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submitted by HACER ÖZ in partial fulfillment of the requirements for the
degree of Master of Science in Department of Financial Mathematics,
Middle East Technical University by,

Prof. Dr. Bülent Karasözen
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ABSTRACT

ADVANCES AND APPLICATIONS OF STOCHASTIC ITÔ-TAYLOR
APPROXIMATION AND CHANGE OF TIME METHOD:

IN THE FINANCIAL SECTOR

Öz, Hacer

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

September 2013, 61 pages

In this thesis, we discuss two different approaches for the solution of stochastic dif-
ferential equations (SDEs): Itô-Taylor method (IT-M) and change of time method
(CT-M). First approach is an approximation in space-domain and the second one
is a probabilistic transformation in time-domain. Both approaches may be con-
sidered to substitute SDEs for more “practical” representations and solutions.
IT-M was most studied for one-dimensional SDEs. The main aim of this work is
to extend the theory of one-dimensional IT-M to the higher-dimensional SDEs.
After covering IT-M for systems of SDEs with uncorrelated Brownian motions,
we also consider the systems of SDEs with correlated Brownian motions. Then,
discretization schemes are given and prepared to solve the systems of SDEs. As
for the second approach, CT-M is discussed briefly. After this, applications of
CT-M and IT-M are considered, especially, for most famous models, e.g., Cox-
Ingersoll-Ross model and Ornstein-Uhlenbeck model. As an application of IT-M,
stochastic control problems are also considered. In order to get an expression for
the gradient of sensitivity, Malliavin calculus is used. Throughout the thesis we
provide examples from the financial sector. This thesis ends with a conclusion
and an outlook to future studies.
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ÖZ

STOKASTİK ITÔ-TAYLOR YAKLAŞIMLARININ VE ZAMANI
DEĞİŞTİRME YÖNTEMİNİN GELİŞTİRİLMESİ VE FİNANSAL SEKTÖRE

UYGULAMALARI

Öz, Hacer

Yüksek Lisans, Finansal Matematik

Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Eylül 2013, 61 sayfa

Bu tezde, stokastik diferansiyel denklemlerin (SDD) çözümleri için iki farklı yakla-
şım tartışılmaktadır: Itô-Taylor metodu (IT-M) ve zamanı değiştirme metodu.
Birinci metot uzay bölgesinde bir yaklaşım ve ikinci metot ise zaman bölgesinde
olasılıksal bir dönüşümdür. Her iki metot da SDD’leri ve onların çözümlerini
daha “pratik” gösterimlerle temsil etme imkanı verir. Şimdiye kadar IT-M bir-
boyutlu SDD’ler için yeterince incelenmiştir. Bu çalışmanın asıl amacı bir-boyutlu
IT-M’nun teorisini çok-boyutlu SDD’lere genişletmektir. IT-M’nu aralarında ko-
relasyon olmayan Brownian hareketleri ile ifade edilen SDD sistemleri için ele
aldıktan sonra, aralarında korelasyon olan Brownian hareketleri ile ifade edilen
SDD sistemleri için de ele alınmıştır. Sonra ayrıklaştırma şemaları verilmiştir
ve SDD sistemlerini çözmek için kullanılmıştır. İkinci yaklaşım olan zamanı
değiştirme metodu kısaca anlatılmıştır. Daha sonra, çok önemli modeller olan
Cox-Ingersoll-Ross modeli ve Ornstein-Uhlenbeck modeli için uygulamalar yapıl-
mıştır. IT-M’nın bir uygulaması olarak, stokastik kontrol problemleri de ince-
lenmiştir. Hassasiyet duyarlılığı gradyantı için bir ifade elde edebilmek için Malli-
avin kalkülüs kullanılmıştır. Tez boyunca finansal sektörden örnekler verilmiştir.
Bu çalışma bir değerlendirme ve gelecek çalışmalara bir bakış ile sonuçlandırılmış-
tır.
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lüs
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I am grateful to my friends Ekin Baylan and Sinem Kozpınar for their love,
unfailing support, patience and proofreading of the thesis.

I also want to thank my friend MSc. Emel Savku for her helpful comments.

Furthermore, I thank to all members of the Institute for Applied Mathematics of
METU for their endless friendship and kindness.

And, I would like to express my thanks to TÜBİTAK for its financial support
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3.2 Itô-Taylor Expansions . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Multiple Stochastic Integrals . . . . . . . . . . . 13
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4.2 Itô-Taylor Approximation for Standard Brownian Motions 20

4.2.1 Completely Decoupled Systems . . . . . . . . . . 20

4.2.2 Systems with Common States . . . . . . . . . . 23

4.2.3 General Case . . . . . . . . . . . . . . . . . . . . 25

4.3 Itô-Taylor Approximation for Correlated Brownian Motions 27

4.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Discretization Schemes with Strong Taylor Ap-
proximations . . . . . . . . . . . . . . . . . . . 28

4.4.1.1 The Euler-Maruyama Scheme . . . . 29

4.4.1.2 The Milstein Scheme . . . . . . . . . 30

4.4.1.3 The Order 1.5 Strong Taylor Scheme 30

4.4.1.4 The Order 2.0 Strong Taylor Scheme 31

5 CHANGE OF TIME METHOD . . . . . . . . . . . . . . . . . . . 33

5.1 Change of Time for Martingales . . . . . . . . . . . . . . 33
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CHAPTER 1

INTRODUCTION

During the past few decades, stochastic differential equations (SDEs) have become
quite popular models in a variety of areas such as financial mathematics, actu-
arial sciences, physics, biology, geology, mechanics, astronomy and other fields
of science and engineering. For example, in financial mathematics, fluctuating
stock prices and option prices can be modeled by SDEs [13], or in physics, they
are used to model the effect of thermal noise in electrical circuits and numerous
kinds of disturbances in telecommunications systems [25,34].

These random events began to be modeled with the discovery of Brownian motion
by Robert Brown in 1827. He observed the motion of pollen particles in water,
noting that the particles moved through the water. But he was not able to
determine the mechanism that caused this motion. Thorvald N. Thiele explained
Brownian motion in mathematical terms in a paper on the method of least squares
published in 1880. Independently of Thorvald N. Thiele, Louis Bachelier, a French
mathematician, modeled the stochastic process, Brownian motion, in his PhD
thesis “The Theory of Speculation” (published in 1900). Since it is historically
the first paper to use advanced mathematics in finance, he can be considered as
a pioneer in the study of financial mathematics and stochastic processes. Then,
Norbert Wiener (1894 − 1964) described Brownian motion as a continuous-time
stochastic process, which is the reason why it is also called a Wiener process.
However, the history of stochastic differential equations can be considered to
have started with the Einstein’s famous paper “On the Motion of Small Particles
Suspended in a Stationary Liquid, as Required by the Molecular Kinetic Theory of
Heat” (1905), where he presented a mathematical connection between microscopic
random motion of particles and the macroscopic diffusion equation.

In modeling of stochastic integral equations, a problem arises from the integration
based on the Brownian motion. As a consequence of irregular paths of Brownian
motion, it is nowhere differentiable. This causes that one can not apply directly
usual calculus rules and formulas to it. However, Kiyoshi Itô extended these
rules and formulas from usual calculus to stochastic processes, which is called Itô
(stochastic) calculus (1951). He published many papers on stochastic calculus
[15–19]. His famous formula, Itô Lemma, [19] helps us to solve the SDEs. There is
also other kind of stochastic calculus, Stratonovich (stochastic) calculus, prepared
by Russian physicist R.L. Stratonovich in 1966 [35]. Stratonovich stochastic
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integral is the most common alternative to Itô stochastic integral. Unlike Itô
integral, it leads to the chain rule and further famous formulas of ordinary calculus
as special cases. However, in many real-world applications, such as modeling of
stock prices under the non-arbitrage principle or pricing of options [38], it is more
appropriate to use Itô calculus.

Unfortunately, many stochastic integrals can not be solved explicitly, emerging
the need of stochastic numerical integration schemes [26]. So far, different ap-
proaches are proposed to solve SDEs numerically. Discretization of both time
and space variables was proposed by Kushner (1977). But this was inefficient in
higher-dimensional cases. In 1978, Boyce suggested the simulation of general ran-
dom systems by Monte-Carlo methods. However, since this method does not use
the special structure of SDEs, it is less useful. Kushner’s Markov chain approach
was extended in higher-order approximations in 1992 by Platen.

Taylor-series expansion is one of the way for finding approximate solutions. In lit-
erature, it can be seen that various studies have been conducted on the stochastic
generalization of the Taylor formula, Itô-Taylor method (IT-M). The first gen-
eralization of this extension was firstly presented by Platen and Wagner [32].
Later, Platen and Kloeden derived and investigated stochastic Taylor expansion;
for details, cf. [23]. For a further study in the light of the Platen and Kloeden,
we may refer to [41].

Moreover, there is also a probabilistic method of transformation to solve SDEs:
Change of Time Method (CT-M). History of CT-M can be considered to begin
in 1940 by Doeblin although his sealed envelope was opened 60 years after when
it was sent. CT-M was also introduced by Bochner (1949, 1955). Dambis and
Dubins-Schwarz developed a theory of random time changes for semimartingales
in the 1960s [21, 33]. Johnson and Shanno [20] studied pricing of options using
time changed stochastic volatility model (SVM). German, Carr, Madan and Yor
[6] used subordinated process to construct SVM for Lévy process.

In this work, we study two different methods to solve SDEs: IT-M and CT-M.
After investigating IT-M for one-dimensional SDEs [23, 41], we extend the the-
ory of IT-M to the systems of SDEs [42], which is our main purpose. In the
multi-dimensional case, correlation between Brownian motions is also taken into
account. We transform the systems of SDEs with correlated Brownian motions to
the uncorrelated case. Then, we apply IT-M. In order to get numerical solutions
of a system of SDEs, we focus on discretization schemes. After this, some basic re-
sults from CT-M are presented [1,2,36,41]. To price variance and volatility swaps,
we apply CT-M to Cox-Ingersoll-Ross (CIR) model. As for IT-M applications,
we consider CIR model, Ornstein-Uhlenbeck (OU) model and stochastic control
problems. For CIR model and OU model, we obtain discretization schemes. IT-M
is also used to approximate state equations of stochastic control problems. Before
estimating the so-called sensitivity gradient, we apply Malliavin calculus to get
an expression for the gradient of the cost functional.

In the preliminaries, presented in Chapter 2, we give the fundamental definitions
and theorems of stochastic calculus. In Chapter 3, we explain how the Itô-Taylor
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schemes are constructed for one-dimensional SDEs. The Itô-Taylor schemes for
the systems of SDEs and discretization schemes for both one-dimensional and
higher-dimensional SDEs are covered in Chapter 4. Chapter 5 includes the CT-
M for SDEs. In Chapter 6, after giving some applications of random time change
to SDEs, we apply IT-M to systems of SDEs and stochastic control problems.
We derive the gradient of the cost functional by using sensitivity with the help
of Malliavin calculus. In the last chapter, we conclude and give an outlook to
future studies.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

Before we start with the main topic of this thesis, we cover some basic defini-
tions and theorems of stochastic calculus [25, 30]. Throughout the thesis, we let
(Ω,F , (Ft)t≥0,P) be a filtered probability space. Here, Ω denotes a sample space,
F is a σ-algebra, (Ft)t≥0 is a filtration and P is a probability measure [24]. We
may also restrict us to smaller time intervals [0, T ] for some “maturity time”
T > 0.

2.1 Brownian Motion

Definition 2.1. A stochastic process is a collection of random variables (Xt : t ∈
T ) defined on the same probability space (Ω,F ,P).

When the parameter set T is countable, i.e., T = N = {0, 1, 2, . . .}, we say that
the process is a discrete parameter process. If T is not countable, the process is
said to have a continuous parameter process. Mostly, we take T as R+ = [0,∞).
The index t represents time, and Xt can be considered as the “state” or the
“position” of the process at time t.

Definition 2.2. Brownian motion is a real-valued stochastic process (Wt : t ∈
[0, T ]) for some T > 0 with the following properties:

• Independent increments : For all 0 ≤ t0 < t1 < . . . < tm ≤ T , the increments

Wt1 −Wt0 ,Wt2 −Wt1 , . . . ,Wtm −Wtm−1

are independent.

• Stationary increments : If 0 ≤ s < t ≤ T , the increment Wt − Ws and
Wt−s −W0 have the same probability law.

• Continuity of paths : P a.s. the map t 7→ Wt is continuous.

Remark 2.1. A Brownian motion is called standard Brownian motion or Wiener
process if

W0 = 0 P a.s., E(Wt) = 0, E(W 2
t ) = t.
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From now on, we assume that the Brownian motion is standard if nothing else is
mentioned.

Definition 2.3. [5, 25] A standard n-dimensional Brownian motion (Zt)t≥0 is
an Rn-valued stochastic process

Zt = (Z1
t , Z

2
t , . . . , Z

n
t )
T ,

where Zi
t and Zj

t , for all i ̸= j, are uncorrelated Brownian motions with the
following properties of normalization:

(dZi
t)

2 = dt, dZi
tdt = 0, (dt)2 = 0.

In fact, this implies the following rule for different components:

dZi
tdZ

j
t = δijdt (i, j = 1, 2, . . . , n),

where δij is the Kronecker delta:

δij =

{
1 if i = j,
0 if i ̸= j.

Definition 2.4. [5] A process defined as Wt := (W 1
t ,W

2
t , . . . ,W

n
t )

T is a corre-
lated Brownian motion if

dW i
t dW

j
t = ρijdt (i, j = 1, 2, . . . , n),

for a positive semi-definite matrix ρ = (ρij)1≤i,j≤n satisfying the following prop-
erty:

ρii = 1, and ρij = ρji ∈ [−1, 1] for all i ̸= j.

2.2 Construction of the Itô Integral

We assume a simple population growth model as

dNt

dt
= atNt, N0 = c, (2.1)

where Nt is the size of population at time t, at is the relative rate of growth at
time t, and c is a given constant. In most cases, we completely do not know at
since it is subject to some random environmental effects. For this reason, we can
write at as

at = rt + noise,

where rt is nonrandom function and the exact behavior of the “noise” term is not
known, only its probability distribution is known. So we can rewrite Eqn. (2.1)
as

dNt

dt
= (rt + noise) ·Nt
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or, more generally, in equations of the form

dXt

dt
= a(t,Xt) + h(t,Xt) · noise, (2.2)

where a and h are some given functions. If we denote the noise term by a
stochastic process, (ξt)t≥0, we get

dXt

dt
= a(t,Xt) + h(t,Xt)ξt, (2.3)

where ξt satisfies the following properties:

(i) t1 ̸= t2 =⇒ ξt1 and ξt2 are independent (t1, t2 ≥ 0),

(ii) {ξt} is stationary for all t ≥ 0,

(iii) E(ξt) = 0 for all t ≥ 0.

Let 0 ≤ t0 < t1 < . . . < tm ≤ T for any given T > 0, then a discrete version of
Eqn. (2.3)

Xν+1 −Xν = a(tν , Xν)∆tν + h(tν , Xν)ξν∆tν (ν = 0, 1, . . . ,m− 1), (2.4)

where
ξν = ξtν , ∆tν = tν+1 − tν .

For simplicity, we consider ξν∆tν =: ∆Vν = ∆Vtν+1 −∆Vtν , with Vt0 = 0, where
(Vt)t≥0 is some suitable stochastic process. It is clear that Vt satisfies the assump-
tions (i)-(iii) and a Brownian motion (Zt) is the only such process with continuous
paths. So, if we replace Vt by Zt in Eqn. (2.4), we get

Xν = X0 +
ν−1∑
j=0

a(tj, Xj)∆tj +
ν−1∑
j=0

h(tj, Xj)∆Zj. (2.5)

Since the limit of the right hand side of the Eqn. (2.5) exists as ∆tj −→ 0, it can
be rewritten as

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+ “

∫ t

t0

h(s,Xs)dZs”. (2.6)

The problem with this is that a Brownian motion (Zt) is nowhere differentiable,
so that we need to define∫ T

S

f(t, ω)dZt(ω) for all 0 ≤ S ≤ T.

Firstly, we give some definitions.

Definition 2.5. Assume C = C(S, T ) to be the class of functions f with the
variable (t, ω),

f : [0,∞)× Ω −→ R,
such that

7



(i) (t, ω) 7→ f(t, ω) is (B⊗F)−measurable, where B denotes the Borel σ-algebra
on [0,∞),

(ii) f(t, ω) is Ft−adapted,

(iii) E
( ∫ T

S
f(t, ω)2dt

)
<∞.

Definition 2.6. Assume that (0 = t0 < t1 < . . . < tm = T ) is a partition of the
interval [0, T ]. A function ϕ ∈ C is called elementary function if it is of the form

ϕ(t, ω) =
m−1∑
j=0

ej(ω)χ[tj ,tj+1)(t),

where the random variables ej(ω) (j = 0, 1, . . . ,m − 1) are Ftj -measurable and
χ[tj ,tj+1)(t) is the indicator (characteristic) function.

Now, we can define Itô integral for elementary function as follows:

Definition 2.7. (Itô integral for elementary function ) Let (S = t1 < t2 <
. . . < tm = T ) be a partition of the interval [S, T ], then:∫ T

S

ϕ(t, ω)dZt(ω) :=
m−1∑
j=1

ej(ω)(Ztj+1
(ω)− Ztj(ω)).

Lemma 2.1. (The Itô isometry for elementary functions) If ϕ(t, ω) is
bounded and elementary, then it holds:

E

((∫ T

S

ϕ(t, ω)dZt(ω)

)2)
= E

(∫ T

S

ϕ2(t, ω)dt

)
.

The aim is now to extend the definition of Itô integral from elementary functions
to all functions in C. It can be done in several steps:

Step 1. Let g ∈ C be bounded and g(·, ω) continuous for each ω. Then, there exist
elementary functions (ϕυ)υ∈N ∈ CN defined as ϕυ(t, ω) =

∑m−1
j=1 g(tj, ω)χ[tj ,tj+1)(t)

such that

E

(∫ T

S

(g − ϕυ)
2dt

)
−→ 0 as υ −→ ∞.

Step 2. Let h ∈ C be bounded. Then, there exist bounded functions (gυ)υ∈N ∈ CN

such that gυ(·, ω) is continuous for all ω ∈ Ω and υ ∈ N, and

E

(∫ T

S

(h− gυ)
2dt

)
−→ 0 as υ −→ ∞.

Step 3. Let f ∈ C. Then there exist a sequence (hυ)υ∈N ∈ CN such that hυ is
bounded for all υ ∈ N and

E

(∫ T

S

(f − hυ)
2dt

)
−→ 0 as υ −→ ∞.
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Now using these results, it is time to define Itô integral for all functions in C.

Definition 2.8. (The Itô integral) Let f ∈ C(S, T ). Then, the Itô integral
of f (from S to T ) is defined by∫ T

S

f(t, ω)dZt(ω) = lim
υ→∞

∫ T

S

ϕυ(t, ω)dZt(ω),

where (ϕυ)υ∈N is a sequence of elementary functions such that

E

(∫ T

S

(f(t, ω)− ϕυ(t, ω))
2dt

)
−→ 0 as υ −→ ∞.

Theorem 2.2. (The Itô isometry)

E

((∫ T

S

f(t, ω)dZt(ω)

)2)
= E

(∫ T

S

f 2(t, ω)dt

)
,

for each f ∈ C.

Now, Eqn.(2.6), i.e.,

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

h(s,Xs)dZs, (2.7)

is well-defined and called a one-dimensional stochastic (or Itô) integral equation.
Here, the coefficient functions a(t,Xt) and h(t,Xt) are called drift and diffu-
sion coefficients, respectively. These functions need to be sufficiently smooth
real-valued functions satisfying a linear growth bound. The first integral is the
Riemann integral and the second integral is called the Itô stochastic integral.
The differential form of Eqn. (2.7),

dXt = a(t,Xt)dt+ h(t,Xt)dZt (t0 ≤ t ≤ T ), (2.8)

is called a one-dimensional stochastic (or Itô) differential equation (SDE ).

2.3 Itô Lemma

The Riemann integrals can be evaluated by using Fundamental Theorem of Calcu-
lus, Chain rule and Taylor series. For the Itô integral, it is needed to have similar
rules and formulas. However, Itô Lemma, also called chain rule of stochastic
calculus, acts in the capacity of three calculus theorems. It is based on the sub-
stitution rule, providing a methodology for the solution of Eqn. (2.8). Itô Lemma
also implies that a full linearization is not generally possible if the variable of a
smooth function f is a stochastic process, but a particular quadratic term stays
as a remainder due to the processes’ uncertainity or (co-)variation.
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Lemma 2.3. (The one-dimensional Itô Lemma [30]) Let (Xt) be Itô process
satisfying Eqn. (2.8) and f : [0,∞) × R → R be a given bounded function in
C2([0,∞)× R). Then,

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt)(dXt)

2, (2.9)

where (dXt)
2 = (dXt) · (dXt) is computed according to the rules

dt · dt = dt · dZt = dZt · dt = 0 and dZt · dZt = dt.

Before we give the multi-dimensional Itô Lemma, we need to extend the theory
of one-dimensional stochastic processes and equations to the higher-dimensional
ones. For this reason, we consider the process (Xt)t≥0 in Rd. Let (Zt)t≥0 be
a standard n-dimensional Brownian motion defined as Zt = (Z1

t , Z
2
t , . . . , Z

n
t )
T .

Then, the kth component of the vector-valued SDE is given by

dXk
t = akdt+

n∑
j=1

hkjdZ
j
t (k = 1, 2, . . . , d),

where ak(t,Xt) and hkj(t,Xt) are drift and diffusion coefficients, respectively.
We shortly put A := A(t,Xt) = (a1(t,Xt), . . . , ad(t,Xt))

T , Xt = (X1
t , . . . , X

d
t )
T

and

H := H(t,Xt) =

 h11(t,Xt) . . . h1n(t,Xt)
...

. . .
...

hd1(t,Xt) . . . hdn(t,Xt)

 ,

to get the following compact matrix formulation:

dXt = Adt+HdZt. (2.10)

Lemma 2.4. (The multi-dimensional Itô Lemma [30]) Let Xt = (X1
t , . . . , X

d
t )
T

be a vector-valued Itô process satisfying Eqn. (2.10). Let g : [0,∞)×Rd → Rp be
a given bounded function in C2([0,∞)× Rd). Then,

dg(t,Xt) =
∂g

∂t
(t,Xt)dt+

d∑
i=1

∂g

∂xi
(t,Xt)dX

i
t +

1

2

d∑
i,j=1

∂2g

∂xixj
(t,Xt)dX

i
tdX

j
t , (2.11)

where dZi
tdZ

j
t = δijdt and dZ

i
tdt = dtdZi

t = 0.
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CHAPTER 3

STOCHASTIC TAYLOR EXPANSIONS

Taylor-series expansion is one of the way for finding approximate solutions. In
literature, it can be seen that various studies have been conducted on the stochas-
tic generalization of the Taylor formula. The first generalization of this extension
was firstly presented by Platen and Wagner in [32]. Later, Platen and Kloeden
derived and investigated stochastic Taylor expansion; in detail, [23]. For a further
study in the light of the Platen and Kloeden, we may refer to [41].

In the first section of this chapter, we derive deterministic Taylor expansions in
detail to find approximate solutions of deterministic ordinary differential equa-
tions (ODEs). Once we understand Taylor series for deterministic case, it is easier
to see the stochastic version of the Taylor series which we derive in the second
section to understand how stochastic integration methods are designed.

3.1 Taylor Expansions for ODEs

In this section, we review how we can obtain a deterministic Taylor expansion [23].
We consider the solution (Xt) of the following one-dimensional ODE:

dXt

dt
= a(t,Xt) (t0 ≤ t ≤ T ), (3.1)

with initial value Xt0 for some t0 ∈ [0, T ], where the function a is sufficiently
smooth and has a linear growth bound. Eqn. (3.1) can be written in the equiva-
lent integral equation form as

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds. (3.2)

Lemma 3.1. Let L be an operator defined as

L :=
∂

∂t
+ a

∂

∂x
. (3.3)
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Then, Taylor series expansion of Eqn. (3.2) has the following form:

Xt = Xt0 + a(t0, Xt0)(t− t0) +
1

2!
La(t0, Xt0)(t− t0)

2

+
1

3!
L2a(t0, Xt0)(t− t0)

3 + . . . .

Proof. Suppose f : [0,∞)×R → R is a continuously differentiable function, then
the evolution of the function f is governed by

df(t,Xt)

dt
=
∂f(t,Xt)

∂t
+ a(t,Xt)

∂f(t,Xt)

∂x
(3.4)

via the chain rule. The integral form of this differential equation is

f(t,Xt) = f(t0, Xt0) +

∫ t

t0

(
∂f(s,Xs)

∂s
+ a(s,Xs)

∂f(s,Xs)

∂x

)
ds, (3.5)

where f(t0, Xt0) is the given initial condition. By defining a linear operator

L =
∂

∂t
+ a(t,Xt)

∂

∂x
, (3.6)

we can rewrite Eqn. (3.5) as

f(t,Xt) = f(t0, Xt0) +

∫ t

t0

Lf(s,Xs)ds, (3.7)

for t0 ≤ t ≤ T . Obviously, for f(t,Xt) = Xt we have Lf = a,L2f = La, . . ., and
Eqn. (3.7) reduces the original Eqn. (3.2):

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds. (3.8)

If we now apply the relation of Eqn. (3.7) to the function f = a, we get

a(t,Xt) = a(t0, Xt0) +

∫ t

t0

La(s,Xs)ds, (3.9)

and substituting into Eqn. (3.8), we obtain

Xt = Xt0 +

∫ t

t0

(
a(t0, Xt0) +

∫ s

t0

La(z,Xz)dz

)
ds

= Xt0 + a(t0, Xt0)

∫ t

t0

ds+

∫ t

t0

∫ s

t0

La(z,Xz)dzds, (3.10)

which is the simplest nontrivial Taylor expansion for Xt. We can also apply Eqn.
(3.7) to the function f = La, herewith getting

La(t,Xt) = La(t0, Xt0) +

∫ t

t0

L2a(s,Xs)ds, (3.11)
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and substituting Eqn. (3.11) into Eqn. (3.10) leads to

Xt = Xt0 + a(t0, Xt0)

∫ t

t0

ds+ La(t0, Xt0)

∫ t

t0

∫ s

t0

dzds

+

∫ t

t0

∫ s

t0

∫ z

t0

L2a(u,Xu)dudzds,

for t0 ≤ t ≤ T . If we continue this procedure to infinitum, we obtain the following
Taylor series expansion for the solution of Eqn. (3.2):

Xt = Xt0 + a(t0, Xt0)(t− t0) +
1

2!
La(t0, Xt0)(t− t0)

2

+
1

3!
L2a(t0, Xt0)(t− t0)

3 + . . . .

3.2 Itô-Taylor Expansions

In this section, we refer to the one-dimensional SDE (2.8):

dXt = a(t,Xt)dt+ h(t,Xt)dZt (t0 ≤ t ≤ T ), (3.12)

with the integral form of Eqn. (3.12):

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

h(s,Xs)dZs. (3.13)

To construct Itô-Taylor Expansions for SDEs, we need to give some notations.

3.2.1 Multiple Stochastic Integrals

Definition 3.1. [23] Form = 1, 2, 3, . . ., ji ∈ {1, 2, . . . ,m}, and i ∈ {1, 2, . . . , k},
a row vector

α = (j1, j2, . . . , jk)

is called a multi-index of length

l := l(α) ∈ {1, 2, . . .}.

For example,
l((2, 0, 1)) = 3, l((0, 1, 0, 3, 4)) = 5.

We note that the multi-index of length zero is denoted by v.
Let M denote the set of all multi-indices. For α ∈ M with l(α) ≥ 1, −α and α−
can be obtained by deleting first and last component, respectively, of α.
For example,

−(1, 3, 4, 0) = (3, 4, 0) and (1, 3, 4, 0)− = (1, 3, 4).
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Definition 3.2. [23] Let f = (f(t) : t ≥ 0) denote any adapted right-continuous
stochastic process with left-hand limits existing. Then, we define the sets Hv,
H(0) and H(1) such that

• The set Hv represent all such processes f with

|f(t, ω)| <∞.

• The set H(0) contains all those processes f with∫ t

0

|f(s, ω)|ds <∞.

• The set H(1) contains all those processes f with∫ t

0

|f(s, ω)|2ds <∞.

Moreover, we define
H(j) := H(1)

for j ∈ N with j ≥ 2.

Definition 3.3. [23] Let Hα be a set for multi-indices α = (j1, j2, . . . , jk) ∈ M
with length l(α) > 1. Assume ρ and τ be two stopping times with 0 ≤ ρ(ω) ≤
τ(ω) ≤ T . Then, for a multi-index α ∈ M and a process f ∈ Hα, multiple Itô
integral Iα[f(·)]ρ,τ is defined recursively by

Iα[f(·)]ρ,τ :=


f(τ), if k = 0,∫ τ
ρ
Iα− [f(·)]ρ,sds, if k ≥ 1 and jk = 0,∫ τ

ρ
Iα− [f(·)]ρ,sdZjk

s , if k ≥ 1 and jk ≥ 1;

i.e., integration takes place with respect to ds if jk = 0, or dZjk
s if jk ̸= 0.

Here, the index i in dZi
s represents different Brownian motions. If there is only

one Brownian motion, we can only say dZs. To understand better this definition,
let us look at following examples:

Iv[f(·)]t0,t = f(t),

I(1)[f(·)]τi,τi+1
=

∫ τi+1

τi

f(s)dZ1
s ,

I(0)[f(·)]ρ,τ =
∫ τ

ρ

f(s)ds,

I(0,2)[f(·)]t0,t =
∫ t

t0

∫ s2

t0

f(s1)ds1dZ
2
s2
,

I(1,2,0)[f(·)]t0,t =
∫ t

t0

∫ s3

t0

∫ s2

t0

f(s1)dZ
1
s1
dZ2

s2
ds3,

for an appropriate process f . We note that for a simpler notation we use Ii1i2...ik
taking f(t) ≡ 1.
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3.2.2 Itô-Taylor Expansions for SDEs

Now, we are able to derive the Taylor series based on the solutions of SDEs, which
are called Itô-Taylor Expansions [23]. It is similar to the Taylor series expansion
for ODEs in the previous section. The only difference is the application of Itô
Lemma. For this reason, it can be considered as an extension of deterministic
Taylor series expansions.

Lemma 3.2. Let L0 and L1 be operators defined as

L0 :=
∂

∂t
+ a

∂

∂x
+

1

2
h2

∂2

∂x2

and

L1 := h
∂

∂x
.

Then, the Itô-Taylor approximation of Eqn. (3.13) looks as follows:

Xt = Xt0 + a(t0, Xt0)I0 + h(t0, Xt0)I1 + L0a(t0, Xt0)I00 + L1a(t0, Xt0)I10
+ L0h(t0, Xt0)I01 + L1h(t0, Xt0)I11 + L0L0a(t0, Xt0)I000
+ L1L0a(t0, Xt0)I100 + L0L1a(t0, Xt0)I010 + L1L1a(t0, Xt0)I110
+ L0L0h(t0, Xt0)I001 + L1L0h(t0, Xt0)I101 + L0L1h(t0, Xt0)I011
+ L1L1h(t0, Xt0)I111 +Rt,

with remainder

Rt = I0000[L0L0L0a]t0,t + I1000[L1L0L0a]t0,t + I0100[L0L1L0a]t0,t
+ I1100[L1L1L0a]t0,t + I0010[L0L0L1a]t0,t + I1010[L1L0L1a]t0,t
+ I0110[L0L1L1a]t0,t + I1110[L1L1L1a]t0,t + I0001[L0L0L0h]t0,t
+ I1001[L1L0L0h]t0,t + I0101[L0L1L0h]t0,t + I1101[L1L1L0h]t0,t
+ I0011[L0L0L1h]t0,t + I1011[L1L0L1h]t0,t + I0111[L0L1L1h]t0,t
+ I1111[L1L1L1h]t0,t. (3.14)

Proof. Now, application of Lemma 2.3 to Eqn. (3.13) gives

f(t,Xt) = f(t0, Xt0) +

∫ t

t0

∂f

∂s
(s,Xs)ds+

∫ t

t0

∂f

∂x
(s,Xs)dXs

+

∫ t

t0

1

2

∂2f

∂x2
(s,Xs)(dXs)

2

= f(t0, Xt0)

+

∫ t

t0

(
∂f

∂s
(s,Xs) + a(s,Xs)

∂f

∂x
(s,Xs) +

1

2
h2(s,Xs)

∂2f

∂x2
(s,Xs)

)
ds

+

∫ t

t0

h(s,Xs)
∂f

∂x
(s,Xs)dZs. (3.15)
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If we define the operators

L0 =
∂

∂t
+ a

∂

∂x
+

1

2
h2

∂2

∂x2

and

L1 = h
∂

∂x
,

then, we can rewrite Eqn. (3.15) as

f(t,Xt) = f(t0, Xt0) +

∫ t

t0

L0f(s,Xs)ds+

∫ t

t0

L1f(s,Xs)dZs. (3.16)

We continue with the usage of Itô Lemma for the terms in the integrals. In Eqn.
(3.16), if we choose f(t,Xt) = Xt, then Eqn. (3.16) becomes

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

h(s,Xs)dZs, (3.17)

which is the original SDE of Eqn. (3.13). For f(t,Xt) = a(t,Xt), Eqn. (3.16)
becomes

a(t,Xt) = a(t0, Xt0) +

∫ t

t0

L0a(s,Xs)ds+

∫ t

t0

L1a(s,Xs)dZs. (3.18)

Similarly, after choosing f(t,Xt) = h(t,Xt), Eqn. (3.16) follows in the form

h(t,Xt) = h(t0, Xt0) +

∫ t

t0

L0h(s,Xs)ds+

∫ t

t0

L1h(s,Xs)dZs. (3.19)

Substituting Eqns. (3.18) and (3.19) into Eqn. (3.17) implies that

Xt = X0 +

∫ t

t0

[
a(t0, Xt0) +

∫ s

t0

L0a(τ,Xτ )dτ +

∫ s

t0

L1a(τ,Xτ )dZτ
]
ds

+

∫ t

t0

[
h(t0, Xt0) +

∫ s

t0

L0h(τ,Xτ )dτ +

∫ s

t0

L1h(τ,Xτ )dZτ
]
dZs.

Similarly, we will apply Itô Lemma for f(t,Xt) = L0a(t,Xt), f(t,Xt) = L1a(t,Xt),
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f(t,Xt) = L0h(t,Xt) and f(t,Xt) = L1h(t,Xt) to get

Xt = Xt0 + a(t0, Xt0)

∫ t

t0

ds+ h(t0, Xt0)

∫ t

t0

dZs

+ L0a(t0, Xt0)

∫ t

t0

∫ s

t0

dτds+ L1a(t0, Xt0)

∫ t

t0

∫ s

t0

dZτds

+ L0h(t0, Xt0)

∫ t

t0

∫ s

t0

dτdZs + L1h(t0, Xt0)

∫ t

t0

∫ s

t0

dZτdZs

+

∫ t

t0

∫ s

t0

[ ∫ τ

t0

L0L0a(z,Xz)dz +

∫ τ

t0

L1L0a(z,Xz)dZz
]
dτds

+

∫ t

t0

∫ s

t0

[ ∫ τ

t0

L0L1a(z,Xz)dz +

∫ τ

t0

L1L1a(z,Xz)dZz
]
dZτds

+

∫ t

t0

∫ s

t0

[ ∫ τ

t0

L0L0h(z,Xz)dz +

∫ τ

t0

L1L0h(z,Xz)dZz
]
dτdZs

+

∫ t

t0

∫ s

t0

[ ∫ τ

t0

L0L1h(z,Xz)dz +

∫ τ

t0

L1L1h(z,Xz)dZz
]
dZτdZs.

If we continue by iterating with the functions L0L0a(t,Xt),L1L0a(t,Xt),
L0L1a(t,Xt), L1L1a(t,Xt), L0L0h(t,Xt), L1L0h(t,Xt), L0L1h(t,Xt) and
L1L1h(t,Xt), we obtain

Xt = Xt0 + a(t0, Xt0)I0 + h(t0, Xt0)I1 + L0a(t0, Xt0)I00 + L1a(t0, Xt0)I10
+ L0h(t0, Xt0)I01 + L1h(t0, Xt0)I11 + L0L0a(t0, Xt0)I000
+ L1L0a(t0, Xt0)I100 + L0L1a(t0, Xt0)I010 + L1L1a(t0, Xt0)I110
+ L0L0h(t0, Xt0)I001 + L1L0h(t0, Xt0)I101 + L0L1h(t0, Xt0)I011
+ L1L1h(t0, Xt0)I111 +Rt,

where Rt denotes the remainder term which can be expressed as in Eqn. (3.14).

Here, we note that Ii1i2...ik represents the multiple Itô integrals with constant in-
tegrands and the terms Ii1i2...ik+1

[Li1Li2 . . .Lika]t0,t or Ii1i2...ik+1
[Li1Li2 . . .Likh]t0,t

in Rt stand for the multiple Itô integrals with non-constant integrands.

Remark 3.1. Multiple Itô integrals appearing in the remainder terms can be shown
to converge in the mean-square limit [23]. Moreover, convergence, how well the
approximate solution converges to the true solution, can be found with the help
of the moment estimation of the product of multiple Itô integrals.
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CHAPTER 4

ITÔ-TAYLOR EXPANSIONS FOR SYSTEMS
OF STOCHASTIC DIFFERENTIAL EQUATIONS

AND APPROXIMATIONS

4.1 Introduction

In this chapter, Itô-Taylor expansions for the systems of SDEs are given. We
consider both the systems of SDEs with standard Brownian Motions and the
systems of SDEs having correlated Brownian Motions. We directly apply Itô-
Taylor formula to the systems of SDEs with standard Brownian Motions. But
the correlated ones are first transformed to the ones having uncorrelated standard
Brownian motions, and then Itô Lemma is applied to get the Itô-Taylor expan-
sions [42]. Finally, we give related discretization schemes to get an approximate
solution. In order to measure the order of convergence, we use special forms of
Itô-Taylor expansions such as Euler scheme and Milstein scheme. Throughout
this chapter we refer to Eqn. (2.10), i.e.,

dXt = Adt+HdZt. (4.1)

We consider now the kth component of the system of SDEs given by Eqn. (4.1):

dXk
t = ak(t,Xt)dt+

n∑
j=1

hkj(t,Xt)dZ
j
t (k = 1, 2, . . . , d),

where ak(t,Xt) = ak(t,X
1
t , . . . , X

d
t ) and hkj(t,Xt) = hkj(t,X

1
t , . . . , X

d
t ).

For applying the Itô Lemma of Eqn. (2.11), we let Yt = (Y 1
t , Y

2
t , . . . , Y

p
t )

T defined
by Yt = g(t,Xt) and g(t,Xt) = (g1(t,Xt), . . . , g

p(t,Xt))
T .

Then, the component Y ℓ
t is given by

dY ℓ
t =

∂gℓ

∂t
dt+

d∑
i=1

∂gℓ

∂xi
dX i

t +
1

2

d∑
i,j=1

∂2gℓ

∂xixj
dX i

tdX
j
t , (4.2)

where

dX i
tdX

j
t =

d∑
i,j=1

n∑
p=1

hjphipdt. (4.3)
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After substituting Eqn. (4.3) into Eqn. (4.2), we get

dY ℓ
t =

(
∂gℓ

∂t
+

d∑
i=1

ai
∂gℓ

∂xi
+
1

2

d∑
i,j=1

n∑
p=1

hjphip
∂2gℓ

∂xixj

)
dt+

d∑
j=1

n∑
p=1

hjp
∂gℓ

∂xj
dZp

t , (4.4)

where all derivatives of gℓ are to be evaluated in (t,Xt) and the Brownian motions
are uncorrelated.

4.2 Itô-Taylor Approximation for Standard Brownian Motions

In this section, we let Zt = (Z1
t , Z

2
t , . . . , Z

n
t )
T be a standard n-dimensional Brow-

nian motion. Eqn. (4.1) can be written in integral form as

Xt = Xt0 +

∫ t

t0

A(s,Xs)ds+

∫ t

t0

H(s,Xs)dZs. (4.5)

The system of SDEs can be classified with respect to the criterion of (non-)shared
states and (un-)correlated (or (un-)standardized) Brownian motions. We give Itô-
Taylor approximation for each classification in the following subsections.

4.2.1 Completely Decoupled Systems

We consider the following system

dXk
t = ak(t,X

k
t )dt+ hkk(t,X

k
t )dZ

k
t (k = 1, 2, . . . , d), (4.6)

where all equations have their own Brownian motions and their own states; this
also implies d = n.

Lemma 4.1. Let L0 and Lj be operators defined as

L0 :=
∂

∂t
+

d∑
i=1

ai
∂

∂xi
+

1

2

d∑
i,j=1

n∑
p=1

hjphip
∂2

∂xixj

and

Lj :=
d∑
p=1

hpj
∂

∂xp
(j = 1, 2, . . . , n).
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Then, the Itô-Taylor approximation of Eqn. (4.6) can be written as:

Xk
t = Xk

t0
+ ak(t0, X

k
t0
)I0 + hkk(t0, X

k
t0
)Ik

+ L0ak(t0, X
k
t0
)I00 +

n∑
j=1

Ljak(t0, Xk
t0
)Ij0

+ L0hkk(t0, X
k
t0
)I0k +

n∑
j=1

Ljhkk(t0, Xk
t0
)Ijk

+ L0L0ak(t0, X
k
t0
)I000 +

n∑
j=1

LjL0ak(t0, X
k
t0
)Ij00

+
n∑
j=1

L0Ljak(t0, Xk
t0
)I0j0 +

n∑
j,p=1

LjLpak(t0, Xk
t0
)Ijp0

+ L0L0hkk(t0, X
k
t0
)I00k +

n∑
j=1

LjL0hkk(t0, X
k
t0
)Ij0k

+
n∑
j=1

L0Ljhkk(t0, Xk
t0
)I0jk +

n∑
j,p=1

LjLphkk(t0, Xk
t0
)Ijpk +Rt,

with

Rt = I0000[L0L0L0ak]t0,t +
n∑
j=1

Ij000[LjL0L0ak]t0,t

+
n∑
j=1

I0j00[L0LjL0ak]t0,t +
n∑

j,p=1

Ipj00[LpLjL0ak]t0,t

+
n∑
j=1

I00j0[L0L0Ljak]t0,t +
n∑

j,p=1

Ip0j0[LpL0Ljak]t0,t

+
n∑

j,p=1

I0jp0[L0LjLpak]t0,t +
n∑

j,p,l=1

Iljp0[LlLjLpak]t0,t

+ I000k[L0L0L0hkk]t0,t +
n∑
j=1

Ij00k[LjL0L0hkk]t0,t

+
n∑
j=1

I0j0k[L0LjL0hkk]t0,t +
n∑

j,p=1

Ipj0k[LpLjL0hkk]t0,t

+
n∑
j=1

I00jk[L0L0Ljhkk]t0,t +
n∑

j,p=1

Ip0jk[LpL0Ljhkk]t0,t

+
n∑

j,p=1

I0jpk[L0LjLphkk]t0,t +
n∑

j,p,l=1

Iljpk[LlLjLphkk]t0,t. (4.7)
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Proof. For Eqn. (4.6), Eqn. (4.4) becomes

dY ℓ
t = (

∂gℓ

∂t
+

n∑
i=1

ai
∂gℓ

∂xi
+

1

2

n∑
i=1

hiihii
∂2gℓ

∂xixi
)dt+

n∑
i=1

hii
∂gℓ

∂xi
dZi

t ,

where g(t,Xt) = (X1
t , . . . , X

n
t )

T . Herewith,

dXk
t = ak(t,X

k
t )dt+ hkk(t,X

k
t )dZ

k
t (4.8)

and, in here, we note that ℓ and k represent the ℓth component of the function
g(t,Xt) and the kth component of the system of SDEs of Eqn. (4.8), respectively.
The integral form of Eqn. (4.8) is

Xk
t = Xk

t0
+

∫ t

t0

ak(s,X
k
s )ds+

∫ t

t0

hkk(s,X
k
s )dZ

k
s . (4.9)

We assume the operators L0 and Lj as stated in Lemma 4.1. This allows us to
express the multi-dimensional version of the Itô Lemma in a compact way:

Y ℓ
t = Y ℓ

t0
+

∫ t

t0

L0gℓds+
n∑
j=1

∫ t

t0

LjgℓdZj
s . (4.10)

Now, we apply Eqn. (4.10) to the terms in Eqn. (4.9). If we choose gℓ = aℓ(t,X
ℓ
t ),

then Eqn. (4.10) becomes

ak(t,X
k
t ) = ak(t0, X

k
t0
) +

∫ t

t0

L0ak(s,X
k
s )ds+

n∑
j=1

∫ t

t0

Ljak(s,Xk
s )dZ

j
s . (4.11)

Similarly, for gℓ = hℓℓ(t,X
ℓ
t ) Eqn. (4.10) becomes

hkk(t,X
k
t ) = hkk(t0, X

k
t0
) +

∫ t

t0

L0hkk(s,X
k
s )ds+

n∑
j=1

∫ t

t0

Ljhkk(s,Xk
s )dZ

j
s . (4.12)

After substituting Eqns. (4.11) and (4.12) into Eqn. (4.9), we get

Xk
t = Xk

t0
+

∫ t

t0

[
ak(t0, X

k
t0
) +

∫ s

t0

L0ak(τ,X
k
τ )dτ

+
n∑
j=1

∫ s

t0

Ljak(τ,Xk
τ )dZ

j
τ

]
ds+

∫ t

t0

[
hkk(t0, X

k
t0
)

+

∫ s

t0

L0hkk(τ,X
k
τ )dτ +

n∑
j=1

∫ s

t0

Ljhkk(τ,Xk
τ )dZ

j
τ

]
dZk

s ,

= Xk
t0

+ ak(t0, X
k
t0
)I0 + hkk(t0, X

k
t0
)Ik

+

∫ t

t0

[ ∫ s

t0

L0ak(τ,X
k
τ )dτ +

n∑
j=1

∫ s

t0

Ljak(τ,Xk
τ )dZ

j
τ

]
ds (4.13)

+

∫ t

t0

[ ∫ s

t0

L0hkk(τ,X
k
τ )dτ +

n∑
j=1

∫ s

t0

Ljhkk(τ,Xk
τ )dZ

j
τ

]
dZk

s .
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We can continue with an application of Itô Lemma of Eqn. (4.10) to the functions
L0ak,

∑n
j=1 Ljak, L0hkk and

∑n
j=1 Ljhkk in (4.13) and then, to the functions

L0L0ak,
∑n

j=1 LjL0ak,
∑n

j=1 L0Ljak,
∑n

j,p=1 LjLpak,L0L0hkk,
∑n

j,p=1 LjL0hkk,∑n
j=1 L0Ljhkk,

∑n
j,p=1 LjLphkk, to obtain the Itô-Taylor expansion:

Xk
t = Xk

t0
+ ak(t0, X

k
t0
)I0 + hkk(t0, X

k
t0
)Ik

+ L0ak(t0, X
k
t0
)I00 +

n∑
j=1

Ljak(t0, Xk
t0
)Ij0

+ L0hkk(t0, X
k
t0
)I0k +

n∑
j=1

Ljhkk(t0, Xk
t0
)Ijk

+ L0L0ak(t0, X
k
t0
)I000 +

n∑
j=1

LjL0ak(t0, X
k
t0
)Ij00

+
n∑
j=1

L0Ljak(t0, Xk
t0
)I0j0 +

n∑
j,p=1

LjLpak(t0, Xk
t0
)Ijp0

+ L0L0hkk(t0, X
k
t0
)I00k +

n∑
j=1

LjL0hkk(t0, X
k
t0
)Ij0k

+
n∑
j=1

L0Ljhkk(t0, Xk
t0
)I0jk +

n∑
j,p=1

LjLphkk(t0, Xk
t0
)Ijpk +Rt,

where Rt stands for the remainder term which can be written as Eqn. (4.7).

Here, we note that Ii1i2...ik represents the multiple Itô integrals with constant inte-
grands, and the terms Ii1i2...ik+1

[Li1Li2 . . .Likak]t0,t or Ii1i2...ik+1
[Li1Li2 . . .Likhkk]t0,t

in Rt denote the multiple Itô integrals with nonconstant integrands.

4.2.2 Systems with Common States

Now, we consider the following system:

dXk
t = ak(t,Xt) + hkk(t,Xt)dZ

k
t (k = 1, 2, . . . , d), (4.14)

where all equations may have any states in common while they have their own
Brownian motions. We obtain Itô-Taylor approximation of Eqn. (4.14) in the
following Lemma.

Lemma 4.2. Let L0 and Lj be operators defined as in Lemma 4.1. Then, Itô-
Taylor approximation of Eqn. (4.14) can be written as:
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Xk
t = Xk

t0
+ ak(t0,Xt0)I0 + hkk(t0,Xt0)Ik

+ L0ak(t0,Xt0)I00 +
n∑
j=1

Ljak(t0,Xt0)Ij0

+ L0hkk(t0,Xt0)I0k +
n∑
j=1

Ljhkk(t0,Xt0)Ijk

+ L0L0ak(t0,Xt0)I000 +
n∑
j=1

LjL0ak(t0,Xt0)Ij00

+
n∑
j=1

L0Ljak(t0,Xt0)I0j0 +
n∑

j,p=1

LjLpak(t0,Xt0)Ijp0

+ L0L0hkk(t0,Xt0)I00k +
n∑
j=1

LjL0hkk(t0,Xt0)Ij0k

+
n∑
j=1

L0Ljhkk(t0,Xt0)I0jk +
n∑

j,p=1

LjLphkk(t0,Xt0)Ijpk +Rt,

with

Rt = I0000[L0L0L0ak]t0,t +
n∑
j=1

Ij000[LjL0L0ak]t0,t

+
n∑
j=1

I0j00[L0LjL0ak]t0,t +
n∑

j,p=1

Ipj00[LpLjL0ak]t0,t

+
n∑
j=1

I00j0[L0L0Ljak]t0,t +
n∑

j,p=1

Ip0j0[LpL0Ljak]t0,t

+
n∑

j,p=1

I0jp0[L0LjLpak]t0,t +
n∑

j,p,l=1

Iljp0[LlLjLpak]t0,t

+ I000k[L0L0L0hkk]t0,t +
n∑
j=1

Ij00k[LjL0L0hkk]t0,t

+
n∑
j=1

I0j0k[L0LjL0hkk]t0,t +
n∑

j,p=1

Ipj0k[LpLjL0hkk]t0,t

+
n∑
j=1

I00jk[L0L0Ljhkk]t0,t +
n∑

j,p=1

Ip0jk[LpL0Ljhkk]t0,t

+
n∑

j,p=1

I0jpk[L0LjLphkk]t0,t +
n∑

j,p,l=1

Iljpk[LlLjLphkk]t0,t.

Proof. It follows a similar logic and formulation as for the completely decoupled
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systems which we studied in Subsection 4.2.1. The only difference is that the
drift and diffusion coefficients, ak and hkk, respectively, are evaluated in (t,Xt),
not in (t,Xt), now.

After giving Itô-Taylor approximations for the special cases of systems of SDEs,
i.e., completely decoupled systems of SDEs and systems with common states, we
also need to consider more general case of systems of SDEs.

4.2.3 General Case

By allowing all equations to have in common both Brownian motions and states,
we refer to the following system:

dXk
t = ak(t,Xt) +

n∑
j=1

hkj(t,Xt)dZ
j
t (k = 1, 2, . . . , d), (4.15)

for which we obtain the subsequent result with the same logic as for the previous
two cases..

Lemma 4.3. Let L0 and Lj be operators defined as in Lemma 4.1. Then, the
Itô-Taylor approximation of Eqn. (4.15) can be written as:

Xk
t = Xk

t0
+ ak(t0,Xt0)I0 +

n∑
j=1

hkj(t0,Xt0)Ij

+ L0ak(t0,Xt0)I00 +
n∑
j=1

Ljak(t0,Xt0)Ij0

+
n∑
j=1

L0hkj(t0,Xt0)I0j +
n∑

l,j=1

Llhkj(t0,Xt0)Ilj

+ L0L0ak(t0,Xt0)I000 +
n∑
j=1

LjL0ak(t0,Xt0)Ij00 (4.16)

+
n∑
j=1

L0Ljak(t0,Xt0)I0j0 +
n∑

j,p=1

LjLpak(t0,Xt0)Ijp0

+
n∑
j=1

L0L0hkj(t0,Xt0)I00j +
n∑

j,l=1

LlL0hkj(t0,Xt0)Il0j

+
n∑

j,l=1

L0Llhkj(t0,Xt0)I0lj +
n∑

j,p,l=1

LlLphkj(t0,Xt0)Ilpj +Rt,
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with

Rt = I0000[L0L0L0ak]t0,t +
n∑
j=1

Ij000[LjL0L0ak]t0,t

+
n∑
j=1

I0j00[L0LjL0ak]t0,t +
n∑

j,p=1

Ipj00[LpLjL0ak]t0,t

+
n∑
j=1

I00j0[L0L0Ljak]t0,t +
n∑

j,p=1

Ip0j0[LpL0Ljak]t0,t

+
n∑

j,p=1

I0jp0[L0LjLpak]t0,t +
n∑

j,p,l=1

Iljp0[LlLjLpak]t0,t

+
n∑
j=1

I000j[L0L0L0hkj]t0,t +
n∑

j,p=1

Ip00j[LpL0L0hkj]t0,t

+
n∑

j,l=1

I0l0j[L0LlL0hkj]t0,t +
n∑

j,p,l=1

Ipl0j[LpLlL0hkj]t0,t

+
n∑
j=1

I00lj[L0L0Llhkj]t0,t +
n∑

j,p,l=1

Ip0lj[LpL0Llhkj]t0,t

+
n∑

j,p,l=1

I0lpj[L0LlLphkj]t0,t +
n∑

j,p,l,r=1

Irlpj[LrLlLphkj]t0,t. (4.17)

Proof. We consider the integral form of Eqn. (4.15):

Xk
t = Xk

t0
+

∫ t

t0

ak(s,Xs)ds+
n∑
j=1

∫ t

t0

hkj(s,Xs)dZ
j
s . (4.18)

Again, we first choose gℓ := aℓ(t,Xt) to apply the Itô Lemma and, then, we let
gℓ := hℓj(t,Xt) to get

Xk
t = Xk

t0
+

∫ t

t0

[
ak(t0,Xt0) +

∫ s

t0

L0ak(τ,Xτ )dτ

+
n∑

l,j=1

∫ s

t0

Ljak(τ,Xτ )dZ
j
τ

]
ds+

n∑
j=1

∫ t

t0

[
hkj(t0,Xt0)

+

∫ s

t0

L0hkj(τ,Xτ )dτ +
n∑
l=1

∫ s

t0

Llhkj(τ,Xτ )dZ
l
τ

]
dZj

s .

We follow the same arguments as for the completely decoupled case, with the
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only difference that ak and hkj depend on (t,Xt) now. Then,

Xk
t = Xk

t0
+ ak(t0,Xt0)I0 +

n∑
j=1

hkj(t0,Xt0)Ij

+ L0ak(t0,Xt0)I00 +
n∑
j=1

Ljak(t0,Xt0)Ij0

+
n∑
j=1

L0hkj(t0,Xt0)I0j +
n∑

l,j=1

Llhkj(t0,Xt0)Ilj

+ L0L0ak(t0,Xt0)I000 +
n∑
j=1

LjL0ak(t0,Xt0)Ij00 (4.19)

+
n∑
j=1

L0Ljak(t0,Xt0)I0j0 +
n∑

j,p=1

LjLpak(t0,Xt0)Ijp0

+
n∑
j=1

L0L0hkj(t0,Xt0)I00j +
n∑

j,l=1

LlL0hkj(t0,Xt0)Il0j

+
n∑

j,l=1

L0Llhkj(t0,Xt0)I0lj +
n∑

j,p,l=1

LlLphkj(t0,Xt0)Ilpj +Rt,

where Rt represents the remainder term which can be expressed as Eqn. (4.17).

4.3 Itô-Taylor Approximation for Correlated Brownian Motions

In the previous section, the systems of stochastic processes was driven by multi-
dimensional standard Brownian motion. However, much more realistically, there
is often a correlation between the Brownian motions. In that case, a transfor-
mation of the given systems of SDEs into an equivalent systems of SDEs driven
by standard multi-dimensional Brownian motion is very useful. In this section,
we present such a transformation method to be able to apply IT-M on the trans-
formed systems.

We use the symbol (Wt)t≥0 instead of (Zt)t≥0 in order to point out the difference
from the earlier standard Brownian motions. Now, we consider the system

dXk
t = ak(t,Xt) +

n∑
j=1

hkj(t,Xt)dW
j
t (k = 1, 2, . . . , d = n), (4.20)

where dW i
t dW

j
t = ρijdt.
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Then, the correlation matrix ρ can be written as:

ρ :=


1 ρ12 . . . ρ1n
ρ21 1 . . . ρ2n
...

...
. . .

...
ρn1 ρn2 . . . 1

 , ρij = ρji ∈ [−1, 1].

Here, ρ is positive semi-definite matrix which means that ρ = ρT and

n∑
i,j=1

ρijxixj ≥ 0,

for all x = (x1, . . . , xn)
T ∈ Rn.

By using some basic standard Linear Algebra, one can find an n × n matrix
B = (bij)1≤i,j≤n such that

ρ = BBT .
Moreover, using Cholesky Decomposition [5], we make B as an upper (or lower)
triangular matrix.

Correlated Brownian motions can be interpreted as a linear combination of un-
correlated ones such that

Wt = BZt,
where Zt = (Z1

t , . . . , Z
n
t )
T andWt = (W 1

t , . . . ,W
n
t )

T are a standard n-dimensional
Brownian motion and a correlated Brownian motion, respectively.
In componentwise notation,

W i
t =

n∑
j=1

bijZ
j
t (i = 1, 2, . . . , n). (4.21)

Now, after substituting Eqn. (4.21) into Eqn. (4.20), we obtain a system of SDEs
as in Eqn. (4.15) so that we can apply a similar procedure of argumentation as
in the general case.

4.4 Discretization

Multiple Itô integrals, Ii1i2...ik , have to be evaluated and expressed in terms of
different random variables to construct numerical schemes. This section covers
the discretization schemes for strong Taylor approximations.

4.4.1 Discretization Schemes with Strong Taylor Approximations

In order to judge the quality of a numerical scheme, it is necessary to have some
sort of measure of how well the approximate solution converge to the true solution.
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For this reason, special forms of Itô-Taylor expansions whose orders are known is
used for obtaining the solutions. We consider the strong convergence criteria of
measuring convergence.

Definition 4.1. Let X∆(T ) be a discrete time approximation of a continuous-
time process X and XT be a true solution at time T . Then, there exists positive
constant c, independent of maximum step-size ∆, and numbers ∆0, p > 0 such
that

E(|XT −X∆(T )|) ≤ c∆p, ∀∆ ∈ (0,∆0).

In this case, we say X∆(T ) converge strongly with order p.

Consider an equispaced discretization t0 ≤ τ0 < τ1 < . . . < τν < . . . < τm = T of
the time interval [t0, T ]. Let ∆ = T/m denote the increments (step-size); then,
for all ν ∈ {0, 1, . . . ,m− 1} it holds:

I0 =

∫ τν+1

τν

ds = ∆ = τν+1 − τν ,

Ij =

∫ τν+1

τν

dZj
s = ∆Zj = Zj

τν+1
− Zj

τν ,

Ij0 =

∫ τν+1

τν

∫ s

τν

dZj
uds = ∆W̃ ,

I0j =

∫ τν+1

τν

∫ s

τν

dudZj
s = (∆Zj)∆−∆W̃ ,

Ijj =
1

2

(
(∆Zj)2 −∆

)
,

Ijj0 = I0jj = Ij0j =
1

6
∆
(
(∆Zj)2 −∆

)
,

Ijjj =
1

6
∆
(
(∆Zj)2 − 3∆(∆Zj)

)
,

Ij00 = I0j0 = I00j =
1

6
∆2∆Zj

s ,

where ∆W̃ and ∆Zj are Gaussian random variables with ∆Zj ∼ N(0,∆), ∆W̃ ∼
N(0, 1

3
∆3) and E

(
∆Zj∆W̃ ) = 1

2
∆2.

Now, we shall use the above relations to propose some strong approximations.

4.4.1.1 The Euler-Maruyama Scheme

The simplest example of a strong Taylor approximation X of the solution of Eqn.
(3.12) and Xk of the solution of Eqn. (4.15) is the Euler-Maruyama or Euler
method attaining the order of strong convergence 0.5. In the one-dimensional
case, Eqn. (3.12), Euler scheme is of the form

Xν+1 = Xν + a∆+ h∆Z, (4.22)
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for ν = 0, 1, 2, . . . ,m − 1. In the multi-dimensional case, Eqn. (4.15), the kth

component of the Euler scheme looks as follows:

Xk
ν+1 = Xk

ν + ak∆+
n∑
j=1

hkj∆Z
j, (4.23)

for ν = 0, 1, 2, . . . ,m− 1.

In the cases where the drift and diffusion coefficients, ak and hkj, respectively, are
nearly constant, this method generally gives us good numerical results. However,
whenever the coefficients are nonlinear, the method can provide a poor estimate
of the solution. So, higher-order schemes, which we introduce and evaluate in the
following subsubsections, should be used to obtain more satisfactory schemes.

4.4.1.2 The Milstein Scheme

Milstein scheme can be obtained by adding second-order terms from the Itô-
Taylor expansion to the Euler scheme, which increases the strong convergence
order from 0.5 to 1.0. In the one-dimensional case, Eqn. (3.12), Milstein scheme
has the following look:

Xν+1 = Xν + a∆+ h∆Z + L1hI11, (4.24)

for ν = 0, 1, 2, . . . ,m − 1. In the multi-dimensional case, Eqn. (4.15), the kth

component of the Milstein scheme has the form

Xk
ν+1 = Xk

ν + ak∆+
n∑
j=1

hkj∆Z
j +

n∑
j1,j2=1

Lj1hkj2Ij1j2 , (4.25)

for ν = 0, 1, 2, . . . ,m− 1. We note that Milstein scheme is identical to the Euler
scheme when the diffusion term does not contain any component of the Xt vari-
able.

4.4.1.3 The Order 1.5 Strong Taylor Scheme

We can get more accurate strong Taylor schemes by including further multi-
ple stochastic integrals from the stochastic Taylor approximation. In the one-
dimensional case, Eqn. (3.12), the order 1.5 strong Taylor scheme is of the form

Xν+1 = Xν+a∆+h∆Z+L1hI11+L1aI10+L0aI00+L0hI01+L1L1hI111, (4.26)
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for ν = 0, 1, 2, . . . ,m − 1. In the multi-dimensional case, Eqn. (4.15), the kth

component of the order 1.5 strong Taylor scheme is given by

Xk
ν+1 = Xk

ν + ak∆+
1

2
L0ak∆

2 +
n∑
j=1

(hkj∆Z
j + L0hkjI0j + LjakIj0)

+
n∑

j1,j2=1

Lj1hkj2Ij1j2 +
n∑

j1,j2,j3=1

Lj1Lj2hkj3Ij1j2j3 , (4.27)

for ν = 0, 1, 2, . . . ,m− 1.

4.4.1.4 The Order 2.0 Strong Taylor Scheme

The numerical results which was given by the order 2.0 strong Taylor scheme is
better than other three method. In the one-dimensional case, Eqn. (3.12), the
order 1.5 strong Taylor scheme is of the form

Xν+1 = Xν + a∆+ h∆Z + L1hI11 + L1aI10 + L0aI00
+ L0hI01 + L1L1hI111 + L1L0aI100 + L0L1aI010 (4.28)

+ L1L1aI110 + L0L0hI001 + L1L0hI101 + L0L1hI011
+ L1L1hI111 + L1L1L1hI1111,

for ν = 0, 1, 2, . . . ,m − 1. In the multi-dimensional case, Eqn. (4.15), the kth

component of the order 2.0 strong Taylor scheme takes the following form:

Xk
ν+1 = Xk

ν + ak∆+
1

2
L0ak∆

2 +
n∑
j=1

(hkj∆Z
j + L0hkjI0j + LjakIj0)

+
n∑

j1,j2=1

(
Lj1hkj2Ij1j2 + L0Lj1hkj2I0j1j2 + Lj1L0hkj2Ij10j2

+ Lj1Lj2akIj1j20
)
+

n∑
j1,j2,j3=1

Lj1Lj2hkj3Ij1j2j3 (4.29)

+
n∑

j1,j2,j3,j4=1

Lj1Lj2Lj2hkj4Ij1j2j3j4 ,

for ν = 0, 1, 2, . . . ,m− 1.
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CHAPTER 5

CHANGE OF TIME METHOD

With the IT-M, we can approximate all SDEs, whose closed form or analytic
solution are not known. However, in some situations, using IT-M is not very
useful or impractical, causing that we need another methodology. Change of
Time Method (CT-M ) is one of such probabilistic methods to obtain a “simple”
representation for a given SDE (maybe with a “complicated” structure), using
the idea of changing the scales of time [4]. Scaling of time is sometimes done in a
deterministic manner, but it is more often used in a random manner. It is central
to the work of Doeblin [7]. Dambis and Dubins-Schwartz developed a theory of
random time changes for semimartingales in the 1960s [21,33]. Time change was
chosen to be a subordinator by Feller [8]. In fact, in the finance literature, the
terms time change and subordinator are sometimes used synonymously. In order
to construct stochastic volatility for Lévy processes, a subordinated process is
used [6]. In [1,3,31,37], the class of time changes are formulated. A special feature
and an advantage of CT-M consist in the possibility that the time change can be
defined by direct reference to risk, defined by a quadratic variation. Herewith,
CT-M can become a strong tool of risk management.

In this chapter, we give a brief introduction of random time change to solve SDEs.
We mostly refer to [1, 37,41].

5.1 Change of Time for Martingales

Theorem 5.1. (Dambis, Dubins-Schwartz Theorem [7,21,33]) Let (Mt)t≥0

be a continuous local martingale on a filtered probability space (Ω,F , (Ft)t≥0,P).
Suppose the quadratic variation of Mt exists and denoted by [M ]t such that

lim
t→∞

[M ]t = ∞ a.s..

Then, if we define a stopping time τt := inf{u ≥ 0 : [M ]u > t} and F̃t := Fτt

(t ≥ 0), the time change process Zt :=Mτt (t ≥ 0) is an (Fτt)-Brownian motion,
and

Mt = Z[M ]t (t ≥ 0).
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We note that the local martingale (Mt)t≥0 can be expressed by (Zt)t≥0 and an

(F̃t)-stopping time since {[M ]t ≤ u} = {τu ≥ t}.

5.2 Change of Time for Itô Integral

Definition 5.1. [14,41] Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and
I be the class of functions

ψ : [0,∞) −→ [0,∞),

t 7→ ψt,

which satisfy the following conditions:

• ψ0 = 0.

• ψ is continuous and strictly increasing.

• ψt → ∞ as t→ ∞.

Obviously, if ψ−1 is the inverse function of ψ ∈ I then ψ−1 ∈ I. Each ψ ∈ I
defines a transformation Tψ of C := C([0,∞)) (the set of continuous functions w
defined on [0,∞) with values in R) into itself by

Tψ : C −→ C,

w 7→ (Tψw),

where
(Tψw)(t) := w(ψ−1

t ) (t ∈ [0,∞)).

Here, Tψ is called the time change defined by ψ ∈ I and ψ = ψt(ω) is called
a process of the time change for ω ∈ Ω. It is clear that ψ = ψt(ω) ∈ Ω is an
(Ft)-adapted increasing process, so that the inverse function ψ−1

t of ψt is an (Ft)-
stopping time for each fixed t ∈ [0,∞). We note that often in literature, the
event or scenario ω is in the role of a continuous function w, indeed.

Let M̃t :=
∫ t
0
h(s)dZ(s) (t ≥ 0) be a family of Itô integrals with

lim
t→∞

[M̃ ]t = lim
t→∞

∫ t

0

h2(s)ds = +∞ and ψt := inf{u ≥ 0 : [M̃ ]u > t}.

Then, (Bt) = (M̃ψt) is a Brownian motion. Here, the change of time is

ψ−1
t = [M̃ ]t =

∫ t

0

h2(s)ds.

Thus, an SDE in R1 of the form

Xt = X0 +

∫ t

0

h(s,Xs)dZs +

∫ t

0

a(s,Xs)ds
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can be rephrased in the following way:

Xt −X0 = B[M̃ ]t
+

∫ t

0

a(s,Xs)ds

= B∫ t
0 h

2(s,Xs)ds
+

∫ t

0

a(s,Xs)ds,

with a Brownian motion (Bt)t≥0. Then, one-dimensional Itô Lemma takes the
form [3,41]

f(t,Xt)− f(0, X0) = B∫ t
0 h

2(s,Xs)f ′(s,Xs)2ds
+

∫ t

0

(∂f
∂s

+ Lf
)
(s,Xs)ds, (5.1)

with Lf := 1
2
h2f

′′
+ af ′. Now, let us verify this result.

If Xt = X0 +
∫ t
0
h(s,Xs)dZs+

∫ t
0
a(s,Xs)ds, then by applying Itô Lemma we get:

f(t,Xt)− f(0, X0) =

∫ t

0

∂f

∂s
ds+

∫ t

0

∂f

∂x

(
a(s,Xs)ds+ h(s,Xs)dZs

)
+
1

2

∫ t

0

∂2f

∂x2
h2(s,Xs)ds

=

∫ t

0

∂f

∂s
ds+

1

2

∫ t

0

∂2f

∂x2
h2(s,Xs)ds+

∫ t

0

∂f

∂x
a(s,Xs)ds

+

∫ t

0

∂f

∂x
h(s,Xs)dZs

= B∫ t
0 h

2(s,Xs)f ′(s,Xs)2ds
+

∫ t

0

(∂f
∂s

+ Lf
)
(s,Xs)ds.

5.3 Change of Time for SDEs

We consider the SDE given in the following form (without drift):

dXt = h(t,Xt)dZt, (5.2)

where (Zt)t≥0 is a Brownian motion, h(t,Xt) is a continuous and measurable
function, and (Xt)t≥0 is a continuous process on [0,∞). If we can solve Eqn.
(5.2), then we can also resolve the equations having drift term a(t,Xt)dt by the
method of transformation of drift or Girsanov transformation. The following
theorem provides us to solve Eqn. (5.2).

Theorem 5.2. [31, 37] Let Z̃ = (Z̃t)t≥0 be a 1-dimensional (Ft)t≥0-Brownian

motion with Z̃0 = 0 for a given filtered probability space (Ω,F , (Ft)t≥0,P) and let
X0 be an (F0)-adapted random variable. We define a continuous process V :=
(Vt)t≥0 by

Vt := X0 + Z̃t (t ≥ 0).
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Let (ψt)t≥0 be the change of time process such that

ψt :=

∫ t

0

h−2(ψs, X0 + Z̃s)ds (t ≥ 0).

If Xt := Vψ−1
t

= X0 + Z̃ψ−1
t

and F̃t := Fψ−1
t

(t ≥ 0), then there exists an (F̃t)-

adapted Brownian motion Z = (Zt)t≥0 such that (Xt, Zt) is a solution of Eqn.
(5.2) on the probability space (Ω,F ,P).

Remark 5.1. The converse of this theorem also holds [31].

Proof. By definition of the time change,Mt := Z̃ψ−1
t

is a martingale with quadratic

variation [M ]t = ψ−1
t , where (suppressing quantifiers for the ease of notation)

ψt =

∫ t

0

h−2(ψs, Vs)ds ⇒ dψt = h−2(ψt, Vt)dt

⇒ dt = h2(ψt, Vt)dψt

⇒
∫ t

0

ds =

∫ t

0

h2(ψs, Vs)dψs

⇒ t =

∫ t

0

h2(ψs, Vs)dψs

⇒ ψ−1
s =

∫ ψ−1
s

0

h2(ψu, Vu)dψu

⇒ dψ−1
s = h2(ψψ−1

s
, Vψ−1

s
)ψ′

ψ−1
s
dψ−1

s

⇒ dψ−1
s = h2(s, Vψ−1

s
)dψψ−1

s

⇒
∫ t

0

dψ−1
s =

∫ t

0

h2(s, Vψ−1
s
)dψψ−1

s

⇒ ψ−1
t =

∫ t

0

h2(s, Vψ−1
s
)ds.

Hence, ψ−1
t satisfies the equation

ψ−1
t =

∫ t

0

h2(s,X0 + Z̃ψ−1
s
)ds (t ≥ 0).

For any t ≥ 0, we set Zt :=
∫ t
0
h−1(s,Xs)dMs. Then,

[Z]t =

∫ t

0

h−2(s,Xs)d[M ]s

=

∫ t

0

h−2(s,Xs)h
2(s,Xs)ds.

=

∫ t

0

ds = t.
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This result implies that (Zt)t≥0 is an (Ft)-Brownian motion. Since Mt = Z̃ψ−1
t

=

Xt −X0 =
∫ t
0
h(s,Xs)dZs (t ≥ 0), (Xt, Zt) is a solution of Eqn. (5.2).
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CHAPTER 6

APPLICATIONS

This chapter covers several applications of both CT-M and IT-M.

6.1 Applications of Change of Time Method

Sometimes, it is more useful to solve SDEs with the change of time method. For
example, CT-M can be used for Cox-Ingersoll-Ross (CIR) model when valuing
variance and volatility swaps [1]. We shall present examples in Subsections 6.1.1
and 6.1.2.

6.1.1 Cox-Ingersoll-Ross Model

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. The CIR model is based on
the following stochastic process:

dσ2
t = k(θ2 − σ2

t )dt+ γσtdZt (t ≥ 0), (6.1)

where σ0 and θ are short and long volatility, respectively. Furthermore, k is a
reversion speed, γ > 0 is a volatility parameter, (Zt)t≥0 is a standard Brownian
motion.

Lemma 6.1. [1] A solution of the Eqn. (6.1) has the following form:

σ2
t = e−kt

(
σ2
0 − θ2 + Z̃ψ−1

t

)
+ θ2,

where Z̃ψ−1
t

is an Fψ−1
t
-measurable one-dimensional Brownian motion. Here, ψ−1

t

is the inverse of ψt, defined as:

ψt := γ−2

∫ t

0

(
ekψs

(
σ2
0 − θ2 + Z̃s

)
+ θ2e2kψs

)−1
ds (t ≥ 0).

Proof. We define the following process:

Vt = ekt
(
σ2
t − θ2) (t ≥ 0).
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Then, using the Itô product rule (Itô Lemma for the product of Itô processes) [30],
we obtain:

dVt = kekt
(
σ2
t − θ2)dt+ ektdσ2

t

= kekt
(
σ2
t − θ2)dt+ ekt

(
k(θ2 − σ2

t ) + γσtdZt
)

= γektσtdZ
2
t

= γekt
√
e−ktVt + θ2dZt.

Applying CT-M to the general equation, we get

dXt = h(t,Xt)dZt,

where h(t,Xt) = ekt
√
e−ktVt + θ2. Xt = Vt implies that X0 = σ2

0 − θ2 and
Vt = σ2

0 − θ2 + Z̃ψ−1
t
. Then,

ekt
(
σ2
t − θ2

)
= σ2

0 − θ2 + Z̃ψ−1
t

⇒ σ2
t = e−kt

(
σ2
0 − θ2 + Z̃ψ−1

t
) + θ2.

We note that (Z̃ψ−1
t
) is an (Fψ−1

t
)-measurable one-dimensional Brownian motion

and ψ−1
t is the inverse of ψt:

ψt = γ−2

∫ t

0

(
ekψs

(
σ2
0 − θ2 + Z̃s

)
+ θ2e2kψs

)−1
ds.

6.1.2 Variance and Volatility Swaps

A variance swap is a forward contract on annualized variance, the square of
realized volatility. Its payoff at expiration is given by

N(σ2
R(S)−Kvar),

where V = σ2
R(S) is the realized stock variance over the life of the contract,

σ2
R(S) :=

1

T

∫ T

0

σ2
sds.

Here, Kvar is strike (delivery) price for variance, N is the notional amount of the
swap in dollars per annualized volatility point squared. The holder of a variance
swap at expiration gains N dollars for every point of σ2

R(S) − Kvar. Moreover,
the price of a forward contract P on the future realized variance is the expected
present value of the future payoff in the risk-neutral world:

Pvar = E(e−rT (σ2
R(S)−Kvar)),
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where r is the risk-free discount rate. We remark that

E(σ2
t ) = E(e−kt

(
σ2
0 − θ2 + Z̃2(ψ−1

t )
)
+ θ2)

= e−kt
(
σ2
0 − θ2

)
+ e−ktE(Z̃2(ψ−1

t )) + θ2

= e−kt
(
σ2
0 − θ2

)
+ θ2.

In fact,

E(V ) =
1

T

∫ T

0

E(σ2
s)ds

=
1

T

∫ T

0

(
e−ks

(
σ2
0 − θ2

)
+ θ2

)
ds

=
1

T

(
e−ks

−k
(
σ2
0 − θ2

)
+ θ2s

)∣∣∣∣T
0

=
1

T

(
e−kT

−k
(
σ2
0 − θ2

)
+ θ2T +

1

k
(σ2

0 − θ2)

)
=

1− e−kT

kT
(σ2

0 − θ2) + θ2,

so that Pvar = e−rT
(

1−e−kT

kT
(σ2

0 − θ2) + θ2 −Kvar

)
.

A volatility swap is a forward contract on annualized variance. Its payoff at
expiration is given by

N(σR(S)−Kvol),

where σR(S) is the realized stock volatility over the life of the contract,

σR(S) :=
1

T

√∫ T

0

σ2
sds.

In a similar way, a volatility swap can be studied [1]; its value (price) can be
represented by

Pvol = e−rT
((1− e−kT

kT
(σ2

0 − θ2) + θ2
)1/2 − γ2e−2kT

2k3T 2

[
(2e2kT

−4ekTkT − 2)(σ2
0 − θ2) + (2e2kT − 3e2kT + 4ekT − 1)θ2

]
/

[
8

(
1− e−kT

kT
(σ2

0 − θ2) + θ2
)3/2]

−Kvol

)
.

6.2 Applications of Itô-Taylor Expansions

We will consider the stochastic control problems and systems of SDEs in this
section. Before addressing the CIR model, we concentrate on stochastic control
problems.
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6.2.1 Optimal Stochastic Control with Malliavin-Based Approach

In this subsection, state equations will be approximated by IT-M. Furthermore,
the expectation of the gradient of the cost functional will be stated by Malliavin
calculus.

6.2.1.1 Introduction

Firstly, we recall some basic notations and results of Malliavin calculus. For a
detailed explanation, we may refer to [28,29,43]. Suppose (Ω,F ,P) is a complete
probability space.

Definition 6.1. Let H be a real separable Hilbert space with inner product
denoted by ⟨·, ·⟩H. For f := f(t) ∈ H, we let ∥f∥H :=

√
⟨f, f⟩H.We say thatW =

(W (f) : f ∈ H) is an isonormal Gaussian process if W is a centered Gaussian
(normally distributed) random variable (i.e., E(W (f)) = 0 with variance ∥f∥2H)
such that E(W (f)W (h)) = ⟨f, h⟩H ∀(f, h) ∈ H.

From now on, we let H := L2([0, T ],Rn) for some n ∈ N.

Example 6.1. The Wiener stochastic integral W (f) is defined as

W (f) :=

∫ T

0

f(s)dWs ∀f ∈ H.

is an isonormal Gaussian process.

Definition 6.2. Let C∞(Rn) be the set of all infinitely often continuously dif-
ferentiable functions h : Rn → R such that h and its partial derivatives have
polynomial growth property. For n ∈ N and h ∈ C∞(Rn), we denote S as the set
of all smooth random variables F : Ω → R such that

F = h(W (f1), . . . ,W (fn)),

where fi ∈ H for i = 1, 2, . . . , n.

Definition 6.3. The Malliavin derivative DtF of a smooth random variable of
F ∈ S is a H-valued random variable given by

DtF =
n∑
i=1

∂xih(W (f1), . . . ,W (fn))fi.

For example: D(W (f)) = f.
For a given p ∈ N, the domain of D in Lp(Ω) will be denoted by D1,p with respect
to the norm

∥F∥1,p := (E(F p) + E∥DF∥pH)
1/p.
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Proposition 6.2. Assume that f : Rk → R is a continuously differentiable func-
tion with bounded partial derivatives. For a random vector F = (F 1, F 2, . . . , F k)T

with F i ∈ D1,p (i = 1, 2, . . . , k), one has f(F ) ∈ D1,p (p ∈ N) and

Dt(f(F )) =
k∑
i=1

∂xif(F )DtF
i.

Definition 6.4. The divergence operator δ, being the adjoint operator of D, is
an unbounded operator on L2([0, T ]× Ω,Rn) with values in L2(Ω) such that:

• The domain of δ, denoted by Dom(δ), is the set ofH-valued square-integrable
random variables u ∈ L2([0, T ] × Ω,Rn) such that there exists a constant
c(u) satisfying:

|E
( ∫ T

0

DtF · utdt
)
| ≤ c(u)||F ||L2 ∀F ∈ D1,2.

• If u ∈Dom(δ), then δ(u) ∈ L2(Ω) with the integration-by-parts formula

E(Fδ(u)) = E

(∫ T

0

DtF · utdt
)

∀F ∈ D1,2.

Remark 6.1. If u is an adapted process, then Skorohod integral and Itô integral
coincide:

δ(u) =

∫ T

0

utdWt ∀u ∈ L2([0, T ]× Ω,Rn).

Proposition 6.3. Let F ∈ D1,2 and u ∈Dom(δ) such that

E(F 2
∫ T
0
∥ut∥2L2dt) <∞, then the product Fu is Skorohod integrable:

δ(Fu) = Fδ(u)−
∫ T

0

DtF · utdt

6.2.1.2 Sensitivity Analysis

We consider the following system of stochastic differential equations in Rn with
an n-dimensional Brownian motion:

Xt = x+

∫ t

0

A(s,Xs, µ)ds+

∫ t

0

H(s,Xs, µ)dBs, (6.2)

where A(t,Xt, µ) = (a1(t,Xt, µ), . . . , an(t,Xt, µ))
T , Xt = (X1

t , . . . , X
n
t )

T , Bt =
(B1

t , . . . , B
n
t )
T , µ = (µ1, . . . , µn)

T and

H(t,Xt, µ) =

 h11(t,Xt, µ) . . . h1n(t,Xt, µ)
...

. . .
...

hn1(t,Xt, µ) . . . hnn(t,Xt, µ)

 .
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For a given instantaneous cost function g and a terminal cost function f , the
sensitivity with respect to µ of the expected cost functional is defined by

J(µ) := E

(∫ T

0

g(s,Xs, µ)ds+ f(XT )

)
.

Now, we introduce a stochastic optimal control problem by

minimize
µ

J(µ) subject to Eqn. (6.2). (6.3)

There are various methods to get the numerical solutions of the problem stated
in Eqn. (6.3). A classical approach for an optimal control problem is to derive
necessary optimality conditions. Standard optimization algorithms require the
gradient computation of the cost functional given. There are some approaches for
such computations such as adjoint approach and sensitivities. We will derive the
gradient of the cost functional by using the sensitivity with the help of Malliavin
calculus.
The well-known Monte-Carlo method can be employed to simulate the sensitivity
∇µJ [10]. At this point, we shall use the emerging approach of Malliavin calculus
in order to get an expression for ∇µJ . This method is based on the integration-
by-parts formula. It can be considered as a generalization of the well-known
likelihood ratio method [10]. We can write Eqn. (6.2) as

Xt = x+

∫ t

0

A(s,Xs, µ)ds+
n∑
j=1

∫ t

0

hj(s,Xs, µ)dB
j
s ,

where hj is the j
th column of H. If we write the Jacobian matrix as Yt := ∇xXt

and denote the inverse of the Jacobian matrix by Zt := Y−1
t , then [9, 10]:

Yt = I+
∫ t

0

A′Yds+
n∑
j=1

∫ t

0

h′jYsdB
j
s ,

Zt = I−
∫ t

0

Zs(A′ −
n∑
j=1

(h′j)
2)ds−

n∑
j=1

∫ t

0

Zsh′jdBj
s ,

Ẋt =

∫ t

0

(Ȧ+ A′Ẋs)ds+
n∑
j=1

∫ t

0

(ḣj + h′jẊs)dB
j
s ,

where I is the (n × n)-identity matrix and Ẋ is the derivative of X with respect
µ. Also, A′ and h′j denote the Jacobian matrices of A and hj, respectively.

Proposition 6.4. [10] We assume the following conditions (i)-(iii):

(i) The functions A and H are continuously differentiable with respect to the
variables t, x, µ, and for some η > 0 and A ⊂ Rn, the Hölder continuity
condition is satisfied such that

sup
(t,x,µ,µ′)∈[0,T ]×Rn×A×A

|g(t, x, µ)− g(t, x, µ′)|
|µ− µ′|η

<∞,
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for both g = ∂µA and g = ∂µH. Furthermore, for any µ ∈ A, the functions
A(·, ·, µ), H(·, ·, µ), ∂µA(·, ·, µ) and ∂µH(·, ·, µ) are continuously differen-
tiable with respect to t and their first-order and second-order derivatives
with respect to x both exist and are continuous; the functions ∂µA and ∂µH
are uniformly bounded in (t, x, µ), and the derivatives of A, H, ∂µA, ∂µH
with respect to (t, x) are uniformly bounded as well.

(ii) The (squared) matrix H satisfies a uniform ellipticity condition:

[HH∗](t, x, µ) ≥ cI ∀(t, x) ∈ [0, T ]× Rn,

for a real number c > 0.

(iii) Be f a bounded measurable function.

Then,

J̇(µ) :=
1

T
f(XT )δ([H−1YZT ẊT ]

∗).

6.2.1.3 Approximation Procedure

We apply Itô-Taylor approximation to the quantities (Xt)t≥0, (Yt)t≥0 and (Zt)t≥0.

Lemma 6.5. Let (Xt) be the stochastic process defined in Eqn. (6.2). Further-
more, (Yt) and (Zt) denote the Jacobian of (Xt) and the inverse of the Jacobian,
respectively. Then, we get the approximate solutions as:

Xk
t = Xk

0 + ak(0,X0, µ0)I0 +
n∑
j=1

hkj(0,X0, µ)Ij

+ L0ak(0,X0, µ)I00 +
n∑
j=1

Ljak(0,X0, µ)Ij0

+
n∑
j=1

L0hkj(0,X0, µ)I0j +
n∑

l,j=1

Llhkj(0,X0, µ)Ilj

+ L0L0ak(0,X0, µ)I000 +
n∑
j=1

LjL0ak(0,X0, µ)Ij00

+
n∑
j=1

L0Ljak(0,X0, µ)I0j0 +
n∑

j,p=1

LjLpak(0,X0, µ)Ijp0

+
n∑
j=1

L0L0hkj(0,X0, µ)I00j +
n∑

j,l=1

LlL0hkj(0,X0, µ)Il0j

+
n∑

j,l=1

L0Llhkj(0,X0, µ)I0lj +
n∑

j,p,l=1

LlLphkj(0,X0, µ)Ilpj +R1t
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and

Ykℓ
t = Ikℓ + (A′Y)kℓ(0,X0, µ)I0 +

n∑
j=1

(h′jYs)kℓ(0,X0, µ)Ij

+ L0(A′Y)kℓ(0,X0, µ)I00 +
n∑
j=1

Lj(A′Y)kℓ(0,X0, µ)Ij0

+
n∑
j=1

L0(h′jYs)kℓ(0,X0, µ)I0j +
n∑

l,j=1

Ll(h′jYs)kℓ(0,X0, µ)Ilj

+ L0L0(A′Y)kℓ(0,X0, µ)I000 +
n∑
j=1

LjL0(A′Y)kℓ(0,X0, µ)Ij00

+
n∑
j=1

L0Lj(A′Y)kℓ(0,X0, µ)I0j0 +
n∑

j,p=1

LjLp(A′Y)kℓ(0,X0, µ)Ijp0

+
n∑
j=1

L0L0(h′jYs)kℓ(0,X0, µ)I00j +
n∑

j,l=1

LlL0(h′jYs)kℓ(0,X0, µ)Il0j

+
n∑

j,l=1

L0Ll(h′jYs)kℓ(0,X0, µ)I0lj +
n∑

j,p,l=1

LlLp(h′jYs)kℓ(0,X0, µ)Ilpj +R2t,

where Ykℓ
t stands for the (k, ℓ)th component of the matrix (Yt)t≥0 and, R1t and

R2t represent the remainder terms.

Remark 6.2. Similar formulations remain valid for both (Zt)t≥0 and (Ẋt)t≥0 as for
(Yt)t≥0.

Consider an equispaced discretization 0 ≤ τ0 < τ1 < . . . < τν < . . . < τm = T of
the time interval [0, T ].

Lemma 6.6. [9,10] Let UT be the random variable defined as UT := δ([H−1YZT ẊT ]
∗)

(of Proposition 6.4). Assume that
(

Xt

Ẋt

)
is R2n-valued stochastic differential

equation with Jacobian Ŷt and the inverse of the Jacobian is called (Ẑt) (t ≥ 0).
Then, UT is approximated by

UT ≈
n∑
i=1

[ZmT Ẋm
T ]i

∫ T

0

[H−1(s,Xm
s )Ym

s ]
∗
i dBs

−
n∑
i=1

∫ T

0

( n∑
j=1

Pm
β(j,i),TR

m
β(j,i),s

)
[H−1(s,Xm

s )Ym
s ]ids,

where Ds([ZT ẊT ]i) = 1s≤T
∑n

j=1 Pβ(j,i),TRβ(j,i),s with Pβ(j,i),T and Rβ(j,i),s are being

by some appropriate coordinates of the processes Ŷt and Ẑt, respectively.

For full details of this lemma, we refer to [9, 10].
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6.2.2 Cox-Ingersoll-Ross Model

Example 6.2. (CIR model) Consider the system of Eqn. (6.1):

dσ2
t = k(θ2 − σ2

t )dt+ γσtdZt. (6.4)

For Eqn. (6.4), Lemma 3.2 gives us the Itô-Taylor approximation as

σ2
t = σ2

0 + k(θ2 − σ2
0)I0 + γσ0I1 − k2(θ2 − σ2

0)I00 − kγσ0I10

+
γ

σ0

(
k(θ2 − σ2

0)

2
− γ2

8

)
I01 +

γ2

2
I11 + k3(θ2 − σ2

0)I000

+ k2γσ0I100 −
kγ

σ0

(
k(θ2 − σ2

0)

2
− γ2

8

)
I010 −

kγ2

2
I110

+

[
k(θ2 − σ2

0)

4σ0

(
γ3 − 4kθ2

4σ2
0

− k

)
+

γ2

16σ0

(
3(4kθ2 − γ3)

4σ2
0

+ k

)]
I001

+

[
γ

4σ2
0

(
γ3

4
− kθ2

)
− γk

4

]
I101 +Rt,

where Rt denotes the remainder term.

6.2.3 Ornstein-Uhlenbeck Model

Example 6.3. We consider 2-dimensional version of a weakly-coupled Ornstein-
Uhlenbeck (OU ) model :

dX1
t = α1(θ1 −X1

t )dt+ σ1dW
1
t ,

dX2
t = α2(θ2 −X2

t )dt+ σ2dW
2
t , (6.5)

where dW 1
t dW

2
t = ρdt, with real coefficients α1, α2, σ1, σ2, θ1, θ2 > 0 and

ρ ∈ (−1, 1).

Then, the correlation matrix ρ can be written as:

ρ =

(
1 ρ
ρ 1

)
=

(
1 0

ρ
√
1− ρ2

)(
1 ρ

0
√
1− ρ2

)
,

by Cholesky Decomposition.

Thus,

Wt = BZt =
(

1 0

ρ
√

1− ρ2

)(
Z1
t

Z2
t

)
.

So, Eqn. (6.5) becomes

dX1
t = α1(θ1 −X1

t )dt+ σ1dZ
1
t ,

dX2
t = α2(θ2 −X2

t )dt+ σ2ρdZ
1
t + σ2

√
1− ρ2dZ2

t . (6.6)
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In integral form, we state Eqn. (6.6) as

X1
t = X1

t0
+ α1θ1

∫ t

t0

ds− α1

∫ t

t0

X1
sds+ σ1

∫ t

t0

dZ1
s ,

X2
t = X2

t0
+ α2θ2

∫ t

t0

ds− α2

∫ t

t0

X2
sds+ σ2ρ

∫ t

t0

dZ1
s + σ2

√
1− ρ2

∫ t

t0

dZ2
s .

Applying the procedure of argumentation from the previous chapters, we get

X1
t = X1

t0
+ α1(θ1 −X1

t0
)I0 + σ1I1 − α2

1(θ1 −X1
t0
)I00

− α1σ1I10 + α3
1(θ1 −X1

t0
)I000 + α2

1σ1I100 +R1t,

X2
t = X2

t0
+ α2(θ2 −X2

t0
)I0 + σ2ρI1 + σ2

√
1− ρ2I2

− α2
2(θ2 −X2

t0
)I00 − ρα2σ2I10 − α2σ2

√
1− ρ2I20

+ α3
2(θ2 −X2

t0
)I000 + ρα2

2σ2I100 +
√
1− ρ2α2

2σ2I200 +R2t,

with remainder terms R1t and R2t.

Example 6.4. We state the 2-dimensional version of strongly-coupled Ornstein-
Uhlenbeck (OU ) model :

dX1
t = (−α11X

1
t − α12X

2
t )dt+ σ1dW

1
t ,

dX2
t = (−α21X

1
t − α22X

2
t )dt+ σ2dW

2
t , (6.7)

where dW 1
t dW

2
t = ρdt and θ1, θ2 = 0.

In terms of standard Brownian motions, we write Eqn. (6.7) as

dX1
t = (−α11X

1
t − α12X

2
t )dt+ σ1dZ

1
t ,

dX2
t = (−α21X

1
t − α22X

2
t )dt+ σ2ρdZ

1
t + σ2

√
1− ρ2dZ2

t . (6.8)

In a similar way, we obtain:

X1
t = X1

t0
− (α11X

1
t0
+ α12X

2
t0
)I0 + σ1I1 − (σ1α11 + ρσ2α12)I10

+
[
α11(α11X

1
t0
+ α12X

2
t0
) + α12(α21X

1
t0
+ α22X

2
t0
)
]
I00

− σ2α12

√
1− ρ2I20 −

[
(α2

11 + α12α21)(α11X
1
t0
+ α12X

2
t0
)

+ (α11α12 + α12α22)(α21X
1
t0
+ α22X

2
t0
)
]
I000

+
[
σ1(α

2
11 + α12α21) + σ2ρ(α11α12 + α12α22)

]
I100

+ σ2(α11α12 + α12α22)
√

1− ρ2I200 +R1t,

and

X2
t = X2

t0
− (α21X

1
t0
+ α22X

2
t0
)I0 + σ2ρI1 + σ2

√
1− ρ2I2

− (σ1α21 + ρσ2α22)I10 +
[
α21(α11X

1
t0
+ α12X

2
t0
)

+ α22(α21X
1
t0
+ α22X

2
t0
)
]
I00 − σ2α22

√
1− ρ2I20

−
[
(α21α11 + α22α21)(α11X

1
t0
+ α12X

2
t0
) + (α21α12

+ α2
22)(α21X

1
t0
+ α22X

2
t0
)
]
I000 +

[
σ1(α11α21 + α22α21)

+ σ2ρ(α21α12 + α2
22)

]
I100 + σ2(α12α21 + α2

22)
√

1− ρ2I200 +R2t,
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where R1t and R2t are remainder terms.

Let α12 = α21 = α22 = 1, α11 = 2, σ1 = σ2 = 1 and ρ = 0.6, then Eqn. (6.8)
becomes

dX1
t = (−2X1

t −X2
t )dt+ dZ1

t ,

dX2
t = (−X1

t −X2
t )dt+ 0.6dZ1

t + 0.8dZ2
t , (6.9)

and we get:

X1
t = X1

t0
− (2X1

t0
+X2

t0
)I0 + I1 + (5X1

t0
+ 3X2

t0
)I00 − 2.6I10

− 0.8I20 − (13X1
t0
+ 8X2

t0
)I000 + 6.8I100 + 2.4I200 +R1t

X2
t = X2

t0
− (X1

t0
+X2

t0
)I0 + 0.6I1 + 0.8I2 − 1.6I10 − 0.8I20

+ (3X1
t0
+ 2X2

t0
)I00 − (8X1

t0
+ 5X2

t0
)I000 + 4.2I100 + 1.6I200 +R2t.

Then, the Euler scheme reads the system of Eqn. (6.9) as:

X1
ν+1 = X1

ν − (X2
ν + 2X1

ν )∆ +∆Z1,

X2
ν+1 = X2

ν − (X2
ν +X1

ν )∆ + 0.6∆Z1 + 0.8∆Z2 (ν ∈ N).

Applying the Milstein scheme to the system of Eqn. (6.9), we obtain

X1
ν+1 = X1

ν − (X2
ν + 2X1

ν )∆ +∆Z1,

X2
ν+1 = X2

ν − (X2
ν +X1

ν )∆ + 0.6∆Z1 + 0.8∆Z2 (ν ∈ N).

Applying the order 1.5 strong Taylor scheme to Eqn. (6.9), we get:

X1
ν+1 = X1

ν − (X2
ν + 2X1

ν )∆ +
1

2
(3X2

ν + 5X1
ν )∆

2 +∆Z1 − 2.6I10 − 0.8I20,

X2
ν+1 = X2

ν − (X2
ν +X1

ν )∆ +
1

2
(2X2

ν + 3X1
ν )∆

2 + 0.6∆Z1 + 0.8∆Z2

− 1.6I10 − 0.8I20 (ν ∈ N).

Finally, for Eqn. (6.9) the order 2.0 strong Taylor scheme can be reduced to:

X1
ν+1 = X1

ν − (X2
ν + 2X1

ν )∆ +
1

2
(3X2

ν + 5X1
ν )∆

2 +∆Z1 − 2.6I10 − 0.8I20,

X2
ν+1 = X2

ν − (X2
ν +X1

ν )∆ +
1

2
(2X2

ν + 3X1
ν )∆

2 + 0.6∆Z1 + 0.8∆Z2

− 1.6I10 − 0.8I20 (ν ∈ N).

6.2.3.1 Numerical Results and Implementation Details

In this part, we consider numerical examples for both the systems with uncor-
related and correlated Brownian motions. In order to implement the discrete
scheme, we use MATLAB. There are many documentations that describes the
main features of MATLAB commands related to SDE. Some numerical interpre-
tations can be found in the SDEs’ MATLAB packages [11]. However, numerical
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examples implemented in MATLAB are mostly in the one-dimensional case. Some
coupled SDEs are considered, but having symmetric coefficients allowing easy
computations that arise from multiple Itô integrals. Our first example demon-
strates some triple SDEs having uncorrelated Brownian motions.

Example Run 1. The system of SDEs consisting of three equations proposed
in Hofmann, Platen and Schweizer [12] is considered as: dX1

t = X1
tX

2
t dZ

1
t ,

dX2
t = −(X2

t −X3
t )dt+ 0.3X2

t dZ
2
t ,

dX3
t = 1

α
(X2

t −X3
t )dt,

where X1
t , X

2
t and X3

t represent the asset price, the instantenous volatility, and
the averaged volatility, respectively, and, Z1

t and Z2
t are uncorrelated Brownian

motions. As in [11], the Milstein scheme is obtained as:

X1
ν+1 = X1

ν + X1
νX

2
ν∆Z

1 +
1

2
X1
ν (X

2
ν )

2{(∆Z1)2 −∆}

+ 0.3X1
νX

2
ν

∫ tν+1

tν

∫ t

tν

dZ2
sdZ

1
s ,

X2
ν+1 = X2

ν − (X2
ν −X3

ν )∆ + 0.3X2
ν∆Z

2 + 0.045X2
ν{(∆Z1)2 −∆},

X3
ν+1 = X3

ν +
1

α
(X2

ν −X3
ν )∆ (ν ∈ N).

We take α = 1, T = 1, X1
0 = 1, X2

0 = 0.1 and X3
0 = 0.1 as the initiation data; ∆

is considered as 2−9.

The scheme has the double integral
∫ tν+1

tν

∫ t
tν
dZ2

sdZ
1
s . In [11], this integral is

approximated by Euler method. Although it is a bit challenging, we approximate
such integrals by using the following representations from [23]:

Ip0 = ∆, Ipj =
√
∆ξj, Ip00 =

1

2
∆2,

Ipj0 =
1

2
∆
(√

∆ξj + aj0
)
, Ip0j =

1

2
∆
(√

∆ξj − aj0
)
.

Here,

aj0 = − 1

π

√
2∆

p∑
r=1

1

i
ζji − 2

√
∆ρpµjp,

Ipj1j2 =
1

2
∆ξj1ξj2 −

1

2

√
∆(aj20ξj1 − aj10ξj2) + ∆Apj1j2 ,

Apj1j2 =
1

2π

p∑
i=1

1

i
(ζj1iηj2i − ζj2iηj1i),
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with

ξj =
1√
∆
W j, ζji =

√
2

∆
πiaji, ηji =

√
2

∆
πibji,

µjp =
1√
∆ρp

∞∑
i=p+1

aji, ρp =
1

12
− 1

2π2

p∑
i=1

1

i2
,

where j = 1, 2, . . . ,m, and i = 1, 2, . . . , p, for number p > 0 with the property

p = p(∆) ≥ K

∆2
,

with an appropriate constant K > 0, to ensure the convergence order of the
numerical scheme.

We note that ζji, ηji and µjp are uncorrelated Gaussian random variables. Now,
we use the Polar Marsaglia method to generate pairs of random variables.

The following lines show the implementation of this method in MATLAB:

%Polar Marsaglia Method
function [z1,z2]= Polar
l=0.5;
while l>0
u1 = rand;u2 = rand;
v1 = 2*u1 - 1;v2 = 2*u2 - 1;
V = (v1.*v1)+(v2.*v2);
if (V<=1)&&(V>0)

break;
end
end
z1 = v1.*sqrt(-2*log(V)./V);
z2 = v2.*sqrt(-2*log(V)./V).

We can approximate the iterated integral
∫ tν+1

νr

∫ t
νr
dZ2

sdZ
1
s as:

%Approximation of I_ij
function I_ij=ito_ij(p,Delta,G1,G2,mu1_j,mu2_j,ro)
a_ij=0;
for i=1:p

[zeta1, zeta2]= Polar;[eta1 ,eta2 ]=Polar;
a_ij=a_ij+(1/i)*(zeta1*(sqrt(2)*G2+eta2)...
-zeta2*(sqrt(2)*G1+eta1));

end
I_ij=a_ij*Delta/(pi);
I_ij=I_ij+Delta*(G1*G2/2+sqrt(ro)*(mu1_j*G2-mu2_j*G1)).
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Figure 6.1: Numerical result of Example Run1 with Milstein approximation.

In Figure 6.1, we give the numerical result of Example Run1. We note that we
have completely the same results for X1

t , X
2
t and X3

t as in [11] with the same
initial data.

Example Run 2. (Correlated Brownian motions) We recall the strongly-coupled
OU process of Eqn. (6.7):

dX1
t = (−α11X

1
t − α12X

2
t )dt+ σ1dW

1
t ,

dX2
t = (−α21X

1
t − α22X

2
t )dt+ σ2dW

2
t ,

where dW 1
t dW

2
t = ρdt and the transformed form of Eqn. (6.7) is

dX1
t = (−2X1

t −X2
t )dt+ dZ1

t ,

dX2
t = (−X1

t −X2
t )dt+ 0.6dZ1

t + 0.8dZ2
t .

Our Taylor scheme with order 1.5 gives

X1
ν+1 = X1

ν + (−X2
ν − 2X1

ν )∆ +
1

2
(3X2

ν + 5X1
ν )∆

2 +∆Z1 − 2.6I10 − 0.8I20,

X2
ν+1 = X2

ν + (−X2
ν −X1

ν )∆ +
1

2
(2X2

ν + 3X1
ν )∆

2 + 0.6∆Z1

+ 0.8∆Z2 − 1.6I10 − 0.8I20 (ν ∈ N).
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We compute the integrals I10 and I20 numerically as stated in the following lines:

%Approximation of I_j0 and I_0j
function [I_10,I_20]=ito_j0(p,Delta,G1,G2,mu1_j,mu2_j,ro)
a_10=0;a_20=0;
for i=1:p

[eta1,eta2]=Polar;
a_10=a_10+(1/i)*eta1;
a_20=a_20+(1/i)*eta2;

end
I_10=a_10*(1/pi)*sqrt(Delta*2)+2*sqrt(Delta*ro)*mu1_j;
I_10=(1/2)*Delta*I_10+(1/2)*Delta*sqrt(Delta)*G1;
I_20=a_20*(1/pi)*sqrt(Delta*2)+2*sqrt(Delta*ro)*mu2_j;
I_20=(1/2)*Delta*I_20+(1/2)*Delta*sqrt(Delta)*G2.

The main file can be run as:

clf
randn(’state’,1)
T = 1; Delta = 2^(-9); delta = Delta^2;
L = T/Delta; K = Delta/delta;
X1 = zeros(1,L+1); X2 = zeros(1,L+1);
X1(1) = 1;X2(1) = 0.1;
p=2;ro=0;
for i=1:p

ro=ro+1/(i*i);ro=(pi*pi)/6-ro;ro=ro/(2*pi*pi);
end
for j = 1:L

G1 = randn; G2 = randn;
Winc2 = sqrt(Delta)*G2;Winc1 = sqrt(Delta)*G1;
[mu1, mu2 ]=Polar;

[I10,I20]=ito_j0(p,Delta,G1,G2,mu1,mu2,ro);
X1(j+1) = X1(j) +(-2*X1(j)-X2(j))*Delta +...
(0.5)*(3*X2(j)+5*X1(j))*Delta^2+Winc1-(2.6)*I10-(0.8)*I20;

X2(j+1) = X2(j) + (-X2(j)-X1(j))*Delta+(0.5)*(2*X2(j)...
+3*X1(j))*Delta^2+ (0.6)*Winc1 +(0.8)*Winc2-(1.6)*I10-(0.8)*I20;

end
plot([0:Delta:T],X1,’r-’), hold on
plot([0:Delta:T],X2,’bl--’)
xlabel(’t’,’FontSize’,16), ylabel(’X’,’FontSize’,16)
legend(’X^1’,’X^2’).

We can also find the exact solution of the system of Eqn. (6.7). We can rewrite
Eqn. (6.7) as

dXt = −AXtdt+ BdZs, (6.10)
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where A =

(
2 1
1 1

)
and B =

(
1 0
0.6 0.8

)
.

Multiplying both sides of Eqn. (6.10) by exp(tA), we get

exp(tA)dXt = − exp(tA)AXtdt+ exp(tA)BdZt. (6.11)

We can arrange Eqn. (6.11) as

exp(tA)dXt + exp(tA)AXtdt = exp(tA)BdZt. (6.12)

It can be easily seen that the left-hand side of Eqn. (6.12) is equal to the derivative
of exp(tA)Xt with respect to t. So, we rewrite Eqn. (6.12) in the following way:

d(exp(tA)Xt) = exp(tA)BdZt. (6.13)

Integrating Eqn. (6.13) over the interval [0, t], we obtain

exp(tA)Xt − X0 =

∫ t

0

exp(sA)BdZs.

The exact solution of the system of Eqn. (6.7) is obtained in matrix formulation
as:

Xt = X0 exp(−tA) +
∫ t

0

exp((s− t)A)BdZs. (6.14)

We perform the exact numerical simulation for the system of Eqn. (6.7). Firstly,
we compute the matrix multiplications in Eqn. (6.14), and then we approximate
componentwise.

The Matlab code for the exact numerical solution is:

randn(’state’,1)
%parameters
t_start = 0; %simulation start time
t_end = 1; %simuation end time
dt = 2^(-9); %time step
tau = 1; %relaxation time
c = 1; %diffusion constant
x0 = 1; %initial value for stochastic variable x
mu = 0; %mean of stochatic process x
y0 = 0.1; %initial value for integral x
start_dist = 0; %start of OU pdf
end_dist = 1; %end of OU pdf
k1=1/(1+sqrt(2));
k2=1/(-1+sqrt(2));
%time
T = t_start:dt:t_end;
%compute x and y
i = 1;

54



x(1) = x0;
y(1) = y0;
for t=t_start+dt:dt:t_end
s1=(0.5)*(sqrt((k1*0.5)*(1-(exp(-dt/k1))^2))
+sqrt((k2*0.5)*(1-(exp(-dt/k2))^2)));
s2=sqrt(2)*(0.5)*(-sqrt((k2*0.5)*(1-(exp(-dt/k2))^2))
+sqrt((k1*0.5)*(1-(exp(-dt/k1))^2)));
c1=(0.25)*sqrt(2)*(-sqrt((k2*0.5)*(1-(exp(-dt/k2))^2))
+sqrt((k1*0.5)*(1-(exp(-dt/k1))^2)));
c2=(0.5)*(sqrt((k2*0.5)*(1-(exp(-dt/k2))^2))
+sqrt((k1*0.5)*(1-(exp(-dt/k1))^2)));
i = i + 1;

r1 = randn;
r2 = randn;
x(i) = x(i-1)*(0.5)*(exp(-dt/k1)+exp(-dt/k2))
+y(i-1)*(0.5)*sqrt(2)*(exp(-dt/k1)-exp(-dt/k2))+...

(s1+(0.6)*s2)*r1+(0.8)*s2*r2;
y(i) = y(i-1)*(0.5)*(exp(-dt/k1)+exp(-dt/k2))
+x(i-1)*(0.25)*sqrt(2)*(exp(-dt/k1)-exp(-dt/k2))+...

(c1+(0.6)*c2)*r1+(0.8)*c2*r2;
end.
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Ito−Taylor approximation for X1

0 0.2 0.4 0.6 0.8 1
0
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1

1.5

Exact numerical simulation for X1

Figure 6.2: Comparison of the exact numerical solution of Run2 with Taylor
Scheme of order 1.5 for X1.
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Figure 6.3: Comparison of the exact numerical solution of Run2 with Taylor
Scheme of order 1.5 for X2.

In Figures 6.2-6.3, we compare the obtained results. It can be easily seen that
the approximate solution and the exact solution are almost the same.
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CHAPTER 7

CONCLUSION AND OUTLOOK

In this study, the solutions of SDEs were studied and discussed by means of two
different methods of transformations. The first one, based on the idea of finding
an approximate solution, is IT-M. Since the Itô-Taylor expansion is the stochastic
version of Taylor series expansion for ODEs, we have firstly got solutions for ODEs
by discretization. Then, by using the similar terminology as in the case of ODEs,
we obtained the Itô-Taylor approximation for one-dimensional SDEs.

As for the deterministic case, there also exists a multi-variable version of the
Itô calculus which means that we can extend the theory of the IT-M from one-
dimensional SDEs to systems of SDEs. We classified those systems of SDEs
by cases with respect to the criterion of (un-)correlated (or (un-)standardized)
Brownian motions. For the systems of SDEs with standard Brownian motion,
we considered states and Brownian motions with respect to shared and non-
shared cases. After obtaining Itô-Taylor expansions in each cases with standard
Brownian motions, we focused on the systems of SDEs with correlated Brownian
motions. Since it is not possible to apply directly Itô Lemma to the systems of
SDEs with correlated Brownian motions, it is needed to transform them to ones
having standard Brownian motion to obtain the Itô-Taylor approximation. Then,
in order to get the approximate solutions of SDEs and systems of SDEs, related
discretization schemes were given. We considered strong convergence criterion to
approximate the true solution.

As a second way of finding solutions of SDEs, we proposed a probabilistic method
of representation: CT-M, which can be regarded as a standard tool for building
financial models. The idea was to change the scales of time before applying the
Itô Lemma to SDEs, so that we could more easily get representations of the
solution for SDEs. Additionally, CT-M, by definition, keeps tracks of financial
risk.

After that, we gave some applications of both IT-M and CT-M. We obtained the
discrete forms of some well-known financial models such as CIR model and OU
model. For CIR model, we also used CT-M, which is helpful, e.g., for pricing
variance and volatility swaps.

Also, we used the Itô-Taylor theory to get approximate solutions of stochastic
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control problems. When computing the derivative of the cost functional, we
benefited from Malliavin calculus. As for future work, deep relations of Malli-
avin calculus with control problems could be worked out. Moreover, Itô-Taylor
approximation procedure can be considered for nonlinear stochastic control prob-
lems [40] and hybrid systems [22]. Discrete forms of the state equations may be
obtained by methods presented in this thesis. The Itô-Taylor approximation pro-
vides the needed linearization and discretization. In fact, we could proceed to use
IT-M in the financial context of stochastic control, e.g., in portfolio optimization.
Finally, we may use CT-M for those problems, too, and could also permit the
existence of fractional Brownian motions [27, 39] that we can back to Brownian
motions through our transformation approach.
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