used for particle phases. For solving particle
phase equations the flux solver based on the method defined in Eq. [5.8] was used.
Existence of a single direction for the propagation of information for the system of
equations governing the motion of the dispersed phase generated difficulties for treat-
ment of certain boundary conditions especially on the axis line. These problems
results in non-physical accumulation of particles especially at end of the motor on the
axis. This problem is handled by limiting the particle concentrations on the solution

domain.

The non-physical particles shocks and vacuums which was defined as problem of

such systems is handled well by the schemes used in CMPS.

This study showed that the results of CMPS code and ONERA’s SIERRA code are
in good agreement for this test case. The only small difference was in the pressure in

motor region. This difference very small and this is due to the preconditioning used
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Figure 5.27: Contours of gas density kg/m?.
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Figure 5.28: Contours of particle density kg/m?.

by CMPS solver for handling low Mach number flow in the motor chamber. The other
differences were observed with particle values on the nozzle exit line. This difference
exists on a part of the line where particle vacuum problem resulted in difficulties for

ONERA’s solver.

Some contour plots of data from results of the solver CMPS for the TEP test case
are shown in Figures The difference between particle and gas velocity are
high especially in the nozzle region where the velocity of gas phase is increasing with
expansion. This difference leads to high momentum transfer rates especially near axis
line where the particle concentrations are high. The difference between particle and
gas phase temperature are also high in the nozzle region. In the nozzle region the
temperature of the gas phase decreases due to expansion and also cools the particles
with a higher heat transfer rates than the rates in the chamber region. The momentum

and thermal coupling of the phases are very apparent in nozzle region.
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Figure 5.31: Contours of gas temperature K.
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Figure 5.32: Contours of particle temperature K.
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Figure 5.34: Contours of particle axial velocity m/s.
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Figure 5.35: Contours of gas radial velocity m/s.
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CHAPTER 6

HIGH RESOLUTION INTERFACE CAPTURING

6.1 Discretization of Volume Fraction

The discretization method of volume fraction is crucial for successful implementa-
tion of the interface capturing scheme which should enable capturing of interfaces in
a sharp form. The usual differencing schemes for incompressible flows have some
problems and limitations with Godunov methods which are applied to compressible
flows. First of all, for a Godunov type method described in Section 4.3 two volume
fraction values are needed on either side of a cell face to support state discontinuity.
This situation is not compatible with upwinding methods employed in usual high res-
olution volume fraction differencing schemes. Furthermore, the usual boundedness
and availability criteria cannot be used with the current method. The differencing
scheme of volume fraction used in this study is similar to the high resolution schemes

of Leonard [32]] and Ubbink [S0] based on Normalized Variable Diagram (NVD) [32].

6.1.1 Definitions

A schematic representation of a one dimensional control volume for the CHRIC
scheme is given in Fig. [6.1] The center cell D is the donor cell, the cell A is the
acceptor cell, and the cell U is the upwind cell. The flow direction is from the up-
wind cell to the acceptor cell. As aforementioned, two values of volume fractions are
needed on a face, one for the right state and one for the left state. These values can be
differentiated according to the flow velocity direction on the face. Below, the calcula-

tion procedure for the face volume fraction of an outgoing fluid ¢4 (volume fraction
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Figure 6.1: Cell representation for CHRIC scheme.

on the left side of the cell face between the donor and acceptor cells) is explained
first. Then, the procedure for an incoming fluid volume fraction a sy (volume fraction

on the right side of the cell face between the upwind and donor cells) is explained.

To differentiate from incompressible schemes, the scheme given in the next sections
is named Compressible High Resolution Interface Capturing (CHRIC) scheme which
is a non-linear blend of upwind and controlled downwind differencing [28]. Down-
winding implies that the donor cell is to donate the same fluid as presently contained
in the acceptor cell, thus the procedure ignores the presence of the other fluids in the
donor cell [50]. This means that the donor cell will first donate all the available fluid
required by the acceptor cell and then start to donate the other fluid. The amount of
the fluid donated by donor cell is limited with the available fluid in donor cell. This
is called the availability criteria. Another basic criteria about values of volume frac-
tions is the boundedness criteria which states that in the absence of sources the value
of a flow property in the flow domain cannot take values higher or lower than those
prescribed on the boundaries of the flow domain [53]. For example, volume fraction
cannot take values below zero and above one. Another criteria is local boundedness
which states that a volume fraction value must be bounded with that of its nearest
neighbors. This criteria is employed to limit the slopes of volume fractions used to

reconstruct the face values.

Mathematically the availability criteria states that,

ajc A u;p}AfAt < ahph Vi (6.1)

where Vp, 1s the volume of the donor cell. This equation can be written as
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. a
oy <P (6.2)
Cfc

where ¢’

e is face Courant number based on convective speed on the face and is defined

as

P u}p’ A At

¢ = 6.3)

PfDVD
The availability criteria puts a limit on volume fraction reconstruction inversely re-
lated to the value Ar which is also limited according to the Courant-Friedrichs-Lewy

(CFL) condition.

Since the availability criteria puts limits only to the convected scalar data, this criteria
alone is not sufficient for physically limited reconstruction of volume fraction for
compressible flows. This can be explained using Fig. 4.4 Before any mechanical
relaxation in a solution cell (velocity and pressure relaxation in this study), all the
propagating information (wave fronts) should be limited to single phase volume in the
cell as shown in Fig. 4.4 In other words, waves should not cross any phase interface
in the solution cell. For a simple one dimensional configuration this constraint can be

written as,

@pS marMAy < @V (6.4)

where S, 1s the maximum speed of the waves propagating into the donor cell. Eq.

(6.4) can be rewritten in terms of a new face Courant number c,,,

<D (6.5)
@y < . .
where ¢y, is defined as
SmaxAlAf
cpy = ——L (6.6)
Vb
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D A = D A

Figure 6.2: Reconfiguration of phase topology on a face according to face courant
number cy,,.

The boundedness criteria based on wave propagation defined by Eq. (6.5) can be
achieved by choosing At according to phasic configuration on the cell face between
the donor and acceptor cells. However, this may result in very small values for At
when one of the phase volume fractions is very low. Another way to satisty Eq. (6.5]
is to reconfigure the phase topology on the face according to a given face Courant
number cy,, so that sonic waves do not cross a phasic interface in the cell. This is
explained in Fig. [6.2] According to the procedure depicted in this figure, as the face
Courant number gets smaller the resolution of the volume fraction gets higher but Az

also gets smaller. This situation will get clearer in the following sections.

6.1.2 Compressible High Resolution Interface Capturing (CHRIC) Scheme

As aforementioned we follow the similar steps as schemes of Leonard [32]] and Ub-
bink [50] based on Normalized Variable Diagram (NVD) [32]. The normalized cell

ap and face values @, of volume fraction [32] are defined as

. ad—a
&, = 2—— (6.7)
a, —ay
a. —a!
~i U
&= —— (6.8)
@, —ay

Gaskell and Lau [18] presented a Convection Boundedness Criteria (CBC) for one
dimensional implicit flow calculations, and Leonard [32] adapted the CBC for explicit

flow calculations. The CBC for explicit flow calculations reads,
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for @, <0 or da,>1
(6.9)
. , a .
&})S&}Smin{l,c—?} for 0<@,<1

where ¢ is the maximum of the face courant numbers c. and c, which were defined
in the previous section. Using the donor-acceptor formulation given by Eq.(6.2) and

the CBC the normalized face value of volume fraction is calculated as

&, = (6.10)
a, for &,<0, &,>1
Directly using this value @, does not preserve the shape of the interface which lies

tangentially to the flow direction. To prevent this a correction is made to & using the

Ultimate-QUICKEST scheme [32]], which is defined as,

. 8cpdt +(1-cr)(6+3)  ~; ~i
mm{ D g L. a}cgc for 0<a,=<1
@;UQ = (6.11)
a for @, <0, &,>1

Corrected normalized face value d/;* is calculated from

&? = fx} Vcos 6 + &;UQ (1 — Vcos 9) (6.12)

where 6 is the angle between the interface and face normal vectors, and cos 6 is cal-

culated from

(6.13)

where 7i; is the face normal vector. Face volume fraction @y, is calculated using

normalized values as,

125



oy = @7 (o — afy) + o (6.14)

6.1.3 Calculation of Downwind Face Volume Fraction o sy

Since the Godunov scheme given in Sections 4.3 and [4.4] requires two volume frac-
tions on either sides of a cell face, a downwind face volume fraction is also needed.
This value is shown in Fig. as ayy. According to numerical experimentation we
have conducted, different procedures for calculation of sy do not have any important
effect on the volume fraction resolution. However, the boundedness criteria based on
wave propagation defined in Sec. is valid and should be applied as a limiting
value for asy. The volume fraction reconfiguration procedure explained in previous

sections is still applicable to calculation of a .

One simple way of calculating asy could be using the values directly on the down-
wind side of the face. Another yet more physical method is to assign the values
calculated for the upwind side of the face. In doing this the total amount of a phase in
the cell must be taken into account, and volume fraction configurations on the faces
must be configured 1n such a way that mass conservation limitation is satisfied. A
one simple way of doing this will explained later for multi-dimensional version of the

method.

The most robust way of calculating ayy is to accept ayy = aya. Although this as-
sumption does not represent the real expected phasic configuration at the downwind
side of the cell face, the missing information by the other phases are propagated by the
mechanical relaxation (pressure and velocity relaxation) processes in the cell. These
relaxation processes are discussed in Sections [3.2]and [3.3] The advantage of this ap-
proach is the elimination of non-conservative throttling terms which will appear for
any spatial discretization of volume fraction higher than first order. The elimination
of these terms may be the main reason for robustness of this approach. These throt-

tling terms were shown as source terms in the form of volume fraction gradients in

Eq. system (3.1J).
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6.1.4 Calculation of Face Courant Number

Proper calculation of the face Courant number c/ is essential for stability of the solu-
tion process. cy is calculated for all possible interfaces for all phases ;. The required

i

solution variables u ’

and p; are calculated with an HLLC formulation.

Wy, if  0<S%)
Ul = forj=1,..,N. (6.15)
S(ia.j) lf S(i,j) <0< S(i,j)
* D = = %
ol if  0<Sp’
pgf’j) = for j=1,.,N. (6.16)
Sii’j)pi gD _ i . i i
—S%{;E_'S)g,_,.) D if s <0 <5
cy. 18 taken as the maximum of those for all possible phase interfaces,
u(fi,j)p(fi,j)Af
cpe = max|L—+—0| forall(2.%;), i=1,..N,j=1,..N. (6.17)
pDVD

The maximum wave speed S ., required to calculate wave speed based Courant num-

ber cy,, is given by

S = 'min(S(i’j),O)‘ forall(£,%)), i=1,.,N, j=1,..,N. (6.18)

¢y is calculated as in Eq. (6.6). The face Courant number ¢ is the maximum of ¢,

and cy.
cy = max (cfw, cfc) (6.19)

6.2 Volume Fraction Discretization On Multi-dimensional Unstructured Grids

The discretization scheme described in Section[6.1lcan be extended to multi-dimensional

unstructured grids. Since upwind (donor) and downwind (acceptor) cells may not be
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readily available in unstructured grids, volume fractions should be extrapolated from
the solution data. Another complexity arises on unstructured grids in calculation of

the face Courant number.

6.2.1 Calculation of Upwind And Downwind Volume Fractions

Since volume fraction is a convected scalar, the local flow direction should be used
in the calculation of the upwind and downwind values. In our approach we construct
the one upwind and one downwind values for each cell. Hence, all the faces of a cell
use the same upwind and downwind values. This differs from the classical approach
employed for incompressible flows in which these values are calculated for each face
with a simple reconstruction procedure. This approach results in more robust and
sharp interface tracking, while it is also more physical. The upwind (donor) and
downwind (acceptor) values are reconstructed for the x- and y-directions separately,

as follows

@ax = ap + sign(u) (Vap), AS

sy = ap + sign(v) (Vap), AS,
(6.20)

ayy = ap — sign(u) Vap), AS .

ay, = ap — sign(v) (Vap), AS,

where u and v are the velocity components in the x- and y-directions, respectively, and
Vap is volume fraction gradient in the donor cell. AS , and AS, are the projections of
the donor cell volume on the x- and y- axes, respectively. ay and a4 are calculated

as,

_ |u| Qyx + |V| a’Ay _ |l/t| ayy + |V| Q'Uy

ap = , Qu =
lul + [v| |ul + [v]

6.21)

The approximation of the upwind and downwind values by the above approach does,

however, not guarantee their boundedness. Our numerical experimentation have shown
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that the volume fraction gradient Vap should not be limited by a limiter. Otherwise
use of any slope limiter results in a more diffusive interface solution. Instead, the cal-
culated values are limited following the procedure given above. The limiting bounds
Upin and @, are derived from the donor cell’s nearest neighbors which is given be-

low,

ay = min {max (a'A9 Cymin) s a’max}
(6.22)

ay = min {max (au, amin) > amax}

6.2.2 Calculation of Face Courant Number

For multi-dimensional solution grids, face Courant numbers cannot be predicted in
isolation of other faces. The convective and acoustic information should be shared
between other faces. One simple method is to relate the face Courant numbers ¢ to
the cell Courant number ¢p. An effective way of doing this on unstructured grids is

given in [54]. The boundedness criteria based on wave propagation can be written as,

af}At (S o

ASy + 50, AS ) < apVp (6.23)

max

where S* and S),,, are defined as,

max

Soa =lul+a, S =WM+a, (6.24)

max max
in which a is the speed of sound in donor cell. From Eq. (6.23)), the face courant
number cy,, is written as,

AL (S5, ASy + S0 )

Co = 7 (6.25)

This value is the minimum limit for boundedness and equal to the cell courant number,

cp. This is an interesting but obvious result for compressible multi-phase flows with
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interfaces; for higher resolution of volume fraction one should choose a smaller value

for cp than the maximum of ¢ which is also equal to the minimum value of ¢y,

6.3 Considerations for Dilute Particulate Phases

In most multi-phase flows, dilution of some phases may take place where the volume
occupied by one of the phases becomes too small to consider that phase as a contin-
uum. Existence of solid particles in a primary fluid phase is an example of highly
diluted phase. In addition to existence of dilution in a fluid, such phases may also
be introduced to the flow through boundaries of the domain. Solid propellant rocket

motors and ramjet combustion chambers are examples of this kind.

There may be some complications in numerical and mathematical modeling of dilute

phases. These difficulties are

e Pressure interaction terms tend to zero for dilute phases due to small volume
fractions. This can be seen from Eq. [d.14] Lack of particle interaction terms re-
sults in a degenerate hyperbolic system admitting only one characteristic wave

for which the speed is the particle speed u,,.

o Infinitely fast relaxation processes may not be valid for dilute phases. Partic-
ulate phases may move at different velocities than the fluid phase. Pressure
relaxation may be ignored at dilute regions. However, heat transfer between
phases becomes an important phenomena which is usually ignored for multi-
fluid applications. Interaction of dilute and primary phases should be reduced

to finite rate momentum drag and heat transfer mechanisms.

One way of handling dilute phases is to ignore diluted material volume fraction below
a cutoff value. However, most liquid and solid particles may have strong influence on
a primary phase carrying those particles, even when the particle volume fractions
are below 107*. Another well known method is to use a Lagrangian approach for
particle tracking. However, this method may require tracking of millions of particles
for real transient solutions of the flow problems which is almost impractical due to

high computational costs. Dilute phase approximation, in which some continuum
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equations are derived without pressure-like terms, may be used with the same model
problems given above. In this approximation, equations for mass fractions or particle

number densities are solved rather than volume fractions.

The scheme presented in this study may be applied to the problems involving diluted
phases with the proposed volume fraction capturing algorithm without any modifica-
tion except for relaxation processes. Below a cutoff volume fraction value relaxation
formulations are changed to momentum drag and heat transfer terms in the system
given by Eq. (3.1). The most problematic part of this approach is the physical mod-
eling of the transformation from a continuum phase to particle phase. The inverse
process of phase dilution is accumulation of some dilute phases (such as particles)
to form a continuum phase. Over a threshold value of volume fraction, particulate
phases may be considered as a continuum or a porous mix and the pressure relax-
ation processes may become important. These considerations are out of scope of the

present study and may be included as a future work.

6.4 The Algorithm

Explicit time stepping is done using a four stage Runge-Kutta scheme with optimized
stage coefficients as described in [31]. Time step is calculated for each cell according
to the stability condition defined as in [54] using standard CFL condition. A CFL
number of 2 is sufficient for the stability of the first order scheme with four Runge-
Kutta stages. For sharper interface resolution CFL number should be reduced. Each

time step is completed through the following algorithm:

1. Calculate face volume fraction values as described in Section for a sharper
interface. If first order resolution is sufficient for interface capturing or for

faster results, this stage may be passed.
2. Calculate residuals with the formulation described in Section 4.4.4]
3. Update solution variables and fluid properties,
4. Relax velocities and update energy,

5. Relax pressures then update volume fractions and energy.
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6.5 Test Cases for CHRIC Scheme

In this section, some numerical results are provided to show both the accuracy and
effectiveness of the high resolution scheme described and discussed in the previous
chapter. The first problem is a one dimensional water/air shock tube problem consid-
ered for validation of the interface capturing scheme in one dimension. The second
problem is similar to the first one, but this time it is in two dimensions. The third and
fourth test cases are one and two dimensional particulate flow problems in which the
relaxation processes are replaced by momentum and heat transfer laws to show the
applicability of the multi-material solver to different multi-phase flow regimes with-
out any modification in the flux solver. All these problems and the attained numerical

solutions are presented and discussed below.

6.5.1 1D Water/Air Shock Tube Problem

In this test case, a one dimensional shock tube tube problem is considered with a
water/air phase interface. The problem setup is the same as that given in [37]. The
length of the problem domain is 4 m, with the coordinate range being 0 < x < 4
m. The initial position of the water/air interface is at x = 2.7 m. Water and air are
modeled as pure fluids in contrast to similar studies found in literature which form the
phase interface by a mixture approach using negligible amount of the other phases in
the problem. The equations of state (EOS) for water and air are defined as stiffened

gasses (SG), as given below

p=(—1pe—yn (6.26)

where y = 1.4 and 7 = O for air, y = 4.4 and 7 = 6 x 10% for water. The initial

conditions of the problem are defined as

pw=1x10°Pa, p,, =1000kg/m?, a,=1.0, a,=0.0 for x <27

pa=1x10°Pa, p,=50kg/m?, ,=00, a,=10  for x>27
(6.27)
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where subscripts w and a denote the water and air phases, respectively. The numerical
results were obtained on a grid of 1000 cells and with a CFL number of 0.5. This
CFL value was chosen for accuracy rather than for stability considerations. In fact,
the solution scheme provides sufficient stability up to a CFL number 1.0, but for
capturing the interface with sufficiently high resolution in compressible problems, a
CFL value of 0.5 or lower should be used. This issue was discussed in Sec.
The results for various flow properties are shown in Figl6.3] together with the exact
solution. The numerical results are in very good agreement with the exact results.
The exact solutions of volume fractions are not shown since they exactly overlap the
computed results. The computed phase interface between water and air by the present
method is sharper than those computed by similar interface capturing methods such

as [37, 11} 2,146, 42].
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Figure 6.3: Solution of 1D water air shock tube problem at t = 900us
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6.5.2 Under Water Explosion

This test problem is concerned with a model underwater explosion problem [46) (19,
21]]. The solution domain is a rectangular domain of (x,y) € [-2,2] x [-1.5, 1] m?.
This domain has three different material zones initially which are illustrated in Fig.
6.4 Initially, there is a water-air interface at y = 0 line and an explosive bubble of
radius r = 0.12 m with the center at (x,y) = (0, —0.3) m in water. The solution grid
consists of 100000 cells in total, mostly unstructured. Unstructured solution grid is

also shown in Fig. [6.4] As the previous test cases CFL number 0.5 was used.

Air above the water surface is assumed to be a perfect gas at standard atmospheric

conditions and defined by

Pa = 101325Pa, p, = 1.225kg/m’, y, = 1.4, a, = 1.0, (6.28)

and the explosion gas bubble under the water is also a perfect gas with the state

variables given by

p. = 10°Pa, p, = 1250kg/m’, v, = 1.4, a, = 1.0, (6.29)

while water below the air interface is modeled with the Mie Gruneisen equation of

state (Eq. [6.26)), and the state variables are given by

pw = 101325Pa, p,, = 1000 kg/m>, v, = 4.4, @, = 1.0 (6.30)

The initial high pressure of the gas bubble yields a circular shock wave in the water.
After this shock wave reaches the water surface, the shape of the water-air interface
starts to deform and soon after the circular shape of the gas bubble starts to evolve
into an oval shape [19]. The volume fraction solution at ¢ = 1.2 ms is shown in
Fig. [6.5 The gas-water interface is again captured at most within two cells which
shows the interface capturing ability of the present scheme. This ability is superior
to those of the other interface capturing schemes found in literature for compressible

flows. In Fig. @ the pressure distributions at times ¢t = 0.2,0.4,0.6,0.8 and 1.2 ms
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Figure 6.4: Left: Initial material positions for under water explosion problem. Right:
Solution grid near the initial gas bubble surface.

are displayed. The captured interfaces at these times are illustrated as white lines on

colored pressure contours. The results are very similar to those of others [46, |19, 21]].

Figure 6.5: Left: Volume fraction solution of underwater explosion problem at t =
1.2 ms. Right: Close-up of the solution.

6.5.3 Liquid-Gas Interface Tangential Shock Wave Problem

The previous problem of water-gas interface is a generic problem with applicability
of both interface capturing and interface tracking algorithms. In the third test case
some interface regions undergo some physical micro scale mixing processes. These
micro scale processes may not be resolved with interface tracking algorithms unless
very fine meshes (micro scale) are used. Our interface capturing scheme with proper
relaxation terms yields physical results in macro scale without a need to resolve the

interface in micro scale.

135



Time =0.2 ms Time = 0.4 ms
le+6 le+7 ‘ le+8 le+6 le+7 le+8

_\H‘ \i\\‘ HH\‘- ﬁ\m‘ \h\ 1] [ -

101325 333858000 101325 233830000

R —

O

Time = 0.6 ms Time =0.8 ms
]\9-‘—6 (- -le‘+7 | 1] \] e+8 ]e+5 L1 \] e‘+é | -le‘+7 =) | \] e‘+8
101325 ‘ 308571000 80363 337405000

Time =1.2ms

loto et/ etB

101325 256098000

Figure 6.6: Solutions of pressure distribution (Pa) for underwater explosion problem.
White lines show material interfaces.
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The initial configuration of the problem is shown in Fig. There are three fluids
in a tube separated by interfaces. Upper right of the tube is filled with gas phase,
while the bottom right part of the tube is filled with a liquid. The left part of the
tube is filled with a high pressure fluid at p = 10° Pa. Since both the gas and liquid
phases are considered as compressible, there are two shock waves propagating in
both phases. The shock wave in liquid moves faster, and this results in a pressure
difference between the gas and liquid phases in the post shock region driving the

initial horizontal interface into liquid phase. Transverse waves propagates in gas and

liquid phases.
Gas
High Pressure
Liquid
Liquid
Shock

L -> Gas

High Pressure 7 v
Liquid Shock
N Liquid

Figure 6.7: Schematic representation of shock tube problem with liquid-water inter-
face.

The solution grid consists of 125000 rectangular cells. As previous example, CFL
number of 0.5 was used. A Schlieren like image of the numerical solution at time
t = 6 x 107 s is given in Fig The complex wave structure due to transverse
waves resulting from the pressure difference in the post shock region can be clearly

seen in Fig. The volume fraction solution at time = 6 X 107 s is also shown in
Fig. [6.9]

A mixing region of the three phases can be seen in Fig. [6.9] This macro scale mixing
of the phases is a result of micro scale multi-dimensional processes. These micro
scale processes cannot be resolved by the current coarse grid used for the problem

using a interface tracking method. These multi-dimensional micro scale motions are
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Figure 6.8: Color Schlieren like image (magnitude of the density gradient) of the
solution att = 6 x 10™* s.

more deeply considered in [2}, 42]].

0.25 0.5 0.75

B
0 1

Figure 6.9: Liquid volume fraction at time t = 6 X 10™* s. Right is the close-up view
of mixing region.

6.5.4 Highly Diluted multi-phase Test Cases

Some considerations and applicability of our volume fraction discretization method
to particulate phase problems was discussed in Section[6.3] In the next two parts, we

give two interesting applications for these types of problems.

6.5.4.1 Attenuation of Acoustic Waves by Suspending Particles

An interesting validation problem for dilute phase models is attenuation of acoustic
waves due to particle interactions which is analytically studied by Temkin and Dob-

bins [47]. The temperature and velocity of a particle suspended in an acoustic field
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are subject to fluctuations that may lag behind those of the surrounding fluid [47]. In
their paper they present a theory for acoustic attenuation and dispersion in an aerosol-
based particulate relaxation processes. Their particulate relaxation theory predicts
attenuation and dispersion by small to heavy particles. The predictions by this theory

is in close agreement with more detailed theories and existing experimental data [47]).

The aim of the test case in this section is to reproduce the results of the analysis ex-
plained in [47]]. The attenuation and dispersion characteristics of particles of different
sizes suspended in a gas phase are studied. The geometry of the channel consists
of a simple one dimensional channel. Acoustic waves of 1000 Hz frequency are in-
troduced into the channel. Waves enter the channel with an amplitude of 0.01 %
of the mean pressure Py = 5 X 10° Pa. A Parametric study is conducted for parti-
cle sizes ranging from 1 to 120 um. Since numerical diffusion may introduce extra
non-physical attenuation, a high-order method based on a combination of linear re-
construction and Weighted Average Flux (WAF) [/] is used. This combination of
second order methods provides higher resolution than second order methods and 20
finite volume cells per wavelength is sufficient to resolve acoustic propagation with
negligible numerical diffusion for the problem. Momentum and heat transfer terms
are modeled using Stoke’s law [8]. The gas and particle properties used for the simu-

lations are given in Table[5.1]

Acoustic waves are introduced to the domain by a subsonic pressure inlet boundary
condition. On the inlet total pressure and total temperature are specified and the out
going Riemann invariant is used to determine the sound speed. For the outlet of the
channel, a non-reflecting boundary condition based on the AUSM scheme [34] was

used.

Simulations were carried out for particle diameters of R = 5, 8, 10, 12, 15, 18, 20,
30, 40, 80, and 120 um. The results are compared to the analytic solutions based
on the method given in [47/]. The simulated results are in excellent agreement with
theory and the results of the dilute phase model previously given in Chapter[5] In this
scheme, although the particle flux terms tends to go to zero due to the flux formula

4.14] volume fractions are still tracked.
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Figure 6.10: Attenuation and dispersion of 1000 Hz acoustic waves due to different
sizes of particles suspended in a gas.
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6.5.4.2 Internal Ballistics of A Solid Propellant Rocket Motor

Another sample problem for dilute phases may be numerical simulation of internal
ballistics of solid propellant rocket motors (SPRM). Addition of metal particles to
the main ingredient of the solid propellants is very common to increase their internal
energy. Fig. [6.11shows an example computed solution of the volume fraction distri-
bution of the metal particles with the boundary conditions marked for a model motor
[27]. Problem was solved on a two dimensional axi-symmetric solution grid. Mo-
mentum transfer source terms were calculated using the correlations given in Schiller
and Naumann [45]. Similarly, heat transfer source terms were calculated using the
correlation given in Ranz and Marshal [39]. The employed values for the gas and

material properties are given in Tables[5.2]and [5.3]

At convergence (steady-state) of this kind of problems one usually observes velocity
differences between the gas and particle phases because the velocity relaxation for di-
lute phases is very slow compared to interface problems. The magnitude distribution
for the velocity difference |V, — V,| between the gas and particle phases is shown in

Fig.[6.12] Temperature differences between these phases are also shown in Fig. [6.12]

0.0004 0.0008 0.001
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Figure 6.11: Volume fraction distribution of particles in a model SPRM.
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Figure 6.12: Distribution of temperature and velocity differences between gas and
particle phase (T, — T, and |Vg - Vp|).
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CHAPTER 7

CONCLUSION

On starting this thesis study, our purpose was to develop a generic discretization
method applicable for both compressible interface and compressible mixture prob-
lems. This is important because phasic interfaces may undergo micro mixing pro-
cesses which gradually destroys sharp interfaces and produces mixture regions. This
phenomena becomes especially important for high speed flows and explosions which

are the main application area of this study.

A novel interface capturing and a generic simulation method for compressible het-
erogeneous media is developed. The developed differencing scheme used for volume
fraction provides comparable resolution of the interfaces with tracking methods on
multi-dimensional unstructured grids and very robust compared to other interface
capturing methods studied in the related literature. The resulting method provides
ignorable numerical mixing of phase interfaces while giving physically correct re-
sults for pressure and energy in contrast to other methods available in the literature
such as [2, 42, 30, 37]. All the problems associated with the methods given in cited
studies are resolved in this thesis study. The method given in [42] is extended to
multidimensional problems with more than two phases. Multidimensional and multi-
phase versions of the artificial viscosity terms are derived to stabilize the solution
of seven equation model used in [42]. Non-conservative terms are discretized with
similar methods used to derive the artificial viscosity terms. A new method based
on discrete equations is introduced. This method resolves all the problems associ-
ated with the non-conservative eqautions and terms. In contrast to the method given

in [2], the application of the method derived in this study to multi-dimensional and
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multi-phase problems is very straightforward. The high artificial mixing of interfaces
associated with the methods given in [3, 136, [2, |37] are fully resolved. The volume
fraction discretization method developed provides the highest possible resolution of
phase interfaces (in one cell) even in unstructured tetrahedral meshes when used with
the interface capturing methods derived in this study. In addition to these solution
methods, some special boundary conditions and preconditioning methods for low
speed steady flows were applied. For high spatial resolution, combinations of lin-
ear reconstruction and Weighted Average Flux (WAF) methods for unstructured grids

were also applied in some problems.

The developed methods can be applied for both interface and mixture problems with-
out any modification. The methods developed in this study may have applications in
some other fields including wave propagation with material interfaces such as shallow

water equations and plasma flow.
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