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ABSTRACT 

 

 

OPTIMUM DESIGN OF COMPOSITE STIFFENED PANELS  

WITH INSTABILITY CONSIDERATIONS 

 

 

 

Cankurt, Ali 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Süha Oral 

 

September 2013, 109 pages 

 

 

 

 

In this study, optimum design of stiffened flat panels is investigated with single objective 

genetic algorithms. The purpose is to have the minimum weight of the stiffeners in stiffened 

panel with buckling load and some ply configuration constraints. Geometric parameters of 

the stiffeners and ply angles of both skin and stiffeners are defined as design variables. The 

ply numbers of both skin and stiffeners are fixed. ANSYS v14.5 is used for the buckling 

analysis of stiffened panels, and MATLAB is used as the software platform to run the 

developed genetic algorithm codes. Firstly, the finite element modeling for buckling analyses 

and optimization method with genetic algorithms are validated with two separate studies 

found in the literature and good agreement is found between them. Then, a stiffener type 

having the greatest buckling strength is selected among blade, J, T and hat type stiffeners. 

Ten randomly defined ply configurations are tried in several sets of analyses for this purpose. 

Then, the appropriate stiffener type is selected at the end. Finally, optimization studies are 

conducted with the stiffener type selected. Four optimization studies and their results are 

presented with the panels having two, three, four and five stiffeners. General conclusions and 

recommendations are mentioned at the end.  

 

Keywords: Optimization, Genetic Algorithms, Buckling, Stiffened Panels, Finite Element 

Analysis, ANSYS, APDL, MATLAB 
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ÖZ 

 

 

YAPISAL KARARSIZLIK DİKKATE ALINARAK PEKİŞTİRİLMİŞ 

KOMPOZİT YAPILARIN OPTİMUM TASARIMI  

 

 

 

Cankurt, Ali 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez yöneticisi: Prof. Dr. Süha Oral 

 

Eylül 2013, 109 sayfa 

 

 

 

 

Bu çalışmada, pekiştirilmiş düz panellerin tek amaçlı genetik algoritmalar ile optimum 

tasarımı incelenmiştir. Çalışmanın amacı burulma ve bazı katman konfigürasyonu 

sınırlamaları ile pekiştirici ağırlıklarının optimize edilmesidir. Pekiştiricilerin geometrik 

parametreleri ve kabuk ile pekiştiricilerin katman açıları, tasarım parametreleri olarak 

optimizasyon problemine entegre edilmişlerdir. Kabuk ve pekiştiricilerin katman sayıları 

optimizasyon sürecinde sabit tutulmuştur. Burulma sonlu elemanlar analizleri için ANSYS 

v14.5 yazılımı, optimizasyon kodlarının yazılması ve koşturulması için de MATLAB 

yazılımı kullanılmıştır. Çalışmada ilk olarak burulma sonlu elemanlar modeli ve geliştirilmiş 

olan optimizasyon kodu, literatürde bulunmuş olan iki adet çalışma ile karşılaştırılmıştır ve 

sonuçların oldukça uyuştuğu görülmüştür. Daha sonra, pala (İng. blade), J, T ve baş (İng. 

hat) tipi pekiştiriciler arasından burulma dayanımın yüksek olan bir pekiştirici tipi seçilmiştir. 

On adet rasgele yaratılmış olan katman konfigürasyonu ile birçok analiz seti denenmiştir. 

Daha sonra bu analiz sonuçları ile pekiştiricilerin arasından uygun olanı seçilmiştir. En son 

olarak, seçilmiş olan bu pekiştirici tipi optimizasyona tabi tutulmuştur. İki, üç, dört ve beş 

pekiştiricili paneller için ayrı olarak dört adet optimizasyon çalışması yapılmış ve sonuçları 

sunulmuştur. Tezin sonunda da çıkarılan sonuçlar ve öneriler verilmiştir. 

 

Anahtar kelimeler: Optimizasyon, Eniyileme, Burulma, Pekiştirilmiş Paneller, 

Güçlendirilmiş Paneller, Sonlu Elemanlar Analizi, ANSYS, APDL, MATLAB 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

In aerospace industry, thin walled structures constitute most of the building blocks of the 

vehicles. These thin walled structures are mostly made of composite materials because of 

their high strength and lightweight characteristics. Composite materials are very specific 

materials that can be used to resist most of the loading types in aerospace structures, but the 

key point is that they should be carefully designed for the type of loading. Therefore, the 

engineering judgments of the designer and the analyst play a critical role in using composite 

materials. 

The thin walled composite structures are very powerful in tensile loads, but for especially 

compression, shear and bending loads, they should be supported by additional members. In 

aerospace industry, the stiffeners are used for stiffening these thin walled panels [22]. These 

stiffeners are also made with composite materials and they can have a specific shape like J, 

T, hat, blade or many other different shapes. They are placed generally with equal distances 

on the panel as shown in Figure 1. An appropriate design is also important for stiffened 

panels. The design should be such that the stiffened panel should resist buckling as well as 

static and dynamics loads acting on the structure. Also, in order to have a lightweight 

structure, the weights of these members should be at minimum. Therefore, an optimum 

structural design is needed. 

Using optimization techniques in aerospace industry has been a usual practice in the recent 

years. The structures must be as light and stiff as possible. Using optimization techniques 

with finite element analyses requires intense computational effort and a long time. However, 

with the developing technology on preprocessors and parallel processing, the structural 

analyses that were nearly impossible to do ten years ago can be done easily now. Therefore, 

using the optimization techniques with finite element analysis is not an important issue with 

the current computer technology.  

Buckling is a critical failure mode in aerospace structures. Since these structures are thin 

walled, the probability of buckling is higher than thick walled structures. Buckling is 

generally caused by compression and shear loads acting on the structure and it can make the 

body fail before the structure fails by overcoming the strength limits with static and dynamic 

loads acting on the structure. The effect of buckling in aerospace structures can be clearly 

seen in Figure 2. In this example, the stiffened panel is loaded with compression and shear 

and it buckled as given in Figure 2. 
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In this thesis, the weight of stiffeners in the stiffened panel is to be optimized with a 

compression load applied on the structure for buckling. As an optimization tool genetic 

algorithms are used. Genetic algorithms are heuristic type of optimization algorithms and 

they require much more computational time when compared with conventional optimization 

tools. However, capturing global optimum design points is possible with this optimization 

tool, since the design points are not evaluated individually in an iterative way. They are 

evaluated in a population, and the population iterates. Firstly, the stiffener type to be 

optimized is selected among T.J. blade and hat type stiffeners with a set of analyses as a 

preliminary study. When the stiffener having the most advantageous characteristics are found 

with these analyses, the geometric parameters and the ply angles of skin and the stiffeners 

are optimized with genetic algorithms. The ply angles should be selected among -45º, 0º, 

+45º, 90º because of the manufacturing constraints. The stiffener and skin layups in the 

optimization study need to be symmetric and balanced to reduce the coupling effects on the 

structure. Also, the layups must satisfy the 4-ply contiguous constraints, which is due to the 

fact that more than 4 plies with the same angle should not be stacked on top of each other. 

This constraint reduces the probability of the structure to develop matrix cracks in it. The 

compression buckling load limit is also added to the optimization problem as a nonlinear 

constraint. For different number of stiffeners, the optimization problem is solved and the 

results are presented in the end. It is also important to note that both the buckling finite 

element model and the genetic algorithm optimization method developed are validated with 

test and optimization methods found in literature. 

 

Figure 1. An example of stiffened panels produced for fuselage tests in aerospace industry 

[23] 
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Figure 2. Effects of buckling in aerospace structures: an example [24] 

1.2 Scope of the Thesis 

In this thesis, the weight of the stiffeners in the stiffened composite panels that are made up 

of unidirectional (UD) laminates is optimized under compressive loading with a predefined 

buckling constraint. The finite element method is used as a numerical technique for buckling 

analyses and single objective genetic algorithm is used for optimization. The optimization 

design parameters for this optimization problem are the geometrical parameters of the 

stiffeners and the layups of both skin and stiffeners. The number of plies in the skin and the 

stiffeners is fixed throughout the study, therefore only the weights of stiffeners are optimized 

in this study. The ply angles of both skin and stiffeners should be selected among -45º, 0º, 

45º, 90º because of the manufacturing constraints. Finite element analysis is carried out using 

ANSYS 14.5 software and genetic algorithm is programmed using MATLAB software. Skin 

and stiffener geometries of panels are modelled with parametrical modeling feature of 

ANSYS APDL programming language. The layup of skin and stiffener laminates consists of 

symmetric and balanced ply configuration. The layups also must satisfy the 4-ply contiguous 

constraint to prevent matrix cracking in the laminates. These constraints are also 

implemented into the optimization problem in an efficient way. The finite element modeling 

technique and genetic algorithm optimization technique are validated using an 

experimentally tested example and an optimized geometry from literature. Then, a stiffener 

type having a greater buckling strength is chosen among four types of stiffeners with a set of 

analyses as an initial study. The fittest type among these stiffeners is chosen. Then, its 

geometry and ply configuration are optimized with the help of genetic algorithms. These 

optimization studies are repeated for four different configurations which have different 

number of stiffeners included. 
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1.3 Outline of the Thesis 

The outline of the thesis can be given as follows: 

In Chapter 2, the studies related with buckling of stiffened panels and structural optimization 

techniques from literature are introduced. 

In Chapter 3, the theory behind the buckling of composite laminated plates are introduced. 

First order shear deformation theory, stress-strain relations, lamina-laminate stiffness 

matrices and their relations with structural forces and moments acting on the shell structure 

are presented. Then, buckling behavior of laminated plates are mentioned and the finite 

element solutions to buckling problem are presented. Finally, the buckling analysis of a 

simply supported rectangular plate with First Order Shear Deformation Theory (FSDT) is 

introduced at the end. 

In Chapter 4, the parametrical modeling technique used is presented. Also, the boundary 

conditions, loading, the technique to link the nodes of skin and stiffener is introduced. In 

addition, the details of the theory behind the genetic algorithm optimization technique are 

introduced at the end. The encoding strategy to handle balanced and 4-ply contiguous 

constraint; the penalty formulation to handle the buckling constraint; the crossover, mutation 

and permutation operators used are also presented in detail in this chapter. 

In Chapter 5, the numerical validation studies are presented. For the finite element modeling 

of buckling analysis, a study that shows the numerical analysis and test results of a blade 

stiffened panel is found in literature. The results of the modeling done in ANSYS is compared 

with the literature results and good agreement is found between them. In the second part, an 

optimization study of a stiffened plate with one hat type stiffener is found. The same 

optimization study is conducted with the optimization method used in the thesis and similar 

results are found. These results are given in detail. 

In Chapter 6, the type of stiffener to be optimized is determined with a set of analyses. Two 

separate studies are conducted. In the first one, stiffened plates with one stiffener are 

modelled. Ten random ply configurations are tried in the analyses of stiffened panels with T, 

J, hat and blade type stiffeners. The results are presented. In the second one, stiffened plates 

with four stiffeners are modelled. Ten random ply configurations are again tried in the 

analyses of stiffened panels with T, J, hat and blade type stiffeners. The results are also 

presented. The stiffener type that is more appropriate to optimize is selected among the 

stiffeners at the end of the chapter. 

In Chapter 7, the optimization studies are conducted with hat type stiffeners. Stiffened panels 

with two, three, four and five stiffeners are modelled separately and their optimum results 

are found. The results are presented at the end. 
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In Chapter 8, overall assessments and conclusions are presented. Some important remarks 

about optimization results are introduced. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

In the literature survey, papers related with buckling of stiffened panels, optimum design of 

structures and optimization algorithms are given as follows: 

Irisarri et al. [1] presented a multi-objective optimization problem for the design of stiffened 

panels under biaxial load. The stiffener type used is blade-type stiffeners and the objective 

of the optimization is to obtain the optimum stiffened panel layup using the ply angles of skin 

and stiffeners as optimization variables in terms of first buckling, ultimate collapse and 

material failure loads. The authors firstly validated their finite element model with an 

experimental result [2]1 they found in literature. Then, to decrease the amount of time for the 

problem, the finite element solutions are approximated by trained metamodels. These 

metamodels are chosen as Radial Basis Functions under Tension. Manufacturing constraints 

are also taken into account. Then, firstly two sub problems are constructed; one for the skin 

layup optimization, the other one for stiffener layup optimization. Secondly, the global 

problem is solved as a whole. Finally, the optimization results show significant 

improvements in the objectives. 

Wang et. al. [3] tried to optimize blade-type stiffened panels with Ant Colony Algorithm. 

The stiffened panel is subjected to a uniform biaxial compressive load and the panel is simply 

supported along its four edges. The buckling analysis of the structure is performed with Finite 

Strip Method. The optimization parameters are the ply sequences of the skin and the 

stiffeners, the height of the stiffeners and the number of plies in the skin and the stiffeners. 

There is no weight penalty and the weight is kept constant. The blade height is written in 

terms of other design variables to eliminate the need to use penalty functions. The single 

objective of the optimization problem is to maximize the first buckling load. A Multi City- 

Layer Ant Colony Algorithm (MCLACA) constructed is first validated with the optimization 

results of a simply supported biaxially loaded rectangular plate found in literature. The results 

show that the optimization algorithm used gives quite close results. Then, MCLACA 

algorithm is applied to the blade stiffened structure. Also, the algorithm is applied again for 

different number of stiffeners. When the results are investigated, it is shown that there is a 

significant improvement on the buckling strength of the structure. In addition, if the stiffener 

number increases after some point, there is a very small amount of increase in the buckling 

strength of the structure.  

                                                      
1 Paper [2] together with [1] is also used for the validation of the finite element model in this thesis. 
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Todoroki and Sekiskiro [4] proposed a new optimization method with the help of Multi-

Objective Genetic Algorithm (MOGA). In the paper, a hat-stiffened panel is modelled 

parametrically with one stiffener. ANSYS Finite Element Modeling (FEM) software is used 

for finite element simulations. The loading is applied uniaxially from the skin. The objective 

of the optimization method is to minimize the weight of the structure with buckling 

constraint. Geometric dimensions of stiffener, thicknesses and layup configurations of both 

skin and stiffeners are added as optimization parameters. To reduce to computational cost at 

each optimization loop, DACE Kriging approximation method is introduced. To make a 

feasible and accurate DACE response surface, the Gaussian correlation parameters has to be 

chosen in a special way. Wrong correlation parameters can cause wrong approximation 

values. Particle Swarm Optimization tool is used with iterations to obtain the right 

parameters. Once the Kriging model is constructed, the MOGA tool is used to solve 

optimization problem with the geometric parameters. For the ply configurations, Fractal 

Branch and Bound (FBB) method is used as an additional optimization tool. Once plies are 

optimized with FBB method, new parameters are defined with MOGA, the fitness values are 

calculated, plies are optimized through FBB method for the corresponding geometrical 

dimensions. The optimization process makes a continuous loop with MOGA and FBB. The 

optimum result is obtained with 200th generation of MOGA, the result is very close to the 

true optimal result given in the paper. 

Vitali et. al. [5] presented a single objective optimization problem for hat-stiffened panels of 

Blended Wing Body (BWB) transport aircrafts. The structure needs to be optimized with 

respect to weight with the constraints of buckling load and maximum stress of the cover 

panel. Firstly, the geometrical parameters are found with PANDA2 software, but this 

software only allows for continuous parameters. Then, a more complex analysis is done with 

STAGS finite element program since there are varying axial loads applied on the structure. 

STAGS finite element cannot compute the optimum design itself, therefore a response 

surface technique is used. With the obtained response surface, an optimization procedure on 

Microsoft Excel is applied on the polynomial response surface. The weight is minimized 

more than %30 with the obtained results and the computational costs are not that high when 

compared with the accurate results obtained. 

Lanzi et. al. [6] utilized genetic algorithms and neural network together. The main purpose 

of the optimization problem is to minimize the weight of the stiffened panel structure. The 

optimization variables are the number of layers of the skin and the stiffeners, side dimension 

of stiffeners and their number along the skin width. The constraints are the post-buckling, 

linear buckling and strength constraints. L-shaped stiffeners with a flat skin are used in the 

optimization problem and ABAQUS finite element software is used for the analyses. Since 

the postbuckling is computationally expensive to check in every iteration of the optimization 

problem, artificial neural networks (ANN) are used to define the response surface of the 

structure. When the ANNs are trained with sufficient number of finite element analyses 

(FEAs), the genetic algorithm is used in this single objective constrained optimization 

problem. Two different optimizations are done, the first one is done to obtain a high ratio of 
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maximum allowable load to first buckling load and to show the structure can be used under 

wide range postbuckled conditions. The second one is done to meet the manufacturing and 

loading constraints specified and to have the optimum weight design. The results show that 

the optimum design results obtained from ANN are very close to the ABAQUS results. 

Vescovini et. al. [7] investigated the buckling optimization of both flat and curved stiffened 

panels. An analytical formula is developed for the structural analysis of local buckling 

behavior of blade, j, t, and hat-stiffened panels. The panels are loaded in compression and 

shear. Two stiffeners are modelled with the skin. The panel is given simply supported 

boundary conditions from its transverse edges, and periodic boundary conditions from its 

longitudinal edges to represent the whole surrounding structure. Firstly, an optimization 

problem is solved with hat stiffened flat panels. The web angle of the hat stiffeners, the ply 

angles of both skin and stiffeners are given as optimization variables. The ply angles are 

restricted to be 0º, ±45º, 90º for one design and every ±15 for another design. The prebuckling 

stiffness and technological requirements like contiguity and symmetric-balanced laminate 

are given as constraints with penalty functions. The optimization results are compared with 

the ABAQUS simulation results with the same parameters. It is shown the results are close. 

For the second optimization case, a curved panel with open section stiffeners is constructed 

as an optimization problem. The objective is to minimize the weight with buckling load and 

prebuckling stiffness constraints. The constraints are also handled with penalty functions. 

The results show that the blade stiffened panels have the optimum design. When the 

analytical results of the optimum point are compared with the ABAQUS simulation results 

with the same parameters, it is shown that the results are also close. 

Marin et. al. [8] presented a multi-objective optimization problem with blade-stiffened 

panels. They used neural networks and genetic algorithms together in the optimization 

problem. The geometry consists of three stringers (blade-type stiffeners) and one panel. The 

panel is subjected to a constant load in the direction of stiffener axis, and also a hygrothermal 

expansion takes place with the temperature changes in the environment. The mass, the 

hygrothermal expansion and the stresses between skin and the stiffeners are chosen as 

objectives of the optimization problem. The ply configurations of the stiffeners and the skin 

are symmetric-balanced and fixed throughout the analysis. Geometric dimensions of 

stiffeners are entered as design variables in the optimization problem. Several subproblems 

are constructed for different temperature ranges and neural networks are trained with the 

finite element simulations performed in ABAQUS Finite Element (FE) program. Then, the 

trained ANNs are applied a MOGA and the objectives are minimized. It is shown that the 

mass is reduced about 0.54%, the hygrothermal strain and tension between stringers and skin 

are decreased about 6.48% and 7.55% 

Barkanov et. al. [9] developed a new optimal design concept for aircraft lateral wing upper 

covers. They investigated three different stiffener types with T, I and hat-type stiffeners. 

ANSYS and NASTRAN finite element programs are used to calculate the linear buckling 

load of the structure. The stiffeners are attached to the skin with shared node technique and 
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3D beam elements in ANSYS and with rigid link elements in NASTRAN. Two modeling 

techniques are also investigated with modeling ribs and also replacing ribs with appropriate 

boundary conditions. Since the analyses are computationally expensive, a response surface 

technique is constructed. Then, random search method is used to find the optimum structure. 

In the results, the beam linked and shared node models of ANSYS and rigid link models of 

NASTRAN give close results. Also, modeling ribs and replacing ribs with simply supported 

boundary conditions gives very close results.  

Nagendra et. al. [10] presented an improved genetic algorithm for the analysis of stiffened 

composite panels. Since the ply angle changes are discrete for stiffened panels, heuristic 

optimization methods like genetic algorithm can perform the optimization. However, genetic 

algorithms have some disadvantages on computational costs, the paper suggests some 

changes in the genetic algorithm. A four equally-spaced blade-stiffened panel is modelled 

and it is subjected to compression and shear loads. The layup of skin and stiffeners are made 

up of 0º, ±45, 90º ply angles and the layup is symmetric and balanced. Shape imperfections 

are also added to the panel. The single objective of the problem is to minimize the weight 

under buckling, strength and contiguous ply constraints. The buckling load is calculated with 

PASCO code. In the Genetic Algorithm (GA), new operators are added as substring 

crossover, mutation, permutation, and inter- and intra-laminate swap operators.  The results 

show that the weight of the previously optimized panel is further reduced about 4%. 

Bisagni et. al. [11] proposed a fast tool for buckling analysis and optimization of composite 

stiffened panels. The analysis is based on analytical formulations. Closed-form solutions are 

constructed for the linear buckling analyses and semi-analytical formulations are derived for 

the nonlinear postbuckling region. The panel is subjected to a uniaxial load along its 

longitudinal edges. As an optimization tool, genetic algorithms are used. Weight is the single 

objective of the problem. Constraints are handled with penalty functions. Two panels are 

investigated, one is an isotropic stiffened panel and the other one is a composite stiffened 

panel. The design variables are the number and height of stiffeners and skin and stiffener 

thicknesses. Two stiffeners are modelled near the skin longitudinal edges to prevent local 

buckling at the edges. The constraints are also given as prebuckling stiffness, postbuckling 

stiffness, local buckling load and the ratio of local buckling load to global buckling load 

lower limits. The optimization is done and the optimum designs have a difference smaller 

than about 9% in local buckling and 3% in global buckling when compared with the results 

of ABAQUS FE simulation software. 

Kassapoglou [12] presented a multi-objective optimization problem for the composite 

stiffened panels. The objectives of the optimization are the cost and the weight of the 

composite stiffened panels. The panel is subjected to compression load along the longitudinal 

edges and shear loads on all edges. The stiffeners can have any shape and geometry type like 

L, C, Z, T, J, I and hat. The skin and stiffener thicknesses and the spaces between the 

stiffeners are also allowed to vary. The skin and stiffener material failure conditions, 

manufacturing conditions and buckling loads are also added as strength constraints. The 
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buckling loads and strength constraints are computed via analytical formulations. The 

optimization is performed with a Pareto based algorithm and Pareto optimum configurations 

are found. In the results, it is shown that J type stiffeners have the lowest weight configuration 

while T type stiffeners have the lowest cost configuration. The optimum configuration 

considering both cost and weight is obtained with T type stiffeners.  

Sunny et. al [13] investigated the design optimization of curvilinear stiffened isotropic 

structure with ANN Kriging based surrogate modeling approach. The in-house code 

EBF3PanelOpt is used as the optimization tool. This tool uses Msc. Patran for modeling and 

Msc. Nastran for FE analysis and GAs for optimization. To reduce the computational time 

during optimization, ANNs are trained with finite element simulations using an adaptive 

sampling algorithm. Then, the residues from ANNs are also handled with Kriging based 

modeling. Two examples conditions are investigated with the same model, only the loading 

condition is changed from uniaxial compression load to shear load in the model. A 

rectangular shaped panel with two curvilinear blade-type stiffeners is modelled. Four edges 

of the structure are given simply supported boundary conditions. The Von Mises stress, 

crippling stresses and buckling load are given as optimization constraints. Optimization 

results are also compared with the non-approximated results with GA for the uniaxial loading 

example. The results show that there is not much difference between traditional optimization 

technique and ANN residual Kriging, and this approximation technique can be selected for 

its computational efficiency. 

 

  

.  
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CHAPTER 3 

 

 

THEORY OF BUCKLING IN COMPOSITES 

 

 

 

The buckling analyses are performed in ANSYS using SHELL281 8-noded quadratic 

reduced shell elements. These elements use First Order Shear Deformation theory (FSDT) 

(also known as Reissner-Mindlin shell theory) for stiffness determination of the plates. Most 

of the structures having thin-to-moderately thick members can be successfully modelled with 

FSDT [16]. 

3.1 Stress-Strain Relations in Lamina Basis for FSDT 

The big difference between FSDT and Classical Laminated Plate Theory (CLPT) is in CLPT, 

when the surface deforms, the straight line drawn perpendicular to the surface remains 

straight and perpendicular to the surface. In FSDT, this straight line also remains straight, but 

it may not be perpendicular to the surface, its angle may change. This deformation technique 

produces constant transverse shear and makes the FSDT handle moderately thick structures 

when compared with CLPT [16]. The deformation characteristics of FSDT can be seen in 

Figure 3.  

 

Figure 3. The deformation characteristics of FSDT [14] 
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The displacement equations in this theory can be given as: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) + 𝑧𝜙𝑥(𝑥, 𝑦) 

𝑣(𝑥, 𝑦, 𝑧) =  𝑣0(𝑥, 𝑦) +  𝑧𝜙𝑦(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(3.1) 

Also note that,  

𝜙𝑥 =
𝜕𝑢

𝜕𝑧
  𝑎𝑛𝑑  𝜙𝑦 =

𝜕𝑣

𝜕𝑧
 

(3.2) 

u, v and w are the displacements in x, y and z-directions of a point in the plate respectively. 

The in-plane strain relations for FSDT can be given as follows: 

𝜀𝑥 =
𝜕𝑢0
𝜕𝑥

+
1

2
(
𝜕𝑤0
𝜕𝑥

)
2

+ 𝑧
𝜕𝜙𝑥
𝜕𝑥

 

𝜀𝑦 =
𝜕𝑣0
𝑦
+
1

2
(
𝜕𝑤0
𝜕𝑦

)
2

+ 𝑧 (
𝜕𝜙𝑦

𝜕𝑦
) 

𝛾𝑥𝑦 = (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

+
𝜕𝑤0
𝜕𝑥

𝜕𝑤0
𝜕𝑦

) + 𝑧 (
𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
) 

𝛾𝑥𝑧 =
𝜕𝑤0
𝜕𝑥

+ 𝜙𝑥,      𝛾𝑦𝑧 =
𝜕𝑤0
𝜕𝑦

+ 𝜙𝑦 ,       𝜀𝑧𝑧 = 0 

(3.3) 

Since the partial derivative values are very small, the multiplication terms can be neglected. 

This reduces the in-plane strains into: 

𝜀𝑥 =
𝜕𝑢0
𝜕𝑥

+ 𝑧
𝜕𝜙𝑥
𝜕𝑥

 

𝜀𝑦 =
𝜕𝑣0
𝑦
+ 𝑧

𝜕𝜙𝑦

𝜕𝑦
 

𝛾𝑥𝑦 = (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) + 𝑧 (

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
) 

(3.4) 
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Which is very similar to the CLPT formulation. In matrix formulation, it can be given as: 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

=

{
  
 

  
 𝜀𝑥𝑥

(0)

𝜀𝑦𝑦
(0)

𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
(0)

𝛾𝑥𝑦
(0)
}
  
 

  
 

+ 𝑧

{
  
 

  
 𝜀𝑥𝑥

(1)

𝜀𝑦𝑦
(1)

𝛾𝑦𝑧
(1)

𝛾𝑥𝑧
(1)

𝛾𝑥𝑦
(1)
}
  
 

  
 

=

{
 
 
 
 
 

 
 
 
 
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑤0
𝜕𝑦

+ 𝜙𝑦

𝜕𝑤0
𝜕𝑥

+ 𝜙𝑥

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
 
 
 
 
 

 
 
 
 
 

+ 𝑧

{
 
 
 
 

 
 
 
 

𝜕𝜙𝑥
𝜕𝑥
𝜕𝜙𝑦

𝜕𝑦
0
0

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥 }
 
 
 
 

 
 
 
 

 
(3.5) 

In FSDT, like CLPT, the stiffness matrix of lamina is given in reduced form since the in-

plane and out-of-plane stress-strain relationships are uncoupled. It is simply the inverse of 

the compliance matrix, it can be given as: 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑄44 0
0 0 0 0 𝑄55]

 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦
𝜀𝑥𝑧
𝜀𝑦𝑧}
 
 

 
 

 

[

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] =

[
 
 
 
 
 
 
1

𝐸1
−
𝑣12
𝐸1

0

−
𝑣12
𝐸1

1

𝐸2
0

0 0
1

𝐺12]
 
 
 
 
 
 
−1

 

𝑄11 =
𝐸11

1 − 𝑣12
2 𝐸22

𝐸11

 ,     𝑄12 =
𝑣12𝐸22

1 − 𝑣12
2 𝐸22

𝐸11

 ,    𝑄22 =
𝐸22

1 − 𝑣12
2 𝐸22

𝐸11

 ,   𝑄66 = 𝐺12  

𝑄44 = 𝐺13 ,    𝑄55 = 𝐺23 

(3.6) 

The theory for FSDT in lamina basis is explained in this section. In the following section, the 

laminate theory is explained. 

3.2 Laminate Level Theory 

In laminate level, the stiffness matrices coming from the individual laminas are coupled. 

Firstly, the lamina stiffness matrices has to be converted into a global coordinate system as 

given in Eq. (3.7).  
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[�̅�] = [𝑇][𝑄][𝑇]𝑇 

[𝑇] =

[
 
 
 
 

cos(𝜃) sin(𝜃) −2 sin(𝜃) cos(𝜃) 0 0

sin(𝜃) cos(𝜃) 2 sin(𝜃) cos(𝜃) 0 0

cos(𝜃) sin(𝜃) − cos(𝜃) sin(𝜃) cos(𝜃)2 − sin(𝜃)2 0 0
0 0 0 cos(𝜃) sin(𝜃)

0 0 0 − sin(𝜃) cos(𝜃)]
 
 
 
 

 

(3.7) 

The lamina stress-strain relationship was as follows: 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑄44 0
0 0 0 0 𝑄55]

 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

𝜕𝑤0
𝜕𝑥

+ 𝜙𝑥

𝜕𝑤0
𝜕𝑦

+ 𝜙𝑦 }
 
 
 
 
 

 
 
 
 
 

+ 𝑧

{
 
 
 
 

 
 
 
 

𝜕𝜙𝑥
𝜕𝑥
𝜕𝜙𝑦

𝜕𝑦

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
0
0 }

 
 
 
 

 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 
(3.8) 

After the transformation, this relationship will be as follows: 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 𝑄16 0 0
𝑄12 𝑄22 𝑄26 0 0
𝑄16 𝑄26 𝑄66 0 0
0 0 0 𝑄44 𝑄45
0 0 0 𝑄45 𝑄55]

 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

𝜕𝑤0
𝜕𝑥

+ 𝜙𝑥

𝜕𝑤0
𝜕𝑦

+ 𝜙𝑦 }
 
 
 
 
 

 
 
 
 
 

+ 𝑧

{
 
 
 
 

 
 
 
 

𝜕𝜙𝑥
𝜕𝑥
𝜕𝜙𝑦

𝜕𝑦

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
0
0 }

 
 
 
 

 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 
(3.9) 

Global stiffness of the laminate has the form: 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = [

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

] {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

} 
(3.10)  
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{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

] {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

} 

{
𝑄𝑦
𝑄𝑥
} = 𝐾 [

𝐴44 𝐴45
𝐴45 𝐴55

]

{
 

 
𝜕𝑤0
𝜕𝑥

+ 𝜙𝑥

𝜕𝑤0
𝜕𝑦

+ 𝜙𝑦}
 

 
 

𝑤ℎ𝑒𝑟𝑒      𝜀𝑥
0 =

𝜕𝑢0
𝜕𝑥

 ,   𝜀𝑦
0 =

𝜕𝑣0
𝜕𝑦

 ,    𝛾𝑥𝑦
0 =

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
    

𝑎𝑛𝑑     𝜅𝑥 =
𝜕𝜙𝑥
𝜕𝑥

 ,   𝜅𝑦 =
𝜕𝜙𝑦

𝜕𝑦
,   𝜅𝑥𝑦 =

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
 

In Eq. (3.10), Nx, Ny and Nxy terms are the two normal and one shear forces acting in the 

plane of the laminate. Mx, My and Mxy terms are the moments acting on the laminate as 

shown in Figure 4. 𝜀𝑥
0, 𝜀𝑦

0, 𝛾𝑥𝑦
0  are the middle surface strains, 𝜅𝑥

0, 𝜅𝑦
0, 𝜅𝑥𝑦

0  are the middle 

surface curvatures respectively. Also, K is a correction factor for transverse shear terms. 𝑄𝑥 

and 𝑄𝑦 are the transverse shear forces acting on the laminate. It is important to note that the 

transverse shear strains are calculated as constant through the thickness so are the stresses 

since there is no z-related term in their formulation, but normally the transverse shear strains 

and stresses are at least quadratic terms [16]. At those points, the strain energy must be equal 

to those in the three dimensional elasticity solution. With the multiplication of K term with 

the stress values, the strain energy is made equal. 
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Figure 4. In-plane forces and moments acting on the laminate [14] 

The forces and moments acting on the laminate are directly related with the stresses acing on 

the laminate. This can be expressed for N-layered laminate as in Eq. (3.11).  

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} 𝑑𝑧 =

𝑡

2

−
𝑡

2

∑∫ [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑘

𝑑𝑧
𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = ∫ {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} 𝑧𝑑𝑧 =

𝑡

2

−
𝑡

2

∑∫ [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑘

𝑧𝑑𝑧
𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

 

{
𝑄𝑦
𝑄𝑥
} = 𝐾∫ {

𝜏𝑦𝑧
𝜏𝑥𝑧
}

𝑡

2

−
𝑡

2

𝑑𝑧 = 𝐾∑∫ {
𝜏𝑦𝑧
𝜏𝑥𝑧
} 𝑑𝑧

𝑧𝑘+1

𝑧𝑘

𝑁

𝑘=1

 

(3.11) 
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In Eq. (3.11), the z terms are the positions of the layers in the stacking direction with respect 

to the midplane. This value can be seen clearly in Figure 5. When the integrations in Eq. 

(3.11) are coupled with the globally transformed lamina stress-strain relations, the A, B and 

D values will be as given in Eq. (3.12). That is also valid for transverse shear forces, the 

laminate stiffness coefficients of A44, A45 and A55 are the same as the other A terms.  

 

Figure 5. The z values of laminas in the laminate 

𝐴𝑖𝑗 =∑(�̅�𝑖𝑗)𝑘
(𝑧𝑘 − 𝑧𝑘−1)

𝑁

𝑘=1

 

𝐵𝑖𝑗 =
1

2
∑(�̅�𝑖𝑗)𝑘

(𝑧𝑘
2 − 𝑧𝑘−1

2 )

𝑁

𝑘=1

 

𝐷𝑖𝑗 =
1

3
∑(�̅�𝑖𝑗)𝑘

(𝑧𝑘
3 − 𝑧𝑘−1

3 )

𝑁

𝑘=1

 

(3.12) 

A, B and D matrices also have a physical meaning. “A” matrix terms are related with 

extensional stiffness, “B” matrix terms are related with bending-extension coupling stiffness, 

“D” matrix terms are related with bending stiffness. Also, A16 and A26 terms are related with 

shear-extension coupling, and D16 and D26 terms are related with bend-twist coupling. 

Existence of bending extension stiffness terms means that if an extensional force is applied 

to the laminate, it will also create bending moments in the laminate or if a bending moment 

is applied to the laminate, extension forces will also be created. Bend-twist coupling terms, 

if they are nonzero, create also torsion if a bending moment is applied to the structure. Finally, 

if shear-extension coupling terms are nonzero, in plane shear forces will be created if 

extensional forces are applied to the structure. 
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3.3 Buckling Behavior of Laminated Plates 

Buckling behavior of plates is different when compared to buckling of columns. When plates 

buckle, they deform out-of-plane in the form of sine waves. Therefore, they have two-

dimensional deformation characteristics as shown in Figure 6. If a very long plate is loaded 

with compressive load, the number of sine waves developed on the structure may increase 

[14].  

 

Figure 6. An illustration about plate buckling with unidirectional compressive load [14] 

The load-deformation characteristic of the plates are given in Figure 7. At the beginning, the 

plate shortens with the applied compressive load and the plate remains flat with this loading. 

After the load reaches a value called “bifurcation point”, the buckling occurs in the plate and 

the plate cannot stay flat after that loading, it deforms out-of-plane and takes the form of 

buckled mode shape of the structure. The columns collapse and cannot carry any more load 

after this bifurcation point. Unlike columns, after the bifurcation point, the plates can carry 

more load, but it loses some of its stiffness as shown in Figure 7. This region beyond the 

bifurcation point is called post-buckling region and it is beyond the scope of this thesis. It 

will not be investigated in detail.  

 

Figure 7. Load-deformation characteristics of a buckled perfectly flat plate [14] 
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3.4 Finite Element Implementation of Buckling 

In thin walled structures like plates, the stiffness and response of the structure in the lateral 

direction is directly affected by the membrane forces acting on the structure. This phenomena 

is called “stress stiffening”. If the structure is exposed to tensile membrane forces, the 

structure starts to stiffen in the lateral direction and also when it is exposed to compressive 

membrane forces, it starts to lose its stiffness in the lateral direction. At the bifurcation point 

discussed in 3.3, the total stiffness of the structure comes to a point that it can deform in 

lateral direction further without any change in the compression load applied [25]. Then, the 

membrane strain energy is converted into bending strain energy which leads to buckling of 

the structure.  In finite element formulation, the total stiffness matrix of the structure consists 

of conventional stiffness terms of the structure [K] which are not related with any load, and 

the stress stiffness matrix terms [Kσ] which are linearly dependent to the membrane force 

applied, so is the structural forces applied as seen in Eq. (3.13).  In these equations, a 

reference load is applied to the structure and the variation in the load is transmitted with a 

load factor λ since the structural forces and stress stiffness matrix terms are linearly 

dependent to the force applied: 

[𝐾𝜎] = 𝜆[𝐾𝜎]𝑟𝑒𝑓       𝑎𝑛𝑑      {𝑅} = 𝜆{𝑅}𝑟𝑒𝑓 (3.13) 

 

For a critical load factor value that will cause buckling, there will be lateral displacement on 

the structure even if the applied compressive load is not changed. Then, the displacement-

stiffness-force relation can be written for the structure in matrix form [25]: 

([𝐾] + 𝜆𝑐𝑟[𝐾𝜎]𝑟𝑒𝑓){𝐷}𝑟𝑒𝑓 = 𝜆𝑐𝑟{𝑅}𝑟𝑒𝑓  (3.14) 

 

([𝐾] + 𝜆𝑐𝑟[𝐾𝜎]𝑟𝑒𝑓){𝐷𝑟𝑒𝑓 + 𝛿𝐷} = 𝜆𝑐𝑟{𝑅}𝑟𝑒𝑓  (3.15) 

If Eq. (3.15) is subtracted from Eq. (3.14), then: 

([𝐾] + 𝜆𝑐𝑟[𝐾𝜎]𝑟𝑒𝑓){𝛿𝐷} = {0} (3.16) 

In Eq. (3.16), an eigenvalue problem is obtained. If that eigenvalue problem is solved, the 

first eigenvalue will give the critical buckling load factor of the structure. If that load factor 

is multiplied with the reference compressive load applied on the structure, the critical 

buckling load can be found. Also, the eigenvectors of the solved eigenvalue problem will 

give the buckling mode shape of the structure and then the critical buckling shape can be 

visualized. 

In ANSYS, a similar way is followed. The stress stiffness matrix terms and conventional 

stiffness matrix terms are calculated first in a static analysis with a reference compression 

load applied on the structure. The prestress effects should be turned on with the command 

“PSTRES,ON” in ANSYS to calculate these stiffness terms. Then, the eigenvalue problem 
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can be solved in ANSYS by changing the analysis type to “Eigen Buckling”. Then, ANSYS 

uses the stiffness matrices calculated before to solve the eigenvalue buckling problem. 

ANSYS has several eigenvalue solver tools inside, but “Block Lanczos” is the frequently 

used one and it is very effective. More information about that algorithm can be obtained from 

[26].  After solving this eigenvalue problem of buckling, the eigenvalues (the load factors) 

can be found and the critical load factor can be obtained by multiplying the magnitude of the 

reference compression load with the smallest load factor. 

3.5 Analytical Solutions to the Buckling of Rectangular Simply Supported 

Symmetric Laminated Plate Simply Supported around Its Edges using FSDT 

Since the structure used in this thesis will be rectangular and have some of its boundary 

conditions as simply supported, a similar but simple problem about buckling is given 

analytically. The following equations will be the analytical solutions to the rectangular 

simply supported plate with two compression loadings at each direction. Since the solution 

will be quite complex and quite unsolvable with the addition of stiffeners to this analytical 

formulation, only buckling of a simple rectangular plate is solved analytically [16].  

The rectangular plate has dimensions of a1 and a2. Normal forces are applied from its edges 

as shown in Figure 8. 

 

Figure 8. A rectangular plate with dimensions a1 and a2  [16] 

Buckling equations of the structure: 

𝜕𝑀1

𝜕𝑥1
+
𝜕𝑀6

𝜕𝑥2
− 𝑁5 = 0 

(3.17) 

a1 

a2 

a1 

a2 
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𝜕𝑀6

𝜕𝑥!
+
𝜕𝑀2

𝜕𝑥2
− 𝑁4 = 0 

𝜕𝑁5
𝜕𝑥1

+
𝜕𝑁4
𝜕𝑥2

− 𝑁1
0
𝜕2𝑢3

0

𝜕𝑥1
2 − 𝑁2

0
𝜕2𝑢0

3

𝜕𝑥2
2 = 0 

Then, 𝑀1,𝑀2,𝑀6, 𝑁4 and 𝑁5 corresponds to: 

𝑀1 = 𝐷11
𝜕𝜙1
𝜕𝑥1

+ 𝐷12
𝜕𝜙2
𝜕𝑥2

 ,     𝑀2 = 𝐷11
𝜕𝜙1
𝜕𝑥1

+ 𝐷22
𝜕𝜙2
𝜕𝑥2

 

𝑀6 = 𝐷66 (
𝜕𝜙1
𝜕𝑥2

+
𝜕𝜙2
𝜕𝑥1

) ,      𝑁4 = 𝐾𝐴44 (𝜙2 +
𝜕𝑢3

0

𝜕𝑥2
) 

𝑁5 = 𝐾𝐴55 (𝜙1 +
𝜕𝑢3

0

𝜕𝑥1
) 

(3.18) 

Then, the equation can be written as [16]: 

𝐷11
𝜕2𝜙1

𝜕𝑥1
2 + 𝐷12

𝜕2𝜙2
𝜕𝑥1𝜕𝑥2

+ 𝐷66 (
𝜕2𝜙1

𝜕𝑥2
2 +

𝜕2𝜙2
𝜕𝑥1𝜕𝑥2

) − 𝐾𝐴55 (𝜙1 +
𝜕𝑢3

0

𝜕𝑥1
) = 0 

𝐷66 (
𝜕2𝜙1
𝜕𝑥1𝜕𝑥2

+
𝜕2𝜙2

𝜕𝑥1
2 ) + 𝐷12

𝜕2𝜙2
𝜕𝑥1𝜕𝑥2

− 𝐾𝐴44 (𝜙2 +
𝜕𝑢3

0

𝜕𝑥2
) = 0 

𝐾𝐴55 (
𝜕𝜙1
𝜕𝑥1

+
𝜕2𝑢3

0

𝜕𝑥1
2 ) + 𝐾𝐴44 (

𝜕𝜙2
𝜕𝑥2

+
𝜕2𝑢3

0

𝜕𝑥2
2 ) − 𝑁1

0
𝜕2𝑢3

0

𝜕𝑥1
2 − 𝑁2

0
𝜕2𝑢3

0

𝜕𝑥2
2 = 0 

(3.19) 

The boundary conditions for simply supported can be given as: 

For 𝑥1 = 0 and 𝑥1 = 𝑎1  

𝑢3
0 = 0,    𝜙1 = 0,      𝑀1 = 𝐷11

𝜕𝜙1
𝜕𝑥1

+ 𝐷12
𝜕𝜙2
𝜕𝑥2

= 0 (3.20) 

For 𝑥2 = 0 and 𝑥2 = 𝑎2 

𝑢3
0 = 0,    𝜙1 = 0,     𝑀2 = 𝐷12

𝜕𝜙1
𝜕𝑥1

+ 𝐷22
𝜕𝜙2
𝜕𝑥2

= 0 (3.21) 

The boundary conditions are satisfied by the equations: 
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𝜙1 = Φm1𝑚2
1 cos

𝑚1𝜋𝑥1
𝑎1

sin
𝑚2𝜋𝑥2
𝑎2

 

𝜙2 = Φm1𝑚2
2 sin

𝑚1𝜋𝑥1
𝑎1

cos
𝑚2𝜋𝑥2
𝑎2

 

𝑢3
0 = 𝑈𝑚1𝑚2

3 sin (
𝑚1𝜋𝑥1
𝑎1

) sin (
𝑚2𝜋𝑥2
𝑎2

) 

(3.22) 

Then, if Eq. (3.18) is inserted into the buckling equations in Eq. (3.15), also the critical 

buckling load can be found as: 

𝑁1
0 =

1

(
𝑚1𝜋

𝑎1
)
2

+ 𝑘 (
𝑚2𝜋

𝑎2
)
2 [𝐻33 +

𝐻13(𝐻12𝐻23 − 𝐻22𝐻13) − 𝐻23(𝐻11𝐻23 − 𝐻12𝐻13)

𝐻11𝐻22 − 𝐻13
2 ] 

(3.23) 

It is important to note that Eq. (3.19) is obtained for the case of 𝑁2
0 = 𝑘𝑁1

0, and 𝐻 terms can 

also be given as: 

𝐻11 = (
𝑚1𝜋

𝑎1
)
2

𝐷11 + (
𝑚2𝜋

𝑎2
)
2

𝐷66 + 𝐾𝐴55 ,       𝐻12 =
𝑚1𝜋

𝑎1

𝑚2𝜋

𝑎2
(𝐷12 + 𝐷66) 

𝐻22 = (
𝑚2𝜋

𝑎2
)
2

𝐷22 + (
𝑚1𝜋

𝑎1
)
2

𝐷66 + 𝐾𝐴44,     𝐻13 =
𝑚1𝜋

𝑎1
 𝐾𝐴55 

𝐻33 = (
𝑚1𝜋

𝑎2
)
2

𝐾𝐴55 + (
𝑚2𝜋

𝑎1
)
2

𝐾𝐴44,     𝐻23 =
𝑚2𝜋

𝑎2
 𝐾𝐴44 

(3.24) 

 

 

 

 

 

 

 



25 

 

CHAPTER 4 

 

 

FINITE ELEMENT MODELING AND OPTIMIZATION 

METHODOLOGY 

 

 

 

4.1 Problem Definition 

For the stiffened panels under consideration, the structure is modelled as flat. Normally, in 

aircrafts, the structure is slightly curved to make a closed cylindrical or elliptic section. 

However, most of the structures in the literature is modelled as flat panels as presented in 

Chapter 2. Also, since these structures have a big radius of curvature when compared to the 

stiffener and panel dimensions, it is assumed that modeling the structure as flat will not affect 

the buckling performance much. The geometry to be analyzed can be constructed with several 

stiffeners and a plate as shown in Figure 9 as an example. 

 

Figure 9. An example of stiffened panel model 

To analyze a flexible model that the ply angles and the dimensions can change in the analysis 

program, using a parametrical model is important. ANSYS FE package has its own 

parametrical modeling language – APDL for parametrical modeling and automating some 

analyses with programming. This language is used for parametrical modeling studies. 

In this section, the parametric modeling of the skin and stiffeners, the definition of their 

layups, boundary conditions and loading are going to be explained. Also, optimization studies 

programmed on MATLAB software will be presented. 
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4.2 Parametric Modeling of Skin and Stiffeners 

In the proceeding sections, the modeling details of several types of stiffeners (blade, J, T and 

hat) are going to be explained.  

4.2.1 Modeling of Blade Stiffeners 

Blade type stiffeners are open-section stiffeners as shown in Figure 10. Its shape is similar to 

a T capital located upside down. The flat side of the panel is attached to the skin. They can 

be manufactured in several cases; but in the thesis, it is assumed that the manufactured blade 

stiffeners will have the shape as shown in Figure 11 as a combination of two L-shaped 

stiffeners. 

 

Figure 10. Blade-type stiffeners 

 

Figure 11. The shape of a blade stiffened structure 
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For a cross section shown in Figure 11, the structure needs to be modelled with shell 

elements. Since shell elements are two dimensional, the three dimensional walls of the 

stiffener must be replaced with a reference surface. The thickness effects should also be 

transferred to the FE analysis program as shell element property. As seen in Figure 12, the 

blade vertical surface is represented by a surface located at the midplane. Also, the flange of 

the stiffener is modelled with a surface at the bottom, the thickness offset of the defined shell 

elements are out of this surface. In Figure 12, the thicknesses are represented with an 

exaggerated drawing, but the surface dimensions of vertical section is so wide that the shell 

representation of the flanges does not change the surface dimensions of this middle vertical 

section.  

 

 

Figure 12. Shell representation of the blade-type stiffener cross section 
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For the ply configuration of the blade stiffened panel, the ply angles should be selected among 

-45º, 0º, 45º, 90º because of the manufacturing constraints. The total ply number used will be 

fixed as in all the other stiffener models in this thesis. The blade layup is symmetric and 

balanced. However, since the flanges are separated at the bottom of the stiffener, the layup 

of the flange is not symmetric. It is also interesting to note that this part is also attached to 

the panel and it is nearly impossible to tune the layup of panels and stiffener flanges together 

to have symmetric layup composed of them. However, in Chapter 6, to see the difference 

between symmetric and unsymmetric modeling of flanges, an additional model will be 

constructed, the ply number used will be doubled and made symmetric. Then, the geometric 

parameters will be decreased to half. In this symmetric layup configuration, it is important to 

note that the vertical section of the blade has symmetric layup of a symmetric layup as in the 

layup configuration form of [[Ply_angles_of_stiffener]s]s. This configuration can be seen in 

Figure 13 more clearly. 

 

Figure 13. Symmetric modeling configuration of the blade-type stiffener 

The geometric parameters for modeling blade type of stiffeners are simply the blade height 

and flange width. These parameters can be clearly seen on Figure 14. 

 

Figure 14. The geometric parameters to be adjusted in blade-type stiffeners 

4.2.2 Modeling of J-type Stiffeners 

J-type stiffeners are also open section stiffeners as shown in Figure 16. They can be 

manufactured in many ways; but in this thesis, it is assumed that they are made from a Z-

shaped and C-shaped stiffeners stitched to each other.  
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Figure 15. J-type stiffeners 

 

Figure 16. The shape of a structure with J-type stiffener 

This J-stiffened panel structure also needs to be modelled with shell elements. Since shell 

elements are two dimensional, the three dimensional walls of the stiffener must be replaced 

with a shell reference surface. The thickness effects also should be transferred to the FE 

analysis program as shell element property. As seen in Figure 17, the middle vertical section 

and the upper horizontal section of the stiffeners are represented by a surface located at their 

midplane. The flange of the stiffener is modelled with a surface at the bottom, the thickness 

offset of the defined shell elements are out of this surface. Also, in Figure 17, the thicknesses 

are represented with an exaggerated drawing, but the surface dimensions of middle vertical 

section is so wide that the shell representation of the flanges and top horizontal section does 

not change the surface dimensions of this middle vertical section.  
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Figure 17. Shell representation of the J-type stiffener cross section 

For the ply configuration of the J-type stiffened panel, the ply angles should be selected 

among -45º, 0º, 45º, 90º because of the manufacturing constraints. The total ply number will 

be fixed as in all the other stiffener models in this thesis. The middle vertical and upper 

horizontal surface layup is symmetric and balanced. However, since the flanges are separated 

at the bottom of the stiffener, the layup of the flange is not symmetric as in blade type 

stiffeners. It is also interesting to note that this part is also attached to the panel and it is nearly 

impossible to tune the layup of panels and stiffener flanges together to have symmetric layup 

composed of them. However, in Chapter 6, to see the difference between symmetric and 

unsymmetric modeling of flanges, an additional model will be constructed, the ply number 

used will be doubled and made symmetric. Then, the geometric parameters will be decreased 

to half. In this symmetric layup configuration, it is important to note that the vertical middle 

surface and the upper horizontal surface of the J type stiffener has symmetric layup of a 
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symmetric layup as in the layup configuration form of [[Ply_angles_of_stiffener]s]s. This 

configuration can be seen in Figure 18 more clearly. 

 

Figure 18. Symmetric modeling configuration of the J-type stiffener 

The geometric parameters for modeling blade type of stiffeners are simply the stiffener 

height, flange width and upper surface width. These parameters can be clearly seen on Figure 

19. 

 

Figure 19. The geometric parameters to be adjusted in J-type stiffeners 

4.2.3 Modeling of T-type Stiffeners 

T-type stiffeners are open section stiffeners just like blade and J-type stiffeners as shown in 

Figure 20 and Figure 21. They can also be manufactured in many ways; but in this thesis, it 

is assumed that they are made from two C-shaped stiffeners stitched to each other.  
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Figure 20. T-type stiffeners 

 

Figure 21. The shape of a T-type stiffener cross section with panel 

This T-stiffened panel structure also needs to be modelled with shell elements. Since shell 

elements are two dimensional, the three dimensional walls of the stiffener must be replaced 

with a reference shell surface. The thickness effects also should be transferred to the FE 

analysis program as shell element property. As seen in Figure 22, the middle section is 

represented by a surface located at their midplane. The flanges of the stiffener are modelled 

with a surface at the bottom and upper horizontal sections of the stiffener are modelled with 

a surface at the top, the thickness offset of the defined shell elements are out of those surfaces. 

Also, in Figure 22, the thicknesses are represented with an exaggerated drawing, but the 

surface dimensions of middle vertical section is so wide that the shell representation of the 

flanges and top horizontal section does not change the surface dimensions of this middle 

vertical section. 
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Figure 22. Shell representation of the T-type stiffener cross section 

For the ply configuration of the T-type stiffened panel, the ply angles should be selected 

among -45º, 0º, 45º, 90º because of the manufacturing constraints. The total ply number will 

be fixed as in all the other stiffener models in this thesis. The middle vertical surface layup 

is symmetric and balanced. However, since the flanges and the upper horizontal surface are 

separated at the medium of the stiffener, the layups of them are not symmetric. It is also 

interesting to note that this part is also attached to the panel and it is nearly impossible to tune 

the layup of panels and stiffener flanges together to have symmetric layup composed of them. 

However, in Chapter 6, to see the difference between symmetric and unsymmetric modeling 

of flanges, an additional model will be constructed, the ply number used will be doubled and 

made symmetric. Then, the geometric parameters will be decreased to half. In this symmetric 

layup configuration, it is important to note that the vertical surface of the T type stiffener has 
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symmetric layup of a symmetric layup as in the layup configuration form of 

[[Ply_angles_of_stiffener]s]s. This configuration can be seen in Figure 23 more clearly. 

 

Figure 23. Symmetric modeling configuration of the T-type stiffener 

The geometric parameters for modeling blade type of stiffeners are simply the stiffener 

height, flange width and upper surface width. These parameters can be clearly seen on Figure 

24. 

 
Figure 24. The geometric parameters to be adjusted in T-type stiffeners 

4.2.4 Modeling of Hat-type Stiffeners 

Hat-type stiffeners are closed section stiffeners unlike blade, J- and T-type stiffeners. The 

shape of hat-type stiffeners are shown in Figure 25 and Figure 26 as isometric and cross-

sectional views. They can also be manufactured in many ways; but in this thesis, it is assumed 

that they are made of one shaped symmetric balanced laminate attached to the panel as shown 

in Figure 26. 
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Figure 25. Isometric view of hat-type stiffeners modelled 

 

 

Figure 26. The shape of a Hat-type stiffener cross section with panel 

This hat-stiffened panel structure also needs to be modelled with shell elements. Since shell 

elements are two dimensional, the three dimensional walls of the stiffener must be replaced 

with a reference surface. The thickness effects also should be transferred to the FEA program 

as shell element property. As seen in Figure 27, all of the surfaces are represented by surfaces 

located at their bottom, the thickness offset of shell elements are defined from these bottom 

surfaces. Also, in Figure 27, the thicknesses are represented with an exaggerated drawing, 

the change in the surface dimensions with top/bottom/midplane thickness offset modeling 

options of the stiffeners are very small, and can be neglected. 
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Figure 27. Shell representation of the Hat-type stiffener cross section 

For the ply configuration of the hat-type stiffened panel, the ply angles should be selected 

among -45º, 0º, 45º, 90º because of the manufacturing constraints. The total ply number will 

be fixed as in all the other stiffener models in this thesis. The layup will also be symmetric 

and balanced.  

The geometric parameters for modeling hat-type of stiffeners are simply the stiffener height, 

flange width, upper surface width and the stiffener angle. These parameters can be clearly 

seen on Figure 28. 
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Figure 28. The geometric parameters to be adjusted for Hat-type stiffeners 

4.2.5 Modeling of the Skin 

Parametrical model of the skin only requires the width and length dimensions. Since the 

dimensions of the skin are not variables and constant for a specific problem solved, these are 

not parametrically modelled. The skin ply angles are the only parameters to be solved in the 

optimization problem. The ply angles of the skin should be selected among -45º, 0º, 45º, 90º 

because of the manufacturing constraints as in the other models in this thesis. The layup of 

the skin must be symmetric and balanced to reduce bending extension and shear extension 

coupling effects. Therefore, only a symmetric part of the layup is constructed parametrically 

and solved in the optimization problem. 

It is also important to note that the stiffeners are modelled with an equal distance between 

them. The gap that is left between the centerline of the first stiffener and the closer 

longitudinal edge of skin and also between the centerline of the last stiffener and the closer 

longitudinal edge of skin are simply half the distances between the centerline of stiffeners as 

shown in Figure 29. In literature, this modeling technique is mostly used and it will be used 

in 5.2, 6.1, 6.2 sections and Chapter 7 in this thesis. Since the study found in literature for 

validation uses different stiffener spacing in Section 5.1, the same spacing dimensions are 

used in that validation study. 
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Figure 29. Stiffener positions on the skin 

4.3 Boundary Conditions 

The boundary conditions for this structure are such that it can represent the whole structure 

as a small part of which is modelled. In literature, many composite stiffened panels are 

modelled with different boundary conditions. The common boundary condition that is 

applied to these type of structures is simply supported boundary conditions. Since these 

structures are generally supported by ribs from their transverse edges, the ribs do not let the 

panel have local movements. In [9], it is also explained that modeling the ribs at the 

longitudinal edges can be replaced with a simply supported boundary condition and it is 

verified that the results do not change in that paper. For the buckling analysis in this thesis, 

the fixed edge of the panel (not the stiffener) are simply restrained in the longitudinal, lateral 

and vertical direction. The force applied transverse edge of panel (the opposite side of the 

fixed edge) is also applied a simply supported boundary condition. The displacements of the 

panel in the nodes of force applied edge in longitudinal direction are connected to each other 

with “coupled sets”. Coupled sets are constraint equations applied to the nodes so that they 

will have the same displacement in the degree of freedoms that are set. Also, the longitudinal 

edges of the panel are restrained in the vertical direction and in the lateral direction as 

explained in [9]. These boundary conditions can be seen in Figure 30. Stiffeners are not 

restrained in any direction, only nodes of both of their transverse edges together with the 
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panel edge are connected to each other with “coupled sets” in ROTX rotation degree of 

freedom as can be seen in Figure 31. These boundary conditions let the stiffened panel rotate 

about the transverse edges, but the rotation angles should be the same at the edge, therefore 

no local rotational deformation is permitted.  

 

Figure 30. Boundary conditions from the isometric view 

 

Figure 31. Boundary conditions from the transverse view 

4.4 Loading 

The loading is simply a pressure load applied at the transverse edge of panel. It is important 

to note that the pressure is not applied to the stiffeners, it is applied to the panel which actually 

transmits the buckling load. Also, as explained in the boundary condition part, the 

displacement in the nodes of load applied edge is connected to each other with “coupled 

sets”, so that they can move together with the same degree of freedom (DOF) value with the 

applied load. This can be clearly seen in Figure 32. 
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Figure 32. Force applied region in the stiffened panel 

4.5 Elements Used in the Analyses 

For the analyses, SHELL281 type 8-noded quadratic shell elements in ANSYS are used. 

Quadratic shell elements are best for the buckling analyses of composite stiffened panels 

since the deformation characteristic of the element is quadratic, which makes these elements 

easy to catch the buckled shape which can at least be approximated as quadratic. Number of 

nodes are greater for these elements but the number of elements required is quite low when 

compared with 4-noded linear shell elements. The elements required for optimization 

analysis will be checked with mesh sensitivity analyses in section 7.2. 

4.6 Bonded Contacts between Panel and Stiffeners 

Since the problem is to be solved in a linear buckling analysis, the nodes of stiffener FEMs 

have to be tied onto the panel nodes. In ANSYS, there is a bonded contact algorithm that can 

use either of MPC, Augmented Lagrange and Penalty methods for connecting different 

meshes so that they can move together. In this thesis, a MPC based bonded contact algorithm 

is used for connecting the nodes of the panel and the stiffeners. This contact algorithm is very 

easy to build in ANSYS. However, it has a disadvantage in computational time. Therefore, 

the analyses that do not need optimization are done with bonded contact modeling as given 

in 5.1, 6.2 and 6.2. This algorithm is replaced by the node sharing method in the optimization 

problems used in Chapter 5.2 and 7 to reduce the time required for analyses. This method is 

explained in 4.7 in detail. 
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4.7 Shared-node Method for the Connection between Panel and Stiffeners 

Using a bonded contact algorithm in ANSYS FEA program for the optimization process can 

be computationally inefficient since they generally create additional equations to solve and 

therefore increase the DOF of the FE problem. To deal with this problem, shell element nodes 

of stiffener and skin are made common, i.e. skin and stiffener elements use the same nodes 

as shown in Figure 33. Combining the layups of stiffener and skin in one element is an 

alternative method, but the former method allows the user to select the skin and stiffener 

elements separately. Therefore, the former method is more practical in many cases. 

To apply this shared-node method that lets two shell elements stack on one another, a 

complex method in ANSYS should be used. The area of skin or stiffener should be meshed 

first, the appropriate layup and material properties should be defined to those elements. Then, 

a new element type of SURF154 should be added and made the default element for meshing. 

Then, these shell elements and their nodes should be selected with ANSYS. With ESURF 

command these shell elements should be copied as SURF154 surface effect elements. With 

this command, the created elements should use the nodes of the shell elements. After creating 

these elements, they can be converted to SHELL281 type elements and appropriate shell 

section properties can be defined to them with EMODIF command. Then, these stacked shell 

elements with shared-nodes can be used in modeling stiffener-skin interface. 

 

Figure 33. Shared-node representation of stiffener and skin shell element 

4.7 Optimization Methodology 

As an optimization method single objective genetic algorithms are used. Since the ply angles 

are discrete parameters (should be chosen among 0º, -45º, 45º, 90º), and the geometrical 

parameters are continuous parameters, the problem is very hard to solve with conventional 

optimization methods that use derivative information. The problem becomes quite 

nonconvex and multimodal with these parameters and ply configuration constraints like 

balanced and 4-ply contiguous constraints. Heuristic optimization methods are more suitable 
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for these type of problems [1]. As a heuristic method, genetic algorithms are used in this 

study. The objective of the optimization in this thesis is to minimize the volume of the 

structure, also since the first buckling load of the structure should be higher than the 

predefined buckling value, there is also a nonlinear constraint on the optimization algorithm. 

The plies should also satisfy the balanced and 4-ply contiguous ply configuration constraints 

but it is handled with the repair strategy integrated in encoding of the solutions section. 

Optimum volume or weight (since the structure contains only one material) is to be found 

with genetic algorithms. 

Genetic algorithms are based on biological observations and derived from Darwin’s principle 

of survival of the fittest [18]. In this principle, a population of biological creatures exists and 

the characteristics of these creatures are evolved with increasing generations. The fittest 

individual has more chance to survive, and pass its characteristics to the other generations. 

As the generations progress, the fittest individuals dominate the other creatures and fill the 

population. This principle is converted into an optimization algorithm by Holland in 1975. 

The characteristics of the individuals are transferred to the future generations with the help 

of chromosomes. Numerical parameters also use the same principle. They are coded in strings 

called “chromosomes”. The parameter set for one design is encoded into a chromosome 

string. The community of the chromosomes is called a “population”. At the beginning, a 

population of chromosomes with random parameters are created. After the creation, the 

fitness values of each chromosome (individual) is evaluated and each chromosome has its 

fitness value. Some of the chromosomes having the best fitness value are named as “elite 

children” and they are directly passed into the next generation. After that, the obtained fitness 

values including the elite ones are scaled in an appropriate way before selection. In the 

selection, some of the chromosomes are selected from the population for “crossover”, 

“mutation” and “permutation” operations. The individual having a better fitness value has a 

better chance to be selected and therefore to survive. These selected individuals are called 

parents, they create their offspring with crossover, mutation and permutation operators. After 

these operations, a new population is obtained. Passing from an old population to a new 

population is called “generation”, with each new population, the generation number increases 

by one. Then, in a new generation, the fitness values of the population members are 

evaluated. The procedure is repeated again with these fitness values. The algorithm stops 

when the population is filled with the optimal individuals and there is no improvement in the 

fitness value in the last generations. 

In the genetic algorithms, there are two methods used for encoding the optimization variables. 

In the first one, the variables are encoded in a binary format (zeros and ones) or any other 

extended format (including zero, one, two, three etc.). Each character in chromosome is 

called “gene”. These encoded formats are in n-base number systems. To apply encoding, the 

values between upper and lower limits are discretized and these discrete values are converted 

into the encoded format. The value can be represented with a fine precision if many genes 

are used for it.  
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The second method for encoding does not actually encode the variable. It simply uses the 

integer variable itself as a gene. It can give values with a very fine precision since it uses the 

variable itself. Special types of crossover and mutation operators are used for this method 

and it is not much efficient for use in the optimization of laminated composite materials [18]. 

That’s why, additional information about this method is not presented in this study. 

The optimization algorithm used in this thesis is written in MATLAB with its programming 

language. It is important to note that the Genetic Algorithm in Global Optimization Toolbox 

inside MATLAB is not used in this study. A newly developed algorithm is used by enhancing 

the genetic algorithm codes given in [19].  

In the preceding sections, the encoding strategy used, fitness scaling and selection methods, 

crossover, mutation and permutation operators and constraint handling strategy is presented.  

4.7.1 Initial Population and Encoding Strategy 

At the beginning, the initial population should be created in a genetic algorithm. The 

generation of the individual members is a stochastic process initially, therefore a random 

encoded value is created as an n-base value for n-base encoded parameters (where n is a 

positive integer bigger than 1). In this optimization study, each ply angle should be among 

0º, ±45º and 90º, therefore the numbers 0, 1 and 2 (3-base encoding) are used for encoding 

the angles. 0 encoded value corresponds to 0º angle, 1 encoded value corresponds to -45º or 

+45º angles and 2 encoded value corresponds to 90º angle. +45º and -45º angles are two 

separate angles, but they are represented by only encoded value of 1. This representation is 

for repair strategy that handles automatically balanced and 4-ply contiguous constraints for 

laminates. Detailed information about repair strategy is given in the following paragraphs. 

For encoding of the geometrical parameters to be optimized, each parameter should be 

represented by a great number of 0, 1 and 2’s to have a good discretized domain between 

upper and lower limits. In this study, 6 encoded values are used for each geometrical 

parameter, which makes 36-1=728 equal partitions between upper and lower limits and are 

found to be enough.  

For encoding of the ply angles, a repair algorithm represented in [17] is implemented. 

Integrating 4-ply contiguous and balanced ply constraints into the optimization problem with 

penalty formulations increases the number of iterations dramatically to solve the optimization 

problem. To reduce the computational time, these angle constraints should be implemented 

without giving harm to stochastic nature of the genetic algorithm. Repair strategy is suitable 

for that purpose, the chromosomes are generated randomly and take any value without 

restriction. When these chromosomes are decoded, i.e. turned into real values, the encoded 

values are decoded in a repair algorithm such that its genes are changed to satisfy the balanced 

and 4-ply contiguous ply constraints. The details of the algorithm is given as follows: 
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Firstly, the 4-ply contiguous constraint is handled in repair algorithm. As an example, [2, 2, 

2, 2, 2, 2, 2, 2]s is an encoded symmetric ply without repair. From the outermost ply, the 

angle values are checked by moving one gene forward to the core of the ply. When the 

number of contiguous plies with the same ply angle exceed four at a gene in the chromosome, 

the encoded value of the gene is increased by one, if the gene value is 2 then it turns into a 0. 

It is important to note that the value of the actual chromosome is not changed, the changed 

gene values are used only for decoding purposes. For the innermost plies, because of the 

symmetry, no more than two plies should be stacked on top of each other. If the innermost 

plies violate this rule, the gene value of the innermost ply is incremented by one. That makes 

the example case [2, 2, 2, 2, 0, 2, 2, 0]s. 

Secondly, the ±45 balanced ply constraint is handled after the 4-ply contiguous constraint. 

At the beginning, the encoded value of 1 is decoded in a way that the first 1 value is decoded 

as +45º angle, the second one is decoded as -45º, and the third one again is decoded as +45º 

angle. If there are even numbers of 1 gene values, then the layup is automatically balanced. 

However, if there are even number of 1 gene values, then one +45º angle is not balanced by 

a -45º angle. Then, +45º angle procedure is applied, the innermost +45º angle is replaced with 

0º or 90º angle (random). If 4-ply contiguous constraint is not satisfied with the innermost 

+45º ply angle change, the next innermost ply should be selected. If there is only one +45º 

ply angle or all of the +45º angles do not satisfy the 4-ply contiguous constraint, the -45º 

angle procedure should be applied. In this procedure, a 90º or 0º ply is replaced by a -45º ply. 

The innermost -45º ply is located and adjacent inner or outer ply (inner first) is replaced if 

the 4-ply contiguous constraint is not violated. If the innermost -45º angle ply is not 

appropriate, then the second innermost -45º angle should be selected. If there is only one +45º 

angle ply, the adjacent inner or outer ply should be selected (inner first). After the repair, the 

chromosome is decoded into the real geometrical and ply angle values. Then, all decoded 

individuals are solved with finite element software. It is stated in [17] that 10000 cases are 

tested with this repair algorithm and is found 100% effective in all these cases. 

The fitness evaluations are handled by a function written in MATLAB. This function gets 

the decoded parameters of each individual as input, and write these parameters to a file in 

ANSYS APDL language. After writing this file, ANSYS is called from MATLAB in batch 

mode, it reads the APDL input file written by MATLAB and performs the buckling analysis. 

After the buckling analysis, ANSYS writes the first buckling load factor (the nonlinear 

constraint parameter) and volume of the finite element model (the objective of the 

optimization and the fitness function) in a file. While ANSYS is solving the problem, 

MATLAB waits for a signal from ANSYS that the analysis is complete. After ANSYS 

completes the solution and writes the result file, MATLAB reads those results and performs 

the rest of the genetic algorithm. For the each new generation, the fitness evaluation function 

is called and the results are taken from ANSYS. This is the main connection strategy from 

MATLAB and ANSYS. 
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4.7.2 Constraint Handling Strategy 

In most of the optimization processes, the constrained optimization problem is converted into 

an unconstrained problem with the help of penalty formulations. The penalty formulation 

penalizes the unfeasible designs so that their penalized fitness values are always smaller than 

the best fitness value. If the penalty parameter is high, the optimization algorithm cannot use 

the parameters coming from these individuals, since their chance to survive is very low. It is 

stated in [20] and [21] that these high penalizations can lead to very slow convergence. These 

individuals should have a worse fitness value than the best feasible individual, but the best 

of these infeasible designs should not be at the end of all individuals of the population to have 

a good convergence history. It is obvious that they should contribute to the gene pool with 

their values even when they are infeasible. To solve this problem, an adaptive penalty 

algorithm is required. In this thesis, an adaptive penalty algorithm similar to the one given in 

[20] is developed. In [21], the penalty formulations and the fitness scaling take place together. 

The fitness value of the best infeasible design is adjusted in a way that the penalized fitness 

value of the best infeasible design is around the 0.75 times the average of the feasible designs. 

Since in [21] the objective is to be maximized and in this thesis it is to be minimized, the 

fitness value of the best infeasible design is made equal to the value of 1.25 times the average 

fitness value of feasible designs. In Eq. (4.1), the penalty formulation of the fitness function 

can be seen. In this formulation, the fitness value of each infeasible member is made equal 

to 1.25 times the average fitness of feasible members. Then, for each member λ value is 

calculated by dividing fitness difference to the buckling load factor error shown in Eq. (4.1). 

Then, the highest λ value is selected among these values. Then, this λ value is multiplied in 

each fitness value of infeasible designs. In addition, if all of the population members come 

out to be unfeasible, the value of the objective function is ignored. The difference between 

the feasible buckling limit and the unfeasible buckling value is calculated for each population 

member. Then, these difference values are used as objective values to make at least one 

member in the population feasible in the optimization problem. If one or more members are 

found feasible after some generations, the objective becomes the weight of the structure again 

and the penalty function algorithm presented above is used. These penalized fitness values 

can be used for fitness scaling and selection purposes. For each generation, a new λ value 

should be calculated since it is an adaptive process.  

If the population member is feasible, therefore no penalty is applied to it, the buckling value 

is multiplied with a small number like 0.001 and is subtracted from the weight. This makes 

more buckling resistant structures with the same weight advantageous, as it is required. 

𝐹𝑖
𝑎 = 𝐹𝑖(𝑥𝑖) + 𝜆 𝐵(𝑥𝑖) 

𝐹𝑖(𝑥𝑖) = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 

𝑥𝑖 = 𝑇ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐹𝐸𝐴) 

(4.1) 
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𝜆 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 

𝐹𝑖
𝑎 = 𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 

𝐵 = max (0, (𝑅𝑒𝑓. 𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝐿𝐹 − 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝐿𝐹)) 

4.7.3 Fitness Scaling and Selection Methods Used 

After the chromosomes are decoded and solved with FEA software, and also are applied a 

penalty algorithm for the buckling constraint; the fitness values of the individuals in the 

population should be scaled for selection algorithm. Using the fitness values directly in the 

selection algorithm can lead to domination of some elite children in the population and should 

be restricted. For that purpose, in this thesis, rank fitness scaling method is used. In this fitness 

scaling method, the fitness values of individuals are not directly used, but the ranks of each 

member is used. One over the square roots of ranks of each member is evaluated and they 

are divided to the summation of them. A population with 4 individuals can be given as an 

example. If the best individual is taken as the 2nd one, the second best individual as the 4th 

one, the third best individual as 3rd one and the worst individual as 1st one; the scaled fitness 

value of the 2nd member becomes (1/10.5)/2.7845 and of the 4th member becomes 

(1/20.5)/2.7845 where 2.7845 is the summation of (1/rank0.5) terms of all members. After these 

steps, each population member has its scaled fitness values, then the selection algorithm can 

be run. 

In the selection algorithm, the roulette wheel selection algorithm is used. The scaled fitness 

value of each member fills the slots of the wheel as the total value will be 1. Then, random 

numbers are generated for each parent. The location where the random number fits in the 

wheel is selected as parent. Apart from elite children, number of the other population 

members should be equal to the number of parents in the selection process. When the 

selection process is ended, the crossover, mutation and permutation operators take place.  

4.7.4 Crossover Operator 

With the parents selected from the roulette wheel method, the offspring should be created 

with crossover operator first. In this thesis, two-point crossover operator is tried to be used 

for crossover operations. In two-point crossover operator, chromosomes from each parent is 

split from two random locations and the middle section of these chromosomes are 

interchanged between each other. An example of two-point crossover is given in Figure 34. 

It is also stated in [18] that two-point crossover has a good performance in binary type genetic 

algorithms. However, it is seen in the trials that if the two-point crossover is applied to the 

whole chromosome string, the optimization problem has a very slow convergence graph. 

Also, the geometric parameters cover at least 50% of the chromosome string in this thesis. If 

the two-point crossover is used, there will be very small changes in the population diversity 

in terms of both angle and geometric parameters. Because of these, an enhanced substring 

crossover operator is used. This algorithm is also mentioned in [10], and it is stated in [10] 
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that this crossover operator improves optimization performance of laminated composite 

materials. With this operator, each geometrical parameter (each of which has 6 genes in this 

thesis) and each layup set (stiffener and skin angle ply sets) is applied a two-point crossover. 

For four geometrical parameters and two ply sets, that makes seventeen point crossover in 

total. These substring two-point crossover operator is applied with a chance of 95%. Within 

a small chance of 5%, the crossover operator might not be used, then the parents are directly 

transmitted to the next generation. 

 

Figure 34. An example of two-point crossover 

4.7.5 Mutation Operator 

After the parents construct the children with crossover operator, some of these children 

should be mutated to add new values to the gene pool. All of the crossover children should 

not be mutated, but some of them should be mutated. 10% of the crossover children are 

chosen as the mutation children, and each gene inside the mutation children has 15% chance 

to be mutated. For mutation, the gene value is simply changed with a random number 

different than the old one. After the mutation is complete, permutation operators take place. 

4.7.6 Permutation Operators 

These operators are not widely used in genetic algorithms, but they are very suitable for the 

optimization of laminated composite materials. Since the ply angle variables are not related 

with the objective function, the weight of the structure, the optimization algorithm has a very 

slow convergence in a genetic algorithm without permutation operators. These operators 

simply change the ply angles of the skin and the stiffeners and thus affect the buckling load 

in the study. This operator may help to find the feasible designs in the optimization problem 

without changing the weight and therefore they are important. Two different types of 

permutation operators are used as intralaminate swap, and interlaminate swap operators. As 

can be guessed from their names, intralaminate swap operator simply swaps the angles of 

two different random plies inside one laminate. In contrast, interlaminate swap operator 
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swaps the ply angles of two different laminates and the locations of the plies to be swapped 

are chosen as random. The intralaminate swap operator is applied to each children with a 

probability of 0.75 and interlaminate swap operator is applied with a probability of 0.55 as 

described in [10]. After applying crossover and mutation operators, the permutation operator 

is applied at the end, then the members of the next population are created. The fitness 

evaluations can be done with these population members. 
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CHAPTER 5 

 

 

VALIDATION STUDIES FOR BUCKLING AND OPTIMIZATION 

ANALYSES 

 

 

 

In this chapter, the validation studies for linear buckling analyses and optimization algorithm 

together with buckling analyses are presented. For linear buckling, it is important to correlate 

the buckling analysis results with test results. For this purpose, a paper which has its analysis 

and test results are found from literature and the analysis results in this thesis are compared 

with these test results. Also, for the optimization, the verification of the algorithm developed 

is very important. In literature, an optimization study is found for the buckling analysis of 

hat-stiffened panels. The results of this study are compared with the results of the 

optimization algorithm developed.  

5.1 Validation of Buckling Analyses 

5.1.1 Problem Definition 

In the papers [1] and [2], a blade stiffened panel is modelled. The shape of the panel is flat 

and four stiffeners are attached to it as seen in Figure 35. The panel has dimensions of 538 

mm width and 728 mm length and the stiffeners have dimensions of 55 mm width in flange 

and 45 mm height in blade as in Figure 36. The locations of stiffeners are as shown in Figure 

35. A compression load is applied in the longitudinal direction of the panel and its buckling 

characteristics are investigated.  

 

Figure 35. The blade-stiffened panel presented in [1] and [2] 
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Figure 36. Cross-sectional view of the stiffener 

 

Figure 37. Finite element model of the blade stiffened panel in [1] 

The panel is modelled with Mindlin shell elements in Samcef FE program and the finite 

element model given in the paper is presented in Figure 37. The skin and the stiffeners are 

both made of composite material, the material properties are also given in Table 1. The skin 

has a layup of [90º/ 02º/ 90º/ ±45º/ 0º /90º /±45º /0º]s with 22 plies and the stiffeners have a 

layup of [90º /0º /90º /±45º /90º /02º /90º /±45º /±45º /90º]s with 30 plies. Each ply has 0.125 

mm thickness. That makes the skin thickness of 2.75 mm and stiffener thickness of 3.75 mm 

for blade and 1.875 mm for flanges as seen in Figure 36.  

Table 1. Material properties given for the composite material in [1] and [2] 

E1t E1c E2t E2c G12 v12 

162 GPa 145 GPa 9.2 GPa 9.5 GPa 5.0 GPa 0.3 

      

Xt Xc Yt Yc S  

2.7 GPa 1.65 GPa 55 MPa 225 MPa 100 MPa  
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A force Nx is applied at one longitudinal edge including the stiffeners’ edges as shown in 

Figure 37. The drawn arrows to the longitudinal edges represent that the force is distributed 

to the edge with uniform distribution of displacement in x. This forces the edge to deform 

uniform and share the load accordingly. Then, the buckling load is found with finite element 

analysis and the results are compared with [2]. The buckling mode is also compared with the 

Moiré Fringes pattern presented in [2].  

5.1.2 Analysis Model 

The structure is modelled with SHELL281 8-noded quadratic layered shell elements in 

ANSYS. The blade type stiffeners are simply composed of three separate parts: blade, flange 

on the left and flange on the right. As mentioned in Chapter 4, blade-stiffeners are modelled 

as shell elements with their bottom surfaces in the flanges and midplanes in the blade. This 

can be clearly seen in Figure 38. A layup coordinate system should be created in ANSYS to 

define the fiber, matrix and stacking directions. This coordinate system is represented also in 

Figure 38. Since all the angles should be given with reference to this coordinate system, the 

layup of right flange is changed to [90º /0º /90º /∓45º /90º /02º /90º /∓45º /∓45º /90º] from 

[90º /0º /90º /±45º /90º /02º /90º /±45º /±45º /90º]. The blade is divided into two parts at the 

bottom surface and the angles of one flange should be the opposite of the ones in the other 

flange with respect to the layup coordinate system. 

 

Figure 38. The blade stiffener FE model 

In the stiffener, the blade vertical surface is meshed with 5 elements in height, 73 elements 

in length, and the flanges together are meshed with 6 elements in width, 73 elements in 

length. A total of 803 elements and 2578 nodes are used in one stiffener. 

 

 



52 

 

The skin is meshed with 54 elements in width and 73 elements in length. A total of 3942 

elements and 12081 nodes are used in the skin. The finite element model of the skin is given 

in Figure 39. 

A total of 24876 elements and 22395 nodes are used in the full FE model. The finite element 

model of the full structure is given in Figure 40. The finite element model is considered to 

have a good mesh quality with the guidance of mesh sensitivity done in 7.2. 

 
Figure 39. The finite element model of the skin 

 
Figure 40. Finite element model of the stiffened panel 
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The longitudinal compression force of 1000 kN is applied to the skin with force distributed 

MPC equations2, the force is distributed to the blade stiffeners and the skin as shown in Figure 

41. For the boundary conditions, the boundary conditions applied on Figure 37 is used. 

 

Figure 41. Using force distributed MPC equations for the compression load 

5.1.3 Solution and Results 

The problem is first solved with static analysis to obtain the stiffness matrix of the structure, 

then buckling analysis is performed after the static analysis. A buckling load of 122.97 kN is 

found as the first mode and 124.28 kN is found as the second mode. These results are given 

in Table 2, shown below. The finite element and test results are also compared with each 

other between Figure 42 and Figure 47. 

Table 2. Comparison of the results calculated in the thesis and found from literature 

 First Buckling Load Second Buckling Load 

Results found in the thesis 122.97 kN 124.28 kN 

Results found in [1] 123 kN (Analysis) - 

Results found in [2] 

110 kN 

105 kN 
Test 

115.96 kN (Analysis) 

113.84 kN Analysis 

                                                      
2 These MPC equations are mostly known as “RBE3” in FEA programs. 
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Figure 42. First buckling mode shape found in this thesis 

 
Figure 43. First buckling mode shape calculated from FEA of [1] on the left, and [2] on the 

right. 
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Figure 44. First buckling mode Moiré Fringe pattern obtained from test results in [2] 

 

 
Figure 45. Second buckling mode shape found in this thesis 
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Figure 46. The finite element result for the second buckling mode in [2] 

 

Figure 47. Second buckling mode Moiré Fringe pattern obtained from test results in [2] 
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From the results obtained, it can be seen that the buckling loads are quite close to each other, 

which are acceptable. Also, the buckling mode shapes are close to each other, especially 

when compared with the FEA results in Figure 42 and Figure 45 and the results of paper in 

Figure 43 and Figure 46. 

 

5.2 Validation of Optimization Method Developed 

5.2.1 Problem Definition 

In [4], a flat panel with one hat-type stiffener is modelled with ANSYS. The optimization 

problem is a multi-objective optimization in this paper. The primary objective of the 

optimization problem is to reduce the mass of the structure, and the secondary objective is 

the probability of the satisfaction of the buckling load of the stiffened panel. The flat panel 

has dimensions of 250 mm in width and 1000 mm in length. The dimensions of the stiffener 

are parametrically modelled and can be changing. The stiffener is located at the middle of 

the panel. Also, the number of plies in the skin and the stiffener are also variables and can be 

changing. The design variables are also given Figure 48 and Table 3 below. It is also 

important to note that, the “spacing of stiffener” in Figure 48 is not an optimization 

parameter. It is fixed and is equal to the width of the panel which is 250 mm. Also, a 

compression load Nx=750 N/mm is applied directly to the panel without the stiffener in the 

longitudinal direction as shown in Figure 49. The material properties used in the finite 

element model is also given in Table 4. 

  

Figure 48. The design parameters for the stiffened panel structure 
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Table 3. The design variables for the optimization problem 

Design Variable Min. Max. 

h 20 mm 60 mm 

w 20 mm 60 mm 

w2 80 mm 120 mm 

Np 4 16 

Ns 4 16 

(b2-w2) 40 mm 80 mm 

Table 4. Properties of the composite material used in the optimization problem 

EL 181 GPa 

ET 10.3 GPa 

GLT 7.17 GPa 

vLT 0.28 

ρ 1.6x103 kg/m3 

With the buckling load applied at the front edge of the skin, the buckling load factor needs 

to be bigger than 1 (the load should be bigger than 750 N/mm) to obtain a feasible design in 

terms of second objective function. The boundary conditions of the structure are also given 

in Figure 49. Uniform boundary condition means the degree of freedom value should be the 

same for the nodes defined at that region. This boundary condition can be applied with 

“coupled sets” in ANSYS. The “coupled set” boundary condition is explained in detail in 

4.3. 

 

Figure 49. Boundary conditions applied to the hat-stiffened structure 
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The problem is solved with a population of 100 with multi-objective genetic algorithm, the 

optimization is terminated after 300 generations in the study, and the obtained result is 

compared with a true optimal result given in [4].  

In the studies conducted in this thesis, the number of plies in the skin and stiffener is not 

changing, but in [4] they are changing. However, since a true optimal result is given for the 

structure in [4], one should find the true optimal result for the other optimization parameters 

if the number of plies of skin and stiffeners are fixed by using the values given in the true 

optimal result solution in [4]. Then, only the geometrical and ply angle parameters can be 

solved in the optimization problem without any issue. The details are given in the section 

below. 

5.2.2 Analysis Model 

For the analysis of hat-stiffened panel, SHELL281 8-noded quadratic shell elements are used. 

Number of plies from the true optimal result are transferred to the optimization problem as a 

fixed parameter. Therefore, six symmetric plies (a total of 12) are used for the skin and nine 

symmetric plies (a total of 18) are used for the stiffener.  The finite element representation of 

the stiffener is given in Figure 51. As seen in Figure 51, the bottom surface of the stiffener is 

used for creating shell elements and the thickness offset is given from the bottom surface. 

Since the surface of the hat stiffener is continuous, the layup can be defined with the layup 

coordinate system shown in Figure 50 easily. The full finite element model of the structure 

is also given in Figure 51. 

 

Figure 50. Finite element model of the stiffener 
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Figure 51. Finite element model of the stiffened panel 

In the finite element model of the stiffener, a total of 1257 nodes, 390 elements are used.  

Two elements are used for flanges, three elements are used for transverse walls and upper 

section of the stiffener. This is considered to be a good mesh with the guidance of the mesh 

sensitivity study done in 7.2. The flanges are meshed with two elements instead of three 

elements, but flanges the structure can capture the buckle wavelength with this mesh sizing 

since there is also a part of skin near the flanges. That makes at least five elements side by 

side and that is considered to be enough to catch the buckle wavelength. 

For the skin again 1257 nodes and 390 elements are used, that makes 2514 nodes and 780 

elements for the whole model.  

The assembly of finite elements of skin and stiffeners are made with “node sharing method” 

in this analysis to reduce the computational time required for the analysis, this method is 

explained with detail in 4.7.  

As seen from the finite element model given in Figure 51, the uniform boundary conditions 

are applied with “coupled sets” in ANSYS. This boundary condition, as explained in 4.3, 

connects the DOFs of the corresponding nodes so that they translate or rotate together. Also, 

the boundary conditions given in Figure 49 are applied to the optimization model.  

For the optimization, the objective to be minimized will be the volume. 4 geometrical and 15 

ply angle parameters are going to be the optimization parameters. For encoding of the 

parameters in the genetic algorithm, the numbers [0 1 2] are used, so the encoding is done 

with a base number of 3. Each geometrical parameter is encoded with six genes to catch the 

optimum values with good precision and each symmetric ply angle is represented with one 

gene. 0 represents 0º angle, 1 represents either +45º or -45º angle, and 2 represents 90º angle 

in encoded form. For the balance and contiguity constraints, the gene repair algorithm 
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mentioned in 4.7 and [17] is used, this constraints are not added to the penalty function to 

reduce the computational cost. The +45 and -45 angles represented with gene 1 is adjusted 

with this repair strategy and turned into appropriate angles as mentioned in 4.7. The buckling 

is added to the objective function as a penalty formulation as described in 4.7.  

5.2.3 Solution and Results 

The problem is solved with MATLAB-ANSYS interface in 3 hours in a four core processor 

PC. The problem is solved within 76 generations. The fitness value vs. generation number 

graph is given in Figure 52. As seen, it takes 4 generations for the algorithm to obtain feasible 

designs for the optimization with a fitness value of 878900 mm3.  

  
Figure 52. Fitness vs. generation graph of the optimization problem 

The true optimal fitness value is given as mass in [4], therefore density should be multiplied 

with the fitness result in this thesis. Then, 1.205 kg mass can be found. The obtained results 

are compared with the true optimal result given in [4]. The comparison can be seen in Table 

5 and Table 6. From the results, it can be concluded that the results are nearly the same. The 

optimization method developed is validated and can be used for the optimization of buckling 

analyses of laminated composite materials safely. 
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Table 5. Comparison of results between this thesis and true optimal solution given in [4] 

 W, kg 
Buckling load 

factor (λ) 
h, mm w, mm W2, mm (b2-w2), mm 

True Optimal 

Solution 
1.203 1.00 22 38 105 50 

Thesis Solution 1.205 1.00 22.03 33.85 98.96 55.5 

 

 

Table 6. Ply angle comparison between the thesis results and the true optimal solution in [4] 

 Stiffener Ply Angles Skin Ply Angles 

True Optimal Solution [0º, 45 º, 04º, -45º, 02º]s [±45º]3s 

Thesis Solution [0º, 45º, 04º, -45º, 02º]s [±45º]3s 
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CHAPTER 6 

 

 

INITIAL SELECTION OF THE SUITABLE STIFFENER TYPE TO BE 

OPTIMIZED AMONG DIFFERENT STIFFENERS 

 

 

 

A great number of stiffener types are used in stiffening thin walled structures. In this thesis, 

a frequently used four of them are selected in the initial design set as blade, j, t, and hat-type 

stiffeners. Since it will be quite difficult for an optimization process to include all of four 

stiffener types, the most appropriate stiffener should be selected among them by trying 

several design cases with these stiffener types. Thus, a process similar to a design of 

experiments is used to determine the stiffener type to be integrated into the optimization 

algorithm. This process does not explicitly determine the optimum stiffener type, but the type 

to be selected has a high probability to have higher buckling resistance than the others.  

In this chapter, two different models are investigated. These two are basically similar to the 

ones given in Chapter 5. One of them will include only one stiffener with the boundary 

conditions presented in 5.2. The other one will include four stiffeners, but the locations of 

the stiffeners and boundary conditions of the panel are as presented in Chapter 4. With these 

two modeling examples, the buckling resistant stiffener type is to be found. The detailed 

information is given in the following sections. 

6.1 Selection Studies with One Stiffener 

In this section, the stiffened panel from 5.2 is modelled with one stiffener. The dimensions 

of the panel are 250 mm in width and 1000 mm in length. Four different types of stiffeners 

are modelled as separate models with the boundary conditions given in Figure 53. For the 

buckling load, 200 N/mm edge load is applied from x=z=0 panel edge shown in Figure 53. 

Also, arbitrary numbers are assigned for the geometrical parameters of the hat stiffened panel. 

For blade, J, and T stiffened panels, the geometrical parameters are determined in a way that 

the bottom width is large. It is determined from the trials that the buckling loads factors 

decrease significantly if the bottom width is kept small. The cross-sectional areas of each 

stiffener are set the same; therefore the weight of each stiffened panel is the same as seen in 

Table 8. The locations of these geometrical parameters are also visualized in Figure 54 and 

Figure 55. The stiffeners are located at the middle of the transverse edge as seen between 

Figure 56 and Figure 59. 

The material properties of the composite material used is also given in Table 7. It is the same 

as the one used in 5.2. A ply thickness of 0.125 mm is used in the layups of skin and stiffeners. 
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Table 7. Properties of the composite material used in the optimization problem 

EL 181 GPa 

ET 10.3 GPa 

GLT 7.17 GPa 

vLT 0.28 

ρ 1.6x103 kg/m3 

 

Table 8. Geometrical parameters for the stiffened panels 

 
Stiffener Types 

Hat type J type T type Blade type 

Stiffener Height (mm) 40 73 70 100 

Stiffener Bottom Width 

(mm) 
30 150 150 166 

Stiffener Top Width (mm) 40 35 76 - 

Hat Angle (º) 15 - - - 

Cross-sectional Area (mm2) 411.350 411.750 411.750 411.750 

 

 

Figure 53. Boundary conditions of stiffened panel with one stiffener as in 5.2 
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Figure 54. Geometrical parameters for hat stiffener (left) and J-type stiffener (right) 

 

Figure 55. Geometrical parameters for blade stiffener (left) and T-type stiffener (right) 

The panel has six symmetric balanced plies (a total of twelve), and the stiffeners have nine 

symmetric balanced plies (a total of eighteen) as also presented in 5.2. The plies satisfy 

symmetric and balance constraints as in the other problems. To check the performance of 

stiffeners with different ply angles, ten ply sets are generated randomly as seen below. These 

ply configurations are generated in MATLAB and they satisfy symmetry and balance 

constraints. They are given in Table 9 below.  

Table 9. Random ply configurations generated for checking the performances of the 

stiffeners 

Sets Stiffener Layup Skin Layup 

Set 1 [-45º/0º/902º/02º/45º/902º]s  [45º/0º/90º/0º/90º/-45º]s 

Set 2 [902º/45º/0º/-45º/90º/45º/90º/-45º]s  [45º/0º/90º/-45º/02º]s 

Set 3 [90º/-45º/45º/90º/-45º/903º/45º]s  [90º/0º/-45º/0º/45º/90º]s 

Set 4 [02º/90º/45º/90º/-45º/90º/45º/-45º]s  [02º/45º/90º/-45º/90º]s 

Set 5 [90º/-45º/45º/-45º/45º/902º/02º]s  [45º/90º/45º/90º/-45º/-45º]s 

Set 6 [-45º/90º/45º/0º/90º/-45º/0º/45º/0º]s  [0º/45º/902º/-45º/0º]s 

Set 7 [90º/02º/-452º/90º/452º/90º]s  [452º/-45º/45º/-452º]s 

Set 8 [-45º/45º/0º/-45º/02º/-45º/452º]s  [0º/-45º/902º/0º/45º]s 

Set 9 [-45º/45º/-452º/45º/02º/45º/90º]s  [0º/902º/-45º/90º/45º]s 

Set 10 [-45º/02º/-45º/45º/902º/45º/0º]s  [0º/45º/902º/-45º/0º]s 
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Also, the flanges of J, T and blade type stiffeners have an unsymmetric layup as presented in 

4.2. To investigate the symmetric layup effect and greater thickness in the layups of these 

stiffener types, the number of plies in the stiffeners are multiplied with two and made 

symmetric with the same ply configuration given in Table 9. The dimensions of stiffeners are 

divided by two to have the same weight with hat type stiffeners as presented in detail in 4.2. 

The new stiffener dimensions with this symmetric layup configuration are given in Table 10. 

No modification is made for the hat type stiffeners. The finite element models for these 

symmetrical layups are not presented in this thesis since they are similar to non-symmetrical 

layups apart from some geometrical changes. Only their buckling mode shape results are 

presented. 

Table 10. Geometrical parameters for the stiffened panels with symmetric layups 

 
Stiffener Types 

Hat type J type T type Blade type 

Stiffener Height (mm) 40 36.5 35 50 

Stiffener Bottom Width 

(mm) 
30 75 75 83 

Stiffener Top Width (mm) 40 17.5 38 - 

Hat Angle (º) 15 - - - 

Cross-sectional Area (mm2) 411.350 411.750 411.750 411.750 

The finite element model of the blade, J, T and hat type stiffeners are given in Figure 56, 

Figure 57, Figure 58 and Figure 59. The shell elements are plotted in 3D with their thickness 

effects to see the stiffener and panel clearly. As seen from the figures, the mesh is quite a fine 

mesh, at least 4 elements are used at each surface of the stiffeners which is acceptable when 

the mesh sensitivity study done in 7.2 is considered. Also, the mesh of the skin is made fine 

to easily capture the buckle wavelength of the structure. 

 

Figure 56. Finite element model of the stiffened panel with blade type stiffeners 
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Figure 57. Finite element model of the stiffened panel with hat type stiffeners 

 

Figure 58. Finite element model of the stiffened panel with J-type stiffeners 

 

Figure 59. Finite element model of the stiffened panel with T-type stiffeners 
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After the analysis results are obtained for non-symmetric layup, it is seen that the hat stiffened 

panels have the most suitable buckling resistance among the other types. The results are given 

between Figure 60 and Figure 63 and also in Table 11. 

Table 11. The buckling load factors obtained from ten set of analyses for a non-symmetric 

layup 

  Buckling Load Factors 

 
Hat 

stiffener 

J type 

stiffener 

T type 

stiffener 

Blade 

stiffener 

Set 1 0.517 0.285 0.285 0.208 

Set 2 0.401 0.265 0.265 0.229 

Set 3 0.360 0.224 0.224 0.205 

Set 4 0.441 0.300 0.301 0.229 

Set 5 0.746 0.414 0.413 0.257 

Set 6 0.558 0.328 0.329 0.255 

Set 7 1.150 0.566 0.369 0.240 

Set 8 0.513 0.329 0.329 0.296 

Set 9 0.583 0.328 0.325 0.279 

Set 10 0.535 0.302 0.301 0.249 

 

Figure 60. Analysis result for the stiffened panel with hat type stiffener 
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Figure 61. Analysis result for the stiffened panel with J-type stiffener 

 

Figure 62. Analysis result for the stiffened panel with T-type stiffener 
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Figure 63. Analysis result for the stiffened panel with blade type stiffener 

Also, with symmetric layups the buckling load factor results are given in Table 12, also the 

buckling mode shapes of stiffened panels with J, T and blade type stiffeners are given 

between Figure 64 and Figure 66.  

Table 12. The buckling load factors obtained from ten sets of analyses for a symmetric 

layup 

 Buckling Load Factors 

 Hat type J type T type Blade type 

Set 1 0.517 0.310 0.312 0.314 

Set 2 0.401 0.236 0.238 0.242 

Set 3 0.360 0.212 0.213 0.221 

Set 4 0.441 0.261 0.263 0.269 

Set 5 0.746 0.442 0.442 0.465 

Set 6 0.558 0.331 0.333 0.343 

Set 7 1.150 0.701 0.704 0.712 

Set 8 0.513 0.308 0.309 0.326 

Set 9 0.583 0.350 0.351 0.371 

Set 10 0.535 0.323 0.325 0.337 
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Figure 64. Analysis result for the stiffened panel with J-type stiffener 

 

Figure 65. Analysis result for the stiffened panel with T-type stiffener 
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Figure 66. Analysis result for the stiffened panel with blade type stiffener 

As seen from the finite element results of both the non-symmetric and symmetric layups, the 

panels with hat type stiffeners are more buckling resistant. To check their performance with 

different number of stiffeners, a panel with four stiffeners will be investigated in the next 

section. 

6.2 Selection Studies with Four Stiffeners 

In this section, a stiffened panel having the same panel dimensions with the study done in 5.1 

is modelled with four stiffeners. The panel has dimensions of 538 mm width and 728 mm 

length just as in 5.1. Four different types of stiffeners are modelled again with the boundary 

conditions given in Figure 67 and Figure 68. For the buckling load, 200 N/mm edge load is 

applied from y=z=0 panel edge shown in Figure 67. Also, arbitrary numbers are assigned for 

the geometrical parameters of the hat stiffened panel. For blade, J, and T stiffened panels, the 

geometrical parameters are determined in a way that the bottom width is large. It is 

determined from the trials if the bottom width is kept small, the buckling loads factors 

decrease significantly. The cross-sectional areas of each stiffener are set the same, therefore 

the weight of each stiffened panel is the same as seen in Table 13. The locations of these 

geometrical parameters are also visualized in Figure 54 and Figure 55. Also, the stiffeners 

are located on the panel as mentioned in 4.2.5. 
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The material properties used in 6.1 is also used in this study. The thickness of one ply is 0.125 

mm as in 6.1. 

Table 13. Geometrical parameters for the stiffened panels 

  Stiffener Types 

  Hat-type J type T type Blade type 

Stiffener Height 40 75 75 103 

Stiffener Bottom Width 40 100 100 120 

Stiffener Top Width 40 76 76 - 

Hat Angle 15 - - - 

Cross-sectional Area (mm2) 610.583 611.250 611.250 611.250 

 

Figure 67. Boundary conditions of the stiffened panel with four stiffeners from the 

isometric view 

 

Figure 68. Boundary conditions of the stiffened panel with four stiffeners from the 

transverse view 
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The skin has eleven symmetric balanced plies (a total of twenty two), and the stiffeners have 

fifteen symmetric balanced plies (a total of thirty) as in 5.1. The plies satisfy symmetric and 

balance constraint as in the other problems. To check the performance of stiffeners with 

different ply angles, ten ply sets are generated randomly with these ply numbers as seen 

below. These ply configurations are generated in MATLAB and they satisfy the symmetry 

and balance constraints. These ply configurations are given in Table 14 below.  

Table 14. Random ply configurations generated for checking the performances of the 

stiffeners 

Sets Stiffener Layup Skin Layup 

Set 1 [-45º/0º/90º/-452º/45º/02º/902º/45º/0º/45º/-45º/45º]s  
[452º/02º/-45º/90º/02º/90º/-

45º/90º]s 

Set 2 [90º/-452º/45º/0º/903º/0º/90º/-45º/452º/-45º/45º]s  
[90º/0º/-45º/90º/0º/-

452º/452º/0º/45º]s 

Set 3 
[0º/-45º/0º/45º/90º/0º/45º/902º/45º/90º/-45º/90º/0º/-

45º]s 

[90º/0º/-

452º/90º/45º/902º/45º/90º/0º]s 

Set 4 [45º/0º/-45º/45º/903º/02º/-45º/0º/452º/-452º]s 
[0º/90º/-45º/45º/-

45/902º/45º/02º/90º]s 

Set 5  
[90º/45º/0º/45º/-45º/45º/0º/-45º/02º/-45º/-

45º/90º/45º/90º]s 

[0º/90º/-45º/90º/0º/-

45º/90º/0º/452º/90º]s 

Set 6 [453º/0º/90º/0º/902º/-453º/45º/-45º/0º/90º]s 
[45º/90º/02º/-45º/903º/45º/-

45º/0º]s 

Set 7 
[-45º/452º/90º/45º/-45º/90º/45º/-45º/45º/0º/-

453º/45º]s 
[-452º/45º/90º/452º/-453º/452º]s 

Set 8 [45º/0º/-452º/0º/90º/45º/90º/02º/902º/0º/90º/0º]s 
[03º/45º/-45º/45º/-45º/02º/45º/-

45º]s 

Set 9  [-45º/0º/-45º/45º/90º/0º/45º/03º/90º/45º/-452º/45º]s 
[45º/90º/45º/90º/-452º/90º/0º/-

45º/45º/90º]s 

Set 

10 

[45º/90º/45º/0º/-452º/0º/902º/0º/90º/-

45º/90º/45º/90º]s 

[90º/-45º/0º/-

45º/03º/90º/0º/452º]s 

Also, the flanges of J, T and blade type stiffeners have an unsymmetric layup as presented in 

4.2. To investigate the symmetric layup effect and greater thickness in the layups of these 

stiffener types, the ply number of the stiffeners are multiplied with two and made symmetric 

with the same ply configuration given in Table 14. Dimensions of the stiffeners are divided 

by two to have the same weight with hat type stiffeners. The details about this symmetric 

modeling are given in 4.2. The new stiffener dimensions with this symmetric layup 

configuration are given in Table 15. No modification is made for the hat type stiffeners. The 

finite element models for these symmetrical layups are not presented in this thesis since they 

are similar to non-symmetrical layups apart from some geometrical changes. Only their 

buckling mode shape results are presented. 
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Table 15. Geometrical parameters for the stiffened panels with symmetric layups 

 
Stiffener Types 

Hat type J type T type Blade type 

Stiffener Height (mm) 40 36.5 35 50 

Stiffener Bottom Width 

(mm) 
30 75 75 83 

Stiffener Top Width (mm) 40 17.5 38 - 

Hat Angle (º) 15 - - - 

Cross-sectional Area (mm2) 411.350 411.750 411.750 411.750 

 

The finite element model of the blade, J, T and hat type stiffeners are given in Figure 69, 

Figure 70, Figure 71 and Figure 72. The shell elements are plotted in 3D with their thickness 

effects to see the stiffeners and panel clearly. As seen from the figures, the mesh is quite a 

fine mesh, at least 4 elements are used at each surface which is acceptable when the mesh 

sensitivity study done in 7.2 is considered. The mesh sizing of the panel is also made nearly 

the same as the stiffeners to capture the buckle wavelength of the structure. 

 

Figure 69. Finite element model of the stiffened panel with blade type stiffeners 
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Figure 70. Finite element model of the stiffened panel with J type stiffeners 

 

Figure 71. Finite element model of the stiffened panel with T type stiffeners 
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Figure 72. Finite element model of the stiffened panel with hat type stiffeners 

After the analysis results are obtained for non-symmetric layups, it is seen that the hat 

stiffened panels have the most suitable buckling resistance among the other types. The results 

of buckling load factors are given between Figure 73 and Figure 76 and also in Table 16. 

Table 16. The buckling load factors obtained from ten set of analyses for nonsymmetric 

layup 

  Buckling Load Factors 

  Hat type J type T type Blade type 

Set 1 8.768 3.398 3.533 3.907 

Set 2 8.377 3.072 3.197 3.513 

Set 3 8.406 3.686 3.830 4.059 

Set 4 9.783 3.734 3.887 4.274 

Set 5 9.452 3.807 3.886 4.107 

Set 6 9.186 3.604 3.750 4.008 

Set 7 4.011 1.336 1.380 1.544 

Set 8 7.238 2.388 2.454 2.847 

Set 9 6.879 2.945 3.067 3.486 

Set 10 8.356 3.616 3.620 3.913 
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Figure 73. Analysis result for the stiffened panel with blade type stiffener 

 

Figure 74. Analysis result for the stiffened panel with T-type stiffener 
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Figure 75. Analysis result for the stiffened panel with J-type stiffener 

 

Figure 76. Analysis result for the stiffened panel with hat-type stiffener3 

                                                      
3 Since the panel buckles mostly in the gaps between the flanges of the hat-type stiffener, the bottom 

surface of the panel is shown. 
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With symmetric layups, the buckling load factor results are given in Table 17, also the 

buckling mode shapes of stiffened panels with J, T and blade type stiffeners are given 

between Figure 77 and Figure 79.  

Table 17. The buckling load factors obtained from ten set of analyses for a symmetric layup 

  Buckling Load Factors 

  Hat type J type T type Blade type 

Set 1 8.768 2.984 2.941 3.400 

Set 2 8.377 2.673 2.617 2.946 

Set 3 8.406 3.009 2.946 3.417 

Set 4 9.783 3.253 3.194 3.678 

Set 5 9.452 3.286 3.226 3.717 

Set 6 9.186 3.116 3.052 3.506 

Set 7 4.011 1.321 1.300 1.475 

Set 8 7.238 2.235 2.240 2.536 

Set 9 6.879 2.648 2.605 3.028 

Set 10 8.356 3.589 3.528 3.975 

 

 

Figure 77. Analysis result for the stiffened panel with blade type stiffener 
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Figure 78. Analysis result for the stiffened panel with J type stiffener 

 

Figure 79. Analysis result for the stiffened panel with T type stiffener 
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6.3 Evaluation of Results 

From the results of both 6.1 and 6.2, it can be seen that the hat type stiffeners have the greatest 

strength among the other stiffeners for the analyses conducted. It should also be noted that 

this study cannot claim that the hat type stiffeners have the greatest buckling strength in all 

cases that it will be modelled if all of the random cases are tried, but it has a high probability 

to have the greatest buckling stiffness among the other stiffeners. That’s why, the 

optimization studies are going to be conducted with hat type stiffeners. 
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CHAPTER 7 

 

 

OPTIMIZATION STUDIES WITH HAT-TYPE STIFFENERS 

 

 

 

This chapter, as the last chapter before conclusion, presents the optimization study with hat 

type stiffeners. This stiffener type is found more buckling-resistant among other stiffener 

types in Chapter 6. In this chapter, the stiffener weight minimization of the hat stiffened panel 

with genetic algorithms is presented with finite element modeling details. The optimization 

parameters used in the study are also presented. The optimization procedure is repeated with 

different number of stiffeners ranging from 2 to 5. The results of these optimization analyses 

are also discussed at the end of the chapter. 

7.1 Problem Definition 

A stiffened panel with dimensions of 500 mm width and 700 mm length is modelled in this 

study. The panel has 6 symmetric plies (a total of 12), the stiffeners have 10 symmetric plies 

(a total of 20). The boundary conditions applied to the model are the same as the ones given 

in Chapter 4. To easily follow these boundary conditions, the figures are also added to these 

chapters as Figure 80 and Figure 81. As can be seen that mostly the panel is kept fixed in 

some DOFs, the boundary condition used for the stiffeners is “coupled set” boundary 

condition4 shown in Figure 81. The stiffeners are located on the panel in a way that the 

spacing between the centerline of the stiffeners are the same and the spacing between the 

centerline of the first and the last stiffener and the longitudinal edges are half the spacing 

between stiffeners as discussed in 4.2.5. 

                                                      
4 For more information about Coupled Sets, the reader is suggested to refer to 4.3 – Boundary 

conditions section. 
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Figure 80. Boundary conditions applied to the optimization model  

 

Figure 81. Boundary conditions from the transverse view 

In this problem, the optimum geometry of the stiffeners and ply angle values of both skin and 

the stiffeners are to be found. The layups of the skin and stiffeners satisfy the symmetric 

constraint since half of the ply angles are modelled. They also should meet the balanced 

constraints and 4-ply contiguous constraints as explained in Chapter 4. Also, the buckling 

load factor for the first buckling load should not be smaller than 1 with the applied edge load 

of 320 N/mm at y=z=0 panel edge shown in Figure 80. With these constraints, optimum 

weight of the stiffeners is to be found with the analysis and optimization methodology given 

in Chapters 3 and 4. This optimization study is performed with different number of stiffeners 

as 2, 3, 4 and 5 to see the connection between the number of stiffeners and the optimum 

weight.  

The material properties of the composite material is also given in Table 18. In addition, the 

ply thickness is 0.125 mm in the layups. 
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Table 18. Properties of the composite material used in the optimization problem 

EL 181 GPa 

ET 10.3 GPa 

GLT 7.17 GPa 

vLT 0.28 

ρ 1.6x103 kg/m3 

 

To determine which size of the mesh is appropriate to achieve good results and to reduce the 

computational time for the analyses, a mesh sensitivity study is conducted in the following 

section.  

7.2 Mesh Sensitivity Study 

To obtain accurate results with a small computational time, a mesh sensitivity study should 

be conducted. Two different buckling modes are investigated for this study. In the first one, 

a panel with three hat stiffeners are modelled with dimensions of 500 x 700 mm. The mesh 

is very fine as can be seen from Figure 82. In the longitudinal direction (y-direction), the 

panel and the stiffeners are meshed with 120 elements. The top, side walls and flanges of the 

stiffeners are all meshed with 10 elements in transverse direction (x-direction). The skin areas 

that are under the stiffener and between the flanges of the stiffener is also meshed with 10 

elements in transverse direction. Total element number is 32400, total node number is 75538 

for this structure. A buckling load of 320 N/mm is applied from the y=z=0 panel edge as seen 

in Figure 82. The geometrical parameters for the hat stiffener is 32.24 mm in top width, 37.5 

mm in height, 37 mm in flange width and 38º hat angle. The layup of stiffener consists of 10 

symmetric plies and its configuration is [90º, 45º, 0º, 0º, 0º, 0º, -45º, 90º, 0º, 0º]s. The layup 

of skin consists of 6 symmetric plies and its configuration is [90º, 45º, 90º, -45º, 90º, 90º]s.  

When this problem is solved, it is found that the buckling load factor is 1.61296 for this 

structure as in Figure 83. The buckling mode is a local mode, which takes place at the gap 

between the stiffener flanges and under the top of the stiffener. To capture this buckling 

mode, the minimum required number of elements should be found. Then, the top, side walls 

and flanges of the stiffeners are all meshed with 3 elements in transverse direction (x-

direction). The skin parts between the stiffener flanges which has the buckling mode are also 

meshed with 3 elements in transverse direction. In the longitudinal direction, the number of 

elements are also decreased to 60. The number of elements for this panel are reduced to 4920, 

and the number of nodes are reduced to 11406. The finite element model of this stiffened 

panel can be seen in Figure 84. 
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Figure 82. The finite element model of the panel with three stiffeners with a fine mesh 

 

Figure 83. The first buckling mode of the stiffened panel with a fine mesh 
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After the finite element model of the stiffened panel with a coarse mesh is solved, it can be 

seen that the first buckling load factor of the structure is 1.70591 as seen in Figure 85. The 

error between the coarse and fine mesh is about 5.76% which is quite acceptable. Then, this 

mesh size parameters can be checked with another buckling mode where the skin part 

between the stiffeners buckles. 

 

Figure 84. The finite element model of the stiffened panel with a coarse mesh 

 

Figure 85. The first buckling mode of the stiffened panel with a coarse mesh 
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In the second mesh sensitivity study, the number of stiffeners are decreased to two. A fine 

mesh is firstly generated with the mesh size parameters used in the first mesh sensitivity 

study. The layup configurations given in the first mesh sensitivity study is used. 21600 

elements and 50439 nodes are used in this finite element model. The finite element of the 

structure is given in Figure 86. After the buckling analysis is solved, it is seen that the 

buckling load factor is about 1.0638 as in Figure 87.  

 

Figure 86. The finite element model of the stiffened panel with a fine mesh 

 

Figure 87. First buckling mode result of the stiffened panel with a fine mesh 
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For the coarse mesh, the mesh size from the coarse model of previous mesh sensitivity study 

is used. 3300 elements 7705 nodes are generated in this finite element model. This model can 

be checked from Figure 88. When the buckling analysis is solved, it can be seen from Figure 

89 that the first buckling load factor is about 1.06786. This buckling factor is quite close to 

the fine mesh results, there is an error about 0.38% which is quite acceptable. This finite 

element mesh size can be used safely for optimization of stiffened panels with hat-stiffeners.  

 

Figure 88. The finite element model of the stiffened panel with a coarse mesh 

 

Figure 89. First buckling mode result of the stiffened panel with a coarse mesh 
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7.3 Analysis Model and Optimization Parameters 

This optimization process is repeated for different number of stiffeners as 2, 3, 4 and 5. The 

total element and node numbers for the stiffened panel model with two stiffeners is 3300 and 

7705, with three stiffeners is 4920 and 11406, with four stiffeners is 6540 and 15107 and 

with 5 stiffeners is 8160 and 18808. As presented in Chapter 4, each angle ply is represented 

by one 3-base encoded number (0, 1, 2) and each geometrical parameter is presented by six 

3-base encoded number as an optimization parameter. The upper and lower limits for these 

geometric parameters are given in Table 19 below. The visualized cross-section showing the 

parameters is given also in Figure 90. For greater number of stiffeners such as 4 and 5, these 

upper limits are not changed with small numbers and the stiffeners could overlap each other 

if the geometric parameters are chosen at the upper limit. However, it is determined from the 

trials that in those situations the structure has a very high buckling stiffness and to obtain an 

optimized geometry, the stiffeners should get smaller. Then, automatically the stiffeners get 

away from each other in the optimization procedure, and the overlapping problem disappears. 

Also, since the design space with the upper and lower limits is not too wide, the limits are 

held the same for the optimization problems with different number of stiffeners. 

The population size is entered as 40 for 20 optimization parameters (4 geometric, 16 ply 

angle parameters) to be solved. 

Table 19. The upper and lower limits for geometric parameters used in the optimization 

Parameter Upper Bound Lower Bound 

Stiffener Bottom Width (mm) 40 4 

Stiffener Height (mm) 45 4 

Stiffener Upper Width (mm) 40 4 

Hat Angle (º) 45 0 

 

Figure 90. Geometric parameters for hat-type stiffeners 
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The optimization code is adjusted to stop when there is no improvement in the best fitness 

value in the last fifteen generations. The crossover rate is selected as 95%, mutation children 

is chosen from 10% of the population, mutation rate in each gene is entered as 15%. For 

interlaminate and intralaminate permutation operators, probabilities of 55% and 75% are 

used. Then, the code is run for four separate optimization problems. 

7.4 Solution and Results 

Four separate optimization problems are solved and their results are obtained as follows: 

For the stiffened panel with two hat-stiffeners, the results are obtained within 62 generations. 

The fitness value vs. number of generation graph can be seen in Figure 92. As seen, it takes 

8 generations for the algorithm to obtain feasible designs for the optimization with a 

beginning fitness value of 1223000 mm3.  

Initially, the geometric parameters for this geometry were as given in Table 20 and Table 21. 

The volume of the whole structure was 1341106 mm3, which makes a weight of 21.05 N if 

multiplied with the gravitational acceleration and the density. The first buckling mode of the 

structure was as given in Figure 91. After the optimization problem is solved, the best 

solution found is given in Table 22 and Table 23. The volume of the optimum geometry is 

found as 1199464.8 mm3. If that is multiplied by the density and the gravitational 

acceleration, a weight of 18.82 N can be found for the whole structure. Therefore, a weight 

reduction about 12% is obtained. The finite element model of this geometry can be seen in 

Figure 93. Also, the first buckling mode of the optimum structure is shown in Figure 94. 

Table 20. Geometric parameters set initially for the stiffened panel with two hat-stiffeners 

Stiffener Bottom 

 Width (mm) 

Stiffener  

Height (mm) 

Stiffener Upper  

Width (mm) 

Hat Angle 

(º) 

35 53 48 23 

 

Table 21. Ply angle configurations set initially for the stiffened panel with two hat-

stiffeners 

Stiffener Layup Skin Layup 

[45º,0
3
º,-45º,90º, 0

3
º,90º]s [90

2
º,45º,90º,-45º,90º]s 
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Figure 91. The first buckling mode of the initial stiffened panel with two hat-stiffeners 

Table 22. Geometric parameters obtained from the optimization of stiffened panel with two 

hat-stiffeners 

Stiffener Bottom 

 Width (mm) 

Stiffener  

Height (mm) 

Stiffener Upper  

Width (mm) 

Hat Angle 

(º) 

36.54 36.05 19.2 44.135 

 

Table 23. Ply angle configurations obtained from the optimization of stiffened panel with 

two hat-stiffeners 

Stiffener Layup Skin Layup 

[0º,90º,45º,04º,-45º,02º]s [902º,45º,90º,-45º,90º]s 
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Figure 92. Fitness vs. generation graph of the optimization problem with two hat stiffeners 

 

Figure 93. The finite element model of the optimum stiffened panel geometry with two 

stiffeners 
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Figure 94. The first buckling mode of the optimized stiffened panel with two hat-stiffeners 

For the stiffened panel with three hat-stiffeners, the results are obtained within 50 

generations. The fitness value vs. number of generation graph can be seen in Figure 96. As 

seen, it takes 1 generation for the algorithm to obtain feasible designs for the optimization 

with a beginning fitness value of 1198000 mm3.  

Initially, the geometric parameters for this geometry were as given in Table 24 and Table 25. 

The volume of the whole structure was 1130224.3 mm3, which makes a weight of 17.74 N if 

multiplied with the gravitational acceleration and the density. The first buckling mode of the 

structure was as given in Figure 95. After the optimization problem is solved, the best 

solution found is given in Table 26 and Table 27. The volume of the optimum geometry is 

found as 1086238.53 mm3. If that is multiplied by the density and the gravitational 

acceleration, a weight of 17.05 N can be found for the whole structure. The finite element 

model of this geometry can be seen in Figure 97. Therefore, a weight reduction about 4% is 

obtained. Also, the first buckling mode of the optimum structure is shown in Figure 98. 

Table 24. Geometric parameters set initially for the stiffened panel with three hat-stiffeners 

Stiffener Bottom 

Width (mm) 

Stiffener  

Height (mm) 

Stiffener Upper  

Width (mm) 

Hat Angle 

(º) 

20 25 10 40 
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Table 25. Ply angle configurations set initially for the stiffened panel with three hat-

stiffeners 

Stiffener Layup Skin Layup 

[45º,0
3
º,-45º,90º, 0

3
º,90º]s [90º,0º,45º,-45º,0º,90º]s 

 

 

Figure 95. The first buckling mode of the initial stiffened panel with three hat-stiffeners 

Table 26. Geometric parameters obtained from the optimization of stiffened panel with 

three hat-stiffeners 

Stiffener Bottom 

Width (mm) 

Stiffener  

Height (mm) 

Stiffener Upper  

Width (mm) 

Hat Angle 

(º) 

19.88 16.61 24.25 39.23 

 

Table 27. Ply angle configurations obtained from the optimization of stiffened panel with 

three hat-stiffeners 

Stiffener Layup Skin Layup 

[90º, 04º, -45º, 02º, 45º, 0º]s [90º,45º, -45º,02º, 90º]s 
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Figure 96. Fitness vs. generation graph of the optimization problem with three hat stiffeners 

 

Figure 97. The finite element model of the optimum stiffened panel geometry with three 

hat-stiffeners 
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Figure 98. The first buckling mode of the optimized stiffened panel with three hat-stiffeners 

For the stiffened panel with four hat-stiffeners, the results are obtained within 74 generations. 

The fitness value vs. number of generation graph can be seen in Figure 100. As seen, the 

algorithm immediately obtains feasible designs at the beginning of the optimization with a 

beginning fitness value of 1144000 mm3.  

Initially, the geometric parameters for this geometry were as given in Table 28 and Table 29. 

The volume of the whole structure was 1032110.9 mm3, which makes a weight of 16.2 N if 

multiplied with the gravitational acceleration and the density. The first buckling mode of the 

structure was as given in Figure 99. After the optimization problem is solved, the best 

solution found is given in Table 30 and Table 31. The volume of the optimum geometry is 

found as 1001798.2 mm3. If that is multiplied by the density and the gravitational 

acceleration, a weight of 15.7 N can be found for the whole structure. Therefore, a weight 

reduction about 3.2 % is obtained. The finite element model of this geometry can be seen in 

Figure 101. Also, the first buckling mode of the optimum structure is shown in Figure 102. 

Table 28. Geometric parameters set initially for the stiffened panel with four hat-stiffeners 

Stiffener Bottom 

Width (mm) 

Stiffener  

Height (mm) 

Stiffener Upper  

Width (mm) 

Hat Angle 

(º) 

5 20 10 40 
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Table 29. Ply angle configurations set initially for the stiffened panel with four hat-

stiffeners 

Stiffener Layup Skin Layup 

[45º,0
3
º,-45º,90º, 0

3
º,90º]s [90

2
º,45º,90º,-45º,90º]s 

 

 

Figure 99. The first buckling mode of the initial stiffened panel with four hat-stiffeners 

Table 30. Geometric parameters obtained from the optimization of stiffened panel with four 

hat-stiffeners 

Stiffener Bottom 

Width (mm) 

Stiffener  

Height (mm) 

Stiffener Upper  

Width (mm) 

Hat Angle 

(º) 

4.05 19.206 9.786 40.12 

 

Table 31. Ply angle configurations obtained from the optimization of stiffened panel with 

four hat-stiffeners 

Stiffener Layup Skin Layup 

[90º, 04º, -45º, 0º, 45º, 02º]s [90º, 45º, -45º, 02º, 90º]s 
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Figure 100. Fitness vs. generation graph of the optimization problem with four hat 

stiffeners 

 

Figure 101. The finite element model of the optimum stiffened panel geometry with four 

stiffeners 
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Figure 102. The first buckling mode of the optimized stiffened panel with four hat-

stiffeners 

For the stiffened panel with five hat-stiffeners, the results are obtained within 77 generations. 

The fitness value vs. number of generation graph can be seen in Figure 104. As seen, the 

algorithm immediately obtains feasible designs at the beginning of the optimization with a 

beginning fitness value of 1436000 mm3.  

Initially, the geometric parameters for this geometry were as given in Table 22 and Table 33. 

The volume of the whole structure was 1083078.5 mm3, which makes a weight of 17 N if 

multiplied with the gravitational acceleration and the density. The first buckling mode of the 

structure was as given in Figure 103. After the optimization problem is solved, the best 

solution found is given in Table 34 and Table 35. The volume of the optimum geometry is 

found as 1002213.1 mm3. If that is multiplied by the density, a weight of 15.7 kg can be 

found for the whole structure. Therefore, a weight reduction about 8.3% is obtained. The 

finite element model of this geometry can be seen in Figure 105. Also, the first buckling 

mode of the optimum structure is shown in Figure 106. 

Table 32. Geometric parameters set initially for the stiffened panel with five hat-stiffeners 

Stiffener Bottom 

Width (mm) 

Stiffener  

Height (mm) 

Stiffener Upper  

Width (mm) 

Hat Angle 

(º) 

5 17 10 40 
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Table 33. Ply angle configurations set initially for the stiffened panel with five hat-stiffeners 

Stiffener Layup Skin Layup 

[45º,0
3
º,-45º,90º, 0

3
º,90º]s [90º,0º,45º,-45º,0º,90º]s 

 

 

Figure 103. The first buckling mode of the initial stiffened panel with five hat-stiffeners 

Table 34. Geometric parameters obtained from the optimization of stiffened panel with five 

hat-stiffeners 

Stiffener Bottom 

Width (mm) 

Stiffener  

Height (mm) 

Stiffener Upper  

Width (mm) 

Hat Angle 

(º) 

4 14.7 16.02 15.58 

 

Table 35. Ply angle configurations obtained from the optimization of stiffened panel with 

five hat-stiffeners 

Stiffener Layup Skin Layup 

[04º, 90º, 0º,  -45º, 02º, 45º]s [90º, 02º, 90º, 02º]s 
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Figure 104. Fitness vs. generation graph of the optimization problem with five hat stiffeners 

 

Figure 105. The finite element model of the optimum stiffened panel geometry with five 

stiffeners 
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Figure 106. The first buckling mode of the optimized stiffened panel with five hat-stiffeners 
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CHAPTER 8 

 

 

SUMMARY AND CONCLUSIONS 

 

 

 

In this chapter, general summary of the thesis and some conclusion remarks are presented.  

8.1 General Conclusions 

In this study, the optimum design of composite stiffened panels are investigated with the help 

of single objective genetic algorithms. The weight of the stiffeners is to be minimized with 

the buckling load, balanced and 4-ply contiguous constraints. Geometric parameters of the 

stiffeners and ply angles of both skin and stiffeners are formulated as design variables. The 

total number of plies in the skin and stiffeners are fixed. Firstly, the buckling finite element 

model of a blade stiffened panel and optimization study of hat stiffened panel is validated 

with two studies found in literature. Good agreement is found between the results of this 

thesis and the results of literature. Then, the stiffener type having the greatest buckling 

strength is found between four stiffener types with a set of analyses as hat type stiffeners. 

Then, finally optimization analyses are carried out with hat type stiffeners in four different 

configurations. In these configurations, the number of stiffeners are changed from two to 

five. The results are given at the end. 

With the initial set of analyses including panels with blade, J, T and hat stiffeners separately, 

the results of hat stiffened panels show the highest buckling strength. After these analyses, 

optimization studies are conducted with hat type stiffeners. The weight of these hat stiffened 

panels are reduced about 12% for the panel with two hat stiffeners, 4% for the panel with 

three hat stiffeners, 3.2% for the panel with four hat stiffeners, 8.3% for the panel with five 

hat stiffeners when compared with the initial configurations. The following conclusions are 

drawn from the optimization studies in this thesis: 

 With these studies, it is shown that the optimization method can be used in the weight 

optimization of composite panels under buckling and ply configuration constraints 

safely. With the developed encoding strategy and constraints handling strategy, the 

optimum design were obtained in generations smaller than 100. 

 

 The optimization results show that to obtain optimum stiffened panel design, there 

is a lower threshold limit at the number of stiffeners of the structure. In the study, the 

optimum weight of the whole structure is found as 18.82 N for the panel with two 

stiffeners. For three stiffeners, the weight is found as 17.05 N. For four and five 

stiffeners, the weight came out to be both 15.7 N which are nearly the same.  
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 As the number of stiffeners increase, the need for stiffener flange width decreases as 

seen from the optimization results of 7.4. The optimization results of panel with four 

and five stiffeners came out to be about 4 which is the lower limit. 

 

 To capture the buckle half wavelength, at least 3 quadratic shell elements should be 

used. From the trials, it is determined that using less elements for those situations 

causes the calculated buckling load of the structure to be high, then this can mislead 

the analyst to capture an unfeasible optimization solution as feasible. 

 

 The permutation operators are quite important for weight optimization of laminated 

composites with buckling constraints, since the geometric parameters determine the 

weight, the objective of the optimization. If a more buckling resistant structure 

cannot be found by changing the layup configuration, the optimization can find 

premature optimization results. The permutation operator supplies additional 

diversity to the genetic algorithm. 

 

 From the convergence graphs of genetic algorithm, it is seen that near the optimum 

point the convergence becomes very slow. The objective value of the optimization 

may not change even in ten generations. Therefore, it is advised that the stopping 

criteria should be set if there is no improvement in the objective function in 15-20 

generations. 
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