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ABSTRACT

FREQUENCY-DRIVEN LATE FUSION-BASED WORD DECOMPOSITION
APPROACH ON THE PHRASE-BASED STATISTICAL MACHINE TRANSLATION

SYSTEMS

Tatlıcıoğlu, Mehmet

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

October 2013, 73 pages

Machine translation is the process of translating texts from a natural language to another
by computers based on linguistic motivations, statistical approaches, or the combination of
them. In this study, the frequency-driven late fusion-based word decomposition approach is
introduced to improve the translation quality of the phrase-based statistical machine trans-
lation system from Turkish to English. This late fusion-based approach is compared with
the standalone statistical and rule-based word decomposition approaches when the corpus
size changes. This study differs from others by introducing the novel frequency-driven late
fusion-based word decomposition method to boost the BLEU score. While the benchmark
study in the literature reports a 25.22 BLEU score, the proposed late fusion-based system
boosts the accuracy up to a 26.22 BLEU score. This novel approach fuses both of the rule-
based and stochastic word decomposition methods. Because of the agglutinative nature of
Turkish language, the results can be extended to the other agglutinative languages as well.

Keywords: Machine Learning, Natural Language Processing, Machine Translation, Morphol-
ogy
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ÖZ

TÜMCE TABANLI İSTATİSTİKSEL OTOMATİK ÇEVİRİ SİSTEMLERİNDE
FREKANSA DAYALI GEÇ BİRLEŞİM TABANLI KELİME PARÇALAMA YAKLAŞIMI

Tatlıcıoğlu, Mehmet

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Ekim 2013 , 73 sayfa

Makine çeviri sistemleri, belirli bir doğal dilde yazılmış metni bilgisayarlar aracılığıyla oto-
matik olarak bir başka doğal dile çeviren sistemlerdir. Bu sistemler genellikle dilbilimsel
tabanlı, istatistiksel ya da bu iki yaklaşımın birleşimi şeklinde üretilebilmektedirler. Bu ça-
lışmada Türkçeden İngilizceye baraşımı daha yüksek otomatik çeviri sistemleri inşa edebil-
mek için, frekansa dayalı geç birleşim tabanlı kelime parçalama yaklaşımı tanıtılmıştır. Bu
geç birleşim yöntemi farklı boyuttaki eğitim verileri kullanılarak istatistiksel ve kural tabanlı
yöntemlerle karşılaştırılmıştır. Bu çalışmanın önceki çalışmalardan en büyük farkı, otoma-
tik çeviri sistemlerinde ilk kez kullanılan geç birleşim tabanlı kelime parçalama yöntemi ile
daha yüksek BLEU sonucu elde edebilmesidir. Mevcut çalışmalarda en yüksek 25.22 BLEU
sonucunu elde edilmişken, tanıtılan geç birleşim tabanlı sistem 26.22 BLEU sonucunu doğur-
maktadır. Tanıtılan sistem kural tabanlı ve istatistiksel yaklaşımları bir araya getirmektedir.
Türkçe dilinin sondan eklemeli doğası gereğince, bu çalışmadaki sonuçlar sondan eklemeli
diğer diller için de genişletilebilir.

Anahtar Kelimeler: Makine Öğrenmesi, Doğal Dil İşleme, Makine Çevirisi, Ekler
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CHAPTER 1

INTRODUCTION

Communication is truly the oldest problem that humankind has ever had. With the growing
population of the world, various languages spoken by different civilizations have emerged.
Today, it is reported that there are more than 4,000 languages spoken by at least a thousand
people [34].

Increasing use of textual materials on computers dramatically raised the importance of au-
tomated natural language translation tasks, since human aided translations cannot meet the
demand at the desired level. Moreover, an increasing number of people speaking different lan-
guages through the Internet has attracted attention to automated machine translation systems.
With the recent techniques developed in the scope of Artificial Intelligence (AI), computers
have started to handle the tasks that might be rather time consuming for humans. To solve the
communication problem between people speaking different languages, AI proposed various
approaches, which are classified under the label of Machine Translation (MT), implying that
the translation hypotheses of the texts can be generated in an automated way by computers.
The main schema of the artificial MT systems are shown as Figure 1.1.

The increasing popularity of MT systems has motivated researchers to utilize artificial MT
systems to ease daily life. Today, MT systems are widely used from multilingual web pages
to mobile phones. However, the accuracy rates of contemporary MT systems are not at the
desired level for humans, and computers are not even close to human translators in terms of
translation accuracy rates. Researchers have been working in this area to boost the translation
performance of MT systems. Contemporary approaches in MT are far behind the desired level
needed to produce an accurate translation which does not need any human post-translation
processes [10]. Today, MT systems are heavily used as supplementary translation memories,
a sort of extensive look up dictionary for professional translators.

There are many different machine translation systems introduced in the literature. Some of
the researchers applied example-based approaches [27], [57], while some of them worked on
rule-based approaches [9], [60]. Statistical approaches have also been widely used [4], [11],
[39], [43]. In this study, the statistical phrase-based machine translation system paradigm is
used for all experiments. To build the translation and reordering models used in this study,
an open source phrase-based statistical machine translation toolkit named Moses [28] is used
during this study.

In the phrase-based statistical machine translation paradigm, the researchers have mostly fo-
cused on increasing the translation accuracy by applying various approaches. Most of the
successful methods show that for agglutinative languages, exploiting the subword items and
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Figure 1.1: General schema of primitive MT systems

exposing the semantic information underlying the subword items boosts the performances of
the translation systems [15], [16], [61]. In this thesis, the most effective ways to expose the
semantic information underlying the subword items are investigated. The major motivation
behind this study is to introduce a method that benefits from both the rule-based and statistical
approaches at the same time. The word frequencies are used to determine if a word is decom-
posed by using rule-based or statistical approach. This determination threshold is learned by
a set of experiments. Based on this threshold, frequent words are decomposed by stochastic
methods, and the rare words are decomposed by using a rule-based morphological analyzer.
The late fusion-based approach combines the outputs of these two separate modules to pro-
duce a unique word decomposition hypothesis. The corpus size used during the experiments
is adjusted in intervals to measure the reactions of the different approaches using small and
large amount of training data as well.

In this study, the frequency-driven late fusion-based word decomposition approach is intro-
duced to improve the translation quality of the phrase-based statistical machine translation
system from Turkish to English. This late fusion-based approach is compared with the stan-
dalone statistical and rule-based word decomposition approaches with a changing corpus size.
This novel approach fuses both the rule-based and stochastic word decomposition methods.

The major objective of this thesis study is to utilize the frequency-driven late fusion-based
word decomposition technique to boost the BLEU score of phrase-based statistical machine
translation system from Turkish to English and produce more accurate automated translations.
Moreover, this novel approach is compared with the pure statistical and rule-based word de-
composition techniques with various corpus sizes. These comparison experiments reveal the
performances of such approaches with both small and large amount of data. The importance
of the training data quantity has already been proven in previous studies [39]. This study aims
to measure the importance of the training data quantity for the different approaches including
fusion-based approaches.

The major contribution of this study is that the fusion-based utilization of the subword items
is built and tested on 16 different sizes of the training data. It is shown that the fusion-
based approach outperforms the rule-based and statistical approaches significantly when the
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corpus size is sufficient. It is measured that the fusion-based approach results in around 10%
better accuracy than the pure statistical approach relative to the baseline score. During all the
experiments, public SETimes parallel corpora is used for the sake of comparability [58]. The
study describing the data reports the baseline BLEU score as 25.22. The baseline accuracy
in this study is reported as 25.36. This negligible difference is thought to be caused by the
custom pre-processing techniques, which will be explained in Chapter 5 in detail. These
scores are listed and shown in Table 6.6.

The list of contributions of this thesis are defined below.

1. Frequency-driven late fusion-based word decomposition approach with respect to a
threshold value is used to build better phrase-based SMT (Statistical Machine Transla-
tion) systems for the first time. This approach increased BLEU score of the baseline
SMT system. The methods used in this approach are explained below.

(a) Frequency threshold is learned by the complete experimental SMT systems

(b) Based on the learned threshold, either the rule-based or statistical approach is used
to decompose the words

2. Character-based combinations of forward and backward n-gram models are applied to
the phrase-based statistical machine translation system to increase the BLEU score.
The combination operation is accomplished by the multiplication of the probabilities of
the character-based forward and backward n-gram language models.

3. Statistical, rule-based, and fusion-based approaches are utilized with the small and large
amount of data on the Turkish language. This is the first comprehensive study on the
Turkish language evaluating the reactions of rule-based, statistical, and fusion-based
approaches with 16 different sizes of training corpus.

After pre-processing the data set, the phrase-based statistical machine translation system con-
sumes the intermediate input. The intermediate input can be a raw text, lowercased, tokenized,
split into stems and morphemes, or any combination of them.

Rest of the thesis is organized as follows: Chapter 3 reviews the related studies conducted in
this area on the Turkish language, and gives some technical background information regarding
MT systems. In Chapter 4, the frequency-driven late fusion-based word decomposition ap-
proach is explained in detail. Moreover, the methods to utilize the subword items and exploit
them to improve the quality of the translation system are discussed. In Chapter 5, the over-
all system is explained with its components in detail. This chapter covers the methods used
in the pre-processing step, the model generation step, and the post-processing step. Then,
how these components are combined is explained. In addition, the data used to train the sys-
tem is described for the sake of the compatibility with the other studies. In Chapter 6, the
experiments conducted in the scope of this thesis are explained. These experiments involve
different uses of the components of the system, and testing them with different sizes of paral-
lel training corpus to reveal the reactions. The main aim of the experiments is that introduced
frequency-driven late fusion-based word decomposition approach is proven to perform bet-
ter than the rule-baseand statistical word decomposition-based MT systems from Turkish to
English. This late fusion-based approach is compared with the standalone statistical and rule-
based word decomposition approaches when the corpus size changes. Comparisons of the

3



experiments and discussions regarding them are mentioned in this section. Lastly, Chapter 7
summarizes the thesis study and puts forward the findings obtained. Moreover, it also denotes
how this study can be improved further, and gives the directions for the future researchers
focusing on the machine translation area.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 What Is Machine Translation

Machine translation is defined as the process of translating texts from a natural language to
another natural language by computers based on linguistic motivations, statistical approaches,
or combination of them.

An example sentence in Turkish, and it is translation, generated by a human translator is
shown below, along with its hypothetical output generated by a MT system.

Example input: Kalıntılar 60 metre derinlikteki bir çukurda bulundu.

Human translated output: The remains were discovered in a pit 60 meters deep.

MT system output: The remains at a depth of 60 meters that they found in a pit.

As shown above, the MT output may not be as accurate as an output of a human translator. To
achieve the desired quality of translation, contemporary studies have focused on increasing
the translation accuracy of MT systems.

A machine translation system combines the pre-processing machine, the translation machine,
and the post-processing machine as a whole. The pre-processing machine reads or listens to
the human readable raw text, which can be a word, a phrase, a sentence or a discourse, and
converts it to an intermediate form which the translation machine can process. To reduce the
complexity of the problem, this step might involve both language dependent or independent
normalization tasks. The translation machine is input only by the pre-processing machine. It
processes the intermediate form and tries to match the most fluent set of words of the target
language with the same meaning of the input text. Finally, the post-processing tool performs
the inverse of the task done by the pre-processing machine by reading the intermediate form
and producing the human readable output text in the target language.

To achieve the best results of a MT system, human intervention may be used to post-process
the output of the system. Mostly, human translators are used to edit the output of this pipeline
to produce more accurate and fluent translations in a shorter amount of time.
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Figure 2.1: Direct translation and transfer translation pyramind

2.2 History of Machine Translation

The idea of the automated translation was thrown out as unfeasible in the 17th century, around
the same time the idea of the universal language was born [29]. Until the 1950s, the earlier
ideas were based on an artificial language in which feelings and events could be expressed in
a more structural way.

In 1954, IBM demonstrated the first applied machine translation system, and 60 Romanized
Russian sentences were entered to a computer by a human who did not know Russian and the
English translations were printed out [30], [31]. This very promising experiment proved the
feasibility of the automated translations without the need of human translators.

After the demonstration of IBM, an increasing number of researchers started focusing on
computer-aided translation systems. Until the late 1980s, researchers thought that the best
computer-aided machine translation system could be achieved only by the interpretation of
the hand written linguistic translation rules designed by the expert linguists. This is called as
rule-based MT systems. Interlingual machine translation is one of the first instances of the
rule-based machine translation approaches. In this approach, the source language, i.e. the
text to be translated, is transformed into an interlingual, i.e. source and target language inde-
pendent representation. The target language is then generated out of the interlingua. Bernard
Vauquois’ pyramid, 2.1, shows comparative depths of intermediary representation, interlin-
gual machine translation at the peak, followed by transfer based, then direct translation.

Later on, the statistical and hybrid approaches started to emerge with the help of the increment
in computational power. These approaches are based on the Machine Learning (ML) tech-
niques which observe the existing translations and try to guess the translation of new unseen
sentence instances. Afterwards, the researchers brought the idea of example-based statistical
modeling of the translation rules [42]. Example-based statistical modeling of the translation
rules means automated generation of these hand-written rules by using artificial intelligence
methods.

Today, it is repeatedly stated that the most accurate systems can be obtained by the combina-
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tion of both structural and statistical approaches, and named as hybrid MT systems [23]. The
hybrid approaches aim to benefit from both the rule-based and statistical approaches. During
this study, fusion-based utilization of subword items is investigated and their experimental
results are compared to the alternative methods. This thesis aims to investigate both of the
statistical and the hybrid MT systems, and compare and reveal the evaluation scores of them.

2.3 Challenges in Machine Translation

Machine translation problem is one of the most challenging problems in computer science
and it has not been a solved problem yet. In theory, the problem itself can be represented
as a search problem, which consists of finding the correct set of target words carrying the
same meaning of the input text, and putting them into the correct order to obtain a fluent
hypothesis. Both finding the correct set of words and ordering them in a correct way are the
problems which have not been solved in polynomial time and space by using the deterministic
methods yet. Therefore; some set of heuristics have to be used to overcome the complexity of
the problem. These heuristics reduce the set of candidate words in the hypothesis, and result
in a smaller set of possible translations to be picked up as the final output. The major reasons
behind these difficulties can be grouped as syntax, semantics, lexicon and morphology.

2.3.1 Syntax

Syntax designates how sentences are generated in a language. Syntax can also be defined
as a set of grammatical rules of a language which determines the order and the behavior of
the items which compose a sentence. By definition, every language has its own syntax and
generation rules. This uniqueness may require sentence-level word or phrase reordering after
producing the translation hypothesis if the syntax structures of two languages are different at
some level. This means that after producing the hypothesis, the correct places of subjects,
objects or verbs have to be found in the target sentence. This difficulty also emerges in
the breadth of this thesis. In essence, the Turkish language mainly uses the Subject-Object-
Verb (SOV) ordering rule whereas the English language uses the Subject-Verb-Object (SVO)
ordering rule.

Example 2.3.1

Kalıntılar 60 metre derinlikteki bir çukurda bulundu

Direct object Indirect object Verb

The remains were discovered in a pit 60 meters deep

Direct object Verb Indirect object

As it is shown in Example 2.3.1, the verb appears right after the direct object, or subject in
English. However in Turkish, the verb appears at the end of regular sentences. The longer
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sentences cause a larger gap between the places of phrases in Turkish and English. This
difference between Turkish and English mostly results in wrong placement of the phrases in
phrase-based SMT systems. This issue is addressed later in Section 6.3.

2.3.2 Semantics

Semantics loads meanings to the syntactic items, such as words, phrases, signs or symbols.
Unlike the syntax, semantics defines the underlying meanings of the character sequences.
Discarding semantics, an MT system cannot cope with ambiguous terms in a sentence. The
meanings of the terms or phrases are disambiguated by the semantic rules of the language.
The very basic contention is that the semantics, somehow, has to be involved in MT systems;
otherwise, they are bound by nothing more than a string or forms processing task.

Sometimes, there are many ways in which a word or sentence can be translated into the target
language. For example a simple word, adam, can be translated in two different ways as shown
in Example 2.3.2. This ambiguity is resolved by the word sense disambiguation technique
[52].

Example 2.3.2 Input: Adam

Hypothesis - 1: The man

Hypothesis - 2: My island

Furthermore, a complete sentence may have more than one correct translation in the target
language. These correct translations may carry completely different meanings, as shown in
Example 2.3.3.

Example 2.3.3 Input: Ürdün kamyonlarına Türkiye’ye geçiş izni vermedi.

Hypothesis - 1: Jordan didn’t give the transition pass to their trucks to Turkey. (The trucks
do not belong to Jordan.)

Hypothesis - 2: It didn’t give the transition pass to Jordan’s trucks to Turkey. (The country
not giving the permission is not Jordan.)

Such ambiguous sentences are sometimes not able to be translated even by the professional
human translators.

2.3.3 Lexicon and Morphology

In the area of natural language processing, a lexicon is mostly used to define a vocabulary
consisting of words or phrases of a language. In most of the traditional MT systems the
smallest items in a lexicon are words. Having words as the smallest units of lexicon items is
easy to utilize, but brings a considerable problem, which is data sparsity. Especially languages
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with an agglutinative nature, such as Turkish, require a much more intensive lexicon than other
languages.

To decrease the unique word counts and the computational complexity, and to overcome data
sparsity problems, the utilization of the subword items is proposed in this thesis. The methods
will be explained in Chapter 4.

2.4 Noisy Channel Model

Messages transmitted through a noisy channel, in which the messages may be corrupted,
have to be somehow recovered efficiently in many areas. The machine translation problem
can be transformed to a problem of message transmission from a source language to the target
language. During such a transmission, words might be replaced or scrambled. At the core of
the machine translation problem is finding an efficient way to recover the actual messages. By
definition, the noisy channel model can be used to model several problems including question
answering, speech recognition, machine translation, or spelling correction [3].

The noisy channel model is a framework used in various natural language processing tasks.
In this model, the goal is to find the intended word, given a word where the letters have
been scrambled (or translated) in some manner. In our case, we aim to translate Turkish
sentences into English language. In this context, we assume that we already have correct
translations in English. These correct translations then pass through a noisy channel where
they are corrupted. The corrupted output of the noisy channel is what we have: Turkish
sentences. Therefore; we need to find a way to recover the English sentences, which are inputs
to the noisy channel, by using Turkish sentences, which are outputs of the noisy channel. The
machine which recovers the actual message given the corrupted one is called a decoder. This
flow is represented in Figure 2.2.

Noisy Channel Decoder
English sentence Turkish sentence English hypothesis

Figure 2.2: Noisy channel model used in the statistical machine translation

To illustrate a translation from Turkish to English, it is assumed that the correct English sen-
tence is transmitted through a noisy channel, shown as Example 2.3. The sentence The re-
mains were discovered in a pit 60 meters deep. is fed to the noisy channel in which the English
sentence is corrupted (translated) and the Turkish sentence, Kalıntılar 60 metre derinlikteki
bir çukurda bulundu., is observed as the output of the channel. Now, the aim is to find out
the input sentence in English in which the corruption (translation) results in the observation
sentence in Turkish. The decoder part of the pipeline makes mathematical calculations and
estimates the most probable input fed to the noisy channel. These calculations are explained
in Section 2.5.
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Noisy Channel

Decoder

The remains were discovered in a pit 60 meters deep.

Kalıntılar 60 metre derinlikteki bir çukurda bulundu.

The remains at a depth of 60 meters that they found in a pit.

Figure 2.3: Noisy channel model example in the statistical machine translation paradigm

2.5 Bayes’ Theorem

Bayes’ Theorem, which is based on the revolutionary studies of Reverend Thomas Bayes
during the 18th century, calculates the relations between the marginal probabilities and the
conditional probabilities of the observations.

In Section 2.4, it is mentioned that the translation process actually means finding the original
message which is corrupted by a noisy channel model. In a noisy channel model, the input is
the message received by a noisy channel. The counterpart of this input is the observation in
Bayes’ Theorem. As it is shown in Equation 2.1 Bayes’ Theorem formulates the probability
of a hypothesis when an observation, or source sentence, is given.

P(A|B) = P(B|A)P(A)
P(B)

(2.1)

In the equation 2.1, A and B are independent events, and P(A) and P(B) are the observation
probabilities of those events.

Bayes’ Theorem is adopted to the machine translation problem to find the probability of the
hypothesis sentence when the source sentence is observed. For example, while translating a
sentence from Turkish to English, Bayes’ Theorem tries to find an English sentence which
is translated into Turkish. In other words, Bayes’ Theorem treats the input sentence as if it
is actual output translation, and the aim is to find the input sentence resulting such transla-
tion. Therefore; the formula can be rewritten as Equation 2.2, where T is the probability of
the observation of Turkish sentences and E is the probability of the observation of English
sentences.
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P(E|T ) = P(T |E)P(E)
P(T )

(2.2)

To illustrate, the translation probability function is shown as Equation 2.3 for a sample input
in Turkish to be translated into English.

P(E|Harabe bulundu.) ∝
P(Harabe bulundu.|E)P(E)

P(Harabe bulundu.)
(2.3)

The observation probability of the sentence Harabe bulundu. is the same for all the translation
hypotheses in English. Therefore, this term is reduced from the formula, and the final formula
can be written as Equation 2.4.

P(E|Harabe bulundu.) ∝ P(Harabe bulundu.|E)P(E) (2.4)

The overall translation probability is obtained by the multiplication of two terms, the transla-
tion model probability, and the language model probability, shown as Equation 2.4. The term
P(Harabe bulundu.|E) means the probability of the sentence in English which is translated
into Turkish as Harabe bulundu.. The second term P(E) is the observation probability of this
sentence in English. The fluent and frequent sentences in English have higher observation
probabilities.

Since the Turkish sentence is given to be translated, its observation probability cannot change
during the arithmetic operations, which means P(T ) is equal to the same value for all hy-
potheses in the formula. Hence, the denominator can be removed from the formula for the
statistical machine translation problem as shown in Equation 2.5.

P(E|T ) = P(T |E)P(E) (2.5)

The final formula indicates that the probability of a hypothesis E for a given source sentence
T depends on both P(T |E) and P(E). The former is calculated by the translation model and
it implies that the translation has to be dependable. The latter is calculated by the language
model and it implies that the translation has to be fluent.

2.6 Language Models

Language models, in the textual paradigm, are used to calculate the probability of a phrase,
word, or sub-word unit occurrence when the previous context is given. Language models are
compiled by using very large-sized monolingual corpora. Language models are generated
specifically for a language generally by using a large corpora in a language, or linguistic rules
of a language. At query time, statistical language models return the probability of an input
sentence and how likely this sentence is to be observed in this language.

Mathematical calculation of the reliability probability of the translation hypotheses requires
both the faithfulness and the fluency metric. While the faithfulness is calculated by using the
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translation table, which is an extensive phrase-based dictionary with probability values, while
the fluency is calculated using the language models.

2.6.1 N-Gram Language Models

In computational linguistics, n-gram is defined as a sequence of items with length of n in a
given larger context. These substring items can be defined as characters, syllables, words, or
longer sequences, such as phrases [21]. The breadth of this thesis defines an item as a word
in its surface form.

Similar to other language models, n-gram models help the hypothesis generator machine to
boost the probabilities of the fluent sentences in the target language. To compile an n-gram
language model, very large sized monolingual corpora are used. Simply by counting the
word occurrences and their neighbor items, the probabilities of the occurrences of the words
are calculated and stored when the preceding n−1 words are given.

By definition, the probability of the occurrence of a word depends on only the preceding
n− 1 words. This implies that the probability of a sentence can be calculated by using a
sliding window of size n. For example, a 3-gram language model calculates the observation
probability of a sentence with 6 words as Equation 2.7.

P(w1,w2,w3,w4,w5) = P(w1,w2,w3)xP(w2,w3,w4)xP(w3,w4,w5) (2.6)

P(tarihi,bir,kalede,bulundu) = P(tarihi,bir,kalede)xP(bir,kalede,bulundu) (2.7)

Each window produces a probability of sequences whose length is n. The probability of
the whole sentence or text can then be calculated by multiplying all the probability values
generated by the sliding window. The higher probability of the sentence satisfies that the
more fluent the sentence is generated by the decoder. In theory, the probability of a word in a
given context depends on all the preceding words. Hence, the probability of a sentence with
k words can be calculated by the formula shown in Equation 2.8.

P(w1,w2, ...,wk) =
k

∏
i=1

P(wi|w1,w2, ...,wi−1) (2.8)

As it is observed, the last terms of the production sequence require an intensive amount of
information about the observations. This unfortunately results in data sparsity and zero proba-
bility for almost all the sentences. The independence assumption resolves such a data sparsity
problem [36]. It suggests that the probability of a word occurrence depends on only preceding
n−1 words. Thus, the previous formula is rewritten as Equation 2.9.

P(w1,w2, ...,wk) =
k

∏
i=1

P(wi|wi−(n−1),wi−(n−1)+1, ...,wi−1) (2.9)
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After calculating the probabilities P(w1,w2, ...,wk) for each hypothesis w1,w2, ...,wk, the most
probable sentence, in other words, the most fluent sentence, is likely to be picked as the final
translation hypothesis.

2.6.2 Pruning

Pruning is a vital part of the language model generation process. Since language models
are compiled by using very large corpora, it is highly possible that the noisy data might be
blended into the language model. The pruning process aims to compile robust and reliable
language models. In addition, this process helps to reduce the sizes of the language model
files by eliminating the noisy n-grams [20].

There are two major approaches to prune the language models once they are created. The first
approach scans all of the n-grams compiled from data and discards ones having smaller log-
probabilities than a predefined threshold. The threshold value can be adjusted to determine
the pruning intensity.

Table 2.1 illustrates a fragmentation of a 5-gram language model. Pruning based on a thresh-
old value of −1.5 discards the n-grams having lower log-probability than 1.5, and keeps the
ones having a log-probability higher than 1.5. Table 2.2 shows the resulting n-gram fragmen-
tation after the pruning operation with the threshold value of 1.5.

Table 2.1: A fragmentation of 5-gram language model

Probability formula Log-Probability N-Gram
log(P(lessen|has, the, potential, to)) -2.042486 has the potential to lessen
log(P(o f |has, the, largest,growth)) -1.830927 has the largest growth of

log(P(in|has, the, largest,expansion)) -1.928299 has the largest expansion in
log(P(o f |has, the,highest, level)) -0.740430 has the highest level of

log(P(decide|has, the,authority, to)) -0.951597 has the authority to decide
log(P(the|has, the,backing,o f )) -1.154158 has the backing of the

log(P(into|has, to,be, taken)) -0.661742 has to be taken into
log(P(by|has, to,be,elected)) -0.721017 has to be elected by

After the pruning operation, the aim is to keep only the n-grams with high probability. There-
fore, a good adjustment of the intensity of pruning may increase the fluency in the target
language.

The second approach does not deal with the probabilities of the n-grams generated, but the
counts of the words. It discards a word if it occurred less than a predefined threshold. Here,
the threshold value also can be adjusted to determine the pruning intensity. In this thesis,
the second approach is used with the threshold value of 1 for all experiments. The pruning
parameters are defined by a set of previous examples which are out of the capacity of this
thesis.
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Table 2.2: Pruned fragmentation of 5-gram language model

Probability formula Log-Probability N-Gram
log(P(o f |has, the,highest, level)) -0.740430 has the highest level of

log(P(decide|has, the,authority, to)) -0.951597 has the authority to decide
log(P(the|has, the,backing,o f )) -1.154158 has the backing of the

log(P(into|has, to,be, taken)) -0.661742 has to be taken into
log(P(by|has, to,be,elected)) -0.721017 has to be elected by

2.6.3 Smoothing

The independence assumption does not guarantee to resolve the data sparsity problem com-
pletely, but to reduce it to a considerable level. When the unique word count is k in the
training corpus of the language model, and the order of the language model is n, in theory,
we would need kn different n-gram sequence in the model file to resolve the data sparsity.
Without having this number of n-gram sequences, we can resolve the data sparsity problem
by using smoothing methods.

In practice, smoothed language models never generate zero probability for any n-gram se-
quences, even for the grammatically incorrect word sequences. This helps not to end up with
zero probability while calculating the overall sentence probability.

There are a large number of smoothing methods in the literature, such as the Laplace, Good-
Turing, and Kneser-Ney smoothing algorithms [64]. In this study the Witten-Bell [8] smooth-
ing method is used for all the experiments. The smoothing parameters are defined by a set of
previous examples which are out of the scope of this thesis.

Laplace smoothing (also known as add-one smoothing) is a smoothing technique to eliminate
zero probabilities by adding 1 to counts of every instance. Probability of an instance is cal-
culated by Equation 2.10. Laplace smoothing method adds 1 to counts of every instance, and
the new formula to calculate the probabilities is shown as Equation 2.11

Pi =
c(i)
N

(2.10)

In the equation 2.10, N is the number of total word tokens, and c(i) is the count of token-i.

P∗i =
c(i)+1
N +V

(2.11)

In the equation 2.11, N is the number of total word tokens, V is the number of word types
(vocabulary size), c(i) is the count of token-i.

On the other hand, the Witten-Bell algorithm is based on the idea that a zero frequency n-gram
is an event that hasn’t happened yet. The Witten-Bell algorithm suggests to assign the total
probability mass to the zero frequency n-grams. The formula to calculate the probability of
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2-grams is shown as Equation 2.12.

∑
i:ci=0

p∗(wi|wx) =
T (wx)

N(wx)+T (wx)
(2.12)

2.6.4 Interpolation

Domain is an important aspect of the language models. Language model domain must be
consistent with the aimed translation system domain. If the domains of the parallel sentenced
data and the monolingual data are different, then the translation quality will suffer from this
difference. In other words, the faithfulness and the fluency reference points must be the same.
However, there are techniques which can make use of the sources of different domains [24],
[26], [33].

Basically, language model interpolation involves methods which combine the different n-
gram probabilities from different language models. Each language model must be assigned a
weight, so that the final probability of the n-gram can be calculated as the weighted arithmetic
mean. The formula used during this study is shown as Equation 2.13 and Equation 2.14.

P(w1,w2, ...,wk) =
n

∑
i=1

αiPi(w1,w2, ...,wk) (2.13)

n

∑
i=1

αi = 1 (2.14)

The phrase-based statistical machine translation system mentioned in the capacity of this the-
sis focuses on the political news domain, and only one source is used to compile the language
model. Therefore, none of the interpolation methods are used in this thesis study, and all of
the ai values are set to 1, as shown in Equation 2.14.

2.7 Translation Models

While the language models are used for fluency in the generated hypothesis translation, the
translation models are used for obtaining the faithful translation hypotheses. Translation mod-
els involve both an extensive phrase level dictionary with translation probabilities and the re-
ordering tables for the scrambled structures after the production of the translation hypotheses.
An illustrative phrase table is shown as Table 5.3.

To summarize, a translation model is a probability distribution which returns the probability
of a translation for a given source sentence. It assures the protection of the meaning of the
source sentence. It should be noted that the translation models do not care about neither the
grammar nor the word order of the hypotheses, but rather the protection of the items carrying
the semantic information.
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2.7.1 Word Alignment

Word alignment is the very first step of the model generation process in a statistical machine
translation system. It is also called bi-text word alignment, because it requires the translations
of the sentences in two natural languages. When a bunch of parallel sentences are given for
the training phase, relations of words are extracted and the correct translations of the words
are guessed by the word aligner. It is important to observe that the word alignment phase
does not focus on phrases, but words. The word alignment task is done by the GIZA++ [44]
toolkit.

An example word alignment diagram is shown in Table 2.3.

Table 2.3: Example word alignment result for a sentence pair
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.

2.7.2 Phrase Extraction

After words are matched with their counterparts in the other language, consecutive words
are extracted from each of the sentences. When these consecutive words appear together
frequently, they compose the phrases. Since the semantic relation of the words are known
already, the phrases can be matched accordingly. By using the example word alignment ma-
trix, shown in Table 2.3, the neighboring black squares can be combined to obtain a larger
rectangle. An example of these phrase extraction marks are demonstrated in Table 2.4.

The marks shown in the example result in the phrase pairs which are shown as Table 2.5. The
occurrence frequencies of the pairs assesses the translation probabilities of the pairs. This
phase is also called phrase scoring. In the thesis scope, it is included in the phrase extraction
phase.
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Table 2.4: Example phrase extraction result for a sentence pair
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öğrenmenin
genel

beyin

fonksiyonlarını

güçlendirdiğini
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Table 2.5: Extracted phrase pairs from the example parallel sentence

Turkish English
Bilimsel çalışmalar Scientific studies

yeni bir dil a new language
genel beyin fonksiyonlarını güçlendirdiğini strengthens overall brain function

kanıtlamıştır have proven

2.7.3 Phrase Reordering

In machine translation task, a phrase reordering model is required to obtain a correct sequence
of the words and phrases in the target sentence. The initial hypothesis is considered to be a
scrambled form of the correct translation. Finding the correct sequence given a scrambled
form is a difficult problem to solve, and the time and space complexity of this problem is
exponential. Therefore; it is essential to use some heuristics to shrink the actual search space.

The reordering model consists of the phrases and the actions to be taken when these phrases
are encountered. The model can be learned by using the phrase marks in the word alignment
matrix above. Each extracted phrase translation can follow the previous one monotonically,
swap with the previous one, or jump one or more words ahead from the previous one. These
behaviors are shown in Figure 2.4.
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Figure 2.4: Extraction of the order behaviors of the phrases

harabe eski bir kalede bulundu

the ruins were discovered in an old castle

Figure 2.5: Reordering the words in the translated sentences

There are several lexicalized reordering model types introduced to the literature [1], [18].
In this study, all of the monotone, swap, and discontinuous reordering types are taken into
account by default.

Reordering Subword Units

As it is explained, finding the correct places of the phrases is a costly task. The Turkish lan-
guage mainly uses Subject-Object-Verb (SOV) ordering rule. On the other hand, the English
language uses the Subject-Verb-Object (SVO) reordering rule. This difference brings about
distant translations of phrases. Moreover, longer sentence pairs require a farther reordering
process, i.e. the distance between the words to be reordered is longer when longer sentences
occur, which is even more complex problem. Figure 2.5 shows the distant translations of
phrase pairs.

The longer sentence pairs require farther reordering process, as stated. Morphological anal-
ysis or word decomposition operations split words into stems and morphemes, which result
in even longer sentences in Turkish. This increases the difficulty of the reordering problem,
which is shown in Figure 2.6. Thus, longer sentences are more likely to harm the translation
accuracy due to the reordering drawbacks, as discussed in Section 6.3.
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harabe eski bir kale de bul undu

the ruins were discovered in an old castle

Figure 2.6: Reordering the stems and morphemes in the translated sentences

2.8 Machine Translation Evaluation Metrics

Evaluation has always been a hot topic in the machine translation area. Measuring the quality
of a natural language sentence translation is not a straightforward process. Therefore, various
matrices are proposed in the literature. Translation error rate (TER) [54], word error rate
(WER) [37], METEOR [14], and BLEU [49] are the most well-known and frequently used
evaluation metrics.

Translation Error Rate (TER) is an error metric for machine translation that measures the
number of edits required to change a system output into one of the references. Each insertion,
deletion, update or shift has a penalty score of 1 to produce the output sentence given the
input sentence. Thus, a higher TER score means worse translation accuracy in general.

T ER =
S+D+ I +H
S+D+H +C

(2.15)

In the equation 2.15, S is the number of substitutions, D is the number of deletions, I is the
number of insertions, H is the number of shifts, C is the number of corrects.

Word error rate (WER) is a common metric of the performance of a speech recognition or
machine translation system. WER can be computed by using the formula, shown as Equation
2.16. The WER is derived from the well-known Levenshtein distance algorithm, working at
the word level instead of the phoneme level. The main difference between TER and WER
is that WER is a position independent evaluation metric. WER scores translation hypotheses
regardless of the positions of the words. Therefore, WER is expected to produce a higher
score than TER.

WER =
S+D+ I
S+D+C

(2.16)

In the equation 2.16, S is the number of substitutions, D is the number of deletions, I is the
number of insertions, C is the number of corrects.

METEOR score is an evaluation score in MT systems based on the exact, stem, synonym, and
paraphrase matches between words and phrases. Segment and system level metric scores are
calculated based on the alignments between hypothesis-reference pairs. This evaluation met-
ric is mostly used for the multiple referenced translations, where the translation hypotheses
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are compared by more than one correct translations. This fact explains why METEOR scores
are relatively higher than the TER, WER or BLEU scores.

BLEU is an algorithm for evaluating the quality of text which has been machine-translated
from one natural language to another. Quality is considered to be the correspondence between
a machine’s output and that of a human. BLEU was one of the first metrics to achieve a
high correlation with human judgements of quality, and remains one of the most popular
inexpensive automated metrics.

The translated sentences must be evaluated by a consistent method throughout all the phases
including the parameter optimization phase and the evaluation phase. During the parameter
optimization phase, a set of values are assigned to the parameters, and then the development
corpus is translated. According to the evaluation score on the development set, all parameters
should be tuned in order to obtain the highest translation quality. Moreover, the overall quality
of the system can be compared among the different systems by using the evaluation metrics
on some unseen test set.

In the thesis scope, the BLEU metric is used for both of the optimization and evaluation tasks.
The scale of BLEU metric is between 0 and 100, where higher accuracy indicated by a higher
BLEU score indicates better translation quality.
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CHAPTER 3

RELATED WORK

As mentioned in Section 2.2, after the 1980s, researchers who focused on the machine transla-
tion problem had introduced the idea of analogy-based statistical machine translation paradigm
[25]. The adaptation of these statistical approaches to the Turkish language dates back to the
end of the 1990s [27], [57]. The very first studies on machine translation systems were anal-
ogy (example)-based systems. Such methods are often characterized by their use at run time
of a bilingual corpus with parallel texts as their main knowledge base. It is essentially a
translation by analogy and can be viewed as an implementation of the case-based reasoning
approach of machine learning.

It is not difficult to reveal the reason behind the translation qualities of sentences of the agglu-
tinative languages are suffering from the data sparsity. The unique word counts in morpho-
logically rich languages are much higher than morphologically weak languages when they
are sampled in the same sizes of sentences. When the sample size changes, the reactions of
the unique word counts in Turkish and English are represented in Figure 3.1. It is seen that
the unique word counts reflect the agglutinative differences of these two languages. When
the statistical translation systems involving Turkish are compared to the others, as expected,
lower accuracy and worse translation quality was generally seen. The main reason behind this
fact is that the surface forms of the words can be easily inflected and new surface forms are
produced by the generative nature of the agglutinative languages, including Turkish.

Given the translated pairs of sentences in Turkish and English, the changes in total words
are represented in Figure 3.2. It is observed that the number of total words in Turkish is
significantly fewer than English while having the same number of sentences. This implies
that the same semantic information is mostly carried by the morphemes rather than the words
in Turkish.

Given the translated pairs of sentences in Turkish and English, the changes in unique words
are represented in Figure 3.1. It is observed that the number of unique words in Turkish is
significantly larger than English while having the same number of sentences. It should be
remarked that the Turkish language has a fewer number of total words, but a larger number of
unique words than English on average. This implies that Turkish words can be inflected more
frequently. In other words, there are much more surface word forms in Turkish than English.
The morphological differences between Turkish and English are reflected by Figures 3.1 and
3.2. These figures are obtained by processing the data used for the model training parts of this
study.

The generative nature of the Turkish language produces new words by appending the suffixes
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Figure 3.1: Number of unique words versus sentences in Turkish and English

exponentially based on the number of suffixes. Table 3.1 shows the number of words which
can be generated by using given number of derivational suffixes from two stems, namely
masa and oku [5], [55], [63]. Interestingly, a single verb stem can produce around 1.5 million
different words in theory.

Inspired by the richness of the Turkish language in terms of morphology, the morphemes and
sub-word units were treated as if they are actual words themselves. Syntactic morphological
analyzers [45] were used in several studies that proved improvements can be achieved by
using the underlying morphological information of the word units [15], [16], [62]. In addition,
unsupervised word decomposition was also applied before the translation model generation
in the Turkish language and a considerable amount of improvement was gained [41].

On the other hand, it has been clearly shown that the success rates of the statistical systems in-
cluded phrase-based statistical machine translation highly depend on the training data quality
and quantity [39].

As mentioned, there have been a substantial amount of studies conducted on the morphologi-
cal aspect of the Turkish language in the phrase-based statistical machine translation systems.
There are also studies to reveal the effects of the corpus quantity on the phrase-based statisti-
cal machine translation systems in different languages. This study aims to combine these two
types of studies and evaluate the different approaches on the Turkish language while changing
the corpus size cumulatively.
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Figure 3.2: Number of total words versus sentences in Turkish and English

The studies which are focused on morphology and subword items have mostly been conducted
on agglutinative languages [48], [50]. The languages like Turkish, Finnish and Hungarian
have a significantly stronger morphology than the languages like English, French and Spanish
[51]. The main reason behind it is that the subword item utilization is not favored for the
languages like English and French.

3.1 Exploring different representational units in English-to-Turkish statistical
machine translation

Exploring different representational units in English-to-Turkish statistical machine translation
[47] is a study which focuses on the utilization of the subword items by performing morpho-
logical analysis and various post-processing techniques to increase the translation accuracy
of the phrase-based statistical machine translation system. The objectives of this study show
similarities with the concept of this thesis, despite different approaches being used.

The study mentioned above is based on the morphological analysis [45], and it includes three
different segmentation models which are listed below. Two of these three models have equiv-
alent approaches in this thesis. Therefore, this study is selected to be explained, compared
and evaluated.
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Table 3.1: Number of words produced by using derivational suffixes

Stem Derivational Suffixes New words Total words
masa 0 112 112

1 4,663 4,775
2 49,640 54,415
3 493,975 548,390

oku 0 702 702
1 11,366 12,068
2 112,877 124,945
3 1,336,266 1,461,211

• Baseline model: This model is the same as the baseline model in this thesis.

• Fully morphologically segmented model: This model is the same as the rule-based
model in this thesis, explained in Section 4.3.

• Selectively Segmented Model: This model statistically tries to find the unaligned sub-
word items, and attach them to the word roots.

The selectively segmented model which does not have any equivalence approach in this study
uses GIZA++ toolkit [44] to detect the unaligned tokens. Then, the unaligned tokens are
attached to the word roots to undo the segmentation of such tokens. They report that this
approach results in more than 9% better accuracy relative to the baseline score. Since the
data set that they used is not public, the studies conducted during this thesis are not able to
be compared with theirs. However, two of the approaches are the same and the fusion-based
approach used in this thesis yields around 10% better accuracy relative to the baseline score.

3.2 The TUBITAK-UEKAE Statistical Machine Translation System for IWSLT
2010

The TUBITAK-UEKAE Statistical Machine Translation System for IWSLT 2010 [41] is a
study which introduces unsupervised statistical word decomposition to be used as a pre-
processor for the phrase-based statistical machine translation system. This study was con-
ducted and submitted for the participation in the IWSLT 2010 evaluation campaign. The
researchers of this study defend that the Turkish language has a strong nature of agglutina-
tion, and it highly requires the utilization of subword items, which is quite similar to the
approaches explained later in Chapter 4. They extensively investigated using an unsuper-
vised morphological segmentation tool called Morfessor [12], which is publicly available.
Morfessor utilizes the minimum description length (MDL) principle to search for the optimal
sub-word segmentation of a given corpus. Any word has a single-segmentation hypothesis in
this model regardless of the context of the word [41].

The data set used in their study is BTEC (Basic Travel Expression Corpus), which is provided
by IWSLT, and it is common for all participants of the campaign. The domain of the data set is
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quite restricted to the basic travel expressions, as its name implies. Therefore, the participants
report quite high BLEU scores. They report the result of 54.05 BLEU score for the bilingual
test data set of IWSLT 2010.
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CHAPTER 4

UTILIZATION OF SUBWORD ITEMS

4.1 Linguistic Aspects

In the area of machine translation, the complexity of the problem also depends on the total
number of unique words in the target domain. The higher number of unique words existing
in the domain tends to cause more difficult translation problems. When the aim is to build
a general purpose machine translation system without any domain restriction, the problem
becomes even more complicated, since it is necessary to involve all the words in a language.
Hence, in our case, the difficulty of the problem depends on the fact that different word forms
can occur.

In Chapter 3, it is mentioned that the unique word counts differ considerably in the Turkish
and English languages for a set of translations of sentences. In Turkish, the unique word count
is larger than the one for English. This is caused by the agglutinative nature of Turkish. In this
language, the word forms can be easily changed by adding suffixes. This brief information
explains why we need to decompose the words in Turkish to decrease the unique word counts.

In other words, an English phrase containing multiple words can be translated into a single
Turkish word. For example, the phrase in my car in English can be translated to Turkish as
arabamda. Decomposing Turkish words into stem and morphemes, like araba +m +da, helps
to increase the similarity between the language pair as well.

In this study, the aim is to validate the success of the frequency-driven late fusion-based word
decomposition approach by comparing it with the rule-based and stochastic approaches.

4.2 N-Gram-Based Decomposition

N-gram-based word decomposition aims to split stems and morphemes from each other by
using unsupervised learning methods. This task requires only a raw corpus in Turkish to learn
the probabilities of the letter sequences in the language.

In Section 2.6.1, the n-gram approach is explained in detail. For the word decomposition,
this approach slightly differs from the previous one. In this phase, the items used for n-gram
modeling are not words, but letters. Thus, this approach is also called the letter or character-
based n-gram modeling in the literature.
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Character-based n-gram approaches have been used for many different tasks so far, such as
information retrieval [38], text categorization [6], named entity recognition [53], language
identification [7], and morphological analysis [32].

This approach suggests calculating the probabilities of the occurrences of each letter after
n−1 preceding letters. To illustrate, guessing the upcoming letter for the sequence sandaly_ is
easier than guessing the upcoming letter for the sequence sandal_. For the sequence sandaly_,
the upcoming letter can only be e to compose a valid sequence; however, for the sequence
sandal_, the upcoming letter can be ı, a, d, l, y, s to compose another valid Turkish sequence.
By using raw text, the probability distributions for all the letter sequences are calculated. By
using these probabilities, it is easy to measure the possible letter variety for a given sequence.
If the letter variety is large, then it is quite possible to have a morpheme boundary right after
the given sequence. Otherwise, the upcoming letter can be guessed easily, then the given
sequence does not usually indicate a morpheme boundary.

4.2.1 Forward N-Gram Modeling

Forward n-gram modeling is the standard way for character-based n-gram modeling. In this
approach, the words are split into letters, so each letter appears as if it is a separate word. It
should be noted that the word boundaries have to be marked so they will not be lost.

mevsim normalleri−→< w > m e v s i m < /w >< w > n o r m a l l e r i < /w > (4.1)

After the pre-processing step, the IRSTLM toolkit [17] creates the character-based n-gram
model.

While decomposing the unseen words, the interpolation technique, mentioned in Section
2.6.4, is used for the purpose of not generating the zero probabilities. Thereby, the most
probable sequence is marked as a morpheme boundary.

4.2.2 Backward N-Gram Modeling

While forward n-gram modeling aims to learn the valid letter sequences in the language,
backward n-gram modeling aims to learn the most probable endings and morphemes in the
language. The modeling formalism in backward n-gram modeling is the same as the forward
n-gram modeling; however, the pre-processing step differs from it. This method requires the
reversed forms of the words, and n-grams are generated by starting at the end of the word and
traversing to the front.

The aim of the backward n-gram modeling approach is to guess weather an ending is a valid
morpheme or morpheme group by traversing the letters from the end to the beginning.

To illustrate, the pre-processing phase of the approach can be shown as follows.

mevsim normalleri−→< w > m i s v e m < /w >< w > i r e l l a m r o n < /w > (4.2)
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By traversing the letters, the probabilities of being a valid morpheme can be calculated. The
valid morphemes are demonstrated below.

< w > m i s v e m < /w >< w > i r e l l a m r o n < /w > (4.3)

As shown for the word mevsim, if the approach is only based on rules to match the valid
morphemes, it is quite possible to overstem the words. For this reason, the same n-gram lan-
guage modeling toolkit, IRSTLM [17] is used to calculate the probabilities on each morpheme
boundary candidate.

4.2.3 Combination of Forward and Backward N-Gram Modelling

This approach combines the forward n-gram modeling and backward n-gram modeling ap-
proach for each morpheme boundary candidate. Each point between two letters of a word
is considered as a morpheme boundary candidate. A word with n letter has n−1 morpheme
boundary candidates. For each morpheme boundary candidate, forward and backward n-gram
models are used to calculate these two probabilities. Then, for each candidate, the multipli-
cation of these two probabilities is considered as the final probability for being an actual
morpheme boundary. At this step, n−1 morpheme boundary probabilities are calculated for
a word with n letters. By simply traversing the morpheme boundary probabilties, the ones at
the peak are selected as the actual boundaries. In other words, the probabilities larger than the
previous one and the latter one is considered to be a morpheme boundary.

The overall approach helps to decompose Turkish words without having any linguistic re-
sources or gramatical rules. Since the approach is consistent for the training and the testing
phases of the machine translation system, it is expected to gain improvement while having a
limited amount of parallel data resource.

4.3 Rule-based Morphological Analysis

The most accurate approaches in the literature for the morphological segmentation of the
words are the rule-based approaches. The rules written by linguists usually outperforms the
ones based on supervised, semi-supervised or unsupervised statistical approaches; although,
the rule-based ones require more effort and time to be implemented. Due to the lack of
human resource to design the language-dependent morphological rule set, this approach may
be replaced by the statistical ones.

In this study, for the rule-based experiments, one of the very rare rule-based morphological
analyzers for Turkish among the literature is used [45]. This analyzer uses a finite state
machine designed to consider the morphotactic rules in Turkish.

4.4 Fusion-Based Word Decomposition

It has been mentioned that a complete machine translation system consists of three major
modules, which can be listed as the pre-processing machine, the translation machine and the
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post-processing machine. Since the translation machine consumes only the intermediate out-
put generated by the pre-processing machine, the output of the pre-processing machine may
not necessarily be grammatical in terms of morphotactics, but deterministic and consistent.

Fusion-based word decomposition, as the name implies, proposes to make use of more than
one approach to split the inflected words into smaller items. In the scope of this thesis, the
statistical approaches are used along with the rule-based ones for the fusion-based word de-
composition experiments.

Initially, the raw input data is analyzed by the rule-based and statistical word decomposition
approaches separately. These individual approaches are explained in detail above. The raw
input corpus is processed by using these two different methods and two different output hy-
pothesis sets are obtained. Then, the fusion decomposition module picks a hypothesis either
from the first set or the second set for a given input word as shown in Figure 4.1.

Final output

Fusion

Rule-based mor-
phological analysis

Statistical word
decomposition

Raw text

Figure 4.1: Fusion-based word decomposition schema

Fragmentation of the Data Set

The fusion-based approach fragments the training data into two subsets. The rule-based mor-
phological analyzer is used to find out the subword items of the first subset, whereas the
unsupervised word decomposition approach performs the same task for the second subset.
This fragmentation operation is performed according to the word frequencies in the training
data. Intuitively, the statistical word decomposition approach might find out the subword
items more accurately if the amount of the training instances is sufficient. However, the rule-
based morphological analysis approach does not benefit from the statistical characteristics of
the training data. Therefore, the statistical word decomposition approach is used for frequent
words, and the rule-based morphological analysis approach is used for the rare words in the
training data.

The classification algorithm of the words as frequent and rare ones prior to the late fusion-
based word decomposition is shown as Algorithm 1. The time complexity of this algorithm
can be denoted as O(n) with respect to the input size.
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Algorithm 1: Fragmentation of the data set for fusion-based experiments
Input: Set of words in training data
Output: Two subset of words

1 foreach Word w do
2 CountOccurences(w);

3 foreach Threshold t do
4 foreach Word w do
5 if Occurence(w) < t then
6 MarkAsRare(w);

7 else
8 MarkAsFrequent(w);

4.5 Data Description

In this section, all the linguistic resources used during this study are explained in detail. For
the sake of compatibility, a public parallel corpus of Balkan languages is used for all linguistic
data in this study [58]. This data is derived from the SETimes news portal at http://www.
setimes.com, which publishes news in 10 different languages.

The SETimes corpus is used for both monolingual and bilingual data. For the monolingual
part, only the related language is extracted from the corpus and used. For language modeling,
it is recommended to use much larger corpora instead of a limited one; however, in this study
no data except the SETimes resource is used. The main reason behind this choice is to enable
easier comparisons of this study with others.

4.6 Monolingual Data

In this study, monolingual data is only used for the English language model generation step.
The generated language model is common for all experiments conducted during the study.
Only the English part of the training corpus is used for the language model generation purpose,
and neither the development data nor the evaluation data is used at this step to build a fair
model.

The detailed description of the monolingual data is shown in Table 4.1.

The reason why the number of sentences used for the language model generation is less than
160K is that the language model generator discards sentences having more than 40 words to
generate a set of robust n-grams.

Since the source of the corpus used in this study is a universal news agency, the data mostly
involves sentences in the news domain. This situation makes the overall system slightly do-
main dependent for the final usage. This slight dependency explains why the number of
unique words in the corpus are lower than expected. However, it is important that the sys-
tem is trained, optimized and evaluated using data from the same domain which satisfies the
consistency condition of the system.
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Table 4.1: Details of pre-processed monolingual data used for the language model generation

Metric Value
Number of sentences 145,749

Number of total words 4,470,083
Number of unique words 43.631

Number of total characters 25,348,017
Number of words per sentence 30.67
Number of characters per word 5.67

4.7 Parallel Data

A parallel data, or parallel text, can be defined as a text which are aligned pair of translations
in the machine translation area. In the case of the thesis, a parallel data is a pair of files, each
of which contains a sentence on each line. For example, the ith sentence (line) of the first file
and the ith sentence (line) of the second file must be the translations of each other.

The statistics regarding the parallel text depends on the experiment type which can be listed
as word-based, rule-based decomposition, and statistical decomposition experiments. It is
important to express that only the Turkish side of the parallel text changes depending on
the experiment type. This is because all sub-word experiments are conducted for Turkish
language.

The fragmentation of the parallel data as the training, development and evaluation sets is
shown in Table 4.2. The training, development and evaluation sets are fragmented by using
random sampling of the whole corpus.

Table 4.2: Fragmentation of the parallel text

Number of sentences
Training set 160,000

Development set 500
Evaluation set 500

Since the training and the optimization phases require powerful computational units for the
statistical machine translation tasks, cross validation methods may not be feasible for such
tasks. Therefore, the development and evaluation sets are built by using random sampling
and the same data sets are used for the same type of experiments in this thesis.

4.7.1 Word-Based Parallel Data

Word-based parallel data is obtained by pre-processing the raw data obtained from the SE-
Times source. In this experiment type, all words in the Turkish corpus are represented as they
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are without changing any property of the surface form.

The detailed description of the parallel data for the word-based experiments is shown in Table
4.3.

Table 4.3: Details of pre-processed parallel data used for the translation model generation

Metric Turkish English
Number of sentences 160,000 160,000

Number of total words 4,145,871 4,593,299
Number of unique words 112,676 44,957

Number of total characters 29,919,406 26,421,412
Number of words per sentence 25.91 28.71
Number of characters per word 7.22 5.75

By observing the statistics above, it is clear that, on the average, the words in Turkish are
longer than the words in English. Moreover, the number of words in a sentence for Turkish is
larger than the number of words in a sentence for English. These two important details also
explain the necessity of the word decomposition in Turkish, to some extent.

The algorithm run for the word-based experiments to produce the intermediate input prior
to the SMT system is shown as Algorithm 2. The time complexity of this algorithm can be
denoted as O(n) with respect to the input size.

Algorithm 2: Processes prior to SMT for word-based experiments
Input: Pairs of sentences in Turkish and English
Output: Pre-processed pairs of sentences in Turkish and English

1 foreach SentencePair (t,e) do
2 Tokenize(t,e);
3 Lowercase(t,e);
4 NormalizeNumbers(t,e);
5 MarkSentenceBoundary(t,e);

Case Study

Input: Kalıntılar 60 metre derinlikteki bir çukurda bulundu.

Regardless of the experiment type, every input text is pre-processed prior to the machine
translation operations. This pre-processing step involves case normalization, number normal-
ization, punctuation normalization and sentence boundary marking, as explained in Section
5.1.

Pre-processed intermediate input: <s> kalıntılar $number$ metre derinlikteki bir çukurda
bulundu . </s>

After pre-processing the input text, the translation model queries the phrase table, which is an
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extensive phrase-based dictionary with forward and backward translation probabilities. Since
the word-based experiments are the baseline model for this study, no operation, other than
the common pre-processing steps, is performed. The intermediate input, produced by the
pre-processing operations and shown above, is directly fed to the translation machine.

The phrase-based statistical machine translation system trained by word-based data set with
160K pairs of sentences produced the following intermediate output:

Intermediate output: <s> the lost of the pit were found at a depth of $number$ meters . </s>

After obtaining the intermediate output from the translation machine, the intermediate output
is processed to be transformed to human readable form, which is called post-processing. This
operation is explained in Section 5.5. The post-processed output of the system is shown below.

Output: The lost of the pit were found at a depth of 60 meters.

Expected output: The remains were discovered in a pit 60 meters deep.

Serious semantic and grammatical errors can be seen resulting in incorrect translation. The
output sentence implies that the remains of a pit were found; however, the input sentence
expresses that the remains were found in a pit. The intuitive justification behind this result is
that the word-based data set may still involve data sparsity even with 160K pairs of sentences.
This is due to the words being used in their surface form without any sort of utilization of
subword level items. Therefore, the suffixes may result in completely different words, and
they may potentially increase the unique word counts. Finally, the data sparsity may result in
inaccurate translations as shown above.

4.7.2 Rule-Based Word Decomposition of Parallel Data

In the literature, rule based approaches are the most popular approaches for word decomposi-
tion as a pre-processing step of machine translation systems for Turkish [56]. A linguistically
motivated rule-based morphological analyzer [45] is used for the morphological decomposi-
tion of Turkish words. This analyzer produced a set of analysis candidates for each word in
Turkish. In other words, a Turkish word can be morphologically analyzed in many different
ways. To disambiguate the ambiguous decomposition analysis and produce a single hypothe-
sis for each word, a perceptron-based morphological disambiguation for Turkish is used [52].
By using the combination of the morphological parser and the disambiguator, Turkish words
are analyzed and the stems and morphemes are separated from each other. Each stem and
morpheme is treated as if they are separate words.

The detailed description of the parallel data for the rule-based word decomposition experi-
ments is shown in Table 4.4.

Since the inflectional morphological analysis is performed on the Turkish side of the parallel
text, a single word is fragmented into several sub items. The average number of the token
per word metric denotes that a single Turkish word produces 3.16 tokens on average. These
tokens are the stem of the word and the morphemes which follow the stem.

It is shown that there is a considerable amount of increase in the number of total words in
Turkish text after the morphological decomposition is performed. The new number of to-
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Table 4.4: Details of pre-processed parallel data used for rule-based word decomposition
experiments

Metric Turkish English
Number of sentences 160,000 160,000

Number of total words 13,084,518 4,593,299
Number of unique words 39,861 44,957

Average number of tokens per word 3.16 1.00

tal words in Turkish is almost twice of its English counterpart. Therefore, it is suggested to
reduce the density of the morphological fragmentation to some extent to ease the word align-
ment task. In a pair of sentences, the closer the number of words results in a better word
alignment performance in general. Since the scope of the thesis does not aim to reach the
best accuracy in the translation systems from Turkish to English, this task is left as a possible
future work.

Another important result of the statistics above is the decrease in the unique word counts on
the Turkish side. The unique word count is decreased to 1/3 of the original value after the
morphological analysis. This is another factor which decreases the computational complexity
of the problem.

The algorithm run for the rule-based morphological analysis experiments to produce the in-
termediate input prior to the SMT system is shown as Algorithm 3. The time complexity of
this algorithm can be denoted as O(n) with respect to the input size.

Algorithm 3: Processes prior to SMT for rule-based morphological analysis experi-
ments

Input: Pairs of sentences in Turkish and English
Output: Pre-processed pairs of sentences in Turkish and English

1 foreach SentencePair (t,e) do
2 Tokenize(t,e);
3 Lowercase(t,e);
4 NormalizeNumbers(t,e);
5 MarkSentenceBoundary(t,e);

6 foreach Sentence t do
7 foreach Word w in t do
8 AnalysisHypotheses h = PerformMorphologicalAnalysis(w);
9 w := DisambiguateHypotheses(t, h);

Case Study

Input: Kalıntılar 60 metre derinlikteki bir çukurda bulundu.

Prior to the machine translation operations, every input text is pre-processed regardless of
the experiment type. This pre-processing step involves case normalization, number normal-
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ization, punctuation normalization and sentence boundary marking, as expressed in Section
5.1.

Pre-processed intermediate input: <s> kalıntılar $number$ metre derinlikteki bir çukurda
bulundu . </s>

Between the pre-processing and decoding steps, the rule-based morphological analyzer finds
the stem and morpheme hypotheses. In other words, the rule-based morphological analysis
approach splits the agglutinated words into stems and morphemes by using linguistic rules.

The ambiguous analysis results can be shown in Table 4.5.

Table 4.5: Ambiguous analyses resulted by the rule-based morphological analyzer

Input word Ambiguous hypotheses
kalıntılar kalıntı _a3pl

kalıntı _p3pl
metre metre
derinlikte derin _ness _loc _rel
bir bir
çukurda çukur _loc
bulundu bulun _pos _past

bulun _pass _pos _past

The morphological analysis does not assign any probability or weight to the ambiguous anal-
yses, which are shown in Table 4.5. Every hypothesis given the input word has an equal
probability to be selected as the final hypothesis.

Having the ambiguous results, the perception-based morphological disambiguation approach
is used to reveal the correct hypotheses among the ambiguous ones. It is reported that this
approach results in 98% accuracy [52]. This approach is widely called word sense disam-
biguation (WSD).

Given all of the ambiguous hypotheses, WSD picks only one hypothesis, and discards the
rest of them. This decision is made according to the neighborhood of the input word. The
unambiguous results for the given input sentence are shown in Table 4.6.

Unambiguous hypotheses give the following sentence.

Intermediate input: <s> kalıntı _a3pl $number$ metre derin _ness _loc _rel bir çukur _loc
bulun _pos _past . </s>

Only stems and morphemes are shown in the intermediate input above. All the allomorphs,
which can be defined as the variant forms of a morpheme, are replaced by the common name
morpheme. This replacement significantly reduces the OOV rate.

After performing the rule-based morphological analysis, the translation model queries the
phrase table, which is an extensive phrase-based dictionary with forward and backward trans-
lation probabilities. The intermediate input shown above is fed to the translation machine.
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Table 4.6: Unambiguous analyses produced by the perception-based WSD

Input word Unambiguous hypotheses
kalıntılar kalıntı _a3pl
metre metre
derinlikte derin _ness _loc _rel
bir bir
çukurda çukur _loc
bulundu bulun _pos _past

The phrase-based statistical machine translation system trained by rule-based data set with
160K pairs of sentences resulted the following intermediate output:

Intermediate output: <s> ruins around $number$ meters at the deep , explains they found
in soon . </s>

After being obtained from the translation machine, the intermediate output is processed to
transform it to the human readable form, which is called post-processing. This operation is
explained in Section 5.5. The post-processed output of the system is shown below.

Output: Ruins around 60 meters at the deep, explains they found in soon.

Expected output: The remains were discovered in a pit 60 meters deep.

Like the word-based case study, the output still has grammatical and semantic errors which
result in incorrect translation. In addition, the output hypothesis does not mention enough
information about if the place where the remains were found is a pit or not. The rule-based
morphological analysis result in much longer set of tokens than any other approach intro-
duced in this study. Such a long sequence of tokens might be translated to irrelevant words,
prepositions, or punctuation marks. Therefore, this thesis proposes to use the morphological
analysis approach only when the training data is not sufficient. In Section 6.2, the minimum
sufficient training data to overcome the need for the morphological analysis is shown as 30K
pairs of sentences.

4.7.3 Statistical Word Decomposition of Parallel Data

In machine translation, the major aim in the morphological analysis is to shrink the number
of unique words in a language and make the sentences of the language pair as similar to each
other as possible. Because of the hardness of the morpheme generation, all morphological
operations are performed only on the source language.

The density level of the morphological analysis, or how aggressively the words are split into
morphemes, does not affect the difficulty of the sentence generation in English, since none
of the morphological operations is performed on the English side of the corpus. This flex-
ibility also does not require a linguistically correct analysis of the morphemes. It is quite
possible that some statistical approaches to split the words may still result good translation
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performance.

In the literature, unsupervised word decomposition has been recently used for the machine
translation task for various inflectional languages including Turkish [40], [59]. These studies
mostly use the same unsupervised word decomposition tool Morfessor [13] to fragment the
stems and morphemes. In the thesis, the approach explained in Section 4.2 is used instead of
the Morfessor tool. According to the quick evaluations manually, the explained approach and
the toolkit performs very similarly.

The detailed description of the parallel data for the statistical word decomposition experiments
is shown in Table 4.4.

Table 4.7: Details of pre-processed parallel data used for statistical word decomposition ex-
periments

Metric Turkish English
Number of sentences 160,000 160,000

Number of total words 6,248,370 4,593,299
Number of unique words 46,802 44,957

Average number of tokens per word 1.51 1.00

As shown by the statistics above, the number of sub-word units of the statistical word decom-
position is smaller than the number of sub-word units of the rule-based word decomposition.
This implies that the strength of the decomposition decreases when the machine learning
techniques are used.

This unsupervised approach for word decomposition processes the words without considering
their neighbors. Moreover, it processes the character sequences without using any linguistic
resource. Each word is decomposed in a single way which does not produce ambiguous
decomposition. Hence, unlikely unsupervised word decomposition of words does not require
an disambiguation phase.

The algorithm run for the statistical word decomposition experiments to produce the interme-
diate input prior to the SMT system is shown as Algorithm 4. The time complexity of this
algorithm can be denoted as O(n) with respect to the input size.

Case Study

Input: Kalıntılar 60 metre derinlikteki bir çukurda bulundu.

Prior to the machine translation operations, every input text is pre-processed regardless of
the experiment type. This pre-processing step involves case normalization, number normal-
ization, punctuation normalization and sentence boundary marking, as expressed in Section
5.1.

Pre-processed intermediate input: <s> kalıntılar $number$ metre derinlikteki bir çukurda
bulundu . </s>
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Algorithm 4: Processes prior to SMT for statistical word decomposition experiments
Input: Pairs of sentences in Turkish and English
Output: Pre-processed pairs of sentences in Turkish and English

1 foreach SentencePair (t,e) do
2 Tokenize(t,e);
3 Lowercase(t,e);
4 NormalizeNumbers(t,e);
5 MarkSentenceBoundary(t,e);

6 foreach Sentence t do
7 foreach Word w in t do
8 for i := 0 to Length(w) −1 do
9 2GramCount(wi,wi+1)++;

10 sum := 0;
11 count := 0;
12 foreach LetterPair (m,n) do
13 sum += 2GramCount(m,n);
14 count ++;

15 average2GramCount := sum / count;
16 foreach Sentence t do
17 foreach Word w in t do
18 for i := 0 to Length(w) −1 do
19 if 2GramCount(wi,wi+1) < average2GramCount then
20 DecomposeWordAtIndex(w,i);
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Between the steps pre-processing and decoding, the stochastic word decomposition approach
finds the stem and morpheme hypotheses. In other words, the statistical word decomposition
approach splits the agglutinated words into stems and morphemes.

The output of the stochastic word decomposition method is shown in Table 4.8.

Table 4.8: Hypotheses produced by the statistical word decomposition approach

Input word Unambiguous hypotheses
kalıntılar kalın _tı _lar
metre metre
derinlikte derin _lik _te _ki
bir bir
çukurda çukur _da
bulundu bul _undu

The hypotheses listed above are the actual outputs of the unsupervised word decomposition
module. This module is explained in Section 4.2.3 in detail. The combination of forward and
backward character-based n-gram language models are used to find the morpheme boundary
hypotheses. It should be said that this approach does not require any linguistic rule set, or any
kind of data annotation. The only requirement is a large amount of raw text in a language.
Once the word decomposition module is trained by such a raw text, it is able to guess the stem
and morphemes.

This stochastic method does not necessarily find the grammatically correct stem and mor-
phemes, but the most likely character sequences given a raw corpus. This explains that word
kalıntılar is decomposed as kalın _tı _lar, which is grammatically incorrect; although kalın is
a valid stem in Turkish. Similarly the word bulundu is decomposed as bul _undu which is not
correct. The correct analysis of these words can be obtained by the rule-based morphological
analyzers for some other specific applications.

The stochastic decomposition may result in ungrammatical hypotheses, which has been ex-
pressed before. However, this is not the final output of the system and this intermediate output
is consumed by the translation machine. Therefore, a deterministic approach resulting in un-
grammatical hypotheses can still boost the overall translation accuracy of the MT system.

Hypotheses generated by the statistical word decomposition approach produce the following
sentence.

Intermediate input: <s> kalın _tı _lar $number$ metre derin _lik _te _ki bir çukur _da bul
_undu . </s>

The intermediate input above shows that it has only stems and morphemes. All allomorphs,
which can be defined as the variant forms of a morpheme, are replaced by the common label
of the morpheme. This replacement significantly reduces the OOV rate.

After performing the statistical word decomposition process, the translation model queries
the phrase table, which is an extensive phrase-based dictionary with forward and backward
translation probabilities. The intermediate output, produced by the pre-processing operations
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and shown above, is fed directly to the translation machine. This process is the same as the
one used for the previous experiments.

The phrase-based statistical machine translation system trained by statistically decomposed
data set with 160K pairs of sentences resulted the following intermediate output:

Intermediate output: <s> at a depth of $number$ meters , they found . </s>

After obtaining the intermediate output from the translation machine, the intermediate output
is processed to transform it to the human readable form, which is called post-processing.
This operation is explained in Section 5.5. The post-processed output of the system is shown
below.

Output: At a depth of 60 meters, they found.

Expected output: The remains were discovered in a pit 60 meters deep.

The output seems to be grammatically correct; although, there is still considerable semantic
loss. The output hypothesis does not mention enough information regarding what they found
and the place where they found the remains. The main reason behind this loss is that some of
the word decomposition hypotheses, including kalın _tı _lar, are incorrect.

Furthermore, the total token count after the stochastic word decomposition is significantly
lower than the rule-based morphological analysis data set, which may result semantic infor-
mation loss.

4.7.4 Fusion-Based Parallel Data

In the machine translation area, contemporary approaches have increasingly focused on the
hybrid or fusion-based methods which congregate multiple techniques. Such methods make
use of the information derived by the statistical properties of the data along with the linguistic
rules designed by expert linguists. The major motivation behind the fusion-based studies is to
benefit from the statistical characteristics of the large amount of data and the linguistic rules
for the small amount of data.

The fusion-based approach fragments the training data into two subsets. The rule-based mor-
phological analyzer is used to find out the subword items of the first subset, whereas the un-
supervised word decomposition approach performs the same task for the second subset. This
fragmentation operation is performed according to the word frequencies in the training data.
Intuitively, the statistical word decomposition approach might find the subword items more
accurately if the training instances are dense. However, the rule-based morphological analysis
approach does not benefit from the statistical characteristics of the training data. Therefore,
the statistical word decomposition approach is used for the frequent words, and the rule-based
morphological analysis approach is used for the rare words in the training data.

The detailed description of the parallel data for the fusion-based word decomposition experi-
ments is shown in Table 4.9.

It has been determined that the average number of tokens per word (the number of subword
items derived by splitting the actual word) for the fusion-based experiments is between the
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Table 4.9: Details of pre-processed parallel data used for fusion-based word decomposition
experiments

Metric Turkish English
Number of sentences 160,000 160,000

Number of total words 11,021,317 4,593,299
Number of unique words 60,025 44,957

Average number of tokens per word 2.49 1.00

average number of tokens per word for the rule-based morphological analysis and the average
number of tokens per word for statistical word decomposition experiments. This implies that
the intensity of the word decomposition operation for the fusion-based experiments is between
the intensities of the rule-based and statistical approaches, which yields better accuracy, as
shown and discussed in Section 6.2.

The algorithm run for the fusion-based word decomposition experiments to produce the inter-
mediate input prior to the SMT system is shown as Algorithm 5. The time complexity of this
algorithm can be denoted as O(n) with respect to the input size.

Case Study

Input: Kalıntılar 60 metre derinlikteki bir çukurda bulundu.

Prior to the machine translation operations, every input text is pre-processed regardless of
the experiment type. This pre-processing step involves case normalization, number normal-
ization, punctuation normalization and sentence boundary marking, as expressed in Section
5.1.

Pre-processed intermediate input: <s> kalıntılar $number$ metre derinlikteki bir çukurda
bulundu . </s>

Between the pre-processing and decoding steps, the fusion-based word decomposition mod-
ule finds the stem and morpheme hypotheses. In other words, the fusion-based word decom-
position approach splits the agglutinated words into stems and morphemes. The frequency
threshold value 10 is used for this case study since it results the highest accuracy.

To categorize the words as frequent or rare, their occurrences are counted, as shown in Table
4.10.

According to the categories of the input words the decomposition method is decided. The sta-
tistical approach is used for the frequent words, since the stochastic approaches benefit from
the dense data. The rule-based approach is used for the rare words according to the frequency
threshold value. The rare words are also disambiguated after the rule-based morphological
analysis by using the same approach in [52].

Each word is decomposed by using an appropriate method according to the frequencies of the
words. This late fusion approach results in the word decomposition hypotheses, as shown in

42



Algorithm 5: Processes prior to SMT for fusion-based word decomposition experi-
ments
1 foreach Sentence t do
2 foreach Word w in t do
3 for i := 0 to Length(w) −1 do
4 2GramCount(wi,wi+1)++;

5 sum := 0;
6 count := 0;
7 foreach LetterPair (m,n) do
8 sum += 2GramCount(m,n);
9 count ++;

10 average2GramCount := sum / count;
Input: Set of words in training data
Output: Two subset of words

11 foreach Word w do
12 CountOccurences(w);

13 foreach Threshold t do
14 foreach Word w do
15 if Occurence(w) < t then
16 AnalysisHypotheses h = PerformMorphologicalAnalysis(w);
17 w := DisambiguateHypotheses(t, h);

18 else
19 for i := 0 to Length(w) −1 do
20 if 2GramCount(wi,wi+1) < average2GramCount then
21 DecomposeWordAtIndex(w,i);
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Table 4.10: Frequent and rare word categorization at the pre-fusion step

Input word Occurrence Category Decomposition method
kalıntılar 9 Rare Rule-based morphological analysis
metre 138 Frequent Statistical word decomposition
derinlikteki 3 Rare Rule-based morphological analysis
bir 57,464 Frequent Statistical word decomposition
çukurda 2 Rare Rule-based morphological analysis
bulundu 3356 Frequent Statistical word decomposition

Table 4.11.

Table 4.11: Hypotheses resulted by the fusion-based word decomposition approach

Input word Fusion hypotheses
kalıntılar kalıntı _a3pl
metre metre
derinlikte derin _ness _loc _rel
bir bir
çukurda çukur _loc
bulundu bulun _undu

As it is shown in Table 4.11, both the allomorphs (_undu) and names of morphemes (_a3pl,
_ness, _loc, _rel) are used together. This fact slightly increases the unique word counts in
the resulting fusion-based data set. The unique word counts in fusion-based data set is higher
than both the statistical and rule-based data set, but lower than the baseline data set. This
implies that the fusion-based approach has the lowest word decomposition intensity.

Fusion-based word decomposition approach produces in the following sentence.

Intermediate input: <s> kalıntı _a3pl $number$ metre derin _ness _loc _rel bir çukur _loc
bul _undu . </s>

The intermediate input above shows that it has stems, allomorphs, and the names of the mor-
phemes all together.

After performing the fusion-based word decomposition operation, the translation model queries
the phrase table, which is an extensive phrase-based dictionary with forward and backward
translation probabilities. The intermediate output, produced by the pre-processing operations
and shown above, is fed directly to the translation machine.

The phrase-based statistical machine translation system trained by fusion-based data set with
160K pairs of sentences resulted in the following intermediate output:

Intermediate output: <s> the remains at a depth of number meters that they found in a pit .
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</s>

After obtaining the intermediate output from the translation machine, the intermediate output
is processed to transform it to the human readable form, which is called as post-processing.
This operation is explained in Section 5.5. The post-processed output of the system is shown
below.

Output: The remains at a depth of 60 meters that they found in a pit.

Expected output: The remains were discovered in a pit 60 meters deep.

The output is not a grammatically complete sentence, but a phrase; however, it includes all of
the necessary semantic information carried by the input sentence. The grammatical structure
and the semantic information captured by the output is the strongest candidate for the best
translation among the outputs of other approaches. The BLEU scores of the fusion-based
approach also clearly support this evaluation, as shown in Section 6.2.
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CHAPTER 5

BUILDING PHRASE-BASED STATISTICAL MACHINE
TRANSLATION SYSTEM

5.1 Pre-processing

Pre-processing is a vital part for almost all natural language processing tasks, including the
machine translation problem. In this study, the statistical machine translation task aims to
translate an infinite set of sentences in the source language to the target language. To decrease
complexity, some words or letters should be marked, inserted, or removed in advance. Con-
verting the natural language sentences into the input form of the decoder, or the translation
machine, is named as the pre-processing in general.

Pre-processing the input sentence requires post-processing the output sentence to convert it
from the decoder output form to the natural language sentence. This can also be considered
as the restoration of the hypotheses. Thus, the density or the weight of the pre-processing is
the same as the density or the weight of the post-processing. Therefore, the pre-processing
density should not be at the intensive level in order for the difficulty of the output restoration
process not to increase.

In this study, the pre-processing step involves the punctuation normalization, case normaliza-
tion, numerical normalization and sentence boundary marking operations in the both source
language and the target language, Turkish and English. These four normalization operations
allow deterministic restoration of the hypotheses at the post-processing step.

5.1.1 Punctuation Normalization

The punctuation marks in natural languages are usually appended to the preceding word, but
separated from the next word. Even if the punctuation marks are appended to the preced-
ing word, they mostly affect the sentence level meaning instead of the word level meaning.
Therefore, it is important that the appended punctuation should be separated from the preced-
ing word as well.

In addition, some punctuation marks like the quotation mark or the apostrophe are attached
to the next word as well. For the same reason above, these punctuation marks should be
separated from the words that they are attached.

An example for the punctuation normalization process is shown below.
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Tuzluluk, Akdeniz′de %3.8′dir.−→ Tuzluluk , Akdeniz ′ de % 3.8 ′ dir . (5.1)

5.1.2 Case Normalization

Like many languages, the first letter of each sentence is written with a capital letter. In the
string processing level, the machine recognizes the words starting with a lowercase and the
ones starting with an uppercase differently, despite the fact that they carry the same semantic
information. To remove such difference in the syntactic level, all letters are lowercased at the
very first step.

An example for the case normalization process is shown below.

Tuzluluk , Akdeniz ′ de % 3.8 ′ dir .−→ tuzluluk , akdeniz ′ de % 3.8 ′ dir . (5.2)

5.1.3 Numerical Normalization

Numerical normalization is a highly important pre-processing operation for the machine trans-
lation task to reduce the out-of-vocabulary rate and the complexity of the problem. Similar
to the words, there are infinite numbers in every language. It should be realized that the
translations of the numerical expressions are same in both the source language and the target
language. Therefore, including numerical expressions in the translation table or the language
model seems useless.

In the pre-processing step, all the decimal or fractional numbers, and the numerical date and
time expressions are replaced by a common label to shrink the search space as much as pos-
sible. The original values of the numerical expressions must be saved before the replacement
process to be able to recover them in the hypothesis translation sentence.

An example for the numerical normalization process is shown below.

tuzluluk , akdeniz ′ de % 3.8 ′ dir .−→ tuzluluk , akdeniz ′ de % $ f rac$ ′ dir . (5.3)

5.1.4 Sentence Boundary Marking

Sentence boundary marking is a minor but important part of the pre-processing phase. The be-
ginning and the end of each sentence is marked accordingly. The reason behind this marking
process is to help the language modeling toolkit to take the places of the words into account
correctly. The underlying semantics of the words at the beginning of the sentence or at the
end of the sentence may be quite different from each other.

An example for the sentence boundary marking process is shown below.
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tuzluluk , akdeniz ′ de % $ f rac$ ′ dir .−→< s> tuzluluk , akdeniz ′ de % $ f rac$ ′ dir . < /s>
(5.4)

5.2 Language Model

Since the thesis scope aims to evaluate the various machine translation systems from the
Turkish language to the English language, the language model for only the target language,
English, is generated during the whole study. To be consistent for the all the experiments
and conduct controlled experiments, the same language model for English is used for all the
experimental setups.

5.2.1 Methods Used

For the sake of the replicability of the study, the English side of the parallel training data
is used for the language model generation task. The detailed data description used for the
language model is explained in Section 4.6. IRSTLM toolkit [17] is used for the English
language model generation in the standard ARPA format with the order of 5. During the
generation of the model, the singleton words, which are the words which appear only once, are
removed from the corpus. The reason behind this removal is to clean the possible noisy data
from the corpus. Furthermore, the Witten-Bell [8] smoothing method is applied to abstain
possible zero probabilities for some unseen n-grams. Then, by using the same toolkit, the
language model is binarized to shrink the size and increase the querying efficiency of the
model.

In addition, the same pre-processing operations used for the translation model generation
of the system, explained in Section 5.1, are used for the pre-processing of the monolingual
corpus to build the language model. For the consistency of the components, it is essential to
perform the same pre-processing tasks for any text or data in the statistical machine translation
systems.

In the resulting language model, the n-gram counts are mentioned in Table 5.1.

Table 5.1: N-gram counts in the English language model used in the study

N-Gram Order N-Gram Count
1 47,699
2 649,534
3 381,345
4 327,260
5 239,588

An important remark regarding the scope of this study is that the aim of this thesis is to com-
pare and evaluate the reactions of the different phrase-based machine translation approaches
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for the Turkish language when the corpus size changes. Therefore, finding the best parameters
for the language model generation is out of the breadth of this thesis. Only the parameters
which have been observed with relatively good performance and accuracy are used during
this study.

5.2.2 Evaluation of Language Models

After the language model generation process as explained in Section 5.2.1, the generated
model is evaluated using the same unseen test data used for the evaluation of the machine
translation system. The English part of the test data is extracted and used for the evaluation.
For the comparability of the results and the components used in the study, the perplexity and
the out-of-vocabulary rates are measured by using the evaluation data which is described in
Section 4.6.

The evaluation scores on the unseen test data of the English language model used during this
study are shown in Table 5.2.

Table 5.2: English language mode evaluation scores on unseen test data

Metric Value
Number of total words 12,783

Number of out-of-vocabulary words 651
Out-of-vocabulary rate 5.09%

Perplexity ignoring out-of-vocabulary words 125.92
Overall perplexity 224.93

5.3 Translation Model

The translation models used during this study are generated by processing the parallel sen-
tence data in both Turkish and English. Since the translation model generation process in-
volves the pre-processing of Turkish sentences which absolutely depend on the experimental
setup, a unique translation model is generated for each of the experiments conducted in the
scope of the study.

After the pre-processing of the parallel corpus phase, Moses toolkit [35] is used for the trans-
lation model generation. The sentence level parallel corpus is processed and the words are
aligned to the corresponding translations [44]. As explained in Section 2.7.2, the phrases are
derived from the parallel corpus. Each phrase pair is assigned a probability value which indi-
cates how likely this translation is an accurate one. The translation model is the collection of
all the phrases extracted from the parallel data. It involves even the least likely phrases with
very low probability values. The largest translation table generated during this study is the
one for the word-based experimental setup with 160,000 parallel sentences. This translation
table involves more than 5 million phrase pairs with their probabilities.

An illustrative small part of the translation table is shown in Table 5.3.
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Table 5.3: An illustrative phrase table segment

Turkish phrase English phrase Forward probability
altyapının infrastructure 0.33

altyapının yeniden inşa edilmesinde rebuild infrastructure 0.33
altyapının yeniden inşa edilmesinde helped rebuild infrastructure 0.21

altyapının yeniden inşa rebuild infrastructure 0.47
altyapının yeniden inşa helped rebuild infrastructure 0.12

Forward translation probability means the probability of the translation from Turkish to En-
glish, and vice versa for the backward translation probability. During the experiments, both of
the forward and backward translation probabilities are calculated and used for the decoding
phase.

It is also shown that the phrase table may involve semantically incorrect but statistically pos-
sible phrase pairs as well.

Parameter Optimization

The parameter optimization phase is another cardinal part of the phrase-based statistical
machine translation system. This parameter set includes the number of n-best hypotheses
generated, distortion (reordering) weight, language model weight, translation model weight,
penalty for the sentence length difference, and the maximum allowed reordering of the words
in the hypothesis. For the optimization of these parameters, a development set is reserved.
The translation system is run on this development set iteratively. After each iteration, the
translation quality is measured by using the BLEU metric [49]. According to the changes in
the score, the iteration either continues or stops and returns the best set of the parameters.

In the decoding phase, the parameters obtained by the parameter optimization phase are used.

5.4 Decoding

Decoding, reverse of encoding, is basically the process of transforming information from one
format into another. In the thesis enclosure, it can be defined as the revealing the actual
message, which is the translation hypothesis, by using the encrypted text, which is the input
text in the source language.

The decoder engine of Moses toolkit [35] is used to generate of the translation hypotheses.
This decoder makes use of both the language model and the translation model. The com-
bination of models and their weights are defined by the optimized parameter set stored in a
configuration file.

An important point is that the sentences have to be pre-processed before being fed to the
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decoder machine. This pre-processing phase must be essentially the same as the one in the
training phase. The only difference between the pre-processing part of the training phase and
the decoding phase is the numerical normalization task. In the training or parameter optimiza-
tion step, the numerical values are replaced by some predefined labels as explained in Section
5.1.3. Since the reference translation is also pre-processed and the numerical expressions in
it are also replaced by the same tag, the recovery of these numbers are not necessary. How-
ever, in the decoding phase, the restoration of the numbers and dates are essential. When a
sentence involving numbers and dates is entered as an input to the system, it is expected to
produce the correct numbers and dates in the translation rather than some strange labels. For
this reason, the numerical expressions are wrapped by a special XML expression, so that both
the label and the actual value is fed to the decoder. Then, the decoder treats this expression
as if it is nothing more than one of the predefined labels while querying the language model
and the translation table. However, at the time of the hypothesis generation, the actual value
is outputted instead of the predefined label.

An example XML markup is shown below.

akdeniz ′ de % 3.8 ′ dir .−→;akdeniz ′ de % < n translation = ”3.8” > $ f rac$ </n > ′ dir .
(5.5)

The semantic of this notation tells the correct translation of an expression to the decoder, so
that it does not try to translate it. This XML markup method can also be used for different pur-
poses, such as fixing the translation of some words. During this study, none of the translations
of the words are fixed.

5.5 Post-processing

Post-processing can be defined as the modifying the intermediate output to improve its quality
and produce the final output of the system in general. The post-processing phase cannot be
considered apart from the pre-processing phase, because it aims to convert the decoder output
to the punctuated human readable sentence. It is mostly used to revert the changes made
during the pre-processing phase.

All operations performed before decoding like punctuation normalization, case normaliza-
tion, numerical normalization and sentence boundary marking, have to be undone after the
decoder runs. The order of this undoing process should be the reverse of their application or-
der. This implies the first post-processing operation is the sentence boundary mark removal.
After the sentence boundary mark removal, numerical normalization, case normalization and
punctuation normalization are performed respectively.

< s > the salinity was $ f rac$ percent. < /s >−→ the salinity was $ f rac$ percent. (5.6)

the salinity was $ f rac$ percent.−→ the salinity was 3.8 percent. (5.7)

the salinity was 3.8 percent.−→ T he salinity was 3.8 percent. (5.8)

T he salinity was 3.8 percent.−→ T he salinity was 3.8 percent. (5.9)
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As it is shown above, after the post-processing step, the decoder output is transformed into
the grammatically correct format in the target language.

This post-processing step is used for the conversion of the hypothetical output to the human
readable format.
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CHAPTER 6

EXPERIMENTS

6.1 Determination of the Threshold Value for Fusion-Based Approach

In order to make a deterministic fragmentation of the training data, a threshold value has to be
defined. If a word appears more frequently (or equally) than the predefined threshold value,
then it would be tagged as a frequent word. Otherwise, the word would be sent to the rare
word subset. A set of experiments are performed to find out the threshold value resulting in
the highest accuracy for the overall phrase-based statistical machine translation system.

Table 6.1: Fragmentation of the training data as frequent and rare words

Threshold value Frequent words (%) Rare words (%)
2 55 45
3 40 60
4 33 67
5 28 72

10 17 83
20 10 90
50 6 94
100 3 97
500 1 99

In order to learn the most accurate threshold value, 27 different complete machine translation
systems are built using all the threshold values listed in Table 6.1. Three different thresh-
old determination experiments are conducted. First of them is conducted by using a small
amount of training corpus with 50K sentences. The second experiment is conducted by using
a middle-sized training corpus with 100K sentences. Then, the last experiment is conducted
by using the complete set of training data, 160K sentences. For the experiments with training
data having less than 50K sentences, the first threshold value is used. For the experiments
with training data having between 50K and 100K sentences, the second threshold value is
used. For the experiments with training data having more than 100K sentences, the third
threshold value is used.

A relatively small amount of training data, having 50K parallel sentences, is used to obtain

55



0 5 10 15 20 25 30 35 40 45 50
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Threshold value

F
ra
g
m
en
ta
ti
o
n
p
or
ti
o
n

Frequent words portion

Rare words portion

Figure 6.1: Fragmentation of the training data as frequent and rare words

the threshold values to be used for the experiments with training data having less than 50K
sentences. The resulting BLEU scores are stated in Table 6.2.

A relatively middle-sized training data, having 100K parallel sentences, is used to obtain the
threshold values to be used for the experiments with training data having between 50K and
100K sentences. The resulting BLEU scores are stated in Table 6.3.

A relatively large amount of training data, having 160K parallel sentences, is used to obtain
the threshold values to be used for the experiments with training data having more than 100K
sentences. The resulting BLEU scores are stated in Table 6.4.

As a result, the experiments having training data with less than 50K sentences use the thresh-
old value of 50, the experiments having training data with between 50K and 100K sentences
use the threshold value of 20, while the others use the threshold value of 10.

As a result, the parameters of the fusion approach are determined by conducting a set of con-
trolled experiments. It should be acknowledged that the average length of tokens in Turkish
is measured as 7.22 as shown in Table 4.3. This number increases to 8.12 if the single letter
tokens are discarded. This measurement reflects the intuitive fact that the frequent words are
the words appearing more frequently than the average word frequency in the language.
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Table 6.2: BLEU score versus fragmentation threshold with 50K sentences

Threshold value BLEU Score
2 19.20
3 19.23
4 19.34
5 19.69
10 19.82
20 19.98
50 20.32
100 20.26
500 20.26

Table 6.3: BLEU score versus fragmentation threshol with 100K sentencesd

Threshold value BLEU Score
2 23.16
3 23.41
4 23.77
5 24.01
10 24.19
20 24.28
50 24.11
100 24.08
500 24.06

6.2 Corpus Size Experiments

In order to verify the success of the introduced frequency-driven late fusion-based word de-
composition approach, a set of comparison experiments are conducted. The late fusion-based
approach is compared with the pure rule-based and pure statistical approach by conducting
numerous experiments when the training corpus size changes in a large range. The only
changing parameter in the controlled experiments is the size of the training corpus. All the
remaining parameters, such as pre-processing operations or the development and evaluation
sets are fixed for the same type of the experiments.

Since the frequency-driven late fusion-based word decomposition approach is compared with
the rule-based and statistical approaches, there are three different experiment types in this
study, which can be listed in the word-based experiments, the rule-based word decomposition
experiments, and the statistical word decomposition experiments. In the word-based experi-
ments, all the words are used as their surface forms, and they are not decomposed into smaller
units. Word-based experiments can also be named as the baseline experiments, because the
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Table 6.4: BLEU score versus fragmentation threshold with 160K sentences

Threshold value BLEU Score
2 24.29
3 24.96
4 26.02
5 25.09

10 26.22
20 25.96
50 25.52
100 25.26
500 25.12

remaining two types are obtained by applying some operations on this type of experiment.
The second type is the rule-based word decomposition experiments. In this experiment, the
stems and the morphemes of the words are found by using linguistic morphology rules [45].
Then, the morphology analyses are disambiguated by the help of the word context [52]. This
operation is also called word sense disambiguation and it is used for many natural language
processing problems. The last type of experiment is the statistical decomposition experi-
ment. In these experiments, the words are split into the smaller units without any linguistic
or morphological concerns. The smaller units which are obtained by the statistical word de-
composition may be grammatically incorrect units, and there can be both the over stemming
or under stemming as well. This is because this approach is based on unsupervised learning
algorithms of artificial intelligence area, and it requires neither the linguistic resources nor the
annotated corpora.

For each type of experiment, 16 different experiments are completed, and 16 different ma-
chine translation systems are built. Firstly, 10,000 parallel sentences are randomly extracted
from the training corpus, and the first experiment is conducted by using only this 10,000
sentence part of the training data. After this experiment, another random sample of 10,000
sentences are appended to the training data. For example, a 20,000 sentence parallel text is
used for the second experiment, a 30,000 sentence parallel text is used for the third experi-
ment, and so on. The complete set of corpus, which is a 160,000 sentence parallel text, is
used only for the last experiment of each type. The overall system description in this study is
shown in Figure 6.2. The most accurate systems are colored as green.

By changing the corpus size by 10,000 at each experiment, the translation accuracy is eval-
uated using the BLEU scoring tool [49]. The results of the experiment types with different
corpus sizes in the BLEU metric are shown in Figure 6.3.

The demonstrated results above reflect a number of interesting facts revealed in this thesis.
In the literature, it is repeatedly stated that the morphological features can improve the base-
line accuracy for the morphologically rich languages in machine translation tasks [16], [22],
[46]. The motivation behind the morphological analysis or the word decomposition for the
machine translation system is to reduce the number of out-of-vocabulary (unseen) words and
split the items carrying semantic data themselves. By doing so, it is aimed to resolve the
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Figure 6.2: Overall system description
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Table 6.5: BLEU scores of different complete machine translation systems

Number of training instances Word-based Rule-based Statistical Fusion-based
10K 10.11 12.40 13.14 13.22
20K 12.74 14.84 14.66 14.97
30K 14.80 16.02 14.91 15.41
40K 16.49 17.40 15.80 16.67
50K 19.57 20.26 19.15 20.32
60K 20.69 21.04 20.22 21.39
70K 21.81 22.13 21.98 23.21
80K 22.53 23.11 21.79 23.30
90K 23.31 23.78 22.54 23.96

100K 24.19 24.06 22.88 24.28
110K 24.61 24.40 23.09 24.87
120K 24.61 24.24 23.41 25.06
130K 24.66 24.26 23.11 24.99
140K 25.09 24.71 24.14 25.69
150K 25.28 24.99 24.04 26.01
160K 25.36 25.12 23.87 26.22

complexity of the problem as far as possible. This study reveals that the alternative way of
the morphological analysis is to increase the training text size, which can result in even better
results continuously. For the domain and the data set used in this thesis, it is proposed to have
at least 50,000 sentence pairs to eliminate the necessity of the morphological analyzers. This
number can be clearly shown by Figure 6.3. In addition, Figure 6.4 shows the detailed BLEU
scores of the approaches with the dense training data. Moreover, this figure shows the state of
the art BLEU score with the dashed line, 25.22, as stated in [58]. The word-based experimen-
tal setup results in very similar results compared to those reported in the literature; however,
the fusion-based approach helps to gain a slight improvement, which is around a 1.00 BLEU
score. Thereby, this study reveals the fact that making use of the statistical approaches along
with the rule-based ones may yield better results. Instead of using pure rule-based or sta-
tistical approaches, it is proposed to combine them in such a way that the accuracy of the
translation hypotheses increases. The method and parameters of the fusion experiments may
be quite diverse which can be a good area of research and investigation for the future works.

Moreover, making use of the fusion-based approaches may yield better results than the rule-
based ones and statistical ones since they benefit from the statistical properties of the dense
portions of data. If the training data is large enough then hybrid-based approaches help to
gain improvements in the accuracy. However, when the training data set is relatively small,
namely less than 50,000 pairs of sentences, then the rule-based approaches still outperform
the others. The reason behind this fact is that the probability distribution does not converge
for the training instances due to the data sparsity.

In addition, the most widely used public machine translation systems, Google Translate and

60



20K 40K 60K 80K 100K 120K 140K 160K
0%

5%

10%

15%

20%

25%

30%

Number of training instances

B
L
E
U
sc
or
e

Statistical decomposition

Rule-based decomposition

Word-based

Fusion

Figure 6.3: Number of parallel sentences used for the training versus BLEU score

Bing Translator, are evaluated using the same test data used during this study. The results
were 23.05 and 23.79 BLEU score for Google Translate and Bing Translator respectively.
Even the baseline scores reported in this thesis are higher than these two enterprise MT sys-
tems. The major reason behind this difference is that Google Translate and Bing Translator
are machine translation systems which are completely domain independent. They can trans-
late the sentences in very different domains with a consistent accuracy. However, the data
set used in this study is in political news domain, and the models are evaluated on the same
domain, which results in better BLEU scores than expected.

6.3 Error Analysis

The evaluation of the machine translation systems has always been a challenging problem in
the literature. A sentence in a language can naturally have numerous different valid translation
in another language. There is not an easy algorithm to score these valid translations and the
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Figure 6.4: Number of parallel sentences used for the training versus BLEU score for the
dense training data

Table 6.6: Reported BLEU scores of complete SMT systems

SMT System BLEU Score
Baseline system 25.36

Fusion-based system 26.22
Benchmark study [58] 25.22

Google Translate 23.05
Bing Translator 23.79

others.

In this study, the translation outputs of almost every experiment are checked manually to
ensure the correctness of the experimental setups. If any of the hypothesis translations is not
as expected, the overall system is debugged and retrained if necessary.

By checking the translation hypotheses of the systems, it is observed that there exists a phrase
reordering problem among all of the experiments. In the hypotheses, the words are translated
with a good accuracy; however, the order of phrases is mostly incorrect. The major reason
behind it can be explained as the difference in sentence structures of Turkish and English. The
English sentence structure has the order of Subject - Verb - Object. However, in Turkish, this
order changes to Subject - Object - Verb. This means the verb at nearly the beginning of the
English sentence must be aligned to the word at the end of Turkish sentence. This alignment
type is called discontinuous word alignment as explained in Section 2.7.3. For the long sen-
tence pairs, such as sentences containing around 40 words, this discontinuous word alignment
results in large penalty value. Because of this large penalty, such hypotheses are discarded to
shrink the search space of the word alignment matrices. Thus, the distant word pairs are rarely
aligned to each other correctly. This problem can be solved by the increasing or disabling the
distortion limit defined in the configuration file. However, disabling or increasing this limit
can result in a large amount of time and space consumption of the translation process. This is
a kind of trade-off between the translation quality and the efficiency in general.

62



Using 160K sentences, 4 different SMT systems are built: word-based-SMT (baseline sys-
tem), rule-based morphological analysis-based SMT, statistical word decomposition-based
SMT, and fusion-based word decomposition-based SMT. The time requirements of all four
systems are evaluated by the example input, analyzed as case studies.

Input: Input: Kalıntılar 60 metre derinlikteki bir çukurda bulundu.

Expected output: The remains were discovered in a pit 60 meters deep.

The outputs of different SMT systems described above are listed below.

Word-based experiment output: The lost of the pit were found at a depth of 60 meters.

Rule-based experiment output: Ruins around 60 meters at the deep, explains they found in
soon.

Statistical experiment output: At a depth of 60 meters, they found.

Fusion-based experiment output: The remains at a depth of 60 meters that they found in a
pit.

The time complexity of the phrase based statistical machine translation system is linear, since
a distortion limit of 6 is used during all of the experiments. The distortion limit value restricts
the number of shifts of a phrase in the sentence generation phase. If the distortion limit
was not used, the time complexity of the system would be exponential [19] since all of the
permutations of the target phrases need to be generated. Unlimited distortion increases both
the translation quality and time requirement of the SMT system. The time requirements of
four experiment types and two enterprise applications for the given input above are shown in
Table 6.7. The same hardware configuration is used for the time measurements to observe the
relative differences.

Table 6.7: Time requirements of SMT systems for sample input

SMT system Translation time (sec)
Word-based (baseline) 3.177

Rule-based morphological analysis 3.901
Statistical word decomposition 4.470

Fusion-based word decomposition 4.854
Google Translate Less than 1.0
Bing Translator Less than 1.0

It is important that the fusion-based word decomposition-based SMT system requires a longer
time to perform a translation. This requirement is caused by the prior processes, such as
classification of the input words as frequent and rare ones. All of the training operations,
including frequency calculation for the fusion-based word decomposition or model generation
for the perception-based word sense disambiguation are excluded during the time requirement
tests. These tests only include the decoding processes and translation operations.

The outputs of the rule-based morphological analysis can also be transformed into such a form
that the similarity between the language pair is increased. It is shown that such experiments
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on the post processing of the rule-based morphological analysis output increase the translation
accuracy as well [2], [47].

Furthermore, the unsupervised machine learning approach for the statistical word decompo-
sition mostly incorrectly fragments the words linguistically. Therefore, this approach cannot
be used as a morphological analyzer itself, but as a pre-processor which generates interme-
diate output which is consumed by another component. Since the same errant decomposition
is always repeated for the same word, this technique can be considered as a consistent and
deterministic approach.

Another important point is to perform some local modifications on the rule-based morpho-
logical analysis output to improve the overall statistical machine translation quality. The
techniques, such as morpheme removal or local word reordering can definitely improve the
translation quality [15]. Moreover, these techniques can also be applied to the statistical word
decomposition-based experiments to improve the overall accuracy. However, they only shift
the minimum amount of the required parallel text for the baseline experiments to outperform
the others. Ultimately, the word-based translation system will perform better than the sub-
word unit-based approaches, because the main motivation behind the sub-word unit-based
approaches is to solve the problems caused by the high out-of-vocabulary rate. When this rate
is decreased to the regular level by compiling additional training data, it is needless to say that
the problem does not emerge at all.

Another observation for error analysis in this study is that as expected, the translation quality
suffers from the out-of-vocabulary rate in the systems with small amount of training data. Un-
seen words are left as they are during the translation, and they do not contribute the accuracy
at all.

6.4 Discussion

This thesis aims to get benefit from both the statistical and rule-based word decomposition
approaches at a time to bring about a more accurate word decomposition module for the
phrase-based statistical machine translation systems. Among the literature, there are various
studies which prove the improvement when the subword units are used instead of the word-
based approaches for the statistical machine translation tasks. This founding is approved by
some experiments in this thesis as well. When the circumstances of the experiment changes,
the hypotheses may possibly become antiquated.

To compare the rule-based morphological analysis and the machine learning-based word de-
composition in terms of the level of fragmentation (i.e. average number of tokens per word),
it is observed that the machine learning approaches split the words less aggressively. Af-
ter the application of the rule-based morphological analysis, the number of unique words in
Turkish becomes smaller than those in English. On the other hand, after the application of
machine learning-based word decomposition, the number of unique words is still larger than
those in English. To get closer to the number of the unique words in English, a hybrid ap-
proach between the rule-based morphological analysis and the machine learning-based word
decomposition may result in sentences which are more similar to their English translations.

64



CHAPTER 7

CONCLUSIONS

In this study, the frequency-driven late fusion-based word decomposition approach is in-
troduced to improve the translation quality of the phrase-based statistical machine transla-
tion system from Turkish to English. This late fusion-based approach is compared with
the standalone statistical and rule-based word decomposition approaches when the corpus
size changes. This study differs from others by introducing the novel frequency-driven late
fusion-based word decomposition method to boost the BLEU score. While the benchmark
study in the literature reports a 25.22 BLEU score with the same data set, the proposed late
fusion-based system boosts the accuracy up to a 26.22 BLEU score. Thus, the need for the
rule-based morphological analysis can be overcome by the fusion-based approaches, given a
sufficient amount of pairs of sentences. However, the rule-based approaches may still be nec-
essary when the quantity of parallel data is not sufficient, or application specific requirements
emerge.

Another observation made during this study is that the unsupervised machine learning tech-
niques perform similar to the rule-based morphological analysis based on linguistic moti-
vations when the training corpus size is sufficient. For the unsupervised machine learning
techniques, the only necessary resource is a raw corpus in the language. On the contrary, the
morphological analysis approach requires the hand written linguistic rules for the decomposi-
tion and annotated corpora for the disambiguation operation. However, it should be remarked
that the machine learning approaches cannot be used only for the morphological analysis of
the words themselves. Instead, they are used as a pre-processor which generates intermedi-
ate output which is consumed by other natural language processing applications, such as MT
systems.

To summarize, in this study, a novel frequency-driven late fusion-based word decomposition
technique is introduced to build more accurate phrase-based statistical machine translation
systems. This proposed method is also compared with the well known rule-based morpholog-
ical analysis and character-based n-gram modeling word decomposition approaches.

In addition, the corpus size experiments are conducted in the scale from 10,000 parallel sen-
tences to 160,000. The rule-based, statistical, and the fusion-based approaches are tested and
compared among each other. When the size of the training corpus is relatively small, the rule-
based approaches perform much better, as it is stated repeatedly in the literature. However,
this study clearly shows that the fusion-based approach outperforms when the training corpus
size is sufficient and the training instances are dense. 160,000 parallel sentences are used
for the dense training data set experiments, and it is the only publicly available corpus for
the Turkish language. Moreover, it was possible to compare the results with the benchmark
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scores, and the baseline setup performs very similar to those in the previous studies. However,
the fusion-based approach results in around a 10% better BLEU score than the baseline setup.
The larger corpora may result in more interesting or adventitious results. Because of the in-
adequate amount of public parallel corpora, these further experiments are left as the future
work.

Moreover, the machine learning techniques can also be improved by using continuously intro-
duced techniques in the literature for the unsupervised word decomposition task. The better
linguistic decomposition of the stems and morphemes may achieve higher BLEU scores in
the phrase-based statistical machine translation systems.
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APPENDIX A

SAMPLE PAIRS OF SENTENCES

Table A.1: Sample pairs of sentences used for the training corpus

Turkish English
Örneğin Priştine Hastanesi’nde her hafta
aşağı yukarı bir aşırı doz vak’ası ile
karşılaşılıyor.

The Pristina Hospital, for example, records
approximately one case of drug overdose per
week.

Ülke bu sektörde köklü bir geleneğe sahip.
The country has a long tradition in the indus-
try.

Ancak Yunanistan, yabancı gemilere kendi
gemicilik kütüğünde yer alma izni veren tek
AB üye ülkesi olacak.

Greece, however, will be the only EU member
state that allows foreign ships in its shipping
register.

Bunların yüzde 10 ila 15’ini ise 18 yaş altı kız
çocukları oluşturuyor.

About 10 to 15 per cent of them are girls un-
der the age of 18.

Gazetenin haberinde, Bulgaristan’daki
fabrikanın Türkiye’ye yakınlığı nedeniyle
teröristler için avantajlı olduğu belirtiliyor.

The Bulgarian one would have been advanta-
geous to the terrorists because of its proximity
to Turkey, the paper suggests.

Dünya Savaşı’nda kazanılan zaferin ardından
1945 yılında monarşiyi devirdiler.

But the Communists abolished the monarchy
in 1945, after victory in World War II.

Sırp Ortodoks Kilisesi başkanı, Veliaht Alek-
sandar Karacorceviç’e de bu meselede daha
etkin rol alması çağrısında bulundu.

The head of the Serbian Orthodox Church
called on Crown Prince Aleksandar Karad-
jordjevic to take a more active part in the mat-
ter.

Engel, hasarlı evler hakkındaki ilk tahmini
rakamın 6.643 olduğunu söyledi.

He said the first estimate of damaged homes
was 6,643.

Paranın 30 milyon euroluk büyük kısmı çok-
tan harcanmış durumda.

Most of the money, 30m euros, has already
been spent.

AB, Türkiye’nin bu alanda kaydettiği iler-
lemeleri 2004 yılı sonlarında gözden geçire-
ceğini söyledi.

The EU has said it will review Turkey’s
progress in that area in late 2004.

Farklı ideolojik fraksiyonlarla bunların anlaş-
mazlıkları devrimci harekette parçalanmalara
yol açtı.

The different ideological factions and their
disagreements led to the fragmentation of the
revolutionary movement.

73


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND INFORMATION
	What Is Machine Translation
	History of Machine Translation
	Challenges in Machine Translation
	Syntax
	Semantics
	Lexicon and Morphology

	Noisy Channel Model
	Bayes' Theorem
	Language Models
	N-Gram Language Models
	Pruning
	Smoothing
	Interpolation

	Translation Models
	Word Alignment
	Phrase Extraction
	Phrase Reordering

	Machine Translation Evaluation Metrics

	RELATED WORK
	Exploring different representational units in English-to-Turkish statistical machine translation
	The TUBITAK-UEKAE Statistical Machine Translation System for IWSLT 2010

	UTILIZATION OF SUBWORD ITEMS
	Linguistic Aspects
	N-Gram-Based Decomposition
	Forward N-Gram Modeling
	Backward N-Gram Modeling
	Combination of Forward and Backward N-Gram Modelling

	Rule-based Morphological Analysis
	Fusion-Based Word Decomposition
	Data Description
	Monolingual Data
	Parallel Data
	Word-Based Parallel Data
	Rule-Based Word Decomposition of Parallel Data
	Statistical Word Decomposition of Parallel Data
	Fusion-Based Parallel Data


	BUILDING PHRASE-BASED STATISTICAL MACHINE TRANSLATION SYSTEM
	Pre-processing
	Punctuation Normalization
	Case Normalization
	Numerical Normalization
	Sentence Boundary Marking

	Language Model
	Methods Used
	Evaluation of Language Models

	Translation Model
	Decoding
	Post-processing

	EXPERIMENTS
	Determination of the Threshold Value for Fusion-Based Approach
	Corpus Size Experiments
	Error Analysis
	Discussion

	CONCLUSIONS
	REFERENCES
	APPENDICES
	SAMPLE PAIRS OF SENTENCES

