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ABSTRACT 

 

IDENTIFICATION OF NONLINEARITIES IN STRUCTURAL DYNAMICS BY 

USING ARTIFICIAL NEURAL NETWORKS AND OPTIMIZATION 

 

KOYUNCU, Anıl 

M.S. Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat ÖZGÜVEN 

Co-Supervisor: Assist. Dr. Ender CİĞEROĞLU 

 

September 2013, 92 pages 

 

 

Many real life engineering structures exhibit nonlinear behavior in practice. Although 

there are sophisticated methods including the effect of nonlinearities on dynamic 

response of structures in literature, uncertainties about nonlinear elements make 

further investigation necessary for modeling nonlinearity, and this is usually achieved 

by using experimental data taken from real systems. Therefore, identification of 

nonlinearities -determining location, type and parameters of the nonlinear elements- is 

critical in dynamical structures. In this study, a new approach is proposed for 

identification of structural nonlinearities by employing neural networks. Linear finite 

element model of the system and frequency response functions measured at arbitrary 

locations of the system are used in this approach. Using the finite element model, a 

training data set is created, which appropriately spans the possible nonlinear 

configurations space of the system. A classification neural network trained on these 

data sets then localizes and determines the type of nonlinearity associated with the 

corresponding degree of freedom in the system. A new training data set spanning the 

parametric space associated with the determined nonlinearities is created to facilitate 

parametric identification. Utilizing this data set, a feed forward regression neural 

network is trained, which parametrically identifies the related nonlinearity. The 

proposed approach does not require data collection from the degrees of freedoms 

related with nonlinear elements, and furthermore, the proposed approach is 

sufficiently accurate even in the presence of measurement noise. Identified parameters 

are improved utilizing optimization. The application of the proposed approach is 

demonstrated on an example system with nonlinear elements and a real life 

experimental setup with a local nonlinearity. 

Keywords: Neural networks, Nonlinearity identification, Nonlinearity classification, 

Nonlinear vibrations, Harmonic balance method 
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ÖZ 

 

YAPISAL DİNAMİKLERDEKİ DOĞRUSAL OLMAYAN ÖZELLİKLERİN 

YAPAY SİNİR AĞLARI VE OPTİMİZASYON İLE BELİRLENMESİ 

 

KOYUNCU, Anıl 

Yüksek Lisans,  Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H.Nevzat Özgüven 

Tez Eş Danışmanı: Y. Doç. Dr. Ender CİĞEROĞLU 

 

Eylül 2013, 92 Sayfa 

 

Gerçek hayattaki birçok mekanik yapı uygulamada doğrusal olmayan özellikler 

göstermektedir. Literatürde doğrusal olmayan eleman etkilerinin sistemlere eklenmesi 

ile ilgili başarılı yöntemler bulunmasına rağmen, doğrusal olmayan özelliklerin 

modellenmesi için bu elemanlarla ilgili belirsizlikler ileri araştırmaları gerekli 

kılmaktadır ve bu da genellikle gerçek sistem üzerinden alınan ölçümlerle 

başarılmaktadır. Bu yüzden dinamik sistemlerdeki doğrusal olmayan elemanların 

belirlenmesi- yerlerinin, tiplerinin ve parametrelerinin - sistemdeki doğrusal olmayan 

özelliklerin tanımlanması açısından önemlidir. Bu çalışmada yapay sinir ağları 

kullanılarak sistemlerde doğrusal olmayan özelliklerin tanımlandığı yeni bir yaklaşım 

öne sürülmektedir. Bu yaklaşımda sistemlerin doğrusal sonlu eleman modelleri ve 

rastgele noktalardan ölçülen Frekans Tepkisi Fonksiyonları (FTF) kullanılmıştır.  

Doğrusal sonlu eleman modeli kullanılarak hesaplanan doğrusal olmayan muhtemel 

sistem veri kümeleri öğrenme işlemleri için elde edilir.  Bu veri kümeleri 

sınıflandırma sinir ağlarına öğretildikten sonra sistemdeki doğrusal olmayan 

elemanları bölgeler ve tipleri ilgili serbestlik noktasıyla birlikte bulunmaktadır. Tespit 

edilen doğrusal olmayan elemanlara ait parametrelerin bulunması için yeni bir veri 

kümesi yaratılır. Yaratılan veri kümesiyle, ilgili doğrusal olmayan elemana ait 

parametrelerin bulmak için ileri besleme regresyon sinir ağları öğretilir. Öne sürülen 

yöntem doğrusal olmayan elemanların bulunduğu noktalardan ölçüm alınmasını 

gerektirmediği gibi ölçümden kaynaklı gürültülerin olması durumunda dahi yeterince 

doğru sonuçlar alınabilmektedir. Elde edilen parametreler optimizasyon kullanılarak 

iyileştirilebilir. Önerilen yöntemin uygulanması örnek sayısal ve deneysel sistemler 

üzerinde gösterilmiştir. 

Anahtar Kelimeler: Yapay Sinir Ağları, Doğrusal Olmayan Eleman Tanımlama, 

Doğrusal Olmayan Eleman Sınıflandırma, Doğrusal Olmayan Titreşimler, Harmonic 

Denge Metodu 
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CHAPTER 1 

 

 

INTRODUCTION 

1 INTRODUCTION 

1.1 Nonlinear System Identifications 

Determining dynamical characteristic of structures which are subjected to mechanical 

vibrations is demanded to improve design process for the industry. Mathematical 

modeling of dynamic structures to predict its performance increases in importance 

with the aid of developing technology. Despite today’s computational power which 

can handle sophisticated mathematical models, uncertainties about structures make 

system identification necessary to obtain a correct model and correct prediction for 

dynamic response. 

Linear system identification has been widely used in mechanical vibrations for many 

years. Identification techniques based on modal testing are quite simple and reliable 

tools for linear systems. However, linear system assumptions are not valid in the 

presence of nonlinearities in the structures. 

Most of the engineering structures are exposes to nonlinear effects in real life. Typical 

nonlinear behaviors are mainly originated from geometric nonlinearities, material 

nonlinearities, inertial nonlinearities, damping nonlinearities and nonlinear boundary 

conditions [1, 2]. Effect of nonlinearities is modeled by coupling appropriate nonlinear 

elements to mathematical model of underlying linear system. Restoring force 

diagrams of commonly used nonlinear elements are given in Figure 1.1. 

Nonlinear system identification becomes crucial for nonlinear system modeling since 

nonlinearities appear in structures unintentionally most of the time. Purpose of the 

nonlinear system identification is summarized in four main headings. 

 Detection 

 Localization 

 Type Determination 

 Parameter Estimation 
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Figure 1.1. Commonly used nonlinear elements [3] 

1.2 Scope of Thesis 

In this thesis study, it is aimed to develop a new method for nonlinearity identification 

in structural dynamics. The primary objective is to achieve complete nonlinear system 

identification by using measurements taken from arbitrary locations on a system. 
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Main topics are summarized as follows: 

 to propose a method for nonlinearity localization and type identification using 

neural networks, 

 to propose a method for parameter estimation of nonlinearities using neural 

networks, 

 to improve the identification results using optimization algorithms. 

The outlines of the chapters are given below. 

1.3 Outline of Thesis 

Chapter 2 gives comprehensive background information about nonlinear system 

identification and a brief literature review is presented in this chapter. 

Chapter 3 reviews the nonlinear vibration analysis methods under harmonic 

excitation. Multi harmonic Harmonic Balance Method (HBM) is re-formulated in this 

chapter. Several numerical methods are introduced to solve nonlinear system 

equations. Fixed point iteration, Newton’s method and Newton’s method with arc 

length continuation are described in detail. A decoupling technique is represented in 

this chapter to reduce the number of nonlinear equations needed to be solved. Finally, 

performances of the numerical solution techniques are compared on simple case 

studies for single harmonic and multi harmonic solutions. 

Chapter 4 presents theory of artificial neural networks. Basic elements of a neural 

network are introduced in this chapter. Training data generation and training 

operations are described in detail. Network configurations and training algorithms are 

suggested for classification and regression networks. 

Chapter 5 proposes a new method for nonlinear system identification. General 

methodology of the method proposed is outlined in this chapter. Application of the 

method is demonstrated on a simple system. Identified system has unknown 

nonlinearities at unknown locations. Measurements are taken from an arbitrary 

location on the system. At the first state, locations and type of the nonlinear elements 

are determined by means of classification network. Then, parameters of the classified 

nonlinearities are identified using regression network. At the last step, identified 

parameters are optimized via using genetic algorithm. In this case study, identification 

is achieved successfully based on both noisy and noise free measurements. 

Chapter 6 presents the application of the method proposed in Chapter 5 on a real life 

structure. Linear part of the system is modeled as a MDOF system. In this 

experimental case study, identification of the nonlinearity in the system and model 
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updating of the linear part are both performed. Accuracy of the proposed method is 

demonstrated on experimental measurements. 

Chapter 7 discusses the results obtained from previous chapters. The conclusion of 

thesis is given in this chapter. Finally, contributions to nonlinear system identification 

are summarized. 

Chapter 8 gives recommendations for future studies on this subject. 
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CHAPTER 2 

 

 

LITERATURE REVIEW AND SUMMARY OF THESIS 

2 LITERATURE REVIEW AND SUMMARY OF THESIS 

Identification of structural nonlinearities in dynamic structures has become the interest 

of researchers in the past four decades [1]. Studies on this subject focused on two 

parts: localizing and characterizing the nonlinearity, and estimating the parameters of 

the nonlinearity based on experimentally measured data [2–6]. 

2.1 Nonlinearity Localization and Type Determination 

The most challenging part of nonlinearity identification is determination of location 

and type of nonlinearity; in other words, classification of the nonlinear system from 

system responses. Classification of nonlinearities in a system is a phenomenon hard to 

achieve by observation most of the time. 

Masri and Caughey [7] developed a method named as Restoring Force Surface (RFS) 

method to estimate nonlinear restoring forces using least squares Chebychev 

polynomial approach in time domain.  

Göge et al. [3] demonstrated this behavior in their study. Nonlinear characteristics of 

an aircraft prototype are investigated in the study by observing change of resonant 

frequency and displacement amplitude with respect to excitation energy. Measured 

data is showed on the plots named as “linearity plots”. Analytical linearity plots of 

common nonlinear restoring forces are obtained for a SDOF system using frequency 

domain and time domain solutions. The main idea behind the proposed method is to 

detect and characterize nonlinearities in a system via looking at analytical linearity 

plots. However, it is revealed that some nonlinearities behave like a linear one and 

could not be observed in linearity plots. Although linearity plots give some idea about 

type information for specific nonlinearities, it could not help distinguishing some 

nonlinearities especially the ones exist in a system as a combination. 

Nonlinearity classification methods are separated into two main groups. They are 

frequency domain methods and time domain methods. For nonlinearity classification 

problems, frequency domain methods are mostly preferred. He and Ewins [8] used 

frequency response functions (FRFs) obtained at different forcing levels in order to 

detect nonlinearities in a system. Hilbert transform is also a frequency domain method 

for nonlinearity detection well documented in the literature [9]. 
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The method developed by Özer and Özgüven [6] determines possible locations of 

nonlinearities and identifies their types and parameters by using describing functions, 

which is as well a frequency domain method. This method requires measurements 

collected from all degrees of freedoms (DOFs) and complete FRFs of the linear part of 

the system for localization purposes. Linear system response is needed for localization 

and type identification. Authors suggest using nonlinear system responses at low 

forcing level. However, nonlinearities such as dry friction are dominant at low forcing 

level. Moreover, type identification works, provided that nonlinearities are localized 

between two coordinates in the system which can be thought as a major limitation. 

Later, Arslan et al. [10] developed a method based on the method given in [6] for type 

and parametric identification of localized nonlinearities. The proposed method 

determines model parameters of the nonlinear system from displacement controlled 

FRF measurements. Describing functions of the localized nonlinearities are calculated 

by using classical FRF measurements and identified modal parameters. 

In a later study, Aykan et al. [11] improved the method given in [6] by calculating 

complete FRFs of linear part of the system using linear modal identification and 

modal superposition. Aykan et al. also utilize Describing Function Inversion method 

to obtain describing function of the corresponding nonlinear element based on 

measured response from nonlinear DOFs. Type and parameter of the nonlinear 

element are determined by polynomial curve fitting to describing function data points. 

A common feature of most of the methods in literature is the identification of types of 

nonlinearities by observing system responses or nonlinear restoring forces, which is a 

time consuming process. It is not suitable for identification of nonlinearity in a series 

of products due to manufacturing errors and assembly differences. 

2.2 Parameter Estimation 

Parameter estimation of nonlinearities in a classified system is an easily handled 

problem. There exist time domain and frequency domain methods targeting parameter 

identification in literature [1, 12, 13]. Although these methods have their own 

handicaps, they are promising in specific application areas. 

Conditioned Reverse Path (CRP) proposed by Richards and Singh [14] uses spectral 

analysis in frequency domain to compute the coefficients of nonlinearity matrix 

applying Gaussian random excitations. 

Another parameter identification method proposed by Atkins et al. [15]. Parameter 

identification of nonlinear system is performed via using modal restoring force surface 

method in the study. Underlying linear part of the nonlinear system is assumed to be 

known. The proposed method decouples nonlinear set of equations in modal domain 

to make the cross-modal displacements in the equations zero. Zero modal 
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displacements are achieved applying appropriate excitation forces determined by 

Volterra series approach. Considering MDOF system, satisfying zero modal 

displacements brings some practical limitation to application as well. 

Neural network classifiers have been used for parameter identification of structural 

nonlinearities [16, 17]. Early study on this subject is performed by Masri et. al [16]. 

Artificial Neural Network is used for discrete-time system identification. The method 

proposed in the study targets estimating linear and/or nonlinear parameters of a system 

expressed in Chebychev basis functions mathematically. Chen and Billings [18] utilize 

Artificial Neural Network for discrete-time parameter identification of nonlinear 

restoring forces expressed in NARMAX model mathematically. Identification 

performances of different neural networks architectures are evaluated in the study. 

Neural networks combined with fuzzy theory are utilized by Liang et al. [19] for 

parametric identification of nonlinear restoring forces. The proposed method requires 

to measure displacements, velocities and accelerations of all the degrees of freedoms 

at discrete times. Type and locations of linear and nonlinear elements are to be known 

a priori. 

The method proposed in this study, identifies nonlinearities associated with the system 

utilizing neural networks. Determining type of a nonlinearity by using neural networks 

is a new application in structural dynamics. Constructed networks are to be trained 

with sample data sets which are frequency response functions of selected points on the 

system. Nonlinear frequency responses of the system are obtained by analyzing 

possible nonlinear system configurations. It should be noted that in order to perform 

these analyses, a mathematical model of the system is required. After training the 

networks, location and type of the nonlinearity is determined by running trained 

networks with measured systems responses as the input. Parameters of the classified 

nonlinearities are identified by means of a regression network utilizing the same input 

data used for classification. Identified parameters are further improved by optimizing 

mean squared error (MSE) between the nonlinear model and the measured system. 

The method proposed does not require taking measurements from the nonlinear DOFs; 

hence, system responses measured from arbitrary locations can be used for 

identification purposes. Moreover, with the proposed method, it is as well possible to 

handle measurement noise by injecting noise into data during the training process. 

Once networks are trained, identification is very fast; hence, the method proposed is 

very suitable for identification of nonlinearities in a series of products due to 

manufacturing errors and assembly differences. 
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CHAPTER 3 

 

Equation Section (Next)Equation Section (Next)Equation Section (Next) 

NONLINEAR VIBRATION ANAYSIS UNDER HARMONIC EXCITATIONS 

3 NONL

INEAR VIBRATION ANAYSIS UNDER HARMONIC EXCITATIONS 

As outlined in the previous chapter, stepped sine testing method is to be used for 

identification purposes in this study.  Therefore, tested nonlinear systems are excited 

harmonically. This chapter devoted to the analysis of harmonically excited nonlinear 

systems, and consists of three sections. Mathematical formulation of forced response 

of nonlinear systems is given and discussed in the first section. In the following 

section, performance of commonly used numerical methods is investigated. 

Receptance decoupling method is introduced to reduced number of coupled nonlinear 

equations in the last section. 

3.1 Mathematical Formulation 

General time domain representation of equation of motion of a linear discrete system 

excited by a harmonic external forcing is given by 

          ,M x C x i H x K x f t                   (3.1) 

where [ ]M , [ ]C , [ ]H  and [ ]K  are mass, viscous damping, structural damping and 

stiffness matrices of the linear system, respectively. In Eq. (3.1),   x t  and   f t  

are response and excitation force vectors of the system, respectively. 

In case any nonlinear effect exists within a linear system, a nonlinear restoring forcing 

term appears in Eq. (3.1). Equation of motion of the nonlinear system becomes 

                ,, ,...NLM x C x i H x K x f x x f t                    (3.2) 

where   NLf t  represents nonlinear restoring forces. 

For a linear system under single harmonic forcing, external force and response of the 

system can be written in the following form  

     Im i tf t F e  , (3.3) 
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     Im i tx t X e  . (3.4) 

Response of a linear system to a periodic forcing can be written as a superposition of 

responses corresponding to each harmonic. However, the same property is not valid 

for nonlinear systems. In addition to this, even a nonlinear system is excited by a 

single harmonic forcing, system response may contain multiple harmonics. 

If a nonlinear system is excited by a single harmonic forcing as in Eq. (3.3), response 

of the nonlinear system is to be 

      
0

1

Im ih t

h
h

Xx t X e 




 
  
 
 

  , (3.5) 

where h represents the harmonic number. If the nonlinear system is excited by a 

periodic forcing, it can be written in terms of multiple harmonics by using Fourier 

series representation as follows  

      
0

1

Im
N

ih t

h
h

Ff t F e 



 
  

 

  . (3.6) 

Response of the nonlinear system is still going to be periodic and Eq. (3.5) is valid as 

well. Although external forcing includes finite number of harmonics, nonlinear system 

responds in infinite number of frequencies, which are generated by the internal 

nonlinear forcing. Internal nonlinear forcing can be expressed in multiple harmonics 

as follows 

            
0

1

, , , Im ih t

NL NL NL h
h

f x t x t F F e 




 
   

 
 , (3.7) 

where  NL h
F  is the complex amplitude vector of the 

thh  harmonic, which is a 

function of system response and frequency, and can be defined as  

         
2

0
0

1
, , , , ,

2
NL NLF X f x x d



 


   (3.8) 

         
2

0

, , , , ,                     1,  2, .... ih

NL NL
h

i
F X f x x e d h



 


    (3.9) 

where t  .   
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Substituting Eqs. (3.5)-(3.7) into Eq. (3.2) the following nonlinear equation of motion 

is obtained 

                   

   

2

0 0
1 1

0
1

 

 +                                   1,2,...,

N
ih t ih t

h h
h h

N
ih t

NL NL h
h

F e F K X K i H h M i h C X e

F F e h N

 



 


 



     

 

 


, (3.10) 

where  
0

X ,  
0NLF ,  

0
F are non-oscillatory time independent bias terms. Balancing 

the terms, the following set of complex algebraic equations is obtained. 

      
0 00NLK X F F 

 (3.11) 

                
2

NLh hh
K i H h M i h C X F F       (3.12) 

Above equations are converted into a set of real valued algebraic equations which can 

be represented in matrix form as follows 

     

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

Re Re Re

1 1 1

Im Im Im

1 1 1

Re Re Re

Im Im Im

0

0 0

0

0

NL

NL

NL

NLh h h

NLh h h

K

D

D h

X F F

X F F

X F F

X F F

X F F







     
     
     
     

 
     

 
     

       
       
        

     
     
     
     

, (3.13) 

where 

 
          

          

2

2
D h

K h M h C H

h C H K h M


 

 


   
 
   

 (3.14) 

The number of harmonics that should be used in Eq. (3.13) depends on the excitation 

frequencies and the type of nonlinearities. There is a simple but iterative method 

named as harmonic balancing method commonly used to determine effective 

harmonics. The method is well-illustrated by Worden and Tomlinson [9] on a simple 

example. In this study it is assumed that nonlinear restoring forces excite periodically. 

In some cases nonlinear restoring forcing expressions have terms, such as cos( 2 ) , 
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sin(2.5 ) , that causes aperiodicity in the system. In such cases, multitone harmonic 

balancing should be used to balance the system of nonlinear equations [9, 20]. 

Solving the resulting set of nonlinear algebraic equations by a nonlinear equation 

solver given by Eq.(3.13), forced response of the nonlinear system can be obtained. 

3.2 Numerical Solution Techniques 

In this section, solution methods of Eq. (3.13) are investigated. Principal numerical 

methods utilized in nonlinear algebraic system of equation solution are introduced and 

discussed. Derived nonlinear algebraic equations are written in a form 

     0,R   ,  (3.15) 

where    ,R   is the nonlinear residual vector. Further expanding the residual 

vector    ,R , for our problem we have 

 

   

     

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

Re Re Re

1 1 1

Im Im Im

1 1 1

Re Re Re

Im Im Im

0

0 0

0
, 0

0

,

NL

NL

NL

NLh h h

NLh h h

K

D
R

D h

X F F

X F F

X F F

X F F

X F F






    

     
     
     
     

 
     

 
     

       
       
        

     
     
     
     

 (3.16) 

3.2.1 Fixed Point Iteration 

Iterative formula for fixed point iteration can be given as follows [21] 

     1
,

i i
G 


   . (3.17) 

where,    ,
i

G   is the function stationary point of which is sought. Iteration 

procedure continues until the relative error between  
1i

  and  
i

  drops below a 

desired value. Selection of    ,
i

G   is important for convergence; however, for 
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nonlinear set of equations, fixed point iteration rarely converges to the correct root; 

hence, as suggested by Ciğeroğlu and Özgüven [22], in order to improve its 

convergence, relaxation is used.  

     
1 1

(1 )
new old old

i i i
 

 
       (3.18) 

where   is a weighting factor. If   is between 0 and 1, the modification is called 

underrelaxation and it is preferred to make a nonconvergent systems convergent. If   

is between 1 and 2, the modification is called overrelaxation and it is used to increase 

the convergence rate [22]. 

Fixed point iteration converges if there exists a constant   such that 

  , 1
i

J        (3.19) 

where   ,
i

J     is the Jacobian matrix of   ( , )
i

G   at frequency   and  

denotes matrix norm operator [23]. 

Numerical root-finding algorithms usually need a good initial guess for the first 

iteration; therefore, linear system responses can be taken as the initial guess at the 

starting frequency assuming that the effect of nonlinearity is not significant at that 

frequency. Initial guesses for the subsequent frequencies can be taken from the 

solution at the previous frequency step. 

3.2.2 Newton’s Method 

Newton’s method is one of the popular root-finding numerical solution techniques 

based on the first order Taylor series expansion. The iterative formula for Newton’s 

method is given as follows 

          
1

1
, ,

i i i i
J R 




        , (3.20) 

where, i is the iteration number. Jacobian matrix can be written in a more simplified 

form as  

  

     

    

    

   
 

0 0

0 F ,

0

,
NL

i

K

D
J

D h

 




 

 
 

 
 

 
         
 
 

  (3.21) 
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Newton’s method converges quadratically to a unique solution point ensuring 

  ( , )R   is three times differentiable [24].  

The same initial guess determination procedure described for fixed point iteration 

method can be utilized for Newton’s method as well. 

Although convergence speed of Newton’s method is quite satisfying, numerical 

solution process can be failed at the points where Jacobian is close to singular. Points 

at which Jacobian is singular are illustrated in Figure 3.1. Black and red dots on the 

curve locate singularity points for increasing and decreasing frequency directions, 

respectively.  

 

Figure 3.1 Singular points and jump phenomenon 

The singularity points are also called as turning points. Turning point phenomenon is 

encountered in nonlinear frequency response functions frequently, especially if there 

exist softening or hardening type of nonlinearities in a system. In the following 

section, a modified version of Newton’s method is utilized to handle singularity 

problems. 

3.2.3 Arc-Length Continuation Method 

Newton’s method has two main handicaps. First, Jacobian of the residual vector is 

close to singular at the turning points, second it requires a good initial guess around 

turning points. In arc-length continuation method, an additional equation is introduced 

to the set of nonlinear algebraic equations given by Eq.(3.20) and frequency   is set 

as an unknown. The added equation, called arc-length equation, forces the solution to 

trace the path by changing the frequency even if the path turns back [25, 26]. The arc-

D
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p
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m
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t 

Frequency 
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length equation is an equation of an n-dimensional sphere whose center is located at 

the previous solution (Figure 3.2) and it is given as follows 

      
2

1 1 2k k k k
s 

 
      , (3.22) 

where s is the radius of multidimensional hypothetical sphere; in other words arc-

length parameter.  k
  is the response of the nonlinear system at the 

thk  frequency 

point, 
k

 . Therefore, the iterative formula for Newton’s method with arc-length 

continuation is [27, 28] 

          
1

1
, ,

k k k k k k

i i i i i i
q q J R 




    

    (3.23) 

 

 

Figure 3.2 Solution Paths and Constraint Arc-Length Curve 

where i  is the iteration number and   ,
k k

i i
J  
   is the new Jacobian matrix which 

is given below as 

  
  

   

  
 

  

,
,

,
, ,

k

ik

i k

ik

i k k

i i

k k

i i

R
J

J
h h







 



 



 

   

  

 
   
 

 
  
 
 
 

  (3.24) 
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 
 

,q




 
 
 

  (3.25) 

       2
, 0,

T
k k k

h q q s        (3.26) 

 
     1

1
,

k k k

k

k k k
q

  





   
  

 

      
   
      

  (3.27) 

   
   
  

 
,

, 0
,

.
R

R
h







  



 
 
 

  (3.28) 

 

In order to increase the rate of convergence and decrease the computational time 

instead of using the previous solution point as the initial guess of the next step tangent 

predictor can be used. Initial guess for    at the next solution point is given as [25, 

29, 30] 

   
   
 

   
1

1 1 1 1

1

0 11

, ,
k k k k

k k

kk

R R 




   





   
   

 

 
 
 
 

,  (3.29) 

where 

   
 

  
1 1

1 1

1

,
,

k k

k k

k

R
J




 

 



 
 

 
 
 

  (3.30) 

In Eq. (3.39),  1k  is the solution at the previous solution point and  0

k  is the 

improved initial guess for the next, 
thk , solution point.  Initial guess the for 

frequency,   is given as [31] 

  
   

1

0
2

1 1
1

1 1

1

,
, 1

,k k

k k

k k

k

s

R
J

 








 


 



 

 
 



 
  
  
 

  (3.31) 

For frequency parameter, there are two solutions where sign of the second term at the 

right hand side of Eq. (3.30) is needed to be determined. Replacing   sign in the Eq. 

(3.30) with sign of determinant of Jacobian matrix works quite well for most of the 
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cases [32]. Finally initial guess     0 0 0

T
k k k

T

q    is obtained as illustrated on 

Figure 3.3. 

 

 

Figure 3.3 Constraint equations for initial guess 

For sharp turning points arc-length parameter, s should be small enough to follow the 

path; however such a small radius length for entire solution path increases 

computational cost. There is a simple method which automatically updates the arc-

length parameter as indicated below [33] 

1i i
s s
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   (3.32) 
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  (3.33) 

optN  is the optimal number of iterations and 1iN   is the number of iterations in the 

previous solution step. It is observed in this study that 
optN  should be around 3 to 5 

for arc-length continuation method to obtain a smooth solution curve. 

Desired Solution

 

s 

Last known point 

 

Initial Guess

 

Tangent 
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3.2.4 Reduction of the Number of Nonlinear Equations by Using 

Receptance Method 

In order to determine the solution of an n -DOFs system,  2 1hN n  nonlinear 

algebraic equations are required to be solved. This study basically aims classification 

and identification of localized nonlinearities in the systems where the number of 

nonlinear DOFs is significantly less than total number of DOFs. This is also the case 

in real life systems. 

Eq. (3.10) can be divided into linear and nonlinear parts, which decreases the total 

number of nonlinear equations to be solved, by using the receptance method 

developed by Menq et al. [34] . Before dividing Eq. (3.10) coordinate numbers of the 

nonlinear system should be arranged such that linear and nonlinear DOFs are grouped: 

 
l

n

 
   

    (3.34) 

Multiplying Eq. (3.13) with multi-harmonic receptance matrix yields 
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Separating equations of linear and nonlinear coordinates in Eq.(3.35), the following 

set of nonlinear equations is obtained 

 

 
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. (3.36) 

 

The number of nonlinear equations in Eq. (3.36) is significantly reduced for locally 

nonlinear systems. Nonlinear forcing vector is a function of nonlinear coordinates 

only; therefore, solving Eq. (3.36) response of the nonlinear degrees of freedoms is 

obtained. 

Response of linear coordinates can be obtained from Eq. (3.37), since the nonlinear 

forcing vector is known 
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. (3.37) 

 

3.3 Case Study: Response Calculation Using Harmonic Balance Method 

A 2-DOF lumped parameter model given in Figure 3.4 is used as a case study. 

Parameters of the corresponding model are given in Table 3.1. 

Table 3.1 Parameters of Linear Model 

1m

(kg) 
2m

(kg) 
1k

(N/m) 
2k

(N/m) 
3k

(N/m) 
1c

(Ns/m) 
2c

(Ns/m) 
3c

(Ns/m) 

1 1 1000 1000 1000 1 1 1 
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Figure 3.4 2 DOF lumped system with a linear stiffness with backlash and 

hardening cubic stiffness 

 

A symmetric gap element with a stiffness of 2000 N/m and a backlash of 0.03 m is 

coupled to the linear system between the first DOF, and ground and a hardening cubic 

stiffness with a coefficient of 8x10
4 

N/m
3
 attached between the second DOF and 

ground.  The system is excited from the first DOF with 50N harmonic forcing 

 

 

Figure 3.5  Restoring force diagram of the nonlinear elements a) cubic stiffness, 

b) symmetric gap nonlinearity 

 

Frequency response of the system is, first, obtained by using ODE45 solver of 

MATLAB by performing time integration at each frequency from 0 to 12 Hz with 0.1 

Hz increments. Time domain integration is carried out 128 f  seconds, where f  is 

the excitation frequency in Hz, to ensure that the system comes to steady state. After 

the system reaches to steady state, half of the peak-to-peak vibration amplitude is 

recorded as the maximum vibration amplitude. 
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In addition to time integration, harmonic analyses of the system are repeated by using 

single and multi-harmonic HBM methods. Resulted frequency responses obtained 

from time marching and HBM solutions are presented in Figure 3.6. Results show that 

using sufficient number of harmonics it is possible to approximate the response of the 

nonlinear system accurately. However, the frequency responses around the 

fundamental frequencies can be captured accurately by using only a single harmonic. 

 

 

Figure 3.6 Comparison of nonlinear FRFs obtained from time integration and 

HBM
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CHAPTER 4 

Equation Section (Next) 

THEORY OF ARTIFICIAL NEURAL NETWORKS 

4 THE

ORY OF ARTIFICIAL NEURAL NETWORKS 

Learning abilities of human brain are more sophisticated compared with computers. 

Despite the high level of technology, artificial intelligence is still struggling on 

learning problems which is a simple task for a human brain. Although, operation 

speed of a computer processor is million times faster than that of human nerves, 

parallel processing of impulses through the billions of neurons makes the difference 

[35]. 

Artificial neural networks draw inspiration from biological neural networks. First 

artificial neuron model is proposed by McCulloch and Pitts [36]. An artificial neural 

network model is characterized by three items: number of neurons, number of layers 

and transfer functions. 

4.1 Neurons 

Fundamental element of a neural network is called as neuron. Mathematical model of 

a simple neuron is 

      
1

RN
T

i i

i

o f w y b f w y b f n


 
     

 
 ,  (4.1) 

 y  is the input vector with  number of elements,  
T

w  is the weight vector , b  is the 

bias term, o  is the output of the neuron, n  is the net input, RN  is the number of 

elements in the input vector and f  is the transfer function used (Figure 4.1). Inputs, 

weights and bias term are all real-valued numbers.  y  is an  1RN   dimensional 

vector. 
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Figure 4.1 Simple Neuron Model 

4.2 Transfer Functions 

Transfer functions or activation functions play an important role in the structures of 

neural networks. Selection of a transfer function depends on input and output vectors 

and training algorithm. Commonly used transfer functions in neural network models 

are given in Table 4.1. In this section, three of the transfer functions in Table 4.1 are 

discussed. They are mostly preferred as transfer functions because of their 

differentiable characteristics.  

Linear transfer function is suggested to use in output layer of the network performing 

curve fitting. Log-sigmoid transfer function is used in hidden layers. Hyperbolic-

tangent sigmoid transfer function can be used in hidden and output layers. Studies on 

performance of transfer functions reveal that resulted error minimized when 

hyperbolic-tangent transfer function is used as both hidden and output layer transfer 

function for classification problems [37, 38]. 

4.3 Neural Network Architecture 

4.3.1  Multi-Neuron Neural Network Layers  

In Section (4.2), mathematical model of a single neuron is introduced. In neural 

networks, input vector  y  can be connected to multiple neurons. The group of 

neurons is called layer (Figure 4.2). Layered type networks are used in feedforward 

neural networks. In feedforward neural networks, input of a layer is output of the 

previous layer. In contrast, a neuron in a layer can feed a neuron from the following or 
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previous layers in recurrent neural networks. In this study, main attention focuses on 

feedforward neural networks. Mathematical representation of a layer in a matrix form 

is 

        o f W y b    (4.2) 

 

Table 4.1. Commonly used transfer functions [39] 

Name Input/Output 

Relation 

Name Input/Output 
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 W , b ,  o  are weight matrix, bias vector and output vector of the layer, 

respectively. Transfer function of each neuron can be different in a layer. However, 

the same transfer function is utilized throughout a layer in this study. iw  is 
th

i  row of 

the weight matrix. The single-layered network shown on the Figure 4.2 has sN  

number of neurons. Therefore, the weight matrix  W  is an S RN N  matrix. 
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Figure 4.2 Single layer neural networks 

4.3.2 Multilayer Neural Networks 

Additional layer can be employed in neural network structures to increase capability 

of the network. In a network, the last layer which generates outputs is named as output 

layer and the remaining layers are named as hidden layers. The neurons in the hidden 

layers are called hidden neurons Schematic representation of a 2-layered neural 

network is illustrated in Figure 4.3. 

It can be observed that output of each layer becomes the input of the next layer. 

Dimensions of weight matrices and bias vectors can be adjusted according to the 

problem requirements except R   and 2S  values which are determined by the length of 

the input and the target vectors. In this study, a two-layer network is used for both 

classification and identification purposes. Any continuous function can be represented 

successfully by using two-layer neural networks [40]. 

 

 

Figure 4.3  A two layer neural networks 
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4.3.3 Inputs and Targets of the Neural Networks 

Inputs of neural networks are real valued vectors. Outputs of the physical system are 

taken as input vectors for system identification. Outputs of the system are needed to be 

processed before assigning as input vector due to network efficiency. The first 

operation is scaling values of input vector into a pre-defined interval. The Second 

operation is to remove the rows which are constant throughout the input vectors [41]. 

Purpose of neural network training is to minimize the error between target and output 

vectors. Target vectors simply represent the unknown parameters for parameter 

estimation problems; whereas, for pattern recognition problems, target vectors 

represent the classification of the input vectors under consideration. Target vectors can 

be assigned to each class in different ways; however, selection of target vectors which 

are not proper may cause information loss which yields misclassification. Creating an 

n-dimensional orthogonal target vector space for n-class systems minimizes 

misclassifications. For example, one can assign numbers to each target class such as 1, 

0 and -1 for a three-class pattern recognition network. However, labeling three classes 

in a one dimensional target space might yield poor results. Therefore, the associated 

target vectors of each input should be orthogonal such as  1
1 0 0target = , 

 2
0 1 0target = ,  3

0 0 1target = . 

4.4 Neural Network Training 

Performance of a network is quantified through mean squared error (MSE) between 

the network output vector,  o , and target vector,  t  as: 

 
22

1 1

1 1
N N

i i i

i i

MSE e o t
N N

 

    . (4.3) 

Objective of a neural network problem is to minimize MSE via tuning the elements of 

weight matrices and bias vectors. The tuning process is called as training, where 

weight matrices and bias vectors are updated according to “the training algorithm”. In 

this study, MATLAB Neural Network Toolbox is used for training operations. The 

toolbox utilizes Scaled Conjugate Gradient Backpropogation (SCGB)  algorithm for 

nonlinearity localization and classification; whereas, Levenberg-Marquardt (LM) 

algorithm is used for identification of parameters of the nonlinear elements by default 

[42]. Although Levenberg-Marquardt algorithm is referred as the most efficient 

training algorithm for small and medium size networks regardless of the network type, 

computational cost coming from Hessian inversion causes drop in training speed such 



 
28 
 

that the method loses its advantage for large scale systems [42]. Because of that, 

SCGB algorithm is used in curve fitting networks in this study. 

Before starting to the training process, collected data is required to be divided into 

three subsets as: training, validation and test data sets. Weight matrices and bias 

vectors are updated based on the training data set; whereas, network error based on the 

validation data set is used as the stopping criteria in order to prevent over fitting. 

Although the test data set is not used in training, errors based on the test data set are 

useful in post processing. All the data subsets should represent the entire data set. 

Otherwise there might be large discrepancies between targets and outputs. Optimal 

division of training data set is one of the main concerns in neural network training.  

There are studies in the literature investigating proportion and distribution of the 

training data [43–46]. Shahin et al. [44] observe that best network performance is 

obtained when the proportion of training, validation and test data sets are 80%, 10% 

and 10% respectively. In a later study, they observed that the optimal data proportions 

are 56%, 20% and 24% [46]. They conclude that there is no distinct relationship 

between data proportions and network performance. Crowther and Cox [45] 

demonstrated that performance of the network is higher when the training data set is 

divided into equal portions. They also emphasize that effect of data subsets becomes 

insignificant as the number of training samples is increased. Since large number of 

training samples is used in the case studies, proportions for training data are adapted 

from MATLAB defaults. In this study, 75% of samples are allocated as training data 

set, 15% of samples are allocated as the validation data set and the remaining 10% is 

used as the test data set. 
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CHAPTER 5 

Equation Section (Next) 

NONLINEAR SYSTEM IDENTIFICATION USING ARTIFICIAL NEURAL 

NETWORKS 

5 NON

LINEAR SYSTEM IDENTIFICATION USING ARTIFICIAL NEURAL 

NETWORKS 

Theory of artificial neural networks is given in the previous chapter. In this chapter, a 

new method is introduced to identify nonlinear systems using artificial neural 

networks. Proposed method is also illustrated on case studies using simulated data. 

Finally, an experimental case study is conducted on a test rig to demonstrate the 

performance of the method on a real life system. 

5.1 Methodology 

The proposed method is composed of two parts: in the first part, a classification 

network is used to identify the locations and the types of the nonlinear elements, 

whereas in the second part, a regression network is utilized to determine the 

parameters associated with the identified nonlinearities. Classification and regression 

networks are created according to the targeting system and then created networks are 

needed to be trained. 

For training of the networks, forced response function of an arbitrary degree of 

freedom is used; therefore, a mathematical model of the system is required. There is 

no restriction on the mathematical model to be used; hence, finite element models 

(FEMs) can as well be used with the proposed method. Using the mathematical model 

together with the nonlinear elements and their possible configurations, simulations are 

performed to generate the training data by using harmonic balance method (HBM). 

Training process is to be performed using the frequency response of one of the 

coordinates, which does not need to be measured from the nonlinear DOFs. Classical 

methods require response of the system taken from nonlinearity locations [3–6, 11]. 

However, the proposed method is capable of performing identification by measuring 

nonlinear system response from an arbitrary location. In order to include the effect of 

measurement noise, input vectors are polluted by addition of random numbers having 

Gaussian distribution with zero mean and realistic standard deviation. Input training 

data is generated from the frequency response of the nonlinear system as follows: 

                1 2 1 2Re Im
T

n ny X X X X X X      (5.1) 
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Target vectors define the configurations of the nonlinear system and the parameter 

values of the nonlinear elements in type determination and parametric identification 

problems. For classification networks, length of the target vectors are determined from 

the total number of possible nonlinear system configurations; therefore, orthogonality 

of target vectors can be achieved easily. 

After obtaining the input and target vectors, the classification and regression networks 

are ready to be trained. Created networks are trained with training data at the 

following step. Classification and parameter identification operations are performed 

by simulating measured frequency responses on the trained networks. Once the 

networks are trained, classification and parameter identification can be performed 

instantaneously. Identified nonlinear system response is further improved by means of 

an optimization tool as a final step as shown in the flowchart of the proposed method 

given in Figure 5.1. 

 

 

Figure 5.1. Flowcharts of nonlinearity classification and parametric identification  
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5.2 Case Studies 

5.2.1 4-DOF Nonlinear System 

In this section, application of the proposed approach is presented on a simple 4-DOF 

system with local nonlinearities shown in Figure 5.2.  

 

 

Figure 5.2. 4‐DOF non‐linear system schematic view 

Parameters of elements of known linear system are given in Table 5.1. 

 

Table 5.1. Parameters of elements of known linear system 

1k (N/m) 2k (N/m) 3k (N/m) 4k (N/m) 4k (N/m) 

500 500 500 500 500 

1c (Ns/m) 2c (Ns/m) 3c (Ns/m) 4c (Ns/m) 5c (Ns/m) 

5 5 5 5 5 

1m (kg) 2m (kg) 3m (kg) 4m (kg)  

1 2 3 5  

 

From the physics of the problem or experiences it is possible to localize nonlinearities; 

hence, in this case study, the possible locations of the nonlinear elements are identified 

as between the ground and the first mass, and between the third and the fourth masses 

as shown in Figure 5.2. Moreover, from the physics of the problem or experience it is 

known that hardening type cubic stiffness nonlinearity and symmetric gap nonlinearity 

are the possible nonlinearities that can be encountered (Figure 5.3). This yields 8 

possible nonlinear system configurations as indicated in Table 5.2 with their 

corresponding classification network targets. 
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Figure 5.3.  Restoring force diagram of possible nonlinearities a) cubic stiffness, 

b) symmetric gap nonlinearity 

 

Table 5.2. Possible nonlinear system configurations and corresponding 

classification network targets 

Conf. 

No. 

DOF 1 and Ground DOF 3 and DOF 4 Binary Network 

Targets 

1 Hardening Cubic 

Stiffness 

Linear Stiffness with 

Backlash 

{1,0,0,0,0,0,0,0}
T
 

2 Linear Stiffness with 

Backlash 

Hardening Cubic 

Stiffness 

{0,1,0,0,0,0,0,0}
T
 

3 Hardening Cubic 

Stiffness 

Hardening Cubic 

Stiffness 

{0,0,1,0,0,0,0,0}
T
 

4 Linear Stiffness with 

Backlash 

Linear Stiffness with 

Backlash 

{0,0,0,1,0,0,0,0}
T
 

5 Hardening Cubic 

Stiffness 

Linear {0,0,0,0,1,0,0,0}
T
 

6 Linear Hardening Cubic 

Stiffness 

{0,0,0,0,0,1,0,0}
T
 

7 Linear Stiffness with 

Backlash 

Linear {0,0,0,0,0,0,1,0}
T
 

8 Linear Linear Stiffness with 

Backlash 

{0,0,0,0,0,0,0,1}
T
 

 

A two-layered classification network is created to determine the location(s) and 

type(s) of the nonlinearities. Numbers of neurons used in the hidden and the output 

layers are 50 and 8, respectively (Figure 5.4). At this stage input and target data sets 

are generated for training purposes. Nonlinear frequency response of the second DOF, 

which is not connected to any nonlinear DOF, is calculated under a 10 N harmonic 

excitation force applied at the first DOF in order to generate the input training data. 

f

x

kcx
3

a)

f

x

k

1

k

1

b)
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Frequency range of interest is taken as 0 to 8 Hz which covers all four modes of the 

system with increments of 0.01 Hz. For the simulations, the ranges of parameter 

values are selected as: 5x10
4
 N/m

3
 to 2x10

6
 N/m

3
 for cubic stiffness coefficient, and 

2.5x10
-4

 m to 0.01 m gap for the symmetric gap nonlinearity with a known linear 

stiffness of 500 N/m. For each nonlinear system configuration at about 1600 

frequency response vectors and a total of 12708 1600 8  data sets are created. 

Training input vectors are polluted by normally distributed random numbers with a 

zero mean and 1 mm standard deviation, which corresponds to 2% of the maximum 

vibration amplitude, representing measurement noise. After dividing the samples into 

training, validation and test data; training operation is performed, which is completed 

after 198 epochs. A confusion matrix on which network outputs and network targets 

are compared is presented in Figure 5.5. It shows that 100% classification of 

nonlinearities in the system is achieved as indicated by the last column or row of the 

confusion matrix for training, validation and test sets.  

 

 

Figure 5.4. Classification network 

After determining location(s) and type(s) of the nonlinearities, parameters of the 

nonlinear elements are identified by means of a regression network. Eight regression 

networks are created for all nonlinear system configurations. For all nonlinear system 

configurations, 50 neurons are used in the hidden layer; whereas for the output layers 

2 neurons and 1 neuron are used for configurations 1 to 4 and 5 to 8, respectively 

(Figure 5.6), since there is only one parameter identified in configurations 5 to 8 . 

Input data sets generated for the classification network can as well be used in the 

regression network. However, in this case, target vectors are the unknown parameters 

of the nonlinear elements corresponding to each input data vector. Using these data 

and the identified configuration, regression networks are trained similar to the 

classification network. Correlation coefficients of the resulted regression networks are 

presented in Table 5.3. 
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Figure 5.5. Confusion matrices of classification network training 

 

Figure 5.6. Regression network 
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Table 5.3. Correlation Coefficients for Each Regression Network 

 Training Data 

Set 

Validation Data 

Set 

Test Data 

Set 

Configuration 1 0.999 0.998 0.998 

Configuration 2 0.998 0.997 0.997 

Configuration 3 0.997 0.992 0.992 

Configuration 4 0.997 0.994 0.993 

Configuration 5 0.997 0.995 0.995 

Configuration 6 0.990 0.992 0.991 

Configuration 7 0.999 0.996 0.996 

Configuration 8 0.996 0.996 0.996 

 

In this study it is observed that MSE of noise free training inputs are less than that of 

noise injected ones. But, it should be remembered that error between network targets 

and corresponding outputs does not indicate actual performance of the network. 

Network training is performed with generated data while the network is going to be 

simulated with test data. In real life applications test data always has uncertainties and 

noise. If a regression network is trained with noise free generated data, the network 

may fail to identify the measured data due to overfitting. Therefore, it is preferred to 

use polluted training data. 

Now, let us consider as an example the following nonlinear elements in the system 

given in Figure 5.2. A hardening cubic stiffness with a coefficient of 10
6 
N/m attached 

between the first DOF and ground and a symmetric gap element with a stiffness of 

500 N/m and a backlash of 0.005 m between the third and the fourth DOFs is 

considered. In order to simulate the experimentally measured frequency response from 

the second DOF, time domain solution of the nonlinear system, representing harmonic 

test result, is obtained by using ODE45 solver of MATLAB by increasing frequency 

from 0 to 8 Hz with 0.01Hz increments. Steady state oscillation amplitudes are used to 

obtain frequency response values at the corresponding frequency. In order to represent 

the effect of measurement noise, data obtained from time marching is polluted by 

adding random numbers having a normal distribution with zero mean and 0.5 mm 

standard deviation. The resulting frequency response function is given in Figure 5.7, 

which is used as the input to the trained networks. 
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Figure 5.7. Displacement of the second DOF 

Classification and parameter identification process is also repeated by considering 

noise free response data. The results obtained for noisy and noise free cases are 

presented in Table 5.4 and 0, respectively. Comparison of identified and actual system 

responses are presented for noisy and noise free measurement cases in Figure 5.8 and 

Figure 5.9 respectively. It should be noted that, in the training process a single 

harmonic HBM is used to generate training data; whereas, in the simulated 

measurement data, time marching method is utilized. Even though identification is 

performed by using time domain simulation results of the system; it shows that the 

identified system response is very close to the actual system for both noisy and noise 

free measurement cases. However, it should be noted that, there is a slight increase in 

the error for the identified cubic stiffness parameter if noisy measurement is used. On 

the other hand, the error obtained for the parameters decreases if noise free 

measurements are used. However, such cases are not very realistic, since in real life 

applications it not possible to use noise free measurements. 

Number of nonlinear system configurations and size of the training data generated 

depend on the number possible nonlinearities and their possible locations in the 

system. Number of nonlinear equations solved for generating training data also 

depends on the number of nonlinear elements used in the analysis. Therefore, for 

realistic finite element models, data generation process is a time consuming one, 

which can be overcome by employing reduction methods. In this study, the number of 

nonlinear equations is reduced by employing receptance method [34], which is a very 

effective method, especially if the nonlinearities are local. 
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Table 5.4. Classification and parameter identification results with noise free 

measurements (network trained with noisy data) 

 Simulation with Noise Free Measurement 

Target Vector Cubic Stiffness 

(N/m
3
) 

Backlash (m) 

Actual 

System 

{1,0,0,0,0,0,0,0}
T
 1000000 0.005 

Identified 

System 

{0.999,0,0,0.005,0,0,0,0}
T
 

 

1015500 0.004935 

Error MSE= 3x10
-6

 1.2% 1.3% 

 

Table 5.5. Classification and parameter identification results with noisy 

measurements (network trained with noisy data) 

 Simulation with Noisy Measurement 

Target Vector Cubic Stiffness 

(N/m
3
) 

Backlash 

(m) 

Actual 

System 

{1,0,0,0,0,0,0,0}
T
 1000000 0.005 

Identified 

System 

{0.999,0,0,0.002,0.008,0,0,0}
T
 

 

1058882 0.005568 

Error MSE= 8.4x10
-6

 5.9% 11.4% 

 

 

Figure 5.8. Comparisons of actual and identified system responses for noise free 

measurement  
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Figure 5.9. Comparisons of actual and identified system responses for noisy 

measurement case 

 

In this study, two-layered networks give considerably accurate results; however, the 

number of neurons used in hidden layers should be optimized in order to achieve this 

accuracy. Therefore classification and identification trainings are repeated using 

different number of hidden neurons. Comparison of networks is performed by means 

of training results of test data sets. Classification results listed in Table 5.6 show that 

hidden neuron numbers between 20 and 50 improve performance of the classification 

network.  

 

Table 5.6. Classification network performance for different hidden neurons 

Number 

of Hidden 

Neurons 

MSE Classification 

Performance 

Number 

of Epoch Training Validation Test 

10 88.356 10  
89.146 10  

89.692 10  100% 687 

20 88.078 10  
88.374 10  

86.833 10  100% 366 

30 86.912 10  
86.912 10  

84.806 10  100% 284 

40 84.264 10  
84.185 10  

84.659 10  100% 336 

50 85.383 10  
86.789 10  

86.251 10  100% 301 

60 51.018 10  
52.923 10  

69.532 10  99.9% 234 

70 71.300 10  
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Results of identification training for Configuration 1 are tabulated for different hidden 

neuron numbers in Table 5.7. It can be seen that, based on test data results, best 

identification results are obtained for 50 hidden neurons. However, increasing hidden 

neuron numbers from 10 to 50 also gives accurate results for regression network. 

 

Table 5.7. Regression network performance for different hidden neurons 

Number of 

Hidden 

Neurons 

Correlation Coefficient R Performance 

(MSE) 

Number of 

Epoch Training Validation Test 

10 0.9989 0.9966 0.9964 81.96 10  95 

20 0.9994 0.9972 0.9967 81.53 10  142 

30 0.9987 0.9973 0.9974 82.60 10  115 

40 0.9998 0.9970 0.9967 79.12 10  312 

50 0.9979 0.9965 0.9963 73.13 10  170 

60 0.9997 0.9938 0.9941 85.91 10  292 

70 0.9985 0.9976 0.9977 91.01 10  237 

 

Since regression networks used in the case study are medium sized, LM algorithm can 

be used as training algorithm. For the regression network of Configuration 1, 

performance of LM training algorithm is compared with that of SCGB algorithm. 

Comparison is made by using correlation coefficients of test data sets and total 

training time. Training results are tabulated in Table 5.8. Although convergence rate 

of the LM algorithm is better than that of SCGB algorithm, training performance and 

training speed of SCGB algorithm are clearly better. 

 

Table 5.8. Comparison of SCGB and LM algorithms for the regression network 

 Number 

of 

Hidden 

Neurons 

Correlation Coefficient R  

Training 

Time (s) 

Number 

of Epoch  

Training 

 

Validation 

 

Test 

SCGB 10 0.9989 0.9966 0.9964 1 95 

20 0.9994 0.9972 0.9967 1 142 

30 0.9987 0.9973 0.9974 1 115 

LM 10 0.9993 0.9770 0.9751 183 11 

20 1 0.9946 0.9948 1220 12 

30 0.9999 0.9964 0.9965 3396 10 
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Classification and regression networks are defined as two-layered networks with one 

hidden layer. Effect of number of hidden layers on the network performances is 

investigated by introducing an additional hidden layer to the networks. Results are 

given in 0 and Table 5.9. Comparison based on performance of test data reveals that 

performances of the single hidden layered networks are superior to 2 hidden layered 

networks. 

Using the measured system responses as the inputs of the trained networks, 

nonlinearities in a 4-DOF system are classified and the parameters associated with 

them are identified. The results obtained show that the proposed method is capable of 

identifying the locations and types of the nonlinearities and the parameters associated 

with them even in the presence of measurement noise.  

 

Table 5.9. Performance of one hidden layered and two hidden layered regression 

network with different hidden neurons 

Number 

of 1
st
 

Layer 

Hidden 

Neurons 

Number 

of 2
nd

 

Layer 

Hidden 

Neurons 

Correlation Coefficient R  

Training 

Time (s) 

Number 

of 

Epoch 
 

Training 

 

Validation 

 

Test 

 

0 

10 0.9989 0.9966 0.9964 1 95 

20 0.9994 0.9972 0.9967 1 142 

30 0.9987 0.9973 0.9974 1 115 

 

10 

10 0.9992 0.9949 0.9936 1 98 

20 0.9949 0.9914 0.9892 0.8 53 

30 0.9990 0.9908 0.9917 1 117 

 

20 

10 0.9990 0.9950 0.9955 1 87 

20 0.9993 0.9960 0.9949 1 85 

30 0.9987 0.9955 0.9951 1 96 

 

30 

10 0.9994 0.9969 0.9968 2 92 

20 0.9961 0.9959 0.9961 2 80 

30 0.9990 0.9969 0.9965 2 92 
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Table 5.10. Performance of one hidden layered and two hidden layered 

classification network with different hidden neurons 

Number 

of 1st 

Layer 

Hidden 

Neurons 

Number 

of 2nd 

Layer 

Hidden 

Neurons 

MSE  

Training 

Performance 

(s) 

 

Number 

of 

Epoch 

 

Training 

 

Validation 

 

Test 

 

0 

10 88.356 10

 

89.146 10

 

89.692 10

 

%100 687 

20 88.078 10

 

88.374 10

 

86.833 10

 

%100 366 

30 86.912 10

 

86.912 10

 

84.806 10

 

%100 284 

 

10 

10 85.983 10

 

86.293 10

 

85.938 10

 

%100 680 

20 83.703 10

 

84.353 10

 

86.668 10

 

%100 402 

30 61.372 10

 

61.395 10

 

 

61.434 10

 

%100 639 

 

20 

10 71.113 10

 

71.224 10

 

 

71.163 10

 

%100 436 

20 71.195 10

 

71.217 10

 

 

71.256 10

 

%100 414 

30 85.392 10

 

85.536 10

 

 

86.379 10

 

%100 336 

 

30 

10 88.131 10

 

87.884 10

 

88.942 10

 

%100 485 

20 71.094 10

 

71.106 10

 

 

71.235 10

 

%100 310 

30 84.316 10

 

84.898 10

 

 

83.805 10

 

%100 304 
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5.3 Optimization of Identified Parameters using Genetic Algorithm 

Identified parameters are further improved by utilizing an optimization based 

identification procedure. Optimization is performed by using MATLAB Global 

Optimization Toolbox. Genetic algorithm is used as an optimization method. Inputs 

and outputs of the regression network are used to define the optimization problem. 

Mean squared error between the measured frequency response and calculated 

frequency response based on identified parameters is taken as objective function. 

Optimization routine which attempts to find nonlinear parameter values minimizes the 

objective function give in Eq. (5.2). 

      
2

1

1
 , ,

N
Measured Calculated

i i c

i

Objective Function X X k
N

  


    (5.2) 

Each ck  and   pairs are the individuals in genetic algorithm, where a population is a 

set of individuals.  Number of parameter pairs in a population is named as population 

size. Genetic algorithm calculates objective functions for each individual in a 

population at each step. Depending on scores of the objective function, the population 

is modified for the next iteration. The individuals which have the lowest scores are 

kept and directly transferred to the next population. The individuals which have the 

highest scores are modified with random numbers sticking to optimization problem 

constraints. The rest of the individuals are modified by interchanging parameters 

between themselves. At each iteration, the individuals get closer and the optimization 

problem converges to an optimum point. If the selected individuals are near the 

optimum point, convergence speed of the genetic algorithm is increased. 

By default, genetic algorithm selects random parameter values within the optimization 

bounds as an initial population. Parameters obtained from regression network 

simulation are taken as starting values to reduce total number of iterations for 

optimization. For instance for the example problem considered, coefficient of cubic 

stiffness and backlash values obtained from the trained network are 1015500 N/m
3
 and 

0.00475 m, respectively. Difference between target parameters and regression network 

outputs named as absolute identification error is used to set the bounds of the 

parameter space. Afterwards, fractional distribution of the absolute identification 

errors among the training samples is calculated. Identification errors of the case study 

parameters with respect to cumulative probability distributions are given in Figure 

5.10 and Figure 5.11. Parameter space is chosen such that absolute identification error 

of the training outputs should be within the limits obtained from absolute error figures. 

For instance, for parameter optimization of the identified system, upper and lower 

bounds of the parameters are chosen to fall in the error bound of the 90% of the 

network outputs. Error of the cubic stiffness and backlash are determined as ±75000 

N/m
3
 and ±6x10

-4
 m from Figure 5.10 and Figure 5.11, respectively Parameters of the 
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optimization problem are given in Table 5.11. Optimization is performed according to 

the parameters given in Table 5.11. Optimized parameters are given in Table 5.12.  

 

 

Figure 5.10. Absolute error of cubic stiffness coefficients with respect to 

cumulative probability 

 

 

Figure 5.11. Absolute error of backlash with respect to cumulative probability 
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Table 5.11. Optimization problem setup 

Global Optimization Toolbox Parameters Values 

Solver ga 

Fitness Function @optim_fun 

Number Variables 2 

Lower Bound [983800 0.0049] 

Upper Bound [1133800 0.0062] 

Population Size 100 

Initial Population [1058882 0.00556] 

Fitness Scaling Function Rank 

Selection Function Stochastic Uniform 

Elite Count 10 

Crossover Fraction 0.8 

Mutation Constraint Dependent 

Crossover Function Scattered 

Migration Direction Forward 

Migration Fraction 0.2 

Migration Interval 20 

Stopping Criteria  

Generations 100 

Time Limit Inf 

Fitness Limit -Inf 

Stall Generations 50 

Stall Time Limit Inf 

Function Tolerance 1e-14 

 

Table 5.12. Optimization results 

 Simulation with Noise Free 

Measurement 

Simulation with Noisy 

Measurement 

Cubic 

Stiffness 

(N/m
3
) 

Backlash 

(m) 

Cubic 

Stiffness 

(N/m
3
) 

Backlash 

(m) 

Actual System 
1000000 0.005 1000000 0.005 

Network Identified 

System Parameters 
1015500 0.004935 1058882 0.005568 

Optimization 

Identified System 

Parameters 

996997 0.00502 990997 0.005101 

Error in Network 

Identification  
1.2% 1.3% 5.9% 11.4% 

Error in Optimization 

based Identification 
0.3% 0.4% 0.9% 2.0% 
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Frequency response of second DOF is compared with optimized results in Figure 5.12 

and Figure 5.14. Figure 5.13 and Figure 5.15 show first resonance region of the 

frequency responses. 

 

 

Figure 5.12. Comparisons of actual and optimized system responses for noise free 

measurement case 
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Figure 5.13. Comparisons of actual and optimized system responses around the 

first resonance for noise free measurement case 

 

Figure 5.14. Comparisons of actual and optimized system responses for noisy 

measurement case 

 

  

Figure 5.15. Comparisons of actual and optimized system responses around the 

resonance for noisy measurement case 
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5.4 Effect of Training Data Space on Identification 

One of the important issues about neural networks is to generate training data space to 

map the actual system. Identification results can be inaccurate when an identified 

system is outside the bounds of the training data space. Three additional frequency 

responses are generated for nonlinear system Configuration 1. These frequency 

responses are on the boundary of the space and outside the space (Figure 5.16). 

Classification and parameter estimation results of the test data are given in Table 5.13 

and Table 5.14. For test data B, C and D classification error is increased comparing 

with classification error of test data A. Parameter estimation of test data B and C is 

achieved in an acceptable error bound. However, identified parameters of test data D 

are not accurate. 

 

 

Figure 5.16. Parameter domains for the regression network 

Table 5.13. Classification results of test data B, C and D 

 Test Data B Test Data C Test Data D 

 Target Vector Target Vector Target Vector 

Actual 

System 

{1,0,0,0,0,0,0,0}
T
 {1,0,0,0,0,0,0,0}

T
 {1,0,0,0,0,0,0,0}

T
 

Identified 

System 

{1,0,0,0.880,0,0,0,0}
T
 {1,0,0,0.897,0,0,0,0.106}

T
 {0.839,0,0,0,0.4,0,0,0}

T
 

  

Error MSE= 0.096 MSE= 0.102 MSE= 0.0235 
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Table 5.14. Regression results of test data B, C and D 

 Test Data B Test Data C Test Data D 

 Cubic 

Stiffness 

(N/m
3
) 

Backlash 

(m) 

Cubic 

Stiffness 

(N/m
3
) 

Backlash 

(m) 

Cubic 

Stiffness 

(N/m
3
) 

Backlash 

(m) 

Actual 

System 

2000000 0.01 2500000 0.015 25000 41.25 10

  

Identified 

System 

61.97 10

 

0.00986 62.39 10

 

0.013  41.15 10

 

51.04 10

 

Relative 

Error 

0.15% 1.4% 4.4% 16% 54% 91% 

 

In order to demonstrate effect of optimization based identification on nonlinear system 

identification, only the identified parameters of test data D, which have the largest 

error, are improved by using optimization. Optimized parameters are given in Table 

5.15. Although identified parameters are erroneous, they represent a narrow space and 

good starting direction for the optimization based identification. However, the results 

obtained by the optimization method contains more error compared to point D which 

suggest to increase the population size or run the optimization more than once in order 

to converge to the actual solution. 

 

Table 5.15. Optimization results of test data D 

 Test Data D 

Cubic Stiffness 

(N/m
3
) 

Backlash (m) 

Actual System 25000   

Network Identified 

System Parameters 

1150.0 51.04 10  

Optimization Identified 

System Parameters 

23327 41.13 10  

Error in Network 

Identification 

54% 91% 

Error in Optimization 

based Identification 

6.7% 9.6% 

 

 

41.25 10
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CHAPTER 6 

 

EXPERIMENTAL VERIFICATION OF NONLINEAR SYSTEM 

IDENTIFICATION USING ARTIFICIAL NEURAL NETWORKS 

6 EXPERIMENTAL VERIFICATION OF NONLINEAR SYSTEM 

IDENTIFICATION USING ARTIFICIAL NEURAL NETWORKS 

6.1 Experimental Study 

In this section, application of the proposed identification method on a real-life system 

is considered. An unknown nonlinearity on the test set-up is to be identified using 

neural networks and optimization based identification (Figure 6.1). The same test set-

up was first used by Ferreira [47] for parameter identification of a known, cubic, 

nonlinearity existing in the system. Then, Siller [48] performed nonlinear modal tests 

of the same set-up in order to show the validity of the explicit formulation method 

developed in his study. A recent study is performed by Aykan [2] in order to locate 

and identify the type and parameters of the nonlinearity in the test rig. 

 

 

Figure 6.1 The test rig 

Detailed geometric properties and the material specifications of the test-rig 

components are given in Figure 6.2. 
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Figure 6.2 Detailed geometric properties of the test rig (dimensions in mm) 
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The test set-up basically consists of rectangular cross sectioned cantilever beam and 

two identical thin strips. The thin strips are clamped at both ends lying in the 

transverse direction to the beam. The strips are attached to the free end of the 

cantilever beam from the midpoint. Fixed boundary conditions of the cantilever beam 

and the strips are obtained by clamping them to two bulky blocks with four M10 bolts. 

Each block is fixed to the ground plate by means of four M10 bolts. The beam has a 

length of 420 mm and a cross section of 8x12 mm. The strips have a length of 380 mm 

and a cross section of 1.5x13 mm. Material properties of the beam and the strips are 

given in Table 6.1. 

 

Table 6.1 Physical properties of the components used in experiment  

 Cantilever Beam Thin Strips 

Young Modulus, E  2/N m   9
200 10  

9
200 10  

Density,    3/kg m   7850  7850  

Poisons Ratio,     0.3  0.3  

Hysteretic Damping,  %   0.3  0.3  

 

The cantilever beam corresponds to the linear part of the test rig; whereas, nonlinear 

behavior is imposed on the system due to the thin strips attached at the free end at of 

the cantilever beam. Thin strips act as a hardening cubic stiffness due to the geometric 

nonlinearity, which becomes significant after a certain displacement. 

The structure is excited vertically at the end of the cantilever beam by using a shaker. 

Excitation force is transmitted from the shaker to the structure by means of a steel rod; 

where, a force transducer is placed between the rod and the beam. Two accelerometers 

are attached at the end and in the middle of the cantilever beam in order to measure 

the response (Figure 6.3). 

Nonlinear testing is the most challenging part of the experiment, since it is required to 

collect frequency responses at constant forcing levels. Sinusoidal excitation is 

preferred as the excitation for two reasons. First, the frequency of the sinusoidal 

excitation dominates the response frequency of the structure and it yields good signal-

to-noise ratio. Second, it is easier to control sinusoidal excitation, which is necessary 

to keep the applied forcing at a constant level. 
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a)  b) 

 

 
c) 

Figure 6.3 a) The shaker used in the experiment b) Force transducer located at 

the tip of the beam c) Accelerometers at the tip point and the midpoint 

 

During the test, the test rig is excited at a frequency until the system reaches to the 

steady-state, then the excitation frequency is increased or decreased to the next 

frequency point. This is called as step-sine testing. Step-sine testing takes long testing 

time, which can be thought as a main disadvantage. Test frequency range is limited to 

the frequencies around the first resonance in order to shorten the testing time. 

Frequency limits is obtained by using random profile excitation in a quick way. In the 

experiment, the step sine testing is performed from 30 Hz up to 70 Hz with 0.1 Hz 

increments. Magnitude and frequency of the excitation forcing is controlled via using 

a closed-loop controller. Flowchart of the closed-looped feedback control of the test 

set-up is given in Figure 6.4. 
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Figure 6.4 Flow chart of the testing process [49] 

The time histories of the accelerations are measured by the accelerometers located on 

the structure. Frequency responses of the measured coordinates are obtained by means 

of harmonic estimator method [50]. At each frequency step, this method estimates 

amplitude and phase angle of a sine wave which oscillates in the excitation frequency. 

Parameters of the sine wave calculated for the best least squared error between the 

measured response and the sine wave. It means that higher harmonic effects are 

disregarded.  

One of the main characteristic of nonlinear structures with cubic stiffness is jump 

phenomenon and it causes different FRFs for increasing and decreasing frequency 

directions. It should be noted that nonlinear systems can have multiple solutions at a 

single frequency. In the numerical analysis in frequency domain, stable and unstable 

solutions can be obtained if a sufficiently close initial guess is given. However, this is 

not the case in experimentation; therefore, during the test, it is observed that stepped 

sine testing is failed to track the response path in the increasing frequency direction. 

Eventually, response of the system jumps to the decreasing frequency response path at 

particular frequencies where multiple solutions exist. In order to handle these 

situations, step-sine tests are performed on systems in backward sweep directions. 

The step sine-testing is repeated for different forcing levels. Frequency response of the 

end point and midpoint of the beam are given in Figure 6.5 and Figure 6.6, 

respectively. 
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Figure 6.5 Frequency responses measured at tip of the beam  

 

Figure 6.6 Frequency responses measured at the midpoint of the beam  
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6.2 Finite Element Modeling of the Test Rig  

Finite element model of the cantilever beam and the thin strips are created in ANSYS 

Mechanical APDL. The cantilever beam is modeled by using BEAM188 element with 

10 nodes and 6 DOFs at each node And the thin strips are modeled as a shell structure 

by using SHELL181 element with 10 shell elements and 6 DOFs at each node. A point 

mass is attached to the tip of the beam by using MASS21 element in order to represent 

the effect of the force transducer and the accelerometer. The cantilever beam and the 

strips are rigidly connected to each other by using four MPC184 elements at the tip. 

The nodes at the clamping regions are fully fixed for 6 DOFs. Finally 1 N load is 

applied to the tip of the beam in +Y direction (Figure 6.7). 

 

 

Figure 6.7 Finite element model of the test rig 

After the finite element model is established, harmonic analysis is performed from 30 

Hz to 70 Hz with 0.1 Hz increments. Displacements are calculated for the tip point 

(NODE 57) and midpoint (NODE 62) at each frequency point. Receptance of the tip 

point and midpoint are obtained from the FEM analysis and the tests are shown in 

Figure 6.8 and Figure 6.9, respectively. Results show that linear assumption is not 

valid for the tested structure. Increasing the level of applied force, deviates the 

response of the beam from the linear one. Although the response of the beam under 

0.001N excitation is close to the one obtained from the FEM analysis, there is a slight 

shift in the results. It is considered that the difference is caused by the mass and 
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stiffness effect of the shaker. These disturbing effects that may come from the shaker 

are discussed by Siller [48]. 

 

 

Figure 6.8 Comparison of linear and measured frequency responses at the tip 

point 

 

 

Figure 6.9 Comparison of linear and measured frequency responses at the 

midpoint 

30 35 40 45 50 55 60 65 70
10

-5

10
-4

10
-3

10
-2

10
-1

Frequency [Hz]

T
ip

 P
o

in
t 

R
ec

ep
ta

n
ce

 [
N

/m
]

 

 

FEM Analyis

Test (0.01 N)

Test (0.1 N)

Test (0.5 N)

Test (1 N)

30 35 40 45 50 55 60 65 70
10

-5

10
-4

10
-3

10
-2

Frequency [Hz]

M
id

p
o

in
t 

R
ec

ep
ta

n
ce

 [
N

/m
]

 

 

FEM Analysis

Test (0.01 N)

Test (0.1 N)

Test (0.5 N)

Test (1 N)



 
57 
 

6.3 Identification of the Nonlinearity Using Neural Networks 

In this section, the nonlinear behavior caused by the strips is identified using neural 

networks. In addition to nonlinearities, also uncertainties caused by the shaker effect 

are going to be identified. Identification process for type determination and parametric 

identification consist of three main steps: training data generation, network training 

and test data simulation. 

Before generating training data, the nonlinear structure is dived into three 

substructures which are the cantilever beam (known linear part), unknown nonlinear 

element and unknown linear elements caused by the thin strips. Mass and stiffness 

matrices of the cantilever beam are generated from the finite element model; where, 

inactive DOFs are reduced from the mass and stiffness matrices. Since the cantilever 

beam is excited in Y direction, only the DOFs associated with displacement in Y 

direction and rotation about Z axis are considered. Displacements of the rest of the 

DOFs are zero for each node. 60 DOFs linear system is reduced to a 20 DOFs lumped 

system by using Guyan reduction technique (Figure 6.10). Reduced order model 

decreases matrix dimensions of linear equations in Eq. (3.37), whereas, the number of 

nonlinear equations are not affected since receptance method is utilized. 

 

 

Figure 6.10 Finite element model of the cantilever beam used in the experiment 
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Analytical model of the test rig is constructed by coupling a nonlinear element, a 

concentrated mass and a linear stiffness at NODE 2. The accelerometer at the 

midpoint is modeled as a concentrated mass coupled to NODE 7 (Figure 6.11). 

Nonlinear frequency response of the measurement points of the analytical model are 

calculated using single harmonic HBM. Frequency responses are generated at 0.1 N 

excitation force from 30 Hz to 70 Hz. It should be noted that type of the nonlinear 

element is unknown; therefore, possible nonlinear system configurations are generated 

first. Test results show that while excitation force increases, FRF curves both shift and 

decrease in amplitude. Looking at the test results, cubic stiffness and dry friction are 

selected as possible nonlinearities for this case (Figure 6.12). Possible nonlinear 

system configurations are listed in Table 6.2. 

 

 

Figure 6.11 Schematic representation of the analytical nonlinear model of the test 

rig 

 

 

 

Figure 6.12 a) Restoring force diagram of hardening cubic stiffness b) Restoring 

force diagram of single slope macro-slip element 
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Table 6.2 Possible nonlinear system configurations 

Conf No. NODE 2 and Ground Binary 

Network 

Targets 

1 Hardening Cubic 

Stiffness 
1

0

 
 
 

  

2 Dry Friction with Single 

Slope 
0

1

 
 
 

 

 

A parameter space is created for each configuration. Parameters are selected such that 

resonances of the frequency responses fall within the working frequency range. Lower 

and upper bound of the parameters are given in Table 6.3. 160000 different frequency 

responses are generated for each configuration for training operations. Before starting 

the training, generated data sets are polluted with noise to improve generalization. Test 

results obtained from the experiment show that noise level of measurements are quite 

low. Therefore, generated data sets are polluted with random distributed numbers 

having 
7

5 10


  mm standard deviation and zero mean. 

 

Table 6.3 Lower and upper bounds of the unknown parameters  

Parameter Lower Bound Upper Bound 

c
k  6 3

5 10  N/m   
9 3

1 10  N/m  

d
k  4

5 10  N/m  
8

5 10  N/m  

N  0.015 N  0.075 N  

unknown
k  3

1 10  N/m  
4

1 10  N/m  

unknown
m  0.01 kg  0.07 kg  

 

Two classification networks are constructed with 2 layers, 50 hidden layer neurons 

and 2 output layer neurons for midpoint and tip point measurements (Figure 6.13). 

Generated data sets are dived into three groups for training (75%), validation (15%) 

and testing (10%) operations. Created networks are trained with input training data 

and corresponding target configuration vectors. 
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Figure 6.13 Classification network of the test rig 

Training stage is completed after 352 and 504 epochs for midpoint and tip point 

classifications. 100% classification of training data sets is achieved for both 

classification networks as represented by the confusion matrices in Figure 6.14 and 

Figure 6.15. Configuration of the nonlinearity in the test rig is classified by simulating 

measured FRFs on midpoint classification network and tip point classification network 

separately. Simulation results are given in Figure 6.14. 

 

 

Figure 6.14 Confusion matrices obtained from tip point classification process 
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Figure 6.15 Confusion matrices obtained from midpoint classification process 

Table 6.4 Classification results 

 Actual System Classified System Error 

Tip point 

Classification 
 1 0

T
  0.9991 0.0009

T
 7

 7.7204 10MSE


    

 

Midpoint 

Classification 
 1 0

T
  0.9988 0.0012

T
 6

 1.4753 10MSE


   

 

Classification results show that nonlinear behaviors of the strips are best explained 

with cubic stiffness nonlinearity. After determining the type of nonlinearity, regression 

networks are created for parameter identification of the cubic stiffness and the other 

linear elements (Figure 6.16). 

1 2

1

2

119839

49.9%

0

0.0%

100%

0.0%

0

0.0%

120161

50.1%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

Target Class

O
u

tp
u

t 
C

la
s

s

Training Confusion Matrix

1 2

1

2

24159

50.3%

0

0.0%

100%

0.0%

0

0.0%

23841

49.7%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

Target Class

O
u

tp
u

t 
C

la
s

s

Validation Confusion Matrix

1 2

1

2

16002

50.0%

0

0.0%

100%

0.0%

0

0.0%

15998

50.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

Target Class

O
u

tp
u

t 
C

la
s

s

Test Confusion Matrix

1 2

1

2

160000

50.0%

0

0.0%

100%

0.0%

0

0.0%

160000

50.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

Target Class

O
u

tp
u

t 
C

la
s

s

All Confusion Matrix



 
62 
 

 

Figure 6.16 Regression network of the test rig 

2 layered regression networks with 50 hidden layer neurons and 3 output layer 

neurons are trained with previously created input training data sets and corresponding 

target parameter vectors for coefficient of cubic stiffness, coefficient of unknown 

linear stiffness and unknown mass (Figure 6.16). Training operations are completed at 

the end of 788 and 1000 epochs for tip point and midpoint regressions. Regression 

results with correlation coefficients are given in Figure 6.17 and Figure 6.19. Trained 

regression networks are simulated with the frequency responses measured from the 

midpoint and the tip point. Simulation results give the parameters of identified 

elements in Table 6.5. 

 

Table 6.5 Identification results 

Parameter Tip Point Identification Midpoint Identification 

 3
N/m 

c
k  8

6.346 10  
8

5.860 10  

  N/m
unknown

k  3
5.989 10  

3
5.984 10  

  kg
unknown

m  0.0608  0.0612  

 

Measured frequency response curves of tip point and midpoint of the cantilever beam 

are compared with the ones which are calculated based on the identified parameters in 

Figure 6.18 and Figure 6.20 respectively. 
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Figure 6.17 Regression plots of the tip point identification 

 

Figure 6.18 Comparison of calculated tip point frequency responses based on tip 

point  and midpoint identified parameters and measured data under 0.1N harmonic 

excitation 
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Figure 6.19 Regression plots of the midpoint identification 

 

Figure 6.20 Comparison of calculated midpoint frequency responses based on tip 

point and midpoint identified parameters and measured data under 0.1N harmonic 

excitation 
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Comparing the parameters which are obtained midpoint and tip point identification 

processes, the unknown mass values and the unknown linear stiffness coefficients are 

close to each other. However there is still a slight difference between the coefficients 

of cubic stiffness. Final update is made on the parameters by performing an 

optimization based identification procedure. Starting point for the optimization is 

obtained from network identification results. Optimization bounds are determined 

from regression network errors given in Figure 6.21, Figure 6.22 and Figure 6.23. 

Parameters of the optimization problems are given in Table 6.6. 

 

Table 6.6 Optimization problem setup 

Global Optimization 

Toolbox Parameters 

Values of Tip Point 

Optimization Based 

Identification 

Values of Midpoint 

Optimization Based 

Identification 

Solver ga ga 

Fitness Function @optim_fun @optim_fun 

Number Variables 3 3 

Lower Bound [5500 0.055 5.5e8] [5800 0.057 4.5e8] 

Upper Bound [6500 0.065 7.1e8] [6200 0.063 6.5e8] 

Population Size 100 100 

Initial Population [5898 0.0608 6.34e8] [5984 0.0611 5.47e8] 

Fitness Scaling Function Rank Rank 

Selection Function Stochastic Uniform Stochastic Uniform 

Elite Count 10 10 

Crossover Fraction 0.8 0.8 

Mutation Constraint Dependent Constraint Dependent 

Crossover Function Scattered Scattered 

Migration Direction Forward Forward 

Migration Fraction 0.2 0.2 

Migration Interval 20 20 

Stopping Criteria   

Generations 100 100 

Time Limit Inf Inf 

Fitness Limit -Inf -Inf 

Stall Generations 50 50 

Stall Time Limit Inf Inf 

Function Tolerance 1e-14 1e-14 
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Figure 6.21 Absolute error of cubic stiffness coefficient with respect to cumulative 

probability for tip point and midpoint identification  

 

 

Figure 6.22 Absolute error of unknown stiffness coefficient with respect to 

cumulative probability for tip point and midpoint identification  
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Figure 6.23 Absolute error of unknown mass with respect to cumulative 

probability for tip point and midpoint identification  

 

Optimization based identification processes are successfully completed after satisfying 

desired function tolerance values given in Table 6.6. Optimized parameters are given 

in Table 6.7. Calculated frequency responses based on the optimized parameters and 

measured frequency responses under 0.1N harmonic excitation are shown in Figure 

6.24 and Figure 6.25. 

 

Table 6.7 Optimized parameters 

Parameter Tip Point 

Identification 

Tip Point 

Optimization 

Based 

Identification 

Midpoint 

Identification 

Based 

Identification 

Midpoint 

Optimization 

Based 

Identification 

 3
N/m 

c
k  8

6.346 10  
8

105.518  
8

5.860 10  
8

105.476  

  N/m
unknown

k  3
5.989 10  

3
5.981 10  

3
5.984 10  

3
5.838 10  

  kg
unknown

m  0.0608  0.0611  0.0612  0.0592  
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Figure 6.24 Comparison of calculated tip point frequency responses based on tip 

point and midpoint optimized parameters and measured data under 0.1N harmonic 

excitation 

 

Using optimized parameters frequency responses of tip point and midpoint are 

calculated for 0.5N and 1N harmonic excitation. Results are compared with the 

measured frequency responses in Figure 6.26, Figure 6.27, Figure 6.28 and Figure 

6.29. 

 

 

Figure 6.25 Comparison of calculated midpoint frequency responses based on tip 

point and midpoint optimized parameters and measured data under 0.1N harmonic 

excitation 
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Figure 6.26 Comparison of calculated tip point frequency responses based on tip 

point and midpoint optimized parameters and measured data under 0.5N harmonic 

excitation 

 

 

Figure 6.27 Comparison of calculated tip point frequency responses based on tip 

point and midpoint optimized parameters and measured data under 1N harmonic 

excitation 
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Figure 6.28 Comparison of calculated midpoint frequency responses based on tip 

point and midpoint optimized parameters and measured data under 0.5N harmonic 

excitation 

 

 

Figure 6.29 Comparison of calculated midpoint frequency responses based on tip 

point and midpoint optimized parameters and measured data under 1N harmonic 

excitation 
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CHAPTER 7 

 

 

DISCUSSION AND CONCLUSIONS 

7 DISCUSSION AND CONCLUSIONS 

In this study, artificial neural networks are used for nonlinearity classification and 

parameter identification. Proposed method has four main steps: generation of training 

data, training of the neural network, and identification by using the trained networks 

and optimization based identification.  

Most of the effort is required in order to generate training data sets, which are 

frequency response sets of the system for all possible nonlinearity configurations and 

possible ranges of parameter values. Therefore, application of the proposed method to 

realistic finite element models requires reduction methods in order to decrease the 

computational time required for data generation process .A nonlinear solution method 

utilizing harmonic balance method with a single harmonic is used to obtain the 

required training data, which are employed in the training of the classification and 

regression networks. Numerical solution techniques are introduced to solve nonlinear 

algebraic equations obtained by using harmonic balance method. 

Theory behind the regression networks are presented in this study. Basic elements 

form the network architectures are introduced and discussed. Appropriate layer 

numbers, transfer functions and training algorithm are proposed to attain desired 

identification performance. 

Application of the method is demonstrated on a simple case study. A 4 DOF model 

with two different nonlinear elements at two different locations is identified 

successfully based on noisy measurements taken from a coordinate where none of the 

nonlinearities is connected. Identified parameters are improved by utilizing 

optimization based identification. Performance of the network architecture proposed in 

the theory part is compared with other alternative networks and the results show that 

the proposed one is superior to the others. 

Finally, an experimental study is conducted to observe actual performance of the 

method on a real life system. Type determination and parameter estimation of the 

single nonlinear element are achieved on a test rig where location of the nonlinearity is 

known priori. Response measurements are taken from a point far from the nonlinear 

coordinate. Frequency responses of identified system obtained for single forcing level 

agree well with the actual system responses measured at different forcing levels. 
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Proposed method is capable of performing identification (classification and parameter 

identification) even the measurements are taken from DOFs where nonlinear elements 

are not connected. This is especially important, since before the classification process, 

locations of the nonlinearities are unknown. It should be noted that in order to increase 

the applicability of the proposed method, the generated data sets are polluted with 

random data in order to have a method that is prone to measurement noise. 

Even though training data generation step is computationally demanding, once the 

networks are trained identification is very fast. Moreover, it is not required to re-train 

the networks for identification of different counterparts of the nonlinear system 

Therefore; the developed method is very a good candidate for online identification 

purposes. 

In this study, complete system identification is achieved successfully using the 

proposed method. However, there are some aspects needed to be studied. 

First of all, training data generation is one of the most crucial parts of the method. As 

the number of possible nonlinear systems increases, generation training data may 

exceed practical limits. A prior method should be utilized to reduce the possible 

nonlinear system configurations. 

Moreover, measuring response of nonlinear systems by means of stepped sine testing 

is a time consuming process. The method should be improved such that faster testing 

techniques can be used to measure system response. 
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ABSTRACT 

In this study, a new approach is proposed for identification of structural nonlinearities by 

employing neural networks. Linear finite element model of the system and frequency response 

functions measured at arbitrary locations of the system are used in this approach. Using the 

finite element model, a training data set is created, which appropriately spans the possible 

nonlinear configurations space of the system. A classification neural network trained on these 

data sets then localizes and determines the type of nonlinearity associated with the 

corresponding degree of freedom in the system. A new training data set spanning the 

parametric space associated with the determined nonlinearities is created to facilitate 

parametric identification. Utilizing this data set, a feed forward regression neural network is 
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trained, which parametrically identifies the related nonlinearity. The application of the 

proposed approach is demonstrated on an example system with nonlinear elements. The 

proposed approach does not require data collection from the degrees of freedoms related with 

nonlinear elements, and furthermore, the proposed approach is sufficiently accurate even in the 

presence of measurement noise. 

Keywords: Neural networks, Nonlinearity identification, Nonlinearity classification, 

Nonlinear vibrations, Harmonic balance method 

 

1. INTRODUCTION 

Identification of structural nonlinearities in dynamic structures has become the interest of 

researchers in the past four decades [1]. Studies on this subject focused on two parts: localizing 

and characterizing the nonlinearity, and estimating the parameters of the nonlinearity based on 

experimentally measured data [2, 6]. 

One of the main problems of nonlinearity identification is the determination of the location and 

the type of nonlinearity; in other words, classification of the nonlinear system from system 

responses. For this problem, frequency domain methods are mostly preferred He and Ewins [7] 

used frequency response functions (FRFs) obtained at different forcing levels in order to detect 

nonlinearities in a system. Similarly, the method developed by Özer and Özgüven [4] 

determines possible locations of nonlinearities and identifies their types and parameters by 

using describing functions, which is as well a frequency domain method. Major restrictions of 

this method are the requirements of measurements collected from all degrees of freedoms 

(DOFs) and complete FRFs of the system for localization purposes. However, in a later study, 

Aykan et al. [5] improved the method using incomplete FRFs for localization purposes. A 

common feature of most of the methods in literature is the identification of types of 

nonlinearities by observing system responses or nonlinear restoring forces, which is a time 

consuming process and it is not suitable for identification of nonlinearity in a series of products 

due to manufacturing errors and assembly differences. 

Parameter estimation of nonlinearities in a classified system is an easily handled problem. 

There exist time domain and frequency domain methods targeting parameter identification in 

literature [1, 8, 9]. Although these methods have their own handicaps, they are promising in 

specific application areas. Masri and Caughey [10] developed a method named as Restoring 

Force Surface (RFS) method to estimate parameters of nonlinearities using least squares 

approach in time domain. Conditioned Reverse Path (CRP) proposed by Richards and Singh 

[11] uses spectral analysis in frequency domain to compute the coefficients of nonlinearity 

matrix.  

The method proposed in this study, classifies and identifies nonlinearities associated with the 

system utilizing neural networks. Neural network classifiers have been used for parameter 

identification of structural nonlinearities [12, 13]; however, nonlinearity classification using 

neural networks is a new application in structural dynamics. Constructed networks are to be 

trained with sample data sets which are frequency response functions of selected points on the 

system. Nonlinear frequency responses of the system are obtained by analyzing possible 

nonlinear system configurations. It should be noted that in order to perform these analyses, a 

mathematical model of the system is required. After training the networks, location and type of 

the nonlinearity is determined by running trained networks with measured systems responses 

as the input. Parameters of the classified nonlinearities are identified by means of a regression 

network utilizing the same input data used for classification. The proposed method does not 

require taking measurements from the nonlinear DOFs; hence, system responses measured 
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from arbitrary locations can be used for identification purposes. Moreover, with the proposed 

method, it is as well possible to handle measurement noise by injecting noise into data during 

the training process. Once networks are trained, identification is very fast; hence, the method 

proposed is very suitable for identification of nonlinearities in a series of products due to 

manufacturing errors and assembly differences.  

 

2. THEORY 

The proposed method is composed of two parts: in the first part, a classification network is 

used to identify the locations and the types of the nonlinear elements, whereas in the second 

part, a regression network is utilized to determine the parameters associated with the identified 

nonlinearities. For training of the networks, forced response function of an arbitrary degree of 

freedom is used; therefore, a mathematical model of the system is required. There is no 

restriction on the mathematical model; hence finite element models (FEMs) can as well be 

used with the proposed method. Using the mathematical model together with the nonlinear 

elements and their possible configurations, simulations are performed to generate the training 

data by using harmonic balance method (HBM), which is a frequency domain method. Details 

of the neural network models and the nonlinear mathematical modeling are explained in the 

following sections.  

2.1 Neural Network Models 

A typical neural network model is characterized by four items: number of neurons, number of 

layers, transfer functions and training algorithm. The fundamental element of a neural network 

is a single neuron mathematically represented below: 

      
1

R
T

j j ji i j j j j j j

i

o f w y b f w y b f n



 
     

 
 
   (1) 

 y  is the input vector with R   number of elements,  
T

jw  is the 
thj  row of the weight 

matrix  W  , jb   is the bias term, jo  is the output of the 
thj  neuron, jn   is the net input and 

 j jf n  is the transfer function used. Combination of multiple neurons is named as a layer and 

it can be written in matrix form as: 

            +o f W y b f n  . (2) 

Weight matrix [W] is a S R   matrix where S   is number of neurons in a layer. As a result, 

dimension of the output vector  o  is 1S   . A network can be extended by increasing the 

number of hidden layers used, which are referred as multilayer networks. A two-layer network 

is given as an example in Figure 1. It can be observed that output of each layer becomes the 

input of the next layer. Dimensions of weight matrices and bias vectors can be adjusted 

according to the problem requirements except R   and 2S   values which are determined by 
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length of input and target vectors. In this study, a two-layer network is used for both 

classification and identification purposes. 

  

Figure 1 A two-layer network 

 

Transfer functions play an important role in the structures of neural networks. Selection of a 

transfer function depends on input and output vectors and training algorithm. Commonly used 

transfer functions in neural network models are given in Table 1. In the classification network 

used in this study, transfer functions of Layer 1 and Layer 2 are both Hyperbolic-Tangent 

Sigmoid function; whereas, Hyperbolic-Tangent Sigmoid and Linear transfer functions are 

used in parameter identification networks for Layer 1 and Layer 2, respectively.  

 

Table 1 Commonly Used Transfer Functions 

Name Input/Output 

Relation 

Name Input/Output 

Relation 

Hard Limit 

 

0     0

1      0

a n

a n

 

 
  

Symmetrical 

Saturated Linear 

1     1

     -1 1

1      1

a n

a n n

a n

   

  

 

 

Symmetrical Hard 

Limit 

 

1     0

1      0

a n

a n

  

  
 

Log-Sigmoid 1

1 n
a

e



 

Linear a n   Hyperbolic-Tangent 

Sigmoid 

n n

n n

e e
a

e e









 

Saturated Linear 0     0

     0 1

1      1

a n

a n n

a n

 

  

 

 

Positive Linear 0     0

     0

a n

a n n

 

 
 

 

Performance of a network is quantified through mean squared error (MSE) between the 

network output vector,  o , and target vector,  t  as: 

 
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1

b
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1
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2 2

1 1

1 1
( ) ( )

N N

i i i

i i

MSE e o t
N N

 

    . (3) 

Objective of a neural network problem is to minimize MSE via tuning the elements of weight 

matrices and bias vectors. The tuning process is called as training, where weight matrices and 

bias vectors are updated according to “the training algorithm”. In this study, Scaled Conjugate 

Gradient Backpropogation algorithm is used for nonlinearity localization and classification; 

whereas, Levenberg-Marquardt algorithm is used for identification of parameters of the 

nonlinear elements [14]. Before starting to the training process, collected data is required to be 

divided into three subsets as: training, validation and test data sets. Weight matrices and bias 

vectors are updated based on the training data set; whereas, network error based on the 

validation data set is used as the stopping criteria in order to prevent over fitting. Although the 

test data set is not used in training, errors based on the test data set are useful in post 

processing. In this study, 75% of samples are allocated as training data set, 15% of samples are 

allocated as the validation data set and the rest is used as the test data set.  

 

2.2 Mathematical Modeling 

Before starting the training process, training data should be generated first. Training data 

consists of input vectors and corresponding target vectors. Input vectors are outputs of the 

physical system in both classification and identification problems; whereas, target vectors are 

the location and type of the nonlinearity in the classification problem, and parameters of the 

nonlinearity in the identification problem. A simulated data set which covers full range of 

possible input space is required as input data. In order to obtain this, nonlinear frequency 

responses of all selected system configurations are required to be determined. Equation of 

motion of a nonlinear system can be written as follows 

                    , ,...NLM x C x i H x K x f x x f t     , (4) 

where [ ]M , [ ]C , [ ]H  and [ ]K  are mass, viscous damping, structural damping and stiffness 

matrices of linear system, respectively. In this equation,   x t  ,   NLf t   and   f t  are 

response, nonlinear force and excitation force vectors of the system, respectively. For harmonic 

forcing, excitation force vector can be written as: 

     i tf t F e  . (5) 

For harmonic input, it can be assumed that system response is also harmonic, which can be 

written as follows  

     i tx t X e  , (6) 
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using a single harmonic term. Substituting Eq. (5) and Eq. (6) into Eq. (4), the following 

equation is obtained: 

               2
NLK M i C i H X F X F      .  (7) 

The nonlinear forcing can be written using a single term Fourier series as follows 

  
2

0

( ) i
NL NL

i
F f e d



  


  , (8) 

where t  .  

Equation (7) can be divided into linear and nonlinear parts, which decreases the total number of 

nonlinear equations to be solved, by using the receptance method developed by Menq et al. 

[15]. Receptance method employed in this study decreases the computational time required for 

the solution of nonlinear equations obtained, which makes the proposed method suitable for 

realistic finite element models. The resulting nonlinear equations can be solved by a nonlinear 

equation solver. In this study, Newton’s method with Arc-Length Continuation [16, 17] is used 

to solve the resulting system of nonlinear equations.  

Training process is to be performed using the frequency response of one of the coordinates, 

which does not need to be measured from the nonlinear DOFs. In order to include the effect of 

measurement noise, input vectors are polluted by addition of random numbers having Gaussian 

distribution with zero mean and 0.05mm standard deviation. Input training data is generated 

from frequency response of the nonlinear system as follows: 

                1 2 1 2Re Im
T

n ny X X X X X X       (9) 

Target vectors define the configurations of the nonlinear system and the parameter values of 

the nonlinear elements in classification and identification problems, respectively. For 

classification networks, length of the target vectors are determined from the total number of 

possible nonlinear system configurations; therefore, orthogonality of target vectors can be 

achieved easily.  

After obtaining the input and target vectors, the classification and identification networks are 

ready trained. In Figure 2, flowchart of the proposed method is explained schematically. 
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Figure 2 Flowcharts of Nonlinearity Classification and Parametric Identification 

 

3. CASE STUDY: 4-DOF NONLINEAR SYSTEM 

In this section, application of the proposed approach is presented on a simple 4-DOF system 

with local nonlinearities. From the physics of the problem or experiences it is possible to 

localize nonlinearities; hence, in this case study, the possible locations of the nonlinear 

elements are identified as between the ground and the first mass and between the third and the 

fourth masses as shown in Figure 3. Moreover, from the physics of the problem or experience 

it is known that hardening type cubic stiffness nonlinearity and symmetric gap nonlinearity are 

the possible nonlinearities that can be encountered (Figure 4). This yields 8 possible nonlinear 

system configurations as indicated in Table 2 with their corresponding classification network 

targets. 

 

Figure 3 4‐DOF Non‐Linear System Schematic View 
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Figure 4 Restoring Force Diagram of Possible Nonlinearities a) Cubic Stiffness, b) Symmetric 

Gap Nonlinearity 

  

Table 2 Possible Nonlinear System Configurations and Corresponding Classification Network 

Targets 

Conf 

No. 

DOF 1 and Ground DOF 3 and DOF 4 Binary Network 

Targets 

1 Hardening Cubic 

Stiffness 

Linear Stiffness with 

Backlash 

{1,0,0,0,0,0,0,0}
T
 

2 Linear Stiffness with 

Backlash 

Hardening Cubic Stiffness {0,1,0,0,0,0,0,0}
T
 

3 Hardening Cubic 

Stiffness 

Hardening Cubic Stiffness {0,0,1,0,0,0,0,0}
T
 

4 Linear Stiffness with 

Backlash 

Linear Stiffness with 

Backlash 

{0,0,0,1,0,0,0,0}
T
 

5 Hardening Cubic 

Stiffness 

Linear {0,0,0,0,1,0,0,0}
T
 

6 Linear Hardening Cubic Stiffness {0,0,0,0,0,1,0,0}
T
 

7 Linear Stiffness with 

Backlash 

Linear {0,0,0,0,0,0,1,0}
T
 

8 Linear Linear Stiffness with 

Backlash 

{0,0,0,0,0,0,0,1}
T
 

 

A two-layered classification network is created to determine the location(s) and type(s) of the 

nonlinearities. Numbers of neurons used in the hidden and the output layers are 50 and 8 

respectively. At this stage input and target data sets are generated for training purposes. 

Nonlinear frequency response of the second DOF, which is not connected to any nonlinear 

DOF, is calculated under a 10 N harmonic excitation force applied at the first DOF in order to 

generate the input training data. Frequency range of interest is considered as 0 to 8 Hz with 

increments of 0.01 Hz. For the simulations, the ranges of parameter values are selected as: 

5x10
4 

N/m
3
 to 2x10

6 
N/m

3
 for cubic stiffness coefficient, and 2.5x10

-4 
m to 0.01 m gap for the 

symmetric gap nonlinearity with a known linear stiffness of 500 N/m. For each nonlinear 

f

x

kcx
3

a)

f

x

k

1

k

1

b)
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system configuration about 1600 samples a total of 12708 data sets are created. Training input 

vectors are polluted by normally distributed random numbers with zero mean and 0.5 mm 

standard deviation, representing measurement noise. After dividing the samples into training, 

validation and test data; training operation is performed, which is completed after 198 epochs. 

Confusion matrix presented in Figure 5 shows that 100% classification of nonlinearities in the 

system is achieved as indicated by the last column or row of the confusion matrix for training, 

validation and test sets.  

After determining location(s) and type(s) of the nonlinearities, parameters of the nonlinear 

elements are identified by means of a regression network. Eight regression networks are 

created for all nonlinear system configurations. For all nonlinear system configurations, 50 

neurons are used in the hidden layer; whereas for the output layers 2 neurons and 1 neuron are 

used for configurations 1 to 4 and 5 to 8, respectively, since there is only one parameter 

identified in configurations 5 to 8 . Input data sets generated for the classification network can 

as well be used in the regression network. However, in this case, target vectors are the 

unknown parameters of the nonlinear elements corresponding to each input data vector. Using 

these data and the identified configuration, regression networks are trained similar to the 

classification network. Correlation coefficients of the resulted regression networks are 

presented in Table 3.  

As an example, a system with a hardening cubic stiffness with a coefficient of 10
6 

N/m 

attached between the first DOF and ground and a symmetric gap element with a stiffness of 

500 N/m and a backlash of 0.005 m between the third and the fourth DOFs is considered. In 

order to simulate the experimentally measured frequency response from the second DOF, time 

domain solution of the nonlinear system is obtained by using ODE45 solver of MATLAB 

increasing frequency from 0 to 8 Hz with 0.01Hz increments. Steady state oscillation 

amplitudes are collected as the frequency response values at the corresponding frequency. In 

order to represent the effect of measurement noise, data obtained from time marching is 

polluted by adding random numbers having a normal distribution with zero mean and 0.5 mm 

standard deviation. The resulting frequency response is given in Figure 6, which is used as the 

input to the trained networks. Classification and identification process is also repeated by 

considering noise free response data and. The results obtained for noisy and noise free cases 

are presented in Table 4. Comparison of identified and actual system responses are presented 

for noisy and noise free measurement cases in Figure 7 and Figure 8, respectively. It should be 

noted that, in the identification process a single harmonic HBM is used; whereas, in the 

simulated measurement data, time marching method is utilized. Therefore, even though 

identification is done by using a single harmonic, identified time domain simulation of the 

system shows that the identified system response is very close to the actual system for both 

noisy and noise free measurement cases. However, it should be noted that since networks are 

trained with noisy data, there is a slight increase in the error for parameter identification of 

coefficient of cubic stiffness if noisy free measurement is used. On the other hand, the error 

obtained for gap parameter decreases if noise free measurement is used. 
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4. CONCLUSION 

In this study, artificial neural networks are used for nonlinearity classification and parameter 

identification. Proposed method has three main steps: generation of training data, training of 

the neural network and identification by using the trained networks. Application of the method 

is demonstrated on a simple case study. Most of the effort is required in order to generate 

training data sets, which are frequency response sets of the system for all possible nonlinearity 

configurations and possible ranges of parameter values. Therefore, application of the proposed 

method to realistic finite element models requires reduction methods in order to decrease the 

computational time required for data generation process. A nonlinear solution method utilizing 

harmonic balance method with a single harmonic is used to obtain the required training data, 

which are employed in the training of the classification and identification networks. It should 

be noted that in order to increase the applicability of the proposed method, the generated data 

sets are polluted with random data in order to have a method that is prone to measurement 

noise. 

 

 

Figure 5 Confusion Matrices of Classification Network 
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Table 3 Correlation Coefficients for Each Regression Network 

 Training Data Set Validation Data Set Test Data Set 

Configuration 1 0.999 0.998 0.998 

Configuration 2 0.998 0.997 0.997 

Configuration 3 0.997 0.992 0.992 

Configuration 4 0.997 0.994 0.993 

Configuration 5 0.997 0.995 0.995 

Configuration 6 0.990 0.992 0.991 

Configuration 7 0.999 0.996 0.996 

Configuration 8 0.996 0.996 0.996 

 

 

Figure 6 Displacement of the Second DOF 

 

Table 4 Classification and Parameter Identification Results 

 Simulation with Noise Free Measurement Simulation with Noisy Measurement 

Target Vector Cubic 
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3
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{1,0,0,0,0,0,0,0}T 1000000 0.005 {1,0,0,0,0,0,0,0}T 1000000 0.005 
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System 

{0.999,0,0,0.005,0,0,0,0}T 

  

1015500 0.004935 {1,0,0,0.013,0,0,0,0}T 

  

998930 0.0047514 

Error MSE= 3x10
-6

 1.2% 1.3% MSE= 1.7x10
-4

 0.1% 4.9% 

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Frequency[Hz]

D
is

p
la

ce
m

en
t 

o
f 

S
ec

o
n

d
 M

as
s 

X
2
[m

]

 

 

Linear

Nonlinear



 
90 
 

In this study, two-layered networks give considerably accurate results; however, the number of 

neurons used in hidden layers should be optimized in order to achieve this accuracy. Using the 

measured system responses as the inputs of the trained networks, nonlinearities in a 4-DOF 

system are classified and the parameters associated with them are identified. The results 

obtained show that the proposed method is capable of identifying the locations and types of the 

nonlinearities and the parameters associated with them even in the presence of measurement 

noise.  

Number of nonlinear system configurations and size of the training data generated depend on 

the number possible nonlinearities in the system. Number of nonlinear equations solved for 

generating training data also depends on the number of nonlinear elements used in the analysis. 

Therefore, for realistic finite element models, data generation process is a time consuming one, 

which can be overcome by employing reduction methods. In this study, the number of 

nonlinear equations is reduced by employing receptance method, which is a very effective 

method, especially if the nonlinearities are local.  

Proposed method is capable to perform identification even the measurements are taken from 

linear DOFs. This is especially important, since before the classification process, locations of 

the nonlinearities are unknown. Moreover, by employing a noise injection process to the 

training data, proposed method can handle measurement noise successfully. Even though 

training data generation step is computationally demanding, once the networks are trained 

identification is very fast. Therefore, it is very good candidate for online identification 

purposes. 

 

 

Figure 7 Comparisons of Actual and Identified System Responses for Noisy Measurement 

Case 
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Figure 8 Comparisons of Actual and Identified System Responses for Noise Free 

Measurement Case 
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