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SİMGE GÜNERİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

SCIENTIFIC COMPUTING

SEPTEMBER, 2013





Approval of the thesis:

STATISTICAL NETWORK ANALYSIS FOR COLLABORATION
IN APPLIED MATHEMATICS
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Department of Statistics, METU

Prof. Dr. Gerhard Wilhelm Weber
Institute of Applied Mathematics, METU

Date:





I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: SİMGE GÜNERİ
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ABSTRACT

STATISTICAL NETWORK ANALYSIS FOR COLLABORATION IN
APPLIED MATHEMATICS

Güneri, Simge

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Gerhard Wilhelm Weber

September, 2013, 86 pages

In spite of easy access to academic information, person-to-person contact is still
significant so as to provide the academic issues to be discussed in more detail and
well-developed. So, throughout the thesis, we investigate one-to-one communica-
tion and frequency of activities performed together in the researcher communities
from different study fields of applied mathematics. We deal with this problem by
taking each researcher community as a network where its entities are considered
the researchers and two entities are connected if the two reseachers published an
article together. The underlying data were derived from the archives of ArXiv.
Firstly, we apply the statistical procedure based on the hypothesis test to model
our collaboration networks. By use of the technique combining both maximum
likelihood estimation method and Kolmogorov-Smirnov statistic, we investigate
the cumulative distribution of its degree sequence for each network which gives
the probability of total collaborators of an arbitrarily chosen mathematician be-
ing greater than or equal to a specified number. Secondly, we evaluate mean
number of collaborators of the researchers, mean size of small groups of con-
nected researchers, size of a giant assemble of connected researchers, mean short-
est distance and maximum shortest distance between the researchers in the giant
assemble both empirically and theoretically. In addition, we also calculate the
degrees of clustering and mutuality, indicative properties of real networks. Fi-
nally, as observed in most real networks, we see that relationships on almost all
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communities show a small-world effect which is an indication of small mean dis-
tance and high clustering. However, the communities are not scale free. Beside
scientific collaboration networks, we can also use our findings to make an analysis
of the other types of networks such as gene regularity networks and social media
networks.

Keywords : Kolmogorov-Smirnov statistic, Maximum Likelihood Estimation method,
Scale-free networks, Clustering, Mutuality, Small-world effect
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ÖZ

UYGULAMALI MATEMATİKTEKİ İŞBİRLİĞİN İSTATİSTİKSEL AĞ
ANALİZİ

Güneri, Simge

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard Wilhelm Weber

Eylül 2013, 86 sayfa

Akademik bilgiye kolay erişim olmasına rağmen, akademik konuların daha de-
taylı tartışılmasını ve iyi gelişmesini sağladığı için birebir görüşme hala önem-
lidir. Bu nedenle, tez boyunca uygulamalı matematiğin farklı çalışma alan-
larındaki araştırmacı topluluklarındaki birebir iletişimi ve aktivitelerin birlikte
yapılma sııklığını inceledik. Bu problemle her bir topluluğu birimlerinin araştır-
macılar ve iki biriminin ancak bu iki araştırmacı ortak makale çıkardığı za-
man bağlantılı olacağı bir ağ olarak ele alarak uğraştık. Veriler ArXiv sitesinin
arşivlerinden elde edildi. İlk olarak, işbirlik ağlarımızı modellemek için hipotez
testine dayanan istatistiksel bir metoda başvurduk. En çok olabilirlik kestir-
imi metodu ve Kolmogorov-Smirnov istatistiğin kombinasyonu bir teknik kulla-
narak, her bir ağ için onların derece dizilerinin kümülatif dağılımlarını hesapladık.
Bu dağılım rastgele seçilen bir matematikçinin aranan sayıdan büyük ya da eşit
işbirlikçiye sahip olma olasılığını verir. İkinci olarak, araştırmacıların işbirlikçile-
rinin ortalama sayısını, iletişimdeki araştırmacıların küçük topluluklarının or-
talama boyutunu, iletişimde olan büyük topluluğun boyutunu, büyük gruptaki
araştırmacılar arasındaki ortalama ve maksimum en kısa mesafeyi hem gözlemsel
hem de teorik olarak hesapladık. Ek olarak, gerçek ağların belirleyici özellik-
leri kümelenme ve karşılıklılık derecelerini de ölçtük. Son olarak, gerçek ağların
çoğunda gözlemlendiği gibi, çoğu topluluktaki ilişkilerin küçük dünya etkisi göster-
diğini gördük. Fakat, bu topluluklar ölçüsüz değillerdir. Bilimsel işbirlik ağlarının
yanı sıra, bu bulgularımızı gen-düzenleyici ağlar ve sosyal medya ağları gibi diğer
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tipteki ağların analizini yapmak için de kullanabiliriz.

Anahtar Kelimeler : Kolmogorov-Smirnov istatistik, En çok olabilirlik kestirimi
metodu, Ölçüsü olmayan ağlar, Kümelenme, Karşılıklılık, Küçük dünya etkisi
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CHAPTER 1

INTRODUCTION

Network science is an interdisciplinary research area which studies complex net-
works using theories and methods arising from graph theory (mathematics),
model selection procedure and clustering analysis (statistics and probability),
data mining and pattern recognition (computer science) and statistical mechan-
ics (physics). In network science, a complex network is a graph with a nontrivial
and complicated topological structure in which patterns of connections between
their entities are neither regular nor random. There are some key aspects which
are common in all complex systems. All complex networks comprise many in-
teracting parts. Although a complete network shows a macroscopic collective
behaviour, its each component has own specific structure and intrinsic functions.
Moreover, discarding a small part of the system may affects the whole system
substantially. In other words, the complex system show a behavior in such a way
that its any feature is not simple sum of its parts.

The most well known classes of complex networks are scale-free networks and
small-world networks. Scale-free networks have a heavy tail in their degree dis-
tributions. Systems with such a degree distribution are dominated by only a few
entities. This brings about two important properties, vulnerability to targeted
attacks and preferential attachment. Another type of networks, small-world net-
works, show high clustering and have a small average number of connections
between any two entities.

A potential of the study of real networks is proved by the growing number of
research groups occupying with this field. For example, researchers have been
studying on how epidemic diseases disperse in certain social communities for
many years. These all scientific findings yield many vaccination strategies to
reduce the impact of diseases on affected populations and controlling or halting
outbreaks of contagious diseases. Likewise, they have also examined the spread of
malicious softwares and viruses in worldwide communications systems to fortify
Internet security. Concisely, regardless of whether they are natural or human-
made, most structures in the world are explained using real networks. Some
networks mainly studied could be represented as follows:

• Biological Networks: They consider the structures of living organisms or the
interactions between them. For instance, gene regularity networks explain
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how genes become activated or deactivated and what kind of proteins are
produced in a cell at a certain time period. Furthermore, protein-protein in-
teraction networks describe the interaction between proteins in consequence
of which process protein complexes are build or a protein binding to an-
other protein is modified. These the two processes play a fundamental role
in many diseases such as cancer.

– Ecological networks (food-webs, predator-prey relationships) [10, 24,
29, 36, 37, 52, 58, 64, 80, 86, 102, 113],

– Epidemic Spreading [94, 101],

– Genetic regulatory networks [33, 34, 48, 49, 66, 67, 68, 124, 125, 126],

– Metabolic networks [44, 62, 103, 119],

– Neural networks [115, 116, 128],

– Protein interaction [60, 61, 81, 114].

• Information Networks: They represent the exchange of information or ser-
vices among people, communities or constitutions in order to allow efficient
research.

– Citations between academic papers [38, 74, 105, 108, 111, 117, 127],

– Network in linguistics [59],

– World-Wide-Web (WWW) [1, 6, 11, 12, 22, 45, 70, 72] . (You can find

its data refreshed in every week on Erdös WebGraph.).

• Social Networks: They state a pattern of the relationships between people,
groups, companies or institutions. Social networks are also a good way to
understand the diffusion of news and rumuors between people.

– Business relationships between companies [46, 47, 78, 84],

– Coapperance networks in which individuals are linked by mention in
the same context particularly on web pages or in newspaper articles
[2, 30, 69],

– Friendship [31, 43, 89, 106, 107],

– Human sexual contacts [17, 63, 71, 77, 90, 104],

– Intermarriages between families [100],

– Movie-actor collaboration [7, 11],

– Rumour Spread [18],

– Science collaboration [14, 15, 21, 32, 55, 75, 83, 87, 91, 92, 93, 95],

– Social circles from Facebook, Twitter, Google+ [82].

• Technological Networks (or Transportation Networks): They are man-made
networks which are designed for the distribution of some commodities or
natural resources.

– Transport of people and goods: Airline routes [8], networks of roads
[65], railways [73, 112], pedestrian traffic [27], river [35, 79, 109, 110],
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– Transport of electric: Electric power grid [8, 120, 121],

– Transport of information: Email-network [56, 98], Internet (the net-
work of physical connection between computers) [23, 26, 42], phone-call
network [3, 4].

1.1 Scientific Collaboration

A science collaboration (coauthorship) network is a collection of scientific re-
searchers, each of which is tied to some of the others. In such a network, a tie
between any two researchers occurs when they have written at least one paper
jointly. Since we omit the relationships between some colleagues who interact
with each other but do not write any paper together, the definition of collabora-
tion constructed in science collaboration networks is only moderately robust.

1.1.1 Erdös Number

In the period graph theory focused on only regular graphs, the Hungarian mathe-
maticians Paul Erdös and Alfred Renyi’s studies about random graphs attracted
great attention. Erdös wrote 1525 mathematical articles [54], having 511 different
collaborators in his lifetime [53].

The Erdös number describes the collaborative distance between any scientist and
Paul Erdös. Anyone who has published an article with him has Erdös number
1. Continuing with the same thinking, anyone with Erdös number 2 has studied
with someone who has studied with Erdös. The highest known Erdös number is
15 [91]. In physics, this number is analogous to Einstein number. We note:

• Albert Einstein (Physics) has Erdös 2 [25].

• Carl Sagan (Astronomy) has Erdös 4 [25].

• John Nash (Economics and Mathematics) has Erdös 4 [25].

• Stephen Hawking (Cosmology) has Erdös 4 [25].

1.2 Contributions of the Thesis

Improvements in technology enable us to access all academic events, publications,
books and lectures related to any issue we are interested in. Nevertheless, common
activities carried out together and one on one meetings take an indispensible place
in arising of more different ideas and increasing the quality of scientific researches.
While working together to tackle any problem, every researcher uses a different
point of view. This provides common works to be extended by different ideas.
In addition, even if some researchers do not work on that subject, by stimulation
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of their collaborators they can tend towards that topic and carry on their works
on it. Judging from this, we can say that the more person-to-person contact, the
faster and wider prevalence of scientific knowledge. In order to investigate the
topological structure of the spread of academic information and the frequency
of the studies performed together in applied mathematics, we construct science
collaboration networks for researcher communities, each of which comprises of
researchers studying on a subfield of applied mathematics.

1.3 Outline of the Thesis

In the thesis, collaboration between the mathematicians in each subfield of ap-
plied mathematics will be investigated. Applied mathematics can be separated
into eight main categories: cryptography and security, financial mathematics,
mathematical biology, mathematical physics, numerical analysis, optimization
and control, probability and statistics. All data are derived from the archives of
ArXiv. The process for obtaining this data is explained concisely in Appendix A.

The thesis is structured as follows:

• Chapter 1: We mention briefly different types of networks and Erdös num-
ber. Besides, we make a summary of our study and contributions of this
study.

• Chapter 2: We talk on Erdös-Rènyi random graphs and generating func-
tion method used for random graphs analysis. Then, we represent in what
properties real networks differ from random graphs.

• Chapter 3: We apply the statistical procedure based on the hypothesis test
to model our collaboration networks. By use of the method combining both
maximum likelihood estimation method and Kolmogorov-Smirnov test, we
investigate the cumulative distribution of its degree sequence for each net-
work which gives the probability for an arbitrarily chosen mathematician
to have greater than or equal to a searched number of co-workers.

• Chapter 4: We assess mean co-workers of the scientists, mean size of small
groups of connected scientists, existence and size of a giant assemble of con-
nected scientists, mean shorthest distance and maximum shortest distance
between the scientists in the giant assemble, the degree of clustering and
mutuality both empirically and theoretically.

In the light of the evaluation results, we try to estimate the behaviour of
observed data. According to their distribution functions, whether they ex-
hibit the Barabási-Albert model which is also known as a scale-free network
can be interpreted readily. Besides, judging from the findings about their
distances and clustering densities, whether they have a small-world effect
asserted by Strogatz and Watts can be determined. In addition, as theory
depends mainly on random graphs, we catch an opportunity to see the dif-
ferences between the Erdös-Rènyi random graph model and real networks.
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• Chapter 5: Finally, we conclude this thesis by summarizing our contribu-
tions and discussing directions for future work.
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CHAPTER 2

PRELIMINARIES

In this chapter, we provide some basic facts on important types of networks.
Firstly, we will address the theory of random graphs in section 2.1 and provide
its some useful characteristic properties by means of generating functions. Then
we turn to graph measures of real networks in section 2.2. In particular, we
introduce small-world networks in form of the Watts-Strogatz model as well as
scale-free networks which are based on the Barabási-Albert model.

2.1 Random Graph

2.1.1 Notation and Basic Facts

Definition 2.1. A graph is a pair of sets G = (V,E), where V is a set of n
vertices V1, V2, . . . , Vn and E is a set of edges that connect two elements of V [5].

Example 2.1. A graph where the set of the vertices are V = {1, 2, 3, 4, 5, 6}
and the set of the edge are E = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 5), (3, 4), (4, 6)} (see
Figure 2.1).

Figure 2.1: An example of a graph.
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Vertice or vertex, the fundamental unit of networks, is also called a site (physics),
a node (computer science), or an actor (sociology) [96]. Edge, the line connecting
two vertices, is also called a bond (physics), a link (computer science), or a tie
(sociology) [96].

Definition 2.2. An edge is called directed if it runs in only one direction (such as
a one-way road between two points), and undirected if it runs in both directions
[96].

Definition 2.3. The degree of a vertex is the number of edges connected to that
vertex [96]. Each vertex in an directed network has two degrees, an in-degree,
which is the number of edges that point into the vertex, and an out-degree, which
is the number pointing out [96].

A neighbour of a vertex is an another vertex connected to that vertex by a simple
edge. Second neighbours of a vertex is the neighbours of its neighbours.

Example 2.2. The graph in Figure 2.1 is undirected. It has 2 vertices with
degree 1, one vertex with degree 2, and 3 vertices with degree 3. In first graph in
Figure 2.2, in-degree of vertex 1 is 1, whereas out-degree of vertex 1 is 0. Vertex
2 has both in-degree and out-degree.

Figure 2.2: Examples of directed and undirected graphs.

Definition 2.4. The component to which a vertex belongs is that set of vertices
that can be reached from it by paths running along edges of the graph [96]. In a
directed graph a vertex has both an in-component and an out-component, which
are the sets of vertices from which the vertex can be reached and which can be
reached from it, respectively [96].

Remark 2.1. In graph theory, a component size generally refers to numbers of
edges included in a component. Many people focusing on random graphs, how-
ever, mean numbers of vertices in a component when studying component size.

Definition 2.5. A geodesic path is the shortest path through the network from
one vertex to another [96]. We note that there may be and often is more than
one geodesic path between two vertices [96].
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Definition 2.6. The diameter of a network is the length (in number of edges)
of the longest geodesic path between any two vertices [96]. A few authors have
also used this term to mean the average geodesic distance in a graph, although
strictly the two quantities are quite distinct [96].

Definition 2.7. An adjacency matrix is a means of representing which vertices
of a graph are adjacent to which other vertices [50].

Example 2.3. The graph in Figure 2.3 includes three distinct components. Size
of pink marked component is 1, while size of green marked is 3. Blue marked one
which is the component including maximum number of nodes (9 nodes) is the
giant component for this case. There are three distinct paths between vertices 1
amd 2. These paths are (2, 1), (2, 5)→ (5, 2), (2, 6)→ (6, 4)→ (4, 3)→ (3, 8)→
(8, 2). Geodesic path is {2, 1}. The shortest distance is 1 between vertices 1 and
2, accordingly. The maximum distance in giant component is between 5 and 9.
The path is (5, 2) → (2, 6) → (6, 4) → (4, 3) → (3, 7) → (7, 9). There is not any
shorter way between the two vertices. So, diameter is equal to 6.

The adjacency matrix of blue marked part of the graph is

A =



0 1 0 0 1 0 0 1 0
1 0 0 0 1 1 0 0 0
0 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 1 0
1 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0


.

As first degrees of vertex 1 are vertices 2, 5 and 8, A(1, 2) = A(1, 5) = A(1, 8) = 1
and A(1, i) = 0 for i = 1, 3, 4, 6, 7, 9.

Figure 2.3: A graph including more than one component. (See Appendix C.3)
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2.1.2 Random Graph Theory

Graph theory arised in 1736 with the study of Euler known as “Seven Bridges
of Königsberg” where only small graphs with a high degree of regularity were
taken in consideration. In the last half of the 20th century graph theory started
to develop in more statistical and algorithmic ways so that random graphs in
which the edges are distributed randomly became the main focus of graph theory.
Networks with a complex structure are in fact random, thus random graph theory
is frequently preferable in the study of complex networks.

2.1.2.1 Erdös-Rényi Graph

In their studies [39, 40, 41], each edge between two vertices is considered to be
present with independent probability p, and absent with probability 1 − p. As

the maximum number of edges on the graph with n nodes is n(n−1)
2

, the expected

value of number of edges on this graph is n(n−1)p
2

. Since each edge has two ends,
the mean number of ends of edges in the graph is n(n− 1)p. So, the mean degree
of a vertex is

k =
n(n− 1)p

n
= (n− 1)p ≈ np, (2.1)

where the last approximate equality is good for large n. Figure 2.4 illustrates
an example of the stepwise Morse code implementation which is based on the

Figure 2.4: Random Graphs. (See Appendix C.3)

probabilistic method used for the proof of Erdös’ Theorem [122]. Erdös and
Rényi studied on only the distribution of the extremes in a degree sequence of
a random graph. The distribution of its degree sequence was handled later by
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Bollobás [19]. In a random graph with probability p of an edge being present,
the degree ki of a node i follows a binomial distribution with parameters n − 1
and p [39],

P (ki = s) =

(
n− 1
s

)
ps(1− p)n−1−s. (2.2)

While n → ∞, the binomial distribution turns out to be a Poisson distribution
[39, 40, 41]:

P (ki = s) =
kse−k

s!
. (2.3)

2.1.2.2 Generating Functions

Newman, Strogatz and Watts [99] have extended the formulas of a Erdös-Rényi
graph for random graphs with arbitrarily degree distributions using generating
function formalisim. The most essential generating function in their studies is
G0(x) which generates the probability ps that an arbitrarily chosen vertex in a
graph has a first degree k:

G0(x) =
∞∑
s=0

psx
s. (2.4)

In all calculations, we suppose that this function satisties the condition

G0(1) = 1. (2.5)

Remark 2.2. It is clear that this function is positive definite. Owing to the fact
that the generating function G0(x) is normalized (see Eqn. (2.5) and positive
definite, it also absolutely convergent for all |x| ≤ 1. Therefore, it has not any
singularity in the region |x| ≤ 1.

Definition 2.8. The probability ps is given by the sth derivative of G0 according
to [97, 99]

ps =
1

s!

dsG0

dxs

∣∣∣∣
x=0

. (2.6)

Looking at Eqn. (2.6), we can say that G0(x) includes all the probabilities ps so
that kth derivation of G0(x) gives the probability that any vertex chosen at ran-
dom has a first degree k. For this reason, we say concisely that G0(x) “generates”
ps.

2.1.2.3 First and Second Neighbours

Definition 2.9. Mean first degree of a vertex k can be represented as [97, 99]

z = 〈k〉 =

max degree∑
k=0

kpk = G′0(1). (2.7)
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We can also compute higher-order moments of the degree distribution using
higher-order derivatives of its generating function [99].

〈kn〉 =

max degree∑
k=0

knpk =

(
x
d

dxn

)n
G0(x)

∣∣∣∣
x=1

. (2.8)

Definition 2.10. The mth power of the generating function G0 [99]:

[G0(x)]2 =

[
∞∑
k=0

kpk

]2

=
∞∑

j, k=0

pjpkx
j+k, (2.9)

where m is the number of arbitrarily chosen vertices in a graph and G0(x)m is the
generating function for the probability distribution of the sum of the first degrees
of these vertices.

Now, we focus on the first degree distribution obtained by pursuing an arbitrarily
chosen edge. Vertices in a graph mainly have different degrees. Moreover, a
vertex whose degree is high will have a high possibility that we reach this vertex
by following a random edge. Therefore, this probability is proportional to the
degree of the vertex. Judging from this, the degree distribution of the vertex
arrived by following an edge is linearly proportinal to kpk.

We do not concentrate on the exact degree of a vertex which is arrived by an
edge. We only consider the number of edges arising from a vertex and discard
the randomly selected edge. So, the number we search will be only one less than
first degree of that vertex. In addition, its probability distribution is represented
as:

qk =
(k + 1)pk+1
∞∑
j=0

jpj

. (2.10)

Furthermore, its mean degree of a vertex reached by following an edge is given
as [97]:

∞∑
k=0

kqk =

∞∑
k=0

k(k + 1)pk+1

∞∑
j=0

jpj

=

∞∑
k=0

k(k − 1)pk

∞∑
j=0

jpj

=
〈k2〉 − 〈k〉
〈k〉

. (2.11)

Theorem 2.1. Eqn. (2.11) gives the average number of vertices two steps away
from our vertex via a particular one of its neighbours [97, 99]. Multiplying this
by the mean degree of that vertex, which is just z = 〈k〉, we find that the mean
number of second neighbours of a vertex is [97, 99]

z2 =
〈
k2
〉
− 〈k〉 . (2.12)
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The function [97, 99]

G1(x) =

∞∑
k=0

kpkx
k−1

∞∑
k=0

kpk

=
G′0(x)

G′0(1)
=
G′0(x)

z
, (2.13)

generates the probability distribution of outgoing edges. Utilizing the powers fea-
ture of the generating function, we can also express G1x which is a generating
function for the probability distributon of the number of the second-nearest neigh-
bours of a vertex in a graph as

∞∑
k=0

pk[G1(x)]k = G0(G1(x)). (2.14)

Likewise, continuing to apply same procedure for the distribution of third-nearest
neighbors, we find that its generating function is described as G0(G1(G1(x))).
Based on this, the mean number z2 of second neighbours can be formualized as
below [99]:

z2 =
d

dx
[G0(G1(x))]x=1 = G′0(1)G′1(1) = G′′0(1). (2.15)

Theorem 2.2. By extension, the distribution of the numbers of mth nearest neigh-
bours is generated by G0(G1(. . . G1(x) . . .)), with m− 1 iterations of the function
G1 acting on itself [97, 99]. So, this generating function Gm(x) can be described
as follows [99]:

Gm(x) =

{
G0(x) for m = 1,

G(m−1)(G1(x)) for m ≥ 2.
(2.16)

Then the mean number zm of mth-nearest neighbours is [99]

zm =
dGm(x)

dxm

∣∣∣∣
x=1

= G′1(1)G′m−1(1) = G′1(1)zm−1. (2.17)

Given an initial condition z1 = z = G′0(1), we get [97, 99]

zm = [G′1(1)]m−1G′0(1) =

[
z2

z1

]m−1

z1. (2.18)

2.1.2.4 Component Sizes and Phase Transitions

A quantity in Eqn. (2.18) in fact either diverge or converge when we increase m.
As seen clearly from Eqn. (2.18), divergence depends on the condition that z2 is
greater then z1. Therefore, a phase transition occurs in any graph at the critical
point where z2 = z1 as in the Erdös-Rényi graph [40]. When we use Eqn. (2.12),
the condition is also expressed in a different way so that [85, 97, 99]〈

k2
〉
− 2 〈k〉 =

∞∑
k=0

k(k − 2)pk = 0. (2.19)
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On account of the factor k(k − 2) in Eqn. (2.19), vertices whose first degrees are
either zero or two do not change the sum in Eqn. (2.19). So, we conclude that
removing or adding them do not alter the critical point for the phase transition
and the existence of the giant component. Firstly, vertices with degree zero do
not have connections to other vertices in a graph. So, any increase or decrease in
their numbers does not make sense for the topological structure of a graph. In
addition, vertices with degree two always remain between a pair of vertices. For
this reason, we can discard or add such vertices as we desire.

• Below the Phase Transition

We always exclude the giant component, if there is one, while calculating the
average size of components in a graph. As mentioned before, a graph has not a
giant component below the phase transition [85, 97, 99].

The process of calculating the probability distribution of cluster sizes can be
summarized as follows [97]. Firstly, we consider a given edge in a graph, follow
each edge connected to it and then carry on this until a lap is completed. After
a loop, the number of vertices we get gives the size of that cluster. Then we
rule out all the vertices in a cluster whose size have been already calculated and
continue to apply the same process for remaining vertices.

Now, we define H1(x) as the generating function which generates the probability
distribution of sizes of components found in a graph. As mentioned before, size
of a component is the total number of vertices in that component. Firstly, we
consider all possibilities. When following an arbitrary edge, we can encounter
with a single vertex without a passing edge at its end. Another possibility is
that we can find a vertex on which one or more than one edges pass. Then,
each edge takes us to another complete component whose size is also generated
by H1(x) [97]. In Figure 2.5, the left-hand side of the equation represents the
total probability of all possible sizes [97]. This probability can be expressed as
the sum of the probabilities (right-hand side) of having only a single vertex (the
circle), having a single vertex connected to one other component, or two other
components, and so forth [97].

Figure 2.5: Schematic representation of the possible forms for the connected
component of vertices reached by following a randomly chosen edge [97]. (We
symbolize each component as square and each vertex as cycle.)

Theorem 2.3. The probability distribution of the number of edges k passing the
vertex except the one we reach that vertex by following is qk in Eqn. (2.10). By
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the way, we can say that the probability distribution of the sum of the sizes of the
k components is generated by [H1(x)]k owing to the powers property of generating
functions [97, 99]. Using all the information, a generating function [H1(x)] for
the total number of vertices accessible by pursuing an arbitrarily selected edge can
be expressed as [97, 99]:

H1(x) = x

∞∑
k=0

qk[H1(x)]k = xG1(H1(x)), (2.20)

where the leading factor of x accounts for the one vertex at the end of our edge,
and we have made use of Eqn. (2.13).

In fact, we are mainly interested in the probability distribution of sizes of the
component in which a vertex uniformly chosen at random stays. Since pk is the
degree distribution which gives the number of edges a randomly chosen vertex has
and H1(x) is the generating function for the distribution of sizes of the component
when we follow such an edge, we make use of them in order to get it.

Theorem 2.4. Given any vertex, we represent the size of the entire component
which includes that vertex as [97, 99]

H0(x) = x
∞∑
k=0

pk[H1(x)]k = xG0(H1(x)). (2.21)

If we know the generating functions G0(x) and G1(x), we can solve Eqn. (2.20)
in order to get H1(x). At second step, we find H0(x) by substituting H1(x) and
G0(x) into Eqn. (2.21). The value of sth derivative of H0(x) at x = 0 gives the
probability that an arbitrarily chosen vertex is included in a component with size
s. However, it is almost impossible to find out exact solutions of H0(x) and H1(x)
for most cases. Nevertheless, we can obtain the finite taylor expansion of H1(x)
so that H1(x) becomes a polynomial with a degree of m by iteration Eqn. (2.20).
We can summarize this method in such a way. Firstly, we choose any polynomial
for H1(x). For instance, we get H1(x) = q0x where q0 is the probability that
a vertex following a randomly chosen edge has not another connection. Then
substituting this polynomial into Eqn. (2.20), we obtain a new approximation
for H1(x). We carry on producing a polynomial for H1(x) which has a higher
degree. As we construct H1(x) so that its m coefficients are completely accurate,
the coefficient of xm+1 will be also accurate in the new approximation we get in
the next iteration. Continuing on our example, we get an approximation where
the first n+ 1 coefficients are exactly accurate after n iteration. Finding a proper
H1(x), we substitue it into Eqn. (2.21) and then obtain an approximate solution
for H0(x). As an alternative, carrying out the preceding steps for various types
of values of x close to zero, we can use these numerical results to evaluate the
derivatives of H0(x) at x = 0. So, its sth derivative gives Ps.

It is rather plausible to calculate first several hundred derivatives of H0(x) by
means of many computer softwares. When the aforementioned method fails, we
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also apply to some numerical differentiation techniques. However, calculations
based on numerical differentiation have an inclination to problems related to ma-
chine precision. Therefore, it is recommended that the derivatives be calculated
by numerical integration of the famous Cauchy formula [88]:

Ps =
1

s!

dsH0

dzs

∣∣∣∣
x=0

=
1

2πi

∮
γ

H0(z)

zs+1
dz, (2.22)

where γ = {z :|z|= 1} is the circle. From Remark 2.2, we say that H0(z) is not
singular on the region R = {z : |z|≤ 1}. Using Cauchy formula, we can calculate
first several thousand derivatives of the generating function with a high accuracy.

Theorem 2.5. When there is not any giant component, using Eqns. (2.20)
and (2.21), we can represent the mean component size as [97, 99]

〈s〉 = H ′0(1) (2.23)

= [G0(H1(x)) + xG′0(H1(x))H ′1(x)]x=1 (2.24)

= 1 +G′0(1)H ′1(1). (2.25)

From Eqn. (2.20) we have

H ′1(1) = 1 +G′1(1)H ′1(1), (2.26)

and thus

〈s〉 = 1 +
G′0(1)

1−G′1(1)
. (2.27)

By using

G′0(1) = 〈k〉 = z,

and

G′1(1) =
〈k2〉 − 〈k〉
〈k〉

=
z2

z1

, (2.28)

this expression can also be written as [97, 99]

〈s〉 = 1 +
z2

1

z1 − z2

(2.29)

where z1 = z is the average number of neighbors of a vertex and z2 is the average
number of second neighbors.
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Eqn. (2.29) is indefinite at z1 = z2. This is the indication of the phase transition,
which is the formalization stage of the giant component. This equation gives us
an opinion about the position of the critical point and can be seen an alternative
to Eqn. (2.19).

• Above the Phase Transition

Now, we turn to investigate above the phase transition and estimate the mean
component size after excluding a giant component from the graph. Using gener-
ating function technique still provides the mean component size to be calculated
even if there exists a giant component.

The small components are tree like graphs, but we cannot say the same thing
for the giant component. For this reason, from the aforementioned definition, we
conclude that H0(x) generates Ps for only the small components. Eqns. (2.20)
and (2.21) are still correct for only the small components. So, we always rule
out the giant component during the calculation. Since we discard the part of the
graph including the giant component, H0(1) does not equal to 1 anymore and
neither does H1(1). Our new expression for H0(1) will be

H0(1) =
∞∑
s=0

Ps = fraction of vertices not in giant component. (2.30)

Namely, because of their tree-like topological structures, we can merely make as-
sumptions on the sizes of the small clusters. Thus, sum of all the probabilities Ps
is never equal to 1. Nonetheless, we can still find out the size of the giant com-
ponent. Let S be the fractional representation of the size of the giant component
so that [97, 99]

S = 1−H0(1). (2.31)

Using Eqns. (2.20), (2.21) and (2.31), we get [97, 99]

v = G1(v), S = 1−G0(v), where v = H1(1). (2.32)

Incidentally, since sum of all the possibilities Ps is not equivalent to 1, we need
to normalize the distribution Ps ourselves. Moreover, we take the derivative of
H0(x) using Eqn. (2.21). Then we get the mean component size [97, 99]

〈s〉 =
H ′0(1)

H0(1)
(2.33)

=
1

H0(1)

[
G0(H1(1)) +

G′0(H1(1))G1(H1(1))

1−G′1(H1(1))

]
(2.34)

= 1 +
zv2

[1− S][1−G′1(v)]
, (2.35)

where S and v are the solutions of Eqn. (2.32). It can be readily seen that when
the conditions S = 0 and v = 1 are satisfied, there is not any giant component.
Since we are below the phase transition because of these conditions, Eqn. (2.35)
turns out to be Eqn. (2.32).
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2.1.2.5 Average Path Length

One of the characteristic aspects of networks is the mean shortest distance. By
distance between any pair of vertices, we mean the number of connections we
need for reaching to the another one starting from one of these vertices. Since
there could be more than one path between a pair of vertices, we always choose
the path which has the smallest number of connections.

If there is not any giant component, calculating the mean shortest distance will
have no meaning. Most pairs of vertices chosen at random in the graph will not
be reachable to any other in any way. Therefore, it will be reasonable to consider
solely the case where there is a giant component. For this case, we will eliminate
all the small components and focus on merely the mean shortest distance in the
giant component. So, if there exists n vertices in the whole graph, it will be
better to replace n by N = nS where S is the fraction of the graph including the
giant component.

Eqn. (2.18), i.e.,

zm =

[
z2

z1

]m−1

z1,

gives the mean number of vertices which are m connections away from a ran-
domly chosen vertex in the giant component. We can predict the mean shortest
distance l using this formula. Since all the vertices in the giant component are
connected somehow, a randomly chosen vertex and all its neighbours give us the
total number of vertices in that component. In principle, we can write as [99]

1 +
l∑

m=1

zm = N. (2.36)

Using Eqn. (2.18), we get [99]

l =
ln[(N − 1)(z2 − z1) + z2

1 ]− lnz2
1

ln(z2/z1)
. (2.37)

In the common case where N � z1 and z2 � z1, this reduces to [99]

l =
ln(N/z1)

ln(z2/z1)
+ 1. (2.38)

Eventhough there are some drawbacks, we cannot omit several notable aspects
of Eqn. (2.38): [99].

1. Irrespective of degree distribution, any random graph has the average short-
est distance which is linearly proportional to logarithm of the total size of

18



the giant component. In symbols, we can express this as l ≈ A + Bln(N)
where A and B are the constants.

2. We see that local features of a random graph are sufficient for us to evaluate
its global feature which informs us about its topological structure. Accord-
ing to Eqn. (2.38), local properties are first and second mean degrees while
the global property is the mean shortest distance.

3. Two random graphs which have distinct degree distributions but the same
values of z1 and z2 have also the identical mean shortest distances.

2.1.2.6 Application of the Theory on Erdös Rényi Graph

We are interested in the standard Erdös Rényi random graph, with its Poisson
degree distribution given by Eqn. (2.3) [97, 99]

pk =
zke−z

k!
.

• Generating Functions for Erdös-Rènyi random graph:

Applying Eqn. (2.4) to the poisson distribution, we get the generating function
G0(x) for first neighbours of a vertex [97, 99]

G0(x) = e−z
∞∑
k=0

zk

k!
xk (2.39)

= ez(x−1). (2.40)

The generating function G1(x) for vertices reached by following an edge is also
easily found, from Eqn. (2.13)) [97, 99]:

G1(x) =
G′0(x)

z
(2.41)

= ez(x−1). (2.42)

Thus, for the case of the Poisson distribution we have G1(x) = G0(x) [97, 99].
This identity is the reason why the properties of the Erdös-Rènyi random graph
are particularly simple to solve analytically [97, 99].

• First and Second Neighbours:

First degree of a vertex [97, 99]

z1 = G′0(1) = zez(x−1)
∣∣
x=1

= z, (2.43)

and second degree of a vertex [97, 99]

z2 = G′′0(1) = z2ez(x−1)
∣∣
x=1

= z2. (2.44)
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• Component Size:

By Eqn. (2.32) and the fact G0(x) = G1(x), we get S = 1− u. Then

S = 1−G0(u) (2.45)

= 1− ez(u−1) (2.46)

= 1− ezS. (2.47)

Using Eqn. (2.35), the average component size is given by [97, 99]

〈s〉 =
1

1− z − S
. (2.48)

• Average Shortest Path:

By Eqn. (2.38), average path length in the giant component is [20]

l =
ln(N/z)

ln(z2/z)
+ 1 =

lnN

lnz
. (2.49)

2.2 Real Networks

Real networks differ in many respects from random graphs. Differences are mainly
ascribed to fundamental features of real networks:

• Clustering [121],

• Mutuality [95],

• Degree distribution following power-law (with cut-off) [11].

In this section, we will introduce these concepts and two significant models, a
small-world model [121] and a scale-free model.

2.2.1 Clustering (Transitivity)

In random graphs, the probability of an edge being present is same for all edges
in these graphs. In real networks, however, the probability of any two neighbours
(only first) of a vertex having a first degree connection is more than the probability
of any randomly chosen vertices being first neighbours of each other.

As seen in Figure 2.6, first neighbours (vertices 2 and 4) of vertex 1 are also
one-path connected. So, clustering brings a problem in calculating second and
more degrees of a vertex. For example, in Figure 2.6, although vertices 2 and
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Figure 2.6: An illustration of clustering.

4 are actually first neighbours of vertex 1, the vertices are also taken as second
neighbours of vertex 1 when it is calculated without regard to clustering. A
simple calculation causes counting its second neighbours over the number it has,
adding also first neighbours. Following that, this result affects correctness of the
calculation for more degrees.

To solve the problem, Watts and Strogatz [121] defined the clustering coefficient
(the transitivity ratio) as follows:

C =
3× number of triangles in the whole graph

number of connected triples of vertices in the graph
, (2.50)

where “connected triple” is an union of edges and vertices in which a single vertex
is one-path connected to two others.

(a) A triangle (b) A triple

Figure 2.7: A triangle has 3 triples. For a graph including only a triangle, C = 1.

Remark 2.3. The clustering coefficient for the Erdös-Rényi random graph is C = p
where p is the probability of edge being present.

2.2.2 Mutuality

Sometimes one-path connections of a vertex have a mutual first neighbour. When
we rule out mutuality, calculation have a drawback so as to over-count the number
of second neighbours.
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Figure 2.8: Mutuality is the quadrilateral here. Al-
though, in fact, the number of second neighbours of
vertex 1 is 3, on account of omitting the mutuality fac-
tor and counting the vertex 4 two times, this number
ascends to 4.

To deal with this problem, the mutuality coefficient is expressed as [95]:

M =
mean number of vertices two steps away

mean paths of length two to those vertices
(2.51)

and

M =
k/[1 + C2(k − 1)]

k
, (2.52)

where k is the degree of a vertex.

While calculating the mutuality M using Eqn. (2.51), we must need to know the
exact mean number of vertices two steps away from a vertex. This is evidently
the mean number of second neighbours for which we want to find the mutuality
coefficient. While searching for other options, the author tries to find the most
common situations in which both clustering and mutuality occur, then catches
the relation between them and gets Eqn. (2.52). That being the case, we can
say that the formula does not aproximate all the uncommon situations in which
clustering does not occur exactly even if there are not many.

2.2.3 The Second Degree of a Vertex in a Real Network

Eqn. (2.12) does not give a good result on calculating the number of second-
nearest neighbours for any real network. Combining Eqns. (2.51) and (2.52)
gives a better aproximation to mean second degree [95]:

z2 = M(1− C)(k2 − k), (2.53)

where C is the clustering coefficient and M is the mutuality coefficient.

2.2.4 Small-World Networks (Watts-Strogatz Model)

A network which shows a small-world effect [121] is a network where the shortest
distance l between two arbitrarly chosen vertices increases proportionally to the
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logarithm of the number of vertices N in the network, that is:

l ≈ log(N). (2.54)

Random graphs built according to the Erdös-Rènyi model show a small-world
effect along with a small clustering coefficient (see Figure 2.9). Watts and Strogatz
demonstrated that many real-world networks have in fact a small mean shortest
path length, but also a clustering coefficient significantly higher than expected by
random chance. Following that, they proposed a new graph model, named the
Watts-Strogatz model or a small-world network which shows

• a small mean shortest path length (a small-world effect),

• a high clustering coefficient.

Construction of the small-world network is shown concisely in Figure 2.9 [121].
We have circular graph of n nodes in which each node is one-path connected to its
k nearest neighbours by undirected edges. Then, we randomly select a node and
the edge that connects it to its nearest neighbour in a clockwise direction. With
probability p, we remove the edge to reconnect it to a vertex chosen arbitrarily
over the entire circle. We repeat this step turning clockwise around the circle.
Next, we take the edges that connect vertices to their second nearest neighbours
clockwise in consideration. As before, we randomly reunite each of these edges
with probability p and carry on circulating around the circle and applying this
step for more remote neighbours. As there are nk/2 edges in the entire graph,
this process is completed after looping k/2 times.

2.2.4.1 Six Degrees of Separation

Six degrees of separation is the theory that everyone in the world is six or fewer
steps away so that a chain of a friend of a friend statements can be constructed
so as to connect any two people in a maximum of six steps.

• Movie-Actor Collaboration (Six Degrees of Kevin Bacon):

The game “Six Degrees of Kevin Bacon” is known as a play based on the concept:
its target is to link any actor to Kevin Bacon through six or less than connections,
where two actors are connected if they have appeared in a movie together. The
shortest distance between Kevin Bacon and any other actor is expressed as that
actor’s “Bacon number”.
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Figure 2.9: An implementation of random reuniting method which interpolates
between a regular circle of nodes and a random network, without changing the
number of vertices and edges in the graph [121]. For the regular circle, n = 20 and
k = 4 [121]. Three stages of the process are shown here for different values of p.
First circle is shown for p = 0. When p increases, the graph becomes increasingly
disordered until for p = 1 where its all edges are reunited randomly [121]. We
see that for intermediate values of p, the graph is a small-world network where
clustering is dense as in a regular graph and has small average path length like a
random graph [121].

2.2.5 Scale-Free Networks (Barabási-Albert Model)

Scale-free networks have a key feature: some vertices, called “hubs”, have tremen-
dous numbers of connections to other vertices, whereas most vertices have just a
handful [13].

Figure 2.10: A small example of a hub. Hubs, however, can
have hundred, thousand or even millions of connections. On
the other hand, the vertices one-path connected to the hub
have just a few neighbours. In that sense, the network appears
to have no “scale” [13].

• Movie-Actor Collaboration:

The network of actors in Hollywood-popularized by the game Six Degrees of
Kevin Bacon is scale-free in which it is dominated by hubs [13]. Specifically,
although most actors have only a few ties to others, only a few actors, including
Rod Steiger and Donald Pleasence, have thousands of connections [13]. By the
way Bacon ranked just 876th on a list of most connected actors [13].
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• Robustness against accidental failures [13]:

In general, scale-free networks display an amazing robustness against accidental
failures, a property that is rooted in their inhomogeneous topology [13]. The
random removal of nodes will take out mainly the small ones because they are
much more plentiful than hubs [13]. And the elimination of small nodes will
not disrupt the network topology significantly, because they contain few links
compared with the hubs, which connect to nearly everything (see Figure 2.11)
[13].

On the other hand, a reliance on hubs has a serious drawback: vulnerability to
attacks (see Figure 2.11) [13]. Recent research suggests that the simultaneous
elimination of as few as 5% to 15% of all hubs can crash a system [13].

Figure 2.11: Removal of a node from random network, scale-free network and a
hub from scale-free network, respectively [13].

• Preferential attachment (the rich get richer):

Scale-free network is generated by a process of “preferential attachment” [13].
When deciding where to establish a link, a new node prefers to attach to an
existing node that already has many other connections [13]. These two basic
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mechanisms - growth and preferential attachment - will eventually lead to the
system’s being dominated by hubs (see Figure 2.12) [13].

Figure 2.12: Construction of scale-free network [13]. (Green one is a new added
node.)

In sociology, prefential attachment is known as “Matthew effect” or “the rich get
richer and the poor get poorer”.

This process occurs elsewhere. In Hollywood, it is more possible for the more
connected actors to be chosen for new roles [13]. On the Internet the more con-
nected websites which have greater users attract more new users [13]. Likewise,
the most cited articles in the scientific literature stimulate more researchers to
read and cite them [13].

• Degree distribution of scale-free networks:

In a random network, the nodes follow a Poisson distribution with a bell shape,
and it is extremely rare to find nodes that have significantly more or fewer links
than the average [13]. Random networks are also called exponential, because the
probability that a node is connected to k other nodes decreases exponentially for
large k [13].

Figure 2.13: A typical bell-curve distribution (node
linkages in a random network). All node degrees in
the random graph are close to mean degree. Hubs are
simply forbidden in random networks [13].

In contrast to the homogeneous distribution of links seen in random networks,
“power laws” describe systems in which a few hubs dominate [13]. Two main
behaviour they exhibit can be summarized as follows [13]:

1. A power law does not have a peak, as a bell curve does [13]. This explains
the fact that there is not a definite limit for degree of any vertex [13].
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2. Power law is described by a continuously decreasing function with a long
tail [13]. This shows the existence of hubs nodes with very large degree,
even if their number are small [13].

Figure 2.14: A power law distribution. From the
graph, we can say that there are huge amount of
nodes with small degree. Even if the number of
nodes decreases as degree increases, this amount
does not vanish until degree does not becomes
enough large [13]. The nodes with enough large
degree, for instance a hundred, are our hubs which
make a network “scale-free” [13].
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CHAPTER 3

STATISTICAL INFERENCE FOR COLLABORATION
NETWORKS

In this chapter, we will endeavour to find the most suitable distribution functions
for the degree sequences of our collaboration networks.

3.1 Use of Degree Distribution

A degree sequence is a monotonic nonincreasing sequence of first degrees of all
the vertices in the network. The method based on the degree sequences provides
global properties of very large networks to be obtained [99].

• Canonical Ensemble Procedure: After finding a proper degree distribution
for a given degree sequence, many degree sequences are also generated by us-
ing that distribution. The elements of each degree sequence drawn from the
specified distribution are independent identically distributed (i.i.d.) random
integers. For each drawn degree sequence, the graph is chosen uniformly at
random from the set of all possible graphs having that degree sequence. We
get many sets of graphs with these degree sequences repeating the preced-
ing step for other degree sequences drawn from the distribution. Then, all
properties are averaged over the ensemble of graphs generated in this way
[99].

• Microcanonical Ensemble Procedure: In the limit of large graph size an
equivalent procedure is to study only one particular degree sequence and
average all features uniformly over all graphs with that sequence, where
the sequence is chosen to approximate as closely as possible the desired
probability distribution [99].
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3.2 Methods for Obtaining Degree Distribution

Many studies have shown that real networks which are also mentioned in Sub-
section 2.2.5 follow a power law distribution

p(k) = Ck−α, (3.1)

where C is a normalized constant and α is a power law exponent.

3.2.1 Linear Least Squares Method

In the last decade of 20th century, scientists focused on the problem of estimating
α accurately for real networks from different disciplines mentioned in Chapter 1
by means of the least squares method [57].

The method fits the empirical data (x1, y1), (x2, y2), . . . , (xn, yn) to the function

y = a0 + a1x+ . . .+ amx
m, (3.2)

where ai (i = 1, 2, . . . ,m) are the coefficients. The concept of “linearity” comes
from the linearity of the variables (coefficients). Estimations of the coefficients,
denoted by âi, can be easily found as we minimize the square of the residual

R2 =
n∑
j=1

(yj − (a0 + a1xj + . . .+ amx
m
j ))2. (3.3)

In other words, refering to α = (a1, a2, . . . , am)T

â = arg max
a

R2. (3.4)

There are some ways to represent empirical data [16].

1. The empirical probability distribution is given by

p(k) =
1

n

n∑
i=1

I(xi = k), (3.5)

where I(·) is a characteristic (indicator) function

I(xi = k) =

{
1, xi = k,
0, xi 6= k.

(3.6)

Then,
p(k) ≈ a0k

−a1 (3.7)

can be replaced by
y ≈ a0 − a1x, (3.8)
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where
(xi, yi) = (ln(p(k)), ln(k)) for all possible k ∈ N. (3.9)

In logarithmic scale, the slope of the line gives â1.

2. The empirical cumulative distribution is given by

P (k) =
1

n

n∑
i=1

I(xi ≥ k) (3.10)

and, therefore,

(xi, yi) = (ln(P (k)), ln(k)) for all possible k ∈ N. (3.11)

3. Logarithmic binning reduces the noise in the tail of the empirical distribu-
tions p(k) and P (k) by merging data points into groups [16]. By introducing
the logarithmically scaled boundaries [16], we obtain

bi = round(ci) with some c > 1. (3.12)

A linear least squares fit is performed to

(xi, yi) =

(
ln
bi+1 + bi − 1

2
, ln

bi+1−1∑
k=bi

p(k)

bi+1 − bi

)
(3.13)

or

(xi, yi) =

(
ln
bi+1 + bi − 1

2
, ln

bi+1−1∑
k=bi

P (k)

bi+1 − bi

)
, (3.14)

respectively.

3.2.1.1 Drawback of Linear Least Squares Fit

A distribution function always takes values in a range between 0 and 1 if it is
normalized. However, using a linear least squares method, we have some problems
with an adjustment of a normalization constant of a power law distribution so
that all the probabilities do not take place in this range. Some methods are
useful to make the regression line incorporate such constraints, but there are not
remarkable extensions of these methods to power law distributions.

3.2.1.2 Normalized Form of Power-law

Normalized and continuous pdf is [28]

p(x) = (α− 1)x−αxα−1
min . (3.15)
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Normalized and discrete pdf is [28]

p(x) =
x−α

ζ(α, xmin)
(3.16)

with Hurwitz-zeta function

ζ(α, xmin) =
∞∑
j=0

1

(xmin + j)α
. (3.17)

For the details, see Appendix B.

3.2.2 Maximum Likelihood Estimation Method

For the ith observation xi, the conditional probability density function is pi(xi|α)
[123]. Following that, the joint probability density function for an n-dimensional
vector of observations x will be [123]

p(x|α) =
n∏
i=1

pi(xi|α). (3.18)

We cannot easily compute the integral of p(x|α). Instead, we try to get maximum
likelihood estimation (MLE) of α, denoted by α̂, by maximizing the likelihood
function

L(α|x) = p(x|α) =
n∏
i=1

pi(xi|α) (3.19)

with respect to a.

By the way, the MLE for the continuous case is

α̂ = 1 + n

[
n∑
i=1

ln
xi
xmin

]−1

, (3.20)

where xi (i = 1, 2, . . . , n) are the observed values of x such that xi ≥ xmin.

Morever, the MLE for the discrete case is [28, 51]

α̂ = 1 + n

[
n∑
i=1

ln
xi

xmin − 1
2

]−1

. (3.21)

For the details, see Appendix B.

32



3.2.3 Kolmogorov Smirnov Test

Kolmogorov-Smirnov (KS) statistic is a nonparametric test which measures a
distance between a theoretical cumulative distribution function (CDF) and an
empirical CDF of the data. Given a sample x1, x2, . . . , xn of i.i.d. random vari-
ables with distribution function F , consider the problem of testing H0 : F = F0

versus H1 : F 6= F0, where F0 is some specified distribution. H0 can be tested
using KS statistic

d = max
x≥xmin

|F (x)− Femp(x)| , (3.22)

where F and F0 are theoretical and empirical CDFs of the sample, respectively.

3.2.4 Combination of MLE Method and KS Test

When using MLE method, we try to fit the data to a specified model with regard-
less of whether they all respect that model. In order to estimate the parameters of
the model more accurately, we rule out some of the data which do not follow that
distribution. In other words, we regard xmin as a parameter so that we eliminate
all data below xmin. Because when choosing xmin too high we also throw away
the data according with that model, predicting xmin take an important place in
model selection.

Figure 3.1: We have drawn 1000 different samples. Each sample have n = 1150
observations. 150 of the observations are generated by a uniform distribution
and their values are less than xmin = 75. Remaining observations are power law
distributed with α = 2.4, xmin = 75. For each sample, α is searched for different
values of xmin using MLE method. See Appendix C.2.

33



The significance of finding the true value for xmin is shown in Figure 3.1. When
xmin is close to the exact value, MLE of the scaling-parameter α̂ is same with
what is expected. Below the point xmin = 75, α̂ changes very rapidly since we also
add more observations which are not power law distributed. Above that point,
MLEs of α̂ assemble in a range including the true value and this range gets wider
as chosen xmin move away from its true value, since we exclude some observed
data which are also power law distributed. All things considered, chosing xmin
accurately is critical. Some tried to deal with this problem by observing each
data as done in Figure 3.1. This method is relative to only visualization and
so, it is rather subjective. We need more concrete and thus convenient methods.
Clauset, Shalizi and Newman have proposed a technique which consists of both
MLE method and KS test.

The method can be summarized as follows:

1. Firstly, we compute KS statistic d for all the subsets of the data x∗ ≥ xmin
and xmin = 1 using MLEs of the parameters. Then we select α̂, MLE of
the parameter α, which maximizes the KS statistic.

2. We find a set of α̂ values by implementing the preceding step for the different
xmin values. After duplicating this step for all possible xmin values, we
choose the xmin value for which the KS statistic is minimum and get the α̂
value which corresponds to that xmin.

Example 3.1. Let our sample be

x = [ 14, 2, 6, 7, 9, 10, 1, 2, 2, 3, 4, 25, 3, 6, 6, 7, 5, 11, 3, 14, 16, 1, 1, 9, 21,
15 ]T .

For xmin = 1, distance vector will be

d = [ 0.00, 0.22, 0.24, 0.21, 0.23, 0.23, 0.14, 0.1136, 0.05, 0.02, 0.02, 0.04, 0.07,
0.08, 0.1 ]T .

We select α̂(1) = 1.5942. The distance corresponding to that α̂ is dα(1) = 0.2487.

For xmin = 2, distance vector will be

d = [ 0.00, 0.00, 0.15, 0.17, 0.22, 0.24, 0.16, 0.14, 0.08, 0.06, 0.06, 0.01, 0.04,
0.05, 0.08 ]T .

We select α̂(2) = 1.8270. The distance corresponding to that α̂ is dα(2) = 0.2490.

When finished, we get the vector whose elements are all possible xmin:

y = [ 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 14, 15, 16, 21 ]T .

34



(a) MLE power law fit. (b) MLE+KS power law fit.

Figure 3.2: Empirical distribution and power law distribution of x are shown as
pink and blue circles, respectively.

α̂ = [ 1.5, 1.82, 2.01, 2.14, 2.42, 2.76, 2.80, 3.41, 3.42, 3.65, 6.05, 5.38, 5.17,
12.47 ]T .

dα = [ 0.24, 0.24, 0.25, 0.25, 0.19, 0.17, 0.21, 0.25, 0.3, 0.33, 0.2, 0.27, 0.34,
0.36 ]T .

Finally, we choose min dα= 0.1774. So, this brings us xmin = 6 and α̂ = 2.7631.

Remark 3.1. During the study, we will not make calculations for large xmin values
since the situation that most of the data do not follow a power law distribution
does not make any sense.

Furthermore, we will always prefer to use a log-log graph, which is a two-dimensional
graph that uses logarithmic scales on both the horizontal and vertical axes since
power law distributions appear as a straight line in a log-log graph as seen in
Figure 3.2.
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3.3 Other Distributions

Beside their proposed method, Clauset, Shalizi and Newman have also shown
that some real networks in fact are not power law distributed. Namely, there can
be alternative distributions that outstrip the power law. So, we will also consider
the other possible distributions which are summarized in Table 3.1.

Normalized

Type Cont./Disc. Non-normalized Pdf coefficient of Pdf

Exponential continuous e−λx λe−λxmin

Exponential discrete e−λx (1− e−λ)e−λxmin

Log-normal continuous 1
x
[− (lnx−µ)2

2σ2 ]
√

2
πσ2

[
erfc

(
lnxmin−µ√

2σ2

)]−1

Poisson discrete µx

x!

[
eµ −

∑xmin−1
k=0

µk

k!

]−1

PL (cut-off) continuous x−αe−λx λ1−α

Γ(1−α,λxmin)

Weibull continuous xβ−1e−λx
β

βλeλx
β
min

Table 3.1: Alternative distributions. See Appendix B.

3.4 Power Law Results on Our Data

We consider all papers in the archives of ArXiv until June 2013. The details about
getting the data are represented in Appendix A. Before starting data analysis,
we discard mathematicians whose degrees are zero. Namely, we do not put any
mathematician who wrote his all papers solely by himself into our investigation.

In the study, the nodes (actors) are the researchers who study applied math-
ematics. Two actors are linked by a simple edge (tie), or two researchers are
collaborated, if there exists at least one paper written together. Degree of an
actor is the total number of researchers who the actor is in a collaboration with.
In the light of all this information, the data used in the thesis are represented in
Table 3.2.
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Min - Max Degree

Fields of Study Number of Actors Number of Ties in the Social Network

Cryp. and Sec. 4267 7238 1 - 47

Financial Math. 2888 4303 1 - 40

Math. Bio. 16971 48570 1 - 115

Math. Phy. 17564 30326 1 - 60

Num. Analysis 3518 5150 1 - 32

Opt. and Cont. 5155 7800 1 - 42

Probability 8137 14774 1 - 99

Statistics 10551 20517 1 - 71

Table 3.2: Data used in our research.

As the degree increases, the number of the actors who have that degree decreases.
For instance, according to our calculations, 2987 actors in the network for math-
ematical biology have degree 2 whereas there are only 2 actors with degree 90.

3.4.1 Power Law and Power Law with Cut-off

It is trivial that non-normalized form of power law is a special case of non-
normalized form of power law with exponential cut-off

P (x) = x−αe−λx. (3.23)

From that, we conclude that they are nested distibutions. Besides, both are
heavy-tailed. There are three important subclasses of heavy-tailed distributions,
the fat-tailed distributions, the long-tailed distributions and the subexponential
distributions. Power law is long-tailed. That is to say, power law has a relatively
large population which lies in its tails (right and/or left) when compared with
normal distribution [76, 118]. Most of their population is far away the mean,
causing the “skewness”. Power law with cut-off is a fat-tailed distribution which
also shows high skewness. It exhibits a power law decay in its tail, but it may
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not follow a power law everywhere [9]. Figure 3.6c is a really good example
for understanding the structure of the fat-tailed distribution. In our work, we
always observe 0 ≤ λ ≤ 5×10−2 so that this increases an effect of an exponential
function in Eqn. (3.23). The effect, however, decreases while x increases. Thus, as
x approaches to ∞, all power law distributions with cut-off must follow a power
law even if they do not for any other x. By the way, log-normal is an example of
a non-power law heavy tailed distribution, subexponential distribution.

3.4.2 Power Law and Power Law with Exponential Cut-off Graphs
for Our Data

Firstly, we draw continuous power law, discrete power law and power law with
cut-off distributions for our data shown in Table 3.2. Because a (continuous or
discrete) power law distribution function becomes a straight line on a log-log
graph, we use a log-log scale while plotting. However, because of the reasons
mentioned in Subsection 3.4.1, we see that some of the power law distributions
with cut-off appear curved.

By the way, of course, each calculation gives different values of xmin. Because we
do not want to put the non-power law data into fitting, we prefer not to intervene
in the evaluations of xmin. However, as most of the researchers have small degrees,
we exclude the majority in a few cases. For example, in power law distribution
with exponential cut-off for financial mathematics, we find xmin = 11 so that we
exclude 2118 people out of 2888. However, we observe xmin = 2 for continuous
power law and xmin = 3 for discrete power law.

It is evident that most data do not fit to the power law well. In fact, most
empirical data do not appear as a straight line; namely, almost all of them are
curvilinear on a log-log scale. Nevertheless, it is really early to decide for us, since
we have not compared them with the other distributions yet. Further, we use a
likelihood ratio test to get more better results.
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Figure 3.3: Power law data fits for Cryptography and Financial Mathematics. See Appendix C.1.

(a) α = 2.90, xmin = 2, dα = 0.18 (b) α = 3.02, xmin = 4, dα = 0.17 (c) α = 3.83, λ = 1.77×10−7, xmin = 6, dα = 0.06

(d) α = 3.20, xmin = 2, dα = 0.17 (e) α = 2.78, xmin = 3, dα = 0.02 (f) α = 4.56, λ = 1.34×10−8, xmin = 11, dα = 0.06
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Figure 3.4: Power law data fits for Mathematical Biology and Physics.

(a) α = 3.08, xmin = 9, dα = 0.03 (b) α = 2.86, xmin = 8, dα = 0.01 (c) α = 3.08, λ = 2.05×10−8, xmin = 9, dα = 0.03

(d) α = 3.46, xmin = 6, dα = 0.08 (e) α = 2.72, xmin = 4, dα = 0.03 (f) α = 3.52, λ = 0.02, xmin = 11, dα = 0.05
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Figure 3.5: Power law data fits for Numerical Analysis and Optimization.

(a) α = 3.25, xmin = 2, dα = 0.2 (b) α = 2.94, xmin = 3, dα = 0.03 (c) α = 4.14, λ = 2.97×10−8, xmin = 4, dα = 0.11

(d) α = 3.18, xmin = 2, dα = 0.18 (e) α = 2.67, xmin = 6, dα = 0.01 (f) α = 4.42, λ = 6.04×10−8, xmin = 7, dα = 0.06
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Figure 3.6: Power law data fits for Probability and Statistics.

(a) α = 3.16, xmin = 7, dα = 0.07 (b) α = 2.89, xmin = 3, dα = 0.02 (c) α = 2.64, λ = 0.02, xmin = 7, dα = 0.05

(d) α = 3.33, xmin = 11, dα = 0.05 (e) α = 2.62, xmin = 4, dα = 0.02 (f) α = 2.92, λ = 0.01, xmin = 10, dα = 0.04
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3.5 Likelihood Ratio Test

A likelihood ratio test is used to compare the fit of two candidate distributions
[28]. The likelihoods of the data set within the two distributions with probability
density function (PDF) p1(x) and p2(x) are [28]

L1 =
n∏
i=1

p1(xi), L2 =
n∏
i=1

p2(xi) (3.24)

and the ratio of the likelihoods is [28]

R =
L1

L2

n∏
i=1

p1(xi)

p2(xi)
. (3.25)

Taking logs, the log-likelihood ratio is [28]

R =
n∑
i=1

[lnp1(xi)− lnp2(xi)] =
n∑
i=1

[ξ
(1)
i − ξ

(2)
i ] (3.26)

where ξ
(j)
i = lnpj(xi) can be thought of as the log-likelihood for a single measure-

ment xi within distribution j.

But since, by hypothesis, the xi are independent, so also are the differences

ξ
(1)
i − ξ

(2)
i , and hence, by the central limit theorem, their sum R becomes nor-

mally distributed as n becomes large, with expected variance nσ2 where σ2 is the
expected variance of a single term [28]. In practice we do not know the expected
variance of a single term, but we can approximate it in the usual way by the
variance of the data [28]:

σ2 =
1

n

n∑
i=1

[
ξ

(1)
i − ξ

(2)
i − (ξ̄1 − ξ̄(2))

]2

, (3.27)

with

ξ̄(1) =
1

n

n∑
i=1

ξ
(1)
i , ξ̄(2) =

1

n

n∑
i=1

ξ
(2)
i . (3.28)

Now suppose we are worried that the true expectation value of the log likelihood
ratio is in fact zero, so that the observed sign of R is a product purely of the
fluctuations and cannot be trusted as an indicator of which model is preferred
[28]. The probability that the measured log likelihood ratio has a magnitude as
large or larger than the observed value |R| is given by [28]

p =
1√

2πnσ2

[∫ −|R|
−∞

e−t
2/2nσ2

dt+

∫ ∞
|R|

e−t
2/2nσ2

dt

]
, (3.29)

where σ is given by Eqn. (3.28).
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This p-value gives us an estimate of the probability that we measured a given
value of R when the true value of R is close to zero (and hence is unreliable as a
guide to which model is favored) [28]. If p is small (say p < 0.1) then our value for
R is unlikely to be a chance result and hence its sign can probably be trusted as
an indicator of which model is the better fit to the data [28]. (However, this does
not mean that the model is a good fit, only that it is better than the alternative.)

3.5.1 Test for Nested Distributions

When the true distribution lies in the smaller family of distributions, the best fits
to both families converge to the true distribution as n becomes large [28]. This

means that the individual differences ξ
(1)
i − ξ

(2)
i in Eqn. (3.27) each converge to

zero, as does their variance σ2 [28]. Consequently the ratio |R|/σ appearing in
the expression for the p-value tends to 0/0, and its distribution does not obey the
simple central limit theorem argument given above [28]. Nonetheless, we find that
adopts a chi-squared distribution as n becomes large,as a consequence of Wilk’s
Theorem R [28]. In other words, test statistic p is asymptotically χ2 distributed.

χ2 distribution is given by [123]

fχ2(x) =
x
v
2
−1e−

x
2

2v/2Γ(v/2)
, (3.30)

where x is the difference ξ
(1)
i − ξ

(2)
i and v = m− n is degrees of freedom in which

m and n are independent parameter numbers of the candidate distributions. For
our case, v = 1, since power law has one parameter α and power law with cut-off
has two parameters α and λ. Then, p is given by [28]

p =

∫ −|R|
−∞

fχ2(x)dx+

∫ ∞
|R|

fχ2(x)dx, (3.31)

which is converted into

p =

∫ ∞
z

fχ2(z)dz, (3.32)

where z = −2R.

3.6 Application of Likelihood Ratio Test on Our Data

In the test, we get null hypotheses the power law distribution with α and xmin
calculated in Section 3.4. Because any value of a log-likelihood function is negative
and the distribution which is favored over the another distribution has a larger
likelihood, a negative log-likelihood ratio means that our alternative hypotheses
fits better than the power law to the data.
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In some cases because of the structure of the integrand, p values do not converge.
For instance, chi squared distribution is in fact a special type of a gamma dis-
tribution and p can be readily evaluated using its upper gamma function form.
However, when the lower bound of the integral is negative, the integrand diverges.
For this reason, in such cases we prefer to take the null hypotheses as the power
law with exponential cut-off (see Table 3.5).

We find that the log-normal distribution (see Figure 3.7) is favored over the power
law distribution for all data whereas the poisson distribution is not a better choice
for any data as seen in Tables 3.3 and 3.4. We also find that the power law with
cut-off is favored over the ower law for the data except mathematical biology and
statistics.

(a) µ = 1.3488, σ = 0.8236, xmin = 1 (b) µ = 0.9158, σ = 0.7569, xmin = 1

Figure 3.7: Log normal data fit.

Nonetheless, these results do not tell us that the log-normal is a good model for
our data. We can only say that the log-normal fits better to the data compared
to the power law. That is to say, the log-normal gives better results for xmin
which is the most proper lower bound for power law distribution according to
MLE+KS technique. In addition, we observe that the log-normal fits to all data
for xmin = 1 or xmin = 2, when applying the MLE+KS method. In fact, when
xmin = 1, MLE+KS method turns out to be only MLE method so that for the
data sets except cryptography and security, numerical analysis and optimization
and control, the parameters are

µ̂ =

∑n
i=1 lnxi
n

, and σ̂ =

√∑n
i=1(lnxi − µ̂)2

n
, (3.33)

where xi (i = 1, . . . , n; x1 = 1) are the observations on the data set (See Ap-
pendix B). To sum up, since we rule out the power law on acount of the reasons
listed above, it is not very suprising to say that the networks built by the data
are not exactly “scale-free”.
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Fields of Study C. Exp. p D. Exp. p Log Normal p Poisson p Weibull p

Cryp. and Sec. 481.43 0.00 1194.6 0.00 -655.63 0.00 6750 (xmin = 1) 0.00 -0.0004 (xmin = 15) 0.94

Financial Math. 399.36 0.00 -2152 0.00 -258.26 0.00 4323.8 (xmin = 1) 0.00 -0.0982 (xmin = 13) 0.11

Math. Bio. 503.48 0.00 37252 0.00 -428.10 0.00 56331 (xmin = 1) 0.00 -0.0195 (xmin = 15) 0.12

Math. Phy. 176.76 0.00 -2140.7 0.00 -659.33 0.00 12478 0.00 -0.1098 0.31

Num. Analysis 318.73 0.00 1027.4 0.00 -474.52 0.00 4498 (xmin = 1) 0.00 -226.8 (xmin = 1) 0.00

Opt. and Cont. 570.84 0.00 1554.3 0.00 -639.42 0.00 7141.4 (xmin = 1) 0.00 -1.4353 (xmin = 15) 0.00

Probability 53.446 0.00 142.74 0.00 -290.64 0.00 10052 0.00 -2.9807 0.00

Statistics 41.938 0.00 21646 0.00 -140.08 0.00 21397 (xmin = 1) 0.00 -0.0036 0.39

Table 3.3: Comparison of the continuous power law and the other distributions.
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Fields of Study C. Exp. p D. Exp. p Log Normal p Poisson p Weibull p

Cryp. and Sec. -157.42 0.00 3743.8 0.00 -532.8 0.00 4860.7 (xmin = 1) 0.00 -29.663 (xmin = 9) 0.00

Financial Math. -217.79 0.00 -1573 0.00 -562.45 0.00 2898.4 (xmin = 1) 0.00 -3.921 (xmin = 13) 0.00

Math. Bio. 282.14 0.00 35251 0.00 -903.59 0.00 50654 (xmin = 1) 0.00 -60.494 (xmin = 15) 0.00

Math. Phy. -707.86 0.00 -8227.5 0.00 -2384.4 0.00 18811 0.00 -6.0112(xmin = 24) 0.00

Num. Analysis -421.2 0.00 -1712.7 0.00 -818.92 0.00 2798.6 (xmin = 1) 0.00 -1926.2 (xmin = 1) 0.00

Opt. and Cont. -73.527 0.00 1472.5 0.00 -209.06 0.00 4685.9 (xmin = 1) 0.00 -4.4391 (xmin = 15) 0.00

Probability -302.17 0.00 -3796.2 0.00 -1504.3 0.00 4496.5 0.00 -150.04 (xmin = 7) 0.00

Statistics -137.37 0.00 15075 0.00 -1315.8 0.00 16906 (xmin = 1) 0.00 -58.994 (xmin = 11) 0.00

Table 3.4: Comparison of the discrete power law and the other distributions.
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Fields of Null Alternative
Study Hypotheses Hypotheses LLR p

Cryp. and Sec. C. PL PL (cut-off) -4092 0.00

Financial Math. C. PL PL (cut-off) -2674.8 0.00

Math. Bio. PL (cut-off) C. PL -0.0005 0.96

Math. Phy. C. PL PL (cut-off) -4121.6 0.00

Num. Analysis C. PL PL (cut-off) -2145.6 0.00

Opt. and Cont. C. PL PL (cut-off) -4626.9 0.00

Probability C. PL PL (cut-off) -2572.5 0.00

Statistics PL (cut-off) C. PL -278.1 0.00

Null Alternative
Hypotheses Hypotheses LLR p

D. PL PL (cut-off) -1342.8 0.00

D. PL PL (cut-off) -2095.7 0.00

D. PL PL (cut-off) -2000.3 0.00

D. PL PL (cut-off) -10208 0.00

D. PL PL (cut-off) -1395.4 0.00

D. PL PL (cut-off) -442.23 0.00

D. PL PL (cut-off) -8128.5 0.00

D. PL PL (cut-off) -6292.8 0.00

Table 3.5: Comparison of the power law and the power law with cut-off.
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CHAPTER 4

STATISTICAL NETWORK ANALYSIS

In this chapter, we investigate the statistical properties of our collaboration net-
works.

4.1 The Effect of Clustering and Mutuality on the Mean Number of
Collaborators

As mentioned in Subsection 2.2.1, the likelihood of any two coauthors of a re-
searcher being in collaboration with each other is greater than the possibility of
any arbitrarily selected researchers coworking on an article. Moreover, any two
coworkers of a researcher can have a common coworker who has not studied with
the researcher. These two properties separate real networks from any random
graph. Without regarding these important properties of real networks, applying
to a theoretical approach for only random graphs (∗) will give inaccurate results.

On the other hand, computing all degrees of a vertex directly is not easy. When
the number of observations n increases, calculating them becomes more com-
pelling and takes considerably more time. Thus, we can use the advantages of
the Eqns. (2.50), (2.52), and (2.53). In order to assess the effectiveness of these
equations, we compare the results of direct computations with the theoretical
ones. Firstly, we compute the total number of triangles and the total number of
connected triples in each network (see Appendix C.4 and C.5). Secondly, we get
their clustering and mutuality coefficients using Eqns. (2.50), and (2.52). Then,
we evaluate average second degree z2 using the formulas [95]

z2 = k̄2 − k̄, (∗)
z2 = (1− C)(k̄2 − k̄), (∗∗)
z2 = M(1− C)(k̄2 − k̄), (∗ ∗ ∗)

where k symbolizes first degree of a vertex so that k̄ = z1. Formula (∗) is
constructed for random graphs. For real graphs, we discard the part of the
graph where clustering occurs so that we get Eqn. (∗∗). Looking at Eqn. (∗∗),
we see that when C goes up, z2 and higher degrees go down. Due to squares in

49



the network, a result based on Eqn. (∗∗) will be still an overcount estimation
by a factor 1/M . To deal with this problem, we use Eqn. (∗ ∗ ∗). We compare
our theoretical results with actual ones computed with Matlab (see Table 4.2).
In addition to this, you can find actual z1, z2 and z3 values in Table 4.1. For
matlab codes, see Appendix C.4. According to Table 4.2, when the effect of
clustering is not considered, the formula (∗) fails to approach the exact value z2.
Because while calculating we count the mathematicians’ some coworkers (first
neighbours) as the coworkers of their coworkers (second neighbours) owing to
clustering, we find the results calculated by (∗) relatively large. When clustering
is taken into account (∗∗), the results become considerably close to z2. We admit
that they are not perfect, but neither are they ignorable. Moreover, carrying
on the observation, we have seen that some approaches computed by (∗ ∗ ∗)
to z2 remain insufficient to give moderately correct results, whereas some are
really good. Table 4.1 represents the z1, z2 and z3 values for each network.
Looking at these values and the fraction z1/z2 > 1, we can say that there exists
a phase transition for each network (see Subsubsection 2.1.2.4). As seen before,
theoretical consequences, however, do not always overlap the computation ones.
In the following section, we will investigate an existence of a giant component for
each network and calculate the other properties regarding their component sizes.

Fields of Study actual z1 actual z2 actual z3 z2/z1

Cryp. and Sec. 3.3925 4.5451 4.7358 1.3397

Financial Math. 2.9799 6.8912 13.8718 2.3125

Math. Bio. 5.7239 16.3493 46.2676 2.8563

Math. Phy. 3.4531 13.1126 50.1751 3.7973

Num. Analysis 2.9277 3.8681 4.7083 1.3212

Opt. and Cont. 3.0261 6.5493 14.4058 2.1642

Probability 3.6313 20.3205 103.7001 5.5959

Statistics 3.8892 13.8633 55.1299 3.5660

Table 4.1: First three mean degree in our social networks.
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Fields of Study Triangles Triples C M

Cryp. and Sec. 9194 39561 0.6972 0.4200

Fin. Math. 2865 20270 0.4255 0.6472

Math. Bio. 197074 774125 0.7637 0.2445

Math. Phy. 19427 188828 0.3086 0.7052

Num. Analysis 3679 19038 0.5797 0.5473

Opt. and Cont. 4837 33472 0.4335 0.6453

Probability 8824 118915 0.2226 0.7761

Statistics 31484 178559 0.5289 0.4684

actual z2 (∗) (∗∗) (∗ ∗ ∗)

4.5451 18.5428 5.6148 2.3582

6.8912 14.0374 8.0645 5.2193

16.3493 91.2292 21.5574 5.2708

13.1126 21.5017 14.8663 10.4837

3.8681 10.8232 4.5490 2.4897

6.5493 12.9862 7.3597 4.7473

20.3205 29.2282 22.7220 17.6345

13.8633 33.8468 15.9452 7.4687

Table 4.2: We have calculated the number of triangles in the network, the number of connected triples in the network, the
clustering coefficient, the mutuality coefficient, actual mean second degree z2, mean second degree of a random graph (∗), mean
second degree of a random graph by taking the clustering effect into consideration (∗∗), mean second degree of random graph
by taking the clustering and mutuality effects into consideration (∗ ∗ ∗), respectively.
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4.2 Groups of Connected Mathematicians

In spite of easy access to information, person-to-person contact is still significant
so as to contribute to academic issues being discussed in more detail and well-
developed. Moreover, some researchers may not be interested in a subject until
their coworkers make the subject attractive for them. Therefore, we can say that
the larger connected groups, the more spread and share of scientific knowledge.

It is not suprising that all the mathematicians in the networks are not tied to
each other. In each network, there are more than 500 distinct groups of con-
nected mathematicians according to our calculations (for matlab codes, see Ap-
pendix C.6). With respect to the results presented in Table 4.3, there are not
giant components for the networks of cryptography and numerical analysis. We
see that there are only 46 people between first two largest components of the
network for cryptography and security, while this difference ascends to 322 for
numerical analysis. We conclude from these results that it is not sufficient for the
proportion to be greater than 1. In addition, it must be greater than a certain
amount for networks to have definitely a phase transition. However when we look
at the others, their largest components fill almost the majority of the volume of
the networks. That is to say, their 2nd largest components remain very small
when compared with the 1st ones.

We have calculated the mean component size of every network without excluding
the giant component. When comparing it to the mean component size of only
the small groups, we have found it relatively large (see Table 4.4). Thus, in order
to get reasonable results, it would be better if we exclude the giant one from each
network. We have also computed the values of z1 and z2 for each network in which
the giant component is removed. Then, we have obtained the mean component
size of small groups theoretically using Eqn. (2.29). For mathematical physics
and probability, the results are compatible with the actual ones.

By the way, for cryptography, removing the largest component in the network, we
have found that z2 is still greater than z1. Thus, we have shown the theoretical
value which is marked by the symbol ? in Table 4.4. Since we cannot mention a
certain phase transition for cryptography and numerical analysis, it will not be
suprising that they have the greatest mean component sizes of small groups.

As a result, in the field of probability, communication is highest, and so prevalence
of any scientific information in that community is faster compared to the others.
On the other hand, in the field of cryptography and security, the connections
between the mathematicians seems to be lowest.
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Fields of Study Largest C. Size 2nd Largest C. Size 3rd Largest C. Size 4th Largest C. Size z2/z1

Cryp. and Sec. 312 (7 %) 266 55 47 1.33

Financial Math. 1179 (40 %) 17 16 14 2.31

Math. Bio. 9415 (55 %) 42 37 31 2.85

Math. Phy. 11414 (64 %) 24 20 16 3.79

Num. Analysis 714 (20 %) 392 112 65 1.32

Opt. and Cont. 2125 (41 %) 55 21 20 2.16

Probability 6033 (74 %) 22 14 13 5.59

Statistics 6428 (60 %) 32 29 21 3.56

Table 4.3: We represent the first four largest components in each network. We mean the number of mathematicians tied to
each other by component size.
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Actual Mean C. Size Actual Mean C. Size Theoretical Mean C. Size

Fields of Study ( including a giant one) (only small groups) (only small groups)

Cryp. and Sec. 4.86 4.51 ?

Financial Math. 5.69 3.37 5.69

Math. Bio. 10.36 4.62 9.76

Math. Phy. 9.07 3.17 3.43

Num. Analysis 5.82 4.76 27.8

Opt. and Cont. 6.14 3.61 6.76

Probability 11.34 2.93 4.02

Statistics 8.46 3.31 5.23

Table 4.4: We represent the mean component sizes directly calculated for all the components, for only the small groups, and
theoretically calculated for only small groups, respectively.
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4.3 Mean Shortest Distance between the Mathematicians and Close-
ness Centrality

In this section, we search the minimum number of connections (ties) between any
two mathematicians in the largest connected group of each network.

Figure 4.1: The largest connected
group of the network for cryptogra-
phy and security. This group con-
sists of 312 mathematicians (see Ta-
ble 4.3) and 880 ties. Despite its small
size, the network is seen to be com-
plex here. (For its matlab code, see
Appendix C.3)

During the assessment, because the network for cryptography and security has
not a sufficiently large group of mathematicians, we think that calculating mean
distance in its largest group does not make sense and thus rule out it (Figure 4.1).
In fact, this idea is also valid for numerical analysis. Nonetheless, in order to see
the effects of the sizes, the mean first degrees and the mean second degrees of
the networks on the mean distances, we prefer to share the results about the
biggest group of people studying numerical analysis on Table 4.5. As seen from
the findings represented in Table 4.5, expected value of shortest path between
two arbitrarily chosen researchers is inverse proportional to z2/z1. We see that
the group with the smallest size and the smallest z2/z1, which is the numerical
analysis group, has the biggest mean distance and diameter. On the other hand,
the network which has the largest component with the biggest value z2/z1, the
probability group, has also the smallest mean distance and diameter. From Ta-
ble 4.5 we say that in the field of probability, the maximum distance between
any two researchers can be only a number up to 17. In the light of these results,
we say that all networks except cryptography and numerical analysis exhibit a
“small-world effect”. As the groups grow in size, the expected values of shortest
distance in these groups do not rise in the same proportion as the size.

Closeness centrality of an actor gives how close the actor is to other actors in a
social network by quantifying the sum of shortest distance between the actor and
all other actors in the network. Low centrality means first several degrees of that
actor are high while its other remaining degrees are relatively lower. A researcher
who has the lowest centrality is thought to be the first to learn new information,
and information arising from him will come to other mathematicians faster, com-
pared to the information originating with other mathematicians. To illustrate,
we have calculated cloness centrality of each node in the networks for financial
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mathematics and optimization. In financial mathematics, the lowest centrality
is 7571 whereas the highest centrality is 17480. Likewise, in optimization and
control, the lowest centrality is 10861 whereas 30243 is highest.

With a little adjustment in the algorithm for the average distance, we can find the
centrality of the mathematians in these groups. However, the algorithms written
by me have a storage problem and thus they are time-taking. So, beside my codes
in Appendix C.7, you can find an alternative algorithm which is a modified form
of the standart breadth-first search [92].

Theoretical

Fields of Study Diameter Mean Distance Mean Distance z2/z1

Fin. Math. 23 9.6996 5.0601 3.7468

Math. Bio. 22 7.3839 ? 6.0992 3.8549

Math. Phy. 20 7.4619 ? 5.9345 4.7447

Num. Analysis 34 12.6976 6.2436 2.4471

Opt. and Cont. 20 8.4555 5.6798 3.5914

Probability 17 6.4068 4.8215 6.3899

Statistics 20 7.0491 5.5020 4.7195

Table 4.5: We demonstrate diameter (maximum shortest distance), mean shortest
distance, theoretically calculated (Eqn. 2.37) mean shortest distance, z2/z1 where
z1 and z2 are mean first degree and mean second degree for the largest component
of each network, respectively. By the way, because their sizes are large, while
calculating actual mean distances, we sample them over 1000 random people for
mathematical biology and mathematical physics.
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CHAPTER 5

CONCLUSIONS and OUTLOOK TO FURTHER WORK

5.1 Conclusions

Throughout the study, we have focused on two problems regarding the networks of
the study fieds which can be counted as eight main fields of applied mathematics.

Until a few years ago scientists tried to find the well-fitting model for a given
degree sequence of any real network using the least squares method and MLE
method. However, by these methods, we attempt to it all the data to a model
even if some of the data do not in fact comply with that model. To overcome
this problem, we use a current statistical technique by which we discard the data
that do not follow the distribution we search for. When applying the more robust
and confidential method, we find that any network we study in the thesis is not
scale-free exactly. From a technical perspective, this means that most of the
numbers of collaborators assemble in vicinity of the mean number of co-workers
for each network. Namely, even if the number of mathematicians decreases as
the number of their collaborations become more, we observe that there are many
researchers with co-workers at almost all numbers. Because in scale-free networks,
connections of most actors are handful while remaining ones may have thousand
or even million neighbours, the collaboration networks being researched in the
thesis differ from any scale-free network.

Secondly, we investigate the other attributes of the networks. According to the
inquiry, the network for mathematical biology has the biggest average degree
which means that one to one communication is highest whereas it is lowest for
numerical analysis (see Table 4.1). Then we compute the indispensable facts
of real-networks, clustering and mutuality and use the updated version of the
formula for z2 where clustering and mutuality effects are introduced into the
random graphs. According to the results, the network mathematical biology
has the highest clustering coefficient whereas the network for probability has
the lowest. Furthermore, we find that theoretical calculations of average second
degrees are considerably close to actual ones (see Table 4.2). Another interesting
outcome is that although z2/z1 > 1 for all the networks, we cannot claim an
existence of a giant group for the cryptography and numerical analysis networks
(see Table 4.3). We see that there are only 46 people between first two largest
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connected groups of the network of cryptography, while this difference ascends
to 322 for numerical analysis. We can say that theory does not always match
up with the empirical results. So, it is not sufficient for the proportion to be
greater than 1. In addition to this, it must be greater than a certain amount for
networks to have definitely a phase transition which guarantees the existence of
a giant connected group of the mathematicians. The largest connected group of
the network for probability comprises of 74 percent of its all population. Hence,
the connections between the mathematicians studying on probability are more
dense compared with the others. After this stage, we evaluate the actual average
group sizes for all the assembles, and only the small assembles taking place in
each network separately. So, we comprehend the serious effect of the giant groups
on the average group size. In order to get more robust consequences, it is better
ruling out the giant groups during the assessment of the mean group sizes (see
Table 4.4). Next, we compute the mean group sizes in theory for solely small
groups. Measuring theoretical findings against their exact values, we see that they
are imminent for mathematical physics and statistics. In addition, we predict
the maximum value of the shortest distance and the average shortest distance
between the mathematicians in the largest group for each network. Following
that, we learn that the assemble with the smallest size and z2/z1, which is the
numerical analysis group, has the biggest diameter and the average distance (see
Table 4.5). Based on this, all the networks comprising of the mathematicians from
the fields except cryptography and numerical analysis are small-world networks.

5.2 Outlook to Further Work

It is feasible to find how many papers have been written by a pair of the math-
ematicians mentioned in the thesis. Collecting the information, we change the
collaboration networks into weighted ones. In weighted graphs, each edge of a
graph has an associated quantitative value, a non-negative integer, called weight.
In our next problem, the weight represents the number of papers written to-
gether by two certain mathematicians. Using the concept “weight”, we predict
the strength of collaborative ties. Moreover, we can find the distance of the least
total weight from a researcher to each of the other researchers.

Beside scientific collaboration networks, in our future research, we can use our
findings to make an analysis of the other types of networks such as gene regularity
networks, social media analysis, target marketing strategies, behaviour analysis
based on telecommunication data (cell phones) and belief networks.
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APPENDIX A

COLLECTING THE DATA

All data is derived from the archives of ArXiv. Process for obtaining this data
being compelling and requiring analytical thinking, it is worth mentioning. It
can be summarized as follows:

Copying and Filtering: I copied all information to any excel page, filtering authors
using excel command filter.

Removing Various Expressions: I tried to deal with the problem that some people
identified themselves in different ways on their different papers.

Field of Study Different uses of the names

Cryptography and Security
Heam Pierre-Cyrille

Héam Pierre-Cyrille

Financial Mathematics
J.P.Bouchaud

J.-P.Bouchaud

Numerical Analysis
Hyeonbae Kang

Hyœnbæ Kang

Optimization and Control

A. Agrachev

Andrei A. Agrachev

Andrei Agrachev

Andrey A. Agrachev

Andrey Agrachev

Statistics
Abdelouahab Bibi

Abdelouhab Bibi

Table A.1: An example of the problem we faced during the performance to get
the data about the names of the researchers.

Firstly, all Latin alphabet letters with diacritics and letters using acute accent
were replaced by the most imminent ones found in English alphabet. For instance,
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without regard to whether they are capital or not, á, à, æ, ı́, é, ø, ś were all
changed with a, i, e, o, s, respectively. Secondly, same logic was followed to get
rid of other problems except abbreviation of names. Nonetheless, when assigning
each scientist a number, by matching abbreviations of each name with the same
number, I solved this problem, too.

Converting collaborator relationships into a matrix: Using the numbers in which
each represents a mathematician, a collaborator relationship matrix was con-
structed via excel command vlookup. Then, I utilized a very simple matlab code
to form the matrix into a matrix with 2-columns consisting of reciprocal relation-
ships.
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APPENDIX B

GENERAL INFORMATION ABOUT DISTRIBUTION
FUNCTIONS

B.1 The way to get the normalized form of the distribution functions

B.1.1 Power Law

Normalized distribution function satisfies

Pr(xmin ≤ x ≤ xmax) =

∫ xmax

xmin

Cx−αdx = 1. (B.1)

In this thesis, we will take xmax =∞ so that Eqn. (B.1) becomes

Pr(x ≥ xmin) =

∫ ∞
xmin

Cx−αdx = 1. (B.2)

Solving this, we get

1

C
=

x−α+1

−α + 1

x=∞

x=xmin

=
x−α+1
min

α− 1
. (B.3)

Finally, the probability density function is

p(x) = (α− 1)xα−1
minx

−α. (B.4)

For the discrete case, normalized distribution function satisfies

Pr(x ≥ xmin) =
∞∑
xmin

Cx−α = 1. (B.5)

Following that, we get

C =
1∑∞

xmin
x−α

=
1∑∞

j=0(xmin + j)−α
=

1

ζ(α, xmin)
. (B.6)

Finally,

p(x) =
x−α

ζ(α, xmin)
. (B.7)
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In fact, hurwitz zeta function can be transformed into

ζ(s, a) =
1

Γ(a)

∫ ∞
0

ts−1dt

eat(1− e−t)
, (B.8)

where Γ(a) is a gamma function. This transformation can help you for a faster
calculation of Hurwitz zeta function.

B.1.2 Power Law with Exponential Cut-off

Pr(x ≥ xmin) =

∫ ∞
xmin

Cx−αe−λxdx = 1. (B.9)

Then, we get

C−1 =

∫ ∞
xmin

x−αe−λxdx = λ−1+α

∫ ∞
λxmin

z−αe−zdz, (B.10)

using the property of the gamma function

d

dxmin

∫ ∞
xmin

x−αe−λxdx = −x−αmine−λxmin (B.11)

=
d

dxmin
λ−1+α

∫ ∞
λxmin

z−αe−zdz. (B.12)

So, the probability density function

p(x) =
λ−1+αx−αmine

−λxmin

Γ(1− α, λxmin)
, (B.13)

where Γ(β, z) is known as a upper (incomplete) gamma function. Upper (in-
complete) gamma function converges for only z > 0. You can use the matlab
commands gammainc(β, z, ”upper”) for β > 0. For β < 0, you can find the code
in Appendix (C.1).

B.1.3 Log Normal

Pr(x ≥ xmin) =

∫ ∞
xmin

C
1

x
exp

[
−(lnx− µ)2

2σ2

]
dx = 1. (B.14)

Then, we get

C =

[∫ ∞
xmin

1

x
exp

[
−(lnx− µ)2

2σ2

]
dx

]−1

. (B.15)
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A transformation as in Eqns. (B.12) and (B.13) done, we obtain

∫ ∞
xmin

1

x
exp

[
−(lnx− µ)2

2σ2

]
dx =

√
2σ

∫ ∞
(lnxmin−µ)√

2σ

e−t
2

dt. (B.16)

Then,

√
2σ

∫ ∞
(lnxmin−µ)√

2σ

e−t
2

dt =
σ
√
π√
2

erfc(
(lnxmin − µ)√

2σ
), (B.17)

where erfc is a complementary error function defined as

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt. (B.18)

Finally, the probability density function is

p(x) =
2√
πσ2

[
erfc(

(lnxmin − µ)√
2σ

)

]−1
1

x
exp

[
−(lnx− µ)2

2σ2

]
. (B.19)

You can use the matlab commands erf and erfc to calculate the error function
and the complementary error function, respectively. These function are useful for
x ∈ R.

The same procedure can be applied for the other distributions.

B.2 Maximum Likelihood Estimations

B.2.1 Continuous Power Law

Given a data set containing n observations xi ≥ xmin, we would like to know the
value of α for the power-law model that is most likely to have generated our data.
The probability that the data were drawn from the model is proportional to

p(x|α) =
n∏
i=1

α− 1

xmin

(
xi
xmin

)−α
. (B.20)

This probability is called the likelihood of the data given the model. The data
are most likely to have been generated by the model with scaling parameter α
that maximizes this function. Commonly we actually work with the logarithm L
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of the likelihood, which has its maximum in the same place:

L = ln(p(x|α)) = ln
n∏
i=1

α− 1

xmin

(
xi
xmin

)−α
(B.21)

=
n∑
i=1

[
ln(α− 1)− ln(xmin)− α ln

xi
xmin

]
(B.22)

= n ln(α− 1)− n lnxmin − α
n∑
i=1

ln
xi
xmin

. (B.23)

Setting ∂L
∂α

= 0 and solving for α, we obtain the maximum likelihood estimate or
MLE for the scaling parameter:

α̂ = 1 + n

[
n∑
i=1

ln
xi
xmin

]−1

. (B.24)

B.2.2 Discrete Power Law

Following an argument similar to the one we gave for the continuous power law,
we can write down the log-likelihood function

L = ln
n∏
i=1

x−αi
ζ(α, xmin)

= −n lnζ(α, xmin)− α
n∑
i=1

lnxi. (B.25)

Setting ∂L
∂α

= 0 we find that

−n
ζ(α, xmin)

∂

∂α
ζ(α, xmin)−

n∑
i=1

lnxi = 0. (B.26)

Thus, the MLE α̂ for the scaling parameter is the solution of

ζ ′(α, xmin)

ζ(α, xmin)
= − 1

n

n∑
i=1

lnxi. (B.27)

This equation can be solved numerically in a straightforward manner. Alterna-
tively, one can directly maximize the log-likelihood function itself, Eqn. (B.25).
As the calculations involved are long with results that do not look very struc-
tured, however, we omit them here. Eqn. (B.27) is somewhat cumbersome. If
xmin is moderately large, then a reasonable figure for α can be estimated using
the much more convenient approximate formula derived in the next steps.
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Given a differentiable function f(x), with indefinite integral F (x), such that
F ′(x) = f(x),

∫ x+ 1
2

x− 1
2

f(t)dt = F (x+
1

2
)− F (x− 1

2
)

=

[
F (x) +

1

2
F ′(x) +

1

8
F ′′(x) +

1

48
F ′′′(x)

]
−
[
F (x)− 1

2
F ′(x) +

1

8
F ′′(x)− 1

48
F ′′′(x)

]
+ . . .

= f(x) +
1

24
f ′′(x) + . . .

Summing over integer x, we then get∫ ∞
xmin− 1

2

f(t)dt =
∞∑

x=xmin

f(x) +
1

24

∞∑
x=xmin

f ′′(x) + . . . (B.28)

For instance, if f(x) = x−α for some constant α, then we have

∫ ∞
xmin− 1

2

t−αdt =
(xmin − 1

2
)−α+1

α− 1

=
∞∑

x=xmin

x−α +
α(α + 1)

24

∞∑
x=xmin

x−α−2 + . . .

= ζ(α, xmin)[1 +O(x2
min)],

where we have made use of the fact that x2 ≤ x2
min for all terms in the second

sum. Thus

ζ(α, xmin) =
(xmin − 1

2
)−α+1

α− 1

[
1 +O(x2

min)
]
. (B.29)

Differentiating this expression with respect to α, we also have

ζ ′(α, xmin) = −
(xmin − 1

2
)−α+1

α− 1

[
1

α− 1
+ ln(xmin −

1

2
)

] [
1 +O(x−2

min)
]
. (B.30)

We can use these expressions to derive an approximation to the maximum likeli-
hood estimator for the scaling parameter α of the discrete power law, Eqn. (B.27),
valid when xmin is large. The ratio of zeta functions in Eqn. (B.27) becomes

ζ ′(α̂, xmin)

ζ(α̂, xmin)
= −

[
1

α̂− 1
+ ln(xmin −

1

2
)

] [
1 +O(x2

min)
]
, (B.31)
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and, neglecting quantities of order x−2
min by comparison with quantities of order

1, we have

α̂ ' 1 + n

[
n∑
i=1

ln
xi

xmin − 1
2

]−1

. (B.32)

which is in fact identical to the MLE for the continuous case except for the −1
2

in the denominator.

B.2.3 Log-Normal

Using the same procedure, we get the MLEs of mean

µ̂ =

∑n
i=1 lnxi
n

, (B.33)

and standart deviation

σ̂ =

√∑n
i=1(lnxi − µ̂)2

n
. (B.34)

By the way, calculating the MLEs for (continuous and discrete) exponential func-
tions are simple. However, following the same way in order to calculate the MLEs
of parameters of weibull and PL with cut-off, we get a transcendental equation.
For weibull distribution, we apply the well-known numerical rootfinding proce-
dure, Newton-Raphson method. For PL with cut-off, we use the matlab command
fminsearch. Although fminsearch command is helpful, it is sensitive to the ini-
tial conditions. In my thesis, I choose αinitial = 2.5 and λinitial = 0.0001. For
matlab codes, see Appendix (C.1).
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APPENDIX C

MATLAB GUIDE

C.1 MLE+KS Method for Power Law Distribution with Cut-off

Since an implementation of the method for power law distributions with cut-off
is the most challenging one, we find sufficient to put only it into Appendix. For
all the other codes, please contact by simge.guneri@metu.edu.tr.

————————————————————————————————————
————————————————————————————————————
% This function sorts any vector u in ascending order, counts how many times each element

% is repeated and then removes its duplicated elements.

% Consider the data vector u=[ 3 2 1 1 2 2 ]’. Outputs will be x=[1 2 3]’ and y=[2 3 1]’.

% We have implemented this function twice to only the first coloumn of the data mentioned

% in Appendix A. After that operation, ith gives us the number of the mathematicians

% with x(i) collaborators.

function [x,y] = order(u)

n=length(u);

u=sort(u);

k=1;

i=1;

while(i<=n)

s=1;

for j=i+1:n

if(u(i)==u(j))

s=s+1;

end

end

y(k)=s;

k=k+1;

i=i+s;

end

x=unique(u);

end

———————————————————————————————————
% This function computes the upper complete gamma function for a negative α. This will be
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% useful when applying to MLE+KS method for power law distribution with cut-off.

function [u] = ugamma3(z,a)

v=0;

while(v<abs(a))

v=v+1;

end

b=gamma(a+v).*gammainc(z,a+v,’upper’);

g(1)=b;

for k=1:v

g(k+1)=(g(k)-exp(-z).*z.ˆ(a+v-k))./(a+v-k);

end

u=g(v+1);

end

———————————————————————————————————
% This function finds best estimations of the parameters α, λ and xmin using MLE+KS

% method.

% Before starting, we need initial predictions for the parameters α and λ. In this thesis,

% we get lb = 0.0001, an initial estimation for λ, and ub = 2.5, an initial value for α.

% plcut(x,y,’p’) plots the empirical and theoretical distribution functions.

% plcut(x,y,xmin) gives the estimations of the parameters for xmin you entered.

function [alphaa,lambdaa,xmin,a,L] = plcut(x,y,lb,ub,varargin)

n=length(x);

a=1;

lambda=zeros(n-1,1);

alpha=zeros(n-1,1);

if nargin==4 || ischar(varargin{1})
fprintf(’\n i lambda alpha exitflag loglikelihood\n’);

end

for i=1:round(2.*n./3)

xminimum(i)=x(i);

sum1=sum(y(i:n));

sum2=sum(x(i:n).*y(i:n));

sum3=sum(log(x(i:n)).*y(i:n));

f=@(u)-((1-u(2)).*sum1.*log(u(1))-sum1.*...

log(ugamma3(u(1).*xminimum(i),1-u(2)))-u(2).*sum3-u(1).*sum2);

[u,fval,exitflag]=fminsearch(f,[lb,ub]);

lambda(i)=u(1);

alpha(i)=u(2);

if nargin==4 || ischar(varargin{1})
fprintf(’%3d %15.4e %20.4f %13d %17.4f\n\n’,i,lambda(i),alpha(i),exitflag,-fval);

end

if( alpha(i)>1 && alpha(i)<5 )

for j=i:n

sum4=sum((y(j:n)./sum1));

d(j)=abs(ugamma3(lambda(i).*x(j),1-alpha(i))./ugamma3(lambda(i).*...

xminimum(i),1-alpha(i))- sum4);

end
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d1(i)=max(d);

if nargin==4 || ischar(varargin{1})
fprintf(’distance=%13.4f\n\n’,d1(i));

end

if nargin==4 || ischar(varargin{1})
if (d1(i)<=a)

L=-fval;

a=d1(i);

xmin=xminimum(i);

alphaa=alpha(i);

lambdaa=lambda(i);

k=i;

end

end

if nargin>=5 && ∼ischar(varargin{1}) && xminimum(i)==varargin{1}
L=-fval;

a=d1(i);

xmin=xminimum(i);

alphaa=alpha(i);

lambdaa=lambda(i);

k=i;

break;

end

end

end

for m=1:length(varargin)

if nargin>=5 && ischar(varargin {m})
z=xmin;

while (z¡x(n))

loglog(z,ugamma3(lambdaa.*z,1-alphaa)./ugamma3(lambdaa.*xmin,1-alphaa),’o’)

hold on

z=z+0.5;

end

sum1=sum(y(k:n));

for u=k:n

loglog(x(u),sum((y(u:n)./sum1)),’mo’)

end

hold off

end

end

end

————————————————————————————————————
————————————————————————————————————
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C.2 Algorithm for Plotting Figure 3.1

————————————————————————————————————
————————————————————————————————————
% By means of this codes we draw 100 different samples. Each has 1150 observations. 150 of

%the observations are uniformly distributed and their values are less than xmin75. Remaining

% observations are power law distributed with α = 2.4 and xmin = 75.

% The function randht is taken from http://tuvalu.santafe.edu/ aaronc/powerlaws/.

% Space being limited, we did not put the function plfitc here. Please send an email to

%simge.guneri@metu.edu.tr or use the similar code in http://tuvalu.santafe.edu/ aaronc/powerlaws/.

i=1;

xmin=1;

x=2;

while (i<1000 && i<max(x))

x = randht(1000,’xmin’,75,’powerlaw’,2.4);

x=[x; 10*rand(150,1)]’;

[u,y]=order(x);

a=plfitc(u,y,xmin);

plot(xmin,a);

hold on

i=i+1;

xmin=xmin+1;

end

————————————————————————————————————
————————————————————————————————————

C.3 Algorithm for Network Visualization

We have drawn Figures 2.1, 2.2, 2.3, 2.4, 2.6, 2.7, 2.8 and 4.1 using this code.

————————————————————————————————————
————————————————————————————————————
z=accumarray(A,1); % This finds an adjacency matrix of A which is an nx2 matrix where

% elements of each row represents two vertices which are one-path connected.

% Other part of the code is taken from http://stackoverflow.com/questions/5804468/drawing-

% a-network-of-nodes-in-circular-formation-with-links-between-nodes

theta=linspace(0,2*pi,313);

theta=theta(1:end-1);

[a,b]=pol2cart(theta,1);

[ind1,ind2]=ind2sub(size(z),find(z(:)));

h=figure(1); clf(h);

plot(a,b,’.k’,’markersize’,5);

hold on

arrayfun(@(p,q)line([a(p),a(q)],[b(p),b(q)]),ind1,ind2);
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axis equal off

————————————————————————————————————
————————————————————————————————————

C.4 Algorithm for Calculating First Three Mean Degrees and Num-
ber of Triples of Connected Vertices in a Network

————————————————————————————————————
————————————————————————————————————
function [ ] = neighbour(A)

% A is an nx2 matrix where elements of each row represent two vertices which are one-path

% connected.

[u,y]=order(A(:,1));

m=length(A(:,1));

n=length(y);

i=1; s=1;

while(i<=m && s<=n)

z=[ ]; z1=[ ];

for k=i:i+y(s)-1

[r]=find(A(:,1)==A(k,2));

z=[z; A(r,2)];

end

q=sort(z);

q=unique(q);

for k=i:i+y(s)-1

for j=1:length(q)

if(q(j)==A(k,2) || q(j)==A(i,1))

q(j)=0;

end

end

end

for k=1:length(q)

if (q(k)∼=0)

[r]=find(A(:,1)==q(k));

z1=[z1;A(r,2)];

end

end

for k=i:i+y(s)-1

for j=1:length(q)

for t=1:length(z1)

if(z1(t)==A(k,2) || z1(t)==A(i,1) || z1(t)==q(j))

z1(t)=0;

end

end

end
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end

z1=sort(z1);

z1=unique(z1);

b1(s)=sum(z1>0);

b(s)=sum(q>0);

i=i+y(s);

s=s+1;

end

[u2,y2]=order(y);

mean=sum(u2(1:length(u2)).*y2(1:length(u2))./sum(y2));

[u1,y1]=order(b);

mean1=sum(u1(1:length(u1)).*y1(1:length(u1))./sum(y1));

[u3,y3]=order(b1);

mean2=sum(u3(1:length(u3)).*y3(1:length(u3))./sum(y3));

fprintf(’\n mean number of first neighbours of a vertex=%4.8f\n’,mean);

fprintf(’\n mean number of second neighbours of a vertex=%4.8f\n’,mean1);

fprintf(’\n mean number of third neighbours of a vertex=%4.8f \n’,mean2);

triple=0;

for i=1:length(y2)

if (u2(i) =1)

triple=triple+y2(i).*(factorial(u2(i))./(2.*factorial(u2(i)-2)));

end

end

fprintf(’\n number of triples of connected vertices=%4.8f\n’,triple);

end

————————————————————————————————————
————————————————————————————————————

C.5 Algorithm for Calculating The Number of Triangles in a Network

————————————————————————————————————
————————————————————————————————————
function [b] = tri(a)

% This function converts an nxm matrix into an nx3 matrix. The input is an nxm matrix

% where elements of each row represent the one-path connected vertices.

% When we put the output matrix b into an excel page and remove its duplicated rows in

% excel, the number of the rows of new matrix gives the number of the triangles.

[n,m]=size(a);

y=[ ];

for j=1:m-2

for k=j+1:m-1

x=[a(:,j) a(:,k) a(:,k+1)];

for s=1:m-k-1

x=[x;a(:,j) a(:,k) a(:,k+1+s)];

end
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y=[y;x];

end

end

b=sort(y’);

b=b’;

end

————————————————————————————————————
————————————————————————————————————

C.6 Algorithm for Calculating Component Sizes in a Network

This function is also confirmed by collaboration dataset in http://snap.stanford
.edu/data/.
————————————————————————————————————
————————————————————————————————————
function [d,z1,B] = component(A)

% d is a vector in which each element is a component size. z1 is a vector representing the

% vertices in a giant component. B is an nx2 matrix representing the connections between

% the vertices in a giant component.

[u,h]=order(A(:,1));

m=length(A(:,1));

n=length(h);

i=1; s=1; u=[ ]; z=[ ]; x=0; B=[ ];

k1=23; k2=5;

while(i<=m && s<=n)

u=[u;z];

[r]=find(u==A(i,1));

if isempty(r)

x=x+1;

z=[ ];

for k=i:i+h(s)-1

[r]=find(A(:,1)==A(i,2));

z=[z; A(r,2)];

end

w=z;

for v=1:k1

q=order(w);

w=[ ];

q=order(z);

for k=1:length(q)

[r]=find(A(:,1)==q(k));

w=[w;A(r,2)];

z=[z;A(r,2)];

end

end
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z=order(z);

fprintf(’\n%2d. component size is %4d and vertices in the component:\n’,x,length(z));

if (length(z)>1000)

z1=z;

j=1;

k1=k2;

while (j<=length(z))

[r]=find(A(:,1)==z(j));

B=[B; A(r,:)];

j=j+1;

end

end

d(x)=length(z);

end

i=i+h(s);

s=s+1;

end

d=d’;

end

————————————————————————————————————
————————————————————————————————————

C.7 Algorithm for Calculating The Mean Shortest Distance and Di-
ameter in a Network

————————————————————————————————————
————————————————————————————————————
function [z] =sm(x,y)
n=length(x);
m=length(y);
if (m>n)

for i=1:n
z(i)=x(i)+y(i);

end
for i=n+1:m

z(i)=y(i);
end

else
for i=1:m

z(i)=x(i)+y(i);
end
for i=m+1:n

z(i)=x(i);
end

end
end
————————————————————————————————————
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% This function computes the mean distance and the diameter in a giant component. The
% input A is an nx2 matrix representing the connections between the vertices in the giant
% component.
function [d,d1] = dist(A)
[u,y]=order(A(:,1));
m=length(A(:,1));
n=length(y);
i=1; s=1; d1=[ ];
d(1)=y(1);
while(i<=m && s<=n)

if s>2
d=sm(d,d1);

end
if s>1

d1(1)=y(s);
x=u(1):u(s-1);
for w=1:length(x)

[r]=find(A(i:i+y(s)-1,2)==x(w));
d1(1)=d1(1)-length(r);

end
end
z=[ ]; z1=[ ];
for k=i:i+y(s)-1

[r]=find(A(:,1)==A(k,2));
z=[z; A(r,2)];

end
q=sort(z);
q=unique(q);

for k=i:i+y(s)-1
for j=1:length(q)

if(q(j)==A(k,2) || q(j)==A(i,1))
q(j)=0;

end
end

end
if i==1

d(2)=sum(q>0);
else

d1(2)=sum(q>0);
end
if i∼=1

for w=1:length(x)
[r]=find(q==x(w));
d1(2)=d1(2)-length(r);

end
end
q1=q;
for l=1:16

for k=1:length(q)
if (q(k)∼=0)

[r]=find(A(:,1)==q(k));
z1=[z1;A(r,2)];

end
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end
for k=i:i+y(s)-1

for j=1:length(q1)
for t=1:length(z1)

if(z1(t)==A(k,2) || z1(t)==A(i,1) || z1(t)==q1(j))
z1(t)=0;

end
end

end
end
z1=sort(z1);
z1=unique(z1);
q=z1;
q1=[q1;z1];
q1=order(q1);
if i==1

d(l+2)=sum(q>0);
else

d1(l+2)=sum(q>0);
end
if i∼=1

for w=1:length(x)
[r]=find(z1==x(w));
d1(l+2)=d1(l+2)-length(r);

end
end

end
d
d1
i=i+y(s);
s=s+1;
end
x=1:sum(d>0);
mean=0;
for i=1:sum(d>0)

mean=mean+d(i).*x(i)./sum(d);
end
fprintf(’mean shortest distance=%2.4f\n’,mean);
fprintf(’diameter=%2d \n’,sum(d>0));
end

————————————————————————————————————
————————————————————————————————————
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