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ABSTRACT

NUMERICAL MODELING OF GENERAL COMPRESSIBLE MULTI-PHASE
FLOWS

Kalpaklı, Bora

Ph.D., Department of Engineering Sciences

Supervisor : Prof. Dr. Hakan I. Tarman

Co-Supervisor : Prof. Dr. Yusuf Özyörük

October 2013, 149 pages

In this thesis, some novel methods for solution of compressible, multi-phase flows on

unstructured grids were developed. The developed methods are especially advanta-

geous for interface problems, while they are also applicable to multi-phase flows con-

taining mixtures as well as particle suspensions. The first method studied was a multi-

dimensional, multi-phase Godunov method for compressible multi-phase flows. This

method is based on the solution of a hyperbolic equation system for compressible

multi-phase flows. There are several difficulties with this hyperbolic equation sys-

tem due to non-conservative volume fraction equation and non-conservative terms

also known as throttling therms existing in momentum and energy equations. Ro-

bust and accurate multi-dimensional discretization of these terms were derived based

on Abgrall [1] criterion. Next a new method based on discrete equations for multi-

dimensional and multiphase problems on unstructured grids was developed. This

method resolves all the problems associated with the non-conservative equations and

terms. The high artificial numerical mixing of phase interfaces associated with avail-

able compressible schemes was resolved with a novel volume fraction differencing
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scheme. The developed differencing scheme used for volume fraction is the only

scheme providing comparable resolution of the interfaces with tracking methods on

multi-dimensional unstructured grids and very robust compared to other interface

capturing methods studied in the related literature. The resulting methods provide

ignorable numerical mixing of phase interfaces on ustructured solution grids while

giving physically correct results for pressure and energy in contrast to other methods

available in the literature.

In addition to these solution methods, some special boundary conditions and pre-

conditioning methods for low speed steady flows were applied. For high spatial res-

olution, combinations of linear reconstruction and Weighted Average Flux (WAF)

methods were also applied in some problems.

Keywords: Compressible flow, Multi-phase , Particulate, Shock waves, Interface

Capturing
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ÖZ

GENEL SIKIŞTIRILABİLİR ÇOK FAZLI AKIŞLARIN SAYISAL
MODELLENMESİ

Kalpaklı, Bora

Doktora, Mühendislik Bilimleri Bölümü

Tez Yöneticisi : Prof. Dr. Hakan I. Tarman

Ortak Tez Yöneticisi : Prof. Dr. Yusuf Özyörük

Ekim 2013 , 149 sayfa

Bu tezde, sıkıştırılabilir çok fazlı akışların çözümü için yeni sayısal yöntemler geliş-

tirilerek yapısal olmayan çözüm ağlarına uygulanmıştır. Geliştirilen yöntemler özel-

likle arayüz problemleri için uygun olmasına rağmen karışım ve partiküllü akışlara

da uygulanabilmektedir. Çalışmada ilk olarak bazı matematiksek ve sayısal formü-

lasyonların çıkarılması için çalışıldı. Bu çalışma sonucunda elde edilen yöntemler

üç başlıkta toplanabilir; 1. Çok fazlı sıkıştırılabilir akışları tanımlayan bir hiperbolik

denklem sisteminin çözümü, 2. Seyreltik faz yakalşımının yapıldığı bir çözücü, 3.

Ayrık korunum denklemlerine dayanan sonlu hacimler çözücüsü. Ek olarak yüksek

çözünürlüklü bir arayüz yakalama yöntemi geliştirilerek ayrık korunum denklemle-

rine uygulanmıştır. Elde edilen yöntemlerin kararlı olduğu ve fiziksel olarak doğru

sonuçlar sağladığı gözlenmiştir. Literatürde var olan ara yüz yakalama yöntemlerinin

tersine, faz ara yüzleri mümkün olan en yüksek çözünürlükte arayüz izleme yöntem-

leri ile karşlaştırılabilir doğrulukta çözülebilmektedir. Bu tür skıştırılabilir çok fazlı

problemler için geliştirilmiş olan yötemlerde karşılaşılan ve korunumsuz denklem ve
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terimlerle ilişkilendirilen sorunlar, bu tezde geliştirilen yöntemlerle saf dışı bırakıl-

mışlardır.

Bunlara ek olarak bazı özel sınır koşulları ve düşük Mach sayılı akışlar için ön koşul-

landırma yöntemleri uygulanmıştır. Uzaysal yüksek çözünürlük için doğrusal yeniden

yapılandırma ve ağırlıklı ortalama akı yöntemleri birleştirilmiştir.

Anahtar Kelimeler: Sıkıştırlabilir akış, Çok fazlı, Parçıklı akış, Şok dalgaları, Arayüz

yakalama
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CHAPTER 1

INTRODUCTION

The use of computational methods especially in fluid dynamics applications is ex-

panding throughout industry, academia, defense and research community. The flow

fields of interest are becoming more complicated requiring complex three and two

dimensional geometric modeling capabilities with high order spatial accuracy. Many

applications include flow problems ranging from incompressible, low Mach number

flows to supersonic compressible flows at the same time. The field of compressible

multi-phase flow is one of the most complex research areas in computational fluid

dynamics.

In compressible multi-phase flows, fluids have different physical states and thermo-

dynamical properties and are separated by interfaces. Each phase may have different

pressure, velocity and temperature values along with different thermophysical prop-

erties such as different equation of states.

1.1 Categorization of Compressible Multi-phase Problems

Compressible multi-phase flows are encountered in many situations in industrial and

especially in ballistic applications. Explosions, blast waves propagating in multi-

phase media, particles in a rocket motor and some nuclear energy systems are few

examples. Although all these examples are categorized as compressible multi-phase

flows, they may consist of one or more of the three different multi-phase flow regimes.

The first multi-phase system we can distinguish from others is multi-material inter-

faces separating two or more different compressible materials with different physical
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and thermodynamical properties. In an interface problem, there are well defined or

resolved interfaces which have an important impact in behavior of the physical sys-

tem. Blast waves propagating through these interfaces may be encountered in ex-

plosion research. The second flow regime which can be categorized in the scope of

compressible multi-phase flows is compressible mixtures. In a mixture, there are no

well defined interfaces between phases and the effect of the inter-facial topologies

are taken into account only for some bulk physical interactions between the com-

pressible phases. Bubbly flow in a pressurized water nuclear reactor channel may

be considered as a compressible mixture provided that we can define interactions be-

tween water and vapor bubbles in terms of volume fractions and bubble diameters.

In many cases, even there may not be any topological information such as diameters

of the secondary phases and the only information may be volume fractions. These

can be considered as real mixtures. Some schematic representations of multi-phase

topologies are shown in Fig. 1.1.

Figure 1.1: Schematic representation of different multi-phase flows. [42].

In computational practice, categorization of multi-phase flows is done according to

required grid resolution of interfaces in a problem. For instance, using sufficiently

fine solution grid, interfaces of microscopic particles suspended on a gas can be re-

solved and approached as an interface problem, although this may require some ten

billions of grid points for a small region of three dimensional problem. Thus, the

method one may approach a multi-phase problem is partly related to computational

resources. In practice, microscopic particles in a primary gas or liquid phase can be

approached as dilute particles in which phase interactions can be modeled with some
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simple momentum drag and heat transfer correlations. These particle models provide

sufficient accuracy for practical engineering.

1.2 Characteristics of Compressible Multi-phase Flows From Computational

Point of View

The main characteristic of the compressible flows is the occurrence of discontinu-

ities (high and very rapid changes) in flow variables and also in fluid properties. In

compressible multi-phase flows there are additional discontinuities which are the in-

terfaces between phases. The occurrence of discontinuities and their interactions may

have strong effects on flow characteristics. The continuous pressure waves (acoustic

waves) also have complicated physics in a multi-phase flow [47].

Numerical simulation of multi-phase flows are mostly based on the Euler or Navier-

Stokes equations augmented by one or several species of conservation equations. The

classical one pressure two-fluid models in literature and in currently available com-

mercial CFD codes are in this category. All these classical numerical methods pro-

duce artificial diffusion of contact discontinuities resulting in inaccurate pressure and

temperature [42]. In addition, these methods show bad convergence characteristics

and mostly it is impossible to get a convergent solution for the phases with very dif-

ferent properties. Some models utilize a dilute approximation in which the volume

fraction of the primary phase is assumed to be unity, however this approximations

leads to degenerate hyperbolic systems [43].

Well posed hyperbolic models for compressible two-phase models include non-conservative

products. The occurrence of non-conservative terms is one of the most significant dif-

ficulties in these type of models. Non-conservative terms appear in momentum and

energy equations, and generally one of the equations is written in non-conservative

form.

Since discontinuous solutions are considered in these type of problems, non-conservative

formulations lead to numerical and mathematical problems. Numerical solution may

be very sensitive to the treatment of non-conservative terms and equations [25, 2].
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The compressible multi-phase models with assumption of different pressure and equa-

tion of states for each phase have some nice mathematical properties listed below

[29, 42];

• They are strictly hyperbolic. This means that equation system defining com-

pressible multi-phase models admits distinct real Eigen values (wave speeds)

for each state variable (momentum, density, energy) for each phase in all flow

conditions. This property simplifies the development of proper numerical schemes

such as Godunov type finite volume methods based on the flux calculations on

the control volume faces for conserved variables (mass, momentum, energy).

• They apply to both interface and mixture problems.

• Unique formulation for all types of multi-phase problems allows solving the

full set of equations with the same numerical method at each computational

cell.

• Energy conservation is ensured at the interfaces with a pressure relaxation

procedure. This pressure relaxation procedure must be added to the solution

scheme due to the physical fact that each phase has the same pressure on the

interface separating the phase materials.

• These models use pure material equation of states for each phase instead of a

mixture equation of state which is based on unphysical equilibrium assump-

tions.

These models have also some drawbacks and difficulties in application;

• System of partial differential equations cannot be written in conservative form.

• It is not easy to derive robust and accurate numerical schemes even in one

dimension.

• Solution steps for velocity and pressure relaxations are required.
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1.3 Related Literature

Common way of treating multi-phase problems has been based on solution of con-

servation equations for the fractions of each phase’s properties; density, momentum,

energy and pressure. These fractions are naturally introduced into well known con-

servation equations through a volume fraction value α defined for each phase, and

the interactions, such as phase conversion, momentum and energy exchanges, be-

tween the phases are introduced into the equations through proper right-hand side

sources. Additional constraining equations such as sum of the volume fractions being

unity, and substantial derivative of a phase volume fraction being zero, accompany

the mass, momentum, and energy conservation equations. Of course, the additional

terms modeling the multi-phasic effects make numerical solution approach of such an

equation system really different than that of conventional single-phase flow problems.

The numerical solution of hyperbolic compressible multi-phase models including in-

terfaces requires several ingredients [30, 29]. The numerical procedure involves a

non-conservative hyperbolic hydrodynamic solver, an instantaneous velocity relax-

ation procedure and an instantaneous pressure relaxation procedure. A good example

is the work of Saurel and Abgrall [42]. In their work, they proposed a multi-phase

Godunov method for compressible multi-phase flows. This method is studied and

extended to for more than one dimensions in Chapter 3 in this thesis.

Saurel and Abgrall’s [42] multi-phase Godunov method with proper handling of non-

conservative terms and application of relaxation procedures was able to solve the

seven equation compressible two-phase flow model of [12, 44]. Although the missing

data problem associated with missing waves, resulting from the averaging procedure,

across the material interfaces was overcome by relaxation procedures, the method is

not robust in some conditions especially when high gradients of flow variables such

as shocks interact with volume fraction discontinuities (phase interfaces). This issue

can be explained by considering the method’s approach for handling the information

flow across a phase interface. A material interface in this method may only be de-

fined using very small volume fractions for one of the phases. The method passes

information across the interface between the same phases first, and then propagates

to the other phases by relaxation procedures. In this way the missing waves (missing
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information) are recovered. However, because the phase with a very small volume

fraction such as 10−6 is to get the whole information on an interface first, the method

is very prone to numerical difficulties related to the limits of the equation of state used

for this phase. This problem becomes more significant especially when high pressure

gradients such as shock waves interact with the material interfaces.

Massoni et al. [36] and Allaire et al. [3]proposed five equation models for two-

phase compressible mixtures. The advantage of these models were simplicity and

less computational requirements compared to seven equation two phase model of

[12, 44] which was used in [42]. Murrone et al. [37] proposed a similar five equation

model. In contrast to works of Massoni and Allaire [36, 3], they derive the five

equation model by an asymptotic analysis of the seven equation model in the limit of

zero relaxation times instead of using a priori closures [37]. The main disadvantage

of these approaches is similar to that of the seven equation models due to lack of a

conservative form. Also, artificial diffusion zones over the phase interfaces become

very large with poor spatial resolution used in computations. Murrone at al. tried

to overcome this high artificial diffusion by increasing order of the other solution

variables using very high order methods in their test cases.

In fact, the problem with the methods mentioned above originates from the employed

system of equations. This system is a pure Eulerian multi-phase model describing

each phase as a continuum without a material discontinuity such as a phase interface.

In principle, the difficulty can be overcome by approaching the problem at a more

basic level. Discrete equations can be produced at material interfaces to supply a Go-

dunov method with required numerical fluxes averaged over the cell faces. In fact,

Abgrall and Saurel used this approach in a successful and mathematically elegant

way [2] to overcome the problems existing in their previous study [42]. With Dis-

crete Equations Method they were also able to solve difficulties associated with the

non-conservative products that appear in the seven equations model. In their method,

interface topology on the cell interfaces was reconstructed using a stratified equiva-

lence of the real interface (see Fig.1.2 which was used in [2]). Mathematically this

reconstruction with addition of the Lagrangian fluxes as source terms eliminates the

problematic non-conservative throttling terms. However, in their reconstruction of

new interface topology and calculation of Lagrangian fluxes, macro scale flow condi-
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tions are not considered. This results in a high artificial mixing of the volume fractions

inhibiting tracking of the sharp interfaces. Actually, derivation of such a method even

in one dimension is not straightforward and unstructured multi-dimensional counter-

part of the method was left unclear in the work of Abgrall and Saurel [2].

In this thesis, methods developed in Chapters 3, 4 and 6 provides more powerful

and robust schemes for multi-dimensional applications. All the problems associated

with the methods given in cited studies are resolved in this thesis study. In Chap-

ter 3, the method given in [42] is extended to multidimensional problems with more

than two phases. Multidimensional and multi-phase versions of the artificial viscos-

ity terms are derived to stabilize the solution of seven equation model used in [42].

Non-conservative terms are discretized with similar methods in the same Chapter. In

Chapter 4, a new method based on discrete equations is introduced. This method re-

solves all the problems associated with the non-conservative equations and terms. In

contrast to the method given in [2], the application of the method derived in Chapter

4 to multi-dimensional and multi-phase problems is very straightforward. The high

artificial mixing of interfaces associated with the methods given in [3, 36, 2, 37] are

fully resolved in Chapter 6. The volume fraction discretization method derived in

Chapter 6 provides the highest possible resolution of phase interfaces (in one cell)

when used with the interface capturing method derived in Chapter 4. A more detailed

outline of the study is given in the next section.

Figure 1.2: Schematic representation of the equivalence between a bubbly flow or a
droplet flow with a stratified flow [2].
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1.4 Methodology and Outline of The Thesis

In Chapter 3, the method proposed by Saurel and Abgrall [42] is extended to multi

dimensional unstructured grids and the solution procedure is explained. Two different

mathematical and numerical models in addition to a dilute phase solver is developed.

Constructing the models is not straightforward even for one dimensional cases stud-

ied in the cited papers. Some symbolic calculation packages (mainly Maple [35])

was utilized to develop multidimensional unstructured counterparts of the models. In

thesis study, the steps below are followed for constructing and testing the developed

methods.

• The complex numerical methods for compressible multi-phase flows are in fact

extensions of methods for compressible single phase flows. Before studying

on multi-phase flows, single phase flows should be well defined and tested.

In Chapter 2, basic numerical methods are defined which will be used in de-

veloping multi-phase methods in later chapters. In Section 2.11 some impor-

tant numerical boundary condition schemes are explained for general Godunov

methods. Finally, these methods explained in first two Sections applicable to

single phase flows are tested in Section 2.12.

• In Chapter 3, the first multi-phase method for solution of compressible multi-

phase flows is developed. This method is based on the one dimensional scheme

given in [42]. In Chapter 3, multi-dimensional counterparts of the formulations

are derived and other basic processes such as pressure and velocity relaxations

are explained in detail. In Chapter 4, a discrete equations based approach is in-

troduced. This approach is introduced as an alternative to continuous approach

given in Chapter 3. These two methods are compared in Section 4.5 using two

test problems.

• Since both continuous and discrete approaches developed in Chapters 3 are not

applicable to diluted particle phases, a dilute phase approach for particulate

flows and suspensions is introduced in Chapter 5. This numerical is validated

against some tests cases in Chapter 5.5.

• The discretization method of volume fraction on sharp phase interfaces is cru-
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cial for successful implementation of the interface capturing schemes devel-

oped in Chapters 3 and 4. Thus a novel high resolution volume fraction dis-

cretization method which is applicable to compressible interface, mixture and

particulate problems is developed in Chapter 6. This method is validated in

Chapter 6.5 for some test cases which are also used in previous chapters.

1.5 Basic Numerical And Coding Framework

The goal of this study was to develop methods for the solution of multidimensional

compressible multi-phase flows. Due to complexity of the physical problem, special

numerical and mathematical models were developed in addition to the methods devel-

oped for multi-phase flows. The developed code framework is named as CMPS and

used for testing the models developed in this study. CMPS code framework utilizes

the following methods;

• Unsplit Godunov finite volume method

• HLLC numerical fluxes (approximate Riemann solvers)

• Combination of Weighted Average Flux (WAF) and MUSCLE reconstruction

methods for high order spatial accuracy

• Preconditioning for near incompressible secondary phases and low Mach num-

ber flows

• All speed versions of flux solvers for preconditioned equations

• Combination of low-Mach-number preconditioning and artificial compressibil-

ity methods for incompressible fluids

• Unstructured, multi domain, multi zone, mixed element, 2-D, 3-D and axisym-

metric solver

• Object-oriented methods in C++.
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CHAPTER 2

NUMERICAL METHODS FOR SINGLE PHASE FLOWS

The complex numerical methods for compressible multi-phase flows are in fact exten-

sions of methods for compressible single phase flows. Before studying on multi-phase

flows, single phase flows should be well defined and tested. In this chapter basic nu-

merical methods are defined which will be used in developing multi-phase methods

in later chapters.

2.1 Discretization of Euler Equations With Finite Volume Method (FVM)

FVM is a powerful approach which can be used with complex multidimensional un-

structured grids. In FVM, the integral equations for governing conservation laws are

discretized directly in physical space with reference to a Cartesian coordinate frame.

Detailed information about application of FVM on fluid dynamics can be found in the

books [23, 9]. For a more brief description of the method, reference [48] is recom-

mended. A general fully discrete explicit scheme using FVM for a general computing

cell C0 (see Fig. 2.1) is written as,

Un+1 = Un −
∆t
V

N∑
s=0

AsT−1
s F̂n

s (2.1)

In Eq. (2.1), n and s specifies the time and cell face indexes respectively. ∆t is the

time step and V is the volume of the computational cell. As is the area of the cell face

s. F̂s is the inter-cell flux at cell face s. F̂s is calculated with an exact or approximate

Riemann solver using the left and right state vectors rotated to to local coordinate
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Figure 2.1: Example of two dimensional quadrilateral and triangular computational
cells.

frame aligned with the face normal of face s. This will be explained in the next

section. Ts is the rotation matrix for face s. U is the vector of conserved variables

given below for two and three dimensions respectively.

U =



ρ

ρu

ρv

ρE


(2.2)

U =



ρ

ρu

ρv

ρw

ρE


(2.3)

here ρ is density, u is x-velocity, v is y- velocity, w is z-velocity and E is the total

energy per unit volume
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E = ρ
1
2

(
u2 + v2 + w2

)
+ ρe (2.4)

where e is the internal energy.

2.1.1 Coordinate Rotation

In Eq. 2.1, F̂s is calculated using left and right states denoted by the indexes 0 and

1 respectively. 0 always denotes the current computational cell while the index 1

denotes neighboring cell. Figure 2.1 shows this notation. In calculation of F̂s, we

used Rotational Invariance property of the Euler equations. This property is used to

deal with domains that are not aligned with Cartesian coordinate frames. Interested

reader can see the reference [48] for a proof of this property of Euler equations. For

the assessment of this property in a computational algorithm, one should calculate

rotation matrices Ts for each face. These rotation matrices are used to rotate data

vectors U0 and U1 in such a way that the new x̂ coordinate is aligned with the face

normal. The positive x̂ direction is from left cell C0 to the right cell C1 (see Figure

2.1).

The rotation matrices in two and three dimensions are given as

T =



1 0 0 0

0 cos (θs) sin (θs) 0

0 − sin (θs) cos (θs) 0

0 0 0 1


(2.5)

T =



1 0 0 0 0

0 cos
(
θy

)
cos (θz) cos

(
θy

)
sin (θz) sin

(
θy

)
0

0 − sin (θz) cos (θz) 0 0

0 − sin
(
θy

)
cos (θz) − sin

(
θy

)
sin (θz) cos

(
θy

)
0

0 0 0 0 1


(2.6)

13



In Eq. 2.5, θs is the angle between the face normal vector of face s and the x coordinate

in the counterclockwise direction. The application of three dimensional coordinate

rotation is more complicated and interested reader can see some books such as on

computer graphics. The methodology used in this study is explained below.

In three dimensions, one need only two rotations not three and the rotation matrix can

be written as product two rotation matrices

T = TyTz (2.7)

with

Ty =



1 0 0 0 0

0 cos
(
θy

)
0 sin

(
θy

)
0

0 0 1 0 0

0 − sin
(
θy

)
0 cos

(
θy

)
0

0 0 0 0 1


(2.8)

and

Tz =



1 0 0 0 0

0 cos (θz) sin (θz) 0 0

0 − sin (θz) cos (θz) 0 0

0 0 0 1 0

0 0 0 0 1


(2.9)

where θy and θz are angles of rotation about y and z coordinates. Rotations are done

in counter clockwise. Below simple and efficient methods are given for calculation of

rotation matrices using face normal vectors ~n.

In two dimensions
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cos (θ) =
n1∣∣∣~n∣∣∣ , sin (θ) =

n2∣∣∣~n∣∣∣ (2.10)

Then the two dimensional rotation matrix becomes,

T =



1 0 0 0

0 n1 n2 0

0 −n2 n1 0

0 0 0 1


(2.11)

For three dimensional cases the trigonometric functions in rotation matrices can be

defined in terms of the face normal vectors in two steps. First the elements of the Tz

are calculated as,

cos (θz) =
n1√

n1
2 + n2

2
sin (θz) =

n2√
n1

2 + n2
2

(2.12)

Then the elements of the rotation matrix Ty is calculated using the face normal vector

in the new coordinate system rotated about the z − axis,

cos
(
θy

)
=

n3√
n1

2 + n2
2 + n3

2
sin

(
θy

)
=

√
n1

2 + n2
2√

n1
2 + n2

2 + n3
2

(2.13)

The inter-cell flux F̂s is calculated using rotated data vectors Û0 = TsU0 and Û1 =

TsU1. After calculating inter-cell fluxes on each face, calculated fluxes should be

rotated back to original Cartesian frame using the inverses of the rotation matrices

given below.

For two dimensions
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T−1 =



1 0 0 0

0 n1 −n2 0

0 n2 n1 0

0 0 0 1


(2.14)

For three dimensions

T−1 = (TyTz)−1 = T−1
z T−1

y (2.15)

with

T−1
y =



1 0 0 0 0

0 cos
(
θy

)
0 − sin

(
θy

)
0

0 0 1 0 0

0 sin
(
θy

)
0 cos

(
θy

)
0

0 0 0 0 1


(2.16)

and

T−1
z =



1 0 0 0 0

0 cos (θz) − sin (θz) 0 0

0 sin (θz) cos (θz) 0 0

0 0 0 1 0

0 0 0 0 1


(2.17)

2.2 The Split Multi-Dimensional Riemann Problem

In a Godunov type Finite Volume Method as in Section 2.1, one requires the solution

of split Riemann problems at cell faces. The x̂− split Riemann problem for the Euler

equations can be written as the initial value problem given below,
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∂Û
∂t

+
∂F(Û)
∂x̂

= 0

Û(x̂, 0) =

 ÛL i f x̂ < 0,

ÛR i f x̂ > 0,
(2.18)

where

Û =



ρ

ρû

ρv̂

ρŵ

ρE


, F̂ =



ρû

ρû2 + P

ρûv̂

ρûŵ

û(ρE + P)


(2.19)

The structure of the similarity solution for initial value problem 2.18 is shown in Fig.

2.2. The solution of Riemann problem for split three dimensional Euler equations is

fundamentally the same as the solution for corresponding one-dimensional problem.

There are two additional characteristic fields associated with the two eigen values

having the values û. These are two shear waves across which the tangential velocity

components v̂ and ŵ change discontinuously. The region between the right and left

waves is usually denoted as the Star Region. Both pressure P and the normal velocity

û are constant across the middle wave in the Star Region.

In sections 2.3 and 2.4, some approximate solution methods of split Riemann problem

are given for calculation of inter-cell fluxes.

2.3 Explicit Scheme with Rusanov and Lax-Friedrich Fluxes

The numerical flux F̂s can be approximated by Rusanov flux [41] as

F̂s =
1
2

[
F̂s,0 + F̂s,1 − Ŝ

(
Ûs,1 − Ûs,0

)]
(2.20)

where the index s, 0 refers to the current computational cell side of face s, and the
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Figure 2.2: Structure of the solution of the three-dimensional x̂ split Riemann prob-
lem.

index s, 1 refers to the neighboring cell side of face s. Û is the rotated state vector of

conserved variables calculated as Û = TU,

Û =



ρ

ρû

ρv̂

ρE

︸        ︷︷        ︸
In 2D

Û =



ρ

ρû

ρv̂

ρŵ

ρE

︸        ︷︷        ︸
In 3D

(2.21)

with û = un1 + vn2 and v̂ = −un2 + vn1 in two dimensions. For three dimensional

calculations

û = cos
(
θy

)
cos (θz) u + cos

(
θy

)
sin (θz) v + sin

(
θy

)
w

v̂ = − sin (θz) u + cos (θz) v (2.22)

ŵ = − sin
(
θy

)
cos (θz) u − sin

(
θy

)
sin (θz) v + cos

(
θy

)
w

with

cos (θz) =
n1√

n1
2 + n2

2
sin (θz) =

n2√
n1

2 + n2
2

(2.23)
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cos
(
θy

)
=

n3√
n1

2 + n2
2 + n3

2
sin

(
θy

)
=

√
n1

2 + n2
2√

n1
2 + n2

2 + n3
2

(2.24)

While û is the real rotated value of the u velocity, v̂ and ŵ are not, since we only

need to solve split three-dimensional Riemann problem in the direction of rotated x̂

coordinate. The flux vector F̂ is written as below in split form

F̂ =



ρû

ρû2 + P

ρûv̂

û(ρE + P)

︸                  ︷︷                  ︸
In 2D

, F̂ =



ρû

ρû2 + P

ρûv̂

ρûŵ

û(ρE + P)

︸                  ︷︷                  ︸
In 3D

(2.25)

The wave speed Ŝ in Eq. (2.20) can be calculated according to Davis [11]

Ŝ = max {|ûL − aL| , |ûR − aR| , |ûL + aL| , |ûR + aR|} (2.26)

where a is the speed of sound. Another possibility for the speed Ŝ is the maximum

wave speed Ŝ max found by imposing the stability condition Eq. (2.55) with Cc f l = 1,

Ŝ max =
Vi(

Âx + Ây + Âz

)
∆t

(2.27)

Using the wave speed Ŝ max, the Lax-Friedrichs numerical flux is obtained

F̂s =
1
2

F̂s,0 + F̂s,1 −
Vi(

Âx + Ây + Âz

)
∆t

(
Ûs,1 − Ûs,0

) (2.28)

2.4 HLL and HLLC Approximate Riemann Solvers for Approximate Godunov

Methods

For the purpose of computing a Godunov flux, Harten, Lax and Leer [20] presented a

method for solving the Riemann problem. The resulting Riemann solvers are known
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as HLL Riemann solvers. The main idea in these solvers is the assumption of a

wave configuration which consists of two waves instead of three. The resulting HLL

Riemann solvers form the bases of very efficient and robust approximate Godunov

type methods [48]. The inter-cell flux at a face s for the approximate Godunov method

based on HLL Riemann solvers is given by

F̂hll
s =


F̂s,0 i f 0 ≤ Ŝ s,0
Ŝ s,1F̂s,0−Ŝ s,0F̂s,1+Ŝ s,0Ŝ s,1(Ûs,1−Ûs,0)

Ŝ s,1−Ŝ s,0
i f Ŝ s,0 ≤ 0 ≤ Ŝ s,1

F̂s,1 i f 0 ≥ Ŝ s,1

(2.29)

One shortcoming of these schemes is the assumption of two-wave configuration. As

a consequence of this assumption, the resolution of physical features such as contact

discontinuity, shear waves and material interfaces can be very inaccurate. In view of

these shortcomings Toro, Spruce and Speares [49] put forward a modification called

the HLLC Riemann solver where C stands for contact. In this scheme the missing

middle waves are put back into the structure of the approximate Riemann solver. The

HLLC flux for the approximate Godunov method is given by

Fhllc
s =



F̂s,0 i f 0 ≤ Ŝ s,0

F∗s,0 = F̂s,0 + Ŝ s,0

(
U∗s,0 − Ûs,1

)
i f Ŝ s,0 ≤ 0 ≤ Ŝ ∗s,

F∗s,1 = F̂s,1 + Ŝ s,1

(
U∗s,1 − Ûs,1

)
i f Ŝ ∗s ≤ 0 ≤ Ŝ s,1,

F̂s,1 i f 0 ≥ Ŝ s,1

(2.30)

where U∗s,K for K = 0 and K = 1 is calculated as below

U∗s,K = ρK

(
Ŝ s,K − ûs,K

Ŝ s,K − Ŝ ∗s

)


1

Ŝ ∗s
vK

wK

EK
ρK

+
(
Ŝ ∗s − uK

) [
Ŝ ∗s + PK

ρ(S s,K−uK)

]


(2.31)

The middle wave speed Ŝ ∗s can be calculated by the expression [6]
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Ŝ ∗s =
Ps,1 − Ps, 0 + ρs,0ûs,0

(
Ŝ s,1 − ûs,0

)
− ρs,1ûs,1

(
Ŝ s,1 − ûs,1

)
ρs,0

(
Ŝ s,0 − ûs,0

)
− ρs,1

(
Ŝ s,1 − ûs,1

) (2.32)

The left and right wave speeds Ŝ s,0 and Ŝ s,1 can be calculated by simple direct esti-

mates below suggested by Davis [11]

Ŝ s,0 = min
(
ûs,0 − as,0, ûs,1 − as,1

)
Ŝ s,1 = max

(
ûs,0 + as,0, ûs,1 + as,1

)
(2.33)

Another method based on Roe eigenvalues [40] for wave speed estimation is proposed

by Einfeldt [15]. These estimations are reported to lead effective and robust schemes

[48].

Ŝ s,0 = ũ − d̃, Ŝ s,1 = ũ + d̃ (2.34)

d̃2 =

√
ρs,0a2

s,0 +
√
ρs,1a2

s,1
√
ρs,0 +

√
ρs,1

+
1
2

√
ρs,0
√
ρs,1(√

ρs,0 +
√
ρs,1

)2 (2.35)

Where ũ is the Roe averaged speed of fluid normal to the cell face.

ũ =

√
ρs,0ûs,0 +

√
ρs,1ûs,1

√
ρs,0 +

√
ρs,1

(2.36)

2.5 Axisymmetric Flows

In axisymmetry, the domain is symmetric about a coordinate axis. This symmetry

axis in axial direction is chosen as the x − axis. The second coordinate is the radial

direction which is measured from the axis of symmetry x. The Euler equations in

axisymmetric coordinates are written as

∂U
∂t

+
∂F (U)
∂x

+
∂G (U)
∂r

= S (U) (2.37)
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where

U =


ρ

ρu

ρv

ρE


, F =


ρu

ρu2 + P

ρuv

u (ρE + P)



G =


ρv

ρuv

ρv2 + P

v (ρE + P)


, S = −1

r


ρv

ρuv

ρv2

v (ρE + P)



(2.38)

In axisymmetric coordinate system, finite volumes are represented by 3D axisymmet-

ric rings created by rotation of the 2D surfaces around the x-axis. Analogously, cell

faces are created by rotation of 2D edges around the x-axis. Cell volumes and face

areas are calculated by multiplying their areas or lengths by radial coordinate of their

centroids.

Vax = 2πrcA

Aax = 2πrcL
(2.39)

If geometric quantities are calculated as in Eq. 2.39, the source terms in Eq. 2.38

are not calculated and the solution procedure is the same as in 2D case. In this case

a source term defined in Eq. 2.40 should be added to the radial momentum equation

which is the net effect of of the balancing force in the radial direction due to normal

stresses in the azimuthal direction [57, 51]. This method has its attractions from a

numerical point of view [48].

S =



0

0

2πPA
Vax

0


=

1
y



0

0

P

0


(2.40)
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2.6 Explicit Time Stepping

An explicit scheme starts from a known solution Un at time t and employs the Eq. 2.1

to obtain a new solution Un+1 at time (t+∆t). The new solution Un+1 depends solely on

the values already known. The most popular and wide spread explicit methods are the

Runge-Kutta multi stage time-stepping schemes. The multistage scheme advances the

solution in a number of steps called stages. Applied to fully discrete explicit scheme

of Eq. 2.1, a four stages Runge-Kutta scheme is written as

U (0) = Un

U (1) = U (0) − α1
∆t
V

N∑
s=0

AsT−1
s F̂(0)

s

U (2) = U (0) − α2
∆t
V

N∑
s=0

AsT−1
s F̂(1)

s (2.41)

U (3) = U (0) − α3
∆t
V

N∑
s=0

AsT−1
s F̂(2)

s

Un+1 = U (0) − α4
∆t
V

N∑
s=0

AsT−1
s F̂(3)

s

where α are the stage coefficients. The stage coefficients can be tuned to increase

maximum time step and to improve the stability for a spatial discretization. For a

first order upwind spatial discretization the values below are recommended for stage

coefficients [31], which increase the CFL number to 2.

α1 = 0.0833 α2 = 0.2069 α3 = 0.4265 α4 = 1.000 (2.42)

For second order spatial discretization following values for stage coefficients are rec-

ommended [31],

α1 = 0.1084 α2 = 0.2602 α3 = 0.5052 α4 = 1.000 (2.43)

2.7 Preconditioning For Low-Mach Number Flows

The density based methods provide good stability and convergence characteristics

when solving compressible flows at transonic and supersonic speeds. However, in
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general, these methods are not suitable for efficiently solving low Mach number or

incompressible flows due to large ratio of acoustic and convective timescales at the

low-speed flow regimes. To alleviate this stiffness problem a time-derivative precon-

ditioning of the flow equations is applied.

The preconditioning matrix applied to time derivative of the Euler equations is given

below [55],

Γ =



Θ 0 0 0 ρT

Θ u ρ 0 0 ρT u

Θ v 0 ρ 0 ρT v

Θ w 0 0 ρ ρT w

Θ H − 1 ρ u ρ v ρw ρT H + ρCp


(2.44)

The total enthalpy H is related to total energy E by E = H−p/ρ, where H = h+ |u|2 /2

and h = CpT . And ρT is defined as

ρT =
∂ρ

∂T

∣∣∣∣∣
p

(2.45)

The term Θ is defined as,

Θ =

(
1

U2
r
−

ρT

ρCp

)
(2.46)

Here Ur is the reference velocity defined as follows for an ideal gas,

Ur =


εc i f |u| ≤ εc

|u| i f εc ≤ |u| ≤ c

c i f |u| ≥ c

(2.47)

In the preceding expressions, ε is a small number
(
≈ 10−5

)
included to prevent sin-

gularities at stagnation points. The preconditioned system in conservation form is

obtained as,

24



Γ =
∂

∂t

∫ ∫ ∫
QdV +

∫ ∫
F · d ~A = 0 (2.48)

Q is the vector of primitive variables where Q = [P, u, v,w,T ]T . The resultant eigen-

values of the preconditioned system are given by

λ

(
Γ−1 ∂F

∂Q

)
= u, u, u, ú + á, ú − á (2.49)

where

u = u · ~n = û (2.50)

ú = u (1 − α) (2.51)

á =

√
α2u2 + U2

r (2.52)

α =
(
1 − βU2

r

)
/2 (2.53)

β =

(
ρp +

ρT

ρCp

)
(2.54)

2.8 Calculation of Time Steps

In Eq. 2.1, ∆t is calculated for each cell according to stability condition [54] as,

∆ti =
CcflVi(

Λx + Λy + Λz

)
i

(2.55)

where Cc f l and Vi are the CFL number and the volume of the cell i respectively. Λ are

the convective spectral radii calculated as,

Λx = (|u| + a) Âx, Λy = (|v| + a) Ây, Λz = (|w| + a) Âz (2.56)

where a is the speed of sound. The variables Âx, Ây and Âz represent projections of

the control volume on the y − z, x − z and y − z plane respectively. They are given by

the following formulas,
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Âx =
1
2

NF−1∑
s=0

∣∣∣∣~Ax

∣∣∣∣
s
, Ây =

1
2

NF−1∑
s=0

∣∣∣∣~Ay

∣∣∣∣
s
, Âz =

1
2

NF−1∑
s=0

∣∣∣∣~Az

∣∣∣∣
s

(2.57)

where ~Ax, ~Ay ~Az are the x, y and z components of the face normal vector ~As.

2.9 Weighted Average Flux (WAF) Methods For High-Order Accuracy

In the WAF method the inter-cell flux is an integral average of the physical flux across

the full structure of the solution of a local Riemann problem [48]. The structured

multidimensional versions of this method can be found in reference [7]. Here multi-

dimensional unstructured versions of the WAF fluxes are developed. The WAF flux

is given by

F̂s =
1

x̂R − x̂L

∫ x̂R

x̂L

F̂(Ûs(x̂,
∆t
2

))dx̂ (2.58)

where x̂L and x̂R are the positions of cell centers on the x̂ coordinate in the rotated

coordinate system. So the integral is evaluated on the x̂ coordinate line which is per-

pendicular to the cell surface s. Ûs is the solution of the x̂ split multi-dimensional

Riemann problem. The solution of the split Riemann problem across the surface s

consists of four constant states Û1, Û2, Û3 and Û4 separated by the lines correspond-

ing to the three wave speeds Ŝ 1, Ŝ 2 and Ŝ 3 (see section 2.2). The left wave Ŝ 1 and

the right wave Ŝ 3 may be shock or rarefaction waves. Using these constant states the

integral 2.58 is calculated as (see Figure 2.3)

F̂s =

N+1∑
k=1

βkF̂(U (k)) (2.59)

2.9.1 WAF Version of HLL Riemann Solver

There are two waves S 1 and S 2 in a HLL based solution of Riemann problem. In

formula 2.59, βk values for three constant states are calculated as
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Figure 2.3: The solution of the Riemann problem and the domain of the integral.

β1 =
2x̂0 − 2x̂L + Ŝ 1∆t

2(x̂R − x̂L)

β2 =
∆t(Ŝ 2 − Ŝ 1)
2(x̂R − x̂L)

(2.60)

β3 =
2x̂R − 2x̂0 − Ŝ 2∆t

2(x̂R − x̂L)

Using equations 2.60, WAF version of HLL inter-cell flux is written as

F̂s =
1

∆x̂

[
(x̂0 − x̂L) F̂1 + (x̂R − x̂0) F̂3

]
−

1
2

[
∆tŜ 1

∆x̂

(
F̂2 − F̂1

)
+

∆tŜ 2

∆x̂

(
F̂3 − F̂2

)]
(2.61)

The TVD version of the equation 2.61 can be written as

F̂s =
1

∆x̂

[
(x̂0 − x̂L) F̂1 + (x̂R − x̂0) F̂3

]
−

1
2

[
sign(c1)φ(1)

s

(
F̂2 − F̂1

)
+ sign(c2)φ(2)

s

(
F̂3 − F̂2

)]
(2.62)
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where ck is the Courant number for wave k with speed S k and defined as

ck =
∆tŜ k

∆x
(2.63)

F̂1 and F̂3 are flux vectors F(ÛL) and F(ÛR). Flux vector F̂2 is calculated using HLL

Riemann solver

F̂2 =
Ŝ 2F̂L − Ŝ 1F̂R + Ŝ 1Ŝ 2

(
ÛR − ÛL

)
Ŝ 2 − Ŝ 1

(2.64)

WAF limiter functions φ(k)
s in equation 2.62 can be calculated by four different ap-

proaches written below [48]

φmb(rk, |ck|) =


1 i f rk ≤ 0,

1 − (1 − |ck|) rk i f 0 ≤ rk ≤ 1,

|ck| i f rk ≥ 1.

(2.65)

φva(rk, |ck|) =

 1 i f rk ≤ 0,

1 − (1−|ck |)(1+rk)rk

1+r2
k

i f 0 ≤ r(k) ≤ 1.
(2.66)

φvl(rk, |ck|) =

 1 i f rk ≤ 0,

1 − (1−|ck |)2rk
1+rk

i f 0 ≤ rk ≤ 1.
(2.67)

φsb(rk, |ck|) =



1 i f rk ≤ 0,

1 − 2 (1 − |ck|) rk i f 0 ≤ rk ≤
1
2 ,

|ck| i f 1
2 ≤ rk ≥ 1,

1 − (1 − |ck|) rk i f 1 ≤ rk ≤ 2,

2|ck| − 1 i f r ≥ 2.

(2.68)

The WAF limiter functions are related and equivalent to conventional flux limiters.

φmb is related to MINBEE, φva is related to van Albada’s limiter, φvl is related to

van Leer’s limiter and φsb is related to SUPERBEE. The flow parameter rk in limiter

functions refers to wave k in the solution of the Riemann problem is defined as the

ratio,
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rk =


∆q(k)

LL
∆q(k) i f ck > 0,

∆q(k)
RR

∆q(k) i f ck < 0.

(2.69)

where ∆q(k)
LL is the jump in q across the wave k in the solution of Riemann problem for

states ULL and UL, ∆q(k)
RR is the jump in q across the wave k in the solution of Riemann

problem for states UR and URR and ∆q(k) is the jump across the wave k in solution

of Riemann problem for states UL and UR (see Figure 2.3). For the Euler equations

the choice q ≡ ρ (density) gives satisfactory results. 1Density values ρ(k)
LL and ρ(k)

RR are

needed for calculating the jumps ∆ρ(k)
LL and ∆ρ(k)

RR. These values are calculated by a

weighted averaging process described below.

ρ(1)
LL =

∑N−1
s=1 (ρs)L(~As)L ·

~A∑N−1
s=1 (~As)L ·

~A
(2.70)

where N is the number of neighboring cells of left cell. The index s refers to the

neighboring cells, and ~As are the face normal vectors directed into the left cell. ~A

is the face normal vector directed to the the right cell. ρ(3)
LL is calculated using HLL

solver,

ρ(2)
LL =

Ŝ (2)
LLρL − Ŝ (1)

LLρ
(1)
LL + û(1)

LLρ
(1)
LL − ûLρL

Ŝ (2)
LL − Ŝ (1)

LL

(2.71)

Equation 2.71 is written assuming ρ(3)
LL = ρL and u(3)

LL = uL. The unknown values u(1)
LL,

S (2)
LL and S (1)

LL in equation 2.71 are calculated by a method similar to the one in equation

2.70. The jump ∆ρ(1)
RR ≡ ρ

(2)
LL − ρ

(1)
LL across wave S (1)

LL is found

∆ρ(1)
LL =

Ŝ (2)
LL

(
ρL − ρ

(1)
LL

)
+ û(1)

LLρ
(1)
LL − ûLρL

Ŝ (2)
LL − Ŝ (1)

LL

(2.72)

Similarly, the jump ∆ρ(2)
LL ≡ ρL − ρ

(2)
LL is found as

1 The index k over scalars (not jumps or waves) refers to the constant state zones in solution of Riemann
problem.
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∆ρ(2)
LL =

Ŝ (1)
LL

(
ρ(1)

LL − ρL

)
− û(1)

LLρ
(1)
LL + ûLρL

Ŝ (2)
LL − Ŝ (1)

LL

(2.73)

The jumps ∆ρ(1)
RR and ∆ρ(2)

RR are calculated with the same methods described above,

∆ρ(1)
RR =

Ŝ (2)
RR

(
ρ(3)

RR − ρR

)
+ ûRρR − û(3)

RRρ
(3)
RR

Ŝ (2)
RR − Ŝ (1)

RR

(2.74)

∆ρ(2)
RR =

Ŝ (1)
RR

(
−ρ(3)

RR + ρR

)
− ûRρR + û(3)

RRρ
(3)
RR

Ŝ (2)
RR − Ŝ (1)

RR

(2.75)

Also in the same way, the jumps ∆ρ(1) and ∆ρ(2) across the solution of the Riemann

problem at the face shown in the figure 2.3 are calculated as

∆ρ(1) =
Ŝ (2) (ρR − ρL) + ûLρL − ûRρR

Ŝ (2) − Ŝ (1)
(2.76)

∆ρ(2) =
Ŝ (1) (ρL − ρR) − ûLρL + ûRρR

Ŝ (2) − Ŝ (1)
(2.77)

2.10 Unstructured Data Reconstruction for Higher Order Accuracy

High order accuracy can be achieved by reconstructing cell-centered data within hy-

brid cells (including polyhedral) to cell faces for flux computation. The face value φ f

is reconstructed by the following expression:

φ f = φ + ∇φ · ~r (2.78)

where φ and ∇φ are the cell centered value and its gradient at the cell center. ~r is the

vector from cell centroid to the face centroid. The gradient of the scalar φ at the cell

center c0 is calculated by Green-Gauss theorem,
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(∇φ)c0 =
1
V

∑
f

φ̄ f ~A f (2.79)

φ̄ f is the value of φ at the face centroid and ~A f is the face area normal vector. The

face value φ̄ f is calculated simply by averaging.

φ̄ f =
φc0 + φc1

2
(2.80)

The gradient ∇φ should be limited near high gradients to prevent oscillations and

spurious solutions. One of the widely used limiter functions for unstructured grids is

of Barth and Jespersen [5]. The limiter for the cell c is defined as

Ψc = mins


min

(
1, φmax−φs

∆2

)
i f ∆2 > 0

min
(
1, φmin−φs

∆2

)
i f ∆2 < 0

1 i f ∆2 = 0

(2.81)

where,

∆2 = ∇φc · ~rcs

φmax = max (φc,maxsφs)

φmin = min (φc,minsφs)

(2.82)

In Eq. 2.82, ~rcs denotes the vector from centroid of the cell c to the mid point of the

face between cell c and cell s. maxs and mins means the maximum and minimum

value of all direct neighbors s of cell c. ∆2 is modified as S ign (∆2) (|∆2| + ω).

Another more popular limiter is of Venkatakrishnan’s [52]. This limiter is widely

used due to its better convergence properties.
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Ψc = mins



1
∆2

[ (
∆2

1,max+ε2
)
+2∆2

2∆1,max

∆2
1,max+2∆2

2+∆1,max∆2+ε2

]
i f ∆2 > 0

1
∆2

[ (
∆2

1,min+ε2
)
+2∆2

2∆1,min

∆2
1,min+2∆2

2+∆1,min∆2+ε2

]
i f ∆2 < 0

1 i f ∆2 = 0

(2.83)

where

∆1,max = φmax − φc

∆1,min = φmin − φc

(2.84)

In Eq. 2.84, φmax and φmin denote maximum or minimum values of all neighboring

cells s and the cell c itself. The parameter ε controls the amount of limiting.

2.11 Boundary Conditions

In this section, discratization and calculation procedures for some important boundary

condition types are explained. Correct formulation of boundary conditions is crucial

for robust simulations and also for physically correct results.

2.11.1 Mass Flow Inlet

Mass flow boundary condition can be used to provide a prescribed mass flow rate at

a boundary face zone. The user provided total mass flow rate is used to calculate a

mass flux for each face in the boundary zone. Mass flux m̈ is calculated by dividing

the total mass flow rate ṁB with the total area AB of the boundary face zone. The mass

flux is at the same direction with the face normal vector and equal to ρû. Density is

calculated with the procedure described below.

For an ideal gas, density is calculated using static pressure P and static temperature

T ,
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ρ =
P

RT
(2.85)

Where the static pressure is calculated according to sign of the local wave speeds. If

the inlet is supersonic the static pressure is equal to the user specified supersonic inlet

pressure. Otherwise it is calculated from interior cells. The total temperature and the

static temperature are related with the equation,

T0

T
= 1 +

γ − 1
2

u2

a2 (2.86)

The below relations for sound speed a and normal speed u can be used to derive a

second order equation for density ρ

a =

√
γP
ρ

, u =
m̈
ρ

(2.87)

Putting the right hand sides of the equations 2.87 in to the Eq. 2.86 the equation

below is found,

2RT0ρ
2γ − 2ργP − (γ − 1) m̈2 = 0 (2.88)

Solving the above equation for density ρ,

ρ =
γ P +

√
γ2P2 + 2 RT0γ2m2 − 2 RT0γm2

2RT0γ
(2.89)

In a more compact form,

ρ =
γ P +

√
γ
√

2 Rm2 (γ − 1) T0 + γ P2

2RT0γ
(2.90)

The implementation of this boundary condition is done using the far field methods

described in Section 2.11.7.
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2.11.2 Pressure Outlet

At a pressure outlet face zone, a specified static pressure is used to calculate the

pressures at the faces. The face pressures are calculated by a method based on the

AUS M+ scheme [34]. In all the AUS M-family schemes, a general interface pressure

formula [33] is used,

P1/2 = P+
n (ML) PL + P−n (MR) PR (2.91)

where Pn are the n’th order polynomials. ML and MR are the face normal Mach

numbers defined as,

ML/R =
ûL/R

a1/2
(2.92)

where û is the normal velocity. For the boundary faces, Eq. 2.91 is used in the

following form (see Picture 2.5),

PF = P+
5 (Mn) PD + P−5 (Mn) PB (2.93)

where Mn is the face normal Mach number. Then the face pressure PF is a function of

interior cell pressure PD, specified boundary pressure PB and normal Mach number

Mn. The fifth order polynomials P±(5) are given by the following formula,

P±(5) =


1

Mn
M±

(1) i f |Mn| ≥ 1

M±
(2)[(±2 − Mn) ∓ 16αMnM

∓
(2)] otherwise

(2.94)

where α were set to be 3/16 in [33] under the conditions described in the same ref-

erence. The split Mach numbersM±
(m) are polynomial functions of degree m as given

in [33]:
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M±
(1) (Mn) =

1
2

(Mn ± |Mn|)

(2.95)

M±
(2) (Mn) = ±

1
4

(Mn ± 1)2

2.11.3 Pressure Inlet

2.11.4 Subsonic Pressure Inlet

In this boundary condition, total pressure, total temperature is specified by user. The

outgoing Riemann invariant is employed to determine speed of sound at the boundary

[24, 9]. The outgoing Riemann invariant is defined as

R− = ~vd · ~n −
2ad

γ − 1
(2.96)

where the index d denotes the state inside the domain (Figures 2.4 and 2.5). The unit

normal vector ~n is assumed to point outwards of the domain. The speed of sound at

the boundary for subsonic inlets is calculated as

ab =
−R− (γ − 1)

(γ − 1) cos2 θ + 2

1 + cos θ

√√[
(γ − 1) cos2 θ + 2

]
a2

0

(γ − 1)
(
R−

2
) −

γ − 1
2

 (2.97)

where θ is the flow angle relative to the boundary and a0 is the stagnation speed of

sound,

cos θ = −
~vd · ~n∥∥∥~vd

∥∥∥
2

(2.98)

a2
0 = a2

d +
γ − 1

2

∥∥∥~vd

∥∥∥2

2
(2.99)

Other quantities like static temperature Tb, static pressure Pb, density ρb and absolute

velocity which are required to calculate fluxes on the boundary are found as,
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Tb = T0

(
a2

b

a2
0

)
(2.100)

Pb = P0

(
Tb

T0

) γ
(γ−1)

(2.101)

ρb =
Pb

RTb
(2.102)

|u| =
√

2Cp (T0 − Tb) (2.103)

2.11.4.1 Supersonic Pressure Inlet

If the inlet flow becomes supersonic the flow information comes from the boundary

only. In this case static pressure Pb given by the user is used in addition to defined

values of total pressure P0 and total temperature T0.

Tb = T0

(
Pb

P0

) (γ−1)
γ

(2.104)

ρb =
Pb

RTb
(2.105)

|u| =
√

2Cp (T0 − Tb) (2.106)

2.11.5 Inviscid Wall

Wall boundary conditions are used to bound fluid zones. This boundary condition

can also be used to separate two fluid zones or fluid and solid zones. For unstructured

grids it was suggested to employ one layer of dummy cells in Ref. [17] and [16]. The

velocity vector ~vd in a dummy cell were obtained by reflecting the velocity vector ~vw

in the boundary cell at the wall. The velocity vector would become
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~vB = ~vD − 2
∣∣∣~vD · ~n

∣∣∣~n (2.107)

where ~n is the wall face unit normal vector (see Pic.2.4) . Since the coordinate system

was rotated so that the x̂ − axis is aligned with the face normal, the state vector UB in

the dummy cell is calculated easily as,

ÛB =



ρ

−ρûD

ρv̂D

ρŵD

ρE


(2.108)

2.11.6 Symmetry Boundary Condition

The implementation of the symmetry boundary condition is done by employing dummy

cells. The flow variables in the dummy cells are reflected while the scalar quantities

like density and pressure are set equal to the values in the interior cells. The velocity

components are reflected as indicated in Eq. 2.107.

2.11.7 Far Field Boundary Conditions

2.11.8 Far Field Supersonic Inflow

For supersonic inflow, all eigenvalues have the same sign. The conservative variables

in the state on the boundary are determined by free stream values only (see Fig.2.4).

Thus,

UF = UB (2.109)
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Figure 2.4: Far field inflow boundary.

2.11.8.1 Far Field Subsonic Inflow

In a subsonic inlet, four characteristics enter and one leaves the domain. Therefore

four characteristic variables are prescribed based on the free stream values. One char-

acteristic variable is extrapolated from the interior of the domain [9]. This leads to

the following set of boundary conditions written in the local coordinate system [56]

(see Fig. 2.5).

PF =
1
2

[
PB + PD − ρ0a0 (ûB − ûD)

]
ρF = ρB +

(PF − PB)
a2

0

(2.110)

ûF = ûB −
(PB − PF)
ρ0a0

where subscripts 0 represents reference state which is set equal to the state at the

interior cell.
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Figure 2.5: Far field outflow boundary.

2.11.8.2 Far Field Subsonic Outflow

For subsonic outflow boundary conditions, the static pressure must be defined by the

user (see Fig. 2.5). Other flow variables are extrapolated from the interior of the so-

lution domain [56].

PF = PB

ρF = ρD +
(PF − PD)

a2
0

(2.111)

ûF = ûD +
(PD − PF)
ρ0a0

2.12 Single Phase Test Cases

An explicit compressible flow solver named CMPS is developed based on the meth-

ods given previous chapters. This solver is validated against some test cases in the

following sections.
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2.12.1 Cylindrical Explosion in Two-Space Dimension

This test problem is like a two-dimensional counterpart of the shock tube problem.

The two dimensional Euler equations are solved on a square domain of two zones.

The square is 2.0 × 2.0 in the x − y plane and there is a circle with radius R = 0.4

at center of the square. Initially the flow variables takes constant values in each zone

and joined by a circular discontinuity at the zone boundaries at time t = 0 as shown

in Fig. 2.6. The initial two constant states for two-dimensional Euler equations are

chosen to be

Pin = 1 × 106Pa , Pout = 101325Pa

Tin = 375K , Tout = 300K

uin = 0.0 , uout = 0.0

vin = 0.0 , vout = 0.0

(2.112)

Subscripts in and out denote the values inside and outside the circle respectively.

Figure 2.6: The unstructured multi zone grid structure and initial gauge pressure
distribution.

The full two-dimensional Euler equations are solved by the CMPS code based on

methods explained in previous sections in this chapter. The solution is repeated

with Rusanov, Lax-Friedrichs, HLL and HLLC Riemann solvers with CFL number

CCFL = 2.0. Additionally the same solution is repeated with commercial CFD soft-

ware FLUENT with its first order explicit Roe solver. The pressure, density and x
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velocity contours at time t = 7.7 × 10−4 calculated with HLLC Riemann solver are

shown in Figures 2.7, 2.8 and 2.9 respectively. The effects of the mesh on the solu-

tion can be seen in the all contours. The same effects are also observed with FLUENT

and the results are indistinguishable from the results obtained by CMPS with HLLC

Riemann solver.

Figure 2.7: Cylindrical explosion in two-space dimensions. Pressure distribution at
7.7 × 10−4 seconds calculated by the first order solver using HLLC Riemann solver.

Figure 2.8: Cylindrical explosion in two-space dimensions. Density distribution at
7.7×10−4 seconds calculated by the first order solver of CMPS using HLLC Riemann
solver.
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Figure 2.9: Cylindrical explosion in two-space dimensions. x velocity distribution at
7.7×10−4 seconds calculated by the first order solver of CMPS using HLLC Riemann
solver.

The solution exhibits a circular shock wave traveling away from the center, a circular

contact surface traveling in the same direction and a circular rarefaction traveling

toward the origin.

Figure 2.10: Cylindrical explosion in two-space dimensions. Pressure distributions at
7.7 × 10−4 seconds calculated by the first order solvers of CMPS using different flux
functions. The solution with Roe solver is the result of FLUENT’s first order explicit
solver.

Fig. 2.10 shows a comparison between the solutions obtained with different flux
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functions and also the result of FLUENT’s first order explicit Roe solver. The Roe

and HLL and HLLC Riemann solvers gave similar results. Due to its high diffusive

character of Lax-Friedrichs, its results are not sharp as the Roe, HLL and HLLC.

Rusanov is too diffusive to be used for practical purposes.

Figure 2.11: Cylindrical explosion in two-space dimensions. x pressure distribution
at 7.7 × 10−4 seconds calculated by the high order solvers of CMPS.

The problem is also solved with high order methods. In CMPS, it is possible to use

WAF and linear reconstruction (LR) methods at the same time which provides higher

spatial resolution than using WAF or LR methods alone. Results are shown in Fig.

2.11.

2.12.2 Spherical Explosion In Three Space Dimensions

The three dimensional Euler equations are solved on a cube 2.0×2.0×2.0 in x− y− z

space with first order solver of the CMPS code using HLLC Riemann solver. The

domain consists of two zones with a spherical zone with radius R = 0.4 at the center

of the cube. Grid includes 406000 tetrahedral elements. The initial state values take

constant values in each zone and are the same as those in section 2.12.1. The initial

pressure distribution is shown in Fig. 2.12. Pressure, density and internal energy

contours at time t = 7.7 × 10−4 are shown in Figures 2.13, 2.14 and 2.15 respectively.

43



Figure 2.12: Spherical explosion in three space dimensions. Initial pressure distribu-
tion and grid structure. The spherical zone at the center is the initial high pressure
region.

Figure 2.13: Spherical explosion in three space dimensions. Pressure distribution at
time t = 4.7 × 10−4 calculated with first order solver of CMPS using HLLC Riemann
solver.
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Figure 2.14: Spherical explosion in three space dimensions. Density distribution at
time t = 4.7 × 10−4 calculated with first order solver of CMPS using HLLC Riemann
solver.

Figure 2.15: Spherical explosion in three space dimensions. Internal energy distribu-
tion at time t = 4.7 × 10−4 calculated with first order solver of CMPS using HLLC
Riemann solver.
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The problem is also solved with high order methods. In CMPS, it is possible to use

WAF and linear reconstruction (LR) methods at the same time which provides higher

spatial resolution than using WAF or LR methods alone. Results are shown in Fig.

2.17. These solution are compared to a one dimensional solution in spherical coor-

dinates obtained with Random Choice Method (RCM) of Chorin [10]. RCM method

provides exact solution of Riemann problems in one dimension but not applicable to

multidimensional problems.

Figure 2.16: Spherical explosion in three space dimensions. Density distributions at
time t = 4.7 × 10−4 calculated with first order solver of CMPS using HLLC Riemann
solver and first order solver of FLUENT using Roe.
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Figure 2.17: Cylindrical explosion in two-space dimensions. x pressure distribution
at 7.7 × 10−4 seconds calculated by the high order solvers of CMPS.

2.12.3 Supersonic Flow Over a Circular Arc Bump

The solution of Euler equations for a supersonic flow over a circular bump is studied.

The flow entering the channel is supersonic at 1.88 Mach. The Mach number contours

calculated with first order HLLC Riemann solver of the CMPS code are shown in Fig.

2.18. A shock is generated as flow reaches the bump. This shock is reflected by the

upper wall then crosses the another shock which issues from the end of the bump.

The two shock meets again before exiting the supersonic channel. The calculations

are repeated with Rusanov, Lax-Friedrich and HLL flux functions also with first or-

der Roe solver of FLUENT for comparison. HLL and HLLC solvers of the CMPS

code give indistinguishable results in good agreement with Roe solver of FLUENT.

Lax-Friedrich solver of the CMPS code is more diffusive as expected. Rusanov was

unsuccessful to provide a meaningful result for comparison. The Mach number and

pressure profiles along the channel are shown in Figures 2.19 and 2.20 respectively.
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Figure 2.18: Mach number contours for supersonic flow over a circular bump calcu-
lated with first order HLLC Riemann solver of CMPS code.

Figure 2.19: Mach number along the supersonic flow over a circular bump shown in
Fig. 2.18.

2.12.4 Transonic Flow Over Circular Bump

In this test case the solution of Euler equations is studied for a transonic flow over a

circular bump. Air enters the channel at 0.67 Mach then becomes supersonic over the

bump ans a shock develops behind the bump. The Mach number contours are shown

in Fig. 2.21. The line plot of Mach numbers through the channel calculated by CMPS

and FLUENT are shown in Fig. 2.22.
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Figure 2.20: Pressure profile along the supersonic flow over a circular bump shown
in Fig. 2.18

Figure 2.21: Mach number contours for transonic flow over a circular bump calcu-
lated with first order HLLC Riemann solver of CMPS code.
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Properties Initial conditions
Mass specific energy Density Mass Pressure Temperature
(k j/kg) (kg/m3) (kg) Pa K
4870 1580 0.185 3077840000 6937

Table2.1: Properties of plastic explosive and the calculated initial values for modeling
the explosion.

Figure 2.22: Mach number along the transonic flow over the bump shown in Fig.
2.21.

2.12.5 Blast Propagation In A Three Dimensional L-Shaped Tunnel

In this test case an air blast propagation was studied in the L-shaped tunnel. The ge-

ometry of the solution domain is shown in Fig. 2.23. During the solution pressure

values are monitored in three points shown in Fig. 2.23. For this test case experimen-

tal results are available, in the original experiment a plastic explosive was used. This

explosive is modeled as a spherical air volume with initial conditions calculated using

ideal gas law. The properties of the plastic explosive and calculated initial conditions

are given in Table 2.1. Some contour plots at times t = 0.30 × 10−3 seconds and

t = 0.43 × 10−3 seconds are shown in Figures 2.23, 2.24, 2.26 and 2.27.

The experimental results and the results recorded at probe locations shown in figure
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2.23 during simulation are compared in Figures 2.28, 2.29, 2.30. Although the sim-

ulation results are sufficiently in agreement with the experimental results, there are

some differences especially at probe 2. The source of these differences may result

from the physical assumptions made during the simulation. These assumptions are,

• The properties of the explosion gases were unknown, they were modeled as air.

• Air was modeled as ideal gas although it behaved as real gas.

• The walls of the test unit were assumed to be adiabatic. This assumption pre-

vents the damping effect of the walls on the blast waves.

Figure 2.23: Geometry of the test case for blast wave propagation in L-Shaped tunnel.
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Figure 2.24: Mach number contours at time t = 0.30 × 10−3 seconds.

Figure 2.25: Absolute pressure contours at time t = 0.30 × 10−3 seconds.
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Figure 2.26: Mach number contours at time t = 0.43 × 10−3 seconds

Figure 2.27: Absolute pressure contours at time t = 0.43 × 10−3 seconds.
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Figure 2.28: Pressure probe at probe 1.

Figure 2.29: Pressure probe at probe 2.
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Figure 2.30: Pressure probe at probe 3.
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CHAPTER 3

MULTIDIMENSIONAL MULTI-PHASE GODUNOV

METHODS FOR COMPRESSIBLE MULTI-PHASE FLOWS

In this chapter, the method proposed by Saurel and Abgrall [42] is extended to multi

dimensional unstructured grids and the solution procedure is explained. This Go-

dunov scheme is based on the solution of an averaged system of equations similar to

the equation system derived in [4]. This system of eqautions is given below in 3.1,

∂αg

∂t
+ VI

∂αg

∂x
= 0

∂αgρg

∂t
+
∂αgρgug

∂x
= ṁ

∂αgρgug

∂t
+
∂
(
αgρgu2

g + αgPg

)
∂x

= PI
∂αg

∂x
+ ṁVI + Fd

∂αgρgEg

∂t
+
∂ug

(
αgρgEg + αgPg

)
∂x

= PIVI
∂αg

∂x
+ ṁEI + FdVI + QI (3.1)

∂αsρs

∂t
+
∂αsρsus

∂x
= − ṁ

∂αsρsus

∂t
+
∂
(
αsρsu2

s + αsPs

)
∂x

= − PI
∂αg

∂x
− ṁVI − Fd

∂αsρsEs

∂t
+
∂us (αsρsEs + αsPs)

∂x
= − PIVI

∂αg

∂x
− ṁEI − FdVI − QI

where,

αk is volume fraction, and αg + αs = 1,

VI is inter facial velocity,

PI is inter facial pressure,
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EI is Total energy, Ek = ek + 1
2u2,

FI is the momentum transfer term between the phases.

The equation system (3.1) include non-conservative terms; −PI∂αg/∂x and−PIVI∂αg/∂x.

The pressure PI and the velocity Vi represent averaged values of the inter facial pres-

sure and velocity over the two-phase control volume.

Often, some closure models necessitate determination of characteristic size parame-

ters of individual particles such as particle sizes. In these situations a new equation

may be added to the existing ones to determine the particle sizes and inter facial areas,

which may be in the form of inter facial area transport equation(IATE).

∂aI

∂t
+ ∇ (aIVI) =

2
3

(
aI

αs

) (
∂αs

∂t
+ ∇α~us − ηph

)
+

∑
j

φ j + φph (3.2)

where aI is inter facial area concentration and the terms φ j and φph source terms.

Particle sizes can be related to aI and αs for spherical particles as

Dsm =
6αs

aI
(3.3)

Equations 3.2 and 3.3 can be solved uncoupled from the system Equations 3.1. So,

they do not change its mathematical properties, nor its solution.

Inter facial velocity VI can be modeled as mass averaged;

VI =

∑
αkρkuk∑
αkρk

(3.4)

Inter facial pressure PI is modeled as mixture pressure,

Pi =
∑

k

αkPk (3.5)

Pk are given by appropriate equations of state (EOS) of the form Pk = Pk(ek, ρk). The

most classical equation of states generally used are given below;
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1. Ideal gas EOS:

P = eρ (γ − 1) (3.6)

where γ is the specific heat ratio γ = Cp/Cv. The speed of sound in an ideal gas

is given by

a =

√
γP
ρ

(3.7)

2. Stiffened gas EOS:

P = ρ (γ − 1) e − γP∞ (3.8)

where P∞ is a constant parameter. The speed of sound is

a =

√
γ (P + P∞)

ρ
(3.9)

3.1 Numerical Method

3.1.1 Non-conservative Terms

The discretization of non-conservative terms −PI∂αg/∂x and −PIVI∂αg/∂x need spe-

cial methods. These methods can be developed according to Abgrall[1] criterion. It

states that: “A two phase flow, uniform in pressure and velocity must remain uniform

on the same variables during its temporal evolution”. If u = ug = us = VI and as well

as P = Pg = Ps = PI at time t = 0 then the velocities and the pressure will keep the

same values [42]. Most spatial derivatives cancel and we get;

∂αg

∂t
+ u

αg

∂x
= 0

∂ρg

∂t
+ u

∂ρg

∂x
= 0

∂ug

∂t
= 0
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∂Pg

∂t
= 0

∂ρs

∂t
+ u

∂ρs

∂x
= 0

∂us

∂t
= 0

∂Ps

∂t
= 0

For one dimensional cases, discretization of non-conservative terms can be found in

reference [42]. Here two dimensional cases are considered.

3.1.1.1 Godunov-Rusanov Scheme

Here we consider only the volume fraction, gas continuity, gas momentum and gas

energy equations in 3.1.
∂α

∂t
+ VI∇α = 0 (3.10)

∂U
∂t

+
∂F(U)
∂x

+
∂G(U)
∂y

= H(U)∇α (3.11)

where U is the state vector, F(U), and G(U) are flux vectors, and H is the coefficients

of the non-conservative terms ∇α;

U =



αρ

αρu

αρv

αρE


, F =



αρu

αρu2 + αP

αρuv

αu(ρE + P)


, G =



αρv

αρuv

αρv2 + αP

αv(ρE + P)



H =



0 0

P 0

0 P

PuI PvI


, ∇α =


∂α
∂x

∂α
∂y

 (3.12)

The finite volume scheme for solving equation 3.11 can be written as,
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Un+1 = Un −
∆t
V

N∑
s=0

AsT−1
s F̂n

s (3.13)

In Eq. 3.13, s is the index of cell faces, As is the area of cell faces. T−1
s is the inverse

of the rotation matrix T ,

T =



1 0 0 0

0 cos (θs) sin (θs) 0

0 − sin (θs) cos (θs) 0

0 0 0 1


, T−1 =



1 0 0 0

0 cos (θs) − sin (θs) 0

0 sin (θs) cos (θs) 0

0 0 0 1


(3.14)

F̂s is the flux at the face, which is the function of transformed state vectors F̂s =

F̂s(Ûs,c) defined as Ûs,c = TUs,c. Index s refers to the faces of the cell. c is 0 for the

host cell and 1 for the neighboring cell. For the Rusanov flux, F̂n
s is calculated as,

F̂n
s = F̂n

s (Ûn
s,0, Û

n
s,1) =

1
2

[
F̂n

s,0 + F̂n
s,1 − Ŝ n

(
Ûn

s,1 − Ûn
s,0

)]
(3.15)

where Ŝ = max {|ûL − aL| , |ûR − aR| , |ûL + aL| , |ûR + aR|}

3.1.1.2 Gradient of Gas Volume Fraction α

Using the equation 3.13 and uniformity of velocity un+1 = un, vn+1 = vn(Abgrall[1]

criterion) following relations can be written for x velocity u;

uUn+1[1] = Un+1[2] (3.16)

vUn+1[1] = Un+1[3] (3.17)

Solving the above equations, following formulas are found for ∂α
∂x and ∂α

∂y ;

∂αn

∂x
=

1
2V

N−1∑
s=0

As cos (θs)
(
αn

s,0 + αn
s,1

)
=

1
2V

N−1∑
s=0

~As[0]
(
αn

s,0 + αn
s,1

)
(3.18)
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∂αn

∂y
=

1
2V

N−1∑
s=0

As sin (θs)
(
αn

s,0 + αn
s,1

)
=

1
2V

N−1∑
s=0

~As[1]
(
αn

s,0 + αn
s,1

)
(3.19)

where ~As is the area normal vector of surface and As =
∥∥∥∥~A∥∥∥∥. Above equations can be

written in the following compact form,

∇α =
1

2V

N−1∑
s=0

~As

(
αn

s,0 + αn
s,1

)
(3.20)

3.1.1.3 Discretization of Volume Fraction Equation

Heuze[22] showed that nearly all equation of states can be written in the Mia-Gruneisen

form

ρe = β (ρ) P + η (ρ) (3.21)

with β = 1/ (γ − 1) and η = γπ (γ − 1). Now replacing the terms ρe in state and flux

vectors with βP + η and using Eq.3.13, following formula can be written(see [42]),

αn+1
[
(βP + η) + ρn+1 1

2

(
u2 + v2

)]
= Un+1[4] (3.22)

Eq.3.22 can be rewritten in the form,

αn+1 (βP + η) + Un+1[1]
1
2

(
u2 + v2

)
= Un+1[4] (3.23)

Solving Eq.3.23 for αn+1, following formula is found

αn+1 = αn −
∆t
2V

N−1∑
s=0

(
~As · ~Vn

i

) (
αn

s,0 + αn
s,1

)
︸                               ︷︷                               ︸

Convective Term

−
∆t
2V

N−1∑
s=0

AsŜ n
s

(
αn

s,0 − α
n
s,1

)
︸                          ︷︷                          ︸

Viscosity Term

(3.24)
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Equation 3.24 gives the numerical scheme that must be used to solve the non-conservative

volume fraction equation in 3.1. The scheme is strictly related to the flux function

used for conservative terms. The second term on the right hand side of the Eq. 3.24

is the classical discretized form of the convective term. Third term on the right hand

side of the Eq. 3.24 represent a viscosity term, which is also a direct function of the

flux functions written for the conservative terms.

The summary of Godunov-Rusanov scheme is below,

Conservation equation:

Un+1 = Un −
∆t
V

N∑
s=0

AsT−1
s F̂s

n
(3.25)

Flux function:

F̂n
s =

1
2

[
F̂n

s,0 + F̂n
s,1 − Ŝ n

(
Ûn

s,1 − Ûn
s,0

)]
(3.26)

Non-conservative source terms:

∇αn =
1

2V

N−1∑
s=0

~As

(
αn

s,0 + αn
s,1

)
(3.27)

Volume-fraction equation:

αn+1 = αn −
∆t
2V

N−1∑
s=0

(
~As · ~Vn

i

) (
αn

s,0 + αn
s,1

)
−

∆t
2V

N−1∑
s=0

AsŜ n
s

(
αn

s,0 − α
n
s,1

)
(3.28)

The equations 3.27 and 3.28 are multidimensional counterparts of one dimensional

results in reference [42].

3.1.1.4 Godunov-HLL Scheme

The numerical flux of HLL approximate Riemann solver is

FHLL =
Ŝ s,1F̂s,0 − Ŝ s,0F̂s,1 + Ŝ s,0Ŝ s,1

(
Ûs,1 − Ûs,0

)
Ŝ s,1 − Ŝ s,0

(3.29)

where indexes 1 and 0 refers to right and left states respectively.
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Following the same procedure of previous section the non-conservative terms are

found as,

∂α

∂x
=

1
V

N−1∑
s=0

As cos (θs)
Ŝ s,1αs,0 − Ŝ s,0αs,1

Ŝ s,1 − Ŝ s,0
(3.30)

∂α

∂y
=

1
V

N−1∑
s=0

As sin (θs)
Ŝ s,1αs,0 − Ŝ s,0αs,1

Ŝ s,1 − Ŝ s,0
(3.31)

Above equations can be written in a more generic vector form (gradient of α) as,

∇α =
1
V

N−1∑
s=0

~As
Ŝ s,1αs,0 − Ŝ s,0αs,1

Ŝ s,1 − Ŝ s,0
(3.32)

Equation 3.32 gives the scheme to discretize the non-conservative source terms for

HLL flux function.

Similarly the solution method for volume fraction equation is found,

αn+1 = αn −
∆t
V

N−1∑
s=0

~As · ~Vn
i

(
Ŝ n

s,1α
n
s,0 − Ŝ n

s,0α
n
s,1

)
Ŝ n

s,1 − Ŝ n
s,0

−
∆t
V

N−1∑
s=0

As

(
αn

s,1 − α
n
s,0

)
Ŝ n

s,0Ŝ n
s,1

Ŝ n
s,1 − Ŝ n

s,0
(3.33)

Equation 3.33 gives the required scheme to solve the non-conservative volume frac-

tion equation in 3.1 along with the HLL flux function. The second term at the right

hand side of the Eq. 3.33 is the convective term. Third term at the right hand side is

the viscosity term.

3.2 Velocity Relaxation Procedure For Interface Problems

The velocity relaxation terms for multi-phase mixtures are given in section 5.1 in

terms drag forces between particles and the main phase. These drag force terms are

written in the form given below;
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F j
d =

N∑
i=1

λi j

(
ui − u j

)
(3.34)

where the velocity relaxation coefficient λ is a function of local flow variables and

topology. This coefficient is usually a finite value characterizing the drag forces be-

tween a main phase and particle phases.

For a multi fluid problem including interfaces separating two pure fluids, an approach

similar to the one for multi-phase mixtures is not possible. Physically the interface

condition imposes velocity equality at the interface. An instantaneous velocity relax-

ation is required to satisfy this condition. For an instantaneous relaxation, the coeffi-

cient λ in equation 3.34 tends to infinity. Velocity relaxation procedure requires the

solution of following ODE system when λ ji → ∞ for all j = 1, ..,N and i = 1, ..,N.

∂Ui

∂t
=



0

0
N∑

j=1

λi j

(
u j − ui

)
N∑

j=1

VIλi j

(
u j − ui

)


(3.35)

For simplicity a one dimensional interface problem separating two different phases is

considered. In this case the ODE in equation 3.35 is written as,

∂αi

∂t
= 0 (3.36)

∂αiρi

∂t
= 0 (3.37)

∂αiρiui

∂t
= λ

(
u j − ui

)
(3.38)

∂αiρiEi

∂t
= λVI

(
u j − ui

)
(3.39)

∂α jρ j

∂t
= 0 (3.40)

∂α jρ ju j

∂t
= λ

(
ui − u j

)
(3.41)

∂α jρ jE j

∂t
= λVI

(
ui − u j

)
(3.42)
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The procedure for the solution of above ODE system for λ → ∞ is given in refer-

ences [42, 29]. The value αρ is constant during relaxation, which can be seen from

equations (3.37) and (3.40). The value αρ is constant during relaxation, which can be

seen from equations (3.37) and (3.40). Using equations 3.37, 3.38, 3.40 and 3.41,

∂ui

∂t
=

λ

αiρi

(
u j − ui

)
(3.43)

∂u j

∂t
=

λ

α jρ j

(
ui − u j

)
(3.44)

Subtracting equation 3.43 from equation 3.44 and integrating results

u j − ui =
(
u j0 − ui0

)
exp

[
−λ

(
1
αiρi

+
1

α jρ j

)]
(3.45)

where u j0 and ui0 are initial values before velocity relaxation process. When λ tends

to infinity, equation 3.45 becomes

u j − ui = 0 (3.46)

Summing equations 3.43 and 3.44 gives

αiρi
∂ui

∂t
+ α jρ j

∂u j

∂t
= 0 (3.47)

Integration of equation 3.46 gives

αiρi (ui − ui0) + α jρ j

(
u j − u j0

)
= 0 (3.48)

Using equations 3.45 and 3.46

ui = u j =
αiρiui0 + α jρ ju j0

αiρi + α jρ j
(3.49)

This result can be generalized for N phases for N ≥ 2,
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u = u1 = ... = uN =

N∑
k=1

αkρkuk0

N∑
k=1

αkρk

(3.50)

Above equation shows that all the relaxed velocities at the interface are equal to the

interface velocity given in equation 3.4. This result justifies the choice of inter-facial

velocity formulation.

3.3 Pressure Relaxation

When the fluids in a multi fluid system are in a non-equilibrium pressure state (such

as after a wave propagation)
(
P j , Pi for j , i

)
, a pressure relaxation process devel-

ops and the pressure tends to equilibrium, (PI = P1 = P2 = ... = PN) [42]. For most

interface problems, the time scale for the pressure relaxation process is very small

compared to other processes such as the velocity drag and thermal relaxation pro-

cesses [29, 30, 42]. Pressure relaxation process leads to pressure equilibrium at the

phasic interface almost instantaneously for most compressible multi-fluid systems.

For a system with instantaneous velocity relaxation, an instantaneous pressure relax-

ation leading to pressure equilibrium is very natural and necessary [29, 30].

The ODE system describing the pressure relaxation process is defined as;

∂α j

∂t
=

N∑
l

µ jl

(
P j − Pl

)
(3.51)

∂α jρ j

∂t
= 0 (3.52)

∂α jρ ju j

∂t
= 0 (3.53)

∂α jρiE j

∂t
= −PI

N∑
l

µ jl

(
P j − Pl

)
(3.54)

Above equations can also be written in a form consistent with equation 3.11 and 3.12

as given below,
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∂U j

∂t
=



N∑
l

µ jl

(
P j − Pl

)
0

0

−PI

N∑
l

µ jl

(
P j − Pl

)


, for all j = 1, ...,N (3.55)

The homogenization parameter (dynamic compaction viscosity) µ ji controls the rate

at which pressure tends to equilibrium [4]. For instantaneous pressure relaxation the

homogenization parameter µ ji tends to infinity.

Both partial density αρ j and velocity u j remain constant during pressure relaxation

process. This can be deduced from equations 3.52 and 3.53. Equation 3.53 is ex-

panded to see that,

α jρ j
∂u j

∂t
+ u j

∂α jρ j

∂t
= 0 (3.56)

Using equation 3.52 we deduce ∂u j

∂t = 0. This result is physical because pressure

relaxation is a result of internal pressure forces which can not lead to a net momentum

change. Using equations 3.51 and 3.54, following can be written,

∂α jρ jE j

∂t
= −PI

α j

∂t
(3.57)

Denoting the initial and final times of the pressure relaxation process by t0 and t∗

respectively, the assumption below can be safely made.

t∗ − t0 << ∆t (3.58)

where ∆t is the time step size used for the solution of the transport part of the multi-

fluid system.

Again using equations 3.52 and 3.53, the equation 3.57 is rewritten as
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α jρ j
∂e
∂t

= −PI
∂α j

∂t
(3.59)

It was shown above that the value α jρ j is constant during pressure relaxation. Inte-

grating equation 3.59,

α jρ j

(
e∗ − e0

)
= −

∫ t∗

t0
PI
∂α j

∂t
dt for all j = 1, ..,N (3.60)

By using the change of variables dα j =
∂α j

∂t dt,

α jρ j

(
e∗ − e0

)
= −

∫ α∗j

α0
j

PIdα j for all j = 1, ..,N (3.61)

Equation 3.61 can be rewritten in differential form as [29];

α jρ j = −PIdα j for all j = 1, ..,N (3.62)

The differential terms de j and dα j can be written in different forms. Since α jρ j is

constant during process,

dα j = d
(
α jα j

ρ j

)
= −

α jρ j

ρ2
j

dρ j for all j = 1, ..,N (3.63)

then

de j = −
PI

α jρ j
=

PI

ρ2
j

dρ j for all j = 1, ..,N (3.64)

de j can also be written using equation of state of the form e j = e j

(
ρ j, P j

)

de j =
∂e j

∂ρ j

∣∣∣∣∣∣
P j

dρ j +
∂e j

∂P j

∣∣∣∣∣∣
ρ j

dP j for all j = 1, ..,N (3.65)

Again using the fact that α jρ j is constant during pressure relaxation,
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dρ j = d
(
α jρ j

α j

)
= −

α jρ j

α2
j

dα j for all j = 1, ..,N (3.66)

Then

de j = −
α jρ j

α2
j

∂e j

∂ρ j

∣∣∣∣∣∣
P j

dα j +
∂e j

∂P j

∣∣∣∣∣∣
ρ j

dP j for all j = 1, ..,N (3.67)

Using the definition of jth phase interfacial speed of sound c2
I, j =

PI
ρ2

j
−

∂e j
∂ρ j

∣∣∣∣∣
P j

∂e j
∂P j

∣∣∣∣∣
ρ j

and equa-

tions 3.66, 3.67

dP j = −
α jρ j

α2
j

c2
I, jdα j for all j = 1, ..,N (3.68)

Integration of equation 3.68 leads to an equation equivalent to 3.61,

P∗j − P0
j = −

∫ α∗j

α0
j

α jρ jc2
I, j

α2
j

dα j for all j = 1, ..,N (3.69)

where P∗j is the final pressure after relaxation process and P0
j is the initial pressure

before pressure relaxation process.

Equations 3.61 and 3.69 can be integrated to give final values e∗j or P∗j. Some other

different efficient procedures and this one is explained in references [29, 30].

3.3.1 Solution Procedure

The details of the procedure can be found in reference [29]. The integral of the right

hand side of equation 3.69 can be approximated as

P∗j − P0
j = −

α jρ jc2
I, j

α2
j

0

∆α∗j for all j = 1, ..,N (3.70)

If relaxation is reached, the following should hold
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P∗I = P∗j = P∗m for all j,m = 1, ..,N (3.71)

or

P∗I = P∗j = P∗1 for all j = 2, ..,N (3.72)

Using 3.70

P0
j − a0

j∆α
∗
j = P0

1 − a0
1∆α

∗
1 (3.73)

where a j =
α jρcI, j

α2
j

Using the saturation condition
∑N

j=1 ∆α∗j = 0

∆α∗1 = −

N∑
j=2

∆α∗j (3.74)

From equations 3.73 and 3.74

∆α∗1 =

∑N
j=2

(
P0

1−P0
j

)
a j∑N

j=1
a1
a j

(3.75)

Using equations 3.73 and 3.75 all volume fractions after relaxation can be calculated.

However admissibility of these values should be verified. Volume fractions are ad-

missible if 0 ≤ α∗j ≤ 1 for all j = 1, ..,N. This condition can also be written as,

− α0
1 ≤ ∆α∗j ≤ 1 − α0

j (3.76)

Using equation 3.73

− α0
1 ≤

P0
j − P0

1 + a0
1∆α

∗
1

a0
j

≤ 1 − α0
j (3.77)
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or in a more useful form [29]

max
j

−P0
j − P0

1 + a0
jα

0
j

a0
1

 ≤ ∆α∗1 ≤
min
j

−P0
j − P0

1 + a0
j

(
1 − α0

j

)
a0

1

 (3.78)
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CHAPTER 4

DISCRETE APPROACH FOR COMPRESSIBLE

MULTI-PHASE FLOWS

In Chapter 3, the method given in reference [42] was extended to unstructured grids.

This method with proper handling of non-conservative terms and relaxation proce-

dures was able to solve equations 3.1. However, although the missing data problem

due to missing waves across the material interfaces was overcome by relaxation pro-

cedures, the method is not robust in some conditions. This issue can be explained by

considering the method’s approach for the wave structure at a material interface. In

this method the only way to define an interface is to use very small volume fractions

of the different phases at each side of the interface. The information across the in-

terface is carried between the same phases then the information is propagated to the

other phases by relaxation procedures. In this way the missing waves are recovered.

However because the phase with a very small volume fraction such as 10−6 is first

to get the whole information, the method is very prone to numerical difficulties re-

lated to the limits of EOS formulations used for this phase. This problem becomes

important for shock waves across the material interfaces.

In fact the problem with this method originates from the equation system solved.

This equation system is a pure Eulerian multi-phase model describing each phase as a

continuum without a material discontinuity such as a phasic interface. In principle the

difficulty can be overcome by approaching the problem at a more basic level. Discrete

equations can be produced at material interfaces to supply a Godunov method with

required numerical fluxes averaged over the cell faces. Abgrall and Saurell [2] used

this approach to overcome the problems existing in their previous study [42]. With
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Discrete Equations Method they were also able to solve non-conservative products

that appear in seven equations model studied in chapter 3. In this chapter I propose

a similar but more simple and effective approach for constructing a Godunov scheme

by adapting HLLC flux for phasic interfaces. The proposed method can be applied to

both multi-fluid and multi-phase mixtures without any modification.

4.1 Wave Patterns in a multi-phase Mixture

In a multi-phase mixture approach, an interface separating two pure materials is not

defined. The averaged equations define such a mixture. However, it is still possible to

define material interfaces by defining mixtures containing negligible amounts of the

other phases on each side [42]. For example to define a pure liquid phase the volume

fraction of the liquid can be initialized as αl = 1 − ε, where ε is equal to a very small

value such as 10−8. A typical wave configuration of a Riemann problem solution for

such a mixture defined by an averaged equation system is shown schematically in

Fig. 4.1. In fact the configuration in Fig.4.1 depicts the states before the velocity and

pressure relaxation procedures. Since the solution of the Riemann problem is realized

after velocity and pressure relaxations, the possible number of wave configurations is

equal to that of single phase problems. This property furnishes one to utilize single

phase Riemann solvers for the problem.

Figure 4.1: Rarefaction (R), contact (C) and shock (S) wave pattern in a compressible
two phase mixture. Superscripts l and g denote liquid and gas phases respectively.
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4.2 Wave Patterns at an Interface Separating Two Pure Fluids

A possible Riemann problem solution for an interface initially separating two pure

fluids is depicted in Fig. 4.2. It is evident from the figure that the two fluids remain

on two sides of the contact wave which corresponds to the interface moving to the

right. The possible wave configurations are again the same as those of the single

phase problem. Therefore, these type problems can be solved by utilizing any ex-

plicit method in conjunction with an interface tracking method. HLLC type Riemann

solvers are especially advantageous in these type of problems due to exact resolution

of the contact waves.

Figure 4.2: Rarefaction (R), contact (C) and shock (S) wave pattern at an interface.
Superscripts l and g denote liquid and gas phases respectively.

4.3 Definitions and Assumptions

The numerical scheme is a finite volume method and hence the computational domain

consists of discretized control volumes (cells) Ωc. Each pure fluid in a discrete control

volume is governed by the Euler equations. For each pure fluid Σi, the flow states and

associated fluxes are given as below:
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U i =



ρi

ρiui

ρivi

ρiEi


, F i =



ρiui

ρiui2 + Pi

ρiuivi

ui(ρiEi + Pi)


, Gi =



ρivi

ρiuivi

ρivi2 + Pi

vi(ρiEi + Pi)


(4.1)

For a Godunov type finite volume method one needs to represent cell averaged fluid

states for each control volume. This can be done by an averaging procedure as in

[13] and [2]. A characteristic function Xi is introduced for this purpose. Xi is defined

as Xi (~x, t) = 1 if ~x lies in fluid Σi, otherwise 0. An average state W i
c for phase Σi is

defined as,

W i
c =

1
VΩc

∫
Ωc

XiU id~x (4.2)

where VΩc is the volume of the solution cell. The result of this averaging procedure

can be written in terms of volume fractions αi as,

W i
c =



αiρi

αiρiui

αiρivi

αiρiEi


, (4.3)

For a multi-phase mixture and multi-fluid problem with definite interfaces the veloci-

ties ui and vi and pressures Pi of each phase become equal after relaxation procedures

as defined in Section 3.2. When one or more phases are in the form of particles,

phase velocities may be different. In this case, the right side of the Eq. (3.35) is

usually written in the form of momentum transfer terms.

There may be interfaces in the cells. The total interfacial area in a cell volume is not

known nor correlated to volume fractions except particulate phases. Thus, interface

is tracked by a diffuse interface approach.

Interfacial areas of phases at cell faces are correlated to volume fractions and this
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feature will be used to calculate Godunov fluxes across the cell faces for each phase

Σi. There may be many interface configurations at the cell faces, and therefore, it is

assumed that phase interfaces are randomly positioned at a cell face. This situation is

illustrated in Fig. 4.3.

Figure 4.3: Some of possible phase interface configurations at cell face.

4.3.1 Riemann Problem at a Cell Face

The Riemann problem for a cell face with multiple phase interfaces can be defined

with initial condition at t = 0 as described by

U i =

 U i
L i f x ≤ 0

U i
R i f x ≥ 0

Pi
L = P1

L, ui
L = u1

L, i = 2, ..,N

Pi
R = P1

R, ui
R = u1

R, i = 2, ..,N

(4.4)

The equilibrium states of phase pressures Pi and phase velocities ui defined in Eq.

4.4 is justified by assuming micro scale relaxation processes are completed before

time t = 0. A possible way of solving this shock tube type problem is to temporarily

ignore relaxation processes for a sufficiently short time after t = 0. This situation

is illustrated for a possible interface configuration in Fig. 4.4. Actually, rather than

ignoring the relaxation processes for a short time, one can suggest to use a well known

method "time splitting". Time splitting is more generally used in explicit methods
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for updating source terms. However, micro scale pressure and velocity relaxation

processes on a phase interface are completed almost infinitely fast compared to other

processes. This is in contrast to source terms such as momentum and heat transfer

which are time dependent processes.

Figure 4.4: Wave and phase patterns ignoring relaxation processes at a short time
after t = 0.

4.4 Solution of Riemann Problem By Utilizing HLLC Solver

For a Godunov type solution for phase Σi, one needs to calculate fluxes for all possible

interface and wave configurations. It is assumed that all the N phases present on each

side of the cell face and phasic interfaces may have all possible random configurations

at the cell face. Defining
(
Σi,Σ j

)
as one type of possible interfaces which separates the

phase Σi on left and the phase Σ j on right, we can calculate the number for all possible

interface configurations including phase Σi. This number for phasic interfaces turns

out to be 2N−1. These possible interfaces for phase Σi is categorized in three general

groups:

1. (Σi,Σi)

2.
(
Σi,Σ j

)
, i , j
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3.
(
Σ j,Σi

)
, j , i

In the following sections, Godunov fluxes are calculated for each possible interface

configuration with each possible wave pattern for phase Σi. It is assumed that the

fluxes are calculated for the left cell ΩL which is on the negative side of the x̂ axis on

the local, rotated coordinate system (coordinate rotation methods for non-Cartesian

domains was reviewed in [48]).

4.4.1 (Σi,Σi) Interface

Since this interface defines a single phase problem, the flux F i (Σi,Σi) across this

interface can be calculated with the HLLC solver without any modification. In the

following equations (i, j) is used in superscripts instead of
(
Σi,Σ j

)
.

F i
(
U i

L,U
i
R

)
=



F i
L i f 0 ≤ S (i,i)

L

F i
L + S (i,i)

L

(
U (i,i)
∗L − U i

L

)
i f S (i,i)

L ≤ 0 ≤ S (i,i)
∗ ,

F i
R + S (i,i)

R

(
U (i,i)
∗R − U i

R

)
i f S (i,i)

∗ ≤ 0 ≤ S (i,i)
R ,

F i
R i f 0 ≥ S (i,i)

R

(4.5)

Where S L are S R are left and right wave velocities respectively. S ∗ is the contact wave

velocity which is also the advection velocity of the phase interface information. The

subscript ∗L denotes the region between left wave and contact wave. Similarly the

subscript ∗R denotes the region between the right wave and the contact wave. The

volume fraction αi of the phase Σi is not affected by the processes on the interface

(Σi,Σi) before any relaxation processes in the cell. Therefore, the flux F(i,i)
αi carrying

information for volume fraction of phase αi is zero across any single phase interface.

4.4.2
(
Σi,Σ j

)
, i , j Interface

For this type interface there are two different situations according to the direction of

the contact wave which carries the interface position. For a right going contact wave,

the HLLC formulation is still valid for phase Σi. However, for a left going contact
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wave there is no information carried by convective terms for phase Σi. This flux can

be simply defined, in two dimensions, as

F(i, j),i, j
(
U i

L,U
j
R

)
=


0

P(i, j)
∗

0

u(i, j)
∗ P(i, j)

∗


i f S (i, j)

∗ ≤ 0 (4.6)

One can also reach this result (Eq.(4.6)) by using the HLLC Riemann solver. The

flux on the right of the contact wave can be written, using the HLLC solution of the

Riemann problem [48], as

F(i, j)
∗R = F(i, j)

∗L + S (i, j)
∗

(
U (i, j)
∗R − U (i, j)

∗L

)
(4.7)

Subtracting the convective part S (i, j)
∗ U (i, j)

∗R from F(i, j)
∗R , we find

F(i, j),i, j
(
U i

L,U
j
R

)
= F(i, j)

∗L − S (i, j)
∗ U (i, j)

∗L , i f S (i, j)
∗ ≤ 0 (4.8)

This result is consistent with the formulation used in [2]. The HLLC flux for the

interface
(
Σi,Σ j

)
, i , j is written as

F(i, j),i, j
(
U i

L,U
j
R

)
=


F i

L i f 0 ≤ S (i, j)
L

F i
L + S (i, j)

L

(
U (i, j)
∗L − U i

L

)
i f S (i, j)

L ≤ 0 ≤ S (i, j)
∗

F(i, j)
∗L − S (i, j)

∗ U (i, j)
∗L i f S (i, j)

∗ ≤ 0

(4.9)

A similar formulation can be written for volume fraction αi,

F(i, j),i, j
αi =

 0 i f S (i, j)
∗ ≥ 0

−S (i, j)
∗ i f S (i, j)

∗ ≤ 0
(4.10)
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4.4.3
(
Σ j,Σi

)
, j , i Interface

In this case for a right going contact wave S ( j,i)
∗ ≥ 0, and the flux F i

(
U i

L,U
j
R

)
is zero.

For S ( j,i)
∗ ≤ 0 and S ( j,i) ≥ 0, only convective flux of the ∗R region exists, which is

S ( j,i)
∗ U ( j,i)

∗R . For the supersonic case S ( j,i)
R ≥ 0, again the HLLC solution can be used

to find the flux for Σi on left of the interface. By subtracting the flux F( j,i)
∗R in the ∗R

region from F i
R and adding the convective part of the ∗R region, we find the net flux

for phase Σi at the left cell. The HLLC solver for this interface is then written as,

F( j,i), j,i
(
U j

L,U
i
R

)
=


0 i f 0 ≤ S ( j,i)

∗

S ( j,i)
∗ U ( j,i)

∗R i f S ( j,i)
∗ ≤ 0 ≤ S ( j,i)

R

F( j,i)
R − F( j,i)

∗R + S ( j,i)
∗ U ( j,i)

∗R i f S ( j,i)
R ≤ 0

(4.11)

The flux for volume fraction αi for this interface is written as,

F( j,i), j,i
αi =

 0 i f S ( j,i)
∗ ≥ 0

S ( j,i)
∗ i f S ( j,i)

∗ ≤ 0
(4.12)

4.4.4 Fluxes For Godunov Method

The HLLC fluxes defined above can be used for an interface tracking method. How-

ever we use these for constructing a Godunov method with diffuse interfaces. Since

the method allows the interface to be in a computational cell, velocity and pressure

relaxation processes are required after updating all conserved variables. Defining

P
(
Σi,Σ j

)
as the probability of this interface taking place at the cell face ζ f .

P
(
Σi,Σ j

)
=

1
Aζ f

∫
ζ f

Xi
LX j

RdS = αiα j (4.13)

Then, the Godunov flux for phase Σi is found to be,

F i = αiαiF i
(
U i

L,U
i
R

)
+ αiα jF(i, j),i, j

(
U i

L,U
j
R

)
+ α jαiF( j,i), j,i

(
U j

L,U
i
R

)
(4.14)
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F i
α = αiα jF(i, j),i, j

αi + α jαiF( j,i), j,i
αi (4.15)

4.5 Multifluid Test Cases

4.5.1 Water/Air Shock Tube Problem

This test problem is defined in reference [29] to test different pressure relaxation

methods. A 1 m shock tube is considered, filled by high pressure liquid water at the

left x < 0.7 and by low pressure air at the right x > 0.7. Liquid water is modeled

with a stiffened EOS, and air is ideal gas. The initial data for shock tube problem are;

ρl = 103 kg/m3, Pl = 109 Pa, ul = 0 m/s, γl = 4.4, Pl,∞ = 6 × 108, αl
L = 1 − 10−8 for

x < 0.7and ρg = 50 kg/m3, Pg = 105, ug = 0 m/s, γg = 1.4, αg = 1− 10−8 for x > 0.7.

For this test case both discrete method defined in Chapter 4 and the Godunov method

described in Chapter 3 are used. Velocity and pressure relaxation methods given in

Sections 3.2 and 3.3 are also applied. The solutions at time t = 229 × 10−6 are given

in Figures 4.5 and 4.6. These solutions are obtained with 1000 computational cells.

The discrete approach provides more physical results for pressure solution and is less

diffusive for volume fraction. Another problem with the continuous method is the

stiffness of the solution near material interfaces especially when a powerful shock

wave interacts with the interface. Due this problem CFL number should be decreased

very small values in the initial times of the simulation. This numerical scheme is never

stable even with CFL number of 0.5. On the other hand discrete algorithm is stable

with CFL number of 2.0 when used with a four stage Runge-Kutta time advancing

scheme.

4.5.2 Under Water Explosion

A two dimensional underwater explosion problem is considered. This problem is sim-

ilar to the one previously simulated in references [26],[19] and [46]. An underwater

cylindrical bubble of gaseous explosive products expands and drives the air-water in-

terface. The details of the test problem is given in section 6.5.2. Some results can be
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Figure 4.5: Solutions for water/air shock tube test problem at t = 229 × 10−6 s.
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Figure 4.6: Solutions for water/air shock tube test problem at t = 229 × 10−6 s.
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seen in Figures 4.7, 4.8 and 4.9. As can be seen in the previous one dimensional test

case in this two dimensional test case, phase interfaces are lost due to high numerical

diffusion in the solution of volume fractions. Due to this diffusion, interfaces evolves

to a artificial mixture region. This diffusion problem is addressed in Chapter 6.

Figure 4.7: Volume fractions of water at times t = 100 × 10−6, t = 240 × 10−6,
t = 340 × 10−6 and t = 680 × 10−6 seconds.
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Figure 4.8: Water mixture densities at times t = 100 × 10−6, t = 240 × 10−6, t =

340 × 10−6 and t = 680 × 10−6 seconds
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Figure 4.9: Mixture pressures at times t = 100×10−6, t = 240×10−6 and t = 340×10−6

seconds
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Figure 4.10: Mixture velocities at times t = 100 × 10−6, t = 240 × 10−6 and t =

340 × 10−6 seconds
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CHAPTER 5

METHODS FOR HIGHLY DILUTED MULTI-PHASE FLOWS

The methods developed in Chapters 3 and 4 provides robust solution methods for

multi-phase mixture and interface problems. However these methods are based on

the solution of volume fractions for each phase along with pressure and velocity re-

laxation procedures. In some multi-phase flows, several phases may be present with

very small volume fractions but with high influence on overall flow field. Exam-

ples to these phases may include liquid or solid particles suspended in a primary gas

phase. Due to very low volume fraction and low compressibility of these phases,

pressure and velocity relaxation procedures may not be valid. Pressure relaxation

procedure may be completely ignored while heat transfer mechanisms may become

important. Similarly, velocity equality assumption on phase interfaces is not valid for

small particles, instead a slip velocity approach is required for momentum transfer

terms between the particles and the primary phase. In this chapter, methods for com-

pressible multi-phase flows with highly diluted secondary phases are discussed. The

results of this Chapter will also be used for testing the applicability of the discretiza-

tion methods developed in Chapter 6 for dilute particles in a primary gas phase.

In a dilute mixture, the volume occupied by the dilute phase may be ignored. The di-

lute approximation leads to another assumption which assumes there is no interaction

between dilute particles. With these assumptions, volume fraction and pressure terms

are dropped from Equations 3.1.

∂ρg

∂t
+
∂ρgug

∂x
= ṁ (5.1)
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∂ρgug

∂t
+
∂
(
ρgu2

g + P
)

∂x
= ṁup + Fd (5.2)

∂ρgEg

∂t
+
∂ug

(
ρgEg + P

)
∂x

= ṁEi + Fdup + Qi (5.3)

∂ρp

∂t
+
∂ρpup

∂x
= −ṁ (5.4)

∂ρpup

∂t
+
∂ρpu2

p

∂x
= −ṁup − Fd (5.5)

∂ρpEp

∂t
+
∂upρpEp

∂x
= −ṁEi − Fdup − Qi (5.6)

where,

Ep = ep + 1
2 |u|

2 , ep = TpCp (5.7)

The two equation systems are coupled only via phase interaction terms due to lack of

volume fractions. The equation system for gas phase is the same with classical single

phase gas equations except the momentum source term. However equation system for

the dilute phase without volume fraction and pressure terms is a degenerate hyperbolic

system mainly due to lack of particle interaction terms. As a result of ignoring particle

interaction and volume fraction of particles, the particle trajectories may cross which

is not true for classical gas dynamics.

While the equation system for gas phase admits three different real eigenvalues λ1 =

ug − a, λ2 = ug, λ3 = ug + a with three different eigen vectors, the second system of

equations for particle phase admits only one characteristic speed λ4,5,6 = up with two

linearly independent Eigen vectors instead of three. The degeneracy of the system is

due to this missing eigenvector associated with the eigenvalue λ6 = up. In fact the
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main implications of this degeneracy are the known physical assumptions. Due to

lack of pressure terms in particle equations particle vacuums can exist and particle

trajectories may cross [43]. When the two particle groups cross, a new family of

particles is formed due to average representation in particle equations which results

in loss of particle history information.

The solution of the particle phase equations is based on a particle phase Riemann

solver similar to the explained in [43].

F p
s =



S LUL i f S L ≥ 0 & S R ≥ 0

S RUR i f S L ≤ 0 & S R ≤ 0

0 i f S L ≤ 0 ≤ S R

(UL + UR)
(
ρLS L+ρRS R
ρL+ρR

)
i f S R < 0 < S L

(5.8)

5.1 Interface Drag

The drag force exerted by a single particle on the continuous phase is calculated by

~Fd,s =
1
2

CDρgAp

∣∣∣∣ ~Up − ~Ug

∣∣∣∣ ( ~Up − ~Ug

)
(5.9)

where CD and Ap are the drag coefficient end surface area of a single particle projected

in the flow direction. In Equation 5.9, subscripts g and p refer to continuous fluid

phase and the secondary particle phases respectively. For the computational purposes,

the number of particles in the cell c with volume Vc may be calculated as,

nc =
6Vcρp

ρsπd3
p

(5.10)

where ρs is the density of the particle phase material and dp is the diameter of the

particles.

Using Equations 5.9 and 5.10 the volumetric momentum source term due to particle

drag is calculated as,
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~Fd =
3ρpCDρg

4ρsdp

∣∣∣∣ ~Up − ~Ug

∣∣∣∣ ( ~Up − ~Ug

)
(5.11)

5.2 Drag Models

Using the model of Schiller and Naumann [45] model, drag coefficient CD can be

calculated as,

CD = max
{

24
Rep

(
1 + 0.15Re0.687

p

)
; 0.445

}
(5.12)

where Reynolds number Rep is defined as

Rep =
ρgdp

∣∣∣∣ ~Ug − ~Up

∣∣∣∣
µ

(5.13)

Schiller Naumann drag model is applicable to sparsely distributed spherical solid par-

ticles where both viscous and inertial are important.

At low particle Reynolds numbers (Re << 1), the drag force for small particles may

be calculated analytically [8] by Stoke’s law.

~Fd =
ρp

(
~Up − ~Ug

)
τd

(5.14)

where τd is dynamic relaxation time of the particle defined as,

τd =
ρsd2

p

18µ
(5.15)

Stoke’s law finds use in the motion of colloidal particles under the influence of an

electric field, in the theory of sedimentation, and in the study of movement of aerosol

particles. It is valid up to a Reynolds number of about 0.1.
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5.3 Inter-phase Heat Transfer

The heat transfer between dilute particles and the fluid phase occurs due to thermal

non-equilibrium across phase interfaces. Heat transfer rate per unit volume is propor-

tional to the temperature difference as,

Qi = hap

(
Tp − Tg

)
(5.16)

where h is the heat transfer coefficient between particle and fluid phases and ap is the

inter-facial area per unit volume which is calculated for spherical particles as

ap =
6ρp

dpρs
(5.17)

Heat transfer rate is rewritten as,

Qi =
6kgρpNup

d2
pρs

(
Tp − Tg

)
(5.18)

Here kg is the thermal conductivity of the fluid phase. The particle Nusselt number

Nup is determined from a proper correlation. The default one used is the correlation

of Ranz and Marshall [39, 38] which is the most well tested correlation for flow past

a spherical particle,

Nup = 2.0 + 0.6Re1/2
p Pr1/3 (5.19)

where Pr is the Prandtl number of the fluid phase:

Pr =
Cpgµg

kg
(5.20)

This model is applicable in the ranges 0 ≤ Re < 200 and 0 ≤ Pr < 250.

For low Reynolds, Nusselt number is given by Nu = 2, which can be derived analyti-

cally [8] for a sphere in a stagnant fluid. This is also the limiting value of Eq. 5.19 for
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low Reynolds numbers. This result finds application in many processes that involve

sprays of bubbles or droplets.

5.4 Particle Phase Boundary Conditions

As pointed earlier in this section, the system of equations for particle phase admits

only one characteristic speed. This simplifies the almost all boundary conditions with

the exception of reflection boundary condition [43].

5.4.1 Inlet Conditions

The following combinations of inlet conditions may be imposed at the boundaries:

ṁp and ρp, or ~up and ρp, or ṁp and ~up.

5.4.2 Outlet Conditions

The absorption conditions for particles are suitable which are similar to the trans-

missive conditions for gas phase. At an absorption boundary, the state in a phantom

boundary cell is taken equal to the one in the neighboring boundary cell.

5.5 Test Cases of Dilute Particle Phase Model

5.5.1 Attenuation and Dispersion of Acoustic Waves by Particulate-relaxation

Processes [27]

In this test case, attenuation and dispersion of acoustic waves by particulate-relaxation

processes is studied.1 The temperature and velocity of a particle suspended in an

acoustic field are subject to fluctuations that may lag behind those of the surrounding

fluid [47]. This test case is based on the theory of Temkin and Dobbins [47]. In

their original paper, a theory for acoustic attenuation and dispersion in an aerosol
1 This test case is done as a part of NATO-RTO AVT T-005 SUPPORT PROJECT between ROKETSAN

(Turkey) and ONERA (France).
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based on particulate relaxation processes is given. The particulate-relaxation theory

predicts attenuation and dispersion by small, heavy particles, in close agreement with

more detailed theories, for values of ωτd ( ω is the circular acoustic frequency, τd

is the dynamic relaxation time of the particle) smaller than and including unity [47].

Comparison with existing experimental data of attenuation and dispersion shows good

agreement with their theory [47].

5.5.1.1 Main Hypothesis

Theoretical development of this test case is based on the following assumptions [47];

• The gas is thermally and calorically perfect.

• The density of the particles is much greater than the density of the surrounding

• Mass transfer between particles and gas is absent.

• The total heat and momentum transfer rate between particulate phase and gas

phase is the sum of the effects due to each particle. This implies that the particle

diameter is assumed to be much smaller than the distance between the particles.

• The heat transfer between gas and particles and the resistance force to the mo-

tion of the particles are given by expression applicable in the limit of zero

Reynolds number.

• The fluctuations of pressure, density, and temperature produced by the acoustic

wave are assumed to be so small as compared with their mean values that their

squares of their cross products can be neglected. Similarly, the fluid velocity is

much smaller than the speed of sound.

• Gas dissipation terms are assumed to be small with respect to two-phase dissi-

pation terms [1].

– Gas viscous stress and inside heat conduction are neglected.

• The particles are rigid (no surface tension effects), spherical and uniform tem-

perature and size.

– No heat conduction inside the dispersed phase.
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5.5.1.2 Theoretical Development of The Test Case

The general one dimensional equation for two-phase flow consisting of gas and par-

ticle phases is given below. Equations for the gas phase are;

∂ρ̄

∂t +
∂ρ̄u
∂x = 0

ρ̄
[
∂u
∂t + u

(
∂u
∂x

)]
+

∂p̄
∂x = n̄Fp

ρ̄Cv

[
∂T̄
∂t + u

(
∂T̄
∂x

)]
+ P̄

(
∂u
∂x

)
= n̄Qp + n̄Fv

(
u − up

)
(5.21)

Equations for the particulate phase are;

∂ρ̄p

∂t +
∂ρ̄pup

∂x = 0

ρ̄p

[
∂up

∂t + up

(
∂up

∂x

)]
= −n̄Fp

ρ̄C′p
[
∂T̄p

∂t + u
(
∂T̄p

∂x

)]
= −n̄Qp

(5.22)

The perfect gas law is

p̄ = R̄ρ̄T̄ (5.23)

The governing equations above are linearized by substituting perturbed values of vari-

ables. Since perturbations of variables are small quantities their squares and cross

products can be neglected. The conservation equations for the gas phase reduce to;

∂ρ

∂t + ρ0

(
∂u
∂x

)
= 0

ρ0

(
∂u
∂x

)
+

∂p
∂x = n0Fp

ρ0

[
∂T
∂t

]
+ P0

(
∂u
∂x

)
= n0Qp

(5.24)

The conservation equations for the particulate phase are given by
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∂ρp

∂t + nm′ ∂up

∂x = 0

m′
(
∂up

∂t

)
= −Fp

m′C′p
(
∂Tp

∂t

)
= −Qp

(5.25)

The linearized perfect-gas law takes the form

P = R̄ (ρT0 + ρ0T ) (5.26)

If the drag force and heat transfer are specified, equations 5.24- 5.26 represent seven

simultaneous partial differential equations in seven unknowns. It is assumed that the

drag is given by Stoke’s law for motion of a sphere in a viscous fluid. Similarly the

heat transfer coefficient h is assumed equal to k/R. Also applicable for low-Reynolds-

number flows. With these assumptions, Fp and Qp are given by

Fp = 6πR
(
up − u

)
(5.27)

and

Qp = 4πRk
(
Tp − T

)
(5.28)

When considering a droplet oscillating in an acoustic field, two parameters having

dimensions of time appear. One of these is the dynamic relaxation time of the droplet

defined

τd =
2R2ρ′

9µ
(5.29)

The other is the thermal relaxation time of the particle and is denoted by

τt =
Pr C′pR2ρ′

3µCp
=

3
2

C′p
Cp

Pr τd (5.30)
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Assuming that all the unknown quantities depend on x and t through a factor

ϕ (x, t) = Aϕei(Kx−ωt) (5.31)

where

K = k + ik2 (5.32)

The result is a system of four homogeneous, algebraic equations. The system has a

solution only if the determinant vanishes. Equating the resulting determinate to zero,

it is found that K should satisfy the following equation:

(Ka0

ω

)2
1 +

CmC′p
/
Cp

1 − iωτt

 =

(
1 +

Cm

1 − iωτd

) 1 +
γCmC′p

/
Cp

1 − iωτt

 (5.33)

Equation 5.33 can be solved in favor of k1 and k2, which in turn are connected with

the speed of sound and attenuation coefficients by

a =
ω

k1
(5.34)

and

α = 2k1 (5.35)

The attenuation coefficient α gives the energy dissipated per unit length.

Another important coefficient is related to dispersion of acoustic energy;

β = k2
1 −

(
ω

a0

)2

(5.36)

The physical interpretation of attenuation coefficient and dispersion coefficient can

be inferred from the Figure 5.1. α is the coefficient of decreasing exponential and
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β characterizes the velocity of the wave in the two-phase medium compared to the

sound velocity in the pure gas.

Figure 5.1: Attenuation of sound waves due to 15µm diameter particles [14].

5.5.1.3 Attenuation and Dispersion Due to Numerical Diffusion

All practical numerical schemes for solving fluid flow contain a finite amount of nu-

merical diffusion. The amount of numerical diffusion is inversely related to the mesh

resolution. It is always advantageous to use high order schemes to reduce numerical

diffusion. In Figure 5.2, the results of numerical simulation with different flux solvers

of CMPS code are shown. In these simulations 16 cells per wave length are used. The

HLL-WAF+MUSCLE scheme results in the lowest numerical diffusion.

5.5.1.4 Numerical Test Case

The aim of this test case is to reproduce the results of the analysis explained in Section

5.5.1.2 by numerical simulation. The propagation of sound waves in a channel includ-

ing suspended particles is simulated. The attenuation and dispersion characteristics
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Figure 5.2: Attenuation of sound waves due to numerical diffusion with different
numerical schemes.

of particles of different sizes are studied.

Figure 5.3: Schematic representation of the test case for propagation of sound waves
in a channel including suspended particles.

The frequency of the sound waves entering the channel is 1000Hz with relative am-

plitude of 0.01% about P0 = 50bar. Parametric study is done on the sizes of par-

ticles between 5 − 120µm. In the simulations 20 cells per wave length were used

which provides sufficient resolution for negligible numerical diffusion with HLL-

WAF+MUSCLE scheme.

The gas and particle properties are given below;

For momentum and heat transfer terms Stokes law (Equations 5.27 and 5.28) were

used. The momentum transfer was formulated as;
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Gas Particle
Density Ideal gas. 1550kg/m3

Cp 2440J/kg.K 1176J/kg.K
Thermal conductivity k 0.5551W/m.K 202.4W/m.K
Molecular weight 27.7469kg/moles -
Viscosity 9.1 × 10−3Pa.s -

Table5.1: Gas and particle properties.

Fp =
ρ′

(
up − u

)
τd

(5.37)

The heat transfer term was formulated as;

Qp =
6kρ′Nup

R2ρs

(
Tp − T

)
(5.38)

For low Reynolds numbers, Nusselt number is given by Nu = 2 which is used for this

test case.

The acoustic wave introduced to the computation domain by subsonic pressure inlet

boundary condition available in CMPS code. In this boundary condition, the out go-

ing Riemann invariant is used to determine the speed of sound. Then other quantities

like temperature, pressure, density or the absolute velocity at the boundary are evalu-

ated. For the outlet boundary pressure outlet condition available in CMPS was used.

This condition is based on the AUSM scheme [33] (see Section 2.11.3).

5.5.1.5 Results

The simulations were repeated for particles with diameters of R = 5, 8, 10, 12, 15,

18, 20, 30, 40, 80 and 120 µm. The stiff source terms due to small particles did not

lead to numerical difficulties with multi stage time stepping with source splitting.

The solutions of equation 5.33 for particles of different sizes (that is for ωτd values)

give attenuation and dispersion of the acoustic energy which are written in a non-

dimensional form as;
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Figure 5.4: Attenuation by particles of different diameters.

α∗ =

(a0

ω

)
α (5.39)

β∗ =

(a0

ω

)2
β (5.40)

and

ωτd =
2π fρ0R2

18µ
(5.41)

In Figure 5.4 and Figure 5.5, the results of CMPS simulations and theory are com-

pared. The theory and simulation results show good agreement. As expected there

is an attenuation peak at ωτd ≈ 1. Although this test case shows the potential use

of these numerical methods for analyzing the acoustic phenomena such as acoustic

instabilities in complex rocket motor geometries, high computational cost of such

transient calculations for complex geometries should be considered well.

102



Figure 5.5: Dispersion by particles of different diameters.

5.5.2 Simulation of Two Phase Inert Tep [27]

In this test case2, a representative model for solid propellant motor geometries is

studied. Test is based on code-to-code comparison. The code SIERRA (ONERA,

France) is well tested software for these types of simple systems. This test case is

proposed and defined by ONERA in the scope of an NATO RTO project between

ONERA and ROKETSAN (Turkey) who supported the dilute phase solver of the

CMPS code. In this section the results of the test problem belong to this project and

will be named as ONERA (SIERRA) or ROKETSAN (CMPS) results.

5.5.2.1 Geometry and Grid

Geometry consists of a single domain with 99x16 grid points shown in Figure 5.6.

Due to numerical methods used in CMPS code, this domain can also be defined as

a 98x15 grid cells. Problem is axisymmetric two-dimensional. Grid is given by

ONERA.

2 This test case is done as a part of NATO-RTO AVT T-005 SUPPORT PROJECT between ROKETSAN
(Turkey) and ONERA (France). The dilute phase solver of the CMPS is validated for solid rocket motors.
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Figure 5.6: Grid structure given by ONERA[14]

Figure 5.7: Boundary zones[14]

5.5.2.2 Boundary Conditions

Boundary conditions are applied as shown in Figure 5.7. Injection wall is used until

point 34 in Figure 5.7 (see Section 2.11.1). Injection is normal to the face. For gas

phase, mass flow inlet boundary available in CMPS code is used. In this boundary

condition, static temperature and mass flow rate are given by user. If the flow is

subsonic, static pressure is extrapolated from the domain; otherwise total pressure is

also given by the user. This information is used to construct a second order equation

for density, which is solved to calculate velocity components. For the particle phase,

mass flow rate, velocity and temperature are given by the user. Particles and gas are

not in dynamic or thermal equilibrium. For wall surfaces, slip boundary is used for

both gas and particle phases. Walls are adiabatic for both phases. The x-axis in 2D

coordinate system is used as a symmetry axis. For out flow boundary, all variables are

first order extrapolated in SIERRA code. In CMPS, pressure outlet boundary based

on AUSM scheme [33] (see Section2.11.2. scheme was used. Because the flow in

this zone is supersonic, the two boundary conditions lead to the same calculational

results.
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Gas Particle
1. Propellant Surface 0.44893kg/s 0.098546kg/s

3387K 2600K
- 0.01m/s

4. Outflow AUSM All variables are extrapolated.
Table5.2: Boundary conditions.

Gas Particle
Density Ideal gas 1803kg/m3

Cp 2437J/kg.K 1177J/kg.K
Thermal conductivity k 0.45618W/m.K 202.4W/m.K
Molecular Weight 27.78 -
Viscosity 9.06 × 10−5Pa.s -
Diameter - 30µm

Table5.3: Material Properties.

5.5.2.3 Material Properties

Material properties of gas and particle phases are given in table 5.3.

5.5.2.4 Heat and Momentum Transfer Terms

See the sections 5.1 and 5.3 for more details about the implementations of the equa-

tions given below in CMPS. The heat transfer between phases is calculated as;

Qp =
6kρ′Nup

R2ρs

(
Tp − T

)
(5.42)

where

Nup = 2.0 + 0.6Re1/2
p

1/3
Pr (5.43)

Pr =
Cpµ

k
(5.44)
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The momentum transfer term is calculated between gas and particle phases are calcu-

lated as;

Fp =
3ρ′CDρ

4ρpR

∣∣∣up − u
∣∣∣ (up − u

)
(5.45)

Drag coefficient CD is defined as

CD = max
{

24
Re

(
1 + 0.15Re0.687

)
; 0.445

}
(5.46)

where

Re =
ρR

∣∣∣up − u
∣∣∣

µ
(5.47)

5.5.2.5 Results

The results of the CMPS (ROKETSAN) and SIERRA (ONERA) are compared on

two selected planes. These planes are shown in Figure 5.8

5.5.2.6 Comparison of Data on Plane i=10

The comparison of results from CMPS (ROKETSAN) and SIERRA (ONERA) codes

are shown in Figures 5.9-5.17. The lines labeled as ONERA (L) are results of La-

grangian solver in SIERRA code.

5.5.2.7 Comparison of Data on Plane i=98

The comparison of results from CMPS (ROKETSAN) and SIERRA (ONERA) codes

on the plane i=98 are shown in Figures 5.18-5.26 below. The lines labeled as ONERA

(L) are results of Lagrangian solver in SIERRA code.
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Figure 5.8: Grid points for comparison of results[14]

Figure 5.9: Axial velocities over line i=10 [27]
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Figure 5.10: Radial velocities over line i=10 [27]

Figure 5.11: Gas temperatures over line i=10 [27]
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Figure 5.12: Gas densities over line i=10 [27]

Figure 5.13: Static pressure over line i=10 [27]
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Figure 5.14: Axial particle velocities over line i=10 [27]

Figure 5.15: Radial particle velocities over line i=10 [27]
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Figure 5.16: Particle temperatures over line i=10 [27]

Figure 5.17: Particle densities over line i=10 [27]
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Figure 5.18: Axial gas velocities over line i=98 [27]

Figure 5.19: Radial gas velocities over line i=98 [27]
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Figure 5.20: Gas temperature over line i=98 [27]

Figure 5.21: Gas densities over line i=98 [27]
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Figure 5.22: Gas pressure over line i=98 [27]

Figure 5.23: Particle axial velocities over line i=98 [27]
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Figure 5.24: Particle radial velocities over line i=98 [27]

Figure 5.25: Particle temperatures over line i=98 [27]
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Figure 5.26: Particle densities over line i=98 [27]

5.5.2.8 Discussion of TEP Test Case Results

In this test case, a representative model for solid propellant motor geometries was

studied. The dilute phase model was used for particle phases. For solving particle

phase equations the flux solver based on the method defined in Eq. 5.8 was used.

Existence of a single direction for the propagation of information for the system of

equations governing the motion of the dispersed phase generated difficulties for treat-

ment of certain boundary conditions especially on the axis line. These problems

results in non-physical accumulation of particles especially at end of the motor on the

axis. This problem is handled by limiting the particle concentrations on the solution

domain.

The non-physical particles shocks and vacuums which was defined as problem of

such systems is handled well by the schemes used in CMPS.

This study showed that the results of CMPS code and ONERA’s SIERRA code are

in good agreement for this test case. The only small difference was in the pressure in

motor region. This difference very small and this is due to the preconditioning used

116



Figure 5.27: Contours of gas density kg/m3.

Figure 5.28: Contours of particle density kg/m3.

by CMPS solver for handling low Mach number flow in the motor chamber. The other

differences were observed with particle values on the nozzle exit line. This difference

exists on a part of the line where particle vacuum problem resulted in difficulties for

ONERA’s solver.

Some contour plots of data from results of the solver CMPS for the TEP test case

are shown in Figures 5.27-5.36. The difference between particle and gas velocity are

high especially in the nozzle region where the velocity of gas phase is increasing with

expansion. This difference leads to high momentum transfer rates especially near axis

line where the particle concentrations are high. The difference between particle and

gas phase temperature are also high in the nozzle region. In the nozzle region the

temperature of the gas phase decreases due to expansion and also cools the particles

with a higher heat transfer rates than the rates in the chamber region. The momentum

and thermal coupling of the phases are very apparent in nozzle region.
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Figure 5.29: Contours of Mach number.

Figure 5.30: Contour of pressure Pa.

Figure 5.31: Contours of gas temperature K.

Figure 5.32: Contours of particle temperature K.
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Figure 5.33: Contours of gas axial velocity m/s.

Figure 5.34: Contours of particle axial velocity m/s.

Figure 5.35: Contours of gas radial velocity m/s.
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Figure 5.36: Contours of particle radial velocity m/s.
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CHAPTER 6

HIGH RESOLUTION INTERFACE CAPTURING

6.1 Discretization of Volume Fraction

The discretization method of volume fraction is crucial for successful implementa-

tion of the interface capturing scheme which should enable capturing of interfaces in

a sharp form. The usual differencing schemes for incompressible flows have some

problems and limitations with Godunov methods which are applied to compressible

flows. First of all, for a Godunov type method described in Section 4.3, two volume

fraction values are needed on either side of a cell face to support state discontinuity.

This situation is not compatible with upwinding methods employed in usual high res-

olution volume fraction differencing schemes. Furthermore, the usual boundedness

and availability criteria cannot be used with the current method. The differencing

scheme of volume fraction used in this study is similar to the high resolution schemes

of Leonard [32] and Ubbink [50] based on Normalized Variable Diagram (NVD) [32].

6.1.1 Definitions

A schematic representation of a one dimensional control volume for the CHRIC

scheme is given in Fig. 6.1. The center cell D is the donor cell, the cell A is the

acceptor cell, and the cell U is the upwind cell. The flow direction is from the up-

wind cell to the acceptor cell. As aforementioned, two values of volume fractions are

needed on a face, one for the right state and one for the left state. These values can be

differentiated according to the flow velocity direction on the face. Below, the calcula-

tion procedure for the face volume fraction of an outgoing fluid α f A (volume fraction
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Figure 6.1: Cell representation for CHRIC scheme.

on the left side of the cell face between the donor and acceptor cells) is explained

first. Then, the procedure for an incoming fluid volume fraction α f U (volume fraction

on the right side of the cell face between the upwind and donor cells) is explained.

To differentiate from incompressible schemes, the scheme given in the next sections

is named Compressible High Resolution Interface Capturing (CHRIC) scheme which

is a non-linear blend of upwind and controlled downwind differencing [28]. Down-

winding implies that the donor cell is to donate the same fluid as presently contained

in the acceptor cell, thus the procedure ignores the presence of the other fluids in the

donor cell [50]. This means that the donor cell will first donate all the available fluid

required by the acceptor cell and then start to donate the other fluid. The amount of

the fluid donated by donor cell is limited with the available fluid in donor cell. This

is called the availability criteria. Another basic criteria about values of volume frac-

tions is the boundedness criteria which states that in the absence of sources the value

of a flow property in the flow domain cannot take values higher or lower than those

prescribed on the boundaries of the flow domain [53]. For example, volume fraction

cannot take values below zero and above one. Another criteria is local boundedness

which states that a volume fraction value must be bounded with that of its nearest

neighbors. This criteria is employed to limit the slopes of volume fractions used to

reconstruct the face values.

Mathematically the availability criteria states that,

αi
f Aui

fρ
i
f A f ∆t ≤ αi

Dρ
i
DVD (6.1)

where VD is the volume of the donor cell. This equation can be written as
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αi
f A ≤

αi
D

ci
f c

(6.2)

where ci
f c is face Courant number based on convective speed on the face and is defined

as

ci
f c =

ui
fρ

i
f A f ∆t

ρi
DVD

(6.3)

The availability criteria puts a limit on volume fraction reconstruction inversely re-

lated to the value ∆t which is also limited according to the Courant-Friedrichs-Lewy

(CFL) condition.

Since the availability criteria puts limits only to the convected scalar data, this criteria

alone is not sufficient for physically limited reconstruction of volume fraction for

compressible flows. This can be explained using Fig. 4.4. Before any mechanical

relaxation in a solution cell (velocity and pressure relaxation in this study), all the

propagating information (wave fronts) should be limited to single phase volume in the

cell as shown in Fig. 4.4. In other words, waves should not cross any phase interface

in the solution cell. For a simple one dimensional configuration this constraint can be

written as,

αi
f AS max∆tA f < α

i
DVD (6.4)

where S max is the maximum speed of the waves propagating into the donor cell. Eq.

(6.4) can be rewritten in terms of a new face Courant number c f w,

αi
f A ≤

αi
D

c f w
(6.5)

where c f w is defined as

c f w =
S max∆tA f

VD
(6.6)

123



Figure 6.2: Reconfiguration of phase topology on a face according to face courant
number c f w.

The boundedness criteria based on wave propagation defined by Eq. (6.5) can be

achieved by choosing ∆t according to phasic configuration on the cell face between

the donor and acceptor cells. However, this may result in very small values for ∆t

when one of the phase volume fractions is very low. Another way to satisfy Eq. (6.5)

is to reconfigure the phase topology on the face according to a given face Courant

number c f w so that sonic waves do not cross a phasic interface in the cell. This is

explained in Fig. 6.2. According to the procedure depicted in this figure, as the face

Courant number gets smaller the resolution of the volume fraction gets higher but ∆t

also gets smaller. This situation will get clearer in the following sections.

6.1.2 Compressible High Resolution Interface Capturing (CHRIC) Scheme

As aforementioned we follow the similar steps as schemes of Leonard [32] and Ub-

bink [50] based on Normalized Variable Diagram (NVD) [32]. The normalized cell

α̃D and face values α̃ f of volume fraction [32] are defined as

α̃i
D =

αi
D − α

i
U

αi
A − α

i
U

(6.7)

α̃i
f =

αi
f − α

i
U

αi
A − α

i
U

(6.8)

Gaskell and Lau [18] presented a Convection Boundedness Criteria (CBC) for one

dimensional implicit flow calculations, and Leonard [32] adapted the CBC for explicit

flow calculations. The CBC for explicit flow calculations reads,
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α̃i
f = α̃i

D f or α̃i
D < 0 or α̃i

D > 1

(6.9)

α̃i
D ≤ α̃

i
f ≤ min

{
1,
α̃i

D

c f

}
f or 0 ≤ α̃i

D ≤ 1

where c f is the maximum of the face courant numbers c f c and c f w which were defined

in the previous section. Using the donor-acceptor formulation given by Eq.(6.2) and

the CBC the normalized face value of volume fraction is calculated as

α̃i
fCBC

=


min

{
1, α̃

i
D

c f

}
f or 0 ≤ α̃i

D ≤ 1

α̃i
D f or α̃i

D < 0, α̃i
D > 1

(6.10)

Directly using this value α̃ f does not preserve the shape of the interface which lies

tangentially to the flow direction. To prevent this a correction is made to α̃ f using the

Ultimate-QUICKEST scheme [32], which is defined as,

α̃i
fUQ

=


min

{
8c f α̃

i
D+(1−c f )(6α̃i

D+3)
8 , α̃i

fCBC

}
f or 0 ≤ α̃i

D ≤ 1

α̃i
D f or α̃i

D < 0, α̃i
D > 1

(6.11)

Corrected normalized face value α̃i∗
f is calculated from

α̃i∗
f = α̃i

f

√
cos θ + α̃i

fUQ

(
1 −
√

cos θ
)

(6.12)

where θ is the angle between the interface and face normal vectors, and cos θ is cal-

culated from

cos θ =
∇αi · ~n f

|∇αi|
∣∣∣~n f

∣∣∣ (6.13)

where ~n f is the face normal vector. Face volume fraction α f A is calculated using

normalized values as,
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αi
f A = α̃i∗

f

(
αi

A − α
i
U

)
+ αi

U (6.14)

6.1.3 Calculation of Downwind Face Volume Fraction α f U

Since the Godunov scheme given in Sections 4.3 and 4.4 requires two volume frac-

tions on either sides of a cell face, a downwind face volume fraction is also needed.

This value is shown in Fig. 6.1 as α f U . According to numerical experimentation we

have conducted, different procedures for calculation of α f U do not have any important

effect on the volume fraction resolution. However, the boundedness criteria based on

wave propagation defined in Sec. 6.1.1 is valid and should be applied as a limiting

value for α f U . The volume fraction reconfiguration procedure explained in previous

sections is still applicable to calculation of α f U .

One simple way of calculating α f U could be using the values directly on the down-

wind side of the face. Another yet more physical method is to assign the values

calculated for the upwind side of the face. In doing this the total amount of a phase in

the cell must be taken into account, and volume fraction configurations on the faces

must be configured ın such a way that mass conservation limitation is satisfied. A

one simple way of doing this will explained later for multi-dimensional version of the

method.

The most robust way of calculating α f U is to accept α f U = α f A. Although this as-

sumption does not represent the real expected phasic configuration at the downwind

side of the cell face, the missing information by the other phases are propagated by the

mechanical relaxation (pressure and velocity relaxation) processes in the cell. These

relaxation processes are discussed in Sections 3.2 and 3.3. The advantage of this ap-

proach is the elimination of non-conservative throttling terms which will appear for

any spatial discretization of volume fraction higher than first order. The elimination

of these terms may be the main reason for robustness of this approach. These throt-

tling terms were shown as source terms in the form of volume fraction gradients in

Eq. system (3.1).
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6.1.4 Calculation of Face Courant Number

Proper calculation of the face Courant number c f is essential for stability of the solu-

tion process. c f is calculated for all possible interfaces for all phases Σi. The required

solution variables ui
f and ρi

f are calculated with an HLLC formulation.

u(i, j)
f =


ui

D i f 0 ≤ S (i, j)
D

S (i, j)
∗ i f S (i, j)

D ≤ 0 ≤ S (i, j)
∗

f or j = 1, ..,N. (6.15)

ρ
(i, j)
f =


ρi

D i f 0 ≤ S (i, j)
D

S (i, j)
∗ ρi

D

(
S (i, j)

D −ui
D

)
S (i, j)

D −S (i, j)
∗

i f S (i, j)
D ≤ 0 ≤ S (i, j)

∗

f or j = 1, ..,N. (6.16)

c f c is taken as the maximum of those for all possible phase interfaces,

c f c = max

u(i, j)
f ρ

(i, j)
f A f

ρi
DVD

, 0

 f or all
(
Σi,Σ j

)
, i = 1, ..,N, j = 1, ..,N. (6.17)

The maximum wave speed S max required to calculate wave speed based Courant num-

ber c f w is given by

S max =
∣∣∣∣min

(
S (i, j), 0

)∣∣∣∣ f or all
(
Σi,Σ j

)
, i = 1, ..,N, j = 1, ..,N. (6.18)

c f w is calculated as in Eq. (6.6). The face Courant number c f is the maximum of c f w

and c f c.

c f = max
(
c f w, c f c

)
(6.19)

6.2 Volume Fraction Discretization On Multi-dimensional Unstructured Grids

The discretization scheme described in Section 6.1 can be extended to multi-dimensional

unstructured grids. Since upwind (donor) and downwind (acceptor) cells may not be
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readily available in unstructured grids, volume fractions should be extrapolated from

the solution data. Another complexity arises on unstructured grids in calculation of

the face Courant number.

6.2.1 Calculation of Upwind And Downwind Volume Fractions

Since volume fraction is a convected scalar, the local flow direction should be used

in the calculation of the upwind and downwind values. In our approach we construct

the one upwind and one downwind values for each cell. Hence, all the faces of a cell

use the same upwind and downwind values. This differs from the classical approach

employed for incompressible flows in which these values are calculated for each face

with a simple reconstruction procedure. This approach results in more robust and

sharp interface tracking, while it is also more physical. The upwind (donor) and

downwind (acceptor) values are reconstructed for the x- and y-directions separately,

as follows

αAx = αD + sign (u) (∇αD)x ∆S x

αAy = αD + sign (v) (∇αD)y ∆S y

αUx = αD − sign (u) (∇αD)x ∆S x

αUy = αD − sign (v) (∇αD)y ∆S y

(6.20)

where u and v are the velocity components in the x- and y-directions, respectively, and

∇αD is volume fraction gradient in the donor cell. ∆S x and ∆S y are the projections of

the donor cell volume on the x- and y- axes, respectively. αU and αA are calculated

as,

αA =
|u|αAx + |v|αAy

|u| + |v|
, αU =

|u|αUx + |v|αUy

|u| + |v|
(6.21)

The approximation of the upwind and downwind values by the above approach does,

however, not guarantee their boundedness. Our numerical experimentation have shown
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that the volume fraction gradient ∇αD should not be limited by a limiter. Otherwise

use of any slope limiter results in a more diffusive interface solution. Instead, the cal-

culated values are limited following the procedure given above. The limiting bounds

αmin and αmax are derived from the donor cell’s nearest neighbors which is given be-

low,

αA = min {max (αA, αmin) , αmax}

αU = min {max (αU , αmin) , αmax}

(6.22)

6.2.2 Calculation of Face Courant Number

For multi-dimensional solution grids, face Courant numbers cannot be predicted in

isolation of other faces. The convective and acoustic information should be shared

between other faces. One simple method is to relate the face Courant numbers c f to

the cell Courant number cD. An effective way of doing this on unstructured grids is

given in [54]. The boundedness criteria based on wave propagation can be written as,

αi
f ∆t

(
S x

max∆S y + S y
max∆S x

)
≤ αDVD (6.23)

where S x
max and S y

max are defined as,

S x
max = |u| + a, S y

max = |v| + a, (6.24)

in which a is the speed of sound in donor cell. From Eq. (6.23), the face courant

number c f w is written as,

c f w =
∆t

(
S x

max∆S y + S y
max∆S x

)
VD

(6.25)

This value is the minimum limit for boundedness and equal to the cell courant number,

cD. This is an interesting but obvious result for compressible multi-phase flows with
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interfaces; for higher resolution of volume fraction one should choose a smaller value

for cD than the maximum of cD which is also equal to the minimum value of c f w.

6.3 Considerations for Dilute Particulate Phases

In most multi-phase flows, dilution of some phases may take place where the volume

occupied by one of the phases becomes too small to consider that phase as a contin-

uum. Existence of solid particles in a primary fluid phase is an example of highly

diluted phase. In addition to existence of dilution in a fluid, such phases may also

be introduced to the flow through boundaries of the domain. Solid propellant rocket

motors and ramjet combustion chambers are examples of this kind.

There may be some complications in numerical and mathematical modeling of dilute

phases. These difficulties are

• Pressure interaction terms tend to zero for dilute phases due to small volume

fractions. This can be seen from Eq. 4.14. Lack of particle interaction terms re-

sults in a degenerate hyperbolic system admitting only one characteristic wave

for which the speed is the particle speed up.

• Infinitely fast relaxation processes may not be valid for dilute phases. Partic-

ulate phases may move at different velocities than the fluid phase. Pressure

relaxation may be ignored at dilute regions. However, heat transfer between

phases becomes an important phenomena which is usually ignored for multi-

fluid applications. Interaction of dilute and primary phases should be reduced

to finite rate momentum drag and heat transfer mechanisms.

One way of handling dilute phases is to ignore diluted material volume fraction below

a cutoff value. However, most liquid and solid particles may have strong influence on

a primary phase carrying those particles, even when the particle volume fractions

are below 10−4. Another well known method is to use a Lagrangian approach for

particle tracking. However, this method may require tracking of millions of particles

for real transient solutions of the flow problems which is almost impractical due to

high computational costs. Dilute phase approximation, in which some continuum
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equations are derived without pressure-like terms, may be used with the same model

problems given above. In this approximation, equations for mass fractions or particle

number densities are solved rather than volume fractions.

The scheme presented in this study may be applied to the problems involving diluted

phases with the proposed volume fraction capturing algorithm without any modifica-

tion except for relaxation processes. Below a cutoff volume fraction value relaxation

formulations are changed to momentum drag and heat transfer terms in the system

given by Eq. (3.1). The most problematic part of this approach is the physical mod-

eling of the transformation from a continuum phase to particle phase. The inverse

process of phase dilution is accumulation of some dilute phases (such as particles)

to form a continuum phase. Over a threshold value of volume fraction, particulate

phases may be considered as a continuum or a porous mix and the pressure relax-

ation processes may become important. These considerations are out of scope of the

present study and may be included as a future work.

6.4 The Algorithm

Explicit time stepping is done using a four stage Runge-Kutta scheme with optimized

stage coefficients as described in [31]. Time step is calculated for each cell according

to the stability condition defined as in [54] using standard CFL condition. A CFL

number of 2 is sufficient for the stability of the first order scheme with four Runge-

Kutta stages. For sharper interface resolution CFL number should be reduced. Each

time step is completed through the following algorithm:

1. Calculate face volume fraction values as described in Section 6.1 for a sharper

interface. If first order resolution is sufficient for interface capturing or for

faster results, this stage may be passed.

2. Calculate residuals with the formulation described in Section 4.4.4,

3. Update solution variables and fluid properties,

4. Relax velocities and update energy,

5. Relax pressures then update volume fractions and energy.
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6.5 Test Cases for CHRIC Scheme

In this section, some numerical results are provided to show both the accuracy and

effectiveness of the high resolution scheme described and discussed in the previous

chapter. The first problem is a one dimensional water/air shock tube problem consid-

ered for validation of the interface capturing scheme in one dimension. The second

problem is similar to the first one, but this time it is in two dimensions. The third and

fourth test cases are one and two dimensional particulate flow problems in which the

relaxation processes are replaced by momentum and heat transfer laws to show the

applicability of the multi-material solver to different multi-phase flow regimes with-

out any modification in the flux solver. All these problems and the attained numerical

solutions are presented and discussed below.

6.5.1 1D Water/Air Shock Tube Problem

In this test case, a one dimensional shock tube tube problem is considered with a

water/air phase interface. The problem setup is the same as that given in [37]. The

length of the problem domain is 4 m, with the coordinate range being 0 < x < 4

m. The initial position of the water/air interface is at x = 2.7 m. Water and air are

modeled as pure fluids in contrast to similar studies found in literature which form the

phase interface by a mixture approach using negligible amount of the other phases in

the problem. The equations of state (EOS) for water and air are defined as stiffened

gasses (SG), as given below

p = (γ − 1)ρe − γπ (6.26)

where γ = 1.4 and π = 0 for air, γ = 4.4 and π = 6 × 108 for water. The initial

conditions of the problem are defined as

pw = 1 × 109Pa, ρw = 1000 kg/m3, αw = 1.0, αa = 0.0 f or x < 2.7

pa = 1 × 105Pa, ρa = 50 kg/m3, αw = 0.0, αa = 1.0 f or x > 2.7
(6.27)
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where subscripts w and a denote the water and air phases, respectively. The numerical

results were obtained on a grid of 1000 cells and with a CFL number of 0.5. This

CFL value was chosen for accuracy rather than for stability considerations. In fact,

the solution scheme provides sufficient stability up to a CFL number 1.0, but for

capturing the interface with sufficiently high resolution in compressible problems, a

CFL value of 0.5 or lower should be used. This issue was discussed in Sec. 6.2.

The results for various flow properties are shown in Fig.6.3 together with the exact

solution. The numerical results are in very good agreement with the exact results.

The exact solutions of volume fractions are not shown since they exactly overlap the

computed results. The computed phase interface between water and air by the present

method is sharper than those computed by similar interface capturing methods such

as [37, 1, 2, 46, 42].

Figure 6.3: Solution of 1D water air shock tube problem at t = 900µs
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6.5.2 Under Water Explosion

This test problem is concerned with a model underwater explosion problem [46, 19,

21]. The solution domain is a rectangular domain of (x, y) ∈ [−2, 2] × [−1.5, 1] m2.

This domain has three different material zones initially which are illustrated in Fig.

6.4. Initially, there is a water-air interface at y = 0 line and an explosive bubble of

radius r = 0.12 m with the center at (x, y) = (0,−0.3) m in water. The solution grid

consists of 100000 cells in total, mostly unstructured. Unstructured solution grid is

also shown in Fig. 6.4. As the previous test cases CFL number 0.5 was used.

Air above the water surface is assumed to be a perfect gas at standard atmospheric

conditions and defined by

pa = 101325Pa, ρa = 1.225 kg/m3, γa = 1.4, αa = 1.0, (6.28)

and the explosion gas bubble under the water is also a perfect gas with the state

variables given by

pe = 109Pa, ρe = 1250 kg/m3, γa = 1.4, αa = 1.0, (6.29)

while water below the air interface is modeled with the Mie Gruneisen equation of

state (Eq. 6.26), and the state variables are given by

pw = 101325Pa, ρw = 1000 kg/m3, γw = 4.4, αw = 1.0 (6.30)

The initial high pressure of the gas bubble yields a circular shock wave in the water.

After this shock wave reaches the water surface, the shape of the water-air interface

starts to deform and soon after the circular shape of the gas bubble starts to evolve

into an oval shape [19]. The volume fraction solution at t = 1.2 ms is shown in

Fig. 6.5. The gas-water interface is again captured at most within two cells which

shows the interface capturing ability of the present scheme. This ability is superior

to those of the other interface capturing schemes found in literature for compressible

flows. In Fig. 6.6, the pressure distributions at times t = 0.2, 0.4, 0.6, 0.8 and 1.2 ms
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Figure 6.4: Left: Initial material positions for under water explosion problem. Right:
Solution grid near the initial gas bubble surface.

are displayed. The captured interfaces at these times are illustrated as white lines on

colored pressure contours. The results are very similar to those of others [46, 19, 21].

Figure 6.5: Left: Volume fraction solution of underwater explosion problem at t =

1.2 ms. Right: Close-up of the solution.

6.5.3 Liquid-Gas Interface Tangential Shock Wave Problem

The previous problem of water-gas interface is a generic problem with applicability

of both interface capturing and interface tracking algorithms. In the third test case

some interface regions undergo some physical micro scale mixing processes. These

micro scale processes may not be resolved with interface tracking algorithms unless

very fine meshes (micro scale) are used. Our interface capturing scheme with proper

relaxation terms yields physical results in macro scale without a need to resolve the

interface in micro scale.
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Figure 6.6: Solutions of pressure distribution (Pa) for underwater explosion problem.
White lines show material interfaces.
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The initial configuration of the problem is shown in Fig. 6.7. There are three fluids

in a tube separated by interfaces. Upper right of the tube is filled with gas phase,

while the bottom right part of the tube is filled with a liquid. The left part of the

tube is filled with a high pressure fluid at p = 109 Pa. Since both the gas and liquid

phases are considered as compressible, there are two shock waves propagating in

both phases. The shock wave in liquid moves faster, and this results in a pressure

difference between the gas and liquid phases in the post shock region driving the

initial horizontal interface into liquid phase. Transverse waves propagates in gas and

liquid phases.

Figure 6.7: Schematic representation of shock tube problem with liquid-water inter-
face.

The solution grid consists of 125000 rectangular cells. As previous example, CFL

number of 0.5 was used. A Schlieren like image of the numerical solution at time

t = 6 × 10−4 s is given in Fig 6.8. The complex wave structure due to transverse

waves resulting from the pressure difference in the post shock region can be clearly

seen in Fig. 6.8. The volume fraction solution at time t = 6 × 10−4 s is also shown in

Fig. 6.9.

A mixing region of the three phases can be seen in Fig. 6.9. This macro scale mixing

of the phases is a result of micro scale multi-dimensional processes. These micro

scale processes cannot be resolved by the current coarse grid used for the problem

using a interface tracking method. These multi-dimensional micro scale motions are
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Figure 6.8: Color Schlieren like image (magnitude of the density gradient) of the
solution at t = 6 × 10−4 s.

more deeply considered in [2, 42].

Figure 6.9: Liquid volume fraction at time t = 6 × 10−4 s. Right is the close-up view
of mixing region.

6.5.4 Highly Diluted multi-phase Test Cases

Some considerations and applicability of our volume fraction discretization method

to particulate phase problems was discussed in Section 6.3. In the next two parts, we

give two interesting applications for these types of problems.

6.5.4.1 Attenuation of Acoustic Waves by Suspending Particles

An interesting validation problem for dilute phase models is attenuation of acoustic

waves due to particle interactions which is analytically studied by Temkin and Dob-

bins [47]. The temperature and velocity of a particle suspended in an acoustic field
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are subject to fluctuations that may lag behind those of the surrounding fluid [47]. In

their paper they present a theory for acoustic attenuation and dispersion in an aerosol-

based particulate relaxation processes. Their particulate relaxation theory predicts

attenuation and dispersion by small to heavy particles. The predictions by this theory

is in close agreement with more detailed theories and existing experimental data [47].

The aim of the test case in this section is to reproduce the results of the analysis ex-

plained in [47]. The attenuation and dispersion characteristics of particles of different

sizes suspended in a gas phase are studied. The geometry of the channel consists

of a simple one dimensional channel. Acoustic waves of 1000 Hz frequency are in-

troduced into the channel. Waves enter the channel with an amplitude of 0.01 %

of the mean pressure P0 = 5 × 106 Pa. A Parametric study is conducted for parti-

cle sizes ranging from 1 to 120 µm. Since numerical diffusion may introduce extra

non-physical attenuation, a high-order method based on a combination of linear re-

construction and Weighted Average Flux (WAF) [7] is used. This combination of

second order methods provides higher resolution than second order methods and 20

finite volume cells per wavelength is sufficient to resolve acoustic propagation with

negligible numerical diffusion for the problem. Momentum and heat transfer terms

are modeled using Stoke’s law [8]. The gas and particle properties used for the simu-

lations are given in Table 5.1.

Acoustic waves are introduced to the domain by a subsonic pressure inlet boundary

condition. On the inlet total pressure and total temperature are specified and the out

going Riemann invariant is used to determine the sound speed. For the outlet of the

channel, a non-reflecting boundary condition based on the AUSM scheme [34] was

used.

Simulations were carried out for particle diameters of R = 5, 8, 10, 12, 15, 18, 20,

30, 40, 80, and 120 µm. The results are compared to the analytic solutions based

on the method given in [47]. The simulated results are in excellent agreement with

theory and the results of the dilute phase model previously given in Chapter 5. In this

scheme, although the particle flux terms tends to go to zero due to the flux formula

4.14, volume fractions are still tracked.
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Figure 6.10: Attenuation and dispersion of 1000 Hz acoustic waves due to different
sizes of particles suspended in a gas.
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6.5.4.2 Internal Ballistics of A Solid Propellant Rocket Motor

Another sample problem for dilute phases may be numerical simulation of internal

ballistics of solid propellant rocket motors (SPRM). Addition of metal particles to

the main ingredient of the solid propellants is very common to increase their internal

energy. Fig. 6.11 shows an example computed solution of the volume fraction distri-

bution of the metal particles with the boundary conditions marked for a model motor

[27]. Problem was solved on a two dimensional axi-symmetric solution grid. Mo-

mentum transfer source terms were calculated using the correlations given in Schiller

and Naumann [45]. Similarly, heat transfer source terms were calculated using the

correlation given in Ranz and Marshal [39]. The employed values for the gas and

material properties are given in Tables 5.2 and 5.3.

At convergence (steady-state) of this kind of problems one usually observes velocity

differences between the gas and particle phases because the velocity relaxation for di-

lute phases is very slow compared to interface problems. The magnitude distribution

for the velocity difference |Vg − Vp| between the gas and particle phases is shown in

Fig. 6.12. Temperature differences between these phases are also shown in Fig. 6.12.

Figure 6.11: Volume fraction distribution of particles in a model SPRM.
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Figure 6.12: Distribution of temperature and velocity differences between gas and
particle phase (Tg − Tp and

∣∣∣Vg − Vp

∣∣∣).
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CHAPTER 7

CONCLUSION

On starting this thesis study, our purpose was to develop a generic discretization

method applicable for both compressible interface and compressible mixture prob-

lems. This is important because phasic interfaces may undergo micro mixing pro-

cesses which gradually destroys sharp interfaces and produces mixture regions. This

phenomena becomes especially important for high speed flows and explosions which

are the main application area of this study.

A novel interface capturing and a generic simulation method for compressible het-

erogeneous media is developed. The developed differencing scheme used for volume

fraction provides comparable resolution of the interfaces with tracking methods on

multi-dimensional unstructured grids and very robust compared to other interface

capturing methods studied in the related literature. The resulting method provides

ignorable numerical mixing of phase interfaces while giving physically correct re-

sults for pressure and energy in contrast to other methods available in the literature

such as [2, 42, 30, 37]. All the problems associated with the methods given in cited

studies are resolved in this thesis study. The method given in [42] is extended to

multidimensional problems with more than two phases. Multidimensional and multi-

phase versions of the artificial viscosity terms are derived to stabilize the solution

of seven equation model used in [42]. Non-conservative terms are discretized with

similar methods used to derive the artificial viscosity terms. A new method based

on discrete equations is introduced. This method resolves all the problems associ-

ated with the non-conservative eqautions and terms. In contrast to the method given

in [2], the application of the method derived in this study to multi-dimensional and
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multi-phase problems is very straightforward. The high artificial mixing of interfaces

associated with the methods given in [3, 36, 2, 37] are fully resolved. The volume

fraction discretization method developed provides the highest possible resolution of

phase interfaces (in one cell) even in unstructured tetrahedral meshes when used with

the interface capturing methods derived in this study. In addition to these solution

methods, some special boundary conditions and preconditioning methods for low

speed steady flows were applied. For high spatial resolution, combinations of lin-

ear reconstruction and Weighted Average Flux (WAF) methods for unstructured grids

were also applied in some problems.

The developed methods can be applied for both interface and mixture problems with-

out any modification. The methods developed in this study may have applications in

some other fields including wave propagation with material interfaces such as shallow

water equations and plasma flow.
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