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ABSTRACT

AN FPGA IMPLEMENTATION OF TWO-STEP TRAJECTORY PLANNING FOR

AUTOMATIC PARKING

Ertuğrul, Halı̇l

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

September 2013, 94 pages

The main distinguishing feature of different automatic parking technologies is the method that

determines a proper collision-free path. Hereby, the length of the path, the number of halts

and the computation time for finding such path are the most relevant performance criteria. In

this thesis, a two-step trajectory planning algorithm for automatic parking is considered. The

algorithm finds a path that meets all kinematic constraints of the car from its initial position,

to the target position while requiring a small number of vehicle halts. It first calculates a

collision-free path from the initial position to the target position by maximizing the distance

from any obstacle. Since this path usually does not respect the kinematic constraints of the ve-

hicle, a second algorithmic step computes a path that is suitable for the vehicle. In both steps,

a set of 48 optimal trajectories is used for the path computations and distance evaluations.

Since the trajectory planning algorithm requires complex geometric calculations, it a micro-

processor is not suitable for practicable computation times. Hence, an FPGA is chosen for

the realization of the trajectory planning algorithm on hardware, enabling parallel processing

of the trajectory computations. This thesis describes the hardware design for implementing

the trajectory planning algorithm on FPGA. The performed analysis both via simulations and

implementation on hardware shows that a speedup in the trajectory computation is obtained.

Different from other hardware realizations that are restricted to either only parallel parking or

vertical parking, our implementation can handle general parking situations. In addition, our

implementation increases the driver comfort by reducing the number of vehicle halts.

Keywords: FPGA, Automatic Parking, Two-Step Trajectory Planning
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ÖZ

OTOMATİK PARK İÇİN İKİ AŞAMALI YÖRÜNGE PLANLAMASININ FPGA İLE

UYGULANMASI

Ertuğrul, Halı̇l

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Şenan Ece Schmidt

Ortak Tez Yöneticisi : Doç. Dr. Klaus Werner Schmidt

Eylül 2013 , 94 sayfa

Otomatik park teknolojilerini birbirinden ayıran temel özellik park alanında çarpışma olma-

yan uygun bir yol belirlemektir. Bu nedenle belirlenen yolun uzunlluğu, bu yoldaki duruş

sayısı ve yolu belirlerken yapılan hesaplamaların süresi en önemli parametrelerdir. Bu tezde,

otomatik park için iki adımlı yörünge planlama algoritması değerlendirilmiştir. Algoritma ara-

cın tüm hareket kıstlamalarına uyarak başlangıç ve hedef pozisyonu arasında az sayıda duruş

gerektiren bir yol bulur. Algoritma ilk adımda aracın başlangıç ve hedef pozisyonu arasında,

park alanındaki engellere maksimum uzaklıkta çarpışmasız bir yol belirlemektedir. Yine de

belirlenen yol aracın hareket sınırlamalarına uymadan belirlendiği için genellikle araç tara-

fından takip edilemez. İkinci adımda, birinci adımda bulunan yolu kullanarak, aracın hareket

kabiliyetine uygun bir yol hesaplanır. Algoritmanın tüm adımlarında, yol ve engellere olan

mesafe hesaplamalarında en uygun olduğu ispatlanmış 48 adet belirlenmiş yörünge kullanılır.

Yörünge planlaması karmaşık geometrik hesaplamalar gerektirdiği için, mikroişlemciler al-

goritma için yavaş kalmaktadır. Paralel işlem yapabilme kabiliyeti değerlendirilerek, yörünge

hesaplamasını donanım üzerinde gerçeklemek için bir FPGA seçilmiştir. Bu tez, FPGA üze-

rinde yörünge planlama uygulamasını anlatmaktadır. Simulasyon ve yapılan analizler yörünge

hesaplamalarının hızlandığını göstermektedir. Diğer donanım algoritmaları sadece paralel ya

da dikey park etme işlemlerini sağlayabiliyorken, bizim algoritmamız tüm park durumlarını

sağlayabilmektedir. Bunun yanında araç duruşlarını azaltarak sürücü konforunu artırmaktadır.

Anahtar Kelimeler: FPGA, Otomatik Park, İki Adımlı Yörünge Planlaması
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CHAPTER 1

INTRODUCTION

Motivation:
Vehicles are becoming more and more dependent on electronic devices. Recently, the vehicles

are equipped with electronic systems such as the fuel injection system and anti-lock brake

system. Moreover, even high quality parts cannot perform up to their ultimate capability

without the help of electronic components.

Automatic parking is one of the recent technologies that provides a more comfortable and

safer driving. With the increased number of vehicles in crowded cities, parking in a narrow

space becomes a must ability. Even for skillful drivers, parking in a highly constrained area is

a time consuming process which causes halts in traffic. The automatic parking systems offer

reduction in the duration of this process. Safety is another issue presented by automatic park-

ing systems, since a collision-free path is achieved. Most of the automotive companies which

designed automatic parking systems claim that it also reduces the costs spent for repairing the

car.

Problem Definition:
The automatic parking procedure is divided into three phases. Firstly, while the driver is con-

trolling the car, a suitable parking space is detected with the help of sensors. Secondly, the

car is stopped and a collision-free path connecting initial position of the car and the desired

parking position is computed based on measurements and mathematical analyses obtained in

the first step. Hereby, a mathematical model of the environment and vehicle is usually consid-

ered. In the third stage, even though the driver still controls the velocity of the car, the control

of the steering wheel is left to the parking assistance system. During the computation opera-

tion performed in the second step, the driver has to wait until the calculations are completed.

For a successful parking assistance system, this halt time must be minimized.

Accordingly, the performance of an automatic parking process is determined by the number

of vehicle halts during parking process, velocity of the car during maneuvers, and the planned

path length. The computation of the path should be completed fast, such that the parking

maneuvers start instantaneously after the selection of the parking space and the car is stopped.

Here, a waiting time in the order of a few seconds is tolerable. A large number of vehicle halts

results in an uncomfortable driving process with high acceleration and the length of planned
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path needs to be low enough to prevent a long lasting parking process. Hence, any proposed

method needs to meet these requirements.

Approach:
The halt time while calculating the feasible trajectory in step two of the automatic parking

procedure is a combination of various geometrical computations. Such computations are still

time consuming functions for the recent microcontroller technology. Moreover realization of

automatic parking needs a significant background knowledge on control algorithms, geometry

and programming. In this thesis, the automatic parking algorithm in [1] is implemented on an

FPGA hardware platform. The method is semi-autonomous in the sense that the steering angle

is provided automatically while the velocity of the car is controlled by the driver manually.

The approach in [1] takes care of the offline calculations not only in the form of a collision-free

path calculation, but also satisfying qualitative issues. In contrast to most of the collision-free

path planning algorithms which aim at environment dependent paths such as parallel parking,

the proposed approach does not have such constraints.

Contributions:

1. In the proposed method there are 48 different trajectories that can be used to connect two

configuration points of the vehicle. They need to be analyzed geometrically, whereby it

is beneficial that actually 12 trajectories are sufficient to compose all trajectories. The

reason is that each of the 12 trajectories can be used to obtain 4 diferent trajectories by

change of direction. In [1], just one of the trajectories is analyzed in detail. Within this

thesis study, the analysis is done for all types of trajectories. The geometric calculations

are constructed by using similar kinds of equations to simplify the design process.

2. In this thesis study, initially, the algorithm given by [1] is implemented in Matlab. Then,

the implementation is carried out on an FPGA platform with the following features:

(a) Parallel computation of time consuming geometric equations speeds up the pro-

posed method. Also by parallel processing, independent controller parts of the

algorithm work at the same time.

(b) Modular realization of FPGA blocks provides a flexible architecture. As part of

an incremental design strategy, modularity is especially effective when isolated

changes to a design are required and there is a need to minimize the impact to

other modules in the design. The implemented architecture is composed of 53

different modules. Modularity also saves the time spent while the simulation of

blocks is running.

(c) The generated blocks can be reused by many control algorithms, especially the

ones that need to deal with circle and triangle geometry and coordinate planes.

For example, there are two different area computation methods implemented for

triangle geometry or there is a formulation of the x, y components of a dot on

a coordinate plane with a known perpendicular distance to the line that connects

two predefined points or a dot product calculator.
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Results:
An FPGA implementation of a two-step trajectory planner is obtained in the scope of this

thesis. Numerous processes are run in parallel and a faster algorithm is observed via simu-

lations. At the end an FPGA experiment is presented to validate the feasibility of the FPGA

implementation of the geometric calculations. The results are promising for the most complex

trajectory calculation.

Plan of the rest of the thesis:
The remainder of this thesis is organized as follows. In Chapter 2, the problem statement,

previous automatic parking algorithms and implementations as well as the method proposed

in [1] are introduced. In Chapter 3, a two-step algorithm for parking trajectory planning

is presented using a kinematic model of the vehicle, circular trajectories and clothoid arcs.

In Chapter 4, the FPGA blocks of the hardware implementation of our trajectory planning

algorithm are explained together with signal definitions, block level architectures and flow

charts. In Chapter 5, the results of the simulations obtained via MATLAB and ISIM are

discussed. At the end, Chapter 6 concludes the thesis with a brief summary and an outlook to

future work.
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CHAPTER 2

PROBLEM STATEMENT AND RELATED WORK

2.1 Parking Problem

Parking is the act of stopping and disengaging a vehicle and leaving it unoccupied. Parking

in an environment for given collision-free start and goal configuration requires a collision-

free path between these two positions, secondly the vehicle should be able to follow the

determined path and because of that the path needs to be constructed by meeting the kinematic

constraints of the car. Additionally, the speed of the vehicle must be high enough to provide a

fast parking process and unnecessary halts must be avoided. Finally, the waiting time until a

suitable collision-free path is computed should be in the order of a few seconds such that the

driver experiences a fast start of the parking maneuver.

The implementation of automatic parking algorithms on a hardware also needs to meet quali-

tative parameters of the parking process. When the complexity of the calculations increases;

the complexity of the hardware design increases too. Different hardware implementation

methods result in different calculation times, which affects the time spent during the maneu-

vers. In this thesis, the algorithm proposed in [1] is implemented on FPGA as a solution for

the automatic parking problem, since numerous processes can be run in parallel. Hence, the

calculation speed increases due to parallel processing, which is of particular importance for

speeding up offline computations and hence reducing the waiting times of drivers.

2.2 Related Work

In this part of thesis, a survey on previous works for automatic parking is presented. Af-

terwards, various hardware implementations of automatic parking algorithms are described.

Finally, the implemented algorithm [1] is summarized.
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2.2.1 Previous Automatic Parking Algorithms

The proposed automatic parking solutions can be classified into two groups; application ori-

ented parking such as methods for only parking parallel or vertical, and the generalized auto-

matic parking solutions which work for all kind of cases.

We first consider the application specific solutions. Most of them suffer from the similar

shortcoming that they are exclusively applicable to either parallel parking or vertical parking.

Besides, numerous halts occur during the parking maneuvers. The proposed algorithm in [2]

offers parallel and vertical parking with an increased complexity in maneuvers and numer-

ous direction changes. A fuzzy logic controller based algorithm is presented in [3] which

produces a collision-free connection from a start configuration to a target position by using a

pre-determined set of trajectories. This method is successfully tested on a small electrically

powered car model. However, when it is tested with a real car it is seen that for small parking

spaces the generated movement is composed of many maneuvers since the real car kinematics

are different than a small electrically powered car. The approach in [4] focuses on the steering

motor controller. The authors claim that the calculated path is of minimum length among all

possible ways. This approach uses a bilateral interface with the driver and has the disadvan-

tage that it only works in reverse (backing in) parking situation. Another fuzzy-control based

solution, given by [5], focuses on connecting initial and target positions of a vehicle without

considering the driving comfort. Although the generated solution is supposed to be fast, it is

not comfortable for the driver. A vision guided automatic parking is proposed in [6], in which

video data is used to detect the parking slot. After the parking slot is detected, a collision free

path is constructed. This solution uses two control algorithms which are hybrid fuzzy logic

and neural network control architectures. This solution also suffers from usability problems

since it can only park parallel. In the work [7], a fuzzy logic algorithm is used to achieve

a collision-free parking. Since the method uses a fuzzy logic algorithm, no qualitative con-

straint is considered within this study. Moreover, the generated architecture is environmental

specific, meaning that the vehicle only parks parallel or perpendicular.

Next, we summarize generalized automatic parking solutions. The approaches find a

collision-free path for every kind of car orientation. The generalized automatic parking solu-

tions usually suffer from THE complexity of the algorithms. In [8] and [9], a live programing

like method that aims to reduce the quantity of maneuvers by constructing a discretized il-

lustration of the parking environment is proposed. This approach is very computationally

expensive. An adapted version of the study given in [8] and [9] is introduced by Ferbach

in [10]. The approach is an adequate implementation of work which is known as progres-

sive variational dynamic programming. In this method, an illustration is generated from an

unconstrained definition by loading the kinematic constraints continuously. The accuracy of

the algorithm proposed in [8] and [9] is lost because of modifications. In [11] and [12], an

approach is proposed by defining the non-holonomic environment with non-linear equations

which are solved by the numerical continuation method. This approach needs to be defined

by basic equations before solving the whole non-linear equations of the system. Basic system
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definitions are considered firstly which have known solutions. Then real system solutions are

formed by using the predefined simple equations. At last, the original problem needs to be

reconstructed from these simplified equations. Chitour is inspired by the promising results

of [11] and [12]. The algorithm is examined from a theoretical view to an algorithm for mo-

bile robots in a parking environment with obstacles [13]. Unfortunately, the method does not

converge when the steering angle of the vehicle is included in the model. In the work of Ghi-

aseddin et. al., a neural network based algorithm [14] is implemented to keep a vehicle on the

road. With the help of a simple fuzzy logic algorithm, the method in [14] does not provide

an intelligent parking process. It just guarantees not to crash any obstacle while parking. The

method given in [15], focuses on an obstacle oriented algorithm and combination of various

turning arcs. The parking process occurs at low speed by providing a breaking action method.

The performance of decided trajectory is better than the methods proposed in other work in

terms of needed parking space. This control mechanism is implemented using Fuzzy-PID

tracking control. Also, this algorithm is one of the best low-cost solutions and it only needs

space 1.28 times of vehicle length for parallel parking, whereas the previously mentioned

algorithms need more than 1.4 times of the vehicle length.

2.2.2 Previous Automatic Parking Implementations

A hardware implementation is developed for the proposed method in [1]. The hardware plat-

form is chosen due to three important parameters; design cost, speed and flexibility. Three

possible hardware solutions are ASICs (Application Specific Integrated Circuit), micro con-

trollers, and FPGAs. When the speed is considered, μCs are the worst option that have long

computation time and low working frequency (10 to 20 MHz). When the design cost is con-

sidered, ASICs are the worst solution. ASICs require a chip design process. Besides, they

are not flexible. For instance, a small change might be possible only by redesigning the chip.

Accordingly, due to high operation frequency and flexible hardware, FPGAs seem to be the

best solution for a hardware implementation.

There are also constraints that the selected FPGA must meet. The implemented design needs

to fit on the selected FPGA and be fast enough to reduce off line calculation time. During

the implementation of the proposed method, speed is the most important design goal. To this

end, parallel processes are densely generated. Again to speed up the implemented module, no

source should be shared by two active processes.

Some of the algorithms given in Section 2.2.1 are implemented on a hardware platform. It is

observed that among the proposed hardware solutions, all of them are based on fuzzy logic and

predefined neural network solutions. One of the hardware solutions proposed by Hsu et. al. is

implemented on an dsPIC microprocessor [4]. The algorithm given by Song offers an FPGA

based implementation, [5]. The work focuses on parallel realization of geometric calculations.

As was stated in the previous section, the solution by [5] is not a pleasant driving experience.

The next hardware implementation of an intelligent parking process is introduced by Scicluna

et. al. [7]. The algorithm is implemented on an FPGA [7]. However, although it is a fast and
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less source consuming FPGA design, it still suffers from environmental limitations. The

algorithm proposed in [14] is as well realized on an FPGA. As is stated above, this approach

only provides collision free parking controlled by the driver while avoiding obstacles. The

rest of the algorithms proposed in Section 2.2.1, does not have hardware implementation

information. They are simulated via Matlab or implemented as a software.

2.2.3 Work of Müller et. al.

In this thesis, an FPGA implementation of a two-step trajectory planner algorithm is proposed.

Two-step trajectory planning consists of two stages; firstly, a collision-free path connecting

two configuration of the vehicle is constructed, secondly using this path a collision-free tra-

jectory needs to be calculated that can be followed by a vehicle.

In the first step of the algorithm, the aim is to find a safe path from the initial position to

the final position of the vehicle. This path would be safe if the distance to the obstacles are

maximized while moving to goal configuration. The trajectory planner starts at the initial

position of the vehicle, then moves towards to final configuration of the vehicle by checking

all neighbors on the 2D system by testing 48 circular trajectories determined in [16]. The test

done by using the trajectory calculators is to find the minimum distance to any obstacle for all

neighbors. After this calculation, the algorithm chooses the neighbor which has the maximum

distance to the obstacles. Moving through the neighbors until the vehicle reaches the target

position allows to obtain a safe path if such path exists. It is proven that 48 types of trajectories

are sufficient to detect the minimum length path that connects two given positions on a surface

plane [16]. The described algorithm is called the Distance Optimized Path Planner. Due to

kinematic constraints this path usually cannot be followed by a vehicle.

In the second step of the planner, the planned path is used to connect two positions of the

vehicle by avoiding unnecessary halts. In Figure 2.1, the unnecessary halts situation is illus-

trated.

For avoiding unnecessary halts, the number of sampling points on the path needs to be mini-

mized. To this end, the second step of the algorithm checks if the initial and final configuration

of the vehicle can be connected directly by predefined trajectories on a collision-free path. If

it cannot be connected, the same verification algorithm is run for traveling one half of the

planned path. After the start position is tied to a position on the path planned in Step I, the

algorithm keeps on searching for a path from the intermediate node to the target position us-

ing the same methodology. This procedure goes on until the vehicle position reaches the goal

configuration. The obtained path can then be followed by the vehicle.

Another set of trajectories presented in [1] offers smoothed versions of arc length optimal

trajectories which are known as the one-sided continuous curvatures (OSCC) family. At the

connection point of the arcs where the velocity direction is not changed but the steering direc-

tion changes, this trajectory family offers continuous maneuvers. This is achieved since the
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Figure 2.1: Reducing the number of sampling points [1]

vehicle starts turning the wheel before it reaches the connection point and the steering angle

becomes zero when it reaches the connection point of two arcs.
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CHAPTER 3

PARKING TRAJECTORY PLANNING

3.1 Vehicle Model

Firstly, to characterize the parking problem, the kinematic model of the vehicle is introduced.

A path can be followed by a car only if all kinematic constraints of the vehicle model are

met, whereby it turns out that these constraints are independent of the vehicle velocity. That

is, we next determine an appropriate mathematical model of the vehicle kinematics which is

independent of the velocity.

3.1.1 Basic Vehicle Model

The vehicle model which is used in this thesis is the most common description in the literature.

It is assumed that only slow motions are applied to the vehicle in a parking situation and less

complex vehicle kinematics are obtained [1]. Moreover side effects of environment and effects

of wheel slipping are neglected. Due to these assumptions, it can be seen also in Figure 3.1

that the front wheels and rear wheels can be thought as one wheel in the middle of the two

wheels.

Figure 3.1 shows that four variables are enough to define the motion of the car in a plane

environment. x and y coordinates of the mid point of rear axis, orientation angle θ and steering

angle φ. The velocity vectors at the middle of the tires are perpendicular to the related axle-

trees. Then, we obtain the following equations.

ẋ sin θ − ẏ cos θ = 0 (3.1)

ẋ f sin(θ + φ) − ẏ f cos(θ + φ) = 0 (3.2)

xf and yf describes the mid point of the front wheels which can be given in terms of the

coordinates x, y, θ and φ.

x f = x + Lcosθ (3.3)

y f = y + Lsinθ (3.4)
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L is the constant distance between the front center of the wheels and rear center of the wheels.

By substituting Equation 3.3 and 3.4 in 3.1, we obtain

Figure 3.1: Kinematic car model [1]

ẋ sin(θ + φ) − ẏ cos(θ + φ) − θ̇Lcosφ = 0 (3.5)

after using the basic trigonometric property

sinθsin(θ + φ) + cosθcos(θ + φ) = cosφ (3.6)

Beside ( 3.1) and ( 3.5), there are two more limitation for the real car movement which must

be taken care of. φmax stands for maximum turning angle of the front wheels and ωmax stands

for maximum steering angular velocity of the front wheels. φmax can not exceed π/2 and the

change of φ in unit time can not exceed ωmax.

| φ |≤ φmax (3.7)

| φ̇ |≤ ωmax (3.8)

In summary, the relevant kinematics of a vehicle at low speed are described by ( 3.1), ( 3.5),

( 3.7) and ( 3.8). By using ( 3.1) and ( 3.5)

⎡⎢⎢⎢⎢⎢⎣ sinθ −cosθ 0 0

sin(θ + φ) −cos(θ + φ) −Lcosφ 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ẋ
ẏ
θ̇

φ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 (3.9)
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Accordingly, the state equations based on the time derivatives ẋ, ẏ, θ̇ and φ̇ are obtained as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ẋ
ẏ
θ̇

φ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosθ
sinθ
1
L tanφ
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ν +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ω (3.10)

3.1.2 Velocity Independent Description of Car Kinematics

The crucial part to achieve a vehicle model which is independent of velocity is parameterizing

the vehicle model in terms of the arc length s which is formulated for the specified point [x,y]
as

s(t) = s(t0) +
∫ t

t0

√
ẋ2(t∗) + ẏ2(t∗)dt∗ = s0 +

∫ t

t0
| ν(t∗) | dt∗ (3.11)

To simplify the Equation 3.10, two parameters are proposed: κ and σ

κ =
1

L
tanφ (3.12)

σ =
1

L cos2 φ
ω (3.13)

Equation 3.10 can be rewritten as ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ẋ
ẏ
θ̇

κ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ
sinθ
κ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ν +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ω (3.14)

It is easily seen that the time derivative of the arc length s is equivalent to the absolute velocity

of the movement.

|v| = ds
dt

(3.15)

The problem is restated, in terms of arc length s instead of time when v = 0, as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x′(t(s))
y′(t(s))
θ′(t(s))
κ′(t(s))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ(t(s))
sinθ(t(s))
κ(t(s))
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ sign(ν(t(s))) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ σ̄(s) (3.16)

where the notation (.)′ is represents d(·)
ds and

σ̄(s) =
σ(t(s))
(ν(t(s)))

(3.17)

The computations in the remainder of the thesis are based on the model in 3.16.
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3.2 Optimal Circular Trajectories

3.2.1 Trajectory Families

The proposed system model, which is known as Reeds and Shepp’s Car, neglects the limita-

tions on the angular steering velocity [1]. We use the variable d̄ν(s) for the direction of the
vehicle motion. There are two possibilities, forward and backward motion, as indicated by 1

or -1 during any kind of maneuver. Similarly, ¯̃φ(s) stands for the angular direction of the car,
since the direction of a vehicle can be left, right or straight the direction of the vehicle can

have the values 1, 0 and -1. ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x̄′(s)
ȳ′(s)
θ̄′(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ̄(s)
sinθ̄(s)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ d̄ν(s) +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0
1
R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ¯̃φ(s) (3.18)

Circular arc trajectories, as described in [16], are the combination of circular arcs and straight

line elements. Circular arc trajectories are used to find shortest path that connects two points

on a plane surface [16]. The radius of circular arcs R is calculated according to car kinematics
[1]. It is stated that, arc length based trajectories are derived for various combinations of the

elements in the bounded constant input sets [1].

d̄ν(s) ∈ {−1, 1} (3.19)

¯̃φ(s) ∈ {−1, 0, 1} (3.20)

The trajectory elements can be obtained using these set of arcs that are shown in Figure 3.2.

In Figure 3.2, symbols ’l’ (Left turn), ’r’ (Right turn), ’s’ (Straight movement) are used to

illustrate the shape of movement. Besides, ’p’ (Plus) and ’m’ (Minus) stands for the direction

of movement.

One of the significant contributions stated by Reeds and Shepp [16] is that complete arc

length trajectories are combined of at most five trajectory segments, and it is proven that

48 trajectories are enough to reach every point on a plane surface. The 48 trajectories are

introduced on Table 3.1 together with a classification into groups and the relevant parameter

ranges.

A trajectory can be denoted as arc-length optimal if the boundary conditions which are located

at the last column of the Table 3.1 are matched. Here, ’a’, ’b’, ’e’ and ’l’ represent the length

of the respective arcs. Besides, it is has to be noted that at most one of the members of each

arc group can be valid for connecting any selected two points on a plane surface.

3.2.2 Trajectory Evaluation for Selected Trajectories

Computation of shortest feasible path (SFP) is provided after checking all 48 arc length tra-

jectories. This process is based on first finding the possible paths from the initial vehicle
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Figure 3.2: Segments of Circular Arcs [1]

configuration to the final vehicle configuration. The trajectories among the 48 candidates

which connect two configuration points are eliminated if the boundary conditions described

in the fourth column of Table 3.1 are not met. After these eliminations the trajectory with

minimum length is selected as SFP for given two configurations of the car.

Length of the SFP depends on the parameters shown in fourth column of Table 3.1. Parame-

ters a, b, e and l are calculated with numerous geometrical rules in the 2D plane surface.

Parameter computations for selected trajectories are explained as follows. Since the rest of

the calculations are similar to each other, computation for every trajectory family parameters

is not given here. Before these calculations problem specific commonly used equations are

introduced.

The distance between two points (eg: p1:(x1,y1), p2:(x2,y2)) on a coordinate plane is

d =
√
(x1 − x2)2 + (y1 − y2)2 (3.21)

We next identify a point that has perpendicular line with a distance ’h’ to a line segment with

known start and end points and with a given distance d1 to the initial point of the line (see

Figure 3.3).
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Table3.1: Arc Length Optimal Trajectory Family [1]

Group No. Group Families Parameter range

I C|C|C lpalmblpe / rparmbrpe 0 ≤ a+b+c ≤ πR
lmalpblme / rmarpbrme

II C|CC lpalmbrme / rparmblme 0 ≤ a ≤ b , 0 ≤ e ≤ b
lmalpbrpe / rmarpblpe 0 ≤ b ≤ π

2
R

III CC|C rpalpblme / lparpbrme 0 ≤ a ≤ b , 0 ≤ e ≤ b
rmalmblpe / lmarmbrpe 0 ≤ b ≤ π

2
R

IV CC|CC rpalpblmbrme / lparpbrmblme 0 ≤ a ≤ b , 0 ≤ e ≤ b
rmalmblpbrpe / lmarmbrpblpe 0 ≤ b ≤ π

2
R

V C|CC|C lpalmbrmbrpe / rparmblmblpe 0 ≤ a ≤ b , 0 ≤ e ≤ b
lmalpbrpbrme / rmarpblpblme 0 ≤ b ≤ π

2
R

VI C|CSC|C lpalm π
2 R
smlrm π

2 R
rpb / rparm π

2 R
spllm π

2 R
lpb 0 ≤ a ≤ π

2
R, 0 ≤ l

lmalp π
2 R
smlrp π

2 R
rmb / rmarp π

2 R
spllp π

2 R
lmb 0 ≤ b ≤ π

2
R

VII C|CSC lpalm π
2 R
sml lmb / lmalp π

2 R
spl lpb 0 ≤ a ≤ πR , 0 ≤ l

rmarp π
2 R
spl rpb / rparm π

2 R
sml rmb 0 ≤ b ≤ π

2
R

lpalm π
2 R
sml rmb / rmarp π

2 R
spl lpb

rparm π
2 R
sml lmb / lmalp π

2 R
spl rpb

VIII CSC|C rmasmlrm π
2 R
rpb / rpasplrp π

2 R
rmb 0 ≤ a ≤ π

2
R, 0 ≤ l

lpaspllp π
2 R
lmb / lmasmllm π

2 R
lpb 0 ≤ b ≤ πR

rmasmllm π
2 R
lpb / rpaspllp π

2 R
lmb

lpasplrp π
2 R
rmb / lmasmlrm π

2 R
rpb

IX CSC rmasmlrmb / rpasplrpb 0 ≤ a ≤ π
2
R, 0 ≤ l

lmasmllmb / lpaspllpb 0≤ b ≤ π
2
R

rmasmllmb / rpaspllpb
lmasmlrmb / lpasplrpb

Figure 3.3: Point with Known Perpendicular Distance

Corresponding x3 and y3 coordinates are:⎡⎢⎢⎢⎢⎢⎣x3y3

⎤⎥⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎢⎣ (x1·(d2−d1)+x2·d1)−b·(y2−y1)
d1

(y1·(d2−d1)+y2·d1)−b·(x1−x2)
d1

⎤⎥⎥⎥⎥⎥⎦ (3.22)
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Third, we consider the center points of circular arcs with radius R that can be followed by
the vehicle starting at a given position (qx, qy) and with the orientation θ. There are two

different derivations depending on the direction of the arc. As can be seen in Figure 3.5, if the

movement is left forward or right backward turn, the vehicle’s path is an Ω1 centered circle.

Otherwise the path is an Ω2 centered circle.⎡⎢⎢⎢⎢⎢⎣Ω1x
Ω1y

⎤⎥⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎢⎣qx − R · sin(θ)
qy + R · cos(θ)

⎤⎥⎥⎥⎥⎥⎦ (3.23)

⎡⎢⎢⎢⎢⎢⎣Ω2x
Ω2y

⎤⎥⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎢⎣qx + R · sin(θ)
qy − R · cos(θ)

⎤⎥⎥⎥⎥⎥⎦ (3.24)

Figure 3.4: Center point calculations of circular arcs

We next derive several relevant trajectories. Figure 3.5 gives the geometric illustration on 2D

coordinate plane for the lpalmblpe trajectory. Using this illustration, the parameters of this tra-

jectory can be computed in terms of start ((q1x, q1y, θ1) and target configuration ((q2x, q2y, θ2)
of the vehicle.

Since the first and final movements are left forward, the centers Ω1x, Ω1y, Ω2x and Ω2y

can be calculated with the helps of ( 3.23). ||ΔΩ12|| is calculated by using ( 3.21). Then

perpendicular length ’h’ from Ω3 to line segment [Ω1Ω2] is computed by the Pythagorean

Theorem (Appendix A). Afterwards, Equation 3.22 is applied to obtain Ω3x and Ω3y. At the

end all points which turn the calculations into unique geometry problems are derived and arc

lengths a, b and e can be calculated in order to check if the conditions in Table 3.1 are met.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a
b
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
arctan(

Ω3y−Ω1y
Ω3x−Ω1x ) − arctan( q1y−Ω1y

q1x−Ω1x )

arctan(
Ω2y−Ω3y
Ω2x−Ω3x ) − arctan(Ω1y−Ω3yΩ1x−Ω3x )

arctan(
Ω3y−Ω2y
Ω3x−Ω2x ) − arctan( q2y−Ω2y

q2x−Ω2x )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.25)
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Figure 3.5: Illustration of Trajectory Family lpalmblpe

Figure 3.6 gives the geometric illustration in 2D coordinate plane for the rpalpblmbrme trajec-

tory. Then, parameters are defined in terms of start and target configuration of the vehicle.

Ω1x and Ω1y are calculated by using ( 3.24) since the first movement is right forward. And

Ω2x andΩ2y are calculated by using ( 3.23) since the final movement is right backward. It can

be seen in Figure 3.6 that ||ΔΩ34|| is equal to 2R and the line segment [Ω1T] is perpendicular

to [ΔΩ34]. Then Equation ( 3.21) is applied to calculate ||ΔΩ12||. The geometric projection of

||ΔΩ12|| on ||ΔΩ34|| as shown in Figure 3.6. is used to calculate [Ω3T].

||Ω3T || = 2R − ||ΔΩ12||
2

(3.26)

By using Pythagorean Theorem ’h’ is obtained as

h =
√
2R2 − ||Ω3T ||2 (3.27)

With the helps of Equation ( 3.22) center point coordinates of Ω3 and Ω4 can be calculated.

Afterwards, similar to (3.25), arc lengths a, b and c are computed as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a
b
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
arctan(

q1y−Ω1y
q1x−Ω1x ) − arctan(Ω3y−Ω1yΩ3x−Ω1x )

arctan(
Ω4y−Ω3y
Ω4x−Ω3x ) − arctan(Ω1y−Ω3yΩ1x−Ω3x )

arctan(
Ω4y−Ω2y
Ω3x−Ω2x ) − arctan( q2y−Ω1y

q2x−Ω2x )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.28)

In Figure 3.7, the geometric illustration in 2D coordinate plane for the lpalmbrmbrpe trajectory
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Figure 3.6: Illustration of Trajectory Family rpalpblmbrme

is given. Afterwards parameters are defined in terms of start and target configuration of the

vehicle.

Ω1x and Ω1y are calculated by using ( 3.23) since the first movement is left forward. And

Ω2x and Ω2y are calculated by using ( 3.24) since the final movement is right forward. Then

Equation ( 3.21) is applied to compute ||ΔΩ12||. It can easily be seen in Figure 3.7, length l1 is

equal to half of the ||ΔΩ12|| since there is no obtained angular or distance information about h.

Another geometric consideration is introduced for the red triangle, (Ω1Ω3P) area is calculated

by Heron’s rule (Appendix B). Area of a triangle with given 3 sides (a, b, c) is described as

follows, where the ’U’ is equal to half of the perimeter of the triangle.

Area =
√

U(U − a)(U − b)(U − c) (3.29)

The edges of the red triangle in Figure 3.7 are 2R, R and l1 which are evaluated before. Using

area length distance ’h’ can be obtained and ’l2’ is calculated with Pythagorean Theorem. Af-

terwards, by using the Equation ( 3.22), coordinates of center pointsΩ3 andΩ4 are calculated.

Then the arc segments a, b and c are computed as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a
b
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
arctan(

q1y−Ω1y
q1x−Ω1x ) − arctan(Ω3y−Ω1yΩ3x−Ω1x )

arctan(
Ω4y−Ω3y
Ω4x−Ω3x ) − arctan(Ω1y−Ω3yΩ1x−Ω3x )

arctan(
Ω4y−Ω2y
Ω3x−Ω2x ) − arctan( q2y−Ω2y

q2x−Ω2x )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.30)
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Figure 3.7: Illustration of Trajectory Family lpalmbrmbrpe

In Figure 3.8, geometric illustration is given in 2D coordinate plane for lpalm π
2 R
smlrm π

2 R
rpb

trajectory. Afterwards parameters are defined in terms of start and target configuration of the

vehicle.

Figure 3.8: Illustration of Trajectory Family lpalm π
2 R
smlrm π

2 R
rpb

Ω1x and Ω1y are calculated by using ( 3.23) since the first movement is left forward. And

Ω2x and Ω2y are calculated by using ( 3.24) since the final movement is right forward. Then
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Equation ( 3.21) is applied to compute ||ΔΩ12||. As can be seen in Figure 3.8, it is not possible

using similar methodologies which are used in previous trajectory computations to calculate

points [Ω3x, Ω3y] and [Ω4x, Ω4y]. There are additional angles α1, α2 and α3 in Figure 3.8

which are used for the derivations of center points.

α1 = arctan(
R
l1
) (3.31)

α2 = arctan(
Ω2y −Ω1y
Ω2x −Ω1x

) (3.32)

α3 =
π

2
− α1; (3.33)

Then the center points of the Ω3 and Ω4 are,⎡⎢⎢⎢⎢⎢⎣Ω3x
Ω3y

⎤⎥⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎢⎣Ω1x + 2R · sin(α1 + α2)
Ω1y + 2R · cos(α1 + α2)

⎤⎥⎥⎥⎥⎥⎦ (3.34)

⎡⎢⎢⎢⎢⎢⎣Ω4x
Ω4y

⎤⎥⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎢⎣Ω2x − 2R · sin(α1 + α2)
Ω2y − 2R · cos(α1 + α2)

⎤⎥⎥⎥⎥⎥⎦ (3.35)

l is the additional trajectory component of the straight movement segment which is computed
for trajectory lpalm π

2 R
smlrm π

2 R
rpb as:

l = 2 · l1 − 4R (3.36)

The angular parameters a and b are⎡⎢⎢⎢⎢⎢⎣ab
⎤⎥⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎢⎣arctan(Ω3y−Ω1yΩ3x−Ω1x ) − arctan( q1y−Ω1y

q1x−Ω1x )

arctan(
Ω4y−Ω2y
Ω3x−Ω2x ) − arctan( q2y−Ω2y

q2x−Ω2x )

⎤⎥⎥⎥⎥⎥⎦ (3.37)

In this part of the thesis, only four different trajectories are analyzed based on their geometrical

properties. The rest of the trajectories can be analyzed using similar approaches.

To calculate the trajectory families, geometric derivation of trajectories are needed to be com-

puted. During these calculations, variation in geometric formulas are tried to kept minimum

to reduce design complexity.

To connect the two configuration of a vehicle, the 9 trajectory families which has 48 members

are needed to be calculated to obtain a collision-free path, and to find the set of connecting

trajectories. After eliminating the trajectories which does not meet the constrains given in

Table 3.1, an arc-length optimal trajectory, which is the shortest path, would be found.

3.3 Suboptimal Clothoid Arcs

The SFP is generated according to Reeds and Shepp circular trajectories given in the previous

section. It must be noticed that, the car movement usually has to halt between two connected

arc segments. The reason is that, if the vehicle is at the end of a segment, it usually has
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to change the steering angle or direction of motion in order to continue with the next arc

segment. It is illustrated in Figure 3.9 that the vehicle has to stop at least 4 times at points A,

B, C and D for trajectory lpalm π
2 R
smlrm π

2 R
rpb.

Figure 3.9: Discontinuity of the trajectory lpalm π
2 R
smlrm π

2 R
rpb

The discontinuity in maneuvers is happening because the vehicle is moving through circular

segments with minimum turning radius R = 1
κ [1]. Here, the halts at points ’A’ and ’D’ cannot

be avoided. However, the movement can be constructed in the form of continuous maneuvers

at points ’B’ and ’C’ by smoothing the arcs as suggested in [17]. lpalm π
2 R
smlrm π

2 R
rpb is

visualized in Figure 3.10 with smoothed arcs at points ’B’ and ’C’.

Figure 3.10: Smoothed version of the trajectory lpalm π
2 R
smlrm π

2 R
rpb

By smoothing the arcs, the halt count is reduced from four to two in this example. It can be

seen in Figure 3.10 that the configuration angle of the vehicle at A is φmax at the initial point
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of a smoothed arc. At the end of the arc, the configuration angle is reduced to zero while the

car moves around Ω3. Conversely, while the car moves around Ω4, the initial configuration

angle of the vehicle is zero and the final situation at point D is φmax. Smoothed versions of

the arcs are denoted as clothoid arcs in the rest of this thesis.

Clothoid arcs are efficient in terms of halt counts, and reduce the time is spent during parking

[1]. As mentioned above, the clothoid arcs can be examined as two different maneuvers due to

initial configuration angle of the clothoid movement. If the value of the initial configuration

angle is zero, the maneuver is called as Front End (FE) turn, if it is φmax the movement is

called as Back End (BE) turn.

Smoothed versions of circular ars are constructed by combination of a circular movement and

a clothoid arc. This combination is denoted as One-Sided Continuous Curvature (OSCC).

Figure 3.11 illustrates the geometric parameters of this combination.

Figure 3.11: Back End (Left) and Front End (Right) OSCC Turns

The BE and FE OSCC turns have two additional parameters; radius of the outer circle R̃ and
angle μ. The vehicle has maximum steering angle while moving through circular arc with

radius R. For BE OSCC, at the point A, steering angle starts to decrease continuously with

the angular speed ωmax which is defined before. At the point where the vehicle’s steering

angle is equal to zero, the vehicle leaves the outer circle with φ = zero. Then, μ is the angular

difference at point qf between the car orientation angle θ and tangent intersects the outer circle

at point qf. For FE OSCC, at the point qi, the vehicle enters the outer circle with the orientation

angle φ = zero. Then, μ is the angular difference at point qi between the car orientation angle

θ and the tangent to the outer circle at qi. Steering angle of the vehicle is equal to zero and

starts to increase continuously with the angular speed ωmax. At the point A, the vehicle enters

the inner circle with φ = φmax.

R̃ and μ are fixed parameters by the kinematics of the vehicle as described below where the
Cf stands for cosine product Sf stands for sinus product of the Fresnel integral. Definitions
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for Cf and Sf are provided in Appendix C.

μ = arctan

√
π
σmax

C f (
κmax√
σmaxπ

) − sin
κ2max
2σmax
κmax√

π
σmax

S f (
κmax√
σmaxπ

) +
cos

κ2max
2σmax
κmax

(3.38)

R̃ =

√√√
(

√
π

σmax
C f (

κmax√
σmaxπ

) −
sin

κ2max
2σmax

κmax
)2 + (

√
π

σmax
S f (

κmax√
σmaxπ

) +
cos

κ2max
2σmax

κmax
)2 (3.39)

For the BE OSCC, arc based kinematic parameters are given in below equations. For more

detailed information see [1].

x̄(s) = x0− √
π

σmax

{
dv cos(

dvdφ,0
2

κ2max

σmax
+ θ0)

[
C f (

κmax√
σmaxπ

−
√
σmax

π
(s − s0)) −C f (

κmax√
σmaxπ

)

]}
+

√
π

σmax

{
dφ,0 sin(

dvdφ,0
2

κ2max

σmax
+ θ0)

[
S f (

κmax√
σmaxπ

−
√
σmax

π
(s − s0)) − S f (

κmax√
σmaxπ

)

]}
(3.40)

ȳ(s) = y0− √
π

σmax

{
dφ,0 cos(

dvdφ,0
2

κ2max

σmax
+ θ0)

[
S f (

κmax√
σmaxπ

−
√
σmax

π
(s − s0)) − S f (

κmax√
σmaxπ

)

]}
+

√
π

σmax

{
dv sin(

dvdφ,0
2

κ2max

σmax
+ θ0)

[
C f (

κmax√
σmaxπ

−
√
σmax

π
(s − s0)) −C f (

κmax√
σmaxπ

)

]}
(3.41)

θ̄(s) = θ0 + dvdφ,0(κmax(s − s0) − 1
2
σmax(s − s0)2) (3.42)

φ̄(s) = dφ,0 arctan [(L(κmax − σmax(s − s0))] (3.43)

For the FE OSCC, arc based kinematic parameters are given in below equations. For more

detailed information see [1].

x̄(s) = x0 +
√
π

σmax

{
dv cos(θ0)C f (

√
σmax

π
(s − s0)) − dφ sin(θ0)S f (

√
σmax

π
(s − s0))

}
(3.44)

ȳ(s) = y0 +
√
π

σmax

{
dφ cos(θ0)S f (

√
σmax

π
(s − s0)) − dv sin(θ0)C f (

√
σmax

π
(s − s0))

}
(3.45)

θ̄(s) = θ0 +
1

2
dvdφ,0σmax(s − s0)2) (3.46)

φ̄(s) = dφ,0 arctan[(Lσmax(s − s0) (3.47)
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Final configuration of the vehicle qf is computed for both BE OSCC and FE OSCC turns as:

q f =
[
x̄(s f ), ȳ(s f ), θ̄(s f )

]T
(3.48)

sf is stands for the length of whole clothoid arc movement of a turn. Which is expressed as:

s f = s0 +
κmax
σmax

(3.49)

Table 3.2 is transformed version of Table 3.1 for OSCC Trajectory families. There are two

major difference between both tables. First clothoid arcs are used instead of circular arcs in

Table 3.2. Second, the parameter ranges in column 4 of Table 3.2 are different [1]. While

the RS trajectories arcs aim to find minimum length solution, OSCC trajectories aim to find

solutions with minimum halt counts instead of minimum length solution. So there can be

more than one solution for an OSCC trajectory family.

In Table 3.2 ’−→’ is used to indicate BE OSCC turns, and ’←−’ is used to indicate FE OSCC
turns. In the following, one example of an OSCC trajectory is analyzed. The key point for

OSCC trajectory kinematics calculation is separating the circular part and the clothoid part of

the movement.

Figure 3.12: Kinematics of an OSCC trajectory

It can be seen in Figure 3.12, there are five arc segments through the movement; a circular

arc, a BE clothoid arc, a straight line segment, a FE clothoid arc and a circular arc. As it

is underlined before, the key point is identifying the circular arc lengths and clothoid arc

lengths since arc length based kinematics are calculated in separated methods. Ω1x and Ω1y

are calculated by using ( 3.24) since the first movement is left backward. And Ω2x and Ω2y

are calculated by using ( 3.23) since the final movement is right backward. The angle μ is
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Table3.2: OSCC Trajectory Family [1]

Group No. Group Families Parameter range

I CC|C lpalmblpe / rparmbrpe 0 ≤ a ≤ 2πR, 0 ≤ b ≤ 2πR
lmalpblme / rmarpbrme 0 ≤ c ≤ 2πR

II C|
−→
C
←−
C lpa

−→
lmβ←−rmε / rpa−→rmβ

←−
lmε 0 ≤ a ≤ 2πR , 0 ≤ β ≤ 2πR

lma
−→
lpβ←−rpε / rma−→rpβ

←−
lpε 0 ≤ ε ≤ 2πR

III
−→
C
←−
C |C −→rpα

←−
lpβlme /

−→
lpα←−rpβrme 0 ≤ α ≤ 2πR , 0 ≤ e ≤ 2πR

−→rmα
←−
lmβlpe /

−→
lmα←−rmβrpe 0 ≤ β ≤ 2πR

IV
−→
C
←−
C |
−→
C
←−
C −→rpα

←−
lpβ
−→
lmβ←−rmε /

−→
lpα←−rpβ−→rmβ

←−
lmε 0 ≤ α ≤ 2πR , 0 ≤ ε ≤ 2πR

−→rmα
←−
lmβ
−→
lpβ←−rpε /

−→
lmα←−rmβ−→rpβ

←−
lpε 0 ≤ β ≤ 2πR

V C|
−→
C
←−
C |C lpa

−→
lmβ←−rmβrpe / rpa−→rmβ

←−
lmβlpe 0 ≤ a ≤ 2πR , 0 ≤ e ≤ 2πR

lma
−→
lpβ←−rpβrme / rma−→rpβ

←−
lpβlme 0 ≤ β ≤ 2πR

VI C|
−→
CS
←−
C |C lpa

−→
lm π

2 R
sml
←−rm π

2 R
rpb / rpa

−→rm π
2 R
spl
←−
lm π

2 R
lpb 0 ≤ a ≤ 2πR, 0 ≤ l

lma
−→
lp π

2 R
sml
←−rp π

2 R
rmb / rma

−→rp π
2 R
spllp π

2 R
←−
lmb 0 ≤ b ≤ 2πR

VII C|
−→
CS
←−
C lpa

−→
lm π

2 R
sml
←−
lmβ / lma

−→
lp π

2 R
spl
←−
lpβ 0 ≤ a ≤ 2πR , 0 ≤ l

rma
−→rp π

2 R
spl
←−rpβ / rpa−→rm π

2 R
sml
←−rmβ 0 ≤ β ≤ 2πR

lpa
−→
lm π

2 R
sml
←−rmβ / rma−→rp π

2 R
spl
←−
lpβ

rpa
−→rm π

2 R
sml
←−
lmβ / lma

−→
lp π

2 R
spl
←−rpβ

VIII
−→
CS
←−
C |C −→rmαsml

←−rm π
2 R
rpb /

−→rpαspl
←−rp π

2 R
rmb 0 ≤ α ≤ 2πR, 0 ≤ l−→

lpαspl
←−
lp π

2 R
lmb /

−→
lmαsml

←−
lm π

2 R
lpb 0 ≤ b ≤ 2πR

−→rmαsml
←−
lm π

2 R
lpb /
−→rpαspl

←−
lp π

2 R
lmb−→

lpαspl
←−rp π

2 R
rmb /

−→
lmαsml

←−rm π
2 R
rpb

IX
−→
CS
←−
C −→rmαsmlrmβ /

−→rpαspl
←−rpβ 0 ≤ α ≤ 2πR, 0 ≤ l−→

lmαsml
←−
lmβ /

−→
lpαspl

←−
lpβ 0≤ β ≤ 2πR

−→rmαsml
←−
lmβ / −→rpαspl

←−
lpβ−→

lmαsml
←−rmβ /

−→
lpαspl

←−rpβ

calculated by using Equation (3.36). Angcloth is also a fixed parameter since the vehicle’s

steering angle and moving velocity are fixed.

s f = s0 +
κmax

σmax
[1] (3.50)

κmax and σmax are defined as in [1]

κmax =
tan(φmax)

Lcar
(3.51)

σmax =
ωmax

Lcarvmax
(3.52)

Using (3.40) and applying the information s0 = 0, s = sf and θ0 = ’0’, angular difference

between the initial position of the car and the final position of the car while moving on clothoid

segment of the trajectory is obtained (e.g. from A to B). If the movement was a circular one,

this angular change would be the arc length of the circular maneuver. But as is seen in Figure
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3.12, vehicle’s position at B is not tangential to the circle Ω1. By subtracting the angle μ, the

angle Angcloth is obtained.

Observing the Figure 3.12, Angcirc can be calculated as:

Angcirc = 0 − arctan( q1y −Ω1y
q1x −Ω1x

) − Angcloth − Angy (3.53)

Angy is dependent of the distance between the centers of φ1 and φ2. There are additional red

lines in Figure 3.12 which compose rectangle [φ1BFE]. By using this information Angy is

obtained as:

Angy = arcsin
L cos(μ)
||ΔΩ12|| − arctan(

Ω2y −Ω1y
Ω2x −Ω1x

) (3.54)

L is defined by below equation, for trajectory
−→
lmαsml

←−rmβ. See [1] for more detailed derivation.

L =
√
||ΔΩ12||2 − (2R̃)2 + (2R̃ sin μ)2 − 2R̃ sin μ (3.55)

Same derivations can be applied to second circular movement, then every kinematic parame-

ters can be calculated for OSCC trajectory
−→
lmαsml

←−rmβ.

3.4 Two-step Trajectory Planning

The algorithm proposed in [1] is composed of two stages. Firstly, a collision-free path is

generated. Secondly, a collision-free connection is established by considering the qualitative

conditions of automatic parking and kinematic parameters of the car. Qualitative parking

needs low count of halts, a short trajectory between initial and final configuration and a large

enough vmax.

There are many different ways to obtain a collision-free path which connects two configu-

ration of a vehicle. The proposed method in this thesis is checking for maximum SFP of

neighbors to all accident conditions starting from initial point to target position. To this end,

a distance look-up table is computed that captures the obstacle distance of the vehicle. The

obstacles are defined by two different component; straight line, and half-line elements [1]. It

can be seen in Figure 3.13 how these lines are constructed.

It is desired to build up a distance look-up table which includes the crash information of the

vehicle defined by 3 dimensional vectors [xi,yi,θi]. To this end, the basic vehicle model as

defined in Section 3.1.1 is slid along the constructed line elements in different directions (see

Figure 3.14). That is, at each initial point of a line, the vehicle model is fixed at one side of the

model and turned around that fixed corner with a defined step of angle. This is repeated for

every side of the vehicle. After that, the vehicle is moved to the next position on the line. This

approach is continued from the initial point of all lines to the end of the lines. The positions

[xi,yi,θi] are recorded in the distance look-up table. By this way, all configurations that hit an

obstacle are obtained.
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Figure 3.13: Resemblance of obstacle distribution by half-line and straight line elements

Figure 3.14: Examples for distance look-up table vectors

With the help of the distance look-up table, the next step is finding a collision-free path in the

parking environment. The path is used for finding a traceable way from the start to the target

configuration and to identify potential intermediate positions for the vehicle. Intermediate

positions are needed if multiple trajectories have to be used for connecting the start and target

configuration.

The algorithm for identifying a collision-free path with a maximum obstacle distance is com-

posed of the following steps [1].
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1 Record the initial point of the vehicle [qx,0,qy,0,θ0].

2 Start to visit twenty four neighbors and run arc length optimal trajectories to all obstacle

configurations. That is, each initial points is the visited neighbor and the target points

are the configurations stored in the distance look-up table. Save the minimum length

obtained during these calculations (it represents the minimum obstacle distance).

3 If all neighbors are visited, decide the neighbor which has the largest value of the min-

imum obstacle distance (this is the safest configuration to go). If all neighbors are not

visited yet, set the next neighbor and go back to step 2.

4 Check whether the selected node crashes the obstacle. If all neighbors are visited and

crashes to the obstacles then set the recent position as unsuccessful and go back to

previous position. Afterwards go back to step 2. If all neighbors are not visited yet and

current configuration crashes to obstacles, delete the current configuration and save this

point as unsuccessful, go to step 3. If no crash is detected, go to step 5.

5 If the final position of vehicle reaches target, collision free path is completed. Else go

to step 2.

The neighbor configurations are illustrated in Figure 3.15 on a 3D coordinate space. The

node coordinates are given in Table 3.3. Δl stands for the longitudal step, and Δθ stands for

the angular step. The initial configuration components of the vehicle are qix, qiy and θi.

Table3.3: Neighbors

ID qxnext qynext θnext ID qxnext qynext θnext ID qxnext qynext θnext
1 qix + Δl qiy+ Δl θi 9 qix+ Δl qiy+ Δl θi+ Δθ 17 qix+ Δl qiy+ Δl θi- Δθ

2 qix+ Δl qiy θi 10 qix+ Δl qiy θi+ Δθ 18 qix+ Δl qiy θi- Δθ

3 qix+ Δl qiy- Δl θi 11 qix+ Δl qiy- Δl θi+ Δθ 19 qix+ Δl qiy- Δl θi- Δθ

4 qix qiy+ Δl θi 12 qix qiy+ Δl θi+ Δθ 20 qix qiy+ Δl θi- Δθ

5 qix qiy- Δl θi 13 qix qiy- Δl θi+ Δθ 21 qix qiy- Δl θi- Δθ

6 qix- Δl qiy+ Δl θi 14 qix- Δl qiy+ Δl θi+ Δθ 22 qix- Δl qiy+ Δl θi- Δθ

7 qix- Δl qiy θi 15 qix- Δl qiy θi+ Δθ 23 qix- Δl qiy θi- Δθ

8 qix- Δl qiy- Δl θi 16 qix- Δl qiy- Δl θi+ Δθ 24 qix- Δl qiy- Δl θi- Δθ

After finding a collision-free path, the second step of trajectory planning is connecting the start

configuration of the vehicle to the decided parking configuration by using arc-length optimal

or OSCC trajectories that comply with the vehicle kinematics. This trajectory group is used

to prevent unnecessary halts while the movement. Assume there are n decided points on the
planned collision-free path. Then, the proposed algorithm to shape the vehicle’s movement is

as follows,

1 Assign qf as target point qt, q0 as initial point qi, nt as n, and ni as 0. Then try to reach

qt from qi by using arc-length optimal or OSCC trajectories. If any collision occurs go

to step 2, else finish.
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Figure 3.15: Negihbors on a 3D space

2 Assign target point nt as (
nt+ni
2
+ 1)th point, afterwards try to reach qt from qi by using

arc-length optimal or OSCC trajectories and go to step 3.

3 If any collision occurs, go back to step 2. If any collision does not occur check whether

nt = n, if yes finish algorithm, else assign qi as qt, qt as qf,nt as n, and ni as nt and go to

step 2.

In Figure 3.16, the first step of the two-step trajectory planning algorithm, which is construct-

ing a collision-free path, is illustrated in an example environment.

To sum up, two-step trajectory planning is achieved by two sequential algorithms. The first

algorithm finds a collision-free path from the start to the target configuration by checking

neighbors of potential candidate points and selecting the one which has the largest SFP length.

The second algorithm uses the collision-free path obtained in the first step. By using the

arc-length optimal or OSCC trajectories it tries to connect start and final configuration. If

any collision is detected on the trajectory, the second step algorithm attempts to link the first

position of the car to half of the path planned in step one again by using the arc-length optimal

or OSCC trajectories. This increases the chance of finding a collision-free trajectory for the
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Figure 3.16: Construction of a collision free path.

vehicle. For example, in Figure 3.16 the mid point is 13th point. If it fails again, then the

middle of the remaining path (7th point in the example) is chosen. After the initial position is

linked to anywhere on the path, the second step algorithm iteratively tries to connect the node

which is reached via a collision free trajectory to the target position.
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CHAPTER 4

IMPLEMENTATION OF THE AUTOMATIC PARKING
TRAJECTORY PLANNER ON FPGA

The two-step trajectory planner described in the previous section has two steps. The first

step is finding the maximum distance path, the second step is computing the collision free

trajectory along the path in step 1.

In the first step of the algorithm, 48 trajectories have to be obtained, which are combined of

similar geometric blocks. These blocks are;

1 The length calculator: It computes the result of Equation (3.21). This block involves a

square root and a multiplier which are provided by XILINX Library.

2 The perpendicular point calculator: It consists of two components. The component

computes the result of Equation 3.22. This component contains a divider and a multi-

plier.

3 Herons Area Calculator: That component is used for computing the area of the triangles

as in Equation 3.29.

4 Arctangent, sinus cosine blocks are also provided by XILINX Library.

Additionally, for 12 trajectory calculators, 12 trajectory controllers, an input converter to

obtain the rest of 48 trajectory calculations, an arc length calculator to compute the length of

the resultant trajectories, a length comparator to detect the minimum trajectory and a distance

look-up table, which is responsible for sending crash conditions in the parking environment,

are implemented. These are the core blocks, used in the first and second step of the algorithm.

There are two controllers in the circular trajectory construction. Each of them is responsible

for one step of the trajectory planner. The block, named as path planner is responsible for

obtaining the collision-free path.

In the second step of the algorithm it needs to be checked if the trajectory hits any obstacles.

To this end, path position calculator gives out the trajectory path position. A controller block

that we call trajectory planner is implemented for the second step of the algorithm. Trajectory
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planner connects the given two configurations of the vehicle by minimizing the unnecessary

halts and avoiding the crashes. The first step and second step do not run at the same time for

any case, hence, no other additional modules are implemented for step two.

Considering the number of sub points needed for collision-free path 250 vectors (normally

more than 250) are needed for a distance look-up table. Accordingly, the trajectory path

computation is done at least 250 x 16 x 24 x 48 = 4608000 times. If a collision condition

occurs the number increases more. As it is mentioned before, 4608000 calculations need to be

solved one by one in a serial realization. In this thesis, it is aimed to reduce the computation

time of proposed algorithm in [1]. To this end, the forty eight trajectory path planners are

implemented on FPGA and ran in parallel, to reduce the time spent for trajectory planning.

The following sections describe the block level architecture, optimal trajectory calculations

implemented on FPGA, parallel realization of computations and practical considerations.

4.1 Hardware Design: Block level architecture

The main block is composed of two sub blocks: distance look-up table and the two-step

trajectory planner. The main block is visualized in Figure 4.1.

In Table 4.1, input and output signals are detailed. Besides signals on table, there are inter-

facing components between two blocks; hand shaking signals, crash condition and reset the

distance look-up table. Hand shaking signals are used for data requests and information of

data existence. For example when two-step trajectory planner requests a crash condition, dis-

tance look-up table calculates, returns data and sets ’ready’ output port to ’1’. After all values

are sent for a line, the distance look-up table sets the complete output port of the correspond-

ing line to ’1’. The crash condition is the set of vectors which stand for the position of the

vehicle when it hits to obstacles. Each element of these vectors is built up of 16 bits registers.

The last signal mentioned in Figure 4.1 is named as ’reset distance look-up table’. As the

name implies, this signal is used to reset the distance look-up table, so that distance look-up

table starts over sending crash conditions.

4.2 Optimal Trajectory Computation

4.2.1 Modularity of the architecture

The architecture of proposed FPGA solution is based on the re-usage of blocks. For the

modularity, the geometric computations mentioned in Section 3.2 are implemented separately

which are used for obtaining arc-length trajectory families.

In this section, we first provide a short block level overview of the architecture. Designed
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Figure 4.1: Top block of optimal trajectory computation

blocks are detailed in latter sections.

The D. Look-up table in Fig. 4.2 is composed of numerous crash condition calculators. It has

the line equation inputs and calculates the position where the path hits an obstacle. Every

crash condition calculator block is constructed by the following blocks; Length Formulation

block which solves Equation 3.21, Arctangent Calculator for arc tangent products of needed

lengths, Product Generator block that calculates the crash position of given inputs, a multiplier

and an interface controller which communicates with other blocks and provides the process

sequencing. Every component of distance look-up table has its own handshaking signals for

sending and receiving requests.

The Path planner is designed to calculate the collision-free path. When an external request

arrives with two vehicle configurations (start and end configurations), the path planner com-

municates with distance look-up table and dot product calculator. When the path planner re-

ceives a distance look-up table value, it sends the first neighbor and crash position to circular

trajectory construction block. After the minimum SFP is calculated, path planner multiplies

it with the corresponding dot product to obtain a directed SFP. Path planner also connects to

other blocks via handshaking interface signal.

The Trajectory planner is responsible for the second phase of two-step trajectory planning al-

gorithm. When the path planner completes the computation of a collision-free path, it informs

the trajectory planner. Afterwards, the trajectory planner tries to connect the initial and goal

states of the vehicle with the algorithm proposed for step two-step trajectory planner. It uses

the interface between distance look-up table and circular trajectory construction blocks.

Both trajectory planner and path planner have request and data signals for the two-step trajec-

tory planner and distance look-up table which are multiplexed by mux. Multiplexer separates

these signals. The switch input is provided by the trajectory planner. During the time the path

planner constructs a collision free path, the path planner is allowed to allocate the circular

trajectory construction and distance look-up table. With the ’completed’ output of the path

planner which indicates that a collision-free path is ready, the trajectory planner allocates the
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Table4.1: Signal explanations of the top block entity

Generalized Port Name Length of Function

Definition Signal

Kinematic Lcb 16 bits Length of the car

Parameters Dcb 16 bits Distance between rear end of the

car and rear vehicle axle

Bcb 16 bits Width of the car

Φmax 16 bits Maximum absolute steering angle

ωmax 16 bits Maximum absolute angular

steering velocity

Straight and Half Cons1i 16 bits Straight and half lines are described

Line Equations Cons2i 16 bits in terms of line equations

yi = Cons1i*xi + Cons2i
or xi =Cons1i*yi + Cons2i

xsti or ysti 16 bits First X value of the

line if the |Tan(Line)| < 0.5

First Y value of the

line if the |Tan(Line)| > 0.5

xfni or yfni 16 bits Last X value of the

line if the |Tan(Line)| < 0.5

Last Y value of the

line if the |Tan(Line)| > 0.5

lengthoflinei 16 bits Length of line

ForbiddenSidei 1 bit Indicates the placement of obstacles

Angular and Angular Steps 16 bits The turning angle of

Longitudinal the Car around on the

Steps line elements

Longitudinal Steps 16 bits The distance for sliding

the car on the line elements

Initial Position qsx 16 bits x value for initial position

qsy 16 bits y value for initial position

θs 16 bits Orientation angle for initial position

Final Position qgx 16 bits x value for final position

qgy 16 bits y value for final position

θg 16 bits Orientation angle for final position

Kinematic Outputs Steering Direction 2 bits Direction information

(Left,Right,Direct)

Steering Angle 16 bits Absolute value of steering angleφ

Velocity Direction 2 bits Vehicle direction (Backward,Forward)

Velocity 8 bits Absolute value of velocity v

circular trajectory construction and distance look-up table for itself.

The Circular trajectory construction is the block where 48 trajectory calculations are com-

pleted. This block has different functions, when it is controlled by the path planner or the

trajectory planner. Circular trajectory construction block is constructed by numerous sub-

blocks.
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The processes in Circular trajectory construction have to be in a sequence. Since circle center

calculations and trajectory calculations need the radius of the circular movement, the first

process is computing the radius which is provided by radius calculator. Radius calculator

computes the radius of circular arcs using the kinematics of the vehicle, then informs the rest

of the blocks with RDY output. "Input converter" provides the modified positions for the

circle center calculators.

After the radii of circular arcs are ready, twelve "circle center calculators" compute the center

positions of the first and last arc maneuvers according to positions inserted by input converter

block. By observing the center points are ready, twelve "trajectory calculators" start to calcu-

late trajectories. Trajectory calculators consist of various geometric formula implementations

and a controller block. Length calculator, arctangent calculator, sine cosine calculator, a block

named as perpendicular point calculator for Equation 3.22 are implemented. A path position

calculator which is implemented because of functionality for trajectory calculator, generates

the trajectory positions to be checked if there is any collision on the path. The last block is

trajectory controller, referenced as 1 to 12, which does the whole interface communications

and sequencing of the computations.

When the trajectory calculators finish their processes the arc length calculator block is in-

formed. The arc length calculator block is designed for calculations of the total arc length,

where all 48 arc lengths are sent to output of this block at the same time. After the lengths

are sent out the length comparator checks for arc which has minimum length. Length com-

parator has also functionality for path planner and trajectory planner. The shortest length is

enough for the path planner, but, trajectory planner may request the rest of the lengths and

the corresponding trajectory type if it detects a collision on the latest trajectory. All of blocks

in circular trajectory construction have their own interface controllers and signal, data flow is

provided by handshaking operations.

In Figure 4.2, designed blocks are illustrated to show the modularity of architecture. See the

Table 4.2 or the block names referenced by the numbers in Figure 4.2. In Section 3.2, four

of the circular trajectories are calculated and these computations are derived by using very

similar functions unlike calculated in [1]. Similarly, it also should be noticed that distance

look-up table and trajectory calculators use 2 identical blocks. Circle center calculator is

implemented for both Formula (3.23) and (3.24). By changing control inputs pins, the block

generates two desired center points on the plane. Finally, maybe the most crucial product of

modularity and reusing is circular trajectory construction. It is used by both the Path Planner

and Trajectory Planner. If the two-step algorithm is considered, the collision-free path is

calculated firstly. Then trajectory planner tries to connect initial and target configuration of

the vehicle. Even the same sources are shared by two planners, it does not add delay to the

architecture.

To sum up, modularity of designed blocks, and source sharing are important in terms of time

spent for design, simulation and verification. Moreover if an architecture is not designed
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Figure 4.2: Modular view of architecture

modularly, even tiny changes in the design can become impossible.

4.2.2 Distance Look-Up Table

Distance look-up table is the set of vectors, that contain the crash positions of the vehicle

in the parking environment. These vectors are important for both obtaining the collision-free

path by checking the SFP to these crash conditions (Step one of the algorithm) and connecting

the initial and final configuration of the vehicle in a collision free trajectory. Distance look-up

table is composed of crash condition calculator replicas. This block calculates the coordinates

of the positions where the vehicle hits the obstacles defined by a specific straight or half

line element. If distance look-up table is investigated in detail, architecture can be seen as

Figure 4.3. Crash condition calculators work independent of each other, but the distance look-

up table sends one set of vector for each request, because the path planner and the trajectory

planner block demands crash condition from one of these inner blocks. That is the reason

why every crash condition calculator has its own handshaking interface. The detailed signal

explanation is in Table 4.1.

Crash Condition Calculator is the block that determines forbidden conditions which define

the vehicle orientation that hit the obstacles. Crash condition calculator is designed as a state
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Table4.2: Components of the Architecture

Block Reference Block Name

1 lpalmblpe controller

2 lpalmbrme controller

3 rpalpblme controller

4 rpalpblmbrme controller

5 lpalmbrmbrpe controller

6 lpalm π
2 R
smlrm π

2 R
rpb controller

7 lpalm π
2 R
sml lmb controller

8 lpalm π
2 R
sml rmb controller

9 rmasmlrm π
2 R
rpb controller

10 rmasmllm π
2 R
lpb controller

11 rmasmlrmb controller

12 rmasmllmb controller

13 State Machine of Crash Condition Calculator

14 Length Calculator

15 Arctangent Calculator

16 Product Generator

17 Multiplier

18 Sine/Cosine Function

19 Perpendicular point calculator

20 Path Position Calculator

21 Radius Calculator

[13,14,15,16,17] Crash Condition Calculator

[1,14,15,18,19,20] lpalmblpe trajectory calculator

[2,14,15,18,19,20] lpalmbrme trajectory calculator

[3,14,15,18,19,20] rpalpblme trajectory calculator

[4,14,15,18,19,20] rpalpblmbrme trajectory calculator

[5,14,15,18,19,20] lpalmbrmbrpe trajectory calculator

[6,14,15,18,19,20] lpalm π
2 R
smlrm π

2 R
rpb trajectory calculator

[7,14,15,18,19,20] lpalm π
2 R
sml lmb trajectory calculator

[8,14,15,18,19,20] lpalm π
2 R
sml rmb trajectory calculator

[9,14,15,18,19,20] rmasmlrm π
2 R
rpb trajectory calculator

[10,14,15,18,19,20] rmasmllm π
2 R
lpb trajectory calculator

[11,14,15,18,19,20] rmasmlrmb trajectory calculator

[12,14,15,18,19,20] rmasmllmb trajectory calculator

machine that controls the geometric calculation components. Besides a state machine, there

are an arctangent calculator, a multiplier, a product generator and a length calculator which is

designed for Equation (3.21).

Input and output ports of the Crash condition calculator are described in Table 4.1, and only

the interface signals are detailed in Table 4.3.

Before the state machine is explained, geometric components that are used for constructing
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Figure 4.3: Distance look-up table

distance look-up table are illustrated in Figure 4.5.

Construction of distance look-up table process needs the angles (α1, α2, α3, α4) and the

lengths (Lf, Lb) to be calculated, after the corners of the car (A, B, C, D) are superposed

on a decided point of the line segment. The corresponding lengths are rotated one angular

step which is defined by the user, until the total rotation angle reaches π
2
starting from the

corresponding angle. The structure process is shown in Figure 4.6. After all crash conditions

are recorded for a fixed point on the line, next point is decided by sliding the car up to the

longitudinal step which is described in Table 4.1. Product generator, located in crash condition

controller, is responsible for these computations. Flow chart for the state machine of the crash

condition calculator is illustrated in Figure 4.7.

Calculating the orientation angles θi is also carried out by the state machine. Its flow chart

can be seen in Figure 4.6. Every turning movement on a specified corner starts when one

of the edges of the vehicle is on the line. It is assumed that the forbidden side is below the
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Figure 4.4: Crash condition calculator

line, as it is illustrated in Figure 4.5. If the edge of the car, which intersects the line, is |AB|,

(First condition in Figure 4.6) orientation angle is calculated as Angleline +
π
2
. After the first

Δθ amount of turn around the corner B, the orientation angle decreases as much as Δθ. If

the forbidden side is above the line, when the edge |AB| intersects the line, orientation angle

becomes Angleline -
π
2
. After the first Δθ amount of turn around the corner B, the orientation

angle decreases as much as Δθ. In this manner, the orientation angles are formalized as

follows where the θAB, θBC , θCD and θDA are the position angles of the car. Car intersects the

line with the edge corresponding indexes, Δθ is the angular step and i is the turning count.

If the forbidden side is above the line:

θAB = Angleline +
π

2
− i · Δθ (4.1)

θBC = Angleline − i · Δθ (4.2)

θCD = Angleline − π
2
− i · Δθ (4.3)

θCD = Angleline − π − i · Δθ (4.4)
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Table4.3: Signal explanation of the crash condition calculator

Generalized Port Name Length of Function

Definition Signal

multiplicand1 a 16 bits First Multiplicand

multiplicand2 b 16 bits Second Multiplicand

Product p 32 bits Product of multiplier

Horizontal Distance xin 16 bits Angleout = arctan
yin
xin

Vertical Distance yin 16 bits

Angle Angleout 16 bits

Length1 L1 16 bits

Length2 L2 16 bits

Distance lengthout 17 bits lengthout =
√
((L1 + L2)2

Product Components i xouti 16 bits x coordinate of start of line

i = 1,2,3,4 youti 16 bits y coordinate of start of line

Angleouti 16 bits Angle between the rotating line and obstacles

Lengthouti 16 bits Length of the line which is rotated

Product i xini 16 bits x component of the crash point

i = 1,2,3,4 yini 16 bits y component of the crash point

Figure 4.5: Car metrics used for computation of distance look-up table

If the forbidden side is below the line:

θAB = Angleline − π
2
− i · Δθ (4.5)

θBC = Angleline − π − i · Δθ (4.6)
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Figure 4.6: Geometric illustration of distance look-up table vectors

θCD = Angleline +
π

2
− i · Δθ (4.7)

θCD = Angleline − i · Δθ (4.8)

Dealing with formulations has drawbacks since the arctangent block gives out 16 bits angle

value which is between -π and +π. The 15th bit of angle is the sign bit. 14th and 13th

bits are integers and the bits between 12 to 0 are the fractional part of the angle. For instance

+π=0110010010000111 and -π= 1001101101111000. So, if an angle greater than 0 is directly

added to π result will be out of the range. This fault situation can be extended with many

examples. Because of this handicap, formulations become more than a direct subtraction or

addition. This problem is solved by a case statement, such as if the result of the formulas are

in the invalid range, distance look-up table checks whether it is an addition or a subtraction.

If it is an addition, the constant value corresponding to 2π is subtracted from the result. If it

is a subtraction and the result is in the invalid range, 2π is added to the result.

4.2.3 Two Step Trajectory Planner

Two-step trajectory planner is the block where the two-step trajectory planner algorithm is

run. Two-step trajectory planner consist of 3 blocks which are path planner, trajectory plan-

ner, circular trajectory construction and a multiplexer for sharing the circular trajectory con-

struction and distance look-up table by path planner and trajectory planner. Because of the

component limitations of used FPGA, circular arcs are used for both of the path planner and

trajectory planner. Moreover, instead of 48 parallel realizations of trajectories, 12 of trajecto-
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Figure 4.7: State diagram of distance look-up table

ries are implemented in parallel. The rest of 48 paths are generated by using implemented 12

trajectories which is explained in latter sections of thesis.

The path planner is responsible for the first step of the algorithm which is constructing the

collision-free path. Trajectory planner is responsible for the second step of the algorithm.

Circular trajectory construction calculates the 48 trajectories and finds the one which has

shortest length. Firstly, the main block is explained by its three sub blocks. Afterwards, input

and output signals and interfaces between them are described. It can be seen in Figure 4.8,

trajectory and path planners are sharing not only circular trajectory computation block but
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also the distance look-up table.

Figure 4.8: Two Step Trajectory Planner

In Table 4.4, the input, output and interface signals are detailed. As mentioned before, since a

collision free path must be obtained initially, trajectory planner sets the ’sel’ bit of multiplexer

to ’0’ and the multiplexer serves the path planner outputs to both distance look-up table and

circular trajectory computation. After the path is calculated, path planner sets an output pin

to ’1’. Next, the trajectory planner recognizes that the sources are not busy anymore and

sets the ’Sel’ bit of multiplexer to ’1’. So that, the output of the multiplexer becomes the

trajectory planner signals. There are also direct interfacing signals between trajectory planner

and circular trajectory construction. Vehicle kinematics, initial and final position of vehicle

are not described since they are explained before in Table 4.4.

It can be seen in Table 4.4 that the interaction between blocks is at high level. Since two-

step trajectory algorithm is a cooperation between three blocks, as it is stated before, circular

trajectory construction block is running from beginning of the process to end of process.

After path planner stops communicating with distance look-up table and circular trajectory

computation block, it starts to behave as a sub block of trajectory planner. After path planner

completes the computation of collision free path and sets completeNB pin to ’1’, trajectory

planner starts to run and control all of the interfaces.

Collision free path calculation is introduced in Section 3.4. The path planner constructs the
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Table4.4: Two step trajectory planner signal definitions

Generalized Port Name Length of Function

Definition Signal

Distance look-up xcrushi 16 bits x component of position

table products ycrushi 16 bits y component of position

θcrushi 16 bits Angle of position

Distance look-up table Readyi 1 bit Indicates data is ready to be sent

Handshaking Signals Completei 1 bit Indicates all data is sent

PathND NDNB 1 bit Validity check request

Path Planner(qi x, qiy, θi) qi xNB 16 bits x, y and angle component of vehicles

qiyNB 16 bits initial position to be tested

θiNB 16 bits for collision free path calculation

PathPlanner(qf x, qf y, θ f ) qf xNB 16 bits x, y and angle component of vehicles

qf yNB 16 bits final position to be tested

θ f NB 16 bits for collision free path calculation

TrajND NDFUW 1 bit Calculation request for Trajectory planner

TrajPlanner(qi x, qiy, θi) qi xFUW 16 bits x, y and angle component

qiyFUW 16 bits of vehicles initial position

θiFUW 16 bits that vehicle moves on

TrajPlanner(qf x, qf y, θ f ) qf xFUW 16 bits x, y and angle component

qf yFUW 16 bits of vehicles final position

θ f FUW 16 bits that vehicle moves on

ND ND 1 bit NDFUW or NDNB due to ’sel’ signal

(qi x, qiy, θi) qi x 16 bits qi xFUW or qi xNB due to ’sel’ signal
qiy 16 bits qiyFUW or qiyNB due to ’sel’ signal
θi 16 bits θiFUW or θiNB due to ’sel’ signal

(qf x, qf y, θ f ) qf x 16 bits qf xFUW or qf xNB due to ’sel’ signal
qf y 16 bits qf yFUW or qf yNB due to ’sel’ signal
θ f 16 bits θ f FUW or θ f NB due to ’sel’ signal

Path planner-distance NDiNB 1 bit Request to get ready for sending

look-up table interface crash data to Path Planner

SendDotsiNB 1 bit Forces The distance look-up table to out the product

Trajectory planner- distance NDiFUW 1 bit Request to get ready for sending

look-up table interface crash data to Trajectory Planner

SendDotsiFUW 1 bit Forces The lookup table to out the product

Calculate Spec Traj SpecificArcEn 1 bit Enables block to generate x, y and θ values

x, y and θ values of xout 16 bits x component of generated path

calculated path yout 16 bits y component of generated path

θout 16 bits Angle component of generated path

Minimum Length Lengthmin 16 bits Minimum length calculated by

48 trajectories

SFP Calculation complete Rdyvalidity 1 bit Circular trajectory construction sets

to 1 after 48 trajectory tested

Path Data and completeNB 1 bit Path planner sets this bit high

Request Signals when collision free path composed

NodeAng1 16 bits x, y and angular components

NodeX1 16 bits of initial point of collision

NodeY1 16 bits free path

NodeAng2 16 bits x, y and angular components

NodeX2 16 bits of final point of collision

NodeY2 16 bits free path

ReadyPathNodes 1 bit Indicates the initial and final points

of path is ready to be tried

SendPathNodes 1 bit Requests node points on path

PathOk 1 bit Informs about if last tried path is ok or not
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collision-free path which is detailed with FPGA block expressions. Path planner calculates

the path which connects initial and goal configuration by moving on the set of neighbors on

the plane surface. The algorithm which is used to obtain the collision-free path is summarized

in terms of FPGA block interfaces as follows:

1 After new data is pushed into optimal trajectory computation block, it is directed to

path planner block firstly. Then start and goal configurations ([qx,start,qy,start,θstart] and

[qx,goal,qy,goal,θgoal]) are recorded.

2 Path planner sends a request signal to distance look-up table to get a collision configu-

ration.

3 After a collision position is delivered, path planner sends the first neighbor of the latest

configuration of vehicle and crash condition to circular trajectory construction block.

After SFP is calculated, block sends back the minimum length derived among 48 tra-

jectories and ’calculation completed’ information. Then trajectory calculator compares

the obtained length with previously calculated length (initially 0). If new computed

length is shorter than what is calculated before, algorithm pushes it into length register

dedicated for this neighbor.

4 Path planner checks whether all 24 neighbors are visited. Next, algorithm goes to step 3

if all neighbors are not visited yet. Algorithm goes to step 5 if all neighbors are visited.

5 Path planner checks whether the algorithm is run for all crash conditions. If that is the

case the algorithm continues to step 6 , otherwise goes back to step 2.

6 After SFP is calculated for all neighbors and all crash conditions, path planner picks up

the one which has maximum SFP. Then goes to step 7. If all lengths are set to zero the

algorithm goes back to previous location and records this point as visited and goes back

to step 1.

7 Checks whether the selected node crashes any obstacle. If yes, deletes the position and

resets the length register of this node. Then the algorithm saves this point as a visited

node and goes back to step 6. If no crash is detected, algorithm goes to step 5.

8 If the final position of vehicle is reached, algorithm is stopped with a collision free path.

Else, algorithm turns back to step 2.

Methodology of collision free path construction is described above. Note that, it is not guaran-

teed that the vehicle is directed to the target position by looking at just maximum of obtained

SFPs. The car can go opposite way of the target position if higher SFPs are obtained from

wrong sided neighbors. This situation is illustrated in Figure 4.9.

In Figure 4.9, the path planner chooses a path which is the opposite side of the target position

with current algorithm, because the distance between obstacles are longer and vehicle can
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Figure 4.9: A collision-free path by considering just SFPs

move easier at that position. Since the algorithm works until it connects the initial and final

configurations, it does not run into some situations such as given in Figure 4.9. To direct the

constructed path from initial position to final position, an extra constraint needs to be added

to path planner block. The decided solution is multiplying the cosine of the angle between the

lines connecting initial configuration to selected neighbor and initial configuration to target

position with calculated SFP as shown in Figure 4.10.

Figure 4.10: Illustration of multiplicand cosine factor

For instance, the cosine factor for candidates 1, 9 and 17 is cos(θ f − θc1). To avoid negative
numbers which mean extra cases in FPGA blocks, 1 is added to acquired cosine values. So
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for the neighbors 1, 9 and 17, the multiplicand becomes (cos(θ f − θc1) + 1). By applying
same methodology for the rest of the neighbors, θc1, θc2, θc3, θc4, θc5, θc6, θc7 and θc8 can be

calculated. Eventually, the cosine factors which direct the path from initial configuration to

final configuration are formulated as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CF1
CF2
CF3
CF4
CF5
CF6
CF7
CF8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ f − π4 ) + 1
cos θ f + 1

cos(θ f +
π
4
) + 1

cos(θ f − π2 ) + 1
cos(θ f +

π
2
) + 1

cos(θ f − 3π
4
) + 1

cos(θ f − π) + 1
cos(θ f − 5π

4
) + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9)

These cosine factors are equal to dot products of the configurations, with unity length. In the

rest of the thesis, the term dot product is used instead of cosine factor.

Path planner consists of a state machine based controller and a dot product calculator. Since

all of the dot products are not needed at the same time, eight of values ares calculated one by

one at the same arctangent block and multiplier. The block diagram of path planner is shown

in Figure 4.11

Figure 4.11: Path Planner Block Diagram

Cosine factors are computed by dot product calculator. After dot products are received from
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dot product calculator and the minimum length is obtained from circular trajectory construc-

tion, they are sent to multiplier. Then the products which are received from multiplier are

regarded as direction oriented SFPs. Before the flow chart is introduced, the signals are de-

scribed in Table 4.5. Since input and output signals are explained on Table 4.1 as interface

signals, these are not explained again.

Table4.5: Path planner signal definitions

Generalized Port Name Length of Function

Definition Signal

Values Dot products xneighbor 16 bits x component of tested neighbor

are calculated for yneighbor 16 bits y component of tested neighbor

xtargeti 16 bits x component of goal position

ytargeti 16 bits y component of goal position

ND DotProduct NDDotProduct 1 bit Requests new dot products

RDY and Dot Product DotProductsRdy 1 bit Dot Products are ready information

values DP1 16 bits Dot Product for neighbor 1,9,17

DP2 16 bits Dot Product for neighbor 2,10,18

DP3 16 bits Dot Product for neighbor 3,11,19

DP4 16 bits Dot Product for neighbor 4,12,20

DP5 16 bits Dot Product for neighbor 5,13,21

DP6 16 bits Dot Product for neighbor 6,14,22

DP7 16 bits Dot Product for neighbor 7,15,23

DP8 16 bits Dot Product for neighbor 8,16,24

The path planner algorithm also has a turning back feature, if a planned path goes into a

dead end, path planner needs to realize that problem and turn back to node where it reached

to dead end. There is another reason to store the path nodes, after calculation of collision

free path nodes, these need to be sent to trajectory planner. Every valid calculated nodes,

every dot product oriented lengths and the selected nodes IDs are stored in a matrix. So that

turning back to a desired passed point becomes possible. Moreover every tried and failed

(Crashed) configurations are also stored in individual matrices since it is a time consuming

issue, repeating the process for same nodes. The flow chart of path planner is demonstrated

in Figure 4.12.

The second step of the algorithm is provided by trajectory planner. Trajectory planner con-

nects two given start and goal configuration in the parking environment by using the path

constructed by path planner. Trajectory planner block waits until the collision-free path is

constructed. After path is obtained and stored in path planner, trajectory planner starts to con-

trol distance look-up table, circular trajectory construction and also path planner. Trajectory

planner requests 2 positions form path planner, and sends the two received positions to cir-

cular trajectory construction. When circular trajectory construction evaluates the 48 different

trajectories, it sends another request ’specific arc en’ signal which creates an individual path

which is detailed in circular trajectory construction explanation. Briefly, this path changes

circular trajectory construction block’s functionality. When ’specific arc enable’ signal is set
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Figure 4.12: Path planner flow chart

to high, the trajectory calculation which has minimum length is run again. However, this time

selected trajectory calculator starts to send positions of the path. Then by using the inter-

face between distance look-up table, trajectory planner checks whether there is a collision on

generated path, if yes, stops the circular trajectory construction immediately. Resets the dis-

tance look-up table. Afterwards, the length comparator checks whether there is another length

calculated greater than zero. If there is another length greater than zero, circular trajectory

construction runs again for the corresponding trajectory. Finally, if the tried length results in
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a collision free trajectory, it sends this information to path planner. Path planner replies the

request as described in Figure 4.12. If a collision free trajectory is not achieved, path planner

keeps sending two positions with reduced distance to be checked.

Since the trajectory planner does not have any sub block a block diagram and a signal table

is not illustrated. For trajectory planner signal information, Figure 4.8 and Table 4.4 can be

seen.

The third block of trajectory computation is the one, where all of the geometric calculations,

length computations and 48 trajectory generations are done. The circular trajectory construc-

tion block is formed by 28 blocks. The blocks are illustrated in Figure 4.13.

As can be seen the trajectory calculations are realized in parallel to speed up the computation

process. As mentioned before there have to be a process sequence, firstly Rmust be calculated
by radius calculator and in parallel the start and goal configurations are calculated by input

converter. Afterwards center points of the first and the last arc movements are calculated by

circle center calculators. Then trajectory calculators are run with the RDY output of circle

center calculators. Since circular trajectory construction can run 12 trajectory calculations in

one process, with the changing inputs provided by input converter this sequence repeated 4

times. At the end of every 12 trajectory calculations length calculator computes the lengths

in parallel. Finally, after 4 times run of trajectory calculators length comparator is trigged by

the length calculator and it detects the trajectory with minimum length to send path planner

or trajectory planner. The circular trajectory construction block runs 12 trajectory calculators

in parallel. Since, after all trajectory calculation is completed, input converter inserts the new

inputs. The run time is dependent to trajectory which needs more computation time, because

more calculations are need to be obtained. The most time consuming computation is observed

on the path

R calculator→ Circle Center Calculator→ lpalm π
2 R
smlrm π

2 R
rpb calculator.

And it takes 550 clock cycle to be completed.

Interface signals between sub blocks are explained on Table 4.6. The signals shown with an

’i’ subscript have same functionality for 12 different trajectory calculators. In the architecture,

circular trajectory construction, when two positions arrive ND input of block needed to be set

to high too. Input converter outputs q1 and q2 values for all circle center calculator blocks.

But, circle center calculator blocks are triggered by ’rdy’ output of R calculator block. After

radius of circles is calculated, circle center coordinates are calculated for 12 trajectories. With

the ’rdy’ outputs of center calculators 12 trajectory specific calculator starts to test whether

the corresponding path style can connect two given positions. While these calculations every

trajectory calculator starts to set complete and validity output signals to ’1’ or ’0’. The trajec-

tory calculators which are able to connect initial and target configurations, also out the length

values of arcs. Input converter block gets the complete set of signals to initiate next calcula-

tion. The arc length calculator block gets the arc length values to calculate the total distance
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Figure 4.13: Circular trajectory construction block diagram

of trajectories. When Input converter acknowledges every trajectory calculators are finished

their work with the previous q1s and q2s, converts input to be checked for validities and tra-

jectory lengths. After the same processes, Input converter transforms inputs again for third

12 trajectory information, at last when the fourth inputs’ validities checked and lengths calcu-

lated, length comparator puts in order the distances by keeping the information of trajectory

id. Then it outs the minimum dimension and sets CircTrajRdy output signal to ’1’.

The trajectories are run in parallel. If an individual trajectory is to be run, the input signal
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Table4.6: Circular trajectory construction signal definitions

Generalized Port Name Length of Function

Definition Signal

Rst Input Converter RstIC 1 bit Resets the Input Converter

ND NDCircTraj 1 bit Request New Calculation

Calc. Complete Inf. Complete 12 bits Each bit is connected one trajectory

calculators complete outputs

Followed path data PathMatrix1x 16 bits x component of followed path

PathMatrix2x 16 bits y component of followed path

PathMatrix3x 16 bits angle component of followed path

q1x q1xx 16 bits initial x component calculated by

Input Converter to be run by

trajectory calculator x

q1yx 16 bits initial y component calculated by

Input Converter to be run by

trajectory calculator x

θ1xx 16 bits initial angle component calculated by

Input Converter to be run by

trajectory calculator x

q2x q2xx 16 bits final x component calculated by

Input Converter to be run by

trajectory calculator x

q2yx 16 bits final y component calculated by

Input Converter to be run by

trajectory calculator x

θ2xx 16 bits final angle component calculated by

Input Converter to be run by

trajectory calculator x

C1x C1xx 16 bits x component of Center point for first arc

for the trajectory family x

C1yx 16 bits y component of Center point for first arc

for the trajectory family x

C2x C1xx 16 bits x component of Center point for last arc

for the trajectory family x

C2yx 16 bits y component of Center point for last arc

for the trajectory family x

RdyC C1C2Readyx 1 bit Center point calculations are complete info

for trajectory family x

Run All NDTraj 1 bit Run request for 12 trajectories

at the same time

Run one TrajRqstx 1 bit Run request for trajectory x

Lx ax 16 bits Arc length a of trajectory x

bx 16 bits Arc length b of trajectory x

ex 16 bits Arc length e of trajectory x

lengthx 16 bits Length of Straight line of trajectory x

Vdtyx validityx 1 bit Info for if the trajectory x reached to

target successfully

Length1,2,...48 Lengthx 16 bit total length of the path for trajectory x

Minimum One minimumone 7 bits the trajectory id which has minimum length

rdy CircTrajRdy 1 bit Informs the outer blocks that calculation is finished

no more length nomorelength 1 bit informs the trajectory planner block there left

no more trajectory to try
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"run specific trajectory" is needed. As described before, trajectory planner block needs the

path data, to check if it collides anywhere. To this end the multiplexer in Figure 4.13, is added

to structure.

To calculate 48 trajectories with 12 trajectory calculations is possible by modifying the input

positions that would give the symmetrical result of desired trajectory. Trajectory conversion

is a geometric process, that needs to construct 48 trajectories by using 12 trajectories. On

Figure 4.14 the rparmbrpe which is a member of CC|C is illustrated(Left hand side). The

problem is how the trajectory rparmbrpe is tested by using lpalmblpe(Right hand side) which

is calculated before.

Figure 4.14: A trajectory conversion example

It is shown in Figure 4.14, the orange path is rparmbrpe with the initial configuration q1x, q1y

and θ1 and the final configuration q2x, q2y and θ2 the green path is lpalmblpe version with

the same arc lengths. There is not only one method for input conversion, but in this thesis a

constrained approach is used which is 4 trajectory are assumed to be located at four quarter

of coordinate plane.

It can be seen in Figure 4.14 that green path is a mirrored version of orange path. So two

figures are symmetric about the y axis at the point x =
q1x+q1′x

2
. Moreover q1 and q1’ can be

superposed on the plane surface. The difference between q1x and q2x is equal to difference

between q1’x and q2’x. It is the same for y axis. q1’ and q2’ have to be described in terms of

q1 and q2. Since it is symmetric about y axis θ1′ is equal to π - θ1 it is same for θ2′, it is equal
to π - θ2. It is clear that q2’y is equal to q2y. The last thing needs to be calculated is q2’x. As

mentioned before it can be calculated by using equality q1x - q2x = q2’x - q1’x, since q1 and

q1’ are superposed the q2’x can be calculated as q1x + (q1x-q2x). So, this equations mean

that, if the calculated q1’ and q2’ positions are tested in block lpalmblpe, trajectory calculators

resulting length and validity information would be the same if it is calculated in a separated

rparmbrpe block. Since the FPGAs capability is limited for sinus and cosines functions, di-

viders, square root blocks and arctangent calculator, source sharing needs to be provided. The
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input conversion is formalized for rparmbrpe, lmalpblme and rmarpbrpe in Table 4.7.

Table4.7: Input conversion for trajectory lpalmblpe

lplmlp rprmrp lmlplm rmrprm

q1’x q1x q1x q1x

q1’y q1y q1y q1y

q2’x q1x+(q1x-q2x) q2x q1x-(q1x-q2x)

q2’y q2y q2y q2y

θ1’ π- θ1 θ1-π -θ1
θ2’ π- θ2 θ2-π -θ2

The rest of the 36 trajectories are calculated similarly. The block input converter has two

different circular trajectory computation request input pin, one is for individual trajectory

calculation, the second one is for 48 trajectory computations. Beside inputs, conversion block

also converts the path data sent to trajectory planner, because the generated path values are

not belong the path requested. The flow chart of input converter is given in Figure 4.15

R is calculated as 1
κmax

in [1]. κmax is defined in equation 3.51. The radius calculator only

calculates this R value at the beginning of the circular trajectory computation. The equation

implemented by a sinus, cosines and divider block since the tangent block is not available for

selected FPGA. The formulation is implemented as
sinφmax
cosφmax

Lcar
. The result is obtained as 16 bit

register first eight bit is decimal the second eight bit is the fractional part.

Initially, circle center calculator block is planned as a shared block used by 12 trajectory

calculators and four of possible center points are calculated by one circle center calculator to

reduce used resources. But, if the input conversion is considered, second, third and fourth

set of 12 trajectories have different q1 and q2 inputs. However it can also be calculated one

by one using the same center calculator block, it is not implemented this way. Because it

damages the parallel processing of 12 trajectory calculator. So it is decided to put one center

calculator for each trajectory calculator. A block diagram is illustrated in Figure 4.16 and

detailed signal information is given in Table 4.8 for a circle center calculator.

Trajectory calculators computes the trajectory components, which are enough to deter-

mine if the corresponding trajectory can connect given two configuration. The trajecto-

ries, calculated in parallel are lpalmblpe, lpalmbrme, rpalpblme, rpalpblmbrme, lpalmbrmbrpe,

lpalm π
2 R
smlrm π

2 R
rpb, lpalm π

2 R
sml lmb, lpalm π

2 R
sml rmb, rmasmlrm π

2 R
rpb, rmasmllm π

2 R
lpb,

rmasmlrmb, rmasmllmb. The calculators of these trajectories are also called with the cor-

responding name such as lpalmblpe calculator. As stated before all trajectory calculators have

a path position controller component which does not function if a request is not received by

trajectory planner. Trajectory planner inserts a ’1’ input to "run" pin of trajectory calcula-

tors. So the requested trajectory calculator starts to serve path positions to trajectory planner.

The blocks trajectory calculators are implemented separately for the purpose of parallel pro-

cessing. Since the generated computation needs almost the same kind of formulations which
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Figure 4.15: Input Converter flow chart
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Figure 4.16: Circle center calculator block diagram

Table4.8: Circle center calculator signal definitions

Generalized Port Name Length of Function

Definition Signal

q1 q1x, q1y, θ1 3x16 bits initial configuration of vehicle

q2 q2x, q2y, θ2 3x16 bits final configuration of vehicle

ND ND 1 bit New Data is ready at the input

RRdy Rrdy 1 bit R is calculated and ready

R Rcalculated 16 bits Radius of circular movements

Complete complete 1 bit Informs that the centers are calculated

C1x C1x 16 bits x component of first center point

C1y C1y 16 bits y component of first center point

C2x C2x 16 bits x component of second center point

C2y C2y 16 bits y component of second center point

lprmorlmrp LeftRight 1 bit Requested center points direction

are introduced in Section 3.2. All trajectory calculators are composed of needed geometric

equation blocks and a controller which is responsible of calculation flow and needed checks,

such as validity of requested trajectory for imported inputs. Just one of these calculators is

detailed, the rest of 11 trajectories are implemented similarly. For the traceability of calcu-

lations the trajectory lpalm π
2 R
smlrm π

2 R
rpb for which equations are given before, is explained.

The Formulas 3.21 and 3.31 through 3.37 needs to be implemented for the trajectory valid-

ity check. There are also additional calculations for the path data which is sent to trajectory

planner block. To this end, a block named as ’arc’ is implemented. In Figure 4.17 the block

diagram and interface signals are introduced.

It is seen in Figure 4.17, 5 sub blocks are implemented to formulate the equations mentioned.

Length calculator computes the distance between given two points on coordinate plane(Eq,

3.21). arctangent is used for Eq 3.31-32, sincos and multiplier blocks are used for calculation

3.34. These modules are enough to check whether the trajectory connects the initial and
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Figure 4.17: lpalm π
2 R
smlrm π

2 R
rpb trajectory calculator block diagram

final configurations within the interval given in fourth column of Table 3.1 [18]. The path

position calculator is used for obtaining the positions passed through the circular movements.

Moreover, this module generates the steering and the vehicle direction informations. Path

position calculator is elaborated in the next parts of the thesis. While moving through the

straight line segment of the trajectory, positions are calculated by sincos and multiplier blocks.

In Table 4.9 inputs and outputs of lpalm π
2 R
smlrm π

2 R
rpb controller are explained. Since inter-

face signals are described for multiplier, length calculator, sincos and arctangent calculator

before and the signals between path position calculator and lplmsmrmrp controller are de-

tailed in following parts, the interface signals are not expressed here.

lpalm π
2 R
smlrm π

2 R
rpb controller is firstly trigged by ND input. After a high input detected

on ND, it starts to wait for the center points to be calculated. Then, ’Center calculations
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Table4.9: lpalm π
2 R
smlrm π

2 R
rpb trajectory calculator signal definitions

Generalized Port Name Length of Function

Definition Signal

q1 q1x, q1y, θ1 3x16 bits initial configuration of vehicle

q2 q2x, q2y, θ2 3x16 bits final configuration of vehicle

ND ND 1 bit New Data is ready at the input

Center Calculation C1C2Rdylplmsmrmrp 1 bit Center Points are calculated and ready

Ready

R Rcalculated 16 bits Radius of circular movements

C1 C1x, C1y 2x16 bits x and y component of first center point

C2 C2x, C2y 2x16 bits x and y component of second

center point

run run 1 bit Enables Trajectory calculator to

send the path position values

Arc Rsl Rsl 16 bits The path position, while the circular

movement, is calculated at every Rsl

step through the arc

Str Line Rsl Step 16 bits The path position, while straight

movement, is calculated at every Step

length through the straight line

Calculation complete 1 bit Informs that calculation of

Completed trajectory completed

validity validity 1 bit Check result for the

trajectory lpalm π
2 R
smlrm π

2 R
rpb

Arc Lengths a,b and e 3x16 bits Angle values for arcs

Line Length LineLength 16 bits Length of straight movement

Path Components Xout 16 bits x component of calculated path

Yout 16 bits y component of calculated path

Angout 16 bits Angular component of calculated path

V 8 bits velocity information of vehicle

DirofCar 2 bits Backward/Forward information

of direction

SteerDir 2 bits Left/Right/Straight information

of steering wheel
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ready’ input goes to high. lpalm π
2 R
smlrm π

2 R
rpb controller starts to compute values one by

one, with the cooperation of geometric calculator blocks. After a, b and e are calculated

lpalm π
2 R
smlrm π

2 R
rpb controller checks the validity of trajectory by comparing the obtained

angles with the values stated in Table 3.1. If it fits to these intervals, trajectory calculator sets

the validity output to ’1’. Afterwards, checks whether the ’run’ input is ’1’ or ’0’. If it is ’0’,

trajectory calculator starts to wait for new data. If it is ’1’, then goes for calculating the path

values. For path positions starts to send requests to get path position at every ’rsl’ steps to path

position calculator. When trajectory calculator comes across with the straight line segment

of trajectory, positions are calculated by using sincos and multiplier blocks. Finally, after all

positions through the trajectory are sent, sets the complete output to ’1’ and starts to wait for

new computation. The flow chart of lpalm π
2 R
smlrm π

2 R
rpb controller is shown in Figure 4.18

It is seen in Figure 4.18 that there are length comparisons in flow chart. These are advance

warning that the trajectory calculation fails and stops, because the length between for cal-

culated center points must be higher than 2R for this types of trajectories. It is similar for

the other calculations for instance it can be seen in Figure 3.5 that if the length between two

centers is greater than 4R, this kind of trajectory can not be constructed.

The rest of the trajectory calculators are built up by similar geometric calculator blocks and a

controller, arranges the calculation sequence and arc length checks.

Path position calculator computes the position of the circular segments of a trajectory candi-

date. The inputs of the path position calculator x, y components of arcs center, radius of the

circular movement, a direction information and an angular value corresponds to where the

movement starts. Direction information is needed for calculating the angular position of the

vehicle. A visual illustration is shown in Figure 4.19

Before sending path positions to trajectory planner, xout, yout and θout needs to be calculated.

In Figure 4.19 a right forward movement is visualized and by using the inputs Cx, Cy and θ

initial point of xout and yout are the only values can be calculated. If direction situation of

steering wheel is provided, θout can also be calculated. For the next positions of the vehicle,

the backward/forward information has to be provided. The Δθ is controlled by the trajectory

controllers (such as lpalm π
2 R
smlrm π

2 R
rpb controller). In Figure 4.19, it is also illustrated how

rsl input is used for path position calculations. xout and yout computations can be seen below

and in Table 4.10 the orientation angle calculations, made due to direction input, can be seen.

xout = Cx + R cos(θ) (4.10)

yout = Cy + R sin(θ) (4.11)

The sampling points are provided by the trajectory controllers. If the arc type is right turn

input angle is decremented by rsl until input angle reaches to (θ − Δθ). If the arc type is left
turn input angle is incremented by rsl until input angle reaches to (θ + Δθ).
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Figure 4.18: lpalm π
2 R
smlrm π

2 R
rpb controller flow chart

Arc length calculator block computes the trajectory lengths by controlling the trajectory con-

trollers "validity" and "completed" outputs and also the information sent by trajectory con-

verter about which set of 12 trajectory are calculated. Trajectory lengths are calculated by

a controller and the block which is called as ’calculator base’. The angle values which are

extracted by trajectory calculators, are buffered after all paths’ validities are checked and

"completed" outputs go to ’1’ which indicates the trajectory controllers reached the end of
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Figure 4.19: Path position calculator illustration

Table4.10: Arc Block Equations

Input Output

Direction Movement Orientation Direction Steering

Input Definition Angle of Car Direction

00 Right Forward θout = θ − π2 01 01

01 Left Forward θout = θ +
π
2

01 10

10 Right Backward θout = θ +
π
2

10 01

11 Left Backward θout = θ − π2 10 10

the computations, the buffering process is made because of not to causing a halt during rest

of previous processes. Since the consumed time is much less than the time spent previous

computations, there is no need to check if there comes an other set of angle outputs.

The lengths are calculated as :

Tra jectoryLength = (a · R) + (b · R) + (e · R) + l (4.12)

The tricky parts of arc length calculation are; there are more than three angles for some trajec-

tories and the registers contain angle, radius and length of line informations are constructed

different ways. Angles are 16 bit registers as described before 15th bit is sign, 14th and 13th

are decimal part, and from 13 to 0 is fractional part of register. For radius bits 15 to 8 are

decimal 7 to 0 are fractional part, and for length l, bits 15 to 6 are decimals and bits 5 to 0 are
fractional parts of register.

The arc length calculator waits until the trajectory calculators processes terminate and checks

the validity outputs of the trajectory calculators. Validity output indicates the tried trajectory

can connect the given two configuration by staying in the interval given in Table 3.1. The

trajectory calculators puts out the angles of circular movements and the length of the straight

line if there exists a straight line for the corresponding trajectory. The calculated angles do not

have negative values. So, the 15th bit of angles is always ’0’. Such that it can be considered all

angle values coming to arc length calculator are positive. If the angles shifted to right which
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means the angles are divided by two, and multiplied with 2R, the circular arc lengths remains

the same. For the trajectory families; CC|CC, C|CC|C or C|CSC|C the second and third angles

has same values due to definition of trajectories. So if the angle shifting process is not made

for the second and third angles of the trajectory families are CC|CC, C|CC|C or C|CSC|C and

considered as a single angle, for all of the arc length calculations, a generic solution would

be obtained. For instance while the length for family C|C|C is calculated as
(anga+angb+ange)

2
2R

and for family C|CC|C is calculated as (
(angaange)

2
+ angb)2R. This approach is generated to

calculate the trajectory lengths with a generalized block it has 3 angular input and a longitudal

input.

Secondly, matching the decimal and fractional parts of calculations need to be handled. The

product of multiplication of two registers with 4 bits of decimal 12 bits fractional and 8 bits

of decimal and 8 bits of fractional parts has 12 bits of decimal and 20 bits of fractional. By

considering the first two bits of calculated radius are ’0’ it can be moved out the 31th and

30th bits of product. Since for the fractional part of calculated length, 6 bits of fractional

number is enough, the products’ 29th to 14th bits are used as length of circular arcs. Then a

straightforward addition is applied to result and l. Finally, total arc length is calculated.

The arc length comparator is designed for detecting the trajectory with minumum length.

The arc length comparator works as two parallel process. Similar to input converter, one

process runs for path planner, one process runs for trajectory planner. First process is run after

48 trajectory lengths are calculated, comparator is trigged by the ready output of arc length

calculator block. And starts to compare the calculated 48 length value. After the minimum

one is identified sends the value to path planner. Then it starts to wait for a new request. The

second process is sorts the calculated lengths from low to high and sends the minimum one

to trajectory planner. Then, starts to wait for a high input at the new line request signal, if a

request is detected, firstly, erases the length register sent previously and checks if there are

other length values waiting at the queue. Until all lengths are sent, the arc length comparator

sets the output pin ’All lengths sent" bit to inform trajectory planner.

To sum up, FPGA blocks cooperates with densely used handshaking signals, alternating func-

tionalities and advance warning checks which reduce the time when trajectory calculators do

not connect given two configuration. The realization of trajectory computations are based on

almost same type of calculations, the less modules are constructed and controlled to reduce

the complexity of algorithm.

4.3 Parallel Realizations

FPGAs are on the rise in high-performance computing, their flexibility and compute capabili-

ties are enormously increased. While micro controllers are capable of running single process,

it is also a fact that complexity of generated blocks are much higher than FPGA blocks. More-

over FPGAs are capable of multiple parallel processing. In this thesis most complex and time

consuming parts are the works which are done by trajectory calculators. These calculation are
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composed of various trigonometric functions, multipliers and dividers. With the developing

FPGA technology, the modules that are capable of these functions are added to FPGAs. In

the two-step trajectory parking algorithm it is aimed to calculate trajectories in parallel since

they are independent processes. Minimizing the wait conditions is also an aimed issue. For

example arc length calculator block never causes a halt during the two step trajectory planner,

it is also same for length comparator block.

Figure 4.20: Parallel Realization

For parallel realization, all of the trajectory calculators are implemented as completely in-

dependent blocks. Then, to speed up the design process there added extra functionalities to

blocks, such as calculators gives out the followed path component only if they are requested.

Since the path planner block is the one which needs the only SFP length while trajectory plan-

ner needs the path positions besides the SFP. Trajectory planner activates this functionality.

These kind of additional control paths increases the complexity but speeds up the algorithms

which runs constantly same functions. In Figure F.1 the parallelization of the calculations is

shown. However it is not obtained 48 trajectories in parallel since the resources of used FPGA

is inadequate in terms of trigonometric and division components, 12 trajectory computation

in parallel is implemented. This functionality also comes with some other complexities in the

algorithm.

The algorithm also can be modified for the low-capacity FPGAs, and algorithm is run in a

serial mode with same controller blocks. So, adding multiplexers before the geometric calcu-
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lation blocks and small modifications on input converter is enough. This approach increases

the time spent for calculations. Moreover the whole 48 trajectory can be implemented in par-

allel on an FPGA which has higher capacity. By editing the input converter and copying the

input converter a fast approach the can be obtained.

4.4 Practical Considerations

In this thesis, an FPGA implementation is derived for the two-step trajectory planning algo-

rithm, proposed in [1]. Recent FPGA technology offers various solutions for both trigono-

metric and arithmetic calculations. These solutions differ from one FPGA family to another.

Even though these blocks are only usable for the selected FPGA, they can also be generated

for other FPGAs. Since they are well designed and fast components they are not implemented

again. These blocks are; arctangent calculator, sincos, multiplier, divider and square root

blocks. The rest of the geometric calculations are implemented, in this thesis.

Table4.11: Cycle Counts of Geometric Components

Module Name Cycle Count

Length Calculator 32

Perpendicular Point Calculator 106

Circle Center Calculator 75

Multiplier 5

SinCos 20

Arctangent 24

Radius Calculator 119

Square Root Calculator 17

Dot Product Calculator 42

In Table 4.11, the cycle counts of the geometric calculations are presented. The information

for trajectory calculators is not obtained in constant time since there are length comparisons

which are used for advanced warning checks and cause halts while the trajectory calculations

proceed.

Before the FPGA implementation of two-step trajectory parking, the whole algorithm is im-

plemented by using Matlab. The whole geometric computation and trajectory calculator func-

tions are developed during Matlab implementation. After Matlab implementation, FPGA

blocks are constructed. The validation of the blocks are provided by comparing the VHDL

block simulation with the corresponding Matlab based calculations.
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4.5 An Alternative Architecture

The architecture, proposed in this thesis, using the twelve parallel trajectory computing pro-

cess completes the evaluation of 48 trajectories within 4 cycles. Since the proposed architec-

ture did not fit into the chosen FPGA, an alternative architecture with less parallel computa-

tions is proposed here. The new architecture offers 6 parallel trajectory computations such

that all trajectories are evaluated in 8 cycles. With this architecture, the utilization is reduced

and the generated architecture fits into the selected FPGA.

The illustration of the proposed architecture is given in Figure 4.21.

Figure 4.21: Architecture with 6 parallel trajectory calculation

The architecture with 6 parallel trajectory computations is similar to our proposed method

which runs 12 trajectory calculations in parallel described in Section 4.2. The distinguish-

ing part is that the previous architecture contains 12 geometric calculation blocks and the

architecture suggested in this section contains 6 geometric calculation blocks. Each of the 6
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parallel blocks is composed of two trajectory calculator controller blocks, a geometric calcu-

lation block and a multiplexer. After a trajectory calculator controller finishes its trajectory

computation the second trajectory calculator controller starts to compute the next trajectory.

Due to the reduced number of geometric calculation blocks, the slice LUT utilization is re-

duced from %121 to %78 and can hence be realized on the chosen FPGA. Nevertheless, the

time spent to calculate 48 trajectories is increased from around 2500 clock cycles to 4600

clock cycles. According to FPGA blocks synthesis results two step trajectory algorithm can

be driven by up to 156.924 MHz clock source. By considering frequency as 100 MHz which

has 10 nanoseconds period time, computation of 48 trajectory calculation is increased from

25 μseconds to 46 μseconds. For the example given in Chapter 4, 4608000 trajectory cal-

culation would be ended in 2.4 seconds with the architecture proposed in Section 4.2, same

calculations would be completed in 4.416 seconds with the architecture proposed in Section

4.5. Considering that a waiting time in the order of a few seconds is tolerable in practical

parking situations, the proposed architecture is found suitable.
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CHAPTER 5

EXPERIMENTAL EVALUATION

5.1 Algorithm Verification

In this section, the algorithms described in Chapter 3 are implemented and evaluated in the

Matlab environment. Matlab is a numerical computing environment and fourth-generation

programming language. The reasons for choosing Matlab for our initial algorithm implemen-

tation are; graphical illustrations are easy to show using Matlab, user friendly help tool, and

experience.

We next illustrate the different algorithms in Chapter 3 by graphical representations of Matlab

simulations. Figure 5.1 shows the 2D representation of a parking situation. It shows the

obstacle location (solid line) and all car configurations that create a collision with the obstacle.

That is, the dots along the obstacle lines represent the values in the distance lookup table.

Hereby, dots are constructed by using 40◦ which is 2π
9
as the angular step and 40 cm as the

longitudinal step. There are 4 half line elements and a straight line element.

As mentioned while introducing distance look-up table, the vehicle turns around a corner,

starting from the position where an edge of car intersects the vehicle until another edge over-

laps the line. The angular step is 2π
9
so the quantity of the sampling orientations around the

line is three. There are 4 corners, so that the count of crash condition is 12 for every sampled

dot on the line.

All trajectory families are implemented and simulated using Matlab before FPGA implemen-

tations. In Figure 5.2 there are 2 different trajectories which offer a valid path for the same

initial and goal configuration. The trajectories lpalmbrmbrpe (Left hand side)and lpalmbrpe

(Right hand side) have different path lengths. Hence, the arc length optimal trajectory plan-

ner selects the shorter one. In Figures 5.2 the black circle segments are the tracked paths.

Besides, the 48 trajectories are implemented using 12 trajectory calculators. We note that the

FPGA blocks are designed using the same methodology after validating the correctness of all

computations in Matlab.

Figure 5.3 illustrates two trajectory which are equal in terms of steering direction and velocity
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Figure 5.1: Look-up Table values visualization in 2D plane

Figure 5.2: Two valid trajectory calculators for same two configuration

direction. The paths obtained are a clothoid arc based and circular arc based versions for the

same initial and final configurations. It can be observed in Figure 5.3, that a halt is required

during every steering angle change if the circular arc is followed. On the contrary, the clothoid
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arcs can be followed without halts as long as the velocity direction does not change.

Figure 5.3: Circular and smoothed version of a trajectory

The next experiment concerns the collision-free path computation by using arc length optimal

trajectories for finding a path with maximum distance to the obstacles. The planned path, for

the input q1 and q2, is generated for the environment shown in Figure 5.1. The green square

dots are the members of the collision free path as can be seen in Figure 5.4.

In Figure 5.4, the obtained path by trajectory planner is shown for the initial condition qsi =

600, qsy = 10, θ1 =
5π
18
and final condition qgx = 50, qgy = 410, θg = 20

◦. As can be seen, two
additional sampling point is used for connecting start and goal positions. The first maneuver

is used to connect initial configuration to the middle point of the planned path. Afterwards,

if a collision-free connection from middle position to end position is not achieved, a second

configuration is needed at the middle of the remaining path. So, three trajectories are sufficient

for a collision free trajectory planning.

We next simulate the FPGA implementation using ISIM which is a commercial tool presented

by XILINX company.
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Figure 5.4: Trajectory planner algorithm

Figure 5.5 and Figure 5.6 show the Matlab simulation for two circular arc optimal trajectories

lpalmblpe and lpalm π
2 R
smlrm π

2 R
rpb. The circular arc are drawn as black lines on green circles.

Table5.1: Simulation variables

Input Value

q1x 5.125

q1y 4.375

Ang1
19π
18

q2x 4

q2y 3.234

Ang2 0

φmax
pi
4

ωmax
pi
10

Lcb 2

By using the input values which are shown in Table 5.1, also the Matlab trajectory functions

are run for comparison.

According to Matlab simulation the angles are obtained as: a = 1.4662 rad, b = 0.82 rad, e

= 0.6809 rad for the lpalmblpe trajectory and for the lpalm π
2 R
smlrm π

2 R
rpb Matlab obtains a =

1.5146, b = 1.5146, l= 12.1316. The results computed via Matlab are compared with the ones

achieved from FPGA block simulations (see Appendix D). We observe that the deviation
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Figure 5.5: Matlab simulation of the trajectory lpalmblpe

Figure 5.6: Matlab simulation of the trajectory lpalm π
2 R
smlrm π

2 R
rpb

between the lengths and angles obtained via Matlab with 32 bit integers and the results of

FPGA simulations with 16 bit registers are negligibly small.

As is mentioned in Section 4.2.2, the angular and longitudinal values are constructed of 16 bit

registers by the Two Step Trajectory Planner. Angle values have 1 bit sign, 2 bits of decimal

part and 13 bits of fractional part. Longitudinal values have 10 bits of decimal part and 6 bits

of fractional part. The results of FPGA block simulations are in Hexadecimal format. That is,

having a 6 bit fractional part means that the result needs to be divided by 64 after it is converted

to a decimal number. Similarly, the angle value needs to be divided by 8192, because they

have 13 bits of fractional part. The calculated a, b and c values for the same inputs are:

a = x"2F3D", b = x"19DE" and e = x"15DE". When they are converted to decimals, we

obtain a = 12093, b = 6622, e = 5598; the angle values are obtained as a = 12093
8192

= 1.4761,

b = 6622
8192
= 0.8083 and e = 5598

8192
= 0.6833. Using such result, the arc lengths are calculated

and compared for trajectory lpalmblpe. The differences between calculated angle values via

Matlab and FPGA, are because of the fractional parts of calculations which are neglected. the
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1◦ angle difference between the calculated angle and obtained angle is tolerable.

In Appendix E the calculated a, b and c values for the same inputs are: a = x"3022", e =

x"3024" and l = x"0304". When they are converted to decimals, we obtain a = 12322, b =
12484, l = 772, the angle values are obtained as a = 12322

8192
= 1.5048, b = 12484

8192
= 1.5239 and

finally, the length of the straight movement is l = 772
64
= 12,0625. So, the arc lengths and

straight movement length are calculated. For the trajectory lpalm π
2 R
smlrm π

2 R
rpb, the obtained

result via FPGA blocks simulations differs from the Matlab results by around 1◦, which is
again tolerable. The additional analysis for this experiment is the length value l which is cal-
culated during Matlab experiments as 12.136. The difference is 0,0735 which is also tolerable

if the 1 decimal stands for 1 meter, the distance error corresponds to 7 centimeters, which is

less that safety distance for constructing the distance look-up table.

Another simulation is obtained for 48 trajectories in Appendix F. In this simulation the 12

trajectory calculators run in parallel, That is, within 4 cycles all the 48 arc length optimal

trajectories are obtained. The whole 48 calculations take at most 2500 clock cycles.

Table5.2: Trajectory IDs

Trajectory ID Trajectory ID

lpalmblpe 0 rmarpbrme 24

lmasmlrmb 1 rmasmllmb 25

lpalmbrme 2 rparmblme 26

lpalmbrmbrpe 3 rparmblmblpe 27

lpalm π
2 R
sml lmb 4 rmarp π

2 R
spl rpb 28

lpalm π
2 R
sml rmb 5 rmarp π

2 R
spl lpb 29

lpalm π
2 R
smlrm π

2 R
rpb 6 rmarp π

2 R
spllp π

2 R
lmb 30

rmasmllm π
2 R
lpb 7 lmasmlrm π

2 R
rpb 31

rmasmlrmb 8 lmasmllmb 32

rmasmlrm π
2 R
rpb 9 lmasmllm π

2 R
lpb 33

rpalpblme 10 lmarmbrpe 34

rpalpblmbrme 11 lmarmbrpblpe 35

lmalpblme 12 rparmbrpe 36

lpasplrpb 13 rpaspllpb 37

rmarpblpe 14 lmalpbrpe 38

lmalpbrpbrme 15 rmarpblpblme 39

lmalp π
2 R
spl lpb 16 rparm π

2 R
sml rmb 40

lmalp π
2 R
spl rpb 17 rparm π

2 R
sml lmb 41

lmalp π
2 R
smlrp π

2 R
rmb 18 rparm π

2 R
spllm π

2 R
lpb 42

rpaspllp π
2 R
lmb 19 lpasplrp π

2 R
rmb 43

rpasplrpb 20 lpaspllpb 44

rpasplrp π
2 R
rmb 21 lpaspllp π

2 R
lmb 45

rmalmblpe 22 lparpbrme 46

lparpbrmblme 23 rmalmblpbrpe 47

In our implementation, we use a 48 bit validity vector to indicate the validity of the trajecto-
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ries. That means if there is a ’1’ in the corresponding validity vector index, since this index

is the ID of the trajectory, it can connect the given start and goal configurations. It this ex-

periment 3 of the trajectories are suitable to connect the start and end configuration according

to the constraints given in Table 3.1. The Trajectory IDs are introduced in Table 5.2. The

resultant validity matrix is in hexadecimal demonstration is:

[020000200040]

In binary demonstration:

[000000100000000000000000001000000000000001000000]

The trajectories with the IDs 6, 21 and 41 can connect the two given configurations. The tra-

jectories for the corresponding IDs are lpalm π
2 R
smlrm π

2 R
rpb, rpasplrp π

2 R
rmb and rparm π

2 R
sml

lmb. In Appendix F there are other vectors called minimum one and minimum length. Min-

imum one is the ID of the shortest trajectory and minimum length is the calculated length of

the corresponding trajectory. In this experiment rpasplrp π
2 R
rmb has the minimum length and

is chosen by the path planner and trajectory planner.

To sum up, two-step trajectory planner algorithm is generated in two stages: Matlab simu-

lations and FPGA Implementation. Since the geometric computations can be illustrated in

Matlab easier, and graphical views of calculations are faster via Matlab, it is the best op-

tion for demonstration of the algorithmic functionality. FPGA implementation is selected as

hardware solution. In particular, to use parallel processing additional blocks are added to the

algorithm and some blocks are modified to make trajectory calculators work in parallel.
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5.2 Experimental Setup

This part of thesis introduces the tools used to see the results of the trajectory planners. Virtex-

6 FPGA Connectivity Kit is used for implementation of a trajectory planner which can be seen

in Figure 5.7 [19].

Figure 5.7: Virtex-6 FPGA Connectivity Kit

On the selected FPGA kit there is an FPGA with the item number xc6vlx240t-1ff1156. Since

implemented design did not fit in the FPGA, a project with one of the trajectory planners is

generated. After the path is calculated through the trajectory planner, the computed positions

are sent to a PC using the serial communication port. Another software, generated for this

thesis, takes the results via USB port and plots them.

5.3 Trajectory Planning Experiments

During the tests, since it has all kind geometric calculation blocks implemented for this thesis,

we decided to use the trajectory lpalm π
2 R
smlrm π

2 R
rpb which has the maximum number of arc

segments for the analysis.

The test architecture is composed in the following sequence; firstly, two configurations and car

kinematic values are sent to the radius calculator. After the radius is calculated, center points

of the first and last circular maneuvers are obtained. Then lpalm π
2 R
smlrm π

2 R
rpb calculator

follows it by computing the rest of components of the trajectory. At the end of the trajectory

calculator there is a UART interface waiting for the data to be exported. Whenever the path
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data is ready, the lpalm π
2 R
smlrm π

2 R
rpb calculator sets the data ready output to ’1’. Then the

UART interface gets the path data values and sends the data received from the trajectory

planner. Then,the trajectory calculator calculates the next path position. It is observed that

trajcetory path position calculations are always ends faster than the time spent while the serial

data is sent. lpalm π
2 R
smlrm π

2 R
rpb controller, even the UART speed is increased up to 100

Mbaud.

In this experiment the calculation of one trajectory takes 870 clock cycles. Considering the

generated project’s maximum clock frequency of 156.924 MHz, the tested calculation lasts in

8.7 μseconds.

Synthesis results of test architecture can be seen in Table 5.3.

Table5.3: The Utilization of the FPGA resources for the one trajectory calculator

Resource Used Available Utilization

Slice Registers 9512 301440 3%

Slice LUTs 11320 150720 7%

Block RAM/FIFO 2 416 0%

DSP48E1s 29 768 3%

The test architecture for the lpalm π
2 R
smlrm π

2 R
rpb controller implementation is shown in Fig-

ure 5.8.

Figure 5.8: Test architecture

During the experiment, after the necessary conversions are made, the first few obtained path

values for x, y and angular components for the given q1:(4.125, 6.125, 0) and q2:(24,5,0) are:

qx: 4,1250 4,2500 4,6250 4,9687 5,2968 5,8125 5,9843 6,0781 6,1093...

qy: 6,1250 6,1250 6,1875 6,3125 6,500 7,0468 7,3906 7,7500 8,0000...

θ: 0,0035 0,0662 0,2545 0,4427 0,8192 1,0074 1,1956 1,3839 1,5156...

77



To compare with the Matlab simulation, the generated path positions on the FPGA are plotted

by Matlab as can be seen in Figure 5.9

Figure 5.9: Experiment results

The small black squares are the sample points of planned trajectory. As can be seen in Fig-

ure 5.9 these are on the planned path graphic obtained via Matlab.

To conclude, a trajectory which has the most complicated calculations among the trajectories

is tested on Virtex-6 FPGA Connectivity Kit, and satisfactory results are obtained. These

results are arc lengths, radius of the circle, length of the straight line, centers of the circular

movements. Since the implemented design did not fit into the selected FPGA, just one of

the trajectories is tested on board. Actually the results are same as the ones observed via

simulations. So that the rest of the trajectories can be implemented using same methodology.

We note that the overall designed architecture with 12 trajectory computations in parallel

does not fit on a Virtex-6 FPGA which is the one has most capacity in terms of logic cells,

available to use. The number of Slice LUTs exceeded the capacity of the FPGA, which are

used in divider and trigonometric components of calculations and tables. By minimizing the

size of tables, increasing the source sharing the best case achieved is 121 %. 88% of Slice

LUTs are used by two-step trajectory planning and 33% of Slice LUTs are used by distance

look-up table. The block crash condition calculator occupies the the most space among the

all generated blocks. Each crash condition calculator allocates 6% of Slice LUTs. We also

note that an architecture with 6 parallel computations is also proposed in Section 4.5. This

architecture fits on the Virtex-6 FPGA while using 78% of its capacity. The same correct

results are obtained with this architecture only with a longer computation time.
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CHAPTER 6

CONCLUSIONS

In this thesis, the automatic parking algorithm proposed byMüller et. al. in [1] is implemented

on FPGA. The algorithm has the advantage of generating short parking trajectories with a

small number of vehicle halts and can be used in general parking situations.

The proposed method in [1] is a two-step trajectory planner. The first step is finding a

collision-free path that connects an initial and a goal vehicle configuration but that can gener-

ally not be followed by the vehicle due to kinematic constraints. The second step is connecting

the initial and goal configurations of the vehicle by optimal arc length trajectories along the

previously planned path that can be followed by the vehicle. The method of [1] is better than

the other algorithms, introduced in related work, in terms of vehicle halt count. Moreover this

method is capable of parking in any detected spot in the parking environment if there exists

at least one possible path.

The focus of this thesis is the FPGA implementation of the two-step trajectory planning al-

gorithm in [1]. The significant contribution of this thesis is the parallel implementation of arc

length optimal trajectory calculators. Since these computations contain complex trigonomet-

ric functions, the parallel realization of the trajectory computations speeds up the algorithm

given in [1] such that the trajectory computation can be performed in practice. To this end, in

the designed architecture 12 trajectory computations are evaluated in parallel such that only 4

runs of the trajectory computation have to be performed in order to obtain the total number of

48 possible trajectories. Moreover, a modular architecture is provided for design simplicity

and easy extension and modifications. In addition, some sources which require a large amount

of space, are shared (e.g., the circular trajectory construction block) to reduce the utilization

of the FPGA. If the two-step trajectory planner algorithm is implemented by using a micro

controller which is capable of comparable computation process, due to serial realization, the

same algorithm would be executed at least 6 times slower, In this case, the required number of

4608000 computations, given for an example parking environment, would take 14.4 seconds

to complete. In contrast, the FPGA implementation leads to computation times in the order

of 2 seconds which are tolerable by drivers.

It has to be noted that the proposed architecture currently does not fit on the chosen FPGA

hardware. As a remedy, an alternative architecture is designed. Using the modified design, our
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architecture fits into the selected FPGA by adding only 6 multiplexers and grouping the tra-

jectory computation blocks two by two. In the alternative architecture 6 trajectory calculators

are running in parallel and the components used for geometric calculations are shared by 2

trajectory calculator controllers. The time spent during 48 trajectory calculations is increased

up to 4600 clock cycles, whereas the FPGA utilization is reduced from %121 to %78.

An experiment is run for a trajectory calculation in this thesis. The obtained path positions

calculated via FPGA implementation are sent to Matlab by using UART communication to

be plotted. It is observed that the calculated path positions are almost identical to the path

positions calculated via Matlab. This experiment confirms that correct trajectories calculated

on the FPGA.

To verify an FPGA implementation, simulation results can be considered because the simu-

lations of an FPGA implementation exactly match the real working cases. To this end, all

FPGA blocks are simulated and verified one by one during the design process. In addition,

blocks are merged and overall simulations are also run to verify the whole automatic parking

algorithm.

Output of an successful FPGA implementation is usually an ASIC design. The whole al-

gorithm needs to be tested on FPGA prototype with all possible configurations and parking

environment on a real vehicle before the ASIC design process is started. Since the vehicle

kinematics are the inputs of the generated FPGA blocks, the solution of our two-step trajec-

tory planner can be applied to any vehicle for parking assistance system.

In the future, several additions can be made. Firstly, some other trajectories planners can be

added to the 48 trajectories. It is observed that, during the parallel processing, some path

calculation results are obtained earlier than others. The new generated calculators can be in-

serted in the resulting idle times. No additional source is needed for that kind of improvement

but a controller needs to organize the computations. An other contribution that can be added

to the thesis work is the FPGA implementation of clothoid-arc functions which reduces the

halt counts.

To sum up, the parallel realization of the two-step trajectory planner speeds up the compu-

tations of the automatic parking algorithm given in [1]. With a test architecture, a trajectory

calculation is obtained and it is observed that an FPGA implementation of this trajectory

calculator provides promising results.
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Appendix A

THE PYTHAGOREAN THEOREM

Let c represents the length of the hypotenuse of a right triangle the other edges are designated
by the letters a and b. See Figure A.1.

Figure A.1: Right Triangle

The relationship between the lengths of the edges of a right triangle expressed by Pythagorean

as[20]:

c2 = a2 + b2 (A.1)
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Appendix B

HERON’S FORMULA

In geometry, Heron’s (or Hero’s) formula, named after Heron of Alexandria states that the

area A of a triangle in Figure B.1, whose sides have lengths a, b, and c is [21]:

Figure B.1: Triangle

A =
√

s(s − a)(s − b)(s − c) (B.1)

Where the s is defined as half of the perimeter of the triangle:

s =
a + b + c

2
(B.2)
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Appendix C

FRESNEL INTEGRAL FUNCTIONS

S(x) and C(x), are two transcendental functions named after Augustin-Jean Fresnel as Fresnel

Integrals. It is mostly used in optics [22].

S (x) =

x∫
0

sin(t2)dt =
∞∑

n=0

(−1)n x4n+3

(2n + 1)!(4n + 3)
(C.1)

C(x) =

x∫
0

cos(t2)dt =
∞∑

n=0

(−1)n x4n+1

(2n + 1)!(4n + 1)
(C.2)

Graphical illustration of Fresnel Integrals can be seen in Figure C.1. C(x) function is the green
line and S(x) function is the blue line.

Figure C.1: Fresnel Integral Functions
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Appendix D

SIMULATION I

Figure D.1: FPGA simulation of the trajectory lpalmblpe
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Appendix E

SIMULATION II

Figure E.1: FPGA simulation of the trajectory lpalm π
2 R
smlrm π

2 R
rpb
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Appendix F

SIMULATION III

In the Figure F.1 there are 3 different signals which are also critical for the design. The first

signal is nd check circ validity indicates the new data is ready for 12 parallel calculator. After

the 48 trajectory computations are done, input converter blocks sets the transform complete

output to ’1’. So the path planner realizes that it can send another input values to be calculated

and starts to prepare them. Finally when the lengths of the valid trajectories are calculated

sets the rdc check circ validity output to indicate every calculations are completed. As can be

seen one clock later a ’1’ is inserted via the input nd check circ validity for new positions.
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Figure F.1: Parallel Realization
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