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ABSTRACT

SCORE TEST FOR TESTING ETIOLOGIC HETEROGENEITY IN TWO-STAGE
POLYTOMOUS LOGISTIC REGRESSION

Karagülle, Sayg�n

M.S., Department of Statistics

Supervisor : Assist. Prof. Dr. Zeynep Kalayl�o§lu

September 2013, 34 pages

Two-stage polytomous logistic regression was proposed by Chatterjee [11] as an e�ec-
tive tool to analyze epidemiological data when disease subtype information is available.
In this modeling approach, a classic logistic regression is employed in the �rst level
of the model. In the second level, the �rst-stage regression parameters are modeled
as a function of some contrast parameters in a somehow similar spirit of an ANOVA
model. This modeling also enables a practical way of estimating the heterogeneity
in the probabilities of occurrence of di�erent subtypes given a certain covariate set.
However, the only way of testing for signi�cance of the heterogeneity is the Wald test,
so an alternative test has yet to be developed. In this context, the aim is to develop a
score test and examine both the asymptotic and �nite sample properties of the test.
The simulation results showed that a minimum average expected subtype frequency,
depending on the number of disease subtypes and total sample size, must be attained
for the asymptotic distribution of the score test to hold. For the cases in which it is
implausible to make asymptotic distribution assumption, through an extensive Monte
Carlo simulation study, use of permutation test-based critical values were suggested.

Keywords: Categorical Response, Poltomous Logistic Regression, Score Test, Two-
Stage Regression
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ÖZ

�K� BASAMAKLI ÇOKLU LOJ�ST�K REGRESYONDA ET�YOLOJ�K
HETEROJENL��� TEST ETMEK �Ç�N SKOR TEST

Karagülle, Sayg�n

Yüksek Lisans, �statistik Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Zeynep Kalayl�o§lu

Eylül 2013 , 34 sayfa

Hastal�k alttür bilgisinin mecvut oldu§u epidemiyolojik verilerin analizinde etkili bir
araç olan ve Chatterjee [11] taraf�ndan geli³tirilen iki basamakl� lojistik regresyon kul-
lan�lmaktad�r. Bu modelleme yakla³�m�n�n ilk a³amas�nda, klasik lojistik regresyon mo-
deli kurulmaktad�r. �kinci a³amada ise, birinci basamaktaki regresyon katsay�lar� tek
yönlü ANOVA'y� and�ran bir tarzda bir tak�m kontrast parametreleriyle modellenmek-
tedir. Bu model ayn� zamanda, ilglenilen hastal�§a ait farkl� alttürlerin olabilirliklerinin
heterojenli§ini tahmin eden pratik bir yöntem de sa§lamaktad�r. Bu heterojenli§in test
edilmesi için mevcut yöntem olan Wald teste alternatif ba³ka bir testin geli³tirilmesine
ihtiyaç vard�r. Bu ba§lamda amaç, bir skor testi geli³tirmek ve bu testin hem asimtotik
hem de sonlu örneklem özelliklerini iki basamakl� lojistik regresyon çerçevesinde ortaya
koymakt�r. Yap�lan simülasyon çal�³malar�n�n neticesinde, skor testin asimtotik da§�-
l�m�na yakla³mas� için hastal�k alttür say�s�na ve toplam örneklem büyüklü§üne ba§l�
olarak de§i³en bir beklenen asgari alttür s�kl�k de§erinin sa§lanmas� gerekmektedir.
Asimtotik yakla³�m�n kullan�lamayaca§� durumlarda, permütasyon tabanl� bir test ile
elde edilecek kritik de§erlerin kullan�lmas� tavsiye edilmektedir.

Anahtar Kelimeler: Çoklu Lojistik Regresyon, �ki Basamakl� Lojistik Regresyon, Ka-
tegorili Yan�t De§i³keni, Skor Testi
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CHAPTER 1

INTRODUCTION

The main focus of this thesis study is multi-level categorical response variables con-
structed by cross-classi�cation of their characteristics and two-stage regression models
used to understand the relationship between independent variables and aforementioned
type of response variable. It is possible to come across with such categorical response
variables in a variety of di�erent �elds. To illustrate, �rms applying to banks for loan
can be categorized (subtyped) based on their loan purpose (debt payment/project �-
nancing/shipping) and desired loan type (bridge/facility/lease/term) and this results
in a nominal response variable of 12 categories describing the feature of desired loan.
Similarly, a response variable de�ning the breast cancer can be constructed based
on cancer characteristics such as tumor size (small/medium/large) and nodal sta-

tus (yes/no) and this results in a 6 level nominal outcome variable with subtypes:
(small,yes), (small,no), (medium,yes), (medium,no), (large,yes), and (large,no). This
way, instead of working with a dichotomous response variable which allows only two
options (absence or presence of the breast cancer), one can gain insight into the as-
sociation between the breast cancer risk factors and the risk of the breast cancer at
the disease characteristic level through the cross-classi�cation of the characteristics.
The main question of interest in such studies: e.g. what are the e�ects of certain �rm
characteristics (such as pro�tability, credit ranking) on the loan feature? What are the
e�ects of certain breast cancer risk factors (such as number of full term births, family
history) on the type of the breast cancer?

The most common modeling strategies for relating this type of response data to the
covariates are constructing either (i) separate logistic regressions for each characteristic
or (ii) only one large polytomous logistic regression model in which the response vari-
able consists of cross-classi�cation of characteristic levels. For the breast cancer study,
for example, the �rst approach suggests one polytomous logistic regression for tumor
size and one binary logistic regression for nodal status. However, these two regression
models are treated independent of each other; therefore, it carries the risk of ignoring
the relationships that are naturally present among the characteristics. That is, it is
unreasonable to assume independence between the characteristics of tumor. Contrary
to the �rst approach, the second approach takes inherent relation between the charac-
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teristics into account by suggesting one large polytomous logistic regression in which
the response variable has the following levels: (small,yes), (small,no), (medium,yes),
(medium,no), (large,yes), and (large,no). However, the major drawback of this ap-
proach is that dimension of the parameter space gets larger as the number of subtypes
increases. One another drawback may also arise, especially in small-scale studies, due
to not having enough observations for some subtypes to estimate the corresponding
regression coe�cients. Since both existing approaches have serious problems, a two-
stage polytomous logistic regression model was developed by Chatterjee [11]. In the
�rst stage, a classical polytomous logistic regression model is employed. In the second
stage, the regression coe�cients of the �rst stage model (i.e. βs) are modeled as a func-
tion of some constant parameters (i.e. θs) in a somehow similar spirit of an ANOVA
model. In the second stage model, each θ represents the e�ect of a certain covariate
on a certain level of a certain characteristic relative to its e�ect on the reference level
of the same characteristic. In order to gain a better insight into the advantages and
the usefulness of this two-stage model, let's consider the breast cancer study again. As
explained previously, the response variable consists of six subtypes. Therefore, even a
polytomous logistic regression model with one covariate results in a parameter space
of size 12. However, when the two-stage model is employed, the regression parame-
ters of the �rst-stage model are expressed as a function of θs so that the number of
parameters to be estimated in the new parameter space, consisting of θs, reduces to
10 from 12. It is clear that one of the main advantages of two-stage modeling is that
it reduces the dimension of the parameter space. Also, as the number of subtypes
increases, this reduction becomes more pronounced. In addition, estimated values of
the θs enable a practical way of examining the etiologic heterogeneity in the proba-
bilities of occurrences of di�erent subtypes given a certain covariate set. The concept
of etiologic heterogeneity can be de�ned as the covariate e�ect between two disease
subtypes, which have two di�erent levels for a given characteristic, but share the same
level for all the remaining characteristics. That is, for example, it becomes possible to
directly calculate the probability of e�ect of family history on tumor being large rela-
tive to tumor being small. What is more, all the hypotheses related with the etiologic
heterogeneity can be expressed by just using individual θs instead of functions of βs.
For example, the hypothesis that whether the e�ect of family history is di�erent for
di�erent tumor sizes (i.e. tumor being large relative to being small vs. tumor being
medium relative to being small) can be expressed by just using the θs. It is obvious
that the two-stage modeling outweighs the classical binary and polytomous logistic re-
gression models since making such kind of an inference is impossible unless a two-stage
model is employed. The only way of testing the aforementioned type of hypotheses is
by using Wald's test, but it has some major drawbacks. Since an alternative to Wald's
test does not exist in the literature, it is yet to be developed. The goal of this thesis
study is to develop a score test for testing etiologic heterogeneity and examine both
the asymptotic and empirical properties of this test.

2



The rest of this thesis is structured as follows. Chapter 2 starts with a general de-
scription of the two-stage model. The way how the �rst-stage regression parameters
are expressed in terms of the second-stage parameters and the estimation procedure
of these parameters are presented. Having provided a general motivation for the two-
stage model, the type of hypothesis to be tested is illustrated and the score test is
developed in this chapter. In Chapter 3, the simulation study conducted to investigate
the asymptotic and �nite sampling properties of the score test is explained and the
results are discussed. Finally, in Chapter 4, the contributions of this thesis study are
outlined and discussed.
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CHAPTER 2

METHODOLOGY

2.1 Two-Stage Polytomous Logistic Regression Model

2.1.1 De�nition of the Model

In statistics, regression analysis is one of the most important tools used to examine re-
lationship between a response variable and a number of predictor variables. The choice
of type of the regression model to be �tted is determined according to the scale of the
response variable. If it is categorical and in nominal or ordinal scale, the response vari-
able is regressed on predictor variables through a proper link function, such as logit,
probit etc. (see Hosmer and Lemeshow [4], and Kleinbaum and Klein [5]). This type
of regression models are known as logistic regression models and they are categorized
based on the number of categories of the response variable can assume. For a categori-
cal response variable assuming only two categories (i.e. binary or dichotomous), binary
logistic regression models can be used. An extended form of binary logistic regression,
known as polytmous (multinomial) logistic regression, developed by McFadden [3] and
it handles categorical response variables with more than two categories.

Assume a multi-level categorical response variable whose levels are constructed by
cross-classi�cation of its K characteristics. If each characteristic k has Mk levels, then
M = M1×M2×···×Mk response categories (subtypes) can be de�ned for the response
variable of interest. In such a study of size N, each subject's response category Yi can
be represented by a value from the set {0, 1, 2, ...,M}, where the value 0 is used for
subjects in control group. If Xi is the covariate vector for the ith subject, then a
polytomous logistic regression model can be written as

P (Yi = m |Xi) =
exp(αm +XT

i βm)

1 +
∑M

m=1 exp(αm +XT
i βm)

, m = 1, 2, ...,M (2.1)

where αm and βm represent the intercept parameter and P × 1 vector of regression
coe�cients corresponding to response category m, respectively. Here, exp(βm) gives
the ratio of the odds of being in subtype m versus the reference category, i.e. con-
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trol group, for a 1 unit change in one of the covariates while holding the remaining
covariates constant.

For a polytomous logistic regression model with characteristics mentioned as above,
the number of regression parameters to be estimated are (M1×M2×·· ·×Mk×P )+1.
It is clear that as the number of subtypes increases, the dimension of the parameter
space also increases. In addition, estimation problems may easily arise due to subtypes
with insu�cient number of observations. Therefore, constructing one large polytomous
logistic regression model in which the response variable consists of cross-classi�cation of
its characteristic's levels has major drawbacks. To overcome these problems, Chatterjee
[11] has developed a new model so that the number of parameters to be estimated
become fewer in size. For simplicity, let's assume that a single covariate is of interest
and there exist M subtypes for the response. Thus, there should be M regression
coe�cients, β1, β2, ..., βM , each associated with each of the M subtypes. Since each
certain combination of K characteristics constitutes a certain subtype, any regression
coe�cient, βm, can explicitly be represented by its associated characteristic's levels
and thus, they can be re-parameterized as a linear function of θs as follows:

βm = {βi1i2...ik}
M1,M2,...,Mk
i1=1,i2=1,...,ik=1 = θ(0)+

K∑
k1=1

θ
(1)
k1(ik1 )

+

K∑
k1=1

K∑
k2>k1

θ
(2)
k1k2(ik1 ik2 )

+ · · ·+ θ
(K)
12...K(i1i2...iK)

(2.2)

Here, θ(0) is the coe�cient speci�c to the reference response subtype. A reference
response subtype always consists of cross-classi�cation of response characteristics so
that each characteristic is in its own reference level. The remaining terms of the form
θ(k), k = 1, 2, ...,K, represent kth-order contrasts. Except for θ(0), the coe�cients
representing the reference level for each characteristic K must be regarded as zero.

If it is assumed that the second-order and higher contrast are equal to zero, then (2.2)
becomes:

βm = {βi1i2...ik}
M1,M2,...,Mk
i1=1,i2=1,...,ik=1 = θ(0) +

K∑
k1=1

θ
(1)
k1(ik1 )

(2.3)

In (2.3), each θ(1)k1(ik1 )
represents the e�ect of covariate on the ik1-th level of the char-

acteristic k1 relative to its e�ect on the reference level of the same characteristic. In
other words, θ(1)k1(ik1 )

is the log-odds ratio of having ik1-th level of the characteristic k1
to the reference level of the same characteristic for a one unit change in the covariate.
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As for being an illustrative example for this re-parameterization procedure, let's recall
the example on breast cancer given in Chapter 1. The characteristics de�ning the
breast cancer are tumor size (small/medium/large) and nodal status (yes/no). As
explained previously, 6 response categories can be constructed by cross-classifying the
levels of tumor size and nodal status. Let tumor size being small and nodal status
being no be the reference levels for each characteristic. If the reference level for tumor
size (i.e tumor being small) is coded as 1, then tumor being medium and being large
can be coded as 2 and 3, respectively. Similarly, if the reference level for nodal status
being no is coded as 1, then the other level, nodal status being yes, can be coded as
2. After these coding scheme, following �rst-stage regression coe�cients are obtained:
β00, β01, β10, β11, β20, β21, and they can be re-parameterized in terms of θs as shown in
Table- 2.1.

Table 2.1: Re-parameterization of the �rst-stage parameters

m β Tumor Size Nodal Status Re-parameterization

1 β1 = β00 small(=1) no(=1) θ(0) + θ
(1)
1(1) + θ

(1)
2(1)

2 β2 = β01 small(=1) yes(=2) θ(0) + θ
(1)
1(1) + θ

(1)
2(2)

3 β3 = β10 medium(=2) no(=1) θ(0) + θ
(1)
1(2) + θ

(1)
2(1)

4 β4 = β11 medium(=2) yes(=2) θ(0) + θ
(1)
1(2) + θ

(1)
2(2)

5 β5 = β20 large(=3) no(=1) θ(0) + θ
(1)
1(3) + θ

(1)
2(1)

6 β6 = β21 large(=3) yes(=2) θ(0) + θ
(1)
1(3) + θ

(1)
2(2)

In this re-parameterization, θ(0) is the coe�cient speci�c to the reference disease sub-
type, i.e. tumor being small and nodal status being yes. The coe�cients θ(1)1(1), θ

(1)
1(2), θ

(1)
1(3)

are speci�c to tumor size being small, being medium, and being large respectively.
Since each second-stage coe�cient θ shows the e�ect of a certain covariate on a spe-
ci�c level of a characteristic relative to its e�ect on the reference level of the same
characteristic, the θ coe�cients associated with the reference level of each character-
istic needs to be set at zero, except for θ(0). Here for the characteristic tumor size,
θ
(1)
1(2) represents the e�ect of a certain covariate, e.g. smoking history, on tumor being

medium relative to its e�ect on tumor being small. Similarly, θ(1)1(3) represents the e�ect
of a certain covariate, e.g. smoking history, on tumor being large relative to its e�ect
on tumor being small. However, θ(1)1(1) needs to be set at zero. In the same manner,

nodal status being no and being yes are represented by the coe�cients θ(1)2(1) and θ
(1)
2(2),

respectively. θ(1)2(2) represents the e�ect of a certain covariate, e.g. smoking history, on

nodal status being yes relative to its e�ect on nodal status being no. However, θ(1)2(1)

need to be set at zero as it is for θ(1)1(1). Thus, ignoring the second-stage parameters
which are set at zero, this re-parameterization can also be represented by means of
transformation matrix Z such that β = Zθ as shown in (2.4).

7



β = Z × θ ⇒



β1

β2

β3

β4

β5

β6


=



1 0 0 0

1 0 0 1

1 1 0 0

1 1 0 1

1 0 1 0

1 0 1 1


×


θ(0)

θ
(1)
1(2)

θ
(1)
1(3)

θ
(1)
2(2)

 (2.4)

2.1.2 Estimation of the Parameters

For a polytomous logistic regression model as shown in (2.1), there exist two types
of parameters to be estimated. They are namely the intercept, αm, and regression,
βm, parameters. The regression parameters are crucial for the usual odds ratio inter-
pretation when comparing a certain response subtype with the reference subtype, and
thus they are of value in terms of scienti�c point of view. However, since the intercept
parameters provide information only about the baseline likelihood of occurrence of
di�erent subtypes, they are not of scienti�c interest, and thus they can be regarded
as nuisance parameters. As mentioned previously, the dimension of parameter space
gets large in the existence of large number of response subtypes. In such a case, max-
imum likelihood estimation method remains incapable of handling these huge number
of unknown parameters, a great part of which is constituted by the intercept param-
eters. At this stage, a semi-parametric approach which focuses only on the regression
parameters and ignores the nuisance intercept parameters would be needed. Chatt-
terjee [11] proposed an approach for this purpose and developed a method known as
"pseudo-conditional-likelihood" (PCL). What makes PCL appealing is that it is only
a function of regression parameters and does not contain any intercept parameters.

To gain a better insight into the method of PCL, consider a study in which subjects
are divided into two sets C1 and C0 such that C1 consists of cases and C0 consists of
controls. For each case in the set C1, a matched set Si can be de�ned such that it
involves the i-th case and all the controls. Thus, for each set Si, given that only one
subject is chosen with a certain subtype from the set of cases and all the remaining
subjects are chosen from the set of controls, the conditional probability of the observed
con�guration of the subjects of Si can be de�ned as

Lci = Pr[Yi = yi, Yj = 0; jεSi, j 6= i |
⋃
kεSi

{Yk = Yi, Yl = 0; lεSi, l 6= k}] (2.5)

The expression Li can be derived from the polytomous logistic regression model formula
given in (2.1) and it does not contain any intercept parameters. Thus, an expression
for the PCL of the data, which is free of intercept parameter αyi , can be obtained as
given in (2.6)
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LPCL =
∏
iεC1

Lci =
∏
iεC1

exp(XT
i βyi)

exp(XT
i βyi) +

∑
jεC0

exp(XT
i βyi)

, (2.6)

Since the regression parameters of the �rst-stage model are re-parameterized by the
second-stage parameters θ, the PCL score equations can be de�ned as

∂LPCL
∂β

∂β

∂θ
= 0 . (2.7)

The fact that β = Zθ provides a way to express the score equations as

ZTTβ = 0 , (2.8)

where Tβ = (T Tβ1 , ..., T
T
βm

)T and

Tβm =
∑

iεC1
I(Yi = m)×

{
Xi −

Xiexp(X
T
i βm)+

∑
jεC0

Xjexp(X
T
j βm)

exp(XT
i βm)+

∑
jεC0

exp(XT
j βm)

}
Simultaneous solution of the score equations given in (2.8) yields the vector of maxi-
mum likelihood estimates of second stage parameters, θ̂(k). These PCL estimators are
asymptotically normal (see Chatterjee [11]).
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2.2 Hypothesis of Interest

As illustrated in Chapter 1, it is possible to come across with multi-level response
variables in epidemiological studies. In such studies, if it is possible to categorize the
disease of interest through its de�ning characteristics, then data collection can be car-
ried out by classifying the subjects under study according to the disease subtype to
which they belong. Such data can be studied to examine the relationship between
a disease and a group of risk factor through disease characteristic level. It also pro-
vides the opportunity of examining etiologic heterogeneity among disease subtypes
(see Garcia-Closas et al. [9], Sherman et al. [8], and Erdem [10]). Dealing with the
concept of etiologic heterogeneity in a epidemiological study is simply looking for an
answer for the question: Is any disease subtype more likely to be associated with the
e�ect of a certain covariate? (Chatterjee [11]). It is clear that determining the etio-
logically heterogeneous disease subtype is of scienti�c value when a number of disease
characteristics are taken into consideration in a statistical analysis. However, such an
information cannot be obtained with the use of standard polytomous logistic regres-
sion. Therefore, when the the problem of handling a parameter space of high dimension
is taken into account as well, the need for a novel approach became increasingly appar-
ent. Thus, the two-stage regression model, where the second-stage parameters provide
a measure of degree of etiologic heterogeneity, was proposed by Chatterjee [11].

For a two-stage polytomous logistic regression model, the linear representation of the
�rst-stage regression parameters in terms of the second-stage parameters was given
in (2.2). Assuming that all the second-order and higher contrasts are zero, then the
linear model given in (2.3) can be obtained. For this linear representation, consider
two �rst-stage regression parameters of the form βi1,..,ik,..,iK and β

i1,..,i
′
k,..,iK

. It is clear

that only for the characteristic-k, the levels are ik and i
′
k but the same level of the

remaining characteristics is shared for both. When the di�erence is taken between
these two �rst-stage regression parameters, the expression given in (2.9) is obtained.

βi1,..,ik,..,iK − βi1,..,i′k,..,iK = θ
(1)
k(ik)
− θ(1)

k(i
′
k)

(2.9)

The di�erence between the terms θ(1)k(ik)−θ
(1)

k(i
′
k)
provide a measure of degree of etiologic

heterogeneity associated with the levels of the kth characteristic (Chatterjee [11]). It is
also important to underline that a second-stage model as given in Equation (2.3) is valid
under the assumption that etiologic heterogeneity associated with one characteristic
is independent of the other characteristics.

For data with disease subtype information, the hypothesis of interest is that there
exists etiologic heterogeneity between the levels of the kth characteristic. Therefore,
the null hypothesis deals with the absence of etiologic heterogeneity. However, the
form of the alternative hypothesis is shaped according to the number of levels of the
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characteristic of interest. To illustrate, let's consider characteristics di�ering in the
number of levels.

For a characteristic with 2 levels, let θ(1)k(1) and θ
(1)
k(2) be its corresponding second-stage

coe�cients, respectively. If θ(1)k(1) is the coe�cient associated with the reference level,
then the null and alternative hypotheses can be written as given in (2.10).

H0 : θ
(1)
k(2) = 0 vs. H1 : θ

(1)
k(2) 6= 0 . (2.10)

Note that the the coe�cient θ(1)k(1) is associated with the reference level, so it needs to
be set to 0.

Similarly, for a characteristic with 3 levels, if θ(1)k(1), θ
(1)
k(2) and θ

(1)
k(3) are the corresponding

second-stage coe�cients, then the null and alternative hypotheses can be expressed as
given in (2.11).

H0 : θ
(1)
k(2) = θ

(1)
k(3) vs. H1 : θ

(1)
k(2) 6= θ

(1)
k(3) . (2.11)

Thus, for a characteristic with mk levels, assuming that θ(1)k(1), θ
(1)
k(2), ... , θ(1)k(k) are

the corresponding second-stage parameters, then the associated null and alternative
hypotheses can be de�ned as given in (2.12).

H0 : θ
(1)
k(2) = θ

(1)
k(3) = · · · = θ

(1)
k(mk)

vs.

H1 : θ
(1)
k(i) 6= θ

(1)
k(j) for at least one i, jε{1, 2, ...,mk}, i 6= j ,

(2.12)

To provide an answer for the question: What do these hypotheses mean?, let's re-
visit the example on breast cancer. The �rst characteristic, tumor size, has 3 levels.
Therefore, a test for etiologic heterogeneity between the levels of tumor size should be
constructed as given (2.11). This type of hypothesis means that for a certain covariate,
say smoking status, there is a di�erence between the e�ect of smoking status on tumor
being medium relative to tumor being small and that on tumor being large relative to
tumor being small. In the same manner, since the other characteristic, nodal status,
consists of 2 levels, then its associated hypothesis of etiologic heterogeneity means that
there is an e�ect of smoking status on nodal status being yes relative to nodal status
being no. The form of the hypothesis should be as given in (2.10).
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2.3 Score Test for Testing Etiologic Heterogeneity

A general structure of a hypothesis associated with etiologic heterogeneity for levels of
a certain characteristic-k with mk levels was presented in Section 2.2. It is important
to notice that when testing for etiologic heterogeneity, the focus is only on the certain
components of the parameter vector θ. That is to say, except for the second-stage
parameters corresponding to characteristic of interest, those corresponding to other
characteristics under consideration are left unspeci�ed in the null hypothesis. There-
fore, every null hypothesis of absence of etiologic heterogeneity is always composite.

In literature, Wald test is known as the most usual and common way of testing such
hypotheses. It is a likelihood-based test and its asymptotic distribution is chi-square
when the necessary regularity conditions are satis�ed. In order to introduce the use
of the test, let's start with assuming a characteristic with 2 levels. In this case, its
corresponding hypothesis test of etiologic heterogeneity is assumed to be of the form
as given in (2.10). Since the interest is only on the second-stage parameter θ(1)k(2), the

parameter vector can be partitioned as θT = (θ
(1)
k(2),η

T ), where the nuisance parameters

are represented by ηT . Assuming that θ̂ denote the PCL estimates of the second-stage
parameters, the information matrix ÎT (θ̂) can be partitioned as

ÎT (θ̂) =

(
ÎT,11ÎT,12

ÎT,21ÎT,22

)
; (2.13)

then the Wald test statistic Tw becomes

Tw = (θ̂
(1)
k(2))

2(ÎT,11 − ÎT,12Î
−1
T,22ÎT,21) , (2.14)

and Tw
d−→ χ2

(1) as n→∞.

However, the partitioned-vector approach may not come in handy in most cases. For
example, consider a characteristic with 3 levels and its corresponding null hypothesis
for the test of etiologic heterogeneity H0 : θ

(1)
k(2) = θ

(1)
k(3). In such a case, the partitioned-

vector approach necessitates a re-parameterization such that H0 : θ
(1)
k(2) − θ

(1)
k(3) = 0

but the Wald statistic is not invariant to any kind of re-parameterization (Boos and
Stefanski [2]). This is another way of saying that di�erent ways of expressing the same
question of interest produce di�erent Wald test statistics. It is clear that when testing
for the etiologic heterogeneity, it is more likely to encounter characteristics with more
than two levels. Therefore, the inadequacy of the Wald test statistic is beyond doubt.

Instead of using partitioned-vector approach, another way of expressing such null
hypotheses may be as H0 : h(θ) = 0, for some function h. Here, h(.) is a vec-
tor function with matrix of �rst partial derivatives H(θ) = ∂h(θ)/∂θ. To illus-
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trate this approach, let's consider again a characteristic with 3 levels and its asso-
ciated hypothesis H0 : θ

(1)
k(2) = θ

(1)
k(3). In this case, the parameter vector becomes

θ = (θ
(1)
k(2), θ

(1)
k(3),η)T , where the second-stage parameters corresponding to remaining

characteristics are represented by η. One other way of re-expressing the hypothesis
may beH0 : θ

(1)
k(2)−θ

(1)
k(3) = 0 and this yields h(θ) = θ

(1)
k(2)−θ

(1)
k(3) withH(θ) = (1,−1,0),

where the dimension of the zero vector is equal to that of η. Based on the speci�ca-
tion of the null hypothesis as h(θ) = 0, the following form of the Wald test statistic
is obtained (Boos and Stefanski [2]).

Tw = h(θ̂)
T

[H(θ̂)Î
−1
T (θ̂)H(θ̂)

T
]−1h(θ̂) (2.15)

Even if the null hypothesis is speci�ed as in the form of h(θ) = 0, the use of Wald
statistic is still inconvenient. This is due to the lack of invariance of the Wald test
to the choice of h(.). It is apparent that the null hypothesis may also be speci�ed as
H0 : θ

(1)
k(3) − θ

(1)
k(2) = 0. Since this way of speci�cation yields a di�erent H(θ̂) of the

form (−1, 1,0), thus obtaining a di�erent Wald test statistic is inevitable.

Although the Wald statistic is easy to apply and it is very common in most of the
statistical computing packages, its use in testing for etiologic heterogeneity is open to
doubt. Since an alternative method for testing etiologic heterogeneity does not exist in
the literature, as the major contribution, a score test is developed in this thesis study.

When considered within the scope of testing for etiologic heterogeneity, in addition to
the Wald test, two other ways of testing approaches may come into the picture, namely
score test and likelihood ratio test. These three statistics are likelihood based and they
are asymptotically equivalent (Engle [12]). However, being asymptotically equivalent
does not mean that these three test statistics can be used interchangeably (Boos and
Stefanski [2]). Each test performs the best in certain situations. As discussed and
illustrated previously, being not invariant to re-parameterization makes the use of
Wald statistic inconvenient. On the other hand, both the score and likelihood ratio
statistics are invariant to re-parameterization. However, since the likelihood ratio
statistic involves MLE of parameters under both the null and alternative hypotheses,
the computational demand is much more intensive for it compared to the score statistic.
What is more than this, the use of likelihood ratio statistic is much more appropriate
when a sequence of nested models are of interest provided that the log-likelihood
corresponding to each di�erent model has been derived. In addition to all these,
�nite-sample studies of these three statistics, in which chi-squared critical values are
used, reveals that violation of the assumed nominal rate of Type-I error occurs at
most with the Wald statistic. The most liberal one among the three is the Wald
statistic and it is followed by the likelihood ratio statistic, whereas the score statistic
is somewhat conservative. The similar studies also divulge that the rate of convergence
to the asymptotic chi-squared distribution is much better for the score statistic when
compared with the others. As a result, in the light of these �ndings, the score test
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statistic is believed to be the best choice to test for the etiologic heterogeneity.

The score test statistic was introduced by Rao in 1948 (see Bera and Bilias [1]) and is
used to test a simple null hypothesis that whether a parameter vector η of dimension
r is equal to a pre-speci�ed vector η0 or not. For such a null hypothesis, the score test
statistic Ts is

Ts = S(η0)
T {IT (η0)}−1S(η0) , (2.16)

where, S(.) is the score function, the �rst derivative of the log-likelihood function with
respect to the parameters of interest.

Under the null hypothesis, it can be shown that E[S(η0)] = 0 and V ar[S(η0)] =

IT (η0). Thus, it follows from The Central Limit Theorem that the distribution of
S(η0) is asymptotically normal with parameters 0 and IT (η0), respectively. This
implies that{IT (η0)}−1S(η0) converges in distribution to normal distribution with
parameters 0 and Ir, respectively, where I denotes the identity matrix. Thus, it can
be inferred that the score statistic Ts is asymptotically chi-squared distributed with r
degrees of freedom.

In order to develop a score test for testing the presence of etiologic heterogeneity for a
certain characteristic-k with mk levels, �rst recall the associated null and alternative
hypotheses as given below

H0 : θ
(1)
k(2) = θ

(1)
k(3) = · · · = θ

(1)
k(mk)

vs.

H1 : θ
(1)
k(i) 6= θ

(1)
k(j) for at least one i, jε{1, 2, ...,mk}, i 6= j .

(2.17)

As discussed previously, since the focus in only on a certain characteristic, not the
entire parameter vector is involved in the null hypothesis. Therefore, the partitioned-
vector approach can be used. The parameter vector θ is partitioned as θ = (ζ,η) =

(θ
(1)
k(2), θ

(1)
k(3), · · ·, θ

(1)
k(mk)

,η), where η represents the nuisance second-stage parameters for
this test. Based on this partitioning, it is then necessary to calculate the PCL estimates
of the second-stage parameters under the null hypothesis. This can be carried out by
assigning a single unknown parameter instead of all the parameters included in ζ and
then maximizing the pseudo-conditional likelihood with respect to η as explained in
Section-2.1.2. If θ̃ = (ζ̃, η̃) denotes these PCL estimates, then the score test statistic
Ts for testing etiologic heterogeneity is

Ts = S(θ̃)T {IT (θ̃)}−1S(θ̃) , (2.18)

and Ts
d−→ χ2

(mk−2) as n→∞.
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In (2.18), the score function S(θ̃) is a partitioned score function, and thus it has two
components as shown in (2.19)

S(θ̃) =

(
S1(θ̃)

S2(θ̃)

)
. =


{
∂
∂ζ̃
logLPCL(θ̃)

}T{
∂
∂η̃ logLPCL(θ̃)

}T
 (2.19)

It is clear that θ̃ satis�es S2(θ̃) = 0. Therefore, the score statistic given in (2.18) can
be rewritten as

Ts =
(
S1(θ̃)

T
0
)(ĨT,11ĨT,12

ĨT,21ĨT,22

)−1(
S1(θ̃)

0

)
, (2.20)

which is also equivalent to

Ts = S1(θ̃)
T

(ĨT,11 − ĨT,12Ĩ
−1
T,22ĨT,21)

−1S1(θ̃) . (2.21)

Apart from the partitioned vector approach, even when the null hypothesis is speci�ed
as in the form of h(θ) = 0, the score test statistic can still be used. To illustrate this,
let's re-express the null hypothesis given in (2.17) as follows:

H0 :



θ
(1)
k(2) − θ

(1)
k(3) = 0

θ
(1)
k(2) − θ

(1)
k(4) = 0

...

θ
(1)
k(2) − θ

(1)
k(mk)

= 0

. (2.22)

Based on (2.22), the null hypothesis can be speci�ed as in the form of h(θ) = 0 as
follows:

H0 :


h1(θ)

h2(θ)
...

hmk−1
(θ)

 = 0 , (2.23)

with H(θ) as given in (2.24).
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H(θ) =



∂

∂θ
(1)
k(2)

h1(θ) . . . ∂

∂θ
(1)
k(mk)

h1(θ) ∂
∂ηh1(θ)

∂

∂θ
(1)
k(2)

h2(θ) . . . ∂

∂θ
(1)
k(mk)

h2(θ) ∂
∂ηh2(θ)

...
...

...
...

∂

∂θ
(1)
k(2)

hmk−1
(θ) . . . ∂

∂θ
(1)
k(mk)

hmk−1
(θ) ∂

∂ηhmk−1
(θ)


. (2.24)

Since θ̃ maximizes LPCL subject to the constraint h(θ) = 0, then S(θ̃)−H(θ̃)
T
λ̃ = 0

and h(θ̃) = 0 are satis�ed by θ̃, where λ is the data-dependent vector of Lagrange
multipliers. As a result, replacing S(θ̃) by H(θ̃)

T
λ̃ in (2.18) yields the following:

Ts = λ̃
T
H(θ̃){IT (θ̃)}−1H(θ̃)

T
λ̃ . (2.25)

The above form of the score test is known as the Lagrange multiplier test in econo-
metrics (Engle [12]).

As underlined before, di�erentH matrices can be obtained depending on the choice of
h. However, unlike the Wald statistic, the score statistic is not a�ected by the choice
of h, and hence the resulting statistics are always the same.

16



CHAPTER 3

SIMULATION STUDY

In this thesis, following Monte Carlo simulation studies were conducted:

i. to compare the �nite sampling characteristics of the Wald and score test.

ii. to compare the power of the two tests.

For each purpose listed below, di�erent case-control data sets were simulated under
di�erent scenarios such that they di�er by the number of characteristic levels and
sample size. Also, under each scenario, the disease prevalence was altered by setting
di�erent values for the second-stage parameters.

The performances of the two tests were compared under three di�erent scenarios. For
the �rst two scenarios, eight disease subtypes (2 × 2 × 2) were assumed and samples
of size 500 and 1000 were generated. These two scenarios were considered to test for
H0 : θ

(1)
2(2) = 0, where θ(1)2(2) is the degree of etiologic heterogeneity with respect to the

second characteristic. For the third scenario, 16 disease subtypes (4 × 2 × 2) were
considered and samples of size 1000 were generated. This last scenario was considered
to test for the etiologic heterogeneity with respect to the �rst characteristic, where
the null hypothesis of interest is H0 : θ

(1)
1(2) = θ

(1)
1(3) = θ

(1)
1(4). Only one covariate from

standard normal distribution was considered for each scenario. All the simulation
experiments were run in MATLAB R2012A and the original codes of Chatterjee [11]
were modi�ed according to each purpose to be investigated.

3.1 Comparison of Finite Sampling Characteristics of the Wald and

Score Tests

3.1.1 Data Generation Process

For a detailed illustration of the data generation process, let's consider the �rst two
scenarios in which there are M = 2× 2× 2 = 8 disease subtypes. The data generation
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process follows the same strategy for the third scenario as well, where the number of
disease subtypes is M = 4× 2× 2 = 16 in that case.

Initially, the second-order and higher contrasts were set to zero and the coe�cients cor-
responding to reference disease subtype (θ0) and �rst-order contrasts (θ(1)1(2), θ

(1)
2(2), θ

(1)
3(2))

were determined. Note that since the null hypothesis of interest was de�ned as
H0 : θ

(1)
2(2) = 0, in this case, θ(1)2(2) was set to zero to generate the data under the null

hypothesis. Having set the values for the second-stage parameters, using the additive
model given in (2.3), the �rst-stage regression parameters (β1, ..., β8) were obtained.
To obtain the intercept parameters (α1, ..., α8), the additive model given in (2.3) was
extended to consider the second-order interaction terms as given below

θ(0) +

K∑
k1=1

θ
(1)
k1(ik1 )

+

K∑
k1=1

K∑
k2>k1

θ
(2)
k1k2(ik1 ik2 )

(3.1)

and the predetermined second-stage parameters were replaced by their corresponding
values.

Using the �rst-stage model parameters and a covariate vector of size N × 1 from
standard normal distribution, the probability of being in the disease category-m , pmi,
and that of being disease-free, p0i, for the i-th of N subjects were obtained as shown
below

pmi = P (Yi = m |Xi) =
exp(αm +XT

i βm)

1 +
∑M

m=1 exp(αm +XT
i βm)

, (3.2)

and

p0i = P (Yi = 0 |Xi) =
1

1 +
∑M

m=1 exp(αm +XT
i βm)

, (3.3)

where, m = 1, 2, ..., 8 and i = 1, 2, ..., N .

Then, for each of the N subjects, a disease subtype status, including being disease-
free, was randomly generated assuming a multinomial distribution with probabilities
pmi and p0i. Thus, the generated data set of size N consists of a response variable Yi
showing the disease status of a particular subject, where Yi = 0, 1, 2, ..., 8 and her/his
covariate value Xi, where Xi ∼ N(0, 1) and i = 1, 2, ..., N . At the �nal stage, a random
sample of size n was selected from the previously generated sample of size N in such
a way that the diseased (case) and disease-free (control) subjects are equal in number.
That is, n = ncase + ncontrol, where ncase = ncontrol. Since samples of size n = 500

and n = 1000 were studied under the �rst two scenarios, ncase was set as 250 and 500,
respectively. It is crucial to highlight that the sampling scheme is based on a two-stage
approach. That is to say, a random sample of size N is generated in the �rst stage, and
then equal number of cases and controls are sampled in the second stage. With this
way of sampling, N subjects are assumed to constitute a population in which a certain
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percentage of them are diseased, and then a random sample of size n is sampled from
this population. In addition, especially for diseases with low frequency of occurrence,
the two-stage sampling gives a chance to cover su�cient number of diseased subjects
in a sample of size n. For each scenario in this simulation study, N was set as 7000.

3.1.2 Calculation of Empirical Type-I Error Rate and Minimum Average

Expected Subtype Frequency

Under each scenario, di�erent second-stage parameters were set and 20000 Monte Carlo
replications were conducted for each set of second-stage parameters. In each Monte
Carlo replication, N = 7000 random samples were generated and equal number of
cases and controls among them are randomly selected for a case-control sample as it is
illustrated in the previous section. For each case-control sample, both Wald and score
test statistics were computed and compared against the chi-squared critical value at
nominal α = 0.05. Then, empirical Type-I error rate for each statistic was obtained
by calculating the proportion of values exceeding the chi-squared critical value.

In addition to empirical Type-I error rate, average expected frequency of each subtype
was also calculated to examine and determine the minimum average expected subtype
frequency required for the asymptotic distribution of the score test to hold. 20000 data
sets were generated and for each generated data set, the probability of having disease
subtype-m, where m = 1, 2, ...,M , and that of being disease-free were estimated from
(3.2) and (3.3), respectively for each subject. Let p̃(j)0i , p̃

(j)
1i , p̃

(j)
2i , ..., p̃

(j)
mi denote these

estimates for the i-th subject in the j-th simulated data, where i = 1, 2, ..., 7000 and
j = 1, 2, ..., 20000. Then, for each simulated data, the probabilities associated with
each subtype were averaged to obtain an average probability of being in a certain
subtype. For the j-th simulated data, for example, the average probability of being in
subtype-k was calculated as p(j)k· =

∑7000
i=1 p̃

(j)
ki , where k = 0, 1, ...,m. At the end, these

average probabilities were also averaged for each subtype as pk· =
∑20000

j=1 p
(j)
k· and the

resulting values were multiplied by the total sample size n as n × pk· to obtain the
average expected subtype frequencies.

For both the empirical Type-I error and minimum average expected subtype frequency
calculations, di�erent number of replications were also studied but 20000 replications
were observed enough to provide stability in the resulting values.

3.1.3 Simulation Results

In this section, Monte Carlo simulation results for comparing empirical Type-I error
rates of Wald and score tests when testing for etiologic heterogeneity with respect to
minimum average expected subtype frequency are presented.
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Tables 3.1 and 3.2 summarize the simulation results for 8 disease subtypes (2× 2× 2)
for a random sample of size 500 and 1000, respectively. For both cases, the null
hypothesis of interest is H0 : θ

(1)
2(2) = 0 and the test statistics were compared against

the χ2
(1) based critical value at nominal α = 0.05. An overall conclusion that can be

drawn from Table 3.1 is that neither of the tests are satisfactory enough in maintaining
the nominal signi�cance level when chi-square based critical value is used.

Table 3.1: Empirical Type I error rates (χ2 based approach). Disease subtypes=2 ×
2× 2; n = 500

Minimum Average Expected Subtype Frequency Wald Test Score Test

25 0.0523 0.0566
24 0.0512 0.0554
22 0.0552 0.0582
15 0.0510 0.0566
13 0.0517 0.0570
12 0.0527 0.0609
11 0.0539 0.0612
10 0.0535 0.0601

Table 3.2 shows the case when the sample is increased from 500 to 1000. If the
minimum size is at least 49 or more, the empirical Type-I error rate of the Wald
test gets closer to the nominal level. Being not as satisfactory as for the Wald test,
somehow similar conclusion seems to be valid for the score test. Nevertheless, when
the minimum size gets smaller than 30, the empirical signi�cance level is more likely
to move away from the nominal level for both of the tests.

Table 3.2: Empirical Type I error rates (χ2 based approach). Disease subtypes=2 ×
2× 2; n = 1000

Minimum Average Expected Subtype Frequency Wald Test Score Test

50 0.0510 0.0597
49 0.0560 0.0638
45 0.0610 0.0592
30 0.0570 0.0625
27 0.0660 0.0611
24 0.0630 0.0691
23 0.0670 0.0652
21 0.0690 0.0673

Table 3.3 summarizes the simulation results for 16 disease subtypes (4 × 2 × 2) for
a random sample of size 1000. In this case, the null hypothesis of interest becomes
H0 : θ

(1)
1(2) = θ

(1)
1(3) = θ

(1)
1(4) and the test statistics were compared against the χ2

(2) based
critical value at nominal α = 0.05.
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Table 3.3: Empirical Type I error rates (χ2 based approach). Disease subtypes=4 ×
2× 2; n = 1000

Minimum Average Expected Subtype Frequency Wald Test Score Test

24 0.0678 0.0683
23 0.0649 0.0655
22 0.0690 0.0690
14 0.0708 0.0711
13 0.0727 0.0730
12 0.0791 0.0795
11 0.0817 0.0820

According to Table 3.3, even when the minimum subtype size is 24, the empirical
Type-I error rate is signi�cantly higher than the nominal level for both the Wald and
score tests. It is also obvious to conclude that the smaller the minimum size, the higher
the empirical Type-I error rates.

Tables 3.1, 3.2 and 3.3 reveal that both the Wald and score tests approximate to chi-
square distribution if and only if a minimum average expected subtype frequency is
attained. In other words, convergence to the asymptotic distribution is not directly
associated with the sample size. Even if the total sample size is large enough, neither
test follows a chi-square distribution unless the minimum average expected subtype
frequency is satis�ed. It is obvious that this required minimum size depends on both
the number of disease subtypes under consideration and total sample size. What is
also obvious from these results is that as the number of disease subtypes increases,
the sample size required to attain the minimum expected frequency also increases.
As a result, all these �ndings make it clear that the use of the asymptotic approach
for testing etiologic heterogeneity may not be always plausible and may not provide
reasonable results in some cases. Therefore, a valid method should be developed
to obtain the distribution of the score test statistic under null hypothesis when the
asymptotic approach is questionable.

3.1.4 Small-Sample Distribution of the Score Test

As discussed in the previous section, asymptotic approach is open to doubt in the
presence of a disease subtype size below the required. If this is the case, the distribution
of the score test statistic under null the hypothesis of interest can be derived using a
nonparametric approach. In this context, permutation test, dates back to Fisher[6],
was preferred as an easily applicable non-parametric test to obtain the distribution of
the score test under null hypothesis. The underlying idea behind the method is that
the characteristics of a test statistic can be gained by randomly shu�ing the data and
calculating the test statistic for each case (Ernst [7]).
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Table 3.4 illustrates how the permutation test can be applied to the �rst scenario
consisting of eight disease subtypes (2 × 2 × 2). The �rst column Y is the response
variable and includes all the possible disease subtypes except for being disease-free.
For each disease subtype, the next three columns involve the corresponding levels for
each characteristic. Since there are three characteristics each with two levels, three
di�erent indicator variables, namely Y1, Y2, and Y3 can be de�ned for each, respectively,
as shown in the last three columns. The construction of these indicator variables is
based on the principal that if a characteristic is not in its reference level, then the
corresponding indicator variable of that characteristic is set as 1. Recall that in this
case, the null hypothesis of interest is the absence of etiologic heterogeneity associated
with the second characteristic. Since the aim is to obtain the distribution of the test
statistic under this null hypothesis, the data must be permuted by taking this condition
into account. That is to say, the null hypothesis states that there is no etiologic
heterogeneity with respect to the levels of the second characteristic. Therefore, this
means that any unobserved value of the indicator variable corresponding to the second
characteristic (Y2) may also be observed with another covariate value as well as its
existing one. That is the reason why Y2 must be permuted. In addition to that, the
reason why Y2 is permuted instead of the covariate vector is that Y2 is random and the
covariate is �xed, so it is plausible to permute the random one. It is clear that for each
permutation of the second indicator variable, the three indicator variables together
de�ne a new response variable Y . Thus, this newly generated response variable, along
with the existing covariate vector, can be treated as another random sample of equal
size. It is also crucial to note that the permutation must only be applied to diseased
subjects. The reason for this is that the data must be permuted under null hypothesis
and this does not concern diseased-free subjects.

Table 3.4: Illustration of the permutation test for a disease de�ned by three charac-
teristics each with two levels

Y Characteristic-1 Characteristic-2 Characteristic-3 Y1 Y2 Y3

1 1 1 1 0 0 0
2 1 1 2 0 0 1
3 1 2 1 0 1 0
4 1 2 2 0 1 1
5 2 1 1 1 0 0
6 2 1 2 1 0 1
7 2 2 1 1 1 0
8 2 2 2 1 1 1

To obtain a Monte Carlo estimate of Type-I error rate when no distributional assump-
tion is made, the following approach was used: Initially, a data set was generated based
on some prede�ned second-stage parameters. For this generated data set, Wald (Tw)
and score (Ts) statistics were calculated �rst. Then, the original data set was permuted
as explained in the previous paragraph and permutation method-based test statistics
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T
(p)
w and T (p)

s were calculated from this permuted data. This procedure of permuting
the original data and re-calculating the test statistics were repeated 10000 times in
total and the resulting 10000 values for each test statistic were used to constitute an
empirical distribution for Tw and Ts. These empirical distributions were used to ob-
tain the permutation test-based critical values cv(p)(w) and cv

(p)
(s) for each test statistic by

calculating the 95-th quantile of each empirical distribution as 0.95 = P (T
(p)
(·) < cv

(p)
(·) ).

At the end, the test statistics obtained from the original sample Tw and Ts were com-
pared against the permutation test-based critical values cv(p)(w) and cv

(p)
(s) , respectively,

to check whether a Type-I error has been made. The whole process up to here was
also replicated 1000 times from the beginning with the same prede�ned second-stage
parameters and at each replication it was checked again whether a Type-I error was
committed. Finally, a rate for the number of false rejections of the null hypothesis was
obtained out of 1000 replications.

When obtaining the permutation test-based critical values, di�erent number of repli-
cations were also studied but 10000 replications for permutation together with 1000
replications for empirical Type-I error rate were observed enough to provide stability
in the resulting values.

Tables 3.5 and 3.6 summarize the simulation results for 8 disease subtypes (2×2×2) for
a random sample of size 500 and 1000, respectively. For both cases, the null hypothesis
of interest is H0 : θ

(1)
2(2) = 0 and the test statistics were compared against 95th quantile

of their empirical distributions. When compared with Table 3.1, Table 3.5 shows that
the performance of the Wald test is more or less the same under both parametric and
nonparametric approaches. However, the bene�ts of the nonparametric approach can
be observed for the score test when the minimum size is below 13.

Table 3.5: Empirical Type I error rates (permutation test-based approach). Disease
subtypes=2× 2× 2; n = 500

Minimum Average Expected Subtype Frequency Wald Test Score Test

25 0.0460 0.0460
24 0.0540 0.0540
22 0.0520 0.0520
15 0.0510 0.0500
13 0.0510 0.0520
12 0.0600 0.0610
11 0.0560 0.0560
10 0.0540 0.0540
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Table 3.6 shows the case when the sample is increased from 500 to 1000. It is the coun-
terpart of Table 3.2. It is obvious that the nominal signi�cance level is not signi�cantly
violated even when the minimum size is below 30.

Table 3.6: Empirical Type I error rates (permutation test-based approach). Disease
subtypes=2× 2× 2; n = 1000

Minimum Average Expected Subtype Frequency Wald Test Score Test

50 0.0400 0.0400
49 0.0560 0.0560
45 0.0670 0.0570
30 0.0643 0.0667
27 0.0654 0.0673
24 0.0570 0.0570
23 0.0540 0.0540
21 0.0530 0.0530

Table 3.7 summarizes the simulation results for 16 disease subtypes (4 × 2 × 2) for
a random sample of size 1000. In this case, the null hypothesis of interest becomes
H0 : θ

(1)
1(2) = θ

(1)
1(3) = θ

(1)
1(4) and the test statistics were compared against 95-th quantile

of their empirical distributions.

Table 3.7: Empirical Type I error rates (permutation test-based approach). Disease
subtypes=4× 2× 2; n = 1000

Minimum Average Expected Subtype Frequency Wald Test Score Test

24 0.0570 0.0570
23 0.0410 0.0410
22 0.0490 0.0490
14 0.0520 0.0520
13 0.0470 0.0470
12 0.0380 0.0380
11 0.0460 0.0460

Recall Table 3.3, where the empirical Type-I error rates are signi�cantly higher than
the nominal signi�cance level for both the Wald and score tests. However, it is obvious
from Table 3.7 that there seems to be no risk of violating the nominal signi�cance level
provided that permutation test-based critical value is used.
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3.2 Comparison of the Power of the Wald and Score Tests

3.2.1 Calculation of Power

Some of the scenarios studied for the empirical Type-I error comparison were also
considered for the power study and the same data generation process was followed,
except for the fact that the data sets were generated under a variety of alternative hy-
potheses. In general, the power study was conducted separately under two approaches:
chi-square-based and permutation test-based. In this context, (i) 8 disease subtypes
(2× 2× 2) and (ii) 16 disease subtypes (4× 2× 2) were studied. However, the second-
stage parameters were set in such a way that the minimum and maximum values for
the minimum average expected subtype frequency has been considered. Under chi-
square-based approach, 1000 Monte Carlo replications were conducted and each time
the test statistics were compared against the chi-square-based critical value. Under
permutation test-based approach, on the other hand, the permutation test was ap-
plied for each generated data set at each of 1000 Monte Carlo replications and the test
statistics were compared against 95-th quantile of their empirical distributions.

When calculating the power, di�erent number of replications were also studied but
1000 replications were observed enough to provide stability in the resulting values.

3.2.2 Asymptotic Power Comparison

It was shown that when 8 disease subtypes (2×2×2) are of interest and the minimum
average expected subtype frequency is 50, then the behavior of both the Wald and
score test statistics are close to chi-square distribution. Therefore, in order to see the
performance of the two tests when the asymptotic distribution assumption seems a
little bit plausible, a simulation study was conducted and the results are presented in
Table 3.8. As mentioned previously, the null hypothesis of interest was H0 : θ

(1)
2(2) = 0

and the test statistics were compared against the χ2
(1) based critical value at nominal

α = 0.05. The �rst column of Table 3.8 gives the alternative hypotheses that have
been considered. That is to say, each time the data were generated for a di�erent value
of θ(1)2(2), decreasing from 0.5 to 0.001. It can be concluded from Table 3.8 that the
asymptotic power of the score test is higher in general as long as the minimum average
expected subtype frequency is attained.
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Table 3.8: Empirical power (χ2 based approach). Disease subtypes=2×2×2; n = 1000;
minimum subtype frequency=50

θ
(1)
2(2) Score Wald

0.500 0.9986 0.9985
0.400 0.9800 0.9983
0.300 0.8813 0.8757
0.200 0.5793 0.5688
0.100 0.2064 0.2008
0.090 0.1799 0.1736
0.080 0.1534 0.1491
0.070 0.1336 0.1291
0.060 0.1145 0.1100
0.050 0.0978 0.0942
0.040 0.0867 0.0842
0.030 0.0755 0.0729
0.020 0.0675 0.0643
0.010 0.0636 0.0613
0.001 0.0604 0.0582

3.2.3 Permutation Test-based Power Comparison

Initially, a permutation test-based power comparison was conducted between Wald
and score tests assuming that three disease characteristics each with two levels are of
interest and the minimum average expected subtype frequency is 50.

Table 3.9 summarizes the simulation results. When compared with Table 3.8, it can
be concluded that both chi-square-based and permutation test-based approach give
the similar results when the required minimum average expected subtype frequency is
satis�ed.

26



Table 3.9: Empirical power (permutation test-based approach). Disease subtypes=2×
2× 2; n = 1000; minimum subtype frequency=50

θ
(1)
2(2) Score Wald

0.500 0.9980 0.9980
0.400 0.9890 0.9890
0.300 0.8720 0.8720
0.200 0.5730 0.5730
0.100 0.2350 0.2350
0.090 0.1700 0.1700
0.080 0.1460 0.1460
0.070 0.1290 0.1290
0.060 0.1010 0.1010
0.050 0.0840 0.0840
0.040 0.0860 0.0860
0.030 0.0690 0.0690
0.020 0.0480 0.0480
0.010 0.0540 0.0540
0.001 0.0430 0.0430

As illustrated previously, chi-squared-based approach is not valid for the previously
discussed scenario when the minimum average expected subtype frequency is 21, i.e.
minimum. Therefore, only a permutation-based power comparison was conducted for
this scenario and the simulation results are given in Table 3.10. When compared with
the values given in Table 3.9, a little bit decrease in the power of the score test can
be observed. An overall assessment of Tables 3.8, 3.9, and 3.10 indicate that for a
sample of size 1000, as the minimum size gets smaller from 50 to 21, the decrease in
the power of the score test can be minimized as much as possible by using permutation
test-based approach.
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Table 3.10: Empirical power (permutation test-based approach). Disease subtypes=2×
2× 2; n = 1000; minimum subtype frequency=21

θ
(1)
2(2) Score Wald

0.500 0.9800 0.9820
0.400 0.9210 0.9210
0.300 0.7520 0.7550
0.200 0.4340 0.4340
0.100 0.1700 0.1700
0.090 0.1580 0.1600
0.080 0.1280 0.1280
0.070 0.1050 0.1050
0.060 0.1000 0.1000
0.050 0.0880 0.0880
0.040 0.0780 0.0790
0.030 0.0640 0.0640
0.020 0.0590 0.0590
0.010 0.0640 0.0640
0.001 0.0620 0.0630

Also recall that, as shown previously, when three disease characteristics with levels
four, two and two, respectively, are under consideration, asymptotic properties cannot
be applied and permutation test-based approach becomes valid. Therefore, in order
to see the performance of the two tests under this scenario for which the asymptotic
distribution assumption is invalid, a simulation study was conducted. As mentioned
previously, the null hypothesis of interest is H0 : θ

(1)
1(2) = θ

(1)
1(3) = θ

(1)
1(4) and the test

statistics were compared against the corresponding permutation test-based critical
value. Tables 3.11 and 3.12 summarize the simulation results for this scenario, except
for the fact that the minimum size is 11 (i.e. minimum) in Table 3.11 and 26 (i.e.
maximum) in Table 3.12. The �rst two columns of both tables jointly give the alter-
native hypotheses that have been considered. That is to say, on the condition that
∆1 = ∆2, each time the data were generated for a di�erent value of ∆1 and ∆2 in,
where ∆1 = θ

(1)
1(2) − θ

(1)
1(3) and ∆2 = θ

(1)
1(3) − θ

(1)
1(4). Tables 3.11 and 3.12 indicate that,

in general, the performance of the score test gets a little bit better as the minimum
subtype size changes from 11 to 26. This shows that even when the minimum subtype
size is 11, the bene�ts of the permutation test-based approach can still be undeniable.
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Table 3.11: Empirical power (permutation test-based approach). Disease subtypes=4×
2× 2; n = 1000; minimum subtype frequency=11

∆1 ∆2 Score Wald

1.500 1.500 1.0000 1.0000
1.000 1.000 1.0000 1.0000
0.400 0.400 0.9990 1.0000
0.300 0.300 0.9750 0.9750
0.200 0.200 0.7630 0.7630
0.100 0.100 0.2290 0.2300
0.050 0.050 0.0710 0.0720
0.040 0.040 0.0640 0.0640
0.030 0.030 0.0550 0.0550
0.020 0.020 0.0510 0.0510
0.010 0.010 0.0500 0.0500
0.001 0.001 0.0460 0.0460

Table 3.12: Empirical power (permutation test-based approach). Disease subtypes=4×
2× 2; n = 1000; minimum subtype frequency=26

∆1 ∆2 Score Wald

1.500 1.500 1.0000 1.0000
1.000 1.000 1.0000 1.0000
0.400 0.400 1.0000 1.0000
0.300 0.300 0.9840 0.9840
0.200 0.200 0.7570 0.7580
0.100 0.100 0.2600 0.2600
0.050 0.050 0.0820 0.0820
0.040 0.040 0.0650 0.0660
0.030 0.030 0.0490 0.0490
0.020 0.020 0.0430 0.0430
0.010 0.010 0.0470 0.0470
0.001 0.001 0.0530 0.0530
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CHAPTER 4

DISCUSSION AND CONCLUSION

In this thesis study, as the �rst contribution, a score test was developed to determine
whether the etiologic heterogeneity represented by the second stage parameters is
signi�cant or not. The reason why score test is considered over Wald's test are due to
its general following advantages:

i. Computation of Wald test statistic requires MLEs based on unconstrained likeli-
hood function where score test statistics requires only MLEs based on the likeli-
hood function constrained by the conditions in the null hypothesis

ii. Matrix inversion is performed twice for the Wald test statistic and once for score
test statistics.

iii. Due to (i) and (ii) optimization of the likelihood for score test has inarguable
mathematical/computational advantages over Wald test.

iv. Null hypotheses of etiologic heterogeneity are always composite and require re-
parameterization when the partitioned-vector approach is used. However, the
Wald statistic is not invariant to any kind of re-parameterization (Boos and Ste-
fanski [2]). In addition, even if the null hypothesis of interest is expressed as in
the form of h(θ) = 0, the choice of h also a�ects the value of the Wald statistic.

As the second contribution, the asymptotic and �nite sample properties of the score
test was investigated through an extensive Monte Carlo simulation study. The results
were compared against those of the Wald test. Also, the two test statistics were com-
pared based on statistical power under various di�erent realistic scenarios. Results of
the Monte Carlo simulations to investigate their �nite sample characteristics reveal
that a minimum average expected subtype frequency must be attained for the asymp-
totic distribution of both Wald and score tests to hold. In other words, convergence
to asymptotic distribution is not directly related to total sample size. It has been
observed that the minimum expected subtype frequency depends on (i) number of dis-
ease subtypes under study, and (ii) total sample size. However, permutation test was
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proposed as a remedy to overcome the problem of not attaining minimum average ex-
pected subtype frequency. In this context, instead of making questionable assumptions
to use chi-square-based critical values, one can gain information regarding the charac-
teristics of the score test statistics by permuting the data in hand and recalculating the
test statistic for each permutation. It has been observed through an extensive Monte
Carlo simulation experiment that when the required minimum subtype frequency is
not satis�ed, the success of score test statistic in attaining the nominal signi�cance
level is fully dependent on the use of permutation test-based critical value.

The �ndings of this thesis study should be discussed with the point in mind that
the covariate studied here is continuous. However, the case in which the covariate is
dichotomous should also be investigated to ascertain whether the same conclusions
apply. Therefore, what happens in the presence of binary covariate may be considered
as a future study. The other important point should be underlined is the extension of
the �ndings to diseases with number of subtypes greater than 16. As discussed before,
it was observed that not only the total sample size but also the minimum subtype
frequency should be attained for the asymptotic properties of the score test to hold.
Recall that for a certain sample size, say 1000, if there are 8 (2×2×2) disease subtypes
to be studied, it is likely that the required minimum subtype frequency can be attained.
However, if the number of disease subtypes is doubled (i.e. 16; 4× 2× 2), it becomes
less likely to satisfy the criterion regarding the minimum subtype size and so, the
permutation test-based approach comes into the picture as a remedy to handle such a
case. All these reveal that even for a sample of size 1000, which may not be regarded
as cost-e�cient, the chance of using the asymptotic approach gets less probable as the
number disease subtypes gets far from 16. Although increasing the sample size in such
a case may be seemed to be a solution at �rst glance, the crucial problem arises from
not having enough number of subjects with a certain disease subtype in the population
of interest. It is obvious that such a case is more likely when the number of disease
subtypes is large and the problem cannot be overcome by increasing the sample size.
Therefore, whatever the total sample size is, use of the asymptotic properties may most
probably become risky due to the fact that the minimum subtype frequency will not be
attained. All in all, based upon the scenarios studied in this thesis study, permutation
test-based approach is also proposed to be appropriate for diseases with number of
subtypes greater than 16.

Results of this work will provide the researches of di�erent �elds with a powerful sta-
tistical testing tool for important research questions. For example, a cancer researcher
will be able to test (i) if having a cancer in the family is more associated with the
patient's tumor being large, (ii) if su�cient �ber intake has bigger e�ect on positive
nodal status (i.e. risk of spread of cancer to other lymph nodes) than negative nodal
status.
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