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ABSTRACT 

 

 

A FUNCTIONAL SOFTWARE MEASUREMENT APPROACH BRIDGING THE GAP 

BETWEEN PROBLEM AND SOLUTION DOMAINS 

 

 

Ungan, Erdir 

Ph. D., Department of Information Systems 

Supervisor: Prof. Dr. Onur Demirörs 

 

 

November 2013, 121 pages 

 

There are various software size measurement methods that are used in various stages 

of a software project lifecycle. Although functional size measurement methods and 

lines of code measurements are widely practiced, none of these methods explicitly 

position themselves in problem or solution domain. This results in unreliable 

measurement results as abstraction levels of the measured artifacts vary greatly.  

Unreliable measurement results hinder usage of size data in effort estimation and 

benchmarking studies. Furthermore, there exists no widely accepted measurement 

method for solution domain concepts other than lines of code, such as software 

design.  In this study, an approach is defined to distinguish problem and solution 

domains for a software project and a software size measurement methodology for 

solution domain is proposed based on software design sizes.   

Keywords: Functional Size Measurement, Software Design Size, Estimation, 

Decomposition 
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ÖZ 

 

 

PROBLEM VE ÇÖZÜM UZAYI ARASINDA BAĞLANTI SAĞLAYAN BİR İŞLEVSEL BÜYÜKLÜK 

ÖLÇÜM YAKLAŞIMI 

 

 

Ungan, Erdir 

Doktora, Bilişim Sistemleri 

Tez Yöneticisi: Prof. Dr. Onur Demirörs 

 

Kasım 2013, 121 sayfa 

 

Yazılım proje yaşam döngüsünün çeşitli aşamalarında kullanılan birçok yazılım büyüklük 

ölçüm metot bulunmaktadır. İşlevsel büyüklük ölçümü ile kod satır sayısı tabanlı ölçümler 

yaygın olarak kullanılsa da, bu yöntemlerin hiçbiri kendisini kesin ve açık bir şekilde 

problem veya çözüm uzayında konumlamamaktadır. Ölçülen kavramların soyutluk 

seviyeleri büyük değişiklikler gösterdiğinden, bu durum, ölçüm sonuçlarının güvenilirliğini 

azaltmaktadır. Güvenilir olmayan ölçüm sonuçları ise, ölçüm verilerinin, işgücü kestirimi, 

kıyas çalışmaları gibi alanlarda kullanılmasını zorlaştırmaktadır. Bunun yanında, yazılım 

tasarımı gibi kod satır sayısı dışındaki çözüm uzayı kavramları için yaygın olarak kabul 

görmüş ölçüm yöntemleri bulunmamaktadır.  Bu çalışmada, problem ve çözüm uzaylarının 

ayrıştırılması için bir yaklaşım önerilmiş ve çözüm uzayı için, yazılım tasarım büyüklüklerini 

temel alan bir yazılım büyüklük ölçüm yöntemi önerilmiştir.   

Anahtar Kelimeler: İşlevsel Büyüklük Ölçümü, Yazılım Tasarım Büyüklüğü, Kestirim, 

İşlevsel Kırılım 
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CHAPTER 1 

1.INTRODUCTION 
 

 

 

Anything you try to quantify can be divided into any number of "anythings," or 

become the thing - the unit - itself. And what is any number, itself, but just another 

unit of measurement? What is a 'six' but two 'threes', or three 'twos'...half a 'twelve', 

or just six 'ones' - which are what? 

- F.L. Vanderson 

 

Software projects are conducted to solve a problem in the real life. Similar to the case 

in other engineering disciplines, it is possible to develop multiple solutions to a project. 

As these solutions may differ greatly, their size and the effort required to realize them 

also vary significantly. 

This fact, makes it difficult to establish a direct relationship between the product and 

the process to develop that product. As there is no one to one relationship between 

a problem and its possible solutions, it is difficult to define a relation between the size 

of the problem and the solution. 

Within the discipline of software measurement, there exists methods that measure 

both problem and solution domains. Problem domain measurements came a long way 

since their initiation and can quantify problem definitions and specifications. Solution 

domain measurements are more formal and more precise as they are based on 

physical constructs and models.  

However, problem domain measures fall short in accuracy as inputs to prediction 

models, and solution domain measures emerge too late in a project lifecycle to be 

used in predictions. I believe this is one of the main problems in software 

measurement (and estimation) as a discipline. 
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The main reason for problem domain measurement’s failure in representing the 

development effort lies in the ambiguity of the process of developing a solution to a 

problem at hand. Developing a solution to a problem is a “soft” area. Therefore 

problem domain concepts fail to predict solution domain concepts on their own.   

Most of the measurement and estimation methods assume that there is a continuity 

in the development lifecycle, which begins with the problem statement and ends with 

development and testing of the software product.  

However, there is an inherent discontinuity between the concepts of problem and 

solution. There is a gap between these two domains which the actual engineering or 

“art” as some would call traverses.  

Jackson states that, the solution is an answer from the machine domain to the 

problem [1]. Therefore the relation between these two domains is not 

straightforward. It is affected by the designer’s skills, imagination, and experience. 

Certain factors such as use of design patterns, similarities between problem-solution 

tuples in an organization’s historical data and traditions of an organization tend to 

help making this problem to solution transformation formal and algebraic. Most of the 

estimation methods in the literature exploit these factors and try to calculate solution 

domain concepts such as development effort using certain multipliers for external 

factors and/or curve fitting algorithms. 

Measurements in problem domain are good for representing problem domain 

concepts and measurements in solution domain are good for representing solution 

domain concepts. Problem domain concepts such as price, features, can be 

represented by problem domain measurements such as function points, feature 

points, use case points. Solution domain concepts such as development effort, 

physical size, and developer performance can be represented in solution domain sizes 

such as LOC and design based sizes. See section 3.2  

The capability to accurately quantify the size of software at an early stage of the 

development lifecycle is critical to software project managers for evaluating risks, 

developing project estimates (e.g., effort, cost) and having early project indicators 

(e.g., productivity).  

In the changing software industry, the rate of releases is higher, and the extent of 

what is deployed in each release is smaller. 

The development and the maintenance of software systems accounts for one percent 

of the world’s economy [87]. However, according to a recent Standish group research 

study [92], only an average of 34% of software projects are completed on time and 

within budget. Therefore, 32% of projects failed due to over-time, over-budget or 
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cancelations. In addition, this study pointed out that on average only 61% of the 

originally specified functionality was delivered to customers. 

In this context, software size measurement plays an important role. It is widely 

accepted that software size is one of the key factors that potentially affect the cost 

and time of the software projects [44] [93][38] [49][43]. 

Usefulness of functional size measurement 

Software size measurement is an important part of the software development process  

Functional size measures are used to assess the logical external view of the software 

from the users’ perspective by measuring the amount of functionality to be delivered. 

These measures can be used for a variety of purposes, such as project estimation 

[62][43], quality assessment [54], benchmarking [56], outsourcing contracts [77].  

According to ISO/IEC 14143-1 [69] functional size measurements can be used for: 

 Budgeting software development or maintenance 

 Tracking the progress of a project 

 Negotiating modifications to the scope of the software 

 Determining the proportion of the functional requirements satisfied 

 by a software package 

 Estimating the total software asset of an organization 

 Managing the productivity of software development, operation or 

 maintenance processes 

 Analyzing and monitoring software defect density. 

The use of functional size measures has been extensively discussed in the literature.  

Fetcke et al. [ 9 6 ] proposed a generalized representation for functional size 

measurement that captures the main concepts used by FSM methods to represent a 

system so that its functional size is emphasized. This representation was applied to 

IFPUG FPA [66], Mark II FPA [100], NESMA and COSMIC [2].  

All these methods can be characterized as data-oriented. According to this model, 

functional size measurement requires two steps of abstraction, called the 

identification step and the measurement step. 

The aim of the identification step is to identify the elements in the requirements 

documentation that add to the functional size of the system. The result of this first 

abstraction activity is an abstract model of the relevant elements for functional size 

measurement, according to the metamodel of the FSM method that is used.  
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 User concept: the users that interact with a system. These can be human 

users or software and hardware. 

 Application concept: the object of measurement. Applications provide 

functions to the users. 

 Transaction concept: the processes of interaction between the user and the 

system from a “logical” perspective. 

 Data concept: the data stored by the system. Data elements represent the 

smallest data items that are meaningful to the user. Data elements can be 

structured in logically related groups of data. 

During the measurement step, the elements in the abstract model are mapped into 

numbers representing the (relative) amount of functionality that is contributed to the 

functional size of the system. Finally, the numbers are aggregated into an overall 

functional size value. 

1.1. Problem Statement 

In software project management it is crucial to be able to accurately quantify the size 

of software as the size information is utilized as an input in most of the management 

activities such as developing project estimates (e.g., effort, cost), risk assessment, 

productivity measurement, performance management, benchmarking, quality 

management.   

We base our measurement approach on functional size measurement (FSM) methods. 

However, so far several limitations and problems about functional size measurements 

have been reported. Below, we list problems which we believe of highest importance.   

1.1.1. Problems of Reliability 

One other serious problem for functional measurement methods is accuracy of 

measurement results in reflecting the true size of a software product and repeatability 

issues among measurers. There exist several studies assessing the reliability issues 

of FSM methods [3][49][51][43]. We have also conducted a series of experiments in 

order to point out accuracy and repeatability problems in COSMIC. We found that 

measurement results for a single requirements set can vary greatly among different 

measurers. Most of the measurers, especially inexperienced measurers, also fail to 

get a measurement result inside an acceptable error range.  

We also investigated root causes of discrepancies and measurement errors and found 

that:    

 Errors are common in:  

o Identification of Functional Processes 
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o Identification of Objects of Interest 

o Identification of Data Groups 

 Ambiguous requirements result in big differences in measurement results. 

 Assumed solution choices and/or individual’s interpretations cause 

discrepancies in measurement results. 

 Imperfect or incomplete definitions of a system result in wrong overall system 

size instead of measuring only the defined parts of a system.  

1.1.2. Problems of Granularity 

Most, if not all, measurement methods in problem domain does not incorporate a 

definition for abstraction and/or granularity level of the system being measured. FSM 

methods such as COSMIC do define the granularity level of functionality to be 

measured but they lack a definition of granularity for the system itself.  

Today, software systems can be so large that it became virtually impossible to define 

and communicate a whole system within a single analysis. This applies to both 

functional and structural aspects of the definition of a system. Big software systems 

are now defined in various levels of decomposition. Correspondingly, their 

functionality is defined in various levels. Their architecture is vertically decomposed 

in many layers as well as horizontally into components.  

Development of subsystems resulting from the decomposition of a bigger system can 

be delegated to separate development teams, departments or even companies. 

Software projects are defined for intermediate software products such as services, 

layers and components. These projects can be defined so disjointed that there may 

be no information available to identify the decomposition level of the software 

product. The end product can be a subsystem of a bigger system which is in turn a 

subsystem of a bigger system. Similarly, the software product can be utilizing smaller 

systems which in turn utilize further smaller systems themselves. 

As problem domain software measures, that is predominantly FSM methods, lack the 

information about the granularity level of the system being measured, size of a super 

system, sub system or a component are all represented in a single level. Making, 

measurements non additive, non homomorphic and non transitive. This violates the 

metrological requirements of a measurement. With existing measurement methods, 

size of an overall system will be different from their total size and cannot be calculated 

from the size of its subordinates. 

Apart from metrological problems, lack of levels in measurement result introduces 

arbitrariness to their relation with real life concepts and their measured values such 

as development effort, crippling their adequacy to be utilized in estimation of those 

values.   
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Moreover, based on decomposition, certain software projects rely on much lower level 

specifications than functional user requirements to define the required functionality 

of their software product. However, problem domain software measures, that is 

predominantly FSM methods, utilize functional user requirements as the main input 

for sizing functionality. 

FSM methods such as COSMIC address the level of granularity by the definition for 

Functional Process. However, this definition does not specify a granularity level for 

the behavior of the system. Instead, it defines how to select a consistent set of actions 

defined in the Requirement Specifications and group them to be measured separately.  

This approach however, assumes that (or should be assuming that) the requirements 

to be measured are defined at the same level of granularity. It does not define a 

formal method to use the same level of granularity in the requirements. 

The level of granularity and hence, the number of Objects of Interest directly affect 

the measurement result. 

Functional process is not a universal or absolute level of abstraction/granularity. It is 

a relative definition for granularity as system functionality definitions can be broken 

down into sub system functionality definitions and one may start to define functional 

processes with a functionality definition which is either higher or lower in level of 

abstraction in the continuum of problem-solution domain chain. (See section 2.2) 

Defining functional process in each level of abstraction is possible. Rules for defining 

functional processes can be applied to any level of system definition and therefore 

the granularity level for the functionality definition will be consistent within the level 

in which the measurement is performed. However, there will be functional processes 

defined in different system decomposition levels, making the granularity level defined 

by function process neither universal nor absolute. 

Moreover, as far as software maintenance is concerned, changes request can be in 

any level of decomposition. That is, changes in a requirement can be measured by 

FSM methods, however a change request only causing a change in the 

implementation is hard to measure by using artifacts in higher levels. Similarly, two 

low level changes would be represented by the same measurement in higher levels. 

Based on this resolution problem, FSM methods may prove to be inaccurate while to 

measure lesser than functional user requirement level changes.  
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1.1.3. Problems in Effort Estimation   

During the last thirty years, numerous estimation models for software projects were 

developed. Besides these generic models, organizations also developed their own, 

specific estimation models. These models can be classified at the top level as [74]; 

 Expert Judgment: These methods rely on the opinions of experts who 

experience in software development within the application domain. 

 Formal Estimation Methods: These methods rely on quantitative data and 

mathematical models and formulas that utilize them. 

 Composite Estimation Methods: These methods combine elements of the two 

methods and include both judgmental and mathematical methods.  

However, effort estimation models still far from the required accuracy. 

Boehm states [47]: 

“Today, a software cost estimation model is doing well if it can estimate 

software development costs within 20% of the actual costs, 70% of the time, 

and on its own home turf (that is, within the class of projects to which it is 

calibrated…. This means that the model’s estimates will often be much worse 

when it is used outside its domain of calibration.”  

Similarly, Ferens and Christensen state that [60]: 

“…in general, model validation showed that the accuracy of the models was 

no better than within 25 percent of actual development cost or schedule, about 

one half of the time, even after calibration.” 

Parametric effort estimation methods in the literature take three main aspects into 

consideration. Software Size, external factors and subjective assessments.   

Some estimation methods such as: COCOMO [4] [5] utilize solution domain measures 

such as lines of code (LOC) and measurements based on design constructs. 

Development effort is a concept that lies in the solution domain. Therefore effort 

estimation methods that get their size input from solution domain measurements are 

relatively more accurate than those that get the size input from problem domain 

measurement. 

However, in order for an estimation to be useful, it should produce results as early as 

possible in the lifecycle and solution domain size measurements are not ready until it 

is too late. Therefore, most of the methods in the literature utilize functional size 

measurement methods such as Function Points, IFPUG, COSMIC, NESMA and similar 
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methods [6][4] .These methods measure software size based on requirements and 

specifications, which is ready at the beginning of the project lifecycle.  

Having the functional size at hand, estimation methods define certain external factors 

that affect development effort. Although different estimation models feature different 

factors, most common factors can be summarized as [68][78]:  

 Project context: country, type of organization, business area, and type of 
development. 

 Product characteristics: application type, architecture, and user base. 
 Development characteristics: team characteristics, implementation   

technology (development language, development platform, tools used), and 
development techniques. 

 Qualitative factors influencing project execution: developer experience, 
project requirements stability, environment, and development tool suitability. 

Several studies show that size information obtained by problem domain measurement 

methods, prove to be inefficient in estimating project effort. In a previous study, we 

researched the differences between in house and public data sets based on their 

ability to estimate further projects in an organization. We showed that estimation 

methods devised based on an organizations historical data have marginal success in 

effort estimation and those that base on public benchmarking data sets such as ISBSG 

produce estimation results far beyond acceptable error margins.   

On the other hand measurement methods in solution domain, based on source code, 

design constructs and algorithms generally correlate better with development effort 

data than those in problem domain [103][7]. However, solution domain sizes cannot 

be obtained early in the project lifecycle which is the time estimations are actually 

needed.  

In order to overcome this, estimation methods suggest either predicting software size 

and use those approximate values for estimation or measure domain size and convert 

it to solution domain size based on some historical data [47][60]. Both these 

approaches again, introduce errors in estimation. Lastly, estimation methods require 

some subjective assessment from the user to complete the estimation such as; degree 

of complexity of software, team experience, suitability of development environment 

and familiarity. This is actually how these methods try to bridge the gap between the 

problem domain and solution domain.  As I discussed above, the process of 

developing a solution to a problem is ambiguous and soft. Therefore, estimation 

methods based on problem domain sizes need some subjective input from the user 

in order to incorporate the expertise and foresight of the person conducting the 

estimation. However, this is one of the points where the reliability and repeatability 

of these methods are questioned. [7]  
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Most of the software organizations which use parametric effort estimation models use 

SLOC/FP ratios to predict the code size and then use the value as an input to cost 

estimation models. However, the results of this study showed that even obtained at 

the component level, using these ratios can cause significant amount of error. 

Therefore, we conclude that software organizations should not continue using these 

ratios unless their local studies show acceptable results. 

1.1.4. Problems in Benchmarking 

The above mentioned problems in measurement results and granularity also affects 

the quality of data in benchmarking data sets. Özcan Top and Yilmaz [86] conducted 

a study in our research group on benchmarking data sets such as ISBSG, and 

concluded that, those sets lack structural information about the projects. We cannot 

deduct information about the abstraction level of measurements in those data sets. 

Due to factors discussed in 1.1.2 comparing data from varying abstraction levels will 

result in erroneous benchmarking. With existing measurement methods, size of an 

overall system will be different from their total size and cannot be calculated from the 

size of its subordinates. And one cannot get the information about how total size for 

a project is calculated. 

Similarly, studies also shown that the quality of the measurement in public data sets 

is questionable and reliability of any size information is disputed, mostly due to factors 

defined in section 1.1.1. 

1.2. Solution Approach 

In this thesis, we recognize the separation of problem and solution domains. We relate 

activities, artifacts and their corresponding size measurements to these domains. 

While separating the problem and solution domains, we also suggest that problem 

and solution domain definitions shift as problems are decomposed into smaller 

problems. System decomposition and abstraction techniques guide this shift through 

the engineering process.  

ISO/IEC 14143-1:2007 [69] defines Base Functional Component (BFC) as “An 

elementary unit of Functional User Requirements defined by and used by an FSM 

Method for measurement purposes”. 

The standard specifies that calculation of an FSM must be based on the evaluation of 

each BFC. ISO/IEC 14143-1:2007 requires, that FSM methods should: 

Define the rules to determine the BFCs. 

 Define how to assign a numeric value to a BFC according to its BFC Type.  
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 Calculate the functional size by measuring BFCs. 

In functional size measurement, the functional user requirements allocated to one or 

more pieces of software are represented by functional processes. Each functional user 

requirement is broken down into one or more functional processes. Further braking 

down the functionality, functional processes are broken down into sub-processes. A 

sub-process can either be a data movement or data manipulation.  

Data movements and manipulations are the basic functions a software can perform 

on data or a data group. Data movements occur when a single consistent group of 

data is moved through a boundary of an encapsulation of any level. It can be a system 

boundary, component boundary or the encapsulation of an object based on the level 

of decomposition the functional process is defined. 

In functional size measurement, data manipulations are assumed to be inherent 

within data movements and therefore disregarded for the purposes of measuring the 

functional size. 

Similar to the most common FSM methods, we consider data movements as the base 

functional component for measurement.  Data movement is an abstract, domain 

independent concept. It is atomic as far as a decomposition level is concerned and 

can be well defined for a given measurement view. 

Abran [8] states this as: “The key concept of functionality at the highest level of 

commonality that is present in all software was identified as the data movement. This 

data movement concept was then assigned to the metrology concept of a size unit.”. 

Considering that data movements is a common feature of many FSM methods there 

is a quite broad consensus that data movement is a good representation of the 

concept of the functional size of software. However, each method have different rules 

for quantifying this concept [8]. 

As discussed in Chapter 2, we believe definition of functionality is traversable through 

decomposition levels. Therefore, we perceive the functional requirements as 

definitions of functionality which can be defined in various abstraction levels. Hence, 

different levels of functional processes can be defined in corresponding decomposition 

levels. Functionality allocated to a structural entity in a decomposition level can be 

broken down into smaller functional processes defined in a lower decomposition level. 

In Chapter 2 we suggest that the definition of functionality is defined in a chain of 

alternating problem and solution domains. That is, a solution (function) poses as a 

problem for lower levels of decomposition and a problem (expected outcome) will be 

attained through solutions (functions) in a further lower level of decomposition. 
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This leads us to the notion that a Base Functional Component for functionality, may 

exist in both problem and solution domains based on the perspective therefore posing 

as a common concept in both domains.       

The Base Functional Component for Data Movement Point (DMP) measurement 

method is based on the data movement concept which is commonly present in both 

domains. We suggest that, through such a method, size information obtained in one 

domain will be usable in other. 

We propose that a measurement method which incorporates decomposition levels 

into measurement will mitigate the problems defined above.  

Estimation of concepts in the problem domain and solution domain will be more 

accurate if they are based on concepts residing in their respective domains. However, 

as mentioned before, existing measurement methods are confined in one domain and 

utilized for normalizing or estimating concepts in the other domain.  

We propose a measurement framework consisting of a functional size measurement 

method, en estimation method and a representation for approximate size. 

It is possible to measure software size using the lowest level of decomposition for 

data movement, automatically. Then, it is possible to scale up the measurement by 

mapping lower decomposition level objects to objects in higher levels. 

As the method is based on a common concept, we believe that, ideally information 

loss during conversions through problem and solution domains can be prevented. In 

other words, any such loss will be due to external factors such as human factor or 

ambiguous definitions but not the ill definition of the measurement method.   

We also propose an estimation method and a representation of approximate size in 

various abstraction levels. This estimation method utilizes size information gathered 

from higher levels of abstraction of a system and predicts lower levels. In turn, the 

approximate representation of actual size in higher levels is used as a basis for such 

an estimation method.  

We also present a software tool to perform the measurement method defined.  

Below is the way we address the problems defined in the previous section through 

our solution approach: 

Problems of reliability:  

Subjective identification of abstract FSM concepts such as Objects of Interest and 

functional processes comprise the reliability of measurements. We define an atomic 
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and objective definition of functional process, object and data movement. Through 

use of a measurement tool, we backfire these concepts of FSM from the source code 

which is the end point of solution implementation. This totally eliminates the reliability 

issues. 

For higher level measurement results we traverse through higher levels utilizing 

metadata for the lowest level. Only point of human interpretation is in the generation 

of this metadata which relates lower level concepts to higher level ones. This mitigates 

measurement errors as there is less room left for interpretation and renders errors 

recoverable by fixing the metadata.  

Moreover, FSM methods rely on correct and complete systems as they use abstract 

objects and functional processes. DMP method makes it possible to measure 

incomplete or imperfect description of systems with minimum impact in the result.  

As the measurement is finer grained missing information in the system definition will 

only result in missing measurement information for missing parts instead of botching 

the whole measurement process.    

Problems of granularity:  

In the DMP method, information regarding granularity level of measurement is 

incorporated in the size definition. The lowest level of measurement is atomic and 

absolute rather that relative as the case with existing methods. This fact renders 

measurement results to be additive, homomorphic and transitive.  That is, system 

size is the sum of the sizes of its subordinates. 

By DMP method, it is possible to measure specifications defined in levels lower than 

functional user requirements. This makes measurement of components in highly 

decomposed systems possible independent of other sub systems and components.     

DMP method also makes it possible to size software changes that are defined in lower 

resolution levels than functional user requirements.  

Problems in effort estimation:  

As mentioned above, studies show that estimation for a concept in a domain relates 

much better with the size information obtained in that domain and our preliminary 

studies confirm this [101].   

We define an estimation method which rely on the same concepts that the 

measurement method does. Instead of using conversion factors between two 

different size measurements that are essentially unrelated. By this approach, 
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estimations become less prone to gaps between domains and project phases (see 

section 4.2.1).    

Most FSM methods either does not include data manipulations in measurement or 

just incorporate the size of manipulations as an order of complexity to the overall 

measurement. As discussed in section 2.2 manipulations defined in a system gradually 

become movements as decomposition levels deepen. By measuring in lower levels of 

decomposition, DMP method measures data manipulations which would otherwise be 

left out in higher levels into measurement. This also increases the accuracy of 

estimations.  

Problems in benchmarking:  

Having decomposition level incorporated into measurement results would greatly 

increase the comparability and normalization of measurement results in the 

benchmarking datasets, thus, increasing the reliability of any benchmarking activity. 

1.3. Research Goals 

The primary research goal of this thesis is to provide a comprehensive and 

systematic measurement framework for sizing software systems which will address 

the problems stated in 1.1, compliant with principles of metrology, incorporating the 

solution rationale stated in 1.2.   

The framework consists of: 

• A measurement method for sizing software systems from detailed design 

models.  

• A method for sizing existing software products by backfiring measureable 

software models from software code. 

• An approximation approach / representation for measurement results 

including the abstraction level the measurement is performed in.   

• An estimation approach for size and effort. 

A second goal is to ensure minimum measurement error and inter-measurer 

variance in measurement results.  

A third goal is to propose a common concept to measure problem domain and 

solution domain concepts so that size information will be traversable between 

software lifecycles.  
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1.4. Research Design 

The research goals will be satisfied by attaining the following sub goals: 

• Studying the ontological background of terms used in software size 

measurement. Our intention is to define a measurement method compliant 

with the terminology defined in the ISO International Vocabulary of Terms in 

Metrology [9] and framework defined by Abran [10] and Habra et al.[11]  as 

well as the ISO/IEC 14143 [12]. 

• Laying out the concepts related to problem and solution domains for software 

systems.  

• Defining measurand models residing in problem and solution domains. The 

process model for software measurement proposed by Abran and Jacquet [25] 

will be used as the basis for the measurement framework to be proposed. 

• Designing a measurement method for sizing software systems utilizing 

detailed design model for system behavior – Sequence Diagrams. 

• Designing a procedure to measure existing software products by backfiring 

behavioral model from source code. 

• Extending the measurement procedure for representing different levels of 

decomposition. It should include additional measurement rules and 

procedures to define the level of decomposition in which the measurement 

result is valid.  

• Proposing an estimation method that is consistent with the measurement 

method defined. 

• Validating the design of the proposed FSM measurement method to verify 

whether the measures used satisfy the representation condition of 

measurement - Theoretical validation. 

• Validating the application of the proposed FSM measurement method in order 

to assess the reliability, correlation with other measurements and correlation 

with project effort – Empirical Validation. By empirical validation, we refer to 

the evaluation of the performance of the measurement method through case 

studies using experimental techniques and statistical data analysis. 

1.5. Thesis Outline 

In this chapter we discuss the importance of a well defined software measurement 

method for software size. Point out the problems in the state of art, and summarize 

our solution approach, research goals and research methodology. 

In section 2, we discuss the rationale for separating the problem and solution domain 

and its impact on software measurement.  



15 

  

In section 3, we summarize the concepts of metrology and how they relate to software 

measurement theory. We describe the state of the art and existing software 

measurement methods in the literature with special emphasis on functional software 

measurement models utilizing software models in problem and solution domain.     

In section 4, summarize the methodology and background for defining a proper 

software measurement method. We define our solution framework consisting of a 

new measurement method, a model to represent software size incorporating 

decomposition levels, the measurement tool we developed and an estimation 

approach to utilize the size measurement method we propose in effort estimation.  

In section 5, we define our validation methodology and case studies we performed to 

validate the measurement method proposed and their results. 

In section 6, we summarize the conclusions of the study and discuss further research 

opportunities.  
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CHAPTER 2 

2.PROBLEM DOMAIN AND SOLUTION DOMAIN DISTINCTION 
 

 

 

 

The difference between theory and practice equals your ineptitude... 

- Anonymous 

 

 

2.1. Mapping the Requirements (Specifications) and Design – Problems 

A real world problem, as we humans see it, is a behavior-first domain. Humans 

perceive a problem or a need by the behavioral aspect first. We first perceive the 

cause and effect, which are behavioral, then attach those to objects. Solutions 

however, are object-first, rendering the solution domain an object-first domain.  

Example: 

Problem: We need to bind two pieces of wood together for them to be able 

to withstand a load.  

Solution: we use a nail to bind those pieces of wood. We use a hammer to 

put the nail through both pieces of wood. 

The procedure of solving a problem is, essentially, devising components to attain the 

desired behavior. 

This phenomenon, makes the mapping of problem domain concepts to solution 

domain concepts arbitrary and non-mathematical.  

Similarly in software engineering. The problem is defined as behavior-first and 

solution as object-first. Migrating from procedural programming techniques to object 
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oriented techniques in the course of software engineering, also embraces this 

phenomenon and further clarifies the separation of problem and solution domains.  

Problem can be represented as a hierarchy of sub-problems. A higher level problem 

can be broken down to lower level problems. This phenomenon is defined as 

Functional Decomposition in engineering.  

Similarly, components can also be represented as a hierarchy of sub-components. A 

larger component can be broken down to smaller lower level components. This 

phenomenon is defined as Structural Decomposition in engineering.  

However there exists no natural relation between these decompositions in two 

domains. Any mapping in between items in any decomposition level is problem and 

solution specific and not straightforward. One “item” in the functional decomposition 

tree in the problem domain may correspond to several “items” in the structural 

decomposition tree and vice versa. This is the main factor that there is a gap between 

problem and solution domain which is crossed through use of engineering problem 

solving. 

2.2. What – How 

Axiom: Software is a systems that consists of data movements in various levels of 

granularity. [13] [10] 

The question about “how” a problem is solved is essentially the process of breaking 

down a larger “What” question to smaller “What” to do questions. What question 

stands for the description of a need or the aim of the system. How question stands 

for the solution devised for this problem. 

One of these transition process in the What-How chain will pose as a boundary 

between Problem and Solution domains based on the definition of the system at hand.  
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Example of a Problem- Solution (What-How) chain: 

Increase Profit  

 … 

 Decrease Costs 

 Increase Sales 

o ... 

o Increase Advertisement 

o Establish an online store 

 … 

 Get a Server 

 Build an e-commerce site 

 Design Web Site 

 Test Web site 

 Develop Web Site 

o Develop Interface 

o Develop Client Side Software 

o Develop Server Side Software 

 

 … 

 Develop Database 

 Develop Data Abstraction Layer 

 Develop Business Layer 

o … 

o Develop Admin Module 

o Develop Stock Module 

o Develop Customer Module 

 … 

 Develop membership functions 

 Develop CRM functions 

 … 

 Develop Customer Class 

 Develop Purchases Class 

o … 

o Develop add purchase method 

o Develop get purchase name method 

As one can see from the example chain, the decomposition for a system can happen in any 

level and may be extended vertically to higher and lower levels. Theoretically this extension is 

infinite. Higher and higher level problems can be defined as well as lower and lower level 

solutions.  
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Engineering is about defining the start and end points for a system. Limiting the highest level 

with system boundary and lower level with system abstraction principles. In the example, 

lowest level was the methods of a class, whereas lower levels can be defined for physical 

bytes in the memory, registers in the memory, bits defining mnemonics of instructions etc.  

2.3. Problem Domain and Solution Domain in Software Engineering 

Software engineering is no different from other engineering disciplines as far as 

problem solving paradigm is concerned. Software development is basically developing 

a solution to a real life problem. Keeping this in mind, we map the software project 

lifecycle to problem and solution domains. Figure 1 displays the boundaries of problem 

and solution domains. Positions of work products and software lifecycle activities with 

respect to these domains are also defined. 

 

Figure 1 Problem and solution domain borders in a software project lifecycle 

Problem domain, by definition, involves the real life need and problem definition.  

Activities performed to understand the problem such as requirements elicitation and 

requirements development also lie in the problem domain. Moreover, the validation 

of the solution, that is, validating whether the solution meets our needs also lie 

outside the solution box and in problem domain. High-level requirement based testing 

and related test case generation activities may fall in this category. 

Depending on the software lifecycle model used, activity names and content may 

vary. However, we identify any effort falling within this boundary as problem domain 

effort.  

Solution domain, on the other hand, involves the activities performed towards building 

a solution to the problem. Typically, these activities include detailed analysis, design, 

implementation and integration. Implementation typically involves coding and unit 

test activities.  
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Similarly, depending on the lifecycle model used, phase and activity names may defer. 

However, we identify any effort falling in the boundaries between detailed  

Concepts of the problem domain Concepts of the solution domain 

Problem statement   

Features  

Functional Requirement  

Systems Specification Design 

 Implementation (Source Code, Model) 

 Constructs (Objects, Database Tables, 

layers)  

Price Technical Specification 

Productivity Performance 

 Cost 

 Effort 

  

User Test Unit Test  

 Component Test 

2.4. Independence of Problem Domain and Solution Domain 

In order to prove our suggestion on the separation of problem and solution from a 

metrics point of view, we conducted two studies [103] [101] with I.Unal. In the first 

study we investigated the correlation of problem and solution domain sizes with the 

problem and solution domain effort. In the second study, we conducted a case study 

where a single set of requirements were to be developed using two different 

implementation approaches. Both studies supported our suggestions about problem 

and solution domain separation. A similar but theoretical study by Lavazza and Bianco 

[14] also demonstrates the independence of problem and solution domain through 

the Rice Cooker case originally designed by COSMIC [15].   

First Study 

We analyzed a set of 6 independent software components with a total size of 5036 

Cosmic Function Points. 
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We collected project effort data for analysis, design, implementation and test phases 

separately. Then, we measured the size of the products in problem and solution 

domains. 

In problem domain, we measured COSMIC function points from the functional 

requirements. In solution domain, we measured design constructs such as, number 

of classes, number of operations, number of operation parameters, number of class 

attributes, number of inter class connections and Source Lines of Code (SLOC). Effort 

data for different phases of project lifecycle is given in Table 1. Table 2 summarizes 

the problem and solution domain size measurements for the same components.  

Table 1 Efforts for components in person-hours 

 Req. Ana. 
Software 

Design 

Coding and Unit 

Tests 

CSCI 

Test 

System 

Int. 

Prj.1 Comp.1 1354 1192 8799 1715 1116 

Prj.1 Comp.2 317 286 1544 76 NA 

Prj.1 Comp.3 287 365 959 280 NA 

Prj.2 Comp.1 270 492 1281 152 NA 

Prj.2 Comp.2 179 328 854 101 NA 

Prj.2 Comp.3 90 164 427 51 NA 

 

Table 2 Problem and solution domain measurements for the components 

 
COSMIC 

FP 
#Classes #Operations 

#Operation  

Parameters 
#Attributes #Connections SLOC 

Prj.1 Comp.1 1965 2102 8078 4940 17653 1776 234366 

Prj.1 Comp.2 482 931 2743 1530 7872 1174 94000 

Prj.1 Comp.3 432 209 2390 1216 751 91 24428 

Prj.2 Comp.1 638 158 648 2353 2275 74 57831 

Prj.2 Comp.2 362 80 720 1078 954 58 48327 

Prj.2 Comp.3 1157 160 968 624 162 31 117386 

After we collected the data, we investigated following correlations: 

 Problem Size (COSMIC) vs. Analysis Effort 

 Problem Size (COSMIC) vs. Design Effort 

 Problem Size (COSMIC) vs. Implementation (Coding and Unit Test) Effort 

 Problem Size (COSMIC) vs. Test Effort 

 Design Size (various constructs) vs. Implementation (Coding and Unit Test) 

Effort 

 Design Size (various constructs) vs. Test Effort 
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Table 3 shows the correlation of design constructs and COSMIC size with 

implementation and test efforts.  

We observed that; solution domain sizes had much higher coefficients of correlation 

with both implementation and test efforts compared to problem size (FSM). 

Table 3 Correlations of problem and solution sizes with effort 

Measurement  Implementation Effort For Test Effort 

# Class 0.9587 0.8867 

# Operations 0.9848 0.9553 

# Operation Parameters 0.9431 0.9231 

# Attributes 0.9531 0.8733 

# Connections 0.8773 0.7633 

# Parameters + # Attrributes 0.9653 0.8956 

# Parameters + # Connectins 0.9677 0.9147 

# Para + # Conn. + #Att. 0.9615 0.8878 

COSMIC Function Points 0.8055 0.8347 

We also observed that problem domain size correlates better with problem domain 

effort than solution domain effort as suggested. Table 4 presents the correlation 

coefficients between COSMIC size and effort values. Slightly higher correlation with 

test effort can be explained with the fact that collected test effort included the effort 

for test case development activities, which lies in the problem domain as described in 

section 3.  

Table 4 Correlations between COSMIC size and effort values 

 Coefficient of correlation for COSMIC Size 

Analysis Effort  0.8131 

Software Design Effort 0.7777 

Implementation Effort 0.8055 

Test Effort 0.8347 
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Figure 2 and Figure 3 show the correlation of number of operations, implementation 

and test efforts. Number of operations has the best correlation with implementation 

and test efforts among other design constructs. 

 

Figure 2 Implementation effort vs. number of operations 

 

Figure 3 Test effort vs. number of operations 

In this study, we observed that solution domain sizes correlated much better with 

solution domain efforts than problem domain size (FSM) does as suggested.  

According to Rubin [91], 20% of the total project effort is used for Analysis.  Whereas 

21% is used for design, 40% is used for coding and unit test, 10% is used for 

documentation and 9% is used for deployment. When we map the effort to problem 
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and solution domains; we can say that 20% of the total project effort lies in problem 

domain and 80% lies in the solution domain on the average.  

Considering the fact that %80 of the total project effort lies in the solution domain, 

we can say that an estimation method utilizing solution domain concepts would be 

more accurate in estimating the overall project effort. 

Number of operations had the highest correlation coefficient with the project effort. 

This result also supported our presumptions that data movement in the solution 

domain would be the best choice for sizing software for the purposes of effort 

correlation.  

Second Study 

In this study, we had the opportunity to isolate a single aspect of project 

characteristics and display its effect on project effort through a comparative study we 

performed within a software development company. 

One of the company’s projects involved implementation of a single set of 

requirements for two different platforms. This gave us the opportunity to conduct a 

comparative study on two projects which differ only in the implementation. At the 

end of the study, we demonstrated that implementation technology had a critical 

effect on project effort, as expected. 

First, we compared the projects based on their project characteristics. We chose the 

attributes defined ISBSG and made the comparison based on these attributes. We 

expected the projects to be very similar in every characteristic apart from the solution.  

We measured the project’s functional software sizes using COSMIC FSM method. 

Having mostly the same requirements, we expected the FSM size of the projects to 

be close.  

Then we collected effort data for each phase in the software life cycle of both projects.  

Finally, we compared the effort values for two projects. We investigated how much 

the effort values differ, when only the development language and operating platform 

change. 

The main functionality required by the two projects was the same. That is, a single 

set of requirements constituted the majority of the requirements, making most of the 

software requirements for the two projects identical. On the other hand, when we 

compare the development effort of the projects we see that Project #1 required 21% 

more effort than Project #2.  
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Number of requirements, number of functional user requirements (FUR) and number 

of common requirements are given in Table 5. 

Table 5 COSMIC Size and Effort Values of the Projects 

 COSMIC FP  Actual Effort in person-hours 

Project #1 1918 17183 

Project #2 1965 14177 

As all project characteristics other than those regarding implementation technology 

were constant between the two projects, we can say that the difference in the effort 

was caused by the difference in the solution domain. 

This study demonstrated the disjoint nature of problem domain measurement and 

solution domain effort.  

Henderson [63] and then Desharnais and Abran [34] presented the results of their 

analysis on the SLOC to IFPUG FP ratio. Both studies concluded that there are large 

range of variations in SLOC and IFPUG FP sizes. 

Rollo [98] conducted an empirical study on 20 applications and concluded that the 

backfiring functional size to SLOC is greatly inaccurate.  

Dekkers and Gunter [48] studied backfiring and conversion of these size 

measurements based on their fundamentals and reported big variations on the 

results. 

Gencel, Heldal and Lind [16], conducted a study on the relationship between IFPUG 

and COSMIC sized with Lines of Code and physical size. 

They conducted the study in two parts, first on project data obtained from public data 

set ISBSG 2007 Repository, CD Release 10, then on project data obtained from a 

single organization. 

For the ISBSG Data Set, variation and correlation in SLOC sizes to COSMIC and IFPUG 

sizes are given in Table 6. 
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Table 6 Correlation Values for SLOC Size vs. COSMIC and IFPUG sizes in ISBSG Data 

Set 

 SLOC / CFP SLOC / IFPUG 

 Std. Dev. R2 Std.Dev R2 

Project Set 1 6.04 0.559 - - 

C Language - - 125.1 0.26 

Visual Basic - - 48.0 0.66 

SQL - - 81.0 0.61 

For single organization’s data set, variation and correlation in SLOC sizes to COSMIC 

is given in Table 7. 

Table 7 Correlation Between SLOC and COSMIC Sizes in a Single Organization 

 SLOC / CFP 

 Std. Dev. R2 

Comfort & Convenience 

Type Components 
8.2 0.4855 

 15.4 0.417 

For single organization’s data set, variation and correlation in Physical size (Bytes) to 

COSMIC size is given in Table 8. 

Table 8 Correlation Between Physical Size (Byte) and COSMIC Sizes in a Single 

Organization 

 Bytes / CFP 

 Std. Dev. R2 

Comfort & Convenience 

Type Components 
7.6 0.99 

Display & Indication 

Type Components 
21.6 0.992 

As one can see from their results, they observed very weak correlation and significant 

variation for the SLOC/CFP ratios. 

However the degree of variation for the ratios Bytes of code per FP was significantly 

smaller than the SLOC per FP. Moreover, correlation was very high. This again 

supports our suggestion about problem and solution domains as COSMIC size, which 

is a problem domain measurement, fails to correlate with SLOC which resides in 

solution domain and correlates greatly with physical size which resides in problem 

domain.   
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Staples et al. [17] also conducted a similar study and their findings were in line with 

the previous studies stating that there is very weak relationship between CFP and 

SLOC and concluded that CFP should not be used as a predictor of source code line. 

Moreover, they found very strong correlations between line counts for the formal 

specifications and source lines of code. As formal specifications lay in the solution 

domain, this also strengthens our suggestion stating that problem domain and 

solution domain measurements correlate better with their problem and solution 

domain constructs respectively.  

2.1. Measurement in PD and SD 

As we mentioned before, there exist several measurement methods and different 

software size definitions. Based on the separation of domains defined above, we 

categorize these as problem domain and solution domain sizes based on the software 

artifacts from which they originate. A software size definition is categorized as 

problem size if the artifact used to measure it is produced in the problem domain. 

Similarly, a size definition is categorized as solution size if the artifact used to measure 

it is produced in the solution domain. Any size measured from software requirements 

is identified as problem size. Similarly, any size measured from, design constructs is 

identified as solution size.  

Some of the commonly used size definitions are categorized as follows: 

Problem domain sizes:  

 Number of requirements. 

 Feature Points.  

 Function Point (FP) based sizes. (IFPUG, COSMIC, MARK II etc.) 

 Use case points (high level) 

 Object Points 

 3D Function Points 

Solution Domain sizes: 

 Use Case Points (low level) 

 Object Points 

 Object Oriented Design Constructs (Number of attributes, number of 

operations, number of connections etc.) 

 Lines of Code based sizes. (Source Lines of Code, Logical Lines of Code, 

Number of instructions etc.) 

 Web Objects 

 Data Points 

 Object Oriented Function Points - OOFP 
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 Predictive Object Points 

 Shepperd & Cartwright Size Measurement 

 

Figure 4 depicts the timing of several measurement methods, based on the availability 

of work products utilized as measurand models for the methods.  

 

Figure 4 Position of several measurement methods based on the availability of input 

models 



 

CHAPTER 3 

3.METROLOGY AND SOFTWARE MEASUREMENT  
 

 

 

Everything that can be counted does not necessarily count; everything that counts 

cannot necessarily be counted 

- Albert Einstein 

3.1. Measurement Theory 

Measurement procedure is defined in the International Vocabulary of Basic and 

General Terms in Metrology [9] as a “set of operations, described specifically, used in 

the performance of particular measurements according to a given method of 

measurement”.  

A method of measurement is defined in this vocabulary as a “logical sequence of 

operations, described generically, used in the performance of measurements”. 

3.2. Size & Effort – Approximation & Estimation 

The terms; software size, software estimation, size approximation, size estimation, 

effort estimation, effort measurement are often confused and used interchangeably.  

The software metrics community has generally not defined and differentiated these 

concepts which is still a problem resulting in confusion in both academics and industry. 

Software Size: Is the size of a software product or an intermediate work product to 

develop the software product. Can be represent in LOC, Function Points, COSMIC 

Function Points, Bytes, number of methods etc. 

Effort: Is the amount of effort spent in a project or a project phase. Represented 

with man months or man hours. The term project size is sometimes used in confusion 

to define effort. 



 

Measurement: is the activity to quantify a concept that is already present or 

happened.  

Approximation: Is the activity to give an approximate value for the quantification 

of a concept that is already present or happened.  

Software size measurement: Is the activity to quantify the size of measurement. 

Some of the measurement methods are SLOC, Function Point analysis, IFPUG, 

COSMIC, Use Case Points. 

Software size approximation: Is the activity to give an approximate value for the 

size of the measurement. Can represented as an interval or a value with 

corresponding error margin.  

Size Estimation: Is the activity to predict the value of software size that is yet to be 

created. Can represented as an interval or a value with corresponding error margin. 

Effort Measurement: Is the project management activity, to measure the amount 

of effort spent in an activity, project phase or total project. Time sheets is a common 

method of effort measurement. 

Effort Estimation: Is the activity to predict the effort that is yet to be spent on an 

activity, project phase or total project in the future. As far as software projects are 

concerned, cost of a project is most of the time directly related to the effort put in 

the project. Therefore the term cost estimation is also used to define this activity. 

3.2.1. Effort Estimation 

Project planning poses the base of project management. Therefore effort estimation 

is one of the most important activities in project management. However, effort 

estimation practices are still far from being accurate for software projects [47][60].  

The main reason that estimation is difficult is that it has to be done at the beginning 

of a project. At that point very little is known about the project. The further in time 

the project goes, the more is known and the better estimations for the remaining 

work get. Accuracy of estimations can be represented with the percentage of absolute 

value of deviation of the estimation from actual project effort i.e Magnitude of Relative 

Error (MRE) 

MRETE =  
|𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑜𝑡𝑎𝑙  𝐸𝑓𝑓𝑜𝑟𝑡−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑜𝑡𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡|

𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡
   (Equation 1) 

 

MRERE = 
|𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔  𝐸𝑓𝑓𝑜𝑟𝑡−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑓𝑓𝑜𝑟𝑡|

𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑓𝑓𝑜𝑟𝑡
 (Equation 2) 
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One should note that the Actual Total Effort and Actual Remaining Effort are actually 

hypothetical values at the time of estimation. They can only be known at the end of 

the project. Therefore these error values can only be calculated only retrospectively 

for a project. 

As a project propagates in the time, attributes of the project and the required software 

product gets clearer. Estimations for the total project effort in each phase tend to be 

more accurate.  

3.3. Measuring Software Size Based on Software Design Models 

Proposal of Bévo et al. (1999) 

Bévo et al. [45] associates the concepts of UML version 1.0 and COSMIC-FFP version 

2.0. Their approach is based on use cases and class diagrams. Each use case maps 

to a functional process in COSMIC notation. Actors of a use case are considered as 

functional users. Scenarios of a use case are transformed into data movements and 

each class of a class diagram is mapped with a data group. However, triggering events 

and measurement layers in COSMIC notation are not mapped to any UML concept. 

Proposed approach was verified with five case studies in [46]. The procedure is 

applied in a measurement tool named, Metric Xpert. 

Proposal of Jenner (2001) 

Jenner [73] evaluates the model of Bévo et al. and improves the model by mapping 

additional UML concepts to COSMIC concepts. Unlike Bévo et al. he (she) maps each 

functional process to a sequence diagram. Interaction messages in each sequence 

diagram are mapped to data movements. She suggests usage of swim lanes to 

represent measurement layers. This procedure is also supported by a measurement 

tool [72]. 

Proposal of Diab et al. (2001) 

Diab et al. [18] propose a model for the measurement of real time applications’ 

functional size. The model is based on Rational Rose Real Time (RRRT) model. Layers 

of a real time application are represented by a set actors at the same level of 

abstraction. Transitions in the application are mapped to functional processes. Actions 

and messages in the RRRT models’ state machine diagram are mapped to data 

movements. Data groups are represented by actors and protocol classes and data 

attributes are represented by the attributes and variables of the classes. Proposed 

approach is supported by a tool named μcRose [19].  
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Proposal of Poels (2002) 

Poels’s [89] model which was developed by associating the concepts of COSMIC and 

the concepts of the business model and the services model of MERODE [14] allows 

measurement of multilayered applications. The model is proposed for the 

measurement of management information systems applications. Based on the 

business model and COSMIC mapping; functional processes corresponds to a set of 

class methods and data movements are mapped to each of these class methods. 

Classes of the business model corresponds to data groups.  

On the other hand for the services layer, each functional process corresponds to a 

non-persistent service object of the services model and each data movement is 

mapped to class methods.  

This proposal of Poels has no support of a measurement tool and was only verified 

theoretically in [20]. 

Proposal of Nagano et al. (2003) 

Unlike Bévo et al. [46], Nagano et al.’s proposal [83] allows measurement of real time 

applications from xUML [80] concepts. The model utilizes Class, state transition, and 

collaboration diagrams. The attributes of the class diagrams, message parameters 

and control signals are considered as candidate data groups. Collaboration diagrams 

are utilized for the identification of triggering events. Finally, set of data movements 

in collaboration diagrams correspond to functional processes.  

The proposal does not supported with a measurement tool. In addition, it was 

mentioned that the result of the case study conducted with Rice Cooker case [53] 

displayed %53 difference from the original measurement result. 

Proposal of Azzouz et al. (2004) 

Azzouz et al. [41] presents a proposal based on the fundamentals of Bévo’s [45] and 

Jenner’s [21] models and develops a tool to automate the functional size 

measurement process of management information systems projects developed with 

Rational Unifies Process (RUP) methodology. The model utilizes use cases and use 

case scenarios in three phases of the development methodology. These phases are 

business modelling, requirements analysis and design. One advantage of this proposal 

is that the tool had integration with Rational Rose tool. 

Proposal of Condori-Fernández et al. (2004)  

Condori-Fernández et al. [22] presents a proposal to measure the functional size of 

object oriented systems. The proposal works based on the OO-Method requirements 
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model [88] including functions refinement tree, use case diagrams and sequence 

diagrams. Use cases and functions of the refinement tree correspond to functional 

processes. Sequence diagrams’ elements corresponds to data groups and data 

movements. The model does not explain triggering events. Although the model does 

not have a tool support, it has been verified in [52],[50] and [51]. 

Proposal of Habela et al. (2005)  

Habela et al. [23] presents a mapping of UML version 1.5 and COSMIC FFP version 

2.2 in the use case context. The proposal depends on detailed use case definitions 

and use case diagrams. Use cases are mapped with functional processes and scenario 

descriptions are mapped with data movements. In the literature there is no such study 

to describe the verification of the proposal. 

Proposal of Levesque et al. (2008) 

Levesque et al. [24]develops a model for the measurement of management 

information systems from use cases and sequence diagrams. In the model, each use 

case corresponds to functional process and each actor of the use case corresponds 

to functional user. Sequence diagram elements are mapped to data groups and data 

movements. In this model data manipulations are also taken into account. Error 

messages in the sequence diagrams correspond to data manipulations.  

Levesque’s proposal does not supported with a measurement tool. In addition, it was 

mentioned that the result of the case study conducted with Rice Cooker case [53] 

displayed %8 difference from the original measurement result. 

Proposal of Marín et al. (2008) 

Marín et al.’s [25] proposal allows measurement of object oriented systems developed 

using OO-Method. OO-Method, being a Model Driven Architecture approach, has a 

three tier architecture: presentation tier, logic tier, and database tier. Layer concept 

of COSMIC measurement method is associated with these tiers. Interaction units in 

presentation tier are associated with functional processes. 

On the other hand, the proposal involves three models: the requirements model, the 

conceptual model and the execution model. The conceptual model is composed of 

four models: the object model, the functional model, the dynamic model and the 

presentation model.  Classes in the object model are associated with data groups, 

whereas attributes of the classes are associated with data attributes.   

Finally, the proposal has a well defined rule structure, tool support and has been 

verified using various case studies.  



 

CHAPTER 4 

4.DATA MOVEMENT POINT (DMP) MEASUREMENT METHOD AND 
CORRESPONDING ESTIMATION APPROACH 

 

For millenia, scientists always try to measure the size of this vast universe. One way 

to know that is first to find the smallest single thing that constructs this universe. 

When they get it, the real measurement of universe can be understood for sure. 

 

― Toba Beta 

 

We are suggesting a two way approach to the same continuum of concepts. The 

measurement method, is a bottom up approach which have its base in the 

bottommost relevant representation of data movement and consolidated upwards 

with increasing granularity. Estimation method, however is a top down approach, 

starting from the topmost representation of data movement and broken down with 

decreasing granularity.  

The optimum level of granularity to collect historical data and, hence, base the 

estimations on, should be identified per organization and/or domain. 

Many software systems are developed in an iterative manner, adding detail as 

required. In object-oriented systems this is particularly common, and applies to all 

stages of development from analysis of requirements to final detailed design. [21] 

In the first part of this section, we present the framework for software measurement 

method design as defined by Abran and Habra et al. [8] [11]. 

Defining measurement activity as a mapping between the real world and the 

numerical world is not enough as a measurement should involve information about 

how to measure and how to have a sufficient degree of confidence in the 

measurement results. 



 

The VIM [9] describes software measurement in three levels: Measurement principle, 

measurement method and measurement through a measurement procedure (see 

Figure 5) 

Metrology

Measurement Procedure

Science of Measurement 
and its Application

Basis of Measurement 

Generic Description of Operations
Used in a Measurement

Detailed Description of a Measurement

Measurement Principle

Measurement Method

 

Figure 5. The levels in the measurement foundation in the VIM [9] 

Habra et al. defines these steps as [11]: 

The measurement principle is a precise definition of the entities concerned, and 

the attribute to be measured. According to the representational approach of 

measurement, the measurement principle involves a description of the empirical world 

and the numerical world to which the entities are to be mapped. 

a. The empirical world can be described through conceptual modeling 

techniques or through mathematical axioms, or both. 

b. The numerical world can, in the general case, be any mathematical set, 

along with the operations performed on it.  

It can also be defined through the selection of one scale type (ordinal, interval, or 

ratio). This also includes the definition of units [9], and other permitted composition 

operations on the mathematical structure. 

2. The measurement method is a description of the mapping that makes it possible 

to obtain a value for a given entity. It involves some general properties of the mapping 

(declarative view), along with a collection of assignment rules (operational 

description). 

a. Declarative mapping properties can include a description of other 

mapping properties, in addition to the homomorphism of the mapping. For 

instance: a unit axiom (the mandatory association of the number 1 with an 

entity of the empirical set); or, more generally, an adequate selection of a 

small finite representative set of elements ranked by domain practitioners. 
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b. The numerical assignment rules correspond to an operational 

description of the mapping, i.e. how to map empirical objects to numerical 

values, and include: identification rules, aggregation rules, procedural 

modeling of a measurement instrument family, usage rules, etc. 

Firstly, the definition of the measurement principle that should embody our knowledge 

or our understanding of the concept to be measured, that is, according to the 

vocabulary above, the entity and the attribute under consideration. In other words, 

this activity gives the precise description of what we are going to measure. The 

second activity is the definition of a measurement method on the basis of that 

principle. This activity gives a general description of how to measure. And the third 

activity is the determination of an operational measurement procedure that is an 

implementation of the method in a particular context: this third activity gives a 

detailed description of how to measure.  

4.1.1. How to Measure Software 

 Step 1: Before measuring, it is necessary to design a measurement method. 

 Step 2: The rules of the measurement method are applied to a software or 

piece of software; 

 Step 3: The application of the measurement method rules produce a result. 

 Step 4: The measurement result is exploited in a quantitative or qualitative 

model. 

4.1.2. Defining the Measurement Principle 

The definition of the measurement principle gives the precise description of what we 

are going to measure. For software entities (products), the measurement principle 

involves the model(s) used as a basis on which to describe the entity for which a 

given attribute is intended to be measured.  

The idea is that modeling, as a central notion in software products, should be 

considered at the same level as scientific principles in other sciences and in 

engineering. Accordingly, the modeling activity (corresponds clearly to the activity of 

defining the measurement principle. 

The measurement principle is defined in several aspects: 

 Context 

 Describing the Empirical World: Characterization and Modeling 

 Modeling Techniques for Describing the Empirical World 

 Mathematical Techniques 

 Conceptual Modeling Techniques 

 Representative Elements 
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 Describing the Numerical World: Scale Types and Units 

4.1.3. The measurement Method 

According to the ISO metrology vocabulary of the VIM [9], a measurement method 

is defined as a generic description of a logical sequence of operations used in a 

measurement. Therefore, it should give a first operational definition of the mapping 

described above, that is, an operational description of how to map a given empirical 

entity to its corresponding value. 

More precisely, these rules define how to find, in practice, the values associated with 

a particular attribute of an empirical entity. At this level, the description of the method 

should be given as a set of operations. The declarative properties of the level above 

(e.g. the measurement principle) characterize the mapping from empirical entities to 

numerical entities; but, in concrete terms, an operational process, such as counting, 

calculating, etc., 

In other words, this part corresponds to the design of the operationalisable method 

according to which the measurement should be achieved. If the measurement method 

involves counting operations, then it describes the rules that should precisely 

determine: 

 How to distinguish the entities to be counted, 

 What should be disregarded, 

 How to perform the count, etc. 

4.1.4. Measurement Procedure 

A measurement method should, in turn, be implemented concretely by a 

measurement procedure, which describes a measurement according to one or more 

measurement principles and to a given measurement method. It consists of concrete 

operations performed by means of measuring instruments and/or practical actions 

such as selection, counting, calculation, comparison, etc. It is more specific, more 

detailed, and more closely related to the environment and to the measuring 

instruments (e.g. tools) than the method, which is more generic. 

Determination of an operational measurement procedure, that is, an implementation 

of the method in a particular context, is not considered as part of the design step, 

but is carried out with every measurement exercise to ensure both the accuracy of 

the measurement results and the traceability of the measurement exercise. 

According to the ISO metrology vocabulary of the VIM [9], a measurement procedure 

is defined as a detailed description of a measurement according to one or more 

measurement principles and to a given measurement method: 
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 This level of description corresponds to a yet more operational and more 

practical definition of how to map an empirical entity to its corresponding 

number. 

 For practical purposes, a measurement procedure corresponds to a 

measurement report which gives a precise implementation of a given method 

for a specific context or set of contexts. 

 Moreover, if the measurement process goes through a measuring device, this 

level involves a precise description of that instrument, its calibration, and the 

documentation of its metrological properties, such as accuracy [9]. 

Therefore, an important aspect of the definition at this level is to precisely describe 

the context in which the measurement procedure will take place. The context involves 

various parameters that are worth investigating. At a minimum, the parameters that 

should be taken into account are: 

 the purpose of the measurement process, and 

 the constraints under which the measurement will be performed. 

Some constraints are related to a particular application of the measurement method 

(e.g. existing measuring devices, the possibility of experimentation, available 

representative sets, etc.) 

4.2. Measurement Principle 

4.2.1. Context 

Through the phases of software lifecycle, there are several models (work products) 

representing the software in that phase. Each of these models can be used as an 

alternative measurand to measure the software at that phase.  

In each phase, information about the software goes through a transformation. The 

problem in the real life is transformed to a problem definition through requirements 

elicitation. Problem definition is transformed into requirements through business 

analysis. Requirements are transformed into specifications through software analysis. 

Requirements are transformed into design through designer’s subjective decisions 

and choices, design patterns and trends. Design is transformed into implementation 

(coding or model construction) using development frameworks and methodologies. 

And implementation is transformed into the physical software product in the computer 

memory through compilers and connectors.  

In practice, each transformation introduces a gap between the previous and next 

levels of representation of the software.  Of course all these gaps are different by 

nature. They are not equally wide or noteworthy. There exists several practice in the 

software engineering discipline which aims to minimize these gaps.   
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Gap 1: Real life problem – Problem Definition: Not every aspect of the real life 

problem is captured in the requirements elicitation or some aspects are 

misunderstood. Minimized by better elicitation techniques and customer reviews. 

Gap 2: Problem Definition – Requirements: Software Requirements do not cover 

the whole problem definition or misplaced due to earlier misunderstandings. 

Minimized by requirements quality reviews and validation. 

Gap 3: Requirements – Specifications: Not every requirement is correctly 

transformed into specifications or irrelevant specifications are introduced. Minimized 

by traceability and reviews. 

Gap 4: Specifications – Design: Physical Software design that is built to meet the 

specifications can vary greatly, and may involve mistakes. Mistakes can be removed 

through reviews. Variance is essential.  

Gap 5: Design – Implementation: Implementation of design can also vary per 

individual developer, development environment, programming language, 

development method, utilized libraries and may also include errors and bugs. 

Minimized by verification activities such as testing, code reviews.  

Gap 6: Implementation – Physical: Physical software output can vary based on 

the technology and target platform used. No need to minimize as variance is natural 

and constant based on the technology. 

These gaps are cumulative. That is, the total gap between a representation and other 

is the combination of all gaps in between individual work products. Studies suggest 

gaps in the earlier phases affect the total gap more than those in the later phases. 

[47]. 

In estimation activities, we try to predict concepts related to later phases by using 

concepts of former phases. That is, we try to predict development effort, which is a 

concept related to design and implementation, using requirements, which is a concept 

related to analysis. Similarly, we try to predict physical size, which is a concept related 

to building, using specifications which is a concept related to software analysis.  

We define Gaps 1-2-3-5 and 6 as imperfections in software engineering problem 

solving process and therefore evitable. We believe all these gaps occur due to 

inadequacy of performers and non-ideal conditions of the real world. We assume 

ideally, there exists “one, correct and unique” work product for each relative phase 

that would eliminate the gap defined. 

In summary, we base our approach on the assumption that, hypothetically, in ideal 

case, there exists: 
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 Gap 1: One correct and exact definition of the real life problem. 

 Gap 2: One correct and minimum set of requirements that describe the 

problem. Conforming to a requirements standard. 

 Gap 3: One correct set of specifications that breaks down the requirements to 

lower level specifications. 

 Gap 5: One best implementation of the design model based on the current 

state of the art, technology and implementation method used. 

 Gap 6: One best and unique software build for the implementation. Through 

an ideal compiler.   

Therefore any gap observed in practice is originated due to non-ideal condition of the 

real world. Human factors such as experience, bias, error, assumptions and 

inadequacy of techniques and tools are factors cause these gaps.  

However, we perceive Gap 4, the gap between specifications and design is different 

in nature from these gaps. As devising an engineering solution to a problem involves 

creativity, background, state of the art and techniques we believe there is no one 

unique and correct solution to a problem. Engineering solutions are guided by many 

principles, design patterns and rules. Nevertheless, there is always a subjective, 

creative element in creating solutions to problems. Apart from this “soft” aspect, 

changing external conditions, technology and improving techniques and solution 

approaches changes the way a problem is solved. Therefore we see this gap as 

essentially inevitable.  

The transformation between specifications and design is actually where we define the 

border between the problem domain and solution domain is.  

As mentioned above, there exist several software engineering practices to minimize 

those evitable gaps in the software lifecycle. Therefore, most of the time the biggest 

gap resides between specification and design, which is the gap between problem 

domain and solution domain. From the estimation point of view, an estimation method 

should propose a way to traverse that gap in order to be able to predict a solution 

domain concept (development effort) based on a problem domain representation 

(functional size based on requirements). 

However, estimation methods in the literature treat the gaps between different 

representations of software as black box. They intend to model the transformation or 

combined transformations in between as a single function and try to define that 

function based on historical data. 

This approach works as long as the gaps between the estimated and estimating 

representations are mathematical. That is, transformation can be represented as a 

mapping between two representations. This is, in ideal case, possible for gaps 2, 3, 5 

and 6.  
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Transformation between detailed software design and implementation is mostly 

straightforward that it can even be automated in both directions. Compiling the 

implementation (code or model) is purely mathematical. 

4.2.2. Describing the Empirical World: Characterization and Modeling 

The aim of DMP measurement method is to measure the functional size of software 

system at a given granularity level and represent the system’s size as tuples of two 

attributes: decomposition level and size. Therefore, the method considers 

characterization and modeling of the software system in two dimensions: Functional 

size and structural decomposition.  

4.2.2.1. Attribute: Level of Decomposition 

The structural model of the software is the main input to determine the decomposition 

level at which the functional size is measured. The concepts of structural 

decomposition and functional decomposition are discussed in detail in the section 

4.2.3.1.  

Base input for the decomposition level is the structural decomposition model of the 

software.  

The sub systems and/or components constituting a system modelled in an arbitrary 

decomposition level is system specific and cannot be defined specifically, these 

components are defined generically. The term Structural Component or entity is used 

for each separate component in a given decomposition level.  

4.2.2.2. Attribute: Functional Size  

The functional size attribute at each abstraction level is measured based on the “data 

movement” concept. Data movements are defined as the information conveyed 

between structural components entities at a given level of decomposition. Total 

number of data movements in all Functional processes defined in a given level of 

decomposition constitutes the functional size of software at that decomposition level. 

4.2.3. Conceptual Modeling Technique for Describing the Empirical 

World  

Behavioral and Structural Software Models 

Instead of a mathematical model, DMP method utilizes conceptual modeling for 

modeling the empirical world. UML models are used to represent structures, relations 

among them and behavior of a software system in object oriented software 

engineering methodology.  
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Figure 6 displays the structure of UML models. As one can see, the models are 

separated into two main groups: Structural Diagrams and Behavioral Diagrams. As 

mentioned above, in DMP measurement method, software size is defined in two 

components: level of decompositions and functional size, which are measured based 

on structural model and behavioral model of the software respectively. 

 

Figure 6 UML 2.0 Superstructure [85] 

Conceptual Model for Functional Size 

As a conceptual model for functional size attribute, a behavioral model is needed. 

There are studies in the literature that utilize different behavioral diagrams to measure 

functional size. (See section 3.3) 

For DMP measurement method we needed to use a model which had these properties 

to meet the needs of the overall measurement approach: 

 Enable automated generation of the model by backfiring form the existing 

software products in the solution domain.  

 Can be defined in various decomposition levels. 

 Can be used to model concepts both in problem domain and solution domain.  

 Give as much information as possible about the software model. 

Based on these needs, we chose sequence diagram as the main software model for 

the empirical world to measure functional size attribute. As:  
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 It is possible to directly generate code from a detailed sequence diagram and 

it is also to generate a sequence diagram from the code automatically. There 

are many CASE tools generate and development environments being used in 

the industry that is already capable of performing such conversions, also in 

real time.  

 Sequence diagrams can be defined in each composition level as long as the 

structures and required behavior are defined.  

 Sequence diagrams can and are being developed for business level behavior 

and design level behavior. That is, they can be utilized in both problem and 

solution domains. 

 Sequence diagrams incorporate more information about a system than other 

UML diagrams. A complete set of sequence diagrams include information 

about the structures in a system as well as their relations and system behavior.    

By counting the data movements depicted in a sequence diagram we can count the 

number of data movements at a given level of decomposition. Sequence diagrams 

highlight the data movements between structures, but lack the information about the 

data manipulations within a structure. As functional size measurement does not 

essentially measure the internal data manipulations, this abstraction view is a perfect 

fit to count for data movements.   

UML sequence diagrams are useful design tools as they model the dynamic behavior 

of the system which can be difficult to extract from static diagrams or specifications. 

Class/Method level sequence diagrams can be used to generate code directly. 

Similarly, class/methods level sequence diagrams can be obtained by reverse 

engineering from the code. This process is defined as “Backfiring”. Based on this 

interchangeability, one can say that backfired lowest level sequence diagrams model 

software as much as the actual code does.  

In the literature, many studies consider higher level sequence diagrams as an input 

for functional size measurement. [26][27][24][21][28][29][30] 

Elements of Sequence Diagrams 

Micskei and Waselynck have explained, and discussed the semantics of UML sequence 

diagrams in detail [104]. 

Targets 

Objects as well as classes can be targets on a sequence diagram, which means that 

messages can be sent to them. A target is displayed as a rectangle with some text in 

it. Below the target, its lifeline extends for as long as the target exists. The lifeline is 

displayed as a vertical dashed line. 
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Object 

The basic notation for an object is: 

 

Figure 7: Basic Notation For Object 

Where 'name' is the name of the object in the context of the diagram and 'Type' 

indicates the type of which the object is an instance. Note that the object doesn't 

have to be a direct instance of Type, a type of which it is an indirect instance is 

possible too. So 'Type' can be an abstract type as well. 

Both name and type are optional, but at least one of them should be present. Some 

example: 

 

Figure 8: Various Object Representations 

As with any UML-element, you can add a stereotype to a target. Some often used 

stereotypes for objects are «actor», «boundary», «control», «entity» and 

«database». They can be displayed with icons as well: 

 

Figure 9: UML Stereotypes 

An object should be named only if at least one of the following applies. 
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 You want to refer to it during the interaction as a message parameter or 

return value 

 You don't mention its type  

 There are other anonymous objects of the same type and giving them 

names is the only way to differentiate them 

Try to avoid long but non-descriptive names when you're also specifying the type of 

the object (e.g. don't use 'aStudent' for an instance of type Student). A shorter name 

carries the same amount of information and doesn't clutter the diagram (e.g. use 's' 

instead). 

MultiObject 

When you want to show how a client interacts with the elements of a collection, you 

can use a multiobject. Its basic notation is: 

 

Figure 10: Multi Object Representation 

Again, a name and/or type can be specified. Note however that the 'Type' part 

designates the type of the elements and not the type of the collection itself. 

Class 

The basic notation for a class is: 

 

Figure 11: Class Notation 

Only class messages (e.g. shared or static methods in some programming languages) 

can be sent to a class. Note that the text of a class is not underlined, which is how 

you can distinguish it from an object. 

Messages 

When a target sends a message to another target, it is shown as an arrow between 

their lifelines. The arrow originates at the sender and ends at the receiver. Near the 

arrow, the name and parameters of the message are shown. 
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Synchronous Message 

A synchronous message is used when the sender waits until the receiver has finished 

processing the message, only then does the caller continue (i.e. a blocking call). Most 

method calls in object-oriented programming languages are synchronous. A closed 

and filled arrowhead signifies that the message is sent synchronously. 

 

Figure 12: Synchronous Message 

The white rectangles on a lifeline are called activations and indicate that an object is 

responding to a message. It starts when the message is received and ends when the 

object is done handling the message. 

When a messages are used to represent method calls, each activation corresponds to 

the period during which an activation record for its call is present on the call stack. 

If you want to show that the receiver has finished processing the message and returns 

control to the sender, draw a dashed arrow from receiver to sender. Optionally, a 

value that the receiver returns to the sender can be placed near the return arrow. 

 

Figure 13: Synchronous Message 

If you want your diagrams to be easy to read, only show the return arrow if a value 

is returned. Otherwise, hide it. 
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Instantaneous Message 

Messages are often considered to be instantaneous, i.e. the time it takes to arrive at 

the receiver is negligible. For example, an in-process method call. Such messages are 

drawn as a horizontal arrow. 

 

Figure 14: Instantaneous Message 

Sometimes however, it takes a considerable amount of time to reach the receiver 

(relatively speaking of course) . For example, a message across a network. Such a 

non-instantaneous message is drawn as a slanted arrow. 

 

Figure 15: Noninstantaneous Message 

You should only use a slanted arrow if you really want to emphasize that a message 

travels over a relatively slow communication channel (and perhaps want to make a 

statement about the possible delay). Otherwise, stick with a horizontal arrow. 

Found Message 

A found message is a message of which the caller is not shown. Depending on the 

context, this could mean that either the sender is not known, or that it is not important 

who the sender was. The arrow of a found message originates from a filled circle. 

 



48 

  

 

Figure 16: Found Message 

Asynchronous messages 

With an asynchronous message, the sender does not wait for the receiver to finish 

processing the message, it continues immediately. Messages sent to a receiver in 

another process or calls that start a new thread are examples of asynchronous 

messages. An open arrowhead is used to indicate that a message is sent 

asynchrously.  

 

Figure 17: Asynchrounous Message 

A small note on the use of asynchronous messages : once the message is received, 

both sender and receiver are working simultaneously. However, showing two 

simultaneous flows of control on one diagram is difficult. Usually authors only show 

one of them, or show one after the other.  

Message to self 

A message that an object sends itself can be shown as follows : 

 

Figure 18: Message To Self 
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Keep in mind that the purpose of a sequence diagram is to show the interaction 

between objects, so think twice about every self-message you put on a diagram.  

Creation and destruction 

Targets that exist at the start of an interaction are placed at the top of the diagram. 

Any targets that are created during the interaction are placed further down the 

diagram, at their time of creation.  

 

Figure 19: Creation  And Destruction 

A target's lifeline extends as long as the target exists. If the target is destroyed during 

the interaction, the lifeline ends at that point in time with a big cross. 

Conditional interaction 

A message can include a guard, which signifies that the message is only sent if a 

certain condition is met. The guard is simply that condition between brackets. 

 

Figure 20: Conditional Interaction 
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If you want to show that several messages are conditionally sent under the same 

guard, you'll have to use an 'opt' combined fragment. The combined fragment is 

shown as a large rectangle with an 'opt' operator plus a guard, and contains all the 

conditional messages under that guard.  

 

Figure 21: Conditional Interaction 

A guarded message or 'opt' combined fragment is somewhat similar to the if-construct 

in a programming language.  

If you want to show several alternative interactions, use an 'alt' combined fragment. 

The combined fragment contains an operand for each alternative. Each alternative 

has a guard and contains the interaction that occurs when the condition for that guard 

is met. 

 

Figure 22: Conditional Interaction 
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At most one of the operands can occur. An 'alt' combined fragment is similar to nested 

if-then-else and switch/case constructs in programming languages.  

4.2.3.1. Conceptual Model for Decomposition Level 

In a decomposition model, each entity of the problem domain, or real world, is 

represented by an object. An object is an entity which can be of any granularity. 

Based on the level of decomposition the in which the system is being defined, an 

object can be a computer system, a person, a machine, a sensor, a software 

component a class etc.  

An object is composed of sub objects and in turn it is a part of a super object itself in 

the continuum of problem - solution decomposition (See 2.2).  

In the continuum of the problem – solution chain, there is a corresponding 

decomposition model getting decomposed with each step of solutions. As it comes to 

the problem domain – solution domain border in which software system is defined, 

the software system may be represented by a single object that interacts with other 

objects in the real life.  

Figure 23 abstractly depicts the decomposition of a system at hand. 

 

Figure 23. Levels of decomposition (Partitioning)[31] 
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Definition of Atomic Level of Decomposition 

Beginning at this level each object of the software system may be broken down into 

component objects on a further level of decomposition. This decomposition may 

continue until objects are completely decomposed into atomic objects.  

We define an atomic object in DMP method as an object so low in the decomposition 

that, sub objects of that object will have data movements which are out of scope of 

the objectives of the measurement method. The objective of the DMP measurement 

method is to measure the functional size of the software to use in project 

management activities such as effort estimation, performance management, 

productivity management and benchmarking. Therefore the lowest level of 

decomposition relevant to this objective would be the lowest level of data movement 

in which actual effort is put in development. In object oriented software development, 

this level would be the method level. No lower level functionality involving data 

movements are implemented in object oriented software development.    

It is hard to distinguish concepts belonging to different intermediate levels of 

decomposition from each other. However, lowest level of decomposition (minimum 

size of granule) can be identified for a software system, from the development point 

of view.   

Lowest level of decomposition from a development point of view would be the code 

that is actually developed.  

The logical level of abstraction lying within the code may differ based on the 

technology used. However, the development effort and the size of code will be the 

same from the developer’s point of view.  

Based on this, the lowest level of decomposition for Data Movements in an object 

oriented system design would be the calls (and methods) of an object. There would 

be no lower levels of data movement to be developed.  

Definition of Tier 

Each decomposition of the system will result in a new Tier of system definition. Each 

increase in the tier number represents one higher level of decomposition traversed in 

the description of the system.  

Each tier consists of objects communicating with same tier level of objects. One set 

of objects in a tier can be present in a higher level if the entry and exit point of data 

movements between them and other objects does not change on their end. That is, 

certain object may belong to more than one tier at the same time. 
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4.2.4. Representative Elements 

Representative Elements for Functional Size 

There is a wide consensus that, data movements are the basic unit of measurement 

for functional size. Abran states this as; 

The key concept of functionality at the highest level of commonality that is present in 

all software was identified as the ‘data movement’. This data movement concept was 

then assigned to the metrology concept of a size unit. [8] 

In DMP measurement method, sequence diagram elements which represent the data 

movements are taken into account and other elements are used for supporting 

information.  

Objects or classes are structures that does not have any representative value for data 

movement and hence, functional size.  

Conditional interactions do not impact the functional size as a functionality exist either 

the path it resides in is chosen during the execution of a sequence diagram or not. 

Alternative execution paths are discussed in detail in Measurement Method Manual 

[32]. 

Similarly, repetitive interactions do not impact the functional size as the measurement 

is done on the implementation but not the execution of the software. Moreover, 

number of repetitions will change during each execution. Repetitive data movements 

are discussed in detail in COSMIC Measurement Method Manual [32]. 

Representative Elements for Decomposition Level 

The tier number of the object triggering the functional process defines the tier of the 

functional process. Another definition for the tier of the functional process would be 

the maximum tier of the objects defined in the sequence diagram depicting that 

functional process. This property for tier number is a natural result of the definition 

of tier stating that, no object in a tier can request a service from an object in higher 

tier. 

The tier of measurement is the tier of the system definition being measured. Tier 

numbers of each functional process within a system definition should be the same for 

a measurement to be represented by that tier number. 
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4.2.5. Describing the Numerical World: Scale Types and Units 

The Unit and Scale for Functional Measurement 

The functional size for a sequence diagram is given as the number of data movements 

in the diagram. That is, the size of functional process in a given decomposition level 

is in absolute scale mathematically. 

The Unit and Scale for Functional Decomposition 

The functional decomposition level in DMP method is defined as the tier number of a 

system definition and hence the tier level of measurement. This  

Decomposition level in DMP method is defined as tiers. The method level 

decomposition is defined as universal Tier 0 for every measurement. Then each 

consolidated view of decomposition is defined as Tier 1, Tier 2, Tier 3 etc. Tier number 

is defined based on specific system definition. It is a definitive value and does not 

infer any ratio in scale, it is a measurement in ordinal scale.  The rules of defining the 

tiers is given in section 4.2.3.1. 

Theoretically the maximum level of abstraction that is the Tier Number for the 

topmost level of decomposition of a system is infinite. However, in reality, behavior 

of software systems tend to be defined a couple of tiers higher than the methods.   

4.3. Measurement Method 

The measurement method is defined on the basis of that principle. It is a generic 

operational description, i.e. a description of a logical sequence of operations, of the 

way to perform a measurement activity (that is, to move from the attribute of an 

entity to be measured to the number representing the measurement result). This 

activity gives a general description of how we are going to measure. 

4.3.1. A Mathematical View of the Measurement Method: the Mapping 

Etalon for Functional Size 

Abran states that,  

“The key concept of functionality at the highest level of commonality that is present 

in all software was identified as the ‘data movement’. This data movement concept 

was then assigned to the metrology concept of a size unit. [8]” 

The basic data movement in DMP measurement method is defined as the data 

movement between classes in the sequence diagram of a method diagram (atomic 
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functional process). The data movement within a sequence is atomic by definition and 

cannot be divided further down into other movements. This constitutes an etalon for 

the functional size whose measurement value is 1.  

Reference for Decomposition Level 

As decomposition level attribute for measurements is defined to identify the 

abstraction level corresponding to the functional size attribute, the base unit for 

decomposition level is the Tier number corresponding to the etalon for functional size. 

The etalon for functional size is defined as the atomic level data movement 

represented by the data movement between two classes in the sequence diagram of 

a method (atomic functional process). Therefore, the base unit of decomposition level 

is the level of a single method within a single class.  

It is important to note that the decomposition level is in ordinal scale. The base unit 

of decomposition level is defined as Tier 0. Tier 0 is the level of decomposition in 

which further level of decomposition will be irrelevant of the measurement objectives 

of DMP method.  

4.3.2. An Operational View of the Measurement Method 

As we measure the size of the software using data movements as the etalon or base 

unit, we need a model that represents the data movements in the software. We also 

need this representation of data movements in any abstraction level chosen. 

Sequence diagrams are the best model to represent data models in various levels. 

Moreover, they don’t just define the number of data movements within a piece of 

software but they allocate data movement into respective functional processes 

therefore representing the usage of data movements and not just the total number 

of movements. 

In DMP measurement method, sequence diagram elements which represent the data 

movements are taken into account and other elements are used for supporting 

information.  

Sequence Diagram elements that represent data movement are: 

• Synchronous message 

• Asynchronous message 

• Creation message 

• Destruction message 

• Self message 

• Found message 
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4.4. Measurement Procedure 

4.4.1. Mapping Phase  

Mapping phase in DMP method corresponds to mapping the scenarios to 

decomposition levels, that is mapping sequence diagrams to tiers. 

A specification begins by identifying the entities in the problem domain and their 

interrelationships and continue further by detailing the functions performed by and 

the internal state of each object.  

The next step would be to identify which objects could allow decomposition and the 

layers of abstraction in each decomposition level.  

A major advantage object oriented development and UML modeling is that, solution 

domain  entities can be defines in a direct and natural correspondence with the real 

world, since problem domain entities are extracted directly into the model without 

any intermediate buffer such as traditional data flow diagrams [94]. 

Identifying Scenarios  

Based on the decomposition level (Tier Value) for the measurement, definition of the 

functional processes and their triggering entries change. 

1. The triggering entry of the functional process must be visible in the system 

model defined at this level.  

2. The structural entity receiving the triggering entry must be visible in the 

system model defined at this level. 

3. The output of the process (Exit or Write) must be visible in the system model 

defined at this level. 

Note that, functional process in higher tiers, will also be preset in lower tiers as their 

triggering entries will also be present in lower tiers. That is, certain functional 

processes will have different sizes in different tiers. Typically increasing by the 

decreasing tier number. 
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Figure 24 IDEF 0 – Decomposition Structure [67] 

 Identifying Objects 

There exist several rules to check whether a structural entity belongs to a Tier.  

 The tier of a structural entity is the level of decomposition it has over the 

class/method level. 

 If there exists no more super entities for an object, that tier is considered the 

maximum Tier for that object. For further tiers the object is considered to exist 

in every higher than its maximum tier level.  
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Identifying Atomic Data Movements 

Within atomic level of functional processes, the data movements are represented as 

method calls between structural entities (objects). This call is not an abstraction or a 

superstructure but the actual developed method call during the implementation. In 

other words, this call must be able to be represented as a single code instruction. 

Identifying Tiers 

The lowest tier level in DMP method is 0. Tier 0 corresponds to the decomposition 

level in which all communication between structural entities (namely objects, in this 

level) is carried on with atomic data movements, a single method call. 

4.4.2. The Measurement Phase 

Once the measurement tier, functional process and objects participating in the 

process is identified. The sequence diagram for the process is drawn. 

In the sequence diagram of the functional process, these calls between objects 

correspond to data movements: 

 Synchronous message 

 Asynchronous message 

 Creation message 

 Destruction message 

 Self message 

 Found message 

4.4.3. Applying the Measurement Function 

The size of a functional process is found by counting the total number of data 

movements (calls) within its sequence diagram. 

4.4.4. Aggregating Measurement Results 

Calculating the size of a functional process 

Rule: The size of a functional process for a tier is the total by counting the total 

number of data movements (calls) within its sequence diagram in that tier.  

Calculating the size of software component or product 

Rule: The size of a software component or a software product for a tier is calculated 

by summing of all its functional process sizes in that tier.  
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Calculating the size of developed software: 

In order to calculate the size of developed software (with the purpose of effort 

estimation), re-used or COTS components should be identified as a single structural 

entity in the models.  

Calculating the size of delivered software: 

In order to calculate the size of developed software (with the purpose of price 

estimation), re-used or COTS components should also be decomposed and modeled 

in the required decomposition level so that their sizes will be incorporated to the total 

measurement. 

4.4.5. Measuring Changes in Software 

While measuring changes, the tier in which the change is defined should be identified. 

4.5. Measurement Tool 

Software project evolve in the course of a project and some are developed entirely in 

an iterative manner. Changing requirements, additional features, size of iterations will 

all change the size of the software and hence repetition of measurement activities. In 

that case, automated counting of software size is essential if the size information is 

utilized in any management activity in a project as manual measurement of any kind 

of software measurement method is somewhat labor intensive, let alone sizing with 

design artifacts. 

As one may deduct from the DMP measurement method definition, it would be 

unrealistic to assume that atomic level functional size measurement, which is 

performed in method level, can be performed manually. Large systems can have 

hundreds of classes containing thousands of methods. Generating a sequence 

diagram for each and counting the data movements would be impossible without a 

tool which will traverse the source code for methods, generate sequence diagrams 

for each and count the data movements.  

We have developed a measurement tool specifically designed to perform this task. 

The tool was developed as a graduate project in METU Informatics Institute, Software 

Management graduate program by Yalın Meriç with the co-supervision of Erdir Ungan 

and Onur Demirörs [33]. The tool was named Sequence Diagram Metric Collector 

(SDMC). 

DMP measurement method utilize sequence diagrams and class information for 

measurement. In order to automated and communicate UML diagrams, Object 

Management Group (OMG) has developed XMI which is an XML standard to formalize 
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UML data and provide a method to exchange metadata information between different 

systems. XMI standard can be used for any metadata whose metamodel can be 

expressed in meta-object facility (MOF). Therefore, we developed the SDMC tool to 

generate and interpret XMI files defining sequence diagrams.  

4.5.1. SDMC Requirements 

The tool was mainly supposed to count each data movement that took place in each 

sequence diagram. In order to do this, the tool should have traversed the source code 

file(s) and generate sequence diagrams for each method. 

Generation of Sequence Diagrams 

1. The tool shall identify components from the source code. 

2. The tool shall identify classes from the source code. 

3. The tool shall identify methods from the source code. 

4. The tool shall record components, classes and methods in a tree structure.  

5. The tool shall generate sequence diagrams for each method identified.  

6. The tool shall generate the XMI file(s) for generated sequence diagrams. 

Counting for Data Movements 

7. The tool shall count the calls inbetween two classes in a sequence diagram 

and record the class and method at both ends of the call.  

8. The tool shall count the asynchronous messages inbetween two classes in a 

sequence diagram and record the class and method at both ends of the 

message. 

9. The tool shall count the synchronous messages inbetween two classes in a 

sequence diagram and record the class and method at both ends of the 

message. 

10. The tool shall count and record the instantaneous messages inbetween two 

classes in a sequence diagram and record the class and method at both ends 

of the message. 

11. The tool shall count and record self messages in a class and record the class 

and method. 

12. The tool shall count and record creation messages inbetween two classes in a 

sequence diagram and record the class and method at both ends of the 

message. 

13. The tool shall count and record the destruction messages inbetween two 

classes in a sequence diagram and record the class and method at both ends 

of the message. 

14. The tool shall count the conditions and alternatives in a call in a sequence 

diagram and record it separately. 
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15. The tool shall count the loops in a call in a sequence diagram and record it 

separately.  

Generating Measurement Data 

16. Based on the data movement data, the tool shall enable consolidation of data, 

such as: 

17. Data movements in between certain components.  

18. Data movements in between user defined clusters of objects. 

Non functional 

19. The tool shall take code file(s) as input, rather than connecting to an IDE 

environment in order to increase portability. 

20. The tool shall be able measure the most popular object oriented programming 

languages. Such as Java, C# and VB.net. 

21. The tool shall be able to measure XMI files created outside the tool and 

perform the measurement as stated above.  

22. The tool shall record the data movement data in a database on which it will 

be possible to run queries based on component, class, method and call type.  

4.5.2. SDMC Solution 

In the industry there exist a vast number of CASE tools that help software engineers 

create, update, manage and share their UML designs. Detailed UML may even be 

used for automatic code creation. In other words, these tools create all interfaces, 

classes, methods and attributes based on UML diagrams and generate code in most 

popular programming languages such as C#, C++, Java and Visual Basic. 

Most of the tools also have reverse engineering capabilities alongside code 

generation. This cycle, generating code from design and build design information from 

code is defined as round-trip code engineering. After generating the code framework 

based on UML models, these tools also provide the ability to bidirectional update code 

and UML diagrams. Whenever a code is updated all attached UML diagrams are 

updated automatically, and vice versa. Roundtrip engineering support is not common 

for every UML diagram but almost all popular UML tools provide automatic generation 

of class and sequence diagrams. 

UML modeling tools not only provide automatic UML diagram generation from source 

codes but also they provide XMI export feature to let engineers share their work 

among tools and platforms.  

The idea was to develop a software tool that imports an XMI file which includes 

detailed information for sequence diagrams of a software artifact. However, as we 
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investigated XMI files generated by different tools we noticed that the industry has 

not reached to a consensus on XMI standards for UML diagrams as XMI files 

generated by different tools had different structures. OMG has published a diagram 

definition document [85] to be used for UML diagram interchange but it seems to lack 

the details needed to exchange UML diagram data completely and accurately.  

4.5.2.1. Sequence Diagram and XMI generation 

UModel tool from Altova was chosen as the sequence diagram generator and XMI 

exporter. Altova UModel 2013 is a product developed by a company named Altova 

and is part of a large collection of CASE tools. UModel was picked as it supported 

round-trip code engineering and provided an API for automation purposes. Also the 

tool provided XMI export feature for sequence diagrams. However, the tool did not 

had a feature to automatically generate sequence diagrams for each method. So the 

tool had to perform several steps as in a script. 

The automated XMI generation process was as below: [33] 

1. Select programming language. 

2. Select folder where source code files are present. 

3. Create a new UModel project. 

4. Import source codes under selected folder to UModel project. 

5. Automatically generate all sequence diagrams for imported source codes. 

6. Save project file to a uniquely named subfolder. 

7. Create and save XMI file under above folder. 

8. Quit UModel application. 

The hierarchical structure of XMI file generated by Altova UModel 2013 was as below: 

1. Documentation 

a. Contact 

b. Exporter 

c. ExporterVersion 

2. Extension 

a. OpenDiagrams 

i. OpenDiagramEntry 

b. Diagrams 

i. RootElement 

1. guiRootDiagram 

a. guiDiagramGuiLink 

b. guiDiagramLayer 

3. Model 

a. packagedElement 

i. packagedElement 
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1. packagedElement 

a. packagedElement 

i. ownedAttribute 

ii. lifeline 

iii. fragment 

iv. message 

b. ownedAttribute 

c. ownedOperation 

i. ownedParameter 

d. lifeline 

ii. profileApplication 

After the XMI file was generated, SDMC collected data movement data from each 

sequence diagram. The basic steps to obtain a set of metrics to be used in size 

measurement based on sequence diagrams saved as XMI files are as follows: 

1. Read XMI file. 

2. Collect classes and methods. 

3. Collect metrics. 

a. Count synchronous calls between two classes. 

b. Count asynchronous calls between two classes. 

c. Count returned messages. 

d. Count combined fragments (opt, loop, alt). 

e. Count create calls. 

4. Save obtained metrics to a database. 

 

After examining the data in generated XMI file the algorithm for collecting metrics 

was developed and implemented as below: 

1. Read XML contents of XMI file generated by Altova UModel. 

2. Convert XML content to an object using XML deserialization feature of .NET 

framework. 

3. Collect class and method list in first pass. 

a. Traverse through diagram collection under extension section. 

b. Get related class and method. 

i. Traverse through third and fourth levels of package tree under 

model namespace. 

ii. If type of package is class then traverse its owned operations 

collection to find related method by the unique operation id 

obtained from diagram attributes. 

c. Add obtained class and method to a local list of class entities. 

4. Collect metrics in second pass. 

a. Travers through diagram collection under extension section. 
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b. Get related class and method. 

i. Traverse through third and fourth levels of package tree under 

model namespace. 

ii. If type of package is class then traverse its owned operations 

collection to find related method by the unique operation id 

obtained from diagram attributes. 

c. Get metrics related to obtained method. 

i. Traverse through third and fourth levels of package tree under 

model namespace to find related class using unique package id 

obtained from diagram attributes. 

ii. Traverse through fragments under located package to collect 

metrics. 

1. If fragment type is combined fragment then add a 

combined fragment to details collection under related 

measurement object. Increase measurement object’s 

number of combined fragments variable by one. 

2. If fragment type is interaction use then obtain related 

message entity using actual gate attributes of fragment. 

If message entity’s signature attribute points to an 

operation then obtain that method and class and add 

two metric details, one for sync call out, one for sync 

message in movements, to details collection under 

related measurements object. Increase measurement 

object’s number of sync calls out and number of sync 

messages in variables by one. 

3. If fragment type is message occurrence specification 

then obtain related lifeline using fragments covered 

attribute. If obtained lifeline is the main lifeline then get 

and process related message using fragments message 

attribute. 

a. If message type is create message then add a 

create message to details collection under 

related measurement object. Increase 

measurement object’s number of create 

messages variable by one. 

b. If message type is reply then then add a sync 

message in to details collection under related 

measurement object. Increase measurement 

object’s number of sync messages in variable by 

one. 

c. If message type is not defined then add a sync 

call out to details collection under related 

measurement object. Increase measurement 



65 

  

object’s number of sync calls out variable by 

one. 

d. Add metrics to a local metrics list. 

5. Save collected metrics. 

a. Traverse through collected components list and add each component 

to database. 

b. Traverse through collected classes collection and add each class and 

its methods to database. 

c. Set time value for all collected metrics to current time. 

d. Add measurement collection to database. 

 

Figure 25 is a screen shot of the SDMC tool.  

 

Figure 25 SDMC Screen Shot 

4.5.2.2. SDMC Features 

1. SDMC gets folders with source code files in it so that, the measurement can 

be performed independent of the framework or IDE utilized.  

2. SDMC can interpret most popular object oriented programming languages 

such as:  

 

Programming 

Language 

Versions 

Java 1.4, 5, 6 

C# 1.2, 2, 3, 4 

Visual Basic 7.1, 8, 9 

4.5.3. Consolidation of Data Movement Counts 

As developed in the SDMC only counted data movements in each sequence diagram. 

In order to obtain a well-structured measurement result, this data was to be 

consolidated and interpreted. In order to consolidate the data, several queries were 

designed.  

For the base level – Tier 0- measurement, the data should have been queried based 

on measurement date, project and component.  
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For the component level, data movements between methods should be grouped by 

the classes in the components. So that, only data movements coming out and in of 

the components are counted. 

Similarly, for user defined class clusters, which form the layers, design level 

components and interfaces the measurer defines, the data movements should be 

grouped by the groups.  

These queries were possible as SDMC recorded data on a data base. The structure of 

the database is given in Figure 26.  

 

Figure 26 The structure of the SDMC database 
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In the database, the “Layers” table correspond to the custom defined structures 

defining higher levels of decomposition and making higher tier measurements 

possible.  

4.6. Estimation Approach 

As mentioned before nearly all of the problem domain measurements are based on 

Alan Albrecht’s Function Point measurement [39]. It is based on two assumptions: 

• The complexity and size of a software system are major determinants of the 

length of the development process. 

• The complexity and size of a software system can be derived by examining 

and counting the data complexity and volume. 

Functional size measurement methods are defined to be independent of the 

implementation technology, programming language, implementation environment 

and methodology. This property is boasted as the main reason for these methods to 

be a better size input for effort estimation compared to LOC, design sizes or any other 

solution based measurement. However, it has been shown many times that [16] [103] 

solution based sizes such as LOC correlates better with development effort. Therefore, 

being independent from the solution domain concepts may pose a better ground for 

many purposes such as productivity measurement, pricing etc. but not for effort 

estimation.  

Moreover Problem Domain measures, ignore non functional requirements such as 

quality, security and performance requirements. They are also not suitable for 

systems with complex algorithmic processing by definition. 

Most of the effort estimation methods utilize historical data to build an estimation 

function. Earlier methods used historical data to convert Function Points to Lines of 

Code and then use estimation methods which use LOC as an input. 

Later methods utilized historical data to build an estimation function based directly on 

functional size. In the literature, several methods such as curve fitting, multipliers and 

neural networks are used to build an estimation function to be used to extrapolate 

project effort based on functional size for the future projects. Detailed information 

about various estimation methods are given in section 3.2. 

We suggest that estimates should be defined based on the detail of information about 

the system. Therefore, system decomposition level and functional size should be the 

major inputs defining an estimation.  

As the information we have about a software product and the corresponding project 

increase, the accuracy of the estimates about remaining effort increase.  Beohem [47] 
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suggest that there that cost estimates will be within the boundaries represented by 

the two converging exponential curves. Figure 27 shows a plot of the accuracy of 

software project estimates as a function of the software life cycle phase.  

 

 

Figure 27 Software Effort Estimation Accuracy Versus Phase [47] 

Laranjeria [31] suggests that increasing detail on functional specification of the 

system will result in a similar behavior in estimation values. Figure 28 depicts the 

change boundary of estimation errors with increasing details in the functional 

specification of the system by means of decomposition, during the course of the 

software development lifecycle.  

Differing from Laranjeria’a approach, we suggest that only the bottom level for a 

decomposition can be defined absolutely and therefore pose a reference rather than 

the top level. It is possible to measure software size using the lowest level of 

decomposition for data movement, automatically. (Sequence diagrams, movement 

count).  Then, it is possible to scale up the measurement by mapping lower 

decomposition level objects to objects in higher levels.  

Based on the historical data on past projects, the characteristics of this decay in the 

error with respect to decomposition level can be determined. Then, organizations can 
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identify an optimum point for the level of decomposition needed for estimations based 

on their need of accuracy and the effort/time needed to decompose the system in the 

required level.   

 

Figure 28. Software size estimation accuracy as a function of object decomposition 

level in the functional model. [31] 

4.6.1. Structural Decomposition 

FSM methods such as COSMIC address the level of granularity by the definition for 

Functional Process. However, this definition does not specify a granularity level for 

the behavior of the system. Instead, it defines how to select a consistent set of actions 

defined in the Requirement Specifications and group them to be measured separately.  

This approach however, assumes that (or “should be assuming that”) the 

requirements to be measured are defined at the same level of granularity. It does not 

define a formal method to use the same level of granularity in the requirements. 

The level of granularity and hence, the number of Objects of Interest directly affect 

the measurement result.  
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Definition of a system: 

It is hard to distinguish concepts belonging to different intermediate levels of 

decomposition from each other.  However, lowest level of decomposition (minimum 

size of granule) can be identified for a software system, from the development point 

of view.   

Lowest level of decomposition from a developments point of view would be the code 

that is actually developed.  

The logical level of abstraction lying within the code may differ based on the 

technology used. However, the development effort and the size of code will be the 

same from the developer’s point of view.  

Based on this, the lowest level of decomposition for Data Movements in an OO system 

would be the calls (and methods) of an object. There would be no lower levels of 

data movement to be developed.      

Level of granularity is a concept for objects. (eg: OOI) 

Level of abstraction is a concept for behavior.  

It is possible to measure software size using the lowest level of decomposition for 

data movement, automatically. (Sequence diagrams, movement count).  Then, it is 

possible to scale up the measurement by mapping lower decomposition level objects 

to objects in higher levels  

This way, an organization can effectively identify the (highest) level of decomposition 

that will suit their estimation needs. It will be the optimum level dictated by the time 

in the project lifecycle the organization needs the estimation and the level of expected 

estimation error.  

 

  



 

CHAPTER 5 

5.VALIDATION 
 

 

 

Every line is the perfect length if you don't measure it. 

― Marty Rubin 

 

Baker et al. define the validation of software measurement in two dimensions as 

internal and external validation, and separates the validation of a prediction system 

from the validation of the measurement method [34]: 

Internal Validation: Validation of a software measure is the process of ensuring 

that the measure is a proper numerical characterization of the claimed attribute? This 

type of validation is central in our use of measurement theory. Practitioners may 

prefer to regard this as ensuring the well definedness and consistency of the 

measure? To stress this where necessary we may also refer to it as internal validation 

since it may require consideration of the underlying models used to capture the 

objects and attributes? 

External Validation: External validation of a measure m is the process of 

establishing a consistent relationship between m and some available empirical data 

purporting to measure some useful attribute. 

Validation of a Prediction System: Validation of a prediction system is the usual 

empirical process of establishing the accuracy of the prediction system in a given 

environment by empirical means, i.e., by comparing model performance with known 

data points in a given environment. 

 



 

5.1. Validation Method 

The verification activities can be listed according to the various design levels. 

5.1.1. Modeling the empirical world 

At this level, one should ensure that the characteristics formulated for the empirical 

world actually represent the concept to be modeled, and that this representation is 

correct. The verification issues are: 

On the one hand, one should be sure that the model built actually corresponds to the 

consensual representation of the domain practitioners have about the attribute to be 

measured.  

On the other hand, if a mathematical description is given through axioms, some 

internal properties of the model elaborated (e.g. completeness, consistency) should 

be verified, as in any mathematical description. If the description is given through a 

graphical modeling language, the model should also respect some internal rules. For 

example, an attribute model described through UML diagrams should respect rules 

like connectivity. 

5.1.2. Modeling the numerical world 

The selected mathematical structure should preserve the properties of the empirical 

world. Mathematically, this means that the numerical structure is homomorphic with 

the empirical structure, i.e. the mapping between the empirical structure and the 

mathematical structure is a homomorphism.  

General ordering properties, like reflexivity, transitivity and antisymmetry, should be 

checked to validate whether appropriate scale types are used in the design of the 

measurement method [59] [75], [105].  

5.1.3. Defining the measurement method 

Verifying the mapping characteristics: According to the theoretical view, a method 

implements a homomorphic mapping between the empirical world and the numerical 

world.  

In practice, a method to measure one attribute should produce results that 

correspond to the knowledge practitioners have about that attribute, that is, the 

ordering induced by that attribute (e.g. the ‘‘complexity’’ attribute and the ordering 

relation ‘‘A is more complex than B’’). But, the characterization of the ordering through 

models is not sufficient, and verification through experimentation is thus necessary. 
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Verifying the assignment rules (the operations sequences that describe a 

measurement method) also involves other activities depending on the way those rules 

are expressed. In all cases, the procedural description (e.g. the counting rules, the 

operational mode of a particular measuring instrument, etc.) should be verified to 

ensure it embodies the measurement principle. 

One approach to complete mathematical reasoning through experimentation is 

suggested by Melton et al. [81] and developed by Lopez et al. [79]. The idea is to 

complement the characterization of the attribute through a representative set of 

entities, which should be selected and ordered by domain experts. An experimental 

verification can thus be achieved on that finite set to check whether or not the ranking 

is indeed preserved by the measurement mapping.  

5.2. Case Studies 

In Chapter 1, we summarized the problems observed with current functional size 

measurement methods, our solution approach and research goals. Through DMP 

method, we intend to address problems of reliability, granularity, effort estimation 

and benchmarking.  

In order to validate our solution to these problems and research goals we set in 

Chapter 1; we defined these goals for the case study we performed. 

Case Study Goals: 

1. Validate that it is possible to measure existing software products by backfiring 

measurable software models from source code. 

2. Validate that DMP is a better input for effort estimation than problem domain 

sizes.  

3. Investigate DMP’s representation of project effort vs. solution domain sizes’. 

4. Validate homomorphism of DMP by a reliable software measurement. 

5. Validate that DMP method results are reliable and repeatable. 

6. Validate that DMP is easier to learn and use than other FSM methods. 

5.2.1. Case study design 

Research Questions 

In order to meet the validation goals, we defined research questions to be 

investigated through case studies. 
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Goal 2, 3: 

1. What is the correlation of DMP results with project effort?  

2. How does this correlation compare with effort correlation of problem and solution 

domain sizes? 

Goal 4: 

3. What is the correlation of DMP with LOC size?  

4. How does DMP perform to predict LOC compared to other FSM methods? 

Goal 5: 

5. How reliable or repeatable are DMP results? 

Goal 6: 

6. How much effort does it take to measure software with DMP?  

7. How is this effort compared to other common measurement methods? 

8. How much effort does it take for software engineers to learn and apply the DMP 

method? 

5.2.2. Case Study Plan 

In order to investigate the research questions, we needed projects for which we could 

measure all problem domain size, solution domain size and DMP and have the project 

effort data.  

For problem domain size, we chose to use COSMIC measurements. Reasons for 

choosing COSMIC was: 

 We have experience with the method 

 Easier to apply than other FSM methods 

 It is commonly used.  

 We have performed studies on its reliability 

 There are studies investigating COSMIC’s representation of effort data. 

For solution domain size, we chose to use SLOC measurements. Reasons for choosing 

SLOC was:  

 Easy to measure, as it is measured from source code through software tools 

 Reliable, as it is counting concrete constructs instead of an abstract model, 

and repeatable 

 Most of the common effort estimation methods utilize SLOC as input 
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 The measurement that correlates best with development effort 

Then we planned to investigate the correlation of measurements mentioned above 

with the project effort. 

We also planned to observe the measurement process and record the time it took to 

measure the projects.  

Case Selection 

In order to increase the number of samples and investigate the performance of DMP 

in different software development environments, we conducted four case studies in 

four different environments. We included student projects along with the projects in 

the industry as based on our experience, it is hard to access enough number of 

projects conducted in the industry that have a proper and complete requirements 

documents to conduct COSMIC measurements and/or complete design documents for 

the whole scope of a project.  

First case study was conducted in a company which maintains a big MIS software 

framework. The company releases monthly releases. That is, the development 

timeframe and effort is fixed for each release. They include new features, bugs fixes 

and changes in existing modules.  

The second case study was conducted with student projects. Different student groups 

were required to develop a software product with the same purpose and a common 

problem definition.  

The third case study was conducted with an IT department of a governmental 

institution. 

The fourth case study was conducted with a single very big simulation project 

developed for the defense industry. 

Data Collection 

In order to conduct COSMIC, SLOC and DMP measurements for a project, we needed 

to have: 

 Software Requirements for COSMIC measurement. 

 Source code for SLOC measurement. 

 Design models (component, class, sequence diagrams) and source code for 

DMP in various tiers.  
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We planned to measure COSMIC size from the Software Requirements Specification 

documents for the projects. Student projects already had this measurement done.  

We planned to measure both physical and logical SLOC from the source code. We 

decided to use the same measurement tool for every project for consistency. We 

planned to use the tool “LOC Metrics”. 

We planned to measure for DMPs for each tier identifiable from the work products at 

hand. We would use the SDMC tool to count for DMPs from the source code of the 

projects. Than we would calculate higher tier measurements by grouping lowest level 

entities based on the design documents.  

The approximation of DMPs for estimation can only be conducted during the course 

of a project by the software engineers designing and developing the software, it was 

not possible to investigate size approximations for DMP.  

5.2.3. Case Study Execution  

In this section, we summarize the conduct of each case study. We define the projects 

we investigated, define collection of data and the environment for the projects. 

Detailed measurement and data analysis results are given in Appendix A.  

Case 1 – MIS Framework 

Projects: We measured a projects which is developed separately and added to the 

framework based on a monthly timeframe. Project had a client-server architecture 

and both sides had their own releases. We investigated 4 releases for client and server 

software for the project 8 data sets.   

We had access to source code and the end product. Requirements were not of 

consistent granularity and quality. There were no design documents. 

COSMIC measurement: As requirements were not of consistent granularity and 

quality and was missing for common functionalities developed within the company, 

we could not get COSMIC measurements for the projects. 

SLOC measurement: Physical and logical SLOC measurements were conducted using 

the Loc Metrics tool from the release baselines of the source codes. We measured the 

total size of the client and server side software as well as the size of each component. 

DMP measurement: DMP measurements were conducted using the SDMC tool. As the 

projects involved many components and layers, modeling the source code by lowest 

level sequence diagrams took longer than expected.  
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The measurement was conducted at Tier Level 0 as the decomposition information 

for the projects were not defined as per the requirements of the DMP method. Instead 

we identified the major components from the source code based on the deployment, 

references, class diagrams and component diagrams which we reverse engineered 

from the source code.  We measured the total project size and identified component’s 

size in DMPs separately. 

Effort Data: The effort value was constant for each release as there was a set time 

frame. The difference in the sizes of each release is considered as the developed 

software size as there were no changes or deletions during the development period. 

Development environment: Software was developed with c# on .Net framework with 

a client-server architecture. Development teams consisted of 7 and 4 people 

respectively. 

Case 2 – Student Projects 

Projects:  We had access to all the work products such as SRS documents, design 

documents and source code. We investigated 3 projects. 

COSMIC measurement: COSMIC measurement was conducted based on the SRS 

documents supplied.  

SLOC measurement: Physical and logical SLOC measurements were conducted using 

the Loc Metrics tool. We measured the total size of the software as well as the size of 

each development component. 

DMP measurement: DMP measurements were conducted using the SDMC tool. The 

measurement at Tier Level 0 was conducted based on the source code. Higher tier 

measurements were conducted based on the design models (class diagrams and 

sequence diagrams) supplied by the students. We measured the total project size and 

identified component’s size in DMPs separately. 

Effort Data: Effort information was deducted from project plans supplied by the 

students.  

Development environment: Projects had different programming languages and 

frameworks. Teams consisted of 4 students.  

Case 3 – Governmental Organization IT Department 

Projects: We investigated 5 independent projects of varying sizes. We only had access 

to source codes and effort information in the resolution of man months. The projects 
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had similar architectures and were developed using a Model View Controller (MVC) 

pattern. 

COSMIC measurement: As we did not have access to requirements we could not 

measure COSMIC sizes. 

SLOC measurement: Physical and logical SLOC measurements were conducted using 

the Loc Metrics tool. We measured the total size of the software as well as the size of 

each development component. 

DMP measurement: DMP measurements were conducted using the SDMC tool. The 

measurement at Tier Level 0 was conducted based on the source code. 

The measurement was conducted at Tier Level 0 as the decomposition information 

for the projects were not defined as per the requirements of the DMP method. Instead 

we identified the major components from the source code based on the deployment, 

references.  We measured the total project size and identified component’s size in 

DMPs separately. 

Effort Data: We had the effort data for projects in the resolution of man months. 

Development environment: 3 projects were developed in c# language and in .Net 

framework. 2 projects were developed in Java. 

Case 4 – Single Big Defense Industry Project 

Project:  The project was about a simulation system developed for defense industry. 

We had access to requirements, design, source code and effort data.  

COSMIC measurement: COSMIC measurement was conducted based on the SRS 

document.  

SLOC measurement: Physical and logical SLOC measurements were conducted using 

the Loc Metrics tool. We measured the total size of the software as well as the size of 

each development component. 

DMP measurement: DMP measurements were conducted using the SDMC tool. The 

measurement at Tier Level 0 was conducted based on the source code. Higher tier 

measurements were conducted based on the design models (class diagrams and 

sequence diagrams) supplied by the students. We measured the total project size and 

identified component’s size in DMPs separately. 

Effort Data: We had the effort data for the whole project. 
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Development environment: The project was developed in c# language and in .Net 

framework. 

5.2.4. Case Study Results 

Effort Estimation 

Table 9 Project Effort vs. COSMIC LOC and DMP Sizes 

Case Project 
Effort 

(MM) 
COSMIC LOC DMP 

Case 1 Client Release 1-2 4  - 719 9 

 Client Release 2-3 4 - 2166 2277 

 Client Release 3-4  4 - 646 353 

 Server Release 1-2 3 - 23 0 

 Server Release 2-3 3 - 735 275 

 Server Release 3-4 3 - 342 249 

Case 2 Project 1 12 346 294 3114 

 Project 2 15 280 2262 8806 

 Project 3 18 697 2886 23873 

Case 3 Project 1  1 - 3260 1497 

 Project 2 1 - 2739 2109 

 Project 3 3.5 - 13134 9936 

 Project 4  1.5 -  4926 5236 

 Project 5 4 - 11103 14398 

Case 4 Project 1 42.75 1999 61459 17807 

 

Table 10 Comparison of DMP, COSMIC and SLOC Correlation with Project Effort 

Case COSMIC DMP LOC 

Case 1 NA 0,444131 0,602961 

Case 2 0,782975 0,957993 0,967648 

Case 3 NA 0,977221 0,95916 

Case 4 NA NA NA 

Overall NA 0,652766 -0,11273 

Overall for Case 2&4 0,782975 0,967648 0,957993 

As one can see from the Table 10, LOC size correlates better with effort than both 

COSMIC and DMP within an organization. However, when we look at the overall 

correlation, that is, cross organization effort correlation, DMP performs better than 

LOC. This result is expected as changes in development technology and environment 

impacts the LOC the most. DMP on the other hand, is less prone to this effect as it is 

more abstract in nature. 
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In each case DMP’s correlation was higher than COSMIC’s. Although the number of 

data points for COSMIC was low, this result also backs up our initial claims. 

We believe low correlation values in case 1 due to the fact that each iteration is not 

a project itself and we assumed a fixed development effort for one month and 

assumed the difference in size of releases will be the size of software developed within 

that month. 

Predicting Solution Domain Size (LOC) 

Below, are scatter diagrams for LOC size versus DMP size for each case study. LOC 

size for each component within each project was compared with their DMP tier 0 

sizes. Components were identified based on deployment information gathered from 

the code and design documents. Detailed data tables can be found in Appendix A.   

 

Figure 29 LOC vs. DMP Size - Case 1 

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000 12000

LOC vs. DMP 



81 

  

 

Figure 30 LOC vs. DMP Size - Case 2 

 

Figure 31 LOC vs. DMP Size – Case 3 

 

Figure 32 LOC vs. DMP Size - Case 4 

Correlation of LOC size with DMP size for each case study is given in the table below. 

As one can see, DMP measurements do have a good correlation with LOC sizes. The 

correlation of COSMIC size with LOC however is found to be much lower both in our 

study and other studies in the literature. Based on this, we may say that DMP 

measurement is a better base for predicting LOC for the purpose of effort estimations. 
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Table 11 DMP -LOC Correlation Values  

Case 
DMP - LOC 

Correlation Value 

Case 1 0,978373 

Case 2 0,805721 

Case 3 0,661689 

Case 4 0,975973 

Average 0,85544 

Moreover, we may conclude that DMP measurement method, meets our initial aim of 

bridging the gap between solution domain and problem domain measurements.  

Reliability and Repeatability of DMP Results 

As far as tier 0 measurements are concerned, the DMP method was perfectly 

repeatable as it is performed on a concrete and exact input such as the source code. 

For higher level tiers, however, effect of human error and individual interpretations 

were observed. Discrepancies between individual measurements in higher tiers were 

not caused by the counting process but by misidentification of the decomposition 

levels of structural entities.  

These errors of mapping entities to tiers were actually self-healing. That is, if there is 

a common understanding of layers and components for a software project or 

framework within the project team or the whole organization, these errors are 

supposed to be ironed out and tier definitions will be used consistently.   

Unfortunately, we could not collect enough data points for individual measurements 

to perform a quantitative analysis. We discussed the results and errors with measures 

and observe the abovementioned characteristics.  

Based on our previous studies [101] and studies in literature [50][49], In tier 0, DMP 

is definitely much more reliable and repeatable then any other FSM method. The 

higher the tier the less reliable and repeatable the measurements get as expected.  

Measurement Effort with DMP 

We have observed that, modeling the source code from the sequence diagram for tier 

0 measurements can take time as long as a couple of hours based on the size of the 

code, number of structural entities, layers and the computation power of the 

computer the SDMC tool is running on. However, as the measurement was performed 

automatically, the human effort needed to conduct the measurement was very small. 
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For higher Tier measurements, the measurement time and effort is less as the size of 

higher level models and hence their DMP size are lower. However, in the industry 

companies tend to omit detailed design phases or require design models only for 

complex elements of the project.   

On the other hand, FSM measurement (e.g COSMIC, IFPUG) takes much more time 

and human effort. In our previous studies, we had calculated the average effort for 

COSMIC measurements as 2 minutes per FP for experts and much higher for 

inexperienced measurers [101]. DMP is a great improvement on other FSM methods 

for measurement effort.    

SLOC measurement on the other hand, took time in the degree of seconds which was 

negligible.  

Learning Curve for DMP 

We had the chance to let software engineers perform the measurement in Cases 1 

and 3. As far as Tier 0 measurements are concerned, it took a negligible time for 

them to learn how to use SDMC and measure DMP from the source code.  

We had explained the rationale of the method and told them how to use it for higher 

tiers in previous phases of a project. Those with experience in software design and 

development had no difficulties in practicing the method. However, those with 

experience in only analysis had difficulties on predicting the tier level of a 

measurement performed in earlier stages.  

Nonetheless, compared with our previous experiences in COSMIC training, measurers 

learned to DMP method in much less time and with higher success. In case 1 they 

mentioned it was natural for them to predict how deep an entity will go in 

decomposition as they are accustomed to imagine further levels of development while 

they are writing requirements or developing pseudo designs for the requirements. 

5.2.5. Validity Threats 

Different organizations have different definitions for project effort. The method of 

collecting the effort data also differs. Cross case evaluations based on effort data may 

have less accuracy compared to evaluations within a single organization.  

In Case 2, student projects were investigated. Being class assignments, the quality of 

project documents and accuracy of project data may be lower than those collected 

from actual projects in the industry.  

Higher tier DMP measurements are a part of project estimation process and identified 

with the prediction of further developments within a project. These measurements 
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can be performed through the course of a newly developed project and by those who 

are to design and develop the software. Therefore, it was not possible to perform 

such measurements within the case studies. However, higher tier DMP measurements 

are essentially logical subsets of tier 0 measurements and thus, any representation 

value of tier 0 measurements can also be attributed to higher tier measurements as 

well. In further studies, estimation methods based on DMP measurements will be 

investigated.



 

CHAPTER 6 

6.CONCLUSION 
 

 

 

 

There’s no point in being exact about something if you don’t even know what you’re 

talking about. 

--John von Neumann 

 

In this thesis, we addressed reliability issues, granularity issues and benchmarking 

issues in functional size measurement methods. We also addressed the issues in effort 

estimation using functional size as an input. 

We proposed a measurement framework to address these problems and meet the 

research goals. The framework consists of: 

• A measurement method for sizing software systems from detailed design 

models.  

• A method for sizing existing software products by backfiring measureable 

software models from software code. 

• An approximation approach / representation for measurement results 

including the abstraction level the measurement is performed in.   

• An estimation approach for size and effort. 

The primary research goal were reached through the designed framework. Second 

goal of minimizing the measurement error and inter-measurer variance was attained 

through automating the measurement procedure and backfiring atomic level data 

movements from code. Third goal was also embedded in the measurement framework    

The main contributions of this thesis is the incorporation of decomposition to the 

functional size measurement method and measurement results and basing the 

measurement on a concept that is common in both problem and solution domains.



 

6.1. Contributions 

Streamlining the Measurement Concepts 

We defined a measurement approach based on a concept that is common in both 

problem and solution domains; data movement. This streamlines measurement of 

both project and product attributes in two domains. This improves conversion of units, 

estimations, approximations and normalization of several size definitions and values.     

Improvements in Reliability of Measurement Results 

Subjective identification of abstract FSM concepts such as Objects of Interest and 

functional processes comprise the reliability of measurements. We define an atomic 

and objective definition of functional process, object and data movement. Through 

use of a measurement tool, we backfire these concepts of FSM from the source code 

which is the end point of solution implementation. This totally eliminates the reliability 

issues. 

For higher level measurement results we traverse through higher levels utilizing 

metadata for the lowest level. Only point of human interpretation is in the generation 

of this metadata which relates lower level concepts to higher level ones. This mitigates 

measurement errors as there is less room left for interpretation and renders errors 

recoverable by fixing the metadata.  

Resilient Measurement 

Existing FSM methods follow a top down approach in modeling. Functional size 

measurement methods in the literature first develop an abstract model for a system 

definition for measurement purposes and then conduct measurement on that model. 

This abstraction needs to model the whole system correctly to make a successful 

measurement. Imperfect, partial or incomplete system definitions result in erroneous 

measurement models and this in turn have a big impact on the measurement results 

as the measurements use this model as a basis and use in every step of measurement 

procedure.  

However, DMP method have a bottom up modeling approach. The measurement 

model is based on atomic level of decompositions. This makes the measurement 

results less susceptible to erroneous and incomplete system definitions. Missing parts 

of a system will not affect the other parts and aspects of the measurement model. 

Only error in the measurement results will be missing size for the missing definitions. 

This makes the DMP model much less susceptible to imperfect, partial or incomplete 

system definitions.  
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6.2. Significance of the Study 

Better Effort Estimations 

Most estimation models in the field dictate using several factors and multipliers to 

convert problem domain sizes to solution domain sizes and utilize historical data to 

estimate the project effort based on the solution domain size.  

Assuming an inherent relation between different size measurements in different 

domains and predicting one using other actually introduces another level of estimation 

error. We suggest an estimation approach which rely on the same concepts that the 

measurement method does will eliminate the gap caused by such conversions and by 

this approach, estimations will become less prone to gaps between domains and 

project phases (see section 4.2.1).  

Moreover, most FSM methods either does not include data manipulations in 

measurement or just incorporate the size of manipulations as an order of complexity 

to the overall measurement. As discussed in section 2.2 manipulations defined in a 

system gradually become movements as decomposition levels deepen. By measuring 

in lower levels of decomposition, DMP method measures data manipulations which 

would otherwise be left out in higher levels into measurement. This should also 

increase the accuracy of estimations. 

Better Measurement of Software Changes 

By DMP method, it is possible to measure specifications defined in levels lower than 

functional user requirements. This will make measuring software changes that are 

defined in lower resolution levels than functional user requirements more accurate 

than existing FSM methods.  

Identifying the tier level of change requests will also improve the change management 

processes as the scope and impact of the change can be better analyzed.   

Better Benchmarking 

Having decomposition level incorporated into measurement results makes the scope 

and abstraction of the measured software product visible. This is especially crucial in 

benchmarking studies as current benchmarking datasets either do not include this 

information or do not have predefined scale for decomposition level.  

Comparing measurement methods on the same level of decomposition will greatly 

improve the accuracy of benchmarking studies. 
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6.3. Future Work 

We believe that it is possible to apply the measurement approach defined in the thesis 

to other system definition paradigms.  

If we move up in the decomposition levels of system definition, the same approach 

can be applied to system specification level or business process definitions.  

Another PhD thesis is being conducted in our research group on sizing business 

process models based on functionality. Business process models are problem domain 

models in higher levels of abstraction then system or software specifications. It is 

possible to extend the problem-solution flow to the level of business processes. This 

way, we believe it will be possible to have a measurement approach based on same 

concepts of functional process and data movement starting from business processes 

down to implementation of classes. This would be a great opportunity to build a 

streamlined measurement and estimation framework spanning the whole software 

engineering process. 
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APPENDICES 

APPENDIX A CASE STUDY RESULTS 

Case 1 – MIS Framework 

Table 12 LOC and DMP Sizes for Client Side Software Releases 

 LOC DMP 

Project 1 Client Release 1 6195 2639 

Project 1 Client Release 2 6914 2648 

Project 1 Client Release 3 9080 4925 

Project 1 Client Release 3 9726 5278 

Table 13 LOC and DMP Sizes for Server Side Software Releases 

 LOC DMP 

Project 1 Server Release 1 2852 1151 

Project 1 Server Release 2 2875 1151 

Project 1 Server Release 3 3610 1426 

Project 1 Server Release 4 3952 1675 
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Case 2 – Student Projects 

Table 14 LOC and DMP Sizes for Student Project Components 

Project Component LOC DMP 

Student Project 1  3114  

 

 

Component 1 986 92 

Component 2 1104 105 

Component 3 3 0 

Component 4 1024 97 

Component 5 3 0 

Student Project 2  8806 2262 

 

 

 

Component 1 143 58 

Component 1.1 25 4 

Component 2 409 6 

Component 3 6976 1160 

Component 3.1 238 48 

Component 4 48 5 

Component 5 1110 981 

Student Project 3  23873  

 Component 1 2566  

 Component 2 21307  

 

Table 15 Project Effort vs. COSMIC, DMP and LOC Measurements 

Project  COSMIC DMP LOC 
Effort 

(man.month) 

Project 1 346 294 3114 12 

Project 2 280 2262 8806 15 

Project 3 697 3387 23873 18 
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Case 3 – Governmental Organization IT Department 

Table 16 LOC and DMP Measurements for Project 1 Components 

 LOC DMP 

Project 1  3260  1497 

  Component 1 153  

  Component 2 1050  

  Component 3 288  

  Component 4 35  

  Component 5 634  

  Component 6 20 4 

  Component 7 652  

  Component 8 428  

 

Table 17 LOC and DMP Measurements for Project 2 Components 

 LOC DMP 

Project 2  2739  2109 

  Component 1 80 127 

  Component 2 207 294 

  Component 3 86 127 

  Component 4 34 
48 

  Component 5 20 4 

  Component 6 28 
37 

  Component 8 40 88 

  Component 9 260 265 

  Component 10 388 1119 
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Table 18 LOC and DMP Measurements for Project 3 Components 

 LOC DMP 

Project 3  13134   9936 

 Component 1 4199   

    Component 1.1 1535  

    Component 1.2 1014  

    Component 1.3 48  

    Component 1.4 1597  

    Component 1.5 5  

  Component 2 8935   

    Component 2.1 485  

    Component 2.2 2532  

    Component 2.3 3342  

    Component 2.4 44  

Table 19 LOC and DMP Measurements for Project 4 Components 

 LOC DMP 

Project 4  4926   5236 

  Component 1 711  2079 

  Component 2 49  0 

  Component 3 767  1740 

  Component 4 299  308 

  Component 5 43  48 

  Component 6 1853   

    Component 6.1 353 14 

    Component 6.1 1500 18 

  Component 9 311  166 

  Component 10 893  863 
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Table 20 LOC and DMP Measurements for Project 5 Components 

 LOC DMP 

Project 5 11103   14398 

 Component 1 653  102 

 Component 2 177  0 

 Component 3 1534  3863 

 Component 4 637  1057 

  Component 5 34  65 

  Component 6 76  305 

  Component 7 9  0 

  Component 8 6019  1948 

    Component 8.1 4653 1325 

    Component 8.2 178 76 

    Component 8.3 571 128 

    Component 8.4 617 419 

  Component 9 85  34 

  Component 10 931  4169 

  Component 11 0  0 

  Component 12 139  81 

  Component 13 392  1402 

  Component 14 417  1372 
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Case 4 – Single Big Defense Industry Project 

COSMIC Size: 1999 CFP 

Table 21 LOC and DMP Measurements for Project Components 

Component Level 1 SLOC DMP 

Component 1 10184 5653 

Component 2 3906 220 

Component 3 340 43 

Component 4 9992  

Component 5 631 360 

Component 6 2488  

Component 7 7013  

Component 8 15125 8397 

Component 9 1102 587 

Component 10 157 130 

Component 11 69 8 

Component 12 2372  

Component 13 1829 1387 

Component 14 2783 955 

Component 15 147 34 

Component 16 152 14 

Component 17 1255 0 

Component 18 552 11 

Component 19 798 4 

Component 20 478 4 

Component 21 86  
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