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ABSTRACT 

 

 

MULTICRITERIA PORTFOLIO OPTIMIZATION 

 

 

 

Tuncer Şakar, Ceren 

Ph.D., Department of Industrial Engineering 

Supervisor: Prof. Dr. Murat Köksalan 

 

September 2013, 144 pages 

 

 

 

Portfolio optimization is the problem of allocating funds between available investment options 

in the financial market. This thesis develops several approaches to multicriteria portfolio 

optimization. The use of multiple criteria is justified by demonstrating their effects on decision 

and objective spaces of the problem. The performance of a genetic algorithm with two and 

three criteria is studied; and a preference-based genetic algorithm to solve portfolio 

optimization with complicating constraints is developed. Furthermore, stochastic programming 

is used to handle multi-period problems, and several issues are studied with this approach. 

Efficient market hypotheses, random walk and single index models are discussed in the context 

of scenario generation for the Turkish Stock Market. An interactive approach to stochastic 

programming-based portfolio optimization is also developed to guide the decision maker 

toward preferred solutions. The approaches are experimented with and demonstrated using 

stocks from the Turkish Stock Market. 

 

 

Keywords: Portfolio optimization, multiple criteria decision making, genetic algorithms, 

stochastic programming. 
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ÖZ 

 

 

ÇOK KRİTERLİ PORTFOLYO OPTİMİZASYONU 

 

 

 

Tuncer Şakar, Ceren 

Doktora, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat Köksalan 

 

Eylül 2013, 144 sayfa 

 

 

 

Portfolyo optimizasyonu mevcut fonların finans piyasasındaki yatırım seçenekleri arasında 

dağıtılması problemidir. Bu tez çok kriterli portfolyo optimizasyonuna çeşitli yaklaşımlar 

getirmektedir. Çok kriter kullanılmasının yararları kriterlerin problemin karar ve amaç 

uzaylarındaki etkilerinin araştırılmasıyla gösterilmiştir. Bir genetik algoritmanın performansı 

iki ve üç kriterle incelenmiş ve kısıtlarla zorlaştırılmış portfolyo optimizasyonu için karar verici 

tercihi tabanlı bir genetik algoritma geliştirilmiştir. Ek olarak, stokastik programlama çok 

dönemli portfolyo optimizasyonu için kullanılmış ve bu yaklaşım üzerine çeşitli çalışmalar 

yapılmıştır. Türk Hisse Senedi Piyasası için senaryo üretilmesi kapsamında etkin piyasa 

hipotezleri, rastgele seyir ve tek endeks modelleri tartışılmıştır. Ayrıca stokastik programlama 

tabanlı portfolyo optimizasyonunda karar vericiyi tercih ettiği çözümlere yönlendirmek için 

etkileşimli bir yaklaşım geliştirilmiştir. Önerilen yaklaşımlar Türk Hisse Senedi Piyasası’ndan 

hisse senetleriyle denenmiştir. 

 

 

Anahtar Kelimeler: Portfolyo optimizasyonu, çok kriterli karar alma, genetik algoritmalar, 

stokastik programlama. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Portfolio optimization (PO) is the problem of choosing between available investment 

instruments in the financial market. Examples of these instruments are stocks, bonds, mutual 

funds, options and deposit accounts. The decision maker (DM) of the problem, the investor, 

may be an individual or an institution. The primary goal is to maximize the wealth resulting 

from the investment; however, the DM can face several complicating conditions and 

constraints. The primary aspect that complicates the problem is the uncertainty involved in the 

progression of economical factors. Because of this uncertainty, PO at least needs to account for 

the risk involved in the outcome of the investment. As a result, basic models of PO have two 

objectives: maximizing return and minimizing risk. Several measures of return and risk have 

been proposed and experimented with. In particular, numerous approaches to define and model 

risk have been developed.  

 

As the literature on PO expanded, needs of unconventional investors had to be taken into 

account. Investors may have additional concerns beside return and risk. They may require that 

their portfolio considers certain aspects of different kinds; such as liquidity, turnover, 

intermediary payments and social responsibility. In addition, risk of the portfolio can be 

modeled with multiple measures. Multiple Criteria Decision Making (MCDM) has therefore 

been a valuable tool in developing PO theory. Besides multiple criteria, PO theory has also 

welcomed several constraints to ensure that the portfolio meets certain requirements. Examples 

are requirements on the size of the portfolio, transaction amounts and costs. The inclusion of 

multiple criteria and constraints made the PO problem complex; and led some researchers to 

develop heuristic approaches. 

 

Although the preliminary PO theory considered a single-period optimization setting, 

approaches that provide the DM with investment decisions for multiple future periods have also 

been proposed. These methods make use of mechanisms to model uncertain movements of 

financial markets, and produce decisions that cover the planning horizon of the DM.  

 

This thesis addresses several approaches to multicriteria PO. One objective is to justify the use 

of multiple criteria in PO, and demonstrate their effect on decision and objective spaces of the 

problem. We apply different criteria, including several measures of risk to PO. We also 

experiment with constraints on the number of assets used in the portfolio and weights they can 

assume. We study the performance of genetic algorithm heuristics in PO. Another objective is 

to propose a method to handle multi-period problems. We study several issues related to the 
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proposed method in detail. Including DM preferences in the investment process is another 

objective. Mechanisms to present the DM a single efficient solution according to her/his 

preferences are sought. In brief, in this thesis we cover several approaches to multicriteria PO; 

and consider different criteria, constraints, multi-period settings and DM preferences while 

doing so. We demonstrate the approaches with stocks from the Turkish Stock Market. The 

stock exchange entity of Turkey at the time of the experimental studies of this thesis was 

Istanbul Stock Exchange (ISE). Towards the end of our studies, on April 3, 2013, Borsa 

Istanbul (BIST) was established as the sole exchange entity of Turkey that also includes the 

former ISE. In this thesis, we use ISE to refer to the Turkish stock exchange entity; but the 

reader should note that the current abbreviation is BIST.   

 

The thesis is organized as follows: In Chapter 2, we introduce the PO problem. General 

characteristics of the problem are discussed and a general literature review is provided. Since 

this thesis is a work of several approaches to PO, we review the literature specific to the 

approaches in the related chapters. We also define the criteria used throughout the thesis in 

Chapter 2. Different combinations of these will be used in different approaches. Chapter 3 

preludes our main work by justifying the use of and demonstrating the effects of multiple 

criteria in PO. The effects of constraints on portfolio compositions are also studied. We cover 

genetic algorithm approaches in Chapter 4. First, we apply a well-known genetic algorithm to 

PO and discuss the results. Then, we introduce our genetic algorithm to handle DM 

preferences-driven PO with constraints and provide test results. Chapter 5 covers our approach 

to multi-period PO. We make use of Stochastic Programming (SP) to model our problem. 

Efficient market hypotheses, random walk models and a single index model are utilized with 

SP to generate scenarios to represent the progress of the financial market. We discuss results of 

experiments in detail. We also consider the utilization of rolling horizon settings in SP. After 

certain financial factors are realized, we consider updating scenario trees and revising 

decisions. In addition, we generate theorems, corollaries and remarks on the properties of 

optimal SP solutions with different criteria and time periods. In Chapter 6, we introduce an 

interactive approach to SP-based PO. Making use of weighted Tchebycheff programs, the 

proposed algorithm converges to preferred solutions according to DM preferences. It also uses 

confidence regions of objective function values to account for the randomness in scenarios. In 

Chapter 7, we conclude the thesis and discuss future work. 
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CHAPTER 2 

 

 

THE PORTFOLIO OPTIMIZATION PROBLEM 

 

 

 

PO is concerned with choosing assets from the financial market to invest available funds in. 

The return on the investment is the primary concern; however, since markets exhibit uncertain 

behavior, one needs to account for risk too. Following the pioneering work of Markowitz 

(1959), Modern Portfolio Theory has emerged and it has been studied extensively. The 

classical mean-variance portfolio model has two objectives: maximizing expected portfolio 

return in terms of weighted expected returns of assets; and minimizing portfolio risk in terms of 

variance.  The weight of each asset is the proportion of that asset in the overall portfolio. The 

risk objective is composed of covariances of returns of pairs of assets; and therefore is 

quadratic. 

 

The classical mean-variance portfolio model is given by: 

 

Ma           

 

   

                                                                                                                               2.1  

Min               

 

   

 

   

                                                                                                                     2.2   

s.t.       

 

   

                                                                                                                                          2.3  

 

where    is the return and       is the expected return of asset i, xi is the proportion of asset i in 

the portfolio and     is the covariance of the returns of assets i and j.  

 

The proportions of assets may be negative, which corresponds to shortselling. Shortselling is 

the act of selling the assets of another investor now and collecting the money yourself, while 

ensuring the original owner that you will return the same assets in the future. Shortselling is an 

option when the investor believes that the price of some asset will drop in the future. We do not 

consider shortselling in this thesis; proportions of assets are required to be nonnegative 

throughout the thesis.  

 



4 

 

As assets, we utilize stocks in all of our applications except for our exploratory tests to see the 

effects of fixed-income assets on the solutions. In our applications that use real-life data, we 

use stocks traded on ISE.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A typical efficient frontier for the mean-variance PO problem 

 

 

 

Figure 1 illustrates the typical shape of the efficient frontier of the mean-variance model; it is 

the shape of a half bullet. Expected return increases at a decreasing rate as risk (in terms of 

variance) increases. The leftmost point corresponds to the minimum variance portfolio and it 

typically consists of several assets. Unless there is perfect positive correlation between all 

assets, this will be the case. In the special case of perfect positive correlation between all assets, 

the minimum variance portfolio will contain a single asset, the one that has the minimum 

variance. If there are multiple assets with the same minimum variance among these perfectly 

positively correlated assets, the one with the maximum expected return will be chosen. The 

rightmost point in Figure 1 corresponds to the maximum return portfolio and it typically 

consists of a single asset, the asset with the maximum expected return. In the case of multiple 

assets with the same maximum return value, unless they are all perfectly positively correlated, 

we will have a combination of these as the maximum return point in order to improve the risk 

objective while keeping the return objective at its best value.  If all assets with the maximum 

return value are perfectly positively correlated, then we will select the one with minimum 

variance.  

 

The shape of the efficient frontier can show some variations depending on the characteristics of 

the expected returns and covariances of assets. For example, if we observe a pattern where 

assets with high expected returns have low variances, we will obtain a squeezed efficient 

frontier. The two criteria will not be highly conflicting. On the contrary, if high expected 

returns are accompanied by high variances, the conflict will be strengthened, and the efficient 

frontier will be enlarged. As another case, expected returns of assets may be very close to each 

other. This will result in an efficient frontier that resembles a horizontal straight line with little 
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disturbance around a certain return value. We can also experiment with different covariance 

matrix structures. Covariance terms are observed to be significantly smaller than variance terms 

in general. If we change this structure and make tests with high covariance values, we can see 

that the efficient frontier starts to resemble a vertical line positioned around similar variance 

values. Such tests can be done by utilizing random valid covariance matrices generated by the 

method proposed by Hirschberger et al. (2007). This method allows achieving desired 

distributional characteristics in the randomly generated matrix. 

 

Working with discrete solutions on the efficient frontier, as we move from one portfolio to a 

neighbor, we generally observe that the same assets change their proportions up to a certain 

point.  After that point, typically some assets are replaced and a similar trend is repeated.  

 

2.2 Portfolio Optimization in the Literature 

 

Looking at the early literature on PO, we see a number of different approaches after 

Markowitz’s initial parametric optimization approach to (2.1)–(2.3). The earlier concern among 

researchers was to make the risk objective easier to handle.  An initial approach was to 

diagonalize the covariance matrix to make it less dense, and thus make the problem easier to 

solve. Another approach was to use linear risk measures. Konno and Yamazaki (1991) 

proposed the use of Mean Absolute Deviation (MAD) instead of variance as a linear measure 

of risk. In this measure, each asset’s risk is evaluated based on its return’s deviation from its 

mean for each time point. The idea of considering only downside deviations and penalizing 

bigger ones harsher also emerged. Konno (1990) proposed an extension to MAD that assigns 

additional deviations to points that fall below some target rate of return. Michalowski and 

Ogryczak (2001) proposed another similar extension with multiple target levels with increasing 

penalties. With time, various other linear risk measures for PO were also studied. Mansini et al. 

(2003) provided an overview of linear programming-solvable models for portfolio selection. 

They examined several measures such as MAD extensions, Conditional Value at Risk (CVaR), 

Gini’s Mean Difference and minima  measures. In its most basic definition, CVaR is a risk 

measure of high losses and it has gained considerable popularity in PO literature. CVaR is one 

of the criteria that we use in this study; and we will discuss it in detail in the following chapter. 

CVaR-related linear programming models for PO were studied in detail by Mansini et al. 

(2007). They studied the theoretical properties of models that use multiple CVaR measures as 

well as their performance on real data. Ogryczak and Ruszczynski (2002) showed that CVaR is 

consistent with the second degree stochastic dominance and it has attractive computational 

properties since it can be modeled linearly. 

 

With advances in computing, solving the original mean-variance model has become easier. 

Steuer et al. (2006) developed a quadratic programming procedure to solve the original model 

efficiently. Without generating the whole efficient frontier, one can also compute a number of 

discrete efficient points to represent it. A common approach that is still being widely used for 

this purpose is the ԑ-constraint method (Haimes et al., 1971). This method optimizes one of the 

objectives by systematically changing the levels of the remaining objectives. It is modeled as: 
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Min                                                                                                                                                         2.   

s.t.                                                                                                                                               2.    

                                                                                                                                                              2    

 

where       represents objective function i, ԑi is the value we use to constrain objective i and X 

represents the set of feasible points. By changing the right-hand side of the constraints, one can 

achieve points to represent the efficient frontier. We make use of this method to generate 

solutions for our approaches that produce exact efficient solutions. However, some of the 

solutions found can be inefficient. To prevent this, we use an augmentation in the objective 

function to break ties in favor of the objectives treated as constraints. The resulting updated 

model is: 

 

Min              

   

                                                                                                                         2.   

s.t.                                                                                                                                               2.    

                                                                                                                                                              2.   

 

where c is a sufficiently small positive constant. This model is referred to as the “augmented ԑ-

constraint method” throughout the thesis. 

 

There can also be variations to ԑ-constraint method such as in Ballestero and Romero (1996) 

and Bana e Costa and Soares (2004) where discrete points on the efficient frontier that possess 

certain characteristics are sought rather than generating a sample from the whole frontier.  

 

Several researchers addressed PO problem with additional constraints. Bertsimas et al. (1999) 

used a mixed-integer programming approach to construct portfolios that are similar to target 

portfolios, that have small number of stocks and that require small number of transactions. 

Bertsimas and Shioda (2009) proposed a method for solving cardinality constrained quadratic 

optimization problems using a branch and bound implementation. Cesarone et al. (2012) solved 

the mean-variance portfolio problem with cardinality constraints by a quadratic programming 

approach.  

 

With time, the use of multiple criteria in PO has emerged. New measures of return and risk 

were proposed as well as novel criteria that address unconventional issues. The literature on the 

employment of multiple criteria in finance and PO is covered in Chapter 3. Some researchers 

used heuristics instead of exact methods to handle multiple criteria and complicating real-life 

constraints. Approaches such as tabu search, simulated annealing and evolutionary algorithms 

were used to handle these issues. As an example, Ehrgott et al. (2004) studied PO with five risk 

and return related objectives. With DM-specific utility functions, they solved it with 

customized local search, simulated annealing, tabu search and genetic algorithm heuristics. The 

literature related to our heuristic approach to PO is reviewed in Chapter 4.  
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As other fields of PO studied by researchers, Ballestro (2001) proposed a stochastic goal 

programming model to mean-variance PO and utilized the connection between classical 

expected utility theory and linear weighted goal programming model under uncertainty. Shing 

and Nagasawa  1     studied an interactive portfolio selection system based on an α-risk 

permission maximum return portfolio framework. They used scenarios on security returns and 

variances with known occurrence probabilities. Dupacova (1999) studied the error and 

misspecification side of PO problems. Using examples –the Markowitz model, a multi-period 

bond portfolio management problem and a strategic investment problem-, he presented 

methods for analysis of results obtained from stochastic programs. 

 

Most of the studies in the literature on PO have traditionally considered a single-period 

horizon. Recently, SP has come forward as an approach to handle multi-period PO. 

Constructing scenarios to capture the uncertain progress of economic factors through periods 

ahead, SP provides us with investment decisions that maximize final expected prosperity. One 

can refer to Yu et al. (2003) for a survey of SP models in financial optimization. Our literature 

review related to SP is covered in Chapter 5. 

 

2.3 The Criteria 

 

In this section, we introduce the criteria that we use in several combinations for our studies.  

Besides expected return, we consider liquidity of the portfolio. We also utilize three risk 

measures.  

 

Let    be the return,       be the expected return, and li be the liquidity measure of asset i, and 

    be the return of asset i observed in period t. Let     be the covariance of the returns of assets 

i and j. Let xi be the proportion of asset i in the portfolio where    
 
    1.  

 

2.3.1 Expected Return 

 

Return on the investment is the primary concern of PO. However, this return cannot be known 

with certainty until after the economical factors that define it are realized. Therefore, expected 

return comes out as the common basic criterion of most PO problems.  

 

Expected return of a portfolio is given by the weighted expected returns of individual assets by 

their proportions in the portfolio. It can be expressed as: 

 

         

 

   

                                                                                                                                      2.10  

 

We use percentages to represent expected return values in all of our applications. In all of our 

studies except for our SP approaches, we estimate expected returns of stocks from historical 

data.  We treat past returns over a certain period as equiprobable scenarios for this purpose. 

Assuming we are utilizing k time periods, the expected return of stock i is estimated as: 
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                                                                                                                                   2.11  

 

In our SP approaches to PO, the expected returns of individual stocks will be derived from the 

expected return of a market-representative index. We will estimate the expected return of the 

index by use of a random walk model; and assume that individual stock returns depend on that 

index with a single index model. The details of this mechanism are discussed in Chapter 5.  

 

2.3.2 Liquidity 

 

Liquidity is the degree a security can be sold without affecting its market price and without loss 

of value. It can also be defined as the ease a security can be traded within fair price levels. It is 

particularly important for investors who want to be able to instantly liquidate their assets. Some 

investors may have frequent payment liabilities, some of which may be without advance notice. 

Liquidity is usually characterized by the following aspects: time to trade, bid–ask price range 

(spread) and effect of transaction on price. Sarr and Lybek (2002) reviewed several liquidity 

measures. Volume-related liquidity measures are generally measured by the volume or quantity 

of shares traded per time unit. Time-related measures look at the number of transactions or 

orders per time unit. Spread-related measures study the difference between ask and bid prices 

with several measurement approaches. There are also multidimensional measures that combine 

different measures.  

 

We use a liquidity measure that is like a turnover ratio. We use the proportion of shares of a 

stock that are traded in a fixed time unit among the publicly outstanding number of shares of 

that stock. We use the most recent month for the number of outstanding shares of a stock. For 

the number of shares traded in that month, we take the daily average number. We calculate the 

liquidity measure of each stock using these numbers; the higher the liquidity measure’s value 

is, the more liquid the corresponding stock is. Our liquidity criterion can be expressed as:  

 

      

 

   

                                                                                                                                             2.12  

 

2.3.3 Risk Measures 

 

We consider three different risk measures: Variance, CVaR and a measure of under-

achievements that we name as Mean Under-Achievement (MUA). We explain each of these 

measures in detail below:  

 

2.3.3.1 Variance 

 

Variance as a risk measure evaluates how far return values lie from their mean. It is the most 

traditional and widely-used risk measure of PO. When evaluating the likely return of a 

portfolio, an investor may want to have an idea about the degree of variation this return will 
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exhibit. When variance is low, expected return values are more reliable. On the other hand, 

when it is high, the actual return value can deviate from the expected value considerably. 

Variance of a portfolio is calculated from the covariances between returns of assets contained 

in the portfolio, and is given by: 

 

            

 

   

 

   

                                                                                                                              2.13  

 

We compute the covariance terms from historical data. Using k past observations, the 

covariance between returns of assets i and j is calculated as: 

 

     
                        

 
   

   
                                                                                            2.1   

 

The resulting covariance matrix V is then given by:  

 

   

          

          

   
          

                                                                                                                 2.1   

 

2.3.3.2 Conditional Value at Risk 

 

CVaR is a measure of extreme losses. Every investor may want to have an idea about the worst 

possible position she/he will be in at the end of the investment period. Extreme losses are 

particularly of interest to investors who consider them as critical. Such investors do not have 

idle funds; they want to guarantee that they will have certain level of wealth after the 

investment. CVaR is related to another risk measure, Value at Risk (VaR). CVaR has become 

the common practice (as opposed to VaR) in the literature due to its desirable mathematical 

characteristics. VaR is the minimum point α such that, with a preset probability level , we will 

not have losses larger than α. On the other hand, CVaR at confidence level  is the expected 

value of losses beyond α. Figure 2 is a normally distributed loss distribution example where 

VaR and the corresponding CVaR are illustrated. 
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Figure 2. Illustration of VaR and CVaR on an example loss distribution 

 

 

 

This definition of CVaR is mostly used in earlier studies on CVaR and can be referred to as the 

classical definition. Another definition of CVaR at  probability level, which is used more 

often in recent studies, is the expected value of losses in the worst (1–) of cases. These two 

definitions are equal when the random variable under consideration has a continuous 

distribution. In our studies, we will be referring to the latter definition of CVaR, and using a 

linear programming model to optimize it. The ease of its computation in the presence of 

discrete scenarios is another advantage of CVaR over VaR; and we will be making use of this 

scenario structure in our applications.  

 

Rockafellar and Uryasev (2000) proposed a method to minimize CVaR in a linear model. Here 

we discuss CVaR and the referred method in the context of PO. See also Rockafellar and 

Uryasev (2002) for a detailed explanation of CVaR and discussions of its fundamental 

properties for discrete loss distributions. 

 

Let f(x,y) be the loss corresponding to decision vector x and random vector y. Vector x 

represents a portfolio that is chosen from a certain subset X of R
n
. We can consider x as the 

vector of proportions of n assets in the portfolio. The results we present below correspond to a 

given fixed x vector. y   Rm
 represents the uncertainties in the market that can affect the loss. If 

the underlying probability distribution of y is assumed to have density p(y), the probability of 

f(x,y) not exceeding a threshold τ is given by 

 

               

          

                                                                                                                 2.1   

 

Assuming        is everywhere continuous with respect to τ, for a given probability λ, λ-VaR 

and λ-CVaR are defined as: 
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                                                                                                                       2.1   

 

                      

              

                                                                       2.1   

 

Rockafellar and Uryasev (2000) characterized λ-VaR and λ-CVaR in terms of a function Fλ as 

follows: 

 

                                                                                                     2.1  

    

 

 

where [θ]
+ 

= maximum {0, θ}                                                                                                (2.20) 

 

It is shown that minimizing this function for a given λ produces the optimal CVaR value at the 

given λ level (Rockafellar and Uryasev, 2000). 

 

For PO, we can take the random vector of uncertainties as r, where r   Rn 
represents the returns 

of n available assets for constructing the portfolio. The loss is then given by the negative of 

asset returns multiplied with proportions, -x
T
r. In the presence of q scenarios on asset returns, 

Fλ can be expressed as:  

 

            
 

     
           
 

   

                                                                                      2.21  

 

where rs is the return vector under scenario s and ps is the probability of scenario s.  

 

Rockafellar and Uryasev (2000) showed that we can achieve a linear model by using auxiliary 

variables as and converting the above expression to the following objective and constraints: 

 

Minimize    
 

     
   

 

   

                                                                                                           2.22  

s.t.                                                                                                                           2.23  

                                                                                                                                           2.2   

 

We utilize the above CVaR model for our fourth criterion, z4. In our SP applications, we 

readily have discrete scenarios to work with. In our other applications where we do not employ 

scenario generation mechanisms, realizations of returns of assets in past periods are treated as 
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scenarios. We assume that all such scenarios have equal probability. CVaR values presented in 

the thesis are percentage values. 

 

As evident by now, variance and CVaR differ in that the former evaluates how far the return 

values lie from their mean and the latter only measures under-achievements. A DM may be 

interested in both how much variation she/he can expect in the portfolio, and the expectation of 

the worst cases. Rockafellar and Uryasev (2000) showed that in the case of normal return–loss 

distribution, variance and CVaR are equivalent in the sense that they result in the same optimal 

portfolios. However, for other distributions, the DM has sufficient incentive to consider them 

simultaneously in the PO model. To illustrate, we consider values from two example random 

loss distributions, one normal and the other chi-squared. Both have expected loss and variance 

values of 2.013% and 4.057%, respectively. However, at   = 0.9, the normal distribution has a 

CVaR value of 5.463% and the chi-squared distribution has a CVaR of 6.685%. We can see 

that although both distributions have the same expected loss and variance; due to its right-

skewness, the chi-squared distribution has a higher CVaR.  

 

2.3.3.3 Mean Under-Achievement 

 

We utilize another linear risk measure of under-achievements. Using a DM-specified 

minimum-acceptable return level, we find the expectation of under-achievements. We call this 

measure MUA, and calculate it by utilizing historical returns over k time periods. Accordingly, 

our fifth criterion is given by: 

 

    
             

   

 
                                                                                                                      2.2   

 

where   is a return level that the DM sets as her/his critical threshold value. 

 

If we are to compare CVaR and MUA, CVaR does not require the DM to determine a level as 

the minimum acceptable return. The DM just sets   as the probability level she/he wants to 

work with when assessing the risk. Accordingly, we consider CVaR as a more robust measure 

that can be utilized with various problems of different return/loss distributions. We use MUA in 

a limited part of our study with genetic algorithm approaches. 

 

In our studies throughout the thesis, we use several different sets of historical data to make the 

estimations needed to calculate the criteria values. Our basic reason of using different data for 

different approaches is to make use of more recent data. In addition, some approaches require 

the use of longer periods of historical data to increase the number of observations used, while 

others require shorter periods of recent data to obtain estimations that are more representative 

of the future. We make more specific explanations in the chapters that apply.  
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CHAPTER 3 

 

 

EFFECTS OF MULTIPLE CRITERIA ON PORTFOLIO OPTIMIZATION 

 

 

 

MCDM has been an important tool in recent studies of finance. Hallerbach and Spronk (2002) 

discussed why financial decision problems should be handled as multicriteria decision 

problems. They argued that many financial problems include multiple objectives by nature, and 

some objectives have different definitions when viewed from different perspectives. They 

perceive MCDM methods as valuable tools for the whole process of financial decision making. 

Zopounidis (1999) also pointed out the advantages of MCDM methods in financial 

management. He discussed multicriteria character of several financial problems. Steuer and Na 

(2003) provided an extensive bibliography on the application of MCDM techniques to financial 

issues and problems. As a field in finance, portfolio optimization has also been approached 

with MCDM tools, especially recently. Steuer et al. (2007a) and (2007b) argued that there are 

investors who would like to consider several additional criteria besides return such as 

dividends, liquidity, social responsibility, turnover and amount of shortselling. Numerous 

researchers confirmed this argument by studying multiple criteria in portfolio optimization. As 

examples, Roman et al. (2007) used expected return, variance and CVaR as criteria and utilized 

ԑ-constraint method where the objective function consists of variance whereas expected return 

and CVaR are treated as constraints. They applied their approach to stocks from the FTSE 

index and carried out in and out-sample analysis on their results. Xidonas et al. (2011) 

considered expected return, MAD, dividend yield and market risk in the presence of several 

constraints on portfolios. Binary variables included in some constraints led to a mixed-integer 

multiobjective linear programming model which was solved with augmented ԑ-constraint 

method. An interactive filtering procedure was applied on the generated solutions to guide the 

DM to her/his most preferred solution. Xidonas et al. (2010) proposed a similar approach with 

two additional criteria: relative price/earnings ratio and marketability. Fang et al. (2009) also 

employed ԑ-constraint method to generate efficient solutions with three criteria: net expected 

return after transaction costs are deducted, semi-absolute deviation and a fuzzy liquidity 

measure of turnover rates of securities. 

 

Despite the increasing use of MCDM in PO, to the best of our knowledge, there are no studies 

that explicitly discuss the effects of using multiple criteria on the portfolio of an investor. 

Making use of single-period PO settings, we study the effects of different and additional 

criteria on objective and decision spaces. Different combinations of expected return, variance, 

liquidity and CVaR are used as test problems. We also consider the behavior of the criteria in 

the presence of cardinality and weight constraints, and provide comparative discussions.  
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We make tests with stocks from ISE and use the augmented ԑ-constraint method to find 

efficient solutions. In all of our applications with two, three and four criteria, we use the same 

set of stocks from ISE as available assets. We choose 70 stocks from ISE (see Table 17 in 

Appendix A), and use their monthly percentage return data between January 2005 and 

December 2010
1
 to estimate their expected returns and the covariance matrix. The returns of 

the stocks during these 72 months are treated as equiprobable scenarios for CVaR and 90% 

probability is used. For the liquidity measure, we use the daily average number of shares 

traded
1
 and the total number of outstanding shares

2
 corresponding to June 2011. For our tests, 

we use different combinations of criteria in two, three and four-criteria settings.  

 

The work covered in this section draws on our paper Tuncer Şakar and Köksalan  2013a).  

 

3.1 Two-Criteria Models 

 

In this section, we show the effects of using different bicriteria combinations of expected 

return, variance, liquidity and CVaR measures. For all cases, we study the conflict between the 

criteria. Conflict in our context refers to the inverse relation between criteria considered in a 

problem. Better values of a criterion cannot be achieved unless sacrifices are made from the 

other(s). If this was not the case, we could improve all criteria simultaneously and attain a 

single optimal solution. However, in reality, we can attain a set of efficient solutions in the 

presence of multiple criteria. As we move along this set of solutions, some criteria values will 

improve and others will worsen. The degree of conflict between two criteria can be of varying 

degrees. A strong conflict corresponds to the case where the two criteria force each other to 

very poor values in order to attain good values themselves. A weak conflict, on the other hand, 

shows itself in a more limited range of criteria values. 

 

3.1.1 Expected Return–Variance 

 

We first find efficient expected return–variance solutions with our stocks from ISE. We treat 

minimizing variance as the objective function and lower bounds on expected return as 

constraints in the augmented ԑ-constraint method. We generate 20 efficient solutions that are 

evenly spaced in the expected return range. The model used for this purpose is provided as a 

sample augmented ԑ-constraint method used in our applications: 

 

Min            

 

   

  

 

   

      

 

   

                                                                                                    3.1  

s. t         

 

   

                                                                                                                                    3.2  

                                                           
1 http://borsaistanbul.com/en/data/data/equity-market-data/equity-based-data 

2 http://www.mkk.com.tr/wps/portal/MKKEN/InvestorServices/eDATACapitalMarketsDataBank 
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                                                                                                                                                     3.3  

 

The variables and parameters of the above model were defined previously in Chapter 2. 

 

The minimum-variance portfolio consists of 15 stocks and the maximum-expected return 

portfolio consists of one stock in our case. We observe a decline in the number of stocks as we 

move towards the maximum-return portfolio. We also want to see how the two criteria will 

behave in the presence of constraints on the maximum number of stocks (referred to as 

cardinality constraints) and the maximum weight a stock can take (referred to as weight 

constraints). We expect the weight constraints to prevent the best possible values of expected 

return since it will not be possible to fully invest in the stock with the maximum expected 

return. The best values of variance will also be expected to worsen, this time because of 

cardinality constraints that prevent full differentiation. The average number of stocks in the 20 

efficient solutions generated is approximately six, so we choose six as the maximum number of 

stocks allowed in a portfolio since this will be a reasonably restrictive constraint. And for the 

weight constraint, we choose 0.4. This weight is small enough to disturb the portfolios that are 

close to the maximum-expected return portfolio and large enough to give flexibility to 

portfolios that are also constrained by the cardinality constraint. We again generate 20 efficient 

solutions that are equally spaced in the expected return range by using a mixed integer 

augmented ԑ-constraint model to handle the cardinality constraint. The model is given by (3.1)-

(3.3) extended by the following constraints: 

 

   0.                                                                                                                                      3.   

     

 

   

                                                                                                                                                   3.   

                                                                                                                                            3.   

 

Figure 3 shows the efficient frontiers with and without the constraints. We see that the two 

efficient frontiers converge fairly well in the range of the constrained case. Concerning 

expected return, we see that the constraints make a substantial portion of the high expected 

return values unattainable.  On the other hand, the best variance values are very close with and 

without constraints. This shows that in this case, a maximum of six stocks are sufficient to 

decrease variance near its best value. Another observation is that, with constraints, the worst 

variance is substantially lower than the case of no constraints (variance reaches very high 

values without constraints). This is due to the fact that the corresponding high expected returns 

are now unattainable. Since we have to invest in at least three stocks because of the weight 

constraint, variance no longer assumes very high values that result from portfolios having the 

highest expected return values by investing in one or two stocks. For this case, in general we 

can say that expected return and variance are highly conflicting, and cardinality and weight 

constraints decrease the degree of this conflict. 
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Figure 3. Efficient frontier with expected return (ret) and variance (var) with and without 

constraints 

 

 

 

We also want to compare the compositions of portfolios with different expected return/variance 

levels. We expect portfolios having high expected return to negatively correlate with portfolios 

with low variance in terms of their asset contents. We use the correlation coefficient (r) to 

measure the correlation between the weights of stocks in pairs of portfolios. For both 

unconstrained and constrained cases, we have 20 efficient solutions. For each case, we sort our 

solutions in increasing order of expected return (and variance) and denote them as s1, s2, …, s20. 

We compare solution s1 with s20, s2 with s19 and so on, and obtain ten pairs for both cases. The 

first pairs correspond to the portfolios with the farthest expected return values and the last pairs 

correspond to those with the closest expected return values. 

 

After calculating r values between these pairs of portfolios, we also check for their 

significance. We test for the statistical significance of r using the test statistic 
  

      

   

  which 

approximately has t distribution with n–2 degrees of freedom under the null hypothesis of zero 

correlation (see Kendall and Stuart, 1979, p. 501–503). In our case, since we have 70 stocks to 

choose from, n=70. Our hypotheses are: 

 

H0 : r = 0 

HA : r < 0 

 

When we look at the correlation coefficients, we see that for both unconstrained and 

constrained cases, there is negative correlation for pairs with farthest expected return values as 

expected. We also see that the correlation increases as the expected returns (and variances) 

approach each other and reach very high levels for the last pairs. However, the results 
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corresponding to negative correlations are not statistically significant. Studying the 

compositions of portfolios, we realize that there are a number of stocks that are never chosen in 

any portfolio. These stocks become irrelevant to our problem; if we exclude them before the 

optimization process, we achieve exactly the same results. The fact that these stocks have zero 

weight in both portfolios of a pair increases the correlation between them. If we keep adding 

other similar irrelevant assets from the market to our asset pool, we can further increase 

correlations. Therefore, we also study the case of excluding irrelevant stocks and considering 

the remaining 21 for the unconstrained case and 14 for the constrained case. The progress of 

correlations from negative values to high positive values is still observed. For both cases, 

excluding irrelevant stocks results in decreased correlations as expected. Another observation is 

that the correlations in the constrained case are lower than the unconstrained case. However, 

negative correlations are still insignificant.  

 

3.1.2 Expected Return–Liquidity 

 

Financial markets are believed to demand extra return from illiquid stocks for their 

inconvenience in trading, so we expect to see conflicting behavior between these two criteria. 

Using liquidity in the objective function and expected return in the constraint in the augmented 

ԑ-constraint method, we generate 20 efficient solutions that are evenly spaced in the expected 

return range. Both criteria assume their best values when a single stock with the best expected 

return or liquidity is selected; so these stocks constitute the end point portfolios of the efficient 

frontier. All other portfolios consist of these two stocks in varying proportions. For the case 

with constraints, our previous weight constraint is appropriate since it requires at least three 

stocks in a portfolio. The cardinality constraint of maximum six stocks is also applied even 

though we do not expect it to be binding. Weight constraints are expected to have similar 

effects on liquidity as expected return; maximum liquidity values will no longer be possible.  

 

Figure 4 illustrates the efficient frontiers with and without constraints. We see that expected 

return and liquidity conflict as expected. Without constraints, the efficient frontier is 

approximately linear, whereas constraints disturb this property. Efficient frontiers with and 

without constraints converge well only for medium values of expected return and liquidity. We 

observe that the ranges of both criteria narrow down from both sides in the presence of 

constraints. The decrease in the upper bounds of the two criteria is due to weight constraints as 

previously explained. The other consequence of this situation is that, since we cannot obtain the 

best expected return (liquidity) values, liquidity (expected return) values do not need to worsen 

as much as the unconstrained case. 
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Figure 4. Efficient frontier with expected return (ret) and liquidity (liq) with and without 

constraints 

 

 

 

3.1.3 Expected Return–CVaR 

 

In this case, CVaR is used as the risk measure along with the traditional expected return 

criterion. As stated before, 90% probability is used for CVaR. We generate 20 efficient 

solutions that are evenly spaced in the expected return range by using CVaR in the objective 

function and expected return in the constraint in the augmented ԑ-constraint method. The 

average number of stocks of these 20 portfolios is also realized as six, and 0.4 is observed to be 

an appropriate maximum weight constraint. The use of the same constraints will be preferred 

for all cases for purposes of consistency, and it will also provide us with two-criteria solutions 

compatible to be used together to generate three and four-criteria efficient solutions. Hence, 

constraints in all cases of this study correspond to the same cardinality and weight constraints. 

Figure 5 illustrates the expected return–CVaR efficient frontiers with and without constraints.  

 

Looking at Figures 3, 4 and 5, we can see that the range of expected return without constraints 

is approximately the same in all cases. The response of the expected return–CVaR case to 

constraints resembles the expected return–variance case. We see that although constraints 

prevent the best values of expected return, we can still attain near-best CVaR values. In 

addition, when we add the constraints, the worst CVaR value is lower than the case of no 

constraints. This can again be attributed to the fact that, since the weight constraint prevents 

expected return to reach its highest values, CVaR no longer needs to assume very high values. 

Constraints decrease the degree of conflict between expected return and CVaR.  
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Figure 5. Efficient frontier with expected return (ret) and CVaR (cvar) with and without 

constraints 

 

 

 

3.1.4 Variance–Liquidity 

 

Using variance in the objective function and liquidity in the constraint in the augmented ԑ-

constraint method, we generate 20 efficient solutions that are evenly spaced in liquidity. Figure 

6 shows the efficient frontiers with and without the constraints. We see that the two criteria 

exhibit conflicting behavior in both cases. A possible explanation for this behavior may be that, 

illiquid stocks are expected to offer investors additional stability. An illiquid stock with high 

risk would not be considered an attractive investment. In Figure 6, firstly we observe that the 

range of variance without constraints is quite narrow; suggesting that variance and liquidity’s 

conflict is not very strong in this case. Also, we see that the weight constraint reduces the best 

possible liquidity value greatly whereas the minimum variance values with and without 

constraints are very close. The two efficient frontiers converge well for low liquidity values, 

but variance deteriorates considerably after a point. Constraints increase the degree of conflict 

between variance and liquidity in this case. We have to sacrifice great amounts in variance to 

reach the best values of liquidity in the presence of constraints.  
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Figure 6. Efficient frontier with variance (var) and liquidity (liq) with and without constraints 

 

 

 

3.1.5 Variance–CVaR 

 

Before using variance and CVaR together, we first make computational studies with our data to 

see if the two risk measures will result in similar optimal portfolios. We compare the efficient 

portfolios of the expected return–variance and expected return–CVaR cases. If the two risk 

measures lead to similar efficient portfolios, the CVaR (variance) values of efficient expected 

return–variance (expected return–CVaR) portfolios should be comparable to those values of 

efficient expected return–CVaR (expected return–variance) portfolios. Figures 7 and 8 help us 

to make those comparisons. In Figure 7, we plot efficient expected return–variance and 

expected return–CvaR solutions in expected return and variance axes, with and without 

constraints. In Figure 8, we plot the same solutions in expected return and CVaR axes. As 

Figure 7 illustrates, efficient expected return–CVaR portfolios cannot approach the variance 

levels of efficient expected return–variance portfolios, and constraints increase the divergence 

further. Likewise, efficient expected return–variance portfolios cannot converge the CVaR 

levels of efficient expected return–CVaR portfolios as evident from Figure 8. Constraints again 

increase the divergence. In both figures, the cases with constraints are drawn in the same scale 

as the unconstrained cases to illustrate the effects of constraints on the range of criteria as well. 

Results show that our data taken from ISE for the specified period does not demonstrate normal 

return distribution. This result makes variance and CVaR suitable risk measures to be used 

together. 
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(b) 

Figure 7. Comparing expected return–variance (ret–var) and expected return–CVaR (ret–cvar) 

efficient portfolios in expected return and variance without (a) and with (b) constraints 
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(b) 

Figure 8. Comparing expected return–variance (ret–var) and expected return–CVaR (ret–cvar) 

efficient portfolios in expected return and CVaR without (a) and with (b) constraints 
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We also want to compare the compositions of portfolios with variance and CVaR; we expect to 

see them result in different portfolios. We will again use r for this purpose. This time, we will 

form our pairs of portfolios by choosing expected return–variance and expected return–CVaR 

efficient portfolios with the same expected return value. For both unconstrained and 

constrained cases, we use expected return values that are 0.5 points apart and obtain 22 such 

values with the unconstrained case and 15 values with the constrained case. We sort them in 

increasing order of return. Our hypotheses are: 

 

H0 : r = 0 

HA : r > 0 

 

For both cases, we observe high correlation for low and high return values and low correlation 

for intermediate values. For two out of 22 pairs of portfolios with no constraints, we fail to 

reject zero correlation; and with constraints, this number is two out of 15. Although we reject 

our null hypothesis for most of the pairs, we still cannot conclude that there is high correlation. 

It is a very strong argument to expect variance and CVaR to result in totally uncorrelated 

portfolios. The magnitudes of our r measure can be more useful here to give an idea about the 

strength of correlation, and we observe low r values except for portfolios with low and high 

return. 

 

Following our previous line of thought, we can again exclude the stocks that are not chosen in 

any efficient portfolio. We have 20 stocks remaining in the unconstrained case and 15 in the 

constrained case. For the unconstrained and constrained cases, the number of pairs that we fail 

to reject zero correlation increases to seven and nine, respectively. So in our case, constraints 

increase the difference in portfolio compositions with variance and CVaR. Overall, we 

conclude that the compositions of portfolios show that variance and CVaR lead to reasonably 

different portfolios and they can be used in the same model. 

 

To construct a discrete representation of the variance–CVaR efficient frontier, we solve for 

minimum variance for 20 evenly spaced CVaR values. We apply the same procedure in the 

presence of constraints as well. Figure 9 shows the efficient frontiers with and without 

constraints. We see that the two risk measures exhibit conflicting behavior. However, the range 

of both criteria is observed to be very narrow in contrast to the previous cases that included 

them. The range of variance in the expected return–variance model was [28.52–11,160.40] and 

the range of CVaR in the expected return–CVaR case was [5.90–26.72]. So, variance and 

CVaR cover each other to a considerable extent and conflict in a limited region for both 

criteria. Constraints restrict this region ever further for CVaR whereas the range for variance 

shifts to higher values.  
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Figure 9. Efficient frontier with variance (var) and CVaR (cvar) with and without constraints 

 

 

 

 

Figure 10. Efficient frontier with liquidity (liq) and CVaR (cvar) with and without constraints 
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3.1.6 Liquidity–CVaR 

 

We generate 20 efficient solutions that are evenly spaced in liquidity using CVaR in the 

objective function and liquidity in the constraint in the augmented ԑ-constraint method. Figure 

10 shows the efficient frontiers with and without the constraints; the criteria conflict properly to 

allow their use together in the same model. We can observe that, although the weight 

constraints reduces the best possible liquidity value greatly, the best CVaR value with 

constraints remains very close to the unconstrained case. The range of CVaR with constraints is 

also similar to the unconstrained case. Another observation is that the two efficient frontiers 

converge well for low liquidity and CVaR values, but after a point, constraints lead to 

increasingly lower liquidity values for given CVaR levels.  

 

3.2 Three-Criteria Models 

 

In this section, we look at two representative three-criteria models. In addition to our two 

traditional criteria, expected return and variance, we first consider liquidity and then CVaR as 

the third criterion. We saw in Section 3.1 that all criteria considered conflict pairwise; and thus 

are compatible to be used together in the same model. To find efficient solutions with three 

criteria, we employ the augmented ԑ-constraint method with a two-step procedure. In the first 

step, for every efficient point of the two-criteria models, we use the values of the two criteria as 

constraints and solve for the optimum value of the remaining criterion. We treat the worst value 

of the optimized criterion obtained from these solutions as the nadir point in that criterion. This 

would have corresponded to the exact nadir point had the problem been discrete (see Ehrgott 

and Tenfelde-Podehl, 2001).  The quality of the obtained nadir value can be made as precise as 

desired by controlling the amount of discretization. As a result, this procedure also ensures that 

we cover the efficient range of the three criteria as precisely as desired. The first step may still 

leave some unrepresented efficient regions between the nadir and the ideal values of the 

criteria. Therefore, in the second step we find additional efficient solutions to represent the 

possible under-represented regions of the criteria by solving models imposing bounds in the 

desired regions of the criteria.  

 

In both three-criteria models, we first study if considering a third criterion brings improvements 

in its values compared to the two-criteria case. Without optimizing it, we find the 

corresponding values of the third criterion in the two-criteria efficient solutions. Then, we 

compare these values to its optimum values found given the same levels of the other two 

criteria. As the second analysis, we compare the ranges of criteria in two and three-criteria 

cases. We make both of our analyses in the presence of constraints as well.    

 

3.2.1 Expected Return–Variance–Liquidity 

 

From Section 3.1, we have 20 efficient solutions for expected return–variance, expected return–

liquidity and variance–liquidity models, both with and without constraints. First with no 

constraints, we find the values of the missing third criterion in these cases and compare these to 

its optimal values found given the levels of the two other criteria. We do not see substantial 
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differences; the three-criteria model fails to bring big improvements in the third criterion within 

the efficient frontier of the original criteria. For expected return, the average improvement we 

achieve is 0.1172%; for variance the average improvement is 0.0007% and for liquidity it is 

0.1961%. This reveals that for given values of two criteria, there do not exist alternative 

solutions that are considerably better than others in terms of the third criterion. With 

constraints, the average improvements in expected return, variance and liquidity are 0.0421, 

0.0016 and 0.0540, respectively. We see that the improvement in variance increases with 

constraints whereas it decreases for expected return and liquidity, but the improvement 

numbers are very small in both cases to make a meaningful interpretation. We conclude that the 

changes in improvements are unpredictable and result from how the criteria in two-criteria 

models behave in the presence of constraints.  

 

Interpreting this observation as there is no need to include the third criterion in the optimization 

process would be misleading. If we do not consider the third criterion, we cannot cover the 

range it will assume in the three-criteria case. The best possible values of it will be overlooked; 

and these may be of interest to the investor. Figure 11 illustrates this situation with our data. 

We show our results in two-dimensional graphs for easier visualization purposes. In Figure 

11(a), when we compare the return ranges of variance–liquidity and expected return–variance–

liquidity models, we see that expected return values are realized at very low levels in the 

former model. Also, expected return–variance–liquidity model can reach lower levels of 

variance than the return–liquidity model. The lowest variance value the return–liquidity model 

can obtain is 166.16 while its lowest value with the three criteria model is 28.92. Figure 11(b) 

shows the narrow range liquidity assumes in the expected return–variance model as opposed to 

the three-criteria case.  

 

In three dimensions, Figure 12 shows the efficient points achieved by the three-criteria model 

together with the efficient points achieved by the three two-criteria models. We can see that 

two-criteria models can only cover small ranges.  
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(a) 

 

 

 

(b) 

Figure 11. Comparing the (a) return (ret), variance (var) and (b) liquidity (liq) ranges of two-

criteria models with the three-criteria model 
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Figure 12. Efficient points of expected return–variance–liquidity model compared with 

expected return–variance, expected return–liquidity and variance–liquidity models 
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Table 1(a) has ranges of the criteria in solutions of the three-criteria model and also the ranges 

of the missing third criterion in two-criteria models. We can see that expected return is the 

criterion that the two-criteria model fails to cover most with approximately only a 3% 

coverage. For liquidity, the approximate coverage percentage is 20% and for variance it is 99%. 

Although the coverage for variance seems very high, it is partly due to its extremely high upper 

bound caused by the maximum return portfolio in the expected return–variance case. There is 

considerable difference between the best variance values of the three-criteria and the expected 

return–liquidity models. To see the effects of constraints on our findings, we also report the 

ranges and the coverage percentages in the presence of constraints in part (b) of Table 1. We 

again see that two-criteria models miss regions that are good in the omitted criterion. In our 

case, constraints increase the expected return coverage of the variance–liquidity model and the 

liquidity coverage of the expected return–variance model. However, there is a decrease in the 

variance coverage of the expected return–liquidity model.  

 

Analysis of the three-criteria models’ ranges in Table 1 also gives us information about the 

effects of constraints with criteria of expected return, variance and liquidity. We see that the 

lower bound of the range of expected return increases to a better value with constraints, but the 

upper bound worsens. The lower bound for variance increases (becomes a worse value), but its 

upper bound decreases to a better value. For liquidity, both the lower and the upper bounds 

worsen. 
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Table 1. Ranges of criteria realized with two and three-criteria models (ret–var–liq) and the % 

coverage achieved by two-criteria models 

(a) without constraints 

 

Expected Return Variance Liquidity 

Three-criteria model range 2.08–13.88 28.92–11,160.30 0.02–0.61 

Expected return–variance 

model range 

(% coverage) 

  

0.02–0.13 

 

(19.84%) 

Expected return–liquidity 

model range 

(% coverage) 

 

166.16–11,160.40 

 

(98.77%) 

 Variance–liquidity model 

range 

(% coverage) 

2.08–2.46 

 

(3.29%) 

   

(b) with constraints 

 

Expected Return Variance Liquidity 

Three-criteria model range 2.21–10.11 30.27–2,582.76 0.01–0.34 

Expected return–variance 

model range 

(% coverage) 

  0.01–0.10 

 

(27.01%) 

Expected return–liquidity 

model range 

(% coverage) 

 537.82–2,582.77 

 

(80.12%) 

 

Variance–liquidity model 

range 

(% coverage) 

2.21–4.77 

 

(32.43%) 
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3.2.2 Expected Return–Variance–CVaR 

 

In this model we use two risk measures besides our expected return criterion. Upon finding our 

efficient points, we first check for the improvement they bring in the formerly left-out criterion. 

Similar to the previous three-criteria case, we fail to see significant values. For the points we 

consider, the average improvement is 0.0563% in expected return, 0.0074% in variance and 

0.0910% in CVaR. When we look at the effects of constraints on these observations, we see 

that improvements in expected return, variance and CVaR become 0.0153%, 0.0059% and 

0.0478%, respectively. We see that the improvements in all criteria decrease in the presence of 

constraints. However, this decrease is very slight and not generalizable. We conclude that with 

constraints too, for given values of two of the expected return, variance and CVaR criteria, 

there are no alternative solutions that can improve the third criterion greatly. 

 

Despite this conclusion, in this three-criteria case too, not considering the third criterion will 

result in overlooked regions in its range. Table 2 illustrates the ranges of criteria in solutions of 

the three-criteria model and also the ranges of the missing third criterion in two-criteria models, 

with and without constraints. We see that the range of expected return in the three-criteria 

model is again missed to a great extent by the two-criteria model. In the presence of 

constraints, the variance–CVaR model can cover a wider range of expected return, but the 

coverage is still below 8%. Another observation is that, both with and without constraints, the 

ranges of both risk measures are covered well with two-criteria models although best values of 

both are missed to some extent. This is consistent with our discussions in Section 3.1.5 where 

we saw that variance and CVaR conflict in a very limited region and they cover each other 

well. An implication of this result can be as follows: If the DM is not interested in the best 

possible values of variance (CVaR), solutions of the two-criteria model expected return–CVaR 

(expected return–variance) can be sufficient for her/him to base her/his decisions on.   
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Table 2. Ranges of criteria realized with two and three-criteria models (ret–var–cvar) and the % 

coverage achieved by two-criteria models 

(a) without constraints 

 

Expected Return Variance CvaR 

Three-criteria model range 2.32–13.88 28.92–11,160.30 5.90–26.72 

Expected return–variance 

model range 

(% coverage) 

  

7.02–26.72 

 

(94.65%) 

Expected return–CVaR 

model range 

(% coverage) 

 33.90–11,160.40 

 

(99.96%) 

 Variance–CVaR model 

range 

(% coverage) 

2.31–2.58 

 

(3.82%) 

 

  

(b) with constraints 

 

Expected Return Variance CvaR 

Three-criteria model range 2.21–10.11 30.27–2,582.71 6.03–18.91 

Expected return–variance 

model range 

(% coverage) 

  6.43–18.91 

 

(96.96%) 

Expected return–CVaR 

model range 

(% coverage) 

 36.32–2,5282.71 

 

(99.76%) 

 

Variance–CVaR model 

range 

(% coverage) 

2.21–2.83 

 

(7.81%) 
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Similar to Table 1 of Section 3.2.1, analysis of the three-criteria models’ ranges in Table 2 also 

gives us information about the effects of constraints with criteria of expected return, variance 

and CVaR. Here we also support this analysis by the help of Figure 13, where we can see three-

criteria solutions with and without constraints in three dimensions. The lower and upper bounds 

of the range of expected return decreases to lower values with constraints. The lower bound for 

variance increases (it becomes a worse value), but its upper bound decreases to a better value. 

For CVaR, the lower bound increases whereas the upper bound decreases with constraints. The 

decrease in the upper bound of variance and CVaR are most easily seen on Figure 13. 

 

 

 

Figure 13. Efficient points of expected return–variance–CVaR model with and without 

constraints 

 

 

 

3.3 Four-Criteria Model 

 

The four-criteria case can also be solved with the augmented ԑ-constraint method, though with 

increased computational burden. Using the values of the criteria in efficient three-criteria 

solutions as constraints, we can solve for the optimum value of the fourth criterion. Then we 

can solve for intermediate values of criteria to represent all regions of their ranges. We expect 

to observe results similar to the three-criteria cases. We do not expect substantial improvements 

in the fourth criterion values corresponding to the efficient solutions of the three criteria cases; 

but we expect an enlarged efficient region. Looking at some of our results, solving for 
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maximum liquidity given the expected return, variance and CVaR values of the three-criteria 

model can only bring an average of 0.4208% improvement in liquidity values. But the expected 

return–variance–CVaR model realizes highest liquidity at 0.13 whereas the true maximum in 

the four-criteria case is 0.61. Likewise, although CVaR values of expected return–variance–

liquidity case only improve by 0.0441% on the average, CVaR can achieve its minimum at 

5.90 instead of 7.02 of the three-criteria model. Other criteria exhibit similar behavior too. 

When we look at the effects of constraints on these observations, we see that they decrease the 

improvement to 0.0662% for liquidity and 0.0190% for CVaR. But similar to the cases with no 

constraints, there are substantial differences between the best values attained by three and four-

criteria models: 0.10 vs. 0.34 for liquidity and 6.42 vs. 6.03 for CVaR.  

We conclude that, for stocks traded on ISE, the four criteria we have considered in this study 

are compatible for use in the same model if they are of concern to the DM. The inclusion of the 

fourth criterion to three-criteria cases does not result in discovering alternative solutions that 

are substantially better in the fourth criterion, but it will result in additional regions. These 

conclusions are also valid in the presence of cardinality and weight constraints. 
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CHAPTER 4 

 

 

GENETIC ALGORITHM APPROACHES 

 

 

 

Heuristics are used for difficult problems that are not practical to be solved to optimality. 

Instead of optimal solutions, heuristics aim for satisfactory solutions that can be obtained more 

easily with short computation times. PO problems get more difficult as we consider additional 

and/or nonlinear criteria, more investment options and constraints that lead to integer or binary 

variables. Heuristics have been used to handle such PO problems. Genetic algorithms are a 

family of heuristic search techniques where a population of abstract representations evolves 

toward better solutions in successive generations. In genetic algorithms, we start with an initial 

population of feasible solutions. Each solution is represented by a set of chromosomes. From 

this population, parents that perform well with respect to the criterion/criteria of the problem 

are selected as parents to produce the offspring. To produce the offspring, we first apply 

crossover to the parents. Exchanging chromosomes between parents, we obtain children that 

contain properties from both parents. This is performed with the hope of obtaining better 

solutions than the parents. After the crossover, we also apply mutation to some of the children 

created. The purpose here is to change some properties of the offspring so that we can obtain 

solutions that can bring differentiation to the population. After the mutation, we select best out 

of the starting population and the offspring, and treat the selected solutions as the new 

population for the next generation. This process is repeated for a number of generations, 

evolving toward better solutions. 

 

In this chapter, we first apply a widely-known genetic algorithm, Nondominated Sorting 

Genetic Algorithm II (NSGA-II) by Deb et al. (2002) to PO. The performance of NSGA-II is 

evaluated with two and three-criteria PO. In the second part of the chapter, we develop our 

genetic algorithm to handle a reference point-based, maximum cardinality and maximum 

weight-constrained PO problem. This algorithm is applied with expected return and variance 

criteria.  

 

4.1 NSGA-II Approach 

 

4.1.1 Review of NSGA-II 

 

Basic ideas of NSGA-II are to use a non-dominated sorting method to assign fitness to 

solutions, and also to employ a crowding distance to attain diversified solutions. General steps 

of NSGA-II appear below (see Deb et al., 2002 for details): 
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1. Generate an initial population of size L. 

2. Apply non-dominated sorting to the population and assign fitness values according to 

the domination fronts found.  

3. Apply tournament selection to the population. To determine the winner, first consider 

fitness values; if two members have the same fitness, look at crowding distances. 

4. Perform crossover (single-point crossover for binary-coded genetic algorithms and 

simulated binary crossover for real-coded ones) and mutation (bitwise mutation for 

binary-coded genetic algorithms and polynomial mutation for real-coded ones) and 

produce offspring of size L. 

5. Combine the population and the offspring and apply non-dominated sorting again. 

6. Accept domination fronts to the next generation until L slots are filled. In the last front 

that cannot be fully accepted (if any), choose based on crowding distance. 

7. Continue with the next generation from Step 3. 

 

The crowding distance of NSGA-II is designed to ensure diversity among generated solutions. 

While non-dominated sorting brings elitism, crowding distance tries to make sure that all 

regions of efficient frontier are represented. After domination fronts are found, crowding 

distances are used to compare solutions that are on the same front. The crowding distance of a 

solution (for two objectives) is half the perimeter of the rectangle formed by taking one 

solution on either side of that solution as the corners. The solution with the larger crowding 

distance is preferred.  

 

4.1.2 Results of Experiments 

 

We represent portfolios by strings of length equal to the number of available stocks. Each gene 

represents the proportion of a stock in the portfolio. With n assets available, a solution is 

represented as in Figure 14, where xi is the proportion of stock i. Genes have real-valued 

variables. However, to ensure that constraint (2.3) is satisfied, xi’s are normalized to sum up to 

one after initializing the population and after mutation. 

 

 

 

x1 x2 x3 … xn 

Figure 14. Genetic representation of a portfolio 

 

 

 

For our experiments, we use the NSGA-II code supplied by Kanpur Genetic Algorithm 

Laboratory (KanGAL)
3
 with the default crossover and mutation operators. 

 

                                                           
3 http://www.iitk.ac.in/kangal/codes.shtml, the original version 

http://www.iitk.ac.in/kangal/codes.shtml
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4.1.2.1 Expected Return–Variance Setting 

 

We solve the model given by (2.1)–(2.3) in this two-criteria setting. We first experiment with 

10 stocks from ISE to obtain preliminary results and gain insight (see Table 18 in Appendix A 

for the list of stocks). Their monthly return data between January 2007 and June 2008
4
 are used 

to estimate expected return and variance values. We observe NSGA-II to perform well with 

1000 generations, a population size of 35, 0.9 crossover probability and 0.1 mutation 

probability.  Figure 15 illustrates solutions of NSGA-II against exact efficient solutions found 

by the augmented ԑ-constraint method. We see that NSGA-II performs well with respect to 

both convergence and diversity.  

 

 

 

 

Figure 15. Expected return–variance solutions of NSGA-II and ԑ-constraint method with 10 

stocks 

 

 

 

To see the performance of NSGA-II in a larger problem, we next experiment with 100 ISE 

stocks, again using their monthly returns between January 2007 and June 2008 as input data
4
. 

Table 19 in Appendix A has the list of stocks. NSGA-II performs well with 1000 generations, a 

population size of 100, 0.9 crossover probability and 0.1 mutation probability. Assessing the 

performance of NSGA-II against 100 exact efficient solutions, we see that NSGA-II performs 

very well with respect to convergence. It also represents most parts of the efficient frontier, but 

misses the lower tail with the lowest expected return and variance values. As a remedy, we use 

end points of the exact efficient frontier as seeds in NSGA-II. The diversity performance of the 

heuristic has improved. Figure 16 illustrates the comparison of seeded NSGA-II to exact 

efficient solutions. Several performance metrics are used to evaluate the performance of 

                                                           
4 http://borsaistanbul.com/en/data/data/equity-market-data/equity-based-data 
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evolutionary algorithms. Some evaluate the closeness to the efficient frontier and some 

evaluate the diversity among the solutions generated. Set coverage metric and generational 

distance (see Deb, 2001, p. 311-313) are examples of the former type; and spacing and spread 

(see Deb, 2001, p. 313-316) are examples of the latter. There are also metrics that evaluate both 

convergence and diversity. To provide a measure of the performance of NSGA-II, we use a 

metric of this kind: hypervolume. Hypervolume measures the dominated portion of the 

objective space by a set of solutions. Using the nadir point as the reference point, the 

hypervolume of the efficient frontier of the augmented ԑ -constraint method is 545.8409 

whereas it is 543.3281 for NSGA-II. The ratio of the hypervolume of NSGA-II to exact 

solutions is 0.9954, which implies very good performance.  

 

We also compare portfolio compositions of NSGA-II and exact solutions and observe that they 

are similar. The stocks contained in the portfolios and their proportions are alike. 

 

 

 

 

Figure 16. Expected return–variance solutions of NSGA-II and ԑ-constraint method with 100 

stocks 

 

 

 

4.1.2.2 Expected Return–Variance–MUA Setting 

 

In this section, we again work with the 100 stocks introduced in Section 4.1.2.1 and their 

corresponding data. We want to experiment with an additional risk measure besides expected 

return and variance. We initially consider MAD, one of the most widely-used risk measures. 

We first make tests to see if variance and MAD are suitable measures to be used together. To 

see if they result in similar efficient portfolios, we find the corresponding MAD values for 

efficient expected return–variance points and the variance values for efficient expected return–
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MAD points. Figures 45 and 46 in Appendix B show that the two risk measures behave 

similarly, so that the inclusion of MAD as the third criterion is not meaningful.  

 

In search of another meaningful risk measure, we consider linear risk measures that are only 

interested in losses. We choose to utilize MUA that is defined by (2.25) in Section 2.3.3.3. It is 

a linear risk measure of expected returns below a threshold. For our experiments, we set 1.5% 

as the threshold. We compare expected return–variance and expected return–MUA efficient 

portfolios in expected return and variance axes in Figure 47 in Appendix B. We see that MUA 

can bring differentiation to our problem.  

 

With three criteria of expected return, variance and MUA, we again run NSGA-II with 1000 

generations, 0.9 crossover probability and 0.1 mutation probability; these parameters are 

observed to result in good solutions. The 100 solutions generated are plotted against the 100 

solutions of expected return–variance NSGA-II in Figure 17. The corresponding MUA values 

of the expected return–variance NSGA-II solutions are calculated for this purpose. We can 

again see that the third criterion brings differentiation to solutions.   

 

 

 

 

Figure 17. Comparing expected return–variance NSGA-II (o) and expected return–variance–

MUA NSGA-II (*) solutions in three criteria 
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To further justify the use MUA as the third criterion, we check for portfolios in three-criteria 

NSGA-II that have comparable expected return and variance values to portfolios in expected 

return–variance NSGA-II, but considerably better MUA values. Table 3 includes such example 

solutions where we can improve MUA greatly with small sacrifices from expected return 

and/or variance. The differences in criteria’s values are given in percentages with respect to the 

observed range of each criterion in expected return–variance NSGA-II solutions. We conclude 

that the addition of our third criterion results in considerably more valuable solutions for a DM 

who wants to take under-achievements into account. 

 

Lastly, we want to assess the performance of 3-criteria NSGA-II against exact solutions. With 

the augmented ԑ-constraint method, we use the expected return and variance values of the 

three-criteria NSGA-II as constraints and optimize MUA. Working with a number of 

representative solutions, Figure 18 compares the results of NSGA-II against the ԑ-constraint 

method. 

 

 

 

Table 3. Comparing solutions of two and three-criteria NSGA-II in expected return (ret), 

variance (var) and MUA 

 
Expected return–

Variance NSGA-II 
Expected return–Variance–MUA  NSGA-II 

Portfolio 

pair 
ret var MUA ret 

% 

difference 
var 

% 

difference 
MUA 

% 

difference 

1 5.16 3.27 0.90 5.20 0.97 3.85 0.53 0.00 -62.46 

2 5.88 6.03 1.36 5.93 1.03 7.31 1.16 0.00 -93.57 

3 6.05 6.78 0.18 6.05 -0.06 8.57 1.63 0.00 -12.26 

4 6.61 13.02 0.57 6.61 0.04 14.66 1.49 0.21 -24.99 
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Figure 18. Comparing expected return–variance–MUA NSGA-II (*) and ԑ-constraint method 

(o) solutions 

 

 

 

4.2 A Preference-Based Genetic Algorithm to Solve Portfolio Optimization with 

Cardinality and Weight Constraints 

 

Looking at the literature of heuristics for PO with complicating constraints, we see that Chang 

et al. (2000) studied mean-variance PO with minimum proportion and cardinality constraints. 

They applied a genetic algorithm, a tabu search method and a simulated annealing approach. 

When dealing with cardinality constraints, they formulated their genetic algorithm to handle 

instances where the number of securities is fixed to a given number. They claimed that if they 

can handle this case, then they can run their algorithm for all values between the lower and 

upper bounds on the number of securities. For the fitness function, they incorporated the return 

criterion into the risk criterion with a weight. Children were generated by uniform crossover 

and two parents produced one child. Their mutation was limited to changing the weight of one 

security in the child. They employed a repair procedure as needed for the minimum weight 

constraint. They utilized a steady state population replacement strategy; in every generation, 

the child is replaced with the worst population member. Lin and Liu (2008) solved mean-

variance PO with minimum transaction lots with genetic algorithms. PO with minimum 

transaction lots is a combinatorial problem which has a discontinuous feasible region. 

Minimum transaction lots require that security shares can only be bought in integers and 

usually in lots; one cannot purchase a fraction of a security and usually has to buy shares in 
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multiples of some value. Lin et al. still represented solutions with chromosomes of real 

numbers for the sake of operational simplicity; later they found the maximum number of shares 

that can be bought with the given budget and prices. They used variance as the objective and 

handled expected return as a constraint, requiring that the minimum return should reach a 

specified value. Skolpadungket et al. (2007) also studied mean-variance PO with cardinality, 

floor and round-lot constraints with several well-known genetic algorithms, namely Vector 

Evaluated Genetic Algorithm (VEGA), Multiobjective Optimization Genetic Algorithm 

(MOGA), Strength Pareto Evolutionary Algorithm (SPEA) and NSGA-II. With these 

algorithms, they could treat the two criteria separately without reducing them to a single 

objective. Maximum cardinality, floor weights and round-lot restrictions were all handled as 

constraints. For all constraints, they used repair procedures.  

 

Our method deals with a reference-point-based mean-variance PO problem with maximum 

cardinality and maximum weight constraints. Our multiobjective genetic algorithm handles 

both risk and return objectives simultaneously rather than trying to capture them in a single 

objective. In addition, as opposed to the study of Chang et al. (2000), it does not restrict the 

number of securities in the portfolio to a single value. Restricting the number of securities to a 

fixed value and running the algorithm for different such values is neither reasonable nor 

practical. The reasoning behind cardinality constraints is to limit transaction costs and to keep 

the portfolio manageable and observable. The most appropriate way to handle this is to allow 

different number of securities as long as a limit is not exceeded. Our algorithm handles this 

issue. On the other hand, it is known that risk reduction benefits are achieved when an investor 

holds a well-diversified portfolio. Since cardinality constraints impose upper bounds on the 

number of securities, they may prevent us from full diversification. As a result, we may want to 

limit our risk by other means; this is where our second constraint, the maximum weight 

constraint, steps in. We aim to limit our loss if any of our securities does poorly. Our algorithm 

can handle maximum weights that are greater than or equal to 0.5. In addition, we also take a 

reference point specified by the DM into account. Our algorithm directs the search towards a 

desirable direction for the DM, and tries to find solutions on the efficient frontier that are 

closest to the reference point. 

 

The PO model handled by our algorithm is (2.1)–(2.3) extended by the following constraints: 

 

                                                                                                                                           .1  

     

 

   

                                                                                                                                                   .2  

                                                                                                                                             .3  

 

where UB is the maximum weight allowed for assets and K is the maximum number of assets 

allowed in the portfolio. 
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We next give the details of our algorithm. We will see that it has specialized operators for the 

PO problem on hand. After the description of the algorithm, results of experiments follow. 

 

4.2.1 The Genetic Algorithm  

 

The genetic representation of portfolios is the same as in Section 4.1, which was illustrated in 

Figure 14. The general steps of our algorithm are given below, and they are explained in detail 

in subsections that follow.  

 

Let    be the reference point in (expected return, variance) which takes normalized values [0,1]. 

Let   
 
 be the proportion of stock i in member solution j. 

 

1. Ask the DM to determine K, UB and   .  

2. Generate an initial population of L feasible members. 

 Generate random solutions that satisfy constraint (4.2) and repair for constraint 

(4.1).  

3. Find the objective function values and Tchebycheff distances of members from   . 

4. Apply tournament selection to determine the parents. 

 First check for domination. If the parents do not dominate each other, decide based 

on Tchebycheff distances. 

5. Apply crossover to create offspring of size L. 

 Crossover operator is designed to satisfy (4.2). Repair for (4.1). 

6. Apply mutation. 

7. Calculate the objective function values and Tchebycheff distances of the offspring 

from R.  

8. Make L pairwise comparisons between the initial population and the offspring. 

Determine L winners based on domination; and if there are ties, distance from R.  

9. Carry L winners to the next generation as the initial population and repeat from Step 4 

for a pre-set number of generations. 

 

4.2.1.1 Initial Population Generation 

 

For each population member, we generate a random integer h between 1 and K. We select h 

stocks from our security pool and assign random positive weights to the selected stocks. All 

other stocks assume zero weight. We next check for weight constraint (4.1). Since our 

algorithm is designed to handle UB values greater than or equal to 0.5, at most one stock will 

violate (4.1).  Let m be the stock in solution j such that   
 

 > 0.5. Let      
 

. Drop the weight 

of stock m to 0.5, i.e.   
 

 = 0.5. Let            
 
 0.  . Update the weights of stocks in    

as follows:   
 
   

 
 

          
 

   
 . This corresponds to allocating the excess weight of stock m 

to other stocks in the portfolio in proportion to their weights.  
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We should note at this stage of the algorithm that we see the cardinality constraint is satisfied 

with the random generation routine. Also note that we allow different member solutions to have 

different number of securities; thus we can represent different parts of the solution space with 

initial solutions and have enhanced exploration abilities. 

 

4.2.1.2 Finding the Objective Function Values and Distances of Members from the Ideal Point 

 

After finding the objective function values of solutions, we find their Tchebycheff distance 

from   . The smaller this distance, the more preferable a solution is. Before we calculate the 

distances, we normalize expected return and variance values according to the following 

formula where    corresponds to the value to be normalized: 

 

    
           

                 
                                                                                                              .   

 

We do not calculate the exact ideal and nadir points in our algorithm, we use approximations. 

The same approximated ideal and nadir points are used for all parameters of the cardinality and 

weight constraints. The maximum and minimum expected returns are taken as the expected 

return of stocks with the maximum and minimum expected returns, respectively. For variance, 

the optimal variance is calculated with no cardinality and weight constraints, and it is used as 

the minimum variance value. And for the maximum variance value, the variance of the stock 

with the largest such value is used.  

 

The normalized objective function values are used only for distance calculation purposes. Our 

algorithm continues to store and represent solutions with their original return and variance 

values.   

 

4.2.1.3 Tournament Selection 

 

From L population members, we form L pairs of competitors for parenthood. We randomly 

select two members from the population L times and make them compete based on two 

measures: domination and distance from   . If a member solution dominates the other, it is 

directly assigned as a parent. Conversely, if there is no domination, the member with the 

smaller distance from    is assigned as a parent. The winner of the first pair becomes parent 1, 

the one from the second pair becomes parent 2 and so on, so that we select and label L parents.  

 

4.2.1.4 Crossover 

 

We apply crossover between parents 1 and 2, 3 and  , … , L-1 and L, and obtain offspring of 

size L. With our crossover operator, we want to preserve enough characteristics of both parents 

in the offspring. We use two parents to obtain two children. To illustrate our crossover 

operator, let nsi be the number of stocks with positive weights in parent i. Let us assume we are 

working with parents j and j+1. We set the number of stocks to be exchanged between the 
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parents as:  
               

 
 , and select this number of stocks with positive weights from parents 

j and j+1. Then offspring j (j+1) is formed by copying the weights of selected stocks from 

parent j+1(j) and the weights of all remaining stocks from parent j (j+1). At this stage, a 

complication may occur. If any of the randomly selected stocks from parent j (j+1) has zero 

weight in parent j+1(j), the number of stocks in offspring j+1(j) will exceed nsj+1 (nsj). This 

may result in a violation of the cardinality constraint, which we do not want to encounter. To 

prevent this in a way that will promote reachability, we perform the following routine: After 

the crossover exchange, if the cardinality constraint is violated in offspring j (j+1), then the 

weights of stocks carried from parent j (j+1) are set to zero starting from the first stock until the 

cardinality constraint is satisfied. On the other hand, even if the cardinality constraint is not 

violated, the weight of each stock in offspring j (j+1) that is carried from parent j (j+1) is still 

set to zero with a probability. This enables us to achieve offspring with varied number of 

stocks.  

 

After crossover is finalized, we normalize the weights to sum up to one. If we violate the 

maximum weight constraint, we repair with the procedure explained in Section 4.2.1.1.  

 

4.2.1.5 Mutation 

 

For each offspring, we perform mutation with a probability. In the offspring to be mutated, we 

randomly select two stocks. Our only selection criterion here is that at least one stock should 

have positive weight. The offspring is then mutated by exchanging the weights of the selected 

securities. There are two possible outcomes of this routine: weights of stocks with positive 

weights will be exchanged, or one stock will be removed from the portfolio by giving its 

weight to a previously left-out stock.  These two outcomes enhance reachability of solutions 

and also do not violate the cardinality constraint. 

 

4.2.1.6 Offspring Evaluation 

 

After the offspring are generated, we calculate their objective function values and Tchebycheff 

distances from   . These will be used in selecting the new population for the next generation. 

 

4.2.1.7 New Population Selection 

 

By this step, we have the original population and the newly-formed offspring, both of size L. 

The next generation can be determined by employing non-domination sorting and accepting 

members with the best fronts and minimum distances, but this can cause premature 

convergence. Instead, we choose to utilize a tournament selection procedure here as well. We 

make pairwise comparisons between population member i and offspring i, for i =1 to L with the 

procedure defined in Section 4.2.1.3.  We end up with L new population members for the next 

generation. The algorithm is run for a specified number of generations.  
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4.2.2 Results of Experiments 

 

Our algorithm is tested with two kinds of settings: First we run our algorithm with no 

cardinality and weight constraints. This can easily be handled by setting K to the number of 

available stocks and UB to one. We study if our algorithm can converge the efficient frontier in 

the region pointed by the reference point   . We discuss this case by observing the true efficient 

frontier and the solutions of the algorithm on graphs. Secondly, we run our algorithm with 

cardinality and weight constraints, and assess its performance by calculating the deviations of 

generated solutions from exact efficient points. We make tests with instances of three different 

problem sizes. Using random expected returns and random valid covariance matrices, we 

experiment with 25 and 50 stocks. Then we also experiment with 100 actual stocks from ISE.  

 

In our experiments, we make tests with different genetic algorithm parameters to see with 

which our algorithm performs well. We try different numbers of generations, population sizes, 

and crossover and mutation probabilities; and report our findings for the combination that our 

algorithm performs best with.  

 

4.2.2.1 Tests with 25 and 50 stocks with Random Covariance Matrices 

 

For both 25 and 50 stocks, we use random expected return vectors and random valid covariance 

matrices generated by the method of Hirschberger et al. (2007).  The expected returns used for 

the 25 and 50 stock cases are given in tables 20 and 21 in Appendix A; and the covariance 

matrices for the two cases are given in tables 22 and 23 in Appendix A.  

 

First with 25 stocks, we set K = 25 and UB = 1. We try different reference points in this setting. 

The first reference point, (expected return, variance) = (1,0) is expected to guide the search 

towards intermediate regions of the efficient frontier. We expect the second reference point 

(0.5,0) to result in a region where we have lower variance and expected return values as 

opposed to (1,0). Lastly, (1,0.5) should converge the high expected return, high variance 

region. With 25 stocks, we consider 100 and 200 generations, population sizes of 10, 20, 30 

and 40, 0.9 crossover probability, and 0.1 and 0.5 mutation probabilities. In this setting, our 

algorithm performs well with 200 generations, a population size of 20, 0.9 crossover 

probability and 0.1 mutation probability. Figure 19 illustrates the results. We see that the 

solutions of our algorithm and the exact efficient frontier converge well in the regions 

expected.  
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Figure 19. Solutions of the genetic algorithm proposed and ԑ-constraint method with 25stocks 

without constraints 

 

 

 

Now we introduce cardinality and weight constraints with K = 6 and UB = 0.6. We take    = 

(1,0). In this setting, our algorithm is observed to perform well with 200 generations, a 

population size of 40, 0.9 crossover probability and 0.5 mutation probability. Looking at the 

resulting solutions, we see that they are formed in a quite concentrated region, i.e., they are 

very close to each other. Therefore we select two representative solutions and compare them to 

exact efficient solutions. For this purpose, we find the optimal variance values for the expected 

return values observed in the solutions, and compute the deviations of heuristic variances from 

optimal values. Table 4 shows the results; our algorithm has very small deviations.  

 

 

 

Table 4. Comparing solutions of the genetic algorithm to efficient solutions with 25 stocks with 

constraints 

Solution Expected Return Variance Optimal Variance % deviation 

1 7.203 51.591 51.348 0.473 

2 7.308 53.494 53.180 0.590 

 

 

 

We continue with an instance of 50 stocks without cardinality and weight constraints, i.e., K = 

50 and UB = 1. We use (1,1) as    and expect it to lead us to the region of high expected returns 

and variances. With 50 stocks, we consider 100 and 200 generations, population sizes of 20 and 

40, 0.9 crossover probability, and 0.1 and 0.5 mutation probabilities. In this setting, our 

algorithm performs well with 200 generations, population size of 20, 0.9 crossover probability 
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and 0.1 mutation probability. Figure 20 illustrates that our algorithm converges the efficient 

frontier in the expected region.  

 

 

 

 

Figure 20. Solutions of the genetic algorithm proposed and ԑ-constraint method with 50stocks 

without constraints 

 

 

 

We then set K = 10 and UB = 0.5, and     = (1,0). The best results are achieved with 200 

generations, a population size of 20, 0.9 crossover probability and 0.1 mutation probability. We 

see that the solutions obtained are very close; in fact, they are not practically different from 

each other. Hence we take one of them as a representative solution and we find the optimal 

variance for its expected return. Table 5 shows that the deviation from optimal variance is 

again very small.  

 

 

 

Table 5. Comparing a solution of the genetic algorithm to an efficient solution with 50 stocks 

with constraints 

Solution Expected Return Variance Optimal Variance % deviation 

1 10.44 23.272 23.167 0.453 
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4.2.2.2 Tests with 100 Stocks from ISE 

 

As stated before, for our 100-stock case, we use actual stocks from ISE. The same set of stocks 

and their corresponding data used in Section 4.1.2.1 for NSGA-II tests are used here as well. 

With 100 stocks from ISE, we consider 200, 500 and 1000 generations, population sizes of 50 

and 70, 0.9 crossover probability, and 0.1 and 0.5 mutation probabilities. We first set K = 100, 

UB = 1 and    = (1,0). Our algorithm performs well with 500 generations, a population size of 

50, 0.9 crossover probability and 0.5 mutation probability. Figure 21 shows that our algorithm 

and the efficient frontier converge well in the region pointed by the reference point.  

 

 

 

 

Figure 21. Solutions of the genetic algorithm proposed and ԑ-constraint method with 100 stocks 

without constraints 

 

 

 

Lastly, we set K = 10, UB = 0.5 and    = (1,0). Our algorithm performs well with 500 

generations, a population size of 70, 0.9 crossover probability and 0.1 mutation probability. 

The generated solutions are again concentrated in a limited region; hence we select two 

representative solutions to assess the heuristic performance. Table 6 shows the deviations of 

heuristic variances from optimal values. We see that the deviations are more pronounced in this 

case. However, these large deviations can in part be attributed to the wide range of variance in 

efficient solutions. Percentage deviations can be evaluated in the efficient range of variance; 

which will result in lower values. 
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Table 6. Comparing some solutions of the genetic algorithm to efficient solutions with 100 

stocks with constraints 

Solution Expected Return Variance Optimal Variance % deviation 

1 7.175 36.430 34.553 5.432 

2 7.144 35.372 32.634 8.390 

 

 

 

To conclude, we have developed a genetic algorithm that can handle PO with upper bounds on 

the number and weights of stocks. The algorithm has specialized crossover and mutation 

operators for the cardinality constraints, and a repair procedure for the weight constraint. We 

have carried out experiments with 25, 50 and 100 stocks. Our algorithm was observed to 

perform well with respect to convergence with 25 and 50 stocks. With 100 stocks, the 

performance of the algorithm deteriorated to an extent; although the generated solutions were 

still close to the exact efficient solutions from a practical point of view.   

 

We can further justify our algorithm with the help of computational studies on the run times of 

the heuristic and the exact method. This will be studied as future work. There are also some 

issues that need to be attended to improve our algorithm. Currently, we ask the DM for a single 

reference point and direct our search towards that point. As a result, we achieve a very 

concentrated region where the obtained solutions are sometimes not practically different. If the 

DM is not satisfied with the produced region, we will have to run the algorithm with different 

reference points. Instead, we can direct our search towards a region in some range of the 

reference point. For this purpose, we may work with a small set of reference points positioned 

around the point selected by the DM. In the tournament selection, if the solutions do not 

dominate each other, we can select the one that is closest to a point in the reference point set 

and this point can be determined probabilistically for each selection. We can also consider an 

interactive approach. Instead of collecting the DM preferences before the process, we can 

conduct our search with the help of the DM. This will increase the likelihood of the DM’s 

satisfaction with the proposed solutions. As another issue, we can increase the robustness of 

our algorithm by updating its design to handle any UB value. We can also develop and test 

different crossover operators in search of a more effective one. Such issues will be attended as 

future work. 
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CHAPTER 5 

 

 

THE STOCHASTIC PROGRAMMING APPROACH 

 

 

 

Most of the studies in the literature on portfolio optimization have traditionally considered a 

single-period. With time, SP has come forward as an approach to handle multi-period PO 

where uncertainty of the future is explicitly accounted for. This uncertainty of the future is a 

result of the behavior of random parameters that affect the portfolio outcome. If these random 

parameters can be represented by discrete distributions, then SP can work with scenario trees. 

These scenario trees model the future movement of economical factors by assigning 

probabilities to different possible outcomes. A general scenario tree starts with a set of initial 

possible outcomes for the first period; and then continues with future periods with possible 

outcomes conditional on the realization of the previous periods. When all periods of the 

planning horizon are accounted for, we obtain a scenario path for each chain of realizations 

with given probabilities. The scenario tree has nodes from which possible branches grow. The 

DM is expected to make decisions at these nodes evaluating the information available on the 

future evolution of factors. The goal is to maximize final expected prosperity. We provide an 

example SP scenario tree in Section 5.2.2. 

 

Abdelaziz et al. (2007) proposed a new deterministic formulation to multicriteria SP by 

combining compromise programming and chance constrained programming models for PO. 

The criteria they considered are rate of return, liquidity measured as exchange flow ratio and 

the risk coefficient. They applied their method with 45 stocks from the Tunisian stock 

exchange. Ibrahim et al. (2008) studied single-stage and two-stage SP models with the 

objective of minimizing maximum downside deviation. They used past returns of stocks as 

equiprobable scenarios. Yu et al. (2004) used SP in the bond market. They used a dynamic 

model with the objective of maximizing the difference between the expected wealth at the end 

of the investment horizon and the weighted sum of shortfall cost. Gülpınar et al. (2003) 

considered transaction costs with four asset classes, a number of liabilities and riskless assets. 

They minimized risk for given wealth levels and made tests with different numbers of 

scenarios. Pınar (2007) developed and tested multistage portfolio optimization models using a 

linear objective composed of expected wealth and downside deviation from a target. He used a 

simulated market model to randomly generate scenarios. Balibek and Koksalan (2010) 

developed a SP model for multi-objective public debt management problem. Yu et al. (2003) 

provided a survey on SP models in financial optimization. Their study starts with an 

introduction to SP and they discuss SP models for asset allocation problem, fixed-income 

security management and asset/liability management.  
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Making use of scenarios on market conditions, our multicriteria SP approach provides us with 

investment decisions for future periods. In this chapter, we present our work centered around 

this approach, with the exception of the interactive approach of weighted Tchebycheff 

programs that will be covered in Chapter 6. In Section 5.1, we discuss the conditions and 

assumptions of financial markets since we generate the scenarios accordingly. Then in Section 

5.2, we structure our scenario generation technique and introduce our basic SP model. We use 

expected return, liquidity and CVaR as criteria in this model. We perform tests using stocks 

from ISE, present our major findings and share our insights. Sections 5.1 and 5.2 draw upon 

our paper Tuncer Şakar and Köksalan  2013b). In Section 5.3, we consider generating large 

numbers of scenarios to represent the market better. To keep the problem manageable, we use 

clustering on the generated scenarios. Section 5.4 encompasses our tests to see the effects of 

adding fixed-income securities and stocks that move in the opposite direction of the market to 

the available asset pool. We provide theorems, corollaries, remarks and examples on the 

properties of optimal SP solutions with different criteria and time periods in Section 5.5. Our 

purpose is to formalize the behavior of SP models for some contexts and justify the use of 

multi-period models over single-period ones. Lastly, in Section 5.6 we consider rolling horizon 

settings in SP. The revision of scenarios after certain economical factors are realized is 

evaluated with expected return and CVaR criteria.  

 

5.1 Market Structure and Assumptions 

 

The behavior of financial markets has been the subject of heated debates over the years. 

Academicians, finance companies and investors have tried to understand and predict the 

movement of markets. Since our scenario generation technique is related to our conclusions 

about the Turkish market, in this section we look into the hypotheses and assumptions about 

the financial markets. As a result, we develop the model we will use to represent the Turkish 

Stock Market (TSM).  

 

5.1.1 Efficient Market and Random Walk Hypotheses 

 

The question of whether financial asset prices can be predicted accurately is directly related to 

the hypotheses of market efficiency. There are three forms of market efficiency: weak, semi-

strong and strong. Weak form market efficiency asserts that given the past price and volume 

information on financial assets, it is impossible to know future prices. Semi-strong form claims 

that with past information and all publicly available information (including all financial 

statements of companies disclosed to the public, news and expectations about the companies 

and the economy in general), it is still not possible to predict future prices. The last form of 

efficiency, strong form, argues that even with all possible public and private information, 

including insider information about companies, there is again no room for abnormal profits. 

There have been many studies testing the market efficiency hypotheses. Earliest studies were 

on testing weak-form market efficiency. Lo and MacKinley (1988) studied weekly returns of 

New York Stock Exchange and observed serial positive correlation over short periods. 

However, the correlation coefficients were rather small, suggesting significant abnormal profits 

were not possible. The study of Poterba and Summers (1988) for longer periods showed 
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negative serial correlation; but it was claimed that the underlying reason may be varying risk 

premiums rather than market inefficiency. Concerning tests of semi-strong efficiency, there are 

findings that suggest some factors, such as a stock’s price-earnings ratio and market 

capitalization, can predict abnormal returns; for example, see Basu (1983). However, Fama and 

French (1993) explained the short and long-term serial correlations between asset returns and 

the return-predictive nature of such factors as signs of risk premiums. The studies are more 

consistent for strong form efficiency. Several studies including Seyhun (1986) showed that 

insiders can trade profitably on their stocks, rejecting strong form market efficiency. To 

conclude, the most consistent finding is that strong form efficiency is not practically possible. 

But the evidence is mixed for the other two forms; there have been studies confirming both the 

existence and invalidity of efficient markets. Nevertheless, we consider the most prominent 

result to be that, even if there are some opportunities for beating the market, the time, energy 

and cost required to exploit these opportunities level off abnormal profits. 

 

Random walk models are closely related to market efficiency and they are sometimes used as 

an approach to test it. See Campbell et al. (1997) for models and tests of random walk 

hypotheses. They directly follow from the assumptions of efficiency. If all related information 

about financial asset prices, including expectations, are already reflected in prices, then the 

change in the price of an asset tomorrow can only be random. If not, players in the market 

could have exploited their knowledge and earned extra returns. 

 

Tests of random walk models for U.S. markets offer mixed results too. A full consistency 

cannot be expected since they use different time periods, financial markets and test methods. 

Bodie et al. (2009) discuss the efficient market hypotheses, their tests and random walk models 

in detail. They analyzed several findings considering possible underlying explanations. 

 

The situation for Turkish markets is also debatable. It is common to accept that Turkish 

financial markets do not offer as much liquidity and competition as U.S. markets. As a result, 

Turkish markets are not expected to be on the same level of efficiency with U.S. markets. Even 

so, there have been studies in favor of market efficiency in Turkey as well. Smith and Ryoo 

(2003) carried out tests of random walk hypothesis for emerging European markets including 

Turkey. They studied the ISE-100 index and failed to reject the random walk hypothesis. 

Buguk and Brorsen (2003) tested weak-form market efficiency for composite, financial and 

industrial indices in Turkey and found that all three types of indexes obey random walk 

hypothesis. Odabasi et al. (2004) found that, for periods not longer than a year, monthly returns 

of ISE-100 follow a random walk. They also suggest that asset prices in ISE have evolved in 

time towards a more efficient state as the financial markets developed. Acknowledging studies 

in favor of efficiency of Turkish markets (weak-form), we think that the TSM can be assumed 

to follow a random walk model. To reinforce this assumption, we also study a TSM-

representative index, ISE-100, to test for signs of patterns in its return.  

 

Lo and MacKinlay (1988) tested the random walk hypothesis for several indexes and portfolios 

by comparing variance estimators of data sampled at different frequencies. Although they 

rejected the random walk hypothesis for weekly returns of different indexes and portfolios, 
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they could not reject it for indexes with monthly return. Conrad and Kaul (1988) used 

autocorrelation to test time variation in expected returns. They showed that correlation 

coefficient gets smaller as portfolio size and the lag increase. They generally found significant 

correlations. We utilize the autocorrelation of ISE-100 returns to test if the index follows a 

random walk. Given measurements Yt at time t, t=1, 2, …, n, the lag-k autocorrelation function 

is defined as: 

 

   
                     

   

          
   

                                                                                                             .1  

 

We want to test if autocorrelation of our index differs from zero and we are interested in lag-1 

observations. We utilize two approaches for this purpose. First, we construct 95% confidence 

intervals for autocorrelation employing t test with test statistic       
     

   
. Second, we test the 

significance of the lag coefficients of autoregression equation at 95% confidence level. For 

monthly returns between January 2003 and June 2010, we fail to reject zero autocorrelation 

with both approaches. These results support the efficiency of the index, but we also make tests 

with half-daily session returns to see if there are temporary correlations. Using data from 

January to March 2012, zero correlation cannot be rejected for session returns as well, 

confirming market efficiency further. 

 

To keep our SP model manageable, we will derive individual stock returns from the ISE-100 

index. The model we will use for this purpose is the Single Index Model and it is explained in 

the next section. 

 

5.1.2 The Single Index Model and Our Random Walk Model 

 

The Single Index Model relates the return of assets to a common macroeconomic factor. Using 

historical data, it uses regression analysis to regress the return of assets on the return of the 

macroeconomic factor. Since we are dealing with the stock market, the ISE-100 index will be a 

valid proxy for that factor. The regression equation for the Single Index Model is: 

 

Ri(t) = αi + βi RM(t) + ei(t)                                                                                                       (5.2) 

 

Here Ri(t) and RM(t) are the return of security i and the market-representative index at time t, 

respectively. βi is called the beta of the security, it is the sensitivity of the security to the index. 

αi is the security’s  return when the market return is zero; thus, it is an individual premium and 

its value is expected to be zero when security prices are in equilibrium. Lastly, ei is the zero-

mean, security-specific surprise in the return of the security.  

 

When we take the expected value of the above equation, we obtain 

 

E(ri) = αi + βi E(rM)                                                                                                                 (5.3) 
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where E(ri) and E(rM) are the expected return of security i and the index, respectively.                                                                                                       

 

As a result, if we regress a stock’s return on the return of ISE-100, we can estimate its α and β 

values. We use raw return values in our Single Index Model, that is, they are not adjusted to 

represent the excess return over the risk-free rate. If we used adjusted returns, we would expect  

α’s to be zero in market equilibrium; stocks should not consistently offer more return than the 

risk-free return rate. However, in our approach, non-zero values of α are expected and we use 

them in our applications.   

 

The Single Index Model enables us to approximate stock returns from a market index. We will 

refer the return of a stock estimated based on the market inde  as its “estimated return”. On the 

other hand, the return obtained from our SP model is based on scenarios weighted by their 

likelihoods. Therefore, we will refer to this return as the “e pected return.”  

 

The random walk model we will use to model the return of the ISE-100 index is as follows: 

 

Rt = µ + σ et et ~ N(0,1)                                                                                                      (5.4) 

 

where Rt is the return of the index and et is a standard normal error term at time t, µ is the mean 

and σ is the standard deviation of the return of the index. When the mean return is non-zero, we 

have a random walk model with drift. We use a constant variation as it is supported by 

empirical evidence from ISE shown in Figure 22 where we present the time series plot of ISE-

100 returns observed at half-daily sessions for work days from 2005 to 2010. 

 

 

 

 

Figure 22. Session returns of ISE-100 for period 2005-2010 
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Normal distribution is frequently used in the literature for asset returns. From Figure 23, we 

observe that the return distribution of the ISE-100 index from 2005 to 2010 is in line with the 

applications in the literature and we are justified using (5.4) to generate returns for the ISE-100 

index.  

 

 

 

 

Figure 23. Histogram of % session returns of ISE-100 for period 2005-2010 

 

 

 

5.2 Basic Stochastic Programming Approach to Portfolio Optimization 

 

As discussed previously, SP is concerned with modeling optimization problems in the presence 

of uncertain parameters. It has been widely used to model multi-period asset management 

problems subject to uncertain economic factors. See Balıbek (2008) for an introduction to SP 

and an application to a multi-objective public debt management problem. In the following 

subsections, we first review scenario generation techniques for SP, especially for financial 

models. We provide the basics of our scenario generation technique. Then, we present our SP 

model and results of experiments.  

 

5.2.1 Scenario Generation 

 

Scenario generation is a fundamental part of SP and several methods to generate scenarios are 

proposed and implemented in the literature. Yu et al. (2003) discussed three methods to 

generate scenarios. The first, bootstrapping historical data, selects random historical 

occurrences of asset returns. The second method uses time series analysis of historical data to 

estimate volatilities and correlation matrices among assets. After the parameters are estimated, 

they can be used in Monte Carlo simulations. The third set of methods they discussed are 
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vector autoregressive models that capture the progress of multiple time series while accounting 

for the interdependencies between them.  Dupacova et al. (2000) discussed methods to generate 

scenario trees for multi-stage stochastic programs. They discussed random walk models, 

binomial and trinomial models and autoregressive models. Limiting their study to single-period 

PO, Guastaroba et al. (2009) considered historical data technique, bootstrapping technique, 

block bootstrapping technique, Monte Carlo simulation techniques and multivariate generalized 

ARCH process technique. They found that historical data technique gives solutions close to 

other techniques despite its simplicity. Hoyland and Wallace (2001) proposed a method that 

generates a limited number of discrete scenarios that possess DM-specified statistical 

properties. They implemented their method with single and three-period scenario trees.  

 

In our studies, we need to generate scenarios on the stocks that we use in our model. 

Generating scenarios on individual assets would make our scenario tree very complicated and 

increase the computational difficulty substantially. Therefore, as stated earlier, we derive 

estimated stock returns from the ISE-100 index by the Single Index Model (5.3). We generate 

scenarios on our index using the random walk model (5.4). 

 

5.2.2 The Model 

 

Our basic SP model has three criteria: expected return, CVaR and liquidity. After the 

mathematical model, we explain the constraints and give the model size in terms of decision 

variables and constraints. But first, we provide a hypothetical scenario tree in Figure 24 that 

will aid the reader in following the model. The tree has three stages and two branches for each 

decision node, resulting in 2
3 
= 8 scenarios. Node 3 is the final node of scenario 1, node 2 is the 

immediate predecessor of node 3, and nodes 0, 1, and 2 form the predecessor set of node 3.  

 

 

 

       

 

 

 

 

 

 

 

 

 

Figure 24.  An illustrative 3-period, 15-node, 14-branch scenario tree 
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Parameters: 

 : set of all stocks 

 : set of all scenarios 

 : set of all nodes in the scenario tree 

ns: the final node of scenario      

  : immediate predecessor node of     

     : set of all predecessor nodes of     

       : market return corresponding to branch between nodes    and n 

       : probability corresponding to branch between nodes    and n 

  : probability of the partial scenario up to node n, where                        , n = 0 is 

the root node of the scenario tree, and     = 1. 

liqi: liquidity value of stock     

  : stock-specific return premium of stock      

  : sensitivity of stock     to the market 

λ = probability level for CVaR 

D = number of periods in the scenario tree 

 

Decision Variables: 

VaR: Value at Risk value 

xni: allocation of stock     at node                 

 

Structural Variables: 

Rets: value obtained if scenario s is realized,     

liquiditys: resulting liquidity if scenario s is realized,     

auxs: auxiliary variable corresponding to scenario      
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For the expected return criterion, we maximize the compounded return over all periods. To 

obtain a linear model, we use balance equations for decision nodes. At the initial node at time 

zero, we start with an initial wealth value of 1. At the other nodes, we allocate the ending value 

of a period among the stocks selected for the next period. With (5.12), we choose the initial 

percentages of stocks. (5.8) ensures that we allocate the ending value of each node except the 

final stage nodes to stocks chosen at its successor node. (5.9) gives the values of final nodes, 

thus the ending values of scenarios. With (5.5), we maximize the expected value of the scenario 

tree; and since we have started with an initial wealth of 1,   –1 gives the compounded expected 

return over all periods. (5.6), (5.10) and (5.14) are adopted from the linear CVaR model 

discussed in section 2.3.3.2. (5.10) and (5.14) makes use of auxiliary variables to keep the 

excess loss of each scenario beyond the VaR level, and (5.6) gives the CVaR value. In (5.11) 

we calculate the weighted sums of the liquidity measures of the stocks for nodes of each 

scenario, and then use their average as the liquidity measure corresponding to that scenario. 

(5.7) gives the liquidity criterion in which we take the weighted sum of the liquidity measures 

of scenarios by their corresponding probabilities. In sign restrictions of (5.13), we exclude the 

final nodes from the set of stock allocation decision variables since these nodes are the ending 

points of scenarios and no decisions are made at those points. 

 

If CVaR is negative in the optimal solution of our model, it means that given the probability 

level for CVaR, the expected value of worst results is still a gain over our initial value. 

 

The size of the model depends on the number of stocks, scenarios and branches, and the 

number of nodes in the scenario tree. The number of nodes increases as the number of branches 

in the scenario tree increases. The decision variables consist of stock allocation decisions for all 

combinations of stocks and nodes except for the final nodes of scenarios; and a variable to 

represent VaR. As a result, the number of decision variables is                   1. The 

total number of constraints (5.8) and (5.9) is equal to    -1. For each scenario, there is one 

constraint of type (5.10) and one constraint of type (5.11). Additionally, there is the initial stock 

allocation constraint for the root node, so the number of constraints equals     2   . As an 

example, the scenario tree in Figure 24 has 8 scenarios and a total of 15 nodes.  For this tree, 

we would have 7   +1 decision variables and 31 constraints.  

 

5.2.3 Results of Experiments 

 

First, we generate scenarios on the return of the ISE-100 index. We obtain the published 

historical monthly data on the closing price of the index from January 2003 to June 2010
5
. We 

                                                           
5 http://borsaistanbul.com/en/data/data/equity-market-data/equity-based-data 
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then calculate the corresponding monthly return values. Using these, we estimate the mean and 

standard deviation of the index return as 2.29 and 9.80 percentage points, respectively. Then 

we choose 100 random stocks from ISE, and carry out regression analysis to estimate αi and βi 

values for each stock i. The most recent data available at the time of the application was 

December 2009 for the monthly percentage returns of the stocks.  Therefore, we use the data 

from January 2003 to December 2009
6
. Out of 100 stocks, five of them fail to have significant 

β values at a 0.05 significance level. We exclude these and use the remaining 95 stocks in our 

applications. Table 24 in Appendix A has the list of stocks. Three of these stocks also have 

significant α values. For the liquidity measure, we use the daily average number of shares 

traded
6
 and the total number of outstanding shares

7
 corresponding to December 2010. 

 

Before we solve our problem with three criteria, we first study pairs of criteria to observe how 

they interact and conflict. To find a discretized efficient frontier for both the bicriteria cases 

and the three-criteria case, we use the augmented ԑ-constraint method. For all our applications, 

we use the same 3-month scenario tree where each node (except the final nodes of scenarios) 

has 7 equiprobable branches, resulting in 7
3
 = 343 scenarios. For each branch of the scenario 

tree, we generate the return for the market index using the random walk model equation (5.4). 

The number of decision variables of our model can be calculated as                   1 = 

(95  57)  1 = 5416, where 57 corresponds to the number of nodes excluding the final nodes of 

scenarios. The number of constraints of our model turns out to be     2    = 400 686 = 

1086. We also tried 5
3
 = 125 and 6

3
 = 216 scenario settings and results showed similar 

structures. Nevertheless, we present the results corresponding to the larger number of scenarios 

to have a more representative scenario tree.  

 

5.2.3.1 Expected Return and CVaR 

 

We prefer high expected return and low CVaR values; and we expect to see conflicting 

behavior between the two criteria. Figure 25 shows the efficient frontiers with different 

probability levels for CVaR. We can observe the tradeoffs between the two criteria in the 

figure. We use expected return in the objective function and CVaR in the constraint for the 

augmented ԑ-constraint method. We generate 10 efficient solutions for each probability level 

that are evenly spaced in the CVaR range. 

 

Figure 25 exhibits some interesting properties. We observe that the CVaR values are realized at 

lower (better) values for low probability levels. This is expected since as we decrease the 

probability, we include better return values to our previous points, and their expectation 

(CVaR) improves. Another observation is that the minimum expected return realized on the 

efficient frontier is different for different probability levels. Maximum expected return is 

naturally the same for all probability levels since the upper bound of expected return is the 

same regardless of CVaR.  

 

                                                           
6 http://borsaistanbul.com/en/data/data/equity-market-data/equity-based-data 

7 http://www.mkk.com.tr/wps/portal/MKKEN/InvestorServices/eDATACapitalMarketsDataBank 
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Figure 25. SP efficient frontier with expected return (%) and CVaR (%) 

 

 

 

Figure 25 also reveals that the range for expected return is smaller for low and high 

probabilities, and larger for intermediate probabilities. This can be attributed to the realization 

that, for 100% probability level, CVaR will no longer be of concern to us, and we will be left 

with only the expected return objective. We will obtain a single solution that gives the 

maximum expected return. For probability levels close to 100%, expected return levels will be 

close to this maximum. At the other extreme, we have the case with 0% probability level where 

expected return and CVaR are identical. We will again find a single efficient point of 

maximum expected return, and as we increase our probability level, we will observe increasing 

tradeoffs between expected return and CVaR. So, for both endpoints of the range of CVaR 

probability levels, we achieve a single maximum expected return value, and at some point 

along the range, we realize a probability level which gives an efficient solution with the 

minimum expected return value. This probability is around 80% in our case.  

 

Lastly, we see that for low probability levels, the sacrifice we have to make in CVaR to achieve 

higher expected return levels are not substantial. As the probability level increases, the range of 

CVaR also increases. This can be again attributed to the similarity of expected return and 

CVaR objectives for low probability levels. Considering 10% probability level as an example, 

CVaR considers the worst 90% returns over all scenarios for this probability, and one can make 

the analogy that expected return considers worst 100%. Thus, as we decrease the probability 

level, we observe positive correlation between the two criteria. As a result, optimizing for 

expected return also results in good values for CVaR. As we increase the probability level, 

conflicting nature of expected return and CVaR increases and the range for CVaR widens. 
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5.2.3.2 Expected Return and Liquidity 

 

We prefer portfolios with high liquidity values. Investors would like to invest in stocks they 

can easily sell at their fair prices. Therefore, as previously stated, it is generally believed that 

illiquid stocks should offer extra return (liquidity premium) for their inconvenience in trading. 

Therefore, we expect to see a tradeoff between expected return and liquidity in our SP model. 

Figure 26 confirms our expectation where  we generate efficient solutions by optimizing 

expected return using liquidity values as constraints in the -constraint model.  We use 10 

equally-spaced values within the efficient range of liquidity to generate 10 efficient solutions. 

 

 

 

 

Figure 26. SP efficient frontier with expected return (%) and liquidity 
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Figure 27. SP efficient frontier with CVaR (%) and liquidity 

 

 

 

5.2.3.4 Expected Return, Liquidity and CVaR 
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Ehrgott and Tenfelde-Podehl (2001) to find the ideal and nadir points. Their algorithm gives 

the exact nadir point for discrete problems. Since we are utilizing a discretized efficient 
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another 100 pairs, obtaining 200 pairs in total to find the corresponding optimal expected return 

value.  

 

Figure 28 illustrates the efficient solutions obtained, again with 90% probability level for 

CVaR. The ranges for expected return, liquidity, and CVAR are 2.74 to 16.99%, 0.04 to 1.02 
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the three criteria at different regions of the solutions as well as the possible locations of 

efficient solutions. We observe that low levels of expected return are realized at the region of 

high liquidity values. High levels of CVaR are also realized for high liquidity values. 

Therefore, liquidity can be considered as the factor that forces expected return and CVaR to 

their worst values in this three-criteria case. This observation is also supported by the range of 

expected return and CVaR in the efficient frontier corresponding to the 90%-probability case of 

Figure 25. When we have expected return and CVaR as our criteria, their efficient ranges are 
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ranges that contain good values. When the DM searches the solution space of the three-criteria 

case for solutions of interest to her/him, it would be helpful to take these types of 

characteristics into account. If she/he is interested in solutions that are good with respect to 

liquidity, she/he should be willing to sacrifice from expected return and CVaR. Another 

observation we can make from Figure 28 is that, although both expected return and CVaR 

exhibit substantial tradeoffs with liquidity, the lowest liquidity values appear when expected 

returns are at their highest values. As a result, if the DM is interested in the highest values of 

expected return, she/he should take into account that this region contains solutions that are 

rather good in CVaR but poor in liquidity.  

 

 

 

 

Figure 28. SP efficient frontier with expected return (%), liquidity and CVaR (%) 

 

 

 

5.3 Clustering of Scenarios 

 

As we have clarified by now, in our SP approach, we use scenario trees to represent the 

stochasticity of market movements. Using a random walk model, we create scenarios on the 

monthly return of our market- representative index and derive the returns of individual stocks 

from these scenarios.  

 

Now, we want to increase the approximation capabilities of our scenario trees to represent the 

market behavior better. For this purpose, we consider generating a large number of scenarios; 
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but this has a drawback: computational complexity. Thus, we employ a two-stage procedure: 

first, generate a large number of scenarios, and then, classify them into clusters based on their 

similarity. This procedure is used in the SP approach to public debt management in Balıbek 

(2008).  

 

Clustering is basically assigning items to groups so that they are more similar to the other items 

in the same group than the ones in other groups. Similarity between items is measured by a 

certain distance metric. There are several clustering methods, and the one we use is one of the 

simplest and most widely used methods, the K-means algorithm (MacQueen, 1967). The K-

means algorithm clusters data points in a predetermined number (K) of disjoint classes. Each 

cluster has a centroid, which may or may not be one of the points in the clusters. The algorithm 

aims at minimizing the sum of distances of all points to the centroid. The steps of the K-means 

algorithm appear below: 

 

1. Find a set of initial cluster centroids.  

2. Assign each data point to the cluster to whose centroid it has the smallest distance. 

3. After assigning all data points, recalculate the K centroids as the mean of points 

assigned to each cluster. 

4. Repeat steps 2 and 3 until the number of point reassigned or the decrease in the sum of 

distances falls below some point. 

 

To cluster our scenarios, we use the K-means function of the Statistical Toolbox of MATLAB. 

To find the initial cluster centroids, we employ the default setting of using K random elements 

from our data points.  

 

We now provide our routine to obtain clustered scenario trees. Let t be the time counter, y be 

the number of periods in the scenario tree, c be the desired number of scenario paths stemming 

from each decision node, and M be the number of scenario paths to be clustered down to c. 

 

1. Set t = 0, decide on the values of y, M and c.  

2. For each node of time t, randomly generate M scenarios on ISE-100 return with the 

random walk model (5.4) by using random sampling from the error term. 

3. Cluster each set of the M scenarios to c classes to form the scenario paths.  

4. Compute the probability of each scenario path as the number of elements in the related 

cluster divided by M.   

5. Set t = t+1 and repeat steps 2 to 4 until t = y-1. 

6. Connect the scenario paths of time 0 to t to form final scenario paths covering all 

periods and compute their corresponding probabilities. 

 

We generate clustered scenario trees that have equal number of branches coming out of each 

decision node since we make applications with such trees. Nevertheless, the above routine can 

easily be modified so that each node can have a different number of clustered paths.  
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To test the performance of our clustering approach in terms of representation capability, we use 

the measure proposed by Kaut and Wallace (2003) to test the stability of the generator. They 

assert that the optimal objective function values obtained by different scenario trees generated 

by a certain method should be distributed with a small variance. That is, the results should be 

stable across different replications.  

 

We compare the stability of the results of clustered scenario trees against scenario trees that are 

formed without clustering using the same stock and index return data used in Section 5.2.3. We 

set y = 3, and c = 5, M = 100 for all n. We make 50 replications with both clustered scenario 

trees and trees that are formed without clustering. In each replication, we optimize for the 

expected return and CVaR criterion separately. We do not optimize for liquidity since it is 

independent of return realizations. We expect clustering to result in smaller variance values for 

both of our criteria. Table 7 shows the estimated mean and standard deviation of the expected 

return and CVaR criteria for scenario trees that are formed with and without clustering. 

Clustering the scenarios results in about a 76% decrease in the standard deviation of expected 

return, and a 68% decrease in the standard deviation of CVaR. Hence we achieve substantial 

improvement in robustness of scenarios by clustering them. See Balibek and Köksalan  2012  

for a more thorough comparison of clustered and unclustered scenario trees. Using the public 

debt management problem, which can be considered a portfolio management problem as well, 

they made tests with different c and M
 
values with y = 3. They also found that clustered 

scenario trees enhance stability.   

 

 

 

Table 7. Stability results for unclustered and clustered scenarios 

Scenario Trees Formed without Clustering Scenario Trees Formed with Clustering 

Estimated Expected Return (%) CVaR (%) Estimated Expected Return (%) CVaR (%) 

Mean 20.7688 -3.6306 Mean 17.6820 -3.0376 

St. Dev. 5.6893 3.0508 St. Dev. 1.3382 0.9755 

 

 

 

Our SP applications for the TSM in the upcoming parts of the thesis utilize clustered scenario 

trees with y = 3, and c = 5, M = 100.  

 

5.4 Effects of Negative Betas of Stocks and Fixed-income Securities  

 

We use stocks to form our available asset pool for our SP approaches to PO. In Section 5.2.3, 

we made tests with expected return, liquidity and CVaR to see how they interact and conflict. 

We used stocks from ISE for this purpose, and all of the stocks used had positive betas 

(sensitivity coefficients to the market).  
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Now we want to study if negative betas for some stocks and the addition of a fixed-income 

security will bring differences to the behavior and conflict of criteria. For instance, will 

negative betas enlarge the range of CVaR? Will the fixed-income asset increase the maximum 

possible return of a portfolio? Fixed-income securities and stocks with negative betas can be 

advantageous when the market is going down. 

 

For our tests in this section, we select 100 stocks from ISE and use their monthly percentage 

returns, and also the ISE-100 index return from January 2008 to December 2009
8
. The list of 

stocks is given in Table 25 in Appendix A. For the liquidity measure, we use the daily average 

number of shares traded
8
 and the total number of outstanding shares

9
 corresponding to June 

2011. We use a 3-month scenario tree with 5 branches for each decision node, resulting in 125 

scenarios. As discussed in Section 5.1.2, we estimate stock returns by the Single Index Model 

(5.3) by multiplying estimated market returns by market-sensitivity coefficients of stocks 

(betas) and adding the stock-specific premiums (alphas). We use regression analysis to estimate 

alpha and beta values. In our applications in Section 5.2.3, we only used stocks with 

statistically significant betas, and only employed significant alphas of these stocks. However, 

we think that a more reasonable procedure would be to use all beta and alpha values without 

significance tests. When we estimate the return of a stock from the market index, we directly 

use the estimated alpha and beta and do not include any error term. The insignificant alphas and 

betas are left out because their confidence regions include the value 0; but the variation of 

significant alphas and betas in their regions are unaccounted for. We believe this creates 

inconsistency, and continue our applications in this thesis by employing all alpha and beta 

values of the stocks. We do not revise our tests in Section 5.2.3 since they correspond to 

published material  Tuncer Şakar and Köksalan, 2013b). 

 

5.4.1 Effects of Negative Betas of Stocks 

 

We study the effects of negative betas using pairwise criteria of expected return, liquidity and 

CVaR. None of the 100 stocks considered has a negative beta as a result of the regression 

analysis. Throughout our studies covered in this thesis, we have not come across a stock with a 

negative beta value. Moreover, we have not encountered any studies in the literature that 

reported the existence of such stocks. Nevertheless, we want to see the potential effects of 

negative betas in a hypothetical setting. We initially find efficient expected return–CVaR, 

expected return–liquidity and CVaR–liquidity frontiers with the augmented ԑ-constraint 

method. Afterwards, we select some stocks and artificially negate their beta values.  To select a 

representative set of stocks, we use a special case of a filtering method developed for vectors of 

values. With the Method of First Point Outside the Neighborhoods (see Steuer, 1986, p. 314-

318), a set of vectors are filtered so that a number of vectors are retained that are different from 

each other. This method will be discussed in Chapter 6 as well; for now it suffices to say that it 

enables us to choose a number of betas that will be representative of the 100 ones generated by 

regression. We choose to select 10 betas to negate.  

                                                           
8 http://borsaistanbul.com/en/data/data/equity-market-data/equity-based-data 

9 http://www.mkk.com.tr/wps/portal/MKKEN/InvestorServices/eDATACapitalMarketsDataBank 
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Figure 29. SP efficient frontier with expected return (%) and CVaR (%) with and without 

negative betas 

 

 

 

Figure 30. SP efficient frontier with expected return (%) and liquidity with and without 

negative betas 

 

 

 

Figure 31. SP efficient frontier with CVaR (%) and liquidity with and without negative betas 
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With negative betas, we find the efficient frontiers with pairs of criteria and compare these to 

the original ones generated with real data. Figures 29, 30 and 31 illustrate the results. We see in 

Figure 29 that the expected return–CVaR efficient frontier with negative betas dominates that 

of the original data even if not drastically. We can deduce that negative betas became useful for 

scenarios with negative market returns. Both the maximum expected return and the minimum 

CVaR values improved. On the other hand, Figure 30 shows that there is no considerable 

difference for the pair of expected return and liquidity. The maximum liquidity level is of 

course independent of the beta values. The expected return values for given liquidity levels 

improved to an extent, though not considerably. Figure 31 shows that the CVaR–liquidity pair 

demonstrates the effect of negative betas more noticeably. 

 

In our further tests that are not covered here for the sake of briefness, we see that the effects of 

negative betas would be more pronounced if we only used stocks with statistically significant 

betas and took their alphas only when they are significant too. In that case, with our data, none 

of the alphas turn out to be significant. As a result, the return is solely dependent on betas; and 

any change in them has more drastic effects.  

 

5.4.2 Effects of a Fixed-income Asset 

 

Again using the same pairs of criteria, we study the effects of adding a fixed-income security to 

the investment options. For our applications, we choose to employ a monthly bank deposit 

account for this purpose. We use 5% yearly interest rate effective at the date of the application. 

For the liquidity measure of the deposit account, we assume a value of one. This value is 

reasonable since our liquidity measure is like a turnover ratio and deposit accounts can be 

liquidated as soon as they mature.  

 

We here want to clarify our use of data from different time periods for index and stock returns, 

stock liquidities and bank deposit account return. To calculate the parameters of the random 

walk and single index models, we use a period of historical returns to estimate the future index 

and stock returns. To obtain values that are more likely to be representative of the future, we 

use the most recent data available at the time of the application. For liquidity as well, we use 

data from the most recent month available to us. For the deposit account, we can obtain the 

most up-to-date interest rate effective at the time of the application, and we utilize this. We 

assume that this rate will be valid for the three months of our planning horizon. In brief, for all 

measures, we use the data that we assume to be representative for the planning horizon of our 

model.  

 

We graph the efficient frontiers with the fixed-income asset against the case of only stocks in 

figures 32 and 33. We do not provide a graph of the expected return–CVaR case since the 

fixed-income asset has no effect on the efficient solutions. This is due to the fact that for all 

scenarios, there were stocks that were better alternatives than the deposit account. In Figure 32 

we see that range of liquidity enlarged to include better values as expected. As stated 

previously, the deposit account has no effect on the maximum expected return value. However, 

the range of expected return enlarged to include lower values that occur as a result of including 
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the deposit account in the portfolio. On the other hand, in the CVaR–liquidity case as illustrated 

in Figure 33, the worst CVaR value rose only slightly. The efficient frontier with the deposit 

account dominates the one with only stocks; we can obtain better liquidity values for given 

levels of CVaR.  

 

Similar to the case of using negative betas, the effects of a fixed-income asset would be more 

drastic if we only used significant alphas and betas of stocks. Since none of the stocks have 

significant alphas, the stock returns would have no constant, and would be solely dependent on 

the market return. As a result, the addition of a fixed-income asset would affect expected return 

and CVaR more profoundly. 

 

In our SP approach, the efficient solutions obtained depend on the scenario tree used model the 

future progress of the TSM. Different scenario trees result in different efficient frontiers. To 

account for this randomness, a statistical analysis may be employed. It is possible to work with 

multiple scenario trees to generate confidence ellipsoids around efficient solutions. Currently, 

to obtain each efficient solution, we optimize for one of the criteria while imposing bounds on 

the values of the others with the augmented ԑ-constraint method. We can repeat this process 

with multiple scenario trees for each solution, and use the theory on constructing confidence 

regions for multivariate means. These confidence regions can give the DM information about 

the probable variation to be expected in the criteria values of efficient solutions. This 

information can also be used to compare efficient frontiers with and without stocks with 

negative betas, and with and without fixed-income securities, as given in figures 29–33. The 

DM may study the overlaps of the confidence regions of solutions generated with two 

approaches, and see if the difference is statistically significant. The theory on constructing 

confidence regions for multivariate means is covered in Chapter 6 where we use it in our 

interactive approach to SP-based PO.  
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Figure 32. SP efficient frontier with expected return (%) and liquidity with and without a fixed-

income asset 

 

 

 

 

Figure 33. SP efficient frontier with CVaR (%) and liquidity with and without a fixed-income 

asset 
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5.5 Properties of Optimal Stochastic Programming Solutions with Different Criteria and 

Time Periods 

 

In our previous work covered in Section 5.2, we made SP applications with three-period 

models using expected return, CVaR and liquidity criteria. We solved two and three-criteria 

models and provided insights into the behavior of criteria in various solutions.  

 

In this section, we make a more formal analysis of the properties of optimal SP solutions. We 

look at single and multi-period models and provide comparisons for some contexts. Two 

factors make us question whether single-period models can be considered as substitutes for 

multi-period models: First, our PO problem is solved with stocks that can be traded in any 

decision node independently of the previous decisions. Thus, decisions may not be necessarily 

conditional on decisions of previous periods. Second, since we generate scenarios on market 

return utilizing random walk models, paths stemming from nodes of previous realizations are 

not dependent on those realizations. As a result, we want to test if we can solve individual 

single-period models and combine their solutions to obtain optimal multi-period decisions. This 

would bring us reduced computational complexity. However, we will see that multi-period 

models are likely to perform better when the DM has a planning horizon of multiple periods. 

We study different problems using expected return and CVaR in different settings. We exclude 

the liquidity criterion from our studies since it is independent of scenarios of market return. We 

discuss our findings in the context of the TSM where applicable. 

 

We use the following notation: 

 : the set of stocks 

 : the set of scenarios 

 : the set of all decision nodes 

  : the set of decision nodes on scenario s 

  : probability of scenario s 

  : value of scenario s 

  : auxiliary variable of scenario s to keep excess losses 

  : market return of scenario s in single-period models 

  
  :market return of scenario s on the path after node n in multi-period models 

 i: stock-specific return premium of stock i 

 i: market-sensitivity coefficient of stock i 

  : proportion of stock i in single-period models 

  
 : proportion of stock i in the portfolio of node n in multi-period models 

    : the variable that holds the value of VaR that is used to calculate CVaR  

  : a sufficiently small positive constant 

 

5.5.1 Maximizing Return in Single-period SP 

 

Consider the single-period SP model of maximizing expected value of the portfolio: 
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                                                                                                                                               .1  

   

 

s. t. 

                                                                                                                         .1  

   

 

     

   

                                                                                                                                                 .1   

                                                                                                                                                     .1   

 

(5.15)–(5.18) is referred to as 1-SPRet.  

 

Note that here we define   , the value of scenario s, as the ending value, which is equal to 

1+return. As a result, the objective is to maximize the expected value of the portfolio, and this 

is equivalent to the objective of maximizing expected return. Owing to this equivalence, for 

convenience, we denote our model as 1-SPRet and generally use the expression return instead of 

value. We also denote the return criterion as Ret. 

 

Theorem 1: 

An optimal solution to 1-SPRet is     = 1,   = 0 for i  I \    where                 

             . 

 

Proof: 

            
   

                      

   

  

   

                                                           .1   

                                    

   

  

   

                                                                                .20  

                       

   

        

   

         

   

  

   

                                                               .21  

                                  

   

  

   

                                                                                   .22  

Since      

   

   

      where          
   

             

   

                                                                       .23  
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Corollary 1: 

 If    = 0 for all i   I and            , an optimal solution to 1-SPRet is     = 1,    = 

0 for i  I \     where                 . 

 If    = 0 for all i   I and            , an optimal solution to 1-SPRet is     = 1,    = 

0 for i  I \    where                 . 

 

Proof: These are special cases and directly follow from Theorem 1.                                            

 

Theorem 1 and Corollary 1 are applicable to any single-period portfolio problem of 

maximizing return, and thus can be used to directly see the optimal solution of 1-SPRet for the 

TSM. 

 

5.5.2 Minimizing CVaR in Single-period SP 

 

Consider the single-period SP model of minimizing CVaR: 

 

            
 

     
                                                                                                         .2  

   

 

s. t. 

                      

   

                                                                                 .2   

     

   

                                                                                                                                                 .2   

                                                                                                                                                   .2   

                                                                                                                                                     .2   

 

(5.24)–(5.28) is referred to as 1-SPCVaR. 

 

Let f(m) be the market return under different scenarios. Let        be the probability of f(m) 

not falling below a return level T. Then the m-VaR at λ probability level can be defined as 

                        . 

 

Theorem 2: 

If    ≥ 0 for all i   I, then an optimal solution to 1-SPCVaR is    = 1,    = 0 for i  I \    where 

                                  
  and        

 is the set of scenarios where 

         . 

 

Proof: 

Let     be the return of stock i under scenario s,             . 
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If    ≥ 0 for all i   I,          will be true if and only if        is true. As a result, if we 

sort     values for any i for s   S in increasing order, it will be in increasing order of   . The 

worst (1-  )% return values for any i   I will be realized under the worst (1-  )%    values. 

 

For any portfolio of multiple stocks, if we denote return under scenario s by   ,    is given by: 

 

                                                                                                   .2   

         

 

 

Since             if    ≥ 0 for all i   I, sorted    values in increasing order for any    will be 

in increasing order of   , and the worst (1-  )% return values for any    will be realized under 

the worst (1-  )%    values. 

 

So, an optimal solution to 1-SPCVaR is: 

                                              
 .                                                    

 

Corollary 2: 

If    ≥ 0 for all i   I, and 

 If    = 0 for all i   I and                  
, an optimal solution to 1-SPCVaR is      

= 1,    = 0 for i  I \    where                  

 If    = 0 for all i   I and                  
, an optimal solution to 1-SPCVaR is      

= 1,    = 0 for i  I \    where                  

where        
 is the set of scenarios where          . 

 

Proof: These are special cases and directly follow from Theorem 2.                                            

 

Remark 1: 

 If     ≥ 0 for some i   I and     < 0 for some     I, the worst (1-  )% return values for i and    

will be realized under different    values. As a result, the optimal solution to 1-SPCVaR may 

involve a combination of multiple stocks. 

 

Example 1:  

Let us assume there are two stocks and four equiprobable scenarios.    

    -0.2, -0.1 , 0.1, 0.2 ,     0.010, 0.01  ,     -0. , 0.  . 

 

When     1, 0 , the value of the portfolio under different scenarios is given by    

 1.0 0, 1.0 0, 0.  0, 0. 30 . With   = 0.75, CVaR of this portfolio is realized as 1-0.930 = 

0.070. When     0, 1 ,     0. 3 , 0.  0, 1.10 , 1.1   . With   = 0.75, CVaR of this 

portfolio is realized as 1-0.835 = 0.165. 

 

Even if we randomly choose     0. , 0.  , the value of the portfolio under different scenarios 

is realized as     0.  2 , 0.   0, 1.03  , 1.0 2  ; and with   = 0.75, CVaR is equal to 1-
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0.9625 = 0.0375, a better value than both of the cases above. It can be shown that the optimal 

CVaR with   = 0.75 is -0.0115 with     0.  2, 0.30  . 

 

We had not foreseen that the optimal solution to 1-SPCVaR would consist of a single stock when 

   ≥ 0 for all i   I. When    < 0 for some i, this rule no longer applies. We did not have an 

intuition about this behavior before we studied the problem in detail. 

 

In our applications,  i ≥ 0 for all ISE stocks considered. Therefore, Theorem 2 and Corollary 2 

are applicable to ISE in general. This allows us to directly see the optimal solution to single-

period models when the objective is to minimize CVaR in the TSM. 

 

5.5.3 Maximizing Return in Single vs. Multi-period SP 

 

Consider the multi-period SP model of maximizing expected return: 

 

            
   

                                                                                                                                  .30  

s. t. 

        
              

  

   

 

    

                                                                                      .31  

   
   

   

                                                                                                                                     .32  

  
                                                                                                                                         .33  

 

(5.30)–(5.33) is referred to as m-SPRet. 

 

Note that the above model is nonlinear. We will formulate similar nonlinear models for 

different versions of the multi-period SP problem. These models can be linearized and in all 

our computations we use the linearized formulation. In this section, we present the nonlinear 

form as it has a simpler notation to follow. 

 

Theorem 3:  

Consider m-SPRet with N decision nodes distributed among different periods. Assume that we 

solve 1-SPRet for each of the N nodes of the multi-period model by only taking the immediate 

branches of each node. The optimal decisions of m-SPRet for the nodes of the final stage will be 

equivalent to the optimal decisions of 1-SPRet for those final stage nodes. 

 

Proof:  

The objective function of m-SPRet can also be written as  
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                                                                                                                           .3   

 

where    is the set of branches on scenario s,       
                  where   

  is the 

proportion of stock i in the portfolio of branch b and    is the market return on branch b, and 

   is the probability of branch b. 

 

If we define 

   = set of partial scenarios when last stage branches are excluded from the scenarios of set S 

   = set of branches of partial scenario    

   = set of last stage branches of scenarios in S that are excluded to generate partial scenario   , 

then z can also be written as 

 

             

      

       

     

  

     

                                                                                             .3   

 

           
 corresponds to the objective function of 1-SPRet with scenario set    .  

 

         and 

      

      

     

 are independent. 

      

     

 for different      are independent  

 

Then, the optimal decisions of m-SPRet for the nodes of the final stage will be equal to the 

optimal decisions of 1-SPRet for those final stage nodes.                                                               

 

We consider Theorem 3 unintuitive. Moreover, following the line of thought of its proof, we 

can also generalize this theorem to the case of K vs. L-period SP models of maximizing 

expected return where K > L. If we find the partial scenario trees of the K-period model that 

correspond to the last L periods of the horizon, and use these partial trees in L-period models, 

then the following will hold: the optimal decisions of the K-period model for the last L periods 

and the optimal decisions of the L-period models will be equivalent.  

 

Remark 2:  

Consider m-SPRet with N decision nodes distributed among different periods. Assume that we 

solve 1-SPRet for each of the N nodes of the multi-period model by only taking the immediate 

branches of each node. The optimal decisions of m-SPRet and 1-SPRet may not be equivalent for 

nodes of stages other than the final one.  
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Example 2: 

Consider a two-period scenario tree with two branches for each node. Figure 34 shows the 

scenario tree where the probability of each branch appears above the branch and market returns 

for each branch are indicated in italic bold. Assume we have two stocks with    0 ,    

 0. , 0.  .  

 

 

 

Figure 34. Scenario tree for Example 2 

 

 

 

If we solve 1-SPRet for nodes 0, 1 and 2, optimal decisions are realized as    0   1, 0 , 

   1   0, 1 ,    2   1, 0  where       is the optimal stock weight vector for node n. On the 

other hand, the optimal decisions for m-SPRet are realized as    0        ,    1   0, 1 , 

   2   1, 0  (The differences in the decisions of the multi-period models from those of the 

single-period models are indicated in bold throughout the examples).  

 

The two-period expected return corresponding to the solutions of 1-SPRet is 0.0336 whereas the 

optimal m-SPRet expected return is 0.0368. We see that m-SPRet has a better multi-period return 

value. 

 

Theorem 3 is a general theorem and it is applicable to the TSM. As for Example 2 regarding 

Remark 2, we see that the positive first stage return is followed by negative second stage 

returns and vice versa. In our approach to the TSM, we employ the random walk model to 

generate the scenarios, and the random walk model allows this kind of pattern. So, decisions 

for stages other than the final one can differ for m-SPRet and 1-SPRet in the TSM too. 

 

Remark 3: 

Consider m-SPRet with N decision nodes distributed among different periods. Assume that we 

solve 1-SPRet for each of the N nodes of the multi-period model by only taking the immediate 

branches of each node. If we use the optimal solutions of 1-SPRet models to calculate the 

corresponding multi-period return, the resulting value can never be better than the optimal m-
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SPRet return. This directly follows from the use of the criterion of m-SPRet to assess the 

performance of 1-SPRet models. And we expect the optimal m-SPRet return to be better than the 

multi-period return of 1-SPRet models. 

 

5.5.4 Minimizing CVaR in Single vs. Multi-period SP 

 

Consider the multi-period SP model of minimizing CVaR: 

 

           
 

     
      

   

                                                                                                   .3   

s. t. 

          
              

  

   

 

    

                                                                   .3   

   
   

   

                                                                                                                                     .3   

                                                                                                                                                   .3   

  
                                                                                                                                         . 0  

 

(5.36)–(5.40) is referred to as m-SPCVaR. 

 

Remark 4:  

Consider m-SPCVaR with N decision nodes distributed among different periods. Assume that we 

solve 1-SPCVaR for each of the N nodes of the multi-period model by only taking the immediate 

branches of each node. The optimal decisions of m-SPCVaR and 1-SPCVaR models may not be 

equivalent; because 1-SPCVaR only considers single-period scenarios whereas m-SPCVaR 

considers a larger number of scenarios over a longer horizon. If we use the optimal solutions of 

1-SPCVaR models to calculate the corresponding multi-period CVaR, the resulting value can 

never be better than the optimal  m-SPCVaR CVaR. This directly follows from the use of the 

criterion of m-SPCVaR to assess the performance of 1-SPCVaR models. And we expect the optimal 

m-SPCVaR CVaR to be better than the multi-period CvaR of 1-SPCVaR models. 

 

Example 3: 

Consider a two-period scenario tree with four branches for each node. Figure 35 shows the 

scenario tree where market returns for each branch are illustrated. All branches have equal 

probability. Assume we have two stocks with      ,     0. , 0.  . 

 

If we solve 1-SPCVaR with   = 0.75 for nodes 0 to 4, optimal decisions are realized as    0  

 0, 1 ,    1   0, 1 ,    2   0, 1 ,    3   0, 1 ,        0, 1  where       is the optimal 

weight vector for node n. On the other hand, the optimal decisions for m-SPCVaR with   = 0.75 

is realized as    0              ,    1   0, 1 ,    2   0, 1 ,    3   0, 1 ,        0, 1 . 
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The two-period CVaR corresponding to the solutions of 1-SPCVaR is 0.02846 whereas the 

optimal m-SPCVaR CVaR is 0.02811. We can see that the decisions of m-SPCVaR differ from 1-

SPCVaR, and the difference is in favor of m-SPCVaR when the criterion is multi-period return. 

 

 

 

Figure 35. Scenario tree for Example 3 

 

 

 

The scenario tree structure of Example 3 can be observed in the TSM when we use the random 

walk model to generate scenarios on market returns. Accordingly, we can expect the superiority 

of multi-period models over single-period models when the DM in the TSM has a multi-period 

planning horizon.  

 

5.5.5 Minimizing CVaR - ρ.Ret in Multi-period SP 

 

Consider the multi-period SP model of minimizing CVaR - ρ.Ret: 
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(5.41)–(5.46) is referred to as m-SPCVaR- .Ret. 

 

Remark 5:  

The optimal solution of m-SPCVaR- .Ret and m-SPCVaR may be different. There can be 

alternative solutions that result in the same CVaR since CVaR only considers the worst (1-  )% 

returns. Especially with high   levels, there may be several solutions with the same CVaR.  

 

Example 4:  

Consider the scenario tree and stocks of Example 3. When minimizing CVaR with   = 0.9375, 

we will only be considering the worst return over all scenarios. The two solutions below have 

the same optimal CVaR value of 0.05136. 

 

Solution 1:    0   0, 1 ,    1   0, 1 ,    2   1, 0 ,    3   0, 1 ,        0, 1  where 

      is the optimal stock weight vector for node n. 

Solution 2:    0   0, 1 ,    1   0, 1 ,    2   0, 1 ,    3   0, 1 ,        0, 1 . 

Solution 1 has Ret = 0.0140 whereas solution 2 has Ret = 0.0080 and the two solutions differ 

only in their    2  values. 

 

In our applications with the TSM, we generally use   = 0.9 and we often observe alternative 

solutions with the same CVaR. 

 

5.5.6 Minimizing CVaR - ρ.Ret in Single vs. Multi-period SP 

 

Consider the single-period SP model of minimizing CVaR- ρ.Ret: 
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(5.47)–(5.52) is referred to as 1-SPCVaR- .Ret. 

 

Remark 6:  

Consider m-SPCVaR- .Ret with N decision nodes distributed among different periods. Assume that 

we solve 1-SPCVaR- .Ret for each of the N nodes of the multi-period model by only taking the 

immediate branches of each node. As we have discussed in Remark 4, if we use the optimal 

solutions of single-period models to calculate the corresponding multi-period CVaR, the 

resulting value can never be better than the optimal multi-period CVaR. Moreover, if we look 

at the multi-period return and CVaR values of the two models, there can be cases where          

1-SPCVaR- .Ret results in dominated solutions.  

 

Example 5:  

Consider Example 3. The optimal solutions to 1-SPCVaR and m-SPCVaR are also optimal for 1-

SPCVaR- .Ret and m-SPCVaR- .Ret, respectively. The two-period CVaR and return corresponding to 

the solutions of 1-SPCVaR- .Ret are 0.02846 and 0.00825, respectively. The optimal CVaR and 

return values of m-SPCVaR- .Ret are 0.02811 and 0.00863, respectively. We can see that the single 

period models result in a dominated solution. 

 

5.5.7 Maximizing Ret - ρ. CVaR 

 

We do not explicitly consider this case. In both single and multi-period models, having 

alternative solutions with the same maximum expected return is possible, but only under 

special combinations of α and β values of different stocks. In our applications in the TSM, we 

have not encountered such situations. There has always been a single stock which brings the 

maximum return value.  

 

5.5.8 Maximizing Ret - ρ. CVaR subject to CVaR ≤ Ɛ in Single v.s Multi-period SP 

 

Consider the single-period SP model of maximizing Ret - ρ. CVaR subject to CVaR ≤ Ɛ:  
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(5.53)–(5.59) is referred to as 1-SPRet - .CVaR. 

 

Consider the multi-period SP model of maximizing Ret - ρ. CVaR subject to CVaR ≤ Ɛ: 
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(5.60)–(5.66) is referred to as m-SPRet - .CVaR. 

 

Remark 7:  

Consider m-SPRet - .CVaR with N decision nodes distributed among different periods. Assume that 

we solve 1-SPRet - .CVaR for each of the N nodes of the multi-period model by only taking the 

immediate branches of each node. If we use the optimal solutions of single-period models to 

calculate the corresponding multi-period return and CVaR, we may observe two cases that 

show that single-period models may not give optimal solutions for the multi-period problem: 

 Let the corresponding multi-period CVaR of 1-SPRet - .CVaR be R. R can be lower than 

the optimal CVaR of m-SPRet - .CVaR. In this case the resulting multi-period return value 

of 1-SPRet - .CVaR would be lower than the optimal m-SPRet - .CVaR return. If we solve m-

SPRet - .CVaR with CVaR ≤ R, we may find the solution of 1-SPRet - .CVaR to be dominated 

by that of m-SPRet - .CVaR.   

 The corresponding multi-period CVaR of 1-SPRet - .CVaR can rise above Ɛ. And it can be 

shown that the only condition that will allow the multi-period return of 1-SPRet - .CVaR to 

be higher than that of m-SPRet - .CVaR is the infeasibility of 1-SPRet - .CVaR by violating the 

CVaR ≤ Ɛ constraint.  
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Example 6:  

Consider the scenario tree and stocks of Example 3. We take   = 0.75 and Ɛ = 0.048. We 

choose this Ɛ value among the CVaR values feasible for m-SPRet - .CVaR and 1-SPRet - .CVaR models 

for this example.  

 

The optimal decisions of 1-SPRet - .CVaR are realized as    0   0. , 0.  ,    1   1, 0 , 

   2   1, 0 ,    3   0, 1 ,        0, 1  where       is the optimal stock weight vector for 

node n. On the other hand, the optimal decisions for m-SPRet - .CVaR are realized as    0  

      ,    1   1, 0 ,    2   1, 0 ,    3   0, 1 ,        0, 1 . 

 

The two-period return and CVaR values corresponding to the solutions of 1-SPRet - .CVaR are 

0.02422 and 0.03536, respectively. The optimal return and CVaR values of m-SPRet - .CVaR are 

0.02462 and 0.04000, respectively. We can see that 1-SPRet - .CVaR models resulted in a CVaR 

value lower than the CVaR of m-SPRet - .CVaR, and thus failed to attain the optimal return value. 

Furthermore, if we solve m-SPRet - .CVaR with Ɛ = 0. 03536, the optimal return is realized as 

0.02423, dominating the solution of 1-SPRet - .CVaR. 

 

Example 7:  

Consider a two-period scenario tree that we adopt from our applications with the TSM where 

the market returns are generated by the random walk model with the parameters of ISE-100. 

Figure 36 shows the scenario tree where market returns for each branch are illustrated. All 

branches have equal probability. Assume we have two stocks with      ,     0. , 0.  . 

 

With   = 0.75 and Ɛ = 0.150, the optimal decisions of 1-SPRet - .CVaR are realized as    0  

 0. 1 , 0.3 3 ,    1   0. 1 , 0.3 3 ,    2   1, 0 ,    3   0, 1 ,        0, 1 ,       

 0. 31, 0.1    where       is the optimal stock weight vector for node n. On the other hand, the 

optimal decisions for m-SPRet - .CVaR are realized as                     ,    1        , 

   2   1, 0 ,    3   0, 1 ,        0, 1 ,             . 

 

The two-period return and CVaR values corresponding to the solutions of 1-SPRet - .CVaR are 

0.01305 and 0.185, respectively. The optimal return and CVaR values of m-SPRet - .CVaR are 

0.01227 and 0.150, respectively. We can see that 1-SPRet - .CVaR models resulted in an infeasible 

solution by violating the CVaR ≤ 0.1 0 constraint.   
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Figure 36. Scenario tree for Example 7 

 

 

 

5.6 Rolling Horizon Approach 

 

Our SP approaches provide the DM a set of decisions to implement throughout the planning 

horizon. To this point, we have treated these decisions as fixed, i.e., decisions of future periods 

are not updated after factors modeled by scenario trees are realized. Some researchers proposed 

to revise future decisions as time proceeds to reveal the up-to-date condition of markets. With 

rolling horizon approaches, multi-period models are used to make immediate decisions for the 

present. As time passes, new information becomes available and changes the future 

expectations. The models are then rolled so that the next decisions become immediate. Golub et 

al. (1995) proposed a two-stage rolling horizon SP model for fixed-income markets. Using 

mortgage securities, they implemented a dynamic strategy with the SP model and compared its 

performance to those of a single-period static model and a single-period stochastic model. The 

dynamic SP model was observed to produce superior results. Kouwenberg (2001) tested rolling 

horizon settings against a fixed-mix model for asset-liability management problems. Using a 

five-year planning horizon, they proposed to revise decisions at the beginning of each year by 

considering the years left of the horizon. They showed that SP models with rolling horizon 

settings perform particularly well with appropriately chosen scenario generation methods. 

Balıbek  200   compared the performance of single and multi-period scenario trees that are 
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updated after the immediate decisions in a multicriteria multi-period public debt management 

problem. Multi-period trees were observed to be superior for certain settings. 

 

In this section, we consider bringing a rolling horizon approach to our SP applications and test 

its performance in comparison to the fixed scenario tree approach. Our scenario trees consist of 

branches that contain monthly ISE-100 returns generated by the random walk model (5.4). The 

mean and variance of ISE-100 return used in the random walk model are estimated by 

historical returns over a certain period. With the rolling horizon approach, we update the 

parameters of the random walk model every month to reveal the latest return. With the updated 

return mean and variance, we revise our scenario tree for the remaining months of the horizon. 

Figure 37 illustrates our approach on an example three-month setting with eight scenarios. We 

start with the three-month scenario tree (a). Let us assume that the index return represented by 

branch 1 is realized at the end of the first month. We update the parameters of the random walk 

model by adding this return to the set of historical returns. Then a new two-month scenario 

tree, (b), is generated. Let us assume now that branch 11ˈ is realized at the end of the second 

month. This return is also added to the set of historical returns and a final single-month tree (c) 

is generated from the updated random walk model. Finally, although it does not have an effect 

on scenario trees, let us assume that branch 111ˈˈ is realized for the third and final month. The 

optimal investment strategy for this setting is given by decisions of the first nodes of scenario 

trees (a), (b) and (c) for months one, two and three, respectively. The ending situation of the 

portfolio is given by the implementation of this strategy on the realized path 1-11ˈ-111ˈˈ.  

 

 

 

 

Figure 37. Rolling horizon scenario trees 

 

 

 

Returns of stocks are estimated from the index return by the Single Index Model (5.3). As 

previously explained, the stock-specific return premiums and the sensitivities to the market are 

found by regression analysis using a set of historical index and stock returns. These intercept 

and coefficient values of regression may also be updated after a month of the horizon passes. 

However, we do not consider this update in our studies. One reason for this decision is the 
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difficulty of finding an appropriate mechanism to simulate the stock return realizations. Since 

the index return is modeled by the random walk model, we can directly generate a random 

realization for it. On the other hand, stock returns are modeled by a regression equation. If we 

generate assumed realizations of stock returns by regressing them on the newly-generated 

index return, this will bring no difference to regression parameters. Thus, there will be no 

update to the regression equation. Using a totally different method to simulate stock returns 

does not seem appropriate as well, so we do not revise regression parameters. This decision 

may also be justified by the fact that one additional observation will in any case have minor 

effects considering the large set of past observations.  

 

We do not expect the updated random walk model to bring substantial differences as well. 

Since our scenario generation technique is random, the only effect of the rolling horizon 

approach will be the minor update in the random walk parameters. Nevertheless, we make tests 

to compare the performance of rolling horizon against fixed scenario settings. To exemplify our 

comparison technique, we again refer to Figure 37. We have previously explained that the 

decisions of the rolling horizon setting will be given by the initial decisions of trees (a), (b) and 

(c). With the assumed scenario path, we can find the corresponding ending value. With the 

fixed-scenario tree, only tree (a) will be utilized, and decisions for three periods will be 

produced at time 0. To find the ending value of the fixed scenario tree, we will implement its 

decisions corresponding to the path most similar to the assumed realization. For example, we 

have previously assumed that the path 1-11ˈ-111ˈˈ is realized. After the initial decisions of time 

0, we follow branch 1, and implement the corresponding decisions for the second period. After 

branch 1, now we continue with either 11 or 12, depending on how close they are in magnitude 

to 11ˈ. Let us assume that it is 11. Then the decisions of the ending node of branch 11 are 

finally implemented. These decisions for three periods are then applied on path 1-11ˈ-111ˈˈ to 

find the ending value of the portfolio. 

 

We use the same 100 stocks used in Section 5.4 for our comparisons. We consider expected 

return and CVaR criteria, and exclude liquidity since it is independent of scenarios. Monthly 

return values corresponding to 2008-2009
10

 are used to estimate parameters of the random walk 

and single index models. We avoid using a longer period of past returns since we want the 

update in the random walk model for the rolling horizon approach to be pronounced. The 

longer the period of past returns is, the smaller the effect of an additional point will be. We use 

100 random instances to compare rolling and fixed scenario trees. In each instance, first we 

generate a 3-month scenario tree with five branches for each decision node, resulting in 5
3 

= 

125 scenarios. This scenario tree is the initial tree of the rolling horizon approach and the sole 

tree for the fixed scenario tree approach. We randomly set a branch of the first period as the 

first realization, update the random walk model, and generate the second tree of two months 

with 5
2 

= 25 scenarios. From the first period of this tree, we again select a random branch, 

update the random walk model, and generate the final single-month tree of five scenarios. A 

final realization of index return is again set randomly on this tree. 

 

                                                           
10 http://borsaistanbul.com/en/data/data/equity-market-data/equity-based-data 
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We use an augmented weighted Tchebycheff program to make portfolio decisions. The 

program is formulated as follows:  

 

Min         
 

 

   

                                                                                                                            .    

s.t.           
                                                                                                                  .    

                                                                                                                                           .    

                                                                                                                                                             . 0  

 

where z* is the ideal vector in the presence of k criteria,    is the weight of criterion i and   is a 

small positive number used as the augmentation factor. This program converges the efficient 

frontier at the solution determined by the weights chosen for criteria. We use expected return 

and CVaR at 90% probability as criteria. Normalization is applied to criteria values and z* is 

taken as (1,1). For normalization, the distinct ideal and nadir points for each of the 100 

instances are used. Weights of both criteria are taken as 0.5. 

 

As previously stated, a random path of index return realizations is assumed for each of the 100 

instances. As a result, for each instance, we obtain an ending portfolio return value for the 

rolling and fixed scenario tree settings. To compare the two settings with respect to expected 

return, we use the average of the ending return values of all instances. To make a comparison 

with respect to CVaR at 90% probability level, we use the average of 10 highest losses among 

these 100 instances. Table 8 shows the results.  

 

 

 

Table 8. Comparing expected return and CVaR values of rolling and fixed scenario trees 

  Expected Return (%) CVaR (%) 

Rolling Scenario Trees 24.539 -14.306 

Fixed Scenario Trees 25.549 -14.212 

  

 

 

We see that although the rolling horizon setting resulted in a better CVaR value, its expected 

return is lower than that of the fixed scenario tree setting. Studying the 100 instances 

individually, we observe that in 42 cases the rolling scenario trees resulted in higher expected 

return values than the fixed scenario trees, and in 44 cases the opposite situation holds. In the 

remaining 14 cases, the two settings are equivalent. These observations hint that there are no 

significant differences between the two approaches. To make a statistical test, we employ the 

paired t-test (see Hines et al., 2003, p. 292–293). Let Dj for j=1,2, …, 100 be the difference 

between the expected return values of rolling and fixed scenario trees in instance j. We 
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calculate these values by subtracting the expected return of the fixed scenario tree from that of 

the rolling scenario tree. Our hypotheses are: 

 

H0 : µD = 0 

HA : µD ≠ 0 

 

where µD is the mean of the differences between expected return values of rolling and fixed 

scenario trees. The test statistic is given by              where    and    are the sample 

mean and standard deviation of the differences, respectively; and   is the sample size. Our t 

statistic is calculated as -1.9019. As the critical   value with 95% confidence is 1.9842, we fail 

to reject the null hypothesis. This test also confirms that the rolling horizon settings do not 

bring significant differences in our SP approaches. This conclusion is not unexpected since we 

presumed that the addition of one month’s return value to past observations will not change the 

random walk model parameters substantially. In addition, scenarios generated with the updated 

random walk parameters do not necessarily reflect those updates because of the error term. 

With our current SP approach to PO, the use of rolling horizon settings is therefore not 

justified.  

 

The rolling horizon approach would be meaningful and essential if the DM changed her/his 

preferences over time. Currently, we are using the same weights of criteria for the whole 

planning period. It is possible for the DM to have different priorities for different periods based 

on her/his current financial position and obligations. Besides, the risk attitude of the DM may 

change after past achievements. For example, if she/he has earned a good return on the initial 

investment in the first two months, she/he may be more risk-averse in the third month to hold 

on to that return. On the contrary, if the first months of the period resulted in a loss, she/he may 

be more aggressive in the latter months to reverse the situation. That is, the risk attitude of the 

DM may depend on her/his current wealth. For such DM behavior, rolling horizon settings are 

required to update investment decisions accordingly. We consider this as an interesting field of 

future study. 
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CHAPTER 6 

 

 

AN INTERACTIVE APPROACH TO STOCHASTIC PROGRAMMING-BASED 

PORTFOLIO OPTIMIZATION 

 

 

 

With our basic SP approach covered in Section 5.2, we have provided the DM a discrete 

representation of the efficient frontier. The DM is expected to select an individual solution 

among the set of presented ones. This may be a difficult decision considering the large number 

of solutions, especially when the DM does not readily have clear-cut preferences. In this 

section, we present an interactive multistage approach to provide the DM with a single solution 

according to her/his preferences. DM preferences will be elicited by the help of comparison of 

a limited number of solutions in consecutive iterations. Our approach is based on the 

Interactive Weighted Tchebycheff Procedure of Steuer and Choo (see Steuer, 1986, p. 419-

455). This procedure makes use of the augmented weighted Tchebycheff program which was 

formulated in Section 5.6 by (5.67)–(5.70). We choose to utilize this procedure since the 

augmented weighted Tchebycheff program can generate any efficient solution with 

appropriately chosen weights. Furthermore, the procedure extracts preferences from the DM 

with the help of simple comparisons without overwhelming her/him. The DM is not required to 

make distinctive statements of preference. 

 

In essence, the Interactive Weighted Tchebycheff Procedure aims to converge the best solution 

by eliciting preference information from the DM in consecutive iterations and contracting the 

weight space accordingly. We explain the procedure further by discussing its steps briefly. 

First, an ideal criterion vector is computed and objectives are normalized. A number of random 

weight vectors are generated for the criteria (initially, they are freely chosen from the interval 

[0,1]), and they are reduced to a predetermined number of most-different weight vectors using 

a filtering approach. Using each of the resulting weight vectors, augmented weighted 

Tchebycheff programs are solved to determine solutions with minimum weighted Tchebycheff 

distances from the ideal point. The resulting solutions are filtered to a preset number of 

solutions and presented to the DM. After the DM chooses her/his most preferred solution, the 

weight vector corresponding to this solution is determined. Centered around this weight vector, 

new, narrowed down ranges for weights of criteria are calculated. Another set of random 

weight vectors that obey the new ranges are generated and filtered. Again solving augmented 

weighted Tchebycheff programs, a new set of solutions concentrated in a neighborhood of the 

previously selected solution is generated. These are filtered and presented to the DM for 

her/him to make a selection. This procedure is continued for a predetermined number of 

iterations unless the DM wants to stop prematurely. 
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We adopt this procedure to include the preferences of the DM to our SP approach. In our 

scenario trees, the utilization of larger number of scenarios will represent the market behavior 

better, but will result in an increase in complexity. Hence, we will first generate a large number 

of scenarios and then cluster them. As another issue, we also want to account for the 

stochasticity of our solutions due to the randomness involved in the scenario generation process 

as in Balibek and Köksalan  2012 . For this purpose, instead of a single scenario tree, we will 

work with multiple scenario trees and generate confidence ellipsoids around solutions. The DM 

will be asked to choose between these ellipsoids. Another modification we make to the 

approach is to carry the preferred solution (ellipsoid) of one iteration to the next. In the original 

method, in each iteration, new solutions concentrated around the previously selected solution 

are generated. However, due to the randomness involved in weight generation, there is no 

guarantee that we will proceed to a better solution in each iteration. The solution of the 

previous iteration may have better utility value for the DM than the newly generated solutions. 

As a remedy, in each iteration, we also present the DM the best solution obtained so far. 

 

We provide a flowchart of our approach in Figure 38. We refer to each stage in the flow chart 

by a stage number (given in boxes to the left of the stages). N is the number of scenarios used 

to construct ellipsoids. V is the number of weight vectors generated in each iteration later to be 

filtered. P corresponds to the sample size of ellipsoids to be presented to the DM. Let us further 

explain the mechanisms used in some of the steps. In step 1, we generate a large number of 

scenarios for better market representation purposes and then cluster them to decrease 

complexity.  We employ the clustering algorithm explained in Section 5.3, which makes use of 

the K-means algorithm by MacQueen (1967) for this purpose. As a reminder, the K-means 

algorithm clusters data points in a predetermined number of disjoint classes. Each cluster has a 

centroid, and the algorithm aims at minimizing the sum of distances of all points to the 

centroid.  

 

In step 4, we use a filtering mechanism to achieve the most-different weight vectors. The 

method we use is the Method of First Point Outside the Neighborhoods (see Steuer, 1986, p. 

314-318). In this method, the vectors to be filtered are listed randomly, and a distance metric 

and its threshold value, d, are selected. The first vector is retained by the filter as the seed 

vector. Examining the following vectors, the first vector in the list that is at least d units away 

from the seed is retained. Continuing with the other vectors, now the first vector that is at least 

d units away from both the seed and the next vector selected are retained. The procedure is 

continued in this manner, each time retaining the first vector that is significantly different from 

all the previously selected vectors, until the list is exhausted. Different levels of d are tried until 

the desired number of filtered vectors is achieved. This method is also used in step 7, where we 

filter ellipsoids to determine the ones to present to the DM. The centroids of ellipsoids are 

utilized for this purpose. At the first iteration, 2P ellipsoids found with the weights of the 

iteration are filtered down to P. At other iterations, the selected ellipsoid of the previous 

iteration is added to the top of the list of 2P ellipsoids. Due to the working mechanism of the 

filtering method, the first ellipsoid is always retained. As a result, we ensure that the best 

ellipsoid so far is not lost and it is presented to the DM at each iteration. 
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Figure 38. Flowchart of the Interactive Approach to SP-based PO 
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In step 5, for every weight vector filtered, we solve augmented weighted Tchebycheff programs 

and obtain N solutions for each. Utilizing the approach of Balibek and Köksalan  2012 , we use 

these solutions to construct ellipsoids of solutions for them in step 6. (The reader is referred to 

Johnson and Wichern (2002, p. 210-238) for the theory on constructing confidence regions for 

multivariate means.) When the sample size is large, inferences about a population mean vector 

can be made without the normality assumption. Large-sample inferences about a mean vector 

are based on the χ
2
 distribution. Let Xj’s  j=1,…,n) be k-dimensional vectors sampled from a 

population with mean μ and covariance matrix S. When n-k is large,                   is 

approximately χ
2
 distributed with k degrees of freedom. Thus,  

 

                      
                                                                                                .1  

 

The above equality defines an ellipsoid which gives a 100(1-  )% confidence region for the 

mean of Xj’s. If we want to build simultaneous confidence intervals for the individual 

component means, we can project the ellipsoid on the axes of each component. This gives us 

the following 100(1-  )% simultaneous confidence intervals: 

 

       
    

   

 
                                                                                                                            .2  

 

where     is the variance for component i.  

 

As mentioned before, centroids of the constructed 2P ellipsoids are used to filter them down to 

P in step 7.  

 

For the DM to choose her/his most preferred ellipsoid in step 8, confidence intervals of all 

criteria corresponding to each ellipsoid are presented to her/him. This approach is preferred 

because ellipsoids are difficult to present and also hard to visualize for the DM with more than 

two criteria.  

 

After the DM selects an ellipsoid, in step 9, new ranges for weights of criteria are generated. 

We require that these are concentrated around the weight vector corresponding to the solution 

in the ellipsoid that is closest to the centroid. We use unweighted Euclidean distance and 

normalized values to determine this solution, and refer to it as the ‘pseudo centroid’. We apply 

the procedures defined by Steuer and Choo at this stage. Let z
h
 be the pseudo centroid of the 

chosen ellipsoid of iteration h. Then the most appropriate weight vector corresponding to z
h
, 

denoted by  h
, is found as follows (see Steuer, 1986, p. 448): 
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Next, the ranges of weight that are concentrated around  h
 are formed as follows (see Steuer, 

1986, p. 449): 
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              otherwise                 

                                           .    

 

where r is a pre-determined reduction factor for weights. 

 

Below we provide a more formal description of the steps of our approach: 

 

1. Generate N clustered scenario trees. 

2. Compute ideal vectors for each scenario tree and normalize objectives. 

Set h=0,     
       

      0 , 1  for all i. 

3. h=h+1 

Generate V random weight vectors that obey    
  and    

  for all i; denote them as 

      
 , j = 1,…,V. 

4. Filter the set of weight vectors       
  down to a set of size 2P; denote the resulting 

vectors as      
 
 , k = 1,…,2P. 

5. For each      
 
 , solve Tchebycheff programs with each of the N scenario trees. Let     

  

denote the solution found with weight vector      
 
  and scenario tree l, l=1,…,N. 

6. For each      
 
 , construct an ellipsoid of solutions using     

  for l=1,…,N; denote them 

as   
 , k=1,…,2P. 

7. Filter the set of ellipsoids   
  down to a set of size P, denote them as    

 , m=1,…,P. 

8. Among all    
 , DM chooses an ellipsoid; let z

h
 denote the pseudo centroid of the 

chosen ellipsoid. Find the most appropriate weight vector corresponding to z
h
 with 

(6.3). 

9. Find new ranges of weights,     
       

    , by utilizing (6.4).  

10. If h is smaller than the desired number of iterations, stop. Otherwise, return to Step 3 

and repeat. 

 

We continue with applications of the approach with stocks from the ISE. 
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6.1 Results of Experiments 

 

We use the same 100 stocks used in Section 5.4 for our experiments. Expected return, CVaR at 

90% probability level and liquidity are used as criteria. The same set of historical data for the 

index and stock returns (2008-2009 monthly returns) and June 2011 data for liquidity are used. 

In Section 5.4, 2008-2009 monthly returns were preferred to amplify the effect of an additional 

observation in the rolling horizon scenario trees. In this section, we again avoid using longer 

periods that contain more distant return values that are less likely to represent the future state of 

the market.  

 

We use a three-period SP setting with clustered scenario trees of 5
3
=125 scenarios. The number 

of scenario trees to generate ellipsoids of solutions, N, is taken as 50. We use 90% confidence 

level for constructing ellipsoids. Ideal and nadir vectors of all scenario trees are computed 

individually. The nadir vectors are required for normalization purposes, and we approximate 

them by payoff nadirs. Normalized values are also used for filtering, and we use Euclidean 

distance as the distance metric of the filtering method. 

 

Based on preliminary tests to determine good parameters for the approach, the number of 

iterations is set to 5. The sample size of solutions that are presented to the DM, P, is selected as 

6. The number of weight vectors generated in each iteration, V, is chosen as 150, and 0.5 is 

used as r, the reduction factor for weights.  

 

To make experiments with our approach, we need to assume an underlying preference function 

for the DM to simulate her/his selection of ellipsoids. With three types of distance metrics, we 

assume that the DM tries to minimize the weighted distance of normalized ellipsoid centroids 

from the ideal vector. These centroids are found by utilizing average normalized expected 

return, CVaR and liquidity values of the solutions in the ellipsoids. As distance metrics, we 

utilize Rectilinear, Euclidean and Tchebycheff distances. The weights of the DM used for 

expected return, CVaR and liquidity for all distances are 0.5, 0.25 and 0.25, respectively. We 

make three replications each for the three distance metrics. First, we present the details of one 

replication with the Tchebycheff distance to illustrate our approach. Five iterations of this 

replication are discussed. Later, we will summarize all of our results.  

 

In applications of our approach with an actual DM, there is a possibility that she/he is 

inconsistent in her/his decisions. That is, her/his decision in an iteration may be in accordance 

with a different preference function than the other iterations. Even so, the approach provides 

flexibility to the DM to correct her/his direction of search in the latter iterations. After the DM 

chooses an ellipsoid, the new ranges of criteria weights are concentrated around the weights of 

this ellipsoid, but not very strictly. Unless the DM is exceedingly inconsistent, she/he will have 

room to adjust her/his preferences in the next iteration. 

  

In normalization routines used in the weighted Tchebycheff programs and also the simulation 

of DM preferences of ellipsoids, we aim to scale criteria values between 0 and 1, where 0 is the 

worst and 1 is the best possible value for all criteria. However, because of the approximation of 
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the nadir point by the payoff nadir, there may be cases where the lower bound is violated. Even 

so, the progress of the algorithm and the validity of results will not be affected.  When 

simulating DM preferences, the ideal vector is taken as (1, 1, 1).  

 

Expected return, CVaR and liquidity are denoted as ret, cvar and liq in vector representations. 

Let    
                      denote the weight vector numbered j (j=1, 2,…, 6) of iteration i 

that leads to one of the six ellipsoids in step 7 of the algorithm that are to be presented to the 

DM, where    denotes the weight of criterion k.  

 

Iteration 1 

150 random weight vectors are generated from the following ranges: 

 

      
       

    0, 1  

       
        

    0, 1  

      
       

    0, 1  

 

150 weight vectors are filtered to 12. 50 augmented weighted Tchebycheff programs (one for 

each scenario tree) are solved with each of these 12 weight vectors. 12 ellipsoids of solutions 

are generated and filtered down to six by utilizing normalized ellipsoid centroids. For 

illustration purposes, Figure 39 shows the solutions used to construct the six ellipsoids. 

Ellipsoids are abbreviated as ‘E’ in illustrations. Six vectors of weights that led to these 

ellipsoids are: 

 

   
  = (0.4145, 0.4065, 0.1790) 

   
  = (0.0829, 0.5416, 0.3754) 

   
  = (0.5798, 0.0853, 0.3348) 

   
  = (0.7705, 0.2223, 0.0073) 

   
  = (0.0690, 0.3625, 0.5684) 

   
  = (0.2279, 0.1643, 0.6078) 

 

For the six ellipsoids retained by the filter, the confidence regions of criteria are found by 

projecting the ellipsoids to individual criterion axes. Then the DM is asked to determine her/his 

most preferred one. Figure 40 illustrates the confidence regions of the six ellipsoids that are 

presented to the DM. The criteria values of the centroids of the ellipsoids are provided for the 

reader in Table 9, where we also include normalized values and the weighted Tchebycheff 

distance from the ideal vector.  
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Table 9. Criteria values of ellipsoids of iteration 1 

    

Normalized 

 

Expected 

Return (%) CVaR (%) Liquidity 

Expected 

Return CVaR Liquidity 

Distance from 

Ideal Vector  

E 1 20.9449 -16.3081 0.1965 0.6933 0.6873 0.2897 0.1776 

E 2 17.6254 -15.3347 0.3165 0.4614 0.6424 0.4841 0.2693 

E 3 20.2246 -5.0664 0.2530 0.6427 0.1671 0.3813 0.2082 

E 4 24.6369 -19.4987 0.0157 0.9522 0.8342 -0.0033 0.2508 

E 5 15.0347 -12.0301 0.4344 0.2808 0.4906 0.6752 0.3596 

E 6 15.1378 -3.7627 0.4696 0.2857 0.1092 0.7322 0.3571 

 

 

 

As observed from Table 9, Ellipsoid 1 has the smallest distance from the ideal vector. 

Accordingly, the DM is assumed to select Ellipsoid 1, and we continue to find the most 

appropriate weight vector corresponding to the pseudo centroid of this ellipsoid by using 

equation (6.3): 

 

        
       

      
   = (0.4145, 0.4065, 0.1790) 

 

Centered around   , the new ranges of weights for the next iteration found by (6.4) are: 

 

      
       

    0.1   , 0.      

       
        

    0.1   , 0.      

      
       

    0, 0.   
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Figure 39. Plot of the solutions of the six ellipsoids of iteration 1 
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Figure 40. Presenting the DM ellipsoids of iteration 1 
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Iteration 2 

150 random weight vectors from the current ranges are generated and filtered to most different 

12. 50 augmented weighted Tchebycheff programs are solved for each, and 12 ellipsoids are 

formed. The preferred ellipsoid of the previous iteration is added to the top of the list of 

ellipsoids, and 13 ellipsoids are filtered to six. The corresponding weight vectors are : 

 

   
  = (0.4145, 0.4065, 0.1790) 

   
  = (0.1814, 0.4478, 0.3708) 

   
  = (0.4146, 0.2039, 0.3815) 

   
  = (0.2939, 0.2825, 0.4236) 

   
  = (0.5441, 0.4117, 0.0442) 

   
  = (0.4703, 0.2657, 0.2639) 

 

Figure 41 illustrates the confidence regions of the six ellipsoids that are presented to the DM. 

The criteria values of the centroids of the ellipsoids and their distance from the ideal vector are 

provided in Table 10. 

 

 

 

Table 10. Criteria values of ellipsoids of iteration 2 

    

Normalized 

 

Expected 

Return (%) CVaR (%) Liquidity 

Expected 

Return CVaR Liquidity 

Distance from 

Ideal Vector 

E 1 20.9449 -16.3081 0.1965 0.6933 0.6873 0.2897 0.1776 

E 2 17.0272 -14.6160 0.3436 0.4194 0.6092 0.5280 0.2903 

E 3 18.6685 -4.9015 0.3222 0.5337 0.1600 0.4933 0.2331 

E 4 16.9977 -9.9364 0.3852 0.4168 0.3933 0.5953 0.2916 

E 5 24.1288 -20.6807 0.0331 0.9161 0.8891 0.0251 0.2437 

E 6 20.2814 -9.6149 0.2463 0.6468 0.3785 0.3704 0.1766 

 

 

 

DM is assumed to select Ellipsoid 6 as it has the smallest distance from the ideal vector. We 

find the most appropriate weight vector corresponding to the pseudo centroid of Ellipsoid 6: 

 

        
       

      
   = (0.4704, 0.2657, 0.2639) 

 

Centered around   , the new ranges of weights for the next iteration are: 

 

      
       

    0.3   , 0.      

       
        

    0.1 0 , 0.3 0   

      
       

    0.13  , 0.3     
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Figure 41. Presenting the DM ellipsoids of iteration 2 
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Iteration 3 

The weight vectors of the six ellipsoids presented to the DM are : 

 

   
  = (0.4703, 0.2657, 0.2639) 

   
  = (0.3747, 0.3252, 0.3001) 

   
  = (0.5603, 0.2639, 0.1758) 

   
  = (0.4162, 0.2017, 0.3822) 

   
  = (0.5052, 0.2031, 0.2917) 

   
  = (0.3651, 0.2706, 0.3643) 

 

Figure 42 illustrates the confidence regions of the six ellipsoids that are presented to the DM. 

The criteria values of the centroids of the ellipsoids and their distance from the ideal vector are 

provided in Table 11. 

 

 

 

Table 11. Criteria values of ellipsoids of iteration 3 

    

Normalized 

 

Expected 

Return (%) CVaR (%) Liquidity 

Expected 

Return CVaR Liquidity 

Distance from 

Ideal Vector 

E 1 20.2814 -9.6149 0.2463 0.6468 0.3785 0.3704 0.1766 

E 2 19.0309 -12.0786 0.2953 0.5592 0.4922 0.4497 0.2204 

E 3 21.9319 -12.1670 0.1674 0.7624 0.4962 0.2425 0.1894 

E 4 18.6768 -4.8334 0.3219 0.5343 0.1568 0.4928 0.2329 

E 5 20.2210 -6.0574 0.2528 0.6425 0.2133 0.3808 0.1967 

E 6 18.3354 -8.7695 0.3322 0.5105 0.3397 0.5095 0.2448 

 

 

 

DM selects Ellipsoid 1 as it has the smallest distance from the ideal vector. Note that this is the 

ellipsoid carried from the previous iteration. The most appropriate weight vector corresponding 

to the pseudo centroid of Ellipsoid 1 was already found in iteration 2 as: 

 

        
       

      
   = (0.4704, 0.2657, 0.2639) 

 

Centered around   , the new ranges of weights for the next iteration are: 

 

      
       

    0. 0  , 0. 32   

       
        

    0.2032, 0.32 2  

      
       

    0.201 , 0.32    
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Figure 42. Presenting the DM ellipsoids of iteration 3 
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Iteration 4 

The weight vectors of the six ellipsoids presented to the DM are : 

 

   
  = (0.4703, 0.2657, 0.2639) 

   
  = (0.4702, 0.2239, 0.3060) 

   
  = (0.4866, 0.3086, 0.2048) 

   
  = (0.4220, 0.2886, 0.2894) 

   
  = (0.4816, 0.2810, 0.2373) 

   
  = (0.4446, 0.3195, 0.2360) 

 

Figure 43 illustrates the confidence regions of the six ellipsoids that are presented to the DM. 

The criteria values of the centroids of the ellipsoids and their distance from the ideal vector are 

provided in Table 12. 

 

 

 

Table 12. Criteria values of ellipsoids of iteration 4 

    

Normalized 

 

Expected 

Return (%) CVaR (%) Liquidity 

Expected 

Return CVaR Liquidity 

Distance from 

Ideal Vector 

E 1 20.2814 -9.6149 0.2463 0.6468 0.3785 0.3704 0.1766 

E 2 19.8287 -6.6630 0.2698 0.6150 0.2417 0.4084 0.1925 

E 3 21.1128 -13.0062 0.2024 0.7050 0.5350 0.2992 0.1752 

E 4 19.6085 -10.3990 0.2746 0.5996 0.4147 0.4162 0.2002 

E 5 20.6403 -10.9932 0.2265 0.6741 0.4430 0.3386 0.1654 

E 6 20.4242 -12.6929 0.2343 0.6556 0.5207 0.3511 0.1722 

 

 

 

DM selects Ellipsoid 5 as it has the smallest distance from the ideal vector. The most 

appropriate weight vector corresponding to the pseudo centroid of Ellipsoid 5 is: 

 

        
       

      
   = (0.4816, 0.2810, 0.2373) 

 

Centered around   , the new ranges of weights for the next iteration are: 

 

      
       

    0.  0 , 0. 12   

       
        

    0.2   , 0.3123  

      
       

    0.20 1, 0.2     
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Figure 43. Presenting the DM ellipsoids of iteration 4 
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Iteration 5 

The weight vectors of the six ellipsoids presented to the DM are : 

 

   
  = (0.4816, 0.2810, 0.2373) 

   
  = (0.4560, 0.2800, 0.2640) 

   
  = (0.5124, 0.2559, 0.2317) 

   
  = (0.4980, 0.2867, 0.2153) 

   
  = (0.4784, 0.3117, 0.2099) 

   
  = (0.4887, 0.2500, 0.2613) 

 

Figure 44 illustrates the confidence regions of the six ellipsoids that are presented to the DM. 

The criteria values of the centroids of the ellipsoids and their distance from the ideal vector are 

provided in Table 13. 

 

 

 

Table 13. Criteria values of ellipsoids of iteration 5 

    

Normalized 

 

Expected 

Return (%) CVaR (%) Liquidity 

Expected 

Return CVaR Liquidity 

Distance from 

Ideal Vector 

E 1 20.6403 -10.9932 0.2265 0.6741 0.4430 0.3386 0.1654 

E 2 20.1703 -10.3560 0.2501 0.6390 0.4127 0.3765 0.1805 

E 3 20.9464 -9.9543 0.2162 0.6933 0.3940 0.3217 0.1696 

E 4 21.0546 -11.8585 0.2078 0.7009 0.4820 0.3081 0.1730 

E 5 20.9903 -12.9868 0.2078 0.6965 0.5341 0.3081 0.1730 

E 6 20.4440 -8.8494 0.2402 0.6581 0.3430 0.3604 0.1709 

 

 

 

DM selects Ellipsoid 1 as it has the smallest distance from the ideal vector. Note that this is the 

ellipsoid carried from the previous iteration. The most appropriate weight vector corresponding 

to the pseudo centroid of Ellipsoid 1 was already found in iteration 4 as: 

 

        
       

      
   = (0.4816, 0.2810, 0.2373) 

 

If we were to make one more iteration, the new ranges of weights centered around    would 

be:  

 

      
       

    0.   0, 0.   3  

       
        

    0.2   , 0.2     

      
       

    0.221 , 0.2 30  
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Figure 44. Presenting the DM ellipsoids of iteration 5 
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Table 14 summarizes the three replications performed while assuming the DM tries to 

minimize weighted Tchebycheff distance from the ideal point. The first replication consists of 

the five steps we just discussed. At the end of replications one, two and three, the DM is 

presented solutions with weighted Tchebycheff distances of 0.1654, 0.1698 and 0.1768 from 

the ideal point. To evaluate the results, we find the solution closest to the ideal point by using 

the DM’s underlying weights of criteria, 0. , 0.2  and 0.2  for e pected return, CVaR and 

liquidity, respectively. This solution in normalized terms is (expected return, CVaR, liquidity) 

= (0.6725, 0.3561, 0.3450), and it has a distance value of 0.1637. We see that the algorithm 

produces solutions that are close to the best solution of the DM, and the achieved distance 

values are close to the minimum distance.  

 

Tables 15 and 16 summarize the results with underlying Rectilinear and Euclidean distances for 

the DM. With Rectilinear distance, the best solution for the DM in normalized terms is 

(expected return, CVaR, liquidity) = (0.9723, 0.9895, -0.0068), and it has a distance value of 

0.2907. With Euclidean distance, the solution is (0.7974, 0.8049, 0.1630) with a distance of 

0.2375. We can observe that the algorithm can approach the best solution for the DM in these 

cases too. The distances of solutions attained while assuming a Euclidean distance for the DM 

are particularly good.  
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Table 14. Results of experiments with a Tchebycheff preference function for the DM 

  

Normalized Centroids Corresponding Weights Tchebychef 

Distance from 

Ideal Vector 

  

Expected 

Return CVaR Liquidity 

Expected 

Return CVaR Liquidity 

R
ep

li
ca

ti
o

n
 1

 Iter. 1 0.6933 0.6873 0.2897 0.4145 0.4065 0.1790 0.1776 

Iter. 2 0.6468 0.3785 0.3704 0.4704 0.2657 0.2639 0.1766 

Iter. 3 0.6468 0.3785 0.3704 0.4704 0.2657 0.2639 0.1766 

Iter. 4 0.6741 0.4430 0.3386 0.4816 0.2810 0.2373 0.1654 

Iter. 5 0.6741 0.4430 0.3386 0.4816 0.2810 0.2373 0.1654 

R
ep

li
ca

ti
o

n
 2

 Iter. 1 0.6822 0.1910 0.3397 0.5329 0.2107 0.2565 0.2022 

Iter. 2 0.6785 0.7107 0.2989 0.3892 0.4324 0.1784 0.1753 

Iter. 3 0.6785 0.7107 0.2989 0.3892 0.4324 0.1784 0.1753 

Iter. 4 0.6711 0.6336 0.3209 0.4199 0.3768 0.2033 0.1698 

Iter. 5 0.6711 0.6336 0.3209 0.4199 0.3768 0.2033 0.1698 

R
ep

li
ca

ti
o

n
 3

 Iter. 1 0.7509 0.5671 0.2482 0.5244 0.3018 0.1738 0.1879 

Iter. 2 0.7509 0.5671 0.2482 0.5244 0.3018 0.1738 0.1879 

Iter. 3 0.7256 0.3967 0.2878 0.5456 0.2441 0.2103 0.1780 

Iter. 4 0.7256 0.3967 0.2878 0.5456 0.2441 0.2103 0.1780 

Iter. 5 0.7027 0.2927 0.3159 0.5401 0.2252 0.2347 0.1768 

 

 

 

Table 15. Results of experiments with a Rectilinear preference function for the DM 

  

Normalized Centroids Corresponding Weights Rectilinear 

Distance from 

Ideal Vector 

  

Expected 

Return CVaR Liquidity 

Expected 

Return CVaR Liquidity 

R
ep

li
ca

ti
o

n
 1

 Iter. 1 0.9522 0.8342 -0.0033 0.7489 0.2160 0.0351 0.3162 

Iter. 2 0.9522 0.8342 -0.0033 0.7489 0.2160 0.0351 0.3162 

Iter. 3 0.9522 0.8342 -0.0033 0.7489 0.2160 0.0351 0.3162 

Iter. 4 0.9522 0.8342 -0.0033 0.7489 0.2160 0.0351 0.3162 

Iter. 5 0.9522 0.8342 -0.0033 0.7489 0.2160 0.0351 0.3162 

R
ep

li
ca

ti
o

n
 2

 Iter. 1 0.9245 0.8284 0.0259 0.6603 0.2908 0.0490 0.3242 

Iter. 2 0.9245 0.8284 0.0259 0.6603 0.2908 0.0490 0.3242 

Iter. 3 0.9245 0.8284 0.0259 0.6603 0.2908 0.0490 0.3242 

Iter. 4 0.9451 0.8860 -0.0043 0.6510 0.3139 0.0351 0.3071 

Iter. 5 0.9451 0.8860 -0.0043 0.6510 0.3139 0.0351 0.3071 

R
ep

li
ca

ti
o

n
 3

 Iter. 1 0.8978 0.9296 0.0371 0.3918 0.5683 0.0399 0.3094 

Iter. 2 0.8978 0.9296 0.0371 0.3918 0.5683 0.0399 0.3094 

Iter. 3 0.8978 0.9296 0.0371 0.3918 0.5683 0.0399 0.3094 

Iter. 4 0.9347 0.9530 -0.0058 0.4077 0.5665 0.0259 0.2958 

Iter. 5 0.9347 0.9530 -0.0058 0.4077 0.5665 0.0259 0.2958 
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Table 16. Results of experiments with a Euclidean preference function for the DM 

  

Normalized Centroids Corresponding Weights Euclidean 

Distance from 

Ideal Vector 

  

Expected 

Return CVaR Liquidity 

Expected 

Return CVaR Liquidity 

R
ep

li
ca

ti
o

n
 1

 Iter. 1 0.6933 0.6873 0.2897 0.4145 0.4065 0.1790 0.2473 

Iter. 2 0.6933 0.6873 0.2897 0.4145 0.4065 0.1790 0.2473 

Iter. 3 0.7972 0.7110 0.1808 0.5130 0.3600 0.1270 0.2397 

Iter. 4 0.8341 0.7781 0.1311 0.5158 0.3857 0.0985 0.2391 

Iter. 5 0.7980 0.7341 0.1763 0.4987 0.3790 0.1223 0.2388 

R
ep

li
ca

ti
o

n
 2

 Iter. 1 0.9245 0.8284 0.0259 0.6603 0.2908 0.0490 0.2501 

Iter. 2 0.8890 0.6601 0.0883 0.6904 0.2255 0.0841 0.2495 

Iter. 3 0.8890 0.6601 0.0883 0.6904 0.2255 0.0841 0.2495 

Iter. 4 0.8890 0.6601 0.0883 0.6904 0.2255 0.0841 0.2495 

Iter. 5 0.9148 0.7719 0.0449 0.6844 0.2556 0.0600 0.2492 

R
ep

li
ca

ti
o

n
 3

 Iter. 1 0.8978 0.9296 0.0371 0.3918 0.5683 0.0399 0.2467 

Iter. 2 0.7940 0.7151 0.1835 0.5063 0.3660 0.1277 0.2395 

Iter. 3 0.7940 0.7151 0.1835 0.5063 0.3660 0.1277 0.2395 

Iter. 4 0.8150 0.7970 0.1478 0.4699 0.4281 0.1020 0.2377 

Iter. 5 0.7857 0.7773 0.1814 0.4496 0.4326 0.1177 0.2376 
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CHAPTER 7 

 

 

CONCLUSIONS 

 

 

 

PO is the problem of allocating funds between investment instruments in the financial market 

such as stocks, bonds, mutual funds, options and deposit accounts. The DM, personal or 

corporate, tries to maximize the ending wealth; and may also take other factors into account. 

This thesis addressed several approaches to multicriteria portfolio optimization.  

 

We started with looking into the effects of different criteria on decision and objective spaces of 

the problem. For this purpose, we utilized single-period optimization settings with the criteria 

of expected return, variance, liquidity and CVaR. We also considered employing cardinality 

and weight constraints. We carried out computational studies using stocks from ISE and 

reported our findings. We first considered two-criteria models with all pairs of our four criteria. 

We provided insights into the conflict of criteria and the properties of the efficient frontiers of 

two-criteria models. We also looked into the effects of constraints on these issues.  Next, we 

considered two cases of three-criteria models: expected return–variance–liquidity and expected 

return–variance–CVaR. We compared the results of two-criteria models to the results of the 

three-criteria models, both without and with constraints. We did not detect considerable 

improvements in values of the criterion that was previously disregarded. However, since the 

solutions of the two-criteria models were still inefficient to some extent for the three-criteria 

cases, we found it meaningful to take the third criterion into account even if only for tie-

breaking purposes. Moreover, we showed that considering additional criteria results in enlarged 

regions in the efficient frontier that the DM may be interested in. The effects of constraints on 

the ranges of criteria in three-criteria models were also discussed. Lastly, we used our four 

criteria together and saw that adding the fourth criterion results in changes similar to the cases 

of adding the third criterion. There are no substantial improvements in the criterion that was 

previously omitted, but its range in the efficient frontier is enlarged. In conclusion, we showed 

that it is meaningful to consider multiple criteria in portfolio optimization. Recently, 

nonconventional investors with additional criteria to expected return and variance have been 

addressed in the literature; and we demonstrated the potential effects of these criteria. Different 

criteria result in different portfolios of investments, and by including additional criteria, the 

DM can be provided with different efficient regions that were previously unaccounted for. It is 

also possible to include constraints that limit the number of securities in a portfolio and the 

weight each security can take; and we illustrated the changes these constraints bring to 

investment options as well. As our insights on the effects of constraints on the criteria 

considered, expected return and liquidity are very sensitive to constraints that impose lower 

bounds on the number of stocks in the portfolio. Since these criteria attain their best values with 
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a single stock, such constraints affect them greatly. Variance and CVaR, on the other hand, 

benefit from differentiation; and attain their best values with combinations of stocks. As a 

result, constraints that limit the maximum number of stocks were expected to have substantial 

effects on these criteria. However, variance and CVaR are observed to be quite flexible to such 

constraints; their best values attained with constraints are close the best values without 

constraints. Moreover, we can say that variance and CVaR are more flexible to changes in the 

available security pool than expected return and liquidity. These two risk measures can achieve 

good values with several different combinations of securities; but expected return and liquidity 

suffer greatly when securities that perform best with respect to them are lost. 

 

We used genetic algorithm approaches as heuristics to solve PO problems with multiple criteria 

and complicating constraints. We applied a well-known genetic algorithm, NSGA-II, to solve 

PO with two and three criteria. Besides the conventional criteria of expected return and 

variance, we used a linear risk measure of expected returns below a DM-specified level. Using 

stocks from ISE, we compared the solutions of NSGA-II to exact efficient solutions and found 

that NSGA-II performs well with both two and three criteria. We also developed a genetic 

algorithm to solve expected return-variance PO with cardinality and weight constraints. We 

constrained the maximum number of securities that can be selected and the maximum weight 

each security can assume. These constraints complicated the formulation and introduced binary 

variables. The crossover and mutation operators were designed to obey the cardinality 

constraint and a repair mechanism was used to handle the weight constraint. We also included 

the DM in the process by conducting the search towards a reference point specified by her/him. 

Our computational studies showed that the proposed algorithm produces good convergence, 

especially when the number of securities is not large. Issues such as computational studies on 

the run time of the algorithm, extracting DM preferences by an improved procedure, being able 

to handle different types of constraints and testing different crossover operators were discussed 

as future studies. We consider genetic algorithms as useful tools for PO problems where there 

are many available securities, numerous criteria including nonlinear ones, and complicating 

constraints.  

 

We also developed SP approaches to the multicriteria multi-period PO problem. We 

represented the uncertainties of the financial markets by discrete scenarios. Our scenario 

generation technique followed from our discussions on efficient market hypotheses and random 

walk models. After reviewing the literature on market efficiency and conducting statistical 

tests, we assumed that the TSM has weak-form market efficiency and thus follows a random 

walk model. We derived individual stock returns from a market-representative index using the 

Single Index Model. We employed expected return, CVaR and liquidity as our criteria in our 

model. Using stocks from ISE, we carried out computational studies, reported our findings and 

commented on our observations. This study is important in the sense that it is the first SP study 

that addresses multi-period multicriteria PO with CVaR. We also considered increasing the 

approximation capabilities of our scenario trees to represent the market behavior better. For this 

purpose, we generated a large number of scenarios, and then clustered them into classes of 

similarity to decrease computational complexity. 
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As another study in SP approaches to PO, we provided a detailed discussion on the properties 

of optimal SP solutions with different objectives and time periods. One goal was to see if 

single-period models can be used find optimal solutions to multi-period problems. This was 

considered a possibility since we do not consider assets with multi-period maturities and our 

scenario generation procedure involves randomness. First, with single-period models, we 

discussed the characteristics of optimal solutions when the objective is to maximize expected 

return or minimize CVaR. We showed that when certain conditions are met, optimal solutions 

can be found by observation. Next, we compared single and multi-period models of 

maximizing expected return and minimizing CVaR. We showed that single-period models may 

not find the optimal solutions to the multi-period problems. So, even though single-period 

models offer reduced computational complexity, multi-period models are superior when the 

DM has a multi-period planning horizon. Later, we also considered models that consider 

expected return and CVaR together. We demonstrated that when the problem is of multi-period 

nature, single-period models can result in suboptimal or infeasible solutions with a single 

criterion, and dominated solutions when we consider two criteria. We discussed our results in 

relation to the TSM whenever applicable, thus earned our findings practical value.  

 

With our SP approaches to this point, we provided the DM a set of fixed decisions to 

implement throughout the planning horizon. Later we considered rolling horizon settings where 

future decisions are revised as time proceeds to reveal the up-to-date condition of the stock 

market. We updated the parameters of the random walk model as a period passes to reveal the 

latest return of the market-representative index. With updated parameters, we revised the 

scenario tree for the remaining periods of the horizon. We tested the performance of this 

approach to fixed scenario trees. As we had presumed, revised scenario trees did not bring 

substantial differences. This was attributed to the working mechanisms of the procedures used 

in scenario generation. On the other hand, we believe that rolling horizon settings in SP can be 

useful for DMs who are likely to change their preferences over time. Preferences of a DM can 

depend on past achievements and current wealth. In such cases, the DM may wish to make 

decisions for the future periods that are different than what she/he had made at the beginning of 

the planning horizon. 

 

Lastly, to provide the DM a single solution according to her/his preferences rather than a 

representation of the whole efficient frontier, we considered an interactive approach. The 

developed approach was based on the Interactive Weighted Tchebycheff Procedure, which 

aims to converge the best solution by eliciting preference information from the DM in 

consecutive iterations and contracting the weight space accordingly. In our approach, we also 

took the stochasticity of market movements modeled by scenarios into account and provided 

the DM with statistical information. Working with multiple clustered scenarios, we constructed 

confidence ellipsoids around solutions and the DM was asked to make her/his preferences 

considering these ellipsoids. According to her/his selection, an increasingly concentrated set of 

ellipsoids were generated in each iteration. We modified the Interactive Weighted Tchebycheff 

Procedure by preserving the best solution generated so far throughout the process. We carried 

out experimental studies by simulating DM preferences with three types of underlying 
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preference functions. Utilizing stocks from ISE, we showed that the proposed approach 

produces good results.  

 

The insights we gained that are specific to the approaches studied are discussed in related parts 

of the thesis. But in general, we can say that the PO problem is an extensive area of research. 

There are many available investment options, several probable constraints and different 

possible planning horizons. Moreover, each investor is likely to consider different criteria and 

have different preferences. The PO model to be used should be constructed carefully taking all 

these factors into account since the results depend on them greatly. We consider it essential that 

the DM is involved in the process starting from the problem definition phase. She/he should 

also be provided guidance after efficient solutions with respect to the criteria considered are 

generated. There are typically many efficient solutions from many different regions of the 

solution space. The DM can make a better and more informed decision if she/he is enlightened 

about the interaction and conflict of criteria. If it is possible to extract her/his preferences 

before the efficient solutions are generated, interactive approaches may also be useful tools to 

guide the DM. 

 

There are several issues that we consider as future studies. The modifications and 

improvements considered for the genetic algorithm we proposed are already discussed. For our 

SP approaches, we may consider the use of multi-index models to estimate stock returns. 

Currently, we are regressing the return of individual stocks on the return of an index. It is also 

possible to consider multiple factors that are likely to affect stock returns. As an example, the 

Three-Factor Model of Fama and French (see Bodie at el., 2009, p. 336) has become the 

dominating multi-factor model of stock returns in both academic and industry applications. In 

this model, in addition to the market index, market capitalization and book-to-market-ratio are 

also considered as factors. Scenario generation for three factors would be more complex and 

require different procedures. Furthermore, additional types of securities such as bonds or 

mutual funds may be considered. As another issue, we consider generalizing the results of our 

work on the properties of optimal SP solutions with different criteria and time periods. We 

looked at the solutions of single vs. multi-period models; now we can enhance our studies by 

generalizations to short vs. long-horizon SP. In addition, the rolling horizon approach may be 

used for investment settings where the DM changes preferences over time.  
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APPENDIX A 

 

 

LISTS OF STOCKS USED FOR APPLICATIONS 

 

 

 

Table 17. List of stocks used in Sections 3.1–3.3 

ACIBADEM SAĞLIK  ATA YAT. ORT.  

ADANA ÇİMENTO  A   AKIN TEKSTİL  

ADANA ÇİMENTO  B   ATLAS YAT. ORT.  

ADEL KALEMCİLİK  ATLANTİS YAT. ORT.  

ADANA ÇİMENTO  C   AVİVA SİGORTA  

ANADOLU EFES  ALTINYUNUS ÇEŞME  

AFM FİLM  AYEN ENERJİ  

AFYON ÇİMENTO  AYGAZ  

ATAKULE GMYO  BAGFAŞ  

AKAL TEKSTİL  BAK AMBALAJ  

AKBANK  BANVİT  

AKÇANSA  BERDAN TEKSTİL  

AK ENERJİ  BOSCH FREN SİSTEMLERİ  

AKSİGORTA  BISAŞ TEKSTİL  

AKSA  BEŞİKTAŞ FUTBOL YAT.  

AKSU ENERJİ  BOLU ÇİMENTO  

ALARKO HOLDİNG  BOSSA  

ALARKO CARRIER  BOYNER MAĞAZACILIK  

ALCATEL LUCENT TELETAŞ BRİSA  

ALARKO GMYO  BİRLİK MENSUCAT  

ALKİM KAĞIT  BOROVA YAPI  

ALKİM KİMYA  BORUSAN MANNESMANN  

ALTERNATİFBANK  BORUSAN YAT. PAZ.  

ALTINYILDIZ  BSH EV ALETLERİ  

ALTINYAĞ  BATISÖKE ÇİMENTO  

ANADOLU CAM  BATI ÇİMENTO  

ANADOLU HAYAT EMEKLİLİK BURSA ÇİMENTO  

ANADOLU SİGORTA  BURÇELİK  

ARÇELİK  BURÇELİK VANA  

ARENA BİLGİSAYAR  ÇBS BOYA  

ALTERNATİF YAT. ORT.  ÇELİK HALAT  

ARSAN TEKSTİL  ÇEMTAŞ  

ASELSAN  CEYLAN YATIRIM HOLDİNG 

ASLAN ÇİMENTO  ÇİMSA  

ANADOLU ISUZU  ÇELEBİ  
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Table 18. List of stocks used in Section 4.1.2 for the case of 10 stocks 

ARÇELİK 

BANVİT 

DESA 

DOĞAN YAYIN HOLDİNG 

ECZACIBAŞI İLAÇ 

GOODYEAR 

IZOCAM 

KENT GIDA 

MİGROS 

PETROL OFİSİ 
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Table 19. List of stocks used in Section 4.1.2 for the case of 100 stocks 

ARÇELİK BURSA ÇİMENTO KRİSTAL KOLA 

BANVİT ÇBS BOYA KÜTAHYA PORSELEN 

DESA COCA COLA İÇECEK MEGES BOYA 

DOĞAN YAYIN HOLDİNG ÇBS PRINTAŞ MENDERES TEKSTİL 

ECZACIBAŞI İLAÇ ÇİMSA MERT GIDA 

GOODYEAR ÇELEBİ MUTLU AKÜ 

IZOCAM DARDANEL NUROL GMYO 

KENT GIDA DENİZBANK PARSAN 

MİGROS DENTAŞ AMBALAJ PINAR ET VE UN 

PETROL OFİSİ DERİMOD RAY SİGORTA 

ACIBADEM SAĞLIK DOĞUŞ OTOMOTİV SABANCI HOLDİNG 

ADEL KALEMCİLİK DYO BOYA ŞİŞE CAM 

ANADOLU EFES EGE SERAMİK ŞEKER PİLİÇ 

AFM FİLM EURO YAT. ORT. TAÇ YATIRIM ORT 

AK ENERJİ EREĞLİ DEMİR ÇELİK TAT KONSERVE 

AKMERKEZ GMYO ESCORT COMPUTER TAV HAVALİMANLARI 

ALARKO HOLDİNG FENERBAHÇE SPORTİF T.TUBORG 

ALTINYILDIZ FRİGO PAK GIDA TURKCELL 

ALTINYAĞ FORD OTOSAN TÜRK HAVA YOLLARI 

ANADOLU CAM GALATASARAY SPORTİF TOFAŞ OTO FAB. 

ARENA BİLGİSAYAR GOLDAŞ KUYUMCULUK TRAKYA CAM 

ARSAN TEKSTİL GRUNDİG ELEKTRONİK TRABZONSPOR SPORTİF 

ASELSAN HÜRRİYET GAZETECİLİK TÜRK TRAKTÖR 

ANADOLU ISUZU İDAŞ TUKAŞ 

ATLANTİS YAT. ORT. İHLAS HOLDİNG TÜPRAŞ 

AVİVA SİGORTA İNTEMA ÜLKER BİSKÜVİ 

AYGAZ KAREL ELEKTRONİK VAKKO TEKSTİL 

BERDAN TEKSTİL KARSAN OTOMOTİV VANET 

BOSCH FREN SİSTEMLERİ KOÇ HOLDİNG VESTEL 

BİM MAĞAZALARI KEREVİTAŞ GIDA YATAŞ 

BEŞİKTAŞ FUTBOL YATIRIM KELEBEK MOBİLYA YÜNSA 

BSH EV ALETLERİ KOZA DAVETİYE ZORLU ENERJİ 
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Table 20. Expected returns of 25 stocks used in Section 4.2.2.1 

Stock Expected Return 

1 -4.95 

2 -5.87 

3 -8.63 

4 1.44 

5 -7.97 

6 0.55 

7 3.94 

8 -0.01 

9 0.47 

10 -1.89 

11 -7.41 

12 -0.22 

13 4.80 

14 8.69 

15 -2.15 

16 -8.14 

17 0.83 

18 1.88 

19 -1.13 

20 -5.74 

21 10.12 

22 -11.80 

23 -2.55 

24 -6.61 

25 -3.18 
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Table 21. Expected returns of 50 stocks used in Section 4.2.2.1 

Stock Expected Return Stock Expected Return 

1 -5.28 26 -5.92 

2 3.03 27 -1.90 

3 4.31 28 -1.65 

4 -7.13 29 10.48 

5 1.74 30 3.35 

6 -2.28 31 -5.95 

7 -4.68 32 -7.27 

8 1.40 33 -3.61 

9 -6.97 34 1.68 

10 -6.91 35 9.33 

11 -1.93 36 -3.11 

12 -11.62 37 -0.90 

13 -4.08 38 -7.97 

14 -6.73 39 6.00 

15 -8.95 40 2.93 

16 -4.47 41 4.38 

17 0.17 42 3.64 

18 -1.61 43 -10.46 

19 10.95 44 5.59 

20 -0.90 45 -0.35 

21 -4.49 46 -3.09 

22 3.50 47 -2.32 

23 3.05 48 5.42 

24 -4.76 49 9.50 

25 -0.63 50 5.07 
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Table 22. Covariance matrix of 25 stocks used in Section 4.2.2.1 

σij 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 71.20 -37.40 -6.71 0.79 16.37 -34.79 -58.32 -42.87 -19.67 25.96 30.13 7.65 27.21 

2 -37.40 102.73 -12.03 23.33 22.56 9.68 121.41 87.40 45.59 70.69 -10.25 22.63 48.07 

3 -6.71 -12.03 94.89 75.37 36.33 37.60 -9.28 88.24 14.01 -48.11 32.56 8.77 30.34 

4 0.79 23.33 75.37 191.29 113.68 52.30 81.91 173.86 36.30 31.80 100.64 37.09 125.09 

5 16.37 22.56 36.33 113.68 127.99 18.34 44.69 107.48 52.04 77.19 68.91 11.60 116.09 

6 -34.79 9.68 37.60 52.30 18.34 153.37 51.72 61.22 17.92 17.89 55.41 -6.43 27.64 

7 -58.32 121.41 -9.28 81.91 44.69 51.72 289.41 150.82 74.34 70.63 -15.79 -4.49 95.72 

8 -42.87 87.40 88.24 173.86 107.48 61.22 150.82 243.91 32.67 34.30 58.00 20.97 140.12 

9 -19.67 45.59 14.01 36.30 52.04 17.92 74.34 32.67 118.57 62.70 21.79 31.86 19.38 

10 25.96 70.69 -48.11 31.80 77.19 17.89 70.63 34.30 62.70 184.65 70.03 32.08 78.98 

11 30.13 -10.25 32.56 100.64 68.91 55.41 -15.79 58.00 21.79 70.03 114.66 37.24 61.58 

12 7.65 22.63 8.77 37.09 11.60 -6.43 -4.49 20.97 31.86 32.08 37.24 47.56 9.59 

13 27.21 48.07 30.34 125.09 116.09 27.64 95.72 140.12 19.38 78.98 61.58 9.59 156.62 

14 -4.38 18.55 40.17 19.36 13.83 10.20 12.73 74.27 -38.55 -41.88 -13.36 -17.54 58.90 

15 49.43 18.94 53.79 209.27 149.71 67.98 35.32 145.06 53.21 125.38 166.23 69.23 152.77 

16 18.76 83.22 -9.83 90.96 72.65 12.77 168.78 110.62 32.29 88.89 9.55 14.32 131.44 

17 22.12 78.39 59.05 85.09 110.90 21.06 37.02 133.30 55.62 88.99 43.22 35.44 133.87 

18 15.25 -13.63 -26.70 53.46 20.27 65.17 -20.32 10.42 -44.42 50.92 69.85 11.19 34.24 

19 -4.68 95.45 63.54 103.68 101.79 31.71 56.37 176.64 25.41 66.69 35.64 32.46 139.83 

20 6.43 17.75 36.77 85.00 101.16 16.86 12.42 103.78 7.00 39.09 46.20 -3.91 104.27 

21 57.31 38.62 42.76 115.03 123.22 -26.32 9.73 105.28 37.05 73.47 54.70 42.02 143.98 

22 41.80 -14.63 33.42 123.82 96.20 57.75 118.12 83.48 38.10 76.13 83.77 -10.69 101.65 

23 47.34 -31.23 29.88 41.51 99.70 43.13 -99.85 -19.05 74.79 105.07 93.54 28.65 31.21 

24 35.69 37.11 -20.85 64.84 45.99 22.34 -34.46 72.52 -77.58 60.89 64.04 28.18 116.97 

25 17.73 67.10 -15.47 108.61 48.48 -30.43 77.95 76.00 65.51 122.78 93.73 90.32 52.45 
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Table 22  cont’d  

σij 14 15 16 17 18 19 20 21 22 23 24 25 

1 -4.38 49.43 18.76 22.12 15.25 -4.68 6.43 57.31 41.80 47.34 35.69 17.73 

2 18.55 18.94 83.22 78.39 -13.63 95.45 17.75 38.62 -14.63 -31.23 37.11 67.10 

3 40.17 53.79 -9.83 59.05 -26.70 63.54 36.77 42.76 33.42 29.88 -20.85 -15.47 

4 19.36 209.27 90.96 85.09 53.46 103.68 85.00 115.03 123.82 41.51 64.84 108.61 

5 13.83 149.71 72.65 110.90 20.27 101.79 101.16 123.22 96.20 99.70 45.99 48.48 

6 10.20 67.98 12.77 21.06 65.17 31.71 16.86 -26.32 57.75 43.13 22.34 -30.43 

7 12.73 35.32 168.78 37.02 -20.32 56.37 12.42 9.73 118.12 -99.85 -34.46 77.95 

8 74.27 145.06 110.62 133.30 10.42 176.64 103.78 105.28 83.48 -19.05 72.52 76.00 

9 -38.55 53.21 32.29 55.62 -44.42 25.41 7.00 37.05 38.10 74.79 -77.58 65.51 

10 -41.88 125.38 88.89 88.99 50.92 66.69 39.09 73.47 76.13 105.07 60.89 122.78 

11 -13.36 166.23 9.55 43.22 69.85 35.64 46.20 54.70 83.77 93.54 64.04 93.73 

12 -17.54 69.23 14.32 35.44 11.19 32.46 -3.91 42.02 -10.69 28.65 28.18 90.32 

13 58.90 152.77 131.44 133.87 34.24 139.83 104.27 143.98 101.65 31.21 116.97 52.45 

14 131.76 -37.60 -6.32 64.31 -40.09 87.82 64.69 31.10 -57.47 -88.97 104.37 -67.58 

15 -37.60 328.67 132.10 136.04 127.64 130.61 91.45 184.61 172.09 170.35 116.81 177.38 

16 -6.32 132.10 224.93 119.49 44.37 124.03 33.63 143.58 125.34 14.25 58.84 78.97 

17 64.31 136.04 119.49 233.91 -8.82 226.71 102.38 198.23 19.96 109.24 109.18 33.47 

18 -40.09 127.64 44.37 -8.82 146.49 11.67 14.08 22.40 52.44 56.41 112.06 46.57 

19 87.82 130.61 124.03 226.71 11.67 250.65 112.12 186.09 -5.98 56.92 150.82 33.02 

20 64.69 91.45 33.63 102.38 14.08 112.12 110.66 98.17 29.49 44.62 96.03 -4.42 

21 31.10 184.61 143.58 198.23 22.40 186.09 98.17 231.34 58.05 114.53 118.35 68.81 

22 -57.47 172.09 125.34 19.96 52.44 -5.98 29.49 58.05 265.19 90.71 -70.64 67.59 

23 -88.97 170.35 14.25 109.24 56.41 56.92 44.62 114.53 90.71 280.96 -26.76 28.63 

24 104.37 116.81 58.84 109.18 112.06 150.82 96.03 118.35 -70.64 -26.76 311.94 41.53 

25 -67.58 177.38 78.97 33.47 46.57 33.02 -4.42 68.81 67.59 28.63 41.53 257.65 
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Table 23. Covariance matrix of 50 stocks used in Section 4.2.2.1 

σij 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 135.21 109.95 41.95 -14.42 5.59 83.25 21.85 48.52 107.02 99.80 52.59 78.90 92.69 

2 109.95 267.71 44.49 69.99 18.13 170.58 98.10 148.31 140.46 141.72 35.64 97.85 84.51 

3 41.95 44.49 43.44 15.31 9.86 35.72 25.88 37.99 57.79 43.62 52.77 51.51 40.96 

4 -14.42 69.99 15.31 217.95 -38.42 94.93 -6.35 93.24 -22.82 84.32 51.71 65.61 -35.77 

5 5.59 18.13 9.86 -38.42 68.65 -17.35 15.60 28.59 37.43 20.28 -8.69 -3.85 4.63 

6 83.25 170.58 35.72 94.93 -17.35 182.10 66.03 133.37 83.07 98.67 38.31 44.28 25.45 

7 21.85 98.10 25.88 -6.35 15.60 66.03 127.54 49.46 80.00 32.32 -7.55 45.22 17.65 

8 48.52 148.31 37.99 93.24 28.59 133.37 49.46 152.41 69.80 120.64 40.23 39.08 -15.31 

9 107.02 140.46 57.79 -22.82 37.43 83.07 80.00 69.80 155.71 67.98 37.35 71.37 71.31 

10 99.80 141.72 43.62 84.32 20.28 98.67 32.32 120.64 67.98 199.18 73.54 123.51 39.00 

11 52.59 35.64 52.77 51.71 -8.69 38.31 -7.55 40.23 37.35 73.54 100.90 85.51 80.92 

12 78.90 97.85 51.51 65.61 -3.85 44.28 45.22 39.08 71.37 123.51 85.51 153.45 107.06 

13 92.69 84.51 40.96 -35.77 4.63 25.45 17.65 -15.31 71.31 39.00 80.92 107.06 231.81 

14 25.38 80.13 66.63 23.62 -35.74 63.89 96.31 50.15 83.24 36.58 80.64 80.84 32.38 

15 102.31 219.51 72.56 12.10 24.56 146.76 115.81 103.81 186.11 39.14 57.80 76.51 139.69 

16 89.42 117.37 2.01 -41.00 21.33 65.29 -16.31 44.72 41.78 66.32 3.74 10.46 97.75 

17 97.56 114.12 47.26 63.56 0.76 79.29 -28.13 89.70 48.33 149.18 105.53 100.39 98.43 

18 74.10 100.15 73.16 -10.39 33.90 57.03 68.57 65.60 123.51 65.34 84.60 87.63 99.62 

19 68.50 148.14 45.98 74.84 60.32 72.16 51.05 113.99 108.72 134.83 52.88 103.15 45.05 

20 52.37 137.19 21.24 15.26 47.16 92.33 26.01 102.79 97.15 38.20 -17.81 -21.91 -24.67 

21 73.58 112.50 10.14 -7.73 -2.41 52.70 24.42 47.33 73.03 78.52 32.85 56.61 57.80 

22 14.18 11.83 25.82 142.79 -28.36 55.82 -20.33 50.64 4.12 56.03 56.62 53.56 -29.78 

23 71.17 82.76 33.61 82.08 -39.83 81.11 10.21 25.96 45.84 53.15 54.44 83.51 82.24 

24 121.06 151.36 34.82 71.61 -14.69 93.90 70.40 54.63 91.32 158.47 47.89 158.75 90.72 

25 41.38 102.52 18.75 14.27 8.25 8.10 8.10 24.51 30.33 83.84 43.02 89.56 100.46 
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Table 23  cont’d  

σij 14 15 16 17 18 19 20 21 22 23 24 25 

1 25.38 102.31 89.42 97.56 74.10 68.50 52.37 73.58 14.18 71.17 121.06 41.38 

2 80.13 219.51 117.37 114.12 100.15 148.14 137.19 112.50 11.83 82.76 151.36 102.52 

3 66.63 72.56 2.01 47.26 73.16 45.98 21.24 10.14 25.82 33.61 34.82 18.75 

4 23.62 12.10 -41.00 63.56 -10.39 74.84 15.26 -7.73 142.79 82.08 71.61 14.27 

5 -35.74 24.56 21.33 0.76 33.90 60.32 47.16 -2.41 -28.36 -39.83 -14.69 8.25 

6 63.89 146.76 65.29 79.29 57.03 72.16 92.33 52.70 55.82 81.11 93.90 8.10 

7 96.31 115.81 -16.31 -28.13 68.57 51.05 26.01 24.42 -20.33 10.21 70.40 8.10 

8 50.15 103.81 44.72 89.70 65.60 113.99 102.79 47.33 50.64 25.96 54.63 24.51 

9 83.24 186.11 41.78 48.33 123.51 108.72 97.15 73.03 4.12 45.84 91.32 30.33 

10 36.58 39.14 66.32 149.18 65.34 134.83 38.20 78.52 56.03 53.15 158.47 83.84 

11 80.64 57.80 3.74 105.53 84.60 52.88 -17.81 32.85 56.62 54.44 47.89 43.02 

12 80.84 76.51 10.46 100.39 87.63 103.15 -21.91 56.61 53.56 83.51 158.75 89.56 

13 32.38 139.69 97.75 98.43 99.62 45.05 -24.67 57.80 -29.78 82.24 90.72 100.46 

14 251.78 145.51 -73.54 43.01 135.59 35.93 -13.93 76.25 25.48 27.53 36.81 31.27 

15 145.51 322.34 59.70 61.07 172.50 124.89 129.80 99.23 3.84 80.19 75.22 51.31 

16 -73.54 59.70 185.06 95.64 6.23 21.67 81.70 29.55 -58.77 43.30 54.39 77.60 

17 43.01 61.07 95.64 183.62 76.33 92.39 28.73 85.72 44.57 63.86 91.45 98.95 

18 135.59 172.50 6.23 76.33 155.14 100.73 39.91 68.71 10.95 29.86 50.48 44.90 

19 35.93 124.89 21.67 92.39 100.73 183.21 82.62 89.28 53.86 27.32 108.59 65.23 

20 -13.93 129.80 81.70 28.73 39.91 82.62 171.80 18.25 2.41 18.87 7.81 8.08 

21 76.25 99.23 29.55 85.72 68.71 89.28 18.25 189.97 -5.67 -9.26 69.80 59.29 

22 25.48 3.84 -58.77 44.57 10.95 53.86 2.41 -5.67 129.13 64.96 51.60 -22.05 

23 27.53 80.19 43.30 63.86 29.86 27.32 18.87 -9.26 64.96 123.73 111.51 37.73 

24 36.81 75.22 54.39 91.45 50.48 108.59 7.81 69.80 51.60 111.51 235.41 84.52 

25 31.27 51.31 77.60 98.95 44.90 65.23 8.08 59.29 -22.05 37.73 84.52 127.91 
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Table 23  cont’d  

σij 26 27 28 29 30 31 32 33 34 35 36 37 38 

1 -30.78 83.66 88.78 131.05 75.71 87.03 73.71 90.56 57.04 56.39 55.67 51.12 55.98 

2 149.30 42.53 168.93 182.02 90.97 84.43 173.62 100.65 131.76 119.26 57.91 68.36 97.75 

3 15.03 41.29 43.72 91.00 53.27 65.72 45.97 48.94 64.50 36.15 38.25 47.66 52.24 

4 106.58 -79.67 28.12 108.13 114.01 67.76 96.08 26.35 120.64 40.39 14.27 3.04 80.39 

5 -25.86 73.96 24.79 -17.23 -60.30 -18.66 1.36 13.76 -0.90 -38.08 15.60 53.42 -5.63 

6 104.75 13.73 115.35 156.60 101.55 93.91 172.79 29.51 99.88 104.84 23.12 28.71 133.08 

7 123.46 -4.52 28.34 85.36 51.59 4.77 114.30 -26.74 44.97 91.82 19.07 60.91 120.72 

8 74.72 43.58 108.99 107.65 51.14 59.88 128.03 25.68 89.55 44.36 7.37 43.96 95.97 

9 58.81 60.01 127.20 145.53 76.92 66.20 112.12 83.44 74.22 61.04 78.76 97.53 98.20 

10 -2.05 80.62 62.56 135.61 84.71 75.29 90.75 63.87 97.59 54.30 17.21 51.95 74.15 

11 -3.70 52.27 26.56 125.94 82.05 101.78 54.32 73.92 88.29 47.08 64.19 47.97 31.13 

12 42.87 35.20 22.14 166.28 119.33 88.66 81.70 92.02 117.15 86.24 78.49 77.75 67.37 

13 6.68 109.41 23.36 143.05 35.56 107.43 72.79 130.21 89.76 97.87 133.63 83.81 -20.99 

14 144.11 -41.26 50.44 153.48 145.37 67.52 107.37 10.32 78.29 116.57 44.22 44.68 109.51 

15 182.45 41.68 180.02 220.07 104.05 110.52 207.40 114.70 134.26 130.79 138.96 124.00 118.59 

16 -58.57 124.57 83.13 26.89 -51.72 57.78 3.79 90.85 31.30 27.55 2.05 -6.53 -50.49 

17 -30.44 98.31 76.42 131.69 66.26 112.87 57.25 112.70 97.49 45.70 49.44 31.55 -4.65 

18 59.74 76.72 83.75 157.04 76.89 86.43 111.03 77.05 91.50 70.78 97.30 108.18 77.60 

19 70.50 51.89 98.94 132.71 64.40 42.01 123.41 80.18 98.67 24.20 83.29 111.19 71.27 

20 43.74 41.46 161.55 42.67 -8.08 31.66 53.40 65.17 49.08 -9.11 2.38 28.46 42.40 

21 61.65 -8.57 66.52 75.54 65.83 -12.73 99.96 25.42 -11.47 38.24 68.53 36.15 -3.96 

22 32.90 -51.42 22.08 96.22 111.10 64.40 62.80 28.11 78.50 9.89 29.02 18.38 77.34 

23 37.72 2.99 51.75 142.70 107.08 115.75 63.99 95.59 114.41 82.86 48.60 20.67 65.15 

24 47.68 21.84 41.53 175.20 137.73 77.67 108.97 80.67 108.78 108.75 51.78 61.52 108.13 

25 23.46 51.45 35.17 64.49 16.57 42.94 3.08 95.84 69.83 46.49 35.94 23.49 -46.36 
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Table 23  cont’d  

σij 39 40 41 42 43 44 45 46 47 48 49 50 

1 151.65 207.94 79.42 49.31 50.24 76.03 66.85 74.55 -5.67 33.38 125.02 54.34 

2 243.72 170.43 175.91 -41.38 120.00 98.62 96.27 69.60 -18.84 73.31 169.54 37.17 

3 63.86 93.17 34.91 -7.66 0.60 17.41 25.57 4.97 35.97 27.64 68.19 54.35 

4 131.83 35.62 90.50 -23.07 0.92 -76.46 28.79 -18.22 68.68 70.50 18.45 84.61 

5 27.56 18.76 -34.10 -15.80 21.79 33.81 19.01 12.79 7.40 -13.37 39.98 -24.60 

6 176.39 96.11 164.70 -27.10 38.89 65.01 69.52 41.72 -25.62 66.82 108.25 51.31 

7 87.45 74.44 106.14 -33.11 3.13 45.69 -24.31 -13.34 -1.28 25.62 136.00 -17.13 

8 164.41 75.45 96.71 -69.99 19.23 30.45 68.57 26.53 16.02 36.02 104.93 54.74 

9 165.31 165.94 97.65 45.47 39.55 126.00 73.78 46.29 8.76 49.25 155.76 14.44 

10 211.95 242.26 83.61 -52.34 30.62 -31.49 40.54 51.00 57.34 19.00 169.15 109.85 

11 75.76 128.84 54.33 -14.69 2.30 -31.84 27.54 10.89 67.04 23.88 49.48 122.49 

12 162.39 241.76 94.84 2.79 40.73 -33.55 6.65 20.96 80.63 43.16 144.45 105.87 

13 71.28 172.91 94.00 14.78 131.41 29.95 25.39 57.77 2.31 32.45 55.11 80.37 

14 63.34 81.64 127.74 -45.27 -64.81 4.51 -7.98 -39.55 65.04 24.13 102.52 91.99 

15 187.76 115.75 197.91 23.18 97.90 169.46 104.58 46.59 -12.89 89.95 135.25 26.74 

16 57.74 84.52 8.48 -39.03 136.75 65.30 71.74 89.17 -79.95 14.58 29.25 5.35 

17 140.52 180.24 64.90 -46.00 59.18 -23.87 72.14 62.16 42.82 17.18 70.50 140.67 

18 118.57 147.23 95.44 -9.15 14.68 58.47 44.38 16.39 52.88 29.05 124.38 78.00 

19 220.78 168.54 95.63 5.00 47.92 37.16 69.13 39.24 67.40 35.31 146.73 52.74 

20 110.89 7.58 20.37 1.50 61.21 132.99 113.78 47.37 -42.43 51.11 56.97 -43.89 

21 133.51 88.12 133.02 38.61 16.86 45.29 45.38 54.94 7.91 -26.47 62.43 40.43 

22 103.33 63.21 53.23 41.12 -39.70 -38.87 30.80 -10.95 71.90 52.04 24.69 75.31 

23 106.26 140.46 78.14 31.34 62.22 14.38 40.45 27.49 11.91 83.24 61.32 63.69 

24 228.94 297.29 130.91 31.82 65.26 1.47 13.67 52.69 36.98 59.21 200.16 67.78 

25 72.22 122.51 26.76 -54.52 94.95 -24.82 20.90 33.65 23.12 10.95 54.69 57.74 
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Table 23  cont’d  

σij 1 2 3 4 5 6 7 8 9 10 11 12 13 

26 -30.78 149.30 15.03 106.58 -25.86 104.75 123.46 74.72 58.81 -2.05 -3.70 42.87 6.68 

27 83.66 42.53 41.29 -79.67 73.96 13.73 -4.52 43.58 60.01 80.62 52.27 35.20 109.41 

28 88.78 168.93 43.72 28.12 24.79 115.35 28.34 108.99 127.20 62.56 26.56 22.14 23.36 

29 131.05 182.02 91.00 108.13 -17.23 156.60 85.36 107.65 145.53 135.61 125.94 166.28 143.05 

30 75.71 90.97 53.27 114.01 -60.30 101.55 51.59 51.14 76.92 84.71 82.05 119.33 35.56 

31 87.03 84.43 65.72 67.76 -18.66 93.91 4.77 59.88 66.20 75.29 101.78 88.66 107.43 

32 73.71 173.62 45.97 96.08 1.36 172.79 114.30 128.03 112.12 90.75 54.32 81.70 72.79 

33 90.56 100.65 48.94 26.35 13.76 29.51 -26.74 25.68 83.44 63.87 73.92 92.02 130.21 

34 57.04 131.76 64.50 120.64 -0.90 99.88 44.97 89.55 74.22 97.59 88.29 117.15 89.76 

35 56.39 119.26 36.15 40.39 -38.08 104.84 91.82 44.36 61.04 54.30 47.08 86.24 97.87 

36 55.67 57.91 38.25 14.27 15.60 23.12 19.07 7.37 78.76 17.21 64.19 78.49 133.63 

37 51.12 68.36 47.66 3.04 53.42 28.71 60.91 43.96 97.53 51.95 47.97 77.75 83.81 

38 55.98 97.75 52.24 80.39 -5.63 133.08 120.72 95.97 98.20 74.15 31.13 67.37 -20.99 

39 151.65 243.72 63.86 131.83 27.56 176.39 87.45 164.41 165.31 211.95 75.76 162.39 71.28 

40 207.94 170.43 93.17 35.62 18.76 96.11 74.44 75.45 165.94 242.26 128.84 241.76 172.91 

41 79.42 175.91 34.91 90.50 -34.10 164.70 106.14 96.71 97.65 83.61 54.33 94.84 94.00 

42 49.31 -41.38 -7.66 -23.07 -15.80 -27.10 -33.11 -69.99 45.47 -52.34 -14.69 2.79 14.78 

43 50.24 120.00 0.60 0.92 21.79 38.89 3.13 19.23 39.55 30.62 2.30 40.73 131.41 

44 76.03 98.62 17.41 -76.46 33.81 65.01 45.69 30.45 126.00 -31.49 -31.84 -33.55 29.95 

45 66.85 96.27 25.57 28.79 19.01 69.52 -24.31 68.57 73.78 40.54 27.54 6.65 25.39 

46 74.55 69.60 4.97 -18.22 12.79 41.72 -13.34 26.53 46.29 51.00 10.89 20.96 57.77 

47 -5.67 -18.84 35.97 68.68 7.40 -25.62 -1.28 16.02 8.76 57.34 67.04 80.63 2.31 

48 33.38 73.31 27.64 70.50 -13.37 66.82 25.62 36.02 49.25 19.00 23.88 43.16 32.45 

49 125.02 169.54 68.19 18.45 39.98 108.25 136.00 104.93 155.76 169.15 49.48 144.45 55.11 

50 54.34 37.17 54.35 84.61 -24.60 51.31 -17.13 54.74 14.44 109.85 122.49 105.87 80.37 
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Table 23  cont’d  

σij 14 15 16 17 18 19 20 21 22 23 24 25 

26 144.11 182.45 -58.57 -30.44 59.74 70.50 43.74 61.65 32.90 37.72 47.68 23.46 

27 -41.26 41.68 124.57 98.31 76.72 51.89 41.46 -8.57 -51.42 2.99 21.84 51.45 

28 50.44 180.02 83.13 76.42 83.75 98.94 161.55 66.52 22.08 51.75 41.53 35.17 

29 153.48 220.07 26.89 131.69 157.04 132.71 42.67 75.54 96.22 142.70 175.20 64.49 

30 145.37 104.05 -51.72 66.26 76.89 64.40 -8.08 65.83 111.10 107.08 137.73 16.57 

31 67.52 110.52 57.78 112.87 86.43 42.01 31.66 -12.73 64.40 115.75 77.67 42.94 

32 107.37 207.40 3.79 57.25 111.03 123.41 53.40 99.96 62.80 63.99 108.97 3.08 

33 10.32 114.70 90.85 112.70 77.05 80.18 65.17 25.42 28.11 95.59 80.67 95.84 

34 78.29 134.26 31.30 97.49 91.50 98.67 49.08 -11.47 78.50 114.41 108.78 69.83 

35 116.57 130.79 27.55 45.70 70.78 24.20 -9.11 38.24 9.89 82.86 108.75 46.49 

36 44.22 138.96 2.05 49.44 97.30 83.29 2.38 68.53 29.02 48.60 51.78 35.94 

37 44.68 124.00 -6.53 31.55 108.18 111.19 28.46 36.15 18.38 20.67 61.52 23.49 

38 109.51 118.59 -50.49 -4.65 77.60 71.27 42.40 -3.96 77.34 65.15 108.13 -46.36 

39 63.34 187.76 57.74 140.52 118.57 220.78 110.89 133.51 103.33 106.26 228.94 72.22 

40 81.64 115.75 84.52 180.24 147.23 168.54 7.58 88.12 63.21 140.46 297.29 122.51 

41 127.74 197.91 8.48 64.90 95.44 95.63 20.37 133.02 53.23 78.14 130.91 26.76 

42 -45.27 23.18 -39.03 -46.00 -9.15 5.00 1.50 38.61 41.12 31.34 31.82 -54.52 

43 -64.81 97.90 136.75 59.18 14.68 47.92 61.21 16.86 -39.70 62.22 65.26 94.95 

44 4.51 169.46 65.30 -23.87 58.47 37.16 132.99 45.29 -38.87 14.38 1.47 -24.82 

45 -7.98 104.58 71.74 72.14 44.38 69.13 113.78 45.38 30.80 40.45 13.67 20.90 

46 -39.55 46.59 89.17 62.16 16.39 39.24 47.37 54.94 -10.95 27.49 52.69 33.65 

47 65.04 -12.89 -79.95 42.82 52.88 67.40 -42.43 7.91 71.90 11.91 36.98 23.12 

48 24.13 89.95 14.58 17.18 29.05 35.31 51.11 -26.47 52.04 83.24 59.21 10.95 

49 102.52 135.25 29.25 70.50 124.38 146.73 56.97 62.43 24.69 61.32 200.16 54.69 

50 91.99 26.74 5.35 140.67 78.00 52.74 -43.89 40.43 75.31 63.69 67.78 57.74 
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Table 23  cont’d  

σij 26 27 28 29 30 31 32 33 34 35 36 37 38 

26 276.94 -126.60 65.05 119.38 105.42 5.22 176.62 -14.94 88.57 119.18 54.19 44.71 115.09 

27 -126.60 209.89 37.97 42.34 -68.01 75.15 -2.34 79.86 40.54 -0.11 30.83 65.91 -19.26 

28 65.05 37.97 186.50 112.43 54.04 74.97 85.98 104.57 80.95 28.80 41.19 42.21 53.75 

29 119.38 42.34 112.43 288.92 196.58 174.22 203.57 125.74 188.89 155.24 128.10 115.41 163.88 

30 105.42 -68.01 54.04 196.58 203.16 99.42 128.72 51.16 109.19 106.58 63.29 41.19 137.95 

31 5.22 75.15 74.97 174.22 99.42 163.13 73.75 117.95 141.02 84.57 62.01 45.46 69.74 

32 176.62 -2.34 85.98 203.57 128.72 73.75 258.01 9.45 106.86 132.45 101.76 102.92 169.44 

33 -14.94 79.86 104.57 125.74 51.16 117.95 9.45 178.00 116.34 28.05 87.22 55.69 -21.63 

34 88.57 40.54 80.95 188.89 109.19 141.02 106.86 116.34 177.60 96.15 69.35 72.36 95.96 

35 119.18 -0.11 28.80 155.24 106.58 84.57 132.45 28.05 96.15 147.63 46.84 37.09 103.05 

36 54.19 30.83 41.19 128.10 63.29 62.01 101.76 87.22 69.35 46.84 138.45 99.82 22.33 

37 44.71 65.91 42.21 115.41 41.19 45.46 102.92 55.69 72.36 37.09 99.82 119.74 71.60 

38 115.09 -19.26 53.75 163.88 137.95 69.74 169.44 -21.63 95.96 103.05 22.33 71.60 217.90 

39 109.59 40.19 151.15 246.12 167.61 101.70 218.88 107.81 153.20 97.83 101.28 123.01 164.91 

40 -37.96 143.75 69.62 271.04 176.85 161.00 117.55 160.92 164.30 123.99 102.79 132.66 137.42 

41 189.03 -39.32 71.35 204.53 153.41 68.12 244.69 13.61 93.37 154.59 101.95 74.10 142.56 

42 -27.58 -59.64 18.60 18.95 56.27 -14.36 4.24 33.80 -39.68 -37.59 70.92 25.19 6.47 

43 25.56 72.40 63.46 51.77 -33.13 50.87 28.97 111.32 69.93 43.95 56.21 30.13 -48.41 

44 38.44 30.98 137.30 45.54 0.17 14.34 65.83 50.35 -1.90 11.55 47.38 46.39 43.86 

45 3.97 39.56 131.49 66.58 24.02 60.42 41.42 94.07 50.96 -9.96 41.06 24.63 3.21 

46 -35.98 59.09 58.56 37.37 0.62 29.08 26.26 57.77 10.07 7.44 28.77 15.35 -15.29 

47 9.18 -6.73 -21.20 66.50 70.00 31.67 12.81 28.49 58.84 -3.09 39.66 50.46 32.56 

48 65.29 -12.49 63.79 101.40 70.82 76.56 59.71 66.41 94.42 51.81 35.37 28.20 69.45 

49 60.82 77.55 78.91 187.78 119.78 72.06 143.23 50.35 109.55 106.43 43.91 114.40 176.79 

50 -11.82 53.25 7.80 139.67 101.23 116.60 59.01 67.84 100.94 60.71 51.45 33.59 32.83 
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Table 23  cont’d  

σij 39 40 41 42 43 44 45 46 47 48 49 50 

26 109.59 -37.96 189.03 -27.58 25.56 38.44 3.97 -35.98 9.18 65.29 60.82 -11.82 

27 40.19 143.75 -39.32 -59.64 72.40 30.98 39.56 59.09 -6.73 -12.49 77.55 53.25 

28 151.15 69.62 71.35 18.60 63.46 137.30 131.49 58.56 -21.20 63.79 78.91 7.80 

29 246.12 271.04 204.53 18.95 51.77 45.54 66.58 37.37 66.50 101.40 187.78 139.67 

30 167.61 176.85 153.41 56.27 -33.13 0.17 24.02 0.62 70.00 70.82 119.78 101.23 

31 101.70 161.00 68.12 -14.36 50.87 14.34 60.42 29.08 31.67 76.56 72.06 116.60 

32 218.88 117.55 244.69 4.24 28.97 65.83 41.42 26.26 12.81 59.71 143.23 59.01 

33 107.81 160.92 13.61 33.80 111.32 50.35 94.07 57.77 28.49 66.41 50.35 67.84 

34 153.20 164.30 93.37 -39.68 69.93 -1.90 50.96 10.07 58.84 94.42 109.55 100.94 

35 97.83 123.99 154.59 -37.59 43.95 11.55 -9.96 7.44 -3.09 51.81 106.43 60.71 

36 101.28 102.79 101.95 70.92 56.21 47.38 41.06 28.77 39.66 35.37 43.91 51.45 

37 123.01 132.66 74.10 25.19 30.13 46.39 24.63 15.35 50.46 28.20 114.40 33.59 

38 164.91 137.42 142.56 6.47 -48.41 43.86 3.21 -15.29 32.56 69.45 176.79 32.83 

39 358.14 302.93 204.90 43.66 66.35 71.56 100.14 77.35 57.84 82.46 243.54 86.99 

40 302.93 491.87 123.67 36.82 65.77 8.87 38.50 82.32 93.73 63.30 306.40 154.85 

41 204.90 123.67 264.38 18.54 36.42 51.36 28.79 30.97 3.66 54.09 124.87 66.20 

42 43.66 36.82 18.54 200.83 -14.02 85.00 37.68 30.34 -0.42 22.60 -11.40 -45.27 

43 66.35 65.77 36.42 -14.02 167.74 52.12 55.09 62.87 -48.85 44.14 16.35 -7.73 

44 71.56 8.87 51.36 85.00 52.12 191.11 92.66 54.77 -73.51 39.06 51.10 -79.61 

45 100.14 38.50 28.79 37.68 55.09 92.66 112.97 55.57 -13.47 42.60 16.28 15.49 

46 77.35 82.32 30.97 30.34 62.87 54.77 55.57 63.55 -30.66 7.54 34.50 9.04 

47 57.84 93.73 3.66 -0.42 -48.85 -73.51 -13.47 -30.66 110.45 7.31 50.06 83.40 

48 82.46 63.30 54.09 22.60 44.14 39.06 42.60 7.54 7.31 77.14 46.94 17.39 

49 243.54 306.40 124.87 -11.40 16.35 51.10 16.28 34.50 50.06 46.94 279.55 53.89 

50 86.99 154.85 66.20 -45.27 -7.73 -79.61 15.49 9.04 83.40 17.39 53.89 164.18 
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Table 24. List of stocks used in Section 5.2.3 

ACIBADEM SAĞLIK BANVİT DOĞAN HOLDİNG 

ADANA ÇİMENTO  A  BERDAN TEKSTİL DOĞAN YAYIN HOLDİNG 

ADANA ÇİMENTO  B  BISAŞ TEKSTİL DYO 

ADANA ÇİMENTO  C  BOLU ÇİMENTO ECZACIBAŞI İLAÇ 

ADEL KALEMCİLİK BOSSA ECZACIBAŞI YAPI 

ANADOLU EFES BOYNER EGE ENDÜSTRİ 

AFYON ÇİMENTO BRİSA EGE GÜBRE 

AKAL TEKSTİL BİRLİK MENSUCAT EGE SERAMİK 

AKÇANSA BOROVA YAPI EMEK ELEKTRİK 

AK ENERJİ BSH EV ALETLERI EMİNİŞ AMBALAJ 

AKSA BATISÖKE ÇİMENTO ENKA İNŞAAT 

AKSU ENERJİ BATI ÇİMENTO EGEPLAST 

ALARKO HOLDİNG BURSA ÇİMENTO ERBOSAN 

ALARKO CARRIER ÇBS BOYA EREĞLİ DEMİR ÇELİK 

ALCATEL LUCENT TELETAŞ ÇELİK HAT ERSU GIDA 

ALKİM KAĞIT ÇEMTAŞ ESCORT TEKNOLOJİ 

ALKİM KİMYA CEYLAN GİYİM ESEM 

ALTINYILDIZ ÇİMSA FENİŞ ALÜMİNYUM 

ALTINYAĞ ÇELEBİ F-M İZMİT PİSTON 

ANADOLU CAM ÇİMBETON FRIGO 

ARÇELIK ÇİMENTAŞ FORD OTOSAN 

ARENA BİLGİSAYAR COMPONENTO FAVORİ DİNLENME YERLERİ 

ARSAN TEKSTİL DARDANEL GEDİZ İPLİK 

ASELSAN DENİZLİ CAM GENTAŞ 

LAFARGE ASLAN ÇİMENTO DENTAŞ AMBALAJ GOLDAŞ 

ANADOLU ISUZU DERİMOD GÖLTAŞ ÇİMENTO 

AKIN TEKSTİL DEVA HOLDİNG GOODYEAR 

ALTINYUNUS ÇEŞME DOĞAN GAZETE GSD HOLDING 

AYEN ENERJİ DİTAŞ DOĞAN GÜBRE FABRIKALARI 

AYGAZ DEMİSAŞ DÖKÜM HEKTAŞ 

BAGFAŞ DOĞAN BURDA HÜRRİYET GAZETECİLİK 

BAK AMBALAJ DOĞUSAN 
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Table 25. List of stocks used in Section 5.4 

ACIBADEM SAĞLIK  BOSCH FREN DOĞAN HOLDİNG 

ADANA ÇİMENTO  A   BISAŞ TEKSTİL  DURAN DOĞAN BASIM 

ADANA ÇİMENTO  B   BOLU ÇİMENTO  DOĞAN YAYIN HOLDİNG 

ADANA ÇİMENTO  C   BOSSA DYO 

ADEL KALEMCİLİK  BOYNER ECZACIBAŞI İLAÇ 

ANADOLU EFES BRİSA  ECZACIBAŞI YAPI 

AFYON ÇİMENTO  BİRLİK MENSUCAT  EGE ENDÜSTRİ 

AKAL TEKSTİL  BOROVA YAPI EGE GÜBRE 

AKÇANSA BORUSAN EGE PROFİL 

AK ENERJİ  BSH EV ALETLERI EGE SERAMİK 

AKSA BATISÖKE ÇİMENTO EMEK ELEKTRİK 

AKSU ENERJİ  BATI ÇİMENTO EMİNİŞ AMBALAJ 

ALARKO HOLDİNG  BURSA ÇİMENTO ENKA İNŞAAT 

ALARKO CARRIER BURÇELİK EGEPLAST 

ALCATEL LUCENT TELETAŞ ÇBS BOYA  ERBOSAN 

ALKİM KAĞIT  ÇELİK HAT EREĞLİ DEMİR ÇELİK 

ALKİM KİMYA  ÇEMTAŞ ERSU GIDA 

ALTINYILDIZ  CEYLAN GİYİM ESCORT TEKNOLOJİ 

ALTINYAĞ  ÇİMSA ESEM 

ANADOLU CAM ÇELEBİ FENİŞ ALÜMİNYUM 

ARÇELIK ÇİMBETON F-M İZMİT PİSTON 

ARENA BİLGİSAYAR ÇİMENTAŞ FRIGO 

ARSAN TEKSTİL  COMPONENTO FORD OTOSAN 

ASELSAN DARDANEL FAVORİ DİNLENME YERLERİ 

LAFARGE ASLAN ÇİMENTO DENİZLİ CAM GEDİZ İPLİK 

ANADOLU ISUZU DENTAŞ AMBALAJ GENTAŞ 

AKIN TEKSTİL  DERİMOD GOLDAŞ 

ALTINYUNUS ÇEŞME  DEVA HOLDİNG GÖLTAŞ ÇİMENTO 

AYEN ENERJİ  DOĞAN GAZETE GOODYEAR 

AYGAZ DİTAŞ DOĞAN GSD HOLDING 

BAGFAŞ  DEMİSAŞ DÖKÜM GÜBRE FABRIKALARI 

BAK AMBALAJ DOĞAN BURDA HEKTAŞ 

BANVİT  DOĞUSAN HÜRRİYET GAZETECİLİK 

BERDAN TEKSTİL      
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APPENDIX B 

 

 

COMPARISON OF VARIANCE, MAD AND MUA WITH STOCKS FROM ISE 

 

 

 

 

Figure 45. Comparing expected return–variance and expected return–MAD efficient portfolios 

in expected return and variance 

 

 

 

 

Figure 46. Comparing expected return–variance and expected return–MAD efficient portfolios 

in expected return and MAD 
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Figure 47. Comparing expected return–variance and expected return–MUA efficient portfolios 

in expected return and variance 
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