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submitted by DERYA DİNLER in partial fulfillment of the requirements for the degree of
Master of Science in Operational Research Department, Middle East Technical Univer-
sity by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Murat Köksalan
Head of Department, Operational Research

Assist. Prof. Dr. Mustafa Kemal Tural
Supervisor, Industrial Engineering Department, METU

Assist. Prof. Dr. Cem İyigün
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ABSTRACT

HEURISTICS FOR A CONTINUOUS MULTI-FACILITY LOCATION PROBLEM WITH
DEMAND REGIONS

DİNLER, DERYA

M.S., Department of Operational Research

Supervisor : Assist. Prof. Dr. Mustafa Kemal Tural

Co-Supervisor : Assist. Prof. Dr. Cem İyigün

September 2013, 94 pages

We consider a continuous multi-facility location problem where the demanding entities are
regions in the plane instead of points. Each region may consist of a finite or an infinite
number of points. The service point of a station can be anywhere in the region that is assigned
to it. We do not allow fractional assignments, that is, each region is assigned to exactly one
facility. The problem we consider can be stated as follows: given m demand regions in the
plane, find the locations of q facilities and allocate regions to the facilities so as to minimize
the sum of squares of the maximum Euclidean distances of the demand regions to the facility
locations they are assigned to. We assume that the regions are closed polygons as any region
can be approximated within any desired accuracy with a polygon.

We first propose mathematical programming formulations of single and multiple facility lo-
cation problems. The single facility location problem is formulated as a second order cone
program (SOCP) which can be solved in polynomial time. The multiple facility location prob-
lem is formulated as a mixed integer SOCP. This formulation is weak and does not even solve
medium-size problems. We therefore propose heuristics to solve larger instances of the prob-
lem. We develop three heuristics that work when the regions are polygons. When the demand
regions are rectangles with sides parallel to coordinate axes, a special heuristic is developed.
We compare our heuristics in terms of both solution quality and computational time.
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ÖZ

TALEP ALANLARI DÜŞÜNÜLEREK SÜREKLİ DÜZLEMDE ÇOK TESİSLİ YER
SEÇİMİ PROBLEMİ İÇİN SEZGİSEL YÖNTEMLER

DİNLER, DERYA

Yüksek Lisans, Yöneylem Araştırması Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Mustafa Kemal Tural

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Cem İyigün

Eylül 2013 , 94 sayfa

Bu çalışmada sürekli düzlemde çok tesisli yer seçimi problemi üzerinde çalışılmıştır. Fakat
problemde talep noktaları yerine talep alanları düşünülmüştür. Her talep alanında sonlu ya da
sonsuz sayıda talep noktası olabilir. Bir tesisin servis sunacağı nokta kendisine atanmış olan
talep alanının herhangi bir yerinde bulunabilir. Bu çalışmada kısmi atamaya izin verilmemekte
ve her talep alanı yalnızca bir tesise atanabilmektedir. Üzerinde çalıştığımız problem kısaca
şu şekilde ifade edilebilir: servis sunulması gereken m tane talep alanı varken, q tane tesis
yerini talep alanları ve atanmış oldukları tesisler arasındaki maksimum uzaklıkların karelerini
en azlayacak şekilde bulmak ve talep alanlarını bulunan tesislere atamak. Herhangi bir alan
istenen herhangi bir kesinlik seviyesinde bir poligona benzetilebildiği için bu çalışmada talep
alanlarının kapalı poligonlar olduğu varsayılmıştır.

Çalışmamızda ilk olarak tek ve çok tesisli yer seçimi problemleri için matematiksel program-
lama formülasyonları önerdik. Tek tesisli yer seçimi problemini polinom zamanda çözülebi-
len ikinci dereceden konik programlama (SOCP) formülasyonu ile modelledik. Çok tesisli
yer seçimi problemi için karışık tamsayılı ikinci dereceden konik programlama formülasyonu
kullandık. Bu formülasyon zayıf bir formülasyondur ve orta büyüklükteki problemleri bile çö-
zememektedir. Bu yüzden çok tesisli büyük yer seçimi problemlerini çözebilmek için sezgisel
yöntemler önerdik. Talep alanları poligon olduğunda kullanabilen 3 tane sezgisel yöntem ge-
liştirdik. Ayrıca talep alanlarının kenarları koordinat eksenlerine paralel dikdörtgensel alanlar
olduğu durum için özel bir sezgisel yöntem geliştirdik. Sezgisel yöntemlerimizi hem çözüm
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kaliteleri hem de çözüm süreleri bakımından karşılaştırdık.

Anahtar Kelimeler: Tesis Yeri Seçimi, Enküçük Kareler Toplamı ,İkinci Dereceden Konik

Programlama, Hiperbolik Düzleme, Enküçük-enbüyük Problem
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CHAPTER 1

INTRODUCTION

The facility location decisions are very critical for strategic planning for both private and
public firms. The facility location problems are encountered in many fields : operations
research, industrial engineering, mathematics, urban planning, and geography. Most facility
location problems are combinatorial in nature and challenging to solve to optimality. Location
of warehouses, hospitals, retail outlets, radar beams, exploratory oil wells are some of the
application areas of the facility location models.

The problem of locating q serving facilities for m demanding entities and allocating the de-
manding entities to the facilities so as to optimize a certain objective such as minimizing
transportation cost, providing better service to customers etc. is known as the facility location
problem. Facility location models can differ in their objective function, the number of the fa-
cilities to locate, the solution space in which the problem is defined, and several other decision
indices. The problem is called as a discrete facility location problem if there is a finite number
of candidate facility locations. If the facilities can be placed anywhere in some continuous
regions, i.e. there are infinitely many candidate facility locations, then the problem is called
as a continuous facility location problem. When q is equal to 1 the problem is called as a
single facility location problem, otherwise it is called as a multiple facility location problem.
These are the most common versions of the facility location problem. Many other versions
of the problem are also studied in the literature. More details about facility location problems
and in particular about different classification of facility location problems can be found in
books on facility location, like [16],[19], and [14].

The two main questions of the facility location problems are:

1. Where should facilities be located?

2. Which customers should be serviced from which facility or facilities?

so as to minimize the total cost [31]. Cost is commonly measured as a function of the distance
in some metric, amount of commodity transported or time between demanding entities and
facilities.

In this study, we consider a continuous multi-facility location problem where the demanding
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entities are demand regions in the plane. For the following three cases, it would be more
appropriate to represent a demanding entity as a region instead of a fixed point:

1. The size of the demanding entity may not be negligible with respect to the distances in
the problem.

2. The location of the demanding entity may follow a bivariate distribution on the plane.

3. The number of demanding entities may be so large that it may be more appropriate to
first cluster them into regions instead of treating each one seperately.

Consider the problem of locating a fire station that will serve forests. If each forest is repre-
sented as a fixed point by a center and a fire bursts out at an area far from the center, it may
take more than the estimated time for the firefighters to reach the fire area.

Recently, Turkish military was considering to establish travelling headquarters in the South
East Anatolia region of Turkey. The location of each travelling headquarter will follow a
bivariate distribution. Military when deciding where to place a facility to serve these head-
quarters should consider the location of each headquarter as a region along with a density that
represents the likelihood of the presence of the headquarter.

When demand regions are in consideration, usually there are three ways of measuring the
distance between the region and the facility [25]:

• Farthest (maximum) distance,

• Closest (minimum) distance,

• Expected distance.

−2 0 2 4 6 8 10

−10

−5

0

5

10

 

 

District
Crime occurence
Police station

Figure 1.1: Using the maximum distance between demand region and facility location
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Consider the problem of locating a police station that will serve many districts. Representation
of the police station and a district can be seen in Figure 1.1. If a crime occurs on the southern
west frontier of the district, the response time to this crime is directly related with the distance
between the point of crime occurrence and the police station. In this work, considering the
worst case scenario we choose to work with maximum distances. In our objective function we
will minimize the sum of squares of the maximum Euclidean distances of the demand regions
to the facility locations they are assigned to.

Using sum of squares of the distances comes from the desire of minimizing the variability.
By taking squares of distances, we penalize being too far from the located facility.

It should be noted that the maximum distanced point of a region to a facility does not change
if the convex hull of the demand region is taken. Therefore, we may restrict ourselves to the
case where the demand regions are convex regions. As any region can be approximated in
any accuracy by a polygon, we restrict ourselves to the case where each demand region is a
convex polygon.

In summary, the problem we consider can be stated as follows: given m (closed) convex
polygonal demand regions in the plane, find the locations of q facilities and allocate each
region to exactly one facility so as to minimize the sum of squares of the maximum Euclidean
distances of the demand regions to the facility locations they are assigned to.

This problem is NP-hard in general. When each demand region is a single point, the problem
reduces to the minimum sum of squares clustering problem which is NP-hard in general [2].
We first show that the single facility location problem can be solved in polynomial time as
it can be modeled as a second order cone program (SOCP). We then formulate the multiple
facility location problem as a mixed integer SOCP. The formulation is a big-M formulation
and is weak. It does not even solve medium-size problems in an hour. To be able to find good
solutions for larger problem instances, we propose three heuristics. For small size instances,
we compare solution quality of the heuristics with the exact solutions. We also develop a spe-
cial case heuristic when the regions are of rectangular shape with sides parallel to coordinate
axes. All of the three heuristics proposed for general polygonal regions can be adapted to the
case in which distances are used instead of squared distances in the objective function.

First heuristic is an alternate location-allocation heuristic. We call it as the second order cone
programming based alternate location allocation heuristic (SOCP-H). When the locations of
the facilities are given, each region is assigned to a facility that minimizes the maximum dis-
tance between the region and the facility (allocation step). When the allocations of the regions
to the facilities are known, the location algorithm solves q SOCP problems to determine the
location of the facilities (location step). Starting with an arbitrary placement of the facilities,
this heuristic repeats allocation and location steps until convergence is achieved.

Second heuristic is again an alternate location-allocation heuristic. We call it as max point
based alternate location allocation heuristic (MP-H). It has the same allocation step with
SOCP-H. It is different from SOCP-H in that only one point from each demand region is
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taken into consideration in the location step. When the allocations are known, updated loca-
tion of a facility is computed by averaging the farthest points of the allocated regions from
the previous location of the facility (location step). Again, allocation and location steps are
repeated until convergence.

The mathematical modeling of the problem is nondifferentiable. Third heuristic which we call
it as smoothing based heuristic (SBH) is based on a smoothing strategy which substitutes non-
differentiable functions with continuously differentiable functions. We convert the smoothed
problem into an unconstrained nonlinear problem using the implicit function theorem. It is
then solved with a quasi-newton algorithm that uses BFGS updating.

Our special case heuristic for rectangular regions is also an alternate location allocation
heuristic. It is called as line based heuristic (LBH). It has the same allocation step with
previous alternate location allocation heuristics. But its location step is quite different. When
the allocations of the regions to the facilities are known, algorithm solves q single-facility lo-
cation problems by converting each one into two single facility location problems on the line.
The optimal solutions of these two problems on the line give the coordinates of the optimal
solution of the single facility location problem on the plane. Again, allocation and location
steps are repeated until convergence is achieved.

The outline of this thesis is as follows. We first discuss the variants of facility location prob-
lems in the literature in Chapter 2. In Chapter 3, we give the mathematical programming for-
mulations of the single and multiple facility location problems in consideration. In Chapter
4, we propose heuristics for the multi-facility case. In Chapter 5, we describe how a bivariate
normal distribution can be approximated by a polygonal region. Computational studies are
given in Chapter 6. We conclude the study in Chapter 7.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

Facility location decisions are strategic decisions because they involve large investments and
long-term plannings. They have been extensively discussed by researchers from a variety of
disciplines, like geographers, marketing institutions and supply chain management specialists.
This makes the constructing a comprehensive literature research very difficult. Most of the
authors classify the facility location problems and their solution approaches based on the
solution space (continuous space or discrete space), the number of facilities (single facility or
multiple facility), the objectives of the decision maker (distance, travel time or cost), geometry
of the demanding entities (demand points or demand regions). When the geometry of the
demanding entities are regions, problems can be further partitioned based on the distance
measure used (expected, minimum or maximum distance) [25]. More details on different
versions of facility location problems and solution approaches to the problems can be seen
from the facility location surveys [16], [37], [22] and [34].

The organization of this section is as follows. Discrete and continuous facility location prob-
lems and common solution approaches to these problems are discussed in Section 2.1. In
Section 2.2, single and multiple facility location problems and important solution methods
are given. Some of the different objectives of the decision maker in facility location prob-
lems are mentioned in Section 2.3. Finally, in Section 2.4 different types of facility location
problems in terms of the geometry of demanding entites and proposed solution approaches to
these problems are explained.

2.1 Classification Based on the Solution Space

The answer of the question "where will we put the facilities" determines the solution space.
If the facilities can be located only at a finite list of candidate sites, then we have discrete
facility location problem. In these problems, all canditate sites are known in advance. When
the facilities can be located anywhere on the plane or anywhere on a continuous region de-
fined in advance, we have continuous facility location problem. The followings are important
characteristics of discrete and continuous facility location problems [37].
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1. Discrete location problems are integer programming/combinatorial optimization prob-
lems since they involve binary variables.

2. Continuous location problems are generally nonlinear optimization problems.

In the following subsections, discrete and continuous facility location problems are further
discussed.

2.1.1 Discrete solution space

The problem in this study is a continuous facility location problem. Therefore, solution ap-
proaches for discrete facility location problems are not mentioned. Instead of solution ap-
proaches, we give the descriptions of some discrete facility location problems.

There are eight basic problems; namely, set covering, maximal covering, p-center, p-dispersion,
p-median, fixed charge, hub, and maxisum location problems [16]. Short definition of each
one and some important characteristics of the problems can be seen below.

Set covering problem is to cover all of the demanding entities with minimum number of
opened facilities. For each facility we know which demanding entities can be covered if it
is opened and cost of opening facilities in advance. There may be costs related to serving
a demanding entity from a facility. In this case, objective is to minimize the cost of siting
facilities. Both versions of the problem are NP-hard.

In maximal covering problem, we have some budget or other constraints. With these con-
straints we want to cover most of the demanding entities. Assumption of covering all of the
demanding entities in set covering problem is relaxed. This problem is also NP-hard.

In p-center problem, we want to locate p facilities to serve m demanding entities so as to
minimize the maximum distance between a demanding entity and the closest facility to the
demanding entity. Demanding entities may be weighted or unweighted. The complexity of
the problem is O(np). For the fixed number of facilities problem can be solved in polynomial
time, but it is NP-hard in general.

p-dispersion problem only deals with the distances between facilities. In this problem, we
want to locate p facilities so as to maximize the minimum distance between any pair of the
facilities.

p-median problem finds the location of p facilities so as to minimize the weighted total dis-
tance between the demanding entities and the facilities. NP-hardness of this problem is similar
with the p-center problem. It is NP-hard in general.

In fixed charge location problem, opening a facility has a cost and each facility generally has
a capacity. This problem tries to find locations of facilities so as to minimize total facility
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opening and transportation costs. Because of the capacities, demanding entities may not be
assigned to the closest facility.

In hub location problems, there is cost due to the interaction between facilities (hubs) in
addition to the cost due to the interaction between demanding entities and facilities. This
problem finds the location of facilities so as to minimize total cost of transportation between
demanding entities.

Maxisum location problems are generally used for locating undesirable facilities like prisons,
power plants, etc. This problem finds the location of facilities so as to maximize the total
weighted distance between demanding entities and facilities.

2.1.2 Continuous solution space

In some cases, the number of candidate facility locations may be infinitely many. Facilities
can be placed anywhere in the plane (possibly with some restrictions).

The most famous continuous facility location problem is the Weber Problem. In 1909 Al-
fred Weber asked the question of "how to locate a single facility so as to minimize the total
Euclidean distance between the facility and the customers". This can be considered as the
beginning of the location theory [34]. The Weber problem was later generalized, extended,
reformulated and criticized many times by several authors. We investigate the original prob-
lem and solution approaches in more detail below.

The Weber problem is to find the point (x∗, y∗) so as to minimize the sum of weighted Eu-
clidean distances between this point and m fixed points (demand points) with coordinates
(ai, bi) , i = 1, 2, ...,m. wi is the weight of the ith fixed point. The problem can be formulated
as [29]:

minimizex,yW (x, y) =

m∑
i=1

widi (x, y) (2.1)

where di (x, y) =

√
(x − ai)2 + (y − bi)2 (2.2)

Here d(x, y) is the Euclidean distance between points (x∗, y∗) and (ai, bi). It should be noted
that other distance metrics like rectilinear or p-norm distances can also be used.

One common approach to solve the Weber problem is the Weiszfeld Procedure [41]. This
procedure can be summarized as follows.

1. Start with an arbitrary initial solution, (x1, y1).

2. Update (x, y) by the following formula, obtained by setting partial derivatives of the
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objective function to 0, until convergence is achieved.

(
x(k+1), y(k+1)

)
=


∑m

i=1
wiai

di(x(k),y(k))∑m
i=1

wi
di(x(k),y(k))

,

∑m
i=1

wibi
di(x(k),y(k))∑m

i=1
wi

di(x(k),y(k))

 (2.3)

In his work, Weiszfeld showed that his algorithm converges to the optimal solution of the
problem. But he did not realize the possibility that his method might fail if the iteration falls
on a fixed point. In [26], Kuhn realized that when the facility location and a fixed point
coincide, the Weizfeld algorithm does not converge and does not give the optimal solution.

Some authors used the dual of the problem to find more efficient algorithms and to provide
information about range of facility locations. In [20], authors give an economic interpretation
of the dual. When objective is to minimize weighted sum of the distances in the primal prob-
lem, revenue maximization is the objective in dual of the problem. Therefore, dual variables
can be interpreated as transportation rates if they are positive or as government support if they
are negative.

Full covering, maximal covering, and empty covering problems are the basic continuous fa-
cility location problems other than the Weber problem. Short definitions of each problem can
be seen below.

In full covering problem, we want to find a facility location so as to minimize the maximum
distance between the demanding entities and the facility. Therefore, it is also called as a
minimax location problem.

In maximal covering problem, radius of the covering circle is known. Therefore, we want
to find the center of the covering circle so as to cover most of the demanding entities. In
this problem, all of the demanding entities may not be covered if the radius is too small.
Assumption of covering all demanding entities in full covering problem is relaxed.

Empty covering problem is used to locate an undesirable facility. We want to find the center
of the largest circle which does not cover any of the fixed points. The center is the facility
location.

There are multiple facility counterparts of all of the above four continuous single facility
location problems.

2.2 Classification Based on the Number of Facilities

The answer of the question "how many facilities will we open" determines the classification
in this section. When we want to locate only one facility, the problem is called as a single
facility location problem, otherwise it is called as a multiple facility location problem. Single
facility location problems are easier than the multiple facility location problems in general
[13].
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In the following subsections, single and multiple facility location problems are further dis-
cussed.

2.2.1 Single facility

The most famous single facility location problems are 1-center problem (discrete case) and
the Weber problem (continuous case). 1-center problem is a specialization of the p-center
problem which is mentioned in Section 2.1.1. The Weber problem is mentioned in detail in
Section 2.1.2. Also, all problems that we have mentioned so far have both single and multiple
facility versions.

Single facility location problems and solution approaches will not be mentioned further. How-
ever it should be noted that single facility location problems are the basis for the multiple
facility location problems. In the location-allocation models, single facility location prob-
lems are solved as many as the number of the facilities in each iteration. For our problem, a
mathematical programming formulation of the single facility case will be given in Chapter 3.

2.2.2 Multiple facilities

The most important problem in this category is the multiple facility version of the Weber
problem. It has been extensively studied in the literature. Adding new facilities to the Weber
problem can be done in two ways. First of them is to give interactions between each demand-
ing entity and each facility. This is a convex optimization problem with nondifferentiable
objective function. Nondifferentiable objective function is the result of the possibility that a
demanding entity and a facility may coincide. In such a situation, distance between the de-
manding entity and the facility will be zero and derivative of the objective function will not
be available [16].

To solve this kind of multiple facility Weber problem, there is an important approach. It is
to update objective function to avoid nondifferentiability. If we want to locate q facilities to
serve m demanding entities, the problem can be written as:

minimize(x j,y j) j=1,2,...,q

q∑
j=1

m∑
i=1

wi jdi j +

q−1∑
j=1

q∑
s= j+1

v jsd js (2.4)

where wi j and v js are weighting factors between a facility and a demanding entity, and be-
tween two facilities respectively. di j and d js show distance between a facility and a demanding
entity, and between two facilities respectively.

In [42], Wesolowsky and Love propose a gradient reduction method for problem 2.4 where
rectilinear distances are used. The problem 2.4 take the following form for rectilinear dis-
tances.
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minimize(x j,y j) j=1,2,...,q

q∑
j=1

m∑
i=1

wi j
(∣∣∣x j − ai

∣∣∣ +
∣∣∣y j − bi

∣∣∣) +

q−1∑
j=1

q∑
s= j+1

v js
(∣∣∣x j − xs

∣∣∣ +
∣∣∣y j − ys

∣∣∣)
(2.5)

Authors do not minimize the objective function of the problem. Instead of that, they min-
imize the function that is a nonlinear approximation of the objective fuction. This approx-
imation function has continuous derivatives with respect to the facility locations. Authors
make approximation by using hyperbolas with centers (ai, 0) and (bi, 0) for x and y coordi-
nates of the facilities, respectively. Also, this hyperbolas have asymptotes with slopes ±wi j.
To be more clear, let’s consider a term wi j

∣∣∣x j − ai
∣∣∣. Its hyberboloid approximation function

is wi j

((
x j − ai

)2
+ c2

)1/2
. By keeping constant term of hyperbolas, c, arbitrarily small, sum

of these hyperbolas approximate to the original objective function. Authors find an upper
bound for error as a function of c. Also, they conclude that speed of convergence increases
by inceasing c with the small expense in the accuracy.

In [18], authors propose an approximation method when the Euclidean distances are used.
The multifacility Weber problem take the following form for the Euclidean distances.

minimize(x j,y j) j=1,2,...,q

q∑
j=1

m∑
i=1

wi j

√(
x j − ai

)2
+

(
y j − bi

)2

+

q−1∑
j=1

q∑
s= j+1

v js

√(
x j − xs

)2
+

(
y j − ys

)2
(2.6)

Authors introduce a small positive number ε into 2.6. Let’s consider a term wi jdi j where di j is

the Euclidean distance in 2.6. Its hyberboloid approximation function is wi j

√
d2

i j + ε. When
ε goes to zero approximation functions goes to the original function. As long as ε is not
zero, 2.6 is continuously differentiable. By using this approximating function, they defined an
algorithm called as Hyperboloid Approximation Procedure (HAP). Here are the steps of the
algorithm.

1. Start with initial solution.

2. Update facility locations until convergence is achieved by the formula that is obtained
by taking the derivative of the approximated objective function and setting it to 0.

In the paper, convergence of the algorithm is not proven. But Rosen and Xue proved that HAP
algorithm always converges [38].

Primal-dual methods and interior point methods are also applied to multifacility Weber prob-
lem [16].
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The second way of adding new facilites to the Weber problem is to model problem as location-
allocation model (LA model). In this model, allocation of demand regions to the facilities in
addition to location of facilities are decided [16]. LA models firstly introduced to the literature
by Leon Cooper in 1963. Objective functions of LA models are neither convex nor concave,
so they are quite difficult and they have many local minima [16].

LA models can be defined as follows : given the location of a set of m demanding entities
in terms of coordinates, find the locations (coordinates) of q facilities and allocations of the
demanding entities to the facilities in order to minimize total shipping cost or distances [11].
These models can be mainly divided into two. Demanding entities can be served by several
facilities or they can be served by only one facility. In later one, we have binary variables
that show whether the demanding entity i is assigned to the facility j or not. To solve LA
problems, exact equations, heuristics and metaheuristics were proposed [19].

In [10], Cooper developed equations for exact solution of LA problem. These equations
are obtained by taking derivative of the objective function and setting it to 0. Cooper then
minimized the objective function for all possible combinations of assignments by using these
equations. Also, he proposed an iterative method in the paper. The method always converged
when the starting location of facilities were chosen as indicated in the paper. Convergence is
not based on a proof, it is based on many experimentations. However, computation amount of
this solution approach is problematic for the large problem instances (number of destinations
> 10).

In [11], the following two basic observations about LA problems are made.

1. When the location of the facilities is known, determination of the allocations is trivial.

2. When the allocations are fixed, determination of the locations can be made easily.

Author proposed four heuristics in the paper. One of them is the alternate location-allocation
heuristic which is very much related to our study. This heuristic uses the above observations
and it can be explained as follows.

1. Start with a set of initial facility locations and generate q subsets of facilities.

2. Solve each subset by using exact location method for the single facility location case.

3. Allocate each destination to the nearest facility to generate new subset of destinations.
If new subsets are same with the previous subsets stop algorithm, otherwise return to
Step 2.

This is also the basic idea that we used in our alternate location allocation heuristics which
will be mentioned in Chapter 4.
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As mentioned earlier, LA models are NP-hard and have many local minima. To deal with
large problems and to avoid local optimality, metaheuristics like simulated annealing, tabu
search, genetic algorithm and variable neihborhood search have also been proposed [19].

2.3 Classification Based on the Objective of the Decision Maker

In the location problems, there are many different objectives. For example, some may try
to minimize cost, response time, damage or discomfort. In addition to minimization type
objectives, there may be maximization problems. Some may try to maximize profit, quality
or wellbeing [16].

Most of the above objectives can be represented as a function of distance. Therefore, distance
metrics used in the literature should be mentioned. Most famous distance metrics are recti-
linear distance, euclidean distance and L∞ norm. In [19], a table that shows various kinds of
distance metrics used to solve location problems can be found.

2.4 Classification Based on the Geometry of the Demanding Entity

In location theory, customers are generally assumed as points in space. When the size of the
customers are small relative to the distances between facilities and customers, this assumption
can be used. However, size of the customers cannot be ignored in some situations. Customers
can be treated as fixed regions with density functions or distributions representing the demand
over these regions.

The regional demand may arise in the following situations.

1. In the concern of uncertain demand in which the demand is a random vector over a
region,

2. In the concern of mobile demand,

3. In the concern of some discrete situations that the number of demand points is very
large which makes the discrete problem cumbersome.

2.4.1 Demand points

The literature on problems with demand points are very wide. In all of the articles mentioned
until now, demanding entities are assumed as demand points.
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2.4.2 Demand regions

In the cases explained in Section 2.4, treating the demanding entities as demand regions in-
stead of demand points are more meaningful. If demand regions are used, the distance calcu-
lation between a demanding entity and a facility requires more attention. This calculation can
be done in three ways; namely, by the expected distance, or by the closest distance, or by the
farthest distance between the demand region and the facility.

2.4.2.1 Expected distance

Expected distance has been extensively used in the literature. This distance may be meaning-
ful when the distances from the facility to each person living in the region is important. Also,
for the cases in which demand points are represented as random vectors expected distances
are mostly used.

Love considered the situation in which the number of demand points is too large to treat each
of them as a discrete point in his work [28]. He introduced the possibility of grouping demand
points into demand areas. He divided the total population area under consideration into rect-
angular regions with known dimensions. His objective is to find the location of a facility so as
to minimize total expected Euclidean distances between rectangular regions and the facility.
He proved that the objective function of the problem is convex. He developed a responce-
surface technique. Firstly, for the starting responce-surface parameter, gradient reducing pro-
cess (search along the gradient) is conducted until the given criterion is obtained. Then, a
smaller responce-surface parameter is chosen and gradient reducing process is repeated until
limit of the responce-surface parameter is zero. Computational time of this method is better
when compared to author’s previous studies.

In [4], authors extended the Love’s study in [28]. Love assumed that each demand region
is rectangular and each region has uniform population density. These assumptions are the
results of the effort to ease complex integral expressions. In this paper, authors get rid of
these complex expressions by replacing the demand regions, which may be not rectangular
and not uniformly distributed, with the centroids of the regions. Centroids of the regions are
calculated such that the first moment of the region is divided by the area of the region. By this
method, computational time is reduced and any geometric shape with an easily found centroid
can be used.

Cooper considered the stochastic extension of the Weber problem in [12]. The location of
demanding entities are not predetermined but random variables with given probability dis-
tribution in the paper and author tries to minimize the sum of the expected values of the
Euclidean distances between demanding entities and the facility. The probability distribution
used in the paper is bivariate normal distribution assuming that 2 random variables are un-
correlated, i.e. correlation coefficient is zero. Cooper prove that the objective function of the
problem is strictly convex and therefore it has unique minimum where the gradient of it is
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equal to zero. He developed an iterative algorithm for this problem. Iteration formula and a
convenient set of starting point can be seen from the paper.

In [23], authors show the errors in representing demand areas by a single point, aggregated
point. The error may be as much as eight percent. Authors divided the errors into three types.
First type of errors are inherent in the measurement of the distance from an aggregation point
instead of spatially distributed population. Depending to the cases, this type of error may be
both positive and negative. Second type of error is occured when facility lands on aggregation
points. This error always underestimates the real distance and it is negative. Last type of error
is due to the wrong allocation decisions. If there are multiple facilities, estimated distance
may lead to allocate demand regions to the wrong facilities. This error is always positive
and estimated distance is overestimation of real distance. These errors are independent of
the number of individuals in each demand region but it is inversely propotional to number of
demand regions. Use of many small regions to represent population areas will decrease the
error in the cost at the expense of computational cost.

In [3], authors tried to locate one or more facilities to serve existing rectangular regions where
the rectilinear norm is used. The objective was to minimize total weighted expected dis-
tances. This problem can be decomposed into two subproblems for the coordinates. The
objective function is convex and nondifferentiable. Authors proposed a gradient-free direct
search method for the problem. Method for good initial point and good search direction was
also proposed. For the emprical solutions, algorithm converged but there is not a formal proof
of convergence. For the computational time, the algorithm’s performance is promising.

Carrizosa et al. [7] proposed general notation for the problem in which both demanding en-
tities and facilities can be regions and expected distances are tried to minimize. The notation
is inspired in Kendall’s notation for Quening Theory. Authors showed the similarities and the
differences between generalized Weber problem and its point version. Objective function of
this problem is convex, continuous, finite everywhere, and positive. With these properties,
authors proved that the problem has unique optimal solution when the distance measurement
gauge is a strict gauge and probability distribution of the demanding entities are absolutely
continuous. Also, they showed that when the probability distribution of the demanding enti-
ties are absolutely continuous, objective function is differentiable everywhere and its gradient
is available. In such cases, gradient descent algorithms can be used instead of evaluating
complex expectations.

In the regional Weber problems, evaluation of the objective function, i.e. calculaton of the
bidimensional integral, has high computational cost. To avoid this issue, approximation by
centroids or disks centered at centroid were used in previous works. Former approximation is
very dependent to norm used and shape of the demand regions. Later one has also drawbacks.
The expected distance to a disk is known only for special gauges. Also, the question of how
large the error is not answered by these approximations. In [8], authors replaced demand
regions with simpler regions by which the error kept under control. Therefore, problem can
be solvable for any accuracy. Since there is an exact algorithm to evaluate expected distance to
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a triangle, their approximation method uses somewhat triangle approximation. For example,
for an elliptical region, they made approximation by m-sided polygon and they used triangles
constructed by the successive three corners of the polygon to calculate the expected distances.
The error in this approximation is inversely proportional to the number of sides of the polygon
but large number of sides requires high computations. In the paper, it is shown that results are
very good even when the number of sides of the polygon is not too large.

In [15], authors analyzed two convex objective functions; namely, minimize the weighted sum
of the maximum distances between demand regions and the facility, and minimize the max-
imum of the weighted average distance between demand regions and the facility. Algorithm
for the former problem is explained in Section 2.4.2.3. For the later problem, Elzinga-Hearn
type algorithm is used. To apply this type of algorithm, spherical approximation procedure
is used for the solution of the problem based on three groups. Algorithm for the minimax-
average distance model also starts with facility located on center of gravity. Then, algorithm
selects three demand groups with the farthest average distances and solves the problem of
these three groups. Then, the demand group with farthest average distance is found. If the
distance of this group is not greater than the required amount, optimal solution is found. Oth-
erwise, three different problems of consisting two out of three oldest groups (there are three
ways of selecting these groups) and one newly found farthest group is solved. Next iteration
is defined by the group with the largest objective function value among three problems solved
in previous step. Computational experiment shows that run times are proportional to the total
number of demand points and number of iterations required to find solution decreases with
the number of groups.

Chen proposed a new Weiszfeld-like iterative approach to locate single facility that will serve
circular demand regions in [9]. He proposed equations for the net pulling forces of circular
demand regions for three cases, namely facility can be inside, or outside, or on the boundary
of the demand region by integration. Then, he used these equations as the numerator of
the Weizsfeld algoritm. For the denominator of Weizsfeld algorithm as the step-size of the
descent algoritm, he proposed weight functions for the same three cases. As a starting point
for the algorithm, weighted average of the center point of the circular demand regions is
recommended. To test the effectiveness of the proposed algorithm, author generated some
examples in which circles has very small radius so he could compare the results with the
results of standard Weiszfeld algorithm for the demand points are located at the centers of
these circles. The results were very similar but original Weiszfeld converged faster.

2.4.2.2 Minimum distance

Closest distance may be meaningful for the installation areas since drop-off and take-off points
will be on the boundary of the area which is closest to the facility [5]. In other words, flow
from/to the facilities will enter/leave the given demand area at the closest point and then
internal distribution costs within the demand area will not be considered.
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In the paper [5], authors considers the single facility minimax problem. Different than the
papers in the previous section, they used the closest point on the boundary of the regions
instead of expected distance. They tried to minimize the maximum closest point between
the demand regions and the facility. Objective function of this problem is convex. Since the
standard nonlinear packages may be inefficient for large problem instances, authors developed
a procedure based on the iso-contours. They demonstrated the iso-contour constraction in
analytic form for both Euclidean and rectangular closest distances. Then, procedure starts
with an arbitrary facility location. For this location they find customer with the maximum
closest distance and by using the iso-contour of this customer they find the descent direction.
Facility location is updated by using this descent direction. Then, procedure starts again with
updated facility location until convergence is achieved. Also, they modeled the special case
of the problem such that all demand regions are rectangular regions and rectangular distance
is used as a linear program.

In [6], a single facility location problem with closed convex demand regions is studied. Ob-
jective of the paper is to locate a facility so as to minimize the sum of the closest Euclidean
distances between demand regions and the facility. It is a minisum problem. The algorithm
developed starts with an arbitrary initial facility. The closest point for each demand region is
found and authors treated these closest points as fixed points which are replaced with the re-
spective demand regions. Therefore, problem becomes a standard Weber problem they solve
the problem with Weiszfeld algorithm as described in Section 2.1.2. Then, procedure is start
again with the new facility until convergence is achieved. As in the Weiszfeld algorithm, a
special attention is required when the facility location lands in a demand region. Authors also
take this into consideration in their algorithm. They avoid the comptutation of descent direc-
tions and step sizes by adapting Weiszfeld algorithm. However, the proposed algorithm may
converge to a non-optimal point on the boundary of any region. When this is the case, authors
defined additional steps in the paper. Also, the convergence of the algorithm for special case
such that any solution in the sequence and the optimal solution of the problem is not on the
boundary of any demand region is proven in the paper.

2.4.2.3 Maximum distance

When the worst-case scenarios are important, this type of models are used. The location of
emergency facilites such as fire stations, police stations, hospitals etc. are mostly modeled by
using farthest distances.

In [39], authors considered the extension of standard p-center problem. The objective is to
minimize the maximum of the maximum distances between demand originating in an area
and the closest facility. In other words, aim is to cover all demand areas by p circles with
smallest possible radius. For the problem, an algorithm based on error-free Voronoi diagram
is proposed. Algorithm starts with p random centers. Then, Voronoi diagram is constructed
based on these centers. For each Voronoi polygon, facilities are relocated by solving 1-center
problem. Then, procedure starts again until convergence is achieved. The 1-center problems
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solved in the algorithm is equivalent to 1-center problem with demand points on the vertices
of the Voronoi polygon. Since the number of vertices is low on average, procedure is fast and
efficient. In some cases, convergence of the algorithm is slow. Therefore, authors developed
a finishing-up algortihm. Also, lower and upper bounds are proposed for the square area.

By assuming demand points are clustered into groups, authors generalized the single facil-
ity location problem in [15]. Each cluster is one demand source. As it said before, authors
analyzed two convex objective functions; namely, minimize the weighted sum of the maxi-
mum distances between demand regions and the facility, and minimize the maximum of the
weighted average distance between demand regions and the facility. When the rectilinear
norm is used, problems are formulated as linear problems. For Euclidean norm is used prob-
lems become nonlinear problems. For small problem instances Excell or AMPL were used.
For large problem instances AMPL and Excell is not able to handle such large nonlinear prob-
lems. So they proposed special algorithms. Algorithm for minisum-max distance model starts
with initial solution, let say center of the gravity. The farthest points of each demand group
to this facility is found. Based on these farthest points one iteration of Weizsfeld algortihm
is performed. If the distance between two successive facility location is less than given tol-
erance, optimal solution is found. Otherwise, farthest points from each group is calculated
again. If farthest points do not change algorithm continues to perform one Weiszfeld iteration
again. If farthest points change, the point with minimum objective function on the segment
connecting two successive facility location is found by golden section search and algorithm
continues with this facility location. The algortihm for other problem is mentioned in Section
2.4.2.1.

Jiang and Yuan considered the extended version of Weber problem in which customers are
convex demand regions (they assumed rectangular or circular regions in the paper) in [24].
Their aim is to minimize sum of weighted farthest Euclidean distances between demand re-
gions and the facility. The difficulty of solving this problem is the discontinuity of the farthest
points. When facility location changes, farthest points of the regions may also change dis-
continuosly. If the region is circular then the calculation of farthest distance is easy and it is
equal to distance between center of the circle and the facility plus radius of the circle. When
the region is rectangular, let us look Figure 2.1. Authors draw a pair of symmetry axes so they
divide the plane into four quadrants. If the facility is within a quadrant, the farthest point of
the region is unchanged and it is the corner within the opposite quadrant. Like in the figure,
when facility is within the first quadrant the farthest point is the corner within the third quad-
rant. When the number of rectangular regions increase, each of the rectangles have symmetry
axes and they construct the subdivision of the plane called as fixed regions. Let’s say that the
number of rectangular regions is k, then number of fixed regions is bounded by 2k2 + k + 1.
In some cases this number may be very large. Authors showed that all of the fixed regions
may not be considered. If an unbounded fixed regions satisfies some conditions, solution of
the problem can only be on the bounded sides of these regions. Therefore, visiting the only
bounded fixed regions and unbounded fixed regions that do not satisfy the conditions in the
paper will be enough. For a given fixed region the farthest points of each rectangular region
is known and authors replaced regions with this points. Then, they solved constrained Weber
problem (CWP) for each of these fixed regions. In other words, problem is transformed to at
most 2k2 + k + 1 CWPs. To solve CWPs, authors transformed CWPs into linear variational
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inequalities and then solved these inequalities by a projection contraction method. If the so-
lution is in the interior it is the optimal solution. If it is on the boundary, algorithm continues
with solving neighborhood CWP. Computational time of the algorithm is very dependent to
the starting fixed region. Authors also propose a greedy strategy for choosing the starting
region.

Figure 2.1: Dividing the plane into fixed regions

In [25], Jiang and Yuan considered multiple facility extension of the problem in [24]. They
developed a hybrid Cooper type location-allocation heuristic. In the location step they solved
single source minisum problems (SMP) with regional demand under the farthest distance.
Each SMP is transformed into CWPs like in [24]. Since the number of CWPs may be too
large for the cases of large number of regions, to solve each CWP with high efficiency is very
important. For this purpose authors used Barzilai-Borwein gradient method. Original version
of Barzilai-Borwein method is not applicable to this problem because of the nonsmoothness of
the objective function. Therefore, authors updated the method with integration of the modified
Weiszfeld procedure and called it as Barzilai-Borwein-Weiszfeld procedure. Authors proved
the convergence of the Barzilai-Borwein-Weiszfeld procedure. In the allocation step, they
used the nearest center reclassification heuristic. Numerical studies showed that the proposed
algorithm is quite efficient.
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CHAPTER 3

MATHEMATICAL PROGRAMMING FORMULATIONS OF
FACILITY LOCATION PROBLEMS WITH DEMAND

REGIONS BY USING SOCP

SOCP is a type of convex programming. Objective function of SOCP is a linear function.
Constraints of SOCP are affine mappings of Second Order Cones (SOC). SOCP can also
handle linear equality constraint in addition to cone constraints. The general form of an
SOCP is

minimize f T x

subject to ‖Aix + bi‖ ≤ cT
i x + di for i = 1, 2, ..., L (3.1)

Fx = g (3.2)

where Ai and F are matrices, f , ci and g are column vectors of appropriate size, and bi, di are
scalars.

SOCP is a more general convex program than LP. There are fast algorithms for SOCP that find
global optimum. Like LP problems, SOCP problems can be solved in polynomial time. Many
convex programs like convex quadratic programs, quadratically constrained convex quadratic
programs can be formulated as SOCP problems [1]. The single facility version of our problem
can be also formulated as a SOCP problem.

As it was mentioned earlier, the characteristics of the problem we consider in this study can
be listed as follows.

1. We have m demand regions. All of these regions are closed convex polygons. Actually,
at the beginning our regions may not be closed or convex. But any region can be
approximated with a polygon in any accuracy. Details of the approximation procedure
is mentioned in Section 5.

2. We want to locate q facilities.

3. Each demand region has equal weights.
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4. Each demand region is to be allocated to exactly one facility.

5. Our objective is to minimize the sum of squares of the maximum Euclidean distances
between the facilities and the allocated regions.

Let S = {s1, ..., sm} be the set of m closed convex polygonal demand regions and K j ={
1, ..., k j

}
be the index set for corners of jth demand region. Let

{
s1

j , s
2
j , ..., s

k j
j

}
be the set

of corners of the jth demand region. Let X =
{
x1, ..., xq

}
be the set of q facility locations and

xi ∈ R2, i.e., xi is a two dimensional vector representing the coordinates of the ith facility.
By using SOCP, we propose the mathematical formulation for the problem above for the case
q = 1 in Section 3.1 and for the case q > 1 in Section 3.2.

3.1 Mathematical Formulation of the Single Facility Case

In single facility location problems, there is not an issue of the allocation of the demanding
entities. Therefore, there is no need for the binary variables that show the allocation of the
demanding entities to the facilities. Let X = {x} be the facility location. Then, the maxi-
mum Euclidean distance between the facility and the demand region s j is calculated by the
following formula.

z j = max
k∈ K j

∥∥∥∥sk
j − x

∥∥∥∥ (3.3)

Let t j be the square of the maximum distance, t j = z2
j . The mathematical formulation of the

single facility location problem can be represented as follows.

minimize
m∑

j=1

t j

subject to t j = max
k∈ K j

∥∥∥∥sk
j − x

∥∥∥∥2
∀ j (3.4)

Since the problem is a minimization problem, equation 3.4 is equivalent to the following
equation.

t j ≥

∥∥∥∥sk
j − x

∥∥∥∥2
∀ j, k ∈ K j (3.5)

Constraint 3.5 is a SOCP representable constraint. After a small alteration, SOCP representa-
tion is as follows.
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minimize
m∑

j=1

t j

subject to
1 + t j

2
≥

∥∥∥∥∥∥∥sk
j − x
1−t j

2

∥∥∥∥∥∥∥ ∀ j, k ∈ K j (3.6)

It is easy to see that, the square of the constraint of the model 3.6 is equal to equation 3.5.

Since SOCP is solvable in polynomial time, we say that the single facility location problem
can be solved in polynomial time with the model 3.6. Time complexity of per iteration of sin-
gle facility location problem with SOCP is O(n2 ∑N

i=1 ni), where n is the number of decision
variables, ni is the dimension of ith cone constraint and N is the number of cone constraints.
Number of decision variables is m + 2, m decision variables for distance squares and 2 de-
cision variables for the coordinates of the facility. Dimension of all cone constraints is 3
and the number of cone constraints is equal to the total number of corners in the problem,
N =

∑m
j=1

∣∣∣K j
∣∣∣. Therefore, time complexity is O(m2N) for one iteration. The number of itera-

tions in a SOCP is bounded above by O(
√

N). Thus, the overall worst case time complexity of
a single facility location problem with SOCP is O(m2N3/2). In practice, however, the number
of iterations is usually ≤ 50, and hence the complexity in practice is usually O(m2N). If

∣∣∣K j
∣∣∣s

are constant, the complexity of the single facility location problem will be O(m3). [27] can be
investigated for further information about the time complexity of SOCP.

Remark: If our objective is to minimize the sum of the maximum Euclidean distances be-
tween the facilities and the allocated regions, the problem becomes same with the farthest
minisum location problem (FMLP) considered in [24]. Solving FMLP is difficult because of
the discontinuity of the farthest points of demand regions to the facility. To solve this difficulty,
FMLP problem is converted to the constrained Weber problems in that paper. However, the
problem is SOCP representable. In other words, it can be easily solved in polynomial time.
SOCP representation of the single facility location problem with sum of the distances as an
objective follows.

minimize
m∑

j=1

z j

subject to z j ≥

∥∥∥∥sk
j − x

∥∥∥∥ ∀ j, k ∈ K j (3.7)

3.2 Mathematical Formulation of the Multiple Facility Case

The maximum distance between the demand region and the nearest facility in multiple facility
location problem can be calculated by the following formula.
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z j = min
i=1,...,q

max
k∈ K j

∥∥∥∥sk
j − xi

∥∥∥∥ (3.8)

The allocation of the demanding entities to the facilities is an important issue in multiple
facility location problems. By defining binary variables for allocation decisions, we can get
rid of the mini=1,...,q function in equation 3.8. Let us define the following binary variable.

a ji =

1 , if region j is allocated to facility i

0 , otherwise

Then, equation 3.8 can be rewritten as following.

z j =

q∑
i=1

a ji max
k∈ K j

∥∥∥∥sk
j − xi

∥∥∥∥ (3.9)

The following is a mathematical formulation of the multiple facility location problem when
t j = z2

j .

minimize
m∑

j=1

t j

subject to t j =

q∑
i=1

a ji max
k∈ K j

∥∥∥∥sk
j − xi

∥∥∥∥2
∀ j (3.10)

q∑
i=1

a ji = 1 ∀ j (3.11)

a ji ∈ {0, 1} ∀ i, j (3.12)

Constraint 3.10 obviously shows the square of the maximum distance from a demand region
to the nearest facility. Constraint 3.11 guarantees that each demand region can be allocated to
only one facility.

Since the problem is minimization problem, we can rewrite the constraint 3.10 as follows.

t j +
(
1 − a ji

)
M ≥

∥∥∥∥sk
j − xi

∥∥∥∥2
∀ j, i, k ∈ K j (3.13)

where M is big-M.

Selecting M is an important issue, since it effects the size of the branch-and-bound tree.
To select big-M as small as possible, we calculated the square of the distance between the
southern west and northeast corner of the rectangle that covers all the demand regions. The
sides of this rectangle are parallel to the coordinate axes.

The constraint 3.13 is a SOCP representable constraint. With a small alteration, here is the
mixed integer SOCP representation of the multiple facility location problem.
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minimize
m∑

j=1

t j

subject to
1 + t j +

(
1 − a ji

)
M

2
≥

∥∥∥∥∥∥∥ sk
j − xi

1−t j−(1−a ji)M
2

∥∥∥∥∥∥∥ ∀ j, i, k ∈ K j (3.14)

q∑
i=1

a ji = 1 ∀ j (3.15)

a ji ∈ {0, 1} ∀ i, j (3.16)

The mixed integer SOCP above is a weak formulation. Solving large instances with this
formulation is problematic. The branch-and-bound tree becomes too large and out of memory
error appears.

Remark: If our objective is to minimize the sum of distances instead of distance squares, the
problem is again mixed integer SOCP representable. SOCP representation of the multiple
facility location problem with sum of the distances as an objective is:

minimize
m∑

j=1

z j

subject to z j + (1 − a ji)M ≥
∥∥∥∥sk

j − xi

∥∥∥∥ ∀ j, i, k ∈ K j (3.17)

q∑
i=1

a ji = 1 ∀ j (3.18)

a ji ∈ {0, 1} ∀ i, j (3.19)

23



24



CHAPTER 4

HEURISTICS FOR THE MULTIPLE FACILITY LOCATION
PROBLEM WITH DEMAND REGIONS

Characteristics of the problem we deal with are mentioned in Chapter 3. We developed three
heuristics and a special case heuristic for this problem. In Section 4.1, the details of the our
first heuristic called as "second order cone programming based alternate location allocation
heuristic" is given. Our second heuristic whose name is "max point based alternate location
allocation heuristic" is mentioned in Section 4.2. In Section 4.3, our third heuristic called as
"smoothing based heuristic" is described. Finally, "line based heuristic" that we developed
for a special case of the problem is explained in Section 4.4.

4.1 Second Order Cone Programming Based Alternate Location Allocation
Heuristic (SOCP-H)

Alternate location-allocation procedure is well-known heuristic approach for multi facility lo-
cation problems as mentioned in Section 2.2.2. With the same idea, we developed an alternate
location allocation heuristic. In the location step of the algorithm we solve q single facility
location problems with SOCP formulation in Section 3.1. Basic framework of SOCP-H is
given in Algorithm 1.

Step 1 is the initialization step. We select random q facility locations which are inside the
convex hull of the corner points of the demand regions since any facility outside of the convex
hull cannot be an optimal solution. Step 3 is the allocation step. In this step, locations of the
facilities are known. Then allocation of the demand regions to the facilites are relatively easy.
The algorithm tries to assign each demand region to a facility that minimizes the maximum
distance between the region and the facility. Step 4 through Step 6 are the location steps.
Assigment of the regions to the facilities are known in this steps. Then, the algorithm solves
q single facility location problems to locate the facilities. This heuristic repeats allocation and
location steps until convergence is achieved or maximum number of iterations is reached.
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Algorithm 1 SOCP-H

1: Start with arbitrary initial facility locations X =
{
x1, ..., xq

}
.

2: repeat
3: Find q disjoint sets

{
S 1, ..., S q

}
where S i =

{
si1 , ..., sili

}
is the set of li demand regions

that are assigned to facility i by considering:

i = argmini=1,...,q max
k∈K j

∥∥∥∥sk
j − xi

∥∥∥∥ ∀ j

4: for i = 1 to q do
5: Solve ith single facility location problem for the set S i using the model 3.6 to find

the optimal location, x
′

i .
6: end for
7: Update X.

{
x1, ..., xq

}
=

{
x
′

1, ..., x
′

q

}
8: until Convergence is achieved. OR Maximum number of iterations is reached.
9: return X∗

The major advantage of SOCP-H is that each location step takes polynomial time to solve
as it was mentioned in Section 3.1. On the other hand, SOCP-H has some disadvantages.
This heuristic may not be suitable for large problem instances. Since the worst case time
complexity of a location step is O(m4), convergence of the heuristic may take a long time.
Also, we do not guarantee to find global optimum solution with SOCP-H. Lastly, locations of
the facilities are dependent to initialization.

Remark: SOCP-H can be modified to the case in which sum of the distances is minimized
instead of sum of squares of the distances. The framework of the updated algorithm would
be very similar to the SOCP-H. The only changing step is Step 5. In this step, single faciliy
location problems should be solved with the model 3.7 instead of the model 3.6.

4.2 Max Point Based Alternate Location Allocation Heuristic (MP-H)

Lets consider the single facility location problem with 3 demand points that tries to minimize
the sum of the squares of the Euclidean distances between the demand points and the facility.
Let (ai, bi) be the coordinates of the demand points and (x, y) be the coordinates of the facility.
Then the objective function we are trying to minimize is the following.

minimize f (x, y) =

(√
(x − a1)2 + (y − b1)2

)2

+

(√
(x − a2)2 + (y − b2)2

)2

+

(√
(x − a3)2 + (y − b3)2

)2

(4.1)
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f (x, y) is a convex function. We obtain the point of minimum by taking the partial derivatives
of f (x, y) with respect to x and y, and setting partial derivatives to 0. This point of minimum
is

(
a1+a2+a3

3 , b1+b2+b3
3

)
, i.e. the average of the coordinates of the demand points.

Lets consider equation 3.3 for the single facility location problem. If we know the facility
location, we can find the maximum distanced corner of each region to the facility by the
following formula.

k∗j = argmaxk∈ K j

∥∥∥∥sk
j − x

∥∥∥∥ (4.2)

Then, the objective function of the single facility location problem takes the following simpler
form. It has the same form with f (x, y) in 4.1.

minimize
m∑

j=1

∥∥∥∥∥s
k∗j
j − x

∥∥∥∥∥2
(4.3)

The optimal value for x is easily determined by taking the average of s
k∗j
j . By using this

information, we developed another alternate location-allocation heuristic. Basic framework
of MP-H is given in Algorithm 2.

Algorithm 2 MP-H

1: Start with arbitrary initial facility locations X =
{
x1, ..., xq

}
.

2: repeat
3: Find q disjoint set

{
S 1, ..., S q

}
where S i =

{
si1 , ..., sili

}
is the set of li demand regions

that are assigned to facility i by considering:

i = argmini=1,...,q max
k∈K j

∥∥∥∥sk
j − xi

∥∥∥∥ ∀ j

4: for i = 1 to q do
5: for t = 1 to li do
6: Find farthest corner of region sit in the set S i by considering equation 4.2.
7: end for
8: Calculate the mean of

{
s

k∗i1
i1
, ..., s

k∗ili
ili

}
to locate ith facility. x′i = mean

{
s

k∗i1
i1
, ..., s

k∗ili
ili

}
9: end for

10: Update X.
{
x1, ..., xq

}
=

{
x
′

1, ..., x
′

q

}
11: until Convergence is achieved. OR Maximum number of iterations is reached.
12: return X∗

As you can see, the initialization and the allocation steps of MP-H is same with the initializa-
tion and allocation steps of SOCP-H. But location steps, Step 4 through Step 9, are different
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than SOCP-H. Updated location of a facility is computed by averaging the farthest points of
the assigned regions from the previous location of the facility.

MP-H has computation time advantage over SOCP-H. The worst case time complexity of a
location step is O(m). Since MP-H avoids solving SOCP problems in location step it is very
fast and it finds remarkably good solutions. However, MP-H has its handicaps. Algorithm
may cycle without convergence. For example, let us analyze the Figure 4.1. There is a
single facility location problem with 3 rectangular demand regions. Let the red plus sign in
Figure 4.1(a) be the initial arbitrary facility location. In Figure 4.1(b), farthest corners of each
demand region to this facility are marked with blue circles. The facility location of the next
iteration that is calculated by averaging the marked corners can be seen from Figure 4.1(c).
The farthest corners of the demand regions to new facility and the facility location of the next
iteration are represented in Figure 4.1(c) and Figure 4.1(e), respectively. When we take the
average of the marked points in Figure 4.1(f), we obtain the facility location in Figure 4.1(c).
If we continue to make iterations, facility location cycles between the locations in Figure
4.1(c)and Figure 4.1(e). In this study, we did not try to eliminate cycles. Instead, we limited
the maximum number of iterations. Also, final locations of the facilities are dependent to
initialization like in SOCP-H. Again, finding global optimum solution is not guaranteed.
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Figure 4.1: An example of cycling of MP-H without convergence
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Remark: MP-H can also be modified so as to minimize the sum of the maximum distances
instead of the squares of the maximum distances. With this changed objective, the single
facility location problems in the location steps are transformed into the Weber problems.
Taking average of the farthest points to locate facilities does not work anymore. As it was
explained in Section 2.1.2, the most common procedure to solve the Weber problem is the
Weiszfeld Procedure. By using the Weiszfeld Algorithm in the location steps of MP-H and
keeping other steps as the same, the required modification can be done.

4.3 Smoothing Based Heuristic (SBH)

Other than previous two alternate location allocation heuristics, we developed another heuris-
tic. The idea of SBH comes from the fact that the constraints of the multiple facility location
problem is nondifferentiable. Consider the distance calculation in equation 3.8 for multiple fa-
cility case. In Section 3.2, we mentioned the mixed integer SOCP formulation of the problem.
Without using the binary variables, the following is an alternative mathematical formulation
for the problem.

minimize
m∑

j=1

z2
j

subject to z j = min
i=1,...,q

max
k∈ K j

∥∥∥∥sk
j − xi

∥∥∥∥ ∀ j (4.4)

Firstly, we smoothed the nondifferentiable functions with the strategy like in [43] to solve
model 4.4. In the paper, author smooths the minimum sum-of-squares clustering (MSSC)
formulation by substituting the nondifferentiable functions with continuously differentiable
functions. We then transformed the smothed problem into an unconstrained problem with the
help of the implicit function theorem. Finally, we solved this unconstrained nonlinear problem
with a quasi-Newton algorithm that uses Broyden-Fletcher-Goldfarb-Shanno (BFGS) updat-
ing method. Basic framework of SBH is:

Algorithm 3 SBH
1: Smooth the problem and transform it to unconstrained optimization problem as we will

explain.
2: Start with arbitrary initial facility locations X =

{
x1, ..., xq

}
and choose initial values of

smoothing parameters,ε, τ, µ, γ .
3: repeat
4: Solve problem with quasi-Newton method to find X∗.
5: Update X, X = X∗.
6: Update smoothing parameters, ε, τ, µ, γ : divide them by ρ1, ρ2, ρ3, ρ4.
7: until Convergence is achieved. OR Maximum number of iterations is reached
8: return X.
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In the following sections, details of the smoothing procedure, tranformation procedure and
quasi-Newton method are mentioned, respectively.

4.3.1 Smoothing Procedure

Consider model 4.4. Since the problem is a minimization problem, when we rewrite the
constraints as follows the constraints hold as equality.

z j − min
i=1,...,q

max
k∈ K j

∥∥∥∥sk
j − xi

∥∥∥∥ ≥ 0 ∀ j (4.5)

The following equation converges to 4.5 as ε gets smaller.

q∑
i=1

max
{

z j − max
k∈ K j

{∥∥∥∥sk
j − xi

∥∥∥∥} , 0} = ε ∀ j (4.6)

where ε is a very small positive number.

In equation 4.6, value of z j −maxk∈ K j

∥∥∥∥sk
j − xi

∥∥∥∥ will be only positive if region j is assigned to
facility i. Otherwise, it will be negative. When it is positive z j value is a little bit more than
the maximum of the distances between the corners of that region and the facility.

There are three nonsmooth functions in equation 4.6. First of them is max {y, 0} function. In
[43], author defines the following function.

φ (y, τ) =
y +

√
y2 + τ2

2
(4.7)

where τ is a very small positive number.

Function φ is an approximation of function max {y, 0}. When τ goes to zero, φ function
becomes max {y, 0} function. While latter function is nondifferentiable, former one is differ-
entiable as long as τ is positive. Figure 4.2 shows the original and smoothed version of the
function. By using function φ equation 4.6 takes the following form.

q∑
i=1

φ

{
z j − max

k∈ K j

{∥∥∥∥sk
j − xi

∥∥∥∥} , τ} = ε (4.8)
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Figure 4.2: Original and smoothed max {y, 0} function

Another nonsmooth function in equation 4.6 is maxk∈ K j {...}. Let us define the following
function.

β (x, y, µ) =
x + y +

√
(x − y)2 + µ2

2
(4.9)

for a very small positive number µ.

Function β is an approximation of the function max {x, y}. As µ goes to zero, β function
approaches to max {x, y} function and it is differentiable as long as µ is positive. We used
nested β functions to approximate maxk∈ K j

∥∥∥∥sk
j − xi

∥∥∥∥ function. The level of nesting depends

to
∣∣∣K j

∣∣∣. For example, let us have only tetragons, i.e.
∣∣∣K j

∣∣∣ = 4. Equation 4.8 can then be written
as following.

q∑
i=1

φ
{
z j − β

{
β
{∥∥∥s1

j − xi
∥∥∥ , ∥∥∥s2

j − xi
∥∥∥ , µ} , β {∥∥∥∥s3

j − xi

∥∥∥∥ , ∥∥∥s4
j − xi

∥∥∥ , µ} , µ} , τ} = ε (4.10)

Now, the only remaining nonsmooth function is ‖x − y‖ function where x and y ∈ Rn . In
[43], author defines the following function:

θ (x, y, γ) =

√√ n∑
i=1

(xi − yi)2 + γ2 (4.11)
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where γ is a very small positive number.

Function θ is an approximation of norm function. As γ goes to zero, θ function approaches
to the norm function and it is differentiable everywhere as long as γ is positive. By using θ
function, equation 4.10 takes the following form

q∑
i=1

φ
{
z j − β

{
β
{
θ
{
s1

j , xi, γ
}
, θ

{
s2

j , xi, γ
}
, µ

}
, β

{
θ
{
s3

j , xi, γ
}
, θ

{
s4

j , xi, γ
}
, µ

}
, µ

}
, τ

}
= ε.

(4.12)

After the smoothing procedure, the smooth formulation of the multiple facility location prob-
lem is given below.

minimize
m∑

j=1

z2
j

subject to h j(z j, X) =

q∑
i=1

φ
{
z j − β

{
β
{
θ
{
s1

j , xi, γ
}
, θ

{
s2

j , xi, γ
}
, µ

}
, β

{
θ
{
s3

j , xi, γ
}
, θ

{
s4

j , xi, γ
}
, µ

}
, µ

}
, τ

}
− ε = 0 ∀ j

(4.13)

4.3.2 Transformation Procedure

In 4.13, we have the following m nonlinear but smooth equations in m+2q variables (m comes
from the distances, 2q comes from the x and y coordinates of q facility locations).

h j
(
z j, x1, x2, ..., xq

)
= 0, j = 1, ...,m (4.14)

A question arises in our minds, "is it possible to express m variables (z1, z2, ..., zm) in terms of
remaining 2q variables (x1x, x1y, x2x, x2y, ..., xqx, xqy)?". In other words, we are seeking for the
answer of "do there exist z j(X) functions such that if we know the coordinates of the facility
locations we can calculate the values of the distances?". If this is the case, 4.13 transforms to
the following unconstraint problem.

minimize f (X) =

m∑
j=1

z j(X)2 (4.15)

The implicit function theorem states when the functions z j(X) exist. According to the theorem,
4.13 has a solution z j(X) for all X in some neighborhood of X̄ if m x m Jacobian matrix
evaluated at X̄ is nonsingular. Jacobian matrix is the matrix of the first order partial derivatives
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of the functions h j
(
z j, x1, x2, ..., xq

)
with respect to the variables z1, z2, ..., zm. Jacobian matrix

for this problem is calculated as follows:

J =



∂h1
∂z1

∂h1
∂z2

... ∂h1
∂zm

...
...

...
...

...
...

...
...

∂hm
∂z1

∂hm
∂z2

... ∂hm
∂zm


h j only contains z j. Therefore, only ∂h j

∂z j
’s have nonzero value, other partial derivatives are 0.

Then, Jacobian matrix takes the following form.

J =



∂h1
∂z1

0 · · · 0

0 ∂h2
∂z2

. . . 0
...

. . .
. . . 0

0 · · · 0 ∂hm
∂zm


As it is seen, J is a nonsingular matrix and allows us to use the implicit function theorem. The
theorem states that all z j(X) functions are differentiable and following equations hold.

∂h j

∂xi
= −

m∑
u=1

∂h j

∂zu

∂zu

∂xi
∀ j = 1, ...,m (4.16)

From the Jacobian matrix, we know that ∂h j
∂zu

can take a nonzero value only when u = j and it
is 0 otherwise. Then, 4.16 becomes:

∂h j

∂xi
= −

∂h j

∂z j

∂z j

∂xi
∀ j = 1, ...,m (4.17)

Although we do not know exact equations for z j(X)’s, we know all first order derivatives of
z j(X)’s with respect to xi’s. They are obtained from 4.17 as follows.

∂z j(X)
∂xi

= −

∂h j(z j,X)
∂xi

∂h j(z j,X)
∂z j

(4.18)

Therefore, we can calculate the first order derivative of the objective function in 4.15 although
we do not know it explicitly. The first order derivative is:

∇ f (X) =

m∑
j=1

2z j(X)∇z j(X) (4.19)
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4.3.3 Quasi Newton Method

To solve the model in 4.15 we have used Quasi-Newton method. It is an iterative algorithm
based on Newton’s method for finding local minima or maxima of a function. In Newton’s
method, gradient and the Hessian matrix of the function is used. On the other hand, in quasi-
Newton method Hessian matrix is not calculated. It is updated by using gradient vectors. In
other words, Quasi-Newton method uses only gradient information of the function. Since
we know all the first order derivative information of model 4.15, Quasi-Newton method is
an appropriate way to solve that model. The procedure for solving the problem is described
below.

Algorithm 4 Quasi-Newton Method
1: Set i=0.
2: Start with arbitrary initial facility locations, X0 =

{
x1, ..., xq

}
.

Set initial Hessian matrix to identity matrix, H0 = I.
3: repeat
4: Find a search direction di using first order derivative information of the function, di =

−Hi∇ f (Xi).
5: Find a step size αi to move along the search direction.

Here, we have one dimensional search problem to solve for αi.

minimize f (Xi − αiHi∇ f (Xi))

To find optimal point of Problem 4.20, we used bisection search*.
6: Calculate ∆Xi = −αidi and update X, Xi+1 = Xi + ∆Xi.
7: Find the gradient at new point, ∇ f (Xi+1) and calculate the difference between the gra-

dients of successive two iterations, yi = ∇ f (Xi+1) − ∇ f (Xi).
8: Update Hessian matrix with the following BFGS updating formula.

Hi+1 =

I −
yi∆XT

i

yT
i ∆Xi

 Hi

I −
yi∆XT

i

yT
i ∆Xi

 +
∆Xi∆XT

i

yT
i ∆Xi

9: Set i = i + 1.
10: until Convergence is achieved. OR Maximum number of iterations is reached

* In bisection search, there is a need for an interval to search. However, for the problem
in Step 5 we do not know the interval in which optimal solution lies. Therefore, before the
bisection search, a search with no restriction on the value of the optimal solution should be
conducted. There are two kinds of unrestricted search; namely, search with fixed step size and
search with accelerated step size. Former one is not efficient for all cases. Because of the
absense of the knowledge of the optimal solution’s location, to reach the optimum point may
require too many iterations in some cases. This drawback can be handled with the search with
accelerated step size. In this method, step size is increased gradually as long as the moves
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result in improvement [36]. Because of the computational efficiency of accelarated step size,
we used the second unrestricted search.

When no improvement occurs in the unrestricted search, we conclude the interval of optimal
solution by using step sizes in last and previous iterations. To this interval, we apply the
bisection search until convergenceor maximum number of iterations is achieved. Result of the
bisection search is αi that we are searching for.

The convergence condition of Quasi-Newton method is same with the convergence condition
of SBH. However, maximum number of iterations of the method set is different from the
algorithm’s maximum number of iterations.

In SBH, as the number of iterations increase, ε, τ, µ and γ approaches to 0. This means that
the problem in 4.15 approaches to problem in 4.4. Also, as long as the smoothing parameters
ε, τ, µ and γ are positive, equation 4.19 is applicable.

SBH has time advantage over SOCP-H. Since it uses only first order derivative information
it is faster than SOCP-H. Also, experimentally it produces better results than MP-H. The
solution qualities of SBH and SOCP-H is nearly same. As a final note, final locations of the
facilities are dependent to initialization like in the previous two alternate location allocation
heuristics.

Remark: Like our other heuristics, SBH can be updated to the case where the sum of the
maximum distances is minimized. When the case is sum of the distances, only the objec-
tive function of model 4.4 is changed. So the first order derivative of the objective function
becomes ∇ f (X) =

∑m
j=1 ∇z j(X).

All of the procedures of SBH -smoothing, transformation, quasi-Newton- remain the same.

4.4 Line Based Heuristic (LBH)

Let’s consider our objective function for single facility location problem again. Optimal val-
ues of x and y coordinates are independent, since partial derivative of the objective function
with respect to x and y is independent of y and x respectively. This means that, we can solve
the problem for x and y coordinates independently.

LBH is an alternate location-allocation heuristic for special cases of our problem such that
each demand region is a rectangular region with their sides parallel to the coordinate axes. It
uses the basic idea of solving for x and y coordinates seperately. Basic framework of LBH is
given below.
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Algorithm 5 LBH

1: Start with arbitrary initial facility locations X =
{
x1, ..., xq

}
2: repeat
3: Find q disjoint set

{
S 1, ..., S q

}
where S i =

{
si1 , ..., sili

}
is the set of li demand regions

that are assigned to facility i by considering;

i = argmini=1,...,q max
k∈K j

∥∥∥∥sk
j − xi

∥∥∥∥ ∀ j

4: for i = 1 to q do
5: Divide rectangular regions into line segments on x and y axes.
6: Find optimal solution on x dimension by following the procedure below.

PROCEDURE : Optimal coordinate on an axis, input:line segments on respective
axis

7: Find centers of each line segments, c1, ..., cli

8: Sort line segments in ascending order according to their centers, c′1, ..., c
′
li

9: for t = 1 to li − 1 do
10: Take the interval (c′i , c

′
i+1)

11: Calculate the average of the farthest points of line segments to the center of that
interval

12: if average ∈ (c′i , c
′
i+1) then

13: x′ix = average
14: break
15: end if
16: end for

END PROCEDURE
17: Find optimal solution on y dimension by following the procedure "Optimal coordi-

nate on an axis".
18: end for
19: Update X =

{
x
′

1x, x
′

1y, ..., x
′

qx, x
′

qy

}
20: until Convergence is achieved. OR Maximum number of iterations is reached
21: return X∗

The initialization and the allocation steps of LBH is the same with the initialization and al-
location steps of our previous two alternate location-allocation heuristics. But, location step
of LBH is quite different than the previous ones. When the assignments of the regions to the
facilities are known, algorithm solves q single-facility location problems on the plane. Each
problem is converted into two single facility location problems on the line and solved to opti-
mality. These two optimal solutions give the coordinates of the optimal solution of the single
facility location problem on the plane.
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Figure 4.3: Single facility location problem on plane (a), on x coordinate (b) and on y coordi-
nate (c)

Figure 4.4: Finding optimal value of x coordinate

Details of Step 4 through Step 18 will be described in the following. First operation is the
convertion of the problem into two problems on the line. For this purpose, a small example
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with 4 rectangular regions in Figure 4.3 can be investigated. In Figure 4.3(b), rectangular
regions are converted to the line segments on the x coordinate. Taking south or north side of
the rectangles does not change the solution. Because the only important thing is x coordinates
of the end points of line segments. In 4.3(c), rectangular regions are converted to the line
segments on the y coordinate. Again, it does not matter to take east or west side of the
rectangles.

After converting the problem, the procedure "Optimal coordinate on an axis" is followed to
find optimal locations of the x and y coordinates. For x coordinate, let us consider Figure 4.4.
In Figure 4.4(a), algorithm starts with the shaded interval (c′1, c

′
2) which is the first interval

on the left. If x coordinate of the facility is in this interval, we can find the farthest points
of each line segments. They are marked in the figure. The average of x coordinates of these
points is not in the shaded interval. Therefore, we continue with the next interval (c′2, c

′
3). It

is shaded in Figure 4.4(b). For this interval, farthest points of the line segments are marked
again. Average of these points is in the shaded interval. Now we can stop the procedure and
conclude the optimal x coordinate of the facility for this iteration. To conclude the optimal y
coordinate of the facility, same procedure is applied. After these operations for each single
facility location problem, one location step is finished. The location and allocation steps are
repeated until convergence is achieved or maximum number of iterations is reached.

Time complexity of location step of LBH is O(m log m). This complexity comes from sorting
the line segments according to their center points. Although time complexity of location step
of MP-H is smaller than LBH, LBH is experimentally faster than MP-H. It has time advantage
over all of our three heuristics. It is the fastest heuristic we developed. However, it is only
applicable for the special case we explain at the beginning of this section. Also, final locations
of the facilities depends to initialization like other heuristics.
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CHAPTER 5

APPROXIMATION OF AN ELLIPSE BY A POLYGON

In Chapter 1, we mentioned that instead of having exact locations of demanding entities we
may have probability distributions of them. In this study, we restricted ourself with bivariate
normal distribution. In Section 5.1, we define the relationship between the bivariate normal
distribution and ellipses.

To apply our heuristics, demand regions should be polygons. Therefore, we developed a pro-
cedure to approximate elliptical regions with polygons. Details of this procedure is mentioned
in Section 5.2.

5.1 Relationship between Bivariate Normal Distribution and Ellipse

Let X be 2x1 random vector distributed according to a bivariate normal distribution for the x
and y coordinates of the location of a demanding entity, µ be the mean vector and Σ be the
variance-covariance matrix. The shorthand notation of the distribution is:

X ∼ N(µ,Σ)

The following is the explicit notation of the distribution.

x
y

 ∼ N

 µ1

µ2

 ,  σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 
where ρ is correlation coefficient, σ1 is standard deviation of first random variable x and σ2

is standard deviation of second random variable y.

Then, demanding entity can be represented by a (1 − α)100% prediction ellipse. By the
prediction ellipse we mean that with (1−α)100% probability all demand points will be inside
the ellipse. The equation of the prediction ellipse which is centered at µ is given below.

(X − µ)T Σ−1(X − µ) ≤ χ2
2,α (5.1)

39



where Σ−1 is the inverse of the variance-covariance matrix. It is calculated by the following
formula.

Σ−1 =
1

σ2
1σ

2
2(1 − ρ2)

 σ2
1 −ρσ1σ2

−ρσ1σ2 σ2
2

 (5.2)

The other parameters of the ellipse -length of the principal semi-axes and the direction of the
principal axes- are directly related with the variance-covariance matrix. The length of the
principal semi-axes is calculated from the eigenvalues of Σ. Let λ1 and λ2 be the eigenvalues.
To find these values, we should solve the following equation.

|Σ − λI| = 0 (5.3)

Since Σ is 2x2 matrix, we end up with a polynomial of order 2. There are two roots of this
polynomial, not necessarily each of them unique. These roots are the desired eigenvalues.
Then, we can easily find the length of semi-axes from the eigenvalues by the following for-
mula.

√
λi χ

2
2,α for i=1,2 (5.4)

The directions of the ellipse’s principal axes is equal to eigenvectors of Σ. Let e1 and e2 be the
eigenvectors. To find these vectors, we should solve the following set of equations for each
eigenvalue.

(Σ − λiI) ei = 0 (5.5)

eT
i ei = 1 (5.6)

Equation 5.6 is required to obtain a unique solution. Otherwise 5.5 does not lead to a unique
solution alone.

In Figure 5.1, geometry of a prediction ellipse can be seen. In this figure, correlation co-
efficient is greater than zero. Therefore, the longest axis of the ellipse has a positive slope.
Conversely, the longest axis of the ellipse has a negative slope when correlation coefficient is
less than zero. If correlation coefficient is zero, instead of having ellipse we will have a circle.
For more information [33] can be investigated.
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Figure 5.1: Representation of a prediction ellipse

5.2 Polygonal Approximation of an Ellipse

Bivariate normal distribution can be represented by ellipse as we mentioned in the previous
section. We develepod our heuristics for polygonal regions, i.e. we need corner points to
apply our heuristics. Therefore, we developed an approximation procedure. Basic steps of
the procedure is given below.

1. Draw a smaller ellipse in the prediction ellipse with αs.

2. Draw a larger ellipse out the prediction ellipse with αl.

3. Draw a polygon between the bounds created by larger and smaller ellipses.

In Figure 5.2, an example for the approximation procedure is given. As the difference between
αs and αl become smaller, smaller and larger ellipses in the figure get closer to the prediction
ellipse. So the number of corners of the polygon increases and polygon approximation of the
ellipse gets better. But computational time of our heuristics increase.
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Figure 5.2: An example of polygon approximation to an ellipse

It should be noted that drawing a polygon between the bounds created is not an easy operation.
To ease this operation we followed the following steps.

1. Transform all three ellipses in Figure 5.2 to circles by multiplying all the points on the
ellipses by a transformation matrix, T .

2. Draw an equilateral polygon with the smallest possible number of corners between the
bounds created by larger and smaller circles.

3. Retransform this equilateral polygon by multiplying the corners by the inverse of the
transformation matrix, T−1, and obtain a polygon between the bounds created by larger
and smaller ellipses.

In Figure 5.3, easy way of drawing a polygon between the bounds created is illustrated.

Figure 5.3: Procedure of drawing a polygon between the bounds created

Finding the transformation matrix, T , is an important operation. First thing required for this
operation is a useful representation of an ellipse. There are many ways to represent an ellipse.
These ways arise naturally in different cases [35].

Let the ellipse be centered at µ; let 2x2 orthogonal matrix U be the matrix of the unit vectors in
the directions of ellipse’s principal axes; let A be the diagonal matrix with diagonal elements
ai such that 1/ai is the length of the ith principal semi-axis. Then, equation of the ellipse is
given below.
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(X − µ)T UAAUT (X − µ) ≤ 1 (5.7)

where (by using the findings in previous section), U = [e1, e2] , A =


1√

λ1 χ
2
2,α

0

0 1√
λ2 χ

2
2,α


If we rewrite A matrix as A = 1√

χ2
2,α

 1√
λ1

0

0 1√
λ2

 and let B =

 1√
λ1

0

0 1√
λ2

, ellipse equation 5.7

takes the following form.

(X − µ)T UBBUT (X − µ) ≤ χ2
2,α (5.8)

Let Y = BUT X and c = BUTµ. Then, equation 5.8 can be written as follows.

(Y − c)T (Y − c) ≤ χ2
2,α (5.9)

Equation 5.9 is the equation of a circle centered at c and having radius
√
χ2

2,α. In other
words, we transformed the ellipse to a circle by multiplying all points on the ellipse, X, by
transformation matrix, T = BUT .

After the transformation procedure, next important operation is the drawing an equilateral
polygon between the bounds created by larger and smaller circles. Lets say that we will
divide the circles into equal parts with angle 2θ. The maximum value of 2θ occurs when the
case is like in Figure 5.4. In this case, corners of the polygon are on the larger circle and the
sides of the polygon are tangent to the smaller circle. By maximizing the value of 2θ, we
minimize the number of corners of the polygon we want to find.

Figure 5.4: Procedure of drawing a polygon with minimum number of corners between the
bounds created
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The maximum value of θ is calculated by the following formula.

√
χ2,αl cos θ =

√
χ2,αs (5.10)

Then, the minimum possible number of corners of the polygon is equal to
⌈

360
2θ

⌉
. When differ-

ence of αs and αl is small, degree of the approximation to the prediction ellipse and number
of corners of the approximation polygon are high. Conversely, degree of the approximation
to the prediction ellipse and the number of corners of the approximation polygon are low if
difference of αs and αl is high. We chose to work with 95% accuracy for bivariate normal
distribution, i.e. α for the prediction ellipses is equal to 0.05. In Table 5.1, some minimum
number of corners required to obtain given approximation accuracy can be seen.

Table5.1: Number of minimum corners of the approximating polygon for a given approxima-
tion accuracy

α αs αl Minimum number of corners
0.05 0.100 0.010 4
0.05 0.075 0.025 6
0.05 0.070 0.030 7
0.05 0.060 0.040 9
0.05 0.055 0.045 13
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CHAPTER 6

COMPUTATIONAL STUDIES

There is no benchmark study for our problem in the literature. Authors who worked on de-
mand regions choose their objective function so as to minimize maximum/minimum/average
distance between the demand regions and facilities. However, we worked with the square of
the distances. Therefore, we can only compare our heuristics with each other. We generated
random problem instances. They are described in Section 6.1. In Section 6.2, parameters of
the algorithms are set after some preliminary computational studies. Finally, in Section 6.3
with the set parameters computational results are given.

6.1 Problem Instances

To test our heuristics we randomly generate following two sets of problems.

1. All regions are rectangular regions with sides parallel to coordinate axes.

2. All regions are elliptical regions.

In each set there are 6 different problems with 5, 10, 20, 50, 100 and 200 demand regions.
Problems with 5 demand regions are solved for 2, 3 and 4 facilities while problems with 10
demand regions are solved for 2, 3, 4 and 5 facilities. All of the remaining problems are
solved for 2, 3, 4, 5 and 10 facilities. The summary of problem instances can be seen from
Table 6.1.

We define first set of problems to be able to test our special heuristic, LBH, as well as our
three generally applicable heuristics. When constructing a rectangular region, we started
with randomly generating the coordinates of the southern west corner of the region from the
discrete uniform distribution with the specified maximum value and 1 as a minimum value.
Then, we randomly generated the side lengths of the rectangle from the discrete uniform
distribution with the specified maximum value and 1 as a minimum value. By using the
coordinates of southern west corner and side lengths, we constructed the other corners of the
region. Parameters for generating the rectangular problem instances can be seen from Table
6.2.
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We used second set of problems to compare our three heuristics, namely SOCP-H, MP-H,
SBH, with each other when the demanding entities follow a bivariate normal distribution. For
the bivariate normal distribution we need mean vector, standard deviations and correlation
coefficient as explained in Chapter 5. We randomly generated elements of the mean vector and
the standard deviations for variance-covariance matrix from the discrete uniform distributions
with the specified maximum values, and 0 and 1 as the minimum values respectively. For the
correlation coefficient we used continuous uniform distribution with −0.8 as minimum value
and 0.8 as maximum value. We did not use −1 and 1, because when the absolute value of the
correlation coefficient gets closer to 1 the shape of the prediction ellipse become more and
more elongated. To be able to decrease the number of overlapped demand regions we used
−0.8 and 0.8. Parameters for generating the bivariate normal distributions can be seen from
Table 6.3.

The parameters of discrete and continuous uniform distributions are selected after preliminary
trials. Aim in these trials is to decrease the number of overlapped demand regions.

We used 95% prediction ellipses to represent bivariate normal distributions. Then two level of
accuracy to approximate prediction ellipses by a polygon are used; namely 6-corner polygon
and 9-corner polygon approximations. The corresponding accuracy levels for these polygons
can be seen from the Table 5.1.

Table6.1: Characteristics of the problem instances

Problem Number of Number of
instance regions facilities

1 5 2
2 3
3 4
4 10 2
5 3
6 4
7 5
8 20 2
9 3

10 4
11 5
12 10
13 50 2
14 3
15 4
16 5
17 10

Problem Number of Number of
instance regions facilities

18 100 2
19 3
20 4
21 5
22 10
23 200 2
24 3
25 4
26 5
27 10
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Table6.2: Parameters for rectangular region genaration

Number of the regions Maximum value for x and y Maximum value for
coordinate of the southern west corners the side lengths

5 50 7
10 100 10
20 150 10
50 200 8
100 300 8
200 500 8

Table6.3: Parameters for bivariate normal distribution generation

Number of the regions Maximum value for entities Maximum value for
of the mean vectors standard deviations

5 100 4
10 100 5
20 150 6
50 220 2

100 350 2
200 450 2

6.2 Parameter Settings

There are some parameters required to execute our algorithms. After some preliminary com-
putational runs, the chosen parameters for each algorithm is summarized in Table 6.4.

Table6.4: Parameters of the algorithms

Max. number Convergence Other parameters
Algorithm of iterations condition
SOCP-H 30 ≤ 0.01 -

MP-H 30 ≤ 0.01 -
SBH 30 ≤ 0.01 Smoothing parameters :ε = τ = µ = γ = 0.1

Updating parameters:
ρ1 = ρ2 = ρ3 = ρ4 = 0.5

Max. number of iterations
of the main part :20

Max. number of iterations
of unrestricted and bisection search

in quasi-Newton method : 20
Step-size for unrestricted search :

0.0001
Convergence condition of

bisection search :≤ 0.00001
LBH 30 ≤ 0.01 -
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30 is chosen as the maximum number of iterations of the algorithms. We also tried 50, but it
did not change the solution qualities and computational times of the algorithms except MP-
H. Algorithms except MP-H generally stops because of the convergence condition in earlier
iterations as it can be seen in Table 6.10. On the other hand, for MP-H computational time
(not the solution quality) is directly related with the number of maximum iterations since MP-
H stops by reason of maximum number of iterations in general. This is the result of cycling.
Cycling of the algorithm generally starts after 20 iterations. Therefore, to keep computational
times low we select maximum number of iterations as 30 instead of 50.

As a convergence condition of the algorithms we set the rule such that if the difference be-
tween objective functions of two consecutive iterations is less than or equal to 0.01, stop.
Also, we get computational runs with different values. However, when we consider the trade
off between solution quality and computational time, 0.01 seemed more reasonable.

Other than these general parameters, there are some other parameters for SBH. The strategy
in SBH is similar with the strategy in [43]. To lessen the preliminary computational runs,
we borrowed the smoothing parameters and updating parameters from this paper. The values
of the remaining four parameters yield better results than other values we tried when we
considered the trade off between solution quality and computational time.

Also, it should be noted that to solve SOCP problems in our computational runs we used CVX
system in MATLAB. It is a modelling system for constructing and solving convex programs.
This system has four different solvers. Their capabilites to solve different convex programs
are summarized in Table 6.5.

Table6.5: Capabilities of CVX solvers to solve different convex programs

Solver name Convex program
LP QP SOCP SDP Integer

SeDuMi Yes Yes Yes Yes No
SDPT3 Yes Yes Yes Yes No
Gurobi Yes Yes Yes No Yes

MOSEK Yes Yes Yes No Yes

In SOCP-H, we used SDPT3 solver, since it is more reliable than SeDuMi. Also, Gurobi and
MOSEK are more limited solvers. For exact solutions, i.e. for mixed integer SOCP, we used
Gurobi solver. We do not change the tolerance levels of the solvers. In CVX there are three
tolerance levels and default values of them are as follows.

• (2.22x10−16)1/2 for the solver tolerance that is requested by the solver.

• (2.22x10−16)1/2 for the standard tolerance that is the level at which CVX considers the
model solved to full precision.

• (2.22x10−16)1/4 for the reduced tolerance. If this tolerance cannot be achieved, CVX
returns a status of failed.
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6.3 Computational Results of the Proposed Algorithms

All of the proposed heuristics and their subprocedures have been coded with MATLAB, ver-
sion R2012a. After setting the algorithms’ parameters, they have been run on a computer with
Intel Core 2 CPU 6400 2.13 GHz processor and 1.75 GB RAM.

Since there is no benchmark study for our work, we need exact solutions of the problem
instances to discuss effectiveness of our heuristics. The exact solutions can be found by
mixed integer SOCP formulation proposed in Chapter 3. This formulation is weak. It does
not even solve medium-size problems like problem with 20 demand regions and 5 facilities.
The last solvable problem is the problem with 20 demand regions and 4 facilities. For other
problems out of memory errors are occured because of too large branch-and-bound trees. In
Table 6.6 and 6.7 optimal objective function values of solvable problem instances and their
computation times are given respectively.

Table6.6: Optimal objective function values of small problem instances

Number of Number of Rectangular Elliptical regions
regions facilities regions 6-corner polygon 9-corner polygon

5 2 2185.5000 4564.5812 4456.3093
3 1108.7500 2376.2447 2296.6779
4 299.5000 741.2856 699.5564

10 2 6716.0000 8472.5469 8408.1255
3 4231.2500 4091.7634 3958.3114
4 2842.4166 2825.1871 2745.7280
5 1845.3333 1967.1337 1896.8869

20 2 37463.5998 49364.3564 48768.9876
3 19515.9443 33449.1913 32900.8599
4 15376.4999 25217.4657 -

Table6.7: Time (in seconds) to find optimal solutions of small problem instances

Number of Number of Rectangular Elliptical regions
regions facilities regions 6-corner polygon 9-corner polygon

5 2 2185.5000 4564.5812 4456.3093
3 1108.7500 2376.2447 2296.6779
4 299.5000 741.2856 699.5564

10 2 6716.0000 8472.5469 8408.1255
3 4231.2500 4091.7634 3958.3114
4 2842.4166 2825.1871 2745.7280
5 1845.3333 1967.1337 1896.8869

20 2 37463.5998 49364.3564 48768.9876
3 19515.9443 33449.1913 32900.8599
4 49381.0609 25796.8880 -
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To obtain lower bounds for problem instances that cannot solvable with MISOCP formula-
tion because of memory errors, we set 20 hours time limit. But solutions found within this
time limit are worse than the solutions found with our heuristics. For example, the solution
obtained for problem instance with 20 rectangular regions and 5 facilities within 20 hours has
52.8% optimality gap and solutions obtained with our heuristics are better. The larger the
problem instances, the larger the optimality gap. Thus, we did not use solutions found within
time limit as lower bounds.

As an alternative way, we consider the complete enumeration. Before starting the code we
make the estimation about the computational time of the complete enumeration. For this
purpose we need two things; namely, the number of possible ways of allocations of the regions
to the facilities and computational time of finding optimal solution of an allocation. The
number of ways to divide a set of m objects into q nonemty subsets can be calculated with
stirling numbers of the second kind S (m, q). The explicit formula of S (m, q) is:

S (m, q) =
1
q!

q−1∑
j=0

(−1) j
(
q
j

)
(q − j)m (6.1)

[32] can be reviewed for the proof of the formula and further information.

For example, the number of possible allocations for the last solvable problem instance is
S (20, 4) = 45232115901. With the mixed integer SOCP formulation, this problem is solved
in 49381 seconds for rectangular regions as in Table 6.7. To compete with mixed integer
SOCP formulation, we should find the optimal solution of approximately 916000 possible
allocations in a second with complete enumeration. When we know the allocations of the
regions, we have q single facility location problems to solve. This problems can be solved
with an SOCP formulation proposed in Chapter 3. This formulation does not lead the required
number of calculations in a second. For example, for the problem instance with 20 rectangular
regions and 4 facilities SOCP-H finds solution in 13 seconds and 4.5 iterations on average,
Table 6.9 and Table6.10. In other words, the optimal solution of an allocation is found in
approximately 3 seconds. As you can guess, the required amount of calculations in a second
for complete enumeration is not possible. Therefore, we did not try complete enumeration.

We have made 10 replications for each problem instance. To discuss effectiveness of our
heuristics, we used percent deviations from exact solutions for problem instances that can be
solvable with mixed integer SOCP. For other problems, we used percent deviations from the
best solution found with our heuristics.

6.3.1 Rectangular regions with sides parallel to coordinate axes

Table 6.8, Table 6.9 and Table 6.10 are results for the data set with rectangular regions. In
Table 6.8 percent deviations of best solutions found in 10 replicates are reported. Percent
deviations of worst and average solutions found in 10 replicates are given in Appendix A and
Appendix B respectively. In Table 6.9 total solution time of 10 replicates are reported. In
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Table 6.10 average number of iterations in a replicate are stated.

Also, in Appendix C and Appendix D minimum and maximum solution times in 10 replicates
are given.

When we look at the penultimate and last rows of Table 6.8, it can be seen that most robust
heuristic for different type of problem instances is SBH. Its average and maximum deviations
are close to each other. Other heuristics than SBH are not consistent for different problem
instances according to these two rows. But only looking at these values may be deceptive.
For some problem instances, starting points of heuristic may be too bad and so final solution
of the heuristic may be too bad as a result. These too bad solutions may increase average
deviations as outliers. Therefore, deviations for each problem instance should be investigated
one by one like in Figure 6.1. In the figure, lines for SOCP-H and LBH coincides. These two
heuristics generate same results as it can be seen in Table 6.8 and they generate considerably
good results except for problem instances 5 and 17. On the other hand, results generated by
MP-H is not as good as other heuristics. This may be due to cycling. To sum up, according
to solution quality SBH, SOCP-H and LBH are reasonable heuristics and they are better than
MP-H.

The location of facilities should be also investigated in addition to objective function values.
For example, in Figure 6.2 locations found for problem instance with 5 rectangular regions
and 3 facilities can be seen. SOCP-H, SBH and LBH find same locations for all facilities but
MP-H cannot find the same location for one facility. Because in the optimal solution of this
problem the demand region at southwestern has two farthest corners to the facility. Therefore,
MP-H cannot find the optimal location of that facility and cycles. In Figure 6.3 locations
found for problem instance with 10 rectangular regions and 5 facilities can be seen. SOCP-H,
SBH and LBH find very similar locations for all facilities but MP-H cannot find the same
locations with other heuristics except one facility. As in the previous example, in the optimal
solution of the problem there are demand regions having two farthest corners to the facilities.
Therefore, MP-H cannot find the optimal facility locations. Finally, in Figure 6.4 locations
found for problem instance with 20 rectangular regions and 4 facilities can be seen. All of
the heuristics find same locations for all facilities. Also, it should be noted that these results
are consistent with the results in Table 6.8. Based on these examples, we can say that our
heuristics except MP-H find very similar facility locations.
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Table6.8: % Deviations (minimum of 10 replicates) from exact solution or best solution found
of problems with rectangular regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH LBH

5 2 0.0001 1.0295 0.0013 0.0000
3 0.0000 4.1263 0.0003 0.0000
4 0.0000 27.0451 0.0596 0.0000

10 2 0.0000 0.0000 0.0000 0.0000
3 10.6068 2.3043 0.0746 10.6068
4 0.0000 4.2745 0.0609 0.0000
5 0.1355 12.2878 0.3227 0.1355

20 2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000
10 3.3519 16.4516 0.0000 3.3519

50 2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0043 0.0001 0.0000
4 0.0000 0.0062 0.0001 0.0000
5 1.7138 1.3021 0.0000 1.7138
10 11.0351 5.6918 0.0000 11.0351

100 2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
5 0.3635 0.3640 0.0000 0.3635
10 0.0000 0.8204 0.0435 0.0000

200 2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0106 0.0106 0.0000 0.0106
5 0.0000 2.2662 0.0486 0.0000
10 0.0446 1.5650 0.0000 0.0446

Average deviation 1.0097 2.9463 0.0227 1.0097
Maximum deviation 11.0351 27.0451 0.3227 11.0351
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Table6.9: The computation time (in seconds) to obtain solutions in Table 6.8

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH LBH

5 2 24,9110 0,0803 3,9497 0,0695
3 27,9483 0,1760 5,4457 0,0267
4 28,2968 0,2034 10,1858 0,0406

10 2 36,3307 0,1028 4,3029 0,0382
3 47,7689 0,2413 10,4476 0,0511
4 62,7708 0,3908 18,7433 0,0705
5 70,4925 0,4535 19,9420 0,0819

20 2 82,9654 0,0739 7,3979 0,1012
3 139,6744 0,1127 22,3425 0,1564
4 121,4162 0,4365 31,4296 0,1512
5 138,7831 0,5727 37,0342 0,1756
10 171,0821 1,4592 158,2972 0,3301

50 2 261,0745 0,2363 30,8934 0,3526
3 354,9161 0,9146 58,9222 0,4929
4 425,5047 0,8201 71,2029 0,5850
5 461,0334 1,1593 108,3299 0,6399
10 735,3288 3,3290 273,5900 1,2088

100 2 670,1187 0,5326 56,6597 0,7977
3 892,6176 1,1976 72,7703 1,2111
4 1002,4766 1,3961 126,5905 1,5529
5 1092,5923 3,2148 195,2714 1,6620
10 1326,8167 4,2067 471,9317 2,4296

200 2 1560,0911 3,1794 125,6423 2,4491
3 1604,1073 1,6023 165,6391 2,2436
4 2037,9926 4,7371 254,2409 2,7837
5 2812,2265 4,2522 399,5727 4,2693
10 2907,0245 8,8838 817,3341 5,8232
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Table6.10: Average number of iterations in a replicate for problems with rectangular regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH LBH

5 2 3 16.9 5.4 3
3 3.1 30 8.5 3.1
4 3 30 17.5 3

10 2 3.1 12.3 5.9 3.1
3 3.4 22.4 9 3.4
4 3.8 30 13.7 3.8
5 3.9 30 13.8 3.9

20 2 4.1 5.3 4.7 4.1
3 5.4 6.2 9.2 5.4
4 4.5 18.1 11.4 4.5
5 4.6 20.1 11 4.6
10 4.4 30 29.7 4.4

50 2 5.5 6.7 7.8 5.5
3 6.7 18.7 12.1 6.7
4 7.4 14.2 10.6 7.4
5 7.4 17 14.1 7.4
10 8.9 27.9 19.7 8.9

100 2 6.5 7.5 8.6 6.5
3 8.5 12.4 7.8 8.5
4 9.3 12.4 9.7 9.3
5 9.7 23.5 12.7 9.7
10 9.6 18.2 15.6 9.6

200 2 9.6 20.2 10.7 9.6
3 7.9 8.8 9.1 8
4 8.9 19.4 11.9 8.9
5 12.3 15.9 13.5 12.3
10 11.6 19.3 14 11.6
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Figure 6.1: % Deviations of heuristics with respect to different problem instances
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Figure 6.2: % Facility locations found with heuristics for problem instance with 5 rectangular
regions and 3 facilities
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When we consider solution times, SOCP-H is the slowest heuristic as it can be seen in Figure
6.5. Even with this slowest heuristic we can solve large problem instances in 5 minutes.
SOCP-H is followed by SBH. In the same figure, lines for MP-H and LBH seem to coincide.
When we zoom in as in Figure 6.6, the fastest heuristic is LBH and MP-H is the second fastest
one.
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Figure 6.5: Solution times of heuristics with respect to different problem instances
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Figure 6.6: Zoomed version of Figure 6.5
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The change in solution times of our heuristics with respect to the number of regions and the
number of facilities is also important. In Figures 6.7, 6.8, 6.9 and 6.10 these changes can be
seen. By looking at these figures, following two results are obtained.

• When the number of regions is constant, solution time increases with the number of
facilities in SOCP-H, SBH and LBH. The same inference cannot be made for MP-H.

• When the number of facilities is fixed, solution time increases with the number of re-
gions in all heuristics.
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Figure 6.7: Change in solution time of SOCP-H with respect to the number of regions and the
number of facilities
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Figure 6.8: Change in solution time of MP-H with respect to the number of regions and the
number of facilities
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Figure 6.9: Change in solution time of SBH with respect to the number of regions and the
number of facilities
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Figure 6.10: Change in solution time of LBH with respect to the number of regions and the
number of facilities

Also, how many times our heuristics finds good solutions among many replications is another
important issue. For example, in Figure 6.11 behaviour of heuristics for problem instance
with 10 rectangular regions and 5 facilities can be seen. We made 150 replications. All of our
heuristics find near optimal solutions most of the time. In Figure 6.12 behaviour of heuristics
for problem instance with 50 rectangular regions and 5 facilities can be seen. The results are
not as good as in the previous example. However, histograms are right skewed as it can be
seen. Our heuristics finds better solutions most of the times.
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To sum up, best heuristic is LBH for the problem instances in which all of the demand regions
are rectangular regions with sides parallel to coordinate axes. The solution quality of it is
satisfactory for the most of the problem instances, it is the fastest heuristic and behaviour of
the heuristic towards the number of regions and facilities is predictable. One can say that
when we consider the solution quality LBH is not as robust as SBH heuristic and its percent
deviation is high for some problem instances. But solution time of LBH is approximately one
hundredth of solution time of SBH. By increasing the number of replications in LBH, solution
quality may be further increased.
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Figure 6.11: Behaviour of heuristics towards finding good solutions for proplem instance with
10 rectangular regions and 5 facilities
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Figure 6.12: Behaviour of heuristics towards finding good solutions for proplem instance with
50 rectangular regions and 5 facilities

6.3.2 Elliptical regions

As we said before, we used 6-corner polygon and 9-corner polygon approximation to elliptical
regions. Solution quality of heuristics for both accuracy level of approximation is similar
with the performances for rectangular regions. This can be seen from Figures 6.13 and 6.14.
Like in the previous subsection, SOCP-H and SBH generate similar and good results. They
are better than MP-H. Also, when we consider the locations of facilities, SOCP-H and SBH
locate facilities very similar and locations found by MP-H are usually different than locations
found by other heuristics.

When we consider the solution times, MP-H is the fastest heuristic and it is followed by SBH.
The slowest one is SOCP-H as it can be seen in Figures 6.15 and 6.16.

Even with the slowest heuristic, we can solve large problem instances in 15 minutes for
high level of accuracy (9-corner polygon approximation). Behaviour of heuristics towards
to change in the number of regions and facilities is the same with the results in Section 6.3.1.
When the number of regions or the number of facilities increase, the solution times of heuris-
tics also increase in general.
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Figure 6.13: % Deviations of heuristics with respect to different problem instances with 6-
corner polygon approximation to the elliptical regions
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Figure 6.14: % Deviations of heuristics with respect to different problem instances with 9-
corner polygon approximation to the elliptical regions
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Figure 6.15: Solution times of heuristics with respect to different problem instances with
6-corner polygon approximation to elliptical regions
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Figure 6.16: Solution times of heuristics with respect to different problem instances with
9-corner polygon approximation to elliptical regions
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In Appendix E, percent deviations of best solutions found in 10 replicates, total solution time
of 10 replicates and average number of iterations in a replicate are given for both accuracy
level of approximation.

Finally, it should be noted that when the level of approximation accuracy increase, the solution
times of heuristics increase. In other words, larger the number of corners of the approximation
polygon, higher the computation time as it can be seen in the Figure 6.17. One can increase
or decrease the level of accuracy as desired in exchange for computational time.
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Figure 6.17: Solution times of heuristics with respect to different problem instances for two
level of accuracy

To conclude, SBH is the best heuristic in general problems with polygonal regions. It gener-
ates considerably good results in reasonable solution times.
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CHAPTER 7

CONCLUSION AND FURTHER RESEARCH DIRECTIONS

Location models have been studied for a long time. They have been extensively discussed by
a variety of disciplines and they are taught in university departments of mathematics, man-
agement science, computer science, geography etc. [16]. Modern location theory is assumed
to begin with Alfred Weber’s thesis in 1909 [19].

The facility location problem can be briefly defined as follows. To serve m demanding entiti-
ties, locate q facilities so as to optimize a given objective. There are many variants of facility
location models since they are used in several different research fields. The characteristics of
the problem we worked on in this study are as follows.

• We want to locate q facilities where q > 1 to serve m polygonal demand regions on the
plane instead of demand points.

• The location of a facility can be anywhere on the plane.

• Our objective is to minimize the sum of the squares of maximum Euclidean distances
between facilities and demand regions.

• The distance calculation is done by calculating the farthest distance between the de-
mand region and the facility it is allocated to.

• Each demand region can be assigned to exactly one facility.

• Each demand region has equal weights.

There are mainly three motivations behind working with the demand regions. First of all, in
some situations, the size of demanding entities cannot be negligible like in the problem of
locating emergency centers to serve districts or cities. Second of all, the location of demand-
ing entities may not be deterministic. They can follow a bivariate distribution on the plane.
Finally, there may be too many demand points in some problems. To treat each of them one
by one makes problems inconvenient. In such situations, representing demand as an area may
be convenient.
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As we explained in previous chapters. There are three ways of calculating distances between
the demand regions and the facilities; namely farthest, closest and expected distance. Our
motivation in using farthest distance is the desire of optimizing the worst-case scenarios.

It should be also noted that our mathematical programming formulations and heuristics do not
include weight parameters since we assumed that each demand region has equal weights. If
this is not the case and demand regions have different weights, our mathematical programming
formulations and heuristics can be easily modified. For the mathematical programming for-
mulations in Chapter 3, multiplying each term in objective function by corresponding weights
is required. For SOCP-H, instead of using model 3.6 in Step 5, using SOCP formulation that
minimizes the weighted sum of distance squares is enough. For MP-H and LBH, we should
take the weighted average of farthest points in location steps instead of taking just average.
Finally, for SBH, each term in objective function should be multiplied with corresponding
weights in model 4.4. So the only change is in the first order derivative of the objective func-
tion. All of the procedures of SBH -smoothing, transformation, quasi-Newton- remain the
same.

First, we give SOCP formulation of the single facility location problem. Thereby, we showed
that the single facility location problem can be solved in polynomial time since SOCP prob-
lems are solvable in polynomial time. Then, we propose a mixed integer SOCP formulation
for our problem. Inability of the formulation to solve even medium size problems leads us
to find heuristics. We propose three heuristics for our problem. All of our heuristics can
be modified to minimize the sum of maximum Euclidean distances between facilities and
demand regions. We also mentioned briefly these modified versions. Also, we develope a
special heuristic for the case when the demand regions are of rectangular shape. To test effec-
tiveness of our special heuristic we conducted a computational study with rectangular demand
regions. Except that we restrict ourselves to the case where demand regions follows bivariate
normal distributions. All of our heuristics are developed for polygonal regions, i.e. we need
corner points of demand regions. Therefore, we mention the relation between bivariate nor-
mal distribution and ellipse in the study. After that, we explained our approach to approximate
elliptical regions with polygons that allows us to use our heuristics.

To the best of our knowledge, there is no benchmark study for our work. Therefore, we com-
pare our heuristics with each other. To test the performances of the heuristics we generated
random problem instances. For the special problem instances with rectangular regions hav-
ing sides parallel to the coordinate axes, best heuristic is the LBH. Its percent deviation from
exact solution or best solution found with our heuristics is less than 0.5% for 23 out of 27
problem instances. And it is the fastest heuristic. Indeed, the solution time of LBH is one
hundredth of the second fastest heuristic. The time advantage of LBH makes possible to fur-
ther increase the solution quality of it by increasing the number of replications. Also, with
the predictability of LBH’s solution time with regards to change in the number of regions and
facilities, it becomes even more remarkable. For the general problem instances with bivari-
ate normally distributed regions, the best heuristic is SBH. We used two level of accuracy
of approximation for these problem instances; namely 6-corner polygon approximation and
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9-corner polygon approximation. For the first approximation level SBH’s percent deviation
is less than 1% for 25 out of 27 problem instances. It is less 1% for 26 out of 27 problem
instances for the second approximation level. Its solution time is also reasonable. Even for
the largest problem instance we generated only 3 minutes are required to find solution. Like
LBH for special problem instances, behaviour of the solution time of SBH towards change in
the number of regions and facilities is foreseeable.

There are a number of future research directions. They can be listed as follows.

• Other than bivariate normal distirbution, different bivariate distributions can be used.

• The assumption that each demand region can be assigned to exactly one facility may be
relaxed. Demand regions may be assigned to more than one facilities.

• Instead of using farthest distance between the demand region and the facility, closest or
expected distance may be used.

• Instead of minimizing the sum of distance squares, other functions of the distances can
be used. For this objective, we have ideas on how to update our heuristics as mentioned
in the study.

• Problem instances with national barriers can be considered. In other words, algorithms
can be modified such that facility locations are restricted with some constraints.

• Instead of locating point facilities, locating regional facilities can be studied. After
selecting an appropriate distance calculation method for distance between regional de-
manding entities and regional facilities, algorithms can be modified accordingly.

• To increase the effectiveness of our heuristics, instead of using arbitrary initial facility
locations a method for choosing starting facilities may be developed.

• A procedure can be found to prevent cycling of MP-H.
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APPENDIX A

COMPARISON OF HEURISTICS ACCORDING TO
MAXIMUM OBJECTIVE VALUE OF 10 REPLICATES

TableA.1: % Deviations (maximum of 10 replicates) from exact solution or best solution
found of problems with rectangular regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH LBH

5 2 33.7833 33.7833 33.7833 33.7833
3 41.6685 47.0575 41.6857 41.6685
4 187.3957 227.2121 271.2319 187.3957

10 2 14.9055 16.8821 14.9176 14.9055
3 43.1118 43.9705 43.6723 43.1118
4 55.8152 54.1235 28.1223 55.8152
5 76.4948 90.9230 76.6488 76.4948

20 2 1.4285 1.4285 1.4285 1.4285
3 62.4271 62.4271 0.0002 62.4271
4 14.1072 19.6107 14.1277 14.1072
5 21.4869 25.0321 31.9328 21.4869

10 160.7272 174.5313 162.9505 160.7272
50 2 5.1182 5.1182 0.0000 5.1182

3 4.1522 4.1522 4.4662 4.1522
4 15.4142 15.4142 11.0562 15.4142
5 7.7872 7.5537 8.3801 7.7872

10 57.1645 57.3209 21.5104 57.1645
100 2 6.6639 6.6639 4.1428 6.6639

3 9.2183 9.2183 9.2083 9.2183
4 1.1478 1.1036 1.1478 1.1478
5 12.9634 12.9638 14.0745 12.9634

10 25.8361 23.9318 17.7104 25.8361
200 2 1.9070 1.9071 1.9070 1.9070

3 8.7954 8.7954 8.4970 8.7954
4 25.8921 25.8921 25.7982 25.8921
5 7.3899 7.3899 5.8877 7.3899

10 19.2469 19.2469 19.8302 19.2469

73



TableA.2: % Deviations (maximum of 10 replicates) from exact solution or best solution
found of problems with 6-corner polygon approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 103.6005 103.6005 103.6005
3 66.1856 93.6481 66.3150
4 173.4457 247.3590 181.7068

10 2 0.0001 0.1470 0.0002
3 95.4082 103.4592 95.4615
4 96.6539 189.4190 172.3686
5 279.1088 311.4625 107.1494

20 2 37.5890 37.2492 0.0040
3 34.2696 34.8641 18.6883
4 19.3883 15.4420 41.0285
5 68.0275 71.4841 58.5379
10 76.1883 77.6167 112.4574

50 2 0.6296 0.6296 0.6296
3 15.1163 15.1163 15.1163
4 32.5593 32.5592 28.0360
5 16.1184 16.1184 14.7180
10 71.0683 72.7567 48.2196

100 2 10.0356 13.2521 10.7456
3 2.1933 1.8213 1.8213
4 27.5390 27.5392 0.2720
5 14.0557 14.0557 14.0557
10 43.8794 38.0925 38.8060

200 2 7.6376 7.6376 7.6177
3 3.4085 3.3723 10.0432
4 35.1503 35.0341 0.0286
5 7.1560 7.1560 10.8945
10 19.5884 19.5896 17.5436
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TableA.3: % Deviations (maximum of 10 replicates) from exact solution or best solution
found of problems with 9-corner polygon approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 107.4852 107.4852 107.4852
3 70.0394 51.3379 70.1692
4 182.4720 258.7769 192.1435

10 2 0.0001 0.0056 0.0003
3 100.1274 107.5267 100.1622
4 98.3229 193.4054 186.8618
5 291.0089 324.2330 109.0892

20 2 39.7773 39.7773 0.0049
3 34.4687 34.9746 34.9387
4 18.5615 15.1146 40.5725
5 69.1995 72.3813 59.0509
10 84.2558 78.6959 98.6320

50 2 0.6904 0.6904 0.4215
3 15.1435 15.1434 15.1434
4 32.6612 32.6613 27.8564
5 14.6921 14.6920 14.3605
10 67.8153 46.5793 57.9606

100 2 10.0757 13.3216 10.7587
3 2.8926 2.1041 1.7332
4 26.2545 26.2545 22.6422
5 14.0531 14.0531 14.0531
10 44.8010 38.7331 38.2396

200 2 7.6955 7.6955 7.6774
3 9.8726 9.8726 10.0160
4 34.9484 34.9484 0.0278
5 44.8079 44.8079 10.8572
10 19.6198 19.6209 17.3634
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APPENDIX B

COMPARISON OF HEURISTICS ACCORDING TO AVERAGE
OBJECTIVE VALUE OF 10 REPLICATES

TableB.1: % Deviations (average of 10 replicates) from exact solution or best solution found
of problems with rectangular regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH LBH

5 2 10.6299 11.3151 10.0996 10.6299
3 18.6119 23.1462 15.5353 18.6118
4 107.6711 131.6528 97.0185 107.6711

10 2 3.1442 3.3611 2.3234 3.1441
3 23.1917 20.5098 22.3640 23.1917
4 19.5286 24.1379 13.1696 19.5286
5 20.3694 31.8935 14.4811 20.3694

20 2 0.7143 0.7143 0.2857 0.7143
3 6.2427 6.2427 0.0000 6.2427
4 5.5056 7.0792 5.9876 5.5056
5 7.8300 12.2202 10.0944 7.8300
10 69.4544 69.1836 59.4109 69.4544

50 2 1.5355 1.5355 0.0000 1.5355
3 0.9625 0.9650 1.3582 0.9625
4 3.9003 3.6043 2.3547 3.9003
5 4.1286 4.3084 3.4787 4.1286
10 21.8085 22.1323 14.1819 21.8085

100 2 1.5266 1.5266 1.2699 1.5266
3 3.7995 3.7878 3.5957 3.7995
4 0.4993 0.2540 0.7346 0.4993
5 4.8220 4.8471 4.1325 4.8220
10 9.9975 8.6155 6.6652 9.9974

200 2 1.1288 1.1288 1.3165 1.1288
3 3.4381 3.4381 2.1791 3.4381
4 2.8220 2.8220 2.6893 2.8219
5 3.6484 4.1288 2.3007 3.6484
10 6.3790 7.1295 4.0463 6.3790
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TableB.2: % Deviations (average of 10 replicates) from exact solution or best solution found
of problems with 6-corner polygon approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 10.3601 10.3601 10.3601
3 15.5659 29.4278 11.4309
4 104.0674 168.8236 91.5285

10 2 0.0001 0.0777 0.0001
3 32.0229 28.0862 35.9808
4 38.4470 40.9886 52.3262
5 62.2898 66.9609 23.5373

20 2 4.0570 3.7618 0.0017
3 14.4916 13.5771 8.6522
4 7.9487 6.7654 11.1112
5 17.2374 10.6063 10.2688

10 38.8274 38.7974 40.6589
50 2 0.2683 0.2487 0.1593

3 7.4800 7.4801 6.3932
4 6.5419 6.4721 5.5916
5 7.3514 7.3171 5.6111

10 26.4609 19.8707 18.0442
100 2 4.9900 6.3152 6.0250

3 1.0239 0.9822 0.8458
4 5.4911 5.4911 0.1133
5 2.8916 2.8618 3.3128

10 23.1711 22.9700 16.9937
200 2 2.1303 2.1303 2.1283

3 2.0582 2.0365 3.6959
4 3.5277 3.5160 0.0145
5 2.3183 2.3205 3.5436

10 5.8073 5.8590 5.0783
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TableB.3: % Deviations (average of 10 replicates) from exact solution or best solution found
of problems with 9-corner polygon approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 10.7485 11.1969 10.7485
3 11.9024 17.4230 11.9746
4 109.4832 171.3168 96.9615

10 2 0.0001 0.0056 0.0001
3 26.6959 28.0835 36.7341
4 34.9360 41.8961 53.2324
5 64.3898 61.8817 23.1339

20 2 7.7599 4.0546 0.0012
3 14.9550 13.4293 10.1992
4 5.8837 5.4120 6.3162
5 17.2218 16.8385 10.4066
10 40.7942 40.3712 42.6728

50 2 0.2680 0.2303 0.0617
3 7.5974 7.5358 6.7862
4 6.3644 6.2850 5.5056
5 6.2485 5.9154 4.0309
10 25.1522 15.3561 20.3851

100 2 5.0021 6.3342 6.0428
3 1.0415 0.9591 0.7890
4 5.0149 4.9979 2.3918
5 2.8074 2.8074 3.2970
10 26.0777 22.5742 17.8226

200 2 2.1636 2.1636 2.1618
3 3.2533 3.2533 4.0045
4 3.5419 3.5205 0.0131
5 6.6136 6.6172 3.7271
10 5.8488 5.8623 6.9089

79



80



APPENDIX C

COMPARISON OF HEURISTICS ACCORDING TO
MINIMUM SOLUTION TIME OF 10 REPLICATES

TableC.1: Minimum solution time of a replicate in seconds for problems with rectangular
regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH LBH

5 2 2.1900 0.0010 0.1982 0.0021
3 2.4063 0.0167 0.3597 0.0025
4 2.7239 0.0198 0.5235 0.0030

10 2 3.3501 0.0027 0.2704 0.0037
3 3.7390 0.0034 0.6614 0.0043
4 4.3591 0.0381 1.0811 0.0049
5 4.8379 0.0439 1.1076 0.0055

20 2 5.0506 0.0051 0.4407 0.0068
3 6.4104 0.0066 1.2639 0.0079
4 6.9614 0.0103 1.9043 0.0090
5 10.8365 0.0120 2.8125 0.0140
10 9.8697 0.1435 11.8701 0.0265

50 2 17.4241 0.0166 2.1437 0.0233
3 18.5566 0.0258 3.3706 0.0275
4 26.3595 0.0310 4.6765 0.0381
5 28.7008 0.0363 6.2083 0.0419
10 55.1447 0.0985 17.3193 0.0885

100 2 46.4378 0.0409 3.8221 0.0595
3 35.6892 0.0409 3.5378 0.0519
4 60.3892 0.0738 9.8534 0.1082
5 63.1142 0.1143 14.9359 0.0999
10 92.0537 0.1947 35.2008 0.1721

200 2 107.2309 0.1161 9.4887 0.1743
3 116.5833 0.1232 11.2848 0.1643
4 111.4997 0.1304 20.5438 0.1492
5 152.7129 0.1996 22.8185 0.2360
10 163.0826 0.3872 63.1264 0.3396
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TableC.2: Minimum solution time of a replicate in seconds for problems with 6-corner poly-
gon approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 3.0958 0.0018 0.3052
3 3.4800 0.0196 0.3556
4 3.5866 0.0233 0.7620

10 2 5.2791 0.0300 0.4412
3 5.1370 0.0377 0.9900
4 5.3983 0.0450 1.1275
5 5.6383 0.0528 3.1623

20 2 8.2924 0.0572 1.0048
3 9.8448 0.0101 1.8743
4 15.1697 0.0122 2.1573
5 15.7287 0.0179 2.6490
10 18.8514 0.1786 3.4236

50 2 27.3871 0.0190 2.5100
3 40.6645 0.0304 4.5554
4 31.3067 0.0295 5.7920
5 45.2195 0.0438 7.0343
10 63.2238 0.4398 18.5844

100 2 40.6566 0.0381 4.6392
3 84.9823 0.0605 8.2795
4 95.5718 0.1024 10.2624
5 100.8260 0.1032 15.6566
10 118.2207 0.2092 48.0177

200 2 164.2698 0.1456 10.1959
3 190.7699 0.1956 16.2268
4 200.2979 0.2657 26.4065
5 203.5575 0.2408 31.5257
10 195.5710 1.2542 91.9522
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TableC.3: Minimum solution time of a replicate in seconds for problems with 9-corner poly-
gon approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 3.2992 0.0020 0.4580
3 3.6395 0.0240 0.5766
4 4.0726 0.0295 0.8350

10 2 5.3652 0.0376 0.7109
3 5.7568 0.0084 0.8047
4 6.3146 0.0579 1.5020
5 6.7351 0.0679 3.6520

20 2 10.9918 0.0166 1.2501
3 10.8784 0.0230 2.2230
4 17.1707 0.0198 3.5554
5 18.4705 0.0279 2.7630

10 22.0612 0.2349 9.0025
50 2 39.4701 0.0306 3.2188

3 52.5620 0.0395 4.9897
4 38.8000 0.0667 7.4276
5 53.2440 0.0679 11.9471

10 60.1930 0.5779 30.5249
100 2 59.5184 0.0503 5.5138

3 96.3767 0.0769 11.3508
4 128.8485 0.1129 15.3588
5 134.1511 0.1347 19.9141

10 142.2979 0.4063 57.5311
200 2 243.9203 0.1703 15.4599

3 199.8027 0.1981 22.9957
4 242.6498 0.3060 37.8585
5 211.5202 0.3176 41.0709

10 305.0651 1.0383 129.5877
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APPENDIX D

COMPARISON OF HEURISTICS ACCORDING TO
MAXIMUM SOLUTION TIME OF 10 REPLICATES

TableD.1: Maximum solution time of a replicate in seconds for problems with rectangular
regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH LBH

5 2 2.7938 0.0150 1.1986 0.0386
3 3.9771 0.0201 0.7905 0.0036
4 2.9301 0.0226 1.5893 0.0112

10 2 5.2103 0.0264 0.7289 0.0052
3 6.0959 0.0339 1.4031 0.0071
4 8.1426 0.0401 2.5120 0.0103
5 10.1517 0.0481 3.4220 0.0102

20 2 16.3735 0.0120 1.1712 0.0184
3 22.5488 0.0171 4.1337 0.0240
4 20.6942 0.0745 7.0248 0.0235
5 19.7544 0.0878 5.9371 0.0243

10 25.3397 0.1478 19.0671 0.0419
50 2 35.4963 0.0290 4.1707 0.0452

3 56.5259 0.1499 8.9488 0.0758
4 66.8571 0.1810 12.3750 0.0891
5 71.4389 0.2102 14.7295 0.0969

10 111.5123 0.3599 40.1190 0.1684
100 2 95.6315 0.0737 7.8707 0.1134

3 188.4771 0.3248 13.2928 0.2460
4 182.0872 0.3546 19.3863 0.2560
5 188.9044 0.4156 25.0377 0.2788

10 216.6410 0.7118 59.2798 0.3765
200 2 234.0755 0.4822 17.2028 0.3637

3 217.0627 0.2048 26.5647 0.3141
4 309.9160 0.9057 32.9454 0.4128
5 515.9972 0.8281 56.3843 0.7819

10 570.2798 1.4121 110.5689 1.1459
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TableD.2: Maximum solution time of a replicate in seconds for problems with 6-corner poly-
gon approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 5.2786 0.0030 0.6119
3 5.4039 0.0257 1.1169
4 5.3784 0.0296 1.5314

10 2 10.2497 0.0378 0.7354
3 10.7978 0.0412 1.6042
4 11.1983 0.0469 3.4823
5 9.5164 0.0545 5.2451

20 2 43.2033 0.0606 2.7130
3 29.2132 0.0736 3.9187
4 37.5403 0.0900 4.3646
5 22.6634 0.1062 6.7480

10 28.1735 0.1813 13.4835
50 2 84.5295 0.1383 5.4268

3 100.8880 0.1766 7.1178
4 87.2821 0.2146 13.0245
5 113.9807 0.2815 12.9706

10 108.4681 0.4442 41.9504
100 2 164.5484 0.1148 10.3623

3 180.5588 0.1512 13.6911
4 216.4282 0.4251 22.5015
5 335.0324 0.5019 28.4392

10 353.0692 0.9024 89.2593
200 2 359.4182 0.5661 15.9886

3 747.0492 0.6851 31.7309
4 730.8497 0.8598 47.1271
5 615.3544 1.4368 54.0767

10 1181.8227 1.7389 262.1124
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TableD.3: Maximum solution time of a replicate in seconds for problems with 9-corner poly-
gon approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 5.1718 1.5423 0.7321
3 5.6819 0.0284 1.7761
4 6.2633 0.0325 1.9666

10 2 11.1907 0.0396 1.2835
3 15.5746 0.0489 2.1670
4 16.6507 0.0595 6.4195
5 10.8377 0.1049 6.5313

20 2 58.1809 0.0785 3.8822
3 32.6180 0.0965 7.6151
4 41.1996 0.1169 9.5253
5 30.4256 0.1380 12.6566
10 30.7841 0.2474 21.7914

50 2 112.3003 0.0613 5.9639
3 128.4642 0.2290 10.0220
4 107.6055 0.2807 21.1532
5 120.5470 0.3634 21.9849
10 149.4326 0.5876 69.8063

100 2 219.5036 0.1555 14.2944
3 206.2278 0.4507 18.8488
4 289.1266 0.2255 28.8656
5 464.1908 0.6492 41.9447
10 369.6611 1.2502 145.9835

200 2 525.7585 0.3404 20.5518
3 448.5447 0.3833 50.1625
4 1021.4236 1.1257 56.9824
5 709.9619 2.1126 57.5489
10 1452.1357 2.3108 332.7955
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APPENDIX E

COMPUTATIONAL RESULTS FOR ELLIPTICAL REGION

TableE.1: % Deviations (minimum of 10 replicates) from exact solution or best solution found
of problems with 6-corner polygon approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 0.0000 0.0000 0.0000
3 0.0000 0.5008 0.0011
4 0.0000 83.0352 0.4169

10 2 0.0001 0.0084 0.0001
3 0.0002 0.9466 0.0543
4 0.0173 1.0934 12.5557
5 0.0004 7.4371 0.0563

20 2 0.0000 0.0337 0.0002
3 0.0000 0.0520 0.0008
4 0.0001 0.6414 0.0015
5 0.1558 0.0000 0.1558

10 3.1668 5.7083 0.0000
50 2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000
4 0.3537 0.3539 0.0000
5 0.0000 1.6805 0.0000

10 1.3670 0.0000 3.4539
100 2 0.0000 0.0000 0.0000

3 0.6008 0.6008 0.0000
4 0.0000 0.0000 0.0000
5 0.5409 0.5409 0.0000

10 14.0957 14.5206 0.0000
200 2 0.0000 0.0000 0.0000

3 0.0248 0.0248 0.0000
4 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000

10 0.0000 0.0001 0.0877
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TableE.2: The computation time (in seconds) to obtain solutions in Table E.1

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 42,1014 0,0213 4,6365
3 38,8330 0,2093 6,9317
4 39,1180 0,2455 10,9828

10 2 70,9342 0,3128 5,9414
3 72,0975 0,3878 13,0593
4 73,6364 0,4600 19,7964
5 75,8812 0,5362 41,4346

20 2 211,8245 0,5801 14,3076
3 196,2729 0,6079 28,6233
4 199,1729 0,8115 33,0121
5 193,0513 0,9577 40,1077
10 216,7832 1,7996 96,6725

50 2 442,5453 0,3865 35,1479
3 673,3582 0,6813 58,7880
4 591,0461 1,1165 87,6738
5 647,4713 1,8125 103,3589
10 783,6463 4,4221 295,1352

100 2 995,6140 0,7185 62,4837
3 1324,5010 0,9899 108,7562
4 1372,6193 2,9986 163,3545
5 2276,7983 4,2672 242,0043
10 2195,9010 7,2489 680,5739

200 2 2253,9129 4,3965 128,2012
3 3066,0014 3,0562 220,9881
4 3391,0462 6,9616 369,5170
5 3815,7340 6,2978 396,1484
10 6676,6731 16,8759 1506,3848
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TableE.3: Average number of iterations in a replicate for problems with 6-corner polygon
approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 3.4 4.6 6.6
3 3.2 30 8.9
4 3.1 30 14.8

10 2 3.7 30 6.1
3 3.7 30 8.2
4 3.6 30 11.3
5 3.5 30 22.6

20 2 5.9 30 7.8
3 5 25.1 10.8
4 4.8 27.5 10.1
5 4.6 27.6 9.6

10 4.3 30 14.9
50 2 5.7 9.1 7.2

3 7.8 12.2 9.2
4 6.5 16.1 10.5
5 6.7 21.4 10.7

10 6.9 30 16.7
100 2 7.7 8.3 7.4

3 7.8 8.9 8.6
4 8 21.5 9.9
5 12.5 25.8 12.2

10 10.3 24.6 18.5
200 2 9.3 23.6 9.1

3 12.1 13.5 9.7
4 11.8 24.6 13
5 11.9 18 11

10 17.9 29.2 20.1
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TableE.4: % Deviations (minimum of 10 replicates) from exact solution or best solution found
of problems with 9-corner polygon approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 0.0000 0.0000 0.0000
3 0.0000 1.0668 0.0008
4 0.0000 88.2333 0.0724

10 2 0.0001 0.0052 0.0000
3 0.0000 0.6502 0.0136
4 9.9988 1.4535 11.4888
5 0.0000 6.6124 0.0036

20 2 0.0000 0.0703 0.0001
3 0.0001 0.0586 0.0000
4 0.0000 0.3615 0.0003
5 0.0000 0.1140 0.0030
10 7.6560 18.6100 0.0000

50 2 0.0000 0.0000 0.0000
3 0.0000 0.0003 0.1477
4 0.2264 0.1869 0.0000
5 0.4795 0.4795 0.0000
10 0.0000 0.0234 0.6379

100 2 0.0000 0.0000 0.0000
3 0.4926 0.4926 0.0000
4 0.0000 0.0000 0.0000
5 0.5618 0.5618 0.0000
10 16.0220 14.8488 0.0000

200 2 0.0000 0.0000 0.0000
3 0.0203 0.0202 0.0000
4 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000
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TableE.5: The computation time (in seconds) to obtain solutions in Table E.4

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 41,1842 1,6688 5,3687
3 43,0674 0,2509 9,9638
4 43,2465 0,3047 12,8942

10 2 74,2237 0,3801 9,6990
3 88,3145 0,2903 15,6506
4 92,5951 0,5873 28,0616
5 87,0980 0,7287 50,4624

20 2 255,8934 0,6852 22,5040
3 215,2495 0,8710 38,3177
4 231,4379 0,9676 55,5771
5 226,6926 1,1462 65,9708

10 264,3513 2,3872 130,4306
50 2 603,3091 0,3738 42,4155

3 830,0344 1,4252 76,6245
4 724,4100 1,7556 121,1156
5 711,3999 2,3919 154,0786

10 949,4446 5,8253 423,2668
100 2 1337,8680 0,9492 86,2144

3 1461,1124 2,4391 136,8547
4 1913,5258 1,5501 206,2945
5 3174,3348 3,1550 343,7829

10 2525,0386 9,0433 855,7308
200 2 3325,3011 2,2666 180,6078

3 3231,9998 2,8495 300,4942
4 4586,1821 6,7823 509,3648
5 3974,3998 11,6391 498,1172

10 9006,0162 19,2059 1973,4363
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TableE.6: Average number of iterations in a replicate for problems with 9-corner polygon
approximation to the elliptical regions

Number of Number of Algorithms
regions facilities SOCP-H MP-H SBH

5 2 3.4 22.6 6.5
3 3.3 30 10.2
4 3.1 30 12.4

10 2 3.7 30 8.2
3 3.9 18.3 7.9
4 3.8 30 11.7
5 3.5 30 18.8

20 2 5.8 27.7 8.6
3 4.9 27.6 10.4
4 5 25.4 13.1
5 4.7 25.5 12
10 4.5 30 14.8

50 2 5.7 7.1 7.2
3 7.4 19.1 8.9
4 6.5 19.3 10.3
5 6.3 21.7 11.7
10 7.3 30 17.5

100 2 7.7 8.9 8.1
3 7.6 16.8 8.4
4 8.4 9.2 9.5
5 12.7 15.1 12
10 9.9 23.4 15.8

200 2 9.3 10.3 9.7
3 9 9.9 10.2
4 12.2 18.7 11.7
5 10.5 24.5 10.4
10 17.9 25.2 19.4
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