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ABSTRACT 

 

INVESTIGATION OF DIGITAL ELEVATION MODEL UNCERTAINTY IN GIS-

BASED SOLAR RADIATION MODELS USING MARKOV CHAIN MONTE 

CARLO SIMULATION 

 

Ismaila, Abdur-Rahman Belel 

Ph.D., Department of Geodetic and Geographic Information Technologies 

Supervisor: Prof. Dr. Şebnem H. Düzgün 

Co-supervisor: Prof. Dr. Volkan Ş. Ediger 

September 2013, 198 pages 

In this study, a Markov chain Monte Carlo (MCMC) simulation approach that incorporates 

digital elevation model's (DEM) spatial autocorrelation is developed with the aim of 

assessing the impact of DEM uncertainty in GIS-based solar radiation models. 

The method utilized the error probability distribution function (pdf) of Shuttle Radar 

Topography Mission (SRTM) DEM, and variogram model parameters of the study area's 

SRTM DEM as a priori information for the formulation of Metropolis-Hasting algorithm. 

Statistical analysis of the data extracted from the literature revealed that SRTM DEM error 

exhibit lognormal distribution with a mean of 4.209 m and standard deviation of 0.054 m. 

An exponential variogram model with sill of 125.74, range of 1,556.85) and nugget of 0 

represent the spatial autocorrelation of the study area DEM. A total of 1,080 simulations is 

executed using 2m chains and the initial burn-in period of 80, representing 7.41% of the 

simulation is discarded. Multivariate potential scale reduction factor (MPSRF) of 0.99 is 

obtained after executing 1,080 MCMC simulations which indicates that the MCMC sampler 

has converged to a stationary distribution, being less than 1.1. 

Thus, the results are assumed to be drawn from lognormal pdf. Whereas, the check for 

variogram reproduction based on 95% confidence level indicate that the variogram 

simulation remains valid since T
2
=1.751 is less than the corresponding F-statistic of 23.19. 

The proposed methodology is coded and executed in MaTLAB Environment. Based on the 

simulation results, it is observed that the proposed framework allows better representation of 

the DEM data. 

The realized DEMs together with other inputs were used to run the Solar Analyst and r.sun 

models. The results of both models showed a better performance using the realized DEMs 

than the original SRTM DEM. For Solar Analyst, DEM uncertainty has greater effect on 

diffuse radiation and direct duration, while, direct and global radiations are less affected. For 

r.sun, the DEM uncertainty has less influence on solar radiation outputs. Comparison of the 

two models shows that Solar Analyst is more sensitive to uncertainty than r. sun. 

Interestingly, the study reveals that relatively flat terrains where DEM uncertainty seems to 
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be low also exhibit high uncertainty in solar radiation estimates. This indicates that DEM 

may not be the only input associated with uncertainty. 

Keywords: DEM, Uncertainty analysis, GIS-based solar radiation models, MCMC, spatial 

autocorrelation. 
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ÖZ 

 

MARKOV ZINCIRI MONTE CARLO BENZETIŞIMI KULLANARAK CBS'YE 

DAYALI GÜNEŞIŞINIMI MODELLERINDEKI SAYISAL YÜKSEKLIK MODELI 

BELIRSIZLIKLERININ İNCELENMESI 

 

Ismaila, Abdur-Rahman Belel 

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü 

Tez Yöneticisi: Prof. Dr. Şebnem H. Düzgün 

Yardımcı Tez Yöneticisi: Prof. Dr. Volkan Ş. Ediger 

Eylül 2013, 198 sayfa 

Bu çalışmada, CBS’ye dayalı güneş ışınımı modellerindeki SYM belirsizliğinin etkisinin 

saptanması için sayısal yükseklik modelindeki (SYM) mekansal otokorelasyonu göz önüne 

alan bir Markov zinciri Monte Carlo benzetişimi yaklaşımı geliştirilmiştir. 

Bu yöntem, Metropolis-Hasting algoritmasının oluşturulmasında, önsel (a priori) bilgi olarak 

Shuttle Radar Topography Mission (SRTM) SYM haritası hata olasılığıdağılımı 

fonksiyonunu ve çalışma alanının SRTM SYM’nin variogram model parametrelerini 

kullanmaktadır. Literatürden elde edilen verilerin istatistiksel analizi, SRTM SYM verisinin 

ortalaması 4.209 m ve standart sapması 0.054 m olan lognormal dağılıma sahip olduğunu 

göstermiştir. Eşik değeri “125.74”, menzili “1,556.85” ve nugget değeri “0” olan bir 

eksponansiyel variogram modeli çalışma alanının SYM haritasının mekansal 

otokorelasyonun betimlemektedir. Toplamda 1.080 adet benzetişim 2m’lik zincirler ve 80’lik 

bellek süresi ile çalıştırılmış benzetişimlerin %7,41’i gözardı edilmiştir. Çok değişkenli 

potansiyel ölçek azaltma faktörü olarak 0.99 değeri, 1.080 adet benzetişim sonrasında elde 

edilmiştir ki bu Markov zincirinin 1.1 değeri ile duraylı bir dağılıma yaklaştığını 

göstermektedir. 

Bu nedenle elde edilen sonuçların lognormal pdf dağılımdan elde edildiği anlaşılmıştır. 

Variogram üretiminin %95 güven aralığı kontrol edildiğinde, T
2
=1.751 değerinin 23.19 F-

istatistik değerinden küçük olması nedeni ile variogram benzetişimlerinin geçerli olduğu 

görülmüştür. Önerilen bu yöntem MaTLAB ortamında kodlanmış ve çalıştırılmıştır. 

Benzetişim sonuçlarına göre, önerilen çerçeve, daha iyi SYM haritalarını temsiline olanak 

sağlamaktadır. 

Benzetişim ile elde edilen SYM ve diğer girdiler Solar Analyst ve r.sun modellerinin 

çalıştırılmasında kullanılmıştır. Her iki modelden de alınan sonuçlar gösterdiki özgün SYM 

haritası yerine benzetişim ile elde edilen SYM haritasının kullanarak daha iyi performanslar 

elde edilmiştir. Solar Analyst için, doğrudan ve küreselışınım değerlerinin SYM’deki 

belirsizlikten daha az etkilenediği görülürken, yaygın ışınım ve doğrudan güneşlenme 

süresinin daha çok etkilendiği belirlenmiştir. “r.sun” için, SYM’deki belirsizliklerin güneş 

ışınımı çıktılarına daha az etkisi olduğu belirlenmiştir. İki modelin karşılaştırılmasında Solar 
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Analyst modelinin SYM’deki belirsizliklere daha duyarlı olduğu görülmüştür. İlginç 

birşekilde, çalışmada SYM belirsizliklerinin daha düşük olduğu nispeten düz arazilerde 

güneş ışınımı tahminlerinde yüksek belirsizlikolduğu bulunmuştur. Bu durum SYM 

belirsizliklerinin tek ilgili parametre olmadığına isaret etmektedir. 

Anahtar kelimeler: SYN, Belirsizlik analizi, CBS’ye dayalı güneş ışınımı modelleri, 

Markov zinciri Monte Carlo, mekansal otokorelasyon  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background and Motivation 

Geographic Information System (GIS)-based solar radiation models (Alsamamra et al. 2009) 

are developed in order to predict both short- and long-wave solar energy fluxes at and near 

the Earth’s surface (Sheng et al. 2009) and gives the outputs in the form of solar resource or 

potential maps. Generally, solar radiation is a major source of energy that supports most of 

the physical and biochemical processes on the Earth's surface (Li, 2008). It is also a key 

resource in supporting renewable energy policies on concentrated solar power (CSP) and 

concentrated photovoltaic (CPV), and above all, an indispensable input for several models 

used in the field of earth and environmental sciences namely; crop models (Stockle et al. 

2003), ecological models (Haxeltine and Prentice, 1996), global circulation models (IPCC, 

1996), biological process models (Huang and Fu, 2009), soil-vegetation-atmosphere transfer 

models (Hansen, 1999; Mariscal et al. 2000), soil temperature models (Lei et al. 2010), and 

crop growth models (Hodges et al. 1987; Jones et al. 2003). In essence, solar radiation maps 

derived using GIS-based models and other methods are vital to many fields of human 

endeavors ranging from renewable energy applications, earth and environmental sciences, 

city planning, architecture, agriculture, forestry, horticulture, natural resource management, 

engineering among others. 

Despite the significance of solar radiation resource data to many facets of human life, this 

vital resource is not readily available (Huang and Fu, 2009; Ruiz-Arias et al. 2010); and 

where it exists, there are uncertainties associated with it. Those derived using GIS models are 

not an exception, therefore, seriously hinders decision-making process in terms of policy 

formulation, solar energy applications and investments, and scientific studies that may 

require solar radiation as a key input. 

Traditionally, long term field observations of some meteorological parameters such as 

sunshine, temperature, and relative humidity, are used in assessing the solar radiation that 

falls in a specific location on the Earth's surface. However, Her (2011) noted that field 

monitoring is expensive to implement and requires a long time-series data to provide 

statistically useful information. As such, GIS-based solar radiation models are a necessary 

complement to field monitoring and in some cases a better option because it is inexpensive, 

fast, and allow analysis of what-if scenarios, which is not practical in field monitoring. 

Moreover, a model is reusable in other relevant cases and various functions of a model can 

be designed with regard to the modeler’s needs. In recent years, the significant progress in 

the field of GIS has led to the development of various models for estimation of solar 

radiation. These include, (1) Solar radiation flux (SolarFlux) model by Hetrick et al. (1993), 

which was further modified by Dubayah and Rich (1995, 1996), (2) Solei-32 model by 
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Miklánek and Mészároš (1993) and then improved by Mészároš et al. (2002), (3) SRAD 

model developed by Wilson and Gallant (2000), (4) Solar Analyst model by Fu and Rich 

(1999, 2000), and (5) r.sun model developed by Hofierka (1997) and further modified by 

Hofierka and Šúri (2002). 

For instance, Solar Analyst is a model evolved from the earlier models, specifically the 

SolarFlux model which was primarily based on the Canopy model (Rich et al. 1995). It is 

presently available in ArcGIS Spatial Analyst extension and enables the analyses of the sun 

effects over any geographic location for a particular period of time (Charabi and Gastli, 

2010). The major input for the model include digital elevation model (DEM), slope and 

aspect. In addition, some parameters can be set as default or changed to suit the condition of 

geographic location under study. The tool, take into consideration the effects of atmosphere, 

site latitude, elevation, slope, aspect, sun angle shift and terrain shadows (Huang and Fu, 

2009). For details of the model see Chapter 2. 

On the other hand, the r.sun model was developed for Geographic Resources Analysis 

Support System (GRASS) Open Source GIS software by Hofierka (1997) and further 

improved by Hofierka and Šúri (2002) and Šúri and Hofierka (2004). Conceptually, the r.sun 

model according to Kryza et al. (2010) is based on the equations developed for the European 

Solar Radiation Atlas by Scharmer and Greif (2000) and on previous research of Hofierka 

(1997). The model operates in 2 modes; Mode 1 predicts the instantaneous direct, diffuse, 

and reflected radiation values in (W.m
−2

), and the solar incidence angle (degrees) for any 

specified day and time. Whereas, the total amount of daily radiation (Wh/m
2
) and direct 

radiation duration in (minutes) are calculated in Mode 2. The model requires a few main 

inputs comprises of DEM, slope, aspect, and local solar time (for Mode 1) and specific day 

number (for both Modes). Other inputs including linke turbidity factor (   ) and ground 

albedo are either set as default or changed to suit the area under study. Spatially varied inputs 

can be defined as grid maps. Furthermore, the model takes into account sky obstructions 

caused by terrain features from the DEM. The astronomical parameters, for instance, solar 

declination, are automatically calculated by the model (Šúri and Hofierka, 2004). More 

details are provided in Chapter 2. 

These models are integrated with GIS and indeed serve as powerful tools for understanding 

landscape processes, rapid and cost-effective method for describing the solar radiation 

distribution at all scales (Fu and Rich, 1999) while taking into account the slope inclination, 

aspect and shadow effects by producing solar radiation maps (Dubayah and Rich, 1995; Fu 

and Rich, 2002; Tovar-Pescador et al. 2006). The use of these models has increased and their 

input datasets also improved dramatically. Yet, there has been a notable gap with respect to 

reliability information of the models outputs. 

Uncertainty is defined as lack of knowledge regarding measurement reliability (Fu and Rich, 

1999; Wechsler, 1999). The maps generated by these models often have various uncertainties 

since the current models did not provide uncertainty information or an inbuilt analysis tool. 

As the knowledge of solar radiation potential is vital for planning, operation and 

maintenance of solar energy technology systems (Hoyer-Klick et al. 2009) and several other 

applications, the level of uncertainty can be critical in the decision making process and guide 

for scientific research efforts (Harrison et al. 2011). 
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Generally, good modeling practice suggests the provision of model's confidence level in 

terms of uncertainties related to the model output (Crosetto et al. 2000). Moreover, since 

models are only an approximation of reality, their inputs are rarely, if ever, exactly known. 

Thus, their outputs are also likely to deviate from reality or errors that are contained in 

models and their inputs will propagate to their output (Heuvelink, 1998a). Model inputs as 

reported by Crosetto et al. (2000) are subject to several sources of uncertainty, for instance, 

errors of measurement, inadequate sampling. In addition, there is model uncertainty, which 

relates to structures, assumptions and simplifications of a model. Thus, an error in any model 

produces uncertainty. 

DEM related uncertainties are due to several sources, structures and methods of DEM 

generations. These can be grouped mainly into; (1) systematic, (2) blunders, and (3) random 

(USGS, 1997; Wechsler, 2007). Systematic uncertainties are due to the processes involved in 

generating the DEM and generally follow specific patterns that can lead to bias or artifacts in 

the final DEM product (Fu and Rich, 1999; Wechsler, 1999). Systematic uncertainties can be 

minimized or eliminated especially when the source is known. Wechsler (1999) noted that 

blunders refer to the vertical errors related to data collection method which are mostly 

identified and eliminated before the data is released. On the other hand, random uncertainties 

remain in the data after the removal of known blunders and systematic uncertainties. In the 

case of GIS-based solar radiation models, topography is a major factor determining the solar 

energy incident on any location found on the Earth (Dubayah and Rich, 1995). In other 

words, Fu and Rich (2002) noted that variation in elevation, slope, aspect and obstructions of 

terrain features generates great local gradients of solar radiation. However, the main input 

data for GIS-based solar radiation models are the DEM and its derivatives (slope, aspect). 

DEMs are models that represent the Earth's surface elevations. This form of spatial data 

provides a model of reality that contains deviations from the truth (Wechsler, 2007), or 

inherent errors that constitute uncertainty (Holmes et al. 2000; Wechsler and Kroll, 2006; 

Hunter and Goodchid, 1997). 

Approaches to DEM uncertainty modeling have been developed over the years. However, a 

number of shortcomings exist, for example, only global DEM accuracy figures are available 

(Hebeler, 2008). In addition, the same DEM with different spatial resolutions usually 

generates different estimates of elevation, slope, and aspect, particularly in complex terrains 

(Ruiz-Arias et al. 2009). In general, Fisher (1998) and Holmes et al. (2000) have come to the 

conclusion that DEMs contain errors to a certain degree that have great consequences on 

slope and aspect. Similarly, DEM errors generate varied solar radiation estimates. Therefore, 

if the solar radiation maps are used for solar energy applications, policy development, or 

scientific research, these uncertainties will propagate. Additionally, error propagation arising 

due to the processing of different sources of data layers within a GIS environment can also 

generate significant noise that impact the results interpretations (Heuvelink et al. 1989). 

These impose some limitations on the confidence of GIS-based solar radiation models 

outputs (Crosetto et al. 2000) and a challenge to their widespread application. Consequently, 

Jahanpeyma et al. (2007) noted that the presence of uncertainty in both spatial data and 

spatial analyses will potentially expose users to undesirable consequences in their decision-

making process. In this regard, Zhang and Goodchild (2002) reported that the 

characterization (modeling and portrayal) of spatial uncertainty and its propagation to 

geographical modeling and its impact on spatial decision-making, has been identified as a 

critical research priority in GIScience, e.g., Heuvelink (1998), Heuvelink and Burrough 
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(2002), Sheng et al. (2009). Though, uncertainty in GIS is well known, and extensively 

investigated, the problem has not been solved (Goodchild, 1992; Devillers et al. 2002) 

rigorously. 

One way of managing uncertainty is through error propagation models or uncertainty 

analysis (UA), which allows assessment of uncertainty in the model output as a result of 

error propagation through the model input data and uncertainties in the model itself 

(Heuvelink, 1998; Crosetto and Tarantola, 2001). In any field, UA is a prerequisite to model 

building (Crosetto et al. 2000). Similarly, in GIS, UA is necessary because different input 

data from different sources are associated with a wide range of errors (Thapa and Bossler, 

1992; Karssenberg and De Jong, 2005). Heuvelink (1998) and Karssenberg and De Jong 

(2005) reported that modeling of error propagation via complex dynamic spatial models is 

assessed using powerful computational techniques where most of which model errors as 

stochastic variables. "Analytical solutions for error propagation as a result of spatial 

functions with stochastic variables also exist. However, these are only available for a limited 

number of relatively simple functions and do not support most dynamic models. As a result, 

error propagation in dynamic spatial environmental models is mostly computed by Monte 

Carlo (MC) simulation" (Karssenberg and De Jong, 2005). The MC approach to UA is based 

on adding a random noise factor (which can be positive or negative) to the data that is 

simulated using random number generators. 

On the other hand, previous studies that examine the veracity of the custom-built GIS-based 

solar radiation models compared them to measured values from ground-based measurement 

sites (see for example Rich et al. 1995; Šúri et al. 2007; Ruiz-Arias et al. 2009; Kryza et al. 

2010; Kumar, 2011). This approach of model validation based on ground-based 

measurements is not a viable option due to the dearth of ground-based measurement sites in 

many countries around the world. Others, for example, Thompson (2003); Ruiz-Arias et al. 

(2009) concentrated on the influence of DEM resolution on model output. However, it is 

important to note that MC simulation does not consider spatial autocorrelation, which is 

essential for spatial UA. Oliver et al. (1997) reported that among the techniques for modeling 

uncertainty, Markov chain Monte Carlo (MCMC) techniques hold most promise. Despite the 

advantages of this technique, it is observed from the literature that none of the previous 

studies have utilized it, and as well incorporated spatial autocorrelations despite the 

anecdotal and empirical evidence that shows DEM error is spatially variable and 

autocorrelated (Theobald, 1989; Weibel and Brändli, 1995; Ehlschlaeger and Shortridge, 

1997; Hunter and Goodchild, 1997; Fisher, 1998; Kyriakidis et al. 1999; Carlisle, 2005). 

However, very little research has attempted to model this spatial autocorrelation. Wechsler 

(1999) and Raaflauband Collins (2006) stressed that uncertainty model that did not take into 

account the spatial autocorrelation can be seen as the ‘worst-case scenario’. 

Therefore, new methodologies are required to fill these gaps, more especially, an MCMC 

simulation based method. The MCMC technique is a general Bayesian inference method for 

simulation of stochastic processes. It generates equally probable realizations from the target 

distribution using the transition probability of a Markov process with the property that its 

limiting invariant distribution is the target distribution. The Markov chain is then iterated in a 

computer-generated MC simulation, and the output, after a transient phase and under various 

sets of conditions, is a sample from the target distribution (Chib and Greenberg, 1995). The 

approach differs fundamentally from other methods, such as, Taylor series, or MC 

http://portal.acm.org/author_page.cfm?id=81453653619&coll=DL&dl=ACM&trk=0&cfid=33850515&cftoken=28219132
http://portal.acm.org/author_page.cfm?id=81406599089&coll=DL&dl=ACM&trk=0&cfid=33850515&cftoken=28219132
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simulation, because it captures both the uncertainty in the correlation and the dependencies 

between the posterior correlations, variances, and means that are induced by their joint 

estimation from data and then correctly propagates them through the decision model (Ades 

and Lu, 2003). Additionally, it copes with modeling non-Gaussian nature of the parameter 

uncertainty (Minasny et al. 2011). Thus, Bayesian inference is particularly suited to the 

estimation of parameter uncertainty in GIS or environmental models because a priori 

information on the values of parameters can be conveniently incorporated into the parameter 

estimation process, in the form of informative prior distributions. 

1.2 Purpose and Scope of the Research 

The main purpose of this study is to investigate the effect of spatially autocorrelated DEM 

(elevation) errors on the GIS-based solar radiation models outputs using MCMC simulation 

based on Metropolis-Hastings (MH) algorithm. Spatial autocorrelation of elevation errors as 

noted by Guth (1992), Ehlschlaeger et al. (1997), Hunter and Goodchild is critical for any 

model of spatial uncertainty because errors at a certain location are found to influence errors 

at neighboring locations positively or negatively (Campbell, 1981). There are several MCMC 

algorithms which include Metropolis-Hastings (Metropolis et al. 1953) and Gibbs sampler 

(Geman and Geman, 1984); further details of these algorithms are given in Chapter 3. 

However, in this study, the MH algorithm is adopted because of its generality, simplicity and 

powerfulness (Robert and Casella, 2010). 

Technology and in particular, GIS simplified the process of data capture, analysis, and 

presentation of outputs, yet there still remain many pitfalls, and users need to be able to think 

critically about what they are doing and the reliability of results obtained from this novel 

technology (Brimicombe, 2010). Though, efforts have obviously been taken to reduce 

uncertainty for any model, it is necessary to be mindful of the fact that uncertainty cannot be 

eliminated completely, and therefore it needs to be considered when deriving, distributing or 

displaying the results. Therefore, the scope of this study is focused on accounting for DEM 

uncertainties, their propagation and assessing their impact on the outputs of GIS-based solar 

radiation models specifically the Solar Analyst and r.sun models. In addition, the 

comparisons of the outputs from these two models are made. 

1.3 The Main Contributions 

For decades, uncertainties in both spatial data and spatial models are considered important 

for GIScience, for instance, see Goodchild and Gopal (1989); and the references contained 

therein (Atkinson, 1999). Uncertainty is extremely important in the process of model 

parameterization and assessment (Refsgaard et al. 2007; Wang et al. 2009; Wang and Chen, 

2012). Generally, uncertainties arise from (1) measurement variations of spatial and temporal 

data; (2) non-uniqueness of model parameters and interaction among different parameters 

and various processes; and (3) imperfect model structure like processes description 

(Refsgaard et al. 2007; Wang and Chen, 2012). The impact of uncertainty is even more 

significant as the modeling results are often used in the policy making and decision. 

Most studies pertaining to uncertainty in GIScience are currently concentrated on uncertainty 

due to individual sources, e.g., inputs. Moreover, the methods are confined to simple 

sensitivity analysis and MC simulations. More effective techniques should be developed to 

quantify the uncertainties in input data, model parameters and model structure. UA does not 
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only give the uncertainty from different sources, but also gives an evaluation of model 

performance and limitations. 

Hence, the basic contributions of this research include; 

i. Prior to this study, an application of the MCMC method to investigate the effects of 

DEM uncertainties in GIS-based solar radiation model’s outputs has never been 

addressed, thus, this research is the first of its kind to use MCMC method. The 

method captures both the uncertainty in the correlation and the dependencies 

between the posterior correlations, variances, and means that are caused by their 

joint estimation from the data and uses decision-model to propagate them (Ades and 

Lu, 2003). In addition, it copes with modeling non-Gaussian nature of the parameter 

uncertainty (Minasny et al. 2011), 

ii. Unlike previous studies which assume that spatial autocorrelation errors in DEM are 

normally distributed, the current study incorporates spatial autocorrelation by 

generating a chain of correlated realizations through the rejection of perturbations or 

transitions that do not meet the acceptance criteria, 

iii. Quantification of uncertainties allows better decision making practices. Consider for 

example, the solar radiation potential which is the main factor to be considered when 

locating solar power plants such as CSP and CPV. Thus, renewable energy policy-

makers and investors can use such information in finding the most suitable locations 

for the site selection of solar power plants. 

1.4 Research Outline 

This thesis is structured in Seven Chapters. Chapter 2 gives a review on the theoretical basis 

of GIS-based solar radiation models and their applications, sources and structures of DEM 

data, DEM uncertainty and sources, and DEM uncertainty metrics. Chapter 3 starts with an 

exploration of the concept of uncertainty, uncertainty classification and types of error, and 

currently employed techniques for analysis of error propagation in GIScience. The Chapter 

further introduces an MCMC simulation technique, including relevant theory for Markov 

chain, general properties of Markov chains, convergence diagnosis and then concludes with 

spatial autocorrelation. Chapter 4 covers the detailed description of the proposed MCMC 

simulation methodological framework. Chapter 5 presents an implementation of the 

proposed methodology using a case study area of Abuja, Nigeria. Chapter 6 discusses results 

of the implementation of the proposed methodology based on the case study. Chapter 7 

summarizes the main findings and conclusions of this thesis and future outlook. 
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CHAPTER 2 

 

GEOGRAPHIC INFORMATION SYSTEM (GIS)-BASED SOLAR 

RADIATION MODELS 

 

This chapter provides main conceptual background for the research by reviewing the relevant 

literature on solar energy models, theory, design, and implementation of the two GIS-based 

solar radiation models, namely Solar Analyst (Rich et al. 1995; Fu and Rich, 1999) and r.sun 

(Hofierka, 1997; Hofierka and Šúri, 2002). In addition, sources and structures of digital 

elevation model (DEM) uncertainty, and DEM uncertainty metrics are overviewed. 

2.1 Solar Energy Models 

Solar radiation is the fundamental renewable energy source that sustains the biosphere and 

drives its self-organization. Thus, reliable knowledge of solar radiation data sets is essential 

to several domains, for instance, energy planners, engineers, urban planners, architects, 

renewable energy, climatology, ecology and hydrology (Ertekin and Yalziz, 2000). The solar 

radiation data is useful, e.g., for optimum site-selection of solar energy generation facilities 

(Charabi and Gastli, 2010), assessment of future energy, economical benefits, and 

formulation of effective policies (Šúri et al. 2007). 

In the literature, there are a wide variety of methodologies/models used for estimating solar 

radiation and these can be categorized into; empirical methods (for example, Angstrom, 

1924; Winslow et al. 2001; Isikwue et al. 2012), artificial neural network (ANN) models (for 

instance, Alawi and Hinai, 1998; Ahmed and Adam, 2013); satellite based models (for 

example, Cano et al. 1986; Dubayah, 1992; Perez et al. 2002; Sorapipatana, 2010). Lastly, 

the GIS-based solar radiation models (for instance, Hetrick et al. 1993; Miklánek and 

Mészároš, 1993; Dubayah and Rich, 1995; Fu and Rich, 1999, 2000; Wilson and Gallant, 

2000; Mészároš et al. 2002; Hofierka and Šúri, 2002). The empirical models usually consist 

of a few measurable meteorological parameters and require the development of a set of 

equations that relates it and other meteorological parameters (Donatelli et al. 2003). ANN 

models provide prediction with a reliable degree depending on the availability of input 

parameters (Azadeh et al. 2009). Satellite models according to Perez et al. (2002) derive a 

cloud index from the satellite (e.g., Meteorological Satellite, Geostationary Operational 

Environmental Satellite) visible channel and use this index to construct a clear sky global 

irradiance model that may be adjusted for ground elevation and linke turbidity factor (   ). 

Hofierka and Zlocha (2012) and Tovar-Pescador et al. (2006) noted that GIS-based solar 

radiation models predict the amount of incoming radiation using topographic information 

contained in DEM, for instance, elevation, slope, aspect, shadow effect, and latitude, as well 

as other different physical parameterization. However, this study considered only the GIS-

based solar radiation models. 
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2.2 GIS-Based Solar Radiation Models 

The GIS-based solar radiation models have been developed since 1990s. The models utilize 

terrain features available in DEM in order to calculate elevation, slope, aspect, and latitude. 

Based on this information and different physical parameters, these models are able to predict 

the spatial distribution of the incoming radiation (Tovar-Pescador et al. 2006). The 

integration of solar radiation models with GIS provides an efficient means of computing 

radiation over large geographic locations while taking into account the effects of local 

terrain, incorporation of environmental and socio-economic variables, and generation of 

scenarios to policy-makers (Dubayah and Rich, 1995; Hofierka and Šúri, 2002; Nguyen and 

Pearce, 2010). Šúri et al. (2007) further stressed that a tool of this nature could effectively 

help in assessing solar energy potential at various levels, for example, local, national or 

supra-national. Tovar-Pescador et al. (2006) and Fu and Rich (2002) noted that GIS along 

with DEM have favored recently the development of solar radiation models, especially in 

complex terrains. Additionally, the mutual interaction of GIS with remote sensing (RS), as 

well as the inclusion of the methods of statistics and geostatistics as tools for spatial analysis 

has contributed greatly towards this success. The first generation of the models was based on 

simple empirical algorithms which describes the solar radiation atmospheric attenuation, for 

instance, SolarFlux model developed for ArcInfo GIS by Hetrick et al. (1993) and modified 

by Dubayah and Rich (1995), Solei-32 for IDRISI by Miklanek (1993), and Genasys for 

(Kumar et al. 1997). The second generations of GIS-based solar radiation models are more 

advanced, for example, SRAD by McKenney et al. (1999), Solar Analyst by Fu and Rich 

(2000), and r.sun model of Hofierka and Šúri (2002). The Solar Analyst and SRAD models 

are designed for estimating the interactions of both short- and long- waves that falls on the 

surface of the Earth. However, despite being suitable for fine-scale analysis, these models 

have some limitations with respect to diffuse radiation computation and application for large 

areas (Šúri and Hofierka, 2002; 2004). On the other hand, Geographic Resources Analysis 

Support System (GRASS) Development Team (2006) reported that the r.sun model, 

available in the open source GIS GRASS environment is free from the aforesaid limitations. 

Thus, it operates quickly and effectively for both larger scale areas and higher spatial 

resolution data. However, it is important to note that none of these models provide a level of 

uncertainty in the outputs. Among these GIS-based models, only Solar Analyst and r.sun 

models are taken into account for review here, as they are considered for the thesis work. 

2.2.1 Solar Radiation Modeling with ArcGIS 

The Solar Analyst is a model evolved from earlier models, specifically, the SolarFlux model 

which was primarily based on the Canopy model (Rich et al. 1995). It is presently available 

in ArcGIS Spatial Analyst extension and enables the analyses of the effects of the sun over a 

geographic area for specific time periods. It computes direct radiation, diffuse radiation, and 

global radiation; and reports the outputs in watt hours per square meter (Wh/m
2
). However, 

reflective radiation, while technically part of global radiation, is not included in Solar 

Analyst because of its complexity and the relatively low influence on total radiation (Fu and 

Rich, 1999; Huang and Fu, 2009). The model also generates direct radiation duration (i.e., 

duration of direct incoming solar radiation) in hours. The major input for the model is DEM 

and its derivatives (slope and aspect), and atmospheric transmittivity (Table 2.1). 
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Table 2.1. Solar Analyst inputs (ESRI, 2008) 

Solar Analyst inputs Unit 

DEM Meters 

Latitude Single value 

Slope and Aspect decimal degrees 

Z factor Dimensionless 

Day interval Days 

Hour interval Hours 

Sky size/resolution  Cells 

Time configuration Numbers 

Zenith divisions Dimensionless 

Azimuth divisions Dimensionless 

Calculation of directions Dimensionless 

Diffuse model type Dimensionless 

Transmitivity Dimensionless 

The model takes into account the effects of atmospheric conditions, site latitude, elevation, 

slope, aspect, sun angle shift, and topography shadows. The model analyses a landscape or 

specific location using two methods, namely, area and point. The area solar radiation 

analysis is used to calculate the insolation across an entire landscape. For each specific 

location, the computation is repeated in the input terrain surface and produces maps of 

radiation estimates for the whole area. While, the point solar radiation analysis is used to 

calculate the amount of radiant energy for a given location. Locations can be stored as point 

features or as x, y coordinates in a location table. Solar radiation calculations can be 

performed for specified locations only. These calculations, performed for point specific or 

area based, are executed based on the following steps below; 

(1) terrain is used to compute an upward-looking hemispherical viewshed, 

(2) direct radiation is computed by overlaying the viewshed on a direct sunmap, 

(3) diffuse radiation is computed by overlaying the viewshed on a diffuse skymap, 

(4) the process is repeated for all the interested locations to generate solar radiation 

potential map. Computation for hemispherical viewshed (upward-looking) of all 

specific locations is carried out from the DEM. A hemispherical viewshed is like a 

fish-eye photograph and generates a view of the entire sky from ground level (Huang 

and Fu, 2009). 

The methods from the hemispherical viewshed algorithm upon which the Solar Analyst is 

based on, was developed by Rich et al. (1990; 1994) and extended by Fu and Rich (2000, 

2002) is hereby summarized below. 

2.2.1.1 Global Radiation Computation 

Global radiation             is computed as the summation of direct          and diffuse 

         radiation of all sunmap and skymap sectors, respectively. The Global radiation is 

computed using Equation (2.1): 

.tot tot totGlobal Dir Dif         (2.1) 

The sunmap is a raster layer that defines the suntracks, i.e., sun's position as it moves over 

time, for instance, hourly, daily, monthly, and seasonally (Fu and Rich, 1999). On the other 

hand, skymaps are grid maps produced by splitting the entire sky into several sectors based 
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on zenith and azimuth (Fu and Rich, 1999; Ruiz-Arias et al. 2009; Martínez-Durbán et al. 

2009). 

2.2.1.2 Direct Radiation Computation 

Total direct radiation          is the summation of all the direct radiation          from all 

the sunmap sectors: 

, .totDir Dir          (2.2) 

The direct radiation from the sunmap sector (      ) with a centroid at zenith angle (θ) and 

azimuth angle (α) is computed using Equation (2.3): 

 ( )
, , , ,. . . .cos ,m

constDir S SunDur SunGap AngIn
          (2.3) 

where 

constS  represents the solar flux outside the atmosphere at the mean earth-sun distance, 

usually refers to solar constant.   denotes atmospheric transmitivity (i.e., mean of all 

wavelengths) for the shortest path (in the direction of the zenith);      denotes the relative 

optical path length, measured as a proportion relative to the zenith path length, refer to 

Equation (2.4).           represents the time frame of the sky sector, usually, equal to the 

day interval (for instance, a month) multiplied by the hour interval (for example, a half hour). 

For partial sectors (near the horizon), the duration is computed using spherical geometry; 

          represents sunmap sector gap fraction;          denotes incidence angle 

between the sky sector centroid and the axis normal to the surface, refer to Equation (2.5). 

Zenith angle and elevation/height are used to calculate the relative optical length      . 

Equation (2.4) is used to compute zenith angles less than 80
o
: 

     9 20.000118. 1.638.10 . cos ,m EXP Elev Elev      (2.4) 

where 

  denotes the solar zenith angle, Elev represent the elevation/height (m). 

Angle of incidence (           ) is the angle between the intercepting surface and a given 

sky sector with a centroid at zenith angle and azimuth angle. The Angle of incidence is 

computed using Equation (2.5): 

         , cos . . . ,z z aAngInSky a Cos Cos G Sin Sin G Cos G     
         (2.5) 

where 

   denotes zenith angle of the surface, 

   represents azimuth angle of the surface, 

Note that refraction is important especially for zenith angles greater than 80°. 



11 

 

2.2.1.3 Diffuse Radiation Computation 

The diffuse radiation at its centroid (Dif) is computed and incorporated based on the time 

interval for each specific sky sector, and then corrected using the gap fraction and the angle 

of incidence as shown in Equation (2.6): 

 , , , ,glb. . . . .cos ,difDifn R P Dur SkyGap Weight AngIn          (2.6) 

where 

     is the global normal radiation, see Equation (2.7);      represents the amount of 

diffused global normal radiation flux. Usually, 0.2 and 0.7 are used for very clear sky and 

very cloudy sky conditions, respectively; Dur denotes the time interval;           

represents the gap fraction (proportion of visible sky) for the sky sector;           denotes 

the amount of diffuse radiation originating from a particular sky sector relative to all sectors, 

refer to Equations (2.8)-(2.9);          represents the angle of incidence between the 

centroid of the sky sector and the intercepting surface.      is computed using Equation 

(2.7). It is the summation of the direct radiation for each and every sector (obstructed sectors 

included) without correction for angle of incidence, then correcting for proportion of direct 

radiation, which equals to       . 

     glb 1 .
m

constR S Pdif


       (2.7) 

For the uniform sky diffuse model,           is computed using Equation (2.8): 

 , 2 1cos cos ,aziWeight Div          (2.8) 

where 

   and    are the bounding zenith angles of the sky sector, 

       is the number of azimuthal divisions in the skymap. 

For the standard overcast sky model,           is calculated as follows: 

 , 2 2 1 12cos cos2 2cos cos2 4. .aziWeight Div           (2.9) 

The computation of total diffuse solar radiation for any specific location          is done by 

summing all the diffuse solar radiation       derived from each and every skymap sectors as 

shown in Equation (2.10): 

, .totDif Dif          (2.10) 

Having understood the theoretical basis of the Solar Analyst, the review now refocused on 

the application of the model. Charabi and Gastli (2010) investigated the solar electricity 

prospects in Oman using the Solar Analyst model. They emphasized that in order to 

minimize the model's computational time without affecting the accuracy of the results, 
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appropriate DEM resolutions must be applied. A 100 m x 100 m DEM which shows a 

relatively short execution time of the model is adopted. The study concludes that the in-situ 

measurements realized with pyrometers will not be able to capture the spatial variability in 

radiation caused by topography as the GIS model does. Similarly, for the same study area 

(Daqum, Oman), Gastli and Charabi (2010) utilized DEM with different resolutions ranging 

between (1,000 m x 1,000 m and 5,000 m x 5,000 m) and obtained results that showed no 

significant difference. 

Clifton and Boruff (2010) assessed the potential for concentrated solar power (CSP) 

development in Western Australia’s Wheatbelt using ArcGIS. They first generated the solar 

radiation potential using the Solar Analyst and then overlayed several datasets which 

comprises of environmental variables and electricity infrastructures. However, the authors 

were not contented with a default of 0.5 for general clear sky conditions and a value of 1 

signifying complete transmission advised by ESRI (2008) to represent solar radiation 

transmissivity of the study area. To determine the most appropriate transmissivity value for 

the region, they performed an analysis of variance based on the average monthly direct 

normal irradiance (DNI) measurements collected for the two bureaus of meteorology stations 

in the closest proximity to the Wheatbelt and the National Aeronautics and Space 

Administration's (NASA) satellite data (NASA, 2009) for Australia. Following the 

determination of appropriate transmissivity value of 0.85, Solar Analyst was used to 

calculate DNI at the Earth’s surface using the Shuttle Radar Topography Mission (SRTM) 

90 m x 90 m DEM. The study concludes that CSP facilities can be suitably located on a large 

portion of the Wheatbelt which can be tailored to local patterns of supply and demand. 

Tovar-Pescador et al. (2006) evaluated the reliability of Solar Analyst results over a complex 

topography and then compared the results against experimental data observed in Sierra 

Nevada National Park, Spain. The study employed a DEM of 20 m resolution and radiation 

data from 14 radiometric stations. The results indicate that the model performed well but 

with minor overestimation. The study, therefore, concluded that terrain parameters, such as 

elevation, slope, and aspect greatly affect the solar radiation, particularly in areas of 

relatively short distances. Moreover, the topographic parameters obtained from the DEM 

were compared with global positioning system (GPS) measurements and the results show 

that there are relatively high differences in slope and aspect values than that of the elevation. 

They also noted that the lack of incorporation of ground albedo by the model is another 

factor that may lead to incorrect estimates. Similarly, Ruiz-Arias et al. (2009) evaluated the 

reliability of daily solar radiation estimates of Solar Analyst, r.sun, SRAD and Solei-32 

models in a complex topography of Sierra Nevada National Park, Spain. The estimates of 

these models were tested against the field observation data from 14 meteorological stations. 

In addition, the effect of DEM resolution on solar radiation outputs of the models was also 

examined using a 20 m and 100 m DEM resolution. The result shows that Solar Analyst 

provides the least estimate when compared with r.sun model but yields a better performance 

with the 20 m DEM resolution, whereas r.sun shows better results using the 100 m resolution 

DEM. Unlike the Solar Analyst, the r.sun outputs are more similar to the ground 

measurements despite using different DEM resolutions. Atmospheric transmittivity; one of 

the basic input of Solar Analyst is sensitive to the presence of clouds thereby affecting the 

model output. Table 2.2 shows the summary of previous studies using Solar Analyst. 
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Table 2.2. Summary of previous studies that utilized the Solar Analyst model 

Author(s) Study Area Input inputs General remark 

Charabi and 

Gastli (2010) 

Daqum, 

Oman 

DEM (100 m x 100 m) Selection of appropriate DEM is 

important. The in-situ measurement 

realized with pyrometers will not be 

able to capture the spatial 

variability caused by topography as 

GIS models do. 

Gastli and 

Charabi  

(2010) 

Daqum, 

Oman 

DEM resolutions ranging 

between (1,000 m x 

1,000 m and 5,000 m x 

5,000 m). 

No significant difference in solar 

radiation outputs by using different 

DEM resolutions. 

Clifton and 

Boruff (2010) 

Western 

Australia’s 

Wheatbelt 

DEM (90 m x 90 m) and 

transmissivity value of 

0.85. 

Expressed doubt over the 

transmissivity value of (0.5 for 

general clear sky conditions and a 

value of 1 for complete 

transmission) advised by ESRI to 

represent solar radiation 

transmissivity of the study area. 

Ruiz-Arias et 

al. (2009) 

Sierra Nevada 

National 

Park, Spain 

DEM (20 and 100 m) 

and radiation data from 

14 radiometric stations. 

(i) DEM resolution tends to affect 

the quality of model results; (ii) 

Atmospheric transmittivity is 

sensitive to the presence of clouds. 

Tovar-

Pescador et al. 

(2006) 

Sierra Nevada 

National 

Park, Spain 

DEM (20 m) and radiation 

data from 14 radiometric 

stations. 

(i) Topographic parameters 

(elevation, slope and aspect) 

strongly modify the solar radiation; 

(ii) DEM resolution plays a vital 

role in obtaining accurate solar 

radiation estimates; and (iii) the 

model does not take into account 

the albedo. 

While Solar Analyst is a sophisticated model, it is not without some limitations. The most 

notable limitation is that the model generalizes overcast conditions. Cloud cover is an 

important factor when determining incoming solar radiation of an area and is addressed 

through radiation parameters in Solar Analyst by estimating the proportion of radiation that 

passes through overcast skies, and the proportion of diffuse radiation. These parameters, 

however, do not directly account for the local overcast. 

2.2.2 The Solar Radiation Model for GRASS GIS 

The r.sun clear-sky solar radiation model was developed for GRASS GIS software (open 

source) by Hofierka and Šúri (2002) based on the previous work of Hofierka (1997). The 

model calculates all the three components of solar irradiance: beam, diffuse and reflected for 

both clear-skies and overcast conditions. It is robust and flexible over various scales and 

considers all relevant inputs as spatially distributed entities to enable computations for large 

areas with complex terrain (Šúri and Hofierka, 2004). The model has the following key 

features: 

(1) it is a grid-based GIS tool with varied spatial inputs and outputs. Table 2.3 presents a list 

of all the inputs, 

(2) it is an open source model with available source code for further improvement, 

(3) all the clear-sky and real-sky solar radiation components for irradiation and irradiance 

values are provided, 
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(4) computation can be done assuming solar or civil time, 

(5) it has a large scalability for various spatial resolutions and region sizes. Memory 

management and code optimization allow use of high resolution data, and 

(6) integrating the model with GRASS GIS provide an opportunity to process both the input 

and output data within one computer environment (Hofierka and Cebecauer, 2008). 

Table 2.3. r.sun inputs (Hofierka and Šúri, 2002) 

Input 

name 

Type of 

input 

Description Mode Units Interval 

of values 

Eleven Raster Elevation 1, 2 Meters 0 – 8900 

Aspin Raster Aspect (panel azimuth) 1,2 Decimal degrees 0 – 360 

Slopein Raster Slope (panel inclination) 1,2 Decimal degrees 0 – 90 

Linkein Raster     1,2 Dimensionless 0 –  ≈7 

Lin Single 

value 
    1,2 Dimensionless 0 – ≈7 

Albedo Raster Ground albedo 1,2 Dimensionless 0 – 1 

Alb Single 

value 

Ground albedo 1,2 Dimensionless 0 – 1 

Latin Raster Latitude 1,2 Decimal degrees -90 – 90 

Coefbh Raster Clear-sky index of beam 

component 

1,2 Dimensionless 0 – 1 

Coefdh Raster Clear-sky index of 

diffuse component 

1,2 Dimensionless 0 – 1 

Day Single 

value 

Day number 1,2 Dimensionless 0 – 366 

Declin Single 

value 

Solar declination 1,2 Radians -0.40928 – 

0.40928 

Time Single 

value 

Local (solar) time 1 Decimal hours 0 – 24 

Step Single 

value 

Time step 2 Decimal hours 0.01 – 1.0 

Dist Single 

value 

Sampling distance 

coefficient 

1,2 Dimensionless 0.1 – 2.0 

The r.sun output parameter's settings are automatically recognized between the Modes (1 & 

2). For instance, performing computation in Mode 1 produces raster maps of the incident 

angle (incidout) and solar radiation components including beam (beamrad), diffuse 

(diffrad), and reflected (reflrad) radiations. On the other hand, computation in Mode 2 

generates the sums of solar irradiation for the chosen global radiation components 

(beam_rad, diff_rad and refl_rad) with respect to the defined day period. In addition, a beam 

irradiation duration (insol_time) is calculated.  

Apart from the clear-sky irradiances/irradiations, the r.sun model also computes the 

overcast radiation when supplied with beam and diffuse components of clear-sky index. By 

default, the incidence angle and irradiance/irradiation maps are generated without taking 

into account the shadow effects. However, settings must be changed to account for the 

shadow effects in complex terrains this may result to different estimates, particularly at low 

sun altitudes. Zero is recorded in the output maps for shadowed locations. The model's 

inputs are presented in Table 2.4. In addition to output raster maps, the model stores 

parameters utilized in the computations and provide r.sun_out.txt local text files. An 

example of the stored parameters includes day number, solar constant, interval of latitude, 

time step     and ground albedo values. 
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Table 2.4. r.sun out raster maps (Hofierka and Šúri, 2002) 

Parameter 

name 

Description Mode Units 

Incidout Solar incidence angle 1 Decimal degrees 

beam _rad Beam irradiance 1 W.m
-2

 

diff_rad Diffuse irradiance 1 W.m
-2

 

refl_rad Ground reflected radiance 1 W.m
-2

 

insol_time Duration of the beam 

irradiation 

2 min. 

beam_rad Beam irradiation 2 Wh.m
-2

.day
-1

 

diff_rad Diffuse irradiation 2 Wh.m
-2

.day
-1

 

refl_rad Ground reflected irradiation 2 Wh.m
-2

.day
-1

 

The main equations utilized for computation of direct and diffuse radiations that fall on the 

Earth's surface is given by Šúri and Hofierka (2004). The computation basically starts with 

the solar constant     , equivalent to 1367 W.m
−2

. The model considers the Earth's orbit 

eccentricity with the correction factor of   incorporated in the computation of 

extraterrestrial irradiance    normal to the solar beam: 

.o oG I e          (2.11) 

where 

 '1 0.03344cos 0.048869 ,e j        (2.12) 

the day angle    is in radians: 

' 2 365.25,j         (2.13) 

and   represent the day number varying from 1
st
 January to 31

st
 December (365/366). 

The beam radiation normal to the solar beam     is computed using Equation (2.14): 

  exp 0.8662. . . ,oc o LK RB G L m m       (2.14) 

where 

    denotes linke turbidity factor, 

  represents relative optical air mass, 

   is the Rayleigh optical thickness at air mass (m). 

The beam radiation on a horizontal surface     is computed as: 

 sin ,os ohcB B h         (2.15) 

where 

   denotes the solar height. 

Finally, the beam radiation on an inclined surface     is given as: 
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 expsin sin ,ic ohcB B h        (2.16) 

where 

     represents the measured solar incidence angle between the Sun and inclined surface. 

The modeling of the diffuse component on a horizontal surface     (W.m
−2

) for a clear sky 

condition     is computed as a product of the    and a diffuse transmission function    

which dependent only on the    .        is the solar altitude function, which also depends 

on    , and a diffuse solar altitude function    depend only on the solar altitude   : 

   .o n oLKhc dD G T L F h        (2.17) 

The diffuse irradiance on inclined surface     (W.m
−2

) is computed with Equation (2.18) and 

Equation (2.19), depending on whether the raster layer is a sunlit or shadowed surface: 

sunlit surface: 

   exp1 sin sinh ,ic oNhc b bD D F K K        (2.18) 

shadowed surface: 

   ,ic NhcD D F          (2.19) 

where 

      accounts for the diffuse sky irradiance, and    is a proportion between direct 

radiation and extraterrestrial solar radiation on horizontal surface.     represents linke 

turbidity factor which increases the diffuse radiation and decreases the direct radiation. 

The clear-sky diffuse ground reflected irradiance for inclined surfaces    is calculated using 

Equation (2.20): 

  ,i g g NhcR G r          (2.20) 

where 

   1 cos 2,g N Nr           (2.21) 

and: 

.hc hc hcG B D          (2.22) 

The global irradiance/irradiation on a horizontal surface for overcast conditions    is 

computed using Equation (2.23): 

.hs ch G kG           (2.23) 
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where 

   is the ratio between horizontal global radiation under overcast     and clear-sky    : 

.c hs hck G G          (2.24) 

For a more comprehensive explanation of r.sun algorithms refer to Hofierka and Šuri (2002) 

and Šuri and Hofierka (2004). However, to demonstrate the model’s capabilities, Hofierka 

and Šúri (2002) utilized the model to assess the potential photovoltaic electricity in 10 

countries from Eastern Europe. Spatial data are represented by raster maps with parameters 

representing terrain, latitude,    , radiation, and clear-sky index. Šúri et al. (2005) developed 

a database of solar radiation for European countries based on the r.sun model, and interactive 

internet tools for accessing, displaying and estimating the productivity of photovoltaic (PV) 

electricity for any specific location. The methodology utilized the following inputs; 

(1) average monthly daily global and diffuse radiations obtained from 566 meteorological 

stations between 1981 to 1990, 

(2)     of 611 locations obtained from the SoDa database and then interpolated, 

(3) average monthly values of clear-sky index obtained from meteorological station and then 

interpolated, and 

(4) a 1x1 km spatial resolution DEM generated from the United States Geological Survey 

(USGS) SRTM-30 data. 

They concluded that such a comprehensive GIS database provides reliable information on 

solar radiation and other parameters for both the European and neighboring countries as 

compared to other sources of data available. 

Hofierka and Cebecauer (2008) assessed the solar resources in Slovakia using r.sun model 

with the aim of producing a solar radiation database. The study utilized 100 m DEM 

resolution resampled from SRTM 90 m, measured global and diffuse irradiation from ground 

stations,     map, an interpolated clear-sky index map, and constant albedo of 0.15. The 

quality of the model outputs reflects the source data and solar radiation methodology. A high 

resolution DEM improved the accuracy of topographical factors (relative air mass and 

shadowing). The real-sky irradiation modeling is more influenced by the lack of 

representative ground-based measurements reflecting local variations and dynamics of 

cloudiness. However, the overall accuracy of the database represented by monthly and 

annual values of irradiation was assessed using basic statistical measures, the relative mean 

bias error (rMBE) and relative root mean square error (rRMSE). The rMBE in six evaluated 

meteorological stations in Slovakia reached 3.1% and 2.7% for monthly and annual real-sky 

irradiation on a horizontal plane, respectively. The rRMSE for monthly and annual 

irradiation was a bit higher approaching 5.9% and 4.2%, respectively. 

Kryza et al. (2010) estimated the global radiation based on clear sky condition for Wadel 

Jarsberg, Poland using r.sun and then evaluated the results by comparing to field observation 

data from the Polish Polar Station. The main data for the study area includes; 10 meter 

resolution DEM, slope, aspect, clear-sky index, and    .     is a key parameter influencing 

the solar radiation estimate with r.sun model and is defined as the ratio of the broad band 

extinction coefficient at unit air mass     to Rayleigh’s optical thickness     . Thus, the 
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interpretation of     is the number of clean dry atmospheres necessary to produce exact 

extraterrestrial radiation attenuation generated by the real atmosphere. The     utilized by 

Kryza et al. (2010) is computed using an empirical formula proposed by Dogniaux (1984), 

and assumed to be constant over the study area. The study concludes that r.sun 

underestimates the global radiation due to mis-specification of the    , aerosol optical 

thickness used for the research period, and the clear-sky condition, which is based on low 

and medium level cloudiness for model evaluation. 

Nguyen and Pearce (2010) used r.sun model to compute insolation, and then identified 

candidate sites for establishing new solar parks in the South-eastern part of Ontario, Canada. 

To run the model, the following data sets were utilized; DEM (1 km GTOPO30, 90 m 

SRTM30), slope, aspect, latitude, albedo (constant 0.2), mean days corresponding to the 

sun's angular position,    , clear sky index (Kc), field measurements of global horizontal 

irradiation (GHI). Whereas, census subdivisions (CSD), soil classifications for forestry, soil 

classifications for agriculture, and land use classifications (excluding agriculture) were 

utilized in the multi-criteria evaluation to identify large-scale PV sites. The authors used two 

different DEMs with different resolutions since Cebaucauer et al. (2007) suggested that 

decreasing the spatial resolution of DEM may lead to overestimation of annual electricity 

output. Table 2.5 shows summary of studies on r.sun application. 

Table 2.5. Summary of the previous studies using r.sun model 

Author(s) Study 

Area 

Inputs General remarks 

Hofierka 

and Šúri 

(2002) 

Ten East 

European 

countries 

- USGS GTOPO30 DTM (1km), 

- Slope, 

- Aspect, 

- Local solar time, 

- Latitude raster map, 

- LTK map, 

- Ground albedo (0.15), 

- Clear-sky irradiance values. 

The r.sun is a complex and 

flexible solar radiation model. It 

is particularly appropriate for 

modeling of large areas with 

complex terrain because all 

spatially variable solar 

parameters can be defined as 

raster maps. 

Hofierka 

and Šúri 

(2002) 

Slovakia - DTM (100 m),  

- Latitude raster map, 

-   , 

 - Ground albedo (0.15), and 

- Clear-sky irradiance values. 

The results show considerable 

differences in spatial pattern due 

to terrain shadows in 

mountainous regions. 

Šúri et al. 

(2005) 

European - Average monthly global and 

diffuse irradiation for 566 ground 

meteorological stations covering a 

period 1981-1990,  

- LTK, 

- Clear-sky index, and  

- DEM of 1x1km resolution derived 

from the USGS SRTM-30 data. 

 (i) A photovoltaic geographic 

information system (PVGSIS) 

was developed based on the r.sun 

model output. (ii) High 

resolution DEM can dramatically 

improve the spatial accuracy of 

the shadowing. 

Hofierka 

and 

Cebecauer 

(2008) 

Solar 

database 

for 

Slovakia 

- DEM (100 m), 

- Global and diffuse solar radiation 

measured from ground stations, 

-    and clear-sky index maps,  

- Constant albedo of 0.15. 

(i) High resolution DEM 

improved the accuracy of terrain 

factors. (ii) The real-sky 

irradiation modeling is more 

affected by the lack of 

representative field data 

reflecting local variations and 

dynamics of cloudiness. 
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Table 2.5. Summary of the previous studies using r.sun model (continued) 

Author(s) Study 

Area 

Inputs General remarks 

Kryza et 

al. (2010) 

Wadel 

Jarlsberg, 

Poland 

- DEM (10 m), 

- Slope,  

- Aspect,  

-   ,  

- Clear-sky index, and  

- Radiation data from 

meteorological stations 

(i)     is a key parameter 

influencing the solar radiation 

estimate with r.sun model. 

Nguyen 

and 

Pearce 

(2010) 

Southern-

eastern 

Ontario, 

Canada 

-  DEM (1km GTOPO30, 90m, 

SRTM30 m), 

- Slope, 

- Aspect, 

- Latitude, 

- Albedo (constant 0.2), 

- Mean days and corresponding 

angular position of the sun, 

-   , 

- Ground-measured values of GHI, 

- Kc, 

- CSD, 

- Soil types for forestry, 

- Soil types for agriculture, 

- Land use classification (exclusive 

of agriculture). 

(i) Decrease of DEM resolution 

from 100 to 3000 m may 

potentially lead to overestimation 

of the regional means of the 

yearly electricity yield by 8.2% 

for the former system and 15.2% 

for the latter one. 

 

2.3 Sources and Structures of DEM Data 

DEM generally refers to the digital cartographic representation of the elevation or terrain of 

the Earth's surface as regularly spaced intervals in x, y directions; using z-values (elevation 

values) referenced to a common vertical datum and represented as a raster or a triangular 

irregular network (TIN) (Greve, 1996; Mikhail et al. 2001). 

A number of techniques and technologies with various accuracies are used to capture DEMs. 

These include; digitizing, total station, differential global positioning system (DGPS), 

photogrammetry and RS technologies: Light Detection and Ranging and Interferometric 

Synthetic Aperture Radar sensors (Blomgren, 1999; Farah et al. 2008). Digitization is done 

by tracing elevation data from topographic map sources (see for example Gessler et al. 1993; 

Austin et al. 1996). This was often done in the United States before production of DEMs 

became widely available and remains a viable option. Some scientists have preferred to 

manually produce elevation data in areas where existing DEMs were subject to excessive 

artifact error (de Swart et al. 1994; Garbrecht and Starks, 1995). The increasing 

affordability and sophistication of DGPS technology has enabled the construction of project-

specific DEMs, particularly for small study areas or for spot elevations at specific sites. 

Advantages of using the DGPS approach include that the researcher can specify the spatial 

resolution and extent of the survey, design the sampling campaign, and oversee the 

production of the final digital elevation model. The accuracy of both the final DEM and the 

DGPS data can be tested if the sampling campaign is carefully designed; leading to 

sophisticated uncertainty models (Oliver et al. 1989). However, Shortridge (2001) reported 

that calibrating the DGPS, particularly in rural/wilderness areas far from elevation 

benchmarks, can be difficult, time consuming, and expensive. Collecting densely sampled 
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elevation data in a careful and systematic manner is a lengthy process, particularly if it is 

combined with a plan to model data uncertainty. Finally, interpolation schemes to generate 

an elevation surface from the collected point data introduce uncertainty into the final 

product, and the choice of method can seem arbitrary, see Lam (1983) for a description of 

spatial interpolation methods. On the other hand, the rapid advances in RS have made high 

resolution (i.e., less than 100 m) DEMs available for both small area and global DEMs 

available to the scientific community and general public users in the last decade, such as 

SRTM, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and 

altimetry DEMs (Chang et al. 2010). 

Generally, DEMs are categorized into three structures; grid based (raster), triangulated 

irregular network (TIN), and vector or contour based (Moore et al. 1991; Wilson and 

Gallant, 2000), see Figure 2.1. 

 

Figure 2.1. DEM structures: (a) square-grid network based on a moving 3 x 3 sub matrix centered on 5; (b) 

triangulated irregular network - TIN; (c) vector or contour-based network (Moore et al. 1991) 

"Grid-based methods may use a regularly-spaced triangular, square, or rectangular mesh or a 

regular angular grid, such as the 3 arc-second spacing used by the US Defense Mapping 

Agency. The data can be stored in a variety of ways, but the most efficient is as z-coordinates 

corresponding to sequential points along a profile with the specified starting point and grid 

spacing. The elemental area is the cell bounded by three or four adjacent grid-points for 

regular triangular and rectangular grid-networks, respectively" (Moore et al. 1991). Square-

grid DEMs are easier to implement in a computer due to its simplistic approach of 

representing elevation values in the form of matrices that implicitly record the topological 

relationships between the data points (Moore et al. 1991; Wilson and Gallant, 2000; and 

Zhao and Tang, 2008). Thus, these advantages have made the square-grid DEMs emerged as 

the most commonly used data structure in several GIS applications during the past decades 

for instance, solar radiation modeling (Tovar-Pescador et al. 2006; Charabi and Gastli, 2010; 

Clifton and Boruff, 2010), hydrology (Chang and Tsai, 1991; Chaubey et al. 2005), multi-

criteria decision analysis (van Zyl and Labadie, 2011; Lawal et al. 2012), statistical and 

quantitative analysis of terrain (Iwahashi et al. 2001; Zhou and Liu, 2004; Miliaresis, 2008). 

The grid-based DEMs have been generated in two ways, direct photogrammetric 

measurements, or interpolation from digitized contours. Recently, methods based on RS such 

as interferrometry from SAR satellite data (Genz and van Genderen, 1996) and laser 

scanners (Ackermann, 1996) have been developed for generating DEMs. A Triangulated 

irregular network (TIN) is a triangulated mesh constructed on the (x, y, z) locations of a set 

of data points (Tate and Maidment, 1999). Thus, it is a data structure based on "a piece-wise 

linear interpolation of a set of points in x, y, z coordinates, that results in nonoverlapping 

triangular elements of varying size. Although several methods exist, the Delaunay 

triangulation is a preferred technique since it provides a nearly unique and optimal 
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triangulation, e.g., Watson and Philip, 1984; Tsai, 1993. For a set of points, the Delaunay 

criterion ensures that a circle that passes through three points on any triangle contains no 

additional points" (Vivoni et al. 2004), see Figure 2.2. 

 

Figure 2.2. Local Delaunay triangulation about a point P (Jones et al. 1994) 

TINs have also found widespread usage (for instance, Tajchman, 1981; Yu et al. 1997). It is 

reported that "the best TINs sample surface-specific points, such as peaks, ridges, and breaks 

in slope, and form an irregular network of points stored as a set of x, y, and z values together 

with pointers to their neighbors in the net. TINs can easily incorporate discontinuities and 

may constitute efficient data structures because the density of the triangles can be varied to 

match the roughness of the terrain" (Moore et al. 1991). Kunler (1994) noted that the method 

has the advantage of getting rid of the excess storage space incurred with respect to the 

topological relations. Vector or contour-based method is based on the stream path analogy 

first proposed by Onstad and Brakensiek (1968). It "consist of digitized contour lines and is 

stored as digital line graphs in the form of x, y coordinate pairs along each contour line of 

specified elevation. These can be used to subdivide an area into irregular polygons bounded 

by adjacent contour lines and adjacent streamlines" (Moore et al. 1991). The main 

disadvantages of the method include its requirement for an order of magnitude, large space 

for data storage, and computationally inefficient. In addition, the model has been criticized 

for over specifying the elevation surface at contour intervals and under specifying areas 

falling between the intervals. Digital contours are essentially verbatim copies of the paper 

world of pen-based cartography; for terrain modeling purposes, other digital models should 

be more effective at characterizing terrain (Moore et al. 1991). However, the vector or 

contour-based method is still in use in many countries because contour line data has a wider 

coverage and in different scales, thus representing an inexpensive data source (Ardiansyah 

and Yokoyama, 2002). 

2.4 DEM Uncertainty and Sources 

The process of DEM production is a type of abstraction, and contains uncertainty. As such, 

DEMs does not perfectly match the real-world terrain. The precise degree of this mismatch 

at every point is unknown, giving rise to uncertainty about the relationship between data and 

actual terrain (Shortridge, 2001). Therefore, caution must be taken when using DEM in 

spatial analysis for decision-making. 

In any of the DEMs described in Section 2.3, Shortridge (2001) reported that two general 

sources of uncertainty may be specified: data-based uncertainty, due to the inaccuracy of 

measured elevations, and data model-based uncertainty, due to differences between the 

structural characteristics of the model and the landscape. 
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Data-based uncertainty is the difference between the elevation of a location specified in the 

data set and the true elevation at that location. In theory, this difference can be measured by 

ground survey. DEM files produced by the USGS and other mapping agencies typically are 

assigned a root mean square error (RMSE) from a (usually small) set of locations for which 

the true elevation is known (USGS, 1995). The true elevations at these locations are 

compared with the DEM estimate; RMSE is derived from the sum of the squared differences. 

Agencies engaged in DEM production use this kind of measure for reporting their data 

quality, and the DEM accuracy literature describes this approach in detail (Shearer, 1990; 

Bolstad and Stowe, 1994). Global measures like RMSE are inadequate for analysis of 

uncertainty since they provide no information about the local spatial structure. 

Uncertainty arising from surface characterization depends very much upon the data model 

being used (Goodchild, 1992). Two of the terrain data models described earlier does not 

explicitly represent a continuous terrain surface. In an array of points, no assumption is made 

about the elevation of intermediate locations. Digitized contours exhaustively capture all 

elevations at the contour intervals, but do not specify elevations falling between contour 

intervals. Strictly speaking, several uncertainties exist regarding the elevation of any location 

not specified in either of these models. In practice, assumptions about intermediate values 

are frequently made, since it is usual and often critical to model terrain as a continuous 

surface, with an elevation specified at every point. Typically, contours and arrays of points 

are converted to data models that are used for surfaces, with defined values at every location, 

like rasters and TINs. 

A raster DEM assigns a single elevation to every location within a cell. There is often 

uncertainty about what this elevation represents. Is it the elevation of the center of the cell? 

Is it the height of the lower left corner of the cell? Is it the mean elevation value for the area 

within the cell? Surface elevation is discontinuous at the cell boundaries. In contrast, the 

elevation surface is continuous across a TIN, though the slope surface is not continuous at 

facet edges if TIN facets are planar. Although elevations are specified for every location in 

these models, discrepancies can certainly arise between the real-world terrain and the 

structural characteristics of the model. The elevations at all vertices of a TIN could 

conceivably be without error, yet the facets fail to capture actual terrain characteristics. 

Similarly, elevations for all cells in a raster DEM could correctly characterize the mean cell 

elevation, but the fidelity of the model surface (flat-topped squares, like stacks of blocks) to 

the real world surface is very poor. 

For topography-based models, that is, models characterizing and detecting topographic form, 

or models simulating processes that act upon this topography, DEMs are a potential source 

of uncertainty. DEMs consist of measured or digitized elevation values, and as such are 

subject to any error in the data capturing process. Widespread DEMs such as GLOBE or 

SRTM are distributed with accuracy figures that only give global measures such as RMSE 

lacking any information on the spatial distribution of error. Where uncertainty from DEM 

accuracy has to be modeled to assess its impact on the results of associated topographic 

models, assumptions have to be made about the spatial distribution of uncertainty. Several 

studies have shown that these assumptions influence the impact of uncertainty in spatial data 

models. Besides DEM accuracy, a number of factors in handling DEM data introduce 

additional uncertainty. These factors include the choice of data model, processing such as 
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projecting and resampling of a DEM data, and algorithms used to extract and process 

elevation based information. 

Generally, the interaction of several factors and processes influence the amount of solar 

radiation that falls on any location on the Earth. For instance, topography, ground albedo, 

and forest canopy must be taken into account when studying the spatial distribution of solar 

radiation at local level. Furthermore, terrain affects the amount of direct and diffuse 

radiations as a result of shadowing effects. Thus, as terrain complexity increases the diffuse 

and reflected components of solar radiation becomes vital (Ruiz-Arias et al. 2009). 

2.5 DEM Uncertainty Metrics 

DEM altitudes are given as interval data, and that statistical methods, for example, mean 

error (ME), mean absolute error (MAE), and root mean square error (RMSE) which is the 

square root of the variance of a distribution are used as an uncertainty metrics (Caruso, 1987; 

Kumler, 1994; Fisher, 1998; Weng, 2002; Carlisle; 2005; Gonga-Saholiariliva et al. 2011). 

The DEM uncertainty metrics are given by Gonga-Saholiariliva et al. (2011): 

(a) Root mean square error and mean error 
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where 

demz
 
represents DEM elevation, 

refz  denotes reference elevation, 

n is the number of test points. 

(b) Residual maps and standard deviation algorithms - pixel by pixel algebraic subtraction 

of elevation values provides a series of residual values (Re) that can be mapped: 

( , ) ( , ) ( , ) ,Re i j i j dem i j refz z         (2.27) 

where 

i and j are lines and columns of the grid, and are the elevations of the DEM and the 

reference grid, respectively. 

The standard deviation of Re  is calculated as follows: 
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where 

ME is the mean error of the DEM. 
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"Standard deviations were calculated each time for the entire image, cell by cell, yielding 

a map of Re values in which deviations in elevation values from those of the reference 

model could be located" (Gonga-Saholiariliva et al. 2011). 

The advantage of these measures is that they summarize elevation errors in a DEM as a 

single value which is relatively quick to calculate and easy to report and makes comparisons 

of DEMs (Carlisle, 2005). However, the major limitation of single global value per DEM 

grid is that the finer-scale spatial variability of the error is ignored (Wechsler, 2003), which 

contains a great deal of useful information for terrain-based applications, and as such it does 

not allow identification of areas where error is the largest (Kyriakidis et al. 1999). Global 

indices are thus insufficient (Li and Wong, 2010) and any useful study of DEM accuracy 

should also investigate the spatial variation of error values (Carlisle, 2005). Burrough and 

McDonnell (1998) state that a single RMSE value implies that the error is uniform across the 

DEM. Whereas, many empirical studies show that DEM errors are spatially correlated and 

heteroscedastic (Hunter and Goodchild, 1997; Fisher, 1998; Kyriakidis et al. 1999; Carlisle, 

2005). 

Fisher (1999) calculated the probability of any DEMs grid cell being visible from the 

viewpoint as given in Equation 2.29: 
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where 

( )ijp X  is the probability of a cell at row i and column j in the grid raster DEM is visible; 

ijkx  is the value at the grid cell of the binary - coded viewshed in realization k (1 for “true” 

and 0 for “false”), such that k takes values 1 to n (the number of simulations). 

The image produced in such a way consists of the pixels with  (   ) values, and it is known 

as probability map. It is used as a measure of “attribute” accuracy. Namely, for all thematic 

displays of some phenomena where quantitative parameters are used, probability map is the 

best indicator of reliability of such analysis. 

 

 

 

 

 

 



25 

 

 

CHAPTER 3 

 

UNCERTAINTY ANALYSIS IN GEOGRAPHIC INFORMATION 

SYSTEM (GIS) 

 

This chapter begins by discussing the concept of uncertainty, classification, types, and 

techniques used in modeling uncertainty in the field of GIS from Section 3.1 to 3.4. Then the 

Bayesian inference and Markov chain Monte Carlo (MCMC) simulation are given in Section 

3.5. The remainder of the Sections deals with Markov chain theory and general properties of 

Markov chains, Monte Carlo (MC) simulation, Metropolis-Hastings (MH) algorithm, Gibbs 

sampler, Monitoring convergence of MCMC simulation, and spatial autocorrelation. 

3.1 The Uncertainty Analysis in GIS 

The term uncertainty is used to refer to the differences between the information provided by 

a spatial database and the corresponding information that would be available to someone 

able to observe and measure the real world directly. It includes the effects of errors created 

during the creation of database, and information loss that occurs during generalization 

(Hunter et al. 1995). Uncertainty in spatial data denotes "the lack of knowledge of the true 

value or the value that would be discovered if one were to visit the field and make an 

observation using a perfectly accurate instrument" (Hunter and Goodchild, 1997). In general, 

the term uncertainty refers to the unavoidable inaccuracies, inexactness, or inadequacies 

which are commonly found in spatial data sets and their resultant propagation through 

analyses (Brimicombe, 2010). 

According to Heuvelink's (1998) formulation, uncertainty can be mathematically expressed 

as follows: 

            1 1 ,..., ,m m mU x g A b x V x A b x V x      (3.1) 

where 

  = location of the grid cell, 

    (domain of interest), 

 U   = output map containing all  ,x D g   a GIS operation, 

 A   = an input map containing all  ,x D b   value of   in the input map, 

 V  = a random field representing error or uncertainty. 

The operation  g   can be for instance, calculation of solar radiation, a standard filter 

operation to compute slope, aspect from a DEM, etc. Error propagation is aimed at 



26 

 

estimating the amount of error in the output   ,U   given the operation  g   and errors in the 

random input attributes  i
A  . The output map  i

A   is also a random field, with mean 

    and variance  2
  . From the view point of error propagation, the main interest is in 

uncertainty of  U  , as contained in its variance  2
  . 

However, it is important to note that uncertainty propagation problem is relatively easy if 

     is a linear function meaning that the mean and variance of      can be directly and 

analytically derived. The theory on functions of random variables also provides several 

analytical approaches to the problem for nonlinear     , but few of these can be resolved by 

simple calculation (Abbaspour et al. 2003). Therefore, analytical methods are not very 

suitable because they are complex and not generally applicable and practically feasible 

(Heuvelink et al. 1989). 

3.2 Types of Uncertainty in GIS 

In the past decades, several studies attempted classification of uncertainty in spatial data 

(e.g., Burrough, 1986; Goodchild et al. 1992; Hunter, 1993; Burrough and McDonnell, 1998; 

Heuvelink, 1998; Veregin, 1999). Others used classification to investigate errors in spatial 

databases. For example, Burrough (1986) has categorized GIS errors into three (3) different 

classes, (1) error sources due to age and aerial coverage of the data, (2) errors due to original 

measurement or natural variations, and (3) errors due to complex computer processing, for 

instance, approximation (Abbaspour et al. 2003). On the other hand, Alai (1993) noted that 

GIS functionality is also used as basis to classify errors. However, according to Abbaspour et 

al. (2003) the most commonly used error taxonomy is embedded in the US spatial data 

transfer standard (SDTS) (NIST, 1992). Therefore, it can be understood that there is wide 

variation regarding the classification of uncertainties. Therefore, this study adopts the Alai’s 

(1993) three level taxonomy (Figure 3.1). 

 
Figure 3.1. Taxonomy of uncertainty in GIS (Alai, 1993) 

As indicated in Figure 3.1, the first level of the taxonomy deals with sources of uncertainty 

which have been classified into five categories: (1) the inherent uncertainty of the 

phenomena being mapped, (2) measurement uncertainty of spatial phenomena due to 
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accuracy limitations of all observations, (3) model uncertainty which arises due to the 

models that are used to communicate the measurements, (4) processing and transformation 

uncertainty which refers to the secondary uncertainty caused during computer manipulation 

of data, following the data measurement, and (5) data usage uncertainty which has only 

recently received attention among researchers which is concerned with the manner in which 

spatial data are used. The second level of the taxonomy also classifies the forms of 

uncertainty into five aspects which are positional, attribute, time, logical consistency and 

completeness. This classification is mainly based on the SDTS. The third level refers to 

resulting uncertainty. The separation of the final product uncertainty from the forms of 

uncertainty is done because of the manner in which they may occur in the product 

(Abbaspour et al. 2003). 

3.3 Uncertainties in the Models 

According to Heuvelink et al. (1989), generally, there are three main areas where uncertainty 

affects a model. These include model input data, model parameters, and interaction within 

the model. Uncertainty is inherent in the model input data. It can arise from measurement 

error, local variation in the data or outdated observations. Each of these types of uncertainties 

has one common issue; they question the possibility of obtaining the same information 

suggested by the data for any given location. Uncertainties due to model parameters involve 

two important aspects. First, some uncertainties have to be random as they do not present a 

complete understanding of the phenomena or does not reflect the phenomenon as it is 

complex. Second, uncertainty in model parameters comes from the values assigned to the 

model parameters. Uncertainty due to interaction within the model arises due to the inherent 

error imposed by the GIS processes. When two or more datasets are combined in an 

operation, the error associated with the input datasets is compounded. 

3.4 Modeling Uncertainty in GIS 

Uncertainty information in GIS analysis is vital for effective decision-making that relies on 

geospatial data (UCGIS, 1998). However, most of the current GIS's do not provide this 

information (Hwang et al. 1998). Uncertainty propagation in GISs has been an active area of 

research for decades (see Heuvelink, 1998; Goodchild and Gopal, 1989; Hunter, 1999; 

Shortridge, 2001; Heuvelink and Burrough, 2002; Sheng et al. 2009; Fisher and Tate, 2006) 

and this has led to the development of several techniques which can be categorized into 

analytical error models and stochastic simulation. These techniques are therefore reviewed 

in this section. 

3.4.1 Analytical Methods 

The analytical error propagation methods use an explicit mathematical model to describe the 

mechanisms of error propagation for a particular multi-criteria decision rule (Eastman et al. 

1993). The basis of the analytical method is well established in the general law of 

propagation of variances (Mikhail and Ackermann, 1976). However, analytical methods are 

much less attractive because they are cumbersome and require use of simplifying 

approximations (Heuvelink et al. 1989). It has been concluded that analytical approaches are 

suitable for situations where the sources of uncertainty are not significantly correlated and 

when the terrain analysis is sufficiently simple to allow arithmetic operations (Zhang and 

Goodchild, 2002). On the other hand, the analytical method has been considered unsuitable 
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for decision-based local derivatives (Raaflaub and Collins, 2006), such as the D8 algorithm 

for determination of flow directions (O’Callaghan and Mark, 1984). However, the most 

frequently cited analytical model of error was developed by Hunter and Goodchild (1995). 

This basic model was founded on simple probability theory and the root mean square error 

(RMSE) of the DEM. The model assumes that any pixel follows a Gaussian distribution 

around the measured elevation value, and that DEM's RMSE is considered as the variance of 

the local error. Using this formulation, probabilities per-pixels are computed and mapped 

across a DEM with respect to any specific elevation value or contour line. The algorithm is 

incorporated in IDRISI GIS under Pclass operation and utilized by Eastman et al. (1993) to 

evaluate flooding due to sea-level rise. In addition, Huss and Pumar (1997) used the method 

to compute probability of visible areas. Another major contribution to the analytical error 

propagation analysis of the DEM was published by Florinsky (1998), in which he derived a 

number of variance equations for different calculation methods for slope, aspect and 

curvature. The only weakness of the study was that the DEM error was assumed to be 

uncorrelated. Recently, Zhou and Liu (2004) examined the accuracy of slope and aspect 

algorithms by focusing on their accuracy on artificial surfaces. 

3.4.2 Stochastic Simulation Methods 

Simulation is generally referred as the process of replicating reality using a model (Borisov 

et al. 2009), and appropriately applied to problems that are too difficult to solve analytically 

(Dagpunar, 2007). On the other hand, stochastic simulation is a method that "attempt to 

mimic or replicate the behavior of a system by exploiting randomness to obtain statistical 

sample of possible outcomes" (Heath, 2002). Such methods according to Heath (2002) and 

Liu (2009) are useful for studying, (1) non-deterministic (stochastic) processes (2) 

deterministic systems that are too complex to model analytically, and (3) deterministic 

problems whose high dimensionality make standard discretizations infeasible. 

Previous studies have shown that stochastic models are very useful and advantageous tools 

for assessing uncertainty. Due to the availability of fast and inexpensive computational 

power, the best approach is to model a real phenomenon as faithfully as possible, and then 

rely on a simulation study to analyze it (Prodan and Prodan, 2001). A stochastic simulation 

method of representing uncertainty generates likely answers, from which a “good” answer is 

selected based on certain criteria. In other words, stochastic simulation is based on 

generation of equally probable realizations from which some specific statistics such as mean, 

standard deviation, coefficient of variation (CoV) are computed and then evaluated. Though, 

generation of the "real" map is not certain from the simulation process, it provides a 

distribution of results from which one can safely state that the “true” map lies (Wechsler, 

1999; 2006). In the past decades, the stochastic approaches used in analyzing uncertainty in 

GIS-based studies include: First and second order Taylor Series methods, Rosenblueth’s 

method, MC simulation, and geostatistical simulation. 

Heuvelink et al. (1989) applied a Taylor series expansion to derive a model of errors in 

spatial data sets that are propagated by map overlay operations. Specific values and standard 

deviations associated with input values were used to obtain errors and to generate a map that 

displayed how model results and errors are distributed over space. Others utilized the MC 

simulation approach in analyzing spatial data uncertainty. For example, Hunter and 

Goodchild (1995); Heuvelink (1998); Holmes et al. (2000); Oksanen and Sarjakoski (2005b); 

http://www.sciencedirect.com/science/article/pii/S0098300405000701#bib40
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Wechsler and Kroll (2006); and Raaflaub and Collins (2006) studied uncertainty propagation 

from DEMs in the derived topographic parameters like slope and aspect. Liu and Bian 

(2008) utilized MC simulation and analyzed the impact of spatial autocorrelation on the 

accuracy of four different slope algorithms. Lee (1992) and Lee et al. (1996) studied the 

impact of DEM errors on hydrology features through simulation approach and concluded 

that hydrology features are tremendously affected by even minor amount of the DEM errors. 

Liu (1994) applied the MC technique to simulate errors in DEM and then evaluated 

uncertainty in a forest harvesting model. Heuvelink (1998) analyzed accuracy of two (2) 

different slope algorithms with MC simulation. Hunter and Goodchild (1997) evaluated the 

impact of spatially simulated elevation errors according to various degrees of spatial 

autocorrelation on the computations of slope and aspect. Wang et al. (2006) investigated the 

impacts of DEM uncertainty in the simulated outputs of TOPMODEL, a semi-distributed 

hydrological model using MC technique. Hebeler and Purves (2009) utilized MC simulation 

to generate uncertainty maps to indicate the impact of DEM uncertainty on an ice sheet 

model (ISM). Fisher (1991) examines the effects of DEM uncertainty propagation on 

viewshed using MC simulation. Biesemans et al. (2000) used an MC simulation technique to 

determine the uncertainty propagation of the calculated on-site soil losses and off-side 

sediment accumulation in Belgium and concluded that the technique explained the difference 

between the field observation and model output mainly due to the uncertainty of the model 

input parameters. Holmes et al. (2000) used high accuracy GPS data in sequential Gaussian 

simulation to provide an MC framework for quantifying the effect of measured USGS 30 m 

DEM error on digital terrain modeling. Abbaspour et al. (2003) and Jahanpeyma et al. (2007) 

adopted MC techniques and assessed uncertainty propagation in overlay analysis. 

On the other hand, the geostatistical simulation is a spatial extension of the concept of MC 

simulation. In addition to reproducing the data histogram, geostatistical simulations also 

honor the spatial variability of data, usually characterized by a variogram model. If the 

simulations honor the data themselves, they are said to be ‘conditional simulations’ (Vann et 

al. 2002). Conditional simulation seeks to draw from the local conditional cumulative density 

function values which honor the survey data and a predefined variogram. Atkinson (1999) 

reported that among the different approaches of conditional simulation, the indicator 

simulation (IS) is the most preferred approach and that MCMC techniques is the most 

promising one (Oliver et al. 1997) because; (1) it offers an improved flexibility in simulating 

from complex probability density functions (pdf), even when the pdf is explicitly defined 

(Shekhar and Xiong, 2008), (2) the MCMC method can cope with model nonlinearity and 

non-Gaussianity of the parameter uncertainty (Minasny et al. 2011), and (3) it generates 

random samples based on predefined posterior distributions through the construction of 

Markov chain according to the desired properties. 

3.5 Bayesian Inference and MCMC Simulation 

"Bayesian inference is a probabilistic inferential method. In the last two decades, it has 

become more popular than ever due to affordable computing power and recent advances in 

MCMC methods for approximating high dimensional integrals. Bayesian inference can be 

traced back to Thomas Bayes (1764), who derived the inverse probability of the success 

probability   in a sequence of independent Bernoulli trials, where   was taken from the 

uniform distribution on the unit interval (0, 1) but treated as unobserved" (Liang et al. 2010). 
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Bayesian inference for spatial data often requires evaluation of a highly multivariate 

posterior density    |  . Typically, the dimension of the parameter space is between 50 and 

10
6
, and often    |   is known only up to scale. Integrations necessary to compute 

functionals of      such as posterior means or credible intervals are intractable through 

standard analytical or numerical integration techniques. To evaluate these otherwise 

intractable posterior quantities and MCMC (Higdon, 1994) is employed. 

MCMC is a simulation technique that enables one to draw a large number of samples from a 

posterior distribution of interest. Inference about the posterior distribution is then based on 

quantities calculated from the collection of samples, for instance, the median or percentiles. 

The feature that makes this distinct from the MC simulation is that under MCMC, successive 

samples are selected by moving through the parameter space according to a Markov chain 

rather than randomly selecting them. This is practical, much more efficient than random 

sampling and works better because it is relatively straightforward to construct a Markov 

chain such that the samples are drawn approximately from any posterior distribution of 

interest (Henderson and Bui, 2005). 

3.6 Markov chain Theory 

According to Wendy et al. (2007) Markov chain {  }, named after Andrey Markov, is seen 

as a stochastic process whereby any given state in the series {  }  dependent on the earlier 

state of the chain,       , thus, it is a sequence of dependent (correlated) random variables. 

       0 1 2
, , ,..., ,...,

t
X X X X  

such that the probability distribution of      given the past variables depends only on       . 

This conditional probability distribution is called transition kernel or Markov Kernel K; that 

is, 

            1 0 1 12( ), , ,. ~.., , .
ttt t

X X X K X XX X


 

For example, a simple random walk Markov chain satisfies 

   1
,

t t

tX X

   

where 

           independently of    ; therefore, the Markov kernel                corresponds 

to           density. 

Robert and Casella (2010) noted that, "the Markov chains encountered in MCMC settings 

enjoy a very strong stability property. Indeed, a stationary probability distribution exists by 

construction of those chains; that is, there exists a probability distribution   such that if 

      , then         . Therefore, formally, the kernel and stationary distribution satisfy the 

Equation (3.2)": 
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     , .
x

K x y f x dx f y
       

 (3.2) 

"The existence of a stationary distribution imposes a preliminary constraint on K called 

irreducibility. In other words, the kernel K allows for free moves all over the state-space no 

matter the starting value of     , the sequence {  } has a positive probability of eventually 

reaching any region of the state-space. (A sufficient condition is that          

everywhere). The existence of a stationary distribution has major effects on the behavior of 

the chain {  }. For instance, most of the chains involved in MCMC algorithms are recurrent, 

that is, they will return to any arbitrary non-negligible set in infinite number of times" 

(Robert and Casella, 2010). 

"In the case of recurrent chains, the stationary distribution is also a limiting distribution in 

the sense that the limiting distribution of      is   for almost any initial value     . This 

property is also called ergodicity, and it obviously has major consequences from a simulation 

point of view, if a given kernel K produces an ergodic Markov chain with stationary 

distribution  , generating a chain from this kernel, K will eventually produce simulations 

from  . In particular, for integrable function h, the standard average" (Robert and Casella, 

2010), as given in Equation (3.3): 

   
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T

Xh X


 
         (3.3) 

which means that the Law of Large Numbers that lies at the basis of MC methods can also be 

applied in MCMC settings. It is then sometimes called the Ergodic Theorem. 

3.6.1 General Properties of Markov chains 

There are several properties of Markov chains that are especially important when describing 

convergence. These include homogeneous, recurrent, absorbing, irreducible, stationary 

distribution, periodicity and ergodic. Generally, the properties have intimidating names that 

are inherited from mathematical Markov chain theory, but in reality are fairly 

straightforward ideas. Generally, if one can describe the mathematical status of a particular 

chain, then one can often determine if it is producing useful sample from the target 

distribution of interest. The properties are only summarized briefly here but for more 

technical details refer to Nummelin (1984), Gamerman (1997); Gilks et al. (1996); Robert 

and Casella (1999, 2004). 

The homogeneous property of a Markov chain is observed when the transition probabilities 

of a chain say at step n depend on the value of n. For instance, the samplers that we use/pick 

are known to obtain the property (Monogan, 2010). One reason that the MH algorithm and 

the Gibbs sampler (both given in detailed in subsections 3.6.4 and 3.6.5) dominate MCMC 

implementations is that the chains they define eventually obtain this property. 

A Markov chain is said to be recurrent with respect to a particular state,  . The state can 

either be a single point or set of points (necessary especially for continuous case), if the 

probability that the chain remains in   indefinitely often over time is one (Monogan, 2010; 

Robert and Casella, 1999). This can also be restated as saying that if the chain is currently in 
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 , it will eventually return to   with probability one. If the mean time of a chain returning to 

A is bounded, then it is a positive recurrent; otherwise referred to as null recurrent 

(Monogan, 2010). Recurrence is a desirable property in Markov chains and there are also 

stricter forms such as Harris recurrence which stipulates the same condition for every 

possible starting value. See Robert and Casella (1999) Chapter 4, for details. 

There are also properties directly associated with states. A state (say A) is said to be 

absorbing if a chain cannot leave the moment it enters that state (Monogan, 2010).zzz This 

is represented as:          . A state is transient if given that a chain currently occupies a 

state  , the probability of not returning to A is non-zero. A state,           . 

A Markov chain is said to be irreducible if each specific point or set of points (a subspace, 

required for the continuous case),  , can be reached from any other point or set of points 

(Monogan, 2010). That is,           ,       . Notice that irreducibility is a 

characteristic of both the chain and the subspace. This relationship is expressed as follows: if 

a subspace is closed, finite and irreducible, then all states within this subspace are recurrent. 

If we take a set of recurrent states (they must be non-empty, and bounded or countable), then 

their union creates a new state which is closed and irreducible (Meyn and Tweedie, 1993). 

This means that Markov chain assures the exploration of all the subspace. This presents an 

important outcome especially whenever a chain wanders into a closed, irreducible set of 

recurrent states then remain there and visits each and every single state (eventually) with 

probability one (Monogan, 2010). 

The Markov chain stationary distribution is defined as      for   on the state space  . We 

denote          to indicate the probability that the chain will move from    to    at some 

arbitrary step   (Monogan, 2010) from the transition kernel, and       as the marginal 

distribution. This stationary distribution is then defined as satisfying: 

     1,
i

t t
i i j jp


              (Discrete Case),   

     1,t t
i i j i jp d          (Continuous Case). (3.4) 

Therefore, multiplication by transition kernel and evaluating for the current point (the 

summation step for discrete sample spaces and the integration step for continuous sample 

spaces) produces the same marginal distribution:      in shorthand. This demonstrates 

that "the marginal distribution remains fixed when the chain reaches the stationary 

distribution and we might as well drop the subscript designation for iteration number and just 

use     " (Monogan, 2010). 

Once the chain reaches its stationary distribution (also called its invariant distribution, 

equilibrium distribution, or limiting distribution if discussed in asymptotic sense), it remains 

in this distribution and moves around (or “mixes”) throughout the subspace forever based on 

marginal distribution,      (Monogan, 2010). This is precisely what we want and expect 

from MCMC. If we can set up the Markov chain such that it reaches a stationary distribution 

that is the desired posterior distribution from our Bayesian model, then all we need to do is 

let it wander about this subspace for a while producing empirical samples to be summarized. 
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The good news is that the two forms of MCMC kernels that we will use have the property 

that they are guaranteed to eventually reach a stationary distribution which is the desired 

posterior distribution. 

It is also possible to define the periodicity of a Markov chain. The periodicity refers to the 

length of time required to repeat chain values that are identical. It is desirable to have an 

aperiodic chain, that is, where the only length of time for which the chain repeats some cycle 

of values is the trivial case with cycle length equal to one. Why? It seems as though we 

would not necessarily care if there was some period to the chain values, particularly if the 

period was quite long or perhaps in the discrete state if it included every value in the state 

space. The result is that the recurrence property alone is not enough to ensure that the chain 

reaches a state where the marginal distribution remains fixed and identical to the posterior of 

interest. 

If a chain is irreducible, positive recurrent, and aperiodic, then it is called ergodic. The 

ergodic Markov chains have property: 

    lim , ,n
n i jp       

for all   , and    in the subspace (Nummelin, 1984). Therefore, in the limit the marginal 

distribution at one step is identical to the marginal distribution at all other steps. However, 

because of the recurrence requirement, this limiting distribution is now closed and 

irreducible meaning that the chain will never leave it and is guaranteed to visit every point in 

the subspace. "Once a specified chain is determined to have reached its ergodic state, sample 

values behave as if they were produced by the posterior of interest from the model" 

(Monogan, 2010). 

Monogan (2010) noted that though ergodic theorem is related to Markov chains but similar 

to the law of large numbers. Any defined posterior distribution function can be estimated 

from Markov chain samples that is in its ergodic state since mean sample values strongly 

generate consistent parameter estimates. More formerly, suppose             are   (not 

necessarily consecutive) values from a Markov chain that has reached its ergodic 

distribution, a statistic of interest,     , is computed empirically: 

     
1

1ˆ ,
i n

i i
i i

h h h
n

  


 

         (3.5) 

and for finite quantities this converges almost surely:  [ ̂                ]    

(Roberts and Smith, 1994). 

"The remarkable result from ergodicity is that even though Markov chain values, by their 

very definition, have serial dependence, the mean of the chain values provides a strong 

consistent estimate of the true parameter" (Monogan, 2010). Furthermore, provided that the 

limiting variance of the empirical estimator  ̂     is bounded, then subject to very general 

regularity conditions the central limit theorem also applies: 
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      (3.6) 

There is also the notion of geometric ergodicity: the geometric rate of reduction in time for 

the total variation distance between any arbitrarily time point and the convergence of the 

limiting distribution, see Mengerson and Tweedie (1996) for details. 

3.7 Monte Carlo (MC) Simulation 

MC simulations are numerical methods that use random numbers to compute quantities of 

interest through the creation of a random variable whose expected value is the desired 

quantity. The simulated random variables are then tabulated and used with sample mean and 

variance to construct probabilistic estimates (SFITZ, 2006). The MC techniques are used to 

assess complex stochastic systems that are too complex to be understood or controlled using 

analytical or numerical methods. Examples of such systems include weather and climate 

systems, telecommunications networks and financial markets. It is also widely used in GIS to 

analyze uncertainty (Wechsler and Kroll, 2006; Heuvelink, 1998; Hunter and Goodchild, 

1995; Holmes et al. 2000; Oksanen and Sarjakoski, 2005b; Raaflaub and Collins, 2006). 

The technique is an alternative uncertainty assessment method that involves re-running an 

analysis several times. Each time the analysis is re-run, the variables which are subject to 

uncertainty (stochastic variables), are perturbed, or altered somewhat, according to some 

underlying assumption (usually, a probability distribution function). Each alternative, equally 

probable result is termed as realization of the MC process. Repeatedly perturbing the values, 

then running the analysis for each set of perturbed values, produces a large set of equally 

likely alternative values for the outcome of the analysis (Mowrer, 1997). Using the results 

from all the realizations, it is possible to calculate a mean and standard deviation that 

correspond to the algorithm under analysis. The mean is considered as the best estimate that 

the algorithm would produce, while the standard deviation is considered as error (Heuvelink, 

1998). MC simulation generally, involves two steps (Hammersley and Handscomb, 1979; 

Heuvelink, 1998). 

(1) For each MC run s,        (below, lower-case letters represent realizations of 

random variables given as upper-case letters in Equation (3.1): 

a. generate realizations               of each stochastic model parameter, and 

realizations       for each stochastic input variable. 

b. with these realizations, run  g   (Equation 3.1), and store the realizations of the 

model output variables        in which the interest lies, in the case of a dynamic 

model for all time steps. 

(2) Compute sample statistics (for example, mean, variance, skewness) from the   

model outcomes, for each model variable    . This approach needs a stochastic 

description of model input variables with their associated errors, and a methodology 

to draw realizations from these stochastic model inputs, needed in (step 1a) of the 

MC procedure. "A representative sample from the joint distribution of uncertain 

inputs and model parameters, structure, and solution can be obtained using an 

appropriate pseudorandom number generator and a sufficiently large sample size. 

The accuracy of the MC method is inversely proportional to the square root of the 

http://portal.acm.org/author_page.cfm?id=81453653619&coll=DL&dl=ACM&trk=0&cfid=33850515&cftoken=28219132
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number of runs N and, therefore, increases gradually with N" (Robert and Casella, 

2010). 

However, it is important to note that the standard MC simulation technique produces a set of 

independent simulated values according to some desired probability distribution, whereas, an 

MCMC method generate chains in which each of the simulated values is mildly dependent on 

the preceding value. 

3.8 Metropolis Hastings (MH) Algorithm 

The MH algorithm which is the most popular example of an MCMC method was developed 

by Metropolis et al. (1953) and later generalized by Hastings (1970). The algorithm has been 

used extensively in physics and later statistics. For instance, spatial statisticians, inspired by 

Hastings (1970) and Hammersley and Clifford (1971), began experimenting with MCMC in 

the study of lattice systems and spatial point processes, both of which could be simulated via 

discrete or continuous time Markov chains. In the early 1980's, Donald and Stuart Geman 

forged a link between MCMC and digital image analysis, following earlier work of Ulf 

Grenander on general pattern theory and his maxim “Pattern analysis = Pattern synthesis" 

(Grenander, 1983). In particular, their seminal paper (Geman and Geman, 1984) adopts a 

Bayesian approach, with Markov random fields (for instance, Besag, 1974) as prior 

distributions, and either the Metropolis algorithm or the Gibbs sampler to synthesize the 

posterior distribution of image attributes; and it uses the closely related method of simulated 

annealing (Kirkpatrick et al. 1983) to determine an approximation to the most probable 

image. See Gelfand and Smith (1990); Gelfand et al. (1990); Chib and Greenberg (1995) for 

recent examples. The MH algorithm provides a general approach for generating a correlated 

sequence of draws from the target density that may be difficult to sample by a classical 

independence method. The earliest and general approach of MCMC method is the random 

walk Metropolis algorithm (Metropolis et al. 1953). 

Based on Metropolis et al. (1953), the Metropolis algorithm constructs a Markov chain 

through the division of transition probabilities into, (1) proposal distribution, and (2) 

acceptance function. The proposal distribution is used when drawing the proposed state, 

whereas, the acceptance function is used in determining the probability with which the 

proposed state is accepted as the next state. "If the proposal is not accepted, then the current 

state is taken as the next state. This procedure defines a Markov chain, with the probability 

of the next state depending only on the current state, and it can be iterated until it converges 

to the stationary distribution. Through, careful choice of the proposal distribution and 

acceptance function, we can ensure that this stationary distribution is the target distribution" 

(Sandborn et al. 2010). 

An adequate condition for defining both the proposal distribution and acceptance probability 

which generates the right stationary distribution is detailed balance as indicated in Equation 

(3.7): 

           * * * * *; ; ,n n n n nx q x x A x x x q x x A x x     (3.7) 

where 
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      denotes the Markov chain (i.e., target distribution) stationary distribution, 

    | 
   represents the probability of proposing a new state    given the current state   , 

         is the acceptance probability of proposal state. 

Intuitively, detailed balance ensures, that the probability with which a move from    to    is 

observed, is equal to the probability with which a move from    to    is observed, once the 

chain has reached the stationary distribution. The Metropolis technique defines an 

acceptance function that satisfies the requirements of the detailed balance for any symmetric 

proposal distribution, with     | 
   =     |    for all    and   . Equation (3.8) shows the 

Metropolis acceptance function: 

 
 

 
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,; min ,1

n

n
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A x x
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



 
 
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 

        (3.8) 

This means that a higher probability of the proposal states over current state is always 

accepted. 

A general form of the acceptance function which satisfies detailed balance was proposed by 

Hastings (1970). He also extended the Metropolis algorithm by integrating asymmetric 

proposal distributions (Sandborn et al. 2010). The main observation is that Equation (3.7) is 

satisfied by any acceptance rule as shown in Equation (3.9): 
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      (3.9) 

where 

      
   is a symmetric in    and    and              for all    and   . 

Taking: 
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Equation (3.10) produce the Metropolis acceptance function for proposal distribution that is 

symmetric in nature, and generalized as in Equation (3.11): 
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for symmetric proposal distributions. With a symmetric proposal distribution, taking 

      
     gives the Baker acceptance function: 

 
 
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       (3.12) 

where the acceptance probability is proportional to the probability of the proposed and the 

current state under the target distribution (Barker, 1965; Sandborn et al. 2010). "The 

Metropolis acceptance function has been shown to result in lower asymptotic variance and 

faster convergence to the stationary distribution (Billera and Diaconis, 2001) than the Barker 

acceptance function" (Sandborn et al. 2010). 

MCMC algorithm is a simple technique of generating samples based on probability 

distributions in which other methods are not feasible. "The basic procedure is to start a 

Markov chain at some initial state, chosen arbitrarily, and then apply one of the methods for 

generating transitions outlined above, proposing a change to the state of the Markov chain 

and then deciding whether or not to accept this change based on the probabilities of the 

different states under the target distribution. After allowing enough iterations for the Markov 

chain to converge to its stationary distribution (known as the “burn-in”), the states of the 

Markov chain can be used to answer questions about the target distribution in the same way 

as a set of samples from that distribution" (Sandborn et al. 2010). 

3.9 Gibbs Sampler 

The Gibbs sampler known as the heat bath algorithm is a special case of MH algorithm but 

uses a somewhat different methodology from the MH algorithm and is particularly useful for 

generating n-dimensional random vectors. The distinguishing feature of the Gibbs sampler is 

that the underlying Markov chain is constructed, in a deterministic or random fashion, from a 

sequence of conditional distributions (Rubinstein and Kroese, 2007). It is the most popular 

computational method for Bayesian inference and was in use in the statistical physics before 

the same method was used by Geman and Geman (1984) in image analysis to analyze Gibbs 

distributions on lattices. The paper by Gelfand and Smith (1990) demonstrated the usefulness 

of the Gibbs sampler for solving a wide - range of issues in Bayesian analysis and made the 

Gibbs sampler a popular computational tool for Bayesian computation. 

According to Liang et al. (2010), technically, the Gibbs sampler can be viewed as a special 

method for overcoming the problem of dimensionality through conditioning. The basic idea 

is similar to the idea behind iterative conditional optimization methods. Suppose that we 

want to generate random numbers from the target density            . Partition the 

  vector   into   blocks and write            
 , where     and            

          with         representing the dimension of   . Denote by: 

 Κ1 1| , , , ,k k kf x x x x    ( 1, ,Κ),k       (3.13) 

the corresponding full set of conditional distributions. Under mild conditions, this full set of 

conditionals, in turn, determines the target distribution     ; according to Hammersley-

Clifford theorem (Besag, 1974; Gelman and Speed, 1993): 
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Theorem ... (Hammersley-Clifford) - If        for every    , then the joint distribution 

     is uniquely determined by the full conditionals (3.5.5). More precisely, 

 
 
 

1Κ
1 1 1 Κ

1 1 1 Κ

| , , , , ,
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
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 

 


 
    .x   (3.14) 

For every permutation j on {     } and every    . 

Algorithmically, the Gibbs sampler is an iterative sampling scheme. Starting with an 

arbitrary point      in   with the restriction that          , each iteration of the Gibbs 

sampler cycles through the full set of conditionals (Equation 3.13) to generate a random 

number from each      |                by setting                     at their most 

recently generated values. 

The Gibbs sampler algorithm take         
        

     from         with  (    )   , 

and iterate for         

1. Generate 
      1 1

1 1 1 2 ,..., .
t tt

Kx f x x x
 

 

   

.k  Generate 
        1 1

1 11,..., , ,..., .
t tt tt

KKk k k kx f x x x x x
 

  

  

.K  Generate 
      1 1,..., .
t t t

K K K Kx f x x x   

Under mild regularity conditions, the distribution of      (  
   

     
   

)
 
, denoted by 

       , will converge to     . 

3.10 Monitoring Convergence of MCMC Simulation 

The convergence analysis refers to the statistical analysis of sampler output to show, either a 

posteriori or during run time, whether or not the chain converges during a particular sample 

run (Brooks, 1998). There are several approaches on MCMC simulation convergence 

analysis from the literature. These approaches may be classified as informal, ad hoc, more 

elaborate approach, and those that include additional information beyond the simulation 

draws themselves (Brooks, 1998). 

The informal approach includes, the thick pen technique developed by Gelfand et al. (1990), 

and quantile and autocorrelation plots proposed by Gelfand and Smith (1990). Whereas, the 

ad hoc methods comprised of research works of Kimbler and Knight (1987) and Gafarain et 

al. (1978). Both informal and ad hoc methods are easily applied. The more elaborate 

methods include, eigenvalue estimation, Gelman and Rubin's technique, spectral density 
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estimation technique, and cumulative sum path plots. The eigenvalue estimation approach 

estimates the convergence rate of the sampler through appropriate eigenvalues (e.g., Raftery 

and Lewis, 1992; Garren and Smith, 1995). The Gelman and Rubin's technique is based on a 

classical analysis of variance to estimate the advantage of running the chain continuously 

(Brooks, 1998). The method requires multiple-chain sampling from dispersed starting values 

and then compares the within- and between-chain variances. Brooks and Gelman (1997) 

further extended the approach. The spectral density estimation method is applied by Geweke 

(1992) and Heidelberger and Welch (1983) to perform hypothesis tests for stationarity. The 

cumulative sum path plots were utilized by Brooks (1996) for convergence evaluation. 

The methods for convergence analysis that include additional information beyond the 

simulation draws themselves are, weighting-based methods (Ritter and Tanner, 1992; and 

Zellner and Min, 1995), kernel-based techniques (Liu et al. 1993; and Roberts, 1994). 

Weighting-based methods require a single run, monitor the ratio of the target density (up to a 

normalizing constant) and the current estimate of the target density; stability of the ratio 

indicates that the chain has converged. Kernel-based techniques estimate the   -distance 

between the t-step transition kernel and the stationary distribution. In addition, Yu (1994) 

and Brooks et al.(1997) developed an approach for computing the   -distances between 

relevant densities. The advantage of the methods is that they assess convergence of the full 

joint density. However, generally, the models proved to be computationally time demanding 

to implement and difficult to interpret (Brooks, 1998). 

However, the most popular among these methods are Gelman and Rubin (1992) and Raftery 

and Lewis (1992) and this is due to the availability of computer programs that implement 

them (Cowles and Carlin, 1996). For this reason, an in depth review of one among them, 

specifically, Gelman and Rubin method is considered here. 

3.10.1 Gelman and Rubin Convergence Diagnostic Criteria 

The Gelman and Rubin's (1992) method focus on applied inference for Bayesian posterior 

distributions in real problem, which often tend toward normality after transformations and 

marginalization (Cowles and Carin, 1996). The approach comprises of two steps.  

Step 1, involves creating an over dispersed estimate of the target distribution which is used to 

start several independent sequences. This can be done as follows: 

(1) Identify the high-density areas of the target distribution of x and find the K modes. 

(2) Approximate the high-density areas using generalized method of moments (GMM): 
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(3) Form an over dispersed distribution by first drawing from the GMM and then 

dividing each sample by a positive number, which results in a mixture t distribution: 
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(4) Sharpen the over dispersed approximation by down weighting areas which have a 

relatively low density using importance resampling for instance. 

Step 2 on the other hand involves re-estimating the target distributions: 

(1) Independently simulate m sequences of length 2n from the over dispersed 

distribution and discard the first n iterations. 

(2) For each scalar parameter of interest, estimate the following quantity from the last n 

iterations of m sequences: 

•  : the variance between the means from m sequences; 
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   This is the variance of the chain means multiplied by   

because each chain is based on   draws. 

•  : the average of the m within-sequence variances; 
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js  is just the formula for the variance of     

chain. 

  is then just the mean of the variance of each chain. 

•  ̂ denotes estimate of the target mean: mean of mn samples. 

•  ̂  represents an estimate of target variance (unbiased): 
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(3) Estimate the posterior of target distribution as a t distribution (considering variability 

of the estimates  ̂ and  ̂ ) with center of  ̂ and scale of √ ̂  √ ̂     ⁄ . 

 

(4) Monitor the convergence by shrink factor√ ̂  √  ̂           ⁄⁄ , as it gets 

closer to 1 for all scalars, collect burn-out samples, 
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Although, Gelman and Rubin's methodology of convergence analysis was originally created 

for the Gibbs sampler, it is applicable to any MCMC algorithm. The method gives more 

emphasis on the reduction of biasness in estimation. Gelman and Rubin stated "that the 

"shrink factor" approaches 1 when the pooled within-chain variance dominates the between-

chain variance to mean that at that point, all chains have escaped the influence of their 
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starting points and have traversed all of the target distribution" (Cowles et al. 1996). They 

further asserted that it is impossible to determine convergence using a single chain. Thus, 

there is a need for additional independent chain(s) that starts from different dispersed initial 

values, to be used for comparison (Cowles et al. 1996). 

There are several studies in the literature that criticized the Gelman and Rubin's approach. 

For instance, according to Cowles and Carlin (1996) the method depends greatly on the 

ability of the user to find out a starting distribution which is over dispersed with regards to 

the target distribution (a condition that needs user's knowledge for verification). Secondly, 

the method may be questionable due to its dependence on the normal approximation to 

analyze convergence to the true posterior. In addition, the method is univariate in nature. 

"However, they suggested applying their procedure to -2 times the log of the posterior 

density as a way of summarizing the convergence of the joint density. Advocates of running 

a single long chain consider it very inefficient to run multiple chains and discard a 

substantial number of early iterations from each" (Cowles et al. 1996). 

3.11 Spatial Autocorrelation 

Spatial autocorrelation, long considered important in geostatistics, spatial analysis, and 

econometrics, is becoming more widely recognized in other fields (Borcard et al. 1992). The 

first law of geography attributed to Tobler states that “everything is related to everything 

else, but near things are more related than distant things” (Tobler, 1970), this refers to spatial 

autocorrelation. In other words, observations in close spatial proximity tend to be more 

similar than are observations at greater separation. Such a condition is important when 

dealing with UA because error at a specific location is expected to have an influence on the 

neighboring locations either positively or negatively (Campbell, 1981). In spatial analyses, 

Hunter and Goodchild (1997) asserted that neglecting the error’s spatial autocorrelation leads 

to a “worst-case scenario”, that is, a scenario that assumes errors in spatial data are 

completely random and not spatially autocorrelated. Wechsler (1999) presented a 

methodology for simulating the DEM error correlation through the MC simulation and 

examined the impact of DEM error correlation on elevation and three derived parameters 

that are frequently used in hydrological analyses. However, Oksanen and Sarjakoshi (2005a) 

in their study of error propagation of DEM-based surface derivatives with MC and analytical 

methods challenged the ‘worst-case scenario’ issue because none of the DEM derivatives 

investigated in their study had a maximum variation with spatially uncorrelated random 

error. They also concluded that MC method is appropriate for analyzing both constrained and 

unconstrained derivatives, whereas, analytical approach seems to be more useful for 

constrained derivatives. Wechsler (1999) developed four filter methods to represent spatial 

autocorrelation of error through random error fields, namely: neighborhood autocorrelation, 

mean spatial dependence, weighted spatial dependence, and interpolated spatial dependence. 

In order to incorporate the spatial dependence distance assumed to be the range derived from 

the semivariogram (variogram) analysis of the study area data, the methods utilized 

neighborhood or search radius of a filter. However, the approach employed by each method 

is entirely different. 

Analysis of the semivariogram/semivariance (variogram) gives important information 

regarding the nature and structure of spatial dependency or variability in a random field 

(Kitanidis, 1997). However, there exist several tools available which are used to perform 
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spatial variability analysis. These include correlation functions, covariance functions, and 

variograms. Although, these different tools provide different statistical parameters, they 

primarily describe the spatial relationship between variables. Of all these available tools, the 

variogram is a common choice for many earth science applications (Isaaks and Srivastava, 

1989) since classical statistical methods are not always adequate to analyze space-structured 

phenomenon (Legendre and Fortin, 1989). Generally, variogram is a model that characterizes 

the spatial continuity or roughness of a data set (Barnes, 2011). 

The mathematical definition of the variogram is expressed in Equation (3.20) (Houlding, 

2000): 
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where 

 h  is the estimated semivariance for the lag (distance) h   

     is the number of measured point pairs in the distance class h , 

 iz x h  is the data value at cells separated from    by lag distance h  in the chosen 

direction. 

The resulting variogram according to Brimicombe (2010) has a number of components that 

are evident once a best-fit curve is established (see Figure 3.2). 

  h  increases with lag (varying inversely with autocorrelation) to reach a sill 

beyond which there is no increase in  h . 

 The lag h  at which the sill is reached, known as the range, represents the limit of 

spatial dependence. Presumably, spatial autocorrelation is essentially zero beyond 

the range (Bohling, 2005). 

 An intercept of   0,h   or nugget, represent spatially uncorrelated error. 

Variogram model generation involves two steps: the experimental variogram computed from 

the data and the theoretical variogram model fitted to the data (Figure 3.2). The experimental 

variogram is calculated by averaging one-half difference squared of the z-values over all 

pairs of observations with the specified separation distance and direction. It is plotted as a 

two-dimensional graph. The theoretical variogram model is selected from a set of 

mathematical functions which describe the spatial relationships. The appropriate model is 

chosen by matching the shape of the curve of the experimental variogram to the shape of the 

curve of the function (Barnes, 2011). The main aim of fitting a model to the experimental 

variogram is to give an algebraic expression for the relationship between values at fixed 

distances. There are many possible models to fit an experimental variogram. Some 

commonly used models include: linear, spherical, exponential, and Gaussian models (Figure 

3.3). Mathematical expressions of these models are presented in Equations (3.21) - (3.29). 

Detailed descriptions of variogram models are presented in various publications (e.g., Issaks 

and Srivastava, 1989; Clark and Harper, 2002; Houlding, 2000). 
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Figure 3.2. Experimental variogram and variogram model (Murray et al. 2004) 

 

Figure 3.3. Comparison of commonly used theoretical variogram models (White et al. 2007) 

The theoretical variogram models are based on three parameters: the nugget, the sill, and the 

range (Figure 3.2). 

Linear Model: 

 0 0,           (3.21) 

  .h p h    if  0.h        (3.22) 

where 

h  = Lag distance, 

p  = Slope of the line. 

Spherical Model: 

Spherical model is the simplest and most commonly used model (Smith, 2013). The model is 

defined by a range a   and a contribution c   as: 
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 0 0,           (3.23) 
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where 

a  = Range of influence, 

c  = Sill, 

h  = Lag distance. 

Spherical models provide a better fit when spatial autocorrelation decreases to a point after 

which it becomes zero (Cressie, 1993). 

Exponential Model: 

The exponential model is defined by a parameter - a - and a contribution - c - as: 

 0 0,           (3.26) 

  1 exp 3.
h

a
h c

  
  

  
    if  0.h      (3.27) 

where 

a  = Range of influence, 

c  = Sill, 

h  = Lag distance. 

Cressie (1993) noted that exponential models fit best when the spatial autocorrelation 

decreases exponentially with increasing distance. 

The exponential and spherical models exhibit linear behavior at the origin, appropriate for 

representing properties with a higher level of short-range variability (Bohling, 2005). 

Kalkhan (2011) noted that the linear model assumes a constant increase of the variance with 

the distance and hence there is neither range nor sill; it is the case of the spatial gradient. 

Gaussian Model: 

The Gaussian model has a parabolic nature at the origin and used to represent very smoothly 

varying features (Bohling, 2005), and is defined by a parameter - a - and a contribution -c - 

as: 
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 0 0,           (3.28) 
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where 

a  = Range of influence, 

p  = Slope of the line, 

c  = Sill. 

  



46 

 

 

 

  



47 

 

 

CHAPTER 4 

 

PROPOSED METHODOLOGICAL FRAMEWORK 

 

This chapter discusses the proposed Markov chain Monte Carlo (MCMC) simulation 

methodology for investigating digital elevation model (DEM) uncertainties in GIS-based 

solar radiation models. 

The methodological framework proposed in the thesis is given in Figure 4.1. It consists of 

four phases. Phase I: Identification and classification of solar radiation model inputs, Phase 

II: Stochastic (MCMC) simulation and convergence analysis for DEM, Phase III: Check for 

variogram reproduction, and Phase IV: Execution of solar radiation models and uncertainty 

assessment. Sections 4.2.1 - 4.2.4 discusses these phases in details. This study considers only 

two GIS-based solar radiation models, that is, Solar Analyst (Rich et al. 1995) - a 

commercial software developed for ArcGIS, and r.sun model (Hofierka and Šúri, 2002), an 

Open Source GIS software developed for GRASS. The versions of the software used in this 

research are; ArcGIS 9.3 and GRASSS 6.4.0. 

4.1 Phase I: Collection and Classification of Solar Radiation Models Inputs 

The first stage in this phase involves the collection of Solar Analyst and r.sun models inputs 

(Figure 4: PI-1). These inputs are given in Tables 2.1 and 2.2 for Solar Analyst and r.sun, 

respectively. Then followed by pre-processing which deals with processing of both digital 

and analog data collected to required data format for the respective models, e.g., conversion 

of analogue to digital data format, conversion from one file format to another and spatial 

formats, transformation from one projection to another (Figure 4: PI-2). The third stage is the 

classification of model inputs into probabilistic and deterministic (Figure 4.1: PI-3, PI-4, PI-

5). Probabilistic (stochastic) inputs are those in which random events and effects play an 

important role (Edwards and Hamson, 1989). In contrast, the deterministic inputs are those 

variables that whenever given to a model the outputs will be same (World Health 

Organization, 2005). DEM, slope, aspect, linke turbidity factor (   ), and ground albedo has 

the characteristics of being considered as probabilistic inputs. However, in this study     and 

ground albedo are considered as deterministic inputs. The remaining inputs exhibit 

deterministic characteristics (Tables 2.1 and 2.2). As the aim of this study is to investigate 

the DEM uncertainty on GIS-based solar radiation models, therefore, Shuttle Radar 

Topography Mission (SRTM) DEM of the study area is obtained (Figure 4: PI-6) for 

utilization in the analysis. However, it is important to note that the proposed methodological 

framework is applicable to any kind of DEM data available. 
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Figure 4.1. Flow chart of the proposed methodological framework 
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4.2 Phase II: Stochastic (MCMC) Simulation and Convergence Analysis for 

DEM 

This phase deals with formulating and implementing the MCMC simulation, and then 

assessing its convergence (Figure 4). The first stage (Figure 4: PII-1 and PII-2) provides the 

necessary inputs for the MCMC simulation by determining the; (1) DEM variogram 

characteristics or spatial dependence (autocorrelation) of the study area. (2) DEM error 

distribution. 

Spatial autocorrelation can best be explained by the first law of geography which is 

expressed by variogram/semivariogram of the DEM. Equation (4.1) (Journel and Huijbregts, 

1978) is used to compute the semivariogram. The obtained variogram model and its 

parameters are then used in conditioning the MCMC simulation such that it generates several 

equiprobable realizations that provide the same spatial dependence (autocorrelation) 

structure of the original DEM. 
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where 

      is the elevation value at location   , 

 N h
 
is the number of elevation pairs    ,i iz x z x h    separated by a lag distance of h . 

The DEM error distribution (Figure 4: PII-2) deals with identification of error probability 

distribution function (pdf) of the SRTM DEM data and its parameters (mean and standard 

deviation). Generally, this can either be obtained from referenced data set with higher 

accuracy (Bolstad and Stowe, 1994; Fisher and Tate, 2006) or from the literature. This 

information serves as a priori pdf when formulating and implementing the MCMC 

simulation. In this study, SRTM DEM is utilized and as such DEM error distribution is 

extracted from Rodríguez et al. (2006) and then analyzed using distribution fitting software. 

Rodríguez et al. (2006) reported that the SRTM performance observed by comparing against 

the ground-truth (kinematic GPS transects) met/exceeded its performance requirements, 

often by a factor of 2. 

The second stage deals with stochastic simulation, i.e., MCMC based on Metropolis-Hasting 

(MH) algorithm (Figure 4: PII-3). There are several MCMC algorithms: Metropolis-Hastings 

algorithm (Metropolis et al. 1953), Gibbs sampler (Geman and Geman, 1984), Slice sampler 

(Neal, 2003) as explained in Chapter 3. However, in this study, the MH algorithm is adopted 

because of its generality, simplicity and powerfulness (Robert and Casella, 2010). To 

formulate the proposed stochastic MCMC algorithm for this study, the DEM error pdf 

obtained in the previous stage is utilized as a priori pdf while the variogram model is used to 

generate the spatial autocorrelation or covariance matrix. 

The MH algorithm designed and implemented for this study is based on Navarro and Perfors 

(2011) and described below: 
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(1) Generation of a candidate, denoted as *x : The value of *x  is generated from the 

proposal distribution, denoted by  * ,nQ x x which depends on the current state of 

the Markov chain, nx . There are a few minor technical constraints on what one can 

use as a proposal distribution, but generally it can be selected arbitrarily. A typical 

way to do this is to use a normal distribution centered on the current state nx . That is 

 * 2, ,n nx x Normal x        (4.2) 

for variance of    specified by the user. 

(2) Accept-reject step: First, the acceptance probability  *
nA x x , in Equation (4.3) 

is calculated: 

 
 
 

 
 

**

*

*
min . ,1 ,

n

n

n n

Q x xp x
A x x

p x Q x x

 
 
 
 
 

      (4.3) 

The probability of both the candidate ( *x ) and current state ( nx ) is calculated using 

the prior pdf determined in (Figure 4: PII-2). In this study, a lognormal pdf is found 

as the most appropriate distribution that models the SRTM DEM error. This 

conclusion is reached after analyzing the data extracted from Rodríguez et al. (2006) 

who assessed the performance of SRTM by comparing against the ground-truth 

(kinematic GPS transects) see subsection 5.2.3 for details. In this regard, the 

multivariate log-normal distribution (Tarmast, 2001) given in Equation (4.4) is used: 
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where 

1 2
log [log , log , ..., log ]p

 
is a p-component column vector, 

 exp ,i iy x
 

v  = mean, 

D = covariance matrix calculated from the exponential variogram model. 

As lognormal distribution can be transformed to normal distribution instead of using 

Equation (4.4) it is decided to use a multivariate normal pdf as given in Equation 

(4.5) (Do, 2008). After all the calculations the final samples are back transformed to 

lognormal. 
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where 
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x  denotes candidate elevation error, 

 -dimension (size of candidate elevation), 

  covariance matrix, 

  is the mean. 

Equation (4.6) (Tarantola, 2008) is used to calculate covariance from an exponential 

model: 

  2 exp
h

C h v
a

 
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
  ( 0),h       (4.6) 

 where 

2v  = variance, 

a  = range, 

h  = lag-distance. 

Having proposed the candidate and calculated acceptance probability,  * .nA x x
 

To make the decision of acceptance or rejection of a candidate, uniformly distributed 

random number     between 0 and 1 are generated. Then the acceptance and 

rejection decision is made based on: 
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Based on the above algorithm, the MCMC simulation is then run a finite number of 

(n) times for m parallel chains using different starting values that are over dispersed 

with respect to the target distribution (Figure 4: PII-4). 

The Markov chain generated by MH algorithm eventually converges to the distribution used 

in the calculation of the acceptance criteria for any form of the proposal distribution, given 

that the Markov chain is ergodic (Gilks et al. 1996). There exist several methods for testing 

MCMC convergence, for instance, Gelman and Rubin (1992); Raftery and Lewis (1992); 

Geweke (1992). This study utilizes the Brooks and Gelman (1998) approach, which is a 

generalized version of Gelman and Rubin (1992) that is simple and generally applied to the 

output of any iterative simulation (Figure 4: PII-5, PII-6, PII-7, PII-8, PII-9). The approach is 

based on analyzing multiple simulated MCMC chains (m parallel chains) by comparing the 

variances within each chain and the variance between chains. A large deviation between 

these two variances indicates non-convergence and vice-versa. The method involves two 

steps as summarized below: 

(1) Stage I is performed before commencing the sampling. It involves obtaining an over 

dispersed estimate of the target distribution and then use it to generate the starting points 

for the required number of independent chains. 

(2) Stage II is performed for each scalar quantity of interest after running the MH sampler 

chains for the required number of iterations ( ).n  This involves using the last n-iterations 

to re-estimate the target distribution of the scalar quantity as a conservative Student t 



52 

 

distribution, the scale parameter involves both the between- and within-chain variance. 

The details of the procedure can be found from Gelman and Rubin (1992). 

According to Brooks and Gelman (1998) when the estimation of a vector parameter   is 

based upon observations ( )i
jt , denoting the ith element of the parameter vector in chain j  at 

time .t  With regards to higher dimensions, this means the estimation of the posterior 

variance-covariance matrix by using Equations (4.8), (4.9) and (4.10): 
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Equations (4.9) and (4.10) represent the (p-dimensional) within- and between-sequence 

covariance matrix estimates of the p-variate functional ,  respectively. Therefore, both V̂  

and ,W  can be monitored by determining convergence when any rotationally invariant 

distance measure between the two matrices shows “sufficient closeness”. 

The multivariate potential scale reduction factor (MPSRF) denoted as R̂  is then computed 

as follows: 

,
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1 1ˆ n mR
n m
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(4.11) 

where 

  represent the positive definite matrix   11 n W B of the largest eigenvalue. 

The value of R̂  in Equation (4.11) declines towards 1 as the simulation converges. Gelman 

et al. (2004) suggest that values for R̂  less than 1.1 may be regarded as an indication that the 

MCMC sampler has converged. The achievement of convergence gives several equiprobable 

outputs of DEM error (Figure 4: PII-10). 

4.3 Phase III: Check for Variogram Reproduction 

Since the MCMC simulated realizations in this study are required to adequately reproduce 

not only the prior distribution but also the input variogram model, a further check is also 

performed on the simulation output after achieving convergence by comparing the resulting 

variograms over multiple realizations with the reference (theoretical) variogram model 

(Figure 4: PIII-1, PIII-2, PIII-3, PIII-4). This aids in suggesting the acceptance or rejection of 

the computed realizations as correct numerical representations of the phenomenon under 

study, i.e., whether the realizations obtained after convergence possess spatial 

autocorrelation characteristic similar to the DEM of the study area, or not. 
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A multivariate hypothesis test developed by Ortiz and Leuangthong (2007) is adopted for 

this study. The method is based on Hotelling’s T
2
-statistic and is used to measure whether the 

fit is acceptable within a 95% confidence level (𝛼 = 0.05). 

Lags or distances ( )p  
are chosen for verification, and the resultant n realization variograms 

form the sample variogram values for each lag. Considering all relevant lags taken together 

requires a joint test of how well the variogram model is being reproduced. A hypothesis test 

is constructed based on the sample mean variogram values and compared against the model 

variogram value for each lag distance. The null hypothesis 0H  
and alternative hypothesis 

1H  
are constructed as: 

            

            
where 

  is the p x 1 mean vector obtained from the variogram realizations for p different lags, 

   is the p x 1 mean vector based on the reference or input variogram for the same p lags. 

The test is constructed to measure the squared distance of the sample mean from the 

reference mean, standardized by the sample covariance. For this multivariate context, the 

Hotelling’s T
2 
-statistic is distributed as
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where, 

,p n pF   
represents an F-distribution with p and n-p degrees of freedom, respectively, 

p is the number of lag distances to check, 

n is the number of sample variogram values available at each lag and corresponds to the 

number of realizations generated. 

Under this multivariate context, the null hypothesis is rejected if 
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where, 

S  is the sample covariance matrix and calculated as 
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4.4 Phase IV: Execution of Solar Radiation Models and Uncertainty 

Assessment 

In this study, it is assumed that the DEM uncertainty can be modeled by subtracting from 

every grid elevation error term for a random field spatially dependent on neighbors generated 

using MCMC simulation. Let  ,Z x y be a DEM elevation at the position   ,,x y then: 

                 ,        (4.15) 

where, 

       is the elevation from DEM, 

  is a random error generated based on the proposed MCMC simulation. 

Thus, this phase (Figure 4) involves subtracting each (n) simulated DEM error (Figure 4: 

PII-10) from the study area DEM (Figure 4: PI-6), which is assumed to consist of the true 

elevation at that point plus an unknown amount of error to produce N different but equally 

probable realizations of the topography with errors in the study area (Figure 4: PIV-2). Since 

the topographic realizations take into account measured elevation errors, each different but 

equally probable realization is in theory a more accurate representation of the real 

topography than the original DEM (Haneberg, 2006). In other words, these alternative 

equiprobable realizations, which span the range of possible attribute values given the model 

of uncertainty at any location, are used as alternative inputs for the solar radiation models, 

thereby generating possible results. Therefore, the study area DEM (Figure 4: PI-6), the N  

realized DEMs (Figure 4: PIV-2), and other inputs are used to execute the solar radiation 

models (Figure 4: PIV-3) for the purpose of generating the direct, diffuse and global 

radiation, and direct radiation duration maps in Solar Analyst (Figure 4: PIV-4). Similarly, 

beam, diffuse, ground reflected and global (total) irradiation, and insolation time maps are 

obtained in r.sun model (Figure 4: PIV-4). Then, mean, standard deviation, and coefficient of 

variation (CoV) are computed to provide measures of uncertainty (Figure 4: PIV-5, PIV-6). 

The mean of the perturbed DEMs or realized DEMs is calculated using Equation (4.16), 

whereas, Equations (4.17), (4.18) and (4.19) are used for calculating standard deviation, and 

CoV, respectively. 
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where 

( , )i j
x  is the mean of a cell at row i and column j,  
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x x x  are cell values for each of the realized DEMs,  
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where 
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( , )i j
  is the standard deviation of a cell at row i and column j, 

1,( , ) 2,( , ) ,( , )
, , ...,

i j i j n i j
x x x

 
are cell values, 

1,( , ) 2,( , ) ,( , )
, , ...,

i j i j n i j
x x x

 
are the means of individual cells. 
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        (4.18) 

where 

( , )i j
CoV

 
denotes the     of a cell at row i and column j, 

1,( , ) 2,( , ) ,( , )
, , ...,

i j i j n i j
  

 
is the standard deviation of individual cells, 

1,( , ) 2,( , ) ,( , )
, , ...,

i j i j n i j
x x x

 
are the means of the individual cells. 

A relative comparison based on statistical analysis is carried out with a view of determining 

the significant difference between the radiation estimates of the two models. The outputs 

considered are both generated by the two models and comprised of direct/beam radiation, 

diffuse radiation, global radiation, and direct duration. The reflected radiation generated only 

by the r.sun is not considered. 

For statistical testing of difference in the radiation estimates of the two models, a hypothesis 

test is performed (Figure 4: PIV-7). If a significant statistical difference is found in the 

estimated distributions of the models (Figure 4: PIV-8, PIV-10), a ratio of Solar Analyst to r. 

sun is calculated (Figure 4: PIV-11) and the results are classified into two or three classes 

depending on the variations using K-means clustering method (Figure 4: PIV-12). If 

otherwise (Figure 4: PIV-8, PIV-9), the process is ended at (Figure 4: PIV-6). The K-means 

clustering is a partitioning procedure where the data are grouped into K group by the user. 

The routine tries to find the best positioning of the K centers and then assigns each point to 

the center that is the nearest (Akpinar, 2005). In other words, the K-means is an algorithm 

for clustering N data points into K disjoint subsets    to minimize the criterion    (Equation 

4.19) in which    is a vector representing the n
th
 data point and    is the geometric centroid 

of the data points in    (Math World, 2013). 

1

.
j

K

n j
j n S

J x 
 

     (4.19) 

 

 

 

 

 

 



56 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



57 

 

 

CHAPTER 5 

 

IMPLEMENTATION 

 

The proposed stochastic methodology is illustrated with a case study from Abuja, which is 

the administrative capital of the Federal Republic of Nigeria. The implementation is done 

using MaTLAB 2012a
®
, R software, EasyFit Professional software 5.5

®
, ArcGIS 9.3

®
, 

GRASS GIS 6.4 and SPSS 15
®
. Further analyses are also conducted using different tools like 

Microsoft Excel. The implementation process is divided into three, namely; (1) Proposed 

Markov chain Monte Carlo (MCMC) simulation, (2) Simulation of GIS-based solar 

radiation models, and (2) Assessment of digital elevation model (DEM) uncertainties on 

GIS-based solar radiation models outputs. 

5.1 The Study Area 

The case study area is 9.225 km
2
 (3.15 km by 3.15 km) and located in the northeastern part 

of Abuja (Figure 5.1). The area lies between latitude 9
o
 7' 28" and 9

o
 5' 42" North, and 

longitude 7
o
 27' 39" and 7

o
 29' 25" East. 

 
Figure 5.1. The Study area 

A free downloadable Shuttle Radar Topography Mission (SRTM) DEM with spatial 

resolution of 90 m is acquired from the Consortium for Spatial Information (CGIAR-CSI) 
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website and utilized for this study. The tile (srtm_3811) covering the study area is projected 

to WGS84 UTM Zone 32 N and then study area is extracted. The area has potential for solar 

radiation resource that will enable the establishment of solar power plants because it is 

situated in a tropical climate region where the weather is generally hot (average monthly 

temperature ranges between 29
o
C to 40

o
C) and sunny throughout the year. It is also 

characterized with highlands, lowlands, mountains, and relatively flat terrain. This will 

enable the assessment of DEM uncertainties with respect to these different landforms. In 

addition, if the solar radiation potential is utilized, it will contribute immensely in addressing 

the electricity problems, which the region and the country are currently experiencing. 

5.1.1 Energy Outlook of Nigeria 

Nigeria, the most populous country in Africa with 168.8 million people (World Bank, 2012), 

is the biggest energy basin in the continent with 37.14 billion barrels proven oil reserves, 

5,118 billion m
3
 proven natural gas reserves (OPEC, 2013), and 209 million short tons 

recoverable coal reserves (EIA, 2013). On the other hand, the Nigeria's renewable energy 

potential include 10,000 megawatts (MW) of large scale hydropower, 734 MW small scale 

hydropower, fuel wood (13,071,464 hectares) of forest land, animal waste (61 million 

tons/year), crop residue (83 million tons/year), solar radiation (3.5-7.0 kWh/m
2
/day), and 2-4 

m/s (annual average) wind (ECN and UNDP, 2005). Figure 5.2 shows the electricity 

production portfolio of Nigeria's main resources. 

 
Figure 5.2. Electricity production portfolio of Nigeria showing the main sources (IEA, 2013) 

However, in reality these endowed natural resources are not adequately harnessed to meet 

the Nigerian electricity demand due to lack of sound policies and commitments. As such, 

Nigeria is currently facing serious electricity supply shortages. An increasing trend in 

electricity demand is very common in this developing country. Therefore, a non increasing 

and under-utilized generating capacity (Figure 5.3) adversely affects the small, medium and 

large-scale enterprises, living standards of Nigerians, inflow of foreign investment, and the 

balance of payment. As evidence, only about 40% of Nigeria’s population have access to 

grid-based electricity and less than 20% of the rural population is connected to the national 

grid (PHCN, 2005; ICEED, 2006). In addition, more than 60% of the factories depend on 
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generators for their main source of power supply, which increases the cost of manufactured 

goods. 

 
Figure 5.3. The Nigerian electricity market in the past 30 years (EIA, 2012) 

5.2 Data Description for MCMC simulation 

In this section, the data necessary for the formulation and implementation of the proposed 

MCMC simulation is described, and then the MCMC simulation implementation is 

demonstrated. They include DEM, DEM error probability distribution function (pdf), spatial 

autocorrelation model of the study area DEM, linke turbidity factor (   ) and ground albedo. 

5.2.1 Digital Elevation Model (DEM) of the Case Study Area 

DEM is a major input for both the r.sun and Solar Analyst models. There are several free 

downloadable DEMs with different spatial resolutions for the entire World on World Wide 

Web, for instance, SRTM: 90 m, Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) - 30 m, GTOPO30 (30 arc second, approximately 1 km). However, in 

this study, SRTM DEM is utilized and in particular the updated SRTM version 4.1 with 90 

m resolution. The utilized DEM represents a raster of 35 cells by 35 cells with minimum 

elevation of 477 m and maximum of 730 m. The mean topographical elevation is 553.29 m 

having a standard deviation of 56.54 m (Table 5.1 and Figures 5.4 and 5.5). 

Table 5.1. Summary statistics for SRTM DEM of the study area 

Statistic Values 

Count 1,225 

Minimum elevation (m) 477 

Maximum elevation (m) 730 

Mean elevation (m) 553.29 

Standard deviation (m) 56.54 

Skewness 1.38 
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Table 5.1 Summary statistics for SRTM DEM of the study area (continued) 

Statistic Values 

Kurtosis 4.66 

1
st
 quartile 514.75 

Median 543 

3
rd

 quartile 570 

 

  

Figure 5.4. SRTM DEM of the study area Figure 5.5. Histogram of SRTM DEM of the study area 

The SRTM mission was flown using single-pass synthetic aperture radar (SAR) 

interferometry in February 2000 by NASA and provides a topography covering continental 

areas from 60
o 

N to 56
o 

S latitudes with a 1 and 3 arc sec spatial resolution (about 30 and 90 

m), respectively. The 1 arc sec data set is publicly available for the United States while the 3 

arc dataset is available for the remaining part of the world. The mission covered nearly 80% 

of the Earth’s surface and aimed to achieve an absolute horizontal and vertical accuracy of 

20 and 16 m, respectively (NASA, 2005). The vertical accuracy of  16 m linear error at 

90% confidence level is fulfilled (Sun et al. 2003; Rodríguez et al. 2005). For instance, by 

comparing SRTM (1 arc sec) with ICESat for the western United States, Carabajal and 

Harding (2006) found a mean and standard deviation of elevation differences of -0.60 3.46 

m over area with low relief and -5.61 15.68 m for higher relief. In the case of 3 arc sec data 

set, Rodríguez et al.(2005) reported an absolute vertical error of 5.6 m for Africa, which is 

the lowest value among the six continents studied (Africa, Australia, Eurasia, Islands, North 

America, and South America). However, according to Jarvis et al. (2008) the SRTM version 

4.1 represents a significant improvement from the previous versions, using new interpolation 

algorithms and better auxiliary DEMs. These enhancements include: 

• an improved ocean mask which includes some small islands previously been lost in 

the cut data, 

• fixed single no-data line of pixels along meridians, 

• all GeoTiffs with 6000 x 6000 pixels, 

• for ASCII format files the projection definition included in .prj files, and 
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• for GeoTiff format files the projection definition included in the .tfw (ESRI TIFF 

World) and a .hdr file that reports PROJ.4 equivalent projection definitions. 

In addition, it is distributed in ARC GRID, ARC ASCII and Geotiff format, in decimal 

degrees; and projected in a geographic (Latitude/Longitude) projection, with the WGS84 

horizontal datum and the EGM96 vertical datum. The CGIAR has processed this data to 

provide seamless continuous topography surfaces. Areas with regions of no data in the 

original SRTM data have been filled using interpolation methods. 

The SRTM DEM data in this study is used for two purposes. First, the original data is used 

as an input to both the r.sun and Solar Analysts models. Second, the distribution and 

variogram characteristics are extracted and used in the formulation and implementation of 

the proposed MCMC simulation with a view of generating N realized equiprobable DEMs. 

5.2.2 Probability Distribution of SRTM 

In order to assess the distribution of the case study area SRTM DEM data, first, the basic 

descriptive parameters of the distributions are derived, including mean, median, minimum, 

maximum, standard deviation, and inter-quartile range (Table 5.1). Second, the degree of 

normality of the distribution is determined using skewness and kurtosis (Table 5.1). The 

skewness (1.38) is positive; indicating that the data is positively skewed or right skewed, 

which means the right tail of the distribution is longer than the left. On the other hand, the 

kurtosis (4.66) is less than 3; this indicates a platykurtic distribution, i.e., a distribution with 

a wider peak and flatter, shorter and thinner tails than a normal distribution (Table 5.1). 

Moreover, the probability for extreme values is less than for a normal distribution, and the 

values are widely spread around the mean. Third, histogram and normal Q-Q plot (Figures 

5.5 and 5.6) are plotted to compare the distribution of the data to a standard normal 

distribution, providing yet another measure of the normality of the data. From the histogram 

and normal Q-Q plot it is important to note that the data is right skewed, meaning it deviates 

from normality. 

 

Figure 5.6. The Normal Q-Q Plot of Study Area SRTM DEM 

5.2.3 Error Distribution of SRTM 

Table 5.2 shows summary performance of the SRTM, while Figure 5.7 shows the histograms 

and cumulative distribution function for the height error magnitude from Rodríguez et al. 
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(2006) analysis of SRTM DEM performance. To find out the DEM error distribution, data is 

extracted from Rodríguez et al. (2006) analysis result for the height error (m), specifically 

Figure 5.7(a). The extracted data are statistically analyzed using the distribution fitting 

software (EasyFit Professional software 5.5
®
). The software tests and ranks several pdfs 

using the goodness-of-fit tests of Kolmogorov-Smirnov, Anderson-Darling, and Chi-Square. 

Based on the result of this analysis, a lognormal pdf is found to be the most appropriate 

distribution that models the SRTM DEM error distribution (Table 5.3 and Figure 5.8) with 

mean     = 4.209 and standard deviation     = 0.054. Thus, lognormal pdf is used as a 

priori input distribution function in addition to other parameters to generate equiprobable 

DEMs using the MCMC simulation. 

Table 5.2. Summary of kinematic GPS GCP comparison with SRTM data (Rodríguez et al. 2006) 

Continent Mean 

(m) 

Standard 

Deviation (m) 

90% Absolute 

Error (m) 

Africa 1.3 3.8 6.0 

Australia 1.8 3.5 6.0 

Eurasia -0.7 3.7 6.6 

North America  0.1 4.0 6.5 

New Zealand  1.4 5.9 10.0 

South America  1.7 4.1 7.5 

 

 

Figure 5.7. Africa kinematic GPS height comparison. Panel (a) shows the distribution of the signed error; panel (b) 

the corresponding cumulative distribution function; panel (c) is the distribution of the error magnitude; and panel 

(d) is the cumulative distribution of the error magnitude (Rodríguez et al. 2006). 
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Table 5.3. Goodness of fit summary 

Lognormal (3P)  

 
Kolmogorov-Smirnov Anderson-Darling 

Sample Size 69 69     

Statistic 0.05973 57.757     

P-Value 0.95399      

Rank 1 3     

alpha 0.2 0.1 0.05 0.02 0.01 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.12675 0.14483 0.16088 0.1799 0.19303 1.3749 1.9286 2.5018 3.2892 3.9074 

Reject? No No No No No Yes Yes Yes Yes Yes 

 

 

Figure 5.8. Lognormal probability density function 

5.2.4 Variogram Model of SRTM for Autocorrelation Assessment 

The traditional way of finding a suitable variogram model is produced by fitting a theoretical 

variogram model to experimental variogram model (Bivand et al. 2008; Minasny et al. 

2011). There are two basic fitting approaches: manual and automated. In the manual fitting, a 

theoretical semivariogram model is selected based on visual inspection of the empirical 

semivariogram, for example, Hohn (1988); Olea (1999). The automated approach involves 

performing model fitting in an automated manner. For this task one can use methods such as 

least squares, maximum likelihood, and robust methods (Cressie, 1993). The main 

disadvantages of the manual fitting method according to Li and Lu (2010) include, (1) 

laborious and time-demanding, (2) lacks uniform and objective format, and (3) affects the 

automation process of the entire geostatistics computations. In this regard, this study adopts 

the automated fitting method since experimental variogram values are best represented by 

the method (Li and Lu, 2010). Therefore, the spatial autocorrelation of the study area SRTM 

DEM was assessed using variogram based on a code written and executed in R software 

which automatically fits the variogram model (Appendix A). The outcome of the analysis 

showed that the exponential model is the best model that fit the data (Table 5.4). The 

exponential model is also found to be appropriate in previous studies like Holmes et al. 

http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_variogram_sect018.htm#hohn_m_88
http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_variogram_sect018.htm#olea_r_99
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(2000); Oksanen and Sarjakoski (2005). Thus, the result indicates that spatial autocorrelation 

decreases exponentially with increasing distance. The exponential model is linear at very 

short distances near the origin; however, it rises more steeply and then flattens out more 

gradually (Alves et al. 2009). 

Table 5.4. Variogram parameters of the study area SRTM DEM 

Variogram parameters Values 

Nugget 0 

Partial sill 1.008936e+07 

Range 20499218 

Fitted variogram model Exponential 

SSError 12875384 

5.3 Implementation of the Proposed MCMC Simulation 

The parameters of the lognormal pdf, i.e.,   = 4.209 and   = 0.054, and exponential 

variogram model (sill: 125.74, range: 1,556.85, nugget: 0) are used as a prior information in 

which the proposed MCMC simulation based on MH algorithm is coded and executed in a 

MaTLAB
®
 programming environment (Appendix B). A total of 1,080 simulations is run to 

achieve convergence using 2m chains. Whereas, the initial burn-in period of eighty which 

represent 7.41% of the simulation is discarded. See Appendix C for some selected outputs of 

the simulation. 

After running a total of 1,080 MCMC simulations, the results show that the multivariate 

potential scale reduction factor (MPSRF) is 0.99 and this indicates that the MCMC sampler 

has converged to a stationary distribution, since it is less than 1.1 as recommended by 

Gelman et al. (2004). As such, the results assumed to be drawn from the target probability 

distribution (lognormal pdf). On the other hand, the check for spatial dependence (i.e., 

variogram reproduction) based on 95% confidence level shows that T
2 

= 1.751, whereas, its 

corresponding F-statistic value is 23.189. Since T
2
 is less than the F-statistic, the null 

hypothesis can be safely rejected and it can be concluded that the variogram simulation for 

the study area remains valid. 

Finally, the 1,000 simulated errors are subtracted from the original SRTM DEM of the study 

area to generate 1,000 realized equiprobable DEMs which serves as input to the solar 

radiation models. Appendix D presents examples of these realizations. The total computing 

time for executing the code is five hours and twenty minutes on an Intel (R) Core (TM) 2 

CPU, T5600 @ 1.83 GHz, 987 MHz, and 2 GB of RAM. 

The following sections utilized the realized DEMs as inputs to estimate solar irradiation 

raster maps and then DEM uncertainties on these outputs are computed. 

5.4 GIS-Based Solar Radiation Model Simulation 

In this section, the data used for both the Solar Analyst and r.sun models are discussed, and 

the models implementation using the 1,000 realized equiprobable DEMs from the previous 

section and other inputs is demonstrated. 

DEM is a mandatory input data for both the Solar Analyst and r.sun solar radiation models. 

In this research, two types of DEMs are used as input to the models namely: (1) original 
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SRTM DEM of the study area, and (2) the 1,000 realized equiprobable DEMs from the 

MCMC simulation. 

In the case of Solar Analyst, slope and aspect maps are generated from the input DEM 

automatically by the model and then utilized in calculating the solar radiation. On the other 

hand, the r.sun model requires separate slope and aspect maps as inputs. Therefore, these 

maps are calculated for both the original SRTM DEM of the study area and the 1,000 

realized equiprobable DEMs using r.slope.aspect module available in GRASS GIS. Thus, for 

the original SRTM DEM of the study area, there is one raster map for both aspect and slope 

(Appendix E). Whereas, for the 1,000 realized equiprobable DEMs there are; 1,000 slope 

maps (Appendix F) and 1,000 aspect maps (Appendix G) generated. All these are used as 

inputs to the model. 

The    , is a major input of r.sun model. It "often normalized at an air mass = 2 to reduce its 

dependence on air mass and refers to the overall spectrally integrated attenuation, which 

includes the presence of gaseous water vapor and aerosols" (Nguyen and Pearce, 2010). It 

expresses the atmospheric turbidity or equivalently the attenuation of the direct solar 

radiation flux (Djafer and Irbah, 2013). The larger the     , the lower the sky transparency 

and thus the higher the attenuation of the solar radiation (Nguyen and Pearce, 2010). Typical 

values of the     varies between 1 and 10. High values of the     mean that the solar 

radiations are more attenuated in a clear sky atmosphere (Djafer and Irbah, 2013). A 

worldwide database of the     can be obtained from SoDa database. The SoDa's     data is 

derived from radiation or aerosol field measurements (AERONET), and satellite sources, 

such as global clear sky radiation, perceptible water vapor, and aerosol optical depth 

(pathfinder).     has been calculated with beam or global radiation measurements at the 

ground with the help of European Solar Radiation Atlas clear sky radiation model. Satellite 

and ground information have been fitted together (SoDa, 2012a) and the root mean square 

error (RMSE) is 0.73     units (Remund et al. 2003). In this study, the average monthly 

values of the     used for the r.sun model is obtained from the SoDa database by SoDa 

(2012), see Table 5.5. 

Table 5.5. Linke turbidity factor (SoDA, 2012) 

Month Monthly average 

Linke turbidity factor (AM
2
) 

January 6.7 

February 6.2 

March 6.8 

April 4.8 

May 6.8 

June 6.8 

July 5.4 

August 4.7 

September 5.8 

October 5.8 

November 6.6 

December 6.7 

Ground albedo or ground reflectance is also an important input of r.sun model. The term 

“ground albedo” is defined as the coefficient of reflection found in visible range of the 

spectrum, while “reflectance” connotes the reflected fraction of short-wave energy (Muneer 

and Tham, 2013). The ground albedo data is obtained from the NASA (2013) as point data. 
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It is a monthly average over the 22-year time frame (July 1983 - June 2005). Twelve raster 

layers for ground albedo are generated for 12 months by interpolation using the s.vol.rst 

module in GRASS GIS containing a tri-variate version of Regularized Spline with Tension 

(Neteler and Mitasova, 2004). To extract only the study area, each of the twelve rasters is 

clipped with the study area boundary polygon. However, examining the raster layers show 

that ground albedo in the study area is not varied; therefore, a constant value for each 

respective month is utilized in the calculation (Table 5.6). 

Table 5.6. Ground albedo (Neteler and Mitasova, 2004) 

Month Monthly average 

ground albedo 

January 0.180687 

February 0.190578 

March 0.205051 

April 0.205992 

May 0.209048 

June 0.216052 

July 0.223974 

August 0.224589 

September 0.218602 

October 0.204639 

November 0.194905 

December 0.185265 

Another important input to the r.sun model is the clear sky index (Kc). The Kc is calculated 

using different methods as follows: (1) ratio of global horizontal irradiation under clear sky 

condition to global horizontal irradiation under cloudy conditions is available (Hofierka and 

Šúri, 2002); (2) linear regression (Kasten and Czeplak, 1979) and (3) based on a cloud cover 

index derived from remote sensing data (Martins et al. 2007). However, in this study, the Kc 

data are obtained from the NASA (2013) as point data. It is a monthly average over the 22-

year period (July 1983 - June 2005). Similar method used in generating the ground albedo 

data is also adopted here. 

To avoid simulating 365 times for each day of the year (365 days), Klein’s definition of 

mean day (KDMD) is utilized. The KDMD "defines the mean day of each month to be the 

day for which daily horizontal extraterrestrial irradiance is approximately the same with the 

mean monthly averages" (Nguyen and Pearce, 2010). Based on KDMD, only 12 simulations 

are carried out. Table 5.7 in Duffie and Beckman (1991) gives the specific day of the month 

and year, and sun declination (δ) values to supply as input to the models during the 

simulation (Nguyen and Pearce, 2010). Thus, both the Solar Analyst and r.sun models are 

executed based on the dates or day of year from Table 5.7. 

Table 5.7. Monthly average days, dates and declinations (Duffie and Beckman, 1991) 

Month Date Day of year 

(n) 

Sun’s declination 

(δ) 

January 17 17 -20.9 

February 16 47 -13.0 

March 16 75 -2.4 

April 15 105 9.4 

May 15 135 18.8 

June 11 162 23.1 

July 17 198 21.2 

August 16 228 13.5 
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Table 5.7. Monthly average days, dates and declinations (Duffie and Beckman, 1991) (continued) 

Month Date Day of year 

(n) 

Sun’s declination 

(δ) 

September 15 258 2.2 

October 15 288 -9.6 

November 14 318 -18.9 

December 10 344 -23.0 

The simulation of GIS-based solar radiation models is done for both the two models 

considered in this study. These models are Solar Analyst and r.sun. 

The Solar Analyst model in ArcGIS is implemented using the original SRTM DEM of the 

study area, and each of the 1,000 realized equiprobable DEMs from the MCMC simulation. 

The diffuse model type of standard overcast sky is used together with other inputs, for 

example, elevation, slope and aspect computed from the input DEM, and latitude. Default 

values of 0.3 and 0.5 are used for the diffuse proportion and transmissivity, respectively. In 

terms of time configuration, the model is run for the whole year of 2012 based on Klein’s 

mean day (Table 5.7). Clear sky conditions are applied in these calculations which, for the 

selected site, are a reasonable approximation. In total, 1,225 data points are used in the study 

area. The raster outputs generated from this model comprised of four different types, global 

radiation (Wh/m
2
), direct radiation (Wh/m

2
), diffuse radiation (Wh/m

2
), and direct duration 

(hours). In the case of original SRTM DEM of the study area, there is a total of four (4) 

outputs only (Figures 6.23, 6.31, 6.39, 6.47), whereas, for the 1,000 realized equiprobable 

DEMs from the MCMC simulation, there are four thousand (4,000) output, i.e., 1,000 for 

each respective output type (Appendix H). Similarly, these outputs are imported to 

MaTLAB
®
 for further analysis. 

From the 2 operational modes available in r.sun, Mode 2 computes the sum of solar radiation 

for a specific day and for selected components of solar radiation which comprised of, beam, 

diffuse, reflected, and global radiations, and direct beam duration. Thus, all these 

components are selected when executing the model. The first step is specifying the DEM 

(elevation raster map), aspect and slope raster maps. The DEMs used for analysis are; 

original SRTM DEM of the study area and each of the 1,000 realized equiprobable DEMs 

from the MCMC simulation. On the other hand, the aspect and slope maps calculated 

previously are used. Second, the Klein’s mean day (Table 5.7) is used for each respective 

month (i.e., January - December). Third, the values of     (Table 5.5) and ground albedo 

(Table 5.6) is defined for each month accordingly. Fourth, the shadowing effect of terrain is 

incorporated. In addition, default options for some of the optional parameters such as time 

step (0.5) and sampling distance step coefficient (1.0) are maintained. Moreover, the analysis 

is done for clear-sky condition. Finally, the names of the output raster maps are specified. 

These outputs comprised of beam irradiation (Wh/m
2
), diffuse irradiation (Wh/m

2
), 

insolation time (hour), ground reflected irradiation (Wh/m
2
), and ground (total) irradiation 

(Wh/m
2
). All the outputs are produced in floating point, and as such both export and import 

followed the same format. In total, for the original SRTM DEM of the study area there are 

sixty output raster maps. However, this is reduced to five outputs by using the raster 

calculator to sum the monthly outputs of (January - December) to generate one single year's 

output for each of the five solar radiation components. Four of these outputs are presented in 

Figures 6.55, 6.63, 6.71, 6.79. On the other hand, the outputs for the 1,000 realized DEMs is 

60,000 raster maps, i.e., 12,000 raster maps for each of the respective five outputs. Similarly, 
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these outputs are reduced to 5,000 raster maps using the map algebraic tool (Appendix I). 

The 5,000 raster maps are exported as tiff format for further analysis in MaTLAB
®
. 

Finally, using the annually aggregated outputs of both the Solar Analyst and r.sun models 

generated above, the mean, standard deviation, coefficient of variation (CoV), and ratios are 

computed to provide a measure of uncertainty. The mean for each of the solar radiation 

component outputs is calculated using Equation (4.16), whereas, Equations (4.17) and (4.18) 

are used for computing standard deviation, and CoV, respectively. The results of these 

analyses are discussed extensively in Chapter 6. 
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CHAPTER 6 

 

RESULTS AND DISCUSSION 

 

In this Chapter, the implementation results of the proposed methodology are presented and 

discussed. The Chapter begins with assessment of uncertainty propagation in the digital 

elevation model (DEM), slope and aspect. The second part covers DEM uncertainty 

propagation on the Geographic Information System (GIS)-based solar radiation model 

outputs. Finally, the Chapter concludes with a comparison of Solar Analyst and r.sun models 

outputs. 

6.1 Uncertainty Propagation in DEM 

Figure 6.1 represents the mean of the realized DEMs in which the lowest and highest 

elevations are 472.5 m and 725.9 m, respectively. In comparison to Figures 5.4 and 5.5, it 

can be noted that similar landform patterns: a mountain in the North-East and some hills in 

the North, North-West, central part and South-East, while in the South-West a low land is 

observed. However, the major important differences observed is that the minimum elevation 

in the mean realized DEMs is lower than the corresponding minimum elevation from Shuttle 

Radar Topography Mission (SRTM) DEM of the study area by 4.5 m, whereas, the 

maximum elevation is lower by 4.1 m. Figure 6.2 shows the mean of 549.02 m and standard 

deviation of 56.55 m. 

  
Figure 6.1. Mean of realized DEMs Figure 6.2. Histogram for mean of realized DEMs 

The standard deviation map gives an idea of the local uncertainty associated with the 

computation of disparity (Senegas et al. 2006). The standard deviation of elevation error 

increases from 0.05 to 0.56 and mean of 0.15 (Figures 6.3 and 6.4). Figure 6.5 shows the 

coefficient of variation (CoV) map which is the ratio of the standard deviation to the mean of 

the realized DEMs multiplied by 100. It can be noted that the highest variability reaches up 

to 0.12% while the lowest is 0.01%. Pixels with higher CoV indicate greater elevation 
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variability and vice-versa. The corresponding histogram (Figure 6.6) indicates the mean of 

0.03%. As expected, the elevation error would increase as the surface slope increases based 

on fundamental research in topographic mapping (Maling, 1989). The findings of this study 

indicate that majority of the higher standard deviation of the elevation errors can be observed 

in steeper slopes. Thus, the results are consistent with the previous findings, for instance, 

Wechsler and Kroll (2006) who noted that elevation error is manifested in steeper slopes. 

However, the CoV also indicates that high standard deviation do not only occur in steep 

slopes but also in the valleys. This is very important because knowing error magnitudes and 

their spatial distribution helps identification of places requiring more consideration during 

the decision making (Gonga-Saholiariliva et al. 2011). Moreover, the finding shows that the 

local variability of errors is far better than the global values reported in the form of root 

mean squared error (RMSE) which dominates DEM uncertainty literature in the past 

decades. 

  
Figure 6.3. Standard Deviation for Mean of realized 

DEMs 
Figure 6.4. Histogram of Standard Deviation for Mean 

of realized DEMs 

  
Figure 6.5. CoV for Mean of realized DEMs Figure 6.6. Histogram of CoV for Mean of realized 

DEMs 

6.2 Uncertainty Propagation in Slope 

The slope maps are derived using ArcGIS 9.3
®
 (Appendix J). Figure 6.7 shows the slope 

derived from the SRTM DEM of the study area. The slope values range between 0
o
 and 26.6

o
. 

The mean slope is 5.51
o
 while 4.95

o 
represent the standard deviation (Figure 6.8). On the other 

hand, Figure 6.9 presents the mean slope of the realized DEMs. The minimum slope in Figure 

6.9 is 0.12
o
 and the maximum is 26.58

o
. As observed from Figure 6.10, the mean slope of the 
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realized DEMs has a mean slope value of 5.52
o
 and standard deviation of 4.95

o
. The standard 

deviation map and its corresponding histogram (Figures 6.11 and 6.12) show that a slope error 

standard deviation ranges from 0.23
o
 in steeper slopes to 16.87

o
 in flat surfaces. This is more 

noticeable from the CoV map and its corresponding histogram (Figure 6.13 and 6.14) in 

which the CoV lies between 0.09% in steeper areas to 6.78% in flat lands. Thus, on the spatial 

distribution of slope errors, the results of this study revealed that slope errors are more 

pronounced in flat terrain than steeper areas. The outcome of this study aligns with those of 

Carter (1992); Vieux (1993); and Zhou et al. (2006) who reported that slope errors generally 

are more prominent in flat surfaces and not consistent with Chang and Tsai (1991) who stated 

that slope errors are mainly concentrated in areas of steep slopes. The results can be explained 

due the fact that as the more gentle slopes are eliminated from consideration, the frequency 

distribution tended to be more uniform (Carter, 1992). 

  

Figure 6.7. Slope for SRTM DEM of the study area Figure 6.8. Histogram of slope for SRTM DEM of the 

study area 

  

Figure 6.9. Mean slope of realized DEMs Figure 6.10. Histogram for mean slope of realized 

DEMs 

 

30.0025.0020.0015.0010.005.000.00

Slope (Degree)

250

200

150

100

50

0

F
re

q
u

e
n

c
y

Mean = 5.5139
Std. Dev. = 4.95224
N = 1,225

30.0025.0020.0015.0010.005.000.00

Slope (Degree)

250

200

150

100

50

0

F
re

q
u

e
n

c
y

Mean = 5.5187
Std. Dev. = 4.9526
N = 1,225



72 

 

 
 

Figure 6.11. Standard deviation for mean slope of 

realized DEMs 
Figure 6.12. Histogram of standard deviation for mean 

slope of realized DEMs 

  

Figure 6.13. CoV for mean slope of realized DEMs Figure 6.14. Histogram of CoV for mean slope of 

realized DEMs 

6.3 Uncertainty Propagation in Aspect 

The aspect maps are derived using ArcGIS 9.3
®
 (Appendix K). The aspect map derived from 

SRTM DEM of the study area has minimum and maximum value of -1
o
 and 358.26

o
, 

respectively (Figure 6.15). It can be observed from Figure 6.16 that the mean aspect for the 

original SRTM DEM of the study area is 206.52
o
, while 69.33

o
 represent the standard 

deviation. Figure 6.17 which have a minimum of 2.6
o
 and maximum of 357

o
, represents the 

mean aspect of the realized DEMs. Based on Figure 6.18, 206.95
o
 and 68.91

o
 represent the 

mean and standard deviation, respectively for the mean aspect of the realized DEMs. Figure 

6.19 gives the spatial distribution of standard deviation of aspect derived from the realized 

DEMs. In Figure 6.20, 7.96
 o
 and 8.54

 o
 represent mean and standard deviation, respectively. It 

can be observed that there are higher standard deviations on flat terrains than undulating one. 

The highest CoV value reaches up to 7.6% on flat terrains as compared to 0% on undulating 

terrains (Figure 6.21). In the corresponding histogram (Figure 6.22), mean (0.46) and a 

standard deviation (0.61) are observed. The findings of this study confirm the assertion 

published in the works of Carter (1992); Chang and Tsai (1991); and Zhou et al. (2006) who 

noted that the concentration of aspect error is quite high at flat terrains. From the 

corresponding histogram (Figure 22), a mean of about 0.56% and a standard deviation of 0.61 

is observed. 
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Figure 6.15. Aspect for SRTM DEM of the study area Figure 6.16. Histogram of aspect for SRTM DEM of 

the study area 

  

Figure 6.17. Mean aspect of realized DEMs Figure 6.18. Histogram for mean aspect of realized 

DEMs 

  

Figure 6.19. Standard deviation for aspect of realized 

DEMs 
Figure 6.20. Histogram of standard deviation for 

aspect of realized DEMs 
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Figure 6.21. CoV for aspect of the realized DEMs Figure 6.22. Histogram for CoV of realized DEMs 

6.4 Uncertainty Proportion in Solar Analyst Outputs 

The direct radiation derived from the SRTM DEM (Figure 6.23) and mean direct radiation of 

realized DEMs (Figure 6.25) shows similar spatial distribution patterns. Higher terrains that 

are relatively flat produces the highest amount of direct radiation estimates than lower areas, 

valleys and steep slopes. However, it is observed that the original SRTM DEM of the study 

area overestimated the direct radiation in which the highest value reaches up to 49,922.0 

Wh/m
2
/year while the lowest value is 43,921.3 Wh/m

2
/year. The mean direct radiation of the 

realized DEMs has 49,898.0 Wh/m
2
/year and 43,891.4 Wh/m

2
/year as maximum and 

minimum values, respectively. Figure 6.24 indicates that the direct radiation derived from 

the SRTM DEM has a mean of 48,160.68 Wh/m
2
/year and standard deviation of 598.34 

Wh/m
2
/year. On the other hand, Figure 6.26 reveals that 48,138.46 Wh/m

2
/year represents 

the mean, while standard deviation is 599.03 Wh/m
2
/year for the mean of the realized DEMs. 

Figures 6.27 and 6.29 shows similar patterns, where hill tops that are relatively flat exhibit 

high error variations. However, an exception is noticed from the south-western part of the 

maps which is a low land but shows a similar pattern to the highlands.  

  

Figure 6.23. Direct radiation from the original SRTM 

DEM of the study area 
Figure 6.24. Histogram for direct radiation of SRTM 

DEM of the study area 
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Figure 6.25. Mean direct radiation of realized DEMs Figure 6.26. Histogram for mean direct radiation of 

realized DEMs 

  

Figure 6.27. Standard deviation for mean direct radiation 

of realized DEMs 

Figure 6.28. Histogram for standard deviation for mean 

direct radiation of realized DEMs 

 

 

Figure 6.29. CoV for mean direct radiation of realized 

DEMs 

Figure 6.30. Histogram of CoV for mean direct 

radiation of realized DEMs 

The diffuse radiation derived from the SRTM DEM (Figure 6.31) and mean diffuse radiation 

of realized DEMs (Figure 6.33) also show similar spatial distribution patterns in which the 
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estimated values of diffuse radiation shows a significant linear increase with elevation. In 

other word, higher terrain surfaces produced higher amount of diffuse radiation when 

compared to lower elevation terrains, valleys and steep slopes. Comparing the two diffuse 

radiation maps, one can observe that the original SRTM DEM of the study area slightly 

overestimated the diffuse radiation as the highest value is 14,189.7 Wh/m
2
/year and the 

lowest value is 13,245.2 Wh/m
2
/year. Whereas, the mean direct radiation of the realized 

DEMs has 14,182.9 Wh/m
2
/year and 13,241.6 Wh/m

2
/year as maximum and minimum 

values, respectively. The corresponding histogram of diffuse radiation maps shown in Figure 

6.32 indicates that the diffuse radiation generated from the SRTM DEM has a mean of 

13,756.07 Wh/m
2
/year and standard deviation of 126.30 Wh/m

2
/year. For mean of the 

realized DEMs (Figure 6.34), it is observed that 13,749.08 Wh/m
2
/year represent the mean 

and 126.25 Wh/m
2
/year constitute the standard deviation. The results of Figures 6.35 and 

6.37 reveal that higher standard deviation of diffuse radiation error mainly occur on steep 

slopes. The corresponding standard deviation and CoV histograms are shown in Figures 6.36 

and 6.38, respectively. 

  

Figure 6.31. Diffuse radiation from the original SRTM 

DEM of the study area 
Figure 6.32. Histogram for diffuse radiation from the 

original SRTM DEM of the study areas 

  

Figure 6.33. Mean diffuse radiation of realized DEMs Figure 6.34. Histogram for mean diffuse radiation of 

realized DEMs 
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Figure 6.35. Standard deviation for mean diffuse 

radiation of realized DEMs 
Figure 6.36. Histogram for standard deviation for mean 

diffuse radiation of realized DEMs 

  

Figure 6.37. CoV for mean diffuse radiation of realized 

DEMs 
Figure 6.38. Histogram of CoV for mean diffuse 

radiation of realized DEMs 

The spatial distribution patterns observed in direct and diffuse radiation maps is also 

noticeable in the global radiation maps (Figures 6.39 and 6.41). Higher elevation terrains 

produced higher values of global radiation than the lower elevation surfaces, valleys and 

steep slopes. The similarities of the results may be attributed to the fact that global radiation 

is the summation of direct and diffuse radiations. Assessment of the two global radiation 

maps reveals that the original SRTM DEM of the study area slightly overestimated the 

global radiation in which the highest value reaches 64,083.1 Wh/m
2
/year and 57,209.5 

Wh/m
2
/year represent the lowest value. On the other hand, the mean global radiation of the 

realized DEMs has 64,052.6 Wh/m
2
/year and 57,172.7 Wh/m

2
/year as maximum and 

minimum values, respectively. The corresponding histograms of global radiation maps 

indicated in Figure 6.40 reveal that the global radiation derived from the SRTM DEM has a 

mean of 61,916.75 Wh/m
2
/year and standard deviation of 698.98 Wh/m

2
/year, while Figure 

6.42 shows that the mean and standard deviation of the mean of the realized DEMs are 

61,887.54 Wh/m
2
/year and 699.69 Wh/m

2
/year, respectively. Figures 6.43 and 6.45 shows 

similar spatial patterns where hill tops that are relatively flat exhibit high variations of error. 

However, the south-western part of the maps which is a low land but exhibited a similar 

pattern to the highlands is an exception. Figures 6.44 and 6.46 represent the global radiation 

corresponding histograms for standard deviation and CoV, respectively. In Figure 6.44, the 
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mean is 9.55 Wh/m
2
/year and standard deviation is 7.16 Wh/m

2
/year. The mean of the CoV 

is 0.02, whereas, 0.01 represent the standard deviation (Figure 6.46). 

  

Figure 6.39. Global radiation from the original SRTM 

DEM of the study area 
Figure 6.40. Histogram for global radiation from the 

original SRTM DEM of the study area 

  

Figure 6.41. Mean global radiation of realized DEMs Figure 6.42. Histogram for mean global radiation of 

realized DEMs 

  

Figure 6.43. Standard deviation for mean global 

radiation of realized DEMs 
Figure 6.44. Histogram for standard deviation formean 

global radiation of realized DEMs 
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Figure 6.45. CoV for mean global radiation of realized 

DEMs 
Figure 6.46. Histogram of CoV for mean global radiation 

of realized DEMs 

Figures 6.47 and 6.49 shows the direct duration derived from the SRTM DEM and mean 

direct radiation of realized DEMs, respectively. These maps show similar spatial distribution 

patterns in both highlands and lowlands that are relatively flat and produced the highest 

amount of direct duration when compared to the valleys and steep slopes. In Figure 6.47, it 

can be observe that 143.30 hours/m
2
/year and 121.00 hours/m

2
/year represent the maximum 

and minimum estimates, respectively. The result of Figure 6.49 indicates that 120.92 

hours/m
2
/year (highest) and 143.13 hours/m

2
/year (lowest) represent the mean direct duration 

of the realized DEMs. The corresponding histograms of direct duration maps in Figure 6.48 

show that the direct duration derived from the SRTM DEM has a mean value of 138.16 

hours/m
2
/year and standard deviation of 3.84 hours/m

2
/year, while Figure 6.50 shows that the 

mean (138.01 hour/m
2
/year) and standard deviation (3.84 hour/m

2
/year) represent the mean 

of the realized DEMs. The standard deviation and CoV are presented in Figures 6.51 and 

6.53, respectively. The Figures reveal that standard deviations in higher elevation surfaces 

and some steep slopes are more pronounced than the lowlands and valleys. 

  

Figure 6.47. Direct duration from SRTM DEM of the 

study area 
Figure 6.48. Histogram for direct duration from SRTM 

DEM of the study area 
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Figure 6.49. Mean direct duration of realized DEMs Figure 6.50. Histogram for mean direct duration of 

realized DEMs 

  

Figure 6.51. Standard deviation for mean direct 

duration of realized DEMs 
Figure 6.52. Histogram of standard deviation for mean 

direct duration of realized DEMs 

  

Figure 6.53. CoV mean direct duration of realized 

DEMs 
Figure 6.54. Histogram of CoV of mean direct duration 

of realized DEMs 
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6.5 Uncertainty Proportion in r.sun Outputs 

Figures 6.55 and 6.57 report the r.sun's direct radiation outputs derived from the study area 

SRTM DEM and the mean of realized DEMs, respectively. By examining these two maps, 

one may observe that they both display similar spatial pattern in which relatively flat terrains 

account for higher values than the steep slopes. However, 49,305.50 Wh/m
2
/year and 

55,161.00 Wh/m
2
/year represent the minimum and maximum values in Figure 6.55. While in 

Figure 6.57, minimum value is 49,320.10 Wh/m
2
/year and the maximum value reaches up to 

55,146.50 Wh/m
2
/year. The mean direct radiation as observed from Figure 6.56 is 54,001.06 

Wh/m
2
/year while 604.27 Wh/m

2
/year represents the standard deviation. In the case of mean 

realized DEMs (Figure 6.58), 53,987.04 Wh/m
2
/year and 604.79 Wh/m

2
/year stand for the 

mean and standard deviation, respectively. The results of Figure 6.59 representing the 

standard deviation map, and Figure 6.61 as CoV reveals that the direct radiation errors occur 

in areas that are relatively flat in nature and some west-facing slopes. The corresponding 

histograms of standard deviation and CoV are shown in Figures 6.60 and 6.62, respectively. 

 

Figure 6.55. Direct radiation from the original SRTM 

DEM of the study area 

 

Figure 6.56. Histogram for direct radiation from the 

original SRTM DEM of the study area 

  

Figure 6.57. Mean direct radiation of realized DEMs Figure 6.58. Histogram of mean direct radiation of 

realized DEMs 
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Figure 6.59. Standard deviation for mean direct 

radiation of realized DEMs 
Figure 6.60. Histogram of standard deviation for mean 

direct radiation of realized DEMs 

  

Figure 6.61. CoV for mean direct radiation of realized 

DEMs 
Figure 6.62. Histogram for CoV for mean direct 

radiation of realized DEMs 

The outputs of diffuse radiation derived from the SRTM DEM and mean diffuse radiation of 

realized DEMs are presented in Figures 6.63 and 6.65, respectively. These figures show an 

identical spatial pattern where lowlands and gentle slopes located at the bottom of the major 

hills exhibit higher values, whereas the steep slopes have low values. Furthermore, the 

original SRTM DEM of the study area slightly overestimated the diffuse radiation as the 

highest value reaches 26,497.50 Wh/m
2
/year and the lowest value is 25,455.40 Wh/m

2
/year. 

On the hand, the mean diffuse radiation of the realized DEMs has 26,482.20 Wh/m
2
/year and 

25,451.40 Wh/m
2
/year as maximum and minimum values, respectively. The corresponding 

histogram of the diffuse radiation map indicated in Figure 6.64 reveals that the diffuse 

radiation derived from the SRTM DEM has a mean value of 26,340.67 Wh/m
2
/year and 

standard deviation of 113.00 Wh/m
2
/year. Figure 6.66 shows the result obtained from the 

mean of the realized DEMs with a mean of 26,338.68 Wh/m
2
/year and standard deviation of 

112.73 Wh/m
2
/year. Results presented in Figures 6.67 and 6.69 indicates that the diffuse 

radiation error occurs in relatively flat terrains irrespective of the differences in 

elevation/height. Figures 6.68 and 6.70 represent the corresponding histograms of standard 

deviation and CoV, respectively. 
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Figure 6.63. Diffuse radiation from SRTM DEM of the 

study area 
Figure 6.64. Histogram for diffuse radiation from 

SRTM DEM of the study area 

  

Figure 6.65. Mean diffuse radiation of realized DEMs Figure 6.66. Histogram of mean diffuse radiation of 

realized DEMs 

  

Figure 6.67. Standard deviation for mean diffuse 

radiation of realized DEMs 
Figure 6.68. Histogram of standard deviation for mean 

diffuse radiation of realized DEMs 
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Figure 6.69. CoV for mean diffuse radiation of realized 

DEMs 
Figure 6.70. Histogram of CoV for mean diffuse 

radiation of realized DEMs 

The global radiation outputs of r.sun derived from the SRTM DEM of the study area is 

represented in Figure 6.71 and the mean global radiation of realized DEMs in Figure 6.73. 

From Figure 6.71, the highest value of the global radiation estimates reaches 81,727.60 

Wh/m
2
/year and the lowest value is 75,550.80 Wh/m

2
/year. In the case of Figure 6.73, the 

maximum value is 81,660.70 Wh/m
2
/year and 75,463.40 Wh/m

2
/year represents the 

minimum value. These maps indicate slight differences but similar pattern in which higher 

terrains indicate higher values while lowlands, valleys and steep slopes shows low estimated 

values. Figure 6.72 reveal a mean value of 80,415.71 Wh/m
2
/year and standard deviation of 

627.33 Wh/m
2
/year. On the other hand, 80,350.99 Wh/m

2
/year and 630.02 Wh/m

2
/year 

represents the mean and standard deviation values in Figure 6.74, respectively. Based on the 

results presented in Figure 6.75, the error deviations of global radiation estimates are more 

prominent in the bottom and top edges of hills. The corresponding histogram (Figure 6.76) 

indicates a mean standard deviation of 666.33. Whereas, the CoV map (Figure 6.77) shows 

higher occurrence of deviations in relatively flat surfaces irrespective of elevation 

differences and the east-ward facing steep slope. Figure 6.78 shows the corresponding 

histogram of CoV. 

  

Figure 6.71. Global radiation from the SRTM DEM of 

the study area 
Figure 6.72. Histogram for global radiation from the 

original SRTM DEM of the study area 
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Figure 6.73. Mean global radiation of realized DEMs Figure 6.74. Histogram of mean global radiation of 

realized DEMs 

  

Figure 6.75. Standard deviation for mean global 

radiation of realized DEMs 
Figure 6.76. Histogram of standard deviation for mean 

global radiation of realized DEMs 

  

Figure 6.77. CoV for mean global radiation of realized 

DEMs 
Figure 6.78. Histogram for CoV for mean global 

radiation of realized DEMs 

As observed from Figures 6.79 and 80 and 6.81 and 82, the characterization of direct 

duration by r. sun model in the study area SRTM DEM and Mean realized DEMs are similar 

in terms of spatial distribution. However, results of Figure 6.79 show that areas located in the 
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valleys exhibit lower estimates of direct duration than what is obtainable in Figure 6.81. In 

respect to SRTM DEM of the study area, it can be observed that 143.50 hours/m
2
/year and 

122.00 hours/m
2
/year represent the maximum and minimum values, respectively, while 

143.97 hours/m
2
/year (highest) and 126.00 hours/m

2
/year (lowest) represent the direct 

radiation mean of the realized DEMs. The corresponding histograms of direct duration maps 

indicated in Figure 6.80 reveal that the direct duration derived from the SRTM DEM has a 

mean of 140.83 Wh/m
2
/year and standard deviation of 2.99 Wh/m

2
/year, while Figure 6.82 

shows that the mean (140.82 Wh/m
2
/year) and standard deviation (3.01 Wh/m

2
/year) are 

obtained from the direct duration estimates derived from the mean of realized DEMs. Figures 

6.83 and 6.85 shows a similar spatial distribution pattern in which the west-facing slopes 

exhibit higher standard deviation of errors and then followed by some pockets of relatively 

higher standard deviation that are sparsely distributed irrespective of the nature of the terrain. 

The corresponding standard deviation and CoV are shown in Figures 6.84 and 6.86, 

respectively. 

  

Figure 6.79. Direct duration from the study area SRTM 

DEM 
Figure 6.80. Histogram for direct duration from the 

study area SRTM DEM 

  

Figure 6.81. Mean direct duration of realized DEMs Figure 6.82. Histogram of mean direct duration of 

realized DEMs 
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Figure 6.83. Standard deviation for mean direct 

duration of realized DEMs 
Figure 6.84. Histogram of standard deviation for mean 

direct duration of realized DEMs 

  

Figure 6.85. CoV for mean direct duration of realized 

DEMs 
Figure 6.86. Histogram of CoV for mean direct duration 

of realized DEMs 

6.6 Comparison of Solar Analyst and r.sun Outputs 

There is no meteorological station that observes radiation data in the study area. 

Furthermore, an attempt is made to validate the outputs of the two models (Solar Analyst and 

r.sun) obtained in this study with the NASA radiation data and/or SoDA radiation data but 

unfortunately the spatial resolution of these data sets are very low. For instance, the spatial 

resolution of NASA’s radiation data is 1
o
 x 1

o
 (111.12 km x 111.12 km). In this regard, a 

relative comparison based on statistical analysis is carried out with a view of determining the 

significant difference between the radiation estimates of the two models. The outputs 

considered are both generated by the two models and comprised of direct/beam radiation, 

diffuse radiation, global radiation, and direct duration. The reflected radiation generated only 

by the r.sun is not considered. 

First, test of normality is conducted for all the outputs and the result indicates that all the 

model distribution are not normally distributed (Appendix L). Hence, the Mann-Whitney U 

test which is a non-parametric test is used (Appendix M). The results show that at 95% 

confidence level, there exists a significant statistical difference in the models (Solar Analyst 

and r.sun) estimates. This may be related to the different approaches that these models apply 

to obtain solar radiation estimates. However, it is important to note that both models compute 
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solar radiation estimates based on the terrain information (elevation, slope, and aspect) 

available in a DEM (Ruiz-Arias et al. 2009). 

Second, since there exists a significant statistical difference in the estimated distributions of 

the models, the ratio of Solar Analyst to r. sun is calculated and the results are classified into 

two or three classes depending on the variations using K-means clustering method (Equation 

4.19). 

6.6.1 Ratio of Solar Analyst to r.sun 

In this section, the Solar Analyst estimates of direct radiation, diffuse radiation, global 

radiation and direct duration are compared with respect to that of r.sun by computing their 

ratio. The aim here, is to find areas of similarity and dissimilarity in the estimates of the two 

models. 

For direct radiation, it can be observed from Figure 6.87 that the highest estimate differences 

between the two models occur on steep slopes and lowlands. Whereas, ridges represent low 

differences. In contrast, valleys give similar values. Based on this analysis, it can be 

concluded that the Solar Analyst gives greater differences than r.sun. 

The estimates of diffuse radiation by the two models are similar in high elevation areas that 

are relatively flat. However, Solar Analyst exhibit higher estimates than r.sun model with 

respect to steep slopes, valleys, and lowlands (Figure 6.88). 

  

Figure 6.87. Ratio of Solar Analyst to r.sun mean direct 

radiation 
Figure 6.88. Ratio of Solar Analyst to r.sun mean 

diffuse radiation 

The result presented in Figure 6.89 revealed that differences in global radiation estimated 

values of Solar Analyst is similar to that of r. sun in the highlands. On the other hand, Solar 

Analyst model has higher differences in estimates than r.sun model in lowlands. However, 

the Solar Analyst performs better than r. sun in steep slopes and valleys. 

The Solar Analyst's greatest magnitude of the estimated values of direct duration over r. sun 

model occurs in highlands, lowlands, ridges, and east-west facing slopes. Whereas, it is 

noted that the two models have similar estimates of direct duration estimated values mostly 

in valleys (Figure 6.90). 
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Figure 6.89. Ratio of Solar Analyst to r.sun mean global 

radiation 
Figure 6.90. Ratio of Solar Analyst to r.sun mean direct 

duration 

6.6.2 Ratio of Uncertainties in Solar Analyst to r.sun  

Figure 6.91 reveals that the uncertainties of the estimated values of direct radiation by Solar 

Analyst model are greater than r.sun model in areas comprises of lowlands, valleys, and 

south-facing steep slopes. On the other hand, similar uncertainty values for both models are 

observed on low lands and east-facing slopes. Solar Analyst has lower uncertainty than r.sun 

in the highlands which are relatively flat in nature (Figure 6.91). Though, an exception is 

observed in the south-western part of the map where lowland exhibited low uncertainty. In 

general, Solar Analyst model exhibits higher uncertainty than r.sun model. 

Based on the pattern shown in Figure 6.92 it can be noted that Solar Analyst exhibit higher 

uncertainty than r.sun model for the estimated values of diffuse radiation. The areas that 

exhibited the characteristics of high uncertainty include ridges and lowlands. On the other 

hand, the south-facing slopes produce similar uncertainty with respect to both models. 
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Figure 6.91. Ratio of Solar Analyst to r.sun direct 

radiation’s standard deviation uncertainty 
Figure 6.92. Ratio of Solar Analyst to r.sun diffuse 

radiation’s standard deviation uncertainty 

Figure 6.93 shows that the uncertainties in global radiation estimated by Solar Analyst for 

the valleys and lowland that are relatively flat in nature are higher than the r.sun model's 

results. Both models produce similar uncertainty mostly in steep slopes. Whereas, 

uncertainties of Solar Analyst results are lower than r. sun model in relatively flat surfaces 

irrespective of elevation height. 

Based on the results of Figure 6.94, it can be noted that similar uncertainties with respect to 

hours of direct radiation of both models are randomly distributed in nature and found on 

relatively flat terrains, valleys and steep slopes. On the other hand, the Solar Analyst shows 

higher uncertainty than the r.sun model for direct duration. 

  

Figure 6.93. Ratio of Solar Analyst to r.sun global 

radiation’s standard deviation uncertainty 
Figure 6.94. Ratio of Solar Analyst to r.sun direct 

duration’s uncertainty 

6.6.3 Ratio of Solar Analyst to r.sun Coefficient of Variation (CoV) Uncertainty 

Figure 6.95 illustrates that the two models have similar CoV for direct radiation in areas that 

are relatively flat irrespective of elevation height differences. On the other hand, a high 

percentage of lowlands and steep slopes indicate greater variability in Solar Analyst model. 
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The CoV ratio of Solar Analyst to r.sun model with respect to the diffuse radiation is shown 

in Figure 6.96. Valleys and steep slopes exhibit similar values for both models, while gentle 

slopes and relatively flat terrains indicate that Solar Analyst has higher CoV than the r.sun 

model. 

  

Figure 6.95. Ratio of Solar Analyst to r.sun Direct 

Radiation’s CoV uncertainty 
Figure 6.96. Ratio of Solar Analyst to r.sun Diffuse 

Radiation’s CoV uncertainty 

The global radiation’s CoV ratio of the two models shows a similar result obtained in direct 

radiation where areas characterized as relatively flat, irrespective of variations in elevations, 

reveals similar values. However, greater variability of Solar Analyst over r.sun model 

estimates are noticed in low lands and steep slopes (Figure 6.97). 

Based on the results shown in Figure 6.98, higher variations of Solar Analyst over r.sun 

model estimates of direct duration occur in low lands and steep slopes. On the other hand, 

similar variation values for both models are randomly observed irrespective of variation in 

elevation. The lower variations for both models are also randomly distributed. 

  

Figure 6.97. Ratio of Solar Analyst to r.sun Global 

Radiation’s CoV uncertainty 

Figure 6.98. Ratio of Solar Analyst to r.sun Direct 

Duration’s CoV uncertainty 
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CHAPTER 7 

 

CONCLUSIONS AND OUTLOOK 

 

7. 1 Conclusions 

Solar radiation resource maps are vital for many areas of human endeavor especially for the 

purpose of decision-making regarding resource management and scientific research. 

Therefore, decision makers or scientists are often presented with solar radiation resource 

maps derived from Geographic Information System (GIS) for use in the process of 

discharging their legitimate responsibilities. However, in most cases, adequate information 

concerning the accuracy of those maps is not provided (also common to many GIS analysis 

products). As such, there is a great potential for decision-makers or scientists to err by over- 

or under-estimating the solar radiation map accuracy level. Thus, it is important that GIS 

community provides uncertainty information and educate decision-makers so as to have a 

better understanding of the possible sources of errors related to solar radiation maps and how 

to minimize them. As decision-makers become more aware of data accuracy and uncertainty 

propagation with respect to the products of GIS-based solar radiation models, they will be 

able to make a better decision which reassures both the decision makers and related 

stakeholders. On the other hand, decisions which are based on inaccurate data may lead to an 

increased probability of implementing wrong actions. This will ultimately bring about 

erroneous resource management actions which can have devastating repercussions on the 

limited resources. For instance, resource degradation, negative impacts on ecosystem(s), 

potential detrimental human health impacts, and economical impacts. As products of GIS-

based solar radiation models are increasingly utilized as the basis of decision-making on 

resource management and regulatory issues, there is a great possibility for an increased 

number of litigation cases. 

In this study, an MCMC simulation method that incorporates spatial autocorrelation in the 

digital elevation model (DEM) is developed with the aim of assessing the impact of DEM 

uncertainty in GIS-based solar radiation models. The method utilizes SRTM DEM error 

probability distribution function (pdf), and variogram model parameters of the study area 

SRTM DEM. Statistical analysis of the data extracted from Rodríguez et al. (2006) indicates 

that SRTM DEM error shows the lognormal distribution with a mean of 4.209 m and 

standard deviation of 0.054 m. On the other hand, exponential variogram model with sill of 

125.74, range of 1,556.85, and nugget of 0 represent the spatial autocorrelation of the study 

area's DEM and is incorporated into the Metropolis-Hasting algorithm as a priori 

information. A total of 1,080 simulations is executed using 2m chains. However, the initial 

burn-in period of 80, representing 7.41% of the simulation is discarded. A multivariate 

potential scale reduction factor (MPSRF) of 0.99 is obtained after executing 1,080 MCMC 

simulations which indicate that the MCMC sampler has converged to a stationary 

distribution, since it is less than 1.1 as recommended by Gelman et al. (2004). Therefore, it is 

assumed that the results are drawn from the target probability distribution (lognormal pdf). 
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On the other hand, the check for variogram reproduction based on 95% confidence level 

indicates that the variogram simulation remains valid since T
2
=1.751 is less than the 

corresponding F-statistic of 23.19. The above process is coded and executed in MaTLAB. 

The total computing time for executing the codes is five hours and twenty minutes (5:20) on 

a laptop which has an Intel (R) Core (TM) 2 CPU, T5600 @ 1.83 GHz, 987 MHz, and 2 GB 

of RAM. 

Thus, the proposed framework allows analysis and management of uncertainty in the DEM 

data. The 1,000 simulated errors are deducted from the original SRTM DEM of the study 

area to generate 1,000 realized equiprobable DEMs which serves as input to the solar 

radiation models. Therefore, each of the 1,000 realized DEMs, the original SRTM DEM of 

the study area, and other inputs of the models (Solar Analyst and r.sun) are used to estimate 

the solar radiation products in the study area. The processing time of these models indicates 

that r.sun is faster than the Solar Analyst. However, one major advantage of Solar Analyst 

over the r.sun is that it is structured in such a way that one can either compute solar radiation 

for a specific day, month or year. Unlike Solar Analyst, the r.sun model is structured to 

compute solar radiation on daily basis which is time demanding. DEM uncertainty 

propagation in slope, aspect, and solar radiation maps estimated using Solar Analyst and 

r.sun are investigated by computing summary statistics such as mean, standard deviation, 

and coefficient of variation (CoV) (the last two are a measure of output uncertainty). Finally, 

the outputs of the two solar radiation models are compared. The proposed framework is 

implemented in a case study area of Abuja, Nigeria. 

DEM quality generally influences the results produced by GIS-based solar radiation models 

(Pons and Ninyerola, 2008). Terrain nature is a major factor that determines the variance of 

the solar radiation spatial distribution. Thus, variation in elevation, slope, aspect and 

shadowing effects of terrain features all affect the solar radiation values obtained at any 

specific geographic location (Fu and Rich, 1999; Huang and Fu, 2009). Therefore, DEM 

uncertainty propagates in GIS-based solar radiation models through elevation and its 

derivatives; slope and aspect. Larger differences in elevation, slope and aspect are found to 

be correlated with steep slopes and rugged terrain. 

Based on the implementation outcomes of this study, the following concluding remarks are 

obtained; 

 Widespread DEMs, for example, SRTM are distributed with accuracy figures that 

only give global measures such as root mean square error (RMSE) lacking any 

information regarding the spatial distribution of error (Hebeler, 2008). However, in 

this study the MCMC simulation is used to generate multiple realizations of the 

DEM error surface that reproduce the error measurements at their original locations. 

These DEM errors had a significant impact on terrain attributes which compound 

elevation values of many grid cells (for instance, slope and aspect). The findings 

show that local variability of errors are far better than the global values reported in 

the form of RMSE which dominates DEM uncertainty literature in the past decades. 

 Spatial autocorrelation is essential for spatial uncertainty analysis. Therefore, this 

present study reproduced the spatial autocorrelation structure of SRTM DEM for the 

study area. 
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 As expected, the elevation error would increase as the surface slope increases based 

on fundamental research in topographic mapping (Maling, 1989). The findings of 

this study indicate that majority of large deviations of elevation errors are manifested 

in steeper slopes. Therefore, the results are consistent with the previous findings of 

Wechsler and Kroll (2006). In addition to steep slopes, the CoV reveals that larger 

deviations also occur in the valleys. This is very important because knowing error 

magnitudes and their spatial distribution helps identification of places requiring more 

consideration during the decision making process (Gonga-Saholiariliva et al. 2011). 

 It is observed that the spatial distribution of slope errors is more pronounced in flat 

terrain than steeper areas. The results of this study are aligned with those of Carter 

(1992); Vieux (1993); Zhou et al. (2006) but not consistent with Chang and Tsai 

(1991) who stated that slope errors are mainly concentrated in areas of steep slopes. 

The results can be explained due the fact that as the more gentle slopes were 

eliminated from consideration, the frequency distribution tended to be more uniform 

(Carter, 1992). 

 The findings of this study support the assertion published in the works of Carter 

(1992); Chang and Tsai (1991); Zhou et al. (2006) who noted that the concentration 

of aspect error is quite high at flat terrains. 

 Generally, the two models (Solar Analyst and r.sun) overestimate the incoming 

radiation with respect to the original SRTM DEM of the study area. Note that this 

overestimation indicates lower reliability of SRTM DEM. 

 The results of both models showed a better performance using the realized DEMs 

from the proposed MCMC simulation than the original SRTM DEM. 

 For Solar Analyst model, DEM uncertainty has greater effect on diffuse radiation 

and direct duration. Whereas, direct and global radiations are less affected. 

 For r.sun model, the DEM uncertainty has less influence on solar radiation outputs. 

 Comparison of the two models shows that Solar Analyst has higher uncertainty than 

the r.sun. In other words, r.sun is more robust. 

 Interestingly, the study reveals that relatively flat terrains where DEM uncertainty 

seems to be low exhibit higher uncertainty of solar radiation products. This indicates 

that DEM may not be the only input associated with uncertainty. Hence, there is a 

need for further investigation with respect to the other inputs. 

 Solar radiation maps, for example, direct radiation maps are important for 

concentrated solar photovoltaic (CSP) or concentrated photovoltaic (CPV), and 

photovoltaic technologies; diffuse radiation maps are needed for building 

climatology – day lighting, photovoltaic technologies; and global radiation are 

required for solar collectors that are flat in nature, heat  and agricultural purposes. 

Therefore, using these maps without considering uncertainty will have negative 

consequences on the decision making, for instance, waste of resources, low 

output/productivity, and low agricultural harvest. 

The implications of the results obtained from this study is discussed on two major issues 

related to the current challenges facing the Nigerian electricity sector, namely, (1) increase in 

electricity generation for domestic and industrial use, and (2) a resource for assisting 

decision-makers in allocating sites for CSP or CPV projects. 

The study reveals that there are vast potential of solar energy resources in Nigeria even 

though the area coverage of study is very small compared to the size of the country. 
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However, previous studies such as Sambo (2005); Fadare (2009) and the like have reported 

the Nigeria's endowment of such a huge solar resource. Moreover, the location of Nigeria 

near the Equator is another indicator. Therefore, harnessing this resource through the 

establishment of CSP or CPV plants will contribute immensely to the electricity generation 

capacity for Nigeria. For instance, Alstom (2013) noted that CSP is an ideal approach for 

both harvesting the solar energy potential for large scale grid connected power generation, 

and remote industrial applications. Currently, there are various capacities of CSP plants 

ranging from 1 to 64 megawatts (MW). However, it is important to note that the sitting of 

CSP and CPV projects are generally based on exclusion criteria, for instance, protected 

areas, and land use such as agricultural and forestry areas, grasslands, or any area assumed 

unsuitable due to socio-geographical reasons. 

The importance of using solar energy in Nigeria will not only be confined to improving the 

electricity generation which will be distributed through the national grid with the aim of 

helping to meet the shortfall of peak-load demand that the country is presently experiencing, 

but also contribute to meeting the demands of both the remote sites and urban centers. 

Photovoltaic (PV) technology is a good potential for such locations because it has shown an 

increased promise in terms of efficiency improvements and costs. The estimated lifetime of 

PV modules based on manufacturer's specifications are 25 and 30 years making them 

exceptionally attractive for investors. Today, all the PV modules in the Nigerian market are 

imported. Solar PV systems can be extensively used for a wide range of electrical energy 

requirements, including; solar home systems, water pumping systems, refrigeration and 

telecommunications that will reduce the load curve of electricity demand. These applications 

have positive social and economic impact on the lives of individual users, businesses and 

communities. Therefore, since solar radiation in Nigeria is fairly well distributed, a rural 

electrification drive based on PV power systems should be pursued for supplying energy to 

homes, schools, clinics, small and medium scale farms, and small businesses. In addition, 

urban areas are not excluded when considering rooftop applications. 

Therefore, investing in these technologies will definitely reduce the Nigeria's heavy reliance 

on fossil fuel sources which by all evidences could not provide sufficient and sustainable 

energy for Nigeria's developmental objectives and the reduction of environmental pollution. 

Moreover, substituting fossil fuels with renewable energy sources is regarded as a significant 

measure for cutting global carbon emissions (IPCC, 2001). Full use of these resources can 

help mitigate global warming in environmental terms, meet energy needs in economic terms, 

and provide employment in rural areas in socioeconomic terms (UNCSD, 2002). 

The results of this study will also be a very useful resource in assisting decision-makers of 

such agencies like the Energy Commission of Nigeria, Nigerian Electricity Regulatory 

Commission, among others in allocating appropriate sites for establishing CSP or CPV 

projects. Thereby preventing them from unnecessary litigations and waste of resources. 

7. 2. Future Outlook 

Spatially varying inputs such as slope, aspect, linke turbidity factor, and ground albedo also 

have uncertainty associated with them. Therefore, the challenge of incorporating all the 

spatially varying inputs needs to be addressed and their impact shall be assessed.  

There is also the need to apply the methodology using different kind of DEMs, for instance, 

Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER), GTOPO30, 
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and hypothetical DEMs. The application on hypothetical DEMs may be very useful because 

one knows what is going on during its creation which will assist in explaining the outcome 

of the analysis. 
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APPENDIX A 

 

R CODES  

 
# load library 

library(rgdal) 

library(maptools) 

library(spdep) 

library(spgwr) 

library(gstat) 

library(automap) 

library(spatstat) 

library(lattice) 

library(sp) 

library(RColorBrewer) 

library(mgcv) 

library(rpart) 

library(kernlab) 

library(StatDA) 

library(raster) 

library(ape) 

station<-readShapePoints("C:\\abdurrahman\\dem_sa.shp") 

variogram = autofitVariogram(dem_sa,elev) 

plot(variogram) 

variogram 
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APPENDIX B 

 

MATLAB CODES FOR THE PROPOSED MCMC SIMULATION 

 

I. Main 

clc; % clear command window 

clear; % clear variables and functions from memory and removes all variables from the 

workspace 

 

global range mu_normal var_normal spat_autoco length_of_iteration array_size 

mparalel_chain nb_of_files original_dem % global variables 

 

sill=125.74 % Variogram parameters (depends on array_size - study area) 

range=1556.85 % Variogram parameters (depends on array_size - study area) 

 

lognormal_mean=4.2094;lognormal_var=0.05421; % lognormal pdf parameters 

mu_normal=log(lognormal_mean)-0.5*log(1+(lognormal_var/(lognormal_mean^2))); % 

calculates normal mean from lognormal mean 

var_normal=log(1+(lognormal_var/(lognormal_mean^2))); % calculates normal variance 

from lognormal variance 

length_of_iteration=1080 % number of iteration 

array_size=1225 % study area size (must be a square area) 

spat_autoco=spatial_autoco(array_size); % calls spat_autoco function 

normal_mean=0;normal_sigma=var_normal; % parameters of normal distribution for 

generating candidates (arbitrary) 

mparalel_chain=2 % number of different runs 

mean_matrix=[]; % initialize mean_matrix with empty matrix 

threed_storage_matrix=zeros(array_size,length_of_iteration+1,mparalel_chain); % 

initialization of 3D storage matrix 

nb_of_files=length_of_iteration % number of image files to be created (last columns to 

be selected) 

original_dem = double((imread('dem_35x35.tif'))); % study area dem data 

 

for k=1:mparalel_chain 

 

 initial_array=rand(array_size,1)*0.1+1.4; % random array for mparalel chains 

 dispersed starting values 

 current_array=initial_array; % current sample 

 storage_matrix=initial_array; % stores the initial array 
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 for i=1:length_of_iteration 

 

 candidate_array=normrnd(normal_mean,normal_sigma,[array_size,1])+current_arra

 y; % generate candidate vector of random numbers from normal distribution 

 p_candidate=accept_prob(candidate_array); % calculate probability of candidate 

 p_current=accept_prob(current_array); % calculate probability of current state 

 acceptance_criteria=min([1 p_candidate/p_current]); % calculates the acceptance 

 criteria 

 

 if acceptance_criteria-rand>0 % subtracts acceptance criteria from a random value 

  (scalar) and compare with zero (0) 

  current_array=candidate_array; % if the previous process is greater than  

  zero then current array is equal to candidate array 

  storage_matrix=[storage_matrix candidate_array]; % appends the storage 

  matrix  with the accepted candidate 

 else 

  storage_matrix=[storage_matrix current_array]; % appends the storage  

  matrix with the current_array 

end 

 

end 

 

if (k==1) 

 threed_storage_matrix(:,:,1)=storage_matrix; % stores the storage matrix as the first 

 item in the 3D storage matrix drawer when k==1 

else 

 threed_storage_matrix=cat(3,threed_storage_matrix,storage_matrix); % drawer gets 

 deeper with the new storage matrix 

end 

 

 mean_matrix=[mean_matrix mean(storage_matrix,2)]; % row-wise mean of each 

 storage matrix in each chain 

 

end 

 

% Brooks and Gelman multivariate potential scale reduction factor 

(MPSRF)convergence diagnosis 

w_chainvariance=within_chain_var(mean_matrix,threed_storage_matrix); % calls the 

within chain variance function 

btw_chain_var=between_chain_var(mean_matrix); %calls the between chain variance 

function 

v_hat=(length_of_iteration-

1)/length_of_iteration*w_chainvariance*(1+1/mparalel_chain)*btw_chain_var % 

calculates the variance estimate 

multivariate_potential_scale_reduction_factor=sqrt(v_hat) % calculates the multivariate 

potential scale reduction factor (MPSRF) 

r_hata=sqrt(v_hat/w_chainvariance) 

zz_mat=(1/length_of_iteration)*inv(w_chainvariance)*btw_chain_var; 
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r_hat=sqrt((length_of_iteration-

1)/length_of_iteration+(mparalel_chain+1)/mparalel_chain*max(eig(zz_mat))) 

 

% variogram reproduction check 

ref_variogram_model=reference_variogram(sill,range) % calls reference var function 

(reference variogram) 

 

% selects last n-samples of the iteration from the storage matrix 

svar_of_some_dist_in_last_nsamples_mat=[]; % initialize an emty matrix for 

semivariance of specific distances 

mean_array_of_svar_of_some_dist_in_last_nsamples=[]; % initialize an emty matrix to 

store row-wise mean of semivariances for specific distances of n-samples 

 

for n=length_of_iteration:-1:length_of_iteration-99 % creates a dummy variable for last 

 n-samples (n - pointer and iteration) 

 

 n; 

 svar_mat_of_last_nsamples=semivariance_cal(storage_matrix(:,n),array_size); % 

 calculates the semivariance for each of the last 500 samples using semivariance_cal 

 mean_lag_dist_array=mean_lag_dist_cal(svar_mat_of_last_nsamples); % calculates 

 mean semivariance of all distances using mean_lag_dist_cal function 

 %important for defining the corresponding distances to reference variogramdistance 

 svar_of_some_dist_in_last_nsamples=mean_lag_dist_array(2:sqrt(array_size):array

 _size); % mean semivariance of distances corresponding to those of reference 

 semivariance model 

 svar_of_some_dist_in_last_nsamples_mat=[svar_of_some_dist_in_last_nsamples_m

 at svar_of_some_dist_in_last_nsamples]; % creates a matrix that contains 

 semivariances for specific lag distances of last n-samples 

 

end 

 

mean_array_of_svar_of_some_dist_in_last_nsamples=[mean_array_of_svar_of_some_d

ist_in_last_nsamples mean(svar_of_some_dist_in_last_nsamples_mat,2)] 

diff_btw_mean_array_n_ref_var=mean_array_of_svar_of_some_dist_in_last_nsamples-

ref_variogram_model; % difference between mean of lag distances and reference 

variogram 

sample_cov_mat=sample_cov_mat_cal(svar_of_some_dist_in_last_nsamples_mat,mean

_array_of_svar_of_some_dist_in_last_nsamples); % computes the covariance matrix 

using svar_of_some_dist_in_last_nsamples_mat 

svar_of_some_dist_in_last_nsamples_mat_size=size(svar_of_some_dist_in_last_nsampl

es_mat); %calculates the number of last n-samples 

T_square=svar_of_some_dist_in_last_nsamples_mat_size(2)*diff_btw_mean_array_n_r

ef_var'*sample_cov_mat*inv(sample_cov_mat)*diff_btw_mean_array_n_ref_var % 

calculates T-squares 

fdist_1=(svar_of_some_dist_in_last_nsamples_mat_size(2)-

1)*svar_of_some_dist_in_last_nsamples_mat_size(1)/(svar_of_some_dist_in_last_nsam

ples_mat_size(2)-svar_of_some_dist_in_last_nsamples_mat_size(1)) 



119 

 

f_tabulated = 

finv(0.95,svar_of_some_dist_in_last_nsamples_mat_size(1),svar_of_some_dist_in_last_

nsamples_mat_size(2)-svar_of_some_dist_in_last_nsamples_mat_size(1)) 

f_dist_value=fdist_1*f_tabulated % f-distribution value for alpha=0.05 

 

% Transformation of storage matrix from array to matrix 

 

storage_matrix_size=size(storage_matrix); % finds the size of storage matrix 

lastmatrices_lognorm_3d_mat=zeros(sqrt(array_size),sqrt(array_size),nb_of_files); % 

initialization of 3D storage matrix 

new_dems_3d_mat=zeros(sqrt(array_size),sqrt(array_size),nb_of_files); % initialization 

of 3D storage matrix 

 

for c=1:nb_of_files 

 

 column=storage_matrix(:,storage_matrix_size(2)-c); % finds the last n columns of 

 the storage matrix 

 lastmatrices=reshape(column,sqrt(array_size),sqrt(array_size)); % reshape the last n 

 columns of the storage matrix to a matrix 

 lastmatrices_lognorm=exp(lastmatrices); % transform the last n-matrices to 

 lognormal 

 lastmatrices_lognorm_3d_mat(:,:,c)=lastmatrices_lognorm; % the 3d matrix is filled 

 with lastmatrices_lognorm 

 lastmatrices_lognorm_32=uint16(lastmatrices_lognorm.*1000); % convert float to 

 integer 

 imwrite(lastmatrices_lognorm_32,strcat('sim_error_',num2str(c),'.tif')); % Transform 

 the matrix to image files 

 

end 

 

% calculates mean, standard deviation and coefficient of variation using simulated errors 

mean_error=error_mean(lastmatrices_lognorm_3d_mat) % calls the function of mean 

error 

std_dev_of_error=error_std_dev(lastmatrices_lognorm_3d_mat,mean_error) % calls 

function standard deviation error 

coeff_of_var=(std_dev_of_error./mean_error)*100 % calculate the coefficient of 

variations 

 

% converts mean error to integer and write as tif file 

mean_error_32=uint16(mean_error.*1000); 

imwrite(mean_error_32,strcat('mean_dem','.tif')); 

 

% convert standard deviation of error to integer and write as tif file 

std_dev_of_error_32=uint16(std_dev_of_error.*1000); 

imwrite(std_dev_of_error_32,strcat('stddev_of_error','.tif')); 
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II. Functions 

 

a. Acceptance Probability 

function acceptance_prob=accept_prob(candidate_array) % declares the function 

acceptprob 

 

global mu_normal spat_autoco % declares the global variables 

 

size_of_cand_array=size(candidate_array); 

 

m=1/(2*3.14)^(size_of_cand_array(1)/2); 

n=1/(sqrt(norm(spat_autoco))); 

q=exp(-0.5*(candidate_array-mu_normal)'*inv(spat_autoco)*(candidate_array-

mu_normal)); 

 

acceptance_prob=m*n*q; 

b. Spatial Autocorrelation 

function spat_autoco=spatial_autoco(array_size) % declares function spatial_autoco 

which calculate spatial autocorrelation 

 

global range var_normal % global variables 

 

for i=1:array_size  

 for j=1:array_size 

  distmat(i,j)=abs(j-i);  % calculates distance matrix 

  auto_covariance(i,j)=var_normal*(exp(-distmat(i,j)*range/  

  array_size/range/0.3)); % autocovariance matrix of normal  

  distribution 

 end 

end 

spat_autoco=auto_covariance; % autocovariance matrix of normal r.v.s 

end 

c. Within Chain Variance 

function w_chainvariance=within_chain_var(mean_matrix,threed_storage_matrix) 

% calculates within chain variance 

 

global length_of_iteration mparalel_chain % declaration of global variables 

sum=0; 

 

for g=1:mparalel_chain 

 for h=1:length_of_iteration 

  a=threed_storage_matrix(:,h,g)-mean_matrix(:,g); 

  sum=sum+a'*a; 

end 
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end 

w_chainvariance=1/(mparalel_chain*(length_of_iteration-1))*sum; 

d. Between Chain Variance 

function btw_chain_var=between_chain_var(mean_matrix) 

 

global mu_normal mparalel_chain % declaration of global variables 

 

for i=1:mparalel_chain 

 b=mean_matrix(:,i)-mu_normal; 

 sum=b'*b; 

end 

btw_chain_var=1/(mparalel_chain-1)*sum; 

e. Reference Variogram 

function ref_variogram_model=reference_variogram(sill,range) % calculates 

reference variogram model 

 

global array_size % defines the global variable 

 

for lag_dist=1:sqrt(array_size) % defines the distances 

 lag_dist_values(lag_dist)=sill*exp(-3*(lag_dist*sqrt(array_size))/range); % 

 calculates values for different lag distances 

end 

ref_variogram_model=lag_dist_values'; 

f. Semivariance Calculation 

function semivariance_mat_of_samples=semivariance_cal(array,array_size) % 

declares function  

 

for i=1:array_size % assign values to the dummy variable for iteration with step size 

 for j=1:array_size %  

  semivariance_mat(i,j)=0.5*(array(i)-array(j))^2;  % calculates the 

  semivarince of ith and jth of array 

 end 

end 

semivariance_mat_of_samples=semivariance_mat; % calculates the semivariance 

matrix of the sample 

end 

g. Mean Lag Distance 

function mean_lag_dist_array=mean_lag_dist_cal(semivariance_mat_of_samples) 

 

global array_size % declares global variables 

 

for i=1:array_size 
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 diagonal_means(i)=mean(diag(semivariance_mat_of_samples,i-1)); 

end 

mean_lag_dist_array=diagonal_means'; 

h. Sample Covariance Matrix 

function 

sample_cov_mat=sample_cov_mat_cal(svar_of_some_dist_in_last_nsamples_mat,m

ean_array_of_svar_of_some_dist_in_last_nsamples); 

 

sum=0; 

svar_of_some_dist_in_last_nsamples_mat_size=size(svar_of_some_dist_in_last_nsa

mples_mat); % calculates the number of culumns in semivariancefor specific 

distances of last n-samples matrix (i.e. number of selected last iterations) 

 

for i=1:svar_of_some_dist_in_last_nsamples_mat_size(2) 

 z=svar_of_some_dist_in_last_nsamples_mat(:,i)-

 mean_array_of_svar_of_some_dist_in_last_nsamples; 

 sum=sum+z*z'; 

end 

sample_cov_mat=sum/(svar_of_some_dist_in_last_nsamples_mat_size(2)-1); 

i. Mean Error 

function [mean_error]=error_mean(lastmatrices_lognorm_3d_mat) 

 

global nb_of_files % global variable 

 

size_matrix = size(lastmatrices_lognorm_3d_mat); 

sum = zeros(size_matrix(1),size_matrix(2)); 

 

for i=1:size_matrix(1) 

 for j=1:size_matrix(2) 

  for k=1:size_matrix(3) 

   temp = lastmatrices_lognorm_3d_mat(i,j,k); 

   sum(i,j)= [sum(i,j)+temp]; 

  end 

  temp =[]; 

 end 

end 

sum; 

mean_error=sum./(nb_of_files); 

j. Standard Deviation of Error 

function [std_dev_map]=stddev_map(new_dems_3d_mat,mean_dem_map) 

 

global array_size nb_of_files % global variables 

sum=zeros(sqrt(array_size),sqrt(array_size)); 
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for i=1:sqrt(array_size) % row function 

 for j=1:sqrt(array_size) % column function 

  for k=1:nb_of_files 

   deviations =(new_dems_3d_mat(i,j,k)-mean_dem_map(i,j))^2; 

  sum(i,j)=[sum(i,j)+deviations]; 

 end 

 deviations =[]; 

end 

 sum; 

 std_dev=sqrt(sum./nb_of_files); 

end 

std_dev_map=std_dev; 
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APPENDIX C 

 

SIMULATED DEM ERRORS 

 

  

Figure C1. Error Realization #1 Figure C2. Histogram of Error Realization #1 

  

Figure C3. Error Realization #100 Figure C4. Histogram of Error Realization #100 
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Figure C5. Error Realization #200 Figure C6. Histogram of Error Realization #200 

  

Figure C7. Error Realization #300 Figure C8. Histogram of Error Realization #300 

  
Figure C9. Error Realization #400 Figure C10. Histogram of Error Realization #400 
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Figure C11. Error Realization #500 Figure C12. Histogram of Error Realization #500 

  

Figure C13. Eror Realization #600 Figure C14. Histogram of Error Realization #600 

  

Figure C15. Error Realization #700 Figure C16. Histogram of Error Realization #700 
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Figure C17. Error Realization #800 Figure C18. Histogram of Error Realization #800 

  

Figure C19. Error Realization #900 Figure C20. Histogram of Error Realization #900 

  

Figure C21. Error Realization #1000 Figure C22. Histogram of Error Realization #1000 
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APPENDIX D 

 

REALIZED DEMS 

 

  

Figure D1. DEM Realization #1 Figure D2. Histogram of DEM Realization #1 

  

Figure D3. DEM Realization #100 Figure D4. Histogram of DEM Realization #100 
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Figure D5. DEM Realization #200 Figure D6. Histogram of DEM Realization #200 

  

Figure D7. DEM Realization #300 Figure D8. Histogram of DEM Realization #300 

  

Figure D9. DEM Realization #400 Figure D10. Histogram of DEM Realization #400 
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Figure D11. DEM Realization #500 Figure D12. Histogram of DEM Realization #500 

  

Figure D13. DEM Realization #600 Figure D14. Histogram of DEM Realization #600 

  

Figure D15. DEM Realization #700 Figure D16. Histogram of DEM Realization #700 
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Figure D17. DEM Realization #800 Figure D18. Histogram of DEM Realization #800 

  
Figure D19. DEM Realization #900 Figure D20. Histogram of DEM Realization #900 

  

Figure D21. DEM Realization #1000 Figure D22. Histogram of DEM Realization #1000 
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APPENDIX E 

 

SLOPE AND ASPECT MAPS GENERATED USING R.SLOPE.ASPECT 

MODULE IN GRASS GIS FROM THE SRTM DEM 

 

  

Figure E1. Slope of Study Area SRTM using 

r.slope.aspect module 

Figure E2. Histogram for Study Area SRTM using 

r.slope.aspect module 

  

Figure E3. Aspect of Study Area SRTM using 

r.slope.aspect module 

Figure E4. Histogram for Study Area SRTM using 

r.slope.aspect module 
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APPENDIX F 

 

SLOPE MAPS GENERATED USING R.SLOPE.ASPECT MODULE IN 

GRASS GIS FROM THE REALIZED DEMS 

 

  
Figure F1. Slope #1 using r.slope.aspect module Figure F2. Histogram for Slope #1 using r.slope.aspect 

module 

  
Figure F3. Slope #100 using r.slope.aspect module Figure F4. Histogram for Slope #100 using 

r.slope.aspect module 
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Figure F5. Slope #200 using r.slope.aspect module Figure F6. Histogram for Slope #200 using 

r.slope.aspect module 

  
Figure F7. Slope #300 using r.slope.aspect module Figure F8. Histogram for Slope #300 using 

r.slope.aspect module 

  
Figure F9. Slope #400 using r.slope.aspect module Figure F10. Histogram for Slope #400 using 

r.slope.aspect module 
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Figure F11. Slope #500 using r.slope.aspect module Figure F12. Histogram for Slope #500 using 

r.slope.aspect module 

  
Figure F13. Slope #600 using r.slope.aspect module Figure F14. Histogram for Slope #600 using 

r.slope.aspect module 

  
Figure F15. Slope #700 using r.slope.aspect module Figure F16. Histogram for Slope #700 using 

r.slope.aspect module 
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Figure F17. Slope #800 using r.slope.aspect module Figure F18. Histogram for Slope #800 using 

r.slope.aspect module 

 
 

Figure F19. Slope #900 using r.slope.aspect module Figure F20. Histogram for Slope #900 using 

r.slope.aspect module 

  
Figure F21. Slope #1000 using r.slope.aspect module Figure F22. Histogram for Slope #1000 using 

r.slope.aspect module 
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APPENDIX G 

 

ASPECT MAPS GENERATED USING R.SLOPE.ASPECT MODULE IN 

GRASS GIS FROM THE REALIZED DEMS 

 

  
Figure G1. Aspect #1 using r.slope.aspect module Figure G2. Histogram for Aspect #1 using 

r.slope.aspect module 

  
Figure G3. Aspect #100 using r.slope.aspect module Figure G4. Histogram for Aspect #100 using 

r.slope.aspect module 
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Figure G5. Aspect #200 using r.slope.aspect module Figure G6. Histogram for Aspect #200 using 

r.slope.aspect module 

  
Figure G7. Aspect #300 using r.slope.aspect module Figure G8. Histogram for Aspect #300 using 

r.slope.aspect module 

  
Figure G9. Aspect #400 using r.slope.aspect module Figure G10. Histogram for Aspect #400 using 

r.slope.aspect module 
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Figure G11. Aspect #500 using r.slope.aspect module Figure G12. Histogram for Aspect #500 using 

r.slope.aspect module 

  
Figure G13. Aspect #600 using r.slope.aspect module Figure G14. Histogram for Aspect #600 using 

r.slope.aspect module 

  
Figure G15. Aspect #700 using r.slope.aspect module Figure G16. Histogram for Aspect #700 using 

r.slope.aspect module 
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Figure G17. Aspect #800 using r.slope.aspect module Figure G18. Histogram for Aspect #800 using 

r.slope.aspect module 

  
Figure G19. Aspect #900 using r.slope.aspect module Figure G20. Histogram for Aspect #900 using 

r.slope.aspect module 

  
Figure G21. Aspect #1000 using r.slope.aspect module Figure G22. Histogram for Aspect #1000 using 

r.slope.aspect module 
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APPENDIX H 

 

SELECTED OUTPUTS OF SOLAR ANALYST (ARCGIS) FROM THE 

REALIZED DEMS 

 

Direct Radiation 

  
Figure H1. Direct Radiation #1 of Solar Analyst Figure H2. Histogram for Direct Radiation #1 of Solar 

Analyst 

  
Figure H3. Direct Radiation #100 of Solar Analyst Figure H4. Histogram for Direct Radiation #100 of 

Solar Analyst 
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Figure H5. Direct Radiation #200 of Solar Analyst Figure H6. Histogram for Direct Radiation #200 of 

Solar Analyst 

  
Figure H7. Direct Radiation #300 of Solar Analyst Figure H8. Histogram for Direct Radiation #300 of 

Solar Analyst 

  
Figure H9. Direct Radiation #400 of Solar Analyst Figure H10. Histogram for Direct Radiation #400 of 

Solar Analyst 
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Figure H11. Direct Radiation #500 of Solar Analyst Figure H12. Histogram for Direct Radiation #500 of 

Solar Analyst 

  
Figure H13. Direct Radiation #600 of Solar Analyst Figure H14. Histogram for Direct Radiation #600 of 

Solar Analyst 

  
Figure H15. Direct Radiation #700 of Solar Analyst Figure H16. Histogram for Direct Radiation #700 of 

Solar Analyst 
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Figure H17. Direct Radiation #800 of Solar Analyst Figure H18. Histogram for Direct Radiation #800 of 

Solar Analyst 

  
Figure H19. Direct Radiation #900 of Solar Analyst Figure H20. Histogram for Direct Radiation #900 of 

Solar Analyst 

  
Figure H21. Direct Radiation #1000 of Solar Analyst Figure H22. Histogram for Direct Radiation #1000 of 

Solar Analyst 

 



145 

 

Diffuse Radiation 

  

Figure H23. Diffuse Radiation #1 of Solar Analyst Figure H24. Histogram for Diffuse Radiation #1 of Solar 

Analyst 

  
Figure H25. Diffuse Radiation #100 of Solar Analyst Figure H26. Histogram for Diffuse Radiation #100 of 

Solar Analyst 

  
Figure H27. Diffuse Radiation #200 of Solar Analyst Figure H28. Histogram for Diffuse Radiation #200 of 

Solar Analyst 
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Figure H29. Diffuse Radiation #300 of Solar Analyst Figure H30. Histogram for Direct Radiation #300 of 

Solar Analyst 

  
Figure H31. Diffuse Radiation #400 of Solar Analyst Figure H32. Histogram for Diffuse Radiation #400 of 

Solar Analyst 

  
Figure H33. Diffuse Radiation #500 of Solar Analyst Figure H34. Histogram for Diffuse Radiation #500 of 

Solar Analyst 
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Figure H35. Diffuse Radiation #600 of Solar Analyst Figure H36. Histogram for Diffuse Radiation #600 of 

Solar Analyst 

  
Figure H37. Diffuse Radiation #700 of Solar Analyst Figure H38. Histogram for Diffuse Radiation #700 of 

Solar Analyst 

  
Figure H39. Diffuse Radiation #800 of Solar Analyst Figure H40. Histogram for Direct Radiation #800 of 

Solar Analyst 
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Figure H41. Diffuse Radiation #900 of Solar Analyst Figure H42. Histogram for Diffuse Radiation #900 of 

Solar Analyst 

  
Figure H43. Diffuse Radiation #1000 of Solar Analyst Figure H44. Histogram for Diffuse Radiation #1000 of 

Solar Analyst 
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Global Radiation 

  
Figure H45. Global Radiation #1 of Solar Analyst Figure H46. Histogram for Global Radiation #1 of 

Solar Analyst 

  
Figure H47. Global Radiation #100 of Solar Analyst Figure H48. Histogram for Global Radiation #100 of 

Solar Analyst 

  
Figure H49. Global Radiation #200 of Solar Analyst Figure H50. Histogram for Global Radiation #200 of 

Solar Analyst 
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Figure H51. Global Radiation #300 of Solar Analyst Figure H52. Histogram for Global Radiation #300 of 

Solar Analyst 

  
Figure H53. Global Radiation #400 of Solar Analyst Figure H54. Histogram for Global Radiation #400 of 

Solar Analyst 

  
Figure H55. Global Radiation #500 of Solar Analyst Figure H56. Histogram for Global Radiation #500 of 

Solar Analyst 
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Figure H57. Global Radiation #600 of Solar Analyst Figure H58. Histogram for Global Radiation #600 of 

Solar Analyst 

  
Figure H59. Global Radiation #700 of Solar Analyst Figure H60. Histogram for Global Radiation #700 of 

Solar Analyst 

  
Figure H61. Global Radiation #800 of Solar Analyst Figure H62. Histogram for Global Radiation #800 of 

Solar Analyst 
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Figure H63. Global Radiation #900 of Solar Analyst Figure H64. Histogram for Global Radiation #900 of 

Solar Analyst 

  
Figure H65. Global Radiation #1000 of Solar Analyst Figure H66. Histogram for Global Radiation #1000 of 

Solar Analyst 
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Direct Duration 

  
Figure H67. Direct Duration #1 of Solar Analyst Figure H68. Histogram for Direct Duration #1 of Solar 

Analyst 

  
Figure H69. Direct Duration #100 of Solar Analyst Figure H70. Histogram for Direct Duration #100 of 

Solar Analyst 

  
Figure H71. Direct Duration #200 of Solar Analyst Figure H72. Histogram for Direct Duration #200 of 

Solar Analyst 
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Figure H73. Direct Duration #300 of Solar Analyst Figure H74. Histogram for Direct Duration #300 of Solar 

Analyst 

  
Figure H75. Direct Duration #400 of Solar Analyst Figure H76. Histogram for Direct Duration #400 of Solar 

Analyst 

  
Figure H77. Direct Duration #500 of Solar Analyst Figure H78. Histogram for Direct Duration #500 of Solar 

Analyst 
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Figure H79. Direct Duration #600 of Solar Analyst Figure H80. Histogram for Direct Duration #600 of Solar 

Analyst 

  
Figure H81. Direct Duration #700 of Solar Analyst Figure H82. Histogram for Direct Duration #700 of Solar 

Analyst 

  
Figure H83. Direct Duration #800 of Solar Analyst Figure H84. Histogram for Direct Duration #800 of Solar 

Analyst 
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Figure H85. Direct Duration #900 of Solar Analyst Figure H86. Histogram for Direct Duration #900 of 

Solar Analyst 

  
Figure H87. Direct Duration #1000 of Solar Analyst Figure H88. Histogram for Direct Duration #1000 of 

Solar Analyst 
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APPENDIX I 

 

SELECTED OUTPUTS OF R.SUN (GRASS GIS) FROM THE 

REALIZED DEMS 

 

Direct Radiation 

  
Figure I1. Direct Radiation #1 of r.sun Figure I2. Histogram for Direct Radiation #1 of r.sun 

  

Figure I3. Direct Radiation #100 of r.sun Figure I4. Histogram for Direct Radiation #100 of r.sun 
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Figure I5. Direct Radiation #200 of r.sun Figure I6. Histogram for Direct Radiation #200 of r.sun 

 
 

Figure I7. Direct Radiation #300 of r.sun Figure I8. Histogram for Direct Radiation #300 of r.sun 

  

Figure I9. Direct Radiation #400 of r.sun Figure I10. Histogram for Direct Radiation #400 of r.sun 

 



159 

 

  

Figure I11. Direct Radiation #500 of r.sun Figure I12. Histogram for Direct Radiation #500 of r.sun 

  

Figure I13. Direct Radiation #600 of r.sun Figure I14. Histogram for Direct Radiation #600 of r.sun 

  

Figure I15. Direct Radiation #700 of r.sun Figure I16. Histogram for Direct Radiation #700 of r.sun 
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Figure I17. Direct Radiation #800 of r.sun Figure I18. Histogram for Direct Radiation #800 of r.sun 

  

Figure I19. Direct Radiation #900 of r.sun Figure I20. Histogram for Direct Radiation #900 of r.sun 

  

Figure I21. Direct Radiation #1000 of r.sun Figure I22. Histogram for Direct Radiation #1000 of r.sun 
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Diffuse Radiation 

  
Figure I23. Diffuse Radiation #1 of r.sun Figure I24. Histogram for Diffuse Radiation #1 of r.sun 

  
Figure I25. Diffuse Radiation #100 of r.sun Figure I26. Histogram for Diffuse Radiation #100 of r.sun 

  
Figure I27. Diffuse Radiation #200 of r.sun Figure I28. Histogram for Diffuse Radiation #200 of r.sun 
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Figure I29. Diffuse Radiation #300 of r.sun Figure I30. Histogram for Diffuse Radiation #300 of r.sun 

  

Figure I31. Diffuse Radiation #400 of r.sun Figure I32. Histogram for Diffuse Radiation #400 of r.sun 

  

Figure I33. Diffuse Radiation #500 of r.sun Figure I34. Histogram for Diffuse Radiation #500 of r.sun 
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Figure I35. Diffuse Radiation #600 of r.sun Figure I36. Histogram for Diffuse Radiation #600 of r.sun 

  

Figure I37. Diffuse Radiation #700 of r.sun Figure I38. Histogram for Diffuse Radiation #700 of r.sun 

  

Figure I39. Diffuse Radiation #800 of r.sun Figure I40. Histogram for Diffuse Radiation #800 of r.sun 
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Figure I41. Diffuse Radiation #900 of r.sun Figure I42. Histogram for Diffuse Radiation #900 of r.sun 

  

Figure I43. Diffuse Radiation #1000 of r.sun Figure I44. Histogram for Diffuse Radiation #1000 of r.sun 
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Global Radiation 

  

Figure I45. Global Radiation #1 of r.sun Figure I46. Histogram for Global Radiation #1 of r.sun 

  

Figure I47. Global Radiation #100 of r.sun Figure I48. Histogram for Global Radiation #100 of r.sun 

  
Figure I49. Global Radiation #200 of r.sun Figure I50. Histogram for Global Radiation #200 of r.sun 
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Figure I51. Global Radiation #300 of r.sun Figure I52. Histogram for Global Radiation #300 of r.sun 

  

Figure I53. Global Radiation #400 of r.sun Figure I54. Histogram for Global Radiation #400 of r.sun 

  

Figure I55. Global Radiation #500 of r.sun Figure I56. Histogram for Global Radiation #500 of r.sun 
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Figure I57. Global Radiation #600 of r.sun Figure I58. Histogram for Global Radiation #600 of r.sun 

  

Figure I59. Global Radiation #700 of r.sun Figure I60. Histogram for Global Radiation #700 of r.sun 

  

Figure I61. Global Radiation #800 of r.sun Figure I62. Histogram for Global Radiation #800 of r.sun 
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Figure I63. Global Radiation #900 of r.sun Figure I64. Histogram for Global Radiation #900 of r.sun 

  

Figure I65. Global Radiation #1000 of r.sun Figure I66. Histogram for Global Radiation #1000 of r.sun 
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Direct Duration 

  

Figure I67. Direct Duration #1 of r.sun Figure I68. Histogram for Direct Duration #1 of r.sun 

  

Figure I69. Direct Duration #100 of r.sun Figure I70. Histogram for Direct Duration #100 of r.sun 

 
 

Figure I71. Direct Duration #200 of r.sun Figure I72. Histogram for Direct Duration #200 of r.sun 
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Figure I73. Direct Duration #300 of r.sun Figure I74. Histogram for Direct Duration #300 of r.sun 

  

Figure I75. Direct Duration #400 of r.sun Figure I76. Histogram for Direct Duration #400 of r.sun 

  

Figure I77. Direct Duration #500 of r.sun Figure I78. Histogram for Direct Duration #500 of r.sun 
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Figure I79. Direct Duration #600 of r.sun Figure I80. Histogram for Direct Duration #600 of r.sun 

  

Figure I81. Direct Duration #700 of r.sun Figure I82. Histogram for Direct Duration #700 of r.sun 

  

Figure I83. Direct Duration #800 of r.sun Figure I84. Histogram for Direct Duration #800 of r.sun 

 



172 

 

  

Figure I85. Direct Duration #900 of r.sun Figure I86. Histogram for Direct Duration #900 of r.sun 

  

Figure I87. Direct Duration #1000 of r.sun Figure I88. Histogram for Direct Duration #1000 of r.sun 
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APPENDIX J 

 

SLOPE MAPS GENERATED BY SPATIAL ANALYST EXTENSION 

(ARCGIS) USING THE REALIZED DEMS 

 

  
Figure J1. Slope #1 using Spatial Analyst Figure J2. Histogram for Slope #1 using Spatial Analyst 

  
Figure J3. Slope #100 using Spatial Analyst Figure J4. Histogram for Slope #100 using Spatial 

Analyst 
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Figure J5. Slope #200 using Spatial Analyst Figure J6. Histogram for Slope #200 using Spatial 

Analyst 

  
Figure J7. Slope #300 using Spatial Analyst Figure J8. Histogram for Slope #300 using Spatial 

Analyst 

  
Figure J9. Slope #400 using Spatial Analyst Figure J10. Histogram for Slope #400 using Spatial 

Analyst 
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Figure J11. Slope #500 using Spatial Analyst Figure J12. Histogram for Slope #500 using Spatial 

Analyst 

  
Figure J13. Slope #600 using Spatial Analyst Figure J14. Histogram for Slope #600 using Spatial 

Analyst 

  
Figure J15. Slope #700 using Spatial Analyst Figure J16. Histogram for Slope #700 using Spatial 

Analyst 
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Figure J17. Slope #800 using Spatial Analyst Figure J18. Histogram for Slope #800 using Spatial 

Analyst 

  
Figure J19. Slope #900 using Spatial Analyst Figure J20. Histogram for Slope #900 using Spatial 

Analyst 

  

 
Figure J21. Slope #1000 using Spatial Analyst 

 
Figure J22. Histogram for Slope #1000 using Spatial 

Analyst 



177 

 

 

APPENDIX K 

 

ASPECT MAPS GENERATED BY SPATIAL ANALYST EXTENSION 

(ARCGIS) USING THE REALIZED DEMS 

 

  
Figure K1. Aspect #1 using Spatial Analyst Figure K2. Histogram for Aspect #1 using Spatial 

Analyst 

  
Figure K3. Aspect #100 using Spatial Analyst Figure K4. Histogram for Aspect #100 using Spatial 

Analyst 
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Figure K5. Aspect #200 using Spatial Analyst Figure K6. Histogram for Aspect #200 using Spatial 

Analyst 

  
Figure K7. Aspect #300 using Spatial Analyst Figure K8. Histogram for Aspect #300 using Spatial 

Analyst 

  
Figure K9. Aspect #400 using Spatial Analyst Figure K10. Histogram for Aspect #400 using Spatial 

Analyst 
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Figure K11. Aspect #500 using Spatial Analyst Figure K12. Histogram for Aspect #500 using Spatial 

Analyst 

  
Figure K13. Aspect #600 using Spatial Analyst Figure K14. Histogram for Aspect #600 using Spatial 

Analyst 

  
Figure K15. Aspect #700 using Spatial Analyst Figure K16. Histogram for Aspect #700 using Spatial 

Analyst 
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Figure K17. Aspect #800 using Spatial Analyst Figure K18. Histogram for Aspect #800 using Spatial 

Analyst 

  
Figure K19. Aspect #900 using Spatial Analyst Figure K20. Histogram for Aspect #900 using Spatial 

Analyst 

  
Figure K21. Aspect #1000 using Spatial Analyst Figure K22. Histogram for Aspect #1000 using Spatial 

Analyst 
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APPENDIX L 

 

TESTS OF NORMALITY FOR THE SOLAR ANALYST AND R.SUN 

OUTPUTS 

 

I. Tests of Normality for the Solar Analyst outputs 

A. Direct radiation 

 

i. Mean 

 

ii. Standard Deviation 

 

iii. Coefficient of Variaiton 

 

B. Diffuse radiation 

 

i. Mean 

 
 

 

 

 

 

Tests of Normality

.113 1225 .000 .893 1225 .000dir_mean_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.155 1225 .000 .789 1225 .000dir_std_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.152 1225 .000 .792 1225 .000dir_cov_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.117 1225 .000 .909 1225 .000dif_mean_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 
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ii. Standard Deviation 

 

iii. Coefficient of Variaiton 

 

C. Global radiation 

 

i. Mean 

 

ii. Standard Deviation 

 

iii. Coefficient of Variaiton 

 

D. Direct duration 

 

i. Mean 

 
 

 

 

Tests of Normality

.117 1225 .000 .826 1225 .000dif_cov_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.111 1225 .000 .904 1225 .000glo_mean_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.148 1225 .000 .805 1225 .000glo_std_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.148 1225 .000 .808 1225 .000glo_cov_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.128 1225 .000 .887 1225 .000ddur_mean_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 
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ii. Standard Deviation 

 

iii. Coefficient of Variaiton 

 

II. Tests of Normality for ther.sun outputs 

A. Direct radiation 

 

i. Mean 

 

ii. Standard Deviation 

 

iii. Coefficient of Variaiton 

 

B. Diffuse radiation 

 

i. Mean 

 
 

Tests of Normality

.208 1225 .000 .704 1225 .000ddur_std_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.247 1225 .000 .693 1225 .000ddur_cov_sa

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.193 1225 .000 .745 1225 .000dir_mean_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.257 1225 .000 .704 1225 .000dir_std_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.162 1225 .000 .863 1225 .000dir_cov_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.158 1225 .000 .775 1225 .000dif_mean_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 
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ii. Standard Deviation 

 

iii. Coefficient of Variaiton 

 

C. Global radiation 

 

i. Mean 

 

ii. Standard Deviation 

 

iii. Coefficient of Variaiton 

 

D. Direct duration 

 

i. Mean 

 
 

 

 

 

Tests of Normality

.268 1225 .000 .665 1225 .000dif_std_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.186 1225 .000 .869 1225 .000dif_cov_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.170 1225 .000 .772 1225 .000glo_mean_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.185 1225 .000 .726 1225 .000glo_std_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.281 1225 .000 .346 1225 .000glo_cov_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.218 1225 .000 .755 1225 .000ddur_mean_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 
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ii. Standard Deviation 

 

iii. Coefficient of Variaiton 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tests of Normality

.175 1225 .000 .702 1225 .000ddur_std_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 

Tests of Normality

.146 1225 .000 .705 1225 .000ddur_cov_rsun

Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov
a

Shapiro-Wilk

Lilliefors Significance Correctiona. 
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APPENDIX M 

 

MANN-WHITNEY U TESTS FOR THE SOLAR ANALYST AND R.SUN 

OUTPUT 

 

DIRECT RADIATION 

a. Mean 

Step 1: Hypotheses 

  : The mean direct radiation of realized DEMs of Solar Analyst and r.sun models 

are statistically the same. 

  : The mean direct radiation of realized DEMs of Solar Analyst and r.sun models 

are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Step 4: Test Statistic 

 

p-value = Asymp. Sig. (2-tailed) = 0.000 

Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

 

 

Test Statisticsa

34.000

750959.000

-42.855

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

dir_mean_

sa_rsun

Grouping Variable: groupa. 
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Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the mean direct radiation of realized DEMs of Solar Analyst and 

r.sun models. 

b. Standard Deviation 

Step 1: Hypotheses 

  : The standard deviation for mean direct radiation of realized DEMs of Solar 

Analyst and r.sun models are statistically the same. 

  : The standard deviation for mean direct radiation of realized DEMs of Solar 

Analyst and r.sun models are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Step 4: Test Statistic 

 
 

p-value = Asymp. Sig. (2-tailed) = 0.000 

Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the standard deviation for mean direct radiation of realized DEMs 

of Solar Analyst and r.sun models. 

c. Coefficient of Variaiton 

Step 1: Hypotheses 

  : The coefficient of variation of mean direct radiation for realized DEMs of Solar 

Analyst and r.sun models are statistically the same. 

Test Statisticsa

.000

750925.0

-42.857

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

dir_std_

sa_rsun

Grouping Variable: groupa. 
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  : The coefficient of variation of mean direct radiation for realized DEMs of Solar 

Analyst and r.sun models are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Step 4: Test Statistic 

 
  

p-value = Asymp. Sig. (2-tailed) = 0.000 

Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the coefficient of variation of mean direct radiation for realized 

DEMs of Solar Analyst and r.sun models. 

DIFFUSE RADIATION 

a. Mean 

Step 1: Hypotheses 

  : The mean diffuse radiation of realized DEMs of Solar Analyst and r.sun models 

are statistically the same. 

  : The mean diffuse radiation of realized DEMs of Solar Analyst and r.sun models 

are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Test Statisticsa

.000

750925.0

-42.857

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

dir_cov_

sa_rsun

Grouping Variable: groupa. 
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Step 4: Test Statistic 

 
 

p-value = Asymp. Sig. (2-tailed) = 0.000 

Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the mean diffuse radiation of realized DEMs of Solar Analyst and 

r.sun models. 

b. Standard Deviation 

Step 1: Hypotheses 

  : The standard deviation for mean diffuse radiation of realized DEMs of Solar 

Analyst and r.sun models are statistically the same. 

  : The standard deviation for mean diffuse radiation of realized DEMs of Solar 

Analyst and r.sun models are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Step 4: Test Statistic 

 
p-value = Asymp. Sig. (2-tailed) = 0.000 

 

Test Statisticsa

.000

750925.000

-42.857

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

dif_mean_

sa_rsun

Grouping Variable: groupa. 

Test Statisticsa

.000

750925.0

-42.857

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

dif_std_

sa_rsun

Grouping Variable: groupa. 
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Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the standard deviation for mean diffuse radiation of realized DEMs 

of Solar Analyst and r.sun models. 

c. Coefficient of Variaiton 

Step 1: Hypotheses 

  : The coefficient of variation of mean diffuse radiation for realized DEMs of 

Solar Analyst and r.sun models are statistically the same. 

  : The coefficient of variation of mean diffuse radiation for realized DEMs of Solar 

Analyst and r.sun models are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Step 4: Test Statistic 

 
  

p-value = Asymp. Sig. (2-tailed) = 0.000 

Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the coefficient of variation of mean diffuse radiation for realized 

DEMs of Solar Analyst and r.sun models. 

 

Test Statisticsa

.000

750925.0

-42.861

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

dif_cov_

sa_rsun

Grouping Variable: groupa. 
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GLOBAL RADIATION 

a. Mean 

Step 1: Hypotheses 

  : The mean global radiation of realized DEMs of Solar Analyst and r.sun models 

are statistically the same. 

  : The mean global radiation of realized DEMs of Solar Analyst and r.sun models 

are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Step 4: Test Statistic 

 
 

p-value = Asymp. Sig. (2-tailed) = 0.000 

Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the mean global radiation of realized DEMs of Solar Analyst and 

r.sun models. 

b. Standard Deviation 

Step 1: Hypotheses 

  : The standard deviation for mean global radiation of realized DEMs of Solar 

Analyst and r.sun models are statistically the same. 

  : The standard deviation for mean global radiation of realized DEMs of Solar 

Analyst and r.sun models are statistically different. 

Test Statisticsa

.000

750925.000

-42.857

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

glo_mean_

sa_rsun

Grouping Variable: groupa. 
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Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Step 4: Test Statistic 

 
 

p-value = Asymp. Sig. (2-tailed) = 0.000 

Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the standard deviation for mean global radiation of realized DEMs 

of Solar Analyst and r.sun models. 

c. Coefficient of Variaiton 

Step 1: Hypotheses 

  : The coefficient of variation of mean global radiation for realized DEMs of Solar 

Analyst and r.sun models are statistically the same. 

  : The coefficient of variation of mean global radiation for realized DEMs of Solar 

Analyst and r.sun models are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

 

 

Test Statisticsa

.000

750925.0

-42.857

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

glo_std_

sa_rsun

Grouping Variable: groupa. 
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Step 4: Test Statistic 

 
  

p-value = Asymp. Sig. (2-tailed) = 0.000 

Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the coefficient of variation of mean global radiation for realized 

DEMs of Solar Analyst and r.sun models. 

DIRECT DURATION 

a. Mean 

Step 1: Hypotheses 

  : The mean direct duration of realized DEMs of Solar Analyst and r.sun models 

are statistically the same. 

  : The mean direct duration of realized DEMs of Solar Analyst and r.sun models 

are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Step 4: Test Statistic 

 
 

p-value = Asymp. Sig. (2-tailed) = 0.000 

Test Statisticsa

.000

750925.0

-42.879

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

glo_cov_

sa_rsun

Grouping Variable: groupa. 

Test Statisticsa

341723.000

1092648.000

-23.350

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

ddur_mean_

sa_rsun

Grouping Variable: groupa. 
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Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the mean direct duration of realized DEMs of Solar Analystand 

r.sun models. 

b. Standard Deviation 

Step 1: Hypotheses 

  : The standard deviation for mean direct duration of realized DEMs of Solar 

Analyst and r.sun models are statistically the same. 

  : The standard deviation for mean direct duration of realized DEMs of Solar 

Analyst and r.sun models are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Step 4: Test Statistic 

 
 

p-value = Asymp. Sig. (2-tailed) = 0.000 

Step 5: Decision 

 Since p-value = 0.000 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the standard deviation for mean direct duration of realized DEMs 

of Solar Analyst and r.sun models. 

 

Test Statisticsa

683640.000

1434565.000

-3.810

.000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

ddur_std_sa_

rsun

Grouping Variable: groupa. 
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c. Coefficient of Variaiton 

Step 1: Hypotheses 

   : The coefficient of variation of mean direct duration for realized DEMs of Solar 

Analyst and r.sun models are statistically the same. 

   : The coefficient of variation of mean direct duration for realized DEMs of Solar 

Analyst and r.sun models are statistically different. 

Step 2: Significance Level 

 𝛼       

Step 3: Rejection Region 

 Reject the null hypothesis if p-value ≤ 0.05 

Step 4: Test Statistic 

 
  

p-value = Asymp. Sig. (2-tailed) = 0.005 

Step 5: Decision 

 Since p-value = 0.005 < 0.05 = 𝛼, we shall reject the null hypothesis. 

Step 6: State conclusion in words 

At the 𝛼 = 0.05 level of significance, there is enough evidence to conclude that there 

is a difference in the coefficient of variation of mean direct duration for realized 

DEMs of Solar Analystand r.sun models. 

 

 

 

 

 

 

 

 

Test Statisticsa

701316.000

1452241.000

-2.799

.005

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

ddur_cov_sa_

rsun

Grouping Variable: groupa. 
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