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ABSTRACT 

 

 

A FRAMEWORK FOR GENE CO-EXPRESSION NETWORK ANALYSIS 

OF LUNG CANCER 
 

 

 

Akdemir, Erhan 

M.Sc., Bioinformatics Program 

Supervisor: Assoc. Prof. Dr. Tolga Can 

Co-supervisor: Assist. Prof. Dr. Yeşim Aydın Son 

September 2013, 47 pages 

 

 

 

Construction method of a gene co-expression network (GCN) is crucial in medical research 

aiming to reveal disease related genes. Applied similarity measure and selection of edges 

that represent significantly co-expressed gene pairs in the network affect directly the 

elements of a network and so the list of prioritized genes. Pearson correlation coefficient is a 

commonly used similarity measure to quantify co-expressions of genes due to its simplicity 

and performance compared to many complex methods. However, it is affected by outliers 

and may not be reliable with low sample size. On the other hand, selection of edges is 

generally based on an arbitrary cutoff which makes networks subjective. For a more standard 

and accurate analysis, reliability of a similarity measure must be ensured as well as an 

objective threshold determination for the selection of edges. Here, a framework is proposed 

for the construction of GCNs that combines a reliability measure, stability, previously 

applied to Pearson correlation coefficient to detect general co-expression differences 

between healthy and cancer state and an automatic threshold selection method, Random 

Matrix Theory for a standard network construction. The proposed framework was applied to 

lung adenocarcinoma. In the analysis part, genes were prioritized by using changes in 

topological and neighborhood properties of nodes in control and disease networks. 

Differential co-expressions of known interacting proteins and intrinsically disordered 

proteins were also analyzed. Results suggest that co-expression networks are topologically 

spoke-like and control samples are in transition phase from healthy to cancer. Thus, effects 

of stability on finding general co-expression differences between cancer and healthy states 

could not be assessed. Prioritized genes by both proposed and control methods are mostly 

enriched to relevant processes reflect the changes in cellular machinery as a result of a state 

shift to cancer and may reveal dynamical features of transition of cells to cancer state with a 

further detailed analysis. Furthermore, some genes were prioritized related with cilia which 

may have roles early phases of transition. 

 

Keywords: gene co-expression networks, stability of correlation, Random Matrix Theory, 

lung adenocarcinoma
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ÖZ 

 

 

AKCİĞER KANSERİNİN GEN ORTAK İFADE ANALİZİ İÇİN BİR 

YÖNTEM 
 

 

 

Akdemir, Erhan 

Yüksek Lisans, Biyoenformatik Programı 

Tez yöneticisi: Doç. Dr. Tolga Can 

Yardımcı tez yöneticisi: Yar. Doç. Dr. Yeşim Aydın Son 

Eylül 2013, 47 sayfa 

 

 

 

Hastalıkla ilgili genlerin ortaya çıkarılmasını amaçlayan medikal araştırmalarda gen ortak 

ifade ağlarının oluşturulma biçimi önemlidir. Uygulanan benzerlik ölçüsü ve ağdaki anlamlı 

ortak ifadeye sahip gen çiftlerini temsil eden bağlantıların seçimi ağın öğeleri ve öne 

çıkarılan genleri doğrudan etkiler. Pearson korelasyon katsayısı basitliği ve diğer bir çok 

karmaşık yönteme karşı üstünlüğü nedeniyle genlerin ortak ifadesinin sayısallaştırılmasında 

sıkça kullanılan bir benzerlik ölçüsüdür. Ancak aykırı değerlerden etkilenir ve örnek 

sayısının azlığında güvenilir olmayabilir. Diğer yandan, genelde keyfi belirlenmiş bir eşiğin 

üzerindeki  ortak ifadeler ağa seçilir, bu da ağı öznel yapar. Daha standart ve doğru bir analiz 

için benzerlik ölçüsünün güvenilirliği ve bağlantıların objektif olarak belirlenen bir eşiğe 

göre seçilmesi sağlanmalıdır. Burada sağlıklı ve kanser durumları arasındaki genel eş ifade 

farklılıklarını bulmak için kullanılabilecek, daha önce Pearson korelasyon katsayısına 

uygulanmış bir kararlılık ölçüsü olan korelasyon kararlılığı ile otomatik bir ağ oluşturma 

yöntemi olan rastlantısal matris teorisinin birleştirildiği bir ağ oluşturma sistemi 

önerilmektedir. Önerilen sistem akciğer adenokanserine uygulanmıştır. Analiz aşamasında 

genler kontrol ve hastalık ağlarındaki topolojik ve komşuluk özelliklerinin değişimine bağlı 

olarak öne çıkartılmıştır. Bilinen protein-protein etkileşimleri ve düzensiz proteinlerin eş 

ifadeleri de analiz edilmiştir.  Sonuçlar eş-ifade ağlarının tekerlek benzeri bir yapıda, kontrol 

örneklerinin ise sağlıklıdan kanser durumuna geçiş fazında olduğunu önermektedir. Bu 

yüzden kanser ve sağlıklı durumları arasındaki genel eş ifade farklılıkları 

değerlendirilememiştir. Hem önerilen hem de kontrol amacıyla kullanılan yöntemle öne 

çıkarılan genler çoğunlukla geçiş fazını yansıtan hücre etkinlikleriyle ilgilidir ve daha sonra 

yapılacak derin analizlerle faz geçişinin dinamik özelliklerini ortaya çıkartabilir. Dahası faz 

geçişinin erken dönemlerinde etkisi olabilecek siliya ile ilgili bazı genler öne çıkartılmıştır.  

 

Anahtar sözcükler: gen ortak ifade ağları, korelasyon kararlılığı, rastlantısal matris teorisi, 

akciğer adenokanseri 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

System level understanding of the biological phenomena is a crucial step through answering 

questions about life and developing new solutions to everyday life problems such as design 

of microbial factories for production of substances or new therapeutic approaches to 

complex diseases. Emergence of high throughput technologies has brought valuable 

opportunities in this way by providing an overall picture of biological entities in cells. 

Although technical problems (e.g. noise, number of samples, computational restrictions) still 

exist, enormous amount of data we have is a big source for the new aspects of biological 

information. Studies focused on biological networks and integration of different data types in 

recent years are examples of efforts for gaining new insights from present data [1-4].  

 

Gene co-expression study of microarray data is a way of understanding co-regulation 

patterns of gene clusters under certain condition. Differential co-expression network analysis 

of genes between disease and non-disease states is popular in medical research and can 

reveal disease related functional interactions of proteins in a network [5 -7].  However, 

problems in network construction restrict the analysis and cause incompleteness of the 

knowledge about disease mechanisms.  

 

In the case of co-expression networks, one problem is quantification of pairwise 

relationships between expressions of genes. Since collecting samples from an individual in a 

time course manner is not possible in many cases, extracting dynamical and partial 

relationships is not easy. To quantify the level of pairwise co-expression between genes, 

Pearson correlation coefficient is a common similarity measure used in disease related 

studies especially in one individual-one sample cases. Its reason is that Pearson correlation 

coefficient is computationally easy to be calculated and also outperforms many other 

existing methods. However, it is sensitive to outliers.           

 

Selection of significant pairwise co-expressions, each of which corresponds to an edge in the 

network, is another construction problem. Traditional approaches are based on an arbitrary 

cutoff selected to be high enough to avoid random noise. It makes constructed networks 

subjective rather than objective and results in missing some true co-expressions. At this 

point, it is worth to note that high Pearson correlation coefficient between expression levels 

does not always mean a functional relationship between proteins and vice versa [8].  

 

In this thesis, a framework for construction and differential analysis of co-expression 

networks between two conditions is proposed and was implemented to lung adenocarcinoma. 

In the framework, a stability measure is used to detect general co-expression differences 

between control and disease states by filtering unstable correlations across samples.  
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Thresholds for correlation and stability measures were calculated with an application of  

Random Matrix Theory, which has been previously shown to be effective in differentiating 

system specific correlations from random ones [9]. In the analysis part, genes were 

prioritized by using changes in betweenness centrality, clustering coefficient and 

neighborhood properties of nodes between control and disease networks. Known interacting 

proteins as well as intrinsically disordered ones were also integrated into analysis to benefit 

from their differential co-expression pattern information.  
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CHAPTER 2 

 

 

BACKGROUND 

 

 

 

2.1 Biological Background 

 

A living system can be defined with its three characteristics: a body that distinguished itself 

from the environment, a metabolism, a process by which it can convert resources from the 

environment into building blocks so that it can maintain and build itself, and inheritable 

information passed to its offspring. In the following sections, basic concepts related with 

primary molecules in a cell as a living system and lung adenocarcinoma are explained. 

 

 
 

2.1.1 DNA and Gene 

 

DNA is the hereditary material of all known living organisms and many viruses. It stores the 

information necessary for the synthesis of molecules that are parts of the structure or 

metabolism of a cell and passed to offspring through cell division. DNA is a double helix 

structure consisting of two polymers of nucleotides. Each nucleotide is composed of a base 

(guanine (G), adenine (A), thymine (T), and cytosine (C)) as well as a backbone made of 

alternating sugars (deoxyribose) and phosphate groups, with the bases attached to the sugars. 

In the structure of DNA, a nucleotide is bound to another one in the opposite strand with 

hydrogen bonds between their bases forming A-T and G-C pairs.  

 

A region on a DNA strand coding for a polypeptide is called gene. A polypeptide is an 

amino acid chain synthesized through gene expression and becomes a protein or a subunit of 

a protein complex after a number of structural modifications.  

 

 

 

2.1.2 Proteins and Intrinsic Disorder 

 

Proteins are the biological macromolecules that catalyze the metabolic reactions in a cell, 

transport other molecules and are the building blocks of cellular structures. A protein is the 

resulting three-dimensional (tertiary) structure of a single polypeptide chain (monomeric 

proteins) or more than one polypeptide chains (polymeric proteins) after post-translational 

modifications following gene expression.  

 

According to the traditional protein structure paradigm, a unique, stable tertiary structure 

was thought to define the function of a protein and be required by it to function correctly. 

However, it has been found that this is not the case for intrinsically unstructured proteins. 

They are often referred to as naturally unfolded proteins or disordered proteins and remain  

functional despite the lack of a stable tertiary structure when the protein exists as an isolated 

polypeptide chain [10, 11]. 
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In cells, physical interactions between proteins are crucial for many distinct processes. Many 

important complex processes such as DNA replication and signal transduction are carried out 

by a large number of interacting proteins. These interactions can be long standing to form 

protein complexes or molecular machines in the case of DNA replication or transient to 

transport or modify the interacting partner in the case of signal transduction.     

 

Intrinsically disordered proteins are enriched in regulatory and signaling functions showing 

that disordered regions provide interactions with many proteins in multiple pathways [12]. 

Several disordered proteins were shown to be associated with diseases such as cancer, 

cardiovascular disease, diabetes, and others [13].  

 

 

 

2.1.3 Cancer and Lung Adenocarcinoma 

 

In multicellular organisms, the regulatory mechanisms that control cell division sometimes 

become irregular and uncontrolled growth begins resulting in loss of tissue stability. An 

example of this situation is the formation of a structure called tumor or neoplasm. Neoplasms 

are classified as benign or malignant based on their spreading to other parts of the body. In 

cancer, malignant tumors are formed and often invade neighboring tissues and even distant 

parts of the body through circulatory system.  

 

A cancer originates from cells of epithelial tissue that have secretory properties is classified 

as adenocarcinoma.    

 

Lung adenocarcinoma is the most common histological subtype of lung cancer, which is the 

leading cause of cancer death worldwide. It is also the most common histological subtype in 

women, Asians, and never-smokers and has surpassed squamous carcinoma in many 

countries [14, 15]. Lung adenocarcinoma is increasingly recognized as a clinically and 

molecularly heterogeneous disease by recent reclassifications based on pathology and patient 

survival, observed prognostic gene expression signature profiles, as well as the increasing 

number of clinical trials demonstrating targeted treatments defined by molecular subtypes 

such as EGFR, KRAS, BRAF, and ERBB2 mutations and EML4-ALK fusions [16].  

 

 

 

2.2 Gene Co-expression Networks 

 

Analysis of genome-wide gene expression has become an ordinary approach with the 

emergence of microarray technology to find co-expression patterns of genes in different 

biological conditions. Gene co-expression networks have become popular after the 

integration of network concepts to biology. In a GCN, nodes represent the genes, while 

edges between nodes mean that co-expression of genes represented by those nodes are 

significant. Significant edges can be defined by various approaches after quantifying the co-

expression level of two genes by a similarity measure.     

 

In the subsequent sections, concepts related with the construction of GCNs and framework is 

explained.     
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2.2.1 Pearson Correlation Coefficient and Stability 

 

In target specific co-expression studies, small number of samples may be useful since 

biological meaning of co-expression is straightforward. However, inferring genome-wide 

correlations is hard in the presence of small data set and large number of parameters. This 

difficulty even increases when sample related bias is high such as smoking condition of 

individuals in the case of lung cancer. Thus, the reliability of similarity measure becomes 

more crucial in disease related network studies.  

 

Pearson correlation coefficient is a measure of linear correlation (dependence) between two 

variables, giving a value between +1 and -1, where 1 is total positive correlation, 0 is no 

correlation, and −1 is total negative correlation. It is a commonly used correlation measure in 

co-expression network analysis due to its simplicity. It also outperforms many other complex 

methods. However, it is not suitable for non-linear dependencies and is sensitive to outliers.  

Kinoshita proposes a reliability measure for Pearson correlation coefficient, stability, for co-

expression analyses in the presence of large number of samples. The idea behind the stability 

is that how correlations of expressions change after removing the most contributing samples.  

 

In the study performed with Arabidopsis thaliana data, it was shown that high correlations 

with low stability values are fragile or reflect weak functional relationships [17]. In the 

thesis, we propose that stability can also be used to detect general co-expression differences 

between two cellular states by filtering unstable correlations resulted from a few samples in 

the presence of low sample size. Calculation of stability is explained in detail in Section 

3.2.1. 

 

 

 

2.2.2 Random Matrix Theory 

 

Random Matrix Theory, initially proposed by Wigner and Dyson in the 1960s for studying 

the spectrum of complex nuclei, is a powerful approach for identifying and modeling phase 

transitions associated with disorder and noise in statistical physics and materials science.  

 

It is known that only a small portion of genes are co-expressed under a certain condition. 

Thus, a correlation matrix of gene expressions is a combination of true co-expressions with 

high correlations and weak correlations representing noise. According to Random Matrix 

Theory, the nearest neighbor spacing distribution (NNSD) of eigenvalues of a non-random 

symmetric matrix follows Poisson statistics, whereas it appears as a Gaussian orthogonal 

ensemble (GOE) distribution if the matrix is random [9]. Thus, a correlation matrix of gene  

expressions, in which correlations under a certain threshold are made zero, is non-random 

and starts to deviate to a random matrix with the accumulation of non-zero weak correlations 

by decreasing the threshold. NNSD change of eigenvalues of a correlation matrix was 

recently proposed to find the point of this transition which would become the threshold for 

significant correlations of gene expressions. Moreover, networks constructed by this method 

were found to be sensitive in detecting the threshold [9] and topologically robust [18].  

 

However, since Pearson correlation coefficient is affected by outliers in the presence of low 

sample size, the threshold calculated by RMT would be misleading. In the framework, we  
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applied RMT to both Pearson correlation coefficient and stability to filter out the unreliable 

gene pairs having correlation above Pearson threshold with stability below stability 

threshold.       

 

 

 

2.2.3 Node Comparison Measures 

 

Significance of a gene in a network can be defined by various topological properties. Here, 

well known measures, betweenness centrality and clustering coefficient, were used in the 

prioritization of genes. Each measure reflects a different biological aspect of a gene. 

Betweenness centrality is a measure of a node's centrality in a network. It is equal to the 

number of shortest paths from all vertices to all others that pass through that node. Genes 

with high betweenness centrality tend to connect functional modules and pass information.  

Clustering coefficient is a measure of degree to which nodes in a graph tend to cluster 

together. Genes with high clustering coefficient are generally subunits of protein complexes 

or members of functional modules. Neighborhood change is also used to prioritize genes and 

is the normalized ratio of total number of its  neighbors to number of its common neighbors 

between two networks to define genes most differentially co-expressed.  
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CHAPTER 3 

 

 

MATERIALS AND METHODS 

 

 

 

3.1 Data Sets 

 

In this section, data sets used in this thesis and their preprocessing are described. The 

proposed framework was applied to gene expression data of human lung adenocarcinoma 

and a matching adjacent non-tumor lung tissue. Then, interacting and disordered proteins 

were separately mapped to the resulting GCNs. 

 

 

 

3.1.1 Gene Expression Data 

 

Gene expression data, previously processed by log2-transformation and Robust Spline 

Normalization (RSN) [16], was downloaded from Gene Expression Omnibus (GEO) in 

NCBI [19]. One lung adenocarcinoma (3023_T, GSM813507) and one non-tumor lung 

sample (3035_N, GSM813519) were discarded from 116 gene expression profiles because 

they actually are not from the same individual. This resulted in 57 lung adenocarcinoma and 

57 adjacent non-tumor lung tissue profiles. Probes representing transcribed loci (e.g. 

HS.388528), predicted genes (e.g. LOC441782), and open reading frames (e.g. C17ORF77) 

were removed from data due to both computational and certainty concerns. Expressions of 

genes represented by more than one probe were averaged and samples were separated into 

two groups for control and disease network construction. Resulting data sets were composed 

of 18456 gene expressions and 57 samples each.   

 

 

 

3.1.2 Protein-Protein Interaction Data 

 

Latest human binary protein interactions (Release 9) were downloaded from Human Protein 

Reference Database (HPRD) [20]. HPRD contains annotations of human proteins based on 

experimental evidence from the literature. This includes PPIs as well as information about 

post-translational modifications, subcellular localization, protein domain architecture, tissue 

expression and association with human diseases [21].  

 

Interactions of proteins were extracted from binary interactions and PPI network was 

constructed in R by using igraph package. Resulting network is composed of 

36976interactions between 9499 proteins. 
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3.1.3 Intrinsically Disordered Proteins Data 

 

Latest release of intrinsically disordered proteins (Release 6.02) was downloaded from The 

Database of Protein Disorder (DisProt) [22]. DisProt is a curated database that provides 

information about proteins that lack fixed 3D structure in their putatively native states, either 

in their entirety or in part. 

 

IDs of intrinsically disordered human proteins were extracted from downloaded file 

including FASTA protein sequences containing disordered region identifiers of different 

organisms. The number of intrinsically disordered human proteins was 235.  

 

 

 

3.2 Co-expression Network Construction 

 

Construction of a co-expression network can be divided into two phases: quantifying the co-

expressions of genes and selection of edges that represent significant co-expressions into the 

network. In the thesis, Pearson correlation coefficient was used to quantify co-expressions 

for control and disease expressions. Then, stability value of each correlation was calculated. 

For each co-expression data set, Random Matrix Theory was applied to find the related 

correlation and stability thresholds separately. Pairs of genes whose correlation and stability 

is greater than corresponding thresholds, rth and sth, were represented by the edges in the 

networks.     

 

 

 

3.2.1 Quantification of Co-expressions 

 

In the framework, co-expression level of each gene pair was quantified by Pearson 

correlation coefficient by 

 

 

 

  
 

   
∑ 

    ̅

  
  

    ̅

  
 

 

   

 

 

 
 

 

3.2.2 Calculation of Correlation Stabilities 

 

To calculate stability values of correlations, principal component analysis was performed in 

n dimensional sample space and n principal components with orthogonal basis vector were 

obtained. Inner products of each n dimensional expression vector (Ep) and orthogonal basis 

vector gives the projected expression values ep:     

 

 



 

9 
 

          
   

 

 

 

Pearson’s correlations in the PC space without the first i PCs between probe p and q were 

calculated for the projected expression valuesby 
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Stability of correlation (S) is defined by 
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where coriis the correlation without the first i PCs, cormaxis their maximum value (i=0…N), 

and N = 10 was used in this thesis. 

 

 

 

3.2.3 Calculation of Thresholds 

 

Thresholds for Pearson correlation coefficient and stability values of expression data were 

calculated by a Java program, RMT Co-expression, which applies Random Matrix Theory to 

construct gene co-expression network [23]. The software first constructs, a gene expression 

correlation matrix M, whose elements are pairwise Pearson correlation coefficients in the 

range of (-1.0, 1.0). If there are missing values in the expression files, only the experiments 

that both genes have values are used to calculate Pearson correlation.  

 

Then, a series of correlation matrices are constructed using different cutoff values. If the 

absolute value of an element in the original correlation matrix is less than the selected cutoff, 

it is set to 0. Eigenvalues of each correlation matrix are obtained by direct diagonalization of 

the matrix. Standard spectral unfolding techniques [24] are applied to have a constant density 

of eigenvalues and subsequently the nearest neighbor spacing distribution P(s), which is 

employed to describe the fluctuation of eigenvalues of the correlation matrix. Chi square test 

is used to determine two critical threshold values, rl at which P(s) starts to deviate from GOE 

at a confidence level of p = 0.001, and rh at which P(s) follows the Poisson distribution at a 

confidence level of p = 0.001.  
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The critical point rh is chosen to be the threshold used for constructing the gene co-

expression network [9].  

 

Starting threshold was set to 0.99. Default value of subtraction in each step (0.001) was used 

in the calculation of both Pearson Correlation coefficient and stability thresholds.   

 

 

 

3.3 Analysis 

 

In this section, definition of parameters used to compare networks topologically, node 

comparison measures used to prioritized genes, and tools used to analyze prioritized genes.  

 

 

 

3.3.1 Network Comparison Parameters 

 

The following parameters were used for topological comparison of the networks: 

 

Network diameter, (d), is the distance between the two vertices which are furthest from each 

other.  

 

The average shortest path length, (l), is defined as the mean distance between each two 

vertices of a network, being the distance between any two vertices the number of edges 

along the shortest path connecting them. 

 

The degree distribution, (P(k)), gives the probability that a randomly selected node of a 

network has degree k, i.e. that it is connected to k other different vertices. 

 

The mean clustering coefficient, (C), is related to the meaning of clustering coefficient of a 

vertex, which, in turn, is defined as the ratio between the number of connections existing 

among its neighbors and the maximal number of edges that can exist among them.  

 

The Degree exponent,γ, is the exponent of power law distribution and was calculated by 

“power.law.fit” function of igraph in R.   

 

 

 

3.3.2 Node Comparison Measures 

 

To prioritize the genes related with lung adenocarcinoma, betweenness centrality and 

clustering coefficient and neighborhood change were calculated for each common node 

between control and disease networks.  

 

Betweenness centrality of a node is the number of shortest paths from all nodes to all others 

that pass through that node and calculated by  
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where     is the total number of shortest paths from node   to node   and        is the 

number of paths that pass through   . 

 

Clustering coefficient is the proportion of links between the neighbors of a node divided by 

the number of links that could possibly exist between them and calculated by 
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in an undirected graph, where    is the number of neighbors of node    ,  {          

        }  is the number of edges between nodes within its neighborhood. Note that the 

number of edges that can exist within the neighborhood is: 

 

 

 

 
        

 
 

 

 

 

Betweenness centrality and clustering coefficient values were calculated by default functions 

of igraph package in R.  

 

Neighborhood similarity (NS) of a node was calculated by the formula: 

 

 

 

   
      

      
 

 

  
 

 

  
   

 

 

 

where A and B are the edges of a node in control and disease networks respectively,  

fa=(#(A∩B))/(#A) and fb=(#(A∩B))/(#B). 
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3.3.3. Analysis Tools 

 

Names and functions of genes were obtained by genecards website [25]. Prioritized genes 

were enriched by Functional Annotation Clustering tool of David bioinformatics database 

[26]. Biological process GO term data and default parameters (similarity term overlap = 3; 

similarity thresholds = 0.50; initial group membership = 3; final group membership = 3; 

multiple linkage threshold = 0.50; enrichment threshold = 1) were used for clustering.  

Graphical representations of the networks were obtained in Cytoscape software with its 

Force-directed (unweighted) layout option. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

13 
 

CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

 

As previously described, the framework applies a reliability measure, stability, to Pearson 

correlation coefficient to quantify the stable dependencies of pairwise co-expressions under a 

biological state and uses Random Matrix Theory (RMT) to calculate a threshold for these 

quantified dependencies in  the construction of gene co-expression networks (GCN).  Firstly, 

GCNs were constructed by using only Pearson correlation coefficient with RMT to reveal 

the effects of using stability in combination with Pearson correlation coefficient. Secondly, 

GCNs by combining stability with Pearson correlation coefficient were constructed as the 

proposed method. Resulting networks are designated as R (control/disease) network and RS 

(control/disease) network respectively, for simplicity, where R stands for Pearson correlation 

coefficient (r) and S stands for stability.  

 

In the analysis part, genes were prioritized with both control and proposed method with 

respect to betweenness centrality, clustering coefficient and neighborhood changes of 

common nodes (i.e. genes) between control and disease networks. In addition to gene 

prioritization, co-expressions of the known set of both interacting and intrinsically 

disordered proteins were analyzed to see their role in cancer.    

 

 

 

4.1 Topological Properties of the Networks 

 

Biological networks share certain topological properties with many other naturally occurring 

networks. They are scale-free, disassortative and have small-world property [27]. We 

calculated the basic network measures used to quantify these characteristics. Table 4.1.1 

shows thresholds calculated with RMT GeneNet software, number of nodes and edges and 

values of topological measures for each network constructed by control or proposed method. 

Calculations of measures were performed in R using igraph package. Values in parenthesis 

are the averages of a thousand random networks with equal node and edge numbers to each 

of corresponding co-expression network by using “erdost.renyi.game” function of the same 

package.
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Table 1: Topological properties of the networks 

                            R Networks RS Networks 

Quantity Control Disease Control Disease 

r threshold 0.8971 0.7511 0.8971 0.7511 

s threshold - - 0.7081 0.7281 

Nodes 1087 3598 635 2414 

Edges 14401 28753 3831 14958 

d 20(4) 37(5) 9(5.01) 30(5.18) 

l 4.86(2.49) 11.53(3.25) 2.89(3) 8.16(3.38) 

C* 0.41(0.024) 0.37(0.004) 0.33(0.015) 0.38(0.005) 

max deg 172(45.5) 186(33.2) 75(23.4) 165(27.3) 

γ 1.83(1.86) 2(1.74) 2(1.74) 2(1.73) 

d: network diameter; l: average path length; C: mean clustering coefficient;  max deg: 

maximum degree; γ: exponent of power law fit. Values parenthesis are the mean 

values of parameters in corresponding random networks. *: C values of isolates 

(nodes with degree zero or one) were treated as zero.  
 

 

 

In scale free networks, most of the nodes have only a few links and connected together by a 

few nodes with very large number of links. This property is characterized by power-law 

degree distribution, that is, the probability that a chosen node has exactly k links follows P(k) 

~ k-γwhere γ is the degree exponent. As seen in Figures 4.1.2, 4.1.2, 4.1.3, and 4.1.4, all 

networks are scale free.   

 

Many real networks has a degree exponent between 2 and 3. Networks except from R control 

network have degree exponent of their power-law fit γ=2, a property of hub-and-spoke 

networks with the largest hub being in contact with a large fraction of all nodes. This spoke 

like structure of modules in biological networks has been suggested in a recent study as 

opposed to hierarchical network model [28]. On the other hand R control network has a 

smaller degree exponent. A degree exponent less than two is explained by partial duplication 

model in real networks [29].  

 

Another common feature of real networks is that any two nodes can connect with a few 

paths. A short average path length is an indicator of this small-world property. Biological 

networks are generally ultra small with average path lengths between 2 and 3 [27]. Here, 

networks except from RS control network all have higher average path lengths than expected 

as their diameters. However, they all have much more higher mean clustering coefficients 

than those of their random counterparts, an indication of modular structure.  

 

Modules in biological networks generally connect each other with a few links called 

disassortative property. High diameter and average path lengths suggest that highly clustered 

modules are connected to each other with long paths in a spoke-like manner in both disease 

networks.  
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Relatively low difference between average clustering coefficients of control networks and 

their random counterparts suggest a distortion in modular structure by lose of disassortativity 

with shorter multiple paths. In RS control network, average path length and diameter are low 

due to presence of two similar size subnetworks instead of one very big subnetwork. From 

the number of nodes in RS control network, it can easily be seen that a big portion of genes 

were filtered out by stability.  

 

The reason of this might be an indication of a transition in cellular machinery of adjacent 

cells from non-cancer to cancer which cannot be detected with histological examination. 

Phase transitions are characterized by extreme sensitivity to small perturbations. Thus, 

differential effects of tumor cell signals on adjacent cells depending on their distance to or 

location with respect to tumorous tissue in different samples are expected to be high and 

explain high number of genes filtrated out by stability as compared to disease samples. This 

may also explain the partial duplication model of R control network. Modules connected to 

each other with multiple shorter paths that may be regulatory genes active in different phases 

of the transition. 

 

 

 

 
Figure 1: Degree distribution of R control network. 

The x-axis shows number of neighbors of a node. The y-axis shows the number of 

nodes having that number of neighbors. 
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Figure 2: Degree distribution of R disease network 

The x-axis shows number of neighbors of a node. The y-axis shows the number of 

nodes having that number of neighbors. 
 

 

 

 
Figure 3: Degree distribution of RS control network 

The x-axis shows number of neighbors of a node. The y-axis shows the number of 

nodes having that number of neighbors. 
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Figure 4: Degree distribution of RS disease network 

The x-axis shows number of neighbors of a node. The y-axis shows the number of 

nodes having that number of neighbors. 

 
 

 

 

Graphical representations of the networks were prepared by using Cytoscape with Force-

directed (unweighted) layout option. Figure 4.1.5, 4.1.6, 4.1.7, and 4.1.8 are the images of 

the networks.  

 

 

 

 

 

 

 

 

 



 

18 
 

 
Figure 5: Graphical representation of R control network 

Cytoscape force-directed (unweighted) layout. 
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Figure 6: Graphical representation of R disease network 

Cytoscape force-directed (unweighted) layout. 
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Figure 7: Graphical representation of RS control network 

Cytoscape force-directed (unweighted) layout. 
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Figure 8: Graphical representation of RS disease network 

Cytoscape force-directed (unweighted) layout. 
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4.2 Prioritized Genes 

 

Genes were prioritized with respect to changes in three node properties between control and 

disease networks: betweenness centrality, clustering coefficient and neighborhood. Statistical 

significances of changes in the measures were analyzed by a non-parametric method, 

Wilcoxon signed-rank test, since values are not normally distributed. Changes in 

betweenness centrality and clustering coefficient were tested between control and disease 

networks separately as significance of increase and significance of decrease (with confidence 

level= 0.95) while neighborhood changes were tested against µ= 0 (with confidence level= 

0.95). All changes in comparison parameters were statistically significant. Prioritized genes 

with their official full name, associated biological processes obtained from 

http://www.genecards.org [25] and p-value of changes for each parameter are listed in 

Appendix A.  

 

Functional clustering was performed in David with prioritized genes by each method for 

each parameter change. Lists of functional clusters can be seen in Appendix B with number 

of genes clustered, enrichment score and statistical significances. Note that some annotations 

are present in more than one cluster and can be highly general such as biological process.  

Biological processes that genes were clustered with respect to betweenness centrality change 

in R networks are cellular process, RNA processing, and regulation of cellular process. For 

RS networks, they are biological regulation and multicellular organismal development. 

Among the prioritized genes according to betweenness centrality increase in R disease 

network, regulation of gene expression is the predominant cellular process with 4 genes 

(SSB, RPL30, METTL5, and SF3B14). As in the case of betweenness centrality increase, 

regulation of gene expression is the predominant cellular process for the prioritized genes 

according to betweenness centrality decrease in R disease network with three genes 

(HNRNPU, RBM6, and SUMO2). In the case of betweenness centrality increase in RS 

disease network, cilia related genes (DNAI1, TEKT1, and ROPN1L) are majority. There are 

three zinc finger genes (ZNF600, ZNF223, and ZNF 786) in the list of prioritized genes 

according to betweenness centrality decrease in RS disease network.  High number of 

prioritized genes related with regulatory functions is consistent with the idea that genes with 

high betweenness centrality tend to connect functional modules and pass information. 

 

Genes with high clustering coefficient change were mostly clustered to common biological 

processes between R and RS networks such as response to stimulus, protein complex 

biogenesis, signal transduction, gene expression, transport, and localization. This is not 

surprising since genes with high clustering coefficient are generally subunits of protein 

complexes, e.g. FGA and FGG, or members of functional modules which should be strictly 

co-regulated independent of cell type or state. On the other hand, regulation of apoptosis and 

multicellular organismal development are unique clusters for R and RS networks 

respectively. Instability in co-expression of apoptosis related genes in adjacent samples may 

be the reason while changes in processes related with organismal development occur in late 

stages of transition. The lists of prioritized genes according to clustering coefficient increase 

in disease networks are composed of more than 10 genes since all of their clustering 

coefficient increase are the same, from 0 to 1. Ten of the prioritized genes are same between 

two methods while this similarity is not seen in CC decrease case. This is another indicator 

of transition in adjacent cells.   
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Neighborhood change was used to detect genes that are highly differentially co-expressed. It 

is not possible to mention about a significant pattern for their functions. However, genes are 

clustered to a general process, biological regulation for both methods. Moreover, half of the 

genes prioritized are the same in R and RS networks. Presence of cytoskeleton related genes 

for both methods may explain why transforming cells were detected as non-tumorous  after 

histological comparison with healthy samples since morphology change is a late stage in 

carcinogenesis and coregulation of those genes are stable across control samples of 

individuals.  

 

 

 

4.3 Co-expressions of Interacting Proteins 

 

Number of interacting proteins connected in co-expression networks is listed in Table 4.3.1. 

All of the PPI edges also present in R control and RS control networks are same. Number of 

interacting proteins also connected in disease co-expression networks is low but consistent 

with previous studies [30, 31]. The reason of the difference in the number of interacting 

proteins between control and disease networks may be that tissue samples for PPI studies are 

generally obtained from patients rather than healthy people. An important property of 

interacting proteins in disease networks is that they are mostly members of protein 

complexes or related with immune response and cell division. This indicates that co-

regulation of interacting proteins related with these processes is more strictly controlled. 

Annotation clusters of interacting proteins mapped to co-expression networks are listed in 

APPENDIX C. 

 

 

 

Table 2: Number of common edges between PPI and co-expression networks 

                         R Network RS Network 

Control Disease Control Disease 

PPI Network 6 79 6 43 

 

 

 

4.4 Co-expressions of Intrinsically Disordered Proteins 

 

Intrinsically disordered proteins were mapped to co-expression networks. None of the both 

members of edges in all four networks was disordered proteins. R and RS control networks 

had only one edge (AGO2-ZNF148) with argonaute RISC catalytic component 2 (AGO2) as 

the disordered protein. R disease network had eleven edges (PDGFC -YAP1, NR5A2-

APOA1, APOA1-TEX11, APOA1-CYP4Z1, APOA1-GYPE, APOA1-THBD , APOA1-

F11, APOA1-CCR4, AGO2-EVI5, SPIN1-RYBP, YAP1-CTSO) with disordered proteins 

apolipoprotein A-I (APOA1), Yes-associated protein 1 (YAP1), and RING1 and YY1 

binding protein (RYBP), while RS disease network had eight edges (APOA1-CCR4, 

APOA1-CYP4Z1, APOA1-F11, APOA1-GYPE, APOA1-NR5A2, APOA1-TEX11, 

APOA1- THBD, RYBP-SPIN1) with disordered proteins apolipoprotein A-I (APOA1), and  
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RING1 and YY1 binding protein (RYBP). None of the disordered proteins are listed among 

prioritized genes. However, studies have shown that exogenous levels of apolipoprotein A-I 

prevent tumor development while its lowered levels are associated with ovarian cancer in 

mice [32]. Its differential co-expression with it interaction partners should be further 

analyzed.  Apart from this, low number of disordered proteins is not sufficient to conclude 

about their co-expression patterns between two cellular states.  
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

Gene co-expression networks are fundamental aspects of systems biology. Identifying the 

true links in GCNs is a challenging task because of the nature of microarray data. This makes 

reliability of measure and selection of threshold crucial in network construction. In the 

absence of time course gene expression data, Pearson correlation coefficient seems to remain 

one of the mostly used measures defining the pairwise relationships. On the other hand, 

selection of the threshold automatically is a prerequisite for an objective and standardized 

network construction unless soft threshold is used.     

 

In the thesis, a framework is proposed to deal with these two steps in network construction 

and applied to most common histological subtype of lung cancer, which is the leading cause 

of cancer death worldwide. A stability measure, S (stability), have been proposed to define 

the reliability of Pearson correlation coefficient for A. thaliana with hundreds of samples, 

was used for the same purpose with relatively low number of lung adenocarcinoma and 

adjacent lung tissue samples. Since stability removes the effects of samples that highly 

contribute to Pearson correlation, it may remove biases resulted from the sample 

composition independently from the number of samples. Moreover, it may reveal common 

co-expression dependencies in heterogeneous diseases like lung adenocarcinoma so that 

more effective therapies can be developed. In the detection of threshold, Random Matrix 

Theory was applied which has previously been used to distinguish system-specific, non-

random properties of complex systems from random-noise.  

 

Co-expression networks by using only Pearson correlation coefficient (R networks) were 

constructed to reveal the effects of using stability in combination with Pearson correlation 

coefficient (RS networks). Networks have interesting topological features such as absence of 

small-world property except from RS control network due to long paths between highly 

clustered nodes. Networks except from R control network are spoke-like and supports a 

recent study suggesting a heuristic spoke model rather than rigid hierarchy of deterministic 

hierarchical model.  Co-expression networks constructed by Random Matrix Theory can be 

said topologically robust as shown in previous studies since filtration of a significant number 

of nodes by stability did not eliminate the spoke-like scale free property of the disease 

networks. However, R control network does not have a spoke-like structure as RS control 

network. On the other hand, RS control network differentiated from others such that it was 

composed of two big sub networks as the result of high number of genes filtrated out by 

stability. These differences between control networks can be explained by the nature of 

control samples and differential effect of stability on control networks rather than robustness 

issue of Random Matrix Theory.The reason of these differences might be the transition in 

cellular machinery of adjacent cells from non-cancer to cancer which cannot be detected 

with histological examination.  
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Phase transitions are characterized by extreme sensitivity to small perturbations. Thus, 

differential effects of tumor cell signals on adjacent cells depending on their distance to or 

location with respect to tumorous tissue in different samples are expected to be high and 

explain high number of genes filtrated out by stability as compared to disease samples. 

 

A significant portion of genes prioritized with respect to betweenness centrality change are 

related with regulatory processes such as gene expression. This supports that genes with 

between high betweenness centrality serve to connect and transmit information between 

distinct cellular processes. The number of prioritized genes related with regulation of gene 

expression decreases in RS networks with respect to betweenness centrality change. This 

tendency is in reverse direction for genes related with cilia. Majority of prioritized genes are 

parts of protein complexes or members of functional modules which should be strictly co-

regulated. On the other hand, more than half of the prioritized genes with respect to 

clustering coefficient increase in R and RS disease networks are same. This number is only 

one for increase in R and RS control networks. This tendency is also seen in the case of 

prioritized genes with respect to neighborhood change. These results indicate that stability 

effects betweenness centrality much more than other measures.   

 

Presence of genes related with cilia in prioritized genes is important, especially TMEM17 

(ciliogenesis; sonic hedgehog/SHH signaling), since epithelial cells that are defined as 

“cancer-initiating cells” generally have primary cilia, which are known to be required for 

activation of the sonic hedgehog/SHH signaling pathway whose abnormal activity has been 

reported in many cancers.  

 

Number of interacting proteins also connected in co-expression networks was low which is 

consistent with previous studies. An important property of interacting proteins in disease 

networks is that they are mostly members of protein complexes or related with immune 

response and cell division. Number of disordered proteins mapped to co-expression networks 

was also very low to search for their co-expression patterns. Its reason is probably the low 

number of known disordered proteins. 

 

The distinctions in prioritized gene similarity with respect to clustering coefficient and 

neighborhood change increase between control and disease networks together with the 

differential presence of genes related with regulation of gene expression with respect to 

betweenness centrality change provide valuable information about the dynamics of cancer 

progression and spread. However, a deep analysis that is not restricted to a couple of dozens 

of genes and supported with further laboratory experiments is needed for a better 

understanding. On the other hand, a different data set should be used with samples from 

healthy individuals to reveal the advantages of using stability to detect general mechanism 

differences between healthy and cancer state although using both methods provided different 

insights in this special case. 
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APPENDICES 

 

 

APPENDIX A 

LIST OF PRIORITIZED GENES 

 

 

 

Table 3: Top 10 BC increase genes in R disease network 

symbol name cellular processes* 

SSB 
Sjogren Syndrome Antigen B 

(Autoantigen La) 

involves in diverse aspects of RNA 

metabolism 

BCCIP 
BRCA2 And CDKN1A Interacting 

Protein 

may promote cell cycle arrest by 

enhancing the inhibition of CDK2 

activity by CDKN1A 

RPL30 Ribosomal Protein L30 RNA binding 

METTL5 Methyltransferase Like 5 Probable methyltransferase activity 

AKR1D1 
Aldo-Keto Reductase Family 1, 

Member D1 

delta4-3-oxosteroid 5beta-reductase 

activity 

TMEM17 transmembrane protein 17 
Required for ciliogenesis and sonic 

hedgehog/SHH signaling 

SF3B14 splicing factor 3B, 14 kDa subunit RNA binding 

SNX29 Sorting Nexin 29 phosphatidylinositol binding 

HSPE1 
heat shock 10kDa protein 1 

(chaperonin 10) 
functions as a chaperonin 

IER3IP1 
immediate early response 3 interacting 

protein 1 

may play a role in the ER 

     stress response by mediating cell 

differentiation and apoptosis 

p-value= 5.96x10-66 

*Cellular process information is obtained from http://www.genecards.org 
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Table 4: Top 10 BC decrease genes in R disease network 

symbol name cellular processes* 

HNRNPU 
heterogeneous nuclear ribonucleoprotein U 

(scaffold attachment factor A) 
RNA binding 

CHMP5 charged multivesicular body protein 5 

degradation of surface 

receptors  

formation of endocytic 

multivesicular bodies 

PPIAP29 
peptidylprolyl isomerase A (cyclophilin A) 

pseudogene 29 
- 

CCDC14 coiled-coil domain containing 14 - 

RBM6 RNA binding motif protein 6 RNA binding 

DPP9 dipeptidyl-peptidase 9 serine-type peptidase activity 

FTH1P12 ferritin, heavy polypeptide 1 pseudogene 12 - 

SUMO2 
SMT3 Suppressor Of Mif Two 3 Homolog 

2 (S. Cerevisiae) 

nuclear transport 

transcriptional regulation 

apoptosis 

 protein stability 

BABAM1 BRISC and BRCA1 A complex member 1 DNA damage 

ATP5C1 

ATP synthase, H+ transporting, 

mitochondrial F1 complex, gamma 

polypeptide 1 

ATP synthesis 

p-value = 2.9x10-18 

*Cellular process information is obtained from http://www.genecards.org. 
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Table 5: Top 10 BC increase genes in RS disease network 

symbol name cellular processes* 

COL5A2 Collagen, Type V, Alpha 2 
alpha chain for one of the low 

abundance fibrillar collagens 

CALML3 Calmodulin-Like 3 calcium ion binding 

LRRC48 leucine rich repeat containing 48 - 

EFCAB1 EF-hand calcium binding domain 1 calcium ion binding 

DNAI1 
dynein, axonemal, intermediate chain 

1 

Part of the dynein complex of 

respiratory cilia 

CD27 CD27 molecule 
transmembrane signaling receptor 

activity; T cell immunity 

TEKT1 tektin 1 

Structural component of ciliary and 

flagellar microtubules microtubule 

cytoskeleton organization 

CD19 CD19 molecule B lymphocyte activation 

CHST9 
carbohydrate (N-acetylgalactosamine 

4-0) sulfotransferase 9 

cell-cell interaction  

signal transduction 

ROPN1L 
rhophilin associated tail protein 1-

like 
ciliary movement 

p-value = 3.53x10-21 

*Cellular process information is obtained from http://www.genecards.org. 
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Table 6: Top 10 BC decrease genes in RS disease network 

symbol name cellular processes* 

ZNF600 zinc finger protein 600 
May be involved in transcriptional 

regulation 

ZNF223 zinc finger protein 223 
May be involved in transcriptional 

regulation 

DCLRE1C DNA cross-link repair 1C 

single-stranded DNA specific 

endodeoxyribonuclease activity 

5'-3' exonuclease activity 

ZNF786 zinc finger protein 786 
May be involved in transcriptional 

regulation 

STRIP2 striatin interacting protein 2 

Plays a role in the regulation of cell 

morphology and cytoskeletal 

organization 

SSTR2 somatostatin receptor 2 somatostatin receptor activity 

CYLC2 
Cylicin, Basic Protein Of Sperm Head 

Cytoskeleton 2 
structural constituent of cytoskeleton 

WDR38 WD repeat domain 38 - 

GALNT3 

UDP-N-acetyl-alpha-D-

galactosamine:polypeptide N-

acetylgalactosaminyltransferase 3 

(GalNAc-T3) 

Plays a central role in phosphate     

                                homeostasis 

 

LRRC46 leucine rich repeat containing 46 - 

p-value = 1.04x10-18 

*Cellular process information is obtained from http://www.genecards.org. 
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Table 7: Top 16 CC increase genes in R disease network 

symbol name cellular processes* 

SNHG10 
small nucleolar RNA host gene 10 

(non-protein coding) 
non-protein coding 

RPS26P11 ribosomal protein S26 pseudogene 11 - 

CD1A CD1a molecule natural killer T-cell activation 

HINT1 
histidine triad nucleotide binding 

protein 1 

protein kinase C binding tumor 

suppression 

EXOG 
endo/exonuclease (5'-3'), endonuclease 

G-like 

endonuclease activity 

 may play a role in apoptosis 

FGG fibrinogen gamma chain 

yields monomers that polymerize 

into fibrin 

 platelet aggregation 

GSDMA gasdermin A induction of apoptosis 

RPS26 ribosomal protein S26 structural constituent of ribosome 

WSB2 
WD repeat and SOCS box containing 

2 

protein ubiquitination intracellular 

signal transduction 

CMPK1 
cytidine monophosphate (UMP-CMP) 

kinase 1, cytosolic 
cellular nucleic acid biosynthesis 

PDCD6 programmed cell death 6 
calcium ion binding 

may mediate apoptosis 

CD207 CD207 molecule, langerin 
carbohydrate binding 

 T-cell activation 

SPG7 
spastic paraplegia 7 (pure and 

complicated autosomal recessive) 

metalloendopeptidase activity 

peptidase activity 

MT1P3 metallothionein 1 pseudogene 3 - 

MAFA 

v-maf musculoaponeurotic 

fibrosarcoma oncogene homolog A 

(avian) 

activates insulin gene expression 

FGA fibrinogen alpha chain 

yielding monomers that 

polymerize into fibrin 

platelet aggregation 

p-value = 1.29x10-24 

*Cellular process information is obtained from http://www.genecards.org. 
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Table 8: Top 10 CC decrease genes in R disease network 

symbol name cellular processes* 

STARD13 
StAR-related lipid transfer 

(START) domain containing 13 

GTPase activator activity 

may be involved in regulation of 

cytoskeletal 

    reorganization, cell proliferation and cell 

motility 

MRPL22 
mitochondrial ribosomal protein 

L22 
structural constituent of ribosome 

ZNF528 zinc finger protein 786 
may be involved in transcriptional 

regulation 

TRMT5 
tRNA methyltransferase 5 

homolog (S. cerevisiae) 
tRNA modification 

MRPL20 
mitochondrial ribosomal protein 

L20 
structural constituent of ribosome 

PSMG2 

proteasome (prosome, 

macropain) assembly chaperone 

2 

promotes assembly of the 20S proteasome 

UQCRH 
ubiquinol-cytochrome c 

reductase hinge protein 
ubiquinol-cytochrome-c reductase activity 

SRP14 

signal recognition particle 

14kDa (homologous Alu RNA 

binding protein) 

targeting secretory proteins to the rough 

endoplasmic reticulum membrane 

ANGEL2 angel homolog 2 (Drosophila) - 

ACTL6A actin-like 6A 

involved in transcriptional activation and 

repression of select genes by chromatin 

remodeling 

p-value = 7.08x10-23 

*Cellular process information is obtained from http://www.genecards.org. 
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Table 9: Top 15 CC increased genes in RS disease network 

symbol name cellular processes* 

RPS26P11 
ribosomal protein S26 

pseudogene 11 
pseudogene 

MT1P3 metallothionein 1 pseudogene 3 - 

FGG fibrinogen gamma chain 

yields monomers that polymerize into 

fibrin 

 platelet aggregation 

WSB2 
WD repeat and SOCS box 

containing 2 

protein ubiquitination 

 intracellular signal transduction 

MAFA 

v-maf musculoaponeurotic 

fibrosarcoma oncogene homolog 

A (avian) 

activates insulin gene expression 

CD207 

v-maf musculoaponeurotic 

fibrosarcoma oncogene homolog 

A (avian) 

carbohydrate binding 

 T-cell activation 

CCL3L3 
chemokine (C-C motif) ligand 3-

like 3 
chemokine activity 

PPM1K 
protein phosphatase, 

Mg2+/Mn2+ dependent, 1K 

Regulates the mitochondrial permeability 

transition pore  

essential for cellular survival and 

development 

RPS26 ribosomal protein S26 structural constituent of ribosome 

PIPSL 
PIP5K1A and PSMD4-like, 

pseudogene 
pseudogene 

FGA fibrinogen alpha chain 

yields monomers that polymerize into 

fibrin 

 platelet aggregation 

EXOG fibrinogen gamma chain 
endonuclease activity 

 may play a role in apoptosis 

CDA cytidine deaminase cytidine deaminase activity 

CD1A CD1a molecule natural killer T-cell activation 

CCL3L1 
chemokine (C-C motif) ligand 3-

like 1 
chemokine activity 

p-value = 1.89x10-24 

*Cellular process information is obtained from http://www.genecards.org. 
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Table 10: Top 10 CC decrease genes in RS disease network 

symbol name cellular processes* 

ANXA2P1 annexin A2 pseudogene 1 - 

BCYRN1 brain cytoplasmic RNA 1 
may regulate dendritic protein 

biosynthesis 

GSTA1 glutathione S-transferase alpha 1 glutathione transferase activity 

PDE4C 
phosphodiesterase 4C, cAMP-

specific 
glutathione transferase activity 

STAR 
steroidogenic acute regulatory 

protein 
steroid hormone synthesis 

CHGB chromogranin B (secretogranin 1) 
may serve as a precursor for regulatory 

peptides 

ZNF528 zinc finger protein 528 Zinc finger 

RABL2B 
RAB, member of RAS oncogene 

family-like 2B 
GTPase activity 

ZNF563 zinc finger protein 563 
may be involved in transcriptional 

regulation 

PTGES3 
prostaglandin E synthase 3 

(cytosolic) 

disrupts receptor-mediated transcriptional 

activation 

p-value = 4.95x10-15 

*Cellular process information is obtained from http://www.genecards.org. 
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Table 11: Top 10 neighborhood change genes in R networks 

symbol name cellular processes* 

ARMC4 armadillo repeat containing 4 - 

CCNA1 cyclin A1 control of the cell cycle 

CCDC74A 
coiled-coil domain containing 

74A 
- 

KCNH3 

potassium voltage-gated channel, 

subfamily H (eag-related), 

member 3 

Pore-forming (alpha) subunit of voltage-

gated potassium channel 

MS4A8B 
membrane-spanning 4-domains, 

subfamily A, member 8B 
receptor activity 

SPN sialophorin 

transmembrane signaling receptor activity; 

a negative regulatory role in adaptive 

immune response 

TRIP13 
thyroid hormone receptor 

interactor 13 

This gene is one of several that may play a 

role in early-stage non-small cell lung 

cancer. 

TMSB15A thymosin beta 15a organization of the cytoskeleton 

STAG3L2 stromal antigen 3-like 2 - 

CIDEC 
cell death-inducing DFFA-like 

effector c 
apoptosis 

p-value = 1.33x10-93 

*Cellular process information is obtained from http://www.genecards.org.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 
 

Table 12: Top 10 neighborhood change genes in RS networks 

symbol name cellular processes* 

CCNA1 cyclin A1 control of the cell cycle 

ARMC4 armadillo repeat containing 4 - 

TMSB15A thymosin beta 15a organization of the cytoskeleton 

CCDC74A 
coiled-coil domain containing 

74A 
- 

LRRC48 leucine rich repeat containing 48 - 

CIDEC 
cell death-inducing DFFA-like 

effector c 
apoptosis 

TMSB15B thymosin beta 15b organization of the cytoskeleton 

CHST9 

carbohydrate (N-

acetylgalactosamine 4-0) 

sulfotransferase 9 

cell-cell interaction; signal transduction 

PCSK1 
proprotein convertase 

subtilisin/kexin type 1 
endopeptidase activity 

CDHR2 
cadherin-related family member 

2 

contact inhibition at the lateral surface of 

epithelial cells 

p-value = 1.42x10-53 
*Cellular process information is obtained from http://www.genecards.org.  
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APPENDIX B 

FUNCTIONAL ANNOTATION CLUSTERS OF PRIORITIZED GENES 

 

 
 

Table 13: Functional annotation clusters of BC change in R networks 

Annotation Cluster 1        enrichment score : 1.46     count            p-value       Benjamini 

primary metabolic process 12 9.3E-3 8.5E-1 

metabolic process 12 2.3E-2 8.0E-1 

cellular metabolic process 11 2.9E-2 7.7E-1 

macromolecule metabolic process 10 3.5E-2 7.6E-1 

cellular macromolecule metabolic process 9 6.3E-2 8.1E-1 

cellular process 13 1.2E-1 9.5E-1 

Annotation Cluster 2        enrichment score : 1.01     count            p-value       Benjamini 

RNA processing 4 1.2E-2 7.2E-1 

mRNA metabolic process 3 4.4E-2 7.8E-1 

RNA metabolic process 4 5.1E-2 7.8E-1 

nucleobase, nucleoside, nucleotide and nucleic acid 

metabolic process 

6 
1.9E-1 9.8E-1 

cellular nitrogen compound metabolic process 6 2.3E-1 9.9E-1 

nitrogen compound metabolic process 6 2.5E-1 9.9E-1 

gene expression 5 2.9E-1 9.9E-1 

Annotation Cluster 3        enrichment score : 0.03     count            p-value       Benjamini 

regulation of cellular metabolic process 3 8.7E-1 1.0E0 

regulation of metabolic process 3 8.8E-1 1.0E0 

biological regulation 5 9.7E-1 1.0E0 

regulation of cellular process 4 9.8E-1 1.0E0 

regulation of biological process 4 9.9E-1 1.0E0 



 

41 
 

Table 14: Functional annotation clusters of BC change in RS networks 

Annotation Cluster 1       enrichment score : 0.23     count            p-value       Benjamini 

cellular macromolecule biosynthetic process 5 2.5E-1 1.0E0 

macromolecule biosynthetic process 5 2.5E-1 1.0E0 

biological regulation 9 3.7E-1 1.0E0 

cellular biosynthetic process 5 4.0E-1 1.0E0 

biosynthetic process 5 4.2E-1 1.0E0 

nitrogen compound metabolic process 5 4.7E-1 1.0E0 

regulation of nucleobase, nucleoside, nucleotide and 

nucleic acid metabolic process 

4 
5.0E-1 1.0E0 

regulation of nitrogen compound metabolic process 4 5.0E-1 1.0E0 

regulation of cellular biosynthetic process 4 5.3E-1 1.0E0 

regulation of biosynthetic process 4 5.4E-1 1.0E0 

cellular macromolecule metabolic process 6 5.6E-1 1.0E0 

transcription 3 6.0E-1 1.0E0 

regulation of primary metabolic process 4 6.1E-1 1.0E0 

nucleobase, nucleoside, nucleotide and nucleic acid 

metabolic process 

4 
6.4E-1 1.0E0 

regulation of cellular metabolic process 4 6.5E-1 1.0E0 

macromolecule metabolic process 6 6.6E-1 1.0E0 

regulation of metabolic process 4 6.9E-1 1.0E0 

cellular nitrogen compound metabolic process 4 7.0E-1 1.0E0 

regulation of biological process 7 7.2E-1 1.0E0 

regulation of transcription 3 7.2E-1 1.0E0 

regulation of macromolecule biosynthetic process 3 7.7E-1 1.0E0 

regulation of gene expression 3 7.7E-1 1.0E0 

gene expression 3 8.0E-1 1.0E0 

cellular metabolic process 6 8.1E-1 1.0E0 

regulation of cellular process 6 8.4E-1 1.0E0 

regulation of macromolecule metabolic process 3 8.4E-1 1.0E0 

primary metabolic process 6 8.5E-1 1.0E0 

metabolic process 6 9.2E-1 1.0E0 

Annotation Cluster 2         enrichment score : 0.1      count            p-value      Benjamini 

multicellular organismal development 3 7.7E-1 1.0E0 

multicellular organismal process 4 8.0E-1 1.0E0 

developmental process 3 8.2E-1 1.0E0 
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Table 15: Functional annotation clusters of CC change in R networks 

Annotation cluster 1        enrichment score : 1.2         count          p-value       Benjamini 

response to calcium ion 3 2.7E-3 5.0E-1 

response to metal ion 3 1.4E-2 7.1E-1 

response to inorganic substance 3 3.4E-2 7.7E-1 

response to chemical stimulus 5 1.0E-1 8.2E-1 

response to stimulus 6 5.8E-1 9.9E-1 

regulation of biological quality 3 6.3E-1 9.9E-1 

Annotation Cluster 2         enrichment score : 1.13     count           p-value        Benjamini 

cellular protein complex assembly 3 2.2E-2 7.6E-1 

protein complex biogenesis 4 3.3E-2 8.2E-1 

protein complex assembly 4 3.3E-2 8.2E-1 

macromolecular complex assembly 4 6.5E-2 8.9E-1 

cellular macromolecular complex assembly 3 7.4E-2 8.9E-1 

macromolecular complex subunit organization 4 7.6E-2 8.7E-1 

cellular macromolecular complex subunit organization 3 9.0E-2 8.2E-1 

cellular component assembly 4 1.3E-1 8.6E-1 

cellular component biogenesis 4 1.7E-1 9.1E-1 

cellular component organization 6 2.7E-1 9.5E-1 

Annotation Cluster 3            enrichment score : 0.7     count           p-value      Benjamini 

signal transduction 8 8.9E-2 8.4E-1 

regulation of cellular process 13 2.1E-1 9.4E-1 

regulation of biological process 13 2.6E-1 9.6E-1 

biological regulation 13 3.5E-1 9.6E-1 

Annotation Cluster 4         enrichment score : 0.51    count            p-value       Benjamini 

translation 4 1.1E-2 7.5E-1 

gene expression 9 4.4E-2 8.1E-1 

cellular macromolecule biosynthetic process 8 8.5E-2 8.8E-1 

macromolecule biosynthetic process 8 8.8E-2 8.6E-1 

cellular biosynthetic process 9 9.0E-2 8.0E-1 

biosynthetic process 9 1.0E-1 8.1E-1 

protein metabolic process 7 1.9E-1 9.4E-1 

cellular process 18 2.2E-1 9.4E-1 

cellular protein metabolic process 6 2.3E-1 9.5E-1 

macromolecule metabolic process 11 2.6E-1 9.6E-1 

cellular macromolecule metabolic process 10 3.0E-1 9.6E-1 

cellular metabolic process 12 3.1E-1 9.6E-1 

primary metabolic process 12 3.8E-1 9.7E-1 

regulation of gene expression 6 3.8E-1 9.6E-1 

metabolic process 13 3.9E-1 9.6E-1 

regulation of RNA metabolic process 4 4.8E-1 9.9E-1 

regulation of macromolecule metabolic process 6 5.1E-1 9.9E-1 
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Table B.3 (continued) 

 

regulation of primary metabolic process 6 5.1E-1 9.9E-1 

nucleobase, nucleoside, nucleotide and nucleic acid 

metabolic process 
6 5.5E-1 9.9E-1 

regulation of cellular metabolic process 6 5.7E-1 9.9E-1 

regulation of nucleobase, nucleoside, nucleotide and 

nucleic acid metabolic process 
5 5.9E-1 9.9E-1 

transcription 4 5.9E-1 9.9E-1 

regulation of macromolecule biosynthetic process 5 5.9E-1 9.9E-1 

regulation of nitrogen compound metabolic process 5 5.9E-1 9.9E-1 

regulation of metabolic process 6 6.1E-1 9.9E-1 

cellular nitrogen compound metabolic process 6 6.2E-1 9.9E-1 

regulation of cellular biosynthetic process 5 6.3E-1 9.9E-1 

regulation of biosynthetic process 5 6.3E-1 9.9E-1 

nitrogen compound metabolic process 6 6.5E-1 9.9E-1 

regulation of transcription, DNA-dependent 3 7.4E-1 1.0E0 

regulation of transcription 4 7.4E-1 1.0E0 

Annotation Cluster 5         enrichment score : 0.49     count            p-value       Benjamini 

regulation of apoptosis 3 3.2E-1 9.6E-1 

regulation of programmed cell death 3 3.2E-1 9.6E-1 

regulation of cell death 3 3.2E-1 9.5E-1 

Annotation Cluster  6        enrichment score : 0.24     count            p-value       Benjamini 

establishment of localization in cell 3 3.4E-1 9.6E-1 

cellular localization 3 3.8E-1 9.6E-1 

transport 4 7.5E-1 1.0E0 

establishment of localization 4 7.6E-1 1.0E0 

localization 4 8.3E-1 1.0E0 
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Table 16: Functional annotation clusters of CC change in RS networks 

Annotation Cluster 1         enrichment score : 1.41 count p-value Benjamini 

regulation of biological process 14 2.6E-2 8.0E-1 

biological regulation 14 4.3E-2 8.9E-1 

regulation of cellular process 13 5.4E-2 9.1E-1 

Annotation Cluster 2         enrichment score : 1.09     count            p-value       Benjamini 

regulation of biological quality 7 5.7E-3 8.2E-1 

response to metal ion 3 1.0E-2 7.9E-1 

response to inorganic substance 3 2.5E-2 8.5E-1 

response to chemical stimulus 5 6.2E-2 9.1E-1 

response to external stimulus 4 9.3E-2 9.6E-1 

response to wounding 3 1.3E-1 9.5E-1 

response to stress 4 3.3E-1 1.0E0 

response to stimulus 6 4.2E-1 1.0E0 

multicellular organismal process 4 9.3E-1 1.0E0 

Annotation Cluster 3         enrichment score : 0.89     count            p-value       Benjamini 

regulation of biological quality 7 5.7E-3 8.2E-1 

regulation of body fluid levels 3 1.2E-2 7.1E-1 

protein complex assembly 3 1.2E-1 9.5E-1 

protein complex biogenesis 3 1.2E-1 9.5E-1 

macromolecular complex assembly 3 1.9E-1 9.9E-1 

macromolecular complex subunit organization 3 2.1E-1 9.9E-1 

cellular component assembly 3 2.9E-1 1.0E0 

cellular component biogenesis 3 3.4E-1 1.0E0 

cellular component organization 5 3.5E-1 1.0E0 

multicellular organismal process 4 9.3E-1 1.0E0 

Annotation Cluster 4         enrichment score : 0.61     count            p-value       Benjamini 

regulation of biological quality 7 5.7E-3 8.2E-1 

transport 3 8.5E-1 1.0E0 

establishment of localization 3 8.6E-1 1.0E0 

localization 3 9.0E-1 1.0E0 

Annotation Cluster 5        enrichment score : 0.39     count            p-value       Benjamini 

regulation of biological quality 7 5.7E-3 8.2E-1 

organ development 3 6.4E-1 1.0E0 

system development 3 8.0E-1 1.0E0 

anatomical structure development 3 8.4E-1 1.0E0 

multicellular organismal development 3 8.9E-1 1.0E0 

developmental process 3 9.2E-1 1.0E0 

multicellular organismal process 4 9.3E-1 1.0E0 
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Table B.4 (cont.) 

 

Annotation Cluster 6         enrichment score : 0.31     count            p-value       Benjamini 

cellular biosynthetic process 8 9.6E-2 9.5E-1 

biosynthetic process 8 1.1E-1 9.5E-1 

cellular metabolic process 11 2.3E-1 9.9E-1 

primary metabolic process 11 2.9E-1 1.0E0 

regulation of primary metabolic process 6 3.6E-1 1.0E0 

regulation of RNA metabolic process 4 3.8E-1 1.0E0 

metabolic process 11 4.5E-1 1.0E0 

cellular macromolecule metabolic process 8 4.5E-1 1.0E0 

cellular macromolecule biosynthetic process 5 4.5E-1 1.0E0 

regulation of nucleobase, nucleoside, nucleotide and 

nucleic acid metabolic process 
5 4.5E-1 1.0E0 

regulation of metabolic process 6 4.5E-1 1.0E0 

macromolecule biosynthetic process 5 4.5E-1 1.0E0 

regulation of nitrogen compound metabolic process 5 4.6E-1 1.0E0 

gene expression 5 5.0E-1 1.0E0 

cellular protein metabolic process 4 5.6E-1 1.0E0 

cellular process 14 5.6E-1 1.0E0 

macromolecule metabolic process 8 5.7E-1 1.0E0 

nucleobase, nucleoside, nucleotide and nucleic acid 

metabolic process 
5 6.2E-1 1.0E0 

regulation of cellular metabolic process 5 6.3E-1 1.0E0 

regulation of transcription, DNA-dependent 3 6.5E-1 1.0E0 

cellular nitrogen compound metabolic process 5 6.8E-1 1.0E0 

protein metabolic process 4 6.9E-1 1.0E0 

regulation of gene expression 4 7.0E-1 1.0E0 

nitrogen compound metabolic process 5 7.1E-1 1.0E0 

regulation of biosynthetic process 4 7.3E-1 1.0E0 

transcription 3 7.4E-1 1.0E0 

regulation of macromolecule metabolic process 4 7.9E-1 1.0E0 

regulation of transcription 3 8.5E-1 1.0E0 

regulation of macromolecule biosynthetic process 3 8.8E-1 1.0E0 

regulation of cellular biosynthetic process 3 9.0E-1 1.0E0 
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Table 17: Functional annotation clusters of NC in R networks 

Annotation Cluster 1        enrichment score : 0.45 count p-value Benjamini 

regulation of cellular process 5 3.1E-1 1.0E0 
regulation of biological process 5 3.5E-1 1.0E0 
biological regulation 5 4.0E-1 1.0E0 
 

 

 

 

 

 

 

Table 18: Functional annotation clusters of NC in RS networks 

Annotation Cluster 1       enrichment score : 0.78 count p-value Benjamini 

regulation of biological quality 4 9.6E-3 8.4E-1 
biological regulation 5 2.3E-1 1.0E0 
cellular process 6 2.3E-1 1.0E0 
regulation of cellular process 4 4.7E-1 1.0E0 
regulation of biological process 4 5.1E-1 1.0E0 
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APPENDIX C 

FUNCTIONAL ANNOTATION CLUSTERS OF CO-EXPRESSED 

INTERACTING PROTEINS 

 

 

 

Table 19: Functional annotation clusters of co-expressed interacting proteins 

Annotation Cluster 1         enrichment score : 12.9 count p-value Benjamini 

cell cycle process 29 8.6E-17 1.2E-13 

mitotic cell cycle 24 6.1E-16 2.4E-13 

cell cycle 32 6.7E-16 1.8E-13 

cell cycle phase 23 7.9E-14 1.7E-11 

M phase 21 1.0E-13 1.9E-11 

cell division 19 1.9E-12 2.6E-10 

mitosis 16 3.3E-11 4.0E-9 

nuclear division 16 3.3E-11 4.0E-9 

M phase of mitotic cell cycle 16 4.2E-11 4.6E-9 

organelle fission 16 5.8E-11 5.7E-9 

organelle organization 29 7.2E-8 4.4E-6 

Annotation Cluster 2         enrichment score : 11.44     count         p-value       Benjamini 

immune system process 36 2.3E-16 1.2E-13 

immune response 27 9.2E-13 1.4E-10 

defense response 19 2.3E-7 1.2E-5 
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