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ABSTRACT

OPTIMAL PORTFOLIO STRATEGIES UNDER VARIOUS RISK
MEASURES

Meral, Alev

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ömür Uğur

August 2013, 74 pages

In this thesis, we search for optimal portfolio strategies in the presence of various
risk measure that are common in financial applications. Particularly, we deal
with the static optimization problem with respect to Value at Risk, Expected
Loss and Expected Utility Loss measures. To do so, under the Black-Scholes
model for the financial market, Martingale method is applied to give closed-form
solutions for the optimal terminal wealths, then via representation problem the
optimal portfolio strategies are achieved. We compare the performances of these
measures on the terminal wealths and optimal strategies of such constrained
investors. Finally, we present some numerical results to compare them in several
respects to give light to further studies.

Keywords : Portfolio Optimization, Value at Risk, Expected Loss, Expected Util-
ity Loss, Black-Scholes Model, Martingale Method, Risk Constraints.
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ÖZ

ÇEŞİTLİ RİSK ÖLÇÜMLERİ ALTINDA EN UYGUN PORTFÖY
STRATEJİLERİ

Meral, Alev

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ömür Uğur

Ağustos 2013, 74 sayfa

Bu tezde, finansal uygulamalarda yaygın olan çeşitli risk ölçümleri varlığında en
uygun portföy stratejilerini araştırıyoruz. Özellikle, Riskteki Değer, Beklenen
Kayıp ve Beklenen Fayda Kaybı ölçümleriyle ilgili olarak statik problem ile il-
gileniyoruz. Bunu yapmak için, finansal piyasa için Black-Scholes modeli altında,
en uygun nihayi servetlere kapalı form çözümleri vermek için Martingale metodu
uygulanır, ardından temsil problemi yoluyla en uygun portföy stratejileri elde
edilir. Bu ölçümlerin, böyle sınırlandırılmış yatırımcıların nihayi servetleri ve en
uygun stratejileri üzerindeki performanslarını karşılaştırıyoruz. Son olarak, ileriki
çalışmalara ışık tutmak adına bu ölçümleri birkaç yönden karşılaştırmak için bazı
sayısal sonuçlar sunuyoruz.

Anahtar Kelimeler : Portföy Optimizasyonu, Riskteki Değer, Beklenen Kayıp,
Beklenen Fayda Kaybı, Black-Scholes Modeli, Martingale Metodu, Risk Sınırla-
maları
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CHAPTER 1

Introduction

Harry Markowitz, who is the pioneer of the modern portfolio theory, mentioned
about trading off the mean return of a portfolio against its variance in his works
(see [18, 19]). In order to solve the portfolio optimization problem, Robert C.
Merton presented the concept of Itô calculus with methods of continuous-time
stochastic optimal control in two works (see [20, 21]) and when the utility function
is a power function or the logarithm, he produced solutions to both finite and
infinite-horizon models (see [20]). Harrison and Kreps [10] constituted portfolios
from martingale representation theorems and started the modern mathematical
approach to portfolio management in complete markets, which were built around
the ideas of martingale measures. Harrison and Pliska (see [11, 12]) improved this
subject much more in the context of the option pricing. The martingale ideas to
utility maximization problems were adapted by Pliska [22], Cox and Huang [4, 5],
and Karatzas, Lehoczky and, Shreve [13]. You can further examine about these
developments in Karatzas and Shreve [15].

In this thesis, we investigate optimal strategies for portfolios consisting of only
one risky stock and one risk-free bond. This study can easily be generalized to
the multi-dimensional Black-Scholes model with d > 1 risky stocks. We assume
that an investor in this economy has some initial wealth at time zero and there
is a finite planning horizon [0, T ] that is given. The goal of this investor is to
maximize the expected utility of the terminal wealth of the portfolio by optimal
selection of the proportions of the wealth invested in stock and bond. We assume
continuous-time market which allows for permanent trading and re-balancing the
portfolio, and we have to find these proportions for every time t to T . Also, we
allow the short selling of the stock, which is the selling of a stock that the seller
doesn’t own, but is promised to be delivered.

Karatzas, Lehoczky, and Shreve [13] and also Cox and Huang [4] solved the
utility maximization problem without additional limitations by using martingale
approach in the context of the Black-Scholes model of a complete market. Also,
the works of Karatzas et al. [14] is an extension of the solution to should be
examined for the case of an incomplete market.

We consider shares of a stock and a risk-free bond whose prices follow a geometric
Brownian motion in this portfolio. We can obtain the maximum expected utility
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of the terminal wealth by following the optimal portfolio strategy. However,
since the terminal wealth is a random variable with a distribution which is often
extremely skew, it shows considerable probability in regions of small values of the
terminal wealth. Namely, the optimal terminal wealth may exhibit large shortfall
risks. By the term shortfall risk, we indicate the event that the terminal wealth
may fall below a given deterministic threshold value, namely, the initial capital
or the result of an investment in a pure bond portfolio.

It is necessary to quantify shortfall risks by using appropriate risk measures in
order to incorporate such shortfall risks into the optimization. We denote the
terminal wealth of the portfolio at time t = T by XT and let q > 0 be threshold
value or shortfall level. Then the shortfall risk consists in the random event
{XT < q} or {Z = XT − q < 0} and we assign to the random variable (risk) Z
the real number ρ(Z) which will be called a risk measure.

Therefore, the idea is to restrict the probability of a shortfall:

ρ1(Z) = P (Z < 0) = P (XT < q).

This corresponds to the concept of Value at Risk (VaR) [23], defined by

VaRε(Z) = inf{l ∈ R : P (Z > l) ≤ ε},

where l can be interpreted such that given ε ∈ (0, 1), the VaR of the portfolio
at the confidence level 1 − ε is given by the smallest number l such that the
probability that the loss Z exceeds l is at most ε. Although it virtually always
represents a loss, VaR is conventionally reported as a positive number. A negative
VaR would imply that the portfolio may make a profit. VaR describes the loss
that can occur over a given period, at a given confidence level, due to exposure
to market risk. This risk measure is widely used by banks, securities firms,
commodity and energy merchants, and other trading organizations. However,
VaR risk managers often optimally choose a larger exposure to risky assets than
non-risk managers and consequently incur larger losses when losses occur.

In order to remedy the shortcomings of VaR, an alternative risk-management
model is suggested, which is based on the expectation of a loss. This alternative
model is called as Expected Loss. This risk management maintains limited ex-
pected losses when losses occur. You can see risk management objectives which
are embedded into utility maximization problem using Value at Risk (VaR) and
Expected Loss (EL), for instance in [8, 9]. The EL risk measure is defined by

ρ2(Z) = EL(Z) = E
[

Z−
]

= E
[

(XT − q)−
]

,

and it is bounded by a given ε > 0.

As the aim of the portfolio manager is to maximize the expected utility from the
terminal wealth, one may also consider the portfolio optimization problem where
the portfolio manager is confronted with a risk measured by a constraint of the
type

ρ3(Z) = EUL(Z) = E
[

Z−
]

= E
[

(u(XT )− u(q))−
]

≤ ε,
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where ε > 0 is a given bound for the Expected Utility Loss (EUL) [7]. This risk
constraint causes to more explicit calculations for the optimal strategy we are
looking for. Also, it allows to the constrained static problem to be solved for a
large class of utility functions.

Alternatively, Artzner et al. (1999) [1] and Delbaen (2002) [6] introduced the
concept of coherent measures and you can find further risk measures in the class
of coherent measures. These measures have the properties of monotonicity, sub-
additivity, positive homogeneity and the translation invariance property. How-
ever, VaR, EL, EUL risk measures do not belong to this class: VaR is not sub-
additive, and EL and EUL do not satisfy the translation invariance property.

In this thesis we examine the effects of risk management on optimal terminal
wealth choices and on optimal portfolio policies. We consider portfolio managers
or investors as expected utility maximizers, who derive utility from wealth at
horizon and who must comply with different risk constraints imposed at that
horizon.

This thesis is organized as follows. In Chapter 2, in Section 2.1, we introduce
basic notations for the Black-Scholes model of the financial market. In Sec-
tion 2.2, we restrict to the case of a financial market with only one risky stock,
and then formulate the portfolio optimization problem. In Section 2.3, we solve
the unconstrained portfolio optimization problem using martingale method [4]:
the martingale method consists of converting the dynamic optimization problem
of finding an admissible strategy that maximizes the expected utility from ter-
minal wealth into a static optimization problem consisting of finding an optimal
terminal wealth. Then, via a representation problem, the optimal strategy asso-
ciated with this optimal terminal wealth is obtained. In Section 2.4, we give a
short review of risk measures that will be used in subsequent chapters.

In Chapter 3, we examine the portfolio optimization problem where the shortfall
level q is considered as deterministic. Basically, we associate the risk with the
random variable Z = XT − q and adopt three different risk constraints, which
are Value at Risk (VaR), Expected Loss (EL) and Expected Utility Loss. In
Section 3.1, the shortfall probability, or equivalently the Value at Risk is bounded
and added in a form of risk constraint to the optimization. In Section 3.2, the
Expected Loss constraint is used, and in Section 3.3 we bound the Expected
Utility Loss to the optimization problem.

In Chapter 4, we examine the numerical results of each optimization problem
concerning the above risk measures separately, and compare them with the un-
constrained problem.

In the light of Chapter 4, Chapter 5 covers a presentation of the advantages
and disadvantages of each measure: we try to understand which one might be
considered as more suitable for the optimality in the terminal wealth and portfolio
strategy according to risk averse investors who dislike risk and prefer more than
less wealth. As we assume, throughout the thesis, the investors are risk averse,
we choose the power utility function, and try to draw a general conclusion and
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outlook.

In Appendix A, the proofs of some propositions in this thesis, and in Appendix B,
some necessary Matlab algorithms for the risk measures used in this thesis are
presented.
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CHAPTER 2

A General Overview to the Portfolio Optimization
Problem

In this chapter, we describe the economic setting, formulate portfolio optimization
problem, solve the unconstrained portfolio optimization problem using martingale
method, and give a short review of risk measures used in subsequent chapters.

2.1 The Economic Setting

We consider a continuous-time economy with finite horizon [0, T ], which is built
on a filtered probability space (Ω,F ,Ft, P ) on which a 1-dimensional Brownian
motion W is defined. Here, T is the end of the holding period of assets. We as-
sume that all stochastic processes are adapted to (Ft), the augmented filtration
generated by W . Through this thesis all inequalities as well as equalities are as-
sumed to hold P -almost surely. Because we deal with characterization problems,
all stated processes are assumed to be well defined without giving any regularity
conditions to ensure this.

Financial investment opportunities are given by an instantaneously risk-free money
market account providing an interest rate r and a risky stock as in the Black-
Scholes model [3]. We search for the optimal strategies for portfolios consisting
of only one risky stock and one risk-free bond. The stock price S is represented
by a geometric Brownian motion:

dSt = µStdt+ σStdWt, S0 = s0 ∈ R, (2.1)

where the stock instantaneous mean return µ and the volatility σ are assumed to
be constant. The bond price S0 = (S0

t )t∈[0,T ] is given by

dS0
t = rS0

t dt, (2.2)

where the interest rate r is assumed to be constant.

The dynamic market completeness implies the existence of a unique state price
density process Ht, given by the solution of

dHt = −Ht(rdt+ κdWt), H0 = 1, (2.3)

5



where κ = µ−r

σ
is the market price of risk in the economy and, it can be considered

as a risk premium.

The investor or the portfolio manager should have an initial capital x > 0 and a
portfolio process θ = (θt)t∈[0,T ], where θt indicates the fraction of wealth invested
in stock at time t in order to trade in this economy. At any time t, the portfolio
manager chooses a trading strategy (ψ0

t , ψt)t∈[0,T ], where ψ
0
t and ψt represent the

number of shares held by the portfolio manager in the assets, bond and stock,
respectively. The R2-valued process (ψ0

t , ψt) is assumed to be F -measurable such
that

∫ T

0

(ψ0
tS

0
t )

2dt+

∫ T

0

(ψtSt)
2dt <∞.

The wealth process Xt of the portfolio manager, on the other hand, is defined by

Xt = ψ0
t S

0
t + ψtSt,

at time t, in terms of the trading strategy and the movements of bond and stock.

Moreover, we consider that the trading strategy is self-financing in the sense that
no other money is going in or out the market except the money generated by
the trading strategy, see [16]. Under this assumption, if the wealth Xt > 0 the
portfolio manager can act in the market using the associated portfolio process
θ = (θt)t∈[0,T ]:

θt =
ψtSt

Xθ
t

with θ0t = 1 − θt is the fraction of wealth invested in the risk-free bond. As
a consequence, the wealth process can be formulated in terms of the portfolio
process as a linear stochastic differential equation,

dXθ
t = [r + θt(µ− r)]Xθ

t dt+ θtσX
θ
t dWt, X

θ
0 = x. (2.4)

At time t = T the portfolio manager reaches the terminal wealth XT . The
portfolio process is assumed to be admissible in the following sense.

Definition 2.1 (Admissible portfolio process [8]). Given x > 0, we say that a
portfolio process θ is admissible at x, and write θ ∈ A(x), where A(x) is the set
of admissible processes, if the wealth process Xθ

t starting at Xθ
0 = x satisfies

Xθ
t ≥ 0, 0 ≤ t ≤ T .

2.2 The Portfolio Optimization Problem

In this section, we consider that the portfolio manager is assumed to derive from
the terminal wealth XT a utility u(XT ), and he wants to maximize the expected
utility by choosing an optimal strategy from the set of admissible strategies.

6



The most frequently used utility function is the power utility function

u(z) =

{

z1−γ

1−γ
, γ ∈ (0,∞) \ {1},

ln z, γ = 1.
(2.5)

With positive first derivative and negative second derivative, the power utility
function (2.5) meets the requirement of risk averse investor who prefers more than
less wealth. The parameter γ of the power utility function can be interpreted as
constant relative risk aversion. As we assume that, in this economy, investors
are risk averse, we prefer logarithmic utility function in most of the cases, since
our applications are done easily with this function. Also, this logarithmic utility
meets our requirement regarding the risk aversion concept.

Here, we examine the case of portfolio optimization when the portfolio manager
maximizes the expected logarithmic utility of the terminal wealth of one stock
with a constant stock mean return µ and a constant volatility σ, and a bond
with a constant interest rate r. The portfolio manager begins with initial capital
x > 0 and follows a portfolio process θ = (θt)t∈[0,T ] which leads to the wealth
Xθ = (Xθ

t )t∈[0,T ], already formulated in (2.4):

dXθ
t = [r + θt(µ− r)]Xθ

t dt+ θtσX
θ
t dWt, X

θ
0 = x.

We assume that the stochastic integral (
∫ t

0
θsσdWs)t∈[0,T ] is a martingale, which is

the case when the inequality E

[

∫ t

0
θ2sds

]

<∞ is fulfilled, or, in particular, when

θ is assumed to be a bounded and deterministic. Now, the portfolio optimization
problem can be introduced as follows.

Definition 2.2 (Dynamic Problem [8]). Find an admissible strategy θ∗ in A(x)
that solves

maximize
θ∈A

E
[

u(Xθ
T )
]

, (2.6)

where the utility function u satisfies the following conditions:

• u is twice continuously differentiable,

• u is strictly increasing and strictly concave,

• limx→0 u
′(x) = ∞ and limx→∞ u′(x) = 0.

2.3 The Unconstrained Problem

Cox and Huang [4] and Karatzas et al. [13] solved (2.6) in the case of a complete
market using martingale method without additional constraints such as risk. The
method consists of converting the dynamic optimization problem of finding an
admissible strategy that maximizes the expected utility from terminal wealth
into a static optimization problem of finding an optimal terminal wealth. Then,

7



the optimal strategy associated with this optimal terminal wealth is found via a
representation problem.

Itô’s formula implies that the process HtX
θ
t is a super-martingale, which implies

that the budget constraint
E
[

HTX
θ
T

]

≤ x

is satisfied for every θ ∈ A(x). See for instance [8]. This means that the expected
discounted terminal wealth cannot exceed the initial wealth. Here, the state price
density Ht serves as a discounting process.

In the present case of a complete market, the following theorem which Karatzas
and Shreve (1998) stated in [15] is a basic tool in martingale methods.

Theorem 2.3 ([15]). Let x > 0 be given, and let ξ be a non-negative, FT -
measurable random variable such that

E [HT ξ] = x.

Then there exists a portfolio process θ ∈ A(x) such that ξ = Xθ
T .

In contrast to the dynamic problem, where the investor is required to maximize
expected utility from terminal wealth over a set of processes, in the martingale
method in the static problem is considered. Here, the investor has the advantage
to maximize the expected utility only over a set of random variables:

Definition 2.4 (Static Problem [8]). LetB(x) = {ξ ≥ 0 : ξ is FT −measurable and E [HT ξ] ≤ x}.
Find an FT -measurable random variable ξ∗ in B(x) that solves

maximize
ξ∈B(x)

E [u(ξ)] . (2.7)

Then, the optimal strategy is found as the solution to the representation problem:

Definition 2.5 (Representation Problem [8]). Given ξ∗ ∈ B, which solves (2.7),
find an admissible strategy θ∗ ∈ A(x) such that Xθ∗

T = ξ∗.

Let, for y > 0, the function I be defined as the inverse function of the derivative
of the utility function, I(y) = (u′)−1(y). The following theorem formulates how
to solve the static optimization problem (2.7).

Theorem 2.6 ([17]). Consider the portfolio problem (2.6). Let x > 0 and y be a
solution of

E [HT I(yHT )] = x.

Then, there exists for ξ∗ = I(yHT ), a self-financing portfolio process θ∗t ∈ A(x)
such that

Xθ∗

T = ξ∗

holds and the portfolio process θ∗t solves (2.6).
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The representation problem can be solved using the fact that the process HtXt

is a martingale (see [8]). The Markov property of the solution of the stochastic
differential equation allows the optimal wealth process before the horizon Xθ∗

t to
be written as a function of Ht, for which Itô’s formula is applied. By equating
coefficients with the wealth process (2.4), we can get the optimal portfolio.

Cox and Huang [4] studied the unconstrained problem where the investor does
not manage the risk and has a constant relative risk aversion γ inside the power
utility function. According to Theorem 2.6, the static problem (2.7) has the
optimal solution

ξ∗ = I(yHT ),

where I(x) = x
−1
γ is the inverse function of the derivative of the utility function

u and y = 1
xγ e

(1−γ)(r+
2

2γ
)T .

Let X∗
t be the optimal wealth at time t ∈ [0, T ]. Then, Itô’s lemma applied

to equations (2.3) and (2.4) implies that the process HtX
∗
t is an Ft-martingale,

namely, X∗
t = 1

Ht
E

[

HTX
∗
T

∣

∣

∣
Ft

]

. See [17, Theorem 12] for details. Hence, the

Markov property of Ht is applied to compute this conditional expectation: for the
optimal wealth before the horizon, the following form can be derived (see [17]):

X∗
t =

eΓ(t)

(yHt)
1
γ

with Γ(t) =
1− γ

γ

(

r +
κ2

2γ

)

(T − t).

Thanks to the representation approach, the optimal strategy can be obtained

easily: we have X∗
t = f(Ht) with f(x) =

eΓ(t)

(yx)
1
γ
, for which Itô’s lemma is applied,

and

dX∗
t =

[

−rHtf
′(Ht) +

κ2

2
H2

t f
′′(Ht)

]

dt+ [−κHtf
′(Ht)] dWt

is obtained. Consequently, equating the volatility coefficient of this equation
and that of (2.4), the following constant optimal strategy for the unconstrained
problem is derived. To be more explicit,

θ∗t = θ∗ =
κ

γσ
=
µ− r

γσ2
= constant

is obtained.

In reality, this strategy should not be constant since values of volatility σ, mean
return µ and interest rate r may change with time. However, in this thesis we
assume that these values are constants in order to understand problems more
clearly.

In this section, we have examined the portfolio optimization problem without
risk limitations. However, here the optimal terminal wealth may fall below a
given deterministic threshold value with high probability. Hence, it is necessary
to use risk constraints in the portfolio optimization in order to reduce risk. In

9



Section 2.4, we present brief definitions of risk measures used in this thesis and
then in next chapters we will examine these measures in optimization problems
with their examples.

2.4 Risk Measures

Risk is the quantifiable likelihood of loss or less than expected returns, so in
general, it is considered as an undesirable outcome. Although we study the
portfolio optimization in Section 2.3, we did not impose any risk limitations.
However, a portfolio manager would not want risk or strategies that would lead
to extreme positions, so it turns out to be necessary to quantify shortfall risks
by using appropriate risk measures, to add into the optimization problem. By
the term shortfall risk we state the event that the terminal wealth may fall below
threshold value or a shortfall level q > 0. We can consider the shortfall level as
the initial capital or a proportion of the terminal wealth of a pure bond portfolio,
which must not be chosen to be larger than xerT , the result of an investment with
the initial capital x in the risk-free bond.

The shortfall risk consists of the random event {Z = XT − q < 0}: we assign risk
measures to the random variable (risk) Z and denote it by ρ(Z). Consequently,
we should incorporate constraints of the type ρ(Z) ≤ ε for some ε > 0 into the
formulation of the portfolio optimization problem.

Basic idea is to restrict the probability of a shortfall,

ρ1(Z) = P (Z < 0) = P (XT < q) ≤ ε,

where, ε ∈ (0, 1) is the maximum shortfall probability which is accepted by the
portfolio manager. This corresponds to the concept of Value at Risk (VaR) [23],
which may be regarded as

VaRε(Z) = inf{l ∈ R : P (Z > l) ≤ ε},

that is, the VaR of the portfolio at the confidence level 1 − ε is given by the
smallest number l such that the probability that the loss Z exceeds l is at most ε.
Although it virtually always represents a loss, VaR is conventionally reported as
a positive number. A negative VaR can imply the portfolio has a high probability
of making a profit. In this setting, VaR can be interpreted as the threshold value
for which the risk exceeds this value with some given probability ε.

Value at Risk is a widely used risk measure for loss on a specific portfolio of finan-
cial assets. It is the worst loss for a given confidence level. For a confidence level
of 1− ε = 95%, one is 95% certain that at the end of a chosen risk horizon, there
will be no smaller wealth than the wealth which corresponds to the level of VaR.
However, VaR risk managers often optimally choose a larger exposure to risky
assets than non-risk managers and consequently incur larger losses when losses
occur. Also, the VaR risk measure controls only the probability of loss rather
than its magnitude. These shortcomings of VaR risk measure may be remedied.

10



So, an alternative risk-management model may be regarded as Expected Loss,
denoted by EL:

ρ2(Z) = EL(Z) = E
[

Z−
]

= E
[

(XT − q)−
]

.

As the goal of the portfolio manager is to maximize the expected utility of the
terminal wealth XT , it is also interesting to examine the other risk measure called
Expected Utility Loss (EUL). Let u denote a given utility function; the situation
of u(XT ) being below the target u(q) may be considered as undesirable. In order
to quantify the associated risk, the random variable Z = u(XT )−u(q) is assigned
a real-valued risk measure ρ3(Z):

ρ3(Z) = EUL(Z) = E
[

Z−
]

= E
[

(u(XT )− u(q))−
]

.

There are more risk measures, mainly in the class of coherent measures, which
have been introduced by Artzner et al. [1] and Delbaen [6]: they have suggested
some the properties that must be satisfied by a risk function ρ(X) .

Definition 2.7 (Coherent Risk Measure [1]). Let M be a set of real-valued
random variables and Z1 and Z2 be random outcomes in this set. A coherent risk
measure is a function ρ :M → R that satisfies the properties stated below:

(i) Normalization: ρ(0) = 0. This means when you take no position, you have
no risk.

(ii) Monotonicity: If Z1, Z2 ∈ M and Z1 ≤ Z2, then ρ(Z1) ≥ ρ(Z2). That is,
if portfolio θ2 always has better values than portfolio θ1 under almost all
scenarios then the risk of Z2 should be less than the risk of Z1.

(iii) Sub-additivity: If Z1, Z2, Z1 + Z2 ∈ M , then ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2).
Namely, the risk of two portfolios together cannot be any worse than adding
the two risks separately. This is the diversification principle, which is to
reduce risk by investing in a variety of assets.

(iv) Positively homogeneity: If Z1 ∈M and h > 0, then ρ(hZ1) = hρ(Z1). That
is, when you double the portfolio, you double the risk.

(v) Translation invariance: If a ∈ R and Z1 ∈M , then ρ(Z1 + a) = ρ(Z1)− a.
The value a is just adding cash to the portfolio θ1, which acts like an
insurance. The risk of Z1 + a is less than the risk of Z1, and the difference
is exactly the added cash a. So a risk-measure is said to be coherent if and
only if it has all these properties.

Dalbaen [6] proved that the VaR measure is not a coherent risk measure since
it does not satisfy the sub-additivity property. Since the VaR risk measure does
not satisfy this property, we can say that diversification, which is commonly
considered as a way to reduce risk, can lead to an increase of VaR.
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When we examine EL and EUL risk measures, we see that these measures are
not coherent risk measures, too, since they both do not satisfy the translation-
invariance property.

However, we will only debate the behaviors of a portfolio manager who wants to
maximize its expected utility from terminal wealth in the presence of different
shortfall risks measured by the VaR, EL and EUL risk measures, but not coherent
risk measures, in this thesis.
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CHAPTER 3

Portfolio Optimization Under Constraints

In this chapter, we consider the portfolio optimization problem with constraints
that are Value at Risk (VaR), Expected Loss (EL), and Expected Utility Loss
(EUL) with objective to maximize the expected utility of the terminal wealth.
When we discuss these situations, we shall take into account that the terminal
wealth XT may fall below a given deterministic shortfall level q. Also, we will
examine the impact of the different risk constraints to the behavior of the portfolio
manager.

When there are no additional constraints, the portfolio manager reaches the ter-
minal wealth Xθ∗

T = ξ∗T with the normal strategy θ∗t for t ∈ [0, T ], which we see
in Theorem 2.6.

3.1 Portfolio Optimization under Value at Risk Constraint

In this section, the portfolio optimization problem is solved by using a Value at
Risk constraint, and then the properties of the solution are examined.

The dynamic optimization problem of the VaR investor is solved by using the
martingale representation method [4, 13], which allows the problem to be restated
as the following static variational problem:

maximize
ξ∈B(x)

E [u(ξ)]

subject to P (ξ < q) ≤ ε.
(3.1)

We recall that the set B(x) contains the budget constraint for the initial capital
x. Namely,

B(x) = {ξ ≥ 0 : ξ is FT −measurable and E [HT ξ] ≤ x}
as in Definition 2.4.

The VaR constraint causes to non-concavity for the optimization problem for
which the maximization process is more complicated. The following proposition
is proved in Basak and Shapiro [2], and also provided in Appendix A.1; it defines
the optimal terminal wealth, assuming it exists.

13



Proposition 3.1 ([2]). Time-T optimal wealth of the VaR investor is

ξVaR =







I(yHT ), if HT < h,
q, if h ≤ HT < h,
I(yHT ), if h ≤ HT ,

(3.2)

where I is the inverse function of u′, h = u′(q)
y

, h is such that P (HT > h) = ε,

and y ≥ 0 solves E
[

HT ξ
VaR

]

= x.

The VaR constraint (P (ξ < q) ≤ ε) is binding if, and only if, h < h.

Basak and Shapiro [2] prove that if a terminal wealth satisfies (3.2) then it is the
optimal policy for the VaR portfolio manager. As they note in their proof, to
keep the focus, they do not provide general conditions for existence. However,
they provide explicit numerical solutions for a variety of parameter values. Their
method of proof is applicable to other problems, such as those with non-standard
preferences. By the term “non-standard preferences” it means that the optimiza-
tion problem is not standard because it is non-concave. Also, because the VaR
constraint must hold with equality, the definition of h is deduced.

We depict in Figure 3.1 the optimal terminal wealth of a VaR portfolio manager
with ε ∈ (0, 1), a benchmark (as we call, unconstrained) investor with ε = 1 who
does not use a risk constraint in the optimization or ignores large losses, and
a portfolio insurer with ε = 0 who does not allow large losses but fully insures
himself against large losses.

The blue curve, in Figure 3.1, plots the optimal horizon wealth of the VaR risk
manager as a function of the horizon state price density HT , the red curve is for
the unconstrained investor and the black curve is for the portfolio insurer investor.
For this application, one can find the necessary Matlab codes in Appendix B.1.1.
Furthermore, here we note that q2 is defined by

q2 =

{

I(yh), if h < h,
q, otherwise.

(3.3)

The VaR portfolio manager’s optimal horizon wealth is divided into three dis-
tinct regions, where he displays distinct economic behaviors. In the good states,
namely low price of consumption HT < h, the VaR portfolio manager behaves like
a benchmark (unconstrained) investor. In the intermediate states [h ≤ HT < h],
he insures himself against losses by behaving like a portfolio insurer investor, and
in the bad states, namely high price of consumption HT > h he is completely
uninsured by incurring all losses. Because he is only concerned with the proba-
bility (and not the magnitude) of a loss, the VaR portfolio manager chooses to
leave the worst states uninsured because they are the most expensive ones to
insure against. The measure of these bad states is chosen to comply exactly with
the VaR constraint. Consequently, h depends solely on ε and the distribution
of HT and is independent of the investor’s preferences and initial wealth. The
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Figure 3.1: Optimal horizon wealth of the VaR risk manager

investor can be considered as one who ignores losses in this upper tail of the HT

distribution, where the consumption is the most costly.

When we take into account Figure 3.1, we can examine the dependence of the
solution on the parameters q and ε. If the threshold value q is increased, more
states need to be insured against, and the intermediate region grows at the ex-
pense of the good states region. Accordingly, the wealth in both good and bad
regions must decrease to meet the bigger threshold value q in the intermediate
region. When ε increases, namely, when the investor is allowed to make a loss
with higher probability, the intermediate, insured region can shrink, and the good
and bad regions both can grow. The investor’s horizon wealth can increase in
both the good and bad states because he is not required to insure against losses
in a large state. The solution reveals that when a large loss occurs, it may be
an even larger loss under the VaR constraint, and hence more likely to cause to
credit problems. Basak and Shapiro show this situation in [2] and presented by
the following proposition whose proof can also be found in Appendix A.2

Proposition 3.2 ([2]). Assume u(ξ) = ξ1−γ

1−γ
, γ > 0. For a given terminal wealth

ξT , define the following two measures of loss: L1(ξ) = E
[

(q2 − ξT )1{ξT≤q2}

]

and

L2(ξ) = E

[

HT

H0
(q2 − ξT )1{ξT≤q2}

]

. Then,
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(i) L1(ξ
VaR) ≥ L1(ξ

∗), and

(ii) L2(ξ
VaR) ≥ L2(ξ

∗),

where ξ∗ stands for the solution of the unconstrained (benchmark) problem.

Proposition 3.2 shows explicitly that under the VaR constraint the expected ex-
treme losses are higher than those which are incurred by an investor who does
not use the VaR constraint (P (ξ < q) ≤ ε). The bad states, which are the states
of large losses, are considered: L1(ξ) measures the expected future value of a loss,
when there is a large loss, while L2(ξ) measures its present value.

Although the aim of using VaR approach in the optimization is to prevent large
and frequent losses that may cause economic investors out of business, under the
VaR constraint losses are not frequent, however, the largest losses are more severe
than without the VaR constraint.

In his study, Gabih [7] presents explicit expressions for the VaR portfolio man-
ager’s optimal wealth and portfolio strategies before the horizon in the following
proposition, proof of which can also be found in [7].

Proposition 3.3 ([7]). Let the assumptions of Proposition 3.1 be fulfilled, and
let u be the utility function given as in (2.5). Then,

(i) The VaR-optimal wealth at time t < T before the horizon is given by

XVaR
t = F (Ht, t), (3.4)

with

F (z, t) =
eΓ(t)

(yz)
1
γ

−
[

eΓ(t)

(yz)
1
γ

Φ(−d1(h, z, t))− qe−r(T−t)Φ(−d2(h, z, t))
]

+

[

eΓ(t)

(yz)
1
γ

Φ(−d1(h, z, t))− qe−r(T−t)Φ(−d2(h, z, t))
]

,

for z > 0. Here, Φ is the standard-normal distribution function, y, h and
h are as in Proposition 3.1. Furthermore,

Γ(t) =
1− γ

γ

(

r +
κ2

2γ

)

(T − t),

d1(u, z, t) =
ln u

z
+
(

r − κ2

2

)

(T − t)

κ
√
T − t

,

d2(u, z, t) = d1(u, z, t) +
1

γ
κ
√
T − t.
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(ii) The VaR-optimal fraction of wealth invested in stock at time t < T before
the horizon is

θVaRt = θNΘ(Ht, t),

where

Θ(z, t) = 1− qe−r(T−t)

F (z, t)

[

Φ(−d2(h, z, t))− Φ(−d2(h, z, t))
]

+
γ

κ
√
T − tF (z, t)

eΓ(t)

(yz)
1
γ

[

ϕ(d1(h, z, t))− ϕ(d1(h, z, t))
]

− γqe−r(T−t)

κ
√
T − tF (z, t)

[

ϕ(d2(h, z, t))− ϕ(d2(h, z, t))
]

,

for z > 0. Here, θN = κ
γσ

= µ−r

γσ2 denotes the normal strategy, Θ(Ht, t) is

the exposure to risky assets relative to the normal (unconstrained) strategy
and ϕ is the density function of the standard normal distribution.

Proof. ([7])

(i) Using Equations (2.3) and (2.4), Itô’s lemma implies that the processHXVaR =
(HtX

VaR
t )t∈[0,T ] is an Ft-martingale:

XVaR
t = E

[

HT

Ht

ξVaR
∣

∣

∣
Ft

]

= E

[

HT

Ht

I(yHT )
(

1{HT<h} + 1{h≤HT }

)
∣

∣

∣
Ft

]

+ E

[

HT

Ht

q1{h≤HT<h}

∣

∣

∣
Ft

]

.

These conditional expectations are computed by applying Markov’s prop-
erty of solution stochastic differential equation and using the fact that lnHT

is normally distributed with mean lnHt −
(

r + κ2

2

)

(T − t) and variance

κ2(T − t).

(ii) From Equation (3.4) it followsXVaR
t = F (Ht, t). The processH = (Ht)t∈[0,T ]

satisfies the SDE (2.3). Applying Itô’s lemma to the function F (Ht, t), we
find that XVaR = (XVaR

t )t∈[0,T ] satisfies the SDE

dXVaR
t =

[

Ft(Ht, t)− rFz(Ht, t)Ht +
κ2

2
Fzz(Ht, t)H

2
t

]

dt

− Fz(Ht, t)Htκ
TdWt,

where Fz, Fzz and Ft denote the partial derivatives of F (z, t) with respect
to z and t, respectively. Equating coefficients of dWt in the above equation
and (2.4) leads to the following equality:

θVaRt = −σ−1κ
Fz(Ht, t)Ht

F (Ht, t)
= −θNγFz(Ht, t)Ht

F (Ht, t)
. (3.5)
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On the other hand, we compute the derivative Fz to get

Fz(z, t) =
1

γz

[

−F (z, t) + qe−r(T−t)(Φ(−d2(h, z))− Φ(−d2(h, z)))
]

− eΓ(t)

(yz)
1
γ κ

√
T − tz

[

ϕ(d1(h, z))− ϕ(d1(h, z))
]

+
qe−r(T−t)

κ
√
T − tz

[

ϕ(d2(h, z))− ϕ(d2(h, z))
]

.

Therefore, using this in (3.5), we get the final form of the optimal strategies before
the horizon, and the proof is completed.

3.2 Portfolio Optimization under Expected Loss Constraint

In this section, we consider the Expected Loss (EL) strategy as an alternative
to the Value at Risk (VaR) strategy. We then solve the optimization problem of
an EL portfolio manager who wants to limit his expected loss and analyze the
properties of the solution.

The portfolio manager who uses Value at Risk (VaR) constraint does not concern
with the magnitude of a loss and is just interested in controlling the probability
of the loss. However, if one wants to control the magnitude of losses, he should
control (all or some of the) moments of the loss distribution. Therefore, we
now focus on controlling the first moment and examine how one can remedy the
shortcomings of VaR constraint. In this case, the investor defines his strategy as
follows:

EL(Z) = E
[

Z−
]

= E
[

(XT − q)−
]

≤ ε, (3.6)

where Z = XT − q and ε is a given bound for the Expected Loss. This strategy
will be called EL strategy. Thus, the aim is to solve the optimization problem
constrained by (3.6). Using the martingale representation approach the dynamic
optimization problem of the EL-portfolio manager can be restated as the following
static problem

maximize
ξ∈B(x)

E [u(ξ)]

subject to E [(ξ − q)−] ≤ ε.
(3.7)

The EL-constraint (3.6) can be interpreted as a risk measure of time-T losses.
This measure satisfies the sub-additivity, positive homogeneity, and monotonicity
axioms (but not the translation-invariance axiom) defined by Artzner et al. [1].
Hence EL risk measure can be thought that it has an advantage about this issue
according to the VaR measure of risk: because the VaR strategy fails to display
sub-additivity when combining the risk of two or more portfolios, the VaR of the
whole portfolio may be greater than the sum of the VaRs of the individuals.

A. Gabih, R. Wunderlich [9] characterize the optimal terminal wealth ξEL in the
presence of the EL-constraint (3.6) in the following proposition whose proof is

18



based on the following lemma. The proof of Lemma 3.4 is presented in Ap-
pendix A.3.

Lemma 3.4. Let z, y1, y2, q > 0. Then the solution of the optimization problem

max
x>0

{u(x)− y1zx− y2(x− q)−}

is x∗ = ξ∗(z).

Now, the following proposition, Proposition 3.5, states the optimal solution of
the static variational problem, concerning the EL constraint.

Proposition 3.5 ([9]). The EL-optimal terminal wealth is

ξEL =







I(y1HT ), if HT < h,
q, if h ≤ HT < h,
I(y1HT − y2), if h ≤ HT ,

(3.8)

where h = h(y1) =
u′(q)
y1
, h = h(y1, y2) =

u′(q)+y2
y1

and y1, y2 > 0 solve the system
of equations,

E
[

HT ξ
EL(T ; y1, y2)

]

= x,

E
[

(ξEL(T ; y1, y2)− q)−
]

= ε.

Moreover, the EL-constraint (3.6) is binding, if and only if, h < h.

Proof. ([9]) In order to solve the optimization problem under EL-constraint, the
common convex-duality approach is adapted by introducing the convex-conjugate
of the utility function u with an additional term capturing the EL-constraint as
it is shown in Lemma 3.4. Thence, applying the lemma point-wise for all z = HT

it follows that ξ∗T (HT ) is the solution of the maximization problem

max
ξ>0

{u(ξ)− y1HT ξ − y2(ξ − q)−}.

Obviously, ξ∗T is FT -measurable and if y1, y2 are chosen as solutions of the system
of equations given in the proposition then it follows ξ∗T = ξELT = ξEL.

To complete the proof, let η be any admissible solution satisfying the static budget
constraint and the EL-constraint (3.6). We have

E
[

u(ξELT )
]

− E [u(η)] = E
[

u(ξELT )
]

− E [u(η)]− y1x+ y1x− y2ε+ y2ε

≥ E
[

u(ξELT )
]

− E
[

y1HT ξ
EL
T

]

− y2E
[

(ξELT − q)−
]

−E [u(η)] + E [y1HTη] + y2E
[

(η − q)−
]

≥ 0,

where the first inequality follows from the static budget constraint and the con-
straint for the risk holding with equality for ξELT , while holding with inequality
for η. The last inequality is a consequence of the above lemma. Hence, we obtain
that ξELT is optimal.
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With the following remark of Gabih (2005) [7], the case of how the EL optimal
terminal wealth depends on y2 is explained:

Remark 3.6. For y2 ↓ 0, the situation of ξEL → I(y1HT ) is observed. This limit
corresponds to ε ↑ εmax and the results for the unconstrained problem are derived
if y2 = 0 and ξEL(y1, 0) = I(y1HT ) are set.

Figure 3.2 depicts the optimal terminal wealth of an EL-portfolio manager [ε ∈
(0,∞)], a benchmark (unconstrained) investor (ε = ∞), and a portfolio insurer
investor (ε = 0). The blue curve plots the optimal horizon wealth of the EL
risk manager as a function of the horizon state price density HT , the red curve
is for the unconstrained investor and the black curve is for the portfolio insurer
investor. Implementation in Matlab is presented in Appendix B.2.1.
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Figure 3.2: Optimal horizon wealth of the EL risk manager

In Figure 3.2, we see that the EL portfolio manager’s optimal horizon wealth is
divided into three distinct regions, where he exhibits distinct economic behaviors:
in the so-called “good states” (for low HT values), the EL portfolio manager
behaves like a benchmark (the unconstrained) investor, while in the “intermediate
states” (for h ≤ HT < h) the investor fully insures himself against losses by
behaving like a portfolio insurer investor (PI), and in the “bad states” (for high
HT values) the investor partially insures himself by incurring partial losses in
contrast to the VaR portfolio manager. Here, we see in the bad-states region, ξ∗T <
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ξELT < ξPI
T , where ξ∗T stands for the solution of the benchmark (unconstrained)

problem. This is constituted in contrast to the findings in the VaR case.

Although in some states he wants to settle for a wealth lower than q, he does
so while endogenously choosing a higher ξELT than ξ∗T . The portfolio manager
chooses the bad states in which he maintains a loss, because these are the most
expensive states to insure against losses, but maintains some level of insurance.
Since insuring a terminal wealth at q level is too costly, he sets for less, but
enough to comply with the EL constraint. Unlike h for VaR strategy, h for
EL strategy depends on the investor’s preferences and the given initial wealth.
Another distinction with VaR strategy is that the terminal wealth policy under
EL strategy is continuous across the states of the world.

Gabih (2005) [7] presents the explicit expressions for the EL-optimal wealth and
portfolio strategy before the horizon via the following proposition. To make the
text self-contained, we also give the proof in Appendix A.4.

Proposition 3.7 ([7]). Let the assumptions of Proposition 3.5 be fulfilled, and
let u be the utility function given in (2.5). Then,

(i) The EL-optimal wealth at time t < T is given by

XEL
t = F (Ht, t) (3.9)

with

F (z, t) =
eΓ(t)

(y1z)
1
γ

[1− Φ(−d1(h, z))]

+ qe−r(T−t)
[

Φ(−d2(h, z))− Φ(−d2(h, z))
]

+ G(z, h),

for z > 0, where y1, y2 are as defined in Proposition 3.5; Γ(t), d1, d2 are as
in Proposition 3.3; and

h =
1

y1qγ
and h =

q−γ + y2
y1

,

G(z, h) =
e−r(T−t)

√
2π

∫ c2(h,z)

−∞

e−
1
2
(u−b)2

(y1tea+bu − y2)
1
γ

du,

c2(h, z) =
1

b

(

ln(
h

z

)

− a),

a = −
(

r +
κ2

2

)

(T − t) and

b = −κ
√
T − t.

(ii) The EL-optimal fraction of wealth invested in stock at time t < T is

θELt = θNΘ(Ht, t),
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where

Θ(z, t) =
1

F (z, t)

eΓ(t)

(y1z)
1
γ

[

1− Φ(−d1(h, z)) +
γ

κ
√
T − t

ϕ(d1(h, z))

]

− qγe−r(T−t)

F (z, t)κ
√
T − t

ϕ(d2(h, z))

+
y1ze

(κ2−2r)(T−t)

F (z, t)
ψ0

(

c2(h, z), b, y1ze
a, y2, 2b, 1, 1 +

1

γ

)

,

for z > 0 and

ψ0(α, β, c1, c2, m, s, δ) =
1√
2πs

∫ α

−∞

exp(− (u−m)2

2s2
)

(c1eβu − c2)δ
du.

3.3 Portfolio Optimization under Expected Utility Loss Constraint

In this section, we will be interested in the portfolio optimization problem where
the portfolio manager is faced with a risk of loosing expected utility. Here, this
risk is measured by a constraint of the type

EUL(Z) = E
[

Z−
]

= E
[

(u(XT )− u(q))−
]

≤ ε, (3.10)

where ε is a given bound for the Expected Utility Loss, and Z = u(XT )− u(q).
This risk constraint leads to more explicit calculations for the optimal strategy we
are looking for. Also, it allows to the constrained static problem to be solved for
a large class of utility functions. Again, we keep the shortfall level or threshold
value q to be constant.

The dynamic optimization problem of the EUL-portfolio manager can be restated
as the following static variational problem

maximize
ξ∈B(x)

E [u(ξ)]

subject to E [(u(ξ)− u(q))−] ≤ ε.
(3.11)

Gabih (2005) [7] defines the EUL-optimal terminal wealth which is denoted as
ξEUL
T in the following proposition, the proof of which can also be found in Ap-
pendix A.5.

Proposition 3.8 ([7]). The EUL-optimal terminal wealth is

ξEUL =







I(y1HT ), if HT < h,
q, if h ≤ HT < h,
I( y1

1+y2
HT ), if h ≤ HT ,
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for HT > 0, where

h = h(y1) =
1

y1
u′(q),

h = h(y1, y2) =
1 + y2
y1

u′(q) = (1 + y2)h,

and y1, y2 satisfy the system of equations

E
[

HT ξ
EUL(T ; y1, y2)

]

= x,

E
[

(u(ξEUL(T ; y1, y2))− u(q))−
]

= ε.

With the following remark, Gabih (2005) [7] explains the case of how the EUL
optimal terminal wealth depends on y2 as follows:

Remark 3.9. For y2 ↓ 0, the situation of ξEUL → I(y1HT ) is observed. This
limit corresponds to ε ↑ εmax and the results for the unconstrained problem are
derived if y2 = 0 and ξEUL(y1, 0) = I(y1HT ) are set.

We depict the optimal terminal wealth of a EUL portfolio manager with ε ∈
(0,∞), a benchmark (the unconstrained) investor (ε = ∞), and a portfolio insurer
investor with ε = 0 in Figure 3.3. The blue curve plots the optimal horizon wealth
of the EUL risk manager as a function of the horizon state price density HT , the
red curve is for the unconstrained investor and the black curve is for the portfolio
insurer investor. Matlab algorithms presented in Appendix B.3.1 helps us to
plot these densities.

The EUL portfolio manager’s optimal horizon wealth is divided into three distinct
regions, as before, where he shows distinct economic behaviors. In the good states,
namely low price of consumption HT , the EUL portfolio manager behaves like
a benchmark investor. In the intermediate states, where h ≤ HT < h, he fully
insures himself against utility losses, and in the bad states, namely high price of
consumption HT he partially insures himself against utility losses. That is, EUL
portfolio manager behaves like an EL portfolio manager in the case of insurance
according to each states. He just considers about utility losses contrary to the EL
portfolio manager who is interested in just losses. That is why, the EUL portfolio
manager chooses the cases of insurance, like the one above, may be based on
the reasons presented for EL portfolio manager. However, here the rules of EUL
risk constraint are valid. The measure of bad states is chosen to comply exactly
with the EUL constraint. Here h for EUL strategy depends on the investor’s
preferences and initial wealth. As before, another distinction with VaR strategy
is that the terminal wealth policy under EUL strategy is continuous across the
states of the world.

Gabih (2005) [7] characterizes the explicit expressions for the EUL-optimal wealth
and portfolio strategies before the horizon in the following proposition. For the
proof we refer to [7] or Appendix A.6.
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Figure 3.3: Optimal horizon wealth of the EUL risk manager

Proposition 3.10 ([7]). Let the assumptions of Proposition 3.8 be fulfilled, and
let u be the utility function given in (2.5). Then,

(i) The EUL-optimal wealth at time t < T before the horizon is given by

XEUL
t = F (Ht, t), (3.12)

where

F (z, t) =
eΓ(t)

(y1z)
1
γ

−
[

eΓ(t)

(y1z)
1
γ

Φ(−d1(h, z, t))− qe−r(T−t)Φ(−d2(h, z, t))
]

+

[

(1 + y2)
1
γ eΓ(t)

(y1z)
1
γ

Φ(−d1(h, z, t))− qe−r(T−t)Φ(−d2(h, z, t))
]

,

for z > 0, where y1, y2 and h, h are as defined in Proposition 3.8; and

Γ(t) =
1− γ

γ

(

r +
κ2

2γ

)

(T − t),

d2(u, z, t) =
ln u

z
+
(

r − κ2

2

)

(T − t)

κ
√
T − t

,

d1(u, z, t) = d2(u, z, t) +
1

γ
κ
√
T − t.
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(ii) The EUL-optimal fraction of wealth invested in stock at time t < T is

θEUL
t = θNΘ(Ht, t),

where

Θ(z, t) = 1− qe−r(T−t)

F (z, t)

[

Φ(−d2(h, z, t))− Φ(−d2(h, z, t))
]

for z > 0.

Gabih [7] also presented the two special properties of the function Θ(z, t) appear-
ing in the definition of the above representation of the EUL-optimal strategy:

Proposition 3.11 ([7]). Let the assumptions of Proposition 3.8 be fulfilled, and
let u be the utility function given in (2.5). Then, for the function Θ(z, t), defined
in Proposition 3.10, we have,

(i) 0 < Θ(z, t) < 1 for all z > 0 and t ∈ [0, T ),

(ii) lim
t→T

Θ(z, t) =







1, if z < h or z > h,
0, if h < z < h,
1
2
, if z = h, h

Proof. ([7]) Using (3.12) the function F (z, t) can be written as

F (z, t) = F1(z, t) + F2(z, t),

where

F1(z, t) =
eΓ(t)

(y1z)
1
γ

[

1− Φ(−d1(h, z, t)) + (1 + y2)
1
γΦ(−d1(h, z, t))

]

and

F2(z, t) = qe−r(T−t)
[

Φ(−d2(h, z, t))− Φ(−d2(h, z, t))
]

for z > 0.

On the other hand, from Proposition 3.10, it follows that

Θ(z, t) = 1− F2(z, t)

F (z, t)
= 1− F2(z, t)

F1(z, t) + F2(z, t)
, (3.13)

where the terms F1(z, t) and F2(z, t) are strictly positive due to some situations.
We can explain them so that y2 > 0 implies h < h and the functions d 1

2
(u, ., .),i.e.,

(d1(u, ., .) and d2(u, ., .)) are strictly increasing with respect to u. Also, the
standard-normal distribution function,Φ, is strictly increasing, too. Therefore
we conclude that 0 < Θ(z, t) < 1, and hence, the assertion (i) follows.
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Table 3.1: The limits as t → T of the functions appearing in Proposition 3.11:
subscript “1

2
” stands for subscripts “1” and “2”.

z < h z = h h < z < h z = h z > h
d 1

2
(h, z, t) +∞ 0 −∞ −∞ −∞

d 1
2
(h, z, t) +∞ +∞ +∞ 0 −∞

Φ(−d 1
2
(h, z, t)) 0 1

2
1 1 1

Φ(−d 1
2
(h, z, t)) 0 0 0 1

2
1

F1(z, t)
1

(y1z)
1
γ

q

2
0 q

2

(

1+y2
y1z

)
1
γ

F2(z, t) 0 q

2
q q

2
0

For the proof of the second assertion, (ii), we consider the limits of the functions

as t tends to T : they are presented in Table 3.1. Here, the relations
(

1
y1h

)
1
γ

= q

and
(

1
y1h

)
1
γ

= q

(1+y2)
1
γ
have been used. Substituting these limits into (3.13) yields

the assertion (ii).

Based on Proposition 3.11, Gabih [7] makes the following statement about the
boundaries of Θ(z, t):

Remark 3.12. The second assertion of Proposition 3.11 shows that the lower
and upper bounds for Θ(z, t) given in the first assertion can not be improved.
The given bounds are reached (depending on the value of z) asymptotically if time
t approaches the horizon T .

From the proposition we can deduce that the EUL-optimal fraction of wealth
θEUL
T invested in the stock at the horizon is equal to the normal (unconstrained)
strategy θ∗ in the bad and good states, and equal to zero in the intermediate
states of the market, which are described by HT . Before the horizon T , the
optimal EUL strategy, θEUL

t , is always strictly positive and never exceeds the
normal (unconstrained) strategy θ∗.
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CHAPTER 4

Numerical Results

In this chapter, we wish to examine the findings of the previous sections with ex-
amples of the portfolio optimization under Value at Risk (VaR), Expected Loss
(EL), and Expected Utility Loss (EUL) constraints. For the sake of comparison,
we also give the corresponding behaviors of the unconstrained investor, and in-
vestors who invest in pure stock and pure bond portfolio, separately. First, we
examine the probability density functions of the optimal terminal wealth of each
of the above investors, and next, the optimal portfolio strategies.

We use Table 4.1 which shows the parameters for the portfolio optimization prob-
lem and the underlying Black-Scholes model of the financial market. Our aim is
to maximize the expected logarithmic utility (γ = 1) of the terminal wealth ξT of
the portfolio with the horizon T = 15 years in this example. The shortfall level or
threshold value q is chosen to be 75% of the terminal wealth of a pure bond port-
folio,namely, q = 0.75xerT , where x is the initial wealth. In the optimization with
the VaR constraint, we bound the shortfall probability P (ξT < q) by ε = 0.06. In
the optimization with the Expected Loss constraint, we bound the expected loss
EL(ξT < q) by ε = 0.06 and bound the expected utility loss EUL(u(ξT ) − u(q))
by ε = 0.06 in the optimization with the Expected Utility Loss.

Table 4.1: Parameters of the optimization problems

stock µ = 9%, σ = 20%
bond r = 6%
horizon T = 15
initial wealth x = 1
utility function u(x) = ln x (γ = 1)
shortfall level q = 0.75xerT = 1.8447
shortfall probability (VaR) P (ξT < q) < ε = 0.06
EL constraint EL(ξT − q) ≤ ε = 0.06
EUL constraint EUL(u(ξT )− u(q)) ≤ ε = 0.06

We consider the solutions of the static problems which leads to the optimal termi-
nal wealths ξVaRT , ξELT and ξEUL

T . At first, we show the probability density functions
of these random variables, belonging to VaR strategy, EL strategy, EUL strategy,
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unconstrained strategy, pure stock strategy and pure bond strategy, separately.
On the horizontal axes of depicted figures, the expected terminal wealths E [ξT ]
for the considered portfolios are marked. Next, we examine the solution of the
representation problem, that is, we depict the optimal strategy θt for each type
of investors that we deal with.

For all necessary calculations and plotting the graphics, Matlab software is
used. Appendix B consists of some of the necessary Matlab programs for the
risk measures used here in this thesis.

4.1 Probability Density Function of VaR Based Optimal Terminal
Wealth and The VaR-Optimal Wealth and Strategy at Time t < T
before the Horizon

In this section, firstly we examine the probability density function of the op-
timal terminal wealth which the portfolio manager manages by using Value at
Risk (VaR) strategy. Also, for the sake of comparison we give the probability
density functions of the terminal wealth of portfolios managed by the pure bond
strategy, whose fraction of wealth invested in stock is 0, the pure stock strategy,
whose fraction of wealth invested in stock is 1, and the optimal strategy of the
unconstrained (benchmark) problem, whose fraction of wealth invested in stock
is θt = θ∗ = µ−r

γσ2 = 0.75.

Figure 4.1 depicts the shape of the probability density functions of the termi-
nal wealths in the VaR, pure stock, benchmark(unconstrained) and pure bond
solutions. The blue curve plots the shape of the probability density function of
the VaR portfolio manager’s optimal horizon wealth. The black curve is for the
pure stock portfolio, the red curve is for the unconstrained portfolio and the line
which is found on the “b” mark is for the pure bond portfolio. Also, the expected
terminal wealths E [ξT ] for the considered portfolios are marked on the horizontal
axes. For the implementation that produces the graphs in Figure 4.1, necessary
Matlab codes and algorithms are presented in Appendix B.1.2.

In the density plot, in the case of the pure bond portfolio strategy, denoted by
ξθ

0

T , there is a probability mass built up in the single point xerT . The probability

of the terminal wealth of the pure stock portfolio strategy, denoted by ξθ
1

T , and
the probability of the terminal wealth of the unconstrained (benchmark) portfolio
strategy ξθ

∗

T are absolutely continuous. When we compute the expected values of
terminal wealth of above strategies and also expected value of terminal wealth of
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Figure 4.1: Probability density of the optimal horizon wealth belonging to the
VaR portfolio manager

VaR strategy ξθ
VaR

T , we see

E
[

ξθ
∗

T

]

= 3.4469,

E

[

ξθ
0

T

]

= erT = 2.4596,

E

[

ξθ
VaR

T

]

= 8.7437 and

E

[

ξθ
1

T

]

= eµT = 3.8574.

This shows that the following comparison is true:

E

[

ξθ
0

T

]

< E
[

ξθ
∗

T

]

< E

[

ξθ
1

T

]

< E

[

ξθ
VaR

T

]

.

Recall that ξ∗ = ξθ
∗

T maximizes the expected utility E
[

u(ξθ
∗

T )
]

, but not the ex-

pected terminal wealth E
[

ξθ
∗

T

]

itself: thus, the inequalities above is not really a
contradiction nor a surprise.

The VaR portfolio manager has a discontinuity, with no states having wealth
between the benchmark value of q = 0.75xerT = 1.8447 and q2 = 1.1765. q2 is the
VaR terminal wealth that consists of equation (3.3). However, states with wealth
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below q2 have probability ε = 6%. In these bad states, the VaR portfolio manager
has more loss with higher probability than the portfolio manager who does not use
any constraint in the portfolio optimization. The VaR portfolio manager allows
6% probability for losses in these bad states, whereas the unconstrained manager
allows less probability for these losses. For example, while the probability of VaR
optimal terminal wealth whose value is in the interval of (0,1.0807), which is less
than q2 = 1.1765, is 6%, the probability of unconstrained terminal wealth whose
value is in the interval of (0,1.0807) is 4.56%. The probability mass built up at
the shortfall level q = 1.8447 is marked by a vertical line at q in Figure 4.1. The
gap which we mentioned above is due to an interval (q2, q) = (1.1765, 1.8447) of
values below the shortfall level or threshold value q (small losses) which carries
no probability while the interval (0, q2] = (0, 1.1765] (large losses) carries the
maximum allowed probability of ε = 6%. Due to this situation, we encounter a
serious drawback of the VaR constraint, which bounds only the probability of the
losses, but does not consider the magnitude of losses.

The solution of the representation problem, in other words, the optimal strategy
θVaRt performed by the VaR portfolio manager is shown in Figure 4.2. The blue
curve plots the shape of the VaR portfolio manager’s optimal strategy before the
horizon. The red line is for the unconstrained portfolio strategy, the black line
is for the pure stock portfolio strategy and the green line is for the pure bond
portfolio strategy. For the implementation, refer the readers to the necessary
Matlab algorithms presented in Appendix B.1.3.

For being an example of before the horizon, we take the time to be t = 5 <
T = 15. Notice also that we allow short selling in the present applications.
For the sake of comparison, in Figure 4.2 we depict the strategies of the trivial
portfolios, namely, the ones with the pure bond strategy (θ0 ≡ 0) and the pure
stock strategy (θ1 ≡ 1), as well as and the unconstrained (benchmark) strategy
(θ∗ ≡ µ−r

γσ2 = 0.75).

As stated before, indeed in Proposition 3.3 (ii), an equivalent representation of
θVaRt which is a function of time t and, consequently, the state price density Ht.
However, on the other hand, because Ht can be expressed in terms t and the
stock prices St, the optimal strategy θVaRt can also be interpreted as a function of
time t and the stock prices St. Hence, the dependence of θVaRt on the stock price
St for time t = 5, before the horizon, is shown in Figure 4.2.

For time t = 5 before the horizon T = 15, in the case of very small stock
prices, that is, in the case of St ∈ (0, 0.9282) computed accordingly by the values
of the parameters in Table 4.1, we can see that the investor invests more in
risky stock under VaR constraint than without risk management or does short
selling the risky stock whose fraction is very close to the investment without risk
management. In case of intermediate and large stock prices, the portfolio manager
or the investor behaves like an unconstrained investor in terms of fractions of
wealth invested in risky stock.
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4.2 Probability Density Function of EL Based Optimal Terminal Wealth
and The EL-Optimal Wealth and Strategy at Time t < T before
the Horizon

In this section, we examine the probability density function of the optimal termi-
nal wealth which the portfolio manager follows the Expected Loss (EL) strategy.
Also, for the sake of comparison, we give the probability density functions of
the terminal wealth of portfolios which we mentioned in Section 4.1: the trivial
portfolios we will use for comparison are the pure bond portfolio (θ0 ≡ 0), whose
fraction of wealth invested in stock is 0, the pure stock portfolio (θ1 ≡ 1), whose
fraction of wealth invested in stock is 1, and the unconstrained (benchmark)
portfolio (θ∗ ≡ µ−r

γσ2 = 0.75), whose fraction of wealth invested in stock is 0.75.

Again, in this example, the aim is to maximize the expected logarithmic utility
(γ = 1) of terminal wealth ξT of the portfolio with the horizon T = 15 years.
We will use the parameters of Table 4.1 for our applications. Having examined
the probability density functions of these above mentioned portfolios, we will try
to understand the dynamics of the optimal Expected Loss (EL) strategy at time
t < T , for instance, by choosing the time to be t = 5 before the horizon, as
before. Comparison with the pure bond as well as pure stock portfolios, and the
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unconstrained (benchmark) portfolio will be made.

We consider the solution of the static problem which leads to the optimal terminal
wealth ξEL. Figure 4.3 shows the probability density function of this random vari-
able, and the probability density functions of pure stock, unconstrained (bench-
mark) and pure bond portfolios. The blue curve plots the shape of the probability
density function of the EL portfolio manager’s optimal horizon wealth. The black
curve is for the pure stock portfolio, the red curve is for the unconstrained port-
folio and the line which is found on the “b” mark is for the pure bond portfolio.
In addition, the expected terminal wealth E [ξT ] for the considered portfolios are
marked on the horizontal axes. In Appendix B.2.2, one can find necessary codes
and algorithms to plot the graphs depicted in Figure 4.3.
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Figure 4.3: Probability density of the optimal horizon wealth belonging to the
EL portfolio manager

When Figure 4.3 is closely examined, we see that there is a probability mass
build-up in the EL investor’s or portfolio manager’s horizon wealth, at the floor
q = 0.75xerT = 1.8447. However, optimal EL terminal wealth’s probability den-
sity has no discontinuous across states, unlike that of the optimal VaR terminal
wealth. Moreover, contrary to VaR strategy, in the bad states, EL portfolio man-
ager has less loss with higher probability; or we may say that in the bad states
EL portfolio manager’s probability of large losses is less than the VaR portfolio
manager’s probability of large losses. For example, while the probability of the
EL optimal terminal wealth whose value is in the interval of (0,1.0807), which
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is less than q2 = 1.1765 and q = 1.8447, is 1.14%, the probability of the VaR
optimal terminal wealth whose value is in the interval of (0,1.0807) is 6%. Again

while in the case of the pure bond portfolio strategy ξθ
0

T there is a probability

mass built up in the single point xerT , the probability of the terminal wealth ξθ
1

T

and the probability of the terminal wealth ξθ
∗

T are absolutely continuous. That
is to say that the probability of the terminal wealth of pure stock portfolio and
the probability of the terminal wealth of unconstrained portfolio, respectively, are
absolutely continuous.

When the expected terminal wealths are examined, the following equalities are
easily deduced:

ξθ
0

T = erT = E

[

ξθ
0

T

]

= 2.4596,

eµT = E

[

ξθ
1

T

]

= 3.8574,

E
[

ξθ
∗

T

]

= 3.4469,

and we also obtain E

[

ξθ
EL

T

]

= 2.3495.

These equalities ensure

E

[

ξθ
EL

T

]

< E

[

ξθ
0

T

]

< E
[

ξθ
∗

T

]

< E

[

ξθ
1

T

]

.

Likewise, as in the VaR strategy of Section 4.1, ξEL = ξθ
EL

T maximizes the expected

utility E

[

u(ξθ
EL

T )
]

and not the expected terminal wealth E

[

ξθ
EL

T

]

itself, therefore

above inequalities is not at all contradicting the general belief.

On the other hand, solution of the representation problem, namely, the path of
the optimal strategy θELt is shown in Figure 4.4 together with the paths of the
trivial strategies: The blue curve plots the shape of the EL portfolio manager’s
optimal strategy before the horizon. The red line is for the unconstrained portfolio
strategy, the black line is for the pure stock portfolio strategy and the green line is
for the pure bond portfolio strategy. To plot the strategies, Matlab algorithms
are given in Appendix B.2.3.

As for an illustrative example for time t before the horizon T , we take t = 5 <
T = 15. Also, we allow the short selling in our applications as usual. For the
sake of comparison, in Figure 4.4 we present the strategies of the other trivial
portfolios considered before and depicted in Figure 4.3: the pure bond strategy
(θ0 ≡ 0), the pure stock strategy (θ1 ≡ 1) and the unconstrained (benchmark)
strategy (θ∗ ≡ µ−r

γσ2 = 0.75).

In Proposition 3.7 (ii), on the other hand, we have examined an equivalent repre-
sentation of θELt , represented in terms of t and the state price density Ht. Thence,
as before, one can depict this dependence of θELt on the stock price St for time
t = 5. See Figure 4.4.
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Figure 4.4: The EL-optimal strategy θEL at time t < T before the horizon as a
function of time t and the stock price S and the other mentioned strategies

For time t = 5, before the horizon T = 15, in the beginning of very small
stock prices, St ∈ (0, 0.9282) calculated according to parameters in Table 4.1,
the EL portfolio manager behaves like an unconstrained (benchmark) investor
by investing 75% of his wealth in risky stock. At the middle of small stock
prices, he starts the short selling, whose fraction is larger than the fraction of
the unconstrained portfolio manager when the stock price is approximately 0.5.
Then, the manager starts to reduce the proportion of short selling, and towards
the end of the small stock prices, as the prices increase, investor does not spend
on the risky asset by behaving like an investor who only invests in the bond.
In the cases of intermediate and large stock prices, that is, in the intervals of
St ∈ (0.9282, 2.1373) and St ∈ (2.1373,∞), respectively, he carries on with this
behavior. In these states of stock prices, the optimal strategies θELt and θ0 of
the constrained and pure bond portfolio strategy coincide, which indicates that
in these cases the complete capital is invested in the riskless bond, in order to
ensure that the terminal wealth exceeds the given threshold value q.
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4.3 Probability Density Function of EUL Based Optimal Terminal
Wealth and The EUL-Optimal Wealth and Strategy at Time t < T
before the Horizon

In this section, we examine the probability density function of the optimal ter-
minal wealth which the portfolio manager manages by using Expected Utility
Loss (EUL) strategy. Also, for the sake of comparison, we plot the probability
density functions of the terminal wealth of portfolios which were discussed in Sec-
tion 4.1 and Section 4.2: the portfolios we will use for comparison are the pure
bond portfolio (θ0 ≡ 0), whose fraction of wealth invested in stock is 0, the pure
stock portfolio (θ1 ≡ 1), whose fraction of wealth invested in stock is 1, and the
unconstrained (benchmark) portfolio (θ∗ ≡ µ−r

γσ2 = 0.75), whose fraction of wealth

invested in stock is 0.75.

The aim is again to maximize, in this time, the expected logarithmic utility
(γ = 1) of terminal wealth ξT of the portfolio with the horizon T = 15 years,
and we will be using the values of the parameters of Table 4.1. Having examined
the probability density functions of these above mentioned portfolios, we try to
extract the Expected Utility Loss (EUL)-optimal strategy at time t < T before
the horizon: we choose the time to be t = 5, while knowing that our horizon is
T = 15 years. We will also be considering the pure bond portfolio, pure stock
portfolio and the unconstrained (benchmark) portfolio withing the context.

To start with, we consider the solution of the static problem which leads to the
optimal terminal wealth ξEUL. Figure 4.5 shows the probability density function
of this random variable, and the probability density functions of pure stock,
unconstrained (benchmark) and pure bond portfolios for comparison. The blue
curve plots the shape of the probability density function of the EUL portfolio
manager’s optimal horizon wealth. The black curve is for the pure stock portfolio,
the red curve is for the unconstrained portfolio and the line which is found on the
“b” mark is for the pure bond portfolio. In addition, the expected terminal wealth
E [ξT ] for the considered portfolios are marked on the horizontal axes. As usual,
for completeness, we present the necessary Matlab codes in Appendix B.3.2.

When Figure 4.5 is examined, we see immediately that there is a probability mass
build-up in the EUL investor’s or portfolio manager’s horizon wealth, at the floor
q. However, this mass is smaller than the mass of that we see in Figure 4.3 due
to the definition of EL risk strategy. Similarly, the probability density of the
terminal wealth for EUL constrained problem has no discontinuous across states:
bad, intermediate, and good ones. In the bad states, EUL portfolio manager has
loss with higher probability than EL portfolio manager. However, the probability
of that the terminal wealth may fall below the value of q2 = 1.1765 is much more
bigger in the VaR strategy than in the EL and EUL strategies. For instance,
while the probability of the EUL optimal terminal wealth whose value is in the
interval of (0,1.0807), which is less than q2 = 1.1765 and q = 1.8447 is 3.93%; the
probability of the VaR optimal terminal wealth whose value is in the interval of
(0,1.0807) is 6%, and the probability of the EL optimal terminal wealth whose
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Figure 4.5: Probability density of the optimal horizon wealth belonging to the
EUL portfolio manager

value is in the interval of (0,1.0807) is 1.14%. Again while in the case of the

pure bond portfolio strategy ξθ
0

T there is a probability mass built up in the single

point xerT , the probability of the terminal wealth ξθ
1

T and the probability of the
terminal wealth ξθ

∗

T are absolutely continuous. In other words, the probability of
the terminal wealth of pure stock portfolio and the probability of the terminal
wealth of unconstrained portfolio, respectively, are absolutely continuous.

Calculations of the expected terminal wealths as,

ξθ
0

T = erT = E

[

ξθ
0

T

]

= 2.4596,

eµT = E

[

ξθ
1

T

]

= 3.8574,

E
[

ξθ
∗

T

]

= 3.4469,

and we also obtain E

[

ξθ
EUL

T

]

= 8.8482,

immediately yields the following inequalities:

E

[

ξθ
0

T

]

< E
[

ξθ
∗

T

]

< E

[

ξθ
1

T

]

< E

[

ξθ
EUL

T

]

,

which is neither contradicting the previous results, nor surprising.
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Accordingly, by the help of the representation problem, the optimal strategy
θEUL
t for the EUL constrained problem is depicted in Figure 4.6 along with the
trivial portfolio strategies: The blue curve plots the shape of the EUL portfolio
manager’s optimal strategy before the horizon. The red line is for the uncon-
strained portfolio strategy, the black line is for the pure stock portfolio strategy
and the green line is for the pure bond portfolio strategy. One may find the
necessary Matlab algorithms used to produce the paths of the strategies in
Appendix B.3.3.
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Figure 4.6: The EUL-optimal strategy θEUL at time t < T before the horizon as
a function of time t and the stock price S and the other mentioned strategies

Concerning the case before the horizon, we take the time to be t = 5 < T = 15.
For the sake of comparison, in Figure 4.6 we present the strategies of the other
portfolios considered previously: the pure bond strategy (θ0 ≡ 0), the pure stock
strategy (θ1 ≡ 1) and the unconstrained (benchmark) strategy (θ∗ ≡ µ−r

γσ2 = 0.75).

Note that, as before, the optimal strategies are plotted as a function of the stock
prices, as the optimal strategies can also be written also as a function of the stock
price St, and hence, t only. In Figure 4.6, we also show the dependence of θEUL

t

on the stock price St for time t = 5, before the horizon.

As is clear in Figure 4.6, the fraction of wealth invested in risky stock is very
close to the unconstrained fraction, which is 0.75 in this example, in almost every
states of the world although there are some little changes in fractions in some
states. Thus we can deduce that before the horizon T = 15, the EUL-optimal
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fraction of wealth θEUL
t is always strictly positive and does not exceed the normal

strategy θ∗ = 0.75. Refer to Proposition 3.11.
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CHAPTER 5

Conclusion and Outlook

Harry Markowitz, who is the pioneer of the modern portfolio theory, considers an
investor who would (or should) select one of efficient portfolios which are those
with minimum variance for given expected return or more and maximum expected
return for given variance or less. However, in Markowitz’s model short selling is
not allowed, namely the fractions of wealth invested in the securities can not be
negative, because necessary portfolios are chosen from inside of the attainable
set of portfolios. The attainable set of portfolios consists of all portfolios which
satisfy constraints

∑n

i=0 θi = 1 and θi ≥ 0 for i = 1, 2, 3, ..., n. However in this
thesis, short selling is allowed. We use the martingale representation approach to
solve the optimization problem in continuous time.

Merton presented the method of continuous-time stochastic optimal control when
the utility function is a power function or the logarithm [20]. While the static
problem is necessary for the martingale approach, in the stochastic optimal con-
trol method the dynamic problem is used. However, martingale approach is
much easier than the dynamic programming approach. Martingale technique
characterizes optimal consumption-portfolio policies simply when there exist non-
negativity constraints on consumption and on final wealth [4]. On the other hand,
when there is the non-negativity constraint on consumption, the stochastic dy-
namic programming is more difficult. Also in the dynamic programming, it is in
general difficult to construct a solution.

The goal of this thesis is to maximize the expected utility of the terminal wealth
of the portfolio by optimal selection of the proportions of the wealth invested
in stock and bond, respectively. As we examine in this thesis, when we do not
use any risk limitations, the optimal terminal wealth may not exceed the ini-
tial capital with a high probability. So we quantify such shortfall risks by using
appropriate risk measures and then we add them into the optimization as con-
straints. Hence, we use Value at Risk (VaR), Expected Loss (EL), and Expected
Utility Loss (EUL) risk constraints in order to reduce such shortfall risks. By the
term shortfall risk, we mean the event that the terminal wealth may fall below
threshold value, namely, the initial capital or the result of an investment in a pure
bond portfolio. In this thesis, portfolio optimization under VaR constraint, EL
constraint, and EUL constraint are separately examined with their own numer-
ical results. An investor may benefit separately from each strategy by choosing
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carefully constraint bound ε and the threshold value q for each strategy: ε and
q are given and deterministic, and one can choose them in accordance to his risk
tolerance for each strategy.

Here, in this thesis, we assume that all investors are risk averse and use the
logarithmic utility function for meeting the requirements of these investors. We
examine the numerical results of VaR, EL and EUL strategies and, for the sake of
comparison, give the results of unconstrained, pure bond and pure stock strate-
gies, and try to understand which is more suitable to risk averse investors and
whether these measures are good enough to meet exactly all requirements.

Starting with the portfolio optimization problem under VaR constraint, we choose
the shortfall probability as ε = 6% and the shortfall level or threshold value as q =
0.75xerT = 1.8447. At the beginning of very small stock prices, before the horizon,
the VaR portfolio manager behaves like a benchmark (unconstrained) investor by
investing as the fraction of unconstrained strategy. However, towards the middle
of very small stock prices he increases the fraction and this fraction exceeds the
fraction of unconstrained strategy. In this states, the behavior of VaR agent does
not appear as an desirable one because it is risky and not rational. Although in
good states unconstrained and VaR agent’s optimal fractions which are invested
in risky stock result in similar optimal terminal wealth, VaR agent exposures
to more risk by investing much more in the risky stock than the unconstrained
agent. In the case of intermediate and high stock prices, before the horizon VaR
agent’s behavior turns to the behavior of the unconstrained agent by investing
as the unconstrained fraction of wealth in the risky stock. However, in this case,
while the interval (q2, q) does not carry probability, the interval (0, q2) carries
the maximum allowed probability of ε. That is, while the interval of small losses
does not carry probability, the interval of large losses carries the maximum allowed
probability of ε. Here, q is the threshold value, and q2 is the VaR terminal wealth
that consists of the equation (3.3) and the maximum allowed probability that
the terminal wealth falls below this value (q2) is ε. This is a serious drawback
of the VaR constraint which bounds only the probability of the losses but does
not take care of the magnitude of losses. This may cause to credit problems,
defeating the purpose of using the VaR constraint in real world applications. A
regulatory requirement to manage risk using the VaR approach is designed, in
principle, to prevent large and frequent losses that may drive economic investors
out of business. It is true that under the VaR constraint losses are not frequent,
however, the largest losses are more severe than without the VaR constraint.

In addition to the shortcomings of VaR constraint, we can consider the case of
the property of sub-additivity, which is the diversification principle to reduce risk
by investing in a variety of assets. Since VaR constraint does not satisfy this
property, diversification can lead to an increase of VaR.

In order to remedy the shortcomings of VaR constraint, especially in bad states,
as in the case of large losses expected losses are higher in the VaR strategy than
those the investor would have incurred if he had not engaged in VaR constraint,
Expected Loss (EL) strategy is presented as an alternative risk measure in this
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thesis. In contrary to the VaR agent who interests in controlling just the probabil-
ity of the loss, which causes undesirable situations in the bad states as indicated,
EL agent concerns with the magnitude of a loss in order to maintain limited ex-
pected losses when losses occur. Hence, if one wants to control the magnitude of
losses, he should control all moments of the loss distribution, and in this thesis,
we focus on controlling the first moment of the loss distribution in the EL strat-
egy. For the EL strategy, in our example concerning this strategy, we choose the
bound ε such that EL(ξT − q) ≤ ε = 0.06. That is, when losses occur, we main-
tain limited expected losses such that these losses can be at most 6% of our initial
capital, and again we choose the threshold value such that q = 0.75xerT = 1.8447.

At the beginning of very small stock prices, before the horizon, the EL portfolio
manager behaves like an unconstrained investor by investing of 75% (θ∗ = µ−r

γσ2 =

0.75) of wealth in the risky stock of our example in Section 4.2. However, towards
the middle of very small stock prices he reduces the fraction and then starts the
short selling. When cases of intermediate and high stock prices reached, he stays
fixed at the fraction of pure bond strategy, namely θ0 = 0, in order to ensure
that the terminal wealth exceeds the threshold value q. In fact, in the case of
small stock prices, the short selling may be considered as a desirable situation
since borrowing the low-value stock and selling it when the stock prices increase
may lead to the profit for the investor who uses the approximately fraction of
unconstrained agent in the short selling case. When the EL optimal terminal
wealth is reached, in the bad states EL portfolio manager’s probability of large
losses becomes less than the VaR portfolio manager’s probability of large losses.

Also contrary to the VaR strategy, EL strategy has no discontinuous across states.
In the EL strategy, in the bad states, i.e. in the states of large losses, the in-
vestor partially insures himself for maintaining limited expected losses, incurring
partial losses in contrary to the VaR investor. However, maintaining some level
of insurance requires from the investor a cost, too; it is necessary to think well
about how much cost is to spent for insurance and whether it is worth leaving
bad states completely uninsured.

In addition, contrary to the VaR constraint, EL constraint satisfies the sub-
additivity property of coherent risk measures. However, it does not satisfy the
translation-invariance axiom stated in Section 2.4: for a given a ∈ R we should
have ρ(Z1 + a) = ρ(Z1) − a. This might be considered as a disadvantage of EL
constraint since when cash which has the value a is added to the portfolio, the
risk of Z1 + a is more than the risk of Z1 and this risk is as much as the cash
which has the value a.

Since one of the goals of a portfolio manager is to maximize the expected utility
from the terminal wealth, it is interesting to deal with another risk measure
called Expected Utility Loss (EUL), which we investigate in this thesis. EUL risk
constraint leads to more explicit calculations for the optimal strategy that we are
looking for and allows us to solve the constrained static problem for a large class
of utility functions. Thus it might be a convenient risk measure.
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In the case of EUL optimal horizon wealth, similar to the EL constraint, in the
bad states, namely the high price of consumption HT , he partially insures himself
against losses and therefore in this partially insured states EUL agent may keep
the EUL optimal terminal wealth above the optimal terminal wealths of other
strategies mentioned. This is achieved by shrinking the insured region in the
intermediate states, but by settling for a wealth lower than q so that it is enough
to comply with the EUL constraint in the bad states. However, again, since
insurance is very costly in these bad states, here EUL agent prefers partially
insurance.

For the EUL strategy, in our example, we choose the EUL bound ε such that
EUL(u(ξT )− u(q)) ≤ ε = 0.06. That is, when losses occur, we maintain limited
expected utility losses such that those utility losses can be at most 0.06, and again
we choose the threshold value such that q = 0.75xerT = 1.8447. As we examine
in Section 4.3, before the horizon, in all states of stock prices, the EUL portfolio
manager invests in risky stock as a value of fraction that is very close to the
fraction of unconstrained strategy. We also infer that the EUL optimal fraction
θEUL
t , before the horizon, is always strictly positive and never exceeds the normal
strategy θ∗ as is examined in Proposition 3.11. Hence, we understand that if we
use the EUL constraint in our optimization problem, when we take drift term µ
bigger than r, short selling will not be allowed here, in contrary to the VaR and
EL strategies. Finally, to point out that, neither EL nor EUL risk measures not
coherent risk measures, unfortunately.

Consequently, each of risk measures in this thesis, which are Value at Risk (VaR),
Expected Loss (EL) and Expected Utility Loss (EUL) risk measures, has various
advantages and disadvantages separately as mentioned in the above discussions.
When a portfolio manager wants to use risk constraints in the optimization prob-
lem, it is too significant to choose the bounds and threshold values rationally
for each risk constraint and examine in details the advantages and disadvantages
of these risk measures before performing an investment in order to be able to
achieve the desired results. However, a very serious deficiency of VaR, EL and
EUL risk measures is that all of them are not coherent risk measures: the VaR
risk measure does not satisfy the sub-additivity property and, the EL and EUL
risk measures do not satisfy the translation-invariance property. Sub-additivity
property reflects the idea that risk can be reduced by diversification, so non-
subadditive measures of risk in portfolio optimization may create portfolios with
high risk.

As an outlook, thanks to the translation-invariance property of a risk measure,
the risk of a portfolio can be reduced by simply adding a certain amount of riskless
money. So, when the shortcomings of these non-coherent risk measures are to
be avoided, it appears that, in the constrained portfolio optimization problems,
using coherent risk measures may be much more rational and it may be necessary
to search coherent risk measures for being alternative to the VaR, EL and EUL
risk measures.
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APPENDIX A

Proofs of Some Propositions

A.1 Proof of Proposition 3.1

Proof of Proposition 3.1. ([2]) Let W = ξVaRT . If P (W < q) < ε, then by their
definition, h < h, and ξVaRT = I(yHT ) = ξ∗T , which is optimal following the
standard arguments as in the benchmark case. Otherwise, P (W < q) = ε, and
h ≥ h. The remainder of the proof is for the latter case. We adapt the common
convex-duality approach [see, for example [15]] to incorporate the VaR constraint.
The expression in Lemma A.1 is the convex conjugate of u with an additional
term capturing the VaR constraint.

Lemma A.1 ([2]). Expression (3.2) solves the following point-wise problem for
every ξT :

u(W )− yHTW + y21{W≥q} = max
ξ

{

u(ξ)− yHT ξ + y21{ξ≥q}

}

,

where
y2 ≡ u(I(yh))− yhI(yh)− u(q) + yhq ≥ 0.

Proof. ([2]) The function on which max{·} operates is not concave in ξ, but can
only exhibit local maxima at ξ = I(yHT ) and/or ξ = q. To find the global
maximum, we need to compare the value of these two local maxima. When
HT < h, we have I(yHT ) > q and

u(I(yHT ))− yHT I(yHT ) + y2 > u(q)− yHTq + y2,

so I(yHT ) is the global maximum. When h ≤ HT < h, we have I(yHT ) ≤ q and

u(q)− yHTq + y2 = u(I(yh))− yhI(yh) + yq(h−HT )

> u(I(yHT ))− yHT I(yHT ), (A.1)

where the inequality follows fromHT < h and ∂[u(I(yH))−yHI(yH)+yqH]
∂H

= −yI(yξ)+
yq ≥ 0 whenever H ≥ h. So, q is the global maximum. When HT ≥ h, the
inequality in (A.1) is reversed and so I(yHT ) is the global maximum.
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Finally, to show y2 ≥ 0 note that

y2 =
[

u(I(yh)− yhI(yh)
]

− [u(I(yh))− yhI(yh) + yqh] ≥ 0,

again from ∂[u(I(yH))−yHI(yH)+yqH]
∂H

≥ 0 and h ≥ h.

Now, let ξT be any candidate optimal solution, which satisfies the VaR constraint
P (ξ < q) ≤ ε and the static budget constraint E [HT ξ] ≤ x in (3.1). We have

E [u(W )]− E [u(ξT )]

= E [u(W )]− E [u(ξT )]− yH0ξ0 + yH0ξ0 + y2(1− ε)− y2(1− ε)

≥ E [u(W )]− E [u(ξT )]− E [yHTW ] + E [yHT ξT ]

+ E
[

y21{W≥q}

]

− E
[

y21{ξT≥q}

]

≥ 0,

where the former inequality follows from the static budget constraint and the
VaR constraint holding with equality forW , while holding with inequality for ξT .
The latter inequality follows from Lemma A.1. Hence W is optimal. The opti-
mization problem is not standard because it is non-concave; to gain insight into
its structure, it is found satisfactory to provide a general proof of sufficiency for
optimality. To prove existence, one has to follow the standard path of stating and
verifying conditions for integrability of wealth, prices, and portfolio holdings. In
addition, one has to present the appropriate growth conditions on u and moment
conditions on H , followed by an elaborate analysis to verify that the expectations
in the objective function and in the budget constraint are well defined (e.g., as in
[5]). To prevent diverting the focus with a series of technical conditions and to not
unnecessarily lengthen the article, Basak and Shapiro [2] chose to solve explicit
examples of interest, instead of providing existence in general. Finally, because
the VaR constraint must hold with equality, the definition of h is deduced.

A.2 Proof of Proposition 3.2

Proof of Proposition 3.2. ([2]) We prove the claim step by step as follows:

(i) It is easy to verify that L1(ξ
∗) = G1(a∗, y

∗) and L1(ξ
VaR) = G1(av, y) are

satisfied, where

G1(a, x) = q2N(a)− x−
1
γ e

(m
γ
+ s2

2γ2
)
N

(

a− s

γ

)

,

m = E [− lnHT ] ,

s2 = VaR[− lnHT ],

a∗ =
(ln(qγ2 )y

∗ −m)

s
,

av =
(ln(qγ2 )y −m)

s
,
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and y solves E [HT I(yHT )] = H0ξ0. Next, it is also straightforward to

show that, for x > 0, ∂G1(a,x)
∂a

≥ 0 if, and only if, a ≤ av. Hence, because

a∗ ≤ av, G1(a∗, y) ≤ G1(av, y). Also, as
∂G1(a,x)

x
≥ 0 and y ≥ y∗, G1(a, y

∗) ≤
G1(a, y). Then,

L1(ξ
VaR)− L1(ξ

∗) = G1(av, y)−G1(a∗, y
∗)

≥ G1(av, y)−G1(a∗, y)

≥ 0.

(ii) It is straightforward to verify that L2(ξ
∗) = G2(a∗, y

∗), L2(ξ
VaR) = G2(av, y),

where

G2(a, x) =

(

q2e
−m+ s2

2 N(a + s)− x−
1
γ eΓN

(

a− 1− γ

γ
s)

))

/H0,

Γ =
1− γ

γ
m+

(

1− γ

γ

)2
s2

2
,

a∗, av, as in part (i). Also, for x > 0, ∂G2(a,x)
∂a

≥ 0 if, and only if, a ≤ av,

and since ∂G2(a,x)
∂x

≥ 0, G2(a, y
∗) ≤ G2(a, y). Therefore,

L2(ξ
VaR)− L2(ξ

∗) = G2(av, y)−G2(a∗, y
∗)

≥ G2(av, y)−G2(a∗, y)

≥ 0.

Collecting these completes the proof.

A.3 Proof of Lemma 3.4

Proof of Lemma 3.4. ([9]) Let z > 0 and consider the function h(x) = u(x) −
y1zx− y2(x− q)−. Defining the two functions

h1(x) = u(x)− y1zx

h2(x) = u(x)− y1zx+ y2(x− q) = u(x)− (y1z − y2)x− y2q,

the function h can be written as

h(x) =

{

h1(x), for x ≥ q,
h2(x), for x < q.

(A.2)

Since h1 and h2 are strictly concave and continuously differentiable, the function
h is a continuous and strictly concave function which is differentiable in (0, q) and
(q,∞) and possesses different one-sided derivatives in the point x = q which are
h′(q − 0) = h′2(q) and h

′(q + 0) = h′1(q).
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The functions h1 and h2 attain their maximum values at x1 = I(y1z) and x2 =
I(y1z − y2), respectively. Since the function I is strictly decreasing and y2 > 0
it follows x1 < x2. To find the maximum of h one has to consider the following
three cases.

(i) q < x1:
Since u′ is strictly decreasing we have u′(q) > u′(x1) = u′(I(y1z)) = y1z,

hence z < u′(q)
y1

= h. Considering the one-sided derivatives at x = q one
obtains

h′(q − 0) = h′2(q) = u′(q)− (y1z − y2) > u′(q)− y1
u′(q)

y1
+ y2 > 0

and

h′(q + 0) = h′1(q) = u′(q)− y1z > u′(q)− y1
u′(q)

y1
= 0,

that is, the function h is increasing at x = q. It follows that the function
h attains its maximum on (q,∞) where h(x) = h1(x), i.e., the maximum is
at x∗ = x1 = I(y1z).

(ii) x1 ≤ q < x2:
Now the relation q ≥ x1 implies z ≥ h while q > x2 leads to

u′(q) < u′(x2) = u′(I(y1z − y2)) = y1z − y2,

that is, z < u′(q)+y2
y1

= h, which gives h ≤ z < h. It follows that

h′(q − 0) = h′2(q) = u′(q)− (y1z − y2) > u′(q)− y1
u′(q) + y2

y1
+ y2 = 0

and

h′(q + 0) = h′1(q) = u′(q)− y1z ≤ u′(q)− y1
u′(q)

y1
= 0.

From the strict concavity of h we deduce that

h′(x) = h′2(x) > h′2(q) > 0 for x < q,

h′(x) = h′1(x) < h′1(q) ≤ 0 for x > q.

Thus the function h is strictly increasing for x < q and strictly decreasing
for x > q, hence h attains its maximum at x∗ = q.

The relations
y1

1 + y2
z < u′(q) ≤ y1z

imply

h ≤ z < h =
1 + y2
y1

u′(q). (A.3)
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(iii) q ≥ x2:

This case is equivalent to z ≥ h = u′(q)+y2
y1

. For the one-sided derivatives at
x = q one obtains

h′(q − 0) = h′2(q) = u′(q)− (y1z − y2) ≤ u′(q)− y1
u′(q) + y2

y1
+ y2 = 0

and

h′(q + 0) = h′1(q) = u′(q)− y1z ≤ u′(q)− y1
u′(q) + y2

y1
= −y2 < 0.

It follows that the function h is decreasing at x = q attains its maximum
on (0, q) where h(x) = h2(x) and, hence, the maximum is at x∗ = x2 =
I(y1z − y2).

The proof is completed.

A.4 Proof of Proposition 3.7

Proof of Proposition 3.7. ([7]) We proceed as follows:

(i) The computations and the arguments of this proof are the same as in Propo-
sition 3.3 part (i), except that we can not compute the conditional expec-
tation

J2 = G(Ht, h) = E

[

HT

Ht

I(y1HT − y2)1{h≤HT }

∣

∣

∣
Ft

]

explicitly, but give it in terms of the integral G(z, h).

(ii) From (3.9) it follows XEL
t = F (Ht, t). The process H = (Ht)t∈[0,T ] satisfies

the SDE (2.3). Applying Itô’s lemma to the function F (Ht, t) we find that
the process XEL = (XEL

t )t∈[0,T ] satisfies the SDE

dXEL
t =

[

Ft(Ht, t)− rFz(Ht, t)Ht +
κ2

2
Fzz(Ht, t)H

2
t

]

dt−Fz(Ht, t)Htκ
TdWt,

where Fz, Fzz and Ft denote the partial derivatives of F (z, t) with respect
to z and t, respectively. Equating coefficients in front of dWt in the above
equation and Equation (2.4) leads to the following equality:

θELt = −σ−1κ
Fz(Ht, t)Ht

F (Ht, t)
= −θNγFz(Ht, t)Ht

F (Ht, t)
(A.4)

Computing the derivative Fz we get

Fz(z, t) = − eΓ(t)

zγ(y1z)
1
γ

[

1− Φ(−d1(h, z)) +
γ

κ
√
T − t

ϕ(d1(h, z))

]

+
qe−r(T−t)

κ
√
T − tz

[

ϕ(d2(h, z))− ϕ(d2(h, z))
]

+
∂G(z, h)

∂z
.
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For the last term we have

∂G(z, h)

∂z
=

e−r(T−t)

√
2π

∂
∫ c2(h,z)

−∞
ι(z, u)du

∂z

=
e−r(T−t)

√
2π

[

∫ c2(h,z)

−∞

∂ι(z, u)

∂z
du+

∂c2(h, z)ι(z, c2(h, z))

∂z

]

,

where

ι(z, u) =
e−

1
2
(u−b)2

(y1zea+bu − y2)
1
γ

Finally, we get

∂G(z, h)

∂z
=

−y1
γ
e(κ

2−2r)(T−t)ψ0

(

c2(h, z), b, y1ze
a, y2, 2b, 1, 1 +

1

γ

)

+
qer(T−t)

κ
√
T − tz

ϕ(−d2(h, z)).

Consequently. plugging the last equality in (A.4), we get the final form of the
optimal strategies before the horizon, and this completes the proof.

A.5 Proof of Proposition 3.8

Proof of Proposition 3.8. ([7]) The assumption on the existence of solutions y1, y2 >
0 of the system of equations given in the proposition implies that ξEUL

T fulfills the
risk constraint with equality. In order to solve the optimization problem under
the risk constraint, we adopt the common convex-duality approach by introducing
the convex conjugate of the utility function u with an additional term capturing
the risk constraint as it is shown in the following lemma.

Lemma A.2 ([7]). Let z, y1, y2, q > 0. Then the solution of the optimization
problem

max
x>0

{

u(x)− y1zx − y2(u(x)− u(q))−
}

is x∗ = ξ∗(z).

Applying the above lemma point-wise for all z = HT it follows that ξ∗ = ξ∗T (HT )
is the solution of the maximization problem

max
ξ>0

{

u(ξ)− y1HT ξ − y2(u(ξ)− u(q))−
}

.

Obviously, ξ∗ is FT -measurable and if y1, y2 are chosen as solutions of the system
of equations given in the proposition then it follows ξ∗ = ξEUL

T = ξEUL . To
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complete the proof, let η be any admissible solution satisfying the static budget
constraint and the EUL-constraint (3.10). We have

E
[

u(ξEUL
T )

]

− E [u(η)] = E
[

u(ξEUL
T )

]

− E [u(η)]− y1x+ y1x− y2ε+ y2ε

≥ E
[

u(ξEUL
T )

]

− y1E
[

HT ξ
EUL
T

]

− y2E
[

(u(ξEUL
T )− u(q))−

]

−E [u(η)] + y1E [HTη] + y2E
[

(u(η)− u(q))−
]

≥ 0,

where the first inequality follows from the static budget constraint and the con-
straint for the risk holding with equality for ξEUL

T , while holding with inequality
for η. The last inequality is a consequence of the above lemma. Hence we obtain
that ξEUL

T is optimal; completing the proof.

Proof of Lemma A.2. ([7]) Consider the function h(x) = u(x)− y1zx− y2(u(x)−
(q))−. Defining the two functions

h1(x) = u(x)− y1zx

h2(x) = u(x)− y1zx + y2(u(x)− u(q)) = (1 + y2)u(x)− y1zx− y2u(q),

the function h can be written as

h(x) =

{

h1(x), for x ≥ q,
h2(x), for x < q.

(A.5)

Since h1 and h2 are strictly concave and continuously differentiable, the function
h is a continuous and strictly concave function which is differentiable in [0, q) and
(q,∞) and possesses different one-sided derivatives in the point x = q which are
h′(q − 0) = h′2(q) and h

′(q + 0) = h′1(q).

The functions h1 and h2 attain their maximum values at x1 = I (y1z) and x2 =

I
(

y1
1+y2

z
)

, respectively. Since the function I is strictly decreasing and y2 > 0 it

follows x1 < x2. To find the maximum of h one has to consider the following
three cases.

(i) q < x1 :
Since u′ is strictly decreasing we have u′(q) > u′(x1) = u′ (I (y1z)) = y1z.
Considering the one-sided derivatives at x = q one obtains

h′(q − 0) = h′2(q) = (1 + y2)u
′(q)− y1z > (1 + y2)y1z − y1z = y1y2z > 0

and
h′(q + 0) = h′1(q) = u′(q)− y1z > y1z − y1z = 0,

that is, the function h is increasing at x = q. It follows that the function h
attains its maximum on (q,∞) where h(x) = h1(x), namely., the maximum
is at x∗ = x1 = I (y1z). Solving the inequality u′(q) > y1z for z it yields

z <
u′(q)

y1
= h (A.6)
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(i) x1 ≤ q < x2 :
Now the relation q ≥ x1 implies u′(q) ≤ y1z while q < x2 leads to

u′(q) > u′(x2) = u′
(

I

(

y1
1 + y2

z

))

=
y1

1 + y2
z.

For the one-sided derivatives at x = q we find

h′(q − 0) = h′2(q) = (1 + y2)u
′(q)− y1z > (1 + y2)

y1
1 + y2

z − y1z = 0

and
h′(q + 0) = h′1(q) = u′(q)− y1z ≤ y1z − y1z = 0.

From the strict concavity of h we deduce that h′(x) = h′1(x) < h′1(q) < 0
for x > q. Thus the function h is strictly increasing for x < q and strictly
decreasing for x > q, hence h attains its maximum at x∗ = q. The relations

y1
1 + y2

z < u′(q) ≤ y1z

imply

h ≤ z < h =
1 + y2
y1

u′(q) (A.7)

(iii) q ≥ x2 :
In this case we have u′(q) ≤ u′(x2) =

y1
1+y2

z. For the one-sided derivatives

at x = q one obtains

h′(q − 0) = h′2(q) = (1 + y2)u
′(q)− y1z ≤ y1z − y1z = 0

and
h′(q + 0) = h′1(q) = u′(q)− y1z ≤

y1z

1 + y2
− y1z < 0.

It follows that the function h is decreasing at x = q attains its maximum
on (0, q) where h(x) = h2(x) and hence the maximum is at x∗ = x2 =

I
(

y1
1+y2

z
)

. Solving the inequality u′(q) ≤ u′(x2) =
y1

1+y2
z for z it follows

z ≥ 1 + y2
y1

u′(q) = h. (A.8)

The proof is completed.

A.6 Proof of Proposition 3.10

Proof of Proposition 3.10. ([7]) the proof of this proposition is rather similar to
that of those proved earlier:
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(i) The process HXEUL is an F -martingale and the proof is as in part (i) of
Proposition 3.3, if h and h are replaced appropriately.

(ii) The same arguments as in the proof of Proposition 3.7 (ii), lead to following
equality for the optimal trading strategy

θEUL
t = −σ−1κ

Fz(Ht, t)Ht

F (Ht, t)
= −θNγFz(Ht, t)Ht

F (Ht, t)
, (A.9)

where F (z, t) is defined in Proposition 3.10. Further, formal evaluation of
the derivative Fz yields

Fz(z, t) =
1

γz

[

−F (z, t) + qe−r(T−t)
(

Φ(−d2(h, z, t)− Φ(−d2(h, z, t))
)]

− eΓ(t)

(y1z)
1
γ κ

√
T − tz

[

ϕ(d1(h, z, t))− (1 + y2)
1
γϕ(d1(h, z, t))

]

+
qe−r(T−t)

κ
√
T − tz

[

ϕ(d2(h, z, t))− ϕ(d2(h, z, t))
]

.

Here, ϕ denotes the standard-normal probability density function. Substituting
these into (A.9), we get the final form of the optimal strategy before the horizon.
This completes the proof.
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APPENDIX B

Implementation in Matlab

B.1 Matlab Algorithms Related to VaR Risk Measure

B.1.1 Optimal Horizon Wealth of the VaR Risk Manager

% The optimal horizon wealth of the VaR risk manager as a function
% of the horizon state price density H(T).
clear all, close all, clc

randn(’state’, 100); rand(’state’, 100)
y = 1; h1 = 0.5421; h2 = 0.85;
X = lognrnd(0,sqrt(0.3375),1,15000);
HT=exp(-1.0695)*X; s=sort(HT); ns = length(s);
for i=1:ns;

if s(i)<h1
I1(i) = 1/(y*s(i));
s1(i) = s(i);

elseif ((h1<=s(i)) && (s(i)<h2))
I2(i) = 1.8447 ;
s2(i) = s(i);

elseif h2<=s(i)
I3(i) = 1/(y*s(i));
s3(i) = s(i);

end
end
I2(I2==0)=[]; I3(I3==0)=[]; s2(s2==0)=[]; s3(s3==0)=[];
plot(s1,I1, ’b.-’), hold on
plot(s2,I2, ’b.-’), hold on
plot(s3,I3, ’b.-’), hold on
title(’optimal terminal wealth of the VaR-portfolio manager’)
xlabel(’H_{T}’), ylabel(’\xi_{T}’), axis([0,2,0,15])

% Trml as a function of the horizon state price density H(T) for
% the portfolio insurer
for i=1:ns;
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if s(i)<h1
K1(i) = 1/(y*s(i));
St1(i)=s(i);

elseif h1<=s(i)
K2(i) = 1.8447; % Threshold value.
St2(i) = s(i);

end
end
K2(K2==0)=[]; St2(St2==0)=[];
plot(St1,K1,’k-’), hold on
plot(St2,K2,’k-’), hold on
axis([0,2,0,15])

% Trml as a function of the horizon state price density H(T) for
% the unconstrained benchmark
I = 1./s;
plot(s,I,’r’)
axis([0,1.5,0,5])
text(-0.015,1.8447,’q’,’FontSize’,10.5);
text(-0.015,1.1765,’q_{2}’,’FontSize’,10.5);
text(0.5421,-0.05,’h’,’FontSize’,9);
text(0.85,-0.05,’h’,’FontSize’,9);
text(0.55,4,’q is the threshold value.’,’FontSize’,9);
text(0.55,3.75,...

’q_{2} is the terminal wealth corresponding the VaR’,...
’FontSize’,9);

text(0.55,4.5,’h is the beginning of intermediate states’,...
’FontSize’,9);

text(0.55,4.25,’h is the end of intermediate states’,...
’FontSize’,9);

B.1.2 Probability Density of the Optimal Horizon Wealth Belonging
to the VaR Portfolio Manager

% The probability density function of the optimal terminal wealth
% concerning VaR
clear all, clc, close all

randn(’state’, 100); rand(’state’, 100)
y = 1; h1 = 0.5421; h2 = 0.85;
X = lognrnd(0,sqrt(0.3375),1,15000);
s = sort(X); HT = exp(-1.0695)*s; ns = length(HT); q2 = 1/(y*h2);
for i=1:ns;

if ( HT(i)<h1 )
I1(i) = 1./(y*HT(i));
PDI1(i) = (0.6867*exp(-1.4569*...
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(log(0.3432*I1(i))).^2))./I1(i);
elseif (h1<=HT(i) && (HT(i)<h2))

I2(i) = 1.8447 ;
elseif ( h2<=HT(i))

I3(i) = 1./(y*HT(i));
PDI3(i) = (0.6867*exp(-1.4569*...

(log(0.3432*I3(i))).^2))./I3(i);
end

end
I2(I2==0)=[]; I3(I3==0)=[]; PDI3(PDI3==0)=[];
plot(I1,PDI1,’b.-’), hold on
j = 0:0.0001:max(PDI1);
plot(max(I2),j,’b.-’), hold on
k = q2:0.0001:max(I2) ;
plot(k,0,’b.-’), hold on
plot(I3,PDI3,’b.-’), hold on
xlabel(’\xi_{T}’), ylabel(’density’), axis([0,15,0,0.3])
text(3.4469,-0.0075,’*’,’FontSize’,14);
text(2.4596,-0.0065,’b’,’FontSize’,14);
text(8.7437,-0.006,’\nabla’,’FontSize’,14);
text(3.8574,-0.0025,’\times’,’FontSize’,14);
text(1.1765,-0.005,’\diamondsuit’,’FontSize’,14);
text(1.8447,-0.002,’\o’,’FontSize’,14);
text(6,0.25,...

’b -> E[\xi_{T}^{\theta^{0}}] = 2.4596 (Pure Bond)’,...
’FontSize’,10);

text(6,0.22,...
’\times -> E[\xi_{T}^{\theta^{1}}] = 3.8574 (Pure Stock)’,...
’FontSize’,10);

text(6,0.19,...
’* -> E[\xi_{T}^{\theta^{*}}] = 3.4469 (Unconstrained)’,...
’FontSize’,10);

text(6,0.16,...
’\nabla -> E[\xi_{T}^{\theta^{VaR}}] = 8.7437 (VaR Constraint)’,...
’FontSize’,10);

text(6,0.13,...
’ \o -> q = 0.75xe^{rT} = 1.8447 (Threshold)’,...
’FontSize’,10);

text(6,0.10,’\diamondsuit -> q_2 = 1.1765’,’FontSize’,10);

% The probability density function of the terminal wealth of
% pure stock portfolio
randn(’state’, 100); rand(’state’, 100)
xLN = lognrnd(0,sqrt(0.6),1,15000); XT1 = 2.8577*xLN;
s = sort(XT1);
PDXT1 = (0.5150*exp(-0.8333*((log(0.3499*s)).^2)))./s ;
plot(s,PDXT1,’k-’), hold on
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xlabel(’\xi_{T}’), ylabel(’density’), axis([0,15,0,0.3])

% The probability density function of the terminal wealth of
% pure bond portfolio.
XT0 = 2.4596 ; % The terminal wealth if I only invest in bond.
P = 0:0.0001:1;
plot(XT0,P), hold on
xlabel(’\xi_{T}’), ylabel(’density’)

% The probability density function of the terminal wealth of
% unconstrained portfolio
randn(’state’, 100); rand(’state’, 100)
XTB = 1./HT ;
PDFXTB = (0.6867*exp(-1.4569*(log(0.3432*XTB)).^2))./XTB ;
plot(XTB,PDFXTB,’r’)
title(strcat(’Probability Density Function of’,...

’ VaR Optimal Terminal Wealth’))
xlabel(’\xi_{T}’), ylabel(’density’), axis([0,15,0,0.3])

B.1.3 The VaR Optimal Strategy at Time t < T Before the Horizon
as a Function of Time t and the Stock Price S and the other
Mentioned Strategies

% The VaR-optimal wealth and the fraction of wealth invested in
% stock before horizon
clear all, close all, clc

randn(’state’, 100); rand(’state’, 100)
t = 5; StockRN = lognrnd(0,sqrt(0.04*t),1,2000);
S = exp(0.07*t).* StockRN; Sr = sort(S);
statePriceRN = lognrnd(0,sqrt( 0.1225*t),1,2000);
SP = sort(statePriceRN); H = exp(-0.1413*t)*Sr.*SP ;
d11 = (log(0.5421./H)-0.0488*(15-t))/0.15*sqrt(15-t);
d21 = d11+0.15*sqrt(15-t);
d12 = (log(0.85./H)-0.0488*(15-t))/0.15*sqrt(15-t);
d22 = d12+0.15*sqrt(15-t);

kp = exp(0.1413*t)*SP ; % A part of stock price for writing in
% terms of the state price density function

STP = H.*kp ; % Stock price
m = -Inf;
DsV11 = @(u) NewDst11V(u);
DsV12 = @(u) NewDst12V(u);
DsV21 = @(u) NewDst21V(u);
DsV22 = @(u) NewDst22V(u);
h1 = 0.5421; h2 = 0.85; y = 1;
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FrB = (0.09-0.06)/0.04 ; % The constant benchmark value (fraction)
for jj = 1:length(Sr)

intDsV11(jj) = quadgk(DsV11,m,-d11(jj));
intDsV12(jj) = quadgk(DsV12,m,-d12(jj));
intDsV21(jj) = quadgk(DsV21,m,-d21(jj));
intDsV22(jj) = quadgk(DsV22,m,-d22(jj));
Pdfs11(jj) = (1/sqrt(2*pi))*exp((-1/2)*(d11(jj).^2));
Pdfs12(jj) = (1/sqrt(2*pi))*exp((-1/2)*(d12(jj).^2));
Pdfs21(jj) = (1/sqrt(2*pi))*exp((-1/2)*(d21(jj).^2));
Pdfs22(jj) = (1/sqrt(2*pi))*exp((-1/2)*(d22(jj).^2));

if ( H(jj)<h1 )
Xt1(jj) = 1./(H(jj))-((1./(H(jj))).*intDsV11(jj)-...

1.8447*exp(-0.06*(15-t))*intDsV21(jj))+...
((1./(H(jj))).*intDsV12(jj)-1.8447*...
exp(-0.06*(15-t))*intDsV22(jj));

ptVaR1(jj) = 1-((1.8447*exp(-0.06*(15-t)))./...
Xt1(jj)).*(intDsV21(jj)-intDsV22(jj))+...
(1./(0.15*sqrt(15-t)*Xt1(jj).*H(jj))).*...
( Pdfs11(jj)-Pdfs12(jj))-((1.8447*...
exp(-0.06*(15-t)))./(0.15*sqrt(15-t)*...
Xt1(jj))).*(Pdfs22(jj)-Pdfs21(jj));

FrVaR1(jj) = FrB*ptVaR1(jj);
kp1(jj) = H(jj).*kp(jj); % The stock price

elseif (h1<=H(jj) && (H(jj)<h2))
Xt2(jj) = 1./(H(jj))-((1./(H(jj))).*intDsV11(jj)-...

1.8447*exp(-0.06*(15-t))*intDsV21(jj))+...
((1./(H(jj))).*intDsV12(jj)-1.8447*...
exp(-0.06*(15-t))*intDsV22(jj)) ;

ptVaR2(jj) = 1-((1.8447*exp(-0.06*(15-t)))./...
Xt2(jj)).*(intDsV21(jj)-intDsV22(jj))+...
(1./(0.15*sqrt(15-t)*Xt2(jj).*H(jj))).*...
( Pdfs11(jj)-Pdfs12(jj))-((1.8447*...
exp(-0.06*(15-t)))./(0.15*sqrt(15-t)*...
Xt2(jj))).*(Pdfs22(jj)-Pdfs21(jj));

FrVaR2(jj) = FrB*ptVaR2(jj);
kp2(jj) = H(jj).*kp(jj); % The stock price

elseif ( h2<=H(jj))
Xt3(jj) = 1./(H(jj))-((1./(H(jj))).*intDsV11(jj)-...

1.8447*exp(-0.06*(15-t))*intDsV21(jj))+...
((1./(H(jj))).*intDsV12(jj)-1.8447*...
exp(-0.06*(15-t))*intDsV22(jj)) ;

ptVaR3(jj) = 1-((1.8447*exp(-0.06*(15-t)))./...
Xt3(jj)).*(intDsV21(jj)-intDsV22(jj))+...
(1./(0.15*sqrt(15-t)*Xt3(jj).*H(jj))).*...
( Pdfs11(jj)-Pdfs12(jj))-((1.8447*...
exp(-0.06*(15-t)))./(0.15*sqrt(15-t)*...
Xt3(jj))).*(Pdfs22(jj)-Pdfs21(jj));
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FrVaR3(jj) = FrB*ptVaR3(jj);
kp3(jj) = H(jj).*kp(jj); % The stock price

end
end
Xt2(Xt2==0)=[]; Xt3(Xt3==0)=[];
ptVaR2(ptVaR2==0)=[]; ptVaR3(ptVaR3==0)=[];
FrVaR2(FrVaR2==0)=[]; FrVaR3(FrVaR3==0)=[];
kp2(kp2==0)=[]; kp3(kp3==0)=[];
plot(kp1,FrVaR1,’b.-’), hold on
plot(kp2,FrVaR2,’b.-’),hold on
plot(kp3,FrVaR3,’b.-’), hold on
xlabel(’S_{t}’), ylabel(’\theta_{t}’), axis([0,3,-1,2.5])
text(0.9282,-1.05,’a’,’FontSize’,13);
text(1.9254,-1.065,’b’,’FontSize’,13);
text(0.8,2.3,...

’a is the beginning of intermediate stock prices’,...
’FontSize’,8.5);

text(0.8,2.1,...
’b is the end of intermediate stock prices’,...
’FontSize’,8.5);

% The fraction of unconstrained portfolio
randn(’state’, 100); rand(’state’, 100)
ns = length(STP);
for i=1:ns;

Tetaunc(i) = 0.75 ;
end
plot(STP,Tetaunc,’r-’), hold on
xlabel(’S_{t}’), ylabel(’\theta_{t}’)

% The fraction of pure stock portfolio
randn(’state’, 100); rand(’state’, 100)
for i=1:ns;

Tetastock(i) = 1;
end
plot(STP,Tetastock,’k-’), hold on
xlabel(’S_{t}’), ylabel(’\theta_{t}’)

% The fraction of pure bond portfolio
randn(’state’, 100); rand(’state’, 100)
for i=1:ns;

Tetabond(i) = 0;
end
plot(STP,Tetabond,’c’)
title(strcat(’VaR optimal strategy \theta^{VaR} as’,...

’ a function of time t and the stock price S’))
xlabel(’S_{t}’), ylabel(’\theta_{t}’)
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B.1.4 Necessary m.files which is in the above VaR Strategy Algo-
rithms (Distribution Function Files)

function D11 = NewDst11V(u)
D11 = (1/sqrt(2*pi))*exp((-1/2)*u.^2) ;
end

function D22 = NewDst12V(u)
D22 = (1/sqrt(2*pi))*exp((-1/2)*u.^2);
end

function D21 = NewDst21V(u)
D21 = (1/sqrt(2*pi))*exp((-1/2)*u.^2);
end

function D22 = NewDst22V(u)
D22 = (1/sqrt(2*pi))*exp((-1/2)*u.^2);
end

B.2 Matlab Algorithms Related to EL Risk Measure

B.2.1 Optimal Horizon Wealth of the EL Risk Manager

% The optimal horizon wealth of the EL risk manager as a function
% of the horizon state price density H(T).
clear all, close all, clc

randn(’state’, 100); rand(’state’, 100)
y = 1; y2 = 0.364; h1 = 0.5421; h2 = 0.9061;
HT=exp(-1.0695)*lognrnd(0,sqrt(0.3375),1,15000);
s=sort(HT); ns = length(s);
for i=1:ns;

if s(i)<h1
I1(i) = 1/(y*s(i));
s1(i) = s(i);

elseif ((h1<=s(i)) && (s(i)<h2))
I2(i) = 1.8447 ;
s2(i) = s(i);

elseif h2<=s(i)
I3(i) = 1/(y*s(i)-y2);
s3(i) = s(i);

end
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end
I2(I2==0)=[]; I3(I3==0)=[]; s2(s2==0)=[]; s3(s3==0)=[];
plot(s1,I1,’b.-’), hold on
plot(s2,I2,’b.-’), hold on
plot(s3,I3,’b.-’), hold on
title(’optimal terminal wealth of the EL-portfolio manager’)
xlabel(’H_{T}’), ylabel(’\xi_{T}’), axis([0,2,0,15])
text(-0.015,1.8447,’q’,’FontSize’,10.5);
text(0.5421,-0.05,’h’,’FontSize’,9);
text(0.9061,-0.05,’h’,’FontSize’,9);
text(0.6,4,’q is the threshold value.’,’FontSize’,9);
text(0.6,4.5,’h is the beginning of intermediate states’,...

’FontSize’,9);
text(0.6,4.25,’h is the end of intermediate states’,...

’FontSize’,9);

% Trml as a function of the horizon state price density H(T)
% for the portfolio insurer
for i=1:ns;

if s(i)<h1
K1(i) = 1/(y*s(i));
St1(i)=s(i);

elseif h1<=s(i)
K2(i) = 1.8447; % Threshold value.
St2(i) = s(i);

end
end
K2(K2==0)=[]; St2(St2==0)=[];
plot(St1,K1,’k-’), hold on
plot(St2,K2,’k-’), hold on
axis([0,2,0,15])

% Trml as a function of the horizon state price density H(T)
% for the unconstrained benchmark
I = 1./s;
plot(s,I,’r’)
axis([0,1.5,0,5])

B.2.2 Probability Density of the Optimal Horizon Wealth Belonging
to the EL Portfolio Manager

% The probability density function of the optimal terminal wealth
% concerning EL risk measure
clear all, close all, clc

randn(’state’, 100); rand(’state’, 100)
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y1 = 1; y2 = 0.364; h1 = 0.5421; h2 = 0.9061;
X = lognrnd(0,sqrt(0.3375),1,15000);
HT = exp(-1.0695)*X; s = sort(HT); ns = length(s);
for i=1:ns;

if ( s(i)<h1 )
I1(i) = 1/(y1*s(i));
PDI1(i) = (0.6867*exp(-1.4569*...

(log(0.3432*I1(i))).^2))./I1(i);
elseif (h1<=s(i) && (s(i)<h2))

I2(i) = 1.8447 ;
elseif ( h2<=s(i))

I3(i) = 1./(y1*s(i)-y2);
PDI3(i) = (0.6867*exp(-( 1.4815*((log(0.3432*I3(i)./...

(1+0.364*I3(i)))).^2))))./(I3(i).*(1+0.364*I3(i)));
end

end
I2(I2==0)=[]; I3(I3==0)=[]; PDI3(PDI3==0)=[];
plot(I1,PDI1,’b.-’), hold on
j = PDI3(1,1):0.0001:PDI1(1,11779);
plot(max(I2),j,’b.-’), hold on
plot(I3,PDI3,’b.-’), hold on
xlabel(’\xi_{T}’), ylabel(’density’), axis([0,15,0,0.3])
text(3.4469,-0.0075,’*’,’FontSize’,14);
text(2.4596,-0.0065,’b’,’FontSize’,14);
text(2.3495,-0.0065,’l’,’FontSize’,14);
text(3.8574,-0.0025,’\times’,’FontSize’,14);
text(1.8447,-0.002,’\o’,’FontSize’,14);
text(6,0.25,...

’b -> E[\xi_{T}^{\theta^{0}}] = 2.4596 (Pure Bond)’,...
’FontSize’,10);

text(6,0.22,...
’\times -> E[\xi_{T}^{\theta^{1}}] = 3.8574 (Pure Stock)’,...
’FontSize’,10);

text(6,0.19,...
’* -> E[\xi_{T}^{\theta^{*}}] = 3.4469 (Unconstrained)’,...
’FontSize’,10);

text(6,0.16,...
’l -> E[\xi_{T}^{\theta^{EL}}] = 2.3495 (EL Constraint)’,...
’FontSize’,10);

text(6,0.13,...
’ \o -> q = 0.75xe^{rT} = 1.8447 (Threshold)’,...
’FontSize’,10);

% The probability density function of the terminal wealth of
% pure stock portfolio
randn(’state’, 100); rand(’state’, 100)
xLN = lognrnd(0,sqrt(0.6),1,15000); XT1 = 2.8577*xLN; s = sort(XT1);

61



PDXT1 = (0.5150*exp(-0.8333*((log(0.3499*s)).^2)))./s;
plot(s,PDXT1,’k-’), hold on
xlabel(’\xi_{T}’), ylabel(’density’), axis([0,15,0,0.3])

% The probability density function of the terminal wealth of
% pure bond portfolio.
XT0 = 2.4596 ; % the terminal wealth if I only invest in bond.
P = 0:0.0001:1;
plot(XT0,P), hold on
xlabel(’\xi_{T}’), ylabel(’density’)

% The probability density function of the terminal wealth of
% unconstrained portfolio
randn(’state’, 100); rand(’state’, 100)
XTB = 1./s ;
PDFXTB = (0.6867*exp(-1.4569*(log(0.3432*XTB)).^2))./XTB ;
plot(XTB,PDFXTB,’r-’)
title(strcat(’Probability Density Function of’,...

’ EL Optimal Terminal Wealth’))
xlabel(’\xi_{T}’), ylabel(’density’), axis([0,15,0,0.3])

B.2.3 The EL Optimal Strategy at Time t < T Before the Horizon
as a Function of Time t and the Stock Price S and the other
Mentioned Strategies

% The EL-optimal wealth and the fraction of wealth invested
% in stock before horizon
clear all, close all, clc

randn(’state’, 100); rand(’state’, 100)
y1 = 1; y2 = 0.364; h1 = 0.5421; h2 = 0.9061; t = 5;
b = -0.15*sqrt(15-t); a = -(0.06+(0.15^2)/2)*(15-t);
StockRN = lognrnd(0,sqrt(0.04*t),1,2000);
S = exp(0.07*t).* StockRN; Sr = sort(S);
statePriceRN = lognrnd(0,sqrt( 0.1225*t),1,2000);
SP = sort(statePriceRN);
H = exp(-0.1413*t)*Sr.*SP ; % the state price density function.
c2 = (1/b)*(log(h2./H)-a);
d11 = (log(h1./H)-(0.06-(0.15^2)/2)*(15-t))./0.15*sqrt(15-t);
d21 = d11+0.15*sqrt(15-t);
d12 = (log(h2./H)-(0.06-(0.15^2)/2)*(15-t))./0.15*sqrt(15-t);
d22 = d12+0.15*sqrt(15-t);
kp = exp(0.1413*t)*SP ; % A part of stock price for writing in

% terms of the state price density function
STP = H.*kp; m = -Inf; fn = @(u) myNewfn(u);
Ds11 = @(u) DstEL11(u); Ds21 = @(u) DstEL21(u);
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Ds22 = @(u) DstEL22(u); fo = @(u) NEWfio(u);
FrB = (0.09-0.06)/0.04; % the benchmark value
q = 1.8447 ; % threshold value.
for jj = 1:length(Sr)

intg(jj) = (exp(-0.06*(15-t))/sqrt(2*pi))*quadgk(fn,m,c2(jj));
intDs11(jj) = quadgk(Ds11,m,-d11(jj));
intDs21(jj) = quadgk(Ds21,m,-d21(jj));
intDs22(jj) = quadgk(Ds22,m,-d22(jj));
Pdfs11(jj) = (1/sqrt(2*pi))*exp((-1/2)*(d11(jj).^2));
Pdfs21(jj) = (1/sqrt(2*pi))*exp((-1/2)*(d21(jj).^2));
intfio(jj) = (1/sqrt(2*pi))*quadgk(fo,m,c2(jj));
if ( H(jj)<h1 )

XtEL1(jj) = (1./(y1*H(jj))).*(1-intDs11(jj))+...
q*exp(-0.06*(15-t))*(intDs21(jj)-intDs22(jj))+intg(jj);

ptEL1(jj) = 1./(XtEL1(jj).*y1.*H(jj))-...
(1./(XtEL1(jj).*y1.*H(jj))).*...
(intDs11(jj)+Pdfs11(jj)./(0.15*sqrt(15-t)))-...
(q*exp(-0.06*(15-t))*Pdfs21(jj))./(0.15*sqrt(15-t)*...
XtEL1(jj))+(y1*H(jj)*exp((0.15^2-2*0.06)*...
(15-t)).*intfio(jj))./XtEL1(jj);

FrEL1(jj) = FrB*ptEL1(jj);
kp1(jj) = H(jj).*kp(jj); % The stock price

elseif (h1<=H(jj) && (H(jj)<h2))
XtEL2(jj) = (1./(y1*H(jj))).*(1-intDs11(jj))+...

q*exp(-0.06*(15-t))*(intDs21(jj)-intDs22(jj))+intg(jj);
ptEL2(jj) = 1./(XtEL2(jj).*y1.*H(jj))-...

(1./(XtEL2(jj).*y1.*H(jj))).*...
(intDs11(jj)+Pdfs11(jj)./(0.15*sqrt(15-t)))-...
(q*exp(-0.06*(15-t))*Pdfs21(jj))./(0.15*sqrt(15-t)*...
XtEL2(jj))+(y1*H(jj)*exp((0.15^2-2*0.06)*...
(15-t)).*intfio(jj))./XtEL2(jj);

FrEL2(jj) = FrB*ptEL2(jj);
kp2(jj) = H(jj).*kp(jj); % The stock price

elseif ( h2<=H(jj))
XtEL3(jj) = (1./(y1*H(jj))).*(1-intDs11(jj))+...

q*exp(-0.06*(15-t))*(intDs21(jj)-intDs22(jj))+intg(jj);
ptEL3(jj) = 1./(XtEL3(jj).*y1.*H(jj))-...

(1./(XtEL3(jj).*y1.*H(jj))).*...
(intDs11(jj)+Pdfs11(jj)./(0.15*sqrt(15-t)))-...
(q*exp(-0.06*(15-t))*Pdfs21(jj))./(0.15*sqrt(15-t)*...
XtEL3(jj))+(y1*H(jj)*exp((0.15^2-2*0.06)*...
(15-t)).*intfio(jj))./XtEL3(jj);

FrEL3(jj) = FrB*ptEL3(jj);
kp3(jj) = H(jj).*kp(jj); % The stock price

end
end
XtEL2(XtEL2==0)=[]; XtEL3(XtEL3==0)=[];
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ptEL2(ptEL2==0)=[]; ptEL3(ptEL3==0)=[];
FrEL2(FrEL2==0)=[]; FrEL3(FrEL3==0)=[];
kp2(kp2==0)=[]; kp3(kp3==0)=[];
plot(kp1,FrEL1,’b.-’), hold on
plot(kp2,FrEL2,’b.-’), hold on
plot(kp3,FrEL3,’b.-’), hold on
xlabel(’S_{t}’), ylabel(’\theta_{t}’), axis([0,3,-2,2])
text(0.9282,-2.04,’c’,’FontSize’,13);
text(2.1373,-2.07,’d’,’FontSize’,13);
text(1,1.8,’c is the beginning of intermediate stock prices’,...

’FontSize’,8.5);
text(1,1.6,’d is the end of intermediate stock prices’,...

’FontSize’,8.5);

% The fraction of unconstrained portfolio
randn(’state’, 100); rand(’state’, 100)
ns = length(STP);
for i=1:ns;

Tetaunc(i) = 0.75 ;
end
plot(STP,Tetaunc,’r-’), hold on
xlabel(’S_{t}’), ylabel(’\theta_{t}’)

% The fraction of pure stock portfolio
randn(’state’, 100); rand(’state’, 100)
for i=1:ns;

Tetastock(i) = 1;
end
plot(STP,Tetastock,’k-’), hold on
xlabel(’S_{t}’), ylabel(’\theta_{t}’)

% The fraction of pure bond portfolio
randn(’state’, 100); rand(’state’, 100)
for i=1:ns;

Tetabond(i) = 0;
end
plot(STP,Tetabond,’c’)
title(strcat(’EL optimal strategy \theta^{EL} as’,...

’ a function of time t and the stock price S’))
xlabel(’S_{t}’), ylabel(’\theta_{t}’)

B.2.4 Necessary m.files which is in the above EL Strategy Algorithms

function G = myNewfn(u)
y1 = 1; y2 = 0.364; t = 5;
b = -0.15*sqrt(15-t); a = -(0.06+(0.15^2)/2)*(15-t);
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G = exp((-1/2)*(u-b).^2)./(y1*t*exp(a+b*u)-y2);
end

function fi = NEWfio(u)
randn(’state’, 100); rand(’state’, 100)
y1 = 1; y2 = 0.364; h1 = 0.5421; h2 = 0.9061; t = 5;
b = -0.15*sqrt(15-t); a = -(0.06+(0.15^2)/2)*(15-t);
StockRN = lognrnd(0,sqrt(0.04*t),1,2000);
S = exp(0.07*t).* StockRN; Sr = sort(S);
statePriceRN = lognrnd(0,sqrt( 0.1225*t),1,2000);
SP = sort(statePriceRN);
H = exp(-0.1413*t)*Sr.*SP ; % the state price density function.
fi = exp(-((u-2*b).^2)/2)./((y1*exp(a)*H(2000).*exp(b*u)-y2).^2);
end

function D11 = DstEL11(u)
% Standard normal distribution function
D11 = (1/sqrt(2*pi))*exp((-1/2)*u.^2) ;
end

function D21 = DstEL21(u)
% Standard normal distribution function
D21 = (1/sqrt(2*pi))*exp((-1/2)*u.^2);
end

function D22 = DstEL22(u)
D22 = (1/sqrt(2*pi))*exp((-1/2)*u.^2);
end

B.3 Matlab Algorithms Related to EUL Risk Measure

B.3.1 Optimal Horizon Wealth of the EUL Risk Manager

% The optimal horizon wealth of the EUL risk manager as a function
% of the horizon state price density H(T).
clear all, close all, clc

randn(’state’, 100); rand(’state’, 100)
y = 1; y2 = 0.0303; h1 = 0.5421; h2 = 0.5585;
HT=exp(-1.0695)*lognrnd(0,sqrt(0.3375),1,15000);
s=sort(HT); ns = length(s);
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for i=1:ns;
if s(i)<h1

F1(i) = 1./(y*s(i)); % the optimal terminal wealth.
s1(i) = s(i); %the state price density function.

elseif ((h1<=s(i)) && (s(i)<h2))
F2(i) = 1.8447 ; % threshold value.
s2(i) = s(i); %the state price density function.

elseif h2<=s(i)
F3(i) = (1+y2)./(y*s(i)); % the optimal terminal wealth.
s3(i) = s(i); %the state price density function.

end
end
F2(F2==0)=[]; F3(F3==0)=[];
s2(s2==0)=[]; s3(s3==0)=[];
plot(s1,F1,’b.-’), hold on
plot(s2,F2,’b.-’), hold on
plot(s3,F3,’b.-’),hold on
title(’optimal terminal wealth of the EUL-portfolio manager’)
xlabel(’H_{T}’), ylabel(’\xi_{T}’), axis([0,1,0,15])
text(0.391,1.8447,’q’,’FontSize’,10.5);
text(0.5421,1.216,’h’,’FontSize’,7.5);
text(0.5585,1.216,’h’,’FontSize’,7.5);
text(0.64,2.3,’q is the threshold value.’,’FontSize’,9);
text(0.64,2.450,’h is the beginning of intermediate states’,...

’FontSize’,9);
text(0.64,2.375,’h is the end of intermediate states’,...

’FontSize’,9);

% Trml as a function of the horizon state price density H(T)
% for the portfolio insurer
for i=1:ns;

if s(i)<h1
K1(i) = 1/(y*s(i));
St1(i)=s(i);

elseif h1<=s(i)
K2(i) = 1.8447; % Threshold value.
St2(i) = s(i);

end
end
K2(K2==0)=[]; St2(St2==0)=[];
plot(St1,K1,’k-’), hold on
plot(St2,K2,’k-’), hold on
axis([0,2,0,15])

% Trml as a function of the horizon state price density H(T)
% for the unconstrained benchmark
I = 1./s;
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plot(s,I,’r’)
axis([0.4,0.9,1.2,2.6])

B.3.2 Probability Density of the Optimal Horizon Wealth Belonging
to the EUL Portfolio Manager

% The probability density function of the optimal terminal wealth
% concerning EUL risk measure
clear all, close all, clc

randn(’state’, 100); rand(’state’, 100)
y1 = 1; y2 = 0.0303; h1 = 0.5421; h2 = 0.5585;
X = lognrnd(0,sqrt(0.3375),1,15000); HT = exp(-1.0695)*X;
s = sort(HT); ns = length(s);
for i=1:ns;

if ( s(i)<h1 )
I1(i) = 1./(y1*s(i));
PDI1(i) = (0.6867*exp(-1.4569*...

(log(0.3432*I1(i))).^2))./I1(i);
elseif (h1<=s(i) && (s(i)<h2))

I2(i) = 1.8447 ;
elseif ( h2<=s(i))

I3(i) = (1+y2)./(y1*s(i));
PDI3(i) =(0.6867*exp(-1.4815*...

((log(0.3331*I3(i))).^2)))./I3(i);
end

end
I2(I2==0)=[]; I3(I3==0)=[]; PDI3(PDI3==0)=[];
plot(I1,PDI1,’b.-’), hold on
j = PDI3(1,1):0.0001:PDI1(1,11779);
plot(max(I2),j,’b.-’), hold on
plot(I3,PDI3,’b.-’), hold on
xlabel(’\xi_{T}’), ylabel(’density’), axis([0,15,0,0.3])
text(3.4469,-0.0075,’*’,’FontSize’,14);
text(2.4596,-0.0065,’b’,’FontSize’,14);
text(8.8482,-0.003,’\spadesuit’,’FontSize’,14);
text(3.8574,-0.0025,’\times’,’FontSize’,14);
text(1.8447,-0.002,’\o’,’FontSize’,14);
text(6,0.25,...

’b -> E[\xi_{T}^{\theta^{0}}] = 2.4596 (Pure Bond)’,...
’FontSize’,10);

text(6,0.22,...
’\times -> E[\xi_{T}^{\theta^{1}}] = 3.8574 (Pure Stock)’,...
’FontSize’,10);

text(6,0.19,...
’* -> E[\xi_{T}^{\theta^{*}}] = 3.4469 (Unconstrained)’,...
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’FontSize’,10);
text(6,0.16,...

’\spadesuit -> E[\xi_{T}^{\theta^{EUL}}] = 8.8482 (EUL Constraint)’,...
’FontSize’,10);

text(6,0.13,...
’ \o -> q = 0.75xe^{rT} = 1.8447 (Threshold)’,...
’FontSize’,10);

% The probability density function of the terminal wealth of
% pure stock portfolio
randn(’state’, 100); rand(’state’, 100)
xLN = lognrnd(0,sqrt(0.6),1,15000);
XT1 = 2.8577*xLN; s = sort(XT1);
PDXT1 = (0.5150*exp(-0.8333*((log(0.3499*s)).^2)))./s ;
plot(s,PDXT1,’k-’), hold on
xlabel(’\xi_{T}’), ylabel(’density’), axis([0,15,0,0.3])

% The probability density function of the terminal wealth of
% pure bond portfolio.
XT0 = 2.4596 ; % the terminal wealth if I only invest in bond.
P = 0:0.0001:1;
plot(XT0,P), hold on
xlabel(’\xi_{T}’), ylabel(’density’)

% The probability density function of the terminal wealth of
% unconstrained portfolio
randn(’state’, 100); rand(’state’, 100)
XTB = 1./s ;
PDFXTB = (0.6867*exp(-1.4569*(log(0.3432*XTB)).^2))./XTB ;
plot(XTB,PDFXTB,’r-’)
title(strcat(’Probability Density Function of’,...

’ EUL Optimal Terminal Wealth’))
xlabel(’\xi_{T}’), ylabel(’density’), axis([0,15,0,0.3])

B.3.3 The EUL Optimal Strategy at Time t < T Before the Horizon
as a Function of Time t and the Stock Price S and the other
Mentioned Strategies

% The EUL-optimal wealth and the fraction of wealth invested
% in stock before horizon
clear all, close all, clc

randn(’state’, 100); rand(’state’, 100)
y1 = 1; y2 = 0.0303; h1 = 0.5421; h2 = 0.5585; t = 5;
StockRN = lognrnd(0,sqrt(0.04*t),1,2000);
S = exp(0.07*t).* StockRN; Sr = sort(S);
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statePriceRN = lognrnd(0,sqrt( 0.1225*t),1,2000);
SP = sort(statePriceRN);
H = exp(-0.1413*t)*Sr.*SP ; % the state price density function.
d21 = (log(h1./H)-(0.06-(0.15^2)/2)*(15-t))./(0.15*sqrt(15-t));
d11 = d21+0.15*sqrt(15-t);
d22 = (log(h2./H)-(0.06-(0.15^2)/2)*(15-t))./(0.15*sqrt(15-t));
d12 = d22+0.15*sqrt(15-t);
kp = exp(0.1413*t)*SP; STP = H.*kp; m = -Inf;
DsE11 = @(u) NewDst11EUL(u); DsE21 = @(u) NewDst21EUL(u);
DsE22 = @(u) NewDst22EUL(u); DsE12 = @(u) NewDst12EUL(u);
FrB = (0.09-0.06)/0.04; q = 1.8447;
for jj = 1:length(Sr)

intDsE11(jj) = quadgk(DsE11,m,-d11(jj));
intDsE21(jj) = quadgk(DsE21,m,-d21(jj));
intDsE22(jj) = quadgk(DsE22,m,-d22(jj));
intDsE12(jj) = quadgk(DsE12,m,-d12(jj));
if ( H(jj)<h1 )

XtEUL1(jj) = (1./(y1*H(jj)))-((1./(y1*H(jj))).*...
intDsE11(jj)-q*exp(-0.06*(15-t))*...
intDsE21(jj))+(((1+y2)./(y1*H(jj))).*...
intDsE12(jj)-q*exp(-0.06*(15-t))*intDsE22(jj));

ptEUL1(jj) = (1-((q*exp(-0.06*(15-t)))./...
XtEUL1(jj)).*(intDsE21(jj)-intDsE22(jj)));

FrEUL1(jj) = FrB*ptEUL1(jj);
kp1(jj) = H(jj).*kp(jj);

elseif (h1<=H(jj) && (H(jj)<h2))
XtEUL2(jj) = (1./(y1*H(jj)))-((1./(y1*H(jj))).*...

intDsE11(jj)-q*exp(-0.06*(15-t))*...
intDsE21(jj))+(((1+y2)./(y1*H(jj))).*...
intDsE12(jj)-q*exp(-0.06*(15-t))*intDsE22(jj));

ptEUL2(jj) = (1-((q*exp(-0.06*(15-t)))./...
XtEUL2(jj)).*(intDsE21(jj)-intDsE22(jj)));

FrEUL2(jj) = FrB*ptEUL2(jj);
kp2(jj) = H(jj).*kp(jj);

elseif ( h2<=H(jj))
XtEUL3(jj) = (1./(y1*H(jj)))-((1./(y1*H(jj))).*...

intDsE11(jj)-q*exp(-0.06*(15-t))*...
intDsE21(jj))+(((1+y2)./(y1*H(jj))).*...
intDsE12(jj)-q*exp(-0.06*(15-t))*intDsE22(jj));

ptEUL3(jj) = (1-((q*exp(-0.06*(15-t)))./...
XtEUL3(jj)).*(intDsE21(jj)-intDsE22(jj)));

FrEUL3(jj) = FrB*ptEUL3(jj);
kp3(jj) = H(jj).*kp(jj);

end
end
XtEUL2(XtEUL2==0)=[]; XtEUL3(XtEUL3==0)=[];
ptEUL2(ptEUL2==0)=[]; ptEUL3(ptEUL3==0)=[];
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FrEUL2(FrEUL2==0)=[]; FrEUL3(FrEUL3==0)=[];
kp2(kp2==0)=[]; kp3(kp3==0)=[];
plot(kp1,FrEUL1,’b.-’), hold on
plot(kp2,FrEUL2,’b.-’), hold on
plot(kp3,FrEUL3,’b.-’), hold on
xlabel(’S_{t}’), ylabel(’\theta_{t}’), axis([0,1.25,-1,2])
text(0.9282,-1.0435,’e’,’FontSize’,13);
text(0.9739,-1.065,’f’,’FontSize’,13);
text(0.52,1.85,...

’e is the beginning of intermediate stock prices’,...
’FontSize’,8.5);

text(0.52,1.7,...
’f is the end of intermediate stock prices’,...
’FontSize’,8.5);

% The fraction of unconstrained portfolio
randn(’state’, 100); rand(’state’, 100)
ns = length(STP);
for i=1:ns;

Tetaunc(i) = 0.75 ;
end
plot(STP,Tetaunc,’r-’), hold on
xlabel(’S_{t}’), ylabel(’\theta_{t}’)

% The fraction of pure stock portfolio
randn(’state’, 100); rand(’state’, 100)
for i=1:ns;

Tetastock(i) = 1;
end
plot(STP,Tetastock,’k-’), hold on
xlabel(’S_{t}’), ylabel(’\theta_{t}’)

% The fraction of pure bond portfolio
randn(’state’, 100); rand(’state’, 100)
for i=1:ns;

Tetabond(i) = 0;
end
plot(STP,Tetabond,’c’)
title(strcat(’EUL optimal strategy \theta^{EUL} as’,...

’ a function of time t and the stock price S’))
xlabel(’S_{t}’), ylabel(’\theta_{t}’)

B.3.4 Necessary m.files which is in the above EUL Strategy Algo-
rithms

function D11 = NewDst11EUL(u)
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% Standard normal distribution function
D11 = (1/sqrt(2*pi))*exp((-1/2)*u.^2) ;
end

function D22 = NewDst12EUL(u)
% Standard normal distribution function
D22 = (1/sqrt(2*pi))*exp((-1/2)*u.^2);
end

function D21 = NewDst21EUL(u)
% Standard normal distribution function
D21 = (1/sqrt(2*pi))*exp((-1/2)*u.^2);
end

function D22 = NewDst22EUL(u)
% Standard normal distribution function
D22 = (1/sqrt(2*pi))*exp((-1/2)*u.^2);
end
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