INTEGRATION OF MULTIMODAL MULTIMEDIA DATABASE SYSTEM ARCHITECTURE
WITH QUERY LEVEL FUSION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SAEID SATTARI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

OCTOBER 2013

Approval of the thesis:

INTEGRATION OF MULTIMODAL MULTIMEDIA DATABASE SYSTEM
ARCHITECTURE WITH QUERY LEVEL FUSION

Submitted by SAEID SATTARI in partial fulfillment of the requirements for the degree of Master
of Science in Computer Engineering Department, Middle East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazic
Head of Department, Computer Engineering

Prof. Dr. Adnan Yazic
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Murat Koyuncu
Information Systems Engineering, Atilim University

Prof. Dr. Adnan Yazici
Computer Engineering Dept., METU

Asst. Prof. Dr. Mustafa Sert
Computer Engineering Dept., Baskent University

Assoc. Prof. Dr. Ahmet Cosar
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oguztiiziin
Computer Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and presented in
accordance with academic rules and ethical conduct. I also declare that, as required by these
rules and conduct, I have fully cited and referenced all material and results that are not
original to this work.

Name, Last name: SAEID SATTARI

Signature

v

ABSTRACT

INTEGRATION OF MULTIMODAL MULTIMEDIA DATABASE
SYSTEM ARCHITECTURE WITH QUERY LEVEL FUSION

Sattari, Saeid
M.Sc., Department of Computer Engineering
Supervisor: Prof. Dr. Adnan Yazic

October 2013, 78 pages

Multimedia data particularly digital videos that contain various modalities (visual, audio,
and text) are complex and time consuming to deal with. Therefore, managing large volume
of multimedia data reveals the necessity for efficient methods of modeling, processing,
storing and retrieving these data. In this study, we investigate some of the requirements to
efficiently deal with multimedia data, especially video data. To satisfy such requirements we
aim to integrate specific multimedia database architecture which consists of semantic
content extractor, storage, index, query and coordinator modules. In addition, to simplify
complicated and time consuming operations on video files some client-server based
applications with appropriate graphical user interfaces are implemented to carry out these
operations in multi-threaded mode. The proposed architecture also supports different query
types including the combination of content as well as concept-based queries which provides
users with the ability to perform multimodal query. Furthermore, we introduce a fusion
approach at the query level to improve query retrieval performance of the multimedia
database system.

Keywords: Multimedia database architecture, integration, multimodal query, query level
fusion

(0Y4

SORGU SEVIYESINDE FUZYON DESTEKLEYEN MULTIMODAL
COKLUORTAM VERITABANI SISTEMI MiMARI
ENTEGRASYONU

Sattari, Saeid
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Adnan Yazici

Ekim 2013, 78 sayfa

Cokluortam verileri, 6zellikle bir ¢cok modaliteyi (gorsel, isitsel ve metin) igeren dijital
videolar, karmagiktir ve bu verilerin {izerinde yapilan islemler olduk¢a zaman alicidir. Bu
nedenle, biiyiik hacimli ¢okluortam veriyi yonetmek, modellemek, islemek, depolamak ve
almak i¢in etkin yontemlerin gelistirilmesi gereklidir. Bu ¢alismada, ¢cokluortam verilerini,
6zellikle video verilerini etkin bir sekilde yonetme gereksinimleri aragtirdik. Bu ihtiyaglar
karsilamak i¢in anlamsal igerik ¢ikarici, depolama, dizin, sorgu ve koordinator
modiillerinden olusan bir multimedya veritaban1 mimari entegrasyonunu hedefledik. Buna
ek olarak, video dosyalarinin karmasik ve zaman alict islemlerini basitlestirmek i¢in, ¢coklu
is parcacikli modda calisan bazi client-server tabanli uygulamalar uygun grafik arayiizleri
ile gelistirilmistir. Onerilen mimari ayn1 zamanda igerik kombinasyonu ve kavram tabanl
sorgular gibi farkli sorgu tiplerini destekleyerek kullanciya ¢oklu modalitede sorgu yapma
imkan1 sunar. Ayrica, multimedya veri tabani sisteminin sorgu getirme performansini
artirmak i¢in sorgu diizeyinde bir fiizyon yaklagimi kullandik.

Anahtar Kelimeler: Multimedya veritaban mimari, entegrasyonu, multimodal sorgusu,
sorgu seviyesinde flizyon

vi

To my parents

vii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincerest gratitude and appreciation to my supervisor,
Prof. Dr. Adnan Yazici for his encouragements and supports throughout this study.

I would also like to thank all the members of Multimedia Database Research Group for their
technical guidance and supports.

My final appreciation and thanks goes to the Scientific and Technological Research Council
of Turkey (TUBITAK) for providing the financial means throughout this study under the
project number “EEEAG109E014”.

At last but not the least, I am wholeheartedly grateful to my parents who have always
encouraged and supported me throughout my life, particularly during my graduate study.

viii

TABLE OF CONTENTS

ABSTRACT ... ettt ettt ettt et e e e s e e et e eat e aeeseeneeeseeneeseeneeseeseeneaneens v

OZ ettt Vi

ACKNOWLEDGEMENTS ...ttt ettt ee e eneens viii

TABLE OF CONTENTS. ...ttt ettt ettt ettt s e s e sseessessassaensesseansans ix

LIST OF TABLES ...ttt et et s ettt et et e et eneesaeene s Xiv

LIST OF FIGURES ...ttt ettt et e e ene e e eees XV

LIST OF ABBREVIATIONSottt ettt sttt ss e s sse s enesenenes xviii
CHAPTERS

I INTRODUCTION......coiitteieiieteitcttet ettt ettt ettt e e sse e e sesseessessesssessesssessassenssensenns 1

1.1 Motivation and CONtribDULIONSccceerierierieeieeie ettt eee e esteeseesnaeenee e 3

1.2 TheSiS OULINEeeuieiieiieieeiieeee ettt ettt ettt et et eseeeeseeeneeneeas 4

2 RELATED WORKcoioieiitieieeteeestete ettt ettt ettt esaesse et ebestaessensessnense e 7

3 BACKGROUND ...ttt ettt ettt ettt e ae et eseeeneeeenees 11

31 MPEG- 7 oottt ettt sttt ettt s st e b e ereenbeseenne s e 11

3.1.1 INEEOAUCHION ..ottt et e e 11

3.1.2 Multimedia Content DESCIIPLIONcccveevieciierieriieriiesreeereeereereesreeseeens 12

3.13 Scope Of MPEG-7 ..ottt 12

3.1.4 MPEG-7 Parts and DesCIiPtorS........c.ccoveevvievieerieriieriesreeereeereeseesseesseens 12

3.1.5 MPEG-7 Reference Software (eXperimental Model)c.cevveveenen. 14

3.1.6 AUAIO FEATUTES.c.eveeiiieiieiieiieciie ettt st e e 14

3.1.7 MPEG-7 Audio Featuresccecerieieiinieeeeeeeeeeee e 15

1X

3.2.1 DBAO .. ettt ettt es 17
3.3 Large Scale Concept Ontology for Multimedia (LSCOM).........c.ccovevvvevrvenrvennrennen. 17
3.3.1 Project DeSCIiPtion.........ccouirieieriirieienieeeieetee et 17
3.3.2 Use of LSCOM in Larger Research Community...........cccceeveereresveenneann. 18
3.4 Java Media Framework (JMEF)cccooiiiiiiiiieiecece et 18
34.1 Desi@n COMNCEPLS ..cuvveuveriieiiiieiieieritee sttt ettt sttt 19
3.5 Java Web Start Technology (JWS)coovieiiiiieiiecieeeere et 20
3.5.1 Java Network Launch Protocol (JNLP)cccccevvivviiiiiiieiiiieieeeeee, 21
3.6 Java Native Interface (JNI)......ccoeiiiiiiiiiieiceece et 21
3.7 Java Native AcCCeSS (JNA) . .oiiiieiiecie ettt ettt s eaveerreebe e taesanesenas 22
3.8 Servlet TEChNOIOZYooueruiiriiiiiiiiiiteeree et 22
3.8.1 Life Cycle of @ ServIet.......coeevieririeiiniiiinieteieee et 24
RIS 4 (Sl 0] 11711 1<) ST 25
3.9.1 APACHE TOMCALoviiiiiiiiiiieeteeee et 26
3,10 SerialiZAtIONeeeeiiieieieee ettt 26
3,11 Image Segmentationcoccevererierierieienieniteteeie ettt sttt 28
3111 JSEG ittt ettt ettt et naenaens 28
3012 ONEOLOZY veouvreiiieiiieeieeieesieeetteeteete et e et e et e st e s bestbe e b e e baestaesebeetbeerbeesbeestaesaensnas 29
3.13 Canonical Correlation Analysis (CCA)oocuvviirriierieniieniieeie et 30
3.14 Kernel Canonical Correlation Analysis (KCCA)ccccvevvevieereevreeieieeeeeene. 30
PROPOSED ARCHITECTURE........ccoiiiieieeee ettt 33
4.1 Ground Truth Datac.ceceeiiieiiieieiiecece ettt snees 33

4.1.1 Dataset Preparation...........coccecererienenienieneeieneseetesieet et 33

4.2 Overall Implementation DetailS...........ccceevierieiiiiiieiienriesie e 34
4.3 Datd MOEL ..ottt ae 35
4.4 Detail View Of ATChITECTUIE........eecvieiieriieiieriesie ettt 37
441 Automatic Shot Detectionceoerieririeiereeieeeee e 38
442 Audio Concept EXtractionc.ccecuevereerieninieninieieseetene et 38
443 Visual Object EXractionccccevveiveeiiieirieieeseeseeseeseeereeereeveesseeseeens 40
444 Event Annotator Modulecoeceiiiieiiiieeeeeeeeee e 40
4.4.5 Text Annotator Modulecocveviriiiiiiiiieeeeeee e 41
44.6 Data Fusion Moduleccoooiiiriiiiiieeeeeee e 42

4.5 Online Video Concept EXtraction........ccccevirieriiririienenienienieeienieeteie et 45
4.5.1 Video Uploadingcocevevieniiniiniiniiiieeseeteeteeseet et 47
452 ViSUAL PrOCESSING ..o.vviivviieiiiiieiieciie e cte e et eeesteesiresebeeereesseesreereens 47
4.5.2.1 Shot Boundary EXtractioncecevererienireenenenienienceiesieeeene 47

4.5.2.2 Automatic Object ANNOtAtION.......c.eevveerirerereiriereeieeree e seresreeene e 48

4.5.2.3 Manual Region ANnotationc..cccceveeienereeneneniienenieseneeeenn 48

453 Audio Concept ANNOTATION.ovverierierieierieeterertee et 49
454 EVent DEeteCtioNc.eecueiuieuieiiriieieie ettt 49
455 Named Entity RECOZNItIONcovviriiiiiniiiiiniiiieieeeseeteceteeeee e 50
4.5.6 Data FUSION...c..iiiiiieiieiee et 51
RETRIEVAL MODEL AND SUPPORTED QUERIESccccceoiiieieiieieieeeeienene 53
5.1 Retrieval MOAEIS......cccuieiieiiiiieiieeie ettt st e s s eae e 53
5.1.1 Boolean MOodelcooiiiieieieeee e 53

X1

5.1.2 Vector SPace MOdel.......cocueviiiiriiiiiiinieeeeteetee e 54

5.1.2.1 Document INdeXiNg........cccvevverviriiiirieiienieeneeseesreeveeveesveesseesnesenas 54

5.1.2.2 Term WeIghting......c.ccovieeuieiiieiiciieieereeiee st sve e eve v 55

5.1.2.3 Similarity CoeffiCIentscocuevereerieniriiniiiieieseeee e 55

5.2 SUpported QUETY TYPES....uicvrieiieriieiiiiiiiereere et e sitesreereeveebeesteestaessbessseesseessaeseens 56
5.2.1 QUETY DY CONCEPL ..ottt 56
52.2 QUETY DY CONLENL......viieiiieiiiiieiiecieeee e e ere e eteesteeseresresreesbeessaesreeas 59
5.2.2.1 Audio Query by Content.........ccevvieeieeviieneeniesre e ere e esveesieesnesenes 59

5.2.2.2 Visual Query by CONtentccceveevieriirienienieiienieneee e 60

5.2.3 Query by Concept and CONtENL...........cccveeveerreeriierierrerresreeereereesreesseens 62
524 Query by EXamplecocoeviriiiiiiiieee e 64

6 QUERY LEVEL FUSION.......oiiiiiieieitetetesttee ettt st s sse e esne e eseenseenas 65
6.1 INEET-MOAAL.. .o 66
(O 113 ¢ LY (o (<] USSR 67
6.2.1 Canonical Correlation Analysis Detailcccceevverierienciiecieeieeieeens 67
6.2.2 Parameters SeleCtioncvecvierierieiiieieeie ettt 68
6.2.3 Incomplete Cholesky Decompositioncoccevereerierernieneneenenenneene. 69

6.3 Calculation steps for @ SAMPIE QUETY.....c.ecvvieriierieiiieieereereesee e eve e sere e 69
6.4 Results and Evaluationccooceevieeiiieiiiesiieiee ettt 71
6.4.1 INAEXING 1.vviiiiiiie ettt reesree s tbeeebeeabeesbeesbaesesenenas 71
6.4.2 QUETY DY CONCEPL ..ottt 72
6.4.3 Query by EXamplecoeoviiiiiiiiiiiee e 74

7 CONCLUSION AND FUTURE WORKccoeiiiiiieieteee et 77

Xil

8 REFERENCES.......cccooiiiiiiieeeee
APPENDICEScoooiiiiiinciicccececeeee
APPENDIX A: Application User Interfaces

APPENDIX B: Correlation Matrices

Xiii

LIST OF TABLES

TABLES

Table 3-1 MPEG-7 descriptor list

Table 6-1 Data Related Correlation CoeffiCIENtSooovvviiiiiiiiiiiiiii

Xiv

LIST OF FIGURES

FIGURES

Figure 3-1 Overview of MPEG-7 audio framework.........c..cccccveeiininiininincncnicnceeene 16
Figure 3-2 Tomcat archit@CtUIE.coouiriiienirieiiiteteseeeee ettt 26
Figure 3-3 JSEG SEZMENTAtIONcuevuiiiiniiiiieiiriteienteete sttt sttt ettt bbb s 29
FIUIE 3-4 CCA .ottt ettt sttt et e b st 30
Figure 4-1 Proposed architeCtUrecueivvieiieriieiiesiecie e e esteesteeseresreesveebeeeeesenesenas 34
Figure 4-2 Data MOAELcccvviviiiiiiiiiecie ettt st sb e b e e rbeebeebaeseresenas 36
Figure 4-3 Architecture in detail VIEWc.ccoveviieriieiieiiecie et 37
Figure 4-4 Audio annotation DIOCKSccccvuiiviiiriiiieiiiciececre et 39
Figure 4-5 Execution flow of the used named entity T€COZNIZETccceevvereereeriereenienieenann 41
Figure 4-6 Ontology definition for goal eVent........c..ceceveriiriiieiininieneee e 42
Figure 4-7 A General scheme for late fusion..........ccceevereriiiiiieniniieeeee e 43
Figure 4-8 A General architecture of semantic video analysis System........c..ccocceceerereennene 44
Figure 4-9 Sequence diagram for online concept eXtractioncccceeveveevveevreerreeseerenenenns 46
Figure 4-10 User interface for video uploading..........cccccueeviiviieniienienienie e e 47
Figure 4-11 User interface for visual ProCeSSINGc.eccveevievreerreerieesieesireereesreesseesseesenesenes 48
Figure 4-12 User interface for audio eXtraction..........cceccveevievrienieeneeniesie e e eveesieesene e 49
Figure 4-13 User interface for event eXtractioncccoereerereeniineniieneneenie et 50
Figure 4-14 User interface for named entity reCOZNItION.c.coeereerirrienenienienienieneeieeeenne 51
Figure 5-1 Sequence diagram for CONCEPt QUETYc..eeverueruiiniiriieriiniinienieneeie et 57

XV

Figure 5-2 User interface for multimodal qUery.........ccccoveeviiiiiiiininiiiiieceeeeee 58

Figure 5-3 Sequence diagram for audio query by content...........ccccoeeeveneniencnennieneneennenn 59
Figure 5-4 User interface for audio QBEcccooiiiiiiiiiee e 60
Figure 5-5 Sequence diagram for visual query by content...........ccceceeevveevreeveenieeneesiennennn. 61
Figure 5-6 User interface for visual QBE...........ccoooiiiiiiiie e 61
Figure 5-7 User interface for query by concept and content............ccceeveevveevreevieenieervennennn. 62
Figure 5-8 Sequence diagram for query by concept and contentcccceceevereeieneneennene 63
Figure 5-9 Frame-based QBE GUIccccoiiiiiiiniiiiiicecteeeeeetee e 64
Figure 6-1 Correlation coefficient matrix for visual modalcccocininiiiininiininienne 65
Figure 6-2 A diagram for ViSUal/audioo.coveeeveeveererceeeeeeeeeeeeeeeeses e 69
Figure 6-3 Retrieval performance without indeXcoceevueriiiiinininiininiinceeieceee 71
Figure 6-4 Retrieval performance with B indeXingccccevvuevevruereeeeeseceeeeeseseseneneen. 71
Figure 6-5 Audio query by concept, Boolean retrieval modelcccooveieiiiiiienieeee 72
Figure 6-6 Visual query by concept, Boolean retrieval model............ccoocveeieiinceieninceene 73
Figure 6-7 Text query, Boolean retrieval modelc.ooceeeeiieiiiniiieeeeee e 73
Figure 6-8 Multimodal retrieval in Vector Space Model, top 30ccccovvrieiinenneneneennn 74
Figure 6-9 Shot QBE performance, top N........cccccviriiriniiniiiinieniirieeieneteie e 75
Figure 11-1 Object qUETY DY CONCEPL ..c..eruteriiriirieriiriteierieetete ettt ettt st &9
Figure 11-2 Semantic QUETy by CONCEPL....c..cvueriiriiriiriinieieieeteteieet ettt &9
Figure 11-3 Audio qUETY DY CONCEPL.....ccviiirieriieriieiieeieete et et esteestresresreebeesbeesveeeeesenesenas 90
Figure 11-4 Text qUETY DY CONCEPL ..ecviirieiieriieiiieiie et eteereesteeseresresereesbeesbeesveeeeesenenenas 90
Figure 12-1 Text correlation MAatriXceieeeeriereeierieeieeieste et et eeesee et e e e eneeseeeeeenee e 91

XVvi

Figure 12-2 Visual correlation mMatriX.........cceeerieririiiienenieneneetenieeeesiesicete et 92

Figure 12-3 Audio correlation mMatriXccceeerierinirnieneniene ettt st 92
Figure 12-4 Visual-Audio correlation MatriXc.ccecereeriererieriineeiesesce e 92
Figure 12-5 Audio-Text cOIrelation MAtriXccceeeeruereeriereeierieneeeee e see e eee e eeeee e 92
Figure 12-6 Visual-Text correlation MatriXccceeeeruereriereeieriene e 92

Xvil

MPEG
MFCC
HMM
JWS
JNLP
JINI
JNA
JMF
SVM
CCA
KCCA
ICD
QBE
VSM
ZCR

CBIR

LIST OF ABBREVIATIONS

Moving Picture Experts Groups

Mel Frequency Cepstrum Coefficients
Hidden Markov Model

Java Web Start

Java Network Launch Protocol

Java Native Interface

Java Native Access

Java Media Framework

Support Vector Machine

Canonical Correlation Analysis
Kernel Canonical Correlation Analysis
Incomplete Cholesky Decomposition
Query by Example

Vector Space Model

Zero Crossing Rate

Content Based Information Retrieval

XViil

CHAPTER 1

INTRODUCTION

With an increasing amount of multimedia data production favored by cheap digital devices,
such as large capacity and fast accessed media storages, people are exposed to a very large
volume of multimedia data in daily life. Storing and searching such a large volume of data in
a database becomes a real challenge. Usually most of the users are interested in the semantic
contents of videos. Consequently, manual annotation of such a large volume of data in order
to prepare them for any content-based search is almost impractical. Thus, dealing with this
big amount of digital videos requires automatic methods to extract the semantic contents and
efficient ways to store, index and retrieve them.

Due to the nature of multimedia data including multidimensionality, multimodality,
complexity in automatic concept extraction and spatiotemporal relations of objects inside
video data manual annotation and usually conventional database approaches are not as
sufficient as expected for managing multimedia content. Therefore, extracting semantic
concepts automatically, considering interaction and relation between objects inside
multimedia, as well as efficiently storing and indexing them plus handling multimodality in
addition to efficiently retrieving them continue to be one of the most challenging and fast-
growing research areas which have attracted many researchers. Hence, having a well-defined
architecture and an integrated system that covers most of these requirements is quite vital. In
general, such an integrated system should have capabilities to:

e Annotate visual objects, events, audio concepts and named entities in text
automatically.

e Store and index semantic concepts and contents efficiently.
e Handle multimodality in storage as well as retrieval phase effectively.

e Have some specialized user interfaces and functionalities that provide various query
types such as content-based, concept-based as well as multimodal search support.

e Having an acceptable query retrieval performance for the types of queries supported
by the multimedia database system.

It should be mentioned that when multimedia data is the matter of argument, mainly three
categories of data stand out:

e Metadata, such as creator, name, date and so on.

e High level semantic concepts that we are exposed to.

1

e The low-level features such as fundamental frequency, harmonicity, dominant color,
region shape and edge histogram [1].

Although managing and retrieving textual content (metadata) are easy and straightforward,
users are usually interested in the semantic content of the video.

Audio, text, visual objects and spatiotemporal relations among these entities, called event,
are considered as the basic components of semantic content of the video data [2]. The
process of extracting these entities (annotating semantic information) in the domain of
multimedia system research is a challenging [3]. When we use manual annotation methods
for multimedia data information extracting it is mostly resource consuming, exhausting and
slow therefore, it is expensive, limited and inefficient. Thus, an automatic annotation system
is required in real life applications. Since raw multimedia data are collections of pixels and
signals, automatic extraction of multimedia data’s semantic content is complex and hard [4].
Besides, due to the complexity of multimedia data structure, modeling them is not so
straightforward.

In addition, the logical and conceptual design of databases determines and limits the
supported data types, indexing and query types. Following these restriction, traditional
database management systems support primitive types (number, character, date, etc.) and
have some predefined indexing functionality on these types. Hence, semantic multimedia
contents which have multi-dimensional information could not be represented by such
primitive data types and retrieved by limited indexing mechanisms efficiently.

With this increasing quantity of multimedia data, efficient storage and retrieval of specific
semantic concept in large data sets is a basic functional requirement. Since multimedia
objects contain huge amount of information and exist in long, nested and hierarchical forms,
late responses to the query are inevitable. In addition, previous researches have proven that
combining the result of each modal either in data level or query level would result in
improvement in query retrieval performance. This evidence requires not only managing each
modal individually but also in relation and interaction with each other. Therefore, an
acceptable multimedia architecture which is supposed to deal with multimedia data must
possess a customized storage system with a fast indexing mechanism for retrieving
multimedia contents in order to answer various query types. To achieve a reasonable
accuracy, efficiency and usability, such a multimedia database system should consider the
mentioned requirements during the architecture design and modules’ integration phases.

From query level perspective, multimodal data which originated from the same source tend
to be correlated [5]. Since the presence of one modality can help understanding certain
semantics of other modalities, different modalities can take a complementary role in
retrieving multimedia content. However, in most proposed systems that deal with digital
videos, different modalities are treated separately with no combination at a higher level [6].
Due to the fact that each modality may compensate for weakness of the other, we can benefit

from relations among modalities. For instance, a video retrieval system that exploits both
audio and visual modalities may achieve a better performance in both accuracy and
efficiency than a system which exploits either one only [7][8]. As a result, multimodal
correlation analysis has attracted a growing attention in multimedia content analysis
researches in the recent years [6][9].

Most of the recent methods only focus on the positive correlation among objects of
multimedia in the same class while the negative correlation between them is underestimated.
From the researcher’s point of view in this thesis, both kinds of correlation are important
because positive correlation provides the co-occurrence information and negative correlation
reflects the exclusive information. For example, in a video shot the “Explosion” concept may
come from text as well as visual category. Meanwhile, the related section of audio labeled
“Gun” may have strong positive correlation with that shot while some concepts in audio like
“Silence” has negative correlation with the same shot. As a result, using both positive and
negative correlations would be beneficial. Although combining and propagating correlations
along with each modality is proven to improve retrieval performance, the semantic
correlations that are propagated among modalities throughout the whole dataset are also
beneficial. As a result, the achieved correlations on the objects and concepts can naturally
meet the requirements of multimodal retrieval challenge in which, the retrieval results are of
the similar semantics and can be of different media types.

1.1 Motivation and Contributions

Although various researches exist about multimedia database architecture, most of them
focus just on one aspect of multimedia for instance, working only with limited modalities or
using manually annotated concepts. Furthermore, response time for query retrieval is usually
neglected in such systems. In addition, most multimedia database related studies usually use
limited data source to provide response to queries without exploiting fusion at data level or
query level.

The main motivation for this thesis is the need for an integrated multimedia database system
architecture that not only is enabled to extract concepts automatically but also is capable to
store and index them efficiently as well as possessing an ability to handle different query
types. In this study, an integrated multimedia database system that supports automatic and
manual annotation of objects, events, audio concepts and texts are presented. In addition, this
system provides some functionality of conventional database management systems such as
indexing and querying data. From a specific point of view, this integrated multimedia
database system supports multimodal content-based and concept-based queries. Compared
with the existing systems, the major contributions and advantages of the proposed study are
as follow:

1. A multimedia database architecture is proposed that supports multimodal aspect of
multimedia data. This architecture allows us to handle different modalities for
multimedia data such as visual, audio and text.

2. Full implementation of the proposed architecture is presented by integrating various
multimedia modules in which a semantic information extractor, a high-dimensional
index structure and an object oriented database are connected by coordinator module
to build the desired multimedia database architecture. A complete system that
supports automatic semantic concept extraction and enriched with a high-
dimensional index structure for enhanced and quick retrieval is developed. The
system is gradually developed in a component-oriented approach such that each
component can be replaced by alternative modules without affecting others.

3. An ontology for football domain which is based on the relations of semantic objects
is used. This ontology is utilized in cooperation with the event extraction module to
detect events in this domain. This ontology presented as a proof of concept and any
desired ontology can be appended to the proposed system later.

4. A client application for query is developed that supports query by concept, query by
content and their combination. It also supports multimodal query with logical
operations to join modals.

5. We also develop a different client application that automatically extracts and
annotates concepts for supported modalities and allows users to manually
manipulate them. Thin client technology is used in order to support the distributed
nature of multimedia data processing.

6. We propose a query level fusion that exploits correlation in each modality and
among them. We employ CCA and KCCA to catch linear and non-linear relations
between modalities which aim at capturing some term to term correlations by
looking at co-occurrence information. Then we evaluate them with General Vector
Space and Boolean retrieval models which provide improvement in retrieval
performance. By combining proposed query level fusion with data fusion introduced
in [10], we observe even further improvement in multimodal query retrieval
performance.

1.2 Thesis Outline

The rest of the thesis is organized as follows: in Chapter 2, previous works and studies
regarding to our work’s topic are explained. Information about technologies and tools that
are exploited in this work are provided in Chapter 3. In Chapter 4, proposed architecture and
the recommended semantic data model for this architecture are described in details. This
chapter also includes steps for online and automatic concept extraction from a given sample

video. In Chapter 5, query retrieval models are discussed and supported query types are
described. Detail information about query level fusion and results are covered in Chapter 6.
The conclusion and recommend future work are provided in last chapter.

CHAPTER 2

RELATED WORK

In this section of the thesis, a brief review of the approaches that were suggested in the past,
in order to provide solutions to the multimedia database architecture integration and query
level fusion is presented.

With a fast technological improvement in cheap and large capacity storage users need to
efficiently search among these mass volume of multimedia data. Hence, multimedia
information retrieval necessity is fulfilled when some semantic concepts as well as example
multimedia objects can be efficiently searched within multimedia data [11].

The multimedia objects search is facing a well-known problem that is defined as semantic
gap [12][13]. The process of querying the multimedia data is complex and depending on not
only what information can be retrieved but also how this information can be linked logically
to low-level features to reduce the semantic gap efficiently.

A framework for multimedia information retrieval was proposed in [14] that utilizes matrix-
based mathematical models for content modeling. In [15] a Framework for querying
multimedia data was proposed which was named as “Visual Information Retrieval (VizIR)”.
Another framework for multimedia information retrieval was proposed in [16] that
recommends a uniform solution for structuring of multimedia data as well as supporting
automatic, semi-automatic and manual annotation. The mentioned frameworks lack
architectural approaches that provide modular methods for integration of multimedia
information retrieval architectures. They are also defined at abstract levels and as a result,
system development using them is complicated. “Informedia” [17], “Combinformation”
[18], “greenstone” [19], “M-Space Browser” [20][21] and “EVIADA” [22] also were
proposed as non web-based multimedia information retrieval systems. They mostly provide
searching within particular modal of multimedia data [23]. Another multimedia architecture
that provides users with interfaces to search multimedia data via fuzzy queries from single
modality was proposed in [3].

Since searching inside one modal of multimedia data can not compensate the requirements of
the retrieval of multimedia data [11], searching within multiple modalities or multiple
knowledge sources like audio, video and text is almost vital.

Designing the mixture approaches for multimodal retrieval gain great importance lately in
developing effective multimedia systems [24]. This issue has created an important challenge
for researchers, as pointed out in [25]:

“To deal effectively with multimedia retrieval, one must be able to handle multiple query
and document modalities. In video, for example, moving images, speech, music audio and
text (closed captions) can all contribute to effective retrieval. Integrating the different
modalities in principled ways is a challenge.”

The problem of multimedia modal source combination has been actively investigated in
recent years. Westerveld et al. [26] demonstrated how the combination of different
modalities can influence the performance of video retrieval. They utilized a model inspired
by language modeling approach and a probabilistic approach for image retrieval to rank the
video shots. Their final results were obtained by sorting the joint probabilities of all
modalities. The video retrieval system proposed by Amir et al. [27] applied a query-
dependent combination model that the weights are defined based on user experiences. They
also utilized a query-independent linear combination model to merge the text/image retrieval
systems where the per-modality weights are chosen to maximize the mean average precision
(MAP) score on potential results. Gaughan et al. [28] ranked the video shots based on the
summation of feature weights and automatic speech retrieval scores, where the effect of
speech retrieval is higher than any other features. Rautiainen et al. [29] used a user-
dependant approach to combine the results from text search and visual search. In their
system the combinations’ scores are predefined by users when the query is submitted. The
QBIC system [30] combines scores from different image retrieval system using linear
combination. Gulen also proposed a multiple knowledge sources combination in data level
via late fusion technique in [10].

However, until recently most of the multimedia retrieval systems used query independent
approaches that combine multiple knowledge sources. This has greatly limited their
flexibilities and performance in the retrieval process [31]. Instead, it is more desirable to
design a better combination method which can take query information into account without
asking information from user. Recently, query class based combination approaches [32][33]
were proposed as a practical alternative for the query independent combination which begins
with classifying the queries into predefined query classes and then applies the corresponding
combination scores for knowledge source combination. Experimental evaluations have
demonstrated the effectiveness of these ideas which have been applied in the best-
performing systems of well-known datasets [34]. Although the validity of using query-class
dependent weights has been confirmed by many later studies [33][35][36][37], defining
classes for queries is still a challenging issue. For example, Yuan et al. [36] classified the
query space into person and non-person queries in their multimedia retrieval system. To
improve the manually defined query classes, Kennedy et al. [37] recently proposed a data-
driven learning approach to automatically discover the query-class-dependent weights from
training data by means of grouping the queries in a joint semantic space via clustering
techniques such as k-means and hierarchical clustering.

A more recent work [38] unified query class categorization and combination weight
optimization in a single probabilistic framework by treating query classes as latent variables.

8

Some of recent studies have also proven that using a latent relation between modalities
increased the performance of query retrieval in multimodal systems [39][40][41]. These
studies can be classified into two categories [42]: multimodal correlation analysis and cross-
media index. Multi-modal correlation analysis [43][44] approach explore statistic
correlations between modalities by analyzing their co-occurrence relationship. For instance,
after extracting visual and audio features, correlation can be analyzed between their feature
matrices to learn their correlations [45] and then apply a hierarchical manifold space to make
the correlations more accurate [46]. However, difficulties still exist due to the heterogeneous
feature space of visual or audio modalities. Unlike multi-modal correlation analysis methods,
cross-media index approach focuses on automatically labeling un-annotated multimedia data
using textual models [47][7]. These methods first represent a visual or audio feature cluster
with the dictionary index and then construct a linked representation to obtain shots’ text (or
audio-text) translation results. Despite its success, this approach suffers from several
weaknesses. First, representing each local visual or audio feature by a dictionary index can
result in severe loss of information. Second, cross-media index actually focuses on the
annotation problem and ignores semantics correlation among multi-modal data in query
retrieval.

Canonical Correlation Analysis (CCA) is one of the methods of correlating linear
relationships between two multidimensional variables. CCA can be seen as using complex
labels as a way of guiding feature selection towards the underlying semantics. CCA makes
use of two views of the same semantic object to extract the representation of the semantics.
The main difference between CCA and the other methods for correlating is that CCA is
closely related to mutual information in different sets [48]. Hence CCA can be easily
exploited in information retrieval tasks and is our selection in this work.

CCA which was proposed by Hotelling [49] can be seen as the problem of finding basis
vectors for two sets of variables such that the correlation between the projections of the
variables onto these basis vectors are mutually maximized. In an attempt to increase the
flexibility of the feature selection, kernelisation of CCA (KCCA) has been applied to map
the data to a higher-dimensional feature space. KCCA has been applied in some preliminary
work by Fyfe & Lai [50], Akaho [51] and recently by Vinokourov et al. [52] with improved
results. Finally, after investigating previous studies our conclusion leads us to take advantage
of CCA and KCCA to analyze the correlation among modals.

10

CHAPTER 3

BACKGROUND

3.1 MPEG-7
3.1.1 Introduction

Due to Internet’s popularity, the last decade has experienced a quick propagation of digital
audio-visual information. Though the increasing availability of potentially interesting
information has enriched our lives, the overwhelming amount of information also raises
fundamental questions and problems:

How fast and easy can desirable information be available? The more interesting material is
available, the harder it is to locate. A noticeable indicator of the existing tension between
humans and the vast amounts of information lies in the popularity of search engines
available on the web. Unfortunately, current solutions let users only search for textual
information. Identifying audio-visual information proved to be difficult as no generally
recognized description of this material exists. For example it’s not possible to efficiently
search the web for: a video of the car in accident or shots where a tennis player broke her
racket as well as “all video according to given video sample.” We can consider similar
examples for audio, in which we prepare audio sample and look for similar shots.

It’s true that in specific cases, solutions exist. Multimedia databases on the market today let
users search for pictures using characteristics like color, texture, and information about the
shape of objects in the picture. Furthermore, the question of identifying content is not
restricted to database retrieval applications and applies equally to other areas. For instance,
we can imagine world with more than 1000 broadcast television channels, which will of
course make it harder to select and search a potentially interesting channel. Domains other
than search also include image understanding (surveillance, intelligent vision, smart cameras,
and so on) or media conversion such as speech to text, picture to speech, visual transcoding,
and so on.

In October 1996, the Moving Pictures Expert Group (MPEG) started a new project to
provide a solution to the questions described above. The newest member of the MPEG
family, called the multimedia content description interface (MPEG-7), extends the limited
capabilities of proprietary solutions in identifying content that exists today, notably by
including more data types. In other words, MPEG-7 aims to standardize a core set of
quantitative measures of audio-visual features, called Descriptors (D), and structures of
descriptors and their relationships, called Description Schemes (DS) in MPEG-7. MPEG-7

11

also standardizes a language - Description Definition Language (DDL) - that specifies
Description Schemes to ensure flexibility for wide agreement and durability. We can index
and search for audio/visual material that has MPEG-7 data associated with it. This material
may include still pictures, graphics, 3D models, audio, speech, video, and information about
how these elements combine in a multimedia presentation (for example, scenarios or
composition information). We expect the standard core set of MPEG-7 functionality would
facilitate those classes of applications that have widespread use and will provide
interoperability [53].

3.1.2 Multimedia Content Description

MPEG-7’s most important aim is to provide a set of methods and tools for the different
classes of multimedia content description. When we mention description classes, we actually
mean different possible aspects that a description of audio-visual content might cover. A key
concept to remember is that many different methods exist to describe any entity depending
on how it will be used. Thus, MPEG7 must accommodate these several ways and make them
complementary rather than mutually exclusive. Four fundamental description classes relate
to the data or any kind of material to be described which are as follows: Transcriptive,
physical, perceptual, and medium-based descriptions that represent largely independent
views of the data. On top of these schemes an architectural description resides that provides
relationships between large sections of the data and relationships between and within the
description(s) below it. The annotative description, a part for human annotation and other
sorts of commentary on the data itself, sits on top of all the layers and touches each of them.
Most likely, any real-life description for use in MPEG-7 applications would employ only one
or two of these classes. We now discuss in details the different possible types of description
that may exist.

3.1.3 Scope of MPEG-7

MPEG-7 focuses on the standardization of a common interface for describing multimedia
data and representing information about the content, not the content itself. The scope is to
define the representation of the features, related to audio/video content. Any application
dependent issue is outside of its scope. Therefore, neither feature extraction nor query and
retrieval process is in the scope of MPEG7. However, because of some interoperability
issues it also specifies extraction process at some degree. To summarize, main goal is to
make audiovisual data searchable similar to text.

3.1.4 MPEG-7 Parts and Descriptors

The MPEG-7 Standard consists of the following parts [53]:

e MPEG-7 Systems: the tools needed to prepare MPEG-7 descriptions for efficient ship
and storage.

12

e MPEG-7 Description Definition Language: the language for defining the syntax of the
MPEG-7 Description Tools and for defining new Description Schemes.

e MPEG-7 Visual: the Description Tools dealing with (only) Visual descriptions.
e MPEG-7 Audio: the Description Tools dealing with (only) Audio descriptions.

e MPEG-7 Multimedia Description Schemes: the Description Tools dealing with
generic features and multimedia descriptions.

e MPEG-7 Reference Software: a software implementation of relevant parts of the
MPEG-7 Standard with normative status.

e MPEG-7 Conformance Testing: guidelines and procedures for testing conformance of
MPEG-7 implementations.

e MPEG-7 Extraction and use of descriptions: informative material about the extraction
and use of some of the Description Tools.

e MPEG-7 Profiles and levels: provides guidelines and standard profiles.

e MPEG-7 Schema Definition: specifies the schema using the Description Definition
Language.

MPEG-7 provides tools and structures for describing both visual and audio content. MPEG-7
standards overview documentation [53] gives detailed information about all these
descriptors. Although only a few of them are used in the implementation of the proposed
architecture, any descriptor can easily be integrated into the system. In the following part,
descriptors used in the implementation of prototype application are briefly explained.

e Color Layout: Among seven color descriptors, color layout represents the spatial
distribution of colors of an image in the frequency domain in a very compact form.
This compactness allows it to be used in index structures with small computational
costs. Besides, it also provides high-speed image-to-image and sequence-to-sequence
matching which requires so many similarity calculations. Since it captures the layout
information of colors, this descriptor allows very friendly user interface using hand-
written sketch queries. No dependency on image/video format, resolution and bit-
depths is advantage of this descriptor. It can be applied to whole image and even to
any unconnected parts of an image with arbitrary shapes.

e Dominant Color: A small number of representative colors (up to 8) are enough to
characterize the color information of an image or a specific region. Such compactness
makes this descriptor a good candidate for index structures. Therefore, this descriptor
is most suitable for representing color information of objects. To extract a few
representative colors, color quantization is used and the percentage of each quantized
color is calculated correspondingly. A spatial coherency on the entire descriptor is also
defined, and is used in similarity retrieval.

13

e Region Shape: By capturing all the pixel distribution of a shape/region, this
descriptor can be used in describing shapes. Not only simple ones but also complex
shapes with multiple regions, possibly the ones with holes, can be described. Its small
size, fast extraction time and low order of computational complexities for matching
ability make this descriptor suitable for shape tracking in images and videos.

o Edge Histogram: This descriptor represents the spatial distribution of five types of
edges in an image; four directional edges (vertical, horizontal, 45° diagonal, 135°
diagonal), and one non-directional edge (isotropic). Since edges play an imprtant role
in object detection, this descriptor can be useful for image-to-image matching (by
example or by sketch). When it is used in conjunction with other descriptors, such as
color and shape descriptors, it may significantly improve the retrieval performance.
Due to low computational cost, it is suitable for CBIR or retrieval systems based on
textures.

3.1.5 MPEG-7 Reference Software (eXperimental Model)

MPEG-7 reference software (eXperimentation Model, shortly XM) is a tool which has
ability to extract low level information from video data, using MPEG-7 descriptors. It
generates specified MPEG-7 bit streams or DDL streams. Most of the Descriptors and
Description Schemes are implemented in XM software. After loading data, the software
extracts low-level features and after encoding descriptions it produces a file containing low-
level information [53].

XM software can also be used for distance calculations of similar data. After building a
database containing extracted low-level information, the tool has the ability to calculate
distance values between each data in the database and the given one. MPEG-7 reference
software is used both in concept extraction module, index mechanism and QBE retrieval in
this study. While, annotation module utilizes this tool for obtaining low-level features and
determining distance values at classification step, index mechanism uses extracted features
for building index structure as well as calculating distance of objects.

3.1.6 Audio Features

Audio features are basically some values containing meaningful information extracted from
audio signals in order to compare and classify audio data. After the extraction of such
information, it is stored in a content description in a compact way. A data descriptor is
generally called a feature vector and the process for extracting such feature vectors from
audio is called feature extraction. Audio feature extraction is generally based on audio
analysis of spectral energy distribution, harmonic ratio or fundamental frequency of the
audio signal [54].

14

Table 3-1 MPEG-7 descriptor list

Type Feature Descriptors
Color Space
Color Quantization
Dominant Color(s)

Color Descriptors Scalable Color

Color Layout
Color-Structure Descriptor
GoF/GoP Color
Homogenous Texture Descriptors

Texture Descriptors Texture Browsing
Video Edg.e Histogram
Region Shape
Shape Descriptors Contour Shape
Shape 3D

Camera Motion

Motion Trajectory
Parametric Motion
Motion Activity
Region Locator

Motion Descriptors

Localization X

Spatio Temporal Locator
Others Face Recognition
Silence Silence

Log Attack Time
Temporal Centroid

Audio Spectrum Envelope
Audio Spectrum Centroid
Audio Spectrum Spread
Audio Spectrum Flatness
Audio Waveform

Timbral Temporal

Basic Spectral

Basic !
Audio Audio Power

Audio Harmonicity

Audio Fundamental Frequency
Harmonic Spectral Centroid
Harmonic Spectral Deviation
Timbral Spectral Harmonic Spectral Spread
Harmonic Spectral Variation
Spectral Centroid

Signal Parameters

Audio Spectrum Basis

Spectral Basis - i
Audio Spectrum Projection

3.1.7 MPEG-7 Audio Features

MPEG-7 standard is a widely used standard in audio classification area. It provides a large
set of audio tools to create descriptions. MPEG-7 standard provides the following main
elements [55]:

e Descriptors (D) define semantics and syntax of audio feature vectors.

15

e Description Schemes (DSc) define the semantics and syntax of the relationships
between the components of descriptor.

o Description Definition Language (DLL) defines the syntax of description tools.

The focus of architecture proposed is the Descriptors in which semantic of feature vectors
are defined. They are low-level audio descriptors containing temporal and spectral
descriptors. These descriptors are classified into basic, basic spectral, single parameter,
timbral temporal, timbral spectral and spectral basis descriptors [55] as listed in Figure 3-1.

Audio Framework

Basic Signal Parameters
AudioWaveform D AudioHarmonicity D
AudicPower D AudioFundamentaltrequency D
Basic Spectral Timbral Temporal
AudioSpectrumEnvelope D LogAttackTime D
AudioSpectrumCentroid D TemporalCentroid D
AudioSpectrumSpread D
AudioSpectrumFlatness D Timbral Spectral
HarmanicSpectralCentroid T)
HarmonieSpectralDeviation D
SpectralBasis HarmonicSpectralSpread D
AudioSpectrumBasis D HarmonicSpectral Variation D
AudioSpectrumProjection D SpectralCentroid D

Figure 3-1 Overview of MPEG-7 audio framework

3.2 Object Oriented Database Management Systems

In object oriented (OO) programming paradigm, usually storing and accessing objects are the
bottleneck of the system. Furthermore, developing with an OO language, if we use relational
database management systems (RDBMS), can result in complicated and difficult-to-maintain
code [56].

Most of the time, we have to write object-to-relational mapping code for storing objects in
RDBMS (i.e. Spring). Similarly, when an object is to be retrieved from relational database,
since objects and their properties are usually stored in a normalized form and distributed in
various fields, a group of time consuming retrieve and assemble functions should be
executed. Also, when dynamic class structures are used as in agile development
environment, for each minor modification we may have to change the schema and alter some

16

queries to handle schema change. The aim of object oriented database management systems
(OODBMS) is to handle deficiencies of RDBMSs in object handling approach.

Although some object-relational database systems are offered for handling objects in
relational approach recently, they could not reach the compactness and convenient usage of
OODMS:s. Since objects exist as whole entities in database, storing, retrieving and accessing
to them, can be executed with single calls in OODBMSs, even they have compound
structures or parent-child hierarchies.

"Using tables to store objects is like driving your car home and then disassembling it to put
it in the garage. It can be assembled again in the morning, but one eventually asks whether
this is the most efficient way to park a car." [57]

3.2.1 DB40O

DBA40 is an open-source object-oriented database, providing a strong integration with object-
oriented programming languages, like Java and .Net. As in OODBMSs, it eliminates the
translation code which most OO developers should deal with.

It provides high performance, cross platform, simple and easy-to-manage store and access
environment. By using DB40O, there is no need to design an additional database schema
since the class model becomes the database schema of application [57].

3.3 Large Scale Concept Ontology for Multimedia (LSCOM)

The Large-Scale Concept Ontology for Multimedia (LSCOM) project was a series of
workshops held from April 2004 to September 2006 for the purpose of defining a standard
and formal vocabulary for the annotation and retrieval of video [58].

3.3.1 Project Description

The LSCOM workshop [59] has developed an expanded multimedia concept lexicon of more
than 2000 concepts which slightly over 400 of them have been annotated in 80 hours of
video. Concepts related to events, objects, locations, people, and programs have been
selected following a multi-step process involving input solicitation, expert critiquing,
comparison with related ontologies, and performance evaluation. Participants of the process
include representatives from intelligence community users, ontology specialists, and
multimedia analytics researchers. In addition, each concept has been assessed according to
some criteria, such as utility (usefulness), observability (by humans), and feasibility (by
automatic detection). An annotation process was completed in late 2005 by student
annotators at Columbia University and CMU over the entire development set of TRECVID
2005 videos. Human subjects judge the presence or absence of each concept in the key frame
of each shot, resulting in a total of 61901 labels for each concept.

17

The first version of the LSCOM annotations consist of keyframe-based labels for 449 visual
concepts, out of the 834 initial selected concepts, over the entire TRECVID 2005
development set (61901 shots).

The LSCOM-Lite annotations include 39 high-level features (concepts) which are results
from the effort in developing a Large-Scale Concept Ontology for Multimedia (LSCOM).
Most of the concepts in LSCOM-Lite overlap with the concepts in LSCOM however, some
concepts in LSCOM-Lite are not in LSCOM. The concepts were selected based on semi-
automatic mapping of 26377 noun search terms from BBC query logs in late 1998 to
WordNet senses, division of semantic concept space into a small number of orthogonal
dimensions, and evaluation of 2003 and 2004 TRECVID search topics. The dimensions
consist of program category, setting/scene/site, people, object, activity, event, and graphics.
A collaborative effort among participants in the TRECVID 2005 benchmark was completed
in the summer of 2005 to produce annotations of the 39 concepts over the entire
development set of TRECVID 2005 videos. Ten of the LSCOM-Lite concepts have been
chosen for evaluation in the TRECVID 2005 high-level feature detection task and 20
LSCOM-Lite concepts were evaluated at TRECVID 2006.

The Revised Event/Activity annotations were conducted on 24 concepts, which contained a
temporal component. These concepts were originally annotated in the LSCOM v1.0 release
using single keyframes for each shot. Since some concepts require motion, this approach
gives unreliable results, so this subset of concepts was re-annotated by having human
subjects watch the actual video clips, instead of just viewing single KeyFrame [58].

3.3.2 Use of LSCOM in Larger Research Community

Since its release, LSCOM has begun to be used successfully in visual recognition research:
Apart from research done by LSCOM project participants, it has been used by independent
research in concept extraction from images, and has served as the basis for a video
annotation tool.

We used a subset of the LSCOM concepts to manually annotate a data set for training and
testing in this work. The detail process is described in upcoming chapters.

3.4 Java Media Framework (JMF)

The Java Media Framework (JMF) is a Java library that enables audio, video and other time-
based media to be added to Java applications and applets. This optional package, which can
capture, play, stream, and transcode multiple media formats, extends the Java Platform,
Standard Edition (Java SE) and allows development of cross-platform multimedia
applications.

18

An initial, playback-only version of JMF was developed by Sun Microsystems, Silicon
Graphics, and Intel, and released as JMF 1.0 in 1997. JMF 2.0, developed by Sun and IBM,
came out in 1999 and added capture, streaming, pluggable codecs, and transcoding. JMF is
branded as part of Sun's "Desktop" technology of J2SE opposed to the Java server-side and
client-side application frameworks. The notable exceptions are Java applets and Java Web
Start, which have access to the full JMF in the web browsers or applet viewers underlying
JRE.

JMF 2.0 originally shipped with an MP3 decoder and encoder. This was removed in 2002,
and a new MP3 playback-only plug-in was posted in 2004. JMF binaries are available under
a custom license and the source is available under the SCSL.

The current version ships with four JAR files and shell scripts to launch four JMF-based
applications which are:

e JMStudio: A simple player GUIL

o JMFRegistry: A GUI for managing the JMF "registry," which manages preferences,
plug-ins, etc.

e JMFCustomizer: Used for creating a JAR file that contains only the classes needed
by a specific JMF application and allows developers to ship a smaller application.

e JMFInit: Modules and steps to initialize a player.

SIMF (performance pack) is available in an all-Java version and as platform-specific
"performance packs" which can contain native-code players for the platform, and/or hooks
into a multimedia engine specific to that platform. JMF 2.0 offers performance packs for
Linux, Solaris (on SPARC) and Windows.

In January 2011, Tudor Holton, a member of Bentokit Project, released a Debian package for
the JMF to alleviate difficulties that had arisen over time when installing the JMF
on Debian and Ubuntu GNU/Linux. This package does not contain the JMF, but presents the
user with the JMF License, retrieves it from the Oracle website, and then installs it. A
similar Debian package installer for the JMF MP3 Plugin was also built in February 2011
[60].

3.4.1 Design Concepts

JMF abstracts the media it works with into DataSources (for media being read into JMF)
and DataSinks (for data being exported out). It does not afford the developer significant
access to the particulars of any given format; rather, media is represented as sources
(themselves obtained from URL's) that can be read in, played, processed and exported
(though not all codecs support processing and transcoding).

19

A Manager class offers static methods that are the primary point-of-contact with JMF for
applications. In this work we use JMF to load and play audio and video files.

3.5 Java Web Start Technology (JWS)

Java Web Start is a helper application that gets associated with a Web browser. When a user
clicks on a link that points to a special launch file (JNLP file), it causes the browser to launch
Java Web Start which then automatically downloads, caches, and runs the given Java-based
application. The entire process is typically completed without requiring any user interaction
except for the initial single click [61].

From a technology standpoint, Java Web Start has a number of key benefits that make it an
attractive platform to use for deploying applications [62]:

e Java Web Start is built exclusively to launch applications written to the Java 2 SE
platform. Thus, a single application can be made available on a Web server and then
deployed on a wide variety of platforms, including Windows 98/NT/2000/XP/7,
Linux, and the Solaris Operating Environment. The Java platform has proven to be a
very robust, productive, and expressive development platform, leading to a
significant cost savings due to minimized development and testing costs.

o Java Web Start supports multiple revisions of the Java platform. Thus, an application
can request a particular version of the platform it requires, such as J2SE 7. Several
applications can run at the same time on different platform revisions without causing
conflicts and Java Web Start can automatically download and install a revision of the
platform if an application requests a version that is not installed on the client system.

o Java Web Start allows applications to be launched independently of a Web browser.
This can be used for off-line operation of an application, where launching through
the browser is often inconvenient or impossible. The application can also be
launched through desktop shortcuts, making launching the Web-deployed
application similar to launching a native application.

e Java Web Start takes advantage of the inherent security of the Java Platform.
Applications are by default run in a protective environment (sandbox) with restricted
access to local disk and network resources. It allows the user to safely run
applications from sources that are not trusted.

e Applications launched with Java Web Start are cached locally. Thus, an already-
downloaded application is launched similar with a traditionally installed application.

20

3.5.1 Java Network Launch Protocol (JNLP)

The technology underlying Java Web Start is the Java Network Launching Protocol & API
(JNLP). This technology was developed via the Java Community Process (JCP). Java Web
Start is the reference implementation (RI) for the JNLP specification. The JNLP technology
defines, among other things, a standard file format that describes how to launch an
application called a JNLP file [63].

The JNLP enables an application to be launched on a client desktop by using resources that
are hosted on a remote web server. Java Plug-in software and Java Web Start software are
considered JNLP clients because they can launch remotely hosted applets and applications
on a client desktop.

Recent improvements in deployment technologies enable us to launch rich Internet
applications (RIAs) by using JNLP. Both applets and Java Web Start applications can be
launched by using this protocol. RIAs that are launched by using JNLP also have access to
JNLP APIs. These JNLP APIs allow the RIAs to access the client desktop with the user's
permission.

JNLP is enabled by a RIA's JNLP file. The JNLP file describes the RIA. The JNLP file
specifies the name of the main JAR file, the version of Java Runtime Environment software
that is required to run the RIA, name and display information, optional packages, runtime

parameters, system properties, and so on [64]. In this work, we employ this technology to
fully exploit mentioned benefits of the JNLP and JWS.

3.6 Java Native Interface (JNI)

The Java Native Interface is a programming framework that enables Java code running in
a Java Virtual Machine (JVM) to call as well as be called by native applications (programs
specific to a hardware and operating system platform) and libraries written in other
languages such as C, C++ and assembly.

JNI enables us to write native methods to handle situations when an application cannot be
written entirely in the Java programming language, e.g. when the standard Java class
library does not support the platform-specific features or program library. It is also used to
modify an existing application written in another programming language to be accessible to
Java applications. Many of the standard library classes depend on JNI to provide
functionality to the developer and the user such as file I/O. Including performance and
platform sensitive API implementations in the standard library, JNI allows all Java
applications to access this functionality in a safe and platform-independent manner [65].

The JNI framework lets a native method use Java objects in the same way that Java code
uses these objects. A native method can create Java objects and then inspect and use these

21

objects to perform its tasks. A native method can also inspect and use objects created by Java
application code.

JNI is sometimes referred to as the "escape hatch" for Java developers because it enables
them to add functionality to their Java application that the standard Java APIs cannot
otherwise provide. It can be used to interface with code written in other languages, such as C
and C++. It is also used for time-critical calculations or operations like solving complicated
mathematical equations, because native code may be faster than JVM code [66]. We utilize
JNI to access XM Software in order to extract MPEG-7 low-level features.

3.7 Java Native Access (JNA)

Java Native Access provides Java programs easy access to native shared libraries without
using the Java Native Interface. JNA's design aims to provide native access in a natural way
with a minimum of effort [65].

The JNA library uses a small native library called foreign function interface library (libffi) to
dynamically invoke native code. The JNA library uses native functions allowing code to load
a library by name and retrieve apointerto a function within that library, and
uses libffi library to invoke it, all without static bindings, header files, or any compile phase.
The developers use Java interfaces to describe functions and structures in the target native
library. This makes it quite easy to take advantage of native platform features without
incurring the high development overhead of configuring and building JNI code [67].

JNA is built and tested on Mac OS, AIX, Microsoft Windows, Solaris, FreeBSD,
OpenBSD, Linux, X, Windows Mobile, and Android. It is also possible to recompile the
native build configurations to make it work on most other platforms that run Java. For
segmenting key-frames we utilize JNA to exploit previously developed libraries of JSEG.

3.8 Servlet Technology

A Servlet is a Java programming language class used to extend the capabilities of a server.
Although Servlets can respond to any types of requests, they are commonly used to extend
the applications hosted by web servers, so they can be thought of as Java Applets that run on
servers instead of in web browsers. These kinds of Servlets are the Java counterpart to non-
Java dynamic Web content technologies such as PHP and ASP.NET.

A Servletis a Java-based server-side web technology. Technically speaking, a Servlet is
aJava class in Java EE that conforms to the Java Servlet API, a protocol by which a Java
class may respond to requests. Servlets could in principle communicate over any client—
server protocol. A software developer may use a servlet to add dynamic content to a web
server using the Java platform. The generated content is commonly HTML, but may be other
data such as XML. Servlets can maintain states in session variables across many server
transactions by using HTTP cookies, or URL rewriting.

22

To deploy and run a Servlet, a web container must be used. A web container (also known as
a Servlet container) is essentially the component of a web server that interacts with the
Servlets. The web container is responsible for managing the lifecycle of Servlets, mapping
an URL to a particular Servlet and ensuring that the URL requester has the correct access
rights [68].

The Servlet API, contained in the Java package hierarchy javax.serviet defines the expected
interactions of the web container and a servlet.

A Servlet is an object that receives a request and generates a response based on that request.
The basic Servlet package defines Java objects to represent Servlet requests and responses,
as well as objects to reflect the Servlet's configuration parameters and execution
environment.

The package javax.serviet.http defines HTTP-specific subclasses of the generic servlet
elements including session management objects that track multiple requests and responses
between the web server and a client. Servlets may be packaged in a WAR file as a web
application.

Servlets can be generated automatically from Java Server Pages (JSP) by the Java Server
Pages compiler. The difference between Servlets and JSP is that Servlets typically embed
HTML inside Java code, while JSPs embed Java code in HTML. While the direct usage of
Servlets to generate HTML has become rare, the higher level MVC (Model View Controller)
web framework in Java EE (JSF) still explicitly uses the Servlet technology for the low level
request/response handling via the FacesServiet. A somewhat older usage is to use Servlets in
conjunction with JSPs in a pattern called "Model 2", which is a flavor of the model-view—
controller pattern.

The Servlet specification was created by Sun Microsystems, with version 1.0 finalized in
June 1997. Starting with version 2.3, the Servlet specification was developed under the Java
Community Process. JSR 53 defined both the Servlet 2.3 and JavaServer Page 1.2
specifications. JSR 154 specifies the Servlet 2.4 and 2.5 specifications. As of March 26,
2010, the current version of the Servlet specification is 3.0.

The advantages of using Servlets are their fast performance and ease of use combined with
more power over traditional CGI (Common Gateway Interface). Traditional CGI scripts
written in Java have a number of disadvantages when it comes to performance [69]:

e When an HTTP request is made, a new process is created for each call of the CGI
script. This overhead of process creation can be very system-intensive, especially
when the script does relatively fast operations. Thus, process creation will take more
time than CGI script execution. Java Servlets solve this, as a Servlet is not a separate
process. Each request to be handled by a Servlet is handled by a separate Java thread

23

within the web server process, omitting separate process forking by the HTTP
daemon.

e Simultaneous CGI request causes the CGI script to be copied and loaded into
memory as many times as there are requests. However, with Servlets, there are the
same amounts of threads as requests, but there will only be one copy of the Servlet
class created in memory that stays there also between requests.

e Only a single instance answers all requests concurrently. This reduces memory
usage and makes the management of persistent data easy.

e A Servlet can be run by a Servlet container in a restrictive environment, called
a sandbox. This is similar to an applet that runs in the sandbox of the web browser.
This makes a restrictive use of potentially harmful Servlets possible.

3.8.1 Life Cycle of a Servlet

During initialization stage of the Servlet life cycle, the web container initializes the Servlet
instance by calling the inif() method, passing an object implementing the interface. This
configuration object allows the Servlet to access name-value initialization parameters from
the web application [69].

After initialization, the Servlet can service client requests. Each request is serviced in its own
separate thread. The web container calls the service() method of the Servlet for every
request. The service() method determines the kind of request being made and dispatches it to
an appropriate method to handle the request. The developer of the Servlet must provide an
implementation for these methods. If a request is made for a method that is not implemented
by the Servlet, the method of the parent class is called, typically resulting in an error being
returned to the requester.

Finally, the web container calls the destroy() method that takes the Servlet out of service.
The destroy() method, like init(), is called only once in the lifecycle of a Servlet.

Therefore, three methods are central to the life cycle of a Servlet. These are init(), service(),
and destroy(). They are implemented by every Servlet and are invoked at specific times by
the server. The following is a typical user scenario of these methods [69].

1. Assume that a user requests to visit an URL.
e The browser then generates an HTTP request for this URL.

e This request is then sent to the appropriate server.

2. The HTTP request is received by the web server and forwarded to the Servlet
container.

24

e The Servlet container maps this request to a particular Servlet.

e The Servlet is dynamically retrieved and loaded into the address space of the
Servlet container.

The Servlet container invokes the init() method of the Servlet.

e This method is invoked only when the Servlet is first loaded into memory.

e [t is possible to pass initialization parameters to the Servlet so that it may
configure itself.

The Servlet container invokes the service() method of the Servlet.

e This method is called to process the HTTP request.

e [t is possible for the Servlet to read data that has been provided in the HTTP
request.

e The Servlet may also formulate an HTTP response for the client.

The Servlet remains in the Servlet container’s address space and is available to
process any other HTTP requests received from clients.

e The service() method is called for each HTTP request.

The Servlet container may, at some point, decide to unload the Servlet from its
memory.

e The algorithms by which this decision is made are specific to each Servlet

container.

The Servlet container calls the Servlet's destroy() method to relinquish any resources
such as file handles that are allocated for the Servlet; important data may be saved to
a persistent store.

The memory allocated for the Servlet and its objects can then be garbage collected.

3.9 Servlet Container

Servlet container (also known as a Web container) is the component of a web server that

interacts with Java Servlets. A web container is responsible for managing the lifecycle of
Servlets, mapping a URL to a particular servlet and ensuring that the URL requester has the

correct access rights.

A web container implements the web component contract of the Java EE architecture,

specifying a runtime environment for web components that includes security, concurrency,

lifecycle management, transaction, deployment, and other services. A web container

25

provides the same services as a JSP container as well as a federated view of the Java EE
platform APIs.

3.9.1 Apache Tomcat

Apache Tomcat is an open source web server and servlet container developed by the Apache
Software Foundation (ASF). Tomcat implements the Java Servletand the JavaServer
Pages (JSP) specifications from Sun Microsystems, and provides a "pure Java" HTTP web
server environment for Java code to run [70]. Tomcat is an application server that provides
software applications with services such as security, data services, transaction support, load
balancing, and management of large distributed systems [70] (Figure 3-2).

Server

Service(s)

Engine(s) Catalina
Connector(s)
-HTTP
-HTTPS Context(s) docs, examples,
-AIP host-manager, manager, ROOT
(Applications or Webapps)

Host(s) localhost

Figure 3-2 Tomcat architecture

Tomcat is not the same as the Apache web server, which is a C implementation of an HTTP
web server; these two web servers are not bundled together, although they are frequently
used together as part of a server application stack [71]. Apache Tomcat includes tools for
configuration and management, but can also be configured by editing XML configuration
files. In this work we employ servlet technology along with Apache as a servlet container.

3.10 Serialization

In the context of data storage and transmission, serialization is the process of translating
relational database modeling data structure or object state into a format that can be stored in
a file or memory buffer or transmitted across a network connection link and deserialized
later in the same or another computer environment. When the resulting series of bits is reread
according to the serialization format, it can be used to create a semantically identical clone of
the original object. For many complex objects such as those that make extensive use
of references, this process is not straightforward. Serialization of object-oriented objects does
not include any of their associated methods with which they were previously tightly linked in
source environment [72].

26

This process of serializing an object is also called deflating or marshalling an object. The
opposite operation, extracting a data structure from a series of Dbytes, is
deserialization (which is also called inflating or unmarshalling).

The Xerox Network Systems Courier technology in the early 1980s influenced the first
widely adopted standard. Sun Microsystems published the External Data Representation
(XDR) in 1987.

In the late 1990s, a push to provide an alternative to the standard serialization protocols
started and XML was used to produce a human readable text-based encoding. Such an
encoding can be useful for persistent objects that may be read and understood by humans, or
communicated to other systems regardless of programming language. It has the disadvantage
of losing the more compact, byte-stream-based encoding, but larger storage and transmission
capacities made file size less of a concern than in the early days of computing. Binary
XML has been proposed as a compromise which is not readable by plain-text editors, but is
more compact than regular XML. In the 2000s, XML is often used for asynchronous transfer
of structured data between client and server in Ajax web applications.

JSON is a more lightweight plain-text alternative to XML which is also commonly used for
client-server communication in web applications. JSON is based on JavaScript syntax, but is
supported in other programming languages as well.

Another alternative, YAML, is effectively a superset of JSON and includes features that
make it more powerful for serialization, more human friendly and potentially more compact.
These features include a notion of tagging data types, support for non-hierarchical data
structures, the option to structure data with indentation, and multiple forms of scalar data
quoting.

Java provides automatic serialization which requires that the object be marked by
implementing the java.io.Serializable interface. Implementing the interface marks the class
as "okay to serialize," and Java then handles serialization internally. There is no serialization
methods defined on the Serializable interface, but a serializable class can optionally define
methods with certain special names and signatures that if defined, will be called as part of
the serialization/deserialization process. The language also allows the developer to override
the serialization process more thoroughly by implementing another interface,
the Externalizable interface, which includes two special methods that are used to save and
restore the object's state [68].

The standard encoding method uses a simple translation of the fields into a byte stream.
Primitives as well as non-transient, non-static referenced objects are encoded into the stream.
Each object that is referenced by the serialized object and not marked as transient must also
be serialized; and if any object in the complete graph of non-transient object references is not
serializable, then serialization will fail. The developer can influence this behavior by

27

marking objects as transient, or by redefining the serialization for an object so that some
portion of the reference graph is truncated and not serialized.

When Java objects use serialization to save state in files, or as blobs in databases, or
transferred over network the potential arises that the version of a class reading the data is
different than the version that wrote the data.

Versioning raises some fundamental questions about the identity of a class, including what
constitutes a compatible change. A compatible change is a change that does not affect the
contract between the class and its callers [73]. In this study we exploit Java serializing for
data transfer over network and versioning for potential problem in version mismatch.

3.11 Image Segmentation

In computer vision, image segmentation is the process of partitioning a digital image into
multiple segments (sets of pixels, also known as super pixels). The goal of segmentation is to
simplify and change the representation of an image into something that is more meaningful
and easier to analyze. Image segmentation is typically used to locate objects and boundaries
(lines, curves, etc.) in images. More precisely, image segmentation is the process of
assigning a label to every pixel in an image such that pixels with the same label share certain
visual characteristics.

The result of image segmentation is a set of segments that collectively cover the entire
image, or a set of contours extracted from the image Each of the pixels in a region are similar
with respect to some characteristic or computed property, such as color, intensity,
or texture. Adjacent regions are significantly different with respect to the same
characteristics.

3.11.1 JSEG

The essential idea of JSEG is to separate the segmentation process into two independently
processed stages, color quantization and spatial segmentation. In the first stage, colors in the
image are quantized to several representing classes that can be used to differentiate in the
image. This quantization is performed in the color space alone without considering the
spatial distributions. Afterwards, image pixel colors are replaced by their corresponding
color class labels, thus forming a class-map of the image. Applying the criterion to local
windows in the class-map, results in the "J-image" in which high and low values correspond
to possible boundaries and interiors of color-texture regions. A region growing method is
then used to segment the image based on the multi-scale J-images [74].

We compare Normalized Cut Image segmentation and JSEG