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ABSTRACT

PRICING AMERICAN OPTIONS UNDER DISCRETE AND CONTINUOUS
TIME SETTING

Kozpınar, Sinem

M.S., Department of Financial Mathematics

Supervisor : Assist. Prof. Dr. Yeliz Yolcu Okur

Co-Supervisor : Prof. Dr. Z. Nuray Güner

September 2013, 85 pages

In this thesis, pricing of American options are analyzed in discrete and continuous
time markets. We first discuss the discrete-time valuation of American options
assuming that the underlying asset pays no dividend during the life of the op-
tion. In this setting, we uniquely price American options by introducing the
Snell envelope and optimal stopping time problem. We prove the main results
studied in Lamberton and Lapeyre (1996) in details. In addition, we show that
the price of an American call option with no dividend is equal to the price of its
European counterpart. Then, we extend this results to the continuous-time for
both dividend and no dividend case. Following Black-Scholes model, we present
two different techniques to price American options: martingale pricing technique
and variational inequalities. Under martingale pricing approach, we take the
expectation of discounted payoff process and determine the stopping time that
maximizes this expected value. Then, we derive a pricing formula for both div-
idend and no dividend case. We also show that an early exercise is not optimal
for American call options without dividend. We observed that this rule is not
valid for American call options on a dividend paying underlying asset. Then,
we introduce the variational inequalities that an American option satisfies and
investigate the regular solutions of this inequalities. However, these approaches
generally do not admit a closed-form solution for the price of American options.
Therefore, we give a brief introduction to the finite difference and PSOR methods
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and adapt these methods for American options. Finally, a numerical application
is done by comparing the efficiencies of these methods. Moreover, the impact
of Black-Scholes parameters K, σ, δ on the price of American options are also
investigated. The thesis ends with a conclusion and an outlook to future studies.

Keywords : American option, pricing, optimal stopping time problem, martingale
pricing, variational inequalities, finite difference method, PSOR method
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ÖZ

AMERİKAN OPSİYONLARININ KESİKLİ VE SÜREKLİ ZAMAN
MODELLERİ ALTINDA FİYATLANMASI

Kozpınar, Sinem

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Yard. Doç. Dr. Yeliz Yolcu Okur

Ortak Tez Yöneticisi : Prof. Dr. Z. Nuray Güner

Eylül 2013, 85 sayfa

Bu tezde, Amerikan tipi opsiyonların kesikli ve sürekli modellerdeki fiyatlaması
analiz edilmiştir. İlk olarak dayanak varlığın temettü ödemediği varsayımı altında
kesikli fiyatlama modeli incelenmiştir. Bu çerçevede Snell envelope ve optimal
durma problemlerinden yararlanarak Amerikan opsiyonlarının teorik fiyatları elde
edilmiştir. Ayrıca, bu konuyla ilgili başlıca kaynaklardan olan Lamberton ve
Lapeyre’in (1996) temel sonuçları detaylı bir şekilde ispatlanmış ve Amerikan ile
Avrupa tipi opsiyonların temettüsüz durumda aynı fiyata sahip olduğu gösteril-
miştir. Daha sonrasında kesikli piyasalar için gösterilen bu sonuçlar, temettü du-
rumunda sürekli piyasalar için incelenmiştir. Black-Scholes modeli baz alınarak
fiyatlama konusu iki farklı yaklaşım altında incelenmiştir: martingale ile fiyat-
lama ve varvasyonel eşitsizlik teknikleri. Martingale yaklaşımı altında opsiyonun
iskonto edilmiş ödeme değerinin beklenentisinin en yüksek olduğu durma anı be-
lirlenmiştir. Bundan yararlanarak temettülü ve temettüsüz durumlar için iki
ayrı fiyatlama yapılmıştır. Ayrıca temettüsüz durumda Amerikan opsiyonlarının
erken kullanımının optimal olmadığı ve temettülü durumda ise bu kuralın geçersiz
olduğu gösterilmiştir. Daha sonrasında varyasyonel eşitsizlikler takdim edilmiş
ve bunların düzenli çözümleri araştırılmıştır. Genel olarak bu yaklaşımlar ile
Amerikan opsiyonları için kapalı bir çözüm elde edilemediğinden farklar metodu
ile türevler ve PSOR yöntemleri takdim edilmiştir. Son olarak, bu yöntemlerin
uygulanabilirlikleri karşılaştırılıp, Black-Scholes modelinin parametreleri K, σ,
δ’nın fiyatlamaya etkisi nümerik olarak ortaya konulmuştur. Bu çalışma bir
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değerlendirme ve gelecek çalışmalara bir bakış ile sonuçlandırılmıştır.

Anahtar Kelimeler : Amerikan tipi opsiyonlar, fiyatlama, riskten korunma portföyleri,
Black-Scholes modeli, Snell envelope, optimal durma problemi, martingale ile fiy-
atlama, varyasyonel eşitsizlikler, farklar metodu ile türevler, PSOR yöntemi
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CHAPTER 1

INTRODUCTION

In an economy, the investors can expose a considerably high risk because of the
undesired fluctuations in security prices. Therefore, they need to control that
risk with the help of some financial instruments. American options are one of the
most popular financial instruments created to meet these needs. Besides being
used to reduce the risk, American options also provide their holders, unlike the
European options, the flexibility of exercising at any time up to maturity. This
structure of American options makes them more valuable for investors. That is
why, the valuation of these special contracts is an important research area for
investors.

The early exercise possibility turns the valuation of an American option into
a difficult problem to solve. One way to solve this problem is the martingale
pricing approach. According to this approach, we can price a contingent claim
in a complete market by taking the expectation of its discounted payoff with re-
spect to the risk-neutral probability measure (see, e.g. [27] and [23]). Since the
completeness of the market allows us to find a replicating portfolio which hedges
the option, its price at any time t is indeed equal to the value of this portfolio.
Moreover, since we deal with the American options, it can be seen that this val-
uation approach is closely related to the optimal stopping time problem. The
theoretical aspects on this approach were firstly proposed by McKean (1965) [25]
and Samuelson (1965) [34]. Since the arbitrage-free pricing of contingent claims
was not studied yet, McKean proposed to price the American put options un-
der the natural probability measure. The valuation process was then developed
by many authors, such as van Moerbeke (1976) [41], Karatzas (1988) [20], Ben-
soussan (1984) [2]. Van Moerbeke continued to study on the optimal stopping
time problem whereas Karatzas and Bensoussan associated the problem with the
replicating portfolios. On the other hand, there is another approach commonly
used to price American options. This approach, say pricing with variational in-
equalities, deals with the solutions of parabolic partial differential inequalities
that an American option satisfies. This approach was evolved by Bensoussan and
Lions [3]. Then, Jaillet, Lamberton and Lapeyre dealt with the regular solutions
of these systems in [18].

These pricing approaches generally do not admit a closed-form price formula for
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American options. Therefore, several studies have been conducted on the numeri-
cal solutions of these methods. Finite difference method is widely used in financial
mathematics for the numerical solutions of partial differential equalities (PDE).
One of the pioneering method was proposed by Crank and Nicolson [10] in 1947.
Afterwards, Brennan and Schwartz (1977, 1978) introduced explicit and implicit
methods in [7, 35]. Then, Courtadon (1982) developed these methods in [9]. Un-
der these numerical approaches, we can approximate the variational inequalities
that an American option satisfy with their finite difference quotients. Projected
SOR method (PSOR) that was suggested by Cryer (1971) [11] is another numer-
ical approach used to price options numerically. This approach indeed deals with
the iterative solutions of a linear system of equations of the form Ax = b.

In this thesis, we investigate the valuation of American options in discrete and
continuous time markets. We first discuss the discrete-time valuation of Ameri-
can options assuming that the option holder does not take a dividend payment
during the life of the option. After prevailing the theoretical aspects, we ex-
tend our results to the continuous-time. We follow the well-known Black-Scholes
model [5] and analyze the valuation concept for both dividend and non-dividend
case. We introduce two fundamental techniques commonly used in the valuation
of American options: martingale pricing and pricing with variational inequalities.
These approaches generally do not admit a closed-form solution for the price of
American options. Hence, we give a brief introduction to the finite difference
and PSOR methods. Finally, a numerical application is done by comparing the
efficiencies of these methods. We also investigate the impact of Black-Scholes
parameters, σ, δ, K, on the price of American options.

The outline of this thesis is as follows: In Chapter 2, we present some mathemat-
ical preliminaries including fundamental definitions and results used in discrete
and continuous-time markets. In Chapter 3, we discuss the fair price of American
options with no dividend under discrete-time settings. Throughout this chapter,
the market is assumed to be complete. Under this assumption, we obtain the
unique price of an American option with the help of a replicating portfolio that
hedges the option. Moreover, we describe the Snell envelope and optimal stopping
time problem. We prove the main results studied in [23] in details. We also show
that the price of an American call option with no dividend is equal to the price of
an European call with the same maturity, same strike price and same underlying.
In Chapter 4, we introduce the continuous-time valuation of American options
on an underlying asset that does not pay any dividend. We present two different
approaches for pricing. The first technique is martingale pricing approach that
deals with the expectation of discounted payoff processes under the risk-neutral
probability measure [4, 22, 23]. Under this approach, we prove our main theorem
(Theorem 4.6) in details. Secondly, we investigate the solutions of variational in-
equalities that American options admit [3, 18, 28]. Under this approach, we prove
our main theorem (Theorem 4.13) for pricing in the case that the inequality sys-
tem has a regular solution. Moreover, we show that it is not optimal to exercise
an American call with no dividend before maturity. In Chapter 5, we extend the
valuation process of American options to the dividend case. We closely follow the
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theory given in Chapter 4. We see that, if the underlying pays any dividend to its
holder, American and European options with the same strike and same maturity
are differently priced, contrary to the non-dividend case. In Chapter 6, we give
a brief introduction about the finite difference and PSOR methods [40] adapting
the valuation process for American options. In Chapter 7, we present a numerical
application comparing these methods with the Binomial method. Moreover, we
analyze the effects of Black-Scholes parameters K, δ, σ to the American option
value. In chapter 8, we conclude the thesis and give an outlook to future studies.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter, we give some important definitions and results that are com-
monly used in discrete and continuous-time modeling. For sections, we refer to
Lamberton and Lapeyre [23], Shreve [37] and Karatzas and Shreve [21].

2.1 Fundamentals of Discrete-Time Modeling

We consider a filtered probability space (Ω,F , (Ft)t=0,1,...,T ,P) on the finite time
interval [0, T ] and suppose P({ω}) > 0 for all ω ∈ Ω. These are the settings on
which our discrete-time model will be constructed.

Now, we introduce the fundamental tools used in discrete-time modeling.

Definition 2.1. A random process (Yt)t=0,1,...,T is said to be adapted, if Yt ∈ Ft
for all t ∈ {0, 1, . . . , T}.
Definition 2.2. A random process (Yt)t=0,1,...,T is said to be predictable, if Yt is
measurable with respect to the sigma-algebra Ft−1 for all t ∈ {0, 1, . . . , T}.
Definition 2.3. Let us assume that there exist d + 1 assets in the market. A
trading strategy ϕ = (ϕ0

t , ϕ
1
t , . . . , ϕ

d
t )t=0,1,...,T at time t is a vector in Rd+1 where

ϕit denotes the number of i’th asset in the portfolio.

In our discrete-time model, we assume that all trading strategies are predictable.

Definition 2.4. The value of a trading strategy ϕ at time t is given by

Vt(ϕ) = ϕt. St =
d∑
j=0

ϕjtS
j
t .

Moreover,

Ṽt(ϕ) =
1

S0
t

ϕt. St =
d∑
j=0

ϕjt S̃
j
t

refers to the discounted value process of this portfolio at time t.
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Definition 2.5. A trading strategy ϕ = (ϕ0
t , ϕ

1
t , . . . , ϕ

d
t ) is said to be self-

financing if
ϕt. St = ϕt+1. St,

or, equivalently,
Vt+1(ϕ)− Vt(ϕ) = ϕt+1. (St+1 − St)

for all t = 0, 1, . . . , T − 1.

Definition 2.6. A trading strategy ϕ is said to be admissible if the followings
are satisfied

i) it is self-financing,

ii) Vt(ϕ) ≥ 0 for all t ∈ {0, 1, . . . , T}.

Definition 2.7. Let us consider an admissible strategy ϕ = (ϕ0
t , ϕ

1
t , . . . , ϕ

d
t )t=0,1,...,T

traded in the market and let Vt(ϕ) denote its value at time t. Then, it is called
an arbitrage strategy if the followings are satisfied

i) V0(ϕ) = 0,

ii) VT (ϕ) > 0.

Definition 2.8. Let us consider an Ft-measurable, R-valued random process (Yt)
satisfying

1. E (Yt+1 | Ft) = Yt, for all t ≤ T − 1. Then, the process (Yt) is a martingale,

2. E (Yt+1 | Ft) ≤ Yt, for all t ≤ T −1. Then, the process (Yt) is a supermartin-
gale,

3. E (Yt+1 | Ft) ≥ Yt, for all t ≤ T − 1. Then, the process (Yt) is a submartin-
gale.

Proposition 2.1. (Constant Expectation Property)

• If the process (Mt) is an Ft-martingale, then

E(Mt) = E(M0)

for all t.

• If the process (Mt) is an Ft-supermartingale, then

E(Mn) ≤ E(M0)

for all t.
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• If the process (Mt) is an Ft-submartingale, then

E(Mt) ≥ E(M0)

for all t.

Proposition 2.2. If the discounted asset price process (S̃t) is an Ft-martingale,
then the discounted value of a self-financing strategy Ṽt(φ) defined by

Ṽt(ϕ) = V0 +
t∑

j=1

ϕj.∆S̃j

is also a martingale.

Definition 2.9. A market that does not allow arbitrage is said to be viable.

Theorem 2.3. Let us consider that the market is viable. Then, there is a proba-
bility measure P∗ equivalent to P under which the discounted stock price processes
are martingales. Conversely, if we can find a probability measure P∗ equivalent
to P which makes the discounted asset prices martingale, then the market is said
to be viable.

Proof. The proof can be found in [23].

Definition 2.10. Let us consider a contingent claim represented by a non-
negative stochastic variable c. This contingent claim c is said to be attainable if
there is an admissible portfolio ϕ satisfying VT (ϕ) = c.

Definition 2.11. If every contingent claim is attainable, then the market is said
to be complete.

The next theorem implies that in a complete market, every contingent claim
has a single price due to the uniqueness of the risk neutral probability measure
P∗. Hence, it provides us to obtain a unique theoretical price for the options.
Moreover, using this theorem, we guarantee the existence of a replicating portfolio
that hedges the option.

Theorem 2.4. Let us suppose that the market is complete. Then, we have a
unique probability measure P∗ equivalent to P such that the discounted stock price
processes are martingales. Conversely, if we can find a unique probability measure
P∗ equivalent to P which makes the discounted asset prices martingale, then the
market is said to be complete.

Proof. The proof can be found in [23].

Definition 2.12. A random variable ν taking values in {0, 1, . . . , T} is a stopping
time if, for any t ∈ {0, 1, . . . , T},

{ν = t} ∈ Ft.
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After defining the stopping time, we will proceed to the stopped sequence concept
which plays an important role in the discrete time modeling of American options.

Definition 2.13. Let us consider that ν is a stopping time taking values in
{0, 1, . . . , T} and letXt be an Ft-measurable random variable. In the case {ν = k}
for k ∈ N, the stopped sequence (Xt∧ν) = (Xν

t ) is given by

Xν
t =

{
Xk ∈ Fk(⊆ Ft) if k ≤ t
Xt ∈ Ft if k ≥ t,

where t ∧ ν = min{ν, t}.

It is obvious from this definition that the stopped sequence (Xν
t ) is always an

Ft-measurable random variable.
The following proposition plays a key role in the discrete-time version of optimal
stopping time problem. Indeed, we later see that the optimal stopping time for
exercising an American option guarantees the stopped sequence to be a martingale
(see Proposition 3.2).

Proposition 2.5. Let (Xt) be an adapted sequence and ν be a stopping time.Then,
the stopped sequence (Xν

t ) is adapted. Moreover, if (Xt) is a martingale (a super-
martingale, respectively), then (Xν

t ) is a martingale (a supermartingale, respec-
tively).

Proof. See Lamberton and Lapeyre [23] for the proof of this proposition.

2.2 Fundamentals of Continuous-Time Modeling

We consider a filtered probability space (Ω,F , (Ft)t≥0,P). We may also work on
a smaller time interval [0, T ] for the maturity time T <∞.
These are the settings on which our continuous-time model will be constructed.

Definition 2.14. A random variable τ taking values in R+ ∪ {∞} is a stopping
time with respect to the filtration (Ft)t≥0 if for any t ≥ 0

{τ ≤ t} ∈ Ft.

Definition 2.15. A real-valued Brownian Motion is a continuous stochastic pro-
cess (Bt)t≥0 with indenpendent and stationary increments. In other words,

• P a.s., the map t 7→ Bt(ω) is continuous.

• for s ≤ t, Bt −Bs is independent of Fs = σ(Bυ, υ ≤ s).

• for s ≤ t, Bt −Bs and Bt−s −B0 have the same probability law.
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Figure 2.1: A path of a standard Brownian motion.

Definition 2.16. A Brownian motion is said to be standard if

B0 = 0 P a.s., E(Bt) = 0, E(B2
t ) = t.

A path of a standard Brownian motion is given in Figure 2.1.

Definition 2.17. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. A process
(Xt)t≥0 is said to be adapted with respect to the filtration (Ft)t≥0, if, for all t ≥ 0,
(Xt)t≥0 is Ft-measurable.

Definition 2.18. Let us consider a probability space (Ω,F ,P) and a filtration
(Ft)t≥0 on this space. An adapted family (Mt)t≥0 of integrable random variables,
i.e. E(|Mt|) <∞ for any t is:

• a martingale if, for any s ≤ t, E(Mt | Fs) = Ms,

• a supermartingale if, for any s ≤ t, E(Mt | Fs) ≤Ms,

• a submartingale if, for any s ≤ t, E(Mt | Fs) ≥Ms.

Proposition 2.6. (Constant Expectation Property)
Given that (Mt)t≥0 is an Ft-martingale, then it satisfies

E(Mt) = M0 for all t ≥ 0.

Theorem 2.7. (Optional Sampling Theorem)
Let (Mt)t≥0 be a continuous martingale with respect to the filtration (Ft)t≥0. If
τ1 and τ2 are two stopping times such that τ1 ≤ τ2 ≤ K, where K is a finite real
number, then Mτ2 is integrable and

E(Mτ2 | Fτ1) = Mτ1 P almost surely.

9



Proof. The proof can be found in [22].

Definition 2.19. Let us define T as the class of all (Ft)t≥0-stopping times τ
satisfying P(τ < ∞) = 1. We set D as the class of right-continuous processes
{Xt : 0 ≤ t <∞} such that the family (Xt)τ∈T is uniformly integrable.

The following theorem plays an important role for constructing hedging portfolios
for American options (see Theorem 4.6 and 5.2).

Theorem 2.8. (Doob-Meyer Decomposition Theorem for Supermartin-
gales)
If the right-continuous Ft-supermartingale (Xt)t≥0 is in class D, then it admits
the decomposition

Xt = Mt − At
as the difference of uniformly integrable, RCLL martingale (Mt)t≥0 and an adapted,
non-decreasing, right continuous process (At)t≥0 null at zero.

Theorem 2.9. Let (Ht)0≤t≤T be an adapted stochastic process satisfying

E(
∫ T
0
H2
sds) <∞. Then the stochastic integral I(t) =

∫ t
0
HsdBs has the following

properties:

• Adaptivity: For all t, I(t) is Ft-measurable.

• Martingale: I(t) is martingale.

• Itô Isometry: E(I(t)2) = E(
∫ t
0
H2
sds).

• Quadratic Variation: 〈I, I〉t =
∫ t
0
H2
sds.

Theorem 2.10. (Itô Formula)
Let (Kt)0≤t≤T be an Itô process

P a.s. ∀t ≤ T Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdBs,

and f be a twice continuously differentiable function, then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈X,X〉s

where, by definition

〈X,X〉t =

∫ t

0

H2
sds,

and ∫ t

0

f ′(Xs)dXs =

∫ t

0

f ′(Xs)Ksds+

∫ t

0

f ′(Xs)HsdBs.

Similarly, if (t, x)→ f(t, x) ∈ C1,2 having continuous partial derivatives, then Itô
formula turns out to be

f(t,Xt) = f(0, X0)+

∫ t

0

f ′s(s,Xs)ds+

∫ t

0

f ′x(s,Xs)dXs+
1

2

∫ t

0

f ′′xx(s,Xs)d〈X,X〉s.
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Proposition 2.11. (Integration by Parts Formula)
Let X and Y be two Itô processes, i.e.

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdBs,

and

Yt = Y0 +

∫ t

0

Msds+

∫ t

0

NsdBs.

Then,

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + 〈X, Y 〉t (2.1)

with the cross-variation

〈X, Y 〉t =

∫ t

0

HsNsds.

Definition 2.20. A stochastic differential equation (SDE) with the coefficients
b and σ is defined by

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs, (2.2)

or, equivalently,
dXt = b(t,Xt)dt+ σ(t,Xt)dBt. (2.3)

In order to admit a unique solution to a given SDE (2.3), we need the following
theorem.

Theorem 2.12. (Existence and Uniqueness Theorem)
If b and σ are continuous functions, and if there exists a constant K < ∞ such
that

1. |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y| (Lipschitz condition),

2. |b(t, x)|+ |σ(t, x)| ≤ K (1 + |x|) (polynomial growth),

3. E(X2
0 ) <∞,

then (2.3) admits a unique solution in the interval [0, T ]. Moreover, this solution
(Xt)0≤t≤T satisfies

E( sup
0≤t≤T

|Xt|2) <∞.

We proceed with the two fundamental theorems of financial mathematics: Gir-
sanov and Martingale Representation Theorem. The proofs can be found in
Karatzas and Shreve [21].

In the context of these two theorems, we consider that (Bt)0≤t≤T is a standard
Brownian motion with respect to the probability measure P.
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Theorem 2.13. (Girsanov Theorem)

Let (θt)0≤t≤T be an adapted process satisfying
∫ T
0
θ2sds <∞ a.s. and such that

Lt = exp

(
−
∫ t

0

θsdBs −
1

2

∫ t

0

θ2sds

)
is a martingale. Then, under the probability P(L) given by

P(L)(A) =

∫
A

Z(ω)dP(ω), ∀A ∈ F

the process (Wt)0≤t≤T defined by Wt = Bt +
∫ t
0
θsds is an (Ft)0≤t≤T -standard

Brownian motion.

Theorem 2.14. (Martingale Representation Theorem)
Let (Mt)0≤t≤T be a square-integrable, Ft-martingale. Then, there exists an adapted

process (Kt)0≤t≤T satisfying E
(∫ T

0
K2
sds
)
<∞ and

Mt = M0 +

∫ T

0

KsdBs a.s.,

for all t ∈ [0, T ].
Moreover, in the case the process (Mt)0≤t≤T is a local martingale, there exists an

Ft-measurable process (Kt)0≤t≤T satisfying
∫ T
0
K2
sds <∞ and

Mt = M0 +

∫ T

0

KsdBs a.s.,

for all t ∈ [0, T ].

In the light of this theorem, we can deduce that, since every martingale (Mt) is
also a local martingale, we can always find an adapted process (Kt) satisfying∫ T
0
K2
sds <∞ and Mt = M0 +

∫ T
0
KsdBs for all t ∈ [0, T ].

Definition 2.21. A partial differential inequality is an inequality that involves
an unknown function of several variables and its partial derivatives. For example,
for all (t, x) ∈ [0, T ]× R,

∂u

∂t
(t, x) +

σ2

2
(t, x)

∂2u

∂x2
(t, x) + b(t, x)

∂u

∂x
(t, x)− r(t, x)u(t, x) ≤ 0

is a partial differential inequality with the coefficient functions b, σ and r.
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CHAPTER 3

DISCRETE-TIME MODELING FOR AMERICAN
OPTIONS ON NON-DIVIDEND PAYING STOCKS

The valuation of American options can be complicated due to the early exercise
possibility prior to maturity. Indeed, the holder determines his exercise strategy
by comparing the value of the option with its intrinsic value at each time. If the
value of the option dominates the money obtained by an immediate exercise, it is
beneficial not to use the right to exercise. On the other hand, if the option is not
worth as much as its intrinsic value, the holder decides to cancel the contract and
takes the money produced by an early exercise. This comparison at each time
poses a dilemma for the pricing of American options. In spite of these difficulties,
it is possible to simplify the problem with the help of a discrete-time approach.

The discrete-time models are generally built on unrealistic assumptions. Because
asset prices are modeled on discrete-time intervals, it is clear that the fluctuations
in the market are not efficiently reflected by this approach. However, this defi-
ciency can be eliminated by the practicability of the model. Indeed, under this
approach, we do not need to handle with the complicated mathematical tools.
Moreover, it provides a better understanding for more complex models owing to
the fact that it is constructed on the similar main ideas. Hence, it can be easily
extended to other approaches.

In this chapter, we introduce pricing of American options in discrete-time mod-
eling. We will follow mainly the theory provided by Lamberton and Lapeyre
(1996) [23].

3.1 The Market Model

We consider a discrete-time interval [0, T ], with T <∞. Let (Ω,F , (Ft)t=0,1,...,T ,P)
be a finite, filtered probability space, and let P({ω}) > 0 for all ω ∈ Ω [14]. More-
over, we assume that there exist m + 1 assets in the market: m risky and one
riskless asset. Let Sit denote the price of the i’th risky asset at time t, and let the
riskless asset has a constant return r with the following price process S0

t

S0
t = (1 + r)t, S0

0 = 1,
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for all t = 0, 1, . . . , T.
Under this model, the discount factor at time t is given by

S̃0
t = 1/S0

t .

3.2 Pricing and Hedging American Options

In this section, we investigate how to price and hedge American options in the
discrete-time setting. The market is assumed to be viable and complete and P∗
is the unique probability measure fulfilling the assumptions of theorem 2.4. We
will first show that the discounted price process of an American option appears
to be a Snell envelope (see, e.g., [23] and [30]). In order to define such a process,
we use backward induction method. After defining the Snell envelope [38], we
will proceed to the optimal stopping time problem.
Let Ut denote the price of an American option at time t and Zt be the intrinsic
value of this option. Let S1 be the underlying asset on which the American option
is written. Then, the process Zt is defined as follows:

Zt = (S1
t −K)+ = max{S1

t −K, 0}, (for call option),

and
Zt = (K − S1

t )+ = max{K − S1
t , 0}, (for put option),

where K is the strike price of the option.
Note that the price UT should be equal to the payoff ZT . Otherwise, an arbitrage
opportunity occurs in the market.
In order to price the option for the times t 6= T , we first construct a hedging
portfolio ψ. Since the market is complete, it is always possible to find a Rm+1-
valued replicating portfolio ψ such that

VT (ψ) = UT = ZT .

As we mentioned before, discounted value process Ṽt(ψ) at the time t is a Ft-
martingale under the probability measure P∗ (see Proposition 2.2 in Chapter 2).
Then,

E∗(ṼT (ψ) | Ft) = E∗(ZT/S0
T | Ft) = Ṽt(ψ).

Since Ṽt(ψ) = Vt(ψ)/S0
t , we finally obtain

E∗(ZT/S0
T | Ft)S0

t = Vt(ψ).

Now, using the backward induction method, we can easily price an American
option. At time T − 1, holder of the option should compare the value of the
replicating portfolio VT−1(ψ), whose value is equal to UN at maturity, with the
intrinsic value ZT−1. When VT−1(ψ) > ZT−1, an immediate exercise is not prof-
itable, since it does not make sense to sell an option worth VT−1(ψ) for a cheaper
price ZT−1. On the other hand, in the case VT−1(ψ) < ZT−1, an early exercise is
optimal. Then, the price UT−1 is given by

UT−1 = max{ZT−1,E∗(ZT/S0
T | FT−1)S0

T−1},
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where E∗(ZT/S0
T | FT−1)S0

T−1 = VT−1(ψ).
Continuing backward in time, we get

Ut = max
{
Zt,E∗(Ut+1/S

0
t+1 | Ft)S0

t

}
, ∀t = 0, . . . , T − 1.

Recalling S0
t = (1 + r)t,

Ut = max

{
Zt,

1

1 + r
E∗(Ut+1 | Ft)

}
,

for all t = 0, . . . , T − 1.
Moreover, the discounted price process (Ũt) is defined by

Ũt = max
{
Z̃t,E∗(Ũt+1 | Ft)

}
, ∀t = 0, . . . , T − 1. (3.1)

The following theorem shows that the discounted price process of an American
option, contrary to its European counterpart, is a P∗-supermartingale.

Proposition 3.1. Let Zt be a non-negative, Ft-measurable random variable in-
terpreting the intrinsic value of an American option, and let (Ũt) be its discounted
price process given by

Ũt = max
{
Z̃t,E∗(Ũt+1 | Ft)

}
, ∀t = 0, . . . , T − 1,

ŨT = Z̃T . (3.2)

Then, we say that the process (Ũt) is the Snell envelope of the process (Z̃t), i.e.,
it is the smallest supermartingale that dominates (Z̃t).

Proof. We first show that the discounted process (Ũt) is a supermartingale under
the risk neutral probability measure P∗.
Note that Ũt is Ft-measurable, since Z̃t and E∗

(
Ũt+1 | Ft

)
are both Ft-measurable

random variables. Moreover, it is clear from (3.1) that the adapted process (Ũt)

dominates the random variables (Z̃t) and E∗
(
Ũt+1 | Ft

)
. Hence, (Ũt) is a P∗-

supermartingale that dominates the process (Z̃t).
Now, we will prove that (Ũt) is the smallest supermartingale dominating (Z̃t).
For this reason, let us assume that there exists another supermartingale C̃t dom-
inating Z̃t. Since the price of an American option at maturity must be equal to
its payoff ZT , we have

C̃T ≥ ŨT = Z̃T .

Using backward induction in time, we can derive a similar inequality for an arbi-
trary time t = 1, . . . , T − 1.
Let C̃k ≥ Ũk for all k = t + 1, t + 2, . . . , T − 1. Our aim is to show that the
inequality also holds for k = t.
Recalling the supermartingale property of (C̃t), we obtain

C̃t ≥ E∗
(
C̃t+1 | Ft

)
≥ E∗

(
Ũt+1 | Ft

)
.
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Moreover, by definition of (C̃t), we have

C̃t ≥ Z̃t,

for all t = 0, . . . , T.
Hence,

C̃t ≥ max
{
Z̃t,E∗

(
Ũt+1 | Ft

)}
= Ũt,

which completes the proof.

In this proposition, we have shown that the discounted price process of an Amer-
ican option (Ũt) defined by{

ŨT = Z̃T ,

Ũt = max(Z̃t,E∗(Ũt+1 | Ft)), ∀t = 0, . . . , T − 1,

is a Snell envelope of the discounted intrinsic value process (Z̃t).
More generally speaking, all adapted processes (Yt)t=0,1,...,T in the form of{

YT = RT ,
Yt = max(Rt,E(Yt+1 | Ft)), ∀t = 0, . . . , T − 1,

are said to be a Snell envelope of an Ft-measurable random process (Rt)t=0,1,...,T .

3.2.1 Optimal Stopping Time

For the time being, we have shown that the discounted price process of an Amer-
ican option is the Snell envelope of its discounted intrinsic value. Indeed, it is
apparent from (3.2) that this process is obtained by comparing Z̃t at each time
t with the value E∗(Ũt+1 | Ft). If Z̃t > E∗(Ũt+1 | Ft), we choose to exercise. In
the case Z̃t < E∗(Ũt+1 | Ft), it is more profitable to hold the option. But, with
this formulation, we cannot directly determine the optimal stopping times that
provide maximum gain to the holder. Instead of making a time-consuming com-
parison until time 0, we can precisely compute the optimal stopping times with
the help of some basic results. For this reason, we now introduce the optimal
stopping time problem that plays a key role on pricing of American options.
Let us define an Ft-measurable random variable Rt that represents the reward
obtained by quitting a game at time t such that

E( sup
t∈{0,1,...,T}

|Rt|) <∞.

Since we aim to maximize our gain, we investigate the stopping times satisfy-
ing [30]

E(Rν0) = max
ν

E(Rν).

Here, the stopping time ν0 is said to be optimal and the optimization problem
above is called optimal stopping time problem.
With the following definition, we can generalize the optimal stopping time prob-
lem in terms of conditional expectations.
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Definition 3.1. Let T0,T be the family of stopping times taking values in {0, 1, . . . , T}.
A stopping time ν∗ ∈ T0,T is called an optimal stopping time, if

E(Rν∗ | F0) = sup
ν∈T0,T

E(Rν | F0).

In the case ν∗ ∈ Tt,T , the optimal stopping time satisfies

E(Rν∗ | Ft) = sup
ν∈τt,N

E(Rν | Ft).

where Tn,T is the family of stopping times taking values in {n, . . . , T}.
It is apparent that the holder of an American option always aims to find an
exercise strategy that makes his expected gain E∗(Z̃ν) largest [4, 13]. Therefore,
defining Rt = Z̃t under P∗, the valuation of an American option turns out to be
an optimal stopping time problem.
The following proposition says that the optimal stopping time problem is indeed
interested in the explicit solution of Snell envelopes. More precisely, we describe
a stopping time ν0 for a Snell envelope Yt defined as in (3.2). Then this stopping
time appears to be optimal satisfying the expression

E(Rν0) = sup
ν∈T0,T

E(Rν).

Moreover, the optimality of ν0 is closely related to whether the stopped sequence
Y ν0
t at time ν0 is a martingale or not.

Proposition 3.2. Let (Yt) be Snell envelope of the process (Rt). We consider a
stochastic variable ω 7→ ν0(ω) such that

ν0 = inf{t ≥ 0 : Yt = Rt}. (3.3)

Then, we say that ν0 is an optimal stopping time and the stopped sequence (Y ν0
t )

is a P-martingale.

Proof. In order to prove that ν0 is a stopping time, we must show

{ω : ν0(ω) = k} ∈ Fk

for all k = 0, 1, . . . , T .
We recall that, from the definition of Snell envelope, we have YT = RT . This
equality makes the random variable ν0 well-defined.
Let us consider k = 0. Then,

{ν0 = 0} = {Y0 = R0} ∈ F0,

since R0 is F0-measurable.
We note that, if Yi 6= Ri for any i = 0, 1, . . . , T − 1, we have

Yi = E(Yi+1 | Fi).
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Now, let k ≥ 1. Then,

{ν0 = k} = {Y0 6= R0} ∩ {Y1 6= R1} ∩ . . . ∩ {Yk−1 6= Rk−1} ∩ {Yk = Rk}
= {Y0 = E(Y1 | F0)} ∩ {Y1 = E(Y2 | F1)} ∩ . . . ∩ {Yk = Rk} ∈ Fk.

Since E(Yi+1 | Fi) is Fi-measurable for all i = 0, . . . , T − 1, then we say that ν0
is a stopping time.
Now, we aim to prove that the stopped sequence (Y ν0

t ) is a P∗-martingale. To do
that, we write the process Y ν0

t in the following way:

Y ν0
t = Yt∧ν0 = Y0 +

t∑
j=1

1{ν0≥j}∆Yj.

Then, we have

Y ν0
t+1 − Y ν0

t = 1{t+1≤ν0}(Yt+1 − Yt). (3.4)

As it is apparent from the definition of ν0, on the set {ν0 ≥ t+ 1}

Yt 6= Rt.

Moreover, we know
Yt = max {Rt,E(Yt+1 | Ft)} ,

for all t = 0, 1, . . . , T − 1.
Thus,

Yt = E(Yt+1 | Ft). (3.5)

Plugging (3.5) into (3.4), we obtain

Y ν0
t+1 − Y ν0

t = 1{t+1≤ν0}(Yt+1 − E(Yt+1 | Ft)).

Then, taking expectation of both sides

E(Y ν0
t+1 − Y ν0

t | Ft) = E(1{t+1≤ν0}(Yt+1 − E(Yt+1 | Ft) | Ft).

Since {t + 1 ≤ ν0} = {ν0 < t}C = {ν0 ≤ t − 1}C ∈ Ft, we can take out the
expression 1{t+1≤ν0} from the conditional expectation. That is,

E(Y ν0
t+1 − Y ν0

t | Ft) = 1{t+1≤ν0}E(Yt+1 − E(Yt+1 | Ft)).

Using the linearity property of conditional expectation, we get

E(Y ν0
t+1 − Y ν0

t |Ft) = 1{t+1≤ν0}(E(Yt+1 | Ft)− E(E(Yt+1 | Ft)|Ft))
= 1{t+1≤ν0}(E(Yt+1 | Ft)− E(Yt+1 | Ft))
= 0.

Hence,
E(Y ν0

t+1|Ft) = Y ν0
t .
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Now, our aim is to show the optimality of the stopping time ν0. Because the
stopped sequence Y ν0

T is a P∗-martingale, we have

E(Y ν0
T |F0) = Y ν0

0 = Y0,

and
E(Y ν0

T |F0) = E(Yν0|F0) = E(Rν0).

Now, let us consider a stopping time ν ∈ T0,T . By Proposition 2.5, we know that
the stopped sequence Y ν is a P-supermartingale. This property yields

Y0 ≥ E(Y ν
T |F0) = E(YT∧ν |F0) = E(Yν |F0) ≥ E(Rν |F0).

Then,
Y0 = E(Y ν0

T |F0) = E(Yν0|F0) = E(Rν0|F0) ≥ E(Rν |F0),

for all ν ∈ T0,T .
Hence,

E(Y ν0
T |F0) ≥ sup

ν∈T0,T
E(Rν0

ν |F0).

Also,we have
E(Yν0 |F0) ≤ sup

ν∈T0,T
E(Y ν0

ν |F0),

since ν0 ∈ T0,T .
Therefore,

E(Rν0|F0) = sup
ν∈T0,T

E(Rν0
ν |F0).

As a result of this proposition, the stopping time for an American option defined
by ν0 = inf{t ≥ 0 : Ũt = Z̃t} is said to be optimal, and it yields that

E(Z̃ν0) = max
ν

E(Z̃ν).

With the following result, we can determine all optimal stopping times of an
American option.

Proposition 3.3. Let (Rt) be a non-negative, adapted process, and let (Yt) be
the Snell envelope of (Rt). If a stopping time τ satisfies the followings{

Yτ = Rτ ,
(Yτ∧t)t=0,1,...,T is an Ft-martingale,

(3.6)

then, τ is an optimal stopping time.

We see that this proposition does not admit a unique solution for the optimal
stopping time problem. Indeed, we can find various stopping times that satisfy
(3.6). But it is obvious that the stopping time ν0 mentioned in Proposition 3.2
is the smallest optimal stopping time. More precisely, let (Ũt) be the discounted
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price process of an American option, and let Z̃t denote its intrinsic value at time
t. We consider j < ν0. Because ν0 is the first time that Ũt hits the value Z̃t and
it is not beneficial to exercise the option when Uj > Zj, we say that it is not a
good strategy to stop when j < ν0. That is, the smallest optimal stopping time
of an American option is indeed ν0.
Now, we introduce the well-known Doob decomposition theorem. This theorem
was presented by Doob (1953) [12].

Theorem 3.4. (Doob Decomposition)
Let (Yt) be a supermartingale defined on the filtered probability space
(Ω,F , (Ft)t=0,1,...,T ,P). Then, (Yt) can be uniquely written in the following way:

Yt = Mt − At,

where (Mt) is an Ft-martingale and (At) is a non-decrasing, Ft−1-measurable
process with A0 = 0.

For the time being, we discussed the properties of optimal stopping times and
decided the smallest optimal date to exercise. With the help of Doob decompo-
sition, we can now determine the largest optimal stopping time of an American
option [13, 23].
Let us recall that the discounted price process of an American option (Ũt) is the
Snell envelope of (Z̃t), i.e., it is the smallest supermartingale that dominates (Z̃t)
under the risk-neutral probability measure P∗. Using the Doob Decomposition
theorem, we write

Ũt = M̃t − Ãt,
where (M̃t) is an Ft-martingale and (Ãt) is a non-decrasing, Ft−1-measurable
process with A0 = 0.
We note that, since (Ãt) is a non-decreasing process with A0 = 0 and Ũt ≥ 0 for
all t = 0, 1, . . . , T , we have

M̃T = ÃT + ŨT ≥ 0.

Since the market is complete, we can always find a replicating portfolio ψ for an
adapted, non-negative random variable M̃T such that

ṼT (ψ) = M̃T .

Then, recalling that the discounted value process (Ṽt) is a martingale under P∗,
we get

Ṽt(ψ) = E∗(ṼT (ψ) | Ft) = E∗(M̃T | Ft) = M̃t.

Hence,
Ũt = Ṽt(ψ)− Ãt,

or
Ut = Vt(ψ)− At.

In the light of foregoing, we can investigate the last time that is optimal to
exercise. Let τ = inf{j : Aj+1 6= 0}, then an early exercise at time j > τ yields
that

Ũj = Ṽj(ψ)− Ãj.
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It is clear that, in that case, the stopped sequence (Ũj∧τ ) is not a P∗-martingale
that prevents the optimality of the stopping time j (see Proposition 3.3). There-
fore, we say that an early exercise is not profitable after time τ = inf{j, Aj+1 6= 0}.
The following proposition states that fact.

Proposition 3.5. The largest optimal stopping time for (Rt) is given by:

νmax =

{
T if AT = 0,
inf{t : At+1 6= 0} if AT 6= 0.

Proof. From Doob-Decomposition, we know that the process (Yt) can be written
as follows:

Yt = Mt − At, (3.7)

where (Mt) is a martingale and (At) is a non-decreasing, predictable process null
at zero.
Using the predictability of the process (At), we can easily show that the random
variable νmax is a stopping time.
Let AT 6= 0. Then,

{νmax = t} = {A0 = 0} ∩ . . . ∩ {At = 0} ∩ {At+1 6= 0} ∈ Ft.

On the other hand, if AT = 0, we have

{νmax = T} = {AT = 0} ∈ FT−1 ⊆ FT .

Hence, νmax is a stopping time.
For the optimality of νmax, we need to show that the stopped sequence (Y νmax

t ) is
a martingale, with Yνmax = Rνmax .
Let us consider Aj = 0 for j ≤ νmax. As it is apparent from (3.7), we have
Yj = Mj. Then,

Y νmax
j = Yj = Mj = Mνmax

j .

When νmax ≤ j, we get

Y νmax
j = Mνmax − Aνmax = Mνmax = Mνmax

j ,

since Aνmax = 0.
Hence, Y νmax = Mνmax is a martingale.
In order to show Yνmax = Rνmax , we express Yνmax as follows:

Yνmax =
T−1∑
j=0

1{νmax=j}Yj + 1{νmax=T}YT

=
T−1∑
j=0

1{νmax=j}max{Rj,E(Yj+1|Fj)}+ 1{νmax=T}RT

We note that

E(Yj+1|Fj) = E(Mj+1|Fj)− E(Aj+1|Fj)
= Mj − Aj+1,
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since (Mj) is martingale and (Aj) is Fj-measurable.
Moreover, Aj = 0 and Aj+1 > 0 when {νmax = j}. Therefore,

Yj = Mj,

and

E(Yj+1|Fj) = Mj − Aj+1 < Mj = Yj.

Thus,

Yj = max{Rj,E(Yj+1|Fj)} = Rj.

Hence, Yνmax = Rνmax .
Now, our aim is to show that νmax is the largest optimal stopping time. Let us
assume that there exists an optimal stopping time ν such that ν ≥ νmax and
P(ν > νmax) > 0. As a result of optional sampling theorem, we have
E(Mν) = E(M0). Also, we note that Y0 = M0, since A0 = 0. Therefore,

E(Yν) = E(Mν)− E(Aν) = E(Y0)− E(Aν) < E(Y0). (3.8)

Thus, (Yt) cannot be a martingale and it contradicts with the assumption that ν
is an optimal stopping time. Hence, νmax is the largest optimal stopping time.

3.2.2 Comparison of American and European Options

In this subsection, we make a comparison between American and European op-
tions assuming that the underlyings do not distribute dividends.
The following proposition says that an American option is worth at least as its
European counterpart. Moreover, we verify that American and European call
options are indeed equally priced in the case of no dividend [23].

Proposition 3.6. Let Ut denote the value of an American option at time t such
that

Ut = max

{
Zt,

1

1 + r
E∗(Ut+1 | Ft)

}
,

where Zt is the intrinsic value of the option at time t.
Let ut be the value of an European option interpreted by an adapted, non-negative
random variable c such that c = ZT .
Then, we get

Ut ≥ ut,

for all t = 0, 1, . . . , T .
Also, when ut ≥ Zt for any t, then we have ut = Ut for all t ∈ {0, 1, . . . , T}.

Intuitively speaking, Ut ≥ ut holds, since an American option gives its holder an
additional right of an early exercise.
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Proof. From Proposition 3.1, we know that the discounted value process (Ũt) is
a supermartingale under the risk-neutral probability measure P∗. Then,

Ũt ≥ E∗(ŨT |Ft) = E∗(ũT |Ft) = ũt,

for all t ∈ {0, 1, . . . , T − 1}.
Moreover,

ũT = ŨT = Z̃T ,

since the market is viable.
Hence, Ut ≥ ut for all t = 0, 1, . . . , T.
In the case ut ≥ Zt for any t, then

ũt ≥ Z̃t.

We recall that the discounted value process (ũt) is a P∗-supermartingale due to
the fact that every martingale is also a supermartingale. Since (Ũt) is the smallest
supermartingale dominating (Z̃t), we conclude that, for any t

Ũt ≥ ũt.

This implies that Ut = ut for all t = 0, 1, . . . , T.

With the help of this proposition, we see that the price of an American call option
with no-dividend is indeed equal to the price of its European counterpart.
Let us assume that there are only two assets traded in the market: a stock (risky)
and a bond (riskless). Let the price of the bond, say S0

t , defined by

S0
t = (1 + r)t,

S0
0 = 1,

where r stands for the risk-free interest rate in the market.
Let St be the price of the stock at time t, and let Zt = (St−K)+ be the intrinsic
value of an American call with exercise price K.
Recalling that uT = ZT and (S̃t), (ũt) are P∗-martingales, we have

E∗((1 + r)−T (ST −K)+|Ft) = E∗(ũT |Ft)
= ũt.

Moreover, we know that

(1 + r)−t(St −K)+ ≥ (1 + r)−t(St −K),

for all t = 0, 1, . . . , T.
Then,

ũt ≥ E∗(S̃T −K(1 + r)−T |Ft)
= E∗(S̃T |Ft)− E∗(K(1 + r)−T |Ft)
= S̃t −K(1 + r)−T . (3.9)
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Multiplying (3.9) with (1 + r)t, we get

ut ≥ St −K(1 + r)−(T−t) ≥ St −K.

Because ut ≥ 0, then
ut ≥ (St −K)+ = Zt.

for all t = 0, 1, . . . , T.
As a result of Proposition 3.6, we conclude that

ut = Ut.
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CHAPTER 4

CONTINUOUS-TIME MODELING FOR AMERICAN
OPTIONS ON NON-DIVIDEND PAYING STOCKS

Continuous-time valuation of options under the Black-Scholes setting [5] can be
thought of as an extension of discrete time valuation scheme, since the funda-
mental tools and ideas we use show similarities with the ones in the discrete case.
But, because of the requirement for a strong mathematical background, pricing
American options in continuous time is visibly harder and complicated.
In the literature, it can be seen that numerious studies have been conducted on
the pricing theory of American options. The pricing scheme was firstly presented
by McKean (1965) [25] and Samuelson (1965) [34] associating the valuation con-
cept with the optimal stopping time problem. Then, it was extended by many
authors, such as van Moerbeke (1976) [41], Bensoussan (1984) [2] and Karatzas
(1988) [20]. Also, the variational inequalities were presented as an another tool
to scope out the pricing problem, see, e.g., [3, 18, 22, 28].
In this chapter, we introduce the continuous time valuation of American options
written on an underlying asset that does not pay dividend. The main references
of this chapter are [4, 22, 23].

4.1 Market Model

In this section, we present the stock price dynamics and trading strategies used
in continuous time modeling. Here, stock price processes are modeled under the
Black-Scholes setting.

4.1.1 Price Dynamics

We consider a continuous time interval [0, T ], with T <∞. Let (Ω,F , (Ft)0≤t≤T ,P)
be a filtered probability space, and let (Bt)0≤t≤T be a standard Brownian motion
under the probability measure P. For simplicity, we consider that there exist only
two assets in the market: one of them is risky and the other is riskless asset.
Let the price process of the riskless asset (S0

t )0≤t≤T be defined by

dS0
t = rS0

t dt, S0
0 = 1,
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Figure 4.1: A path of geometric Brownian motion

where r ≥ 0 is the constant interest rate on the the finite time interval [t− dt, t]
and S0

t = ert.
On the other hand, the price process of the risky asset (St)0≤t≤T is supposed to
be modeled by the geometric Brownian motion satisfying

dSt = St(µdt+ σdBt). (4.1)

Then, we see that the discounted price process (S̃t)0≤t≤T follows

dS̃t = S̃t ((µ− r)dt+ σdBt) . (4.2)

Here, the constant coefficients µ > 0 and σ > 0 are interpreted as the drift and
volatility term of the Black-Scholes model [5], respectively.
Because of the deterministic part (µ − r)dt in (4.2), the discounted asset price
process (S̃t) turns out to be not a P- martingale. But, using Girsanov theorem, we
can define a new probability measure P∗ equivalent to P such that the discounted
asset price processes become a martingale. Then, substituting a P∗-standard
Brownian motion Wt = Bt + µ−r

σ
t into (4.2), we obtain

dS̃t = S̃tσdWt.

Hence, the discounted price process (S̃t) is a P∗-martingale.
Moreover, the SDE (4.1) turns into

dSt = St(rdt+ σdWt), (4.3)

under the measure P∗. This probability measure is said to be the risk neutral
probability measure of the market.
Intuitively speaking, the µ term in the SDE (4.1) reflects the risk choices of in-
vestors. The SDES’s having smaller drift is more affected by risk averse investors
whereas the ones with a larger drift show risk-lover behaviors. Since the expected
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stock prices are expressed with µ, with the changing risk attitudes, the expected
returns also turn out to differ among investors. But, it is apparent from (4.3)
that, under the measure P∗, all investors have the same expectations about the
stock returns. Namely, all stocks are supposed to provide the fixed yield r. Then,
it can be thought that all investors in the market are risk-neutral. That is the
reason why we call to P∗ the risk-neutral probability measure. Because the valu-
ation of options are easier according to this approach, it gains great importance
in finance [16].

4.1.2 Trading Strategies

In this section, we will handle the trading strategies constructed in the market
and give a brief introduction to their valuation process. The definitions are pre-
pared using Lamberton and Lapeyre in [23].
In the continuous-time modeling, a trading strategy φ = (H0

t , Ht)0≤t≤T is sup-
posed to be an Ft-measurable random variable taking values in R2, where H0

t and
Ht denote the number of shares of risky and riskless asset respectively, we trade
in the market at time t.
Then, we express the value of a trading strategy at time t as follows:

Vt(φ) = H0
t S

0
t +HtSt. (4.4)

In addition to the valuation of trading strategies, we will now introduce self-
financing portfolios under some constraints.

Definition 4.1. An Ft-measurable stochastic process φ = (H0
t , Ht)0≤t≤T is said

to be a self-financing strategy if it satisfies the following properties:

1.
∫ T
0
|H0

t |dt+
∫ T
0
H2
t dt <∞ a.s.,

2. H0
t S

0
t +HtSt = H0

0S
0
0 +H0S0 +

∫ t
0
H0
udS

0
u +

∫ t
0
HudSu for all t ∈ [0, T ] a.s.

As it is apparent from the second condition that the change in the value of a
self-financing portfolio arises only from the asset price fluctuations.
Now, we will give the definition of admissible strategy which is closely related to
the no-arbitrage principle in the market.

Definition 4.2. We say that an R2-valued process φ = (H0
t , Ht)0≤t≤T is an

admissible strategy if it is self-financing, its discounted value Ṽt(φ) ≥ 0 for all t,
and supt∈[0,T ] Ṽt(φ) is square-integrable under the risk neutral probability measure
P∗.

Theorem 4.1. Let us assume that c is a non-negative, FT -measurable random
variable satisfying the square-integrability condition

E∗(c2) <∞, ∀t ∈ [0, T ],
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under the risk neutral probability measure P∗. Then, we say that, in the Black-
Scholes model, any option whose payoff is equal to c is replicable and the value of
any replicating portfolio at time t is defined by

Vt = E∗(e−r(T−t)c | Ft).

Proof. The proof can be found in [23].

We recall that the payoff function of an European call option with strike price K
is defined by (ST −K)+. Since E∗(S2

T ) < ∞, we deduce that, for any European
option with the payoff (ST−K)+, we can find a replicating portfolio φ. Moreover,
the price of an European call option u(t, St) with strike price K is given by

Vt(φ) = u(t, St) = E∗(e−r(T−t)(ST −K)+ | Ft),

for all t ∈ [0, T ].

In their famous work [14], Harrison and Pliska show that it is impossible to
capture an arbitrage opportunity under the Black-Scholes framework, since there
is at least one risk neutral probability measure P∗ under which the discounted
stock prices S̃t are martingales. To be more precise, we cannot construct such an
admissible portfolio φ = (H0

t , Ht)0≤t≤T satisfying

H0
0 +H0S0 < 0,

with
H0
t S

0
t +HtSt ≥ 0.

Intuitively speaking, it is not allowed to obtain a riskless gain in the market. As
a result of this principle, the contingent claims whose payoffs are equal must have
the same prices [4].
We proceed to the concept of trading strategies with consumption which provide
a way to hedge American options written on a non-dividend paying asset.

Definition 4.3. An Ft-measurable random variable φ = (H0
t , Ht)0≤t≤T in R2 is

called a trading strategy with consumption, if it satisfies the following properties:

1.
∫ T
0
|H0

t |dt+
∫ T
0
H2
t dt <∞ a.s.,

2. H0
t S

0
t +HtSt = H0

0S
0
0 +H0S0 +

∫ t
0
H0
udS

0
u +

∫ t
0
HudSu − Ct, ∀t ∈ [0, T ],

where (Ct)0≤t≤T is an adapted, continuous and non-decreasing process null at
zero that is known as the cumulative consumption up to time t .
In the light of this definition, we can easily verify that the discounted value process
of a trading strategy with consumption is actually a supermartingale under the
risk-neutral probability measure P∗.

Lemma 4.2. Let φ = (H0
t , Ht)0≤t≤T be a trading strategy with consumption and

let Vt(φ) = H0
t S

0
t +HtSt. Then, the discounted value process Ṽt(φ) = e−rtVt(φ) is

a supermartingale under P∗.
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Proof. According to Definition 4.3, a trading strategy with consumption φ =
(H0

t , Ht)0≤t≤T satisfies the following equation:

H0
t S

0
t +HtSt = H0

0S
0
0 +H0S0 +

∫ t

0

H0
udS

0
u +

∫ t

0

HudSu − Ct. (4.5)

Then,

Vt(φ) = V0(φ) +

∫ t

0

H0
udS

0
u +

∫ t

0

HudSu − Ct.

Applying integration by parts formula to the process e−rtVt(φ), we get

d(e−rtVt(φ)) = −re−rtVt(φ)dt+ e−rtdVt(φ)

= e−rt
(
−r(H0

t S
0
t +HtSt)dt+H0

t dS
0
t +HtdSt

)
− e−rtdCt

= e−rt (−rHtStdt+HtdSt)− e−rtdCt
= HtdS̃t − e−rtdCt,

where dS̃t = σS̃tdWt.
Hence,

Ṽt(φ) = Ṽ0(φ) +

∫ t

0

HuσS̃udWu −
∫ t

0

e−rudCu.

Note that the stochastic integrals
∫ s
0
HuσS̃udWu and

∫ s
0
e−rudCu are

Fs-measurable. Then, for all s ≤ t,

E∗
(
Ṽt(φ) | Fs

)
= Ṽ0(φ) + E∗

(∫ t

0

HuσS̃udWu | Fs
)
− E∗

(∫ t

0

e−rudCu | Fs
)

= Ṽ0(φ) + E∗
(∫ s

0

HuσS̃udWu +

∫ t

s

HuσS̃udWu | Fs
)

−E∗
(∫ s

0

e−rudCu +

∫ t

s

e−rudCu | Fs
)

= Ṽ0(φ) +

∫ s

0

HuσS̃udWu −
∫ s

0

e−rudCu

+E∗
(∫ t

s

HuσS̃udWu | Fs
)
− E∗

(∫ t

s

e−rudCu | Fs
)

= Ṽs(φ) + E∗
(∫ t

s

HuσS̃udWu | Fs
)
− E∗

(∫ t

s

e−rudCu | Fs
)
.

Since the integral
∫ t
s
HuσS̃udWu is independent of Fs,

E∗
(
Ṽt(φ) | Fs

)
= Ṽs(φ) + E∗

(∫ t

s

HuσS̃udWu

)
− E∗

(∫ t

s

e−rudCu | Fs
)
.

Then, from the constant expectation property of the process
∫ t
s
HuσS̃udWu, we

have

E∗
(
Ṽt(φ) | Fs

)
= Ṽs(φ)− E∗

(∫ t

s

e−rudCu | Fs
)
.
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Noting that (Ct) is a non-decreasing process null at zero, we obtain

E∗
(∫ t

s

e−rudCu | Fs
)
≥ 0,

and this implies that

E∗
(
Ṽt(φ) | Fs

)
≤ Ṽs(φ).

It means that the process (Ṽt(φ)) is a supermartingale under the probability
measure P∗.

4.2 Pricing

In this section, we present two different methods for the valuation of American
options. We first illustrate the martingale approach which is based on taking
the expectation of discounted payoff process under the risk neutral probability
measure. Under this approach, optimal stopping time problem and Snell envelope
will be introduced, as in [4] and [28] and then the no-arbitrage pricing formula will
be given. Secondly, we mention another method which deals with the solutions
of variational inequlities. We point out that this approach has a pivotal role on
the numerical solutions of American type options. Our main references for this
section are Bjork [4], Lamberton and Lapeyre [23], Karatzas and Shreve [22]. For
more details, we also refer to [3], [20] and [21].
Let us assume that the market is arbitrage-free and complete. We recall that the
existence of a risk-neutral measure P∗ under which the discounted asset prices
(S̃t)0≤t≤T are martingales prevents an arbitrage in the market. However, the no-
arbitrage condition is not enough to gurantee the uniqueness of a price process.
Therefore, we need the assumption of completeness for the market.
Let ψ : R+ → R+ be a continuous mapping which satisfies the linear growth
property

ψ(x) ≤ C +Dx,

for some C,D ∈ R+. For American call and put options with the strike price K,
the process ψ is defined by ψ(x) = max{x −K, 0} and ψ(x) = max{K − x, 0},
respectively [27].

4.2.1 Martingale Pricing Approach

As we know, the thing that distinguishes an American option from its European
counterpart is the additional right of an early exercise. Indeed, when the value
of the option falls below the intrinsic value, the holder can benefit from this
depreciation by taking the immediate payoff derived from an early exercise. But,
this early exercise possibility compels us to take the optimal stopping time concept
into account. To do that, in addition to the fair price of the option, we also

30



examine the stopping times at which the holder can maximize his expected gain.
In this approach, the concept of optimal stopping time and Snell envelope have
a great importance.

4.2.1.1 Snell Envelope and Optimal Stopping Time Problem

In this subsubsection, we give a brief explanation on the theory of Snell envelope
and optimal stopping time problem avoiding the formal technicalities. For a
detailed information, see [22, 36].
Let (Zt)0≤t≤T be a non-negative, Ft-measurable, right-continuous random variable
satisfying [22]

0 ≤ E( sup
0≤t≤T

Z(t)) <∞.

The optimal stopping time problem arises from the desire to find a stopping time
ϑ taking values between 0 and T such that

E(Zϑ) = sup
τ∈T0,T

E(Zτ ), (4.6)

where T0,T is the set of stopping times taking values in [0, T ].
Intuitively, let us consider a game that pays the amount Zt when stopped at time
t. From the perspective of a gambler, we continue playing until we make the
largest profit. That is, our problem is to determine the stopping time ϑ at which
our expected gain E(Zt) is maximized. Here, the process (Zt) is called the reward
process and the random variable ϑ is said to be an optimal stopping time [4]. For
American options, the reward process (Zt) indeed refers to the discounted intrin-
sic value at time t. Hence, Zt = e−rt max{St −K, 0} for American call options,
and in the case of American put options, Zt = e−rt max{K − St, 0}, where K is
the strike price of the option.
We remark that it is sometimes impossible to find an optimal stopping time sat-
isfying (4.6). To illustrate, the value of a perpetual call option with no dividend
converges to the price of the underlying asset as T approaches to infinity. How-
ever, we cannot find an optimal stopping time to exercise [22]. But, the following
proposition shows that, under some circumstances, we can determine the optimal
dates for exercising. It says that we can find an optimal trading strategy in the
case the reward process is an Ft-martingale, submartingale or supermartingale.

Proposition 4.3.

• The optimal stopping time ϑ is 0, if the reward process (Zt) is an
Ft-supermartingale.

• The optimal stopping time ϑ is the expiration date T, if the reward process
(Zt) is an Ft-submartingale.

• All stopping stopping times ϑ between 0 and T are optimal, if the reward
process (Zt) is an Ft-martingale.
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Proof. This proposition can be found in [4] without proof. Hence, the proof is
showed in this thesis. Let us first start with the submartingale case.
Now, let us consider that the reward process (Zt) is a submartingale. By the
optional sampling theorem, we have

E(ZT | Fτ ) ≥ Zτ ,

for all τ ∈ T0,T .
Using the tower property, we get

E(ZT ) ≥ E(Zτ ),

for all τ ∈ T0,T .
Then,

E(ZT ) ≥ sup
τ∈T0,T

E(Zτ ).

Moreover, the following inequality always holds

E(ZT ) ≤ sup
τ∈T0,T

E(Zτ ),

since the expiration date T is the last time that an American option can be
exercised.
Therefore,

E(ZT ) = sup
τ∈T0,T

E(Zτ ),

which implies that the optimal stopping time for a submartingale is the maturity.
The other parts can be proved similarly.

Corollary 4.4. An early exercise is never optimal for an American call written
on a stock that does not distribute dividends.

Let the reward process (Zt)0≤t≤T be the discounted payoff of an American call
with the strike price K such that Zt = e−rt(St −K)+ for all 0 ≤ t ≤ T. Recalling
that the discounted stock price process (S̃t)0≤t≤T is an Ft-martingale under the
risk neutral probability measure P∗, we have

E∗(e−rtSt − e−rtK | Fu) = E∗(e−rtSt | Fu)− e−rtK
= e−ruSu − e−rtK
≥ e−ruSu − e−ruK,

for all u ≤ t. That is, the discounted payoff of an American call option without
dividend is a P∗-submartingale.
Then, we note that the convex and increasing functions preserve the submartin-
gale property. Because the function ( x−K )+ is increasing and convex and the
process e−rt(St−K) is submartingale under the risk-neutral probability measure
P∗ [4], we get that the discounted payoff process (Zt) is also a P∗-submartingale.
Then, by Proposition 4.3, we conclude that the optimal stopping time for Amer-
ican calls on a non-dividend paying stock is the maturity T .
Now, we define the process Snell envelope which is one of the main tools used in
the valuation of American options.
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Definition 4.4. A stochastic process (Vt)0≤t≤T is said to be a Snell envelope of
the process (Zt)0≤t≤T , if it satisfies the following conditions:

i) (Vt) is a right continuous with left limits (RCLL) supermartingale.

ii) (Vt) dominates the process (Zt).

iii) If (Mt) is another RCLL supermartingale that dominates the process (Zt),
then Vt ≤Mt for all t ∈ [0, T ].

With the following theorem, we define the Snell envelope of the reward process
(Zt).

Theorem 4.5. Let us assume that the process (Zt)0≤t≤T is a sequence of non-
negative, adapted and right continuous random variables such that

0 ≤ E( sup
0≤t≤T

Z(t)) <∞.

Then, supτ∈Tt,T E(Zτ | Ft) is the Snell envelope of Zt.

Proof. The proof can be found in [22].

As a result of this theorem, we deduce that the process

sup
τ∈Tt,T

E∗(e−rτψ(Sτ ) | Ft)

is indeed the Snell envelope of e−rtψ(St).
Now, in the light of this theorem, we can express the fair price of an American
option on a stock without dividends.

4.2.1.2 Pricing Under Martingale Approach

As done in discrete-time, we can price American options with the help of hedging
portfolios. But, this time, the valuation process will be executed with the help of
trading strategies with consumption.

Definition 4.5. A trading strategy with consumption φ = (H0
t , Ht)0≤t≤T hedges

an American option with the intrinsic value ψ(St), if the following inequality
holds for all 0 ≤ t ≤ T

Vt(φ) ≥ ψ(St). (4.7)

We denote Φψ as the set of all trading strategies φ = (H0
t , Ht) that hedges the

American option on the finite time interval [0, T ] and Tt,T as the set of all stopping
times taking values between t and T.
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The following theorem gives us the unique price of an American option written
on a stock without dividends. It shows that the value of any trading strategy
with consumption in Φψ dominates

u(t, St) = sup
τ∈Tt,T

E∗(e−r(τ−t)ψ(Sτ ) | Ft).

Moreover, it says that it is always possible to find a portfolio in Φψ whose value is
equal to u(t, St). Because the process (u(t, St)) appears to be the minimum value
of a portfolio that hedges the American option, it can be thought of the fair price
of this option [23].

Theorem 4.6. Let us consider a function u : [0, T ]× R+ → R satisfying

u(t, x) = sup
τ∈Tt,T

E∗[e−r(τ−t)ψ(x exp((r − (σ2/2))(τ − t) + σ(Wτ −Wt))],

where Tt,T refers to the set of all stopping times taking values in [t, T ].
Then, we can find a trading strategy φ̄ ∈ Φψ, such that Vt(φ̄) = u(t, St), for all
t ∈ [0, T ]. Moreover, all trading strategies with consumption φ ∈ Φψ satisfies
Vt(φ) ≥ u(t, St), for all t ∈ [0, T ].

Proof. The sketch of the proof is given in [23]. Hence, a detailed proof is provided
in this thesis. We will first show that there exists a hedging portfolio φ in Φψ

such that
Vt(φ) ≥ u(t, St),

for all t ∈ [0, T ].
Let φ = (H0

t , Ht)0≤t≤T be a trading strategy with consumption that hedges an
American option such that

Vt(φ) ≥ ψ(St),

for all t ∈ [0, T ].
As a result of Lemma 4.2, the discounted value process of a trading strategy
with consumption is an Ft-supermartingale under the probability measure P∗.
Also, Theorem 4.5 states that (e−rtu(t, St)) is the smallest supermartingale that
dominates the process (e−rtψ(St)). Then, we have

e−rtVt(φ) ≥ e−rtu(t, St),

for all φ ∈ Φψ.
Now, we will show that there exists a trading strategy φ̄ ∈ Φψ such that

Vt(φ̄) = u(t, St),

for all t ∈ [0, T ].
Because ũ(t, St) is a right-continuous P∗-supermartingale of class D (see Theorem
D.13 in [22]), we can use the Doob-Meyer Decomposition as follows:

ũ(t, St) = Mt − At
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where (Mt) is a uniformly integrable RCLL martingale under the probability
measure P∗ and (At) is a non-decreasing, adapted, right-continuous process null
at zero.
Note that the filtration (Ft)0≤t≤T is the natural filtration of both (Bt)0≤t≤T and
(Wt)0≤t≤T . Using the martingale representation theorem for martingales, we can
find an adapted process (Kt) satisfying∫ T

0

K2
sds <∞, (4.8)

such that

Mt = M0 +

∫ t

0

KsdWs. (4.9)

Now, let us define a strategy φ̄ = (H0
t , Ht) such that

Ht =
Kt

σS̃t
, H0

t = ũ(t, St)−HtS̃t, At =

∫ t

0

e−rsdCs.

It is obvious that Ht and H0
t are adapted. Also, (4.8) yields that∫ T

0

H2
sds =

∫ T

0

K2
s

σ2S̃2
s

<∞.

Moreover, ∫ T

0

∣∣H0
s

∣∣ ds =

∫ T

0

∣∣∣ũ(s, Ss)−HsS̃s

∣∣∣ ds <∞.
Hence,

Ṽt(φ̄) = H0
t S̃

0
t +HtS̃t = ũ(t, St)

= Mt − At

= M0 +

∫ t

0

σHsS̃sdWs −
∫ t

0

e−rsdCs,

where (Ct) is adapted, non-decreasing and continuous process. Indeed, right
continuous process (At) turns out to be continuous, when ψ has continuous paths
(see Theorem D.13 in [22]). This implies the continuity of process Ct. With this
results, we conclude that φ̄ is a trading strategy with consumption that indeed
perfectly hedges the American option.

Theorem 4.7. Under the setting of Theorem 4.6, let ψ(St) be defined by
(St − K)+. Then, the price of an American call option with strike price K is
given by

u(t, St) = E∗(e−r(T−t)(ST −K)+ | Ft).

Proof. Let t ≥ 0 and τ be any stopping time between t and T.
Since e−r(T−t)(ST −K)+ ≥ e−r(T−t)(ST −K) for all t ∈ [0, T ] and the discounted
stock price process (S̃t) is an Ft-martingale, we have

E∗(e−r(T−t)(ST −K)+ | Fτ ) ≥ E∗(e−r(T−t)(ST −K) | Fτ )
= ertS̃τ − e−r(T−t)K. (4.10)
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Then,
E∗(e−r(T−t)(ST −K)+ | Fτ ) ≥ ertS̃τ − e−r(τ−t)K.

Moreover, we know
E∗(e−r(T−t)(ST −K)+ | Fτ ) ≥ 0.

So,
E∗(e−r(T−t)(ST −K)+ | Fτ ) ≥ (ertS̃τ − e−r(τ−t)K)+.

Taking expectation of both sides, we get

E∗(e−r(T−t)(ST −K)+) ≥ E∗((ertS̃τ − e−r(τ−t)K)+).

for all τ ∈ Tt,T .
Therefore,

E∗(e−r(T−t)(ST −K)+) ≥ sup
τ∈Tt,T

E∗((ertS̃τ − e−r(τ−t)K)+).

Furthermore, the following inequality is always satisfied

E∗(e−r(T−t)(ST −K)+) ≤ sup
τ∈Tt,T

E∗((ertS̃τ − e−r(τ−t)K)+),

since T is the last time that an American option can be exercised.
Hence, we obtain the desired equality

E∗(e−r(T−t)(ST −K)+) = sup
τ∈Tt,T

E∗((ertS̃τ − e−r(τ−t)K)+).

4.2.2 Pricing with Variational Inequalities

As seen in the previous section, martingale approach considers maximizing the
expectation of discounted payoff process under the risk-adjusted measure P∗. It is
apparent from Theorem 4.6 that, under this approach, the maximization problem
is indeed closely related to hedging concept. But, instead of directly computing
the expectation E∗

(
e−r(τ−t)ψ(Sτ )

)
, we can value an American option with the

help of parabolic partial differential inequalities.

Note that, throughout the subsection, we omit the subscript t in the stock price
process (St) for simplicity.

Lemma 4.8. Let u(t, S) be the value of an American option on a non-dividend
paying stock. Then, the value of a put option u(t, S) satisfies the following
parabolic partial differential inequality [42]

∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru ≤ 0. (4.11)
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Moreover, the price of an American call without dividends is modeled by the fol-
lowing parabolic partial differential inequality

∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru = 0, (4.12)

which is the Black-Scholes PDE derived for European options.

Proof. We can derive (4.11) and (4.12) with the help of a delta-hedging portfolio
avoiding technicalities. Let φ = (1,−∆) be a portfolio built with an option and
-y shares of stock, and let V (t, S) denote the value of this portfolio at time t such
that V = u − ∆S. Applying Itô formula (see Theorem 2.10, Chapter 2) to the
process u(t, S), we get [42]

du =
∂u

∂t
dt+

∂u

∂x
dS +

1

2

∂2u

∂S2
d〈S, S〉

=
∂u

∂t
dt+

∂u

∂S
S(µdt+ σdB) +

1

2

∂2u

∂S2
σ2S2dt.

Then, by substituting above equation into dV = du−∆dS, we obtain

dV =

(
σ2

2
S2 ∂

2u

∂S2
+ µS

∂u

∂S
+
∂u

∂t
− µ∆S

)
dt+ σS

(
∂u

∂S
−∆

)
dB. (4.13)

We point out that the occurrence of dB term in (4.13) can prevent an efficient
hedging, since stock price process can show huge movements due to the un-
bounded variation of Brownian motion. That is why, we aim to remove the dB
term from the above equation. It is apparent that we fulfill this purpose by
considering ∂u

∂S
= ∆. Hence,

dV =

(
σ2

2
S2 ∂

2u

∂S2
+
∂u

∂t

)
dt.

It is the reason that why we call this process as delta hedging.
Now, let us consider the case that the portfolio φ provides a constant return
rV dt =

(
rS ∂u

∂S
− ru

)
dt at each time interval [t−dt, t]. By comparing these returns

rV dt and dV , we can obtain the desired inequality (4.11). Let dV > rV dt, then
the holder of an American option can benefit from an arbitrage opportunity [42].
To be more precise, when we receive an amount of V with a constant borrowing
rate r and put it into the portfolio φ for a future return dV , we can obtain a
profit dV − rV dt. Hence, the following inequality is always satisfied:

∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru ≤ 0,

for an American option written on a non-dividend paying stock.
Specifically, the equality (4.12) derives from the fact that an American call option
with no dividend behaves like an European option. Indeed, we know from the
Corollary 4.4 that an American call written on a non-dividend paying asset is not
exercised until maturity. Therefore, there is no difference between the valuation
of an American and European call in the case underlying does not distribute any
dividend.
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Lemma 4.9. Let ψ(S) denote the intrinsic value of an American option with no
divided at time t. Then, the followings are always satisfied

u(t, S) ≥ ψ(S), (t, S) ∈ [0, T ]× R, (4.14)

u(T, S) = ψ(S). (4.15)

In the case (4.14) and (4.15) do not hold, the option holder can benefit from an
arbitrage opportunity, indeed.
In the light of Lemma 4.8 and Lemma 4.9, we can determine an exercise strategy
for American options. Actually, since the optimal strategy for American calls is
investigated before (see Corollary 4.4), we focus on American put options.
Let us recall that an intrinsic value corresponds to the money that the option
holder can get with an early exercise, and let us consider that (4.14) holds. An
early exercise is advantageous when u(t, S) = ψ(S). Otherwise, it can cause huge
losses, because it means to trade the option less than its worth.
Now, taking the inequality (4.11) into account, we can deduce that it is better
to hold the option, if (4.11) turns out to be a PDE in the form of (4.12). Other-
wise, an immediate exercise is much more profitable for the holder. To make it
more apparent, let us consider an American put option with strike price K and
let u(t, S) = K − S. When we substitute K − S into the inequality (4.11), we
obtain [42]

∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru = −rK < 0.

On the other hand, when the value of a hedging portfolio is worth less than
the risk-free portfolio, it does not make sense to continue holding it. Because
holding portfolio φ means holding the American option, it is beneficial to take
the advantage of an early exercise in this case. Hence, when the inequality
∂u
∂t

+ σ2

2
S2 ∂2u

∂S2 + rS ∂u
∂S
− ru < 0, then u(t, S) = K − S. That is, u(t, S) = K − S

is equivalent to

∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru < 0.

Moreoever,

∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru = 0,

when u(t, S) > K − S.
These equivalences lead us to the following corollary.

Corollary 4.10. Let ψ(S) be the intrinsic value of an American option with no
dividend and let u(t, S) correspond to the value of this option. Then,

(ψ − u)

(
∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru

)
= 0,

for all (t, S) ∈ [0, T ]× R.
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In the light of these results, we deduce that the valuation of an American put
option is actually an obstacle problem [35] such that

∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru ≤ 0, ∀(t, S) ∈ [0, T ]× R,

(
∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru

)
(ψ − u) = 0, ∀(t, S) ∈ [0, T ]× R, (4.16)

u(T, S) = ψ(S), u ≥ ψ ∀S ∈ R.

Moreover, the American call option satisfies

∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru = 0, ∀(t, S) ∈ [0, T ]× R, (4.17)

u(T, S) = ψ(S), ∀S ∈ R.

The following theorems provide us a way to find an elegant solution for the above
obstacle problem. Indeed, we generalize the problem into the multidimensional
SDE’s in the form of

dX1
t = b1(t,Xt)dt+

d∑
j=1

σ1j(t,Xt)dB
j
t ,

... (4.18)

dXn
t = bn(t,Xt)dt+

d∑
j=1

σnj(t,Xt)dB
j
t ,

where Xt = (X1
t , . . . , X

n
t ) is an n-dimensional Itô process, Bt = (B1

t , . . . , B
d
t )

is a d-dimensional Brownian motion, σ(t, x) = (σij(t, x))1≤i≤n,1≤j≤d is an n × d
matrix and b(t, x) = (b1(t, x), . . . , bn(t, x)) is an Rn-valued function defined on
R+ × Rn. In addition, we define an operator At : f 7→ Atf depending on an
R-valued function of class C2 such that [23]

Atf(x) =
1

2

n∑
i,j=1

ai,j(t, x)
∂2f

∂xixj
(x) +

n∑
j=1

bj(t, x)
∂f

∂xj
(x),

where ai,j(t, x) =
∑d

k=1 σi,k(t, x)σj,k(t, x).
This operator is called infinitesimal generator of the process (Xt).
In order to solve this obstacle problem, we need some postulations about the
coefficients b, σ and the operator At. To be more precise, let us assume that
b and σ are bounded and Hölder continuous [18, 29], and let the infinitesimal
generator At fulfill ellipticity property

∃M ∈ R+,
∑
ij

aij(t, x)εiεj ≥M

(
n∑
i=1

ε2i

)
,

39



for all (ε1, . . . , εn) ∈ Rn [23].
Under these settings, we can now prove our fundamental theorems used for the
pricing of American options with no dividend.

Theorem 4.11. Let r : [0, T ] × R → R be a bounded, continuous function in-
terpreting the risk-free interest rate in the market and let u be a regular function
satisfying the following system:

∂u
∂t

+ Atu− ru ≤ 0, u ≥ f in [0, T ]× Rn,(
∂u
∂t

+ Atu− ru
)

(f − u) = 0 in [0, T ]× Rn,

u(T, x) = f(x) in Rn.

(4.19)

Then,

u(t, x) = Φ(t, x) = sup
τ∈Tt,T

E
(
e
∫ τ
t r(s,X

t,x
s )dsf(X t,x

τ )
)
.

These parabolic partial differential equations given in system (4.30) are called
variational inequalities.

In order to prove Theorem 4.13, we need the following proposition [23].

Proposition 4.12. Let Xt = (X1
t , . . . , X

n
t ) be an n-dimensional Itô process

satisfying (4.18). If r : R+ × R → R is a bounded, continuous function and
u : R+ × Rn → Rn is a function of class C1,2 having bounded partial derivatives
in x, then the process (Mt)t≥0 defined by

Mt = e−
∫ t
0 r(s,Xs)dsu(t,Xt)−

∫ t

0

e−
∫ s
0 r(v,Xv)dv

(
∂u

∂t
+ Asu− ru

)
(s,Xs)ds

is a martingale.

Proof of Theorem 4.13. The sketch of the proof is given in [23]. Hence, a detailed
proof is provided in this thesis. We emphasize that the solution u(t, x) of the
system (4.30) is generally not a function of class C1,2 [23]. That is why, Itô
formula for the process u(t, x) is not always applicable. Therefore, we prove the
theorem for the functions u(t, x) ∈ C1,2.
We will first prove the theorem for t = 0. For t 6= 0, it can be shown in a similar
way.
Let t = 0, and let us consider a stochastic process (Xt) satisfying (4.18), with
X0 = x. From Proposition 4.12, we know that the process (Mt) defined by

Mt = e−
∫ t
0 r(s,X

x
s )dsu(t,Xx

t )−
∫ t

0

e−
∫ s
0 r(v,X

x
v )dv

(
∂u

∂t
+ Asu− ru

)
(s,Xx

s )ds

is an Ft-martingale.
Using the optional sampling theorem (see Proposition 2.7, Chapter 2), we get

E(Mτ ) = E(M0),
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for all stopping times τ ∈ T0,T .
Then,

u(0, x) = E
(
e−

∫ τ
0 r(s,Xx

s )dsu(τ,Xx
τ )
)

− E
(∫ τ

0

e−
∫ s
0 r(v,X

x
v )dv

(
∂u

∂t
+ Asu− ru

)
(s,Xx

s )ds

)
,

where E(M0) = u(0, x).
Since ∂u

∂t
+ Atu− ru ≤ 0 and u(t, x) ≥ f(x), we obtain

u(0, x) ≥ E
(
e−

∫ τ
0 r(s,Xx

s )dsu(τ,Xx
τ )
)

≥ E
(
e−

∫ τ
0 r(s,Xx

s )dsf(Xx
τ )
)
,

for all τ ∈ T0,T .
Thus,

u(0, x) ≥ sup
τ∈T0,T

E
(
e
∫ τ
0 r(s,Xx

s )dsf(Xx
τ )
)
. (4.20)

In order to complete the proof for t = 0, we also need to show

u(0, x) ≤ sup
τ∈T0,T

E
(
e
∫ τ
0 r(s,Xx

s )dsf(Xx
τ )
)
.

Therefore, we will define a new random variable τopt such that

τopt := inf {0 ≤ s ≤ T | u(s,Xx
s ) = f(Xx

s )} .

We note that the random variable τopt is indeed a stopping time. Moreover, we
have

u(s,Xx
s ) 6= f(Xx

s ),

for all 0 ≤ s < τopt.
Then,

(
∂u
∂t

+ Atu− ru
)

(f − u) = 0 yields that(
∂u

∂t
+ Atu− ru

)
= 0,

for all 0 ≤ s < τopt.
Hence, the process Mτopt turns out to be

Mτopt = e−
∫ τopt
0 r(s,Xx

s )dsu(τopt, X
x
τopt)

−
∫ τopt

0

e−
∫ s
0 r(v,X

x
v )dv

(
∂u

∂t
+ Asu− ru

)
(s,Xx

s )ds

= e−
∫ τopt
0 r(s,Xx

s )dsu(τopt, X
x
τopt).

As a result of optional sampling theorem, we get

E(Mτopt) = E(M0).
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Then,

u(0, x) = E(e−
∫ τopt
0 r(s,Xx

s )dsu(τopt, X
x
τopt)), (4.21)

where E(M0) = u(0, x).
Since u(τopt, X

x
τopt) = f(Xx

τopt),

u(0, x) = E(e−
∫ τopt
0 r(s,Xx

s )dsf(Xx
τopt)).

That is,

u(0, x) ≤ sup
τ∈T0,T

E
(
e
∫ τ
0 r(s,Xx

s )dsf(Xx
τ )
)
, (4.22)

since τopt is a stopping time taking values in [0, T ].
From (4.20) and (4.22), we obtain the desired equality

u(0, x) = Φ(0, x) = sup
τ∈T0,T

E
(
e
∫ τ
0 r(s,Xx

s )dsf(Xx
τ )
)
.

Now, let t > 0, and let the n-dimensional process Xt = (X1
t , . . . , X

n
t ) be the

solution of (4.18). Applying integration by parts formula to the process

e−
∫ τ
0 r(v,Xv)dvu(τ,Xτ ),

we get

e−
∫ τ
0 r(v,Xv)dvu(τ,Xτ ) = u(0, X0) +

∫ τ

0

e−
∫ s
0 r(v,Xv)dvdu(s,Xs)

+

∫ τ

0

u(s,Xs)de
−

∫ s
0 r(v,Xv)dv, (4.23)

for all τ ∈ T0,T .
We note that, by applying Itô’s formula to u(t,Xt), we get

du(t,Xt) =
∂u

∂t
(t,Xt)dt+

n∑
i=1

∂u

∂xi
(t,Xt)dX

i
t

+
1

2

n∑
i,m=1

∂2u

∂xixm
(t,Xt)d〈X i, Xm〉t

=
∂u

∂t
(t,Xt) +

n∑
i=1

∂u

∂xi
bit(t,Xt)dt+

n∑
i=1

∂u

∂xi

(
d∑
j=1

σi,jdB
j
t

)
(t,Xt)

+
1

2

n∑
i,m=1

∂2u

∂xixm

(
d∑

k=1

σi,kσm,k

)
(t,Xt)dt. (4.24)

Moreover, we have

de−
∫ t
0 r(v,Xv)dv = −e−

∫ t
0 r(v,Xv)r(t,Xt)dt. (4.25)
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Plugging (4.24) and (4.25) into (4.23),

e−
∫ τ
0 r(s,Xs)dsu(τ,Xτ ) = u(0, X0)

+

∫ τ

0

e−
∫ s
0 r(v,Xv)dv

(
∂u

∂t
+ Asu− ru

)
(s,Xs)ds

+
n∑
i=1

d∑
j=1

∫ τ

0

e−
∫ s
0 r(v,Xv)dv

∂u

∂xi
σi,j(s,Xs)dB

j
s .

From the Markov property of (Xt)0≤t≤T , we have

e−
∫ τ
0 r(v,X0,y

v )dvu(τ,X0,y
τ ) = e−

∫ τ
t r(v,X

t,X
y
t

v )dvu(τ,X t,Xy
t

τ ),

where X
t,Xy

t
τ is the solution of (4.18) starting from Xy

t at time t ≤ τ .
Considering Xy

t = x, we get

e−
∫ τ
t r(v,X

t,x
v )dvu(τ,X t,x

τ ) = u(t, x)

+

∫ τ

t

e−
∫ s
t r(v,X

t,x
v )dv

(
∂u

∂t
+ Asu− ru

)
(s,X t,x

s )ds

+
n∑
i=1

d∑
j=1

∫ τ

t

e−
∫ s
t r(v,X

t,x
v )dv ∂u

∂xi
σi,j(s,X

t,x
s )dBj

s .

for all τ ∈ Tt,T .
Thus,

u(t, x) = e−
∫ τ
t r(v,X

t,x
v )dvu(τ,X t,x

τ )

−
∫ τ

t

e−
∫ s
t r(v,X

t,x
v )dv

(
∂u

∂t
+ Asu− ru

)
(s,X t,x

s )ds

−
n∑
i=1

d∑
j=1

∫ τ

t

e−
∫ s
t r(v,X

t,x
v )dvσi,j(s,X

t,x
s )

∂u

∂xi
(s,X t,x

s )dBj
s .

Taking expectation of both sides,

u(t, x) = E
(
e−

∫ τ
t r(v,X

t,x
v )dvu(τ,X t,x

τ )

−
∫ τ

t

e−
∫ s
t r(v,X

t,x
v )dv

(
∂u

∂t
+ Asu− ru

)
(s,X t,x

s )ds

−
n∑
i=1

d∑
j=1

∫ τ

t

e−
∫ s
t r(v,X

t,x
v )dv ∂u

∂xi
σi,j(s,X

t,x
s )dBj

s

)
.

Note that the stochastic integral∫ τ

t

e−
∫ s
t r(v,X

t,x
v )dv ∂u

∂xi
σi,j(s,X

t,x
s )dBj

s
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is a martingale, since r, σ and ∂u
∂x

are bounded functions.
Then, by the constant expectation property of martingales, we have

E
(∫ τ

t

e−
∫ s
t r(v,X

t,x
v )dv ∂u

∂xi
(s,X t,x

s )σi,j(s,X
t,x
s )dBj

s

)
= 0.

This implies that

u(t, x) = E
(
e−

∫ τ
t r(v,X

t,x
v )dvu(τ,X t,x

τ )

−
∫ τ

t

e−
∫ s
t r(v,X

t,x
v )dv

(
∂u

∂t
+ Asu− ru

)
(s,X t,x

s )ds

)
. (4.26)

Moreover, we know ∂u
∂t

+ Asu− ru ≤ 0 and u(t, x) ≥ f(x). Then,

u(t, x) = E
(
e−

∫ τ
t r(v,X

t,x
v )dvu(τ,X t,x

τ )
)

≥ E
(
e−

∫ τ
t r(v,X

t,x
v )dvf(X t,x

τ )
)
.

Hence,

u(t, x) ≥ sup
τ∈Tt,T

E
(
e−

∫ τ
t r(v,X

t,x
v )dvf(X t,x

τ )
)
. (4.27)

Now, let us define a stopping time τ̂opt as follows:

τ̂opt := inf
{
t ≤ s ≤ T | u(s,X t,x

s ) = f(X t,x
s )
}
.

By definition of τ̂opt, it is clear that

u(s,X t,x
s ) 6= f(X t,x

s ),

for all t ≤ s < τ̂opt.
Moreover,

u(τ̂opt, X
t,x
τ̂opt

) = f(X t,x
τ̂opt

).

Since
(
∂u
∂t

+ Asu− ru
)

(f − u) = 0, we have(
∂u

∂t
+ Asu− ru

)
= 0, ∀t ≤ s < τ̂opt. (4.28)

Substituting τ̂opt = τ into (4.26), the process (u(t, x)) becomes

u(t, x) = E
(
e−

∫ τ̂opt
t r(v,Xt,x

v )dvu(τ̂opt, X
t,x
τ̂opt

)

−
∫ τ̂opt

t

e−
∫ s
t r(v,X

t,x
v )dv

(
∂u

∂t
+ Asu− ru

)
(s,X t,x

s )ds

)
.

Then, (4.28) yields that

u(t, x) = E
(
e−

∫ τ̂opt
t r(v,Xt,x

v )dvu(τ̂opt, X
t,x
τ̂opt

)
)
.
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Recalling u(τ̂opt, X
t,x
τ̂opt

) = f(X t,x
τ̂opt

), we obtain

u(t, x) = E
(
e−

∫ τ̂opt
t r(v,Xt,x

v )dvf(X t,x
τ̂opt

)
)
.

Hence,

u(t, x) ≤ sup
τ∈Tt,T

E
(
e−

∫ τ̂opt
t r(v,Xt,x

v )dvf(X t,x
τ̂opt

)
)
. (4.29)

From (4.27) and (4.29), we get

u(t, x) = sup
τ∈Tt,T

E
(
e−

∫ τ̂opt
t r(v,Xt,x

v )dvf(X t,x
τ̂opt

)
)
.

The following theorem plays an important role for pricing American call options
without dividends.

Theorem 4.13. Let r : [0, T ] × R → R be a bounded, continuous function in-
terpreting the risk-free interest rate in the market and let u be a regular function
satisfying the following system:

∂u
∂t

+ Atu− ru = 0 in [0, T ]× Rn,

u(T, x) = f(x) in Rn.
(4.30)

Then,

u(t, x) = Φ(t, x) = E
(
e
∫ T
t r(s,Xt,x

s )dsf(X t,x
T )
)
.

Proof. The proof can be easily shown by using the proposition Proposition 4.12.
It can also be found in [23].

As we mentioned before, it is not always possible to find a solution of class C1,2

for the system (4.30). Therefore, we need an additional theorem that makes the
valuation process more meaningful. With the following theorem, we achieve our
goal by defining an infinitesimal generator Alog

t associated with the Black-Scholes
model. As a result, we will find the unique price of American options with no
dividend.
Now, let us recall that the stock price process in the Black-Scholes model is
actually the solution of the following SDE

dSt = Strdt+ StσdWt,

under the risk-neutral probability measure P∗. Then, we can easily verify that
the infinitesimal generator of the Black-Scholes model is actually in the form

Atf(x) =
σ2

2
x2
∂2f

∂x2
+ rx

∂f

∂x
.
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Since this generator is not elliptic [23], we need to find another operator that
fulfills the ellipticity condition.
Making a little adjustment, it is possible to obtain an elliptic infinitesimal gener-
ator. Here, we focus on American put options, because the price of an American
call without dividends is already given by

u(t, St) = E
(
e
∫ T
t r(s,Xt,x

s )dsf(X t,x
T )
)
.

Let Xt = log(St) satisfying the following SDE

dXt =

(
r − σ2

2

)
dt+ σdWt.

Then, its infinitesimal generator is in the form

Alog
t =

σ2

2

∂2

∂x2
+

(
r − σ2

2

)
∂

∂x
,

which satisfies the ellipticity condition [23].
That is, if we set S = ex, we obtain an elliptic infinitesimal generator under
Black-Scholes model. After defining this operator Alog

t , we can now investigate
the variational inequalities associated with the American options.
Let u(t, S) denote the price of an American put option with strike price K and
ψ(S) = (K − S)+ be the intrinsic value of the option. We remark that, for
simplicity we use S instead of St. Now, let us set S = ex and v(t, x) = u(t, ex),
with x ∈ R. With the help of multivariable chain rule, the partial derivatives
∂v
∂x
, ∂v
∂t
, ∂

2v
∂x2

are defined as follows:

∂v

∂x
=
∂u

∂S
S,

∂v

∂t
=
∂u

∂t
,

∂2v

∂x2
=
∂u

∂S
S + S2 ∂

2u

∂S2
.

From the system (4.16), we know ∂u
∂t

+ σ2

2
S2 ∂2u

∂S2 + rS ∂u
∂S
− ru ≤ 0. Therefore,

∂v

∂t
+ Alog

t u− rv =
∂u

∂t
+
σ2

2
S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru ≤ 0,

for all (t, x) ∈ [0, T ]× R.
Moreover, when we define φ(x) as (K − ex)+, we have

v(T, x) = u(T, ex) = ψ(ex) = φ(x), ∀x ∈ R,
and

v(t, x) = u(t, ex) ≥ ψ(ex) = φ(x), ∀(t, x) ∈ [0, T ]× R.
Hence, in the case S = ex, an American put option with strike price K satisfies
the following variational inequalities

∂v

∂t
(t, x) + Alog

t v(t, x)− rv(t, x) ≤ 0, ∀(t, x) ∈ [0, T ]× R,

(
∂v

∂t
(t, x) + Alog

t v(t, x)− rv(t, x)

)
(φ− v) = 0, ∀(t, x) ∈ [0, T ]× R, (4.31)

v(T, x) = φ(x), v ≥ φ ∀x ∈ R.
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Now, we introduce the fundamental theorem used to price American put options
without dividend. The theorem says that the system defined above admits a
unique solution (not necessarily regular). Moreover, this result presents a way to
price American put options with the help of inequality system (4.31).

Theorem 4.14. The variational inequality system (4.31) admits a unique solu-
tion v(t, x) such that this solution is continuous and bounded and has the locally

bounded partial derivatives ∂v
∂x
, ∂v
∂t
, ∂

2v
∂x2
.

Also, the following equality always holds

v(t, log(x)) = Φ(t, x) = sup
τ∈Tt,T

E∗[e−r(τ−t)ψ(x exp((r−(σ2/2))(τ−t)+σ(Wτ−Wt))].

For the proof, we refer to Jaillet, Lamberton and Lapeyre (1990) [18].
We point out that the variational inequality approach indeed gives the same
solution as the martingale approach for American put options.
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CHAPTER 5

CONTINUOUS-TIME MODELING FOR AMERICAN
OPTIONS ON DIVIDEND PAYING STOCKS

In the previous chapters, we have considered at length pricing of American options
written on an underlying asset that does not distribute dividends. Now, we will
investigate the valuation of American options in the case the underlying pays
dividends with a constant continuous yield.
In this chapter, we will closely follow the theory given in Chapter 4. Since the
fundamental results show similarities with the previous chapter, we will only
discuss the main theorems avoiding technicalities.

5.1 Description of the Model with Dividends

We consider a continuous time interval [0, T ], with T <∞. Let (Ω,F , (Ft)0≤t≤T ,P)
be a filtered probability space, and let Bδ

t be the standard Brownian motion
under the probability measure P. We suppose that the market, similar to the
non-dividend case, includes only 2 securities: a stock with a constant continuous
dividend yield δ ≥ 0 and a bond with a constant interest rate r > 0. Then, at
time t,

• the bond price S0
t = ert is modeled by the following SDE

dS0
t = rS0

t dt, S0
0 = 1.

• the stock price process (St) satisfies

dSt = St(µdt+ σdBδ
t ). (5.1)

• the discounted price process (S̃t) is the solution of the following SDE

dS̃t = S̃t
(
(µ− r)dt+ σdBδ

t

)
,

where the constant coefficients µ > 0 and σ > 0 represent the drift and volatility
terms of the Black-Scholes model [5], respectively.
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• the total change in the value of the stock is given by

dSt + δStdt.

Under these settings, we can easily show that the process (eδtS̃t)0≤t≤T satisfies
the following stochastic differential equation

d(eδtS̃t) = eδtS̃t
(
(δ + µ− r)dt+ σdBδ

t

)
. (5.2)

But, the deterministic term (δ + µ− r)dt in (5.2) prevents the process (eδtS̃t) to
be a martingale under the measure P. However, Girsanov theorem gives us a way
to make the process (eδtS̃t) a martingale under an equivalent measure Pδ. Under

this measure, we define a standard Brownian motion W δ
t = Bδ

t + (µ+δ−r)
σ

t such
that the SDE (5.2) turns into

d(eδtS̃t) = S̃te
δtσdW δ

t . (5.3)

Hence, the process (e(δ−r)tSt) is a martingale under the probability measure Pδ.
Moreover, we have

dSt = St(µdt+ σdBδ
t )

= St(µdt+ σdW δ
t − (µ+ δ − r)dt)

= St
(
(r − δ)dt+ σdW δ

t

)
, (5.4)

and

dS̃t = S̃t
(
(µ− r)dt+ σdBδ

t

)
= S̃t((µ− r)dt+ σdW δ

t − (µ+ δ − r)dt)
= S̃t

(
−δdt+ σdW δ

t

)
, (5.5)

under the new measure Pδ. We say that this measure Pδ is a risk-neutral proba-
bility measure that makes the process (e(δ−r)tSt) a martingale.
Afterwards, (5.4) and (5.5) have the following closed-form solutions

St = S0e
(r−δ−σ

2

2
)t+σW δ

t ,

and

S̃t = S̃0e
σW δ

t −(δ+
σ2

2
)t.

5.2 Trading Strategies

In this subsection, we give a brief introduction about the trading strategies that
can be constructed in the market. The definitions show similarities with the ones
defined in Chapter 4.
A trading strategy φ = (H0

t , Ht) with dividend is an Ft-measurable, R2-valued
random variable such that the components H0

t and Ht denote the number of
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shares of bond and stock, respectively, we trade in the market at time t [23].
Then, the value of the portfolio at time t becomes

Vt(φ) = H0
t S

0
t +HtSt. (5.6)

Now, we continue with the definition of self-financing strategies.

Definition 5.1. An Ft-measurable stochastic variable φ = (H0
t , Ht)0≤t≤T is said

to be a self-financing strategy with dividend if it satisfies the following properties:

1.
∫ T
0
|H0

t | dt+
∫ T
0
H2
t dt <∞ a.s.,

2. H0
t S

0
t +HtSt = H0

0S
0
0 +H0S0 +

∫ t
0
H0
udS

0
u +

∫ t
0
Hu(dSu + δSudu),

for all t ∈ [0, T ].

We see that the value of a self-financing portfolio is only affected by the price
movements and the dividend payments of the stock.

We proceed to the concept of trading strategies with dividend and consumption
which provides a way to hedge American options written on a dividend paying
stocks.

Definition 5.2. An Ft-measurable random variable φ = (H0
t , Ht, Ct)0≤t≤T is

called a trading strategy with dividend and consumption , if it satisfies the fol-
lowing properties:

1.
∫ T
0
|H0

t | dt+
∫ T
0
|Ht|2 dt <∞ a.s.,

2. H0
t S

0
t +HtSt = H0

0S
0
0 +H0S0 +

∫ T
0
H0
udS

0
u +

∫ T
0
Hu(dSu + δSudu)− Ct,

for all t ∈ [0, T ], where (Ct)0≤t≤T is an adapted, continuous, non-decreasing
process null at t = 0.

With the help of this definition, we can show that the discounted value process
of a trading strategy with dividend and consumption is a supermartingale under
the risk-neutral probability measure Pδ.

Lemma 5.1. Let φ = (H0
t , Ht, Ct)0≤t≤T be a trading strategy with dividend and

consumption and let Vt(φ) = H0
t S

0
t + HtSt. We consider that the stock pays

dividend with a continuous yield δ. Then, we say that the discounted value process
Ṽt(φ) = e−rtVt(φ) is a supermartingale under Pδ.

Proof. From Definition 5.2, we know that a trading strategy with dividend and
consumption satisfies the following equation:

H0
t S

0
t +HtSt = H0

0S
0
0 +H0S0 +

∫ t

0

H0
udS

0
u +

∫ t

0

Hu(dSu + δSudu)− Ct. (5.7)
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That is,

Vt(φ) = V0(φ) +

∫ t

0

H0
udS

0
u +

∫ t

0

Hu(dSu + δSudu)− Ct.

Applying integration by parts formula to the process (e−rtVt(φ)), we get

d(e−rtVt(φ)) = −re−rtVt(φ)dt+ e−rtdVt(φ)

= e−rt
(
−r(H0

t S
0
t +HtSt)dt+H0

t dS
0
t +Ht(dSt + δStdt)

)
− e−rtdCt

= e−rt (−rHtStdt+Ht(dSt + δStdt))− e−rtdCt
= Ht(dS̃t + δS̃tdt)− e−rtdCt,

where dS̃t + δS̃tdt = σS̃tdW
δ
t .

Hence,

Ṽt(φ) = Ṽ0(φ) +

∫ t

0

HuσS̃udW
δ
u +

∫ t

0

e−rudCu.

We note that the stochastic integrals
∫ s
0
HuσS̃udW

δ
u and

∫ s
0
e−rudCu are

Fs-measurable. Then, we have

Eδ
(
Ṽt(φ) | Fs

)
= Ṽ0(φ) + Eδ

(∫ t

0

HuσS̃udW
δ
u | Fs

)
− Eδ

(∫ t

0

e−rudCu | Fs
)

= Ṽ0(φ) + Eδ
(∫ s

0

HuσS̃udW
δ
u +

∫ t

s

HuσS̃udW
δ
u | Fs

)
−Eδ

(∫ s

0

e−rudCu +

∫ t

s

e−rudCu | Fs
)

= Ṽ0(φ) +

∫ s

0

HuσS̃udW
δ
u −

∫ s

0

e−rudCu

+Eδ
(∫ t

s

HuσS̃udW
δ
u | Fs

)
− Eδ

(∫ t

s

e−rudCu | Fs
)

= Ṽs(φ) + Eδ
(∫ t

s

HuσS̃udW
δ
u | Fs

)
− Eδ

(∫ t

s

e−rudCu | Fs
)
.

Since the integral
∫ t
s
HuσS̃udW

δ
u is independent of the sigma-algebra Fs,

Eδ
(
Ṽt(φ) | Fs

)
= Ṽs(φ) + Eδ

(∫ t

s

HuσS̃udW
δ
u

)
− Eδ

(∫ t

s

e−rudCu | Fs
)
.

Recalling that
∫ t
0
HuσS̃fudW

δ
u is an Ft-martingale, we have

Eδ
(∫ t

s

HuσS̃udW
δ
u

)
= 0.

Thus,

Eδ
(
Ṽt(φ) | Fs

)
= Ṽs(φ)− Eδ

(∫ t

s

e−rudCu | Fs
)
.
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Because (Ct) is a non-decreasing process null at zero, we obtain

Eδ
(∫ t

s

e−rudCu | Fs
)
≥ 0.

Hence,

Eδ
(
Ṽt(φ) | Fs

)
≤ Ṽs(φ),

which means that the process (Ṽt(φ)) is a supermartingale under the probability
measure Pδ.

5.3 Pricing

In this section, we will closely follow the theory given in Chapter 4. We will
first introduce the martingale pricing approach and then discuss the solutions of
variational inequalities.
Let us assume that the market is viable and complete. We recall that the viability
of the market guarantees the existence of a risk-neutral probability measure Pδ
that makes the process (eδtS̃t)0≤t≤T an Ft-martingale. Moreover, if the market
fulfills the completeness assumption, then this risk neutral probability measure
is said to be unique.
Under the same setting of Chapter 4, let us define a continuous function
ψ : R+ → R+ which satisfies the linear growth property

ψ(x) ≤ C +Dx,

for some C,D ∈ R+. In the case of an American call option with strike price K,
ψ(St) is given by ψ(St) = max{St−K, 0}. Moreover, if we have an American put
with strike K, then ψ(St) = max{K − St, 0} [27].
We recall that, since the underlying pays dividends with a constant continuous
yield δ, the stock price process is defined as follows:

St = S0e
(r−δ−(σ2/2))t+σW δ

t .

5.3.1 Pricing Under Martingale Approach

In this subsubsection, we do not give detailed information about the theoretical
aspects, since the overall theory of this approach can be found in Subsection 4.2.1.
We price American options written on an underlying asset that pays dividends
with the help of hedging portfolios. But, this time, the valuation process will be
executed with the trading strategies with dividend and consumption.

Definition 5.3. A trading strategy φ = (H0
t , Ht, Ct)0≤t≤T with dividend and

consumption hedges an American option, if the following inequality holds for all
0 ≤ t ≤ T :

Vt(φ) ≥ ψ(St). (5.8)
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We denote Φψ as the set of all trading strategies φ = (H0
t , Ht, Ct) with dividend

and consumption that hedges the American option on the finite time interval
[0, T ].

Since the discounted value process of a trading strategy with dividend and con-
sumption is supermartingale, the definition above indeed states that the process
(Ṽt(φ)) is an Ft-supermartingale dominating (ψ̃(St)). Moreover, the process

Ṽt(φ) = Ṽ0(φ) +

∫ t

0

HuσS̃udW
δ
u +

∫ t

0

e−rudCu

is right-continuous with left limits, since the stochastic integrals
∫ t
0
HuσS̃udW

δ
u

and
∫ t
0
e−rudCu are continuous.

We know that the process (ũ(t, St)) is the smallest RCLL supermartingale dom-

inating (ψ̃(St)) (see Theorem 4.5). Then, we have

ũ(t, St) ≤ Ṽt(φ).

Hence,
u(t, St) ≤ Vt(φ).

That is, all trading strategies with dividend and consumption that hedges the
American option dominates the process (u(t, St)).
With the following theorem, we can uniquely price an American option written
on a stock paying dividends. It states that the value of any hedging portfolio in
Φψ is worth at least as the process

u(t, St) = sup
τ∈Tt,T

E∗(e−rτψ(S0e
(r−δ−(σ2/2))τ+σW δ

τ ) | Ft).

Moreover, it is always possible to find a portfolio in Φψ whose value is equal
to u(t, St). Because the process (u(t, St)) appears to be the minimum value of a
portfolio that hedges the American option, it can be thought of the fair price of
this option [23].

Theorem 5.2. Let us consider a function u : [0, T ]× R+ → R satisfying

u(t, x) = sup
τ∈Tt,T

Eδ[e−r(τ−t)ψ(x exp((r − δ − (σ2/2))(τ − t) + σ(W δ
τ −W δ

t ))],

where Tt,T refers to the set of all stopping times taking values in [t, T ]. Then, we
can find a trading strategy φ̄ ∈ Φψ such that Vt(φ̄) = u(t, St) for all t ∈ [0, T ].
Moreover, all trading strategies with dividend and consumption φ ∈ Φψ satisfies
Vt(φ) ≥ u(t, St) for all t ∈ [0, T ].

Proof. As shown above, the value of all trading strategies with dividend and
consumption in Tt,T dominate the American option price.
Since ũ(t, St) is a right-continuous Pδ-supermartingale of class D (see Theorem
D.13 in [22]), we can use the Doob-Meyer decomposition such that

ũ(t, St) = Mt − At, (5.9)
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where (Mt) is a uniformly integrable RCLL martingale under the probability
measure Pδ and (At) is a non-decreasing, adapted, right-continuous process null
at zero.
Note that the filtration (Ft)0≤t≤T is the natural filtration of both (Bδ

t )0≤t≤T and
(W δ

t )0≤t≤T . Then, using the martingale representation theorem for martingales,
we can find an adapted process (Kt) satisfying∫ T

0

K2
sds <∞ (5.10)

such that

Mt = M0 +

∫ t

0

KsdW
δ
s . (5.11)

Now, let us define a strategy φ̄ = (H0
t , Ht, Ct) such that

Ht =
Kt

σS̃t
, H0

t = ũ(t, St)−HtS̃t, At =

∫ t

0

e−rsdCs.

It is obvious that the components Ht and H0
t are adapted. Also, from the condi-

tion (5.10), we deduce ∫ T

0

H2
sds =

∫ T

0

K2
s

σ2S̃2
s

<∞.

Moreover, ∫ T

0

∣∣H0
s

∣∣ ds =

∫ T

0

∣∣∣ũ(s, Ss)−HsS̃s

∣∣∣ ds <∞.
Then,

Ṽt(φ) = H0
t S̃

0
t +HtS̃t = ũ(t, St)

= Mt − At

= M0 +

∫ t

0

σHsS̃sdW
δ
s −

∫ t

0

e−rsdCs,

where Ct is adapted, non-decreasing and continuous process. Indeed, the right-
continuous process (At) turns into a continuous process when ψ(St) has contin-
uous paths (see Theorem D.13 in [22]). Therefore, the continuity of At yields to
the continuity of Ct. Hence, we have found a trading strategy with dividend and
consumption that perfectly hedges the American option.

As a result of this theorem, wee see that the fair price of an American put option
with dividend is given by

u(t, St) = sup
τ∈Tt,T

Eδ
(
e−r(τ−t)(K − Sτ )+

)
,

whereas the unique price of an American call on a dividend paying stock becomes

u(t, St) = sup
τ∈Tt,T

Eδ
(
e−r(τ−t)(Sτ −K)+

)
.
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5.3.2 Pricing with Variational Inequalities

In this subsubsection, we will discuss the solutions of variational inequalities for
American options avoiding the technicalities. The overall theory can be found in
Subsection 4.2.2. For more details, we refer to [29].
Variational inequalities give us a way to price American options without explicitly
computing the expectation

Eδ[e−r(τ−t)ψ(x exp((r − δ − (σ2/2))(τ − t) + σ(W δ
τ −W δ

t ))].

Indeed, we will deal with the parabolic partial differential inequality systems un-
der some regularity assumptions. These assumptions will guarantee the existence
and uniqueness of the solution to the parabolic system.
Now, let us define the partial differential inequality that the American options
satisfy.

Lemma 5.3. Let u(t, St) be the value of an American option on a dividend paying
stock. Under the Black-Scholes setting, the value u(t, St) satisfies the following
partial differential inequality [42]

∂u

∂t
+
σ2

2
S2
t

∂2u

∂S2
+ (r − δ)St

∂u

∂S
− ru ≤ 0. (5.12)

Proof. As being different from the previous chapter, we derive the Black-Scholes
inequality with the help of supermartingale property of ũ(t, St) under the risk-
neutral probability measure Pδ.
Let us apply Itô formula to the processes (u(t, St)) and (ũ(t, St)). Then, we have

u(t, St) =

∫ t

0

(
∂u

∂t
+
σ2

2
S2
v

∂2u

∂S2
+ (r − δ)Sv

∂u

∂S

)
dv +

∫ t

0

σSv
∂u

∂S
dW δ

v ,

and

ũ(t, St) =

∫ t

0

e−rv
(
∂u

∂t
+
σ2

2
S2
v

∂2u

∂S2
+ (r − δ)Sv

∂u

∂S
− ru

)
dv+

∫ t

0

e−rvσSv
∂u

∂S
dW δ

v .

(5.13)
Also, we know from the previous section that the discounted price of an American
option is supermartingale under the probability measure Pδ. Using this fact, we
can easily derive the desired inequality (5.12). Taking the conditional expectation
of both sides in (5.13),

Eδ(ũ(t, St) | Fk) = Eδ
(∫ t

0

e−rv
[
∂u

∂t
+
σ2

2
S2
v

∂2u

∂S2
+ (r − δ)Sv

∂u

∂S
− ru

]
dv | Fk

)
+Eδ

(∫ t

0

e−rvσSv
∂u

∂S
dW δ

v | Fk
)

= ũ(k, Sk) + Eδ
(∫ t

k

e−rvσSv
∂u

∂S
dW δ

v | Fk
)

+Eδ
(∫ t

k

e−rv
[
∂u

∂t
+
σ2

2
S2
v

∂2u

∂S2
+ (r − δ)Sv

∂u

∂S
− ru

]
dv | Fk

)
.
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Because the stochastic integral
∫ t
0
e−rvσSv

∂u
∂S
dW δ

v is a martingale with the inde-
pendent and stationary increments property, we get

Eδ
(∫ t

k

e−rvσSv
∂u

∂S
dW δ

v | Fk
)

= Eδ
(∫ t

k

e−rvσSv
∂u

∂S
dW δ

v

)
= Eδ

(∫ t−k

0

e−rvσSv
∂u

∂S
dW δ

v

)
= 0.

Hence,

Eδ(ũ(t, St) | Fk) = ũ(k, Sk) + Eδ
(∫ t

k

e−rv
(
∂u

∂t
+
σ2

2
S2
v

∂2u

∂S2

+(r − δ)Sv
∂u

∂S
− ru

)
dv | Fk

)
.

Because ũ(t, St) is supermartingale, then

∂u

∂t
+
σ2

2
S2
t

∂2u

∂S2
+ (r − δ)St

∂u

∂S
− ru ≤ 0,

for all t ≥ 0.

Lemma 5.4. Let ψ(St) denote the intrinsic value of an American option with
dividend at time t. Then, the followings are always satisfied

u(t, St) ≥ ψ(St), (t, St) ∈ [0, T ]× R, (5.14)

u(T, ST ) = ψ(ST ). (5.15)

In the case (5.14) and (5.15) does not hold, it is obvious that an arbitrage oppor-
tunity exists in the market.
Note that if u(t, St) = ψ(St) or ∂u

∂t
+ σ2

2
St2 ∂

2u
∂S2 + (r − δ)St ∂u∂S − ru < 0, then it is

optimal to exercise the option.
Moreover, if u(t, St) > ψ(St) or ∂u

∂t
+ σ2

2
S2
t
∂2u
∂S2 +(r−δ)St ∂u∂S−ru = 0, it is beneficial

not to use the early exercise right of the option.
This results lead us to the following lemma.

Lemma 5.5. Let ψ(St) be the intrinsic value of an American option with dividend
yield δ and let u(t, St) corresponds to the value of this option depending on time
and stock price St. Then,

(ψ − u)

(
∂u

∂t
+
σ2

2
S2
t

∂2u

∂S2
+ (r − δ)St

∂u

∂S
− ru

)
= 0, (5.16)

for all (t, St) ∈ [0, T ]× R.
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In the light of foregoings, we deduce that the price of an American option is
actually the solution of the following inequality system

∂u

∂t
+
σ2

2
S2
t

∂2u

∂S2
+ (r − δ)St

∂u

∂S
− ru ≤ 0, ∀(t, St) ∈ [0, T ]× R,

(
∂u

∂t
+
σ2

2
S2
t

∂2u

∂S2
+ (r − δ)St

∂u

∂S
− ru

)
(ψ − u) = 0, ∀(t, St) ∈ [0, T ]× R,

(5.17)

u(T, ST ) = ψ(ST ), u ≥ ψ ∀St ∈ R.

As we did in the previous chapter, in order to find an elegant solution for the
above inequality system, we generalize the problem into the multidimensional
SDE’s in the form of [23]

dX1
t = b1(t,Xt)dt+

d∑
j=1

σ1j(t,Xt)dB
j
t ,

... (5.18)

dXn
t = bn(t,Xt)dt+

d∑
j=1

σnj(t,Xt)dB
j
t ,

where Xt = (X1
t , . . . , X

n
t ) is an n-dimensional Itô process, Bt = (B1

t , . . . , B
d
t ) is a

d-dimensional Brownian motion, σ(t, x) = (σij(t, x))1≤i≤n,1≤j≤d is an n×d matrix
and b(t, x) = (b1(t, x), . . . , bn(t, x)) is an Rn-valued function defined on R+ ×Rn.
Also, the infinitesimal generator At : f 7→ Atf depending on an R-valued function
of class C2 is defined by [23]

Atf(x) =
1

2

n∑
i,j=1

ai,j(t, x)
∂2f

∂xixj
(x) +

n∑
j=1

bj(t, x)
∂f

∂xj
(x),

where ai,j(t, x) =
∑d

k=1 σi,k(t, x)σj,k(t, x).
Recalling the generalized version of the partial inequality system (5.17)

∂u
∂t

+ Atu− ru ≤ 0, u ≥ f in [0, T ]× Rn,(
∂u
∂t

+ Atu− ru
)

(f − u) = 0 in [0, T ]× Rn,

u(T, x) = f(x) in Rn,

we consider that the coefficients b, σ are the bounded and Hölder continuous [35,
18], and the infinitesimal generator At satisfies the ellipticity property [23, 18]

∃M ∈ R+,
∑
ij

aij(t, x)εiεj ≥M

(
n∑
i=1

ε2i

)
,
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for all (ε1, . . . , εn) ∈ Rn.
As we mentioned before, this inequality system does not admit a regular solution.
But, in the case the solution is regular, the process (u(t, x)) is given by (see
Theorem 4.13)

u(t, x) = Φ(t, x) = sup
τ∈Tt,T

E
(
e
∫ τ
t r(s,X

t,x
s )dsf(X t,x

τ )
)
.

In order to extend this result to the inequality systems having non-regular solu-
tions, we need some adjustments.
Now, let us recall that, in the Black-Scholes model, the price process of a dividend
paying stock is actually the solution of the following SDE

dS = S(r − δ)dt+ SσdW δ
t ,

under P∗. Then, we can easily verify that the infinitesimal generator of the Black-
Scholes model is actually in the form

Atf(x) =
σ2

2
x2
∂2f

∂x2
+ (r − δ)x∂f

∂x
.

Because this generator is not elliptic [23], we need to find another operator that
fulfills the ellipticity condition. Letting Xt = log(St), we have

dXt =

(
r − σ2

2
− δ
)
dt+ σdW δ

t .

Then, its infinitesimal generator is in the form [29]

Aδt =
σ2

2

∂2

∂x2
+

(
r − σ2

2
− δ
)

∂

∂x
,

satisfying the ellipticity condition.
That is, if we set S = ex, we obtain an elliptic infinitesimal generator under
Black-Scholes model. After defining this operator Aδt , we can now investigate the
variational inequalities associated with the American options.
Let u(t, St) denote the price of an American option with strike price K and δ
be the constant dividend yield that underlying pays. Also, we consider ψ(St) =
(K − St)+ and ψ(St) = (St − K)+ are the intrinsic value of the put and call
option, respectively. Now, let us set S = ex and v(t, x) = u(t, ex). Following the
same steps mentioned in Chapter 4, we conclude that, when S = ex, an American
option with strike price K satisfies the following variational inequalities

∂v

∂t
(t, x) + Aδtv(t, x)− rv(t, x) ≤ 0, ∀(t, x) ∈ [0, T ]× R

(
∂v

∂t
(t, x) + Aδtv(t, x)− rv(t, x)

)
(φ− v) = 0, ∀(t, x) ∈ [0, T ]× R (5.19)

v(T, x) = φ(x), v ≥ φ ∀x ∈ R.
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Now, we introduce the fundamental theorem used to price American options on a
dividend paying stock. The theorem says that the system defined in (5.19) admits
a unique solution. Moreover, this result presents a way for pricing American
options with the help of this inequality system.

Theorem 5.6. The variational inequality system (5.19) admits a unique solution
v(t, x) such that this solution is continuous, bounded and has the locally bounded

partial derivatives ∂v
∂x
, ∂v
∂t
, ∂

2v
∂x2
.

Also, the following equality always holds

v(t, log(x)) = Φ(t, x) = sup
τ∈Tt,T

Eδ(e−r(τ−t)ψ(xe(r−(σ
2/2)−δ)(τ−t)+σ(Wτ−Wt))).

With the help of this theorem, we see that the price of an American call option
with dividend is given by

u(t, St) = sup
τ∈Tt,T

Eδ
(
e−r(τ−t)(Ste

(r−(σ2/2)−δ)(τ−t)+σ(Wτ−Wt) −K)+

)
,

whereas an American put price is expressed as follows:

u(t, St) = sup
τ∈Tt,T

Eδ
(
e−r(τ−t)(K − Ste(r−(σ

2/2)−δ)(τ−t)+σ(Wτ−Wt)+

)
.

We emphasize that, although martingale and variational inequality approach deal
with the different technical aspects, they give the same formula for the price of
American options.
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CHAPTER 6

NUMERICAL METHODS

American options provide its holder the flexibility of exercising at any time up to
maturity. By this flexibility, the holder of the option can terminate the contract in
case the option value is less than its intrinsic value, which is actually the revenue
generated by an immediate exercise. That is why, the value of an American
option is said to be worth at least as much as its intrinsic value. Hence, for all
(S, t),

V (S, t) ≥ ψ(S, t), (6.1)

where V (S, t) is the value of the option at time t and ψ(S, t) is the intrinsic value.
Here, we recall that ψ(S, t) = (S −K)+ (respectively (K −S)+) for a call option
with a strike price K (respectively for a put option with the same strike price).
From this inequality, it is clear that an early exercise is profitable only when the
value of the option is dominated by its intrinsic value. In case the inequality (6.1)
holds, an early exercise means to trade the option for less than worth. Therefore,
it can cause a huge loss for the option holder.
In Figure 6.1a and Figure 6.1b, we figure out these results. It is clear that it
is optimal to hold the put for the points S > Sf (t). Indeed, since the value
function of a put option is continuous and non-increasing with respect to S and
V (S, t) ≥ ψ(S, t) for all (S, t), there is an at least one intersection point (S1, t)
such that V (S1, t) = ψ(S1, t). Here, Sf (t) is the last contact point of the curves

(a) (b)

Figure 6.1: Value curve for (a) an American call option, (b) an American put
option.
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(a) (b)

Figure 6.2: Free boundary curve for (a) an American put option, (b) an American
call option.

V (S, t) and ψ(S, t). To be more precise, all points S > Sf (t) determine the con-
tinuation region of the option for a fixed time t, whereas the the points S ≤ Sf (t)
belong to the exercise region of the option. In the case of an American call option,
the buyer can experience a huge loss when exercising at the points S ≤ Sf (t).
The existence of such a contact point Sf (t) derives from the fact that the value
function of a call option is continuous and non-decreasing with respect to S and
V (S, t) ≥ ψ(S, t) for all (S, t). The parameters we use in Figure 6.1 are: S0 = 70,
K = 70, D = 0.1, σ = 0.4, r = 0.05, Smin = 0, Smax = 180, T = 5, dS = 0.25,
dt = 0.002.
The intersection points Sf (t) relocate by the passage of time, as shown in Fig-
ure 6.2. Because of this relocation, the boundaries of exercise and continuation
regions change at each time instant. Therefore, the option holder is obliged to
find these boundaries concurrently with the unknown value V (S, t). In finance,
this problem is said to be a free boundary problem. The parameters we use
in Figure 6.2 are: S0 = 70, K = 70, D = 0.1, σ = 0.4, r = 0.05, Smin = 0,
Smax = 180, T = 5, dS = 0.25, dt = 0.002.
Since it is required to regulate the boundaries along with the price V (S, t), the
free boundary problem can entail an additional difficulty to the valuation of an
American option. In order to cope with this difficulty, we investigate the numer-
ical solutions of the following PDE

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − δ)S∂V

∂S
− rV ≤ 0, (6.2)

with the terminal condition

V (S, T ) = ψ(S, T ), (6.3)

and with the constraint (6.1).
We recall that, in the case (6.2) is equal to zero, we have V (S, t) > ψ(S, t) for all
(S, t). If we get rid of the equal sign, then it is possible to maximize our gain only
by holding the option. To put it another way, the free boundary problem is not
taken into account at that instant. Since a numerical valuation does not make
sense at the time of an early exercise, we try to solve the pricing problem in the
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holding region. That is, a numerical method used to price an American option
considers first the equality of (6.2) and then examines whether the intrinsic value
is greater than the approximate price or not (see, e.g., [6, 40]). It makes the
numerical pricing of an American option a two-step valuation process such that

V (S, t) = max
{
V̄ (S, t), ψ(S, t)

}
, (6.4)

where V̄ (S, t) is the approximate price of the American option derived with no
free-boundary.
In this chapter, we introduce some numerical methods used to price American
options.

6.1 Finite-difference Methods

Finite-difference methods are widely used in finance to price derivative securities.
Because it can be a hard work, sometimes impossible, to find a closed-form solu-
tion for a price function, many studies conducted on the numerical approaches.
Therefore, in the literature, there are several publications and books written on
this topic, see, e.g., [6, 7, 39, 40].
To obtain a numerical result from (6.2), we will work with the finite difference
quotients of partial derivatives derived from the Taylor series expansions. To do
that, we will first start with the discretization of domains of S and t such that [40]

Smin ≤ S ≤ Smax and t0 ≤ t ≤ T.

Dividing the intervals [t0, T ] and [Smin, Smax] into M and N parts, respectively,
we have

∆t =
T − t0
M

,

and

∆S =
Smax − Smin

N
.

Namely,

ti = t0 + i∆t, i = 0, 1, . . . ,M,

and

Sk = Smin + k∆S, k = 0, 1, . . . , N.

After explaining the discretization of the domain of the PDE, let us denote the
approximation of the value V (Sk, ti) with

V (Sk, ti) ≈ wki, (6.5)

for all grid points (Sk, ti).
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6.1.1 Explicit Method

Explicit method is a well-known finite difference method which is widely used
for the numerical solutions of PDE’s. It was first introduced by Brennan and
Schwartz (1977, 1978) [7, 35] and then developed by Courtadon (1982) [9].
According to this method, the partial derivative ∂V

∂ti
is approximated by the back-

ward finite difference scheme whereas ∂V
∂Sk

and ∂2V
∂S2

k
are approximately valued by

the central difference approach. That is,

∂V

∂ti
≈ wki − wk,i−1

∆t
, (6.6)

∂V

∂Sk
≈ wk+1,i − wk−1,i

2∆S
, (6.7)

∂2V

∂S2
k

≈ wk+1,i − 2wk,i + wk−1,i
(∆S)2

. (6.8)

Substituting (6.6), (6.7) and (6.8) into the Black-Scholes PDE, we get

wki − wk,i−1
∆t

= rwki − (r − δ)Sk
wk+1,i − wk−1,i

2∆S

−1

2
σ2S2

k

wk+1,i − 2wk,i + wk−1,i
(∆S2)

. (6.9)

Then,
wk,i−1 = xkwk−1,i + ykwk,i + zkwk+1,i, (6.10)

where

xk =
1

2
∆t

{
σ2(

Sk
∆S

)2 − (r − δ) Sk
∆S

}
,

yk = 1−∆t

{
σ2(

Sk
∆S

)2 + r

}
,

zk =
1

2
∆t

{
(r − δ) Sk

∆S
+ σ2(

Sk
∆S

)2+

}
.

It is apparent from (6.10) that explicit method is easy to implement, since we
do not need to take the inverse of any matrix at the time of the implementation
and the computation of some boundaries is not necessary for the solution (Hull
and White (1990) [15]). However, it can sometimes show conditional stability
depending on the choice of ∆t and ∆S. To be more precise, the errors occurred
in the previous steps of the implementation can be increasingly carried to the
next steps because of the wrong choice of ∆t and ∆S. Therefore, the conditional
stability can cause the efficiency of the method to decrease.
In the Figure 6.3a, we plot the instability of explicit method for an American
call option. It shows that, with the wrong choice of parameters, the method can
cause misleading results. With the Figure 6.3b, we see that the instability of the
method is improved by choosing the suitable parameters for the valuation. The
parameters we use are: S0 = 40, Smin = 0, Smax = 240, T = 1, dS = 3, , r = 0.1,
D = 0.1, σ = 0.5, K = 40.
The MATLAB code can be found in [40].

64



(a) (b)

Figure 6.3: The conditional stability of explicit method with (a) dt = 0.1, (b)
dt = 0.001.

6.1.2 Implicit Method

This scheme, too, was firstly introduced by Schwartz (1977) [35] and Brennan
and Schwartz (1978) [7]. Then, it was developed by Courtadon (1982) [9].
In the implicit method, contrary to explicit scheme, we are not restricted with
the choice of step lengths ∆t and ∆S. Moreover, it also differs from the explicit
method with the use of forward difference for the approximation of partial deriva-
tive ∂V

∂t
.

According to this scheme, the partial derivatives ∂V
∂ti
, ∂V
∂Sk

and∂
2V
∂S2

k
are approximated

as follows:

∂V

∂ti
≈ wk,i+1 − wk,i

∆t
, (6.11)

∂V

∂Sk
≈ wk+1,i − wk−1,i

2∆S
, (6.12)

∂2V

∂S2
k

≈ wk+1,i − 2wk,i + wk−1,i
(∆S)2

. (6.13)

Plugging (6.11), (6.12) and (6.13) into the Black-Scholes PDE, we obtain

wk,i+1 − wk,i
∆t

= rwki − (r − δ)Sk
wk+1,i − wk−1,i

2∆S

−1

2
σ2S2

k

wk+1,i − 2wk,i + wk−1,i
(∆S2)

. (6.14)

Then,

wk,i+1 = xkwk−1,i + ykwk,i + zkwk+1,i, (6.15)
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where

xk =
1

2
∆t

{
(r − δ) Sk

∆S
− σ2(

Sk
∆S

)2
}
,

yk = 1 + ∆t

{
σ2(

Sk
∆S

)2 + r

}
,

zk = −1

2
∆t

{
(r − δ) Sk

∆S
+ σ2(

Sk
∆S

)2+

}
.

By rewriting (6.15) in matrix form, we get

Aw(i) = Bw(i+1) + y(i+1),

for all i = M − 1,M − 2, . . . , 1.
Here,

w(i) =


w1,i

w2,i
...

wN−1,i

 ,

y(i+1) =


−x1w0,i

0
...
0

−zN−1wN,i

 ,

A =


y1 z1 0 . . . 0 0
x2 y2 z2 . . . 0 0
0 −x3 1− y3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . xN−1 yN−1

 .

Now, our aim is to find the price of an American option with respect to this
scheme. In order to do that, we compare each approximate value wIM

k,i , which is
computed under the assumption of no free-boundary, with the intrinsic value Pk,i.
That is, the value of an American option at the grid point (Sk, ti) is defined by

wAmk,i = max
{
wIM
k,i , ψk,i

}
,

where i = 1, . . . , N − 1 and k = M,M − 1, . . . , 1.

6.1.3 Crank-Nicolson method

One of the simplest numerical methods used to price options is the Crank-Nicolson
method. This approach was introduced by Crank and Nicolson (1947) [10].
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According to this method, the discretized partial derivative ∂Vk
∂ti

is approximated
by the backward finite difference such that

∂Vk
∂ti
≈ wki − wk,i−1

∆t
.

Then, by multiplying the right hand side of (6.9) and (6.14) with 1/2, we have

wki − wk,i−1
∆t

=
1

2

(
rwki − (r − δ)Sk

wk+1,i − wk−1,i
2∆S

)
−1

4

(
σ2S2

k

wk+1,i − 2wk,i + wk−1,i
(∆S2)

)
(6.16)

+
1

2

(
rwk,i−1 − (r − δ)Sk

wk+1,i−1 − wk−1,i−1
2∆S

)
−1

4

(
σ2S2

k

wk+1,i−1 − 2wk,i−1 + wk−1,i−1
(∆S2)

)
.

Hence, arranging (6.16), we get

− xkwk−1,i−1 + (1− yk)wk,i−1 − zkwk+1,i−1

= xkwk−1,i + (1 + yk)wk,i − zkwk+1,i,

where

xk =
1

4
∆t

{
σ2(

Sk
∆S

)2 − (r − δ) Sk
∆S

}
,

xk = −1

2
∆t

{
σ2(

Sk
∆S

)2 + r

}
,

zk =
1

4
∆t

{
σ2(

Sk
∆S

)2 + (r − δ) Sk
∆S

}
.

Moreover, we can rewrite (6.16) in matrix form as follows:

Aw(i−1) = Bw(i) + b(i), (6.17)

for all i = M − 1,M − 2, . . . , 1.
Here,

w(i) =


w1,i

w2,i
...

wN−1,i

 ,

b(i) =


x1(w0,i−1 + w0,i)

0
...
0

zN−1(wN,i−1 + wN,i)

 ,
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Figure 6.4: The price of an American put option for different number of time
steps.

A =


1− y1 −z1 0 . . . 0 0
−x2 1− y2 −z2 . . . 0 0

0 −x3 1− y3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −xN−1 1− yN−1

 ,

B =


1 + y1 z1 0 . . . 0 0
x2 1 + y2 z2 . . . 0 0
0 −x3 1− y3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . xN−1 1 + yN−1

 .

We note that the Crank-Nicolson method, too, is unconditionally stable, because
the implicit method protects its stability at the time of the implementation.
In order to adjust this method for American options, we compare the approximate
value wCN

k,i , which is computed under the assumption of no-free boundary, with
the intrinsic value Pk,i. Hence, the value of an American option at the grid point
(Sk, ti) is given by

wAmk,i = max
{
wCN
k,i , ψk,i

}
,

where i = 1, 2, . . . , N − 1 and k = M,M − 1, . . . , 1.
Figure 6.4 shows how the price of an American put option under CN method is
affected by the number of time steps. It is clear that, when we increase the num-
ber of time steps, the oscillations in the option value decrease. The parameters
we use in the graph are: S0 = 40, K = 40, r = 0.1, T = 1, σ = 0.50, dS = 3,
Smin = 0, Smax = 240. The time step length changes from 0.01 to 0.22 with an
increment of 0.0001.

68



Table 6.1: The errors realized at the implementation of Crank-Nicolson and Im-
plicit Euler method [17].

Implicit-Euler Crank-Nicolson

n error ratio error ratio

2 1.905E-1 2.739E-1
4 1.015E-1 1.88 1.403E-1 1.95
8 5.305E-2 1.91 6.929E-2 2.02
16 2.732E-2 1.94 3.265E-2 2.12
32 1.392E-2 1.96 1.422E-2 2.30
64 7.044E-3 1.98 5.237E-3 2.71
128 3.547E-3 1.99 1.271E-3 4.12
256 1.780E-3 1.99 9.369E-5 13.57
512 8.920E-4 1.99 2.182E-6 42.93

The MATLAB code of Crank-Nicolson can be found in [40].

Although Crank Nicolson method is unconditionally stable, remarkable errors
can be occurred at the time of the implementation. Therefore, it can cause poor
numerical results for the valuation of the option [17, 24, 31].
To handle this problem, Rannacher [32] proposed to use Implicit Euler method
for a few time steps and then to apply the Crank-Nicolson method. With this ad-
justment, he showed that large errors occurred in the implementation have been
reduced. As a result, better numerical approximations were obtained for the op-
tion prices. The Table 6.1 illustrates this fact. As can be seen, Crank-Nicolson
method shows more oscillating behavior than the Implicit Euler method in the
valuation of an American call option. The table is prepared for different number
of time steps n. The parameters we use are K = 10, σ = 0.6, D = 0.2, T = 1,
r = 0.25, Smin = 0, Smax = 50 [17].

6.1.4 θ-Averaged Method

θ-Averaged method is a generalized version of Crank-Nicolson which associates
the implicit and explicit finite differences with the weights θ and 1 − θ, respec-
tively, [26].
Given 0 ≤ θ ≤ 1, the method is defined as

wk,i − wk,i−1
∆t

= θ

(
rwk,i − (r − δ)Sk

wk+1,i − wk−1,i
2∆S

)
− 1

2
θ

(
σ2S2

k

wk+1,i − 2wk,i + wk−1,i
(∆S2)

)
(6.18)

+ (1− θ)
(
rwk,i−1 − (r − δ)Sk

wk+1,i−1 − wk−1,i−1
2∆S

)
− 1

2
(1− θ)

(
σ2S2

k

wk+1,i−1 − 2wk,i−1 + wk−1,i−1
(∆S2)

)
.
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Note that

• if θ = 1, then the method turns out to be explicit,

• if θ = 1
2
, then the method turns out to be Crank-Nicolson,

• if θ = 0, then the method turns out to be implicit.

Rearranging (6.18), we obtain

− xkwk−1,i−1 + (1− yk)wk,i−1 − zkwk+1,i−1

= x1kwk−1,i + (1 + y1k)wk,i − z1kwk+1,i,

where

xk =
1

2
(1− θ)∆t

{
σ2(

Sk
∆S

)2 − (r − δ) Sk
∆S

}
,

yk = −(1− θ)∆t
{
σ2(

Sk
∆S

)2 + r

}
,

zk =
1

2
(1− θ)∆t

{
σ2(

Sk
∆S

)2 + (r − δ) Sk
∆S

}
,

x1k =
1

2
θ∆t

{
σ2(

Sk
∆S

)2 − (r − δ) Sk
∆S

}
,

y1k = −θ∆t
{
σ2(

Sk
∆S

)2 + r

}
,

z1k =
1

2
θ∆t

{
σ2(

Sk
∆S

)2 + (r − δ) Sk
∆S

}
.

In matrix notation,
Aw(i) = Bw(i+1) + y(i+1),

for all i = M − 1,M − 2, . . . , 1.
Here,

w(i) =


w1,i

w2,i
...

wN−1,i

 ,

b(i+1) =


−x1w0,i

0
...
0

−zN−1wN,i)

 ,

A =


y1 z1 0 . . . 0 0
x2 y2 z2 . . . 0 0
0 −x3 1− y3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . xN−1 yN−1

 ,
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Figure 6.5: The price of an American call option for different time to maturities.

B =


1 + y11 z11 0 . . . 0 0
x12 1 + y12 z12 . . . 0 0
0 −x13 1− y13 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . x1N−1 1 + y1N−1

 .

In order to price an American option, we take the following equality into account

wAmk,i = max
{
wθk,i, ψk,i

}
,

where i = 1, . . . , N − 1 and j = M,M − 1, . . . , 1. Here, wθk,i is the approximate
solution of the Black-Scholes PDE computed with the assumption of no free
boundary.
In Figure 6.5, we show the valuation of an American put option for T=0, T=1,
T=2. The parameters we use are: S0 = 70, K = 70, D = 0.1, σ = 0.4, r = 0.05,
T = 5, dS = 0.25, dt = 0.002, Smin = 0, Smax = 140, θ = 0.4.

6.2 Projected Sor Method (PSOR)

Projected SOR method (PSOR) which is used to solve the linear system of equa-
tions iteratively was first suggested by Cryer (1971) [11]. In this section, this
method is applied to the system (6.17)

Aw(i) = Bw(i+1) + b(i+1) = y(i+1), (6.19)

where i = M,M − 1, . . . , 1.
To be more precise, instead of using the LU decomposition of the matrix
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Figure 6.6: The number of iterations for increasing number of ω’s.

A = (aji), we work with the sequences that converge to our desired solution
w(i) = (w1,i, . . . , wN−1,i)

T .

Let us start with an initial guess w
(0)
i = (w0

1,i, . . . , w
0
N−1,i)

T and let ω be a constant

in R. For each component (wk,i)1≤k≤N−1, we define a sequence (w̃
(l)
k,i)l≥1 such that

w̃
(l)
k,i = (1− ω)w̃

(l−1)
k,i +

ω

akk

{
yk,i −

k−1∑
t=1

ak,tw
(l)
t,i −

N−1∑
t=k+1

ak,tw
(l−1)
t,i

}
. (6.20)

Here, the constant ω is called relaxation parameter. Kahan (1958) [19] proved

that the iterate w̃
(l+1)
i converges to the desired solution w(i) iff ω ∈ (0, 2).Moreover

according to Young (1971) [43], if ω > 1, we can maximize the convergence rate of
the iteration process. This method that causes the convergence to rise is known as
successive overrelaxation method (SOR). For more details, we refer to [1] and [33].
We note that the continuity of the iteration is fulfilled by the condition

‖w̃(l+1)
k,i − w̃(l)

k,i‖ > ξ, (6.21)

where ξ is a predetermined constant.
In order to construct an algorithm for an American type option, we just need to

compare the SOR iterate w̃
(l)
k,i with the intrinsic value Pk,i. This variant of the

SOR method is known as Projected SOR method (PSOR). Hence, according to
this method, the approximate value of an American option is given by

w̃PSORk,i = max
{
w̃SORk,i , ψk,i

}
,

where w̃SORk,i is the SOR iterate computed under the assumption of no free bound-
ary and Pk,i is the intrinsic value of the American option at the grid point (Sk, ti).
The MATLAB code of PSOR method can be found in [40].
Figure 6.6 plots the number of iterations used to price an American put option
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for different value of ω’s. The parameters we use are: S0 = 40, K = 40, D = 0.1,
σ = 0.5, r = 0.1, Smin = 0, Smax = 240, T = 1, dS = 2, dt = 0.001, tol = 1e− 8.
We see that convergence rate is maximized, when ω ≈ 1.4.
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CHAPTER 7

APPLICATION

For the time being, we analyzed the fair price of American options through the
different type of markets. We first gave a brief introduction about the discrete-
time pricing of American options in case the holder does not receive a dividend
payment. After gaining a deeper insight on pricing, we extended our results to
the continuous-time. In this setting, we followed the well-known Black-Scholes
model and we discussed the pricing theory for both dividend and non-dividend
case. Indeed, assuming that the stock prices are modeled with the geometric
Brownian motion, we mentioned the fundamental techniques for the valuation
processes: martingale pricing and variational inequalities. But, these approaches
we mentioned generally do not admit a closed-form pricing formula for the Amer-
ican options. For this reason, we will get the assistance of numerical methods in
order to cope with this problem.
In this chapter, we focus on the numerical solutions of the price of American
options for both discrete and continuous-time setting.
For continuous time, we employ the finite-difference methods described in Sec-
tions 6.1-6.2 assuming that stock prices follow geometric Brownian motion. More-
over, we suppose that the underlying asset pays a constant dividend yield D = δ.
We note that, for these implementations, we use the Black-Scholes inequalities
with variable coefficients. In addition, it is possible to deal with the ones with
constant coefficients by using the log prices.
As for the discrete-time setting, we will apply Binomial method to value Ameri-
can options. According to this method, all stock prices rise with an up factor u
or fall with a down factor d in each time period. In order to reflect the stock price
fluctations efficiently, we work with the large number of time steps. Therefore,
we use the continuously compounding discount factor e−rdt for each time interval
[t− dt, t] to be more realistic. More precisely, letting (St) denote the stock price
process at time t, we have St = St−dtu or St = St−dtd, where dt corresponds
to the size of the time steps. Let V u

t be the value of the American option when
St = St−dtu and let V d

t be the value of the option in the case St = St−dtd. In order
to find the price of an American option at time t, we take the maximum of the
intrinsic value and the expression e−rdt(qV u

t+dt + (1 − q)V d
t+dt), as done similarly

in Chapter 3. Here, q is the risk-neutral probability measure under which the
discounted asset prices are martingales.
With the help of these methods, we will see the impact of Black-Scholes param-
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Table 7.1: The value of an American put option for different strike prices

K Binomial θ-Averaged CN PSOR
30 0.0843 0.0865 0.0866 0.0866
35 0.3922 0.4016 0.4016 0.4016
40 1.1920 1.1783 1.1782 1.1782
45 2.6764 2.6837 2.6834 2.6835
50 4.9629 4.9558 4.9555 4.9556
55 8.0147 8.0087 8.0084 8.0085
60 11.6884 11.6668 11.6666 11.6668
65 15.8208 15.8204 15.8202 15.8205
70 20.3220 20.3132 20.3131 20.3135

(a) (b)

Figure 7.1: The valuation of an American put (a) for different strike prices.
(b) with θ-averaged and Binomial method depending on K.

eters K, σ and δ on the valuation of American options. Also, we will compare
Crank-Nicolson, θ-Averaged, PSOR and Binomial methods to analyze their sen-
sitivities against to the changes in the parameters K, σ and D given above.
In the implementation, we will use these parameters: S0 = 50, K = 45, D = 0.1,
σ = 0.4, r = 0.1, Smin = 0, Smax = 150, T = 5/12, dS = 2, dt = 1/1200, ω = 1,
tol = 1e− 8, θ = 0.4, M = 100 [40].
We recall that the parameter S0 is the initial stock price, V is the value of the
option, K is the strike price of the option, D is constant dividend yield, σ is
volatility, r is risk-free interest rate, T is the maturity of the option, ω is the
relaxation parameter, M is the number of points in Binomial method and tol is
the lower bound providing the continuity of iterations in PSOR method.
In Table 7.1, we compare the numerical solutions of the price of an American put
option for different strike prices. It is apparent that strike price has a positive
impact on the price of the American put. Also, it can be seen that the perfor-
mance of finite difference methods are almost the same. On the other hand, when
K ≥ 50, binomial method seems to reflect the change in the strike price to the
option value much more than the others.

In Figure 7.1, we illustrate these results. In Figure 7.1a, when K increases from
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Table 7.2: The value of an American call option for different strike prices

K Binomial θ-Averaged CN PSOR
30 20.0000 20.0000 20.0000 20.0000
35 15.1558 15.1576 15.1575 15.1578
40 10.9648 10.9490 10.9489 10.9491
45 7.5473 7.5517 7.5514 7.5516
50 4.9629 4.9562 4.9558 4.9559
55 3.1460 3.1417 3.1415 3.1415
60 1.9305 1.9108 1.9106 1.9107
65 1.1347 1.1402 1.1402 1.1402
70 0.6652 0.6587 0.6587 0.6587

30 to 70 with an increment of two, the price of the option experiences a rise. In
Figure 7.1b, we simulate the price of the option V (S, 0) with θ-averaged and Bi-
nomial method depending on the strike price K. Since the other finite differences
give almost the same results with θ-averaged method, we compare the Binomial
method only with θ scheme. Here, K changes from 44 to 46 with an increment
of 0.1. It is clear that, as getting closer to the strike price 45, the methods give
closer numerical solutions.
In Table 7.2, we analyze this time pricing of an American call option. We use the
same parameters we mentioned above. It is clear that strike price K is inversely
correlated with the price of an American call option, as also shown in Figure 7.2.
In the figure, we simulate the option value depending on K and S0 by Binomial
method. As can be seen, when we fix the initial stock price, the option value
decreases with rising exercise price. As mentioned in the previous chapter,

Figure 7.2: Binomial method; the value of an American call option for different
strike prices.
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Table 7.3: The value of an American put option for different dividend yields

D Binomial θ-Averaged CN PSOR
0.1 2.6764 2.6832 2.6834 2.6835
0.2 3.2910 3.3008 3.3010 3.3010
0.3 4.0103 4.0209 4.0211 4.0211
0.4 4.8129 4.8239 4.8241 4.8241
0.5 5.6933 5.7041 5.7043 5.7043
0.6 6.6435 6.6537 6.6540 6.6540
0.7 7.6537 7.6627 7.6631 7.6631

(a) (b)

Figure 7.3: SOR, Binomial Method; the valuation for different dividend yields
(a) call option (b) put option.

the dividend yields play a key role on pricing of American options. Under the
Black-Scholes setting, we assume that the price of the underlying asset goes down
with the continuously paid dividends. When the stock price does not decrease at
those dates, we can obtain an arbitrage profit in the market. Indeed, by taking
the non-negative dividend payment, we can sell the asset to its new holder as
soon as we buy it. This causes to occur a riskless profit in the market. Therefore,
we say that that the stock price goes down at those days to prevent an arbitrage
opportunity [8, 40].
We recall that an American call option increases in value when the stock price
goes up. This increase in the stock price makes the American call option more
valuable. On the other hand, the put holder suffers from a decrease in the option
value, if the stock price continues to rise. In light of the foregoing, it can be
easily verified that an increasing dividend yield causes the put option to worth
more than before. Table 7.3 figures out these facts. However, as seen in
Table 7.4, call option suffers from a depreciation in value for increasing dividend
yields. Moreover, the discrete-time valuation technique, Binomial method, seems
not so successful in capturing the dividend gains for the American put options.
On the other hand, the call option does not experience a strict fall as much as
the ones in continuous-time. With the Figures 7.3a and 7.3b, we point out these
facts. Since the finite difference methods give similar results, we compare the
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Table 7.4: The value of an American call option for different dividend yields

D Binomial θ-Averaged CN PSOR
0.1 7.5473 7.5511 7.5514 7.5516
0.2 6.6778 6.6720 6.6725 6.6732
0.3 6.0598 6.0520 6.0525 6.0538
0.4 5.6220 5.6109 5.6115 5.6138
0.5 5.3185 5.3010 5.3014 5.3031
0.6 5.1254 5.0933 5.0947 5.1009
0.7 5.0000 5.0000 5.0000 5.0000

Binomial method only with PSOR method.
It is clear from Table 7.5 and Table 7.6 such that the volatility has a positive
effect on both call and put options. It is actually to the fact that options are
the financial instruments commonly used to hedge the risks of the investors. In-
deed, an option takes its value from the underlying asset that has written on
it. Because the volatility means uncertainty in the market, an increasing uncer-
tainty makes the stocks more riskier. That is why, the investors aim to guarantee
themselves against an unexpected movements in the market. In that case, the
options used to eliminate that risk becomes more valuable and attractive for in-
vestors. Therefore, an increasing volatility causes the options to increase in value.

Table 7.5: The value of an American put option for different volatilities

σ Binomial θ-Averaged CN PSOR
0.1 0.0634 0.0789 0.0788 0.0788
0.2 0.6874 0.6959 0.6960 0.6960
0.3 1.6378 1.6347 1.6348 1.6349
0.4 2.6764 2.6832 2.6834 2.6835
0.5 3.7902 3.7760 3.7763 3.7764
0.6 4.9055 4.8882 4.8886 4.8887
0.7 6.0151 6.0080 6.0085 6.0086

Table 7.6: The value of an American call option for different volatilities

σ Binomial θ-Averaged CN PSOR
0.1 5.0070 5.0012 5.0012 5.0012
0.2 5.5720 5.5737 5.5738 5.5739
0.3 6.5108 6.5050 6.5052 6.5053
0.4 7.5473 7.5511 7.5514 7.5516
0.5 8.6579 8.6430 8.6434 8.6436
0.6 9.7733 9.7548 9.7553 9.7555
0.7 10.8835 10.8744 10.8750 10.8752

79



(a) (b)

Figure 7.4: Binomial Method; The valuation for different volatilities (a) American
call option (b) American put option.

Figure 7.4a and Figure 7.4b illustrates these results. It is clear that the call
and put option prices are positively affected from the increase of volatility in the
market.

80



CHAPTER 8

CONCLUSION AND OUTLOOK

In this thesis, we studied the valuation of American options in discrete and con-
tinuous time models. We first examined the discrete-time valuation of American
options with no dividend. In this model, American options were uniquely priced
with the help of replicating portfolios. After introducing Snell envelope and op-
timal stopping time problem, it was also shown that American call options with
no dividend were equally priced with their European counterparts.
Afterwards, we extended our results to the continuous-time market. Following
the well-known Black-Scholes model, we investigated the valuation concept for
both dividend and non-dividend case. Under this setting, two fundamental val-
uation techniques commonly used to price American options were introduced:
martingale pricing and variational inequalities. Martingale pricing of American
options deals with maximizing the expected value of discounted payoff process
under the risk-neutral probability measure. With this approach, it was shown
that the unique price of an American option was described by a hedging portfolio
that replicates it. Moreover, it was shown that an early exercise is not optimal
for an American call option with no dividend. That is, the price of an American
call option is equal to the price of its European counterpart in the case the under-
lying does not pays dividend. On the other hand, this result is not valid for the
American calls on a dividend paying stock. Secondly, the variational inequalities
were introduced. Under this approach, we gave the parabolic partial differential
inequalities that the American options satisfy. Then, we proved the main theo-
rem for pricing in detail when the inequality system has a regular solution.
Because these approaches generally do not offer a closed-form pricing formula for
the American options, we gave a brief introduction to the finite difference and
PSOR methods. Finally, a numerical application was done by comparing the
efficiencies of these methods. We also investigated the impact of Black-Scholes
parameters, σ, δ,K, on the price of American options. We showed that strike
price, volatility and dividend yield are positively correlated with the put option
price, whereas the value of a call option tends to decrease for increasing values of
K and δ.
As for future work, Monte-Carlo method can be used to price American options
numerically. This scheme is based on approximating the expected discounted
payoff process with the help of dynamic programming. Moreover, these contracts
may be valued with the help of trinomial tree method working on the discrete-
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time setting. Indeed, this scheme is equivalent to the explicit finite difference
approach. Instead of dealing with the numerical methods, we may also use an-
alytic techniques that generally provide a lower cost. Interpolation, quadratic
approximation and methods of lines can be preferable to fulfill this purpose.
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