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ABSTRACT

STRUCTURAL, ELECTRONIC, AND MAGNETIC PROPERTIES OF
SMMCON (M +N ≤ 3) MICROCLUSTERS:

DENSITY FUNCTIONAL THEORY CALCULATIONS

Kara, Nazan

M.S., Department of Physics

Supervisor : Prof. Dr. Şakir Erkoç

Co-Supervisor : Assoc. Prof. Dr. Hüseyin Oymak

September 2013, 81 pages

Performing density functional theory calculations with many possible exchange correlational

energy functionals, the most stable structures, symmetries, electronic, and magnetic properties

of SmMCoN (M + N ≤ 3) microclusters have been studied in a systematic and statistical

manner. Starting from the atoms of cobalt and samarium, dimers and trimers have been

investigated in their ground states. The optimum geometries, binding energies, vibrational

properties, possible dissociation channels, local magnetic moments and their enhancements

with the growing size of the microclusters under study have been obtained. The calculations

have been performed by using 13 DFT methods in the scope of present study.

Keywords: Density Functional Theory (DFT), Transition Metal Clusters, Rare Earth Ele-

ments, Cobalt, Samarium
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ÖZ

SMMCON (M +N ≤ 3) MİKROTOPAKLARININ YAPISAL,
ELEKTRONİK VE MANYETİK ÖZELLİKLERİ:

YOĞUNLUK FONKSİYONELİ TEORİSİ HESAPLARI

Kara, Nazan

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Şakir Erkoç

Ortak Tez Yöneticisi : Doç. Dr. Hüseyin Oymak

Eylül 2013 , 81 sayfa

SmMCoN (M +N ≤ 3) mikrotopaklarının en kararlı yapısı, simetrisi, elektronik ve manye-

tik özellikleri muhtemel birçok yerdeğiştirme-korelasyon enerji fonksiyonelleri ile yoğunluk

fonksiyonel teorisi (YFT) hesapları kullanılarak sistematik ve istatistiksel olarak çalışılmıştır.

Kobalt ve Samaryum atomlarından başlayarak, ikili ve üçlü yapıları sıfır enerji seviyesinde

çalışılmıştır. Çalışılan bu topakların optimum geometrileri, bağ enerjileri, titreşim özellikleri,

mümkün ayrışma kanalları, yerel manyetik momentleri ve bu momentlerin topağın yapısı ile

ilgili değişimleri elde edilmiştir. Bu çalışma kapsamında, hesaplar 13 YFT metodu kullanıla-

rak gerçekleştirilmiştir.

Anahtar Kelimeler: Yoğunluk Fonksiyoneli Teoremi (YFT), Geçiş Metali Topakları, Nadir

Toprak Elementleri, Kobalt, Samaryum

vi



To my family...

vii



ACKNOWLEDGMENTS

In this thesis my special thanks go to Prof. Şakir Erkoç and Assoc. Prof. Hüseyin Oymak,
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CHAPTER 1

INTRODUCTION

In industry and technology, the applications of transition metal (TM)–rare earth (RE) alloys,

offer a significant amount of research opportunities, since they have remarkably high magne-

tocrystalline anisotropy which causes a large coercivity [1]. For the scope of the present study

samarium (Sm)–cobalt (Co) alloys have been chosen. In order to try, for the first time to the

best of our knowledge, to give an insight into the building blocks of the Sm-Co system, we

investigate its smallest microclusters, namely Sm, Co, Sm2, Co2, SmCo, Sm3, Co3, Sm2Co,

and SmCo2.

1.1 Sm-Co Systems

In the literature, some binary alloys of Sm and Co are available in different phases. These

are SmCo2, SmCo3, SmCo5, Sm2Co7, Sm2Co17, Sm3Co, Sm5Co2, Sm5Co19, and Sm9Co4

which have been investigated by many researchers from several fields [1, 2]. Especially,

SmCo5 and Sm2Co17 are of great importance, since they are known to belong to the strongest

permanent magnet class. In the room temperature, their magnetocrystalline anisotropy con-

stant is of the order of 107 J/m3 [3–6]. The Curie temperature of these alloys are very high

that give them an advantage over other magnets in the same category for high temperature

applications. In addition, coercivities of these magnets are very high, which means that they

cannot be demagnetized easily [7].

Because of these high magnetocrystalline anisotropy, coercivity, and high Curie temperature,

Sm-Co alloys have an important place in many applications; examples are high-performance

permanent magnets [4,8], high-density data storage media [5,8], high performance thin films
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[5, 7], and high-resolution nuclear magnetic resonance spectroscopy [9].

The scope of the present study comprises the ground state investigations of Cobalt and Samar-

ium atoms, their dimers (Co2, Sm2, and SmCo), and trimers (Co3, Sm3, SmCo2, and Sm2Co).

These investigations will also contain some spectroscopic and electronic properties of the

atoms and their compounds.

1.2 Transition Metals

Transition metals have unfilled d-subshells or easily give rise in ions with incomplete d-

subshells. They have relatively small atomic radii, so that they have strong atomic bonds.

On this account, TMs have high densities and high melting and boiling points. Since the

electrons in d-subshells are loosely bounded, they exhibit high electrical and heat conduc-

tivity and malleability. Another valuable property of TMs is that they show a wide range

of oxidation state because their valence electrons are usually distributed more than one sub-

shell. The compounds of TMs are mostly paramagnetic because of their incompletely filled

d-subshells [10–12].

Another important point about TMs is their orbital energies. It is known that the energy of

the 4s orbital is lower than that of the 3d orbitals. Thus, it might be expected that when

forming a compound TM will lose its electron from its more energetic 3d-subshell. But this

is not true because electrons are first lost from its 4s-subshell [12]. Therefore, the electron

configuration of Co2+ ion is [Ar] 3d7 instead of [Ar] 3d54s2. The reason of this situation can

be explained by the stability of the orbitals that 3d-subshells are more stable than 4s-subshells

in TM ions [10].

1.3 Rare Earth Elements (Lanthanides)

Rare earth elements are the series of elements which have atomic numbers 57 through 71. Ex-

cept lutetium (a d-block element with atomic number 71), RE elements are f-block elements,

in other words, their 4f-orbitals are gradually filled. The history of these elements do not

date back so long, until their analysis with the help of x-ray spectra in 1907, they could not

be grouped or placed in the periodic table correctly [13]. Rare earth elements also known as

2



inner transition metals, although they differ from TMs in various features. For example, REs

are more reactive than TMs; they do not form multiple bonds like TMs, etc. [10, 11, 13, 14].

Compounds of the RE elements are generally ionic and most of them are strongly paramag-

netic. They have high melting and boiling points in accordance with TMs. They are relatively

soft metals and their hardness increases with increasing atomic number. The coordination

number of REs are high, generally 8 or 9 [13].

Rare earth elements are located in 5d-block of the periodic table and their electron configu-

ration is generally written as [Xe]6s24fn5d0. Lanthanium, cerium, gadolinium, and lutetium

have exceptional electron configurations of the form [Xe]6s24fn5d1. The energy spacing of

the 5d- and 4f-orbitals are very close, so that for some configurations electron enters into

the 5d-orbital instead of staying at the expected 4f-orbital. For instance, gadolinium has

[Xe]6s24f75d1 because it gains extra stability from the half-filled subshell 5d. Another simi-

larity between REs and TMs is about forming the positive ions. Electrons are lost first from 6s

and 5d, instead from 4f. As a result, all the 3+ ions have the configuration [Xe]4fn [10,11,13].

Rare earths have many scientific and industrial uses. For instance, their compounds are uti-

lized as catalysts in the production of petroleum and some synthetic products. They are es-

sential in lamps, lasers, magnets, phosphors, motion picture projectors, and x-ray intensifying

screens [13]. As a result, it is not surprising at all that there have been innumerably many re-

searches carried out nowadays trying to explore the chemical and physical properties of REs,

and their possible industrial applications. The present study is such a small example to this

end.
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CHAPTER 2

DENSITY FUNCTIONAL THEORY

Density functional theory (DFT) brought a fresh breath to physics and chemistry in 60s. Num-

ber of studies about the field increased rapidly at 80s and now reach to a huge number [15].

The new approach that brings DFT such popularity is its basis on electron density instead of

wave function. In other words, DFT provides an alternative computational method to examine

many body systems such as atoms, molecules or larger systems, for which it is impossible to

obtain exact solution of the Schrödinger equation.

2.1 Theoretical Background

Many information about any molecular system can be obtained from the solution of time-

independent non-relativistic wave function, ψ( ~x1, ..., ~xN ). To obtain the wave function, time-

independent Schrödinger equation has to be solved.

ĤΨe = EeΨe (2.1)

In computational physics, we focus on atoms, molecules, and solids, on their structural and

cohesive properties, and on how they interact with each other. For an M -nuclei and N -

electrons system the Hamiltonian is given by,

Ĥ = −1

2

N∑
i=1

(
∇2

i

)
− 1

MA

M∑
A=1

(
∇2

A

)
−

N∑
i=1

M∑
A=1

ZA

riA
+

M∑
A=1

M∑
A<B

ZAZB

RAB
+

N∑
i=1

N∑
i<j

1

rij
, (2.2)

where riA is the distance between electrons and the nuclei, RAB indicates distance between

each nuclei, and rij is distance between each electrons. The first term indicates total kinetic
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energy of electrons and the second term indicates kinetic energy of the nuclei. Next three are

the potential energy terms, based on the Coulombic interactions. First potential term due to

interaction among nuclei and electrons, second one due to nucleus–nucleus interaction and

the last one electron–electron interaction [16–18].

It is well known that the electrons are very tiny particles with respect to nuclei. As an ap-

proximation we can assume that the nuclei move much more slowly than electron. Now, only

related terms are the kinetic energy term of electrons with electron-electron and electron-

nuclei interaction of the potential terms. The effect of all nuclei can be written as an external

potential exerted on ith electron:

Vext(~r) = −
∑
i

Zi

|~r − ~ri|
. (2.3)

At least the Hamiltonian of the N-electron system reduces to;

Ĥ = −1

2

N∑
i=1

(
∇2

i

)
+

N∑
i=1

Vext(~ri) +
N∑
i=1

N∑
j>i

1

rij
. (2.4)

As the solution of Schrödinger equation for many particle system, we obtain a many body

wave functions;

Ψ = Ψ (r1, r2, ..., rN ) . (2.5)

It is not possible to solve Schrödinger equation exactly for many body systems because the

eigen function depends on 3N position coordinates. We need to use some approximation

methods to overcome the problem and attain the solution. One of the simplest examples of

these approaches is Hartree Fock method.

2.2 Hartree–Fock Method

The assumption is that the wavefunctions of the electrons are written as a product of N or-

thonormal spin orbitals ψi(~xi), as if they do not interact with each other. Each spin orbital

is assumed to be a combination of spatial orbital φi(~r) and a spin function σ(s). Since we

deal with fermions, there are only two types of spin function, spin up α(s) or spin down β(s).
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The Hartree product which is the simplest application to a many-body wave function can be

written as,

Ψ = ψ1 (~r1)ψ2 (~r2) · · ·ψN (~rN ) . (2.6)

The Hartree product does not satisfy some properties of a fermionic wave function, i.e. the

antisymetry principle. If the product written as Slater determinant, single electron wave

functions can be stated to obtain N-electron wavefunction satisfying the antisymetry prin-

ciple [19–21]. For N electrons, the Slater determinant is

ψ(~x1, ~x2, . . . , ~xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~x1) ψ2(~x1) · · · ψN (~x1)

ψ1(~x2) ψ2(~x2) · · · ψN (~x2)
...

...
...

ψ1(~xN ) ψ2(~xN ) · · · ψN (~xN )

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.7)

Another advantage of the Slater determinant is satisfying the Pauli exclusion principle. If the

single electron wave functions of two or more electrons are same, it vanishes. This result is in

accordance with the claim of exclusion principle that the two electrons can not be located to

same orbital with the same spin. As a solution of the Schrödinger equation, Slater determinant

includes exchange term however Hartree Fock method does not describe electron interaction,

so correlation term. It is well known that electrons are interacting, so HF method does not

fulfill the solution of the Schrödinger equation, on the other hand DFT calculations are similar

to the HF calculations in some ways [15].

2.3 Electron Density

As stated above, exact solution of the Schrödinger equation is hard to achieve. The electron

density is an important quantity for a given state, since it provides an alternative solution

method instead of wave function. The electron density for an electronic system, can be defined

as the number of electrons in the infinitesimal volume element d~r and denoted by ρ(~r). In

terms of the wave function, the electron density is,

ρ(~r) = N

∫
. . .

∫
|ψ(~x1, ~x2, . . . , ~xN )|2ds1d~x2 . . . d~xN . (2.8)

By the definition, integration over all space of electron density gives the total number of

electrons. ∫
ρ(~r)d~r = N. (2.9)
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The many body wave functions has 3N spatial coordinates, whereas by using electron density

it can be decreased to only three variables. If all the energy terms can be written in terms of

electron density, there is no need to use wave funtions.

2.4 The Hohenberg–Kohn Theorem

The DFT lays the foundations especially by the theorem of the Hohenberg and Kohn published

in 1964 [22]. As mentioned before, to obtain the observables of any system, we need to solve

Schrödinger equation. For an N–electron system, the external potential Vext(~r) determines

the hamiltonian, given by Eqn. 2.4, by this means determine all the electronic properties of a

system with N electrons.

Hohenberg and Kohn brought a new approach that the external potential Vext(~r) could be

determined by the electron density. The first Hohenberg-Kohn theorem provides a simple

proof to show that the external potential Vext(~r) is uniquely determined by ρ(~r) [22]. Since

external potential fixes the Hamiltonian, the full many particle system can be expressed as a

functional of electron density ρ(~r) [17].

The total energy is expressed with respect to electron density,

E[ρ] = T [ρ] + Vne[ρ] + Vee[ρ] =

∫
ρ(r) v(r) dr + FHK [ρ], (2.10)

with Hohenberg–Kohn functional,

FHK [ρ] = T [ρ] + Vee[ρ], (2.11)

which includes T [ρ], the kinetic energy of the real system and Vee[ρ] is the potential energy

of the electron–electron interactions. The functional for the electron–electron interaction is

given as

Vee[ρ] = J [ρ] + nonclassical term, (2.12)

where J [ρ] is the well known classical Coulombic electrostatic interactions between the elec-

trons,

J [ρ] =
1

2

∫ ∫
ρ (r) ρ (r′)

|r− r′|
dr dr′, (2.13)

and the nonclassical term includes all self interaction correction effects, exchange and Coulomb

correlation. It is not surprising that FHK [ρ] is the major problem in DFT, which consists of

completely or partly unknown T [ρ] and Vee[ρ] functionals.
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The second theorem of the Hohenberg–Kohn is about to provide an electron density that

minimizing the total energy E[ρ]. It is well known that only ground state electron density

satisfies the ground state energy. This theorem specifies that to obtain ground state energy,

true ground state electron density has to be searched by variatonal principle,

E0 ≤ E[ρ̃] = T [ρ̃] + Vne[ρ̃] + Vee[ρ̃]. (2.14)

For any trial density ρ̃(~r), there are necessary boundary conditions which has to be satisfied,

such as

ρ̃(~r) ≥ 0, (2.15)

and ∫
ρ̃(~r)d~r1 = N. (2.16)

The proof of the second Hohenberg–Kohn theorem is obtained by using the variational prin-

ciple to form ground state wave function [23] and can be found in various sources about the

theorem.

2.5 The Kohn–Sham Method

After Hohenberg–Kohn theorem, another massive and the most powerful brick was put on the

wall by Kohn–Sham in 1965 [24]. The Kohn–Sham method suggests a way to obtain kinetic

energy in terms of electron density. We start with variational principle one more time, E[ρ]

and the ground state density need to satisfy the equation;

δ

(
E[ρ]− µ

[∫
ρ(~r)d~r −N

])
= 0, (2.17)

where µ is the Langrange multiplier related to obtain density for acquiring the correct number

of electrons N. µ associated with the chemical potential and following equation is obtained

by differentiation of functional,

µ =
δE[ρ]

δρ(~r)
= Vext(~r) +

δFHK [ρ(~r)]

δρ(~r)
. (2.18)

If the exact form of FHK [ρ(~r)] can be obtained, ground state electron density is also acquired

by Eqn. 2.17. The main point here is to determine FHK [ρ(~r)] which is equal to T [ρ(~r)], for
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non-interacting electrons, but T is also unknown. The kinetic energy term is written for an

N–electron non-interacting reference system as following

T =
N∑
i

ni 〈ψi| −
1

2
∇2

i |ψi〉 , (2.19)

where ψi are spin orbitals and ni are the corresponding occupation numbers. All physically

accepted densities of the non-interacting N-electron system can be expressed as

ρ(r) =

∞∑
i

ni
∑
s

|ψi(r, s)|2 (2.20)

The valuable part of this theorem is the simplification of these equations by assuming ni = 1

for N orbitals and ni = 0 for the remaining. The equations reduce to

Ts =

N∑
i

〈ψi| −
1

2
∇2

i |ψi〉 (2.21)

and

ρ(r) =
N∑
i

∑
s

|ψi(r, s)|2 (2.22)

The following Hamiltonian of N–noninteracting electrons is obtained

ĤS = −1

2

N∑
i=1

∇2
i +

N∑
i=1

VS(~ri) (2.23)

without electron–electron repulsion terms and with exact ground state density ρ.

The exact determinantial wave function of the system is

Ψs =
1√
N !
|ψ1 ψ2 . . . ψN | , (2.24)

where ψi reflects the N lowest eigenstates of the one electron Hamiltonian hs;

hs ψi =

[
−1

2
∇2 + Vs(ri)

]
ψi = εi ψi. (2.25)

Now, the kinetic energy functional turns to

Ts[ρ] =

N∑
i

〈Ψs| −
1

2
∇2

i |Ψs〉 . (2.26)

For isolating kinetic energy term, we write F [ρ] again as,

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ] (2.27)
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where

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ]. (2.28)

The Exc[ρ] is known as exchange-correlation energy and in definition it originates by the dif-

ference between T [ρ] and Ts[ρ] and the non-classical part of the potential energy of electron-

electron interaction.

Now, let us turn to Euler equation again, that becomes

µ = veff(r) +
δTs[ρ]

δρ(r)
, (2.29)

where the effective potential is,

veff(r) = v(r) +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
= v(r) +

∫
ρ(r′)

|r− r′|
dr′ + vxc(r), (2.30)

where the exchange–correlation potential define as,

vxc(r) =
δExc[ρ]

δρ(r)
. (2.31)

We still try to obtain the explicit form of Ts[ρ]. We can rewrite Eqn. 2.25 by replacing Vs with

Veff given in Eqn. 2.30;

[−1

2
∇2 + veff(r)]ψi,= εi ψi (2.32)

and the following expression can be obtained for electron density given by Eqn.2.22.

The procedure begins with a trial density, than Veff is obtained by Eqn.2.30, and then one

finds a new electron density by using Eqn.2.22 and Eqn.2.32. The total energy can be com-

puted as,

E =

N∑
i

εi −
1

2

∫ ∫
ρ(r) ρ(r′)

|r− r′|
dr dr′ + Exc[ρ]−

∫
vxc(r) ρ(r) dr, (2.33)

where
N∑
i

εi =
N∑
i

〈ψi| −
1

2
∇2 + veff(r) |ψi〉 = Ts[ρ] +

∫
veff(r) ρ(r) dr. (2.34)

2.6 Exchange-Correlation Functionals

There are dozens of functionals developed and used, particularly for calculations with isolated

molecules. Some of the widely used exchange functionals are Becke’s 1988 functional B [25],
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Perdew and Wang’s 1991 functional PW91 [26], and Perdew, Burke and Ernzerhof’s 1996

functional PBE [27] which are also the components of the functionals that used in previous

study. Similarly, correlation functional of Lee, Yang, and Parr LYP [28], Perdew and Wang’s

gradient-corrected correlation functional PW91 [26,27], and Perdew, Burke, and Ernzerhof’s

correlation function PBE [27] constitude the functionals of used methods. The combinations

of these functionals and similar ones are used to form methods for DFT calculations.

It is necessary to specify what functional was used in any particular calculation because differ-

ent functionals will give somewhat different results for any particular configuration of atoms.

In the scope of previous study 13 DFT methods have been used and only one of them, HFB

is an only exchange functional, the remaining 12 are hybrid functionals. HFB is named by

Hartre–Fock–Becke, important for the study since it will reflect the contribution of the corre-

lational effects by distinction from other methods.

Hybrid Functionals

The hybrid functionals includes both exchange–correlation affect, with the exact exchange

from Hartree-Fock theory and changing proportion of exchange and correlation effects from

other sources. The explanations about these methods can be listed as follows.

• B1LYP: It is one parameter hybrid density functional that was designed by Becke in

1996 [29]. The form of the functional is

EXC = EDFT
XC + a0(E

HF
X − EDFT

X ), (2.35)

where a0 takes a value in the range of 0.16-0.28 and changes according to the chosen

correlation functional [30].

• B3P86: An example of hybrid functional with three parameters. The following equation

was developed;

EXC = ELSDA
XC + a0(E

HF
X − ELSDA

X ) + ax∆EB88
X + ac∆E

P86
C , (2.36)

where a0, ax, and ac are the parameters were determined by fitting to the G1 database

which is a set of thermochemical data and obtained as 0.20, 0.72, and 0.81 a.u. respec-

tively [29, 31].
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• B3LYP: It is also a three parameters hybrid functional which uses Eqn.2.36 with the

LYP correlation functional in stead of the P86 functional [25, 28].

• B3PW91: This method also uses Eqn.2.36 with the PW91 correlation functional [32].

The following three methods are the revisions of Becke’s 1997 functional τ dependent

gradient-corrected correlation functional, defined as part of this one parameter hybrid

functional [33].

• B98: The revision of Becke’s B97 functional in 1998 [34].

• B971: The revision of B97 by Handy, Tozer, and co-workers in 1998 [35].

• B972: Another modification of B97 by Wilson, Bradley, and Tozer in 2001 [36].

• PBE1PBE: The PBE functional is a modification of PW91 correlation functional, which

can satisfy only significantly energetic conditions, unlike PW91 which is for all exact

conditions [30]. The one parameter combination of functionals form this method and

the parameter is not empirical [27]. PBE1PBE method gives appropriate results for

electronic, magnetic, and vibrational properties of molecules in comparison to other

functionals with extensive parametrization [37].

• mPW1PW91: It includes the modification of PW exchange functional by Adamo and

Barone [38]. Similar to PBE1PBE, it also gives satisfactory results by combining one

parameter approach.

• O3LYP: Similar to B3LYP, O3LYP also a three-parameter functional and the parame-

ters were defined by Cohen and Handy [39].

Half and half functionals use a combination that includes equal ratio of DFT and exact

exchange energies.

• BHandH: The related equation of the functional is,

0.5EHF
X + 0.5ELSDA

X + ELY P
C . (2.37)

• BHandHLYP: Similarly, the equation of the funtional is as follows,

0.5EHF
X + 0.5ELSDA

X + 0.5∆EBecke88
X + ELY P

C . (2.38)
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• HFB: As mentioned before, the method named from Hartre–Fock–Becke and does not

include correlational functional. Namely, it is Becke’s 1988 functional that also con-

tains the Slater exchange with the gradient of the density [25]. It was chosen to deter-

mine the affect of correlation in comparison to other methods.
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CHAPTER 3

RESULTS AND DISCUSSION

The calculation part of the present study consists of three main sets. The first of these sets

includes calculations of minimum energy values with corresponding multiplicity values of

cobalt and samarium atoms and their ions. Out of curiosity, we also wondered if the DFT

methods we used are successful in spotting the correct multiplicity values for Co and Sm

elements and their cations and anions. To this end, we have carried out some further atomic

calculations for Co1+, Co2+, Co3+, Co1−, Sm1+, Sm2+, Sm3+, and Sm1−. The second set

includes calculations of SmCo, Sm2, and Co2 dimers in the same way and single-point (sp)

self-consistent field calculations (SCF) were performed. The third set includes Co3, Sm3,

SmCo2, and Sm2Co trimers calculations. All parts have been carried out by 13 DFT methods

to control their usefulness and convenience. In the scope of this study 38.000 calculations

have been achieved.

At the begining, it will be essential to point out that the present study is based on a pre-study

that has been covered the calculations about samarium (Sm) and cobalt (Co) elements and

SmCo by using 21 DFT methods [5]. The idea of the previous study was the determination

of the well-behaved and useful methods; which give appropriate results for Co and Sm atoms

and SmCo dimer, so that they might also work properly for the higher order alloys of these

atoms. As a conclusion, it was claimed that the only exchange functionals and the standalone

functionals cannot fulfill the sufficient performance although hybrid functionals usually show

great success [5]. According to this conclusion, 13 hybrid functionals have been chosen and

calculations were performed by them in the scope of present study. The common purpose of

both studies is forming preknowledge for investigation of higher order Sm–Co alloys.

In this chapter of the study, calculated spectroscopic constants (binding energy De, equilib-
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rium interatomic separation re, and fundamental frequency we) of the dimers and trimers,

the minimum energy configurations of the trimers (bond lengths and bond angle, as well as

their fundamental frequencies wn) are reported. For all the microclusters considered, the

possible dissociation channels and the corresponding dissociation energies, the calculated

HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital),

and HOMO–LUMO gap energies are presented. The calculated dipole moments and excess

charges on the atoms of the trimers are also given.

The structure of higher order clusters of transition metals are generally investigated experi-

mentally by photoelectron spectroscopy or chemical probe experiments [40,41]. Due to these

familiar methodologies it is possible to find information in the literature about higher order

clusters, unfortunately this is not the case for smaller ones. This is why small clusters of

transition metals still have not been well identified. At this point of view, it is clear that the

theoretical studies come into prominence.

The present work exhibits the results of density functional theory calculations within the

effective core potential (ECP) level, for small Sm-Co clusters up to trimers. The DFT calcu-

lations were carried out by using the GAUSSIAN 03 package [42]. For this study, the basis

Cep-121G has been prefered and used for all calculations. Alternatively, UGBS and SDD

would be used as basis, however much more works and effort will be needed for SDD, and

UGBS has not been attempted.

3.1 Co and Sm Atoms

3.1.1 Calculations of Co Atoms

Co atom has 27 electrons and the electron configuration of the Co atom is [Ar]3d74s2. There

are three unpaired electrons in the 3d orbital, so its expected multiplicity is four (by the for-

mula 2S+1). For the sake of thoroughness we searched self consistent energies for all possible

values of the multiplicity, from 2 to 18. These results are demonstrated in the Table 3.1. The

first step is to control the methods which give the expected multiplicity value, can be con-

trolled by corresponding total energy if it is minimum or not. Only nine of the methods give

multiplicity value four for the minimum total energy. These methods are B1LYP, B3LYP,

B3P86, B971, B98, BHandHLYP, HFB, O3LYP, and PBE1PBE. For other four methods,
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the minimum energy values noted for m = 2. These are B3PW91, B972, BHandH, and

MPW1PW91.

For values of m between 6 and 18, energies calculated using all methods increase monoton-

ically with m. The difference between E10 and E12 is remarkably greater than the others,

because there are nine electrons in the outer shells of the Co atom, except than the nearest

noble gas (Ar) configuration. To obtain E12, the electron from close shell configuration has

to be excited that needs much more energy than the other outer-shell electrons.

At the end of the discussion about Co atom, we should claim that the functionals, B3PW91,

B972, BHandH, and MPW1PW91 are the controversial functionals, and the remaining nine

functionals (with minimum E4 value) can be marked as the suitable functionals. The evalua-

tion of the results continues by ions of Co atom. The expected electron configurations and the

corresponding multiplicity values for Co are as the following: Co1+: [Ar] 3d7 4s1, m = 5;

Co2+: [Ar] 3d7, m = 4; Co3+: [Ar] 3d6, m = 5; and Co1−: [Ar] 3d8 4s1, m = 3. Ta-

bles 3.2–3.5 tabulate the total energies for the all possible multiplicities, of course, in accord

with the number of electrons used by GAUSSION03.

As is seen from Table 3.2, only B3PW91, BHandH, BHandHLYP, HFB, and MPW1PW91

have ended up with the correct multiplicity value m = 5 for Co1+. All the others have

spotted the m = 3 energies as their minima, which is logically unexplainable. Fortunately,

the energy differences ∆E5−3 between E5 and E3 values for the cases in which m = 5 is

not spotted as the minimum are always so small, at most 0.026 Hartrees for B3P86. What we

want to say is that the incorrect results are not as bad as they look, for GAUSSIAN package

have originally been designated for the ground-states of elements and/or molecules, not for

excited states.

Now comes the interesting, and equally surprising part of the story. If we look at the corre-

sponding situations for Co2+, Co3+, Co1− from Tables 3.3, 3.4, and 3.5, respectively, all the

13 DFT methods have flawlessly resulted in the correct multiplicity values for the minimum

energies: m = 4 for Co2+ and m = 5 for Co3+. A quick glance at Tables 3.3–3.5 reveals that

there exists always a definite pattern in energy values from the smallest to highest multiplicity

values: they have only one minimum and that minimum is the correct one; put in another

way, there is no fluctuation in energy values as we have witnessed previously in Co and Co1+

tables.
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After the calculation of the anions and cations of Co atom, what naturally comes is the per-

formances of the DFT methods in the prediction of the first, second, and third ionization

energies and the (first) electron affinity of Co atom. In Table 3.6 are shown the calcu-

lated first ionization energies of Co for the process Co → Co1+ + e−. The experimen-

tal value is 7.881 eV [43]. The calculations were performed following the recipe IE1 =

E5(Co1+)−E5(Co). (Similar calculations were performed for the other Co ions and for Sm

ions.) First of all, the errors produced by the methods are not so large, usually acceptably

reasonable. The biggest errors for IE1 are seen for B3P86 and then for BHandH methods.

The smallest ones are for B972, PBE1PBE, and B1LYP, which are all nearly zero. B3LYP

needs more attention at this point because researchers usually believe that it is the best one

among the other DFT methods. As we see from Table 3.6, its first ionization energy predic-

tion is only about 3 percent; so that B3LYP deserves its fame. (In Tables 3.7 and 3.8 we see

that the predictions of B3LYP are nearly zero and around 1 percent for the second and third

ionization energies; solidifying further its glory.) We can speak well also of PBE1PBE and

B1LYP methods. The former is also distinguished among the researchers for its prominent

performances. As we notice from Tables 3.7—3.9, PBE1PBE have produced better results

than expected for all kinds of ions of Co we considered in this work: the errors for all ion-

ization energies and the electron affinity of Co are all nearly zero. If its results happen to

be in this accuracy also for Sm, we would choose PBE1PBE method as the best and most

appropriate method in studying all Sm-Co type clusters. As we will see shortly, this is not the

case, unfortunately.

In Table 3.7 we show the results for the second ionization energies, for which the experimental

value is 17.080 eV [43]. Here all the methods lead to very small errors; among them B1LYP,

B3LYP, B3PW91, MPW1PW91, and PBE1PBE (as we mentioned above) have produced IE2

with nearly zero errors. It is interesting to note also that HFB method, which does not include

electron correlation energy in its formulation, have given somehow unexpectedly a result with

about 1 percent error. The fact here that O3LYP method has generated a similar 1-percent

error is also noticeable.

Some similar words can be said about the third ionization energy given in Table 3.8. The

experimental value of IE3 is 33.497 eV [43]. The results in this table are the best ones

compared to the first and second ionization energies, for the errors here are so small: except

B3P86, all are about 1 percent. BHandHLYP and PBE1PBE methods resulted in the best
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Table3.6: The first ionization energy IE1 of Co atom for the process IE1+Co → Co1++e−,
calculated as IE1 = E5(Co1+)−E4(Co). The experimental value is 7.881 eV [43]. ∆ in the
second column gives the error between the experimental and the calculated results; the last
column is for the corresponding percentage error.

method IE1 (eV) ∆ (eV) % error
B1LYP 7.831 0.050 0
B3LYP 8.147 0.266 3
B3P86 9.023 1.142 14
B3PW91 7.636 0.245 3
B971 8.522 0.641 8
B972 7.916 0.035 0
B98 8.512 0.631 8
BHandH 6.939 0.942 11
BHandHLYP 7.236 1.645 8
HFB 7.433 0.448 5
MPW1PW91 7.464 0.417 5
O3LYP 8.206 0.325 4
PBE1PBE 7.833 0.048 0

values.

Finally about Co atom is its electron affinity EA values for each method, which are listed in

Table 3.9. The process to define EA is Co + e− → Co1− and the calculation were carried

out according to the formula EA = E4(Co) − E3(Co1−). (A similar calculation was done

for the electron affinity of Sm element.) The experimental value EA of Co is 0.662 eV [43].

As we said previously, the best result has been produced by PBE1PBE nearly flawlessly. The

other satisfactory results were from O3LYP, B1LYP, and BHandHLYP. All the other methods

generated outcomes with much bigger errors. These are all expected. Notice that the three

experimental ionization energies of Co are all on the order of 10. But its experimental electron

affinity is on the order of only 1. In another words, ionization energies are roughly 10 times

bigger than electron affinity value. The conclusion we may therefore draw vaguely is that it is

very unlikely that we could reach an EA value as accurate as IEi values for Co. As we shall

witness below, the situation for the electron affinity of Sm is much worse than that for Co. Be

prepared to see an error about 700 percent which was produced by PBE1PBE! What we want

to say here that the zero error generated by PBE1PBE method is probably only an incident,

so that should not be taken into account seriously.
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Table3.7: The second ionization energy IE2 of Co atom for the process IE2 +
Co1+ → Co2+ + e−, calculated as IE2 = E4(Co2+) − E5(Co1+). The experimental
value is 17.080 eV [43]. ∆ in the second column gives the error between the experimental
and the calculated results; the last column is for the corresponding percentage error.

method IE2 (eV) ∆ (eV) % error
B1LYP 16.987 0.093 0
B3LYP 17.190 0.110 0
B3P86 17.613 0.533 3
B3PW91 17.055 0.025 0
B971 16.579 0.501 2
B972 16.380 0.700 4
B98 16.661 0.419 2
BHandH 16.666 0.414 2
BHandHLYP 16.694 0.386 2
HFB 16.854 0.226 1
MPW1PW91 16.970 0.110 0
O3LYP 16.839 0.241 1
PBE1PBE 16.936 0.144 0

3.1.2 Calculations of Sm Atoms

The discussion continues with 62-electrons Sm atom. The ground state electron configuration

of Samarium is [Xe]4f66s2. It has 6 unpaired electrons in the 4f shell that causes expected

multiplicity of 7. In accordance with Co atom, Sm also investigated in terms of self-consistent

energy values and among all possible multiplicity values from 1 to 17 are indicated in the

Table 3.10. It can be easily recognized, all methods give the minimum energy for multiplicity

value 7.

Even when CEP-121G basis is used some of the calculations do not complete substantially

since Sm is a large atom. Although there are some non-convergent results, all 13 func-

tionals indicate perfect consistence to accept lowest energy as E7. B3P86, BHandH, and

HFB produce the non-convergent results but they may not be so problematic since these non-

convergent results do not belong to minimum energy column, they are E3, E1, and E9, re-

spectively.

Another interesting result arises while energy values are put in order. Other than a few ex-

ceptions, the general inclination is destroyed by E9. Corresponding multiplicity to E9 can be

obtained by unpaired eight electrons in the outer shells, needs to transfer one of the paired 6s
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Table3.8: The third ionization energy IE3 of Co atom for the process IE3+Co2+ → Co3++
e−, calculated as IE3 = E5(Co3+)− E4(Co2+). The experimental value is 33.497 eV [43].
∆ in the second column gives the error between the experimental and the calculated results;
the last column is for the corresponding percentage error.

method IE3 (eV) ∆ (eV) % error
B1LYP 33.861 0.364 1
B3LYP 34.130 0.633 1
B3P86 34.272 0.775 2
B3PW91 33.953 0.456 1
B971 34.000 0.503 1
B972 33.850 0.353 1
B98 34.076 0.579 1
BHandH 33.085 0.412 1
BHandHLYP 33.425 0.072 0
HFB 32.892 0.605 1
MPW1PW91 33.867 0.370 1
O3LYP 34.002 0.505 1
PBE1PBE 33.783 0.286 0

electron to unoccupied 4f energy level. The O3LYP method turn out the E9 value with a great

difference, means that it excepts this situation with a little possibility however others do not

allocate this condition.

The energy difference between the E9 and E11 values are remarkably greater than the others.

Since the posibility of obtaining E11 is due to excitation of an electron from Xe noble gas

configuration, it needs more energy than needed for smaller multiplicity values.

A discussion can be carried out about the total energy values of Sm cations and anion, similar

to the evaluation of Co ions. The results of energy calculations for every possible multiplicity

values have been indicated to the Tables 3.11—3.18. The expected electron configurations of

these ions and their corresponding multiplicity values can be given as Sm1+: [Xe] 6s1 4f6,

m = 8; Sm2+: [Xe] 4f6, m = 7; Sm3+: [Xe] 4f5, m = 6; and Sm1−: [Xe] 6s2 4f7, m = 8.

If we start from Sm1+ ion whose energies are given in Table 3.11, most of the methods

complete the calculations with expected multiplicity values, only B98 and O3LYP fail, they

give m = 6. As mentioned above, it is known that for rare earth elements, the given electrons

to form a cation, lost from the 6s-subshell instead of 4f. To obtainedm = 6 case for minimum

energy, Sm has to lost its electron from 4f, so we can claim that B98 and O3LYP gives the

wrong multiplicity values. Other 11 methods can be described as successful since they give
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Table3.9: The electron affinity EA of Co atom for the process Co + e− → Co1−, calculated
as EA = E4(Co) − E3(Co1−). The experimental value is 0.662 eV [43]. ∆ in the second
column gives the error between the experimental and the calculated results; the last column is
for the corresponding percentage error.

method EA (eV) ∆ (eV) % error
B1LYP 0.735 0.073 11
B3LYP 0.896 0.234 35
B3P86 1.303 0.641 96
B3PW91 1.111 0.449 67
B971 0.478 0.184 27
B972 1.212 0.550 83
B98 0.502 0.160 24
BHandH 0.792 0.130 19
BHandHLYP 0.579 0.083 12
HFB -0.021 0.683 103
MPW1PW91 1.034 0.372 56
O3LYP 0.606 0.056 8
PBE1PBE 0.664 0.002 0

expected multiplicity 8. If we scan the energy values closely, the pattern can be observed for

most of the methods, which have only one minimum corresponding to m = 8, except B1LYP,

B3PW91, and HFB. The E2 and E4 energies break down the pattern for latter methods by

interchanging the sequence from smaller to greater.

The cases for Sm2+ and Sm3+ ions seem more succesful, that all the methods give the mini-

mum energy at expected multiplicity values 7 and 6 respectively. This situation is also surpris-

ing as well as that mentioned for Co2+ and Co3+ ions. According to Table 3.12, the sequences

of the energies also appear more smooth. Only B972 and HFB ruin the pattern, however the

differences of these energy values are very small, numerically 0.0526 Hartrees for B972 and

0.0181 for HFB, so it is not so disturbing. A similar situation occurs for Table 3.13 and the

related methods are B1LYP, B3P86, and BHandHLYP.

Unfortunately, Sm1− ions results which are tabulated in Table 3.14 are not so regular as

previous two tables. The methods B3P86, B3PW91, MPW1PW91, and PBE1PBE fail to

give minimum total energy at expected multiplicity value 8. They conclude the calculations

with m = 6 which is inadmissible, because it means one of the valence electrons paired with

imported electron; strictly banned situation according to Hund’s Rule. In addition, even for

other methods, which are successful to present correct multiplicity value, any pattern has not
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been observed.

Now the order comes to mention about the first, second, and third ionization energy and elec-

tron affinity of Sm atom. The process of first ionization energy was given above for the Co

atom. Similarly, IE1 + Sm → Sm1+ + e− is used for finding the first ionization energy of

Sm with the recipe IE1 = E8(Sm1+)− E7(Sm) and the results demonstrated in Table 3.15.

The same procedure was followed for second and third ionization energies. If we start with

IE1 of Sm, we will first call attention to the errors originating from the difference between

experimental (5.643 eV [43])and the calculated results. HFB method is again discriminated

from others by a great error of 21 percent. Except HFB, other methods have quite acceptable

errors. Minimum errors are given by B3P86 (0 percent) and B98 (3 percent). The next dis-

cussion is about IE2, which is based on Table 3.16. The error values are remarkably smaller

than the IE2, in fact half of them give values around zero and 1 percent. The worst result

comes from B3P86 with the value 6 percent. The experimental values of second ionization

energy is 11.090 eV [43]. For the third ionization energy error values are increase around

11 percent unlikely to Co case which errors have been decreased by increasing the ionization

number. Only BHandHLYP and B1LYP indicate smaller error than others, numerically 1 and

7 percent respectively.

The electron affinity of the Sm atom can be demostrated by Sm + e− → Sm1− which is

calculated withEA = E8(Sm)−E7(Sm1−). In accordance with Co atom calculations, errors

of electron affinity is very large for Sm atom. The reason was explained above by the small

experimental value (which is 0.518 eV for Sm atom [43]). The interesting point here is that

the energy values are so close to each other, in other words there is a consistancy among all

methods. Maybe O3LYP can be excluded from this case with slightly smaller energy value

2.7 eV, since the others are changing in the range of 3.0–3.6 eV.

3.2 Dimers

3.2.1 SmCo Dimer Calculations

The SmCo dimer calculations can be explained into two parts and each one consists of approx-

imately 6000 calculations. The first part of the calculations aim to determine the interaction

between Sm and Co atoms, if it is Lennard-Jones type or not. So it includes three dimensions;
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Table3.15: The first ionization energy IE1 of Sm atom for the process IE1+Sm → Sm1++
e−, calculated as IE1 = E8(Sm1+)− E7(Sm). The experimental value is 5.643 eV [43]. ∆
in the second column gives the error between the experimental and the calculated results; the
last column is for the corresponding percentage error.

method IE1(eV) ∆ (eV) % error
B1LYP 5.059 0.585 10
B3LYP 5.214 0.430 7
B3P86 5.685 0.042 0
B3PW91 4.863 0.780 13
B971 5.292 0.351 6
B972 5.321 0.322 5
B98 5.472 0.171 3
BHandH 4.971 0.673 11
BHandHLYP 4.879 0.764 13
HFB 4.449 1.194 21
MPW1PW91 5.055 0.589 10
O3LYP 5.039 0.604 10
PBE1PBE 4.964 0.680 12

methods, multiplicity values, and interatomic separation. This part of the study is performed

for all 13 DFT methods, to be sure if they are appropriate as predicted from previous calcula-

tions. The second dimension is the multiplicity for which each method is scanned for seven

discrete values; from m = 2 to m = 14 since there are odd number of unpaired electrons and

so multiplicity value is even. The last dimension is interatomic separation, so that the initial

interatomic distance is varied from r = 1.0 Å to 7.0 Å, 0.1 Å added to r for each calculation

(61 calculations for each method and each multiplicity value). By this means of calculation

we can determine the multiplicity which gives the minimum total energy, the spectroscopic

constants and some electronic properties for each method. These spectroscopic constants are

binding energyDe, equilibrium interatomic separation re, and fundamental frequency we and

the electronic properties are the highest occupied molecular orbit (HOMO), the lowest un-

occupied molecular orbit (LUMO), HOMO-LUMO gap energy, dipole moment, and excess

charges on the atoms.

The first set of calculations includes the self-consistent energy values of SmCo dimer with

respect to multiplicity values and resuls are listed in Table 3.19. It can be clearly seen that

all functionals give the minimum energy value for the m = 10 condition. This distinctive

determination means that both Sm and Co atoms do not lose their own electronic structure

and keep their original multiplicity values four and seven. It is an expected situation since

34



Table3.16: The second ionization energy IE2 of Sm atom for the process IE2 +
Sm1+ → Sm2+ + e−, calculated as IE2 = E7(Sm2+) − E8(Sm1+). The experimental
value is 11.090 eV [43]. ∆ in the second column gives the error between the experimental
and the calculated results; the last column is for the corresponding percentage error.

method IE2(eV) ∆ (eV) % error
B1LYP 11.095 0.005 0
B3LYP 11.232 0.142 1
B3P86 11.757 0.667 6
B3PW91 10.963 0.127 1
B971 10.666 0.424 3
B972 10.859 0.231 2
B98 10.683 0.407 3
BHandH 10.713 0.377 3
BHandHLYP 11.062 0.028 0
HFB 10.817 0.273 2
MPW1PW91 10.920 0.170 1
O3LYP 11.027 0.063 0
PBE1PBE 11.071 0.019 0

the unpaired electrons of the Co atom are in the 3d orbitals and the Sm atom are in the 4f

orbitals. By their nature, they are at different energy levels however by six 4f-electrons and

seven 3d-electrons the interaction between the atoms can be defined as very strong. In this

case we expect to determine interaction between Sm and Co atoms as the Lennard Jones type.

If it is the case we can conclude that the values for binding energy De and the equilibrium

separation distance re are in plausible range. We will turn to this point while discussing these

variables.

If energy values are arranged in order, it is seen that the case E10 < E6 < E4 < E8 < E12 <

E2 < E14 is common for most of the methods. The methods B1LYP, B3LYP, HFB, and

O3LYP has the same order with the interchange of E14 and E2. Only B98 gives a different

pattern, that is E10 < E4 < E8 < E6 < E12 < E14 < E2. There is only one not–completed

calculation, E2 of the method BHandH.

One of the important part of the study summarized on Table 3.20 by exhibiting the spectro-

scopic and electronic properties of each method according to multiplicity value that gives the

minimum total energy. This part is important because there is no experimental data found

in the literature about SmCo dimer. As mentioned before, these spectroscopic constants are

binding energy De, equilibrium interatomic separation re, and fundamental frequency ωe.
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Table3.17: The third ionization energy IE3 of Sm atom for the process IE3 +
Sm2+ → Sm3+ + e−, calculated as IE3 = E6(Sm3+) − E7(Sm2+). The experimental
value is 23.423 eV [43]. ∆ in the second column gives the error between the experimental
and the calculated results; the last column is for the corresponding percentage error.

method IE3 (eV) ∆ (eV) % error
B1LYP 25.285 1.862 7
B3LYP 25.958 2.535 10
B3P86 26.901 3.478 14
B3PW91 26.585 3.162 13
B971 25.777 2.354 10
B972 26.391 2.968 12
B98 26.256 2.833 12
BHandH 26.761 3.338 14
BHandHLYP 23.809 0.386 1
HFB 26.225 2.802 11
MPW1PW91 26.714 3.291 14
O3LYP 26.798 3.375 14
PBE1PBE 26.123 2.700 11

The binding energy De can be defined as the energy required to decompose a molecule into

its constituents. As a calculation example of binding energy, HFB can be shown as; De =

−C(ESmCo
10 − ESm

7 − ECo
4 ), where C is the conversion constant of Hartrees to electronvolt,

C = 27.211383 eV/Hartree. The energy values at the right hand side of the equation are

obtained from tables of Co, Sm and SmCo calculations, Table 3.1, Table 3.10, Table 3.19

respectively. In the same way, to calculate binding energy of B3PW91, B972, BHandH, or

MPW1PW91, De = −C(ESmCo
10 − ESm

7 − ECo
2 ) has to be used, since the minimum energy

values are at m = 2 case for them.

The binding energy values are not so successful since the range is wide and values are spread

between 0.9092 eV to 1.8315 eV for hybrid functionals. Unfortunately, even similar meth-

ods do not give close values for binding energy, i.e. B971 has 1.2402 eV where B972 has

1.6230 eV. (One more: BHandH has 1.5669 eV and BHandHLYP has 1.0493 eV). Although

the De range is wide, the binding energy values of the m = 10 case are actually small.

The equilibrium interatomic separation re is the distance between the atoms where the possi-

ble energy is minimum, so the most stable state. UnlikeDe, re values are proper and the range

is 2.95-3.09 Å for the m = 10 cases. This range can be defined as re = 2.975± 0.035 Å for

them = 10 case of the SmCo bond length. In contrast toDe, similar methods gives similar re-
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Table3.18: The electron affinity EA of Sm atom for the process Sm + e− → Sm1−, cal-
culated as EA = E8(Sm) − E7(Sm1−). The experimental value is 0.518 eV [43]. ∆ in the
second column gives the error between the experimental and the calculated results; the last
column is for the corresponding percentage error.

method EA (eV) ∆ (eV) % error
B1LYP -2.872 3.390 654
B3LYP -2.765 3.283 633
B3P86 -2.745 3.263 629
B3PW91 -3.100 3.618 698
B971 -2.550 3.068 592
B972 -2.607 3.125 603
B98 -2.651 3.169 611
BHandH -3.087 3.605 695
BHandHLYP -2.957 3.475 670
HFB -3.089 3.607 696
MPW1PW91 -3.100 3.618 698
O3LYP -2.231 2.749 530
PBE1PBE -3.121 3.639 702

sults for re. For example, B3LYP gives 2.9669 Å where B1LYP gives 3.0111 Å and another

acceptable result is coming from Becke series; B98 gives 3.0077 Å, B971 gives 3.0061 Å,

and B972 gives 2.9903 Å.

The calculated excess charge on Sm, q(Sm) and dipole moment µ for SmCo also demon-

strated in Table 3.20. Excess charge is written only for Sm, since it is known that q(Co) =

−q(Sm), for SmCo dimer. Again for the m = 10 case q(Sm) and µ gives acceptable re-

sults. q(Sm) values can be placed in the interval of 0.58|e| to 0.63|e|, also represent as

q(Sm) = 0.60± 0.03|e|. Similarly, dipole moment change between 3.7 D and 4.5 D and can

be represented as µ = 4.1± 0.4 D which has greater error value than q(Sm).

The charge separation and dipole moment values are based on unpaired electrons of the Sm

and Co atoms. It can be claimed that the structure of the unpaired electrons in atoms are not

degrade while composing the SmCo dimer. Also for q(Sm) and µ values, similar methods

give similar results; such as B3LYP (0.6252|e| and 4.4947 D) and B1LYP (0.6291|e| and

4.4694 D); and B98 (0.5870|e| and 3.8195 D), B971(0.5846|e| and 3.7881 D), and B972

(0.5752|e| and 3.7224 D).

In Table 3.21, HOMO and LUMO energy values and energy gap between HOMO-LUMO for

SmCo dimer are represented for both alpha and beta energy terms. The energy gap corre-
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Table3.20: Spectroscopic constants of the SmCo dimer calculated for the multiplicity,
m (2S + 1), at which the total energy is minimum. Binding energy De is in eV, equilib-
rium interatomic separation re is in Å, and the fundamental frequency ωe is in cm−1. Also
given are the calculated excess charge q(Sm) on the Sm atom (in units of electron charge |e|)
and the dipole moment µ (in Debyes). Note that for the excess charge on the Co atom, we
have q(Co) = −q(Sm).

method m De re ωe q µ
B1LYP 10 1.2900 3.0111 120.7479 0.625214 4.4947
B3LYP 10 1.3725 2.9669 126.2534 0.629150 4.4694
B3P86 10 1.2799 2.9465 129.7313 0.622319 4.2417
B3PW91 10 1.8315 2.9686 126.8396 0.618716 4.2142
B971 10 1.2402 3.0061 117.7587 0.584616 3.7881
B972 10 1.6230 2.9903 120.5058 0.575191 3.7224
B98 10 1.1059 3.0077 117.5993 0.586995 3.8195
BHandH 10 1.5669 2.9705 122.0213 0.628273 4.2536
BHandHLYP 10 1.0493 3.0870 111.2646 0.609532 4.4178
HFB 10 0.9092 3.0718 118.5861 0.630904 4.7738
MPW1PW91 10 1.7757 2.9817 124.5935 0.619642 4.1843
O3LYP 10 1.5760 3.0097 120.2384 0.630045 4.0206
PBE1PBE 10 1.3294 2.9819 124.1326 0.619590 4.1239

sponds to an evaluation of the stability of the dimer. If the gap is large, means exitation prob-

ability is greater, in other words dimer is more stable and vice versa. The HOMO-LUMO gap

also shows the interaction probability of the SmCo dimer with other atoms or species. For this

situation, it gives an opportunity to make a comment about the structure of the higher order

compound of Sm and Co atoms, such as industrially important, highly magnetized SmCo5

and Sm2Co17. These will be the scope of future studies.

The main discussion in the scope of previous study is the validity and reliability of the meth-

ods. In this sense, it is easily pointed that HBF gives significantly lower value than the other

methods for the m = 10 case. As known, HBF is an only-exchange method, so the reason of

the result may be the cause of lack of correlation energy. Another exception is about half-and-

half functionals; BHandH and BHandHLYP. These two functionals give much larger values

than the other methods, that are Eg(α) = 3.7914 eV and Eg(β) = 4.1685 eV for BHandH

and Eg(α) = 3.9312 eV and Eg(β) = 4.0017 eV for BHandHLYP. The other methods for

the m = 10 case give similar results which spread out to an interval from 2.25 eV to 2.85 eV

for Eg(α) values, in other representation; Eg(α) = 2.55 ± 0.3 eV. For Eg(β) the situation

includes a bit more uncertainity that the interval lays between 1.85 eV to 3.25 eV, can be

written as Eg(β) = 2.55± 0.70 eV.
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Table3.21: HOMO and LUMO energies (in Hartrees), and HOMO-LUMO gap (Eg) energies
(in eV) of the SmCo dimer, calculated for the multiplicity, m (2S + 1), at which the total
energy is minimum.

method m HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β)
B1LYP 10 -0.11965 -0.01584 2.82481 -0.16135 -0.05294 2.94999
B3LYP 10 -0.12080 -0.02676 2.55896 -0.15661 -0.06062 2.61202
B3P86 10 -0.14301 -0.04713 2.60903 -0.17962 -0.07479 2.85257
B3PW91 10 -0.12384 -0.02705 2.63379 -0.15684 -0.05225 2.84604
B971 10 -0.11558 -0.02309 2.51678 -0.16070 -0.07328 2.37882
B972 10 -0.11442 -0.02238 2.50454 -0.15647 -0.07189 2.30154
B98 10 -0.11860 -0.02351 2.58753 -0.16484 -0.07175 2.53311
BHandH 10 -0.13529 0.00404 3.79136 -0.18174 -0.02855 4.16851
BHandHLYP 10 -0.13847 0.00600 3.93123 -0.17917 -0.03211 4.00171
HFB 10 -0.09223 -0.05521 1.00737 -0.07084 -0.04017 0.83457
MPW1PW91 10 -0.12675 -0.02208 2.84822 -0.16615 -0.04679 3.24795
O3LYP 10 -0.10715 -0.02436 2.25283 -0.12544 -0.05759 1.84629
PBE1PBE 10 -0.12529 -0.02224 2.80413 -0.16639 -0.04982 3.17203

3.2.2 Co2 Dimer Calculations

The Co2 discussion constitutes the second part of the dimer calculations. There are a few

experimental and theoretical studies about electronic and structural properties of Co2 dimer

in the literature, however there are still inconsistencies in the results [40]. The number of

studies are not sufficient for solving these inconsistencies. The results that are gathered from

several studies in the literature, are demonstrated in the Table 3.22 [40]. The range of binding

energy is wide enough to point out the inconsistency. The results for the bond length are better

than binding energy, they are close to each other, change from 1.95 Å to 2.41 Å .

Table3.22: Results for Co2 from previous works in literature.

method De (eV) re (Å) ωe (cm−1)
Ref. [44] 2.85 2.04 –
Ref. [45] 2.35 1.99 373
Ref. [46] 1.50 2.41 230
Ref. [47] 0.87 1.96 –
Ref. [48] 2.90 1.96 –
Ref. [49] 5.08 2.14 –
Ref. [50] 2.26 1.95 421
Ref. [51] 2.26 2.01 342
Ref. [40]-BLYP 1.71 2.13 329
Ref. [40]-PBE 2.03 2.10 271
Ref. [40]-exp 1.69 2.31 –
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As mentioned before, Co atom has three unpaired electrons in the 3d orbitals. For Co2 dimer,

the number of unpaired electrons is 6, so expected multiplicity value is 7. According to

Table 3.23, eight of the methods gives minimum potential at m = 7. Whereas five of them

gives the minimum energy at m = 5, that are B3P86, B3PW91, B971, B972, and O3LYP.

They can obtain the multiplicity 5 only by sharing the electrons by overlapping of the shells.

It is an unexpected result whereas −E5 and −E7 values are close to each other. The five

methods which indicate the minimum energy at m = 5, have the same sequence of energies;

−E5 < −E7 < −E3 < −E9 < −E1 < −E11 < −E13 < −E15. Most of the methods that

indicate minimum energy for the case m = 7 give the sequence as −E7 < −E5 < −E3 <

−E9 < −E1 < −E11 < −E13 < −E15. Only for B98 and BHandH, the sequence of first

three energies changes as −E7 < −E3 < −E5.

Since there is not a concurence about minimum energy values we prefer to give corresponding

variables both form = 5 andm = 7 in Table 3.24. The binding energy values form = 5 case,

have not seen appropriate, since the range is so wide and even BHandH method gives a nega-

tive value. It seems much more convenient for m = 7. The values change from 0.5316 eV to

1.9743 eV . The interatomic separation can be written as re = 2.306 ± 0.212 Å for m = 7

and re = 2.412±0.075 Å for m = 5. The corresponding error part is smaller for m = 7, but

the value when m = 7 is closer to the experimental one re = 2.31 Å given by Sebetci [40].

The vibrational frequency of Co2 has been determined distinctively by researchers according

to Table 3.22.

The frequency value given by B98 for m = 5 is 374.20 cm−1 that is remarkably greater

than the others. If it is ignored, error can be decreased and value can be expressed as ωe =

251 ± 42 cm−1. The circumstance appears more acceptable for m = 7 case, given range

is ωe = 232 ± 31 cm−1. The BHandH method gives a negative value for binding energy at

m = 5 case, that is of course nonsense. The reason for this situation is not clear to comment

on it, but we estimate that will be arised from the minimum energy values of Co atom which

is obtained at m = 2 case instead of the expected m = 4 case. Although the reason is not

clear, it is obvious that this value is problematic, so it can be neglected.

In Table 3.25, HOMO and LUMO energy values and energy gap between HOMO-LUMO

for Co2 dimer are represented. The HFB method gives significantly smaller values for both

multiplicity values and for both energy gap. It is meaningful since HFB is an only ex-
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Table3.24: Spectroscopic constants of the Co2 dimer calculated for the multiplicity, m (2S +
1), at which the total energy is minimum. For notation used, see Table 3.20.

method m De re ωe q µ
B1LYP 5 0.3685 2.5182 212.78 0.00000 0.0000
B3LYP 5 0.9957 2.4115 219.49 0.01815 0.1283
B3P86 5 1.3738 2.3978 236.80 0.00000 0.0000
B3PW91 5 2.0494 2.4109 232.33 0.00000 0.0000
B971 5 0.9233 2.4301 224.14 0.00000 0.0000
B972 5 2.4293 2.4262 225.71 0.00000 0.0000
B98 5 0.2612 2.0939 374.20 0.00000 0.0000
BHandH 5 -0.1486 2.4351 228.81 0.00000 0.0000
BHandHLYP 5 0.2753 2.5283 208.66 0.00000 0.0000
HFB 5 0.6974 2.1864 292.63 0.00000 0.0000
MPW1PW91 5 1.0276 2.4985 219.43 0.00000 0.0000
O3LYP 5 1.2879 2.4483 217.01 0.00000 0.0000
PBE1PBE 5 0.9169 2.4079 223.64 0.01815 0.1189
B1LYP 7 1.1169 2.4340 217.38 0.00000 0.0000
B3LYP 7 1.1590 2.4373 215.01 0.00000 0.0000
B3P86 7 1.1005 2.4110 224.78 0.00000 0.0000
B3PW91 7 1.8480 2.4229 221.80 0.00000 0.0000
B971 7 0.5316 2.4471 209.90 0.00000 0.0000
B972 7 1.9743 2.4202 213.41 0.00000 0.0000
B98 7 0.5012 2.4415 210.53 0.00000 0.0000
BHandH 7 1.9271 2.3370 264.00 0.00000 0.0000
BHandHLYP 7 0.9356 2.3950 240.17 0.00000 0.0000
HFB 7 1.0930 —— 199.38 0.02873 0.0792
MPW1PW91 7 1.8258 2.4132 226.98 0.00000 0.0000
O3LYP 7 0.9870 2.4874 199.93 0.00000 0.0000
PBE1PBE 7 1.1391 2.4150 226.83 0.00000 0.0000

change method, no contribution from correlation. Both half and half functions, BHandH

and BHandHLYP methods give greater values from other values. One more method, O3LYP

disrupts the general consistency of results by smaller values. These results also in accordance

with the SmCo dimer results. The results from other methods are close to each other; can be

demostrated as Eg(α) = 3.10± 0.19 Hartrees and Eg(β) = 2.10± 0.30 Hartrees for m = 5

and similarly Eg(α) = 3.32± 0.18 Hartrees and Eg(β) = 2.63± 0.26 for m = 7.

3.2.3 Sm2 Dimer Calculations

The third part of the dimer calculations consists of Sm2 dimer energies and other charac-

teristics. As mentioned before Sm is a massive atom with 62 electrons and this is the most

problematic part of the dimer calculations since most of the energy calculations have not gave

result. The present results are demonstrated in Table 3.26. According to the table, m = 1,
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Table3.25: HOMO and LUMO energies (in Hartrees), and HOMO-LUMO gap (Eg) energies
(in eV) of the Co2 dimer, calculated for the multiplicity, m (2S+1), at which the total energy
is minimum.

method m HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β)

B1LYP 5 -0.20354 -0.08960 3.10046 -0.15723 -0.07948 2.11569
B3LYP 5 -0.20505 -0.09794 2.91461 -0.15276 -0.08643 1.80493
B3P86 5 -0.22666 -0.11276 3.09938 -0.18720 -0.09883 2.40467
B3PW91 5 -0.20526 -0.09175 3.08876 -0.16486 -0.07751 2.37691
B971 5 -0.20031 -0.08746 3.07080 -0.16641 -0.07989 2.35433
B972 5 -0.19875 -0.08366 3.13176 -0.16144 -0.07531 2.34372
B98 5 -0.20562 -0.08584 3.25938 -0.15496 -0.07571 2.15650
BHandH 5 -0.28473 -0.06748 5.91167 -0.17467 -0.08750 2.37202
BHandHLYP 5 -0.22139 -0.06049 4.37831 -0.20691 -0.05325 4.18130
HFB 5 -0.17026 -0.10092 1.88684 -0.10516 -0.08315 0.59892
MPW1PW91 5 -0.20677 -0.08795 3.23326 -0.15947 -0.07313 2.34943
O3LYP 5 -0.18640 -0.09524 2.48059 -0.13801 -0.08171 1.53200
PBE1PBE 5 -0.20676 -0.08556 3.29802 -0.15954 -0.07144 2.39732
B1LYP 7 -0.16814 -0.04240 3.42156 -0.19708 -0.09560 2.76141
B3LYP 7 -0.16941 -0.05145 3.20985 -0.20288 -0.11582 2.36902
B3P86 7 -0.19148 -0.07063 3.28850 -0.22738 -0.13706 2.45773
B3PW91 7 -0.17211 -0.05075 3.30237 -0.20390 -0.11376 2.45283
B971 7 -0.16112 -0.04564 3.14237 -0.19637 -0.10809 2.40222
B972 7 -0.15618 -0.04019 3.15625 -0.19708 -0.10704 2.45011
B98 7 -0.16475 -0.04631 3.22292 -0.19855 -0.10690 2.49392
BHandH 7 -0.18785 -0.02370 4.46675 -0.21208 -0.05592 4.24933
BHandHLYP 7 -0.19165 -0.02335 4.57968 -0.20498 -0.05968 3.95381
HFB 7 -0.13592 -0.05031 2.32957 -0.15880 -0.11311 1.24329
MPW1PW91 7 -0.17563 -0.04703 3.49938 -0.20391 -0.09802 2.88141
O3LYP 7 -0.15448 -0.04976 2.84958 -0.19382 -0.13289 1.65799
PBE1PBE 7 -0.17385 -0.04711 3.44877 -0.20319 -0.09783 2.86699

m = 13, and m = 19 are most probable multiplicity values, most of the calculation ended

with an energy value. In the outermost shell of Sm atom has six unpaired electrons, so the

expected multiplicity for Sm2 dimer is 13. From Table 3.26 all the methods end up with

expected value.

According to half-shell stability, −E17 is the most probable result greater than the minimum

energy, whereas most of the methods do not conclude calculations. Results for −E19 are

better than the expected −E17.

The spectroscopic constants of Sm2 dimer are summarized in Table 3.27. The binding ener-

gies alter in a wide range, from 0.0215 Hartrees to 0.9465 Hartrees. Table 3.24 which was
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Table3.26: Total energies, Em, in Hartrees, for a Sm2 dimer for different multiplicities,
m (2S + 1). The starred ones show the lowest energy. ‘nc’ indicates a ‘not completed’
calculation due to a non-convergent- or confused-SCF process.

method −E1 −E11 −E13 −E15 −E17 −E19

B1LYP 162.0049 nc 162.4809* nc 162.3261 161.7638
B3LYP 162.3152 nc 162.8333* nc nc nc
B3P86 162.9753 nc 163.5781* nc nc 162.8820
B3PW91 162.3071 nc 162.9440* nc nc 162.2511
B971 162.2467 nc 162.7483* 162.6940 nc 161.9666
B972 162.3565 162.8510 162.9345* nc nc 162.1602
B98 162.2568 162.7206 162.7860* nc nc 162.0122
BHandH 160.0575 nc 161.0975* nc nc 160.3717
BHandHLYP 160.7964 nc 161.6445* nc 161.4819 160.8953
HFB nc 162.4818 162.5401* nc nc nc
MPW1PW91 162.0955 162.6234 162.7453* nc nc 162.0657
O3LYP 162.5760 nc 163.2803* nc 163.1469 162.5705
PBE1PBE 161.9428 nc 162.6501* nc nc 161.9049

arranged for Co2, HFB method gives the minimum vibrational frequency and the maximum

intermolecular distance remarkably different than all other methods. Except HFB, all other

methods conclude the calculations with closer values for re and ωe, which can be presented

as 4.780 ± 0.108 Å 35.6 ± 3.3 cm−1 respectively. If HFB is included, the expression turns

to re = 4.88± 0.203 Å , where error duplicates.

Table 3.28 has been arranged for HOMO–LUMO energies and Eg(α) and Eg(β) enegy gaps

of Sm2. It is clearly seen that again HFB gives the minimum result. Similar to the Co2

calculations, half and half functional methods BHandH and BHandHLYP methods give sig-

nificantly greater values than the other methods. Additionally, O3LYP also gives smaller

values for Eg(α) and Eg(β). The results of the other methods can be indicated as Eg(α) =

2.79± 0.15 Hartrees and Eg(β) = 2.68± 0.35 Hartrees.

3.2.4 SCF Calculations

In the second part of dimer calculations we performed "single-point" (sp) self-consistent field

calculations (SCF). In a sp calculation, GAUSSIAN 03 compels the dimer under question

to converge as it is specified at the very beginning of the simulation, without changing the

interatomic separation r. We carried out sp calculations for Co2 dimer with multiplicity m =
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Table3.27: Spectroscopic constants of the Sm2 dimer calculated for the multiplicity, m (2S+
1), at which the total energy is minimum. For notation used, see Table 3.20.

method m De re ωe q µ

B1LYP 13 0.1204 4.8416 33.4884 0.00000 0.0000
B3LYP 13 0.1460 4.8009 34.1305 0.00000 0.0000
B3P86 13 0.1905 4.6724 37.0425 0.00000 0.0000
B3PW91 13 0.6584 4.7043 37.3122 0.00000 0.0000
B971 13 0.9465 4.7183 37.7456 0.00000 0.0000
B972 13 0.2173 4.7396 36.8318 0.00000 0.0000
B98 13 0.6600 4.7398 36.7767 0.00000 0.0000
BHandH 13 0.4405 4.6959 36.8246 0.00189 0.0817
BHandHLYP 13 0.0215 4.8883 32.3220 0.00000 0.0000
HFB 13 0.0617 5.0780 27.6654 0.00000 0.0000
MPW1PW91 13 0.4742 4.6798 38.4687 0.00068 0.0278
O3LYP 13 0.9084 4.8032 36.9029 0.00245 0.0983
PBE1PBE 13 0.4327 4.6807 38.8403 0.00000 0.0000

5 and 7, for Sm2 with m = 13, and for SmCo with m = 10; the multiplicity values here are

the ones for which the energy minima are spotted.

To do so, we scanned the distance r between the two atoms of a dimer from 1.0 to 5.0 Å for

Co2 and SmCo, and from 2.0 to 7.0 Å for Sm2. We carried out a total of 300 sp calculations

for each cases considered. Figures 3.1–3.8 present the resulting outcomes for the most clear-

looking r-intervals. The formation energy Ef of SmCo is calculated for B1LYP, say, as Ef =

−27.211
(
ESmCo

10 − ESm
7 − ECo

4

)
(eV) where ESm

7 and ECo
4 values are from Tables 3.1 and

3.10, respectively, and ESmCo
10 values are the results of present sp-calculations.

Let us start with the SmCo scan results which shown in Figures 3.1 and 3.2, where we omitted

the graph of HFB because it does not contain the electron correlation energy in its formulation.

We see that all the results have some common features: most of the data points from the 300 sp

calculations are organized in a plainly noticed order, leading to not-so-smooth and frequently

broken plots. Nonetheless, we can safely say that all the graphs in these two figures are of the

Lennard-Jones nature. Obviously, we do not speak, for any given method, of a consummate,

faultless Lennard-Jones plot, since there happen to be many data points which are just out of

the main plot.

It follows from Figures 3.1 and 3.2 that all the twelve methods resulted in almost the same

equilibrium interatomic distance re around 3.0 Å. Noting that this value is just the aforesaid
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Table3.28: HOMO and LUMO energies (in Hartrees), and HOMO-LUMO gap (Eg) energies
(in eV) of the Sm2 dimer, calculated for the multiplicity,m (2S+1), at which the total energy
is minimum.

method m HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β)

B1LYP 13 -0.10947 -0.00114 2.94781 -0.10027 0.01094 3.02618
B3LYP 13 -0.11148 -0.01194 2.70862 -0.10195 0.00055 2.78917
B3P86 13 -0.13263 -0.03559 2.64059 -0.12263 -0.02288 2.71434
B3PW91 13 -0.11404 -0.01658 2.65202 -0.10428 -0.00404 2.72767
B971 13 -0.10863 -0.00923 2.70481 -0.09866 0.00400 2.79352
B972 13 -0.10909 -0.00957 2.70808 -0.09935 0.00276 2.77855
B98 13 -0.11097 -0.00976 2.75406 -0.10112 0.00356 2.84849
BHandH 13 -0.12267 0.01919 3.86021 -0.11378 0.03194 3.96524
BHandHLYP 13 -0.12613 0.02056 3.99164 -0.11758 0.03338 4.10783
HFB 13 -0.07595 -0.04280 0.90206 -0.06459 0.01514 2.16956
MPW1PW91 13 -0.11559 -0.01237 2.80876 -0.10608 0.00060 2.90291
O3LYP 13 -0.09664 -0.01508 2.21936 -0.08795 -0.00248 2.32576
PBE1PBE 13 -0.11452 -0.01053 2.82971 -0.10478 0.00216 2.90999

one in Table 3.20, the features seen in these graphs are impressively beautiful. As to the

corresponding formation energies Ef , except B98 and B971, they are in agreement to a great

degree to the binding energy De values listed in Table 3.20.

We note before passing that two Becke functionals B98 and B971 have given rise almost

to the same curve, for they both have the same De and re values for SmCo dimer. Their

another peculiarity is that their curves cross the Ef = 0 line; if we are to speak of a proper

Lennard-Jones curve for SmCo, this crossing should not have occurred.

A final point about the graphs in Figures 3.1 and 3.2 is that the plot of O3LYP contains actually

more than one curve; if we had increased the data points in the sp calculations from 300 to

3000, say, we would clearly distinguish at least three distinct curves, all of them sharing the

same equilibrium interatomic distance, re, value about 3.0 Å. The only difference among them

would be their different De values. Actually this situation is common in all the curves seen

in these two figures: although they are barely discernable, a careful eye can readily recognize

the remnants of more than one curve in each of them.

We show in Figures 3.3 and 3.4 the curves which are the outcomes of sp-scan results for Co2

dimer for multiplicity m = 5. Again we see that the data points are ordered in a noticeable

order, resulting in occasionally broken curves. Obviously, the curves in these tables cannot

be said to be of the Lennard-Jones nature. To compound the situation further, we see the
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features exhibited in these graphs are not at all in agreement with those in Table 3.24 which

are the results from optimization calculations. As we see in Table 3.24, the equilibrium in-

teratomic distances were mostly about 2.40-2.50 Å. But in these curves, it is usually around

1.90-2.20 Å. Even worse, except B3P86, B3PW91, B972, MPW1PW91, and O3LYP, all the

remaining seven functionals, the equilibrium point is above the Ef = 0 line, which is of

course unacceptable, for it leads to a negative binding energy De! For the last, but not least,

all the curves have parts again Ef = 0 line.

We see one more time that in the graphs of Co2, which are the results of sp calculations; all

the curves are composed of the remnants of several different curves. Take the B3LYP case

in Figure 3.3 as an example. Its curve starts from right, say, continues to the left a while,

then abruptly brakes and jumps to another part of curve, continues again a little, and again

brakes suddenly jumping to the next one, and so on. Here the natural question is this: which

features should be correct? Those seen in the curves of Figures 3.3 and 3.4 or those listed in

Table 3.24. We believe that the results in Table 3.24 are the more acceptable ones because

the re values there are somehow close to the experimental and the other theoretical literature

values and, for the most, they are the results of optimization calculations.

Figures 3.5 and 3.6 present the sp-scan calculations results for again Co2, but for m = 7

this time. All the comments we have made about the m = 5 case are seen to valid also

here. Again we observe curves composed of several broken parts, with their minima above

the Ef = 0 line (for B98, B971, and BHandHLYP). Again all of them have some part of their

tails above the Ef = 0 line. More importantly, all the curves make their minimum around

re = 2 Å, not at all in agreement with those listed in Table 3.24, which are around 2.3–2.5 Å.

Nevertheless, the curves shown in Figures 3.5 and 3.6 are seem to have a better appearance,

for they have better-ordered data points. Notice how B98 and B971 functionals have produced

nearly flawless Lennord-Jones-like curves, though they have completely unacceptableDe and

re values.

All the curves exhibited in Figures 3.1–3.4 portend somehow the unceasing debate about the

ground-state of Co2 dimer: should its multiplicity be m = 5 or m = 7? Its correct answer

seems still evasive. Each DFT functional produces its own result which is usually very differ-

ent than that resulted from another functional. Only the re values are exempt from this fact

for the time being. Finally in this section, in Figures 3.7 and 3.8 are the sp calculation results
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for Sm2 dimer. Curves bear features which are the reminiscent of a general Lennard-Jones

curve. Although we see an overall order in these curves, we cannot speak of any smoothness.

Nonetheless, the features observed here are much better than those for the Co2 cases discussed

above. In Sm2 curves, at least the equilibrium interatomic distance re values are hinted to be

close to those tabulated in Table 3.27. Even the situation for the binding energy De values are

not bad at all; only the B3P86 and B972 (and maybe including O3LYP and BHandHLYP),

cases in which the minima are above Ef = 0 line are unsatisfactory.

3.3 Trimers

The third part of the study consists of possible trimers of Co and Sm atoms. These are Co3,

Sm3, SmCo2, and Sm3Co clusters. In accordance with dimer calculations, we can determine

the calculate the minimum total energy with respect to multiplicity, the spectroscopic con-

stants that are; binding energy De, equilibrium interatomic separation re, and fundamental

frequency we, HOMO, LUMO, and HOMO-LUMO gap energy, dipole moment and excess

charges on the atoms.

3.3.1 Co3 Trimer Calculations

Before looking into the energy results for the Co3 trimer, we should first note that two different

multiplicitym values we may see. In the first case, if the multiplicity of the Co2 dimer is really

5, this means that the Co2 dimer has four unpaired electrons, then another three unpaired

electrons will come from the third cobalt elements; this configuration gives us a total of seven

unpaired electrons. As a result, we might expect a multiplicity value m = 8 for the Co3

trimer. In the second case in which we may have a total of nine unpaired electrons in Co3,

three for each Co elements, then it is possible that the multiplicity of Co3 would be m = 10.

It is apparent from Table 3.29 that these expectations have materialized: Except for B3PW91,

BHandHLYP, MPW1PW91, PBE1PBE, all the other nine methods have given the somewhat

expected multiplicity value m = 8. The former four methods have resulted in m = 10 value.

Are the minimum energy values E8 and E10 so different from each other? As we see clearly

from this table, the mentioned difference is so small, meaning that it is so difficult in reality

to discern the real minimum configuration between them. Before passing, we might notice
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that there is no distinct order or pattern among the energy values E2 to E10; after them they

monotonically increase. Actually, the same situation can be seen in all the other atom, dimer,

and trimer energy tables. What we want to say that it might be quite difficult to detect the

real minimum energy configuration by looking only the first minimum, for this first minimum

might only be a local minimum. Consequently, we humbly recommend a diligent researcher

to scan all the possible multiplicity values, of course if he or she has no difficulty in allocating

the time required.

Since it was not possible to determine absolutely the real multiplicity value for the Co3

trimer, it seems appropriate to give all the geometric details, spectroscopic constants, charges,

dipoles, and HOMO-LUMO energies for the Co3 trimer separately for the m = 8 and 10

values. Table 3.30 tabulates the bond lengths, bond angles, and vibrational frequencies of the

Co3 trimer obtained for the 13 different DFT methods we employed.

For m = 8 in Table 3.30 (for the notation employed there, refer to Fig. 3.9), the first thing

to note that all the methods have led to a linear geometric configuration (D∞). Although the

exact angle values are never exactly 180◦, we can safely accept them to be so; the very small

differences, including the MPW1PW91 case in which the discrepancy is a little bit larger, can

be attributed to the initial random atomic configurations, to the accuracy of GAUSSIAN03

package, and to the performance of the computer we made use of. It is clear from the same

table that there is a definite C2 symmetry in the linear Co3 trimers; that is, the R12 values are

(nearly) equal to the R23 values. This is expected, because we are dealing with three identical

and indistinguishable Co atoms, and there should be no way to label them. This, in turn, gives

rise to the conclusion that the distance between the first and second atoms and that between

the second and third atoms must be equal to each other, for a linear Co3 trimer. It is seen from

the same table that all the bond length R12 and R23 values for m = 8 are in a range of 2.28–

2.44 Å. This consistency among the different 13 methods in giving nearly the same results is

especially notable, hinting at the reliability of the methods, which are all the culmination of

many researchers’ unceasing quests for the ultimate perfect method.

As to the vibrational frequencies of the Co3 dimer with m = 8, we see that the three fun-

damental frequencies are distinct from each other. We mean these values are not at all close

to each other and that in a real spectroscopy measurement experiment, it is very likely to see

three well-separated peaks for each of the fundamental frequencies listed in Table 3.30. Nu-
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Table3.30: Bond lengths R12 and R23 (Å), bond angle θ123 (deg), and vibrational frequencies
ωn (cm−1) of Co3 trimer. For the notation used, see Fig. 3.9.

method m R12 R23 θ123 ω1 ω2 ω3

B1LYP 8 2.3383 2.3383 179.9977 57.9769 165.2187 273.1134
B3LYP 8 2.3054 2.3054 179.9875 40.3645 168.1510 282.4238
B3P86 8 2.2804 2.2803 179.9540 36.6931 170.6370 287.0438
B3PW91 8 2.3013 2.2930 179.5183 68.0735 171.4295 288.1704
B971 8 2.3291 2.3284 179.9959 67.8216 164.7834 277.5973
B972 8 2.2958 2.2958 179.9965 47.7114 166.3232 276.8408
B98 8 2.3307 2.3305 179.9822 77.3060 168.5791 284.1932
BHandH 8 2.3346 2.3346 179.9963 76.4149 159.2871 273.1480
BHandHLYP 8 2.4423 2.4428 179.9971 66.3563 142.6938 245.1946
HFB 8 2.3170 2.3167 179.9897 63.2225 157.6999 232.7209
MPW1PW91 8 2.3164 2.3235 179.1373 68.4773 166.5265 281.8294
O3LYP 8 2.2769 2.2769 179.8262 52.9335 164.3737 263.5213
PBE1PBE 8 2.3211 2.3214 179.9848 58.7694 169.3582 280.1786
B1LYP 10 2.4931 2.4931 60.2067 161.6978 163.3248 217.0806
B3LYP 10 2.4701 2.4701 60.4498 161.8123 162.8664 218.8316
B3P86 10 2.4008 2.4961 58.6009 166.5900 182.7480 233.8198
B3PW91 10 2.4150 2.5096 58.6799 166.0688 179.6791 229.8943
B971 10 2.5424 2.4762 59.1337 162.6439 171.0763 213.8466
B972 10 2.5201 2.4335 58.8170 161.4558 173.0234 216.3178
B98 10 2.4858 2.4858 60.8054 158.7981 167.4695 211.4643
BHandH 10 2.5399 2.5399 60.3833 141.6028 167.9064 175.9585
BHandHLYP 10 2.9937 2.9994 59.7120 69.0480 92.2697 95.1655
HFB 10 2.6259 2.4800 58.0495 134.6271 146.6539 187.9772
MPW1PW91 10 2.4276 2.5127 58.8097 165.9933 179.6142 229.2789
O3LYP 10 2.3551 2.5231 57.6225 156.5483 171.2290 219.1099
PBE1PBE 10 2.4258 2.5109 58.8808 167.9620 180.6394 229.9148

merically, these three frequency values are roughly centered around 65, 165, and 280 cm−1.

Now we have come to the m = 10 case. It follows from the second part of Table 3.30 that,

the minimum energy configuration for this case are all equilateral triangles, though nearly all

of them are distorted. This distortion is the biggest in O3LYP and the smallest B1LYP and

these are the reasons why the R12 and R23 values are so apart for O3LYP and equal to each

other for B1LYP. Except for BHandHLYP, the bond lengths of the equilateral structures are in

the range of 2.36–2.63 Å. The corresponding value for BHandHLYP is about 3.00 Å, which

we believe is not reliable. We remember from Table 3.24 that BHandHLYP method gave us a

2.395-Å the bond length for the Co2 dimer. It seems unrealistic that in forming a Co3 trimer

from a Co2 dimer by adding a third Co atom would increase this 2.395-Å value to 3.00-Å, for

this would be a huge leap in the atomic scale. A close look at the corresponding vibrational

frequency values reveals the same oddness for BHandHLYP method; its results are remark-

ably smaller than those of other methods. By the way, a similar situation in concerning these
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frequency values are noticed for BHandH and HFB methods; for the latter this should be seen

normal if we remember that HFB does not include the crucially important electron correlation

phenomenology in its formulation. (Note that the frequency values of HFB are not drastically

different from others.) We do not manage to ascribe properly the strangeness witnessed in

BHandH case to a logical reason for the time being, for this requires a profound analysis into

the internal details of the BHandH method’s formulation, which is out of scope of this mas-

ter thesis. Apart from the mentioned three methods, the numerical frequency values of the

other ten methods are centered around 160, 170, and 220 cm−1, with the former two being

somehow close to each other.

We give in Table 3.31 the calculated excess charge on the atoms of the Co3 trimer and the

closely related dipole moment values for again them = 8 and 10 cases. It is seen a net charge

separation for all the results listed in this table. In the geometrically linear m = 8 case, the

symmetry dictates a zero net dipole moment, as is clearly seen in the last column: we have

two dipoles, opposite to each other, one say, to the left and the other to the right, possessing

nearly the same magnitude, leading to a zero dipole moment. Again the non-zero but very

small µ values are acceptable within the accuracy of the results. Referring to Table 3.30, we

see that all the non-zero µ values belong to the non-perfect linear geometries. It is plain from

the same table that 2|q1| = 2|q3| = q2, of course, this is unsurprising. Numerically, the charge

values are in a wide range such that 0.14|e| < q2 < 0.29|e|.

In the m = 10 cases, which are geometrically equilateral triangles, we observe symmetric

charge separations in all the cases considered, but not so much clearly as in the case of the

linear m = 8 geometries mentioned above. We note that the magnitudes of these charge

values are so small if we compare them with those for the m = 8 cases. There might be

two explanations here. Firstly, we may suppose that there is no charge separation at all in the

ingredients Co atoms of the trimer, so that there is no net resulting dipole moment. This also

explains the feature seen in the m = 10 portion of Table 3.31: the more distorted triangle, the

bigger total dipole moment value it has. Secondly, there is really a charge separation among

Co atoms, which are listed in the same table, so that we have some amount of total dipole

moments, though they are very small. Therefore, the numeric µ values are distributed in a

broad range: 0.0051 D for B98 and 0.1728 D for HFB. Not surprisingly, here again HFB

determines, probably incidentally, the extremum value for the µ value.
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Table3.31: Calculated excess charge (in units of electron charge) on atoms and dipole mo-
ments (in Debye) of Co3 trimer.

method m q1 q2 q3 µ
B1LYP 8 -0.144537 0.289072 -0.144534 0.0001
B3LYP 8 -0.121604 0.243213 -0.121609 0.0001
B3P86 8 -0.119827 0.239652 -0.119826 0.0003
B3PW91 8 -0.094048 0.187872 -0.093824 0.0137
B971 8 -0.120109 0.240230 -0.120121 0.0016
B972 8 -0.091263 0.182526 -0.091263 0.0000
B98 8 -0.114555 0.229116 -0.114561 0.0004
BHandH 8 -0.135364 0.270729 -0.135364 0.0000
BHandHLYP 8 -0.135942 0.271805 -0.135863 0.0010
HFB 8 -0.068695 0.137315 -0.068619 0.0005
MPW1PW91 8 -0.079160 0.158003 -0.078843 0.0145
O3LYP 8 -0.099895 0.199796 -0.099901 0.0009
PBE1PBE 8 -0.116921 0.233828 -0.116907 0.0007
B1LYP 10 0.013894 -0.027789 0.013895 0.0788
B3LYP 10 0.010801 -0.021603 0.010801 0.0525
B3P86 10 0.009223 -0.017803 0.008580 0.1361
B3PW91 10 0.008662 -0.017616 0.008954 0.1328
B971 10 0.002091 -0.003327 0.001236 0.0839
B972 10 0.000675 -0.001468 0.000793 0.1134
B98 10 0.009839 -0.019678 0.009839 0.0051
BHandH 10 -0.001741 0.003482 -0.001741 0.0143
BHandHLYP 10 -0.002614 0.005284 -0.002670 0.0519
HFB 10 0.013931 -0.027650 0.013719 0.1728
MPW1PW91 10 0.004903 -0.009380 0.004477 0.1152
O3LYP 10 0.022138 -0.044295 0.022157 0.1101
PBE1PBE 10 0.005352 -0.011242 0.005890 0.1140

The HOMO and LUMO energies and HOMO-LUMO energy gaps Eg for Co3 dimer are

tabulated in Table 3.32. It can be easily noticed that the trend in other HOMO-LUMO tables

does not change in this table; meaning that HFB and O3LYP again give the minimum values

among all results, additionally BHandH and BHandHLYP give notably greater values than

others. Except these methods, the results of other nine methods can be described as in a

good manner. For m = 8 case, the results of latter group can be expressed as Eg(α) =

3.22 ± 0.12 Hartrees and Eg(β) = 2.72 ± 0.23 Hartrees. These ranges are a bit larger for

m = 10; Eg(α) = 2.91 ± 0.13 Hartrees and Eg(β) = 3.24 ± 0.33 Hartrees. At the end of

Co3 trimer calculations, we can conclude that the results ofm = 8 case seem more acceptable

than the results of m = 10. The unexpected or doubtful situations that are mentioned above

are generally about the multiplicity value 10, especially for values exhibited in Table 3.30.
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Table3.32: HOMO and LUMO energies (in Hartrees), and HOMO-LUMO gap (Eg) energies
(in eV) of the Co3 trimer, calculated for the multiplicity,m (2S+1), at which the total energy
is minimum.

method m HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β)

B1LYP 8 -0.19403 -0.07465 3.24849 -0.18281 -0.08683 2.61175
B3LYP 8 -0.19695 -0.08307 3.09883 -0.18662 -0.09491 2.49556
B3P86 8 -0.21808 -0.10037 3.20305 -0.20541 -0.11420 2.48195
B3PW91 8 -0.19681 -0.08015 3.17448 -0.18388 -0.09092 2.52957
B971 8 -0.19014 -0.07569 3.11434 -0.18223 -0.08994 2.51134
B972 8 -0.18888 -0.07189 3.18346 -0.18294 -0.09016 2.52467
B98 8 -0.19232 -0.07613 3.16169 -0.18384 -0.08596 2.66345
BHandH 8 -0.20682 -0.04572 4.38375 -0.19754 -0.03962 4.29722
BHandHLYP 8 -0.20295 -0.04950 4.17559 -0.19371 -0.04293 4.10293
HFB 8 -0.16259 -0.08170 2.20113 -0.13958 -0.09685 1.16274
MPW1PW91 8 -0.19740 -0.07466 3.33993 -0.18488 -0.07642 2.95135
O3LYP 8 -0.18043 -0.07800 2.78726 -0.17037 -0.10302 1.83269
PBE1PBE 8 -0.19759 -0.07512 3.33258 -0.18444 -0.08792 2.62644
B1LYP 10 -0.17084 -0.05896 3.04441 -0.21324 -0.09033 3.34455
B3LYP 10 -0.17257 -0.06886 2.82209 -0.21865 -0.10809 3.00849
B3P86 10 -0.19342 -0.09114 2.78318 -0.24005 -0.12377 3.16414
B3PW91 10 -0.17392 -0.07094 2.80223 -0.21628 -0.10050 3.15053
B971 10 -0.16570 -0.06300 2.79461 -0.21104 -0.10395 2.91407
B972 10 -0.16259 -0.05983 2.79624 -0.21726 -0.10560 3.03842
B98 10 -0.17050 -0.06436 2.88822 -0.21449 -0.10226 3.05393
BHandH 10 -0.20163 -0.04480 4.26756 -0.21568 -0.04341 4.68770
BHandHLYP 10 -0.22233 -0.04411 4.84961 -0.20843 -0.04138 4.54566
HFB 10 -0.13907 -0.06770 1.94208 -0.14890 -0.10631 1.15893
MPW1PW91 10 -0.17780 -0.06633 3.03325 -0.21766 -0.08626 3.57558
O3LYP 10 -0.15564 -0.06754 2.39732 -0.19639 -0.11801 2.13283
PBE1PBE 10 -0.17642 -0.06643 2.99298 -0.21711 -0.08574 3.57476

3.3.2 Sm3 Trimer Calculations

Only m = 19 and m = 21 calculations give results, even no results for MPW1PW91,

BHandH, and BHandHLYP methods. Inspite of too few data there is not an accuracy about

minimum energy multiplicity. HFB and O3LYP indicate the minimum energy at m = 19,

other seven methods at m = 21. Since Sm atom has six unpaired electrons, the expected

multiplicity value is 19, whereas most of the methods failed to conclude the calculation at

this multiplicity. Table 3.33 demonstrates the all attained results of minimum energy values

of Sm3. The starred values in the energy tables indicate the minimum energy values through

this study, however in the previous table except O3LYP, all methods give only one result, so
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these minimum values are not reliable to accept them exact minimum points. By comparing

to the previous total energy tables, it is clearly seen that Sm3 trimer calculations are the most

difficult and challenging ones, since even Sm atom is an extensive one with 62 electrons, three

Sm atoms not easy to handle.

Table3.33: Total energies, Em, in Hartrees, for Sm3 trimer for different multiplicities,
m (2S + 1). The starred ones show the lowest energy. ‘nc’ indicates a ‘not completed’
calculation due to a non-convergent- or confused-SCF process.

method −E19 −E21

B1LYP nc 243.7079*
B3LYP nc 244.2362*
B3P86 nc 245.3442*
B3PW91 nc 244.3930*
B971 nc 244.0959*
B972 nc 244.3823*
B98 nc 244.1446*
BHandH nc nc
BHandHLYP nc nc
HFB 243.8163* nc
MPW1PW91 nc nc
O3LYP 244.9254* 244.8975
PBE1PBE nc 243.9542*

The spectroscopic constants of Sm3 trimer are demonstrated in Table 3.34, which are opti-

mized interatomic separations, bond angle, and vibrational frequencies. Because of the lack

of information about Sm3 trimer, we prefer to give all attained results. The corresponding

calculations of expected multiplicity value for Sm3 conclude only for HFB and O3LYP meth-

ods. Although their bond lengths are very close each other around 4.7 Å, bond angles are

60.1 and 126.7 ◦, different from each other. The vibrational frequencies of this trimer are

given nearly the same by HFB method, but no significant relation for O3LYP. The informa-

tion aboutm = 19 case for Sm3 is not enough to discuss on it. If we continue from the second

part of the same table, where m = 21 cases are demonstrated, we can see that only method

that breaks the general tendency is B972. Except B972, other methods give separation values

R12 and R23 are in the range of 4.19 - 4.30 Å. The bond angle changes from 111 ◦ to 118 ◦

and we cannot talk about symmetry for the geometrical structure of Sm3 trimers. The only

thing, remarkable about frequencies is that at least two of them are comperatively close two

each other and the remaining one is smaller than these two. These three frequency values are
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roughly centered around 12, 53, and 57 cm−1.

Table3.34: Bond lengths R12 and R23 (Å), bond angle θ123 (deg), and vibrational frequencies
ωn (cm−1) of Sm3 trimer.For the notation used, see Fig. 3.9.

method m R12 R23 θ123 ω1 ω2 ω3

HFB 19 4.7886 4.7956 60.0690 33.1440 33.6374 34.4114
O3LYP 19 4.7378 4.7272 126.7256 5.7828 32.3123 45.3594
B1LYP 21 4.2668 4.2696 113.7498 11.4360 49.9752 57.3797
B3LYP 21 4.2477 4.2490 111.8027 15.3370 51.9261 57.9838
B3P86 21 4.2110 4.1936 113.6510 9.3339 54.7454 59.5442
B3PW91 21 4.2336 4.2522 117.6514 12.5195 53.5626 57.8730
B971 21 4.2662 4.2396 117.7272 13.9140 55.8347 59.1260
B972 21 3.8016 3.9382 69.9648 31.4646 44.3272 70.8001
B98 21 4.2689 4.2319 118.4543 12.3124 54.1845 57.7793
BHandH 21 – – – – – –
BHandHLYP 21 – – – – – –
HFB 21 – – – – – –
MPW1PW91 21 – – – – – –
O3LYP 21 4.2917 4.3024 115.4995 14.1583 49.7005 56.4101
PBE1PBE 21 4.2255 4.2512 117.9038 14.3396 53.7545 59.2637

According to Table 3.35, there is no symmetry between the charges of the Sm3 trimer. The

dipole moment values for m = 19 are not notable, however for m = 21 they seem accu-

rate and close to the 1.6 Debye with the exception of B972 methods which gives 1.3 Debye

approximately.

It is interesting to note in HOMO–LUMO table of Sm3 (Table 3.36) that form = 19 case only

methods HFB and O3LYP give results which method were gain a fame by generating excep-

tional situations. It can be more meaningful to talk about onlym = 21 case for this table. The

methods BHandH, BHandHLYP, HFB, and MPW1PW91 have not been completed the calcu-

lations as seen in table. O3LYP gives the minimum value for Eg(α) as 0.90 Hartrees where

the others are averaged around 1.30 Hartrees. There is an exceptional case for B972 also, for

the fist time in HOMO–LUMO tables, it gives Eg(β) value minimum as 0.84 Hartrees where

the other values are around 1.50 Hartrees.
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Table3.35: Calculated excess charge (in units of electron charge) on atoms and dipole mo-
ments (in Debye) of Sm3 trimer.

method m q1 q2 q3 µ

HFB 19 -0.000199 0.000331 -0.000132 0.0015
O3LYP 19 -0.004715 0.005272 -0.000558 0.1981
B1LYP 21 -0.039669 0.077510 -0.037841 1.6431
B3LYP 21 -0.037984 0.077902 -0.039918 1.5683
B3P86 21 -0.040334 0.086364 -0.046030 1.6384
B3PW91 21 -0.046829 0.087904 -0.041075 1.6758
B971 21 -0.024885 0.057284 -0.032400 1.6228
B972 21 -0.041501 0.144653 -0.103152 1.3033
B98 21 -0.027456 0.063010 -0.035554 1.5795
BHandH 21 – – – –
BHandHLYP 21 – – – –
HFB 21 – – – –
MPW1PW91 21 – – – –
O3LYP 21 -0.039062 0.077230 -0.038168 1.6493
PBE1PBE 21 -0.044694 0.081461 -0.036767 1.7668

3.3.3 SmCo2 Trimer Calculations

The total energy and corresponding multiplicity values of SmCo2 are demonstrated in Ta-

ble 3.37. By a short glimpse, an interesting situation take attention, that is the discrimination

of the corresponding multiplicity values for minimum energy. There are two values, m = 3

and m = 11 and for the first time given multiplicities are not consecutive values. As men-

tioned before, Sm atom has 6 unpaired electrons and Co atom has 3, so to experience the

m = 3 case three of these atom has to be tied as remaining only two unpaired electrons,

this situation seems not so feasible. Unfortunatelly, nearly half of our methods give this non-

sense value for multiplicity, which are B3LYP, B3P86, B3PW91, B972, BHandH, HFB, and

O3LYP. Besides, the results of m = 11 case are plausible as will be discussed in a short

time. Another interesting thing is that the difference between energies are very small for all

possible multiplicity values. For example, all energy values from −E1 to −E19 fluctuate

between the values 370.9404-371.3720 Hartrees for B1LYP, the difference is 0.4316 Hartrees

and another example PBE1PBE values from 371.0343 to 371.5420 Hartrees, the difference is

0.5077 Hartrees. If we closely look to Table 3.37 to catch any pattern among energy values,

the only thing we will obtain is a clutter.

In Table 3.38 and Table 3.39, the spectroscopic constants of SmCo2 are displayed for both
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Table3.36: HOMO and LUMO energies (in Hartrees), and HOMO-LUMO gap (Eg) energies
(in eV) of the Sm3 trimer, calculated for the multiplicity,m (2S+1), at which the total energy
is minimum.

method m HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β)
HFB 19 -0.07445 -0.03798 0.99240 -0.06394 0.00297 1.82071
O3LYP 19 -0.08784 -0.02207 1.78969 -0.07916 -0.01133 1.84575
B1LYP 21 -0.04760 0.00447 1.41690 -0.09871 -0.04145 1.55812
B3LYP 21 -0.04947 -0.00501 1.20982 -0.10075 -0.04911 1.40520
B3P86 21 -0.07490 -0.03013 1.21825 -0.12144 -0.06662 1.49173
B3PW91 21 -0.05624 -0.01152 1.21689 -0.10319 -0.04778 1.50778
B971 21 -0.05095 -0.00279 1.31050 -0.10044 -0.05010 1.36982
B972 21 -0.06333 -0.01399 1.34261 -0.08840 -0.05746 0.84192
B98 21 -0.05260 -0.00322 1.34370 -0.10164 -0.04920 1.42696
BHandH 21 – – – – – –
BHandHLYP 21 – – – – – –
HFB 21 – – – – – –
MPW1PW91 21 – – – – – –
O3LYP 21 -0.04128 -0.00819 0.90042 -0.08514 -0.04290 1.14941
PBE1PBE 21 -0.05806 -0.00559 1.42778 -0.10415 -0.04371 1.64466

m = 3 and m = 11 cases. The m = 3 case, only the seven methods are take into account,

which gives the minimum energies at this value for the reasons mentioned above. Despite all

disalignments, bond lengths R12 and R23 are in accordance with each other. The two values

are already equal to each other for all methods and varies in a range 2.93-3.04 Å can be re-

garded as close to each other among all methods. Except BHandH and B3LYP methods, they

show nearly linear geometric configurations, even B3P86 and B3PW91 gives 180◦. O3LYP

method disturbs the general accuracy of vibrational frequency by giving three frequency val-

ues around 109, 119, and 146 cm−1. Other methods seen as coherent with the frequency

values around 23, 116, and 150 cm−1. The charge seperation and dipole moment values,

which can be checked from Table 3.39, are compatible with the results of Table 3.38. It has

to be point out at that the unfeasible situation about m = 3 multiplicity value of SmCo2 is

making compact bonds with this linearly geometric structure.

The results of more acceptable multiplicity m = 11 from the same tables indicates two dif-

ferent structure, one is very close to linear geometric configurations and the other gives bond

angle around 163◦. The latter group consists of B1LYP, B3LYP, B3P86, B3PW91, B971, and

B98. Although there is a significant discrimination about bond angle among the methods,

other all constants, bond lengths, vibrational frequencies, and excess charges are in almost

perfect agreement. The bond lengths might be described as Ri = 2.98 ± 0.06 Å and vi-

brational frequencies are very close to average values 23, 113, and 147 cm−1. In addition
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charges match the equality 2|q1| = 2|q3| = q2 perfectly, even their numerical values are so

close to each other, might be averaged at 0.6|e| for |q1| and so |q3|. The discrimination is also

observed in dipole moment values, as expected; the structures close to linear geometry give

µ nearly zero and the others give aproximately 1.5|e|. Only PBE1PBE is an exception here,

with the value 0.6|e|.

Table3.38: Bond lengths R12 and R23 (Å), bond angle θ123 (deg), and vibrational frequencies
ωn (cm−1) of SmCo2 trimer. For the notation used, see Fig. 3.9.

method m R12 R23 θ123 ω1 ω2 ω3

B3LYP 3 2.9331 2.9331 161.1631 17.5528 116.3024 149.7179
B3P86 3 2.9266 2.9266 180.0000 20.4975 118.8106 155.7995
B3PW91 3 2.9452 2.9452 180.0000 23.0975 116.8782 153.0267
B972 3 2.9434 2.9434 179.9705 16.7771 112.6143 147.2985
BHandH 3 2.9317 2.9317 148.4707 31.3149 118.1967 147.4468
HFB 3 3.0368 3.0382 179.8909 32.3718 107.4464 139.8954
O3LYP 3 2.9686 2.9670 174.2533 108.7929 118.5958 146.2946
B1LYP 11 2.9752 2.9752 162.9116 18.4599 113.6248 146.5105
B3LYP 11 2.9542 2.9542 162.1995 18.9965 115.8427 149.5719
B3P86 11 2.9186 2.9186 163.5896 20.4025 118.6954 154.0548
B3PW91 11 2.9392 2.9392 165.4604 17.6081 116.3699 151.2471
B971 11 2.9653 2.9653 163.0069 24.5386 113.9750 147.7167
B972 11 2.9645 2.9646 179.9848 32.7519 112.9972 147.8264
B98 11 2.9660 2.9660 163.2708 24.4891 113.5142 147.0553
BHandH 11 2.9454 2.9454 180.0000 13.8876 111.8542 147.2085
BHandHLYP 11 3.0413 3.0413 179.9766 19.4891 106.3679 138.8708
HFB 11 3.0283 3.0324 179.9553 17.3908 108.9150 141.1502
MPW1PW91 11 2.9515 2.9516 179.9731 31.4940 114.1198 149.7423
O3LYP 11 2.9779 2.9779 179.9968 28.9573 110.6921 144.6396
PBE1PBE 11 2.9521 2.9521 180.0000 35.5184 113.7510 149.1385

The general tendency about HOMO–LUMO tables has not been broken for SmCo2 trimer

which tabulated in Table 3.40. That means HBF and O3LYP give smaller vaues for Eg(α)

and Eg(β) and half and half methods BHandH and BHandHLYP methods give greater values

in comparison to other methods. To examplify this, we can notify the results for m = 11

case of HFB method as Eg(α) = 1.69 Hartrees and Eg(β) = 0.91 Hartrees and for BHandH

method as Eg(α) = 3.98 Hartrees and Eg(β) = 3.83 Hartrees. Other methods are average

around Eg(α) = 2.90 Hartrees and Eg(β) = 2.75 Hartrees.
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Table3.39: Calculated excess charge (in units of electron charge) on atoms and dipole mo-
ments (in Debye) of SmCo2 trimer.

method m q1 q2 q3 µ
B3LYP 3 -0.589815 1.179631 -0.589815 1.8171
B3P86 3 -0.595703 1.191407 -0.595703 0.0000
B3PW91 3 -0.598929 1.197858 -0.598929 0.0000
B972 3 -0.599011 1.198022 -0.599011 0.0029
BHandH 3 -0.594011 1.188022 -0.594011 2.8019
HFB 3 -0.570854 1.141626 -0.570772 0.0111
O3LYP 3 -0.594475 1.187688 -0.593214 0.5286
B1LYP 11 -0.601043 1.202085 -0.601042 1.6473
B3LYP 11 -0.598515 1.197035 -0.598519 1.7165
B3P86 11 -0.602447 1.204895 -0.602448 1.5750
B3PW91 11 -0.606147 1.212293 -0.606147 1.3890
B971 11 -0.598255 1.196510 -0.598255 1.5898
B972 11 -0.611554 1.223105 -0.611551 0.0015
B98 11 -0.602870 1.205739 -0.602870 1.5761
BHandH 11 -0.600931 1.201863 -0.600931 0.0000
BHandHLYP 11 -0.611686 1.223373 -0.611686 0.0023
HFB 11 -0.592752 1.185177 -0.592425 0.0116
MPW1PW91 11 -0.608873 1.217731 -0.608859 0.0027
O3LYP 11 -0.608725 1.217449 -0.608724 0.0003
PBE1PBE 11 -0.603623 1.207247 -0.603623 0.5558

3.3.4 Sm2Co Trimer Calculations

The last part of this study is allocated to the Sm2Co trimer calculations. In Table 3.41, total

energy values are given and seen that minimum energies are given at two different multiplic-

ity values m = 12 and m = 16, intensively at latter one. B3P86, B3PW91, O3LYP, and

PBE1PBE give minimum at m = 12, however the values are very close to each other, even

the difference are about 0.0024 Hartrees of the first three and 0.0003 Hartrees for the last one.

There cannot be catched any pattern, energy values are fluctuated for all possible multiplicity

values, and additionally too many missing data which make evaluation harder. The missing

results are not surprising for us since this trimer includes two Sm atoms. Even the dimer of

Sm atom failed to give enery values completely, can be seen in Table 3.26.

Because of two values of multiplicity, we arrange the following tables as including the both

of them. As we start fromm = 12 case, all results seen in accordance with each other. All the

bond angles are around 74 ◦ and the vibrational frequency values can be averaged around 56,

77, and 112cm−1 . Form = 16, situation is not that simple, even three groups of angle, means

that of geometrical structure. The first group consist of B3P86, B3PW91, B971, O3LYP, and
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Table3.40: HOMO and LUMO energies (in Hartrees), and HOMO-LUMO gap (Eg) energies
(in eV) of the SmCo2 trimer, calculated for the multiplicity, m (2S + 1), at which the total
energy is minimum.

method m HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β)
B3LYP 3 -0.15811 -0.06810 2.44930 -0.16732 -0.06344 2.82672
B3P86 3 -0.17819 -0.08053 2.65746 -0.18914 -0.07622 3.07271
B3PW91 3 -0.15750 -0.05796 2.70862 -0.16859 -0.05425 3.11135
B972 3 -0.15508 -0.05484 2.72767 -0.15999 -0.05246 2.92604
BHandH 3 -0.17482 -0.03257 3.87082 -0.18101 -0.03165 4.06429
HFB 3 -0.09318 -0.06240 0.83757 -0.13313 -0.05303 2.17963
O3LYP 3 -0.14157 -0.06182 2.17011 -0.15096 -0.05884 2.50671
B1LYP 11 -0.16764 -0.06195 2.87597 -0.15470 -0.05368 2.74889
B3LYP 11 -0.17009 -0.07061 2.70699 -0.15669 -0.06231 2.56821
B3P86 11 -0.19115 -0.08261 2.95352 -0.17504 -0.07499 2.72250
B3PW91 11 -0.17049 -0.06064 2.98917 -0.15427 -0.05290 2.75842
B971 11 -0.16556 -0.06471 2.74427 -0.15318 -0.05454 2.68413
B972 11 -0.16363 -0.05861 2.85774 -0.15215 -0.04852 2.81992
B98 11 -0.16801 -0.06453 2.81583 -0.15462 -0.05405 2.73665
BHandH 11 -0.18413 -0.03791 3.97885 -0.17098 -0.03033 3.82728
BHandHLYP 11 -0.18326 -0.03974 3.90538 -0.17066 -0.03244 3.76116
HFB 11 -0.13255 -0.07053 1.68765 -0.08983 -0.05650 0.90696
MPW1PW91 11 -0.17268 -0.05603 3.17421 -0.15648 -0.04783 2.95652
O3LYP 11 -0.15313 -0.06524 2.39161 -0.13865 -0.05657 2.23351
PBE1PBE 11 -0.17191 -0.05858 3.08387 -0.15638 -0.04978 2.90073

PBE1PBE methods corresponding angles are approximately 74 ◦ , reflects isosceles triangle

geometric structure with equal R12 and R23 values. The corresponding frequency values are

averaged around 62, 73, and 104 cm−1. BHandH and MPW1PW91 constitute the second

group that the corresponding angles are around 94 and 92 ◦ and the bond lengths are equal

to each other for each method. The geometric structure seems to be close to isosceles right

triangle. There is not a similarity between the frequency values ωn for these two methods.

The last group consists of six methods, B1LYP, B3LYP, B972, B98, BHandHLYP, and HFB,

whose angle can be average around 177 ◦ seems close the linear structure but can not be

acceptable as so. The bond lengths are equal to each other similar to the other groups. the

values of HFB is a bit smaller than others, so except it frequency values of other methods are

around 27, 56, and 100 cm−1.

There is no need to say much about excess charge and dipole moments of Sm2Co trimer.

All charge values seems symmetric for m = 12, so they can fulfill the mentioned equality

2|q1| = 2|q3| = q2. Although this is not the case for m = 12, their dipole moments are in

accordance with each other. There are two groups for dipole moments at multiplicity value

16. One of them average about 3.80 Hartrees and the other group is about 0.17 Hartrees. This

63



Table3.41:Totalenergies,E
m

,in
H

artrees,forSm
2 C

o
trim

erfordifferentm
ultiplicities,m

(2S
+

1).

m
ethod

−
E

2
−
E

4
−
E

6
−
E

8
−
E

1
0

−
E

1
2

−
E

1
4

−
E

1
6

−
E

1
8

−
E

2
0

−
E

2
2

−
E

2
4

B
1LY

P
nc

nc
307.3820

307.3734
307.5552

307.5601
307.5523

307.5624*
307.5323

307.4605
307.3784

307.0865

B
3LY

P
nc

307.7121
307.9101

307.9813
308.0214

308.0275
308.0043

308.0281*
307.9994

307.9300
307.8385

307.5513

B
3P86

308.8220
309.1482

309.0449
nc

nc
309.1517*

309.1374
309.1493

309.0756
309.0660

308.9809
308.7021

B
3PW

91
307.7418

307.9437
nc

308.1239
nc

308.1614*
308.1476

308.1590
308.1380

308.0806
nc

307.7271

B
971

nc
307.4331

307.7423
307.8121

307.8582
307.8624

307.8394
307.8648*

nc
307.7706

307.6494
307.3577

B
972

308.0024
307.8218

nc
308.2037

308.2475
308.2530

308.2433
308.2547*

308.2249
308.1544

308.0260
307.7352

B
98

nc
nc

307.8209
307.8919

307.9350
307.9401

307.9176
307.9420*

307.9149
307.8336

307.7259
307.4439

B
H

andH
nc

nc
nc

305.4312
305.6189

305.7035
305.6746

305.7107*
305.6688

305.6405
305.5412

305.3087

B
H

andH
LY

P
nc

nc
306.4881

306.4552
306.6448

306.6041
306.6453

306.6562*
306.5205

306.5799
306.4869

306.2436

H
FB

307.0138
306.8543

306.9288
306.9803

307.0095
307.0157

307.0051
307.0163*

306.9895
nc

nc
nc

M
PW

1PW
91

nc
307.7370

307.8477
nc

307.9257
nc

307.9279
307.9381*

nc
307.8640

307.7892
307.5190

O
3LY

P
308.6259

308.3850
308.5235

308.5933
308.6275

308.6350*
308.6196

308.6327
308.6116

308.5434
308.4483

308.1325

PB
E

1PB
E

nc
307.4739

307.6745
307.7317

307.7556
307.7695*

307.7558
307.7692

307.7286
307.6919

307.6012
307.3458

64



Table3.42: Bond lengths R12 and R23 (Å), bond angle θ123 (deg), and vibrational frequencies
ωn (cm−1) of Sm2Co trimer. For the notation used, see Fig. 3.9.

method m R12 R23 θ123 ω1 ω2 ω3

B3P86 12 3.0963 3.0994 74.5181 60.1835 78.8503 117.1174
B3PW91 12 3.1245 3.1245 74.3311 52.9945 77.9446 113.8776
O3LYP 12 3.1705 3.1696 74.3520 59.0937 74.5383 106.2918
PBE1PBE 12 3.1119 3.2255 74.4213 54.6425 78.5844 111.8161
B1LYP 16 3.2014 3.2014 178.4943 27.4209 56.1642 100.9899
B3LYP 16 3.1809 3.1808 178.4454 28.0331 57.5204 102.3097
B3P86 16 3.1634 3.1634 74.2914 62.1771 75.4311 111.4082
B3PW91 16 3.1844 3.1844 74.4633 59.3317 74.1704 106.6047
B971 16 3.2368 3.2368 73.6098 67.9045 73.6846 103.9630
B972 16 3.1973 3.1973 177.1633 26.0410 56.4952 100.9982
B98 16 3.1957 3.1957 174.3087 26.7266 58.2751 106.2278
BHandH 16 3.0301 3.0301 94.0566 34.7092 69.8729 110.8845
BHandHLYP 16 3.2544 3.2544 179.0175 24.9222 52.3997 98.5364
HFB 16 3.3108 3.3108 175.1862 20.9194 52.1416 81.7126
MPW1PW91 16 3.0778 3.0778 92.0486 27.1021 39.5214 112.6796
O3LYP 16 3.2529 3.2529 73.9851 66.4491 71.6462 98.0373
PBE1PBE 16 3.1925 3.1925 73.8788 58.8473 75.3725 106.0738

discrimination is about the geometry of the trimers, can be observed clearly when the methods

are compared with the angle discrimination of Table 3.42.

From Table 3.44 we can investigate the HOMO–LUMO energies and energy gaps of Sm2Co

trimer for multiplicity values 12 and 16. There are four methods given for m = 12 case

which are B3P86, B3PW91, O3LYP, and PBE1PBE. The O3LYP known by giving smaller

energy gap values from previous similar discussions, here is the same situation however the

difference is not so remarkable. For m = 16 case BHandH and BHandHLYP give greater

values and HFB again gives the smaller values as expected, however for the time being O3LYP

does not show significant difference from other methods. B3LYP, B972, and B98 also give

smaller values, close to O3LYP, can be defined as around 1.85 Hartrees for Eg(α), where

the average of the other methods is 2.18 Hartrees. A similar incident exist for Eg(β), HFB

significantly small, O3LYP and B971 also smaller but the difference is not so exact. BHandH

and BHandHLYP demonstrate greater values as usual. The average of the remaining methods

is 1.56 Hartrees.

65



Table3.43: Calculated excess charge (in units of electron charge) on atoms and dipole mo-
ments (in Debye) of Sm2Co trimer.

method m q1 q2 q3 µ
B3P86 12 0.403150 -0.804128 0.400978 3.7349
B3PW91 12 0.393664 -0.787327 0.393664 3.7048
O3LYP 12 0.406509 -0.805947 0.399437 3.8616
PBE1PBE 12 0.429600 -0.786355 0.356755 3.8478
B1LYP 16 0.446890 -0.893781 0.446891 0.0870
B3LYP 16 0.448514 -0.897070 0.448556 0.0885
B3P86 16 0.390296 -0.780592 0.390296 3.8876
B3PW91 16 0.384138 -0.768275 0.384138 3.8481
B971 16 0.384868 -0.769736 0.384868 3.8910
B972 16 0.427848 -0.855696 0.427848 0.1795
B98 16 0.439240 -0.878480 0.439240 0.3130
BHandH 16 0.455413 -0.910825 0.455413 3.5345
BHandHLYP 16 0.441154 -0.882307 0.441154 0.0636
HFB 16 0.429272 -0.858540 0.429268 0.2944
MPW1PW91 16 0.422975 -0.845954 0.422979 3.4561
O3LYP 16 0.382235 -0.764471 0.382236 3.8888
PBE1PBE 16 0.389958 -0.779916 0.389957 3.9040
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Figure 3.1: Nominal Lennard-Jones curves, describing the nature of the interaction between
Sm and Co atoms, for the 12 methods in Tables or in which the total energy values are mini-
mum for the multiplicity m = 10.
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Figure 3.2: Nominal Lennard-Jones curves, describing the nature of the interaction between
Sm and Co atoms, for the 12 methods in Tables or in which the total energy values are mini-
mum for the multiplicity m = 10 (Cont).
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Figure 3.3: Nominal Lennard-Jones curves for Co2 dimer with respect to DFT methods for
m = 7.
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Figure 3.4: Nominal Lennard-Jones curves for Co2 dimer with respect to DFT methods for
m = 7.(Cont.)
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Figure 3.5: Nominal Lennard-Jones curves for Co2 dimer with respect to DFT methods for
m = 7.
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Figure 3.6: Nominal Lennard-Jones curves for Co2 dimer with respect to DFT methods for
m = 7.(Cont.)
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Figure 3.7: Nominal Lennard-Jones curves for Sm2 dimer with respect to DFT methods.
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Figure 3.8: Nominal Lennard-Jones curves for Sm2 dimer with respect to DFT meth-
ods.(Cont.)
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CHAPTER 4

CONCLUSION

In the present study, structural and electronic properties of Sm-Co cluster systems are studied

theoretically. We deal with the microclusters of samarium and cobalt in all combinations

SmmCon up to (m+n = 3). We performed the density functional theory (DFT) calculations.

This work consists of three main parts. In the first part of our study, we investigated structural

and electronic properties of Sm and Co atoms and their ions, by indicating self consistent

energies for all possible values of the multiplicity. Also their ionization energies and electron

affinities are searched for possible ions. In the second part SmCo, Co2, and Sm2 dimers are

investigated according to self consistent energy. In addition, we presented binding energyDe,

bond lengths, re, the fundamental frequency we, charge q, dipole moment µ, the calculated

HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital),

and HOMO–LUMO gap energies of dimers. The third part of the calculations cover the struc-

tural and electronic properties of Co3, Sm3, SmCo2, and Sm2Co trimers. We investigated the

minimum energy configurations of the trimers (bond lengths and bond angle, as well as their

fundamental frequencies wn). For all the microclusters considered, we presented the possi-

ble dissociation channels and the corresponding dissociation energies, the calculated HOMO,

LUMO, and HOMO–LUMO gap energies. We also gave the calculated dipole moments and

excess charges on the atoms of the trimers.

Within the scope of this study, we met in the literature of microclusters there are limited

experimental and theoretical studies focused on SmmCon alloys. To our best knowledge,

there is no study other than Co2 for the rest of the clusters mentioned above. Therefore,

exploring the uncertain geometrical and electronic properties of the remaining microclusters

has been constituted the aim of present study.
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In this study we presented our theoretical computational outcomes on the structural and en-

ergetic features SmmCon microclusters via DFT techniques. We believe that the structural

features obtained in this treatise are reasonable and reliable. The present study can be seen a

preliminary work for higher order microcluster of transition metal–rare earth alloys.
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