

DESCRIBING THE SOFTWARE ARCHITECTURE OF A MULTIMEDIA DATA

MANAGEMENT SYSTEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÇİĞDEM AVCI SALMA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

NOVEMBER 2013

Approval of the thesis:

DESCRIBING THE SOFTWARE ARCHITECTURE OF A MULTIMEDIA

DATA MANAGEMENT SYSTEM

submitted by ÇİĞDEM AVCI SALMA in partial fulfillment of the requirements for

the degree of Master of Science in Computer Engineering Department, Middle

East Technical University by,

Prof. Dr. Canan Özgen _______________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı _______________

Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Oğuztüzün _______________

Supervisor, Computer Engineering Dept., METU

 Prof. Dr. Adnan Yazıcı _______________

Co-supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Adnan Yazıcı

Computer Engineering Dept., METU ___________________

Assoc. Prof. Dr. Halit Oğuztüzün

Computer Engineering Dept., METU ___________________

Asst. Prof. Dr. Selim Temizer

Computer Engineering Dept., METU ___________________

Asst. Prof. Dr. Aysu Betin Can

Information Systems Dept., METU _____________________

Asst. Prof. Dr. Bedir Tekinerdoğan

Computer Engineering Dept., Bilkent University _____________________

 Date: 13.11.2013

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name : Çiğdem Avcı Salma

 Signature :

 v

ABSRACT

DESCRIBING THE SOFTWARE ARCHITECTURE OF A

MULTIMEDIA DATA MANAGEMENT SYSTEM

Çiğdem Avcı Salma

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün

Co-supervisor: Prof. Dr. Adnan Yazıcı

November 2013, 116 pages

Multimedia Data Management Systems (MMDMS) enable storing, organizing,

accessing and retrieving multimedia content effectively and efficiently. "Describing

the software architecture of METU Multimedia Data Management System (METU-

MMDMS), which can be a representative for contemporary MMDMS architectures,

to facilitate future research on MMDMSs" is the primary objective of this study. The

METU-MMDMS is placed to the focal point of the study by taking into account its

unique infrastructure, non-systematic way of documentation of knowledge and

experience, and the main motivation of this study is the absence of a descriptive

architecture or architectural documentation for similar systems. Using the "Views

and Beyond" software architecture documentation method, which was proposed by

Software Engineering Institute (SEI), the documentation process is completed.

Stakeholders’ needs, quality attributes of the architecture and important design

decisions for an effective MMDMS are recorded via the Views and Beyond (V&B).

Following the process of documentation of the METU Multimedia Data

Management System architecture, in order to evaluate this architecture,

"Architecture Tradeoff Analysis Method" (ATAM) is carried out. Finally, the

 vi

documented architecture is discussed and V&B is evaluated from the multimedia

database management system documentation perspective.

Keywords: Views and Beyond, Multimedia Database Management System,

Software Architecture

 vii

ÖZ

BİR ÇOKLU ORTAM VERİ YÖNETİM SİSTEMİ YAZILIM

MİMARİSİNİN BETİMLENMESİ

Çiğdem Avcı Salma

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Yar. Doc. Halit Oğuztüzün

Ortak Tez Yöneticisi: Prof. Dr. Adnan Yazıcı

Kasım 2013, 116 sayfa

Çoklu Ortam Veri Yönetim Sistemleri çoklu ortam içeriğine etkili ve verimli bir

biçimde erişmeye, bu içeriği saklamaya, organize etmeye ve getirmeye olanak verir.

Gerçekleştirilen çalışmanın ana hedefi güncel çoklu ortam veri yönetim sistemlerini

temsilen, ODTÜ Çoklu Ortam Veri Yönetim Sistemi mimarisini Çoklu Ortam Veri

Yönetim Sistemleri ile ilgili gelecekte gerçekleştirilecek olan araştırmalara olanak

tanımak amacıyla tarif etmektir. Sistemin özgün bir altyapıya sahip olması ve

geliştirme sürecinde edinilen bilgi birikiminin sistematik bir şekilde belgelenmemiş

olması göz önünde bulundurularak örnek çoklu ortam veritabanı sistemi yapılan

çalışmanın odak noktasına yerleştirilmiştir. Benzer sistemleri de kapsayan bir

tanımlayıcı bir mimarinin ya da mimari belgenin bulunmaması bu çalışmanın temel

motivasyonudur. "Software Engineering Institude" (SEI) tarafından ortaya çıkarılan

“Views and Beyond” (V&B) metodu kullanılarak mimarinin belgelendirilme süreci

tamamlanmıştır. Paydaşların ihtiyaçları, mimarinin kalite öznitelikleri ve etkili bir

Çoklu Ortam Veri Yönetim Sistemi gerçekleştirimine yönelik önemli tasarım

kararları V&B yardımıyla kaydedilmiştir. Örnek Çoklu Ortam Veri Yönetim Sistemi

mimarisi belgelendirme süreci takiben "Architecture Tradeoff Analysis Method"

(ATAM) aracılığıyla mimarinin değerlendirilmesi gerçekleştirilmiştir. Sonuç olarak,

 viii

belgelenen mimari tartışılmış, V&B yöntemi çoklu ortam veri yönetim sisteminin

belgeleme süreci açısından değerlendirilmiştir.

Anahtar Kelimeler: Views and Beyond, Çoklu Ortam Veri Yönetim Sistemi,

Yazılım Mimarisi

 ix

To My Family...

 x

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to Assoc. Prof. Dr.

Halit Oğuztüzün and Prof. Adnan Yazıcı for their encouragement and support

throughout this study.

I would like to thank all members of Multimedia Research Group (especially Dr.

Murak Koyuncu, Dr. Mustafa Sert, Elvan Gülen, Merve Aydınlılar, Saeid Sattari) for

their technical guidance and support.

I would thank the Scientific and Technological Research Council of Turkey

(TÜBİTAK) for their support (109E014).

I would like to thank to Güneş Uyanıksoy for her role in architecture evaluation.

Finally, I am very thankful to my husband, sister and parents who always

encouraged me to finish the thesis and their support during my graduate study.

 xi

TABLE OF CONTENTS

ABSTRACT .. IV

ÖZ .. VII

ACKNOWLEDGEMENTS ... X

TABLE OF CONTENTS .. XI

LIST OF TABLES .. XV

LIST OF FIGURES .. XVII

LIST OF ABBREVIATIONS .. XXI

CHAPTERS

1 INTRODUCTION .. 1

1.1 Motivation ... 2

1.2 Contributions ... 3

1.3 Organization of Thesis .. 4

2 BACKGROUND KNOWLEDGE AND RELATED WORK 5

2.1 Standards ... 5

2.1.1 IEEE 1471 (ISO/IEC 42010:2007) .. 5

2.2 Methods ... 6

2.2.1 Views and Beyond (V&B) .. 6

2.2.2 Rational Unified Process (RUP) / Krutchen 4+1 11

2.2.3 Siemens Four Views .. 11

2.2.4 Data Flow and Control Flow Views .. 12

2.2.5 Use Case Maps .. 12

2.2.6 User Requirements Notation ... 13

2.3 Frameworks ... 13

 xii

2.3.1 C4ISR Architecture Framework .. 13

2.4 Languages and Tools .. 14

2.4.1 UML 2.0 .. 14

2.4.2 Enterprise Architect 7.5 ... 15

2.5 METU Multimedia Data Management System 16

2.6 Related Work .. 17

3 DOCUMENTING THE ARCHITECTURE... 21

3.1 Functional Features ... 21

3.2 Software Quality Goals ... 23

3.3 Selection of the Stakeholders .. 23

3.4 Choosing the Relevant Views ... 25

3.4.1 Module... 25

3.4.2 C&C... 26

3.4.3 Allocation .. 28

3.5 Architectural Views .. 29

3.5.1 Top Level Module View ... 29

3.5.2 Top Level C&C View ... 39

3.5.3 Top Level Allocation View ... 52

3.6 Interface Documentation ... 53

3.6.1 Online Video Processor Interface.. 54

3.6.2 Query Formulator Interface ... 55

3.7 Mapping .. 56

3.8 Behavior .. 59

3.9 Use Case Mapping .. 66

3.9.1 UCM Application Process ... 66

4 ARCHITECTURAL EVALUATION .. 75

 xiii

5 DISCUSSIONS AND RECOMMENDATIONS .. 83

5.1 Recommendations ... 88

5.1.1 Recommendations on the Use of Design Patterns 89

6 CONCLUSION ... 93

REFERENCES .. 95

APPENDICES

A ARCHITECTURE VIEW TEMPLATE ... 101

B SAMPLE ARCHITECTURE VIEWS .. 103

C TRACEABILITY OF FEATURES .. 107

D USE CASE MAPS .. 109

E USES VIEW DIAGRAMS ... 113

 xiv

 xv

LIST OF TABLES

TABLES

Table 2-1 Module Styles .. 9

Table 2-2 C&C Styles .. 10

Table 2-3 Allocation Styles .. 11

Table 2-4 UML 2.0 Diagram Sets and Types .. 15

Table 2-5 Size and Complexity Information of METU-MMDMS 16

Table 3-1 Excluded Views ... 26

Table 3-2 Selection of the Views ... 27

Table 3-3 Classes and Definitions.. 38

Table 3-4 Online Video Processor Interface Details ... 54

Table 3-5 Query Formulator Interface Details ... 56

Table 3-6 Module-Component Mapping Example .. 56

Table 3-7 Hierarchical Mapping Example ... 57

Table 3-8 Low-level Architectural Mapping ... 71

Table 3-9 Insufficient Architectural Example .. 72

Table 4-1 Stakeholders ... 76

Table 4-2 Quality Attributes .. 77

Table 4-3 Scenarios for Quality Attributes .. 79

Table 4-4 ATAM Evaluation Results .. 81

Table 5-1 Critical Design Decisions .. 88

Table 5-2 Recommended Design Patterns ... 89

Table C-2 Feature Traceability Matrix .. 107

file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674274
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674275
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674276
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674277
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674278
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674279
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674280
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674281
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674282
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674283
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674284
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674285
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674286
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674287
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674288
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674289
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674290
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674291
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674292

 xvi

 xvii

LIST OF FIGURES

FIGURES

Figure 2-1 UCM Basic Notation [23] .. 12

Figure 3-1 MMDMS Use Cases ... 22

Figure 3-2 Top Level Module View – Decomposition Style 30

Figure 3-3 Module View of Client Application – Decomposition Style 31

Figure 3-4 Module View of Semantic Information Extractor – Decomposition Style

 .. 33

Figure 3-5 Module View of Visual Annotator – Decomposition Style 34

Figure 3-6 Module View of Visual Low Level Features Extractor – Decomposition

Style ... 35

Figure 3-7 Module View of Audio Low Level Features Extractor – Decomposition

Style ... 35

Figure 3-8 Module View of Coordinator– Decomposition Style............................... 36

Figure 3-9 Module View of Multimedia Database – Decomposition Style............... 37

Figure 3-10 Multimedia Data Model ... 37

Figure 3-11 Top Level C&C View – Client-Server Style ... 40

Figure 3-12 C&C View of Semantic Information Extractor – Pipe and Filter Style . 41

Figure 3-13 C&C View of Video Pre-processor – Pipe and Filter Style 42

Figure 3-14 C&C View of Text Annotator– Pipe and Filter Style 43

Figure 3-15 C&C View of Audio Annotator – Pipe and Filter Style 44

Figure 3-16 C&C View of Visual Annotator – Pipe and Filter Style 45

Figure 3-17 C&C View of Visual Event Annotator – Pipe and Filter Style 46

Figure 3-18 C&C View of Visual Object Annotator– Pipe and Filter Style 47

Figure 3-19 C&C View of Fusion – Pipe and Filter Style ... 48

file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674295
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674296
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674297
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674298
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674299
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674299
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674300
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674301
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674301
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674302
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674302
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674303
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674304
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674305
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674306
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674307
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674308
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674309
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674310
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674311
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674312
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674313
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674314

 xviii

Figure 3-20 C&C View of Multimedia Database – Shared Data Style 49

Figure 3-21 C&C View of Coordinator ... 50

Figure 3-22 C&C View of Client... 51

Figure 3-23 Top Level Allocation View - Deployment Style 52

Figure 3-24 Visual Query by Content [27] .. 61

Figure 3-25 Audio Query by Content[13] ... 62

Figure 3-26 Automatic Shot Boundary Detection[13] ... 63

Figure 3-27 Concept Query [13] .. 64

Figure 3-28 Query by Concept and Content [13] .. 65

Figure 3-29 Audio Query by Content UCM .. 69

Figure 3-30 Insufficient Architectural Content - UCM cannot be completed 70

Figure 3-31 Insufficient Architectural Content - UCM cannot be completed 73

Figure 4-1 Preliminary Utility Tree for METU-MMDMS [33] 78

Figure 4-2 Preliminary Utility Tree for METU-MMDMS [33] 80

Figure 5-1 User Levels... 89

Figure 5-2 Recommended Layered Architecture ... 91

Figure B-1 Top Level Module View ... 103

Figure B-2 Top Level C&C View ... 105

Figure D-4 Online Concept Extraction .. 109

Figure D-3 Concept Query... 109

Figure D-5 Online Concept Extraction - 1 ... 110

Figure D-6 Online Concept Extraction - 2 ... 111

Figure D-7 Online Concept Extraction - 3 ... 112

Figure E-8 Top Level Uses Module View ... 113

Figure E-9 Uses Module View of Client ... 114

Figure E-10 Uses Module View of Coordinator .. 114

file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674315
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674316
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674317
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674318
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674319
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674320
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674321
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674322
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674323
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674324
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674325
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674326
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674327
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674328
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674329
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674330
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674331
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674332
file:///C:/Users/cvs/Dropbox/thesis/CAS_tez_19.11.2013.docx%23_Toc372674334

 xix

Figure E-11 Uses Module View of Multimedia Database 115

Figure E-12 Uses Module View of Semantic Information Extractor 116

 xx

 xxi

LIST OF ABBREVIATIONS

ADS Architecture Description Specification

AMOS Active Media Object Stores

C&C Component and Connector

CFD Control Flow Diagram

CORBA Common Objects Request Broker Architecture

DFD Data Flow Diagram

DoD Department of Defense

EA Enterprise Architect

GA Genetic Algorithms

GRL Goal-oriented Requirements Language

HMM Hidden Markov Model

IEEE Institute of Electrical and Electronics Engineers

ISO International Standards Organization

MARS Multimedia Analysis and Retrieval System

MediaDB Media Database

METU Middle East Technical University

MMDMS Multimedia Data Management System

MPEG Moving Picture Experts Group

QG Quality Goal

RM-ODP ISO Reference Model of Open Distributed Processing

RUP Rational Unified Process

SEI Software Engineering Institute

 xxii

SVM Support Vector Machine

UCM Use Case Map

URN User Requirements Notation

V&B Views and Beyond

XML Extensible Markup Language

 1

CHAPTER 1

1 INTRODUCTION

Multimedia Data Management Systems (MMDMSs) have a complex nature since

various state-of-art technologies and advanced techniques are brought together to

construct them. Variety of modalities, communication protocols and multimedia

formats are inherent in MMDMSs. There is often need to handle incomplete and

uncertain information. Therefore, to understand, evaluate and compare MMDMSs,

their software architecture should be presented clearly and systematically. In this

study, SEI "Views and Beyond" (V&B) method [1] is used for the multimedia

database management system architectural documentation process. The scope of this

study is to describe a sample MMDMS architecture and the main objective to fulfill

this scope is to document the software architecture with the V&B method by

including what is actually implemented about the METU-MMDMS. Future work

will aim to propose a reference architecture for multimedia data management

systems. The present work will serve as an example.

Several high level MMDBMS architectures are briefly described in [2][3][4]. The

software architecture of METU-MMDMS is examined throughout this work.

METU-MMDMS processes multiple modalities inherent in a video and stores the

concepts extracted from these modalities in order to support semantic querying

effectively and efficiently. Furthermore, METU-MMDMS carries out information

fusion both at query level [27] and score level (late) [36][41] to increase accuracy

and uses a multidimensional index structure [40] that indexes content and concept

for performance improvement of querying.

The organization of the software system, the selection of structural elements and

interfaces, which form the system, determination of the behavior of these units while

they work together, formation of an integrated system via combining the behavioral

and structural elements and the collection of important decisions made throughout

 2

this process constitute the architecture. Documenting software architecture is as

important as the software design [5]. Even the most suitable software architecture

designed for a system becomes unused if it cannot be understood or applied. Various

methods can be followed during the documentation process, which are intended for

understanding and evaluating software architectures. Different methods embody

different processes and challenges. Regardless of the method used, correct

documentation ensures the continuity and understandability of a software system.

The improvement of the communication consistent with the architecture among the

stakeholders, the opportunity of making early design decisions, the ease of

evaluating the architecture, the production of the abstractions convenient for reuse

can be listed as the return on the software architecture documentation [6]. In order to

be followed up during this process, different methods, usually compatible with the

IEEE 1471 architectural design standard [7], are proposed. In this study, SEI "Views

and Beyond" (V&B) method [1] is used for the multimedia database management

system documentation process. Besides the accurate and complete transfer of the

knowledge, which is gained within the scope of the multi-media data management

system research, after the completion of the architectural review in parallel to the

documentation process, as a side effect, recommendations for the improvement of

the architecture are made. In this work, SEI V&B method is summarized, the

multimedia data management system is defined, the steps of documentation process

of the METU-MMDMS descriptive architecture with V&B method are presented,

the "Use Case Mapping" (UCM) [8] process is explained and applied, and finally the

discussions are stated.

1.1 Motivation

There are many Multimedia Data Management Systems developed for industrial or

research purposes. In fact, some of them are described in various reports or research

papers, but generally those MMDMSs' architecture is not well documented in the

published literature or a particular architectural documentation method is not

explicitly used. Therefore, the main motivation of this study is to remove the lack of

a well-described MMDMS architecture.

 3

Although different stakeholders take part in the design, development and analysis

activities, the documentation is carried out from the documenter's perspective.

Hence, the architecture cannot be evaluated or analyzed easily since there is no

suitable document at the end of the design procedure.

Architectural documentation helps making and recording the design decisions,

rationales and variability points and the design process can be completed and

reviewed in a smooth and systematic way, supported by documentation. Without a

clear architectural design, the system will be immature. In order to record the design

systematically and completely, the documentation should ideally be continued in

parallel to the construction of the architectural design.

The stakeholders cannot communicate easily without a good architectural

documentation. Besides seeing the architecture from others' perspective, they can be

informed about the big picture via the architectural documentation. If the

stakeholders cannot understand the architecture, they cannot apply it or they

implement the wrong system.

Good documentation is also important for the future stakeholders, who may not be

aware of early design decisions. This is critical for the evolution and maintenance of

the system.

1.2 Contributions

The contributions of this thesis can be listed as follows:

 Describing a particular MMDMS architecture

 Investigating the design decisions, rationale and the variability points that are

parts of the MMDMS architectural design

 Showing that the prepared MMDMS architecture documentation has enough

substance to account for the required scenarios

 Extending UCM that maps scenarios to the MMDMS architecture

 Showing that V&B is capable of documenting the target MMDMS.

 4

1.3 Organization of Thesis

The organization of the remainder of this thesis is as follows:

 Chapter 2: In this chapter, documentation methodologies, frameworks,

standards and tools, which are related to this study, are explained. An

overview of Multimedia Data Management Systems is given. After that, the

sample MMDMS systems that are developed so far are described. Moreover,

the improvements of MMDMSs' in time are addressed.

 Chapter 3: Chapter 3 describes the architecture documentation with models

and architectural details. It provides the design decisions, rationale and

variability points together with the architectural explanations and

recommendations for the overall architecture. This chapter also covers the

scenario mapping activity, which is carried out to prove the qualification of

the architecture.

 Chapter 4: In Chapter 4, Architecture Tradeoff Analysis Method is

summarized and METU-MMDMS architectural analysis results are

discussed.

 Chapter 5: Finally, this chapter concludes the thesis with a discussion of the

outcomes of the research and future research directions.

 5

CHAPTER 2

2 BACKGROUND KNOWLEDGE AND RELATED WORK

In this chapter, the standards, methods, frameworks that are related with this study

are presented in brief. IEEE 1471 is presented as a standard to describe the

architecture of a software intensive system, and V&B, Rational Unified

Process/Krutchen's 4+1 and Siemens Four Views, Data Flow and Control Flow are

listed as the software architecture documentation methods. Use Case Map is the

method, which is a part of URN and used for the further analysis of the METU-

MMDMS architecture. C4ISR is the framework introduced by US DoD for

architecture development. Finally, the last section lists the tools (UML 2.0,

Enterprise Architect 7.5) used throughout this study.

2.1 Standards

2.1.1 IEEE 1471 (ISO/IEC 42010:2007)

IEEE 1471 is a standard, which recommends a software engineering practice for

architectural description of software intensive systems [18]. According to IEEE

1471, the components, their relations with each other and the environment together

with the method, which direct the design and the evaluation, forms the architecture

of a system. The identical ISO adaptation of ANSI/IEEE 1471-2000 is ISO/IEC

42010:2007 [19]. An ISO/IEC 42010-compliant architecture can be created via V&B

[1].

 6

2.2 Methods

2.2.1 Views and Beyond (V&B)

"Views and Beyond" approach is based on the "view" concept, which consists of a

group of elements and the relationships among these elements. According to V&B,

different views address different quality attributes, and have different purposes and

areas of use, and a nontrivial system cannot be represented completely via a single

view [1]. In order to satisfy the V&B approach determining the relevant views for

various stakeholders and writing the necessary information down for multiple views

are required. Determination of the views according to the current stakeholders,

documentation method of the interfaces of architectural elements, mapping of the

elements that are present in more than one view and presentation of the behavior of

the elements can be listed as the milestones of this method. V&B is not only a

documentation method, but also the identification and recording process for design

decisions. The facility of preparing views for different stakeholders, improvement of

communication among the stakeholders, detailed documentation about the method,

ability of modeling complex systems, and compatibility to the IEEE 1471 standard

are the effective criteria that are considered in selection of this method.

The architecture of a system is roughly the parts of a whole and the relations and

interactions among parts. The software elements, relations among them, the

properties of relations and elements, together with the structures, which are

necessary to reason about the system, constitute the software architecture [1].

Software architecture document aids groups of people while working together and

eases the solution process for architectural problems. Documenting software

architecture becomes critical when the architectural problems are subtle and quality

attributes are demanding. The architectural documentation;

 helps to understand the stakeholders' needs,

 satisfies the stakeholders' needs via the recorded de sign decisions for each

view,

 7

 allows to check whether the stakeholders needs are met,

 presents the information with a format that the stakeholders can understand.

Thanks to the architectural documentation, the architects can make right decisions

and developers will know how to carry out those decisions. By the help of recorded

design decisions, future stakeholders can understand the rationale behind the design

decisions.

It is important to capture the driving quality attributes, and how those quality

attributes are satisfied by an architecture. However, while capturing quality attributes

and the design decisions, the unnecessary design details should not be documented.

It should not be forgotten that "Architecture is design but not all design is

architecture." [1]. Documented decisions should be related to the driving quality

attributes and behavioral requirements. The quality attributes can be listed together

with a design approach or with the architectural elements that provide a service.

Moreover, stakeholders want to know whether the quality attributes that match with

their requirements are satisfied. There should be a place in the documentation where

the definitions of quality attributes and how they are satisfied are presented.

Various architectural elements are used to construct the architecture; one of them is

the module. Unlike task or process, a module is a hierarchical element, which

consists of sub-modules. In order to provide enough level of hierarchy, the modules

should be fine grained enough so that the system's modifiability and independent

development requirements are met.

According to SEI V&B to document an architecture, the relevant views should be

documented first. The information that is related to all views is documented later.

The definition of the view in [1] is "A view is a representation of a set of system

elements and relationships associated with them." Different views tend to contain

different system elements and indicate different quality attributes.

The views are selected according to the stakeholders' concerns. The documentation

of a view consists of:

 Primary presentation

 8

 Element catalog

 Elements interfaces and behavior specification

 Variability guide

 Rationale and design information

Besides the architectural views, the documentation should contain an introduction,

which guides the reader to find the desired information, describe the relationship

between views and list the constraints and rationale of the overall architecture. The

architectural style is related to the usage of elements and the relations with a set of

constraints. To describe the architectural style and its vocabulary and rules, the

architectural style guide will be used. In addition, a system can use more than one

architectural style. There are three categories of styles:

 Module styles (units of implementation)

 Component and connector styles (units of execution)

 Allocation styles (relations between software and non-software resources)

Module is the unit of implementation while the component is a runtime entity. A

single module can be transformed to many components or many modules to a single

component. The module styles deal with assigning parts of the problem to the design

and implementation units while C&C styles emphasizes the ways of interaction of

the processes and the data flowing throughout the system.

The architectural style should not be confused with the architectural pattern. The

architectural style specializes on the element and relations together with constraints

but the architectural pattern describes a structural organization.

To create a sound software architecture document, unnecessary details and

ambiguity should be avoided. The document should have a standard organization and

the notation used should be clarified. The document should reflect the target group's

point of view and record the related rationale, and finally the conformity of the

document to the purpose should be checked. According to V&B the documentation

package should include at least one module, one C&C and one allocation view.

 9

Table 2-1 Module Styles

Style What's for

Decomposition Is-part-of Organization of the code as modules and sub modules

Uses Depends on Which module uses which other modules

Generalization Is a Sharing and reusing

Layered Allowed to use Group of modules to offer a cohesive set of services to other layers

A module style consists of specific sets of modules with some responsibilities and

the combination rules of these modules. A class, layer, aspect or any implementation

unit can be a module form. The component and connector style combines the

component and connectors and the specific rules to bring them together. Services,

processes, threads, filters, repositories, peers, clients and servers can be listed as

components. Components are units of execution while connectors are units of

interaction among components. Pipes, queues, request/reply protocols, and direct

invocation are examples of connectors. The allocation style maps the software

elements to the outer units. The outer unit can be hardware or the file system. To

describe a style, style guides are constructed.

The elements together with the responsibilities, the relations of the elements (e.g. is-

part-of, depends-on, is-a), the constraints and the aim of the view is presented in

module views. The responsibility is the action, knowledge, decisions or the role of

the module in a system. The modules can be in either aggregated or decomposed

form. For example, the allowed-to-use relation is used to aggregate the modules in

layered style. Module views are the blueprints of source code, necessary for

requirements traceability and impact analysis. Informal notations, Unified Model

Language (UML), Dependency structure matrix and Entity Relationship Diagrams

can be employed in module views. Modules can be mapped to the components or

non-software environments. V&B module styles, the relations that are used in this

style and the objective of the style are listed in [Table 2-1].

 10

Table 2-2 C&C Styles

Style What's for

Call-return
A series of services that can be invoked by other components. Connectors transfer the

service requests. (e.g. client server style)

Data flow
Components are transformers, connectors transform data (e.g. pipe and filter, batch

sequential styles)

Event based
Components communicate through asynchronous messages, loosely coupled federation

of components (e.g. publish subscribe)

Repository
Contain one or more components, stores large collections of persistent data. (e.g.

shared data style)

(Table 2-1 continued)

Style What's for

Aspects Crosscuts

Improve modifiability of the modules that deal with the

business domain functionality (isolate the modules which are

responsible for the crosscutting concerns)

Data model

One to one, one

to many, many to

many

The static information structure in terms of data entities and

relationships

C&C view encapsulates elements like objects, processes, clients, servers that have

runtime aspect (components) and also the elements like communication links and

interaction protocols are included by the C&C view (connectors). The interaction of

a component with other components is carried out through the ports. Ports are

mapped with the connectors. Via C&C view, the system can be analyzed from the

runtime perspective in terms of the quality attributes such as performance, reliability

and availability. A component can possess its own architecture.

The structures that represent the relations and mappings of the software and non-

software elements form the allocation views. Allocation styles are constructed on the

allocated-to relation. The three common allocation styles are listed in [Table 2-3].

 11

Table 2-3 Allocation Styles

Style What's for

Deployment
Maps between software components and connectors and the hardware of the

computing platform

Work assignment
Mapping between the software components and connectors and the production

environment

Install
Mapping between the software components and connectors and the production

environment

2.2.2 Rational Unified Process (RUP) / Krutchen 4+1

A five-view approach is presented by the RUP consistent with Krutchen’s 4+1

approach [20]: Logical View (includes important design classes), Implementation

View (documents architectural design decisions), Process View (contains

information about tasks, processes), Deployment View (shows physical structure and

configurations) and Use Case View (presents use cases and scenarios). A 4+1

architecture can also be documented by V&B [1].

2.2.3 Siemens Four Views

Siemens proposes four views to document the architecture of a system [21][22]:

 Conceptual View (maps the functionality of the system to the components

and connectors)

 Module View (maps the components, connectors, ports and roles to abstract

modules and interfaces)

 Code View (shows system’s source and deployment organization)

 Execution View (maps system functionality to runtime elements)

Siemens Four View architecture can also be documented using V&B approach [1].

 12

Figure 2-1 UCM Basic Notation [23]

2.2.4 Data Flow and Control Flow Views

In Data Flow views system is presented via data flow diagrams (DFD). V&B C&C

view types can replace DFDs. While DFD shows the system from data aspect,

control flow diagrams (CFDs) models the system from control perspective. Control

flow views use CFD, which can be replaced by V&B C&C view types [1].

2.2.5 Use Case Maps

Use Case Maps (UCM) aim to present the connection between structure and

behavior in a prominent way [8]. UCM paths describe the causal relationship

between the UCM Responsibilities, which are connected to the abstract components

of the system's organizational structure. UCM paths represent the scenarios, which

fill the gap between the requirements and detailed design. UCM's can be derived

from the user requirements or use cases. UCMs do not analyze the system's

functionalities at the level of messaging, but they are examined from the birds' eye

view through the UCM paths. In this way, different architectures are encouraged.

2.2.5.1 Basic Notation

The arrangement which represents the casual relationships between a group of

objects is shown in [Figure 2-1].

 13

The items of the figure can be listed as follows:

 Start Point: (Filled circle) Represents preconditions/triggering reasons.

 End Point: (Bar) Represents post conditions/effects.

 Responsibility: (Cross) Represents Activity, function or tasks.

 Component: The software parts that make up the system. The

responsibilities can be connected to components.

 Path: Connects the start point, end point and the responsibilities.

2.2.6 User Requirements Notation

The User Requirements Notation (URN), that analyses the requirements by using the

goals and scenarios, is a modeling language which is standardized by the

International Telecommunication Union in 2008 [24]. URN is the first standard that

handles and interconnects the goals and scenarios in a visual way. URN consists of

Goal Oriented Requirements Language (GRL) and Use Case Maps (UCM). GRL

models the actors and their objectives while UCM describes architectures together

with the scenarios. To demonstrate that there is enough content in the architecture for

the scenarios to flow, UCM notation is used in this study. Since the documentation

activities are not carried out at the requirements phase, GRL is excluded from the

process.

2.3 Frameworks

2.3.1 C4ISR Architecture Framework

In order to produce interoperable products and have a common architecture, The

United States Department of Defense (DoD) introduced a framework for architecture

development.

 14

Main components of C4ISR Architecture Framework [25] can be listed as follows:

 Definition of common architectural views

o Operational View (tasks and activities, operational elements, and

information exchanges required to accomplish DoD missions)

o Systems View (technical standards, implementation conventions,

business rules and criteria that govern the architecture)

o Technical View (the set of rules that governs the implementation and

operation of the system)

o All View

 Guidance for developing the architecture

 Definition of common products

 Relevant reference resources

2.4 Languages and Tools

2.4.1 UML 2.0

Unified Modeling Language (UML) [47] is a generic, standardized (ISO/IEC

19501:2005 [48]) language for software engineering which is defined by the Object

Management Group (OMG). Visual models of the object-oriented software intensive

systems can be created via the graphical notations included in the UML. Modeling

the business process, systems engineering modeling and representing organizational

structures are other capabilities of UML. UML 2.0 [49] is a revision that fixes

shortcomings of the first version of UML. UML 2.0 has two general diagram sets

and 13 basic diagram types [Table 2-4].

 15

Table 2-4 UML 2.0 Diagram Sets and Types

Diagram Set Diagram Type Explanation

Structural

Modeling

Diagrams

Package Model's logical containers and their high level interactions

Class or Structural Models' basic building blocks (types, classes, etc...)

Object Structural element instances and their run time usage

Composite

Structure

Inner details of elements' structure, relationships and

construction

Component High level complex structures with well defined interfaces

Deployment Significant artifacts' physical disposition

Behavioral

Modeling

Diagrams

Use Case User/System interactions

Activity Program flow, decision points and actions

State Machine To understand the run state of the model during execution

Communication Network/sequence of messages/communications of objects

Sequence
Sequence of messages between objects on a vertical

timeline

Timing Fusion of sequence and state diagrams

Interaction Overflow Fusion of Activity and Sequence diagrams

2.4.2 Enterprise Architect 7.5

Enterprise Architect (EA) [50] is an analysis and design tool, which is developed by

Sparx Systems and based on OMG UML. Some of the uses of EA 7.5 are listed as

follows:

 Design and build systems with UML,

 Model and manage complexity,

 Share models,

 Model, manage and trace requirements,

 Develop personal views and extracts of the model,

 16

Table 2-5 Size and Complexity Information of METU-MMDMS

 Parameter Value

Size

Lines of Code 395390

Number of Modules (Packages) 65

Complexity Highest Avg. Cyclomatic Complexity (per module) 7.0

 Track and trace model structures,

 Generate documentation,

 Generate reverse engineer source code,

 Visualize, Inspect, Understand complex software.

2.5 METU Multimedia Data Management System

The architecture of METU Multimedia Data Management System (METU-

MMDMS) is documented in the scope of this study. METU-MMDMS processes

multiple modalities inherent in a video and stores the concepts extracted from these

modalities in order to support semantic querying effectively and efficiently. As well

as the basic input/output and querying functionalities, METU-MMDMS is

specialized on the similarity-based operations on complex multimedia objects. The

accuracy of METU-MMDMS is enhanced with the aid of information fusion, which

functions on both extracted objects (data level) and query level. Furthermore,

Multidimensional Index Structure is constructed to index content and concept for

performance improvement. The system is composed of a Multimedia Database,

Semantic Information Extractor, Coordinator and the Client Application modules.

Triggered by the client queries, the information extracted through the Semantic

Information Extractor component is stored together with its fuzzy properties in the

multimedia database. The stored information is extracted via the index structure that

is specialized for multimedia data. The Coordinator component is responsible for

directing the information flow among the elements of METU-MMDMS [26][27].

The size and complexity information about METU-MMDMS is presented in [Table

2-5]

 17

2.6 Related Work

In this study, the METU-MMDMS architecture is documented by using the V&B

method. From the MMDMS architectural perspective, the attempts of proposing

more qualified multimedia database management systems led to the emergence of

various software architectures, which elucidate the structure and functionality of

those MMDBMS from different perspectives. Initially, the MMDBMS systems were

mainly repositories.

One of the first developed MMDBMSs is the MediaDB [9], which has client/server

architecture. It is an object-oriented system and supports relationships between

objects. Afterwards, the systems, which provide complex object types for

multimedia content and operators for these types appeared, such as the MIRROR

MMDBMS [10], developed by University of Twente. The system possesses a

distributed architecture and uses CORBA to allow distribution of operations. Recent

MMDBMS systems utilize MPEG-7 (XML-based) and MPEG-21 (to define an open

multimedia framework) standards.

Multimedia Analysis and Retrieval System (MARS) [11] integrates multimedia

information retrieval and database management system. Its multimedia data model

influenced MPEG-7 [12] standard. MARS involves Query Processor, Data Model,

Index Structure and Multimedia Access as its main modules. Despite all these

developments, only a few MMDBMS architectures are described at a very high level

of abstraction. In the high-level architecture of the distributed multimedia database

management system Active Media Object Stores (AMOS) [13], the connections

between components are not defined and components for some key processes such as

content/concept extraction and content based/concept querying are not presented.

Even some of the components are not clarified for the MMDBMS architecture in

[14]. And several MMDMs are present in the known literature that are not discussed

from the architectural perspective [15][16][17].

METU-MMDMS architecture is described completely and precisely via the Views

and Beyond method [35]. The V&B approach is based on the "view" concept, which

 18

consists of a group of elements and the relationships among these elements.

According to V&B, different views address different quality attributes, and have

different purposes and areas of use, and a non-trivial system cannot be represented

completely via a single view [1]. Determination of the views according to the current

stakeholders, documentation method of the interfaces of architectural elements,

mapping of elements that are present in more than one view and presentation of the

behavior of the elements are the tenets of this method. V&B also encourages the

identification and recording of design decisions. The ability of modeling complex

systems and compatibility to IEEE 1471 standard [18] are the effective criteria that

are considered in selection of this method. In [43] V&B method is compared with

ANSI-IEEE 1471-2000. The study shows that ANSI-IEEE 1471 requirements are

satisfied by the V&B approach. Besides being conceptually compatible, V&B can:

 include summary, context, glossary,

 meet stakeholders and their concerns,

 list the stakeholder, rationale selection of the view, used techniques,

 record rationale and consistencies among views.

There are also differences between the two approaches. The 1471 initially takes into

account the stakeholders and their concerns. Afterwards, the viewpoints are

constructed according to the stakeholders' needs. Depending on these viewpoints, the

architectural views are prepared. On the other hand, V&B process begins with the

selection of architectural styles that reflect the system. If the style is important for a

stakeholder, it can be documented as a view.

Does V&B have the complete coverage of the software architecture domain?

According to [44] no viewpoint model has the complete coverage. (May, 2005)

analyses five viewpoint models (Krutchen's 4+1 View Model, V&B, ISO Reference

Model of Open Distributed Processing (RM-ODP), Rational Architecture

Description Specification (ADS)) to understand whether an optimal set of viewpoints

from those models can be combined to obtain the widest coverage. The viewpoint

models are compared to the IEEE Standard 1471-2000. As a result, the optimal set of

viewpoints with the widest coverage includes;

 19

 Requirements viewpoint, Rational ADS,

 Module view type, V&B,

 C&C view type, V&B and

 Allocation view type, V&B.

Besides the methods with wide coverage, there are methods for modeling different

aspects of the architecture from a narrow perspective. (Roshandel and Medvidovic,

2003) analyse internal consistency among different models of a component. It

defines a Quartet as a set of four primary aspects of component, which are interface,

static behavior, dynamic behavior and the interaction protocol.

Any view includes diagrams to model the corresponding architectural perspective.

V&B allows the user to select any of the informal, semiformal or formal notations to

use. Each notation has its own tradeoffs. Notations that are more formal are hard to

create and time consuming but more clear and detailed. Notations that are more

informal are easy to create but they do not support making effective analysis as well

as detailed diagrams do. Unified Modeling Language is a widely used semiformal

notation. However, in [45], (Sauer, 1999) claimed that "a specialized and more

advanced language is needed to describe the precise temporal ensembling of

different media objects and UML lacks appropriate guidelines on how to deploy the

different diagram types cooperatively to model complex multimedia applications".

Due to these shortcomings, an extension of UML for multimedia applications, called

OMMMA-L (Object Oriented Modeling of Multimedia Applications), is proposed in

[45].

 20

 21

CHAPTER 3

3 DOCUMENTING THE ARCHITECTURE

In this chapter, the documentation process of the METU-MMDMS is described.

Initially, the functional features of the system are identified. Afterwards, the

architectural information in the software architecture document that is constructed in

accordance with the V&B method is provided and UCM is employed to check

whether the documented view includes enough content to carry out a related scenario

or not. In the last section, the recommendations, especially on the use of design

patterns, are offered.

3.1 Functional Features

The goal of the MMDMS study is to develop a multimedia information system,

which processes multiple modalities inherent in a video and stores the concepts

extracted from these modalities, in order to support semantic querying effectively

and efficiently. For this purpose, the METU-MMDMS architecture is required to

provide the following functional features:

[Feature-1] The system shall be able to upload a video.

[Feature-2] The system shall support annotation of an object in a video frame.

[Feature-3] The system shall support editing of an annotated object of a video

frame.

[Feature-4] The system shall support annotation of an event in a video.

[Feature-5] The system shall enable the user to edit the annotated event of a

video.

 22

Figure 3-1 MMDMS Use Cases

[Feature-6] The system shall extract concepts for an uploaded video.

 [Feature-7] The system shall enable the user to edit the extracted concepts for an

uploaded video.

[Feature-8] The system shall support content/concept based querying.

[Feature-9] The system shall support similarity based querying.

[Feature-10] The system shall show the query results via a video player.

[Feature-11] The system shall support unimodal/multimodal based querying.

[Feature-12] The system shall support fusion based querying.

[Feature-13] The system shall fuse the information extracted from various

modalities.

[Feature-14] The system shall perform efficient indexing of content and concept

of stored videos.

 23

In order to meet the functional features listed above, the Use Cases of the system

include Upload Video, Add Region, Edit Region, Get Concept, Edit Concept, Delete

Video, Upload Video, Set Network Parameters, Create Index Structure and Query as

it can be seen from the [Figure 3-1] . The Query use case covers text based queries

and similarity queries (e.g. Query by Content, Query by Concept, Query by Concept

and Content, and Query by Example). Features traceability matrix is presented in

[Appendix C].

3.2 Software Quality Goals

The desired states of some internal or external quality characteristic of a software

product are described with the quality goals. The quality goals for METU-MMDMS

are listed below (The accepted definitions of the quality attributes for this

architecture are explained in Section 4, see [Table 4.2]):

 [QG-1] Accuracy of the query results (increased by multi-modal querying

capability via data fusion and query level fusion)

[QG-2] Performance of the queries (as the response time, improved by the help

of the multidimensional index structure)

[QG-3] Scalability (database scalability through the multidimensional index

structure)

[QG-4] Maintainability (adding new features and functionalities)

3.3 Selection of the Stakeholders

Which stakeholders will benefit from these views? We must find out the answer of

that question in order to use the correct set of the views. How those stakeholders are

identified? The answer will be that the stakeholders listed below are identified

 24

according to the existing stakeholders of the METU-MMDMS. Being a research

vehicle, this system has a much reduced variety of stakeholders compared to a

typical enterprise information system. Thus, identifying the stakeholders and their

concerns were not challenging.

One of the stakeholder groups of the METU-MMDMS, naturally, the development

team needs documentation to understand a part or requirements of the system that

they are responsible for, to see the system from bird's-eye view and to get the main

ideas. Each sub-unit of multimedia database management system is a product of a

separate study and in the different sub-units different developers are involved.

Therefore, for the members of the development team, meeting at a common point,

communication and understandability of the system highly depends on the proper

documentation. The concerns of the development team can be listed as transferring

the implementation and run-time information of the MMDMS.

Testing and integration team needs the black-box information of the system and its

subsystems. This team is identified as a stakeholder because the METU-MMDMS

consists of clearly separated modules, each of which is developed by different

developers, and those modules should be tested and integrated. Different members

carry out different stages of development and integration processes of the

multimedia database management system. Providing the system architecture as input

to the stages for this case is also important in terms of conducting the execution in a

sound way. Understanding the implementation and run time behaviors of the

MMDMS, and how the components are distributed among the external resources are

the concerns of the integration team.

The research groups should maintain the continuity of the system. Since multimedia

database management system is an R&D platform and R&D phases of the process

continues, during the integration of the parts that different research groups

developed, the necessity of compliance for the current parts of the system emerges.

The research group is identified as a stakeholder because new features and

functionality should be added to the METU-MMDMS for research purposes. The

main concern of the research groups is adding new features/functionalities which

 25

meet system's quality goals and avoiding the decrease in the performance or

accuracy.

System users usually do not need to see the architecture of multimedia data

management system, but, for the sake of the efficient use of the system, having a

general knowledge about the architecture will be useful. The METU-MMDMS has

some users therefore, they are identified as a stakeholder group. The users' concerns

are gaining the capability of using the system and having fast and accurate results.

The system analysts require the documentation of the architecture to understand

whether the system meets the desired quality attributes.

The other stakeholders are listed in [Table 3-2].

3.4 Choosing the Relevant Views

In METU-MMDMS architecture, the development team, integrators and maintainers

are the same stakeholder. However, in [Table 3-2], it is shown as they are different

stakeholders to give detail about the necessary views for them together with the

necessity of the view for the corresponding stakeholder. Selected views and the

reasons are explained in the following sections and excluded views are listed in

[Table 3-1] together with their reasons of exclusion.

3.4.1 Module

Decomposition: The decomposition style is used to show the structure of modules

and submodules [1]. The architect/Project manager/ the developer should know the

modules and packages in order to advance the architecture/distribute the work

order/carry on the development responsibilities. Integrators are not supposed to have

detailed information on the decomposition; they just need the necessary interfaces

and their locations in modules/packages. Analyst will need a brief knowledge to

understand the system better. In METU-MMDMS, decomposition is used to assign

desired functionaliy to units of design and implementation. Especially for the

 26

Table 3-1 Excluded Views

Style Reason for exclusion

Generalization

Useful for extensions in the architecture, e.g. Adding, removing, and changing the children

modules of a more generalized module. The possible extensions on METU-MMDMS architecture

can be like adding a new mode and modes have different nature therefore they do not have a

generalized way of processing.

Layered

The METU-MMDMS does not have a layered structure because the Coordinator component has

two-way communication with all other components. The relations between this module and other

modules are not unidirectional.

Peer to peer
The METU-MMDMS system has Client-Server style and the interaction is started from the

Client. Unlike Client-Server style, each peer can start interaction in Peer-to-Peer style.

Publish-

subscribe

In publish-subscribe style components are communicated via announced events. There is no

publishing/subscribing structure in METU-MMDMS.

Work

assignment

All modules are mapped to the researchers for the METU-MMDMS work assignment case.

Therefore, there is no necessity of providing the work assignment style.

Implementation We want to present a generic architecture and avoid too much detail.

semantic information extraction module, we can see that different sub-modules are

implemented to process different modes and handle mode specific problems.

3.4.2 C&C

Client-Server: Client-server style components interact by requesting services of

other components [1]. The METU-MMDMS consists of clients (multiple for

querying, single for information extraction purposes) and server. Therefore, using

client-server style can be justified in terms of the original conception of the system.

The client is implemented as thin-client, so that the services will be easily

maintained on the server. Current and future architects should be aware of that and

continue to the design accordingly. Project manager should keep track of,

development team and integrators should be aware of this design decision via this

view. It is not a must for the analyst to know the whole system, but he/she should

have some knowledge to make logical reasoning about how the client server

structure and the distribution of the components among client-server effect the

performance & accuracy.

 27

Table 3-2 Selection of the Views

S
ta

k
e
h

o
ld

er

Module Views C&C Views Allocation

Views

D
e
c
o
m

p
o

si
ti

o
n

G
en

er
a

li
za

ti
o

n

U
se

s

L
a
y

er
e
d

P
ip

e
-a

n
d

-f
il

te
r

P
e
e
r
-t

o
-p

e
er

P
u

b
li

sh
-s

u
b

sc
r
ib

e

S
h

a
r
e
d

-D
a

ta

C
li

e
n

t-
S

e
rv

e
r

D
e
p

lo
y

m
e
n

t

Im
p

le
m

e
n

t.

W
o

r
k

 a
ss

ig
n

.

Architect &

Research G.

d s d d d d

Project

manager

s o s s s s

Develop.

team

d d d d d d

Integrators o d s s d d

Maintainers s d s s s s

Analyst o o s s s s

Funding

agency

o o o

Users o o

Key: d = detailed information, s = some details, o = overview information.

According to the concerns of the funding agency, the product will be the most

important. To describe the product outer/black-box functions, it will be beneficial to

provide the funding agency the overview of the client-server view, in this way, they

will be aware of the usage of client as a black box, which needs server for

functioning. The needs of the users in scientific community will be similar with the

funding agency for client-server view.

Pipe & Filter: In a pipe-and-filter system, filters process the data input serially and

send the output to the next filter through a pipe [1]. Choosing pipe and filter style

can be justified on the grounds that Semantic Information Extractor component

 28

works in a pipe-and-filter manner. The video information in Semantic Information

Extractor is passed from one sub-component to the next, and information annotation

can be considered as the filtering process. The architect, project manager and the

development team are going to need the runtime perspective of the component in a

detailed way.

Shared-Data: Repository systems where the data accessors are responsible for

initiating the interaction with the repository are said to follow the shared-data style

[1]. Choosing shared data style can be justified on the ground that the Multimedia

Database component has a nature compliant with the shared data style. There is a

single Storage component among the sub-components of the METU-MMDMS and it

works as a shared resource for the queries from separate clients. During the

development process, the runtime perspective of the storage component can be

presented in the shared-data style.

3.4.3 Allocation

Deployment: In the deployment style, software elements native to a C&C style are

allocated to the hardware of the computing platform on which the software executes

[1]. Architect, manager, development team, and integrators need the deployment

view to see the client server organization. The client and server machine

dependencies and properties will be presented in this view. It is enough for a

maintainer to know the information required for the possible maintenance activities

on each selected view. The architecture document should enable maintainer to go

deep in the system architecture when necessary. Therefore, the architectural

information related to the predicted maintenance activities should also be

documented. Deployment view of METU-MMDMS shows that which components

should be deployed on client side, which are on server side. Choosing deployment

style can be justified on the grounds that the system will grow to become a

distributed system or a system that handles big data and the presented deployment

diagram will be a basis for such a system to denote the distribution of the

components on the hardware.

 29

3.5 Architectural Views

METU-MMDMS modules are developed by multiple teams of researchers, therefore

if a common modeling language and tool is used, it will be easier for the researchers

to see the overall picture, communicate and contribute. Therefore, Enterprise

Architect (EA) 7.5 and UML 2.0 are used to model the MMDMS architecture and

the views are produced as wiki pages for stakeholders to reach them

anytime/anywhere with a clear format. Classical top-down approach is carried out

throughout architectural modeling activity since it simplifies the construction process

of models, modules, components and even connectors. As the architecture

description gets more detailed, it begins to cover implementation details and

becomes harder to maintain because of the inclusion of rapidly changing properties.

Modeling activity should stop at a point. To avoid too much implementation detail,

the architecture is documented at package level for module views. The

decomposition module views are explained in the following sections and the uses

information about the views are presented in Appendix E. The classes/servlets are

included in the documentation when they are strictly necessary. C&C views are

constructed with components having one to one mapping with the modules in

module views. Note that classes are static structures, shown in a module view, so

they should not be included in C&C views. Finally, ports are numbered to easily

track the connections among different models.

3.5.1 Top Level Module View

A thin client application is developed for the MMDMS. The Server module covers

the Semantic Information Extractor, Multimedia Database and Coordinator modules.

Semantic Information Extractor is the module which implements object, event and

concept extraction processes. DB4O database and JESS knowledge base are used in

Multimedia Database as storage and fuzzy inference engine, respectively. A

Multidimensional Index Structure is integrated for efficient data access. Although

construction of a separate index structure is possible, since it causes a higher

 30

Figure 3-2 Top Level Module View – Decomposition Style

performance increase, combining all the dimensions in one index structure is

preferred as a design decision.

From the variability perspective, the Client Application can be re-designed in order

to meet new types of queries. Furthermore, the fields of queries can be rearranged

and the classification algorithms can be replaced with other suitable algorithms. As a

design rationale, in order to meet the maintainability quality attribute, the system is

structured in a modular way.

3.5.1.1 Module View of Client Application

Client Application consists of four components, namely, Retrieval Handler, Query

Result Presenter, Query Formulator and Online Video Processor [27]. Query

 31

Figure 3-3 Module View of Client Application – Decomposition Style

formulator helps creating textual and similarity based queries and object-event

annotation function calls.

Retrieval Handler is responsible for passing the constructed query to the server and

receiving the results from Coordinator component. Query results are displayed

visually and textually at the Query Result Presenter. Online Video Processor is

utilized for updating, deleting, uploading, annotating and manipulating videos.

As a design rationale, the heavy loaded functions are moved to the server

components to avoid a potential performance loss at the Client Application.

3.5.1.2 Module View of Semantic Information Extractor

Before extraction, annotation and fusion operations are performed; the video input

should be pre-processed to prepare suitable inputs for extraction, annotation and

fusion modules. Video transcoding, automatic shot boundary detection, important

frame extraction and key frame segmentation take place at this module. Video

transcoding module carries out direct digital-to-digital data conversion of one

encoding to another. As a preliminary step of annotation, the shout boundaries,

which are shot-to-shot transitions, are detected by Automatic Shot Boundary

Detector module [26].

 32

The important frames of the video are extracted by the IBM MPEG Annotation Tool

at IFrame Extractor module. Key frame segmentation unit performs the segmentation

of the extracted important frames. Audio/Visual Low-level Features Extractor

modules extract the low-level features required for audio and visual annotation

modules to operate. The extracted features are listed at [

Figure 3-6] [Figure 3-7].

Visual event annotator is developed to annotate visual objects and events. The image

segments are inputs for the object extraction phase. Depending on a domain

ontology, events are detected and extracted via the evaluation of the spatial and

temporal relations between the extracted objects. Audio annotator includes three

modules: Acoustic Classifier, Semantic Classifier and Audio Learner. Hidden

Markov Models (HMM) and Support Vector Machines (SVM) are used for Acoustic

classification. Acoustic classification results are inputs for the semantic

classification, which distinguish the higher-level classes (e.g. outdoor). Text

annotator does not go into a low-level feature extraction process. Named entity

recognizer detects named entities in the video text that can be classified into

predefined categories (name of person, organization, location, etc.).

To enrich its resources, the named entity recognizer is enhanced with a rote learner

module. In the fusion module, the information obtained from different modalities

enters a late fusion process in order to increase the detection accuracy of the

objects/concepts/events.

Module View of Visual Annotator

Visual annotator employs Visual Object Annotator and Visual Event Annotator

modules for extracting and annotating objects and events. The object annotator

performs learning phase with the best representative feature set obtained from the

feature comparator component. Finally, GA-based classifier determines possible

objects. After the objects are forwarded to the Visual event annotator, spatial

 33

Figure 3-4 Module View of Semantic Information Extractor – Decomposition Style

relations and movements are calculated to find the spatial changes at Spatial Changes

Extractor module.

Temporal spatial changes extractor module detects temporal spatial changes via the

relations of temporal and spatial changes by using domain ontology. The outputs of

spatial changes extractor and temporal spatial changes extractor help event extractor

determine events by checking similarity (similarity relations extractor) with the

defined events in domain ontology [38].

 34

Figure 3-5 Module View of Visual Annotator – Decomposition Style

Module View of Visual Low Level Features Extractor

The MPEG-7 features that are extracted for annotation processes are presented in [

Figure 3-6]. Visual low-level feature extractor completes the extraction process of

the color, shape, motion and texture features.

Module View of Audio Low Level Features Extractor

The MPEG-7 low-level descriptors that are extracted for annotation processes are

presented in [Figure 3-7]. Audio low-level feature extractor completes the extraction

process of those audio harmonicity type, audio spectrum basis, audio power type,

audio spectrum centroid, audio spectrum flatness, audio spectrum projection, audio

spectrum spread and merged audio features.

3.5.1.3 Module View of Coordinator

Search coordinator is able to do multimodal querying, querying on fused data,

content/concept based, query by example type searches and their combinations. The

 35

Figure 3-6 Module View of Visual Low Level Features Extractor – Decomposition

Style

Figure 3-7 Module View of Audio Low Level Features Extractor –

Decomposition Style

query requests are initially transferred to the request processor and query analyzer

determines the query type and analyses query content. Query level fusion aims to

improve query results by fusing multimodal data at query level. Concept extraction

manager controls the concept extraction process.

 36

Figure 3-8 Module View of Coordinator– Decomposition Style

Video preprocess handler triggers video preprocessor module of semantic concept

extractor module before extraction and annotation phases begin. In order to correct

the automatic annotation results and improve information retrieval precision, manual

annotation option is also provided to the user. Manual Annotation Handler module is

developed for text/audio/visual manual annotation purposes. Database operations

such as video upload, update, delete are coordinated by the Database Operations

Manager module [27].

3.5.1.4 Module View of Multimedia Database

Multimedia Database module view stores multimodal information and includes a

fuzzy knowledge base to apply fuzzy inference rules. The user requests are initially

transferred to the Bridge module as the abstraction layer of the Multimedia Database.

The Bridge module manages the coordination and communication between the

Database and Fuzzy Knowledge Base modules. The object oriented Database

module covers the Audio, Text, and Visual Databases. For efficient data access, a

Multidimensional Index Structure is developed [27].

3.5.1.5 Multimedia Data Model

The data model is the blueprint for the implementation of the data entities [42].

 37

Figure 3-9 Module View of Multimedia Database – Decomposition Style

Figure 3-10 Multimedia Data Model

 In order to represent complex multimedia objects, a conceptual multimedia data

model is constructed. The classes and their definitions are listed in [Table 3-3]. In

[Figure 3-10], entities, relationships and the hierarchical structure of the data model

are shown.

 38

Table 3-3 Classes and Definitions

NAME DESCRIPTION

Audio Concept
Audio concept is the audio information that is obtained by analyzing

the relationship between feature, object and other concepts.

Video
Video objects are composed of sequences (shot-scene-sequence-video

hierarchy).

Event
Events are interactions between concepts, objects, and spatial/temporal

relations.

Region The selected portion of an image is region.

Audio Segment Audio segments are used for detecting object and event boundaries.

Shot

The smallest temporal segments are shots. They are defined as the

minimal group of adjacent frames, stating a continuous action and

having images from the same area, therefore contain some common

low-level features.

Object
Object is the independent information that is gathered by analyzing the

video features and will take the actor role in an event.

Segment

Sets of pixels. (In computer vision, image segmentation is the process

of partitioning a digital image into multiple segments. The goal of

segmentation is to simplify and/or change the representation of an

image into something that is more meaningful and easier to analyze.)

Visual Low Level Features MPEG-7 visual low level features.

Audio Low Level Features MPEG-7 audio low level features.

Named Entity
The named entities in a text will be listed as "person", "location",

"organization", "time", "date" and "money".

Fused Concept Audio, visual and text concepts are combined to form a fused concept.

IFrame

Frame is the smallest temporal granularity for video objects, which can

also be represented with image. IFrame defines starting and ending

points of any smooth transition.

Image
Image is an array, or a matrix of square pixels (picture elements)

arranged as columns and rows.

 39

3.5.2 Top Level C&C View

From the runtime perspective, METU-MMDMS has a Client-Server C&C view

style. Textual and similarity based queries are built using the interfaces of Client

component. In addition, object and event annotation functions are invoked from the

relevant interfaces in this part. Sending the constructed query to the server and

receiving the results coming from Coordinator are also the Client's responsibilities.

Coordinator component has an interface role among other components and runs as a

facade. Semantic Information Extractor component provides information to be stored

in Multimedia Database via Coordinator component. Multimedia Database is an

intelligent information management system, which offers an efficient interaction

between database and knowledge base.

In METU-MMDMS architecture, as a requirement of thin client technology, all the

operational functions are recommended to be executed in server side components

and the supplementary functions, which mostly require user interactions, are

suggested to be performed on Client Application. In order to obtain a scalable

system, an extensible and flexible Coordinator structure should be developed. In this

way, new high level components can be added to the system with minimum effort

and the additional data load can be managed by the Coordinator component.

3.5.2.1 C&C View of Semantic Information Extractor

Semantic Information Extractor works in a pipe-and-filter manner. Video

Preprocessor component is responsible for video transcoding, automatic shot

boundary detection, important frame (IFrame) extraction and key frame

segmentation.

The preprocessed video is sent to Audio/Visual Low-level Feature Extractor

components before the audio/visual annotation phase. Text annotation phase starts

immediately after the video-preprocessing activity. Video preprocess and annotation

 40

Figure 3-11 Top Level C&C View – Client-Server Style

phases are triggered by the Coordinator component. Duration of annotation differs

for each modality.

Besides, excessive memory consumption occurs at the time of annotation. Therefore,

annotation results are first stored into the Multimedia Database through the

Coordinator structure.

Afterwards, in the fusion step, the stored annotation results are extracted from

Multimedia Database in order to generate fused information extraction results via

Fusion component. Data level fusion outperforms single modality approach in

information extraction. The classification methods in Audio/Visual/Text Annotator

are interchangeable with others. The goal for Semantic Information Extractor

component is high accuracy and performance.

 41

Figure 3-12 C&C View of Semantic Information Extractor – Pipe and Filter Style

The flow of semantic concept extraction activities are strictly controlled by the

Coordinator component. Various Semantic Concept Extractor module functionalities

can be triggered by Coordinator's components (see port numbers). The reason of that

design decision is that the duration of the activities differs among modalities. For

example, the annotation process for the audio, visual and text dimensions are

different and they are annotated separately and stored in the database afterwards. In

addition, for the fusion process, the required annotations are extracted from the

multimedia database. To indicate that the annotator components can have some

common/similar properties, as a modeling decision, their types are stated as

"annotator" with the angle brackets in [Figure 3-12].

 42

Figure 3-13 C&C View of Video Pre-processor – Pipe and Filter Style

C&C View of Video Pre-processor

Video preprocessor component, triggered by the Coordinator-Video Preprocess

Handler, prepares the suitable data for the annotation and extraction components.

First, the Video Transcoder component converts the video into a suitable format for

the successor processes.

C&C View of Text Annotator

The text is extracted from the video segments. The name entity recognizer processes

this text to extract the named entities. The text is also input to the Event Extractor

component. By using Non-disjoint Event Text Groups, Event Learner component

 43

Figure 3-14 C&C View of Text Annotator– Pipe and Filter Style

finds out the Common Event Keywords. These frequent keywords take part in the

event extraction process.

Named entity recognition results are enhanced with the help of the Named Entity

Learner component. The resources of text annotation are extended since models for

the new resources can be created as the output of the learning activities [39].

C&C View of Audio Annotator

Audio annotation activity is carried out in this component. The separated audio is

divided into silence and non-silence segments. Non-silence segments are classified

 44

Figure 3-15 C&C View of Audio Annotator – Pipe and Filter Style

by the Acoustic classifier component. The acoustically classified segments are

transferred to the Semantic Classifier component and enter a smoothing process.

Afterwards, those segments are classified into semantic (outdoor, nature, violence,

meeting,etc.) classes. Learned Concept Models plays role in Acoustic Classification

process. The Concept Models are outputs of the Support Vector Machine (SVM) and

Hidden Markov Models (HMM) learning techniques. MPEG-7 audio features, Mel

Frequency Cepstral Coefficients (MFCC) feature and Zero Crossing Rate (ZCR)

feature are entered to the learning procedure [37].

C&C View of Visual Annotator

Visual annotation is achieved through two components: Visual Object Annotator and

Visual Event Annotator. The Visual Low Level Feature Extractor forwards low level

features to the Visual Annotator component. Depending on the extracted features,

visual objects are annotated. The annotated objects and spatio-temporal relationships

between them are passed to the Visual Event Annotator component to complete the

annotation process. Visual events and objects are transferred to the coordinator

separately to be stored in multimedia database.

 45

Figure 3-16 C&C View of Visual Annotator – Pipe and Filter Style

C&C View of Visual Event Annotator

Visual Event Annotator takes Visual Objects and spatio-temporal relations from the

visual object annotator. By analyzing the spatial relations, the spatial changes

extractor finds out the spatial changes of objects. Temporal Spatial Changes

Extractor adds temporal relations defined in the domain ontology onto the spatial

changes.

The spatial relations, spatial changes and temporal spatial changes are evaluated

according to the event definitions in the domain ontology. If they satisfy

corresponding event rule definitions, event extraction will be successful [38].

 46

Figure 3-17 C&C View of Visual Event Annotator – Pipe and Filter Style

C&C View of Visual Object Annotator

Object Classifier component conducts the visual object annotation together with the

Feature Comparator and Visual Object Learner components. MPEG-7 features are

employed during classification and learning processes. Object models belonging to

different object classes are produced as an output of the Visual Object Learner

component that performs learning activity depending on the objects' features. The

objects are distinguished according to the object models. Furthermore, Feature

Comparator can compare the features of separate objects and if there is an acceptable

similarity amount between those features, the objects can be combined as the parts of

the same object [38].

 47

Figure 3-18 C&C View of Visual Object Annotator– Pipe and Filter Style

C&C View of Fusion

Fusion module combines the information obtained in all three modalities to form

fused concepts appropriate for the Concept Models. Feature selection module

calculates the weights of all features according to the training data and eliminates the

features having the weight values below the threshold.

After the training data is transferred to the SVM format, it passes into the concept

learner. Then the concept learner constructs the Concept Models after some series of

processes.

In the testing phase, the test data is formed according to the scores obtained from

several modalities and then given to the concept classifier to create a new concept or

generate a new integrated concept score [36] [41].

 48

Figure 3-19 C&C View of Fusion – Pipe and Filter Style

3.5.2.2 C&C View of Multimedia Database

Multimedia Database component consists of the Bridge, Multidimensional Index

structure, Knowledge Base (Jess), Object-Oriented Database Management System

(DB4O) and the Multimedia Database components. Bridge is utilized for managing

communication and interaction between the DB4O system and Knowledge Base. It is

used as an abstraction layer and entry point for user requests. Multimedia Database

component stores visual/audio/text object/concept/event information. In order to deal

with uncertain information, the system uses a fuzzy knowledge base in conjunction

with an object-oriented database. Scalability is the major quality factor for the

Multimedia Database, especially for Multidimensional Index Structure.

Although DB4O has its own B+ tree index, a Multidimensional Index Structure has

been developed to perform query by concept and content together (first search

conceptually and find candidates, then do similarity matching on resulting

candidates). Multidimensional Index Structure also increases efficiency and accuracy

of semantic querying.

 49

Figure 3-20 C&C View of Multimedia Database – Shared Data Style

Increasing the dimension of the Multidimensional Index Structure can be considered

as a variability point. However, as the dimension of Multidimensional Index

Structure increases, its performance decreases drastically. This is known as “the

curse of dimensionality”. Since an object-oriented database is used, the size of the

objects also affect the insertion and retrieval time (performance).

3.5.2.3 C&C View of Coordinator

Request Processor component gets the request from Client. If the request is a query,

it is passed to the Query Request Processor. By the help of the Query Analyzer, the

 50

Figure 3-21 C&C View of Coordinator

query is forwarded to Search Coordinator or Database Operations Manager

depending on the query content. Query results are transferred to the Query Level

Fusion component via the Query Analyzer. In addition to data level fusion, query

level fusion can increase retrieval precision.

The fused results are presented to the user. Other requests such as concept extraction,

video preprocessing and manual annotation are directed to the related components

directly from the request processor [27].

To support different types of components, developed in different environments and

platforms, the Coordinator structure should be flexible and extendible to make

METU-MMDMS architecture more flexible.

 51

Figure 3-22 C&C View of Client

Therefore, Coordinator is developed in a web-based manner, using servlet instances,

since servlets are fast and easy to use. Servlet templates can also be provided for

search, database operations, concept extraction and manual annotation servlets. The

realized structure of Coordinator component is expected to be easily manageable and

maintainable, as it needs only minor modifications during the integration of new

components.

3.5.2.4 C&C View of Client Application

A multithreaded client application has been developed for querying, online video

processing and query result presentation purposes. The main functionality of the

Client is controlled from Query Formulator where textual and similarity based

queries are built and object-event annotation functions are invoked. Retrieval

Handler sends the constructed query to the server and receives the results from

Coordinator component. Query Result Presenter displays query results in multimode

and supports result correction via manual annotation. Online Video Processor is used

to update, delete upload, annotate and manipulate videos. Thin client is suitable for

performance purposes, with time-consuming functionalities moved to the server

components [27].

 52

Figure 3-23 Top Level Allocation View - Deployment Style

Experts, who have experience with the system and have the ability to construct

effective queries accordingly, construct the queries in METU-MMDMS. To increase

usability of the system and increase retrieval effectiveness, query recommendation

functionality should be added to the client

3.5.3 Top Level Allocation View

Client is the node on which the client component runs. Server node provides

execution environment for Semantic Concepts Extraction, Coordinator, Multimedia

Database components. Centralized server eases the system maintenance. Interaction

between server and client instances is established using both XML and HTTP

messaging standards. Therefore, any other client application can easily connect to

the server framework and use the implemented sample multimedia database

framework so long as they satisfy the requirements of messaging protocol.

 53

The client is implemented as thin-client, so that the services will easily be

maintained on the server. The workload is on the server to be able to complete client

operations efficiently on the client side.

3.6 Interface Documentation

Software components communicate with each other through the interfaces and the

system cannot be analyzed appropriately without the required information about the

software interfaces. Therefore, for a complete architectural documentation the

necessary details of the interfaces should also be included in the document.

According to [1] , "An interface document is a specification of what an architect

chooses to make publicly known about an element in order for other entities to

interact or communicate with it.". The principles about software interfaces can be

listed as follows:

 Each element has at least one interface,

 The interface of an element should be separated from the implementation,

 Interfaces are provided and required by the elements,

 An element can interact with more than one actor via an interface,

 Generalization can be used to extend the interfaces.

While documenting the interfaces, the externally visible interactions with the other

elements should be considered. The unnecessary information or the information that

the user is not supposed to know should not be documented. The interface which is

used in multiple views should be documented only once at the point where it is more

beneficial. Moreover, the interface documentation should be specific and precise. An

interface document should be organized as the following sections:

 Interface identity

 Resources (syntax, semantics, error handling)

 Data types and constants

 Error Handling

 54

Table 3-4 Online Video Processor Interface Details

Resource Pre-condition Post-condition Error Handling

bool

XMLExtractShotBoundariesAndIFrame

(string videoPath)

The function that extracts shot boundaries

and IFrames and saves temporal

information about shots and IFrames in

XML files and database.

Initialization must be

completed (set path

for all video/image

files in db, set

database parameters,

connect to database)

Shot boundaries

and IFrames

should

successfully be

created.

XML files

should be

formed.

Information

about shots and

IFrames should

be stored in

database.

FileNotFoundException: No

video in given path/created

XML is not found or IFrames

are not found.

SAXException: Any problem

about XML parsing.

 Variability

 Quality attribute characteristics

 Rationale and design issues

 Usage guide

The Coordinator component has interface with each high level component. Online

Video Processor and Query Formulator are the interfaces that have the highest

importance among coordinator interfaces. Each interface provides multiple

resources, which are described in the next sections.

3.6.1 Online Video Processor Interface

Online Video Processor interface provides resources for video uploading, updating,

deletion, annotation and manipulation. The most important resources that it uses are

“XML ExtractShotBoundariesandIFrame”, "getMBR" and "getFrameRegion

Annotation". The details of the interface are listed in [Table 3-4].

 55

(Table 3-4 continued)

Resource Pre-condition Post-condition Error Handling

bool

getMBR

(string IFramePath)

For each key frame and in a key

frame for each region, this

function finds the maximum

bounding rectangle (MBR).

Returns true if and only if it is

successfully completed.

Shot boundaries and

IFrames are

extracted.

The selection of

segmentation

algorithm is done

and appropriate

parameters are

selected.

Segmented image

file are formed.

Map file that

shows which pixel

belongs to which

region is

constructed.

For each IFrame

some region is

extracted as

bounding box and

be stored in the

database.

FileNotFoundException:

No video in given

path/created XML is

found or IFrames are not

found.

bool

getFrameRegionAnnotation

(int currentSessionId)

For each MBR, this function

finds the class that this region

corresponds to. Returns true if it

is successfully completed.

MBRs are extracted.

The classifier is

trained and

initialized.

The function

should output the

class that MBR

maps and its

degree of

mapping.

ObjectAnnotationExcepti

on: No result is returned

from annotation process -

internal error in

annotation component.

3.6.2 Query Formulator Interface

Query Formulator Interface supports the textual and similarity based queries that are

built by using the Client Application GUI and transferred via this interface. The

most important resources that it uses are “queryAnalyzerServlet” and "getShot". The

details of the interface are listed in [Table 3-5].

 56

Table 3-6 Module-Component Mapping Example

Table 3-5 Query Formulator Interface Details

Resource Pre-condition Post-condition Error Handling

bool

queryAnalyzerServlet

(string queryString)

Connection to

database is

established.

Ranked list of

shots are

extracted.

IOException: The necessary

files for indexing are not

found.

DatabaseConnectionExcepti

on

QueryStringParseException

bool

getShot

(string queryString)

Among the list of shots, this function

retrieves the selected shot in a video

and plays in query result presenter.

Intended shot

is selected.

A byte stream

which

represents the

requested video

is produced.

JMFInternalException: JMF

player throws the exception.

IOException:Requested

video is not found.

3.7 Mapping

One or more elements in a view may correspond to one or more elements in another

view. The mapping elements between the architectural views of METU-MMDMS

are presented in the form of tables. After a small analysis process, the views for

which we should provide explicit mapping are selected.

Top Level Module View (Decomposition) Top Level C&C View (Client-Server)

Client Application Client Application

Semantic Concept Extractor Semantic Concept Extractor

Coordinator Coordinator

Storage Storage

 57

Table 3-7 Hierarchical Mapping Example

Top Level

Module View

Components

Decomposition

Level-1 Decomposition Level-2 Decomposition Level-3 Decomposition

Client

Application

Retrieval Operator

Query Result Presenter

Query Formulator

Online Video Processor Annotate and Manipulate

Delete

Update

Video Upload

Semantic

Information

Extractor

Video Pre-processor Automatic Shot Boundary Detector

Important Frame Extractor

Key Frame Segmentation Unit

Video Transcoder

Audio Annotator Acoustic Classifier

Semantic Classifier

Audio Offline Training

Text Annotator Event Extractor

Event Offline Training

Named Entity Offline Training

Named Entity Recognizer

 58

Table 3-7 (continued)

 Visual Annotator Visual Object Annotator Feature Comparator

GA-Based Classifier

Visual Object Offline Training

Visual Event Annotator Similarity Relations Extractor

Temporal Spatial Changes Extractor

Spatial Changes Extractor

Event Extractor

Audio Low Level Features Extractor

Visual Low Level Features Extractor

Fusion Operator Concept Constructor

Concept Learner

Concept Classifier

Feature Selector

Coordinator Request Processor Query Analyzer

Query Level Fusion

Annotator

Concept Extractor

Database Operator

Search Operator

Storage Bridge

Multimedia Database Audio DB

Fusion DB

Text DB

Visual DB

Fuzzy Knowledge Base

Multidimensional Index Structure

 59

The three rules of thumb are followed during mapping process:

 Provide a mapping between the module decomposition view and every C&C

view.

 Ensure at least one mapping between a module view and a component-and-

connector view.

 If your system uses more than one module view, map them to each other.[1]

3.8 Behavior

We answered three main questions before beginning the documentation process [1]:

1. What kind of questions should the documentation answer?

2. What behavioral information is available/can be stated to the developers?

3. Which notation should be chosen?

For METU-MMDMS architecture, the behavior is documented to give more insight

to the developers about the behavioral details of the system such as the ordering of

interactions and patterns of interaction among the elements. The main functionalities

of the system are extraction and querying and the ordering of the communication is

important for these functionalities, so the documentation should answer the question

"What is the order of communication for extraction and querying functionalities of

METU-MMDMS?".

The behavioral information about the system which can be stated/is available to the

developers are which elements exchange data, whether the system is synchronious or

asynchronious (METU-MMDMS is a synchronous system) and whether the system

elements are local or remote (the client is a remote element).

We use UML notation and UML provides multiple options to model behavior (e.g.

Use Cases, Sequence Diagrams, Communication Diagrams, Activity Diagrams. We

employed Use Cases to capture functional requirements. If the concurrency was in

 60

focus, the Activity diagrams should have been preffered over others, but it isn't.

Sequential diagrams puts more emphasis on the order of communication than the

communication diagram while communication diagrams' emphasis is on explaining

which element interacts with which others. Therefore, the Sequential diagrams are

used for modeling the behavior.

The basic use cases of METU-MMDMS are Video Upload/Update/Delete/Annotate

and Query. To elucidate typical querying behavior, “Visual Query by Content” case

of Query use case is presented in [Figure 3-24].

The scenario begins with selection of a video. Then the Client Application requests

the selected video’s shot information from Multimedia Database through

Coordinator component. By using the requested shot information, the shot frame and

object region, whose content is the input of content based querying, are selected by

the standard user. The Client forwards the shot frame and object region IDs to

Coordinator and Coordinator fetches the corresponding low-level features from

Multimedia Database. Afterwards, Coordinator uses the fetched low-level features to

find top similar objects by the help of Multidimensional Index Structure. When the

ID’s of the similar objects are obtained, Coordinator fetches the shots of those

objects from Multimedia Database and passes them to the Client. Finally, the Client

shows the results of the Visual Query by Content [27].

Similar to the Visual Query by Content, the Audio Query by Content scenario begins

with selection of a video. Then the Client application requests the selected video’s

shot info from Multimedia Database through Coordinator component. By using the

requested shot info, the shot frame and audio concept, whose content is the input of

content based querying, are selected by the standard user. The client forwards the

shot and audio concept IDs to Coordinator and Coordinator fetches the

corresponding low-level features from Multimedia Database. Afterwards,

Coordinator uses the fetched low-level features to find top similar object by the help

of multidimensional index structure. When the ID’s of the similar objects are

obtained, Coordinator fetches the shots of those objects from Multimedia Database

and passes them to the Client. Finally, the Client is able to show the results of the

Audio Query by Content [27].

 61

Figure 3-24 Visual Query by Content [27]

The Coordinator component sets the video to be preprocessed by the Video Pre-

processor component. After the video is transcoded, Automatic Shot Boundary

Detection starts to operate. It first calculates Edge Change Ratio for all frames and

determines edge boundaries with these values. Then, Automatic Shot Detector sends

frame numbers of start and end frames of each shot to the Coordinator Component.

There may be gaps between shots because of gradual changes; so last frame of shot

SN and first frame of SN+1 may not be consecutive. Coordinator component gets these

frame numbers and sends them to IFrame Extractor component. IFrame Extractor

saves shot start and end frames and I-frames between these frames. These frames are

 62

Figure 3-25 Audio Query by Content[13]

considered as key frames of a shot. Each shot’s start frame number, end frame

number and key frame numbers are saved to a text file. For each video file,

Coordinator component checks this text file and loads shot boundary information if

exists [27].

 63

Figure 3-26 Automatic Shot Boundary Detection[13]

Query by Concept and Query by Example are joined together by means of some

logical operators to constitute Query by Concept and Content [Figure 3-28]. Here we

use concept query and content query for audio and visual. In concept query section,

the user starts selecting query constraint with a desired operator and adds them to

query list via rich GUI facilities. The constraints can be removed from the list or

totally cleared to start a new query. These steps are repeated for any desired

modalities along with some logical operators between them.

In audio query by content section, an audio concept selected from database and

played then a desired audio selected as an example. In visual query by example, a

video is selected from available videos in the database and sent to server, the server

in turn responds the client with information about selected video, which includes

shot lists, IFrames lists, objects’ region annotated n each frame and their temporal

information. At this point, a region is selected from an IFrame that belongs to a

determined shot [27].

 64

Figure 3-27 Concept Query [13]

 65

Figure 3-28 Query by Concept and Content [13]

 66

3.9 Use Case Mapping

Visualization of the software units, their behavior and the system's design models

enhance the understandability of the system. There are various scenario notations

that aim to visualize scenarios that are used for defining the desired behavior of the

system, and explain the system's observable behavior. UML Activity diagram,

presents system's dynamic behavior via activities. Use cases handle system behaviors

from the user's point of view. Message Sequence Charts are often used to model the

reactive systems' communication based behavior [34].

Since it includes generic and abstract display elements and can be used to map a

scenario to the architectural components, UCM notation is preferred among others.

Use case Map (UCM) notation is one of the listed methods, which are used to

describe and understand the behavior of complex systems. The aim of UCMs is to

map the scenarios that are prepared based on the requirements and use cases to the

architectural components and to explain and analyze system behaviors.

It is possible to understand the architecture of a completed system by using UCM

[30]. In this work, UCM is employed to check whether there is enough content in a

view to carry out a related scenario or not.

3.9.1 UCM Application Process

The UCM activity is carried out to examine the sufficiency of the architectural

document. It asks the following question: "Does a view in a document contains

enough information to meet a scenario?". When the architectural document is

exhaustive, its sustainability is at risk. Therefore, the documentation is expected to

have an easily updatable size and to be comfortably understandable ("travel light"

principle). We must be sure about having sufficient material in the architectural

document and critical details and decisions are not skipped, correspondingly.

Otherwise, the document will be useless. To understand whether the documents

contain enough information to meet the selected scenarios and to prevent the

 67

document from being proposed with insufficient content, the UCM process is applied

to the top-level component and connector view. Architectural evaluation of the

METU-MMDMS is conducted separately by application of the ATAM.

In the UCM application process, the architectural components that the scenario is

going to be mapped to are initially determined [51]. Afterwards, the scenario steps

are mapped to these components via the responsibilities with casual relationships and

UCM paths. Finally, for each responsibility, the low-level component which owns

the responsibility and, if any, the inputs and the outputs of the activity that fulfills the

responsibility are listed on a table as an extra work.

Data extraction and querying are the "sine qua non" functionalities of the METU-

MMDMS. There are three types of queries in METU-MMDMS: query by concept,

query by content and, query by concept and content. To cover all of these query

types, query by concept and query by content are examined ("query by concept and

content" is almost the combination of the other two). Further, multimode querying,

which is used to improve the accuracy of the system, is among the main goals of the

system. Therefore, it should be covered by the architectural views. Keeping the data

extraction case in mind, three scenarios are selected for the UCM process:

 Data extraction scenario: Online Concept Extraction

 Multimode query scenario: Query by Concept

 Low Level Features Query: Query by Content

Audio Query by Content UCM application process is explained in the following

sections. The other UCMs and corresponding scenarios are presented in [Appendix

D].

3.9.1.1 Selection of the Architectural Components

Views and Beyond method is used for the documentation process of the METU-

MMDMS. The module views, which model the static structure of the system, are

developed in decomposition style. There is one to one mapping between the modules

 68

in module views and components of the component and connector views, which

explain the dynamic structure of the METU-MMDMS.

Abstract architectural components will also be used in the context of UCM.

However, METU-MMDMS has already an actual architecture. Therefore, real

components are used for the application of UCM. By avoiding the visual complexity,

to keep the model understandable, METU-MMDMS's top-level components are used

for the UCM process. Those components are shown in the [Figure 3-11], the Top

Level C&C View. The Client component is found on the client side of the system,

which has the client-server architecture. The client component has the video

uploading/updating/deleting, querying and presenting the query result functionalities.

Semantic Concepts Extractor, Coordinator and the Multimedia Database components

are found on the server side. Coordinator component is responsible for the

organization of the communication among all other components. The video that is

loaded to the system via the client component is forwarded to the Semantic

Information Extractor by the Coordinator component. The video processing and

extraction of the event (e.g. goal in a football video), object (e.g. ball) and concepts

(e.g. foul) are carried out at the Semantic Information Extractor component. The

Multimedia Database component takes the extracted events, objects and concepts via

the Coordinator, and stores them. The queries, which are constructed at client side,

are passed to the Multimedia Database component through the Coordinator and to

increase performance, by the use of Multidimensional Index Structure, the related

data is transferred from the Multimedia Database to the client again through the

Coordinator component.

3.9.1.2 Generation of UCMs

The "Audio Content Based Querying" scenario that is under the "Low-level Feature

Based Querying" topic of the "Querying" use case of METU-MMDMS is employed

within the description of the sample UCM application process. jUCMNav [31] is

used for this process. jUCMNav is an analysis and transformation tool for URN.

 69

Figure 3-29 Audio Query by Content UCM

The UCM component types can be listed as Team, Object, Process, Interrupt Service

Request, Agent and Pool. Since the properties of the components do not match with

the properties of the ones listed above, the Audio Query by Content UCM diagram is

formed with "other component type" component option. The responsibilities, start

and end points are entitled/numbered and the related explanations are expressed as

notes.

The triggering factor of the UCM path in [Figure 3-29] is the start of the application

of the audio content-based querying scenario by the user. The user selects the

concept from the video, which he/she is going to query (1-7) and the low-level

features that belong to this concept are extracted from the system (8-10).

The video shots whose low-level features are most similar to the selected concept's

low-level features are presented to the user (11-16). Since the scenario describes a

querying process, there is not any important post-condition or effect at the end of the

UCM path, matching with "End1" end point. When the UCM path is analyzed, it is

expected to be connectors between Client-Coordinator and Coordinator-Multimedia

Database. The existence of those connectors can be verified with the Top Level C&C

 70

Figure 3-30 Insufficient Architectural Content - UCM cannot be completed

View in [Figure 3-11]. Furthermore, each responsibility can be mapped to a

component, which is responsible for the related activity.

Suppose that in a hypothetical example, the architecture is not reflected to the

architectural document completely and the Multimedia Database component is

skipped and remove the component from the [Figure 3-29]. In this case, only the

Client and Coordinator components are remained in the UCM diagram [Figure 3-30].

The responsibility which corresponds to the fourth step of the scenario to a

component, performs the information extraction from database functionality. Hence,

the fourth step cannot be shown on the UCM diagram. In this case, there is the

insufficiency of the architectural content in the architectural document.

3.9.1.3 Low-level Architectural Mapping

The sample MMDMS's architecture is complete. Therefore, it is possible to give

details about the architecture. While maintaining the simplicity of the UCM diagram,

A mapping table is formed accordingly to map each responsibility to corresponding

low-level architectural components (explained in the previous chapters) and to

present the inputs and outputs of responsibilities through this table (see [Table 3-8]).

 71

Table 3-8 Low-level Architectural Mapping

R.# Sub-component Input Output

1 Client. QueryFormulator - Video ID

2 Client. RetrievalHandler Video ID Shot Info

3 Coordinator. QueryFormulatorInterface &

Coordinator. RequestProcessor &

Coordinator.DatabaseOperator

Video ID Shot Info

4 MultimediaDatabase. Database Video ID Shot Info

5 Coordinator. QueryFormulatorInterface Video ID Shot Info

6,7 Client. ResultPresenter - Query with

Shot ID,

Concept ID

8 Client. RetrievalHandler &

Client. QueryFormulator

Shot ID,

Concept ID

Shot info

9 Coordinator. QueryFormulatorInterface &

Coordinator. RequestProcessor &

Coordinator. DatabaseOperator

Shot ID,

Concept ID

Concept’s

Low Level

Features

10 MultimediaDatabase. Database Shot ID,

Concept ID

Concept’s

Low Level

Features

11 Coordinator. DatabaseOperator Concept’s

Low Level

Features

Shot ID’s of

 similar

 concepts

The low level architectural mapping table for the audio content based querying UCM

is shown in [Table 3-8]. The responsibility number, sub-component, input and output

are listed at each row, respectively. Each responsibility can be mapped to a sub-level

component, which is present in the corresponding view. Therefore, the

documentation is sufficient for this scenario.

 72

Table 3-9 Insufficient Architectural Example

S.# Sub-system Input Output

1 Client. QueryFormulator - Video ID

2 Client. ? Video ID Shot Info

Table 3-8 (continued)

12 MultimediaDatabase.

MultidimensionalIndexStructure

Shot ID,

Concept ID

Shot ID’s of

similar

concepts

13 Coordinator. DatabaseOperator Shot ID’s of

similar

concepts

Shot info

14 MultimediaDatabase. Database Shot ID’s of

similar

concepts

Shot info

15 Coordinator. QueryFormulatorInterface Shot ID,

Concept ID

Shot info

16 Client. ResultPresenter - Shot info

As it can be seen from the hypothetical example when the sub-level architectural

views are not sufficient because the Retrieval Handler sub-component is not present

in the Client component, the second row of the table and the UCM diagram cannot

be completed. As a result, the insufficiency of the document content can be

determined via UCM and low-level architectural mapping table.

 73

Figure 3-31 Insufficient Architectural Content - UCM cannot be completed

 74

 75

CHAPTER 4

4 ARCHITECTURAL EVALUATION

To evaluate the software architecture of METU-MMDMS, SEI ATAM is employed.

"ATAM is a software architecture evaluation and analysis technique which discovers

trade-offs and sensitivity points of the evaluated architecture. ATAM is also a risk

identification method which means detecting areas of potential risk within the

architecture of a complex software intensive system." [32]. ATAM is preferred

among other methods depending on its advantages listed as follows:

 quick and inexpensive

 detailed analysis of measurable quality attributes is unnecessary

ATAM ensures:

 clear and characterized quality attribute requirements

 increase in the effectiveness of the documentation

 design decisions in the documentation

In addition, the typical ATAM steps are:

 Presentation

o ATAM presentation

o Business drivers presentation

o Architecture presentation

 Investigation and Analysis

o Identification of architectural approaches

o Generation of quality attribute utility tree

o Analyze of the architectural approaches

 Testing

o Brainstorming and prioritization of the scenarios

 76

Table 4-1 Stakeholders

Stakeholders

Project Manager
Adnan Yazıcı

Architecture Team

Murat Koyuncu

Mustafa Sert

Saeid Sattari

Çiğdem Avcı Salma

Merve Aydınlılar

Elvan Gülen

Evaluation

Team

Halit Oğuztüzün

Güneş Uyanıksoy

o Analyze the architectural approaches

 Reporting

o Result presentation

Evaluation team, customer representatives and the architecture team do the

presentation, investigation, and evaluation. The role assignments for the ATAM

process are listed in [Table 4-1].

Brainstorming and prioritization of the scenarios are carried out by all of the

stakeholders. Afterwards the architectural approaches are analyzed by evaluation

team, customer representatives and the architecture team again. Finally, results are

presented to all of the stakeholders. The utility tree, generated scenarios, analysis

questions, identified risks and non-risks and identified architectural approaches can

be listed as outputs of the ATAM process.

Performance, Accuracy, Conceptual Integrity, Scalability and Maintainability are

selected as the important quality attributes for the METU-MMDMS. The definition

of the quality attributes are listed in [Table 4-2].

 77

Table 4-2 Quality Attributes

Quality

Attribute
Definition

Performance

Performance is an indication of the responsiveness of a system to execute any action within a given

time interval. It can be measured in terms of latency or throughput. Latency is the time taken to

respond to any event. Throughput is the number of events that take place within a given amount of

time.

Accuracy
Accuracy includes precise and recall accuracy. Precise means correctness of retrieved data and recall

accuracy means ability to retrieve all relevant stored data.

Conceptual

Integrity

Conceptual integrity defines the consistency and coherence of the overall design. This includes the

way that components or modules are designed, as well as factors such as coding style and variable

naming.

Scalability

Scalability is ability of a system to either handle increases in load without impact on the performance

of the system, or the ability to be readily enlarged. For the mentioned system, database scalability is in

the scope and user scalability is out of concern.

Maintainability

Maintainability is the ability of the system to undergo changes with a degree of ease. These changes

could impact components, services, features, and interfaces when adding or changing the functionality,

fixing errors, and meeting new business requirements.

Then the utility tree is constructed as in [Figure 4-1]. Scenarios are proposed to show

that the system meets the selected quality attributes.

After the presentation of the ATAM, the business drivers are discussed. It is

emphasized that the METU-MMDMS is a research project and its main goal is

"providing multimodal querying which increases the accuracy of the retrieval

systems by using the data fusion" [32]. The main functions of METU-MMDMS are

listed as a summary:

 Concept, object, event annotation

 Storing, indexing, retrieving and managing semantic information

 Content based query and query by example

 78

Figure 4-1 Preliminary Utility Tree for METU-MMDMS [33]

Identification of architectural approaches followed the architectural presentation.

Component-oriented architecture, high dimensional index structure, object oriented

database, coordinator structure, data fusion and the client server approaches have

serious effects on the architecture.

The most critical scenarios are selected and analyzed. For each quality attribute, a

representative scenario is specified. The scenarios are prioritized according to their

“Importance” and “Difficulty to Achieve” (H(High), M(Medium) and L (Low)) (see

[Table 4-3] and [Figure 4-2]).

 79

Table 4-3 Scenarios for Quality Attributes

Scenario

Number

Quality

Attribute
Scenario

Importance

(H,M,L)

Difficulty to

Achieve

(H,M,L)

1. Performance

Video shots that contain sound of explosion and view

of plane at the same time are retrieved from 13000

objects of video, in less than a second .

(using the index structure.)

H M

2. Performance

A traffic accident scene is retrieved from 13000

objects of video by multimode querying, in less than a

second.

(Using the index structure.)

H H

3. Accuracy

When goal concept in a football game is queried on

manually annotated data, 95% of stored goal scenes

are retrieved.

M L

4. Accuracy

When goal concept in a football game is queried on

automatically annotated data, 50% of stored goal

scenes are retrieved.

H M

5. Accuracy

When goal concept in a football game is queried by

using of manual annotation, 99% of retrieved data are

correct

L L

6. Accuracy

When goal concept in a football game is queried by

using of automated annotation, 60% of retrieved data

are correct

H H

7. Accuracy
Query level fusion is resulted 5% better than

corresponding single mode queries
H M

8.
Conceptual

Integrity

Query results are presented as list of shots ranked by

relevance for each mode separately and multimode.
H M

9. Scalability

Query results from 50 hours of video data are gathered

in about one second even if more than one condition is

used in a query

Query results from 500 hours of video data are

gathered in about three seconds even if more than one

condition is used in a query (using the index

structure.)

H H

10. Maintainability
Adding a new learning algorithm to the system is

practical
M L

11. Maintainability
Adding a new low level feature to the system is

applicable
M M

12. Maintainability
Incorporating speech to text translation functionality

in different languages
H L

13. Scalability
Adding a new low level feature to the system is

applicable
M M

14. Scalability
Efficient execution of type of queries that require

higher dimension index
M M

 80

Figure 4-2 Preliminary Utility Tree for METU-MMDMS [33]

 81

Table 4-4 ATAM Evaluation Results

Sensitivity Points

 Dimension size of index structure affects the performance.

 Index structure should be created for the attributes of concept, which

was stored.

 Fusion is sensitive to data dependency.

 Automated annotation is sensitive to data that is annotated.

 Query annotator is sensitive to syntax errors of queries, which are

written by user.

 Size of index structure depends on size of data.

 Success of learning depends on the correlation among modalities.

 Query interface depends on output size.

 When new low-level feature is added, index structure should be

recreated.

 Learning mechanism is sensitive to size of training data.

 Query level fusion is sensitive to data type.

 Scalability depends on dimension size of index structure.

Risks

 Query formulator is not suitable for standard user.

 Index structure must be created accurately for system to operate as

expected.

 Increasing the index size may cause out of memory error.

 Failure of multimode querying is unacceptable.

 If output size is very large, the system may give timeout error.

 It is hard to manage high dimensional data.

 Adding new low-level features will decrease system accuracy.

Tradeoffs

 Using fusion increases accuracy, however it causes performance

reduction.

 High dimensional index structure makes the system more scalable but

decreases performance.

The results of the ATAM evaluation are summarized in [Table 4-4] [33] [52].

 82

 83

CHAPTER 5

5 DISCUSSIONS AND RECOMMENDATIONS

METU-MMDMS has multiple developers and there are various documents for

different components. Even different architectures are documented in different

documents or the exact architecture of some component is not reflected to any

document, that is why the stakeholders of the architecture are not fully aware of the

overall architecture, which is observed during the software architecture discussion

meetings. Therefore, the usage of common tools and languages should be planned in

parallel to the requirements process and should be encouraged. EA 7.5, UML 2.0 and

MediaWiki are decided to be used for this study. EA 7.5 is a comprehensive tool for

architectural modeling but it does not provide much traceability options among the

architectural models and it is hard to check the consistency with the EA 7.5.

MediaWiki is employed for the documentation process and it provides a common

platform for all the stakeholders any time, where they can reach, track and edit the

contents of it collaboratively and discuss on the same ground. MediaWiki is easy to

use and has a low learning curve, therefore software professionals can easily adapt to

it. Benefits of wiki for documentation can be listed as follows:

 Translucion: use links instead of information duplication

 Comments from any reader are publicly available

 The user can subscribe any page to be notified whenever a change occurs

 The changes are automatically tracked

 Easy to modify

 By using page referrals the relations between views can be captured

The weaknesses of the wiki can be found in the following list:

 Online access is needed

 Server reliability and security issues should be considered

 84

 It is hard to move wiki between servers (no standard wiki format)

 Sophisticated formatting and printing are not easy

 Access management policy is not rich

 The whole wiki cannot be printed at once

Documenting rationale for architectural decisions is essential to ensure stability and

consistency in the evaluation of the architecture. It is also particularly useful to

improve communication within the development team and the future developers of

the system will probably need to know the rationale behind the architectural design

decisions.

During the documentation process of the software architecture, some architectural

problems are detected. In [Figure 3-29], it can be easily seen that Multimedia

Database and Client components are tightly coupled with the coordinator component

which means the Coordinator component uses more information than it should about

the Multimedia Database and the Client components. To obtain more modular

MMDMS architecture, the design of the Coordinator component can be revised.

Furthermore, the queries for the current architecture should be constructed by expert

people, who are aware of the system design. However, in the future systems, the

necessity of usability for standard people can occur. Therefore, a query

recommendation feature can be added to the METU-MMDMS as a future extension.

The documentation stayed at high levels of the METU-MMDMS architecture,

because of the aim of proposing a generic architecture in the future. Uses view is

decided to be detailed for a high-level architecture at the meetings. The project team

is concerned that increasing the amount of details can make the architecture

documentation hard to maintain. In the module views, the level of detail is kept at

package level and the components in the C&C view has one-to-one mapping with

the module view. The ports and delegations should be well constructed in the C&C

view and should be consistent with the actual system. Through the same port, the

connectors with compatible interfaces can aid the communication among

components. If there is a significant data flow in a C&C, it should be supported with

a sequence diagram in the C&C View.

 85

The context of a module/component can also be documented with V&B and for

hierarchical diagrams; the super level model is used as the context diagram whereas

the Use Case diagram is considered as the context diagram of the whole system. Use

case diagram can also be used as a behavioral diagram.

When the selected models/diagrams are constructed for architectural documentation,

the architectural review process, which is carried out as meetings together with the

stakeholders, is started. After the review of the use cases in the architectural

meetings, the necessity of adding the "create index structure" use case appeared.

Therefore, the architectural documentation benefits from extensive discussions.

According to [51], “Conceptual integrity is the underlying theme or vision that

unifies the design of the system at all levels”. When the content and output are

common, there is a common language among the components and the following

items ensure the conceptual integrity of METU-MMDMS:

 Different modalities uses common concepts

 Different modules use video shot as the video unit

 The query results of different modalities are in the same type

V&B method, which is used during the documentation of the multimedia database

system, takes into account different stakeholders, and is comprehensive and

convenient for the documented system, and suitable for documenting complex

systems. Nevertheless, the backwards modeling is not easier with this method; still

there is the need of a long process of analysis. System stakeholders should agree on

not only the models, but also the meaning they infer from those models.

Stakeholders and the quality attributes they emphasize, affect the whole architectural

structure and documentation of the system. During the modeling process, the act of

writing the architectural design decisions down is vital for the advancing stages to

understand the sense of modeling. What works well in applying V&B in METU-

MMDMS case are listed as follows:

 The component and connector view of the semantic information extractor is

formed in the pipe and filter style, then meeting expected that the information

 86

from the annotators should be piped to the fusion component when the

corresponding diagram is presented. Both because of the nature of this style

and the information presented in the diagram helped the attendees of the

meeting in understanding the view and after discussions, it appeared that the

information is passed to the multimedia database from annotators, instead of

the fusion component. Therefore, by the help of V&B documentation, the

actual system is correctly understood.

 There is not a well-worked out reference architecture for the MMDMS

systems. V&B makes documenting the variation points and rationale behind

the design of the METU-MMDMS necessary. The documented variation

points and rationale can be beneficial during the reference architecture

construction.

 The styles are chosen based on the stakeholders' concerns in the V&B

method. Choosing among styles eased the documentation process of an

already developed system because METU-MMDMS inherently had notable

explicit styles such as shared-data and pipe and filter.

 It is easier to check the conceptual integrity among the system components

with views and beyond. Because the templates provided by the V&B

organizes the information about a view. E.g. different modules use shots as

the video units. The coordinator, which works as a mediator, uses shots as

data in its interfaces to the other components; it can be checked from the data

types section in the interface template.

Difficulties in applying V&B for METU-MMDMS case are included in the

following list:

 Mapping between modules and components is listed as a rule of thumb for

mapping between views in [1]. For METU-MMDMS architecture, this action

was not much informative. Because in this case, there was a single

documenter, and he documenter used same names for the mapping modules

and components. It can be said that, if the mapping between modules and

components are one-to-one and there is a single documenter, mapping

between modules and components is not necessary.

 87

 The rationale is captured in V&B templates, but there were specific important

quality properties of METU-MMDMS such as accuracy and functionalities

like multimode querying. The V&B does not enable the documenter to

emphasize such quality properties. It would have been more effective if there

were a system quality properties section. There is a system overview section

which include the system wide information but it is not explained enough in

[1]. System Overview can also include links to the document where

important system wide quality properties are met.

 It will be hard to find a rationale for a component in METU-MMDMS

document because, there is no specific component based or rationale based

index. The most important design decisions are not emphasized in the

rationale section, either. An index which is colored depending on the

significance of the design decision could have been useful.

 How much detail should be captured for a design rationale is not discussed

but some details are important (e.g. design constraints, assumptions). For

example, multidimensional index structure improves accuracy. But what are

the constraints and assumptions about that rationale? There is no guidance

about how the rationale should be documented in [1].

 Knowledge-based artifacts, such as ontologies and vocabularies about the

MMDMS domain are never explained in the documented V&B views. It

would have been helpful to have such an explanatory view about the domain.

The element catalog is not a convenient section to explain the ontologies and

vocabularies because they are not architectural elements like modules or

components. They should be presented separately.

 The multimode nature is dominant for the METU-MMDMS, it would have

been informative to categorize the views depending on the modes or

depending on the query types. But, V&B does not provide enough guidance

such free moves. For example, for an audio query, the system uses audio

related components such as audio annotator. If there was an audio view, we

could have shown the components which are used for audio functionalities in

it and give specific information for audio domain.

 88

Table 5-1 Critical Design Decisions

Decision Pros Cons

Coordinator module

with a mediator role

Loose coupling among the components other than the

coordinator itself, improves modularity

Tight coupling helps in performance increase

Tight coupling between the

coordinator and other modules

makes the component harder to

maintain

Multidimensional

Index Structure

Efficient data access

Multidimensionality increases the performance comparing to

having a separate for each dimension

It is hard to increase its

dimension. The performance

decreases drastically when the

dimension is increased.

Object Oriented

Database

Object orientation models real world, multimedia has the

ability to capture real world. Therefore, "it is well suited to

support multimedia database objects" but "it does not mean

that "it automatically satisfies multimedia database

requirements".

The size of the objects affects

the insertion and retrieval time

(performance).

Finally, the most remarkable design decisions of the METU-MMDMS are discussed

in the following table, [Table 5-1]:

5.1 Recommendations

To improve the design of the system, a couple of recommendations are listed in this

section.

 Authorization/Authentication functionality can be added to the Client

Application. The users can be specified as Standard User, Power User and

Administrator. The Standard User can only do the querying activities while

Power User can modify the available queries like adding new concept type to

the list of concept that can be queried. For administrative issues like

maintaining database and creating new index structure, the Administrator can

be employed.

 89

Figure 5-1 User Levels

5.1.1 Recommendations on the Use of Design Patterns

The suggested design patterns for the modules are listed in [Table 5-2] together with

the explanations.

Table 5-2 Recommended Design Patterns

Module Pattern Explanation

Fusion Factory

The Factory design pattern can be used to have a uniform and concise way

of object creation. In fusion component, the audio/visual/textual concepts

are created extensively so the factory design can be useful.

Audio/Visual/

Text

Annotator

Strategy

The strategy design pattern enables selecting the algorithm behavior at run

time by encapsulating the required algorithms and interchanging among

them when necessary. To make use of various interchangeable

classification algorithms at the annotator modules, the strategy design

pattern can be employed.

Client

Application

State &

Observer

When an Object's behavior changes based on its internal state, state design

pattern can be used. The client switches between querying, query result

presentation, annotation and similar states. State pattern can be beneficial.

In order to notify state changes to the client application GUI, observer

pattern can be employed.

 90

Presenting a prescriptive architecture is not in the scope of this thesis but it can be

considered as a future work. Nevertheless, a couple of recommendations can be

made on the possible architectural patterns that can be used in METU-MMDMS

architecture. The layered architectural pattern, in which any layer provides services

to the layer above it, can be employed for the architecture of METU-MMDMS (the

recommended layered architecture is in [Figure 5-2]). The layered architectural

pattern is used when building new facilities on top of existing systems or when the

development is spread across several teams. In the layered architecture in [Figure

5-2], "Database Replication Middleware" [53] is added among the layers. It is

provided for high availability and performance. Different replication techniques by

using middleware are explained in [53]. In order to form the layered architecture, the

sub components of the coordinator component, which has a two-way communication

with the other components, are distributed between the database accessor and

application layers.

The Model-View-Controller architectural pattern is not recommended for the

METU-MMDMS because it is used when there are multiple ways to view data and

the possible future data presentation options are unknown but there are not different

complex ways to present the data in METU-MMDMS. Therefore the application of

the MVC pattern is not essential for METU-MMDMS.

 91

Figure 5-2 Recommended Layered Architecture

 92

 93

 CHAPTER 6

6 CONCLUSION

METU Multimedia Data Management System descriptive software architecture is

presented in this study. During the architectural documentation process, the V&B

method is employed. Decomposition and uses module view styles, pipe and filter,

client-server and shared data C&C view styles, and deployment allocation view style

are used throughout the documentation. The sufficiency of the views is questioned

by using the Use Case Maps. Moreover, the documented architecture is analyzed by

ATAM architecture evaluation and analysis method.

29 views are constructed to represent the architecture (15 module views, 13 C&C

views, 1 allocation view). More than 50 diagrams are drawn to represent the METU-

MMDMS. The sufficiency of the architecture is checked for 3 selected scenarios

with 3 UCM diagrams, more scenarios and UCM diagrams should be used to obtain

a stronger result. 14 diagrams are used for the ATAM activity.

Through that process, the researchers gained more awareness about the overall

architecture and the components that they are not responsible for. In order to

implement the software architecture accurately, the developers and researchers

should completely understand it first.

There is not any well presented Multimedia Data Management Architecture in the

known literature. With this study, a methodological presentation of the METU-

MMDMS is constructed via Views and Beyond which the future MMDM systems

can make use of as a detailed sample.

Similarly, a well-defined reference architecture for Multimedia Data Management

systems is not present. The composed document is aimed to be the source of

information about a sample multimedia data management system and similar

systems, for the generation process of a MMDMS reference architecture.

 94

The output of this study is the software architecture document of METU-MMDMS.

The architectural documents are evaluated according to different criteria so far such

as compatibility to the standards, grammar and spelling. But, the sufficiency of the

view in a document is not questioned, until this study. The METU-MMDMS

architectural views are documented by considering the "travel light" principle. The

views should include enough details to explain the functionality of the system but

not more. While minimizing the contents of the views, the necessary details can be

inadvertently omitted. During the formation of the Use Case Map diagrams, it is

checked that whether the METU-MMDMS architecture documentation meets the

selected scenarios or not. As a result, based on the UCM studies, the METU-

MMDMS architecture is capable of automatic information/concept extraction of all

modalities, and querying the stored information based on concept and content. The

more scenarios and UCMs take part in the analysis process, the stronger the

sufficiency of the architecture.

Furthermore, as an outstanding design decision, the usage of information fusion both

at data level and query level enhances the performance of METU-MMDMS

significantly. Thanks to METU-MMDMS's well-developed modular structure, less

number of tradeoffs is encountered during the ATAM process.

As a future work, based on the information that is documented about the METU-

MMDMS software architecture, and requirements of other systems in the field, a

reference architecture will be composed to form a basis for the future systems.

 95

REFERENCES

[1] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P.,

Nord, R., Stafford, J., “Documenting Software Architectures: Views and

Beyond” The Benchmark Handbook for Database and Transaction Processing

Systems, Ed., Addison Wesley, 2010, ISBN-13: 978-0-321-55268-6, ISBN-10:

0-321-55268-7.

[2] K. C. Nwosu, B. Thuraisingham, and P. B. Berra, Multimedia Database Systems:

Design and Implementation Strategies. Boston: Kluwer Academic Publishers,

1996.

[3] Arjen P. de Vries, Mark G. L. M. van Doorn, Henk M. Blanken, & Peter M. G.

Apers, The MIRROR MMDBMS architecture. Proc. of the International

Conference on Very Large Databases, Edinburgh, Scotland, 1999, 758-761.

[4] Moscato, V., Indexing Techniques for Image and Video Databases: An Approach

Based on Animate Vision Paradigm, Phd Thesis,UNINA, 2006.

[5] May, N. “A Survey of Software Architecture Viewpoint Models”, The Sixth

Australasian Workshop on Software and System Architectures, March 2005

[6] L. Bass et al. Software Architecture in Practice. Addison Wesley, Boston, MA,

USA, 2nd edition, 2003.

[7] IEEE Recommended Practice for Architectural Description of Software-

Intensive Systems. Institute of Electrical and Electronics Engineers, Sept. 2000.

IEEE Std 1471-2000.

[8] Buhr, R.J.A., “Use Case Maps as Architectural Entities for Complex Systems”.

In: Transactions on Software Engineering, IEEE, December 1998, pp. 1131-

1155.

[9] B. Phillips, Mediaway presses access to multimedia database. PC Week, 13(7),

1996, 39-40.

[10] Arjen P. de Vries, Mark G. L. M. van Doorn, Henk M. Blanken, & Peter M.

G. Apers,

 96

The MIRROR MMDBMS architecture. Proc. of the International Conference on

Very Large Databases, Edinburgh, Scotland, 1999, 758-761.

[11] Saushik Chakrabarti, Kriengkrai Porkaew, & Sharad Mehrotra, Efficient

query refinement in multimedia databases. Proc. of the IEEE International

Conference on Data Engineering (ICDE), San Diego, California, USA,2000, 196.

[12] Harald Kosch, Distributed Multimedia Database Technologies supported by

MPEG-7 and MPEG-21 (CRC Press. 280 pages. November 2003. ISBN: 0-849-

31854-8).

[13] K. C. Nwosu, B. Thuraisingham, and P. B. Berra, Multimedia Database

Systems: Design and Implementation Strategies. Boston: Kluwer Academic

Publishers, 1996.

[14] Moscato, V., Indexing Techniques for Image and Video Databases: An

Approach Based on Animate Vision Paradigm, PhdThesis, UNINA, 2006.

[15] C. Ogescu, C. Plaisanu and D. Bistriceanu, “Web Based Platform for

Management of Heterogeneous Medical Data, Automation”, Quality and Testing

Robotics, IEEE, (2008) May 22-25: Cluj-Napoca.

[16] S. C. Stoica, “A Multimedia Database Server Funtionality”, Second

International Conference on Advances in Multimedia, IEEE, (2010) June 13-19:

Athens.

[17] M. M. Shahiduzzaman, N. Mahmuda and U. R. A. Ashfaque, “Portable and

Secure Multimedia Data Transfer in Mobile Phone Using Record Management

Store (RMS)”, 3
rd

IEEE International Conference On ICCSIT, (2010) July 9-11:

Chengdu, China.

[18] D. Emery, R. Hilliard, M. W. Maier. Software Architecture: Introducing

IEEE Standard 1471, IEEE, Vol. 34, No. 4, April 2001, 107-109.

[19] /IEC, ISO/IEC 42010:2007: Recommended Practice for Architecture

Description of Software-Intensive Systems, 2007.

[20] P. Krutchen: The “4+1” View Model of Software Architecture. IEEE

Software, 12, pages 42-50. November ,95.

[21] Hofmeister, C., Nord, R., Soni, D., 1999. Applied Software Architecture.

Addison-Wesley, Boston.

 97

[22] Soni, D., Nord, R., Hofmeister, C., 1995. Software architecture in industrial

applications. In: Proceedings of 17th International Conference on Software

Engineering (ICSE-17). ACM Press, pp. 196–207.

[23] Amyot, D., Use Case Maps: Quick Tutorial. 1999.

http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/VirLibTutorial99.

[24] ITU-T, URN Focus Group, Draft Rec. Z.150 - User Requirements Notation

(URN). Geneva, November 2002.

[25] C4ISR Architecture Working Group, C4ISR Architecture Framework

(Version 2.0), USA, 1997.

[26] Demir, U., “Integration of Fuzzy Object-Oriented Multimedia Database

Components”, MS Thesis, METU, 2010

[27] Sattari, S., "Multimodal Multimedia Database Architecture Model

Integration", MS Thesis, METU, 2013.

[28] Enterprise Architect, Sparx Systems, 14 Jan 2011,

<http://www.sparxsystems.com.au/>

[29] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. O’Reilly Media, second

edition, 2005.

[30] Amyot D, Mussbacher G., and Mansurov N., “Understanding Existing

Software with Use Case Map Scenarios”. In 3rd SDL and MSC Workshop

(SAM’02), Aberystwyth, U.K., June 2002. LNCS 2599, pp. 124-140.

[31] Mussbacher G. and Amyot D., “Goal and Scenario Modeling, Analysis, and

Transformation with jUCMNav”, in 31st Int. Conf. on Software Engineering

(ICSE-Companion), ACM, Canada, pp. 431–432, May 2009.

[32] Kazman, Rick; Klein, Mark; & Clements, Paul. ATAM: Method for

Architecture Evaluation(CMU/SEI-2000-TR-004). Software Engineering

Institute, Carnegie Mellon University, 2000.

[33] Uyanıksoy, G., "Architecture Evaluation: A Case Study with ATAM and

Suggestions for Architecture Evaluation Roadmap", MS Project Report, METU,

2013.

 98

[34] Amyot, D. and Eberlein, A.,“An Evaluation of Scenario Notations for

Telecommunication Systems Development", Telecommunication Systems

Journal, 2002.

[35] Avcı Salma, Ç., Oğuztüzün, H, Yazıcı, A, “Bir Çoklu Ortam Veri Yönetim

Sistemi Yazılım Mimarisinin “Views and Beyond” Yaklaşımıyla

Belgelenmesi:Durum Raporu”, 4. Ulusal Yazılım Mimarisi Konferansı,

December 2012.

[36] Gülen, E., "Fusing Semantic Information Extracted From Visual, Auditory

and Textual Data of Videos", MS Thesis, METU, 2012.

[37] Okuyucu, Ç., "Semantic Classification and Retrieval System For

Environmental Sounds", MS Thesis, METU, 2012.

[38] Yıldırım, Y., "Automatic Semantic Content Extraction in Videos Using A

Spatio-Temporal Ontology Model", Phd Thesis, METU, 2009.

[39] Küçük, D., "Exploiting Information Extraction Techniques for Automatic

Semantic Annotation and Retrieval of News Videos in Turkish", Phd Thesis,

METU, 2011.

[40] Arslan, S., "Indexing Content and Concept Together for Multidimensional

Multimedia Data Access", Phd Thesis, METU, 2012.

[41] Yıldırım, Y., "Fusion of Multimodal Information for Multimedia Information

Retrieval", Thesis Monitoring Report, METU, 2012.

[42] Merson, P., "Data Model as an Architectural View", Technical Note, SEI,

October 2009.

[43] P. Clements. Comparing the SEI’s views and beyond approach for

documenting software architectures with ansi-ieee 1471-2000. Technical report,

CMU/SEI, 2005.

[44] May, N. (2005), A survey of software architecture viewpoint models, in J.-G.

Schneider, ed., ‘The Sixth Australasian Workshop on Software and System

Architectures (AWSA 2005)’, Swinburne University of Technology, Melbourne,

Australia., pp. 13–24.

[45] S.Sauer. OMMMA: An Object-Oriented approach for modelling multimedia

information systems. Multimedia Information Systems 1999: 64-71.

 99

[46] Roshandel, R. and N. Medvidovic, Modeling multiple aspects of software

components, in: Proceedings of SAVCBS’03, Helsinki, Finland, 2003, pp. 88–

91.

[47] J. Rumbaugh, I. Jacobson, and G. Booth. Unified Modeling Language

Reference Manual. Addison-Wesley, 1998. To appear.

[48] Information technology - Open Distributed Processing - Unified Modeling

Language (UML) Version 1.4.2, ISO, Switzerland, 2005.

[49] D. Pilone and N. Pitman, UML 2.0 in a Nutshell (In a Nutshell (O’Reilly)).

O’Reilly Media, Inc., 2005.

[50] Sparx G., Enterprise Architect User Guide, Sparx Systems, 1998-2009.

[51] Avcı Salma, Ç., Oğuztüzün, H, Yazıcı, A, “Kullanı Eşlemesiyle Mimari

Görünümlerin İrdelenmesi Üzerine Bir Örnek Çalışma”, 7. Ulusal Yazılım

Mühendisliği Sempozyumu, İzmir, September 2013.

[52] Uyanıksoy, G., Oğuztüzün, H., Yazıcı, A., “Bir Çoklu Ortam Veri Yönetim

Sistemi Mimarisinin ATAM ile Değerlendirilmesi”, 7. Ulusal Yazılım

Mühendisliği Sempozyumu, İzmir, Eylül 2013.

[53] Cecchet E., Candea G., and Ailamaki A., “Middleware-based database

replication: the gaps between theory and practice,” in SIGMOD 2008:

Proceedings of the 28th ACM International Conference on Management of Data,

Vancouver, Canada, June 2008, pp. 739–752.

 100

 101

APPENDIX A

 ARCHITECTURE VIEW TEMPLATE

Table A-1 Architecture View Template

Architecture View Template

From SAD

Primary Presentation

Add here the diagram (or non-graphical representation) that shows the elements and relations in this view.

Indicate the language or notation being used. If it's not a standard notation such as UML, add a notation key.

Element Catalog

This section can be organized as a dictionary where each entry is an element of the Primary Presentation. For

each element, provide additional information and properties that the readers would need that would not fit in

the Primary Presentation. Optionally, you can add interface specifications and behavior diagrams (e.g., UML

sequence diagrams, state charts).

Context Diagram

Add here a context diagram that graphically shows the scope of the part of the system represented by this view.

A context diagram typically shows the part of the system as a single, distinguished box in the middle surrounded

by other boxes that are the external entities. Lines show the relations between the part of the system and the

external entities.

Variability Guide

Describe here any variability mechanisms used in the portion of the system shown in this view, along with how

and when (build time, deploy time, run time) those mechanisms may be exercised. Examples of variability

include: optional components (e.g., plug-ins, add-ons); configurable replication of components and connectors;

selection among different implementations of an element or different vendors; parameterized values set in build

flags, .properties files, .ini files, or other .config files.

Rationale

Describe here the rationale for any significant design decisions whose scope is limited to this view. Also

describe any significant rejected alternatives. This section may also indicate assumptions, constraints, results of

analysis and experiments, and architecturally significant requirements that affect the view.

 102

 103

Figure B-1 Top Level Module View

APPENDIX B

 SAMPLE ARCHITECTURE VIEWS

 104

Figure B-1 (continued)

 105

Figure B-2 Top Level C&C View

 106

Figure B-2 (continued)

 107

APPENDIX C

 TRACEABILITY OF FEATURES

Table C-2 Feature Traceability Matrix

Feature ID Section

[Feature-1] [3.5.1.1] [3.5.2.4]

[Feature-2] [3.5.1.2] [3.5.2.1]

[Feature-3] [3.5.1.1] [3.5.2.4]

[Feature-4] [3.5.1.2] [3.5.2.1]

[Feature-5] [3.5.1.1] [3.5.2.4]

[Feature-6] [3.5.1.2] [3.5.2.1]

[Feature-7] [3.5.1.1] [3.5.2.4]

[Feature-8] [3.5.1.4] [3.5.2.2]

[Feature-9] [3.5.1.4] [3.5.2.2]

[Feature-10] [3.5.1.1] [3.5.2.4]

[Feature-11] [3.5.1.1] [3.5.2.4]

[Feature-12] [3.5.1.3] [3.5.2.3] [3.5.1.2] [3.5.2.1]

[Feature-13] [3.5.1.3] [3.5.2.3] [3.5.1.2] [3.5.2.1]

[Feature-14] [3.5.1.4] [3.5.2.2]

 108

 109

Figure D-3 Concept Query

APPENDIX D

 USE CASE MAPS

Figure D-4 Online Concept Extraction

 110

Figure D-5 Online Concept Extraction - 1

 111

Figure D-6 Online Concept Extraction - 2

 112

Figure D-7 Online Concept Extraction - 3

 113

APPENDIX E

 USES VIEW DIAGRAMS

Figure E-8 Top Level Uses Module View

 114

Figure E-9 Uses Module View of Client

Figure E-10 Uses Module View of Coordinator

 115

Figure E-11 Uses Module View of Multimedia Database

 116

Figure E-12 Uses Module View of Semantic Information Extractor

