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ABSTRACT

AN FPGA IMPLEMENTATION OF TWO-STEP TRAJECTORY PLANNING FOR
AUTOMATIC PARKING

Ertugrul, Halil
M.S., Department of Electrical and Electronics Engineering
Supervisor : Assoc. Prof. Dr. Senan Ece Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

September 2013, 94 pages

The main distinguishing feature of different automatic parking technologies is the method that
determines a proper collision-free path. Hereby, the length of the path, the number of halts
and the computation time for finding such path are the most relevant performance criteria. In
this thesis, a two-step trajectory planning algorithm for automatic parking is considered. The
algorithm finds a path that meets all kinematic constraints of the car from its initial position,
to the target position while requiring a small number of vehicle halts. It first calculates a
collision-free path from the initial position to the target position by maximizing the distance
from any obstacle. Since this path usually does not respect the kinematic constraints of the ve-
hicle, a second algorithmic step computes a path that is suitable for the vehicle. In both steps,
a set of 48 optimal trajectories is used for the path computations and distance evaluations.

Since the trajectory planning algorithm requires complex geometric calculations, it a micro-
processor is not suitable for practicable computation times. Hence, an FPGA is chosen for
the realization of the trajectory planning algorithm on hardware, enabling parallel processing
of the trajectory computations. This thesis describes the hardware design for implementing
the trajectory planning algorithm on FPGA. The performed analysis both via simulations and
implementation on hardware shows that a speedup in the trajectory computation is obtained.
Different from other hardware realizations that are restricted to either only parallel parking or
vertical parking, our implementation can handle general parking situations. In addition, our
implementation increases the driver comfort by reducing the number of vehicle halts.

Keywords: FPGA, Automatic Parking, Two-Step Trajectory Planning



0Y/

OTOMATIK PARK ICIN iKi ASAMALI YORUNGE PLANLAMASININ FPGA iLE
UYGULANMASI

Ertugrul, Halil
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi : Dog. Dr. Senan Ece Schmidt
Ortak Tez Yoneticisi  : Dog. Dr. Klaus Werner Schmidt

Eyliil 2013 , 94 sayfa

Otomatik park teknolojilerini birbirinden ayiran temel 6zellik park alaninda ¢arpisma olma-
yan uygun bir yol belirlemektir. Bu nedenle belirlenen yolun uzunllugu, bu yoldaki durus
sayist ve yolu belirlerken yapilan hesaplamalarin siiresi en 6nemli parametrelerdir. Bu tezde,
otomatik park icin iki adimli yoriinge planlama algoritmasi degerlendirilmigtir. Algoritma ara-
cin tiim hareket kistlamalarina uyarak baslangi¢ ve hedef pozisyonu arasinda az sayida durus
gerektiren bir yol bulur. Algoritma ilk adimda aracin baslangic ve hedef pozisyonu arasinda,
park alanindaki engellere maksimum uzaklikta carpismasiz bir yol belirlemektedir. Yine de
belirlenen yol aracin hareket sinirlamalarina uymadan belirlendigi icin genellikle arag tara-
findan takip edilemez. Ikinci adimda, birinci adimda bulunan yolu kullanarak, aracin hareket
kabiliyetine uygun bir yol hesaplanir. Algoritmanin tim adimlarinda, yol ve engellere olan
mesafe hesaplamalarinda en uygun oldugu ispatlanmis 48 adet belirlenmis yoriinge kullanilir.

Yoriinge planlamasi karmagik geometrik hesaplamalar gerektirdigi icin, mikroislemciler al-
goritma i¢in yavas kalmaktadir. Paralel iglem yapabilme kabiliyeti degerlendirilerek, yoriinge
hesaplamasini donanim iizerinde gerceklemek icin bir FPGA secilmistir. Bu tez, FPGA iize-
rinde yoriinge planlama uygulamasini anlatmaktadir. Simulasyon ve yapilan analizler yoriinge
hesaplamalarinin hizlandigini gostermektedir. Diger donanim algoritmalari sadece paralel ya
da dikey park etme islemlerini saglayabiliyorken, bizim algoritmamiz tiim park durumlarini
saglayabilmektedir. Bunun yaninda ara¢ duruglarini azaltarak siiriicii konforunu artirmaktadir.

Anahtar Kelimeler: FPGA, Otomatik Park, Tki Adimli Yoriinge Planlamasi
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CHAPTER 1

INTRODUCTION

Motivation:

Vehicles are becoming more and more dependent on electronic devices. Recently, the vehicles
are equipped with electronic systems such as the fuel injection system and anti-lock brake
system. Moreover, even high quality parts cannot perform up to their ultimate capability
without the help of electronic components.

Automatic parking is one of the recent technologies that provides a more comfortable and
safer driving. With the increased number of vehicles in crowded cities, parking in a narrow
space becomes a must ability. Even for skillful drivers, parking in a highly constrained area is
a time consuming process which causes halts in traffic. The automatic parking systems offer
reduction in the duration of this process. Safety is another issue presented by automatic park-
ing systems, since a collision-free path is achieved. Most of the automotive companies which
designed automatic parking systems claim that it also reduces the costs spent for repairing the
car.

Problem Definition:

The automatic parking procedure is divided into three phases. Firstly, while the driver is con-
trolling the car, a suitable parking space is detected with the help of sensors. Secondly, the
car is stopped and a collision-free path connecting initial position of the car and the desired
parking position is computed based on measurements and mathematical analyses obtained in
the first step. Hereby, a mathematical model of the environment and vehicle is usually consid-
ered. In the third stage, even though the driver still controls the velocity of the car, the control
of the steering wheel is left to the parking assistance system. During the computation opera-
tion performed in the second step, the driver has to wait until the calculations are completed.
For a successful parking assistance system, this halt time must be minimized.

Accordingly, the performance of an automatic parking process is determined by the number
of vehicle halts during parking process, velocity of the car during maneuvers, and the planned
path length. The computation of the path should be completed fast, such that the parking
maneuvers start instantaneously after the selection of the parking space and the car is stopped.
Here, a waiting time in the order of a few seconds is tolerable. A large number of vehicle halts
results in an uncomfortable driving process with high acceleration and the length of planned



path needs to be low enough to prevent a long lasting parking process. Hence, any proposed
method needs to meet these requirements.

Approach:

The halt time while calculating the feasible trajectory in step two of the automatic parking
procedure is a combination of various geometrical computations. Such computations are still
time consuming functions for the recent microcontroller technology. Moreover realization of
automatic parking needs a significant background knowledge on control algorithms, geometry
and programming. In this thesis, the automatic parking algorithm in [1] is implemented on an
FPGA hardware platform. The method is semi-autonomous in the sense that the steering angle
is provided automatically while the velocity of the car is controlled by the driver manually.
The approach in [1] takes care of the offline calculations not only in the form of a collision-free
path calculation, but also satisfying qualitative issues. In contrast to most of the collision-free
path planning algorithms which aim at environment dependent paths such as parallel parking,
the proposed approach does not have such constraints.

Contributions:

1. In the proposed method there are 48 different trajectories that can be used to connect two
configuration points of the vehicle. They need to be analyzed geometrically, whereby it
is beneficial that actually 12 trajectories are sufficient to compose all trajectories. The
reason is that each of the 12 trajectories can be used to obtain 4 diferent trajectories by
change of direction. In [1], just one of the trajectories is analyzed in detail. Within this
thesis study, the analysis is done for all types of trajectories. The geometric calculations
are constructed by using similar kinds of equations to simplify the design process.

2. In this thesis study, initially, the algorithm given by [1] is implemented in Matlab. Then,
the implementation is carried out on an FPGA platform with the following features:

(a) Parallel computation of time consuming geometric equations speeds up the pro-
posed method. Also by parallel processing, independent controller parts of the
algorithm work at the same time.

(b) Modular realization of FPGA blocks provides a flexible architecture. As part of
an incremental design strategy, modularity is especially effective when isolated
changes to a design are required and there is a need to minimize the impact to
other modules in the design. The implemented architecture is composed of 53
different modules. Modularity also saves the time spent while the simulation of
blocks is running.

(c) The generated blocks can be reused by many control algorithms, especially the
ones that need to deal with circle and triangle geometry and coordinate planes.
For example, there are two different area computation methods implemented for
triangle geometry or there is a formulation of the x, y components of a dot on
a coordinate plane with a known perpendicular distance to the line that connects
two predefined points or a dot product calculator.



Results:

An FPGA implementation of a two-step trajectory planner is obtained in the scope of this
thesis. Numerous processes are run in parallel and a faster algorithm is observed via simu-
lations. At the end an FPGA experiment is presented to validate the feasibility of the FPGA
implementation of the geometric calculations. The results are promising for the most complex
trajectory calculation.

Plan of the rest of the thesis:

The remainder of this thesis is organized as follows. In Chapter 2, the problem statement,
previous automatic parking algorithms and implementations as well as the method proposed
in [1] are introduced. In Chapter 3, a two-step algorithm for parking trajectory planning
is presented using a kinematic model of the vehicle, circular trajectories and clothoid arcs.
In Chapter 4, the FPGA blocks of the hardware implementation of our trajectory planning
algorithm are explained together with signal definitions, block level architectures and flow
charts. In Chapter 5, the results of the simulations obtained via MATLAB and ISIM are
discussed. At the end, Chapter 6 concludes the thesis with a brief summary and an outlook to
future work.






CHAPTER 2

PROBLEM STATEMENT AND RELATED WORK

2.1 Parking Problem

Parking is the act of stopping and disengaging a vehicle and leaving it unoccupied. Parking
in an environment for given collision-free start and goal configuration requires a collision-
free path between these two positions, secondly the vehicle should be able to follow the
determined path and because of that the path needs to be constructed by meeting the kinematic
constraints of the car. Additionally, the speed of the vehicle must be high enough to provide a
fast parking process and unnecessary halts must be avoided. Finally, the waiting time until a
suitable collision-free path is computed should be in the order of a few seconds such that the
driver experiences a fast start of the parking maneuver.

The implementation of automatic parking algorithms on a hardware also needs to meet quali-
tative parameters of the parking process. When the complexity of the calculations increases;
the complexity of the hardware design increases too. Different hardware implementation
methods result in different calculation times, which affects the time spent during the maneu-
vers. In this thesis, the algorithm proposed in [1] is implemented on FPGA as a solution for
the automatic parking problem, since numerous processes can be run in parallel. Hence, the
calculation speed increases due to parallel processing, which is of particular importance for
speeding up offline computations and hence reducing the waiting times of drivers.

2.2 Related Work

In this part of thesis, a survey on previous works for automatic parking is presented. Af-
terwards, various hardware implementations of automatic parking algorithms are described.
Finally, the implemented algorithm [1] is summarized.



2.2.1 Previous Automatic Parking Algorithms

The proposed automatic parking solutions can be classified into two groups; application ori-
ented parking such as methods for only parking parallel or vertical, and the generalized auto-
matic parking solutions which work for all kind of cases.

We first consider the application specific solutions. Most of them suffer from the similar
shortcoming that they are exclusively applicable to either parallel parking or vertical parking.
Besides, numerous halts occur during the parking maneuvers. The proposed algorithm in [2]
offers parallel and vertical parking with an increased complexity in maneuvers and numer-
ous direction changes. A fuzzy logic controller based algorithm is presented in [3] which
produces a collision-free connection from a start configuration to a target position by using a
pre-determined set of trajectories. This method is successfully tested on a small electrically
powered car model. However, when it is tested with a real car it is seen that for small parking
spaces the generated movement is composed of many maneuvers since the real car kinematics
are different than a small electrically powered car. The approach in [4] focuses on the steering
motor controller. The authors claim that the calculated path is of minimum length among all
possible ways. This approach uses a bilateral interface with the driver and has the disadvan-
tage that it only works in reverse (backing in) parking situation. Another fuzzy-control based
solution, given by [5], focuses on connecting initial and target positions of a vehicle without
considering the driving comfort. Although the generated solution is supposed to be fast, it is
not comfortable for the driver. A vision guided automatic parking is proposed in [6], in which
video data is used to detect the parking slot. After the parking slot is detected, a collision free
path is constructed. This solution uses two control algorithms which are hybrid fuzzy logic
and neural network control architectures. This solution also suffers from usability problems
since it can only park parallel. In the work [7], a fuzzy logic algorithm is used to achieve
a collision-free parking. Since the method uses a fuzzy logic algorithm, no qualitative con-
straint is considered within this study. Moreover, the generated architecture is environmental
specific, meaning that the vehicle only parks parallel or perpendicular.

Next, we summarize generalized automatic parking solutions. The approaches find a
collision-free path for every kind of car orientation. The generalized automatic parking solu-
tions usually suffer from THE complexity of the algorithms. In [8] and [9], a live programing
like method that aims to reduce the quantity of maneuvers by constructing a discretized il-
lustration of the parking environment is proposed. This approach is very computationally
expensive. An adapted version of the study given in [8] and [9] is introduced by Ferbach
in [10]. The approach is an adequate implementation of work which is known as progres-
sive variational dynamic programming. In this method, an illustration is generated from an
unconstrained definition by loading the kinematic constraints continuously. The accuracy of
the algorithm proposed in [8] and [9] is lost because of modifications. In [11] and [12], an
approach is proposed by defining the non-holonomic environment with non-linear equations
which are solved by the numerical continuation method. This approach needs to be defined
by basic equations before solving the whole non-linear equations of the system. Basic system



definitions are considered firstly which have known solutions. Then real system solutions are
formed by using the predefined simple equations. At last, the original problem needs to be
reconstructed from these simplified equations. Chitour is inspired by the promising results
of [11] and [12]. The algorithm is examined from a theoretical view to an algorithm for mo-
bile robots in a parking environment with obstacles [13]. Unfortunately, the method does not
converge when the steering angle of the vehicle is included in the model. In the work of Ghi-
aseddin et. al., a neural network based algorithm [14] is implemented to keep a vehicle on the
road. With the help of a simple fuzzy logic algorithm, the method in [14] does not provide
an intelligent parking process. It just guarantees not to crash any obstacle while parking. The
method given in [15], focuses on an obstacle oriented algorithm and combination of various
turning arcs. The parking process occurs at low speed by providing a breaking action method.
The performance of decided trajectory is better than the methods proposed in other work in
terms of needed parking space. This control mechanism is implemented using Fuzzy-PID
tracking control. Also, this algorithm is one of the best low-cost solutions and it only needs
space 1.28 times of vehicle length for parallel parking, whereas the previously mentioned
algorithms need more than 1.4 times of the vehicle length.

2.2.2 Previous Automatic Parking Implementations

A hardware implementation is developed for the proposed method in [1]. The hardware plat-
form is chosen due to three important parameters; design cost, speed and flexibility. Three
possible hardware solutions are ASICs (Application Specific Integrated Circuit), micro con-
trollers, and FPGAs. When the speed is considered, uCs are the worst option that have long
computation time and low working frequency (10 to 20 MHz). When the design cost is con-
sidered, ASICs are the worst solution. ASICs require a chip design process. Besides, they
are not flexible. For instance, a small change might be possible only by redesigning the chip.
Accordingly, due to high operation frequency and flexible hardware, FPGAs seem to be the
best solution for a hardware implementation.

There are also constraints that the selected FPGA must meet. The implemented design needs
to fit on the selected FPGA and be fast enough to reduce off line calculation time. During
the implementation of the proposed method, speed is the most important design goal. To this
end, parallel processes are densely generated. Again to speed up the implemented module, no
source should be shared by two active processes.

Some of the algorithms given in Section 2.2.1 are implemented on a hardware platform. It is
observed that among the proposed hardware solutions, all of them are based on fuzzy logic and
predefined neural network solutions. One of the hardware solutions proposed by Hsu et. al. is
implemented on an dsPIC microprocessor [4]. The algorithm given by Song offers an FPGA
based implementation, [5]. The work focuses on parallel realization of geometric calculations.
As was stated in the previous section, the solution by [5] is not a pleasant driving experience.
The next hardware implementation of an intelligent parking process is introduced by Scicluna
et. al. [7]. The algorithm is implemented on an FPGA [7]. However, although it is a fast and



less source consuming FPGA design, it still suffers from environmental limitations. The
algorithm proposed in [14] is as well realized on an FPGA. As is stated above, this approach
only provides collision free parking controlled by the driver while avoiding obstacles. The
rest of the algorithms proposed in Section 2.2.1, does not have hardware implementation
information. They are simulated via Matlab or implemented as a software.

2.2.3 Work of Miiller et. al.

In this thesis, an FPGA implementation of a two-step trajectory planner algorithm is proposed.
Two-step trajectory planning consists of two stages; firstly, a collision-free path connecting
two configuration of the vehicle is constructed, secondly using this path a collision-free tra-
jectory needs to be calculated that can be followed by a vehicle.

In the first step of the algorithm, the aim is to find a safe path from the initial position to
the final position of the vehicle. This path would be safe if the distance to the obstacles are
maximized while moving to goal configuration. The trajectory planner starts at the initial
position of the vehicle, then moves towards to final configuration of the vehicle by checking
all neighbors on the 2D system by testing 48 circular trajectories determined in [16]. The test
done by using the trajectory calculators is to find the minimum distance to any obstacle for all
neighbors. After this calculation, the algorithm chooses the neighbor which has the maximum
distance to the obstacles. Moving through the neighbors until the vehicle reaches the target
position allows to obtain a safe path if such path exists. It is proven that 48 types of trajectories
are sufficient to detect the minimum length path that connects two given positions on a surface
plane [16]. The described algorithm is called the Distance Optimized Path Planner. Due to
kinematic constraints this path usually cannot be followed by a vehicle.

In the second step of the planner, the planned path is used to connect two positions of the
vehicle by avoiding unnecessary halts. In Figure 2.1, the unnecessary halts situation is illus-
trated.

For avoiding unnecessary halts, the number of sampling points on the path needs to be mini-
mized. To this end, the second step of the algorithm checks if the initial and final configuration
of the vehicle can be connected directly by predefined trajectories on a collision-free path. If
it cannot be connected, the same verification algorithm is run for traveling one half of the
planned path. After the start position is tied to a position on the path planned in Step I, the
algorithm keeps on searching for a path from the intermediate node to the target position us-
ing the same methodology. This procedure goes on until the vehicle position reaches the goal
configuration. The obtained path can then be followed by the vehicle.

Another set of trajectories presented in [1] offers smoothed versions of arc length optimal
trajectories which are known as the one-sided continuous curvatures (OSCC) family. At the
connection point of the arcs where the velocity direction is not changed but the steering direc-
tion changes, this trajectory family offers continuous maneuvers. This is achieved since the
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Figure 2.1: Reducing the number of sampling points [1]

vehicle starts turning the wheel before it reaches the connection point and the steering angle
becomes zero when it reaches the connection point of two arcs.
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CHAPTER 3

PARKING TRAJECTORY PLANNING

3.1 Vehicle Model

Firstly, to characterize the parking problem, the kinematic model of the vehicle is introduced.
A path can be followed by a car only if all kinematic constraints of the vehicle model are
met, whereby it turns out that these constraints are independent of the vehicle velocity. That
is, we next determine an appropriate mathematical model of the vehicle kinematics which is
independent of the velocity.

3.1.1 Basic Vehicle Model

The vehicle model which is used in this thesis is the most common description in the literature.
It is assumed that only slow motions are applied to the vehicle in a parking situation and less
complex vehicle kinematics are obtained [1]. Moreover side effects of environment and effects
of wheel slipping are neglected. Due to these assumptions, it can be seen also in Figure 3.1
that the front wheels and rear wheels can be thought as one wheel in the middle of the two
wheels.

Figure 3.1 shows that four variables are enough to define the motion of the car in a plane
environment. x and y coordinates of the mid point of rear axis, orientation angle 8 and steering
angle ¢. The velocity vectors at the middle of the tires are perpendicular to the related axle-
trees. Then, we obtain the following equations.

Xxsinf —ycosf =0 3.1

Xpsin(@ + @) — ypcos(@+¢) =0 3.2)

x¢ and y¢ describes the mid point of the front wheels which can be given in terms of the
coordinates x, y, 6 and ¢.

Xy = x+ Lcost 3.3)

yf =y + Lsinf 3.4)

11



L is the constant distance between the front center of the wheels and rear center of the wheels.
By substituting Equation 3.3 and 3.4 in 3.1, we obtain

0 X Xf

Figure 3.1: Kinematic car model [1]

xsin(8 + ¢) — ycos(f + ¢) — OLcosp = 0 (3.5)

after using the basic trigonometric property
sin@sin(6 + ¢) + cosOcos(0 + ¢) = cos¢ (3.6)

Beside ( 3.1) and ( 3.5), there are two more limitation for the real car movement which must
be taken care of. ¢nax stands for maximum turning angle of the front wheels and wpax Stands
for maximum steering angular velocity of the front wheels. ¢y, can not exceed n1/2 and the
change of ¢ in unit time can not exceed Wmgx.-

| ¢ I< Pimax (3.7)

| ¢ < Winax (3.8)

In summary, the relevant kinematics of a vehicle at low speed are described by ( 3.1), ( 3.5),
(3.7)and ( 3.8). By using ( 3.1) and ( 3.5)

X
.sm0 —cos0 0 0 y ~ 0 (3.9)
sin(@+ ¢) —cos(@+¢) —Lcosp 0]|60

¢
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Accordingly, the state equations based on the time derivatives , y, # and ¢ are obtained as

w (3.10)

3.1.2 Velocity Independent Description of Car Kinematics

The crucial part to achieve a vehicle model which is independent of velocity is parameterizing
the vehicle model in terms of the arc length s which is formulated for the specified point [x,y]

s(H) = s(t) +f A X2(1) + Y2(e)dt* = s +f | v(£*) | dt* (3.11)

To simplify the Equation 3.10, two parameters are proposed: x and o

as

1
K= z[anq} (3.12)
1
3.13
Lcos? ¢ (3-13)

Equation 3.10 can be rewritten as

w (3.14)

It is easily seen that the time derivative of the arc length s is equivalent to the absolute velocity
of the movement.

ds
[v| = o (3.15)
The problem is restated, in terms of arc length s instead of time when v = 0, as
x'(t(s)) cosO(t(s)) 0
Y (#($)| _ | sinf(#(s))| . 0f
asy| K(t( N sign(v(t(s))) + 0 a(s) (3.16)
K (1(s)) 1
where the notation (.)’ is represents and
_ o (1(s))
= 3.17
7= St GA7

The computations in the remainder of the thesis are based on the model in 3.16.
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3.2 Optimal Circular Trajectories

3.2.1 Trajectory Families

The proposed system model, which is known as Reeds and Shepp’s Car, neglects the limita-
tions on the angular steering velocity [1]. We use the variable d,(s) for the direction of the
vehicle motion. There are two possibilities, forward and backward motion, as indicated by 1
or -1 during any kind of maneuver. Similarly, Z&(s) stands for the angular direction of the car,
since the direction of a vehicle can be left, right or straight the direction of the vehicle can
have the values 1, 0 and -1.

X' (s) cosO(s) 0
y(s)| = sme)(s) d,(s)+|0|d(s) (3.18)
0'(s) x

Circular arc trajectories, as described in [16], are the combination of circular arcs and straight
line elements. Circular arc trajectories are used to find shortest path that connects two points
on a plane surface [16]. The radius of circular arcs R is calculated according to car kinematics
[1]. It is stated that, arc length based trajectories are derived for various combinations of the

elements in the bounded constant input sets [1].
d,(s) € {-1,1} (3.19)
é(s) € {~1,0,1} (3.20)

The trajectory elements can be obtained using these set of arcs that are shown in Figure 3.2.
In Figure 3.2, symbols '’ (Left turn), 'r’ (Right turn), ’s’ (Straight movement) are used to
illustrate the shape of movement. Besides, 'p’ (Plus) and 'm’ (Minus) stands for the direction
of movement.

One of the significant contributions stated by Reeds and Shepp [16] is that complete arc
length trajectories are combined of at most five trajectory segments, and it is proven that
48 trajectories are enough to reach every point on a plane surface. The 48 trajectories are
introduced on Table 3.1 together with a classification into groups and the relevant parameter
ranges.

A trajectory can be denoted as arc-length optimal if the boundary conditions which are located
at the last column of the Table 3.1 are matched. Here, ’a’, ’b’, "¢’ and I’ represent the length
of the respective arcs. Besides, it is has to be noted that at most one of the members of each
arc group can be valid for connecting any selected two points on a plane surface.

3.2.2 Trajectory Evaluation for Selected Trajectories

Computation of shortest feasible path (SFP) is provided after checking all 48 arc length tra-
jectories. This process is based on first finding the possible paths from the initial vehicle

14



Figure 3.2: Segments of Circular Arcs [1]

configuration to the final vehicle configuration. The trajectories among the 48 candidates
which connect two configuration points are eliminated if the boundary conditions described
in the fourth column of Table 3.1 are not met. After these eliminations the trajectory with
minimum length is selected as SFP for given two configurations of the car.

Length of the SFP depends on the parameters shown in fourth column of Table 3.1. Parame-
ters a, b, e and [ are calculated with numerous geometrical rules in the 2D plane surface.

Parameter computations for selected trajectories are explained as follows. Since the rest of
the calculations are similar to each other, computation for every trajectory family parameters
is not given here. Before these calculations problem specific commonly used equations are
introduced.

The distance between two points (eg: pl:(x1,y1), p2:(X2,y2)) on a coordinate plane is

d = \J(r =522 + (1 = 2 (3.21)

We next identify a point that has perpendicular line with a distance "h’ to a line segment with
known start and end points and with a given distance d1 to the initial point of the line (see
Figure 3.3).
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Table3.1: Arc Length Optimal Trajectory Family [1]

Group No. ‘ Group ‘ Families ‘ Parameter range

I C|C|IC Ipalmplpe / rp,rmprpe 0 < a+b+c <nR
1rnalpblrne / M, I'PplMe

11 C|CC Iplmprme / rparmplme 0<a<b,0<e<b
Im,lpprpe / rm,rpylpe 0<b<7R

111 CC|IC rpalpplme / Ip,rpprme 0<a<b,0<e<b
rm,lmplpe / Imyrmprpe 0<b<?7R

v CC|CC rpalpplmprme / Iparpprmplme 0<a<b,0<e<b
rm,Implpprpe / Imyrmprpplpe 0<b<7IR

A\ C|CC|C Ipalmprmprpe / rparmplmplpe 0<a<b,0<e<b
Im,lpprpprme / rm,rpylpplme 0<b<?7R

VI CI|CSC|IC lpalm%Rsmlrm%Rrpb / rparmrz,rRspllmrz,rRlpb 0<a<iR,0<I
lmalprz,rRsmlrpgerb / rmarprz,rRspllp%leb 0<b<7R

VII C|CSC lpalm%Rsml Imy / lmalpzz,rRspl Ipy 0<a<nR,0<I1
IMaIPrRSPs IPh / IPalMzRSM; My 0<b<?g
Ipalmzgsm; rmy / rmarpzgrsps Ips
Iparmzgsmy Imy, / Imylpzgsp; 1py

VIII CSC|C M, SMIMzRIPh / IPaSPIPIRIMY 0<ac< ’%R, 0<l1
lpaspllp%leb / lmasmllm%Rlpb 0<b<aR
rmysmylmzglpy / rpaspilpzrImy
IpaspirpzrImy, / Imysmrmzgrpsy

IX CSC rm,Sm;rmy / rpaSPIrphy 0<a<iR,0<I
Im,smylmy, / Ip,spilps 0<b< 7R
rmgsmylmy, / 1paspilpy
Im,smyrmy, / 1paspirpy

X3, Y3
h
‘ d1
X1, Y1 X2, ¥z

d2

Figure 3.3: Point with Known Perpendicular Distance

Corresponding x3 and y3 coordinates are:

(x1-(d2—d1)+xp-d1)=b-(y2—y1)
_ dl
T | O1(@2=dD)+yr-d1)—=b-(x1—X2)
dl

X3
Y3
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Third, we consider the center points of circular arcs with radius R that can be followed by
the vehicle starting at a given position (gy, gy) and with the orientation 6. There are two
different derivations depending on the direction of the arc. As can be seen in Figure 3.5, if the
movement is left forward or right backward turn, the vehicle’s path is an Q) centered circle.
Otherwise the path is an €, centered circle.

Q) x] _ (g, — R - sin(9)] (3.23)
|Q1y| |y +R-cos(0) '
Esz— _ >qx +R- sin(&)— (3.24)
Qy| gy =R cos(d) '

( (€%, Cyy)

(% Gy)

(£2:%, £2ay) |

Figure 3.4: Center point calculations of circular arcs

We next derive several relevant trajectories. Figure 3.5 gives the geometric illustration on 2D
coordinate plane for the Ip,Imylp. trajectory. Using this illustration, the parameters of this tra-
jectory can be computed in terms of start ((g1x, g1y, 61) and target configuration ((g2x, g2y, 6»)
of the vehicle.

Since the first and final movements are left forward, the centers Qx, Qy, Qox and Qyy
can be calculated with the helps of ( 3.23). [|AQ,|| is calculated by using ( 3.21). Then
perpendicular length ’h’ from €3 to line segment [€2;€)] is computed by the Pythagorean
Theorem (Appendix A). Afterwards, Equation 3.22 is applied to obtain 3x and Q3y. At the
end all points which turn the calculations into unique geometry problems are derived and arc
lengths a, b and e can be calculated in order to check if the conditions in Table 3.1 are met.

arctan(gzi g*i ) — arctan(Q”yC—Q*y) (3.25)

arctan( rory sz) — arctan(£=2—==

Qs x
Qy—Qy )

Q3y-Qiy qiy—=Quy
a arctan(Q3x o <) — arctan( prp le)
b
¢ G2 x—x
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a2y

Qay

Ox qly g2 O Qax x

Figure 3.5: Illustration of Trajectory Family Ip,lmylpe

Figure 3.6 gives the geometric illustration in 2D coordinate plane for the rp,lpplmprm, trajec-
tory. Then, parameters are defined in terms of start and target configuration of the vehicle.

Qx and Qy are calculated by using ( 3.24) since the first movement is right forward. And
Qox and Qyy are calculated by using ( 3.23) since the final movement is right backward. It can
be seen in Figure 3.6 that |[AQ34]| is equal to 2R and the line segment [€2T] is perpendicular
to [AQ34]. Then Equation ( 3.21) is applied to calculate ||AC;;||. The geometric projection of
[JAQ>|| on ||AQ34]| as shown in Figure 3.6. is used to calculate [Q3T].

2R — [|AQ |

T =
1T >

(3.26)

By using Pythagorean Theorem ’h’ is obtained as

h = V2R? —||Q3T||? (3.27)

With the helps of Equation ( 3.22) center point coordinates of Q3 and €4 can be calculated.
Afterwards, similar to (3.25), arc lengths a, b and ¢ are computed as

Sy ng) - arctan(gl)yC gzi) (3.28)

Gy— Qly)
Gx—Qx

q1y—Q1y Q3y—Qyy
a arctan( s le) arctan(Q = le)
b arctan(Q

c

Q4y QZY)

arctan( OO

arctan(

In Figure 3.7, the geometric illustration in 2D coordinate plane for the lp,Imprmprp. trajectory
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Figure 3.6: Illustration of Trajectory Family rp,lpplmprme

is given. Afterwards parameters are defined in terms of start and target configuration of the
vehicle.

Q;x and Q,y are calculated by using ( 3.23) since the first movement is left forward. And
Qox and €,y are calculated by using ( 3.24) since the final movement is right forward. Then
Equation ( 3.21) is applied to compute ||AQ,||. It can easily be seen in Figure 3.7, length I; is
equal to half of the ||[AQ || since there is no obtained angular or distance information about h.
Another geometric consideration is introduced for the red triangle, (21Q3P) area is calculated
by Heron’s rule (Appendix B). Area of a triangle with given 3 sides (a, b, ¢) is described as
follows, where the "U’ is equal to half of the perimeter of the triangle.

Area = \/U(U —a)(U-b)U -c) (3.29)

The edges of the red triangle in Figure 3.7 are 2R, R and 1; which are evaluated before. Using
area length distance "h’ can be obtained and ’1,’ is calculated with Pythagorean Theorem. Af-
terwards, by using the Equation ( 3.22), coordinates of center points Q3 and 4 are calculated.
Then the arc segments a, b and ¢ are computed as:

arctan(Q — x) - arctan(Ql)yC gg) (3.30)

Qy—Qy )
G2 x—x

Qqy— sz

q1y Q3y—-Qyy
a arctan(Z. |x le) arctan(g3x le)
b

¢ x—Qox

arctan(g=—g= o

) — arctan(=—5=
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Figure 3.7: Illustration of Trajectory Family lp,Imyrmprpe

In Figure 3.8, geometric illustration is given in 2D coordinate plane for 1palm72,rRsm1rm%Rrpb
trajectory. Afterwards parameters are defined in terms of start and target configuration of the

vehicle.

92y

Pay
Py

Oy
qly

O qlx ix Pix Pax £yx 2, 2% x

Figure 3.8: Illustration of Trajectory Family lp,Imzgsmymzgrpy

Q;x and Q,y are calculated by using ( 3.23) since the first movement is left forward. And
Qox and €y are calculated by using ( 3.24) since the final movement is right forward. Then
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Equation ( 3.21) is applied to compute ||[AQ;||. As can be seen in Figure 3.8, it is not possible
using similar methodologies which are used in previous trajectory computations to calculate
points [Q3x, Qazy] and [Qux, Q4y]. There are additional angles a1, @> and a3 in Figure 3.8
which are used for the derivations of center points.

R
a = arctan(l—) 3.31)

1

oy —Qpy
— 20y Rt 32
s arctan(sz_le) (3.32)
T

a3 = 5 —ay, (3.33)

Then the center points of the Q3 and €4 are,

[Q3x]  [Qix+2R - sin(ay + )] (3.34)
[Qsy| | Qiy +2R - cos(ag +a2)] ‘
>Q4x— B ,sz — 2R - sin(a; + 0/2)— (3.35)
[ony B |Q2y — 2R - cos(a + ay)] ’

[ is the additional trajectory component of the straight movement segment which is computed
for trajectory Ip,lmzgrsmrmzgrrpy as:

[=2-11-4R (3.36)

The angular parameters a and b are

lal _ larctan(gi g'i ) — arctan(;’:; gii ) (3.37)

b Qqy— 92)’) QY- Qz))

arctan(Q x—Qox grx—Qx

arctan(

In this part of the thesis, only four different trajectories are analyzed based on their geometrical
properties. The rest of the trajectories can be analyzed using similar approaches.

To calculate the trajectory families, geometric derivation of trajectories are needed to be com-
puted. During these calculations, variation in geometric formulas are tried to kept minimum

to reduce design complexity.

To connect the two configuration of a vehicle, the 9 trajectory families which has 48 members
are needed to be calculated to obtain a collision-free path, and to find the set of connecting
trajectories. After eliminating the trajectories which does not meet the constrains given in
Table 3.1, an arc-length optimal trajectory, which is the shortest path, would be found.

3.3 Suboptimal Clothoid Arcs

The SFP is generated according to Reeds and Shepp circular trajectories given in the previous
section. It must be noticed that, the car movement usually has to halt between two connected
arc segments. The reason is that, if the vehicle is at the end of a segment, it usually has
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to change the steering angle or direction of motion in order to continue with the next arc
segment. It is illustrated in Figure 3.9 that the vehicle has to stop at least 4 times at points A,

B, C and D for trajectory Ip,lmzgsm;rmzgrpy.

C

(g2, q2y)

0, D [+ ]

VAN,

e -

Figure 3.9: Discontinuity of the trajectory Ip,Imzgsm;rmzgrpy

The discontinuity in maneuvers is happening because the vehicle is moving through circular
segments with minimum turning radius R = % [1]. Here, the halts at points A’ and D’ cannot
be avoided. However, the movement can be constructed in the form of continuous maneuvers
at points 'B” and C’ by smoothing the arcs as suggested in [17]. Ip,lmzgsmrmzgrpy is
visualized in Figure 3.10 with smoothed arcs at points B’ and *C’.

o

Figure 3.10: Smoothed version of the trajectory Ip,lmzgsm;rmzgrpy

By smoothing the arcs, the halt count is reduced from four to two in this example. It can be
seen in Figure 3.10 that the configuration angle of the vehicle at A is ¢max at the initial point
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of a smoothed arc. At the end of the arc, the configuration angle is reduced to zero while the
car moves around Q3. Conversely, while the car moves around 4, the initial configuration
angle of the vehicle is zero and the final situation at point D is ¢max. Smoothed versions of
the arcs are denoted as clothoid arcs in the rest of this thesis.

Clothoid arcs are efficient in terms of halt counts, and reduce the time is spent during parking
[1]. As mentioned above, the clothoid arcs can be examined as two different maneuvers due to
initial configuration angle of the clothoid movement. If the value of the initial configuration
angle is zero, the maneuver is called as Front End (FE) turn, if it is ¢max the movement is
called as Back End (BE) turn.

Smoothed versions of circular ars are constructed by combination of a circular movement and
a clothoid arc. This combination is denoted as One-Sided Continuous Curvature (OSCC).
Figure 3.11 illustrates the geometric parameters of this combination.

Figure 3.11: Back End (Left) and Front End (Right) OSCC Turns

The BE and FE OSCC turns have two additional parameters; radius of the outer circle R and
angle u. The vehicle has maximum steering angle while moving through circular arc with
radius R. For BE OSCC, at the point A, steering angle starts to decrease continuously with
the angular speed wpax Which is defined before. At the point where the vehicle’s steering
angle is equal to zero, the vehicle leaves the outer circle with ¢ = zero. Then, u is the angular
difference at point qr between the car orientation angle 6 and tangent intersects the outer circle
at point g¢. For FE OSCC, at the point q;, the vehicle enters the outer circle with the orientation
angle ¢ = zero. Then, u is the angular difference at point q; between the car orientation angle
0 and the tangent to the outer circle at g;. Steering angle of the vehicle is equal to zero and
starts to increase continuously with the angular speed wp,x. At the point A, the vehicle enters
the inner circle with ¢ = @ ax.

R and p are fixed parameters by the kinematics of the vehicle as described below where the
Cr stands for cosine product Sy stands for sinus product of the Fresnel integral. Definitions
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for C¢ and St are provided in Appendix C.

2
max
_ Kmax 20 max
U'mat Va'ma,\” Kmax
= arctan (3.38)

2
cos ~max
( _ Kmax ) zo'ma\'
a'ma,\ VT max Kmax

K,z,mx Krznax
> Kmax sin y e 20, T Kmax COS 75
R=1|(4/ Cy( )~ )2+ ( S #( )+ =)?(3.39)
J O max ! VO maxT Kmax O max ! VO max Kmax
For the BE OSCC, arc based kinematic parameters are given in below equations. For more
detailed information see [1].

x(s) = xo—
7T dvd¢ 0 K2 [ Kmax T max Kmax
d, cos — Y 4 Gy | C - (s = 50)) = C(
O max { ' ( 2 max ) f( VO maxT T 0 / max
/e . dvd¢ 0 K,Znax [ Kmax T max Kmax
+ dy0 sin( . +6p)|S £( - (s —150) =S £(
O max { ?0 2 max / VO maxT T / max
(3.40)
y(s) = yo—
T dvd¢ 0 K2 Kmax T max Kmax
dy o cos(——— 2 1 60) [ S #( - (s =50) =S f(—/———)
O max { ¢ 2 max / VO maxT T / O maxT
/e . dvd¢ 0 K2 Kmax T max Kimax
+ d,, sin( = Y 4 ) | Co( - (s —50)) — Cs(
O max { ! 2 max / VO maxT / O max7
(3.41)
_ 1
6(s) = 60 + iy 0(kmax(s = $0) = 5T max(s = 50)°) (3.42)
¢_5(S) = d¢,0 arctan [(L(Kmax - U-max(s - SO))] (343)

For the FE OSCC, arc based kinematic parameters are given in below equations. For more
detailed information see [1].

F(s) = x0 + {dv cos(60)C 4( ‘TZ‘”‘(S — 50)) — dy sin(60)S 1( ‘T’;"x(s - so))}
" (3.44)
O max . O max
J(s) =yo + {d¢ cos(6o)S £( - (s = 50)) — dy sin(6p)C ¢( - (s— So))}
" (3.45)
6(s) = 6o + %dvd(/),oo- max(s = 50)%) (3.46)
P(s) = dy o arctan[(Lo (s — o) (3.47)
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Final configuration of the vehicle gf is computed for both BE OSCC and FE OSCC turns as:

g = [%(sp). 3. 85| (3.48)

s¢ is stands for the length of whole clothoid arc movement of a turn. Which is expressed as:

Kmax

Sy =50+ (3.49)

omax
Table 3.2 is transformed version of Table 3.1 for OSCC Trajectory families. There are two
major difference between both tables. First clothoid arcs are used instead of circular arcs in
Table 3.2. Second, the parameter ranges in column 4 of Table 3.2 are different [1]. While
the RS trajectories arcs aim to find minimum length solution, OSCC trajectories aim to find
solutions with minimum halt counts instead of minimum length solution. So there can be
more than one solution for an OSCC trajectory family.

In Table 3.2 °—’ is used to indicate BE OSCC turns, and *« is used to indicate FE OSCC
turns. In the following, one example of an OSCC trajectory is analyzed. The key point for
OSCC trajectory kinematics calculation is separating the circular part and the clothoid part of
the movement.

a2y

Lhy

2y

aql,

Figure 3.12: Kinematics of an OSCC trajectory

It can be seen in Figure 3.12, there are five arc segments through the movement; a circular
arc, a BE clothoid arc, a straight line segment, a FE clothoid arc and a circular arc. As it
is underlined before, the key point is identifying the circular arc lengths and clothoid arc
lengths since arc length based kinematics are calculated in separated methods. Q;x and Q;y
are calculated by using ( 3.24) since the first movement is left backward. And Q,x and Q,y
are calculated by using ( 3.23) since the final movement is right backward. The angle u is
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Table3.2: OSCC Trajectory Family [1]

Group No. ‘ Group ‘ Families

‘ Parameter range

I CC|IC Ipalmplpe / rprmprpe 0<a<2aR,0<b<27R
Im,lpplme / rm,rpprme 0<c<27R
— = 5 —
11 c|cC Ipalmgimg [ tparmglm, 0<a<2aR,0<pB<27R
— —y
Im,lpgrp, [ Tm,rpglp, 0<e<2nR
= - = -
111 cC|C rPolpglme [ Ipo 7 pgrme 0<a<2nR,0<e<2nR
— 7
rmglmglpe [ Imgrmgrpe 0<p<27R
Seoe [ S E S L S S
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calculated by using Equation (3.36). Ang.on i also a fixed parameter since the vehicle’s

steering angle and moving velocity are fixed.

Sy =50+ Kmax [l]
O max
Kmax and 0,4, are defined as in [1]
K = tan(épqx)
Lear
O = Wmax
LearVmax

Using (3.40) and applying the information sy = 0, s = sy and 6y =

(3.50)

(3.51)

(3.52)

’(’, angular difference

between the initial position of the car and the final position of the car while moving on clothoid
segment of the trajectory is obtained (e.g. from A to B). If the movement was a circular one,
this angular change would be the arc length of the circular maneuver. But as is seen in Figure
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3.12, vehicle’s position at B is not tangential to the circle ;. By subtracting the angle y, the
angle Angcio, s obtained.

Observing the Figure 3.12, Ang can be calculated as:

-Q
Angeire = 0 — arctan( L2212y _ Ang o — Ang, (3.53)
qix —Qix
Angy is dependent of the distance between the centers of ¢; and ¢,. There are additional red
lines in Figure 3.12 which compose rectangle [¢BFE]. By using this information Angy is

obtained as:
L cos(p) Qoy —Qpy

1AQ ]| Qrx —Qx

Ang, = arcsin (3.54)

L is defined by below equation, for trajectory l;;wsmﬂ(%ﬁ. See [1] for more detailed derivation.

L= \/||A£212||2 — (2R)? + (2Rsin p)? — 2R sin (3.55)

Same derivations can be applied to second circular movement, then every kinematic parame-

ters can be calculated for OSCC trajectory l?nasm[;(%,g.

3.4 Two-step Trajectory Planning

The algorithm proposed in [1] is composed of two stages. Firstly, a collision-free path is
generated. Secondly, a collision-free connection is established by considering the qualitative
conditions of automatic parking and kinematic parameters of the car. Qualitative parking
needs low count of halts, a short trajectory between initial and final configuration and a large

enough vpax.

There are many different ways to obtain a collision-free path which connects two configu-
ration of a vehicle. The proposed method in this thesis is checking for maximum SFP of
neighbors to all accident conditions starting from initial point to target position. To this end,
a distance look-up table is computed that captures the obstacle distance of the vehicle. The
obstacles are defined by two different component; straight line, and half-line elements [1]. It
can be seen in Figure 3.13 how these lines are constructed.

It is desired to build up a distance look-up table which includes the crash information of the
vehicle defined by 3 dimensional vectors [x;,y;,0;]. To this end, the basic vehicle model as
defined in Section 3.1.1 is slid along the constructed line elements in different directions (see
Figure 3.14). That is, at each initial point of a line, the vehicle model is fixed at one side of the
model and turned around that fixed corner with a defined step of angle. This is repeated for
every side of the vehicle. After that, the vehicle is moved to the next position on the line. This
approach is continued from the initial point of all lines to the end of the lines. The positions
[xi,yi,6:] are recorded in the distance look-up table. By this way, all configurations that hit an

obstacle are obtained.
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Figure 3.14: Examples for distance look-up table vectors

With the help of the distance look-up table, the next step is finding a collision-free path in the
parking environment. The path is used for finding a traceable way from the start to the target
configuration and to identify potential intermediate positions for the vehicle. Intermediate

positions are needed if multiple trajectories have to be used for connecting the start and target
configuration.

The algorithm for identifying a collision-free path with a maximum obstacle distance is com-
posed of the following steps [1].
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Record the initial point of the vehicle [qx 0.qy,0.60]-

Start to visit twenty four neighbors and run arc length optimal trajectories to all obstacle
configurations. That is, each initial points is the visited neighbor and the target points
are the configurations stored in the distance look-up table. Save the minimum length
obtained during these calculations (it represents the minimum obstacle distance).

If all neighbors are visited, decide the neighbor which has the largest value of the min-
imum obstacle distance (this is the safest configuration to go). If all neighbors are not
visited yet, set the next neighbor and go back to step 2.

Check whether the selected node crashes the obstacle. If all neighbors are visited and
crashes to the obstacles then set the recent position as unsuccessful and go back to
previous position. Afterwards go back to step 2. If all neighbors are not visited yet and
current configuration crashes to obstacles, delete the current configuration and save this
point as unsuccessful, go to step 3. If no crash is detected, go to step 5.

If the final position of vehicle reaches target, collision free path is completed. Else go
to step 2.

The neighbor configurations are illustrated in Figure 3.15 on a 3D coordinate space. The

node coordinates are given in Table 3.3. Al stands for the longitudal step, and A# stands for

the angular step. The initial configuration components of the vehicle are q;x, q;y and 6;.

Table3.3: Neighbors

ID qxnext anext Hnext ID anext qynext gnext ID anext anext enext

1 qix + Al | qiy+ Al | 6 9 qix+ Al | qiy+ Al | 6+ A0 || 17 | qix+ Al | qy+ Al | 6;- AG
2 qix+ Al | qiy 0; 10 | gx+ Al | qiy 0+ A0 || 18 | qix+ Al | qiy 0;- A
3 qix+ Al | qy-Al | 6 11 | gix+ Al | qiy-Al | 6,4+ A0 || 19 | gx+ Al | qiy-Al | 6;- A9
4 gix qiy+ Al | 6 12 | gix qiy+ Al | 6,4+ A0 || 20 | qix qiy+ Al | 6;- A
5 qix qiy- Al | 6 13 | gix qiy-Al | 6+ A0 || 21 | qix qiy- Al | 6;- A
6 qix- Al qiy+ Al | 6 14 | qix-Al | qiy+ Al | 6+ A0 || 22 | qix-Al | qy+ Al | 6;- A8
7 qgiX- Al qiy 9, 15 qiX- Al qiy 9i+ AO 23 qiX- Al qiy 9,'- AO
8 qix- Al qiy- Al | 6 16 | gix- Al | qiy-Al | 6+ A0 || 24 | qix-Al | qy-Al | 6;- A8

After finding a collision-free path, the second step of trajectory planning is connecting the start

configuration of the vehicle to the decided parking configuration by using arc-length optimal

or OSCC trajectories that comply with the vehicle kinematics. This trajectory group is used

to prevent unnecessary halts while the movement. Assume there are n decided points on the

planned collision-free path. Then, the proposed algorithm to shape the vehicle’s movement is

as follows,

1 Assign gr as target point q, qo as initial point qj, n; as n, and n; as 0. Then try to reach

q: from q; by using arc-length optimal or OSCC trajectories. If any collision occurs go
to step 2, else finish.

29




0

Figure 3.15: Negihbors on a 3D space

n+n;

2 Assign target point ng as (5 + 1)th point, afterwards try to reach q; from g; by using

arc-length optimal or OSCC trajectories and go to step 3.

3 If any collision occurs, go back to step 2. If any collision does not occur check whether
n = n, if yes finish algorithm, else assign q; as qy, g as qr,n¢ as n, and n; as n; and go to
step 2.

In Figure 3.16, the first step of the two-step trajectory planning algorithm, which is construct-
ing a collision-free path, is illustrated in an example environment.

To sum up, two-step trajectory planning is achieved by two sequential algorithms. The first
algorithm finds a collision-free path from the start to the target configuration by checking
neighbors of potential candidate points and selecting the one which has the largest SFP length.
The second algorithm uses the collision-free path obtained in the first step. By using the
arc-length optimal or OSCC trajectories it tries to connect start and final configuration. If
any collision is detected on the trajectory, the second step algorithm attempts to link the first
position of the car to half of the path planned in step one again by using the arc-length optimal
or OSCC trajectories. This increases the chance of finding a collision-free trajectory for the
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vehicle. For example, in Figure 3.16 the mid point is 13th point. If it fails again, then the
middle of the remaining path (7th point in the example) is chosen. After the initial position is
linked to anywhere on the path, the second step algorithm iteratively tries to connect the node
which is reached via a collision free trajectory to the target position.
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CHAPTER 4

IMPLEMENTATION OF THE AUTOMATIC PARKING
TRAJECTORY PLANNER ON FPGA

The two-step trajectory planner described in the previous section has two steps. The first
step is finding the maximum distance path, the second step is computing the collision free
trajectory along the path in step 1.

In the first step of the algorithm, 48 trajectories have to be obtained, which are combined of
similar geometric blocks. These blocks are;

1 The length calculator: It computes the result of Equation (3.21). This block involves a
square root and a multiplier which are provided by XILINX Library.

2 The perpendicular point calculator: It consists of two components. The component
computes the result of Equation 3.22. This component contains a divider and a multi-
plier.

3 Herons Area Calculator: That component is used for computing the area of the triangles
as in Equation 3.29.

4 Arctangent, sinus cosine blocks are also provided by XILINX Library.

Additionally, for 12 trajectory calculators, 12 trajectory controllers, an input converter to
obtain the rest of 48 trajectory calculations, an arc length calculator to compute the length of
the resultant trajectories, a length comparator to detect the minimum trajectory and a distance
look-up table, which is responsible for sending crash conditions in the parking environment,
are implemented. These are the core blocks, used in the first and second step of the algorithm.

There are two controllers in the circular trajectory construction. Each of them is responsible
for one step of the trajectory planner. The block, named as path planner is responsible for
obtaining the collision-free path.

In the second step of the algorithm it needs to be checked if the trajectory hits any obstacles.
To this end, path position calculator gives out the trajectory path position. A controller block
that we call trajectory planner is implemented for the second step of the algorithm. Trajectory
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planner connects the given two configurations of the vehicle by minimizing the unnecessary
halts and avoiding the crashes. The first step and second step do not run at the same time for
any case, hence, no other additional modules are implemented for step two.

Considering the number of sub points needed for collision-free path 250 vectors (normally
more than 250) are needed for a distance look-up table. Accordingly, the trajectory path
computation is done at least 250 x 16 x 24 x 48 = 4608000 times. If a collision condition
occurs the number increases more. As it is mentioned before, 4608000 calculations need to be
solved one by one in a serial realization. In this thesis, it is aimed to reduce the computation
time of proposed algorithm in [1]. To this end, the forty eight trajectory path planners are
implemented on FPGA and ran in parallel, to reduce the time spent for trajectory planning.

The following sections describe the block level architecture, optimal trajectory calculations
implemented on FPGA, parallel realization of computations and practical considerations.

4.1 Hardware Design: Block level architecture

The main block is composed of two sub blocks: distance look-up table and the two-step
trajectory planner. The main block is visualized in Figure 4.1.

In Table 4.1, input and output signals are detailed. Besides signals on table, there are inter-
facing components between two blocks; hand shaking signals, crash condition and reset the
distance look-up table. Hand shaking signals are used for data requests and information of
data existence. For example when two-step trajectory planner requests a crash condition, dis-
tance look-up table calculates, returns data and sets ‘ready’ output port to ’1°. After all values
are sent for a line, the distance look-up table sets the complete output port of the correspond-
ing line to *1’. The crash condition is the set of vectors which stand for the position of the
vehicle when it hits to obstacles. Each element of these vectors is built up of 16 bits registers.
The last signal mentioned in Figure 4.1 is named as ’reset distance look-up table’. As the
name implies, this signal is used to reset the distance look-up table, so that distance look-up
table starts over sending crash conditions.

4.2 Optimal Trajectory Computation

4.2.1 Modularity of the architecture

The architecture of proposed FPGA solution is based on the re-usage of blocks. For the
modularity, the geometric computations mentioned in Section 3.2 are implemented separately
which are used for obtaining arc-length trajectory families.

In this section, we first provide a short block level overview of the architecture. Designed
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Figure 4.1: Top block of optimal trajectory computation

blocks are detailed in latter sections.

The D. Look-up table in Fig. 4.2 is composed of numerous crash condition calculators. It has
the line equation inputs and calculates the position where the path hits an obstacle. Every
crash condition calculator block is constructed by the following blocks; Length Formulation
block which solves Equation 3.21, Arctangent Calculator for arc tangent products of needed
lengths, Product Generator block that calculates the crash position of given inputs, a multiplier
and an interface controller which communicates with other blocks and provides the process
sequencing. Every component of distance look-up table has its own handshaking signals for
sending and receiving requests.

The Path planner is designed to calculate the collision-free path. When an external request
arrives with two vehicle configurations (start and end configurations), the path planner com-
municates with distance look-up table and dot product calculator. When the path planner re-
ceives a distance look-up table value, it sends the first neighbor and crash position to circular
trajectory construction block. After the minimum SFP is calculated, path planner multiplies
it with the corresponding dot product to obtain a directed SFP. Path planner also connects to
other blocks via handshaking interface signal.

The Trajectory planner is responsible for the second phase of two-step trajectory planning al-
gorithm. When the path planner completes the computation of a collision-free path, it informs
the trajectory planner. Afterwards, the trajectory planner tries to connect the initial and goal
states of the vehicle with the algorithm proposed for step two-step trajectory planner. It uses
the interface between distance look-up table and circular trajectory construction blocks.

Both trajectory planner and path planner have request and data signals for the two-step trajec-
tory planner and distance look-up table which are multiplexed by mux. Multiplexer separates
these signals. The switch input is provided by the trajectory planner. During the time the path
planner constructs a collision free path, the path planner is allowed to allocate the circular
trajectory construction and distance look-up table. With the ’completed’ output of the path
planner which indicates that a collision-free path is ready, the trajectory planner allocates the
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Table4.1: Signal explanations of the top block entity

Generalized Port Name Length of | Function
Definition Signal
Kinematic Lep 16 bits Length of the car
Parameters Dep 16 bits Distance between rear end of the
car and rear vehicle axle
Bep 16 bits Width of the car
Dax 16 bits Maximum absolute steering angle
Wmax 16 bits Maximum absolute angular
steering velocity
Straight and Half | Consl; 16 bits Straight and half lines are described
Line Equations Cons2; 16 bits in terms of line equations
yi = Consl;*x; + Cons2;
or x; =Consl;*y; + Cons2;
Xstj or yst; 16 bits First X value of the
line if the [Tan(Line)| < 0.5
First Y value of the
line if the |Tan(Line)| > 0.5
xfn; or yfn; 16 bits Last X value of the
line if the |Tan(Line)| < 0.5
Last Y value of the
line if the |[Tan(Line)| > 0.5
lengthofline; 16 bits Length of line
ForbiddenSide; 1 bit Indicates the placement of obstacles
Angular and Angular Steps 16 bits The turning angle of
Longitudinal the Car around on the
Steps line elements
Longitudinal Steps | 16 bits The distance for sliding
the car on the line elements
Initial Position gsX 16 bits x value for initial position
qsy 16 bits y value for initial position
0 16 bits Orientation angle for initial position
Final Position ggX 16 bits x value for final position
qgy 16 bits y value for final position
O, 16 bits Orientation angle for final position
Kinematic Outputs | Steering Direction | 2 bits Direction information
(Left,Right,Direct)
Steering Angle 16 bits Absolute value of steering angle¢
Velocity Direction | 2 bits Vehicle direction (Backward,Forward)
Velocity 8 bits Absolute value of velocity v

circular trajectory construction and distance look-up table for itself.

The Circular trajectory construction is the block where 48 trajectory calculations are com-

pleted. This block has different functions, when it is controlled by the path planner or the

trajectory planner. Circular trajectory construction block is constructed by numerous sub-

blocks.
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The processes in Circular trajectory construction have to be in a sequence. Since circle center
calculations and trajectory calculations need the radius of the circular movement, the first
process is computing the radius which is provided by radius calculator. Radius calculator
computes the radius of circular arcs using the kinematics of the vehicle, then informs the rest
of the blocks with RDY output. "Input converter" provides the modified positions for the
circle center calculators.

After the radii of circular arcs are ready, twelve "circle center calculators" compute the center
positions of the first and last arc maneuvers according to positions inserted by input converter
block. By observing the center points are ready, twelve "trajectory calculators" start to calcu-
late trajectories. Trajectory calculators consist of various geometric formula implementations
and a controller block. Length calculator, arctangent calculator, sine cosine calculator, a block
named as perpendicular point calculator for Equation 3.22 are implemented. A path position
calculator which is implemented because of functionality for trajectory calculator, generates
the trajectory positions to be checked if there is any collision on the path. The last block is
trajectory controller, referenced as 1 to 12, which does the whole interface communications
and sequencing of the computations.

When the trajectory calculators finish their processes the arc length calculator block is in-
formed. The arc length calculator block is designed for calculations of the total arc length,
where all 48 arc lengths are sent to output of this block at the same time. After the lengths
are sent out the length comparator checks for arc which has minimum length. Length com-
parator has also functionality for path planner and trajectory planner. The shortest length is
enough for the path planner, but, trajectory planner may request the rest of the lengths and
the corresponding trajectory type if it detects a collision on the latest trajectory. All of blocks
in circular trajectory construction have their own interface controllers and signal, data flow is
provided by handshaking operations.

In Figure 4.2, designed blocks are illustrated to show the modularity of architecture. See the
Table 4.2 or the block names referenced by the numbers in Figure 4.2. In Section 3.2, four
of the circular trajectories are calculated and these computations are derived by using very
similar functions unlike calculated in [1]. Similarly, it also should be noticed that distance
look-up table and trajectory calculators use 2 identical blocks. Circle center calculator is
implemented for both Formula (3.23) and (3.24). By changing control inputs pins, the block
generates two desired center points on the plane. Finally, maybe the most crucial product of
modularity and reusing is circular trajectory construction. It is used by both the Path Planner
and Trajectory Planner. If the two-step algorithm is considered, the collision-free path is
calculated firstly. Then trajectory planner tries to connect initial and target configuration of
the vehicle. Even the same sources are shared by two planners, it does not add delay to the
architecture.

To sum up, modularity of designed blocks, and source sharing are important in terms of time
spent for design, simulation and verification. Moreover if an architecture is not designed
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Figure 4.2: Modular view of architecture

modularly, even tiny changes in the design can become impossible.

4.2.2 Distance Look-Up Table

Distance look-up table is the set of vectors, that contain the crash positions of the vehicle
in the parking environment. These vectors are important for both obtaining the collision-free
path by checking the SFP to these crash conditions (Step one of the algorithm) and connecting
the initial and final configuration of the vehicle in a collision free trajectory. Distance look-up
table is composed of crash condition calculator replicas. This block calculates the coordinates
of the positions where the vehicle hits the obstacles defined by a specific straight or half
line element. If distance look-up table is investigated in detail, architecture can be seen as
Figure 4.3. Crash condition calculators work independent of each other, but the distance look-
up table sends one set of vector for each request, because the path planner and the trajectory
planner block demands crash condition from one of these inner blocks. That is the reason
why every crash condition calculator has its own handshaking interface. The detailed signal
explanation is in Table 4.1.

Crash Condition Calculator is the block that determines forbidden conditions which define
the vehicle orientation that hit the obstacles. Crash condition calculator is designed as a state
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Table4.2:

Components of the Architecture

Block Reference Block Name

1 Ipalmplpe controller

2 Iplmprm, controller

3 rpalpplme controller

4 rpalpplmprm, controller

5 Iplmprmprpe controller

6 lpalm%Rsmlrm%Rrpb controller

7 lpalm%Rst Imy, controller

8 lpalngst rmy, controller

9 M, SIrM R Py controller

10 rmasmllm%Rlpb controller

11 rm,sm;rmy, controller

12 rm,sm;lmy, controller

13 State Machine of Crash Condition Calculator
14 Length Calculator

15 Arctangent Calculator

16 Product Generator

17 Multiplier

18 Sine/Cosine Function

19 Perpendicular point calculator

20 Path Position Calculator

21 Radius Calculator

[13,14,15,16,17] Crash Condition Calculator
[1,14,15,18,19,20] Ipalmylpe trajectory calculator
[2,14,15,18,19,20] Iplmprme trajectory calculator
[3,14,15,18,19,20] rpalpplme trajectory calculator
[4,14,15,18,19,20] rpalpplmprm, trajectory calculator
[5,14,15,18,19,20] Iplmprmprp, trajectory calculator
[6,14,15,18,19,20] lpalngsmlrm%Rrpb trajectory calculator
[7,14,15,18,19,20] lpalm%Rsm[ Imy, trajectory calculator
[8,14,15,18,19,20] lpalngsml rmy, trajectory calculator
[9,14,15,18,19,20] M, SIrMzRIPy trajectory calculator
[10,14,15,18,19,20] rmasmllm%Rlpb trajectory calculator
[11,14,15,18,19,20] | rmasmyrmy trajectory calculator
[12,14,15,18,19,20] | rm,sm;lmy, trajectory calculator

machine that controls the geometric calculation components. Besides a state machine, there
are an arctangent calculator, a multiplier, a product generator and a length calculator which is

designed for Equation (3.21).

Input and output ports of the Crash condition calculator are described in Table 4.1, and only

the interface signals are detailed in Table 4.3.

Before the state machine is explained, geometric components that are used for constructing
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Figure 4.3: Distance look-up table

distance look-up table are illustrated in Figure 4.5.

Construction of distance look-up table process needs the angles (o, @2, @3, @4) and the
lengths (Lf, Ly) to be calculated, after the corners of the car (A, B, C, D) are superposed
on a decided point of the line segment. The corresponding lengths are rotated one angular
step which is defined by the user, until the total rotation angle reaches 5 starting from the
corresponding angle. The structure process is shown in Figure 4.6. After all crash conditions
are recorded for a fixed point on the line, next point is decided by sliding the car up to the
longitudinal step which is described in Table 4.1. Product generator, located in crash condition
controller, is responsible for these computations. Flow chart for the state machine of the crash
condition calculator is illustrated in Figure 4.7.

Calculating the orientation angles 6; is also carried out by the state machine. Its flow chart
can be seen in Figure 4.6. Every turning movement on a specified corner starts when one
of the edges of the vehicle is on the line. It is assumed that the forbidden side is below the
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Figure 4.4: Crash condition calculator

line, as it is illustrated in Figure 4.5. If the edge of the car, which intersects the line, is |AB|,
(First condition in Figure 4.6) orientation angle is calculated as Anglejjpe + g After the first
A# amount of turn around the corner B, the orientation angle decreases as much as Af. If
the forbidden side is above the line, when the edge |AB| intersects the line, orientation angle
becomes Anglejiye - g After the first A@ amount of turn around the corner B, the orientation
angle decreases as much as Af. In this manner, the orientation angles are formalized as
follows where the 045, Opc, Ocp and Op4 are the position angles of the car. Car intersects the

line with the edge corresponding indexes, Ad is the angular step and i is the turning count.

If the forbidden side is above the line:

015 = Anglejine + g —i-Af (@.1)

Opc = Anglejip, — 1 - AO 4.2)
T,

Ocp = Anglejin, — 3 i-Af 4.3)

Ocp = Anglejp, —m—1- A8 “4.4)
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Table4.3: Signal explanation of the crash condition calculator

Generalized Port Name | Length of | Function
Definition Signal
multiplicand1 a 16 bits First Multiplicand
multiplicand?2 b 16 bits Second Multiplicand
Product p 32 bits Product of multiplier
Horizontal Distance Xin 16 bits Angley, = arctan )y%
m
Vertical Distance Vin 16 bits
Angle Anglegy 16 bits
Length, L; 16 bits
Length, L, 16 bits
Distance length oy 17 bits lengthoy = V(L + L)?
Product Components i | Xou¢l 16 bits x coordinate of start of line
i=1234 Youtl 16 bits y coordinate of start of line
Anglegyi 16 bits Angle between the rotating line and obstacles
Lengthgyd | 16 bits Length of the line which is rotated
Product i Xinl 16 bits x component of the crash point
1=1,2,3,4 Vinl 16 bits y component of the crash point
—— ch
|
: ch
|
A ! D
o |
Oy
(xi,y1,01) Bcb
o
2/ Ly L¢
[0}
B 3

C

Figure 4.5: Car metrics used for computation of distance look-up table

If the forbidden side is below the line:

9AB = Al’lglelme - g —1-A8

Opc = Anglejjne — 1 —
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Figure 4.6: Geometric illustration of distance look-up table vectors

Ocp = Anglejin, + g — i A0 4.7)

Ocp = Anglejin, — i - AG 4.8)

Dealing with formulations has drawbacks since the arctangent block gives out 16 bits angle
value which is between -m and +n. The 15th bit of angle is the sign bit. 14th and 13th
bits are integers and the bits between 12 to 0 are the fractional part of the angle. For instance
+7=0110010010000111 and -7=1001101101111000. So, if an angle greater than O is directly
added to 7 result will be out of the range. This fault situation can be extended with many
examples. Because of this handicap, formulations become more than a direct subtraction or
addition. This problem is solved by a case statement, such as if the result of the formulas are
in the invalid range, distance look-up table checks whether it is an addition or a subtraction.
If it is an addition, the constant value corresponding to 27 is subtracted from the result. If it
is a subtraction and the result is in the invalid range, 27 is added to the result.

4.2.3 Two Step Trajectory Planner

Two-step trajectory planner is the block where the two-step trajectory planner algorithm is
run. Two-step trajectory planner consist of 3 blocks which are path planner, trajectory plan-
ner, circular trajectory construction and a multiplexer for sharing the circular trajectory con-
struction and distance look-up table by path planner and trajectory planner. Because of the
component limitations of used FPGA, circular arcs are used for both of the path planner and
trajectory planner. Moreover, instead of 48 parallel realizations of trajectories, 12 of trajecto-
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Figure 4.7: State diagram of distance look-up table

ries are implemented in parallel. The rest of 48 paths are generated by using implemented 12

trajectories which is explained in latter sections of thesis.

The path planner is responsible for the first step of the algorithm which is constructing the
collision-free path. Trajectory planner is responsible for the second step of the algorithm.
Circular trajectory construction calculates the 48 trajectories and finds the one which has
shortest length. Firstly, the main block is explained by its three sub blocks. Afterwards, input
and output signals and interfaces between them are described. It can be seen in Figure 4.8,
trajectory and path planners are sharing not only circular trajectory computation block but
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also the distance look-up table.
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Figure 4.8: Two Step Trajectory Planner

In Table 4.4, the input, output and interface signals are detailed. As mentioned before, since a
collision free path must be obtained initially, trajectory planner sets the ’sel” bit of multiplexer
to ’0’ and the multiplexer serves the path planner outputs to both distance look-up table and
circular trajectory computation. After the path is calculated, path planner sets an output pin
to '1°. Next, the trajectory planner recognizes that the sources are not busy anymore and
sets the ’Sel’ bit of multiplexer to *1°. So that, the output of the multiplexer becomes the
trajectory planner signals. There are also direct interfacing signals between trajectory planner
and circular trajectory construction. Vehicle kinematics, initial and final position of vehicle
are not described since they are explained before in Table 4.4.

It can be seen in Table 4.4 that the interaction between blocks is at high level. Since two-
step trajectory algorithm is a cooperation between three blocks, as it is stated before, circular
trajectory construction block is running from beginning of the process to end of process.
After path planner stops communicating with distance look-up table and circular trajectory
computation block, it starts to behave as a sub block of trajectory planner. After path planner
completes the computation of collision free path and sets completeng pin to '1°, trajectory
planner starts to run and control all of the interfaces.

Collision free path calculation is introduced in Section 3.4. The path planner constructs the
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Table4.4: Two step trajectory planner signal definitions

Generalized Port Name Length of | Function
Definition Signal
Distance look-up Xerushl 16 bits x component of position
table products Yerushl 16 bits y component of position
Ocrushl 16 bits Angle of position
Distance look-up table Ready; 1 bit Indicates data is ready to be sent
Handshaking Signals Complete; 1 bit Indicates all data is sent
PathND NDn5g 1 bit Validity check request
Path Planner(g;x, g;y, 6;) qiXNB 16 bits X, y and angle component of vehicles
qiYNB 16 bits initial position to be tested
Oing 16 bits for collision free path calculation
PathPlanner(qx, g5y, 0f) qrXNB 16 bits X, y and angle component of vehicles
qsyNB 16 bits final position to be tested
0rNB 16 bits for collision free path calculation
TrajND NDgyw 1 bit Calculation request for Trajectory planner
TrajPlanner(g;x, g;y, 6;) qiXruw 16 bits X, y and angle component
qiYFUw 16 bits of vehicles initial position
O:ruw 16 bits that vehicle moves on
TrajPlanner(q,x, qry, 6f) qrXruw 16 bits X, y and angle component
qfYFUwW 16 bits of vehicles final position
0 rruw 16 bits that vehicle moves on
ND ND 1 bit NDgyw or NDyg due to 'sel’” signal
(q,'X, qiy, 9,) qix 16 bits qiXruw OI ¢;XNB due to ’sel’ signal
qiy 16 bits g:yruw Or ¢;ynp due to “sel’ signal
0; 16 bits O:ruw or O;np due to ’sel’ signal
(qfx, qry, Of) qrx 16 bits 4 rXFuw Or g rXNB due to 'sel’ signal
qry 16 bits qryruw or gyng due to ’sel” signal
0r 16 bits 0 rruw or Oyng due to ’sel’ signal
Path planner-distance ND;NB 1 bit Request to get ready for sending
look-up table interface crash data to Path Planner
SendDots;NB 1 bit Forces The distance look-up table to out the product
Trajectory planner- distance | ND;FUW 1 bit Request to get ready for sending
look-up table interface crash data to Trajectory Planner
SendDots; FUW 1 bit Forces The lookup table to out the product
Calculate Spec Traj SpecificArcEn 1 bit Enables block to generate x, y and 6 values
X, y and 6 values of Xout 16 bits x component of generated path
calculated path Yout 16 bits y component of generated path
Opus 16 bits Angle component of generated path
Minimum Length Lengthy,in 16 bits Minimum length calculated by
48 trajectories
SFP Calculation complete Rdyyaiigity 1 bit Circular trajectory construction sets
to 1 after 48 trajectory tested
Path Data and completeng 1 bit Path planner sets this bit high
Request Signals when collision free path composed
NodeAng, 16 bits X, y and angular components
NodeX; 16 bits of initial point of collision
NodeY 16 bits free path
NodeAng, 16 bits X, y and angular components
NodeX, 16 bits of final point of collision
NodeY, 16 bits free path
ReadyPathNodes | 1 bit Indicates the initial and final points
of path is ready to be tried
SendPathNodes 1 bit Requests node points on path
PathOk 1 bit Informs about if last tried path is ok or not
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collision-free path which is detailed with FPGA block expressions. Path planner calculates
the path which connects initial and goal configuration by moving on the set of neighbors on
the plane surface. The algorithm which is used to obtain the collision-free path is summarized
in terms of FPGA block interfaces as follows:

1 After new data is pushed into optimal trajectory computation block, it is directed to
path planner block firstly. Then start and goal configurations ([qx,start,Qy,start-Ostart] and

[qx,goa] »{y,goal ,0 goal]) are recorded.

2 Path planner sends a request signal to distance look-up table to get a collision configu-
ration.

3 After a collision position is delivered, path planner sends the first neighbor of the latest
configuration of vehicle and crash condition to circular trajectory construction block.
After SFP is calculated, block sends back the minimum length derived among 48 tra-
jectories and ’calculation completed’ information. Then trajectory calculator compares
the obtained length with previously calculated length (initially 0). If new computed
length is shorter than what is calculated before, algorithm pushes it into length register
dedicated for this neighbor.

4 Path planner checks whether all 24 neighbors are visited. Next, algorithm goes to step 3
if all neighbors are not visited yet. Algorithm goes to step 5 if all neighbors are visited.

5 Path planner checks whether the algorithm is run for all crash conditions. If that is the
case the algorithm continues to step 6 , otherwise goes back to step 2.

6 After SFP is calculated for all neighbors and all crash conditions, path planner picks up
the one which has maximum SFP. Then goes to step 7. If all lengths are set to zero the
algorithm goes back to previous location and records this point as visited and goes back
to step 1.

7 Checks whether the selected node crashes any obstacle. If yes, deletes the position and
resets the length register of this node. Then the algorithm saves this point as a visited
node and goes back to step 6. If no crash is detected, algorithm goes to step 5.

8 If the final position of vehicle is reached, algorithm is stopped with a collision free path.
Else, algorithm turns back to step 2.

Methodology of collision free path construction is described above. Note that, it is not guaran-
teed that the vehicle is directed to the target position by looking at just maximum of obtained
SFPs. The car can go opposite way of the target position if higher SFPs are obtained from
wrong sided neighbors. This situation is illustrated in Figure 4.9.

In Figure 4.9, the path planner chooses a path which is the opposite side of the target position
with current algorithm, because the distance between obstacles are longer and vehicle can
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Figure 4.9: A collision-free path by considering just SFPs

move easier at that position. Since the algorithm works until it connects the initial and final
configurations, it does not run into some situations such as given in Figure 4.9. To direct the
constructed path from initial position to final position, an extra constraint needs to be added
to path planner block. The decided solution is multiplying the cosine of the angle between the
lines connecting initial configuration to selected neighbor and initial configuration to target
position with calculated SFP as shown in Figure 4.10.

Qi

CE.‘IJ#,EZ C4,12,2G

Q

@

CTJ 5,23

CE,iE,Zd 05,13,21

Figure 4.10: Illustration of multiplicand cosine factor

For instance, the cosine factor for candidates 1, 9 and 17 is cos(6y — 6.1). To avoid negative
numbers which mean extra cases in FPGA blocks, 1 is added to acquired cosine values. So
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for the neighbors 1, 9 and 17, the multiplicand becomes (cos(¢y — 6.1) + 1). By applying
same methodology for the rest of the neighbors, 6.1, 6.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 6.8 can be
calculated. Eventually, the cosine factors which direct the path from initial configuration to

final configuration are formulated as follows:

[CF1| [cos(@y—5)+1]
CF, cosy+1
CF3 cos(@y +7) + 1
CF 0r—%)+1
4 - | cosr = 3) (4.9)
CF;s cos(fr +5) + 1
CFg| |cos(@y —3&)+1
CF; cos(@y —m)+1
[CFg| [cos(8y — ) + 1]

These cosine factors are equal to dot products of the configurations, with unity length. In the

rest of the thesis, the term dot product is used instead of cosine factor.

Path planner consists of a state machine based controller and a dot product calculator. Since
all of the dot products are not needed at the same time, eight of values ares calculated one by
one at the same arctangent block and multiplier. The block diagram of path planner is shown

in Figure 4.11
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Figure 4.11: Path Planner Block Diagram

Cosine factors are computed by dot product calculator. After dot products are received from
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dot product calculator and the minimum length is obtained from circular trajectory construc-
tion, they are sent to multiplier. Then the products which are received from multiplier are
regarded as direction oriented SFPs. Before the flow chart is introduced, the signals are de-
scribed in Table 4.5. Since input and output signals are explained on Table 4.1 as interface
signals, these are not explained again.

Table4.5: Path planner signal definitions

Generalized Port Name Length of | Function

Definition Signal

Values Dot products Xneighbor 16 bits x component of tested neighbor

are calculated for Yneighbor 16 bits y component of tested neighbor
Xtargetl 16 bits x component of goal position
Ytargetd 16 bits y component of goal position

ND DotProduct NDDotProduct 1 bit Requests new dot products

RDY and Dot Product | DotProductsRdy | 1 bit Dot Products are ready information

values DP; 16 bits Dot Product for neighbor 1,9,17
DP, 16 bits Dot Product for neighbor 2,10,18
DP;3 16 bits Dot Product for neighbor 3,11,19
DP4 16 bits Dot Product for neighbor 4,12,20
DPs 16 bits Dot Product for neighbor 5,13,21
DPg¢ 16 bits Dot Product for neighbor 6,14,22
DP, 16 bits Dot Product for neighbor 7,15,23
DPg 16 bits Dot Product for neighbor 8,16,24

The path planner algorithm also has a turning back feature, if a planned path goes into a
dead end, path planner needs to realize that problem and turn back to node where it reached
to dead end. There is another reason to store the path nodes, after calculation of collision
free path nodes, these need to be sent to trajectory planner. Every valid calculated nodes,
every dot product oriented lengths and the selected nodes IDs are stored in a matrix. So that
turning back to a desired passed point becomes possible. Moreover every tried and failed
(Crashed) configurations are also stored in individual matrices since it is a time consuming
issue, repeating the process for same nodes. The flow chart of path planner is demonstrated
in Figure 4.12.

The second step of the algorithm is provided by trajectory planner. Trajectory planner con-
nects two given start and goal configuration in the parking environment by using the path
constructed by path planner. Trajectory planner block waits until the collision-free path is
constructed. After path is obtained and stored in path planner, trajectory planner starts to con-
trol distance look-up table, circular trajectory construction and also path planner. Trajectory
planner requests 2 positions form path planner, and sends the two received positions to cir-
cular trajectory construction. When circular trajectory construction evaluates the 48 different
trajectories, it sends another request ’specific arc en’ signal which creates an individual path
which is detailed in circular trajectory construction explanation. Briefly, this path changes
circular trajectory construction block’s functionality. When ’specific arc enable’ signal is set
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to high, the trajectory calculation which has minimum length is run again. However, this time
selected trajectory calculator starts to send positions of the path. Then by using the inter-
face between distance look-up table, trajectory planner checks whether there is a collision on
generated path, if yes, stops the circular trajectory construction immediately. Resets the dis-
tance look-up table. Afterwards, the length comparator checks whether there is another length
calculated greater than zero. If there is another length greater than zero, circular trajectory
construction runs again for the corresponding trajectory. Finally, if the tried length results in
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a collision free trajectory, it sends this information to path planner. Path planner replies the
request as described in Figure 4.12. If a collision free trajectory is not achieved, path planner
keeps sending two positions with reduced distance to be checked.

Since the trajectory planner does not have any sub block a block diagram and a signal table
is not illustrated. For trajectory planner signal information, Figure 4.8 and Table 4.4 can be
seen.

The third block of trajectory computation is the one, where all of the geometric calculations,
length computations and 48 trajectory generations are done. The circular trajectory construc-
tion block is formed by 28 blocks. The blocks are illustrated in Figure 4.13.

As can be seen the trajectory calculations are realized in parallel to speed up the computation
process. As mentioned before there have to be a process sequence, firstly R must be calculated
by radius calculator and in parallel the start and goal configurations are calculated by input
converter. Afterwards center points of the first and the last arc movements are calculated by
circle center calculators. Then trajectory calculators are run with the RDY output of circle
center calculators. Since circular trajectory construction can run 12 trajectory calculations in
one process, with the changing inputs provided by input converter this sequence repeated 4
times. At the end of every 12 trajectory calculations length calculator computes the lengths
in parallel. Finally, after 4 times run of trajectory calculators length comparator is trigged by
the length calculator and it detects the trajectory with minimum length to send path planner
or trajectory planner. The circular trajectory construction block runs 12 trajectory calculators
in parallel. Since, after all trajectory calculation is completed, input converter inserts the new
inputs. The run time is dependent to trajectory which needs more computation time, because
more calculations are need to be obtained. The most time consuming computation is observed
on the path

R calculator — Circle Center Calculator — lpalm%Rsmlrm%Rrpb calculator.
And it takes 550 clock cycle to be completed.

Interface signals between sub blocks are explained on Table 4.6. The signals shown with an
’1” subscript have same functionality for 12 different trajectory calculators. In the architecture,
circular trajectory construction, when two positions arrive ND input of block needed to be set
to high too. Input converter outputs q1 and g2 values for all circle center calculator blocks.
But, circle center calculator blocks are triggered by 'rdy’ output of R calculator block. After
radius of circles is calculated, circle center coordinates are calculated for 12 trajectories. With
the ’rdy’ outputs of center calculators 12 trajectory specific calculator starts to test whether
the corresponding path style can connect two given positions. While these calculations every
trajectory calculator starts to set complete and validity output signals to *1° or *0’. The trajec-
tory calculators which are able to connect initial and target configurations, also out the length
values of arcs. Input converter block gets the complete set of signals to initiate next calcula-
tion. The arc length calculator block gets the arc length values to calculate the total distance
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Figure 4.13: Circular trajectory construction block diagram

of trajectories. When Input converter acknowledges every trajectory calculators are finished
their work with the previous qls and g2s, converts input to be checked for validities and tra-
jectory lengths. After the same processes, Input converter transforms inputs again for third
12 trajectory information, at last when the fourth inputs’ validities checked and lengths calcu-
lated, length comparator puts in order the distances by keeping the information of trajectory

id. Then it outs the minimum dimension and sets CircTrajRdy output signal to "1°.

The trajectories are run in parallel. If an individual trajectory is to be run, the input signal
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Table4.6: Circular trajectory construction signal definitions

Generalized Port Name Length of | Function
Definition Signal
Rst Input Converter | RstIC 1 bit Resets the Input Converter
ND NDCircTraj 1 bit Request New Calculation
Calc. Complete Inf. | Complete 12 bits Each bit is connected one trajectory
calculators complete outputs
Followed path data | PathMatrixlx | 16 bits x component of followed path
PathMatrix2; | 16 bits y component of followed path
PathMatrix3, | 16 bits angle component of followed path
qlx qlxy 16 bits initial x component calculated by
Input Converter to be run by
trajectory calculator x
qlyx 16 bits initial y component calculated by
Input Converter to be run by
trajectory calculator x
01xx 16 bits initial angle component calculated by
Input Converter to be run by
trajectory calculator x
q2« q2xx 16 bits final x component calculated by
Input Converter to be run by
trajectory calculator x
q2yx 16 bits final y component calculated by
Input Converter to be run by
trajectory calculator x
02xx 16 bits final angle component calculated by
Input Converter to be run by
trajectory calculator x
Cly Clxy 16 bits x component of Center point for first arc
for the trajectory family x
Clyy 16 bits y component of Center point for first arc
for the trajectory family x
C2, Clxy 16 bits x component of Center point for last arc
for the trajectory family x
C2yy 16 bits y component of Center point for last arc
for the trajectory family x
RdyC CI1C2Readyy | 1 bit Center point calculations are complete info
for trajectory family x
Run All NDTraj 1 bit Run request for 12 trajectories
at the same time
Run one TrajRgsty 1 bit Run request for trajectory x
Ly a 16 bits Arc length a of trajectory x
bx 16 bits Arc length b of trajectory x
ex 16 bits Arc length e of trajectory x
lengthy 16 bits Length of Straight line of trajectory x
Vdtyy validityy 1 bit Info for if the trajectory x reached to
target successfully
Length; 5 43 Lengthy 16 bit total length of the path for trajectory x
Minimum One minimumone | 7 bits the trajectory id which has minimum length
rdy CircTrajRdy 1 bit Informs the outer blocks that calculation is finished
no more length nomorelength | 1 bit informs the trajectory planner block there left

no more trajectory to try
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"run specific trajectory"” is needed. As described before, trajectory planner block needs the
path data, to check if it collides anywhere. To this end the multiplexer in Figure 4.13, is added
to structure.

To calculate 48 trajectories with 12 trajectory calculations is possible by modifying the input
positions that would give the symmetrical result of desired trajectory. Trajectory conversion
is a geometric process, that needs to construct 48 trajectories by using 12 trajectories. On
Figure 4.14 the rp,rmprpe which is a member of CC|C is illustrated(Left hand side). The
problem is how the trajectory rp,rmprpe is tested by using lp,Imylp.(Right hand side) which
is calculated before.

(g2..92,)

Figure 4.14: A trajectory conversion example

It is shown in Figure 4.14, the orange path is rp,rmyrpe with the initial configuration qly, qly
and 6 and the final configuration g2y, q2y and 6, the green path is Ip,lmplp, version with
the same arc lengths. There is not only one method for input conversion, but in this thesis a
constrained approach is used which is 4 trajectory are assumed to be located at four quarter

of coordinate plane.

It can be seen in Figure 4.14 that green path is a mirrored version of orange path. So two

: : : _ qlx+ql’x
figures are symmetric about the y axis at the point x = =5—

. Moreover ql and q1’ can be
superposed on the plane surface. The difference between qlx and g2y is equal to difference
between q1’x and q2’. It is the same for y axis. q1’ and g2’ have to be described in terms of
ql and q2. Since it is symmetric about y axis 61’ is equal to 7 - 61 it is same for 62, it is equal
to - 62. It is clear that g2’y is equal to 2. The last thing needs to be calculated is g2°. As
mentioned before it can be calculated by using equality qlx - q2x = q2’« - q1’x, since q1 and
ql’ are superposed the q2’x can be calculated as qlx + (qlx-q2x). So, this equations mean
that, if the calculated q1° and g2’ positions are tested in block Ip,lmylpe, trajectory calculators
resulting length and validity information would be the same if it is calculated in a separated
rp.rmprpe block. Since the FPGAs capability is limited for sinus and cosines functions, di-
viders, square root blocks and arctangent calculator, source sharing needs to be provided. The
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input conversion is formalized for rp,rmprpe, Im,lpplm, and rm,rpprpe in Table 4.7.

Table4.7: Input conversion for trajectory lp,Implpe

’ Iplmlp H rprmrp ‘ Imlplm ‘ rmrprm ‘
ql’x qlx qlx qlx
ql’y || qly qly qly
q2’x qlx+(qlx-g2x) | g2x qlx-(qlx-q2x)
92’y || 92y 92y q2y
91’ - 91 91 - -91
92’ T- 92 92-7'( -92

The rest of the 36 trajectories are calculated similarly. The block input converter has two
different circular trajectory computation request input pin, one is for individual trajectory
calculation, the second one is for 48 trajectory computations. Beside inputs, conversion block
also converts the path data sent to trajectory planner, because the generated path values are
not belong the path requested. The flow chart of input converter is given in Figure 4.15

R is calculated as Kl

max

in [1]. Kpqay is defined in equation 3.51. The radius calculator only
calculates this R value at the beginning of the circular trajectory computation. The equation
implemented by a sinus, cosines and divider block since the tangent block is not available for

sindmax

selected FPGA. The formulation is implemented as “’Zﬁ% The result is obtained as 16 bit

register first eight bit is decimal the second eight bit is the fractional part.

Initially, circle center calculator block is planned as a shared block used by 12 trajectory
calculators and four of possible center points are calculated by one circle center calculator to
reduce used resources. But, if the input conversion is considered, second, third and fourth
set of 12 trajectories have different q1 and g2 inputs. However it can also be calculated one
by one using the same center calculator block, it is not implemented this way. Because it
damages the parallel processing of 12 trajectory calculator. So it is decided to put one center
calculator for each trajectory calculator. A block diagram is illustrated in Figure 4.16 and
detailed signal information is given in Table 4.8 for a circle center calculator.

Trajectory calculators computes the trajectory components, which are enough to deter-
mine if the corresponding trajectory can connect given two configuration. The trajecto-
ries, calculated in parallel are lp,lmplpe, Ipalmprme, rpalpplme, rpalpplmprme, Ip,Ilmpyrmyrpe,
lpalm%Rsmlrngrpb, lpalm%Rsml Imy, lpalngsmI My, IMaSMIMzRIPY, rmasm[lm%Rlpb,
rm,smyrmy, rmysmylmy. The calculators of these trajectories are also called with the cor-
responding name such as Ip,Imylp, calculator. As stated before all trajectory calculators have
a path position controller component which does not function if a request is not received by
trajectory planner. Trajectory planner inserts a 1’ input to "run" pin of trajectory calcula-
tors. So the requested trajectory calculator starts to serve path positions to trajectory planner.
The blocks trajectory calculators are implemented separately for the purpose of parallel pro-
cessing. Since the generated computation needs almost the same kind of formulations which

56



+
L Wait for Mew Data % ]

Send first 12 trajactory
for path calculation  le—yes @ f
MNO_Ares =17

yas
¥
k. Convert the frajectory by looking at yes
Wait untd first 12 go for arc input, and set the
— trajactonias arcs_igsl pin of comesponding
L calculated trajactory caloulator

'

‘Wait uniil path data

I_" Is ready

no

.

yas
¥
Infarm Length calculator ’Pa:h Data is ready?
to calculate the lengths, no
Send second 12
trajeciory for path yes
calculation Convert path data opposite of the
MO Arce =17 converied before Tar the right path
* amd sand ko iraj, Plannar for collision
Chack

Wail until second 12
e rajecioies
na calculatad

Fath Data Completad

yag
¥

Inform Length calculator
to calculate the lengths.
Sand third 12 trajectony
Tor path calculation
MO Arcs =17

i

Wait until sacond 12
¥ trajectories
no calculatad

yas
h 4

Inform Length calculator
to calculate the langths.
Send fourth 12
Irajeciary for path
calculation
MWD Arcs =17

!

Walt untll sacond 12

> rajectonies
[+ sl ciilated

12 trajectories are calculated ¥

YBE
¥

Inform Lengih calculator

to calculate the lengths,

Figure 4.15: Input Converter flow chart

57



Circle Center Calculator

q1

2 » . Center caleulator]
ND :
7 qy
RRdy b——H———————————
4 Circle Center Calculator "
R Controller '
|—— prm o Imrp—————
omplet SinCos
Cix
” ~ l———————C———
p ﬁg: Cy Multiplisr

Figure 4.16: Circle center calculator block diagram

Table4.8: Circle center calculator signal definitions

Generalized || Port Name | Length of | Function

Definition Signal

ql qlx, qly, 81 | 3x16 bits | initial configuration of vehicle

q2 q2x, q2y, 62 | 3x16 bits | final configuration of vehicle

ND ND 1 bit New Data is ready at the input
RRdy Rrdy 1 bit R is calculated and ready

R Rcalculated | 16 bits Radius of circular movements
Complete complete 1 bit Informs that the centers are calculated
Clx Clx 16 bits x component of first center point
Cly Cly 16 bits y component of first center point
C2x C2x 16 bits x component of second center point
C2y C2y 16 bits y component of second center point
Iprmorlmrp || LeftRight 1 bit Requested center points direction

are introduced in Section 3.2. All trajectory calculators are composed of needed geometric
equation blocks and a controller which is responsible of calculation flow and needed checks,
such as validity of requested trajectory for imported inputs. Just one of these calculators is
detailed, the rest of 11 trajectories are implemented similarly. For the traceability of calcu-
lations the trajectory lpalmzgsmrmzgrpy for which equations are given before, is explained.
The Formulas 3.21 and 3.31 through 3.37 needs to be implemented for the trajectory valid-
ity check. There are also additional calculations for the path data which is sent to trajectory
planner block. To this end, a block named as ’arc’ is implemented. In Figure 4.17 the block
diagram and interface signals are introduced.

It is seen in Figure 4.17, 5 sub blocks are implemented to formulate the equations mentioned.
Length calculator computes the distance between given two points on coordinate plane(Eq,
3.21). arctangent is used for Eq 3.31-32, sincos and multiplier blocks are used for calculation
3.34. These modules are enough to check whether the trajectory connects the initial and
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Figure 4.17: Ipalmzgsm;rmzgrpy, trajectory calculator block diagram

final configurations within the interval given in fourth column of Table 3.1 [18]. The path
position calculator is used for obtaining the positions passed through the circular movements.
Moreover, this module generates the steering and the vehicle direction informations. Path
position calculator is elaborated in the next parts of the thesis. While moving through the
straight line segment of the trajectory, positions are calculated by sincos and multiplier blocks.

In Table 4.9 inputs and outputs of Ip,Imzgrsmrmzrrpy controller are explained. Since inter-
face signals are described for multiplier, length calculator, sincos and arctangent calculator
before and the signals between path position calculator and Iplmsmrmrp controller are de-
tailed in following parts, the interface signals are not expressed here.

Ipalmzgrsmrmzrrp, controller is firstly trigged by ND input. After a high input detected
on ND, it starts to wait for the center points to be calculated. Then, ’Center calculations
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Table4.9: Ip,lmzgsmyrmzgrpy, trajectory calculator signal definitions

Generalized Port Name Length of | Function
Definition Signal
ql qlx, qly, 61 3x16 bits | initial configuration of vehicle
q2 q2x, q2y, 62 3x16 bits | final configuration of vehicle
ND ND 1 bit New Data is ready at the input
Center Calculation | C1C2Rdylplmsmrmrp | 1 bit Center Points are calculated and ready
Ready
R Rcalculated 16 bits Radius of circular movements
C1 Clx, Cly 2x16 bits | x and y component of first center point
C2 C2x, C2y 2x16 bits | x and y component of second
center point
run run 1 bit Enables Trajectory calculator to
send the path position values
Arc Rsl Rsl 16 bits The path position, while the circular
movement, is calculated at every Rsl
step through the arc
Str Line Rsl Step 16 bits The path position, while straight
movement, is calculated at every Step
length through the straight line
Calculation complete 1 bit Informs that calculation of
Completed trajectory completed
validity validity 1 bit Check result for the
trajectory Ip,lmzgsm;rmzgrpy
Arc Lengths abande 3x16 bits | Angle values for arcs
Line Length LineLength 16 bits Length of straight movement
Path Components | Xout 16 bits x component of calculated path
Yout 16 bits y component of calculated path
Angout 16 bits Angular component of calculated path
A\ 8 bits velocity information of vehicle
DirofCar 2 bits Backward/Forward information
of direction
SteerDir 2 bits Left/Right/Straight information
of steering wheel
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ready’ input goes to high. Ipalmzgsmrmzgrpy controller starts to compute values one by
one, with the cooperation of geometric calculator blocks. After a, b and e are calculated
Ipalmzgsmyrmzgrpy controller checks the validity of trajectory by comparing the obtained
angles with the values stated in Table 3.1. If it fits to these intervals, trajectory calculator sets
the validity output to ’1°. Afterwards, checks whether the ’run’ input is 1’ or *0’. If it is *0’,
trajectory calculator starts to wait for new data. If it is *1°, then goes for calculating the path
values. For path positions starts to send requests to get path position at every ’rsl’ steps to path
position calculator. When trajectory calculator comes across with the straight line segment
of trajectory, positions are calculated by using sincos and multiplier blocks. Finally, after all
positions through the trajectory are sent, sets the complete output to 1’ and starts to wait for
new computation. The flow chart of Ip,lmzgrsm;rmzgrpy controller is shown in Figure 4.18

It is seen in Figure 4.18 that there are length comparisons in flow chart. These are advance
warning that the trajectory calculation fails and stops, because the length between for cal-
culated center points must be higher than 2R for this types of trajectories. It is similar for
the other calculations for instance it can be seen in Figure 3.5 that if the length between two
centers is greater than 4R, this kind of trajectory can not be constructed.

The rest of the trajectory calculators are built up by similar geometric calculator blocks and a
controller, arranges the calculation sequence and arc length checks.

Path position calculator computes the position of the circular segments of a trajectory candi-
date. The inputs of the path position calculator X, y components of arcs center, radius of the
circular movement, a direction information and an angular value corresponds to where the
movement starts. Direction information is needed for calculating the angular position of the
vehicle. A visual illustration is shown in Figure 4.19

Before sending path positions to trajectory planner, Xout, Your and 6oy needs to be calculated.
In Figure 4.19 a right forward movement is visualized and by using the inputs Cy, Cy and 6
initial point of Xqy; and yoy are the only values can be calculated. If direction situation of
steering wheel is provided, 6,y can also be calculated. For the next positions of the vehicle,
the backward/forward information has to be provided. The A6 is controlled by the trajectory
controllers (such as lpalm%Rsmlrm%Rrpb controller). In Figure 4.19, it is also illustrated how
rsl input is used for path position calculations. Xoy: and yo,¢ computations can be seen below
and in Table 4.10 the orientation angle calculations, made due to direction input, can be seen.

Xour = Cx + Rcos(0) (4.10)

Your = Cy + Rsin(6) 4.11)

The sampling points are provided by the trajectory controllers. If the arc type is right turn
input angle is decremented by rsl until input angle reaches to (6 — Af). If the arc type is left
turn input angle is incremented by rsl until input angle reaches to (6 + A#6).
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Figure 4.18: lp,lmzgsmrmzgrpy, controller flow chart

"completed" outputs go

Arc length calculator block computes the trajectory lengths by controlling the trajectory con-
trollers "validity" and "completed" outputs and also the information sent by trajectory con-
verter about which set of 12 trajectory are calculated. Trajectory lengths are calculated by
a controller and the block which is called as ’calculator base’. The angle values which are
extracted by trajectory calculators, are buffered after all paths’ validities are checked and
to ’1” which indicates the trajectory controllers reached the end of
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C(C. Cy)

Figure 4.19: Path position calculator illustration

Table4.10: Arc Block Equations

Input Output

Direction | Movement Orientation | Direction | Steering
Input Definition Angle of Car Direction
00 Right Forward Oour =60 =3 | 01 01

01 Left Forward Oouir =60+ 5 | 01 10

10 Right Backward | 6,,, =6+ 7 | 10 01

11 Left Backward Oour =0 —75 | 10 10

the computations, the buffering process is made because of not to causing a halt during rest
of previous processes. Since the consumed time is much less than the time spent previous
computations, there is no need to check if there comes an other set of angle outputs.

The lengths are calculated as :
TrajectoryLength = (a-R)+ (b -R)+ (e-R) +1 4.12)

The tricky parts of arc length calculation are; there are more than three angles for some trajec-
tories and the registers contain angle, radius and length of line informations are constructed
different ways. Angles are 16 bit registers as described before 15th bit is sign, 14th and 13th
are decimal part, and from 13 to O is fractional part of register. For radius bits 15 to 8 are
decimal 7 to O are fractional part, and for length /, bits 15 to 6 are decimals and bits 5 to 0 are
fractional parts of register.

The arc length calculator waits until the trajectory calculators processes terminate and checks
the validity outputs of the trajectory calculators. Validity output indicates the tried trajectory
can connect the given two configuration by staying in the interval given in Table 3.1. The
trajectory calculators puts out the angles of circular movements and the length of the straight
line if there exists a straight line for the corresponding trajectory. The calculated angles do not
have negative values. So, the 15th bit of angles is always *0’. Such that it can be considered all
angle values coming to arc length calculator are positive. If the angles shifted to right which
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means the angles are divided by two, and multiplied with 2R, the circular arc lengths remains
the same. For the trajectory families; CC|CC, C|CC|C or C|CSC]|C the second and third angles
has same values due to definition of trajectories. So if the angle shifting process is not made
for the second and third angles of the trajectory families are CC|CC, C|CC|C or C|CSC|C and
considered as a single angle, for all of the arc length calculations, a generic solution would
be obtained. For instance while the length for family C|C|C is calculated as w2R
and for family C|CC|C is calculated as (w + angb)2R. This approach is generated to
calculate the trajectory lengths with a generalized block it has 3 angular input and a longitudal

input.

Secondly, matching the decimal and fractional parts of calculations need to be handled. The
product of multiplication of two registers with 4 bits of decimal 12 bits fractional and 8 bits
of decimal and 8 bits of fractional parts has 12 bits of decimal and 20 bits of fractional. By
considering the first two bits of calculated radius are *0’ it can be moved out the 31th and
30th bits of product. Since for the fractional part of calculated length, 6 bits of fractional
number is enough, the products’ 29th to 14th bits are used as length of circular arcs. Then a
straightforward addition is applied to result and /. Finally, total arc length is calculated.

The arc length comparator is designed for detecting the trajectory with minumum length.
The arc length comparator works as two parallel process. Similar to input converter, one
process runs for path planner, one process runs for trajectory planner. First process is run after
48 trajectory lengths are calculated, comparator is trigged by the ready output of arc length
calculator block. And starts to compare the calculated 48 length value. After the minimum
one is identified sends the value to path planner. Then it starts to wait for a new request. The
second process is sorts the calculated lengths from low to high and sends the minimum one
to trajectory planner. Then, starts to wait for a high input at the new line request signal, if a
request is detected, firstly, erases the length register sent previously and checks if there are
other length values waiting at the queue. Until all lengths are sent, the arc length comparator
sets the output pin "All lengths sent" bit to inform trajectory planner.

To sum up, FPGA blocks cooperates with densely used handshaking signals, alternating func-
tionalities and advance warning checks which reduce the time when trajectory calculators do
not connect given two configuration. The realization of trajectory computations are based on
almost same type of calculations, the less modules are constructed and controlled to reduce
the complexity of algorithm.

4.3 Parallel Realizations

FPGAs are on the rise in high-performance computing, their flexibility and compute capabili-
ties are enormously increased. While micro controllers are capable of running single process,
it is also a fact that complexity of generated blocks are much higher than FPGA blocks. More-
over FPGAs are capable of multiple parallel processing. In this thesis most complex and time
consuming parts are the works which are done by trajectory calculators. These calculation are
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composed of various trigonometric functions, multipliers and dividers. With the developing
FPGA technology, the modules that are capable of these functions are added to FPGAs. In
the two-step trajectory parking algorithm it is aimed to calculate trajectories in parallel since
they are independent processes. Minimizing the wait conditions is also an aimed issue. For
example arc length calculator block never causes a halt during the two step trajectory planner,
it is also same for length comparator block.
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Figure 4.20: Parallel Realization

For parallel realization, all of the trajectory calculators are implemented as completely in-
dependent blocks. Then, to speed up the design process there added extra functionalities to
blocks, such as calculators gives out the followed path component only if they are requested.
Since the path planner block is the one which needs the only SFP length while trajectory plan-
ner needs the path positions besides the SFP. Trajectory planner activates this functionality.
These kind of additional control paths increases the complexity but speeds up the algorithms
which runs constantly same functions. In Figure F.1 the parallelization of the calculations is
shown. However it is not obtained 48 trajectories in parallel since the resources of used FPGA
is inadequate in terms of trigonometric and division components, 12 trajectory computation
in parallel is implemented. This functionality also comes with some other complexities in the
algorithm.

The algorithm also can be modified for the low-capacity FPGAs, and algorithm is run in a
serial mode with same controller blocks. So, adding multiplexers before the geometric calcu-
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lation blocks and small modifications on input converter is enough. This approach increases
the time spent for calculations. Moreover the whole 48 trajectory can be implemented in par-
allel on an FPGA which has higher capacity. By editing the input converter and copying the
input converter a fast approach the can be obtained.

4.4 Practical Considerations

In this thesis, an FPGA implementation is derived for the two-step trajectory planning algo-
rithm, proposed in [1]. Recent FPGA technology offers various solutions for both trigono-
metric and arithmetic calculations. These solutions differ from one FPGA family to another.
Even though these blocks are only usable for the selected FPGA, they can also be generated
for other FPGAs. Since they are well designed and fast components they are not implemented
again. These blocks are; arctangent calculator, sincos, multiplier, divider and square root
blocks. The rest of the geometric calculations are implemented, in this thesis.

Table4.11: Cycle Counts of Geometric Components

Module Name Cycle Count
Length Calculator 32
Perpendicular Point Calculator | 106

Circle Center Calculator 75
Multiplier 5

SinCos 20
Arctangent 24

Radius Calculator 119

Square Root Calculator 17

Dot Product Calculator 42

In Table 4.11, the cycle counts of the geometric calculations are presented. The information
for trajectory calculators is not obtained in constant time since there are length comparisons
which are used for advanced warning checks and cause halts while the trajectory calculations
proceed.

Before the FPGA implementation of two-step trajectory parking, the whole algorithm is im-
plemented by using Matlab. The whole geometric computation and trajectory calculator func-
tions are developed during Matlab implementation. After Matlab implementation, FPGA
blocks are constructed. The validation of the blocks are provided by comparing the VHDL
block simulation with the corresponding Matlab based calculations.
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4.5 An Alternative Architecture

The architecture, proposed in this thesis, using the twelve parallel trajectory computing pro-
cess completes the evaluation of 48 trajectories within 4 cycles. Since the proposed architec-
ture did not fit into the chosen FPGA, an alternative architecture with less parallel computa-
tions is proposed here. The new architecture offers 6 parallel trajectory computations such
that all trajectories are evaluated in 8 cycles. With this architecture, the utilization is reduced
and the generated architecture fits into the selected FPGA.

The illustration of the proposed architecture is given in Figure 4.21.
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Figure 4.21: Architecture with 6 parallel trajectory calculation

The architecture with 6 parallel trajectory computations is similar to our proposed method
which runs 12 trajectory calculations in parallel described in Section 4.2. The distinguish-
ing part is that the previous architecture contains 12 geometric calculation blocks and the
architecture suggested in this section contains 6 geometric calculation blocks. Each of the 6
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parallel blocks is composed of two trajectory calculator controller blocks, a geometric calcu-
lation block and a multiplexer. After a trajectory calculator controller finishes its trajectory
computation the second trajectory calculator controller starts to compute the next trajectory.
Due to the reduced number of geometric calculation blocks, the slice LUT utilization is re-
duced from %121 to %78 and can hence be realized on the chosen FPGA. Nevertheless, the
time spent to calculate 48 trajectories is increased from around 2500 clock cycles to 4600
clock cycles. According to FPGA blocks synthesis results two step trajectory algorithm can
be driven by up to 156.924 MHz clock source. By considering frequency as 100 MHz which
has 10 nanoseconds period time, computation of 48 trajectory calculation is increased from
25 useconds to 46 useconds. For the example given in Chapter 4, 4608000 trajectory cal-
culation would be ended in 2.4 seconds with the architecture proposed in Section 4.2, same
calculations would be completed in 4.416 seconds with the architecture proposed in Section
4.5. Considering that a waiting time in the order of a few seconds is tolerable in practical
parking situations, the proposed architecture is found suitable.
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CHAPTER 5

EXPERIMENTAL EVALUATION

5.1 Algorithm Verification

In this section, the algorithms described in Chapter 3 are implemented and evaluated in the
Matlab environment. Matlab is a numerical computing environment and fourth-generation
programming language. The reasons for choosing Matlab for our initial algorithm implemen-
tation are; graphical illustrations are easy to show using Matlab, user friendly help tool, and
experience.

We next illustrate the different algorithms in Chapter 3 by graphical representations of Matlab
simulations. Figure 5.1 shows the 2D representation of a parking situation. It shows the
obstacle location (solid line) and all car configurations that create a collision with the obstacle.
That is, the dots along the obstacle lines represent the values in the distance lookup table.
Hereby, dots are constructed by using 40° which is %” as the angular step and 40 cm as the
longitudinal step. There are 4 half line elements and a straight line element.

As mentioned while introducing distance look-up table, the vehicle turns around a corner,
starting from the position where an edge of car intersects the vehicle until another edge over-
laps the line. The angular step is %” so the quantity of the sampling orientations around the
line is three. There are 4 corners, so that the count of crash condition is 12 for every sampled
dot on the line.

All trajectory families are implemented and simulated using Matlab before FPGA implemen-
tations. In Figure 5.2 there are 2 different trajectories which offer a valid path for the same
initial and goal configuration. The trajectories lp,lmprmprpe (Left hand side)and lp,lmprpe
(Right hand side) have different path lengths. Hence, the arc length optimal trajectory plan-
ner selects the shorter one. In Figures 5.2 the black circle segments are the tracked paths.
Besides, the 48 trajectories are implemented using 12 trajectory calculators. We note that the
FPGA blocks are designed using the same methodology after validating the correctness of all
computations in Matlab.

Figure 5.3 illustrates two trajectory which are equal in terms of steering direction and velocity
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Figure 5.2: Two valid trajectory calculators for same two configuration

direction. The paths obtained are a clothoid arc based and circular arc based versions for the
same initial and final configurations. It can be observed in Figure 5.3, that a halt is required

during every steering angle change if the circular arc is followed. On the contrary, the clothoid
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arcs can be followed without halts as long as the velocity direction does not change.

Figure 5.3: Circular and smoothed version of a trajectory

The next experiment concerns the collision-free path computation by using arc length optimal
trajectories for finding a path with maximum distance to the obstacles. The planned path, for
the input q; and qp, is generated for the environment shown in Figure 5.1. The green square
dots are the members of the collision free path as can be seen in Figure 5.4.

In Figure 5.4, the obtained path by trajectory planner is shown for the initial condition qsi =
600, qsy = 10, 6, = ?—g and final condition ggx = 50, qgy = 410, 6, = 20°. As can be seen, two
additional sampling point is used for connecting start and goal positions. The first maneuver
is used to connect initial configuration to the middle point of the planned path. Afterwards,
if a collision-free connection from middle position to end position is not achieved, a second
configuration is needed at the middle of the remaining path. So, three trajectories are sufficient
for a collision free trajectory planning.

We next simulate the FPGA implementation using ISIM which is a commercial tool presented
by XILINX company.
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Figure 5.4: Trajectory planner algorithm

Figure 5.5 and Figure 5.6 show the Matlab simulation for two circular arc optimal trajectories
Ip,lmplp, and lpalm%Rsmlrngrpb. The circular arc are drawn as black lines on green circles.

Table5.1: Simulation variables

Input | Value
qix 5.125
qry 4.375
Ang; | DX
Qx| 4

qoy 3.234
Ang; | O
Pmax %
Wmax %
Leb | 2

By using the input values which are shown in Table 5.1, also the Matlab trajectory functions
are run for comparison.

According to Matlab simulation the angles are obtained as: a = 1.4662 rad, b = 0.82 rad, e
= 0.6809 rad for the Ip,lmylp. trajectory and for the lpalm%Rsmlrngrpb Matlab obtains a =
1.5146,b = 1.5146, 1= 12.1316. The results computed via Matlab are compared with the ones
achieved from FPGA block simulations (see Appendix D). We observe that the deviation

72



Figure 5.5: Matlab simulation of the trajectory Ip,lmylp.

: i |

d=12.20%

Figure 5.6: Matlab simulation of the trajectory Ip,lmzgsm;rmzgrpy

between the lengths and angles obtained via Matlab with 32 bit integers and the results of

FPGA simulations with 16 bit registers are negligibly small.

As is mentioned in Section 4.2.2, the angular and longitudinal values are constructed of 16 bit
registers by the Two Step Trajectory Planner. Angle values have 1 bit sign, 2 bits of decimal
part and 13 bits of fractional part. Longitudinal values have 10 bits of decimal part and 6 bits
of fractional part. The results of FPGA block simulations are in Hexadecimal format. That is,
having a 6 bit fractional part means that the result needs to be divided by 64 after it is converted
to a decimal number. Similarly, the angle value needs to be divided by 8192, because they
have 13 bits of fractional part. The calculated a, b and c¢ values for the same inputs are:
a =x"2F3D", b = x"19DE" and e = x"15DE". When they are converted to decimals, we
obtain a = 12093, b = 6622, e = 5598; the angle values are obtained as a = % = 1.4761,
b= % =0.8083 and e = % = 0.6833. Using such result, the arc lengths are calculated
and compared for trajectory Ip,lmplp.. The differences between calculated angle values via
Matlab and FPGA, are because of the fractional parts of calculations which are neglected. the
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1° angle difference between the calculated angle and obtained angle is tolerable.

In Appendix E the calculated a, b and ¢ values for the same inputs are: a = x"3022", e =
x"3024" and [ = x"0304". When they are converted to decimals, we obtain a = 12322, b =
12484, 1 = 772, the angle values are obtained as a = %39222 =1.5048,b = % = 1.5239 and
finally, the length of the straight movement is 1 = % = 12,0625. So, the arc lengths and
straight movement length are calculated. For the trajectory Ip,lmzgsmjrmzgrpy, the obtained
result via FPGA blocks simulations differs from the Matlab results by around 1°, which is
again tolerable. The additional analysis for this experiment is the length value [ which is cal-
culated during Matlab experiments as 12.136. The difference is 0,0735 which is also tolerable
if the 1 decimal stands for 1 meter, the distance error corresponds to 7 centimeters, which is

less that safety distance for constructing the distance look-up table.

Another simulation is obtained for 48 trajectories in Appendix F. In this simulation the 12
trajectory calculators run in parallel, That is, within 4 cycles all the 48 arc length optimal
trajectories are obtained. The whole 48 calculations take at most 2500 clock cycles.

Table5.2: Trajectory IDs

Trajectory ‘ ID H Trajectory ‘ ID ‘
Ip,lmplpe 0 rm,Ipprme 24
Im, sm;rmy, 1 rm,smylmy, 25
Ipalmprm, 2 rparmplme 26
Ipalmprmprpe 3 rparmplmylpe 27
lpalm%Rsml Imy, 4 IMaIPRSP; [Py 28
lpalngsml rmy 5 IMuIPzRSp; Ipy 29
lpalm% RSIIM2RIPY 6 rmarp%Rspllp% rlmy | 30
rmasmllmrz,rRlpb 7 lmasmlrngrpb 31
rm,Smy;rmy 8 Im,sm;Imy 32
MRS TMRIPh 9 lmasmllm%Rlpb 33
rpalpplme 10 || Im,rmprpe 34
rpalpplmprme 11 || Imyrmprpplpe 35
Im,lppIm, 12 || rparmprpe 36
1paspirpy 13 || rpaspilpy 37
rm,rpplpe 14 || Im,lpprpe 38
Im,lpprpprme 15 || rmarpplpplme 39
lmalp%Rspl Ipp 16 IPaIMzRSMy My 40
lmalpgRspl Py 17 IPa MRSy Imy, 41
lmalp% RS IPIRIMY 18 IParmz Rspllmzz,r rlpy | 42
rpaspllp%leb 19 lpasplrpgerb 43
IPaSPIPh 20 || Ipaspidpy 44
IPaSPAPIRIMY 21 || Ipaspdpzglmy 45
rm,lmplpe 22 || Iparpprme 46
Ip,rpprmylm, 23 || rmylmplpprpe 47

In our implementation, we use a 48 bit validity vector to indicate the validity of the trajecto-
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ries. That means if there is a "1’ in the corresponding validity vector index, since this index
is the ID of the trajectory, it can connect the given start and goal configurations. It this ex-
periment 3 of the trajectories are suitable to connect the start and end configuration according
to the constraints given in Table 3.1. The Trajectory IDs are introduced in Table 5.2. The
resultant validity matrix is in hexadecimal demonstration is:

[020000200040]
In binary demonstration:
[000000100000000000000000001000000000000001000000]

The trajectories with the IDs 6, 21 and 41 can connect the two given configurations. The tra-
jectories for the corresponding IDs are Ip,lmzgsm;rmzgrpp, 1paspirpzrrmy and rparmzgsmy
Imy. In Appendix F there are other vectors called minimum one and minimum length. Min-
imum one is the ID of the shortest trajectory and minimum length is the calculated length of
the corresponding trajectory. In this experiment rp,Sp;rpzrrmy has the minimum length and
is chosen by the path planner and trajectory planner.

To sum up, two-step trajectory planner algorithm is generated in two stages: Matlab simu-
lations and FPGA Implementation. Since the geometric computations can be illustrated in
Matlab easier, and graphical views of calculations are faster via Matlab, it is the best op-
tion for demonstration of the algorithmic functionality. FPGA implementation is selected as
hardware solution. In particular, to use parallel processing additional blocks are added to the
algorithm and some blocks are modified to make trajectory calculators work in parallel.
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5.2 Experimental Setup

This part of thesis introduces the tools used to see the results of the trajectory planners. Virtex-
6 FPGA Connectivity Kit is used for implementation of a trajectory planner which can be seen
in Figure 5.7 [19].

Figure 5.7: Virtex-6 FPGA Connectivity Kit

On the selected FPGA kit there is an FPGA with the item number xc6vIx240t-11f1156. Since
implemented design did not fit in the FPGA, a project with one of the trajectory planners is
generated. After the path is calculated through the trajectory planner, the computed positions
are sent to a PC using the serial communication port. Another software, generated for this
thesis, takes the results via USB port and plots them.

5.3 Trajectory Planning Experiments

During the tests, since it has all kind geometric calculation blocks implemented for this thesis,
we decided to use the trajectory Ip,lmzgsmrmzgrpy, which has the maximum number of arc
segments for the analysis.

The test architecture is composed in the following sequence; firstly, two configurations and car
kinematic values are sent to the radius calculator. After the radius is calculated, center points
of the first and last circular maneuvers are obtained. Then lpalmzz_rRsmlrmzz_rRrpb calculator
follows it by computing the rest of components of the trajectory. At the end of the trajectory
calculator there is a UART interface waiting for the data to be exported. Whenever the path
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data is ready, the lpalngsmlrm%Rrpb calculator sets the data ready output to ’1°. Then the
UART interface gets the path data values and sends the data received from the trajectory
planner. Then,the trajectory calculator calculates the next path position. It is observed that
trajcetory path position calculations are always ends faster than the time spent while the serial
data is sent. Ip,Jmzgsm;rmzgrpy controller, even the UART speed is increased up to 100
Mbaud.

In this experiment the calculation of one trajectory takes 870 clock cycles. Considering the
generated project’s maximum clock frequency of 156.924 MHz, the tested calculation lasts in
8.7 useconds.

Synthesis results of test architecture can be seen in Table 5.3.

Table5.3: The Utilization of the FPGA resources for the one trajectory calculator

Resource Used | Available | Utilization
Slice Registers 9512 | 301440 3%
Slice LUTs 11320 | 150720 7%
Block RAM/FIFO | 2 416 0%
DSP48E1s 29 768 3%

The test architecture for the Ip,lmzgsmrmzgrpy controller implementation is shown in Fig-

ure 5.8.
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Figure 5.8: Test architecture

During the experiment, after the necessary conversions are made, the first few obtained path
values for x, y and angular components for the given q1:(4.125, 6.125, 0) and q2:(24,5,0) are:

qx: 4,1250 4,2500 4,6250 4,9687 5,2968 5,8125 5,9843 6,0781 6,1093...
qy: 6,1250 6,1250 6,1875 6,3125 6,500 7,0468 7,3906 7,7500 8,0000...

6: 0,0035 0,0662 0,2545 0,4427 0,8192 1,0074 1,1956 1,3839 1,5156...
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To compare with the Matlab simulation, the generated path positions on the FPGA are plotted
by Matlab as can be seen in Figure 5.9

- .o'.
oy S 1

Figure 5.9: Experiment results

The small black squares are the sample points of planned trajectory. As can be seen in Fig-
ure 5.9 these are on the planned path graphic obtained via Matlab.

To conclude, a trajectory which has the most complicated calculations among the trajectories
is tested on Virtex-6 FPGA Connectivity Kit, and satisfactory results are obtained. These
results are arc lengths, radius of the circle, length of the straight line, centers of the circular
movements. Since the implemented design did not fit into the selected FPGA, just one of
the trajectories is tested on board. Actually the results are same as the ones observed via
simulations. So that the rest of the trajectories can be implemented using same methodology.
We note that the overall designed architecture with 12 trajectory computations in parallel
does not fit on a Virtex-6 FPGA which is the one has most capacity in terms of logic cells,
available to use. The number of Slice LUTs exceeded the capacity of the FPGA, which are
used in divider and trigonometric components of calculations and tables. By minimizing the
size of tables, increasing the source sharing the best case achieved is 121 %. 88% of Slice
LUTs are used by two-step trajectory planning and 33% of Slice LUTs are used by distance
look-up table. The block crash condition calculator occupies the the most space among the
all generated blocks. Each crash condition calculator allocates 6% of Slice LUTs. We also
note that an architecture with 6 parallel computations is also proposed in Section 4.5. This
architecture fits on the Virtex-6 FPGA while using 78% of its capacity. The same correct
results are obtained with this architecture only with a longer computation time.
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CHAPTER 6

CONCLUSIONS

In this thesis, the automatic parking algorithm proposed by Miiller et. al. in [1] is implemented
on FPGA. The algorithm has the advantage of generating short parking trajectories with a
small number of vehicle halts and can be used in general parking situations.

The proposed method in [1] is a two-step trajectory planner. The first step is finding a
collision-free path that connects an initial and a goal vehicle configuration but that can gener-
ally not be followed by the vehicle due to kinematic constraints. The second step is connecting
the initial and goal configurations of the vehicle by optimal arc length trajectories along the
previously planned path that can be followed by the vehicle. The method of [1] is better than
the other algorithms, introduced in related work, in terms of vehicle halt count. Moreover this
method is capable of parking in any detected spot in the parking environment if there exists

at least one possible path.

The focus of this thesis is the FPGA implementation of the two-step trajectory planning al-
gorithm in [1]. The significant contribution of this thesis is the parallel implementation of arc
length optimal trajectory calculators. Since these computations contain complex trigonomet-
ric functions, the parallel realization of the trajectory computations speeds up the algorithm
given in [1] such that the trajectory computation can be performed in practice. To this end, in
the designed architecture 12 trajectory computations are evaluated in parallel such that only 4
runs of the trajectory computation have to be performed in order to obtain the total number of
48 possible trajectories. Moreover, a modular architecture is provided for design simplicity
and easy extension and modifications. In addition, some sources which require a large amount
of space, are shared (e.g., the circular trajectory construction block) to reduce the utilization
of the FPGA. If the two-step trajectory planner algorithm is implemented by using a micro
controller which is capable of comparable computation process, due to serial realization, the
same algorithm would be executed at least 6 times slower, In this case, the required number of
4608000 computations, given for an example parking environment, would take 14.4 seconds
to complete. In contrast, the FPGA implementation leads to computation times in the order

of 2 seconds which are tolerable by drivers.

It has to be noted that the proposed architecture currently does not fit on the chosen FPGA
hardware. As aremedy, an alternative architecture is designed. Using the modified design, our
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architecture fits into the selected FPGA by adding only 6 multiplexers and grouping the tra-
jectory computation blocks two by two. In the alternative architecture 6 trajectory calculators
are running in parallel and the components used for geometric calculations are shared by 2
trajectory calculator controllers. The time spent during 48 trajectory calculations is increased
up to 4600 clock cycles, whereas the FPGA utilization is reduced from %121 to %78.

An experiment is run for a trajectory calculation in this thesis. The obtained path positions
calculated via FPGA implementation are sent to Matlab by using UART communication to
be plotted. It is observed that the calculated path positions are almost identical to the path
positions calculated via Matlab. This experiment confirms that correct trajectories calculated
on the FPGA.

To verify an FPGA implementation, simulation results can be considered because the simu-
lations of an FPGA implementation exactly match the real working cases. To this end, all
FPGA blocks are simulated and verified one by one during the design process. In addition,
blocks are merged and overall simulations are also run to verify the whole automatic parking
algorithm.

Output of an successful FPGA implementation is usually an ASIC design. The whole al-
gorithm needs to be tested on FPGA prototype with all possible configurations and parking
environment on a real vehicle before the ASIC design process is started. Since the vehicle
kinematics are the inputs of the generated FPGA blocks, the solution of our two-step trajec-
tory planner can be applied to any vehicle for parking assistance system.

In the future, several additions can be made. Firstly, some other trajectories planners can be
added to the 48 trajectories. It is observed that, during the parallel processing, some path
calculation results are obtained earlier than others. The new generated calculators can be in-
serted in the resulting idle times. No additional source is needed for that kind of improvement
but a controller needs to organize the computations. An other contribution that can be added
to the thesis work is the FPGA implementation of clothoid-arc functions which reduces the
halt counts.

To sum up, the parallel realization of the two-step trajectory planner speeds up the compu-
tations of the automatic parking algorithm given in [1]. With a test architecture, a trajectory
calculation is obtained and it is observed that an FPGA implementation of this trajectory
calculator provides promising results.
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Appendix A

THE PYTHAGOREAN THEOREM

Let c represents the length of the hypotenuse of a right triangle the other edges are designated
by the letters a and b. See Figure A.1.

b

Figure A.1: Right Triangle

The relationship between the lengths of the edges of a right triangle expressed by Pythagorean
as[20]:
=at+ b (A1)
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Appendix B

HERON’S FORMULA

In geometry, Heron’s (or Hero’s) formula, named after Heron of Alexandria states that the
area A of a triangle in Figure B.1, whose sides have lengths a, b, and c is [21]:

Figure B.1: Triangle

A = +s(s —a)(s — b)(s — ¢) (B.1)
Where the s is defined as half of the perimeter of the triangle:
b
5= % (B.2)
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Appendix C

FRESNEL INTEGRAL FUNCTIONS

S(x) and C(x), are two transcendental functions named after Augustin-Jean Fresnel as Fresnel
Integrals. It is mostly used in optics [22].

X

© 4n+3
_ . 2 _ _1\n X
S(x)—fsm(t )dt_ZO( 1 G TS (C.1)
0 n=
p oo dn+1
_ 2 _ 1\ X
C(x)—fcos(t )dt_z_(:)( 1 BTG (C.2)
0 n=

Graphical illustration of Fresnel Integrals can be seen in Figure C.1. C(x) function is the green
line and S(x) function is the blue line.
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Figure C.1: Fresnel Integral Functions
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Appendix D

SIMULATION I
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Figure D.1: FPGA simulation of the trajectory Ip,Imylpe
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Appendix E

SIMULATION II
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Figure E.1: FPGA simulation of the trajectory Ip,lmzgsmrmzgrpy
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Appendix F

SIMULATION III

In the Figure F.1 there are 3 different signals which are also critical for the design. The first
signal is nd _check circ validity indicates the new data is ready for 12 parallel calculator. After
the 48 trajectory computations are done, input converter blocks sets the transform complete
output to *1°. So the path planner realizes that it can send another input values to be calculated
and starts to prepare them. Finally when the lengths of the valid trajectories are calculated
sets the rdc check circ_validity output to indicate every calculations are completed. As can be
seen one clock later a *1” is inserted via the input nd check circ validity for new positions.
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Figure F.1: Parallel Realization
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