
AN IMPROVED GRAPH MINING TOOL AND ITS APPLICATION TO OBJECT
DETECTION IN REMOTE SENSING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÜM�T RU�EN AKTA�

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2013





Approval of the thesis:

AN IMPROVED GRAPH MINING TOOL AND ITS APPLICATION TO
OBJECT DETECTION IN REMOTE SENSING

submitted by ÜM�T RU�EN AKTA� in partial ful�llment of the requirements for
the degree ofMaster of Science in Computer Engineering Department, Mid-
dle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yaz�c�
Head of Department, Computer Engineering

Prof. Dr. Fato³ T. Yarman Vural
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Faruk Polat
Computer Engineering Department, Bilkent University

Prof. Dr. Fato³ T. Yarman Vural
Computer Engineering Department, METU

Assoc. Prof. Dr. P�nar Karagöz
Computer Engineering Department, METU

Assist. Prof. Dr. Sinan Kalkan
Computer Engineering Department, METU

Dr. Onur Pekcan
Civil Engineering Department, METU

Date:



I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: ÜM�T RU�EN AKTA�

Signature :

iv



ABSTRACT

AN IMPROVED GRAPH MINING TOOL AND ITS APPLICATION TO OBJECT
DETECTION IN REMOTE SENSING

AKTA�, ÜM�T RU�EN

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fato³ T. Yarman Vural

September 2013, 66 pages

In many graph-based data mining tools, the use of numeric values as attributes in
graphs is very limited. Most algorithms require pre-processing of the attributes,
which often involves discretization into bins and embedding group names in the input
graph(s). In this thesis, we tackle this problem by utilizing all attributes as is, and di-
rectly incorporating them into the pattern mining process. In order to implement our
method, we modify an existing graph-based knowledge discovery algorithm, SUBDUE,
by adding it the capability of working with continuous and discrete data vectors of
any dimension. In addition, we propose an object detection framework using improved
SUBDUE in its object matching step. This system detects repetitive objects such as
buildings and airplanes in satellite images, once the user speci�es a sample target by
drawing a bounding box around it. Experiments on arti�cial and real datasets show
that our contributions result from a robust and �exible approach that can generalize
over a vast number of problems.

Keywords: Graph Mining, Data Mining, Substructure Discovery
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ÖZ

GEL��T�R�LM�� B�R GRAF�K MADENC�L��� ARACI VE UYDU
GÖRÜNTÜLER�NDE NESNE TESP�T�NE UYGULANMASI

AKTA�, ÜM�T RU�EN

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Fato³ T. Yarman Vural

Eylül 2013 , 66 sayfa

Pek çok gra�k madencili§i uygulamas�nda, say�sal de§erlerin gra�klerin içinde özel-
lik olarak kullan�lmas� oldukça zor bir problem olarak kar³�m�za ç�kmaktad�r. Ço§u
algoritma, bu bilginin, örneklerin gruplanmas�n� ve grup isimlerinin gra�§e eklenme-
sini gerektiren bir ön i³leme evresinden geçirilmesini zorunlu k�lmaktad�r. Bu tezde,
say�sal de§erleri oldu§u gibi b�rak�p desen arama i³leminde kullanarak bu probleme
bir çözüm getirmeyi hede�emekteyiz. Yöntemimizi gerçeklemek için, halihaz�rda var
olan SUBDUE isimli bir gra�k tabanl� bilgi ke³fetme algoritmas�n�, onu herhangi bir
boyuttaki say�sal de§erler dizisi ile çal�³acak hale getirerek de§i³tirmi³ bulunmakta-
y�z. Ek olarak, geli³tirilmi³ SUBDUE'yi nesne e³leme a³amas�nda kullanan bir nesne
tespit etme sistemi önermekteyiz. Bu sistemde, kullan�c� belirledi§i hede�n çevresine
bir kutu çizdikten sonra, uydu görüntüsündeki uçak ve bina gibi nesneler tespit edile-
bilmektedir. Yapay ve gerçek veri setlerindeki deneyler, alana sundu§umuz katk�lar�n,
pek çok probleme genellenebilecek gürbüz ve esnek bir yakla³�m�n sonucu oldu§unu
ortaya koymaktad�r.

Anahtar Kelimeler: Gra�k Madencili§i, Veri Madencili§i, Altyap� ke³�
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CHAPTER 1

INTRODUCTION

Data mining is the process of learning previously unknown knowledge from raw datasets.
It lies at the heart of unsupervised or semi-supervised learning on large databases, and
has a vast number of applications on many domains. The goal is to extract the regu-
larities from the data, which de�ne the dataset's characteristics in a machine-readable
format. While data mining has many applications unstructured domains such as in-
dependent measurements, the focus of this thesis is on structural domains. DNA and
The Internet are such examples where the basic entities (molecules and computers)
are semantically connected.

In order to uncover the hidden knowledge in structural data, one prominent option is
to represent the data with a graph, and then search for frequent subgraphs (pattern,
substructure) in it. As a result, data mining on structural data has gained momentum
with the emerging of graph mining algorithms [1, 2]. These frequent patterns are the
essence of the input graph, i.e. they model important partial structural relationships.
For example, the abstract graph G in �gure 1.1a has the frequent pattern P given in
�gure 1.1b. This pattern occurs four times throughout G.

A graph consists of a set of vertexes which may correspond to basic objects, and a
set of edges which de�ne pair-wise relations of these nodes. The advantage of using
graphs as the basic representation is that complicated relationships in the data can
be modeled with these simple building blocks. DNA, for instance, is an inherently
structural data that can be modeled with graphs. The four nucleobases (Adenine,
Guanine, Thymine, Cytosine) can correspond to vertices, while the bonds between
them are represented with edges. To extract the valuable knowledge from the input
graph(s), repetitive substructure search is a popular method implemented extensively
in graph mining algorithms [1, 3, 4, 2, 5].

The problem with most of the existing approaches [1, 3, 4, 5] is that they generally
are not capable of detecting patterns that occur throughout the input graph(s) with
small variations. The available algorithms are highly optimized towards �nding all
frequent patterns. Additionally, they do not tolerate any changes in the structure of
their instances. SUBDUE [2] is a knowledge discovery algorithm that aims to solve
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(a) Input graph G (b) Pattern P

Figure 1.1: Frequent subgraph example 1.

this problem by introducing tolerance matching in its discovery step. SUBDUE can
�nd frequent substructures even though a few of their vertices/edges are missing in
some instances.

The problem we address in this thesis is that most of the approaches in the literature
are not able to work with real data, and are limited to abstract labels in the graphs.
For example, the pattern in �gure 1.1b should be interpreted as "a triangle connected
with a square" in many applications. This interpretation does not include any numeric
(size/length/area) information about neither object. We believe that accommodating
such numeric knowledge in the graph leads to a more powerful representation. For
example, consider the slightly di�erent graph G′ in �gure 1.2a. For a standard graph
miner to discover these two subgraphs, the objects on the right side of G′ should
manually be labeled as "Big", and the ones on the left as "Small". Otherwise, only
one repetitive subgraph given in �gure 1.1b will be found. In our methodology, a
numeric feature of each object can be calculated and embedded within the object's
label. For example, a "Triangle" with area "32" can be represented with the label
"Triangle 32". With no further modi�cation, the proposed algorithm will come up
with the two frequent patterns in �gure 1.2b.

The main contribution of this work is that numeric data vectors of any length can
be used directly in the input graph to de�ne entities, allowing the pattern mining
procedure to work on these labels. We propose ExtSUBDUE (Extended SUBDUE)
as an improved version of SUBDUE that can work with numeric labels. While this
improvement comes with increased complexity, it is more accurate than alternative
methods, as shown in chapter 5. In addition, we propose an object detection framework
for remote sensing images. Our method can detect instances of a target object class
when the user speci�es a sample pattern. We solve the object matching problem
e�ciently with ExtSUBDUE, using a graph abstraction of the input image.

In order to show the e�ectiveness of ExtSUBDUE, we implement a graph-based object
detection framework for remotely sensed images, GODFREY. This system is capable

2



(a) Input graph G′ (b) Patterns P ′
1andP

′
2

Figure 1.2: Frequent subgraph example 2.

of detecting small objects in satellite images such as cars, airplanes, buildings, trees,
once the user speci�es a template pattern. The target pattern is searched for in the
image using ExtSUBDUE, which works over a graph abstraction of the input image.

In the following chapter, we discuss features of the existing approaches in the litera-
ture, followed by theoretical basis and the variations of SUBDUE, which is the tool
our graph mining tool builds on. In chapter 3, we give a detailed overview of the
SUBDUE algorithm. Then, we propose ExtSUBDUE (Extended SUBDUE), which
is a modi�ed version of SUBDUE. In chapter 4, we describe our graph-based object
detection framework, GODFREY in detail. Experiments on both arti�cial and real
datasets are presented in chapter 5. Finally, a conclusion and our further intentions
to improve ExtSUBDUE and GODFREY are given in chapter 6.

3
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CHAPTER 2

RELATED WORK

Due to their expressive power, graphs have been increasingly used in data mining
applications. Their wide use is a result of their natural occurrences in many domains
including web mining [6], chemical compound analysis [5], security threat detection
[7] and more. Perhaps the most intuitive interpretation of graph mining and analysis
is frequent subgraph (substructure, pattern) discovery. Based on the nature of the
dataset, the problem can be attacked in two di�erent ways:

• Detection of frequent subgraphs across a graph database. This version of the
problem can be formulated as follows:

Given a graph dataset DS = G1, G2, ..., Gn, we aim to �nd any subgraph sg s.t.
support(sg) ≥ minimumSupport.

support(sg) = number of graphs in DS including an instance of sg
total number of graphs in DS

.

• Detection of frequent subgraphs within a single graph G. support(sg) is then
considered as number of instances (embeddings) of sg in G. minimumSupport
is the minimum number of instances for a subgraph to be deemed important.

While the two problems look alike, the methodologies developed for the former problem
generally do not scale well to the latter. On the other hand, latter algorithms are able
to solve �rst problem with slight modi�cations. In both cases, detecting the existence
of a subgraph within a graph essentially reduces to Subgraph Isomorphism problem
(SI), which is known to be NP-Complete. As a result, the main e�ort in e�cient
algorithms is focused on reducing the number of subgraph isomorphism tests, and
only resort to run SI check on highly ambiguous cases. Variants of these problems
include discovery of overlapping/non-overlapping instances and and inexact matching,
i.e. tolerating slight changes in the form of the substructure in SI tests.
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2.1 Frequent Pattern Discovery

Since graphs are used to model complex relationships with basic building blocks such as
nodes, edges and labels, frequent substructure discovery has been one of the hot topics
in the last decade. Frequent pattern discovery algorithms aim to �nd all subgraphs
that have a minimum support value within a graph or a set of graphs. Many algorithms
have been proposed for the purpose of developing e�cient and scalable solutions. Based
on how they approach the problem, they can be divided into two groups: complete
and greedy approaches. While complete methods are guaranteed to �nd all frequent
subgraphs, they tend to report too many �nal substructures [8, 9, 10, 11, 4, 12, 1].
On the other hand, greedy methods [2, 13] may miss some frequent substructures as a
result of their constrained search strategies.

A naive approach in frequent pattern mining in graphs is to enumerate all possible sub-
graphs having up to k vertices. First level includes one-vertex subgraphs, second level
consists of two-vertex patterns, etc. Then, each candidate subgraph can be searched
for in the graph database to decide whether it has enough support. This approach
is problematic and needs improvement for a number of reasons. From a practical
standpoint, such an enumeration scheme requires time and space in exponential order
with k. Therefore, a pruning mechanism is needed to �lter out nodes with low support
values from the search tree. In addition to this, at any given level, redundant substruc-
tures will be generated. Checking whether that subgraph has already been generated
requires Graph Isomorphism (GI) tests with previous candidates, for which no known
polynomial-time algorithm exists [14]. Allowing redundancies in the candidate gener-
ation step leads to many unnecessary SI tests over the whole dataset, which are also
costly. Due to these reasons, complete algorithms either attempt to reduce number of
redundant subgraphs generated [10], or they elaborate depth-�rst search to fully avoid
candidate generation [1]. Heuristic algorithms attack the problem by limiting number
of candidates generated at each level [2].

Inokuchi et al. proposed an algorithm called Apriori-based Graph Mining (AGM) in
2000 [15], which can be considered as an early example of frequent pattern miners.
AGM uses level-wise expansion of subgraphs in the candidate generation step. At
each level of this process, two compatible subgraphs of size k are merged to form new
subgraphs of size k + 1. Similar to the work of Agrawal et al. [16], AGM adopts the
idea underlying market basket analysis by generating a coding mechanism to keep the
subgraphs in lexicographical order. Another work that embraces level-wise Apriori
candidate generation idea is presented in [10] by Kuramochi et al. Their algorithm,
Frequent SubGraph (FSG), uses canonical labeling and subgraph joining at candidate
generation step. In addition, it scales to large graphs in linear order with graph size.

gSpan (graph-based Substructure pattern mining) [1] is an e�cient graph-based fre-
quent pattern mining tool developed by Yan et al. in 2002. It avoids candidate gen-
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eration by utilizing a depth-�rst procedure to enumerate possible substructures. For
each substructure to be tested against support, a minimum DFS code is generated.
This unique code is the canonical label of the substructure, and is the same for two
isomorphic graphs, reducing graph isomorphism test to the much simpler DFS code
comparison. Although the worst-case complexity of canonical label generation is expo-
nential, it is su�ciently e�cient for many types of real graphs. Variants of gSpan have
been developed and applied to domains such as procedural abstraction in embedded
systems [12]. CloseGraph [17] is another expansion of gSpan. It is a modi�ed version
of gSpan that only reports closed substructures, therefore reducing the output size. A
subgraph is closed if there is no supergraph of it with the same support.

In 2002, Borgelt and Berthold proposed an algorithm which outperforms gSpan on a
number of synthetic and real datasets [5]. MoFa, Molecular Fragment Miner, mines
patterns in graphs by means of an extension-based search procedure. In addition to
support-based and size-based pruning rules which are used extensively by its competi-
tors [1, 2], MoFa applies a form of structural pruning to reduce its search space. The
purpose of the latter rule is to consider each node set only once to prune already con-
sidered substructures. This e�cient enumeration plan helps their algorithm to process
substantially lower number of nodes in the search tree. Possible extensions at each
level, on the other hand, are calculated from the embeddings of the parent substruc-
ture. This design choice results in very high space requirements, as each embedding
(instance) of the currently considered subgraphs should be stored. Similar to the idea
of quick-start in GASTON [4], and pre-de�ned substructures in SUBDUE [2], MoFa
�rst discovers the basic units in the database. An initial compression is performed
with these units, allowing the algorithm to perform actual discovery faster. When
compared to GASTON [4], FFSM [3] and gSpan [1], MoFa is speci�cally optimized to
work on molecular fragment mining, as [18] veri�es.

An interactive graph-mining algorithm called SeuS is proposed in [8]. In this work,
Ghazizadeh et al. provide a way to re�ne the threshold parameter by showing the user
approximate, intermediate structures. This procedure allows the user to optimize the
support threshold without the expensive exact discovery process. They use summaries
of the data to limit disk access to the actual database, therefore scaling well to large
datasets. Fast, approximated versions of �nal substructures are extracted from these
summaries. When the user sets the �nal threshold based on these intermediate results,
the expensive discovery process is started.

A novel subgraph mining framework, FFSM, is presented by Huan et al. in [3]. The
contributions of FFSM, Fast Frequent Subgraph Mining, are: 1) a new canonical form
and two e�cient candidate generation functions, FFSM-Join and FFSM-Extension, 2)
graph enumeration rules that generate a low number of redundant subgraphs, 3) use of
embeddings to avoid exponential SI tests. As opposed to minimal canonical codes in
[15, 10], FFSM utilizes maximal codes. FFSM enumerates all possible subgraphs using
FFSM-Join and FFSM-Extension functions. Similarly with [5], canonical matrices

7



of each embedding is stored to quickly match substructures. Experiments on both
synthetic and real datasets reveal a large speed-up over gSpan [1], due to largely a more
precise coding mechanism and an e�cient subgraph isomorphism function. However,
as the size of the substructures decreases, the positive e�ect of using embeddings is
reduced, and gSpan and FFSM tend to perform at a similar level [18]. While use of
embeddings and canonical matrices clearly pays o� in terms of time performance, it
may yield memory problems as the number of stored embeddings are bound to explode
for larger graphs.

In [4], Nijssen et al. introduce the idea of enumerating subgraphs based on their types.
Their algorithm, GASTON, enumerates paths, trees and cyclic graphs separately. This
allows them to incorporate e�ective methods for simple graphs such as paths and trees,
for which polynomial-time isomorphism tests exist. The Quickstart principle in their
context means starting candidate generation with simple structures such as paths and
trees, leading to an e�cient pattern growth plan. For isomorphism tests on general
graphs, they use Nauty [19], which is the current state-of-the-art in graph isomorphism.
A head-to-head comparison with gSpan suggests that GASTON outperforms gSpan
due to its ability to enumerate paths and trees without duplicates [18].

In addition to the performance constraints, the number of substructures reported by
algorithms poses a potential problem. While previously mentioned programs except
CloseGraph [17] report all substructures having enough support, Huan et al. presented
a novel method that mines only maximal frequent subgraphs [9]. A maximal subgraph
is not a part of any other frequent subgraph. This is in accordance with the concept
of interesting substructures in SUBDUE, the ones which may be more signi�cant to
the user. SUBDUE [2] de�nes the quality of a subgraph by its ability to compress
the input graph(s). The number of substructures in the output is drastically reduced,
while keeping the most important ones intact.

While working on a slightly di�erent problem, Kuramochi et al. developed two al-
gorithms to �nd frequent substructures in a large single graph setting [11]. Their
algorithms, depth-�rst VSIGRAM and breadth-�rst HSIGRAM can cope with graphs
with more than 100.000 vertexes. Except SUBDUE, the methods discussed up to now
are optimized toward working on a database of graphs, rather than a single graph. In
a one large graph setup, it is necessary to count the possibly non-overlapping instances
of a subgraph to determine its support. In a multiple-graph database, the support is
formulated as number of graphs having an instance of the subgraph, regardless of the
number of instances in each. In [11], edge-disjoint instances considered for the sake
of e�cient enumeration. For two subgraphs to be edge-disjoint, they must not have
any common edges. In the subgraph isomorphism test, they use canonical labels and
vertex invariants to get a unique code for each pattern. To determine the number
of non-overlapping instances, they create a graph in which embeddings map to the
vertices, and edges link overlapping ones. Frequency counting is thus reduced to the
Maximum Independent Set (MIS) problem. Given a graph G = (V,E) and a subset

8



S ⊂ V , S is independent if ∀vi, vj ∈ S, (vi, vj) /∈ E. S is a maximum independent set
if it includes as many vertices from V as possible. Since this problem is NP-Complete,
they propose two approximate solutions in addition to the exact solution.

Following the footsteps of gSpan, Hellal and Romdhane proposed the NODAR [20]
algorithm that successfully embodies minimum DFS codes in its candidate generation
step. NODAR, Non-Overlapping embeDding based grAph mineR, works in a single
large graph to �nd non-overlapping instances of frequent substructures. To prune the
depth-�rst search tree, they use the anti-monotonic SMNOES (Size of Maximum Non-
Overlapping Embedding Set) heuristic. Anti-monotonicity of a measure in this context
means that support of a pattern can not be higher than that of its subpatterns. In their
search tree, they only allow subgraphs with minimum DFS codes to be extended, to
avoid redundancies in the pattern growth step. The core contribution of this paper lies
in its backwards frequent substructure discovery mechanism: After a frequent pattern
is found, all of its sub-patterns are extracted from this so-called supergraph, without
any frequency computation.

2.2 Graph-Subgraph Isomorphism

Subgraph Isomorphism (SI) and Graph Isomorphism(GI) problems are closely related
in that GI can be seen as a special case of SI problem. The question whether two graphs
G and S are isomorphic reduces to whether they have the same number of vertices,
and SI test for G and S is true. From a mathematical point of view, the complexity
class of GI is unknown; however, no polynomial-time algorithms have been proposed
to date. While the worst-case complexity of existing solutions to both remains to be
exponential, much of the e�ort has been devoted to reduce the number of such cases
to improve average time complexity [14, 21, 19]. It is also worth mentioning that in
many real world applications, graphs in largely similar forms can be considered as
isomorphic. Inexact matching algorithms can cope with slight di�erences across the
data, making them an ideal �t when error-tolerance is of importance [22, 23, 2].

While most of the substructure discovery methods aim to reduce the number of costly
subgraph isomorphism tests, reducing the cost of the test is another option worth
considering. Not surprisingly, endeavors to attack this NP-Complete problem use the
same ideas as those that aim to reduce the number of tests. For example, Olmos et
al. [24] use a coding scheme to de�ne a lexicographical ordering of vertices. This
concept is very similar to DFS coding of gSpan[1]. Edges are assigned codes based
on their labels and features of the vertices at both ends, including degree and label
information. A unique DFS code is built for each subgraph, with an aim to reduce
the number of operations. They compare their algorithm with sgiso(), the subgraph
isomorphism function of SUBDUE, which itself has not been fully optimized. In many
cases, their method concludes much faster than sgiso() function, suggesting a potential
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improvement to the SUBDUE system.

Nauty[19], the current state-of-the art of graph isomorphism, creates canonical labeling
for graphs to �nd a bijection between their vertex sets. The graphs to be matched are
transformed into their canonical forms. It retains completeness, i.e. is guaranteed to
�nd the optimal and exact solution. It is inevitable that even for Nauty, there is a set
of graphs that require exponential number of steps; however, it is very fast for many
others of practical use. The VF2 algorithm by Cordella et al. [21] is comparable to
Nauty in terms of performance. In addition to graph isomorphism, it can also perform
subgraph isomorphism tests. Its authors de�ne �ve feasibility rules to prune the search
space, including 1-look ahead and 2-look-ahead operations. In addition to these, VF2
can also work with Attributed Relational Graphs (ARG), fully utilizing the semantic
information in the attributes of the nodes. The fact that it takes continuous values
in attributes into account to estimate a match cost for each node in the search space
helps it to further prune nodes not having the best match cost.

A potential use of SI/GI algorithms in the world of computer vision is object recogni-
tion and localization in a scene. In [14], Abdulrahim et al. use a graph isomorphism
algorithm they develop for object class recognition. Like many other SI/GI methods,
they exploit neighborhood structure of the vertices to make quick rejections. Since
they use node labels and their neighborhood information, they work in linear time for
many non-isomorphic graph classes. For a small subset of all possible graph pairs, their
algorithm can not make a decision in polynomial-time, and prompts the user to resort
to an exponential matching algorithm. In their experiments, they recognize protein
molecules by matching an unknown sample to a database of concepts to determine its
type. The object classes are represented with graphs, and the tests show that their
method works well for highly structured object types such as molecules. In this thesis,
we propose a methodology that can be used for localization, not just recognition of
objects. Our methodology uses a more robust SI approach, as opposed to GI, which
requires objects to be isolated from background clutter so that their representations
only include information from the objects themselves.

The following section is devoted to SUBDUE, a greedy graph mining tool. It forms
the basis to the suggested algorithm, and the reader is advised to read the section
carefully as the rest of this thesis will build on top of it.

2.3 SUBDUE

SUBDUE [2] is a data mining tool that mines frequent patterns in graphs. Designed
as a greedy algorithm, it employs a computationally constrained search mechanism to
enumerate and evaluate possible candidates. di�ers from its contemporaries in that
it aims to mine patterns that best compress the dataset according to the Minimum
Description Length (MDL) [25] principle. While many frequency-based graph miners
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tend to output too many structures that may or may not interest the user, SUBDUE
detects fewer substructures which are more interesting. The search methodology in
SUBDUE is a level-wise search which starts with single vertices, and expands them by
one edge and possibly one vertex at each level. When expanding each substructure,
only a limited number of children are generated, reducing exponential search space
and therefore the computation.

2.3.1 Minimum Description Length Principle

The quality of each substructure found in SUBDUE is evaluated using MDL principle,
introduced by Rissanen in 1978 [26]. MDL suggests that regularities in the data can
be learned by �nding out the hypotheses that lead to the best compression of the data.
Rissanen has an interesting approach to the learning problem in that it neither assumes
a true distribution underlying the data samples as in the Bayesian paradigm, nor it
relies on a purely frequentist approach. It basically implements a trade-o� between a
model's �tting error and its complexity.

The idea behind MDL is to consider learning as �nding the repetitive patterns and
regularities in the data to compress it. More formally, given a set of hypotheses
H = {H1, H2, ...,Hn} and data D, the purpose is to �nd an hypothesis or a family
of hypotheses that compress the data most. A valid hypothesis is a part of a family
of hypotheses (a model), while the set of all models is the sum of all available means
to express the data. Mathematically, this two-fold MDL principle can be stated as
follows:

De�nition 1. Two-Part Minimum Description Length Principle

Let M = H1 ∪H2 ∪ ... ∪HN , where Hx is xth family of available hypotheses (model),

and M is the union of all valid models. The best hypothesis HεM minimizes DL(H)+

DL(D|H). Here, DL(H) is the description length of H, and DL(D|H) is the descrip-

tion length of D after being compressed by H.

De�nition of an hypothesis in this context is no further than a mechanism to compactly
represent the data. It can be a language dictionary, a codebook, a binary/decimal
encoding scheme, a family of polynomials of degree k or a programming language,
etc. In fact, data compression using computer languages as an encoding mechanism
has long been paid special attention. In 2.3.2 the background of MDL is presented,
followed by SUBDUE's interpretation of MDL principle in 2.3.3.

2.3.2 Kolmogorov Complexity

In 1965, Kolmogorov [27] formulated complexity of a given sequence of data as follows:
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De�nition 2. Kolmogorov Complexity
Kolmogorov Complexity of a sequence of data D is equal to the shortest program P

that prints D and halts.

The intuition suggests that such a representation is highly dependent on the chosen
computer language, which is not the case. Kolmogorov [27] has proven that given a
sequence long enough, the length of two programs written in languages A and B can
di�er by no more than a constant c. Kolmogorov Complexity of a sequence thus refers
to its regularity. This de�nition is in close accordance with Occam's Razor principle,
which states that among competing hypotheses, the one with the fewest assumptions
should be selected. In other words, the best hypothesis is also the simplest one, while
the term simple does not imply any loss in the representation's power. Similarly,
Kolmogorov Complexity (KC) refers to the simplest method able to print the data.

While any of the current programming languages such as Java, C or Python can be
selected for the underlying encoder in the estimation of Kolmogorov Complexity, it is
also possible to speak of Turing Machines in the same context. For example, a Turing
Machine M =< Q,Γ, ε,Σ, δ, s, F > where

• Q is the set of states,

• Γ is the alphabet,

• ε is the blank symbol,

• Σ = Γ− ε is the set of input symbols,

• δ is the transition function,

• s is the start state,

• F is the set of �nal states,

takes a string w as input to generate output string o. The string "<M>w", which
encodes M and w in bits, is a representation for o. KC(o), Kolmogorov Complexity
of o, is the shortest pair "<M>w" such that when M is fed with input w, it out-
puts o. As it can be inferred, KC is invariant to the underlying encoding mechanism
(programming language). However, this invariance property assumes a very long and
possibly in�nite data string, which is hardly the case in real situations.

Example 2.3.1. Kolmogorov Complexity example. Let a string

x = abcabcabcabc...abc

where x consists of abc pattern repeating for 200 times. A simple program that can

output this sequence can be written in C as follows:
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for (i=0; i<200, i++){

printf("abc");

}

whereas another, longer alternative is given below:

printf("abcabcabcabc ... abc");

�

From these two code snippets in example 2.3.1, it is easy to infer that the �rst program
is indeed the shortest one. However, Kolmogorov Complexity (KC) can not be used
as a perfect MDL solution due to the two reasons below, as stated in [28]:

• For many real cases, �nding the most optimal solution for KC is non-trivial. In
fact, in Li and Vitanyi [29], it is shown that it is impossible to write an algorithm
that returns the shortest program printing a given data sequence D. Since KC
is uncomputable, it is not of practical use on real data.

• The data strings confronted in daily life are much shorter than long enough,
so the syntax or language choice a�ects the results. Since certain languages
are optimized toward certain paradigms, the program lengths creating the same
sequence in languages A and B may vary drastically.

As opposed to the Kolmogorov Principle, Rissanen has chosen a more �exible and
less idealistic approach. Even then, the Two-Part MDL fails to put forth a guideline
towards design of models, or hypotheses. In 1996, Rissanen [30] re-formulated his
metric to create a more concrete basis for the model selection problem, leading to a
second MDL de�nition:

De�nition 3. One-part Minimum Description Length Principle

Given a family of hypotheses Hx and data sequence D, we encode D with a single code

Hx. If any parameter setting H in Hx leads to a small DL(D|H), then DL(D|Hx) is

also small. Codes of this property are called universal codes. Among all possible such

codes, the one which is minimax-optimal is chosen. DL(D|Hx) is called Stochastic

Complexity of D.

To conclude, MDL is a principle that is di�erent than both Bayesian and frequentist
paradigms, in that it considers learning as �nding the structural regularities in the
data, and it employs a compression-based approach. It assumes no underlying true
distribution, and implements a trade-o� between over-�tting and expressional power.
MDL's application to graph-based structural mining is not common, as many graph-
miners tend to focus on pure frequencies [1, 12, 4]. To our knowledge, SUBDUE [2] is
the only tool that uses this principle in evaluation of the substructures it encounters.
In 2.3.3, we give a summary of SUBDUE's implementation of MDL.
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2.3.3 Minimum Description Length in SUBDUE

SUBDUE is a greedy graph-based data mining system that works on labeled graphs
[2]. It discovers frequent substructures in graphs, which are evaluated based on the
MDL principle. SUBDUE has an inherent conceptual clustering mode such that it can
work on the data in multiple iterations, with the graph at each iteration compressed by
the best substructure found on previous iteration. With this approach, it can discover
basic building blocks at �rst iteration, their combinations in the next, and so on. While
SUBDUE discovers frequent patterns, it evaluates each pattern by estimating its value.
The substructure that best compresses the input graph is the best one. Following MDL
principle, value V (S) of a substructure S in SUBDUE is calculated as follows:

V (S) =
DL(G)

DL(S) +DL(G|S)
, (2.1)

where DL(G) and DL(S) are the description lengths of G and S, respectively, and
DL(G|S) is the description length of G after being compressed by S. In this context,
compressing G with S is equal to �nding all instances of S in G, and replacing each
instance with a single vertex labeled as S. All egdes linking an instance's vertexes to
other nodes in G originate from the replacement node in the compressed graph. This
process is not recoverable, i.e. the initial state of the graph can not be obtained after
the graph is processed. Thus, SUBDUE features a form of lossy compression.

In the original description, graphs and subgraphs in SUBDUE are represented with
vertexes, edges and their labels. Therefore, the DL(G) of a graph G equals to:

DL(G) = vbits+ adjbits+ ebits, (2.2)

where vbits, adjbits and ebits are the number of bits required to represent the vertexes,
adjacency information, and edges of G, respectively. SUBDUE uses an adjacency
matrix representation to encode the edge information. The further details of this
description length de�nition is given in [31].

SUBDUE's main algorithm is a computationally constrained beam search that looks
for repetitive patterns in the input graph(s). Beam search is a restricted breadth-�rst
search algorithm in which only a number of promising paths are kept at the frontier of
the search [32]. As opposed to other graph miners which return all frequent subgraphs,
SUBDUE's aim is to �nd the interesting ones. This seemingly subjective evaluation is
accomplished through MDL. The best pattern becomes the one which compresses the
input graph(s) most. A detailed overview of the search procedure is given in chapter
3.3.
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2.3.4 Applications of SUBDUE

As an e�cient graph mining tool with open-source code available, SUBDUE has long
been used in many applications. Because the input of SUBDUE is a simple and
convenient graph representation, it can be used with any structured data that can be
represented with directed/undirected labeled graphs. As a result, SUBDUE has been
successfully applied to many di�erent domains including MRI brain scan classi�cation
[33], anomaly detection [34], telecommunications [35], earthquake activity analysis [36],
insider threat discovery [37], molecular fragment mining [38] and web search engines
[39]. One of the main advantages of SUBDUE over its alternatives is its meaningful
output. While many regularity mining methods such as gSpan [1] or FSG [10] make
no clear distinctions on the �nal substructure list, SUBDUE e�ectively ranks them
and has much fewer output patterns.

In [40], Eberle and Holder experimented with SUBDUE and GASTON [4] in a task
that requires each to output the best pattern found in the input graph database.
Since GASTON does not evaluate the patterns, they modify the algorithm so that it
estimates a score for each �nal substructure. Given a graph G and frequent subgraph
S, ScoreS = FrequencyS ∗ SizeS . While this metric is di�erent from MDL, it gives
exact same results in their synthetic databases, which are generated intentionally to
contain a single maximal substructure. SUBDUE's greedy yet e�cient approach helps
it outperform GASTON in terms of run-time for this speci�c con�guration. Ketkar et
al. compared SUBDUE with two of the leading graph miners, FSG [10] and gSpan[1]
in [41]. The synthetic and real datasets they used in performance analysis are graph
transaction databases, as FSG and gSpan expect such inputs, while SUBDUE can
additionally work with a single large graph. In this work, a clearly non-linear behaviour
of SUBDUE as the size of database increases is veri�ed, in contrast to the other two.
This degradation is mostly caused by SUBDUE's ine�cient subgraph isomorphism
testing, while both gSpan and FSG use e�cient mechanisms such as canonical labels
to reduce the number of exponential SI checks. However, SUBDUE manages to �nd
the embedded pattern in the graphs with very high precision by reporting it as the
best substructure %80 of the time. Increasing the support threshold for gSpan and
FSG causes the number of output patterns to be reduced; however, at the cost of the
embedded pattern being not discovered at all.

In addition to frequent subgraph discovery, SUBDUE can be used in conceptually
di�erent tasks. Jonyer et al. utilize SUBDUE's iterative nature en route to hierarchical
conceptual clustering [31]. They modify SUBDUE to add it hierarchical clustering
capabilities and �x a phenomenon called false compression that may occur in rare
situations. This case arises due to the MDL metric for the exact reasons we discussed
in 2.3.2. While default MDL in SUBDUE uses row-wise encoding of its adjacency
matrices, the results may di�er for substructures of similar value when column-wise
encoding is used. This is a direct result of working with limited amount of data, in
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which case choosing one underlying representation over another a�ects MDL criterion.
They �x this problem by making use of row-wise and column-wise encodings together
to get a unbiased mechanism. In their experiments, they use their method to obtain so-
called classi�cation trees, which show the hierarchy of concepts existing in the dataset.
In DNA analysis, this structure is equivalent to a hierarchy of compounds, with more
complex structures emerging at upper layers. For a set of animal descriptions, a
taxonomy tree which explains relations of animal species is obtained.

An interesting work is presented by Jonyer et al. in [42], in which SUBDUE is used
to learn graph grammars. Graph grammars are in very similar to textual grammars,
however, they can model more complex relationships than those existing in text-based
ones. While the latter can only apply concatenation operation to model the variables'
interaction with each other, graph grammars can use arbitrary graphical structures for
the same task. For example, a context-free grammar of the form S → Abc,A→ a|∅ can
be transformed into a graph grammar with the addition of random links between right-
hand side elements. For illustration, while a textual version of the �rst rule S → Abc

connects (A, b) and (b, c), its graph-grammar version may embed any subset of (A, b),
(A, c) and (b, c). If the edges are directed, (b, A), (c, A) and (c, b) should be added to
this list. While learning graph grammars in SUBDUE is a conceptually di�erent task,
the implementation details remain unchanged in [42]. This stems from the fact that
they limit the grammars being learned to context-free ones, which are directly appli-
cable on SUBDUE. Their method learns graph grammars by iteratively compressing
the input graph with the best substructure at each level. Each compression becomes
a rule of the grammar, i.e. a new substructure S consisting of three nodes x, Y , z will
form the rule S → xY z. In this example, Y is a previously discovered substructure
which yielded an earlier rule. After rule generation, the graph is compressed with S
and the next iteration is processed. Since compression consists of replacing a number
of nodes with a newly generated single one, the process is inherently context-free, al-
ways resulting in a single non-terminal on left-hand side. Their method is able to learn
recursive rules of the form S → aS|∅, since SUBDUE is capable of mining recursive
subgraphs.

In many graph mining algorithms such as gSpan [1], FSG [10], SeuS [8] and GASTON
[4], the optimizations toward reducing number of exponential isomorphism tests require
the patterns embedded in the database to be exactly the same. Since they do not
perform the test when there is a mis-match in terms of nodes, edges or their labels,
many of the patterns that occur in the database in slightly di�erent forms are missed.
To be able to �nd these patterns, an inexact matching algorithm [22] is required for SI
tests. SUBDUE is one of the rare graph mining algorithms that successfully implement
this pattern. In addition to the exact matching of subgraphs, SUBDUE has a mode
in which the user can set a threshold for similarity of graph patterns to be counted as
the same. So, regularities that exist throughout the database with small variations are
e�ciently discovered by SUBDUE. Possible distortions include vertex/edge deletion
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and substitution of their labels. When two graphs are matched, the total cost is
calculated based on the overlapping ratios that exactly match, penalizing each variation
with a constant factor. If the total cost is lower than a user-speci�ed threshold, a match
is reported.

2.4 Mining Graphs with Numeric/Vectorial Attributes

In many graph mining algorithms [1, 10, 8, 4, 2, 15], labels of the vertices and edges
are considered as concepts or alphanumeric strings. Counter-intuitively, numeric values
embedded in these programs will be regarded as strings, and therefore their matching
is only based on string comparison. To give an example, three nodes labeled as 1.1, 1.2

and 10.8 will be regarded as equally distant from each other. However, processing 1.1 as
being much closer to 1.2 than 10.8 is a more intelligent way of matching. To cope with
this lack of proper handling mechanisms, continuous values in graphs can be discretized
into bins, and the bin information can be encoded in the graph as cluster labels.
While such discretization steps are useful, we propose a more native methodology that
can incorporate numeric and vectorial attributes in graph mining process. We skip
the discretization step by letting the labels have multi-dimensional data attributes,
which are utilized in the label matching procedure. While this considerably slows the
discovery process, we show that the information gain is worth the increased complexity.
Before we move on to chapter 3 for the details of our novel method, below we mention
notable works aiming to solve this problem.

In the context of this thesis, we refer to single datum values as numeric attributes.
Examples of numeric attributes can be temperature of a room (25 ◦C), age of a person
(42), population of a city (1.350.000) etc. Data sequences, on the other hand, are
identi�ed as vectorial attributes. For instance, the binary representation of the number
19 (10011) can be considered as a data vector of length 5. The RGB (Red-Green-Blue)
color space can be encoded by 3 single-byte numbers (each in range 0 .. 255) or 24
bits (each either 0 or 1). Alternatively, a sequence of n measurements by a sensor can
be represented with a data vector of length n. As exempli�ed here, many meaningful
data values in either discrete or continuous space can be encoded into vectors and
numeric attributes. To use these type of data in graph-mining tools, one needs to put
these values into clusters or bins, and replace the original attribute with its grouping
information. To our knowledge, our method is the �rst to directly use the data in its
discovery step.

SUBDUE uses a form of inexact matching proposed by Bunke in 1983 [43]. While this
scheme can accommodate certain changes such as node/edge deletion and substitu-
tion, we think a major improvement can be achieved by handling of numeric/vectorial
attributes. Real-life graphs often include continuous attributes, which are either dis-
cretized in pre-processing [44], or ignored completely [5] by graph mining algorithms.
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Because of its inexact-matching approach that already o�ers error-tolerance, there
have been multiple e�orts to extend SUBDUE so that it can work with numeric at-
tributes in a special manner [35, 45, 46, 47, 48]. An early example of this methodology
is implemented by Baritchi et al. in [35] in 2000. They propose three di�erent ways
of matching numeric labels:

• Exact Match: Label li matches label lj , if and only if li = lj , which is the default
behaviour of SUBDUE,

• Tolerance Match: Label li matches label lj , if and only if ||li − lj || < t, where t
is an user-de�ned threshold,

• Probabilistic Match: MatchCost(li, lj) is de�ned as the probability of lj being
drawn from a probability distribution with mean li and user-de�ned standard
deviation.

The three proposed label matching types enable SUBDUE to consider numeric labels
as points in 1D space and match them based on their distance from each other. The
parameters de�ned in them are controlled by the user. To generate �nal substructure
de�nitions after the discovery process, they perform a post-processing operation to
print out a detailed information of the best subgraphs.

A later variant of SUBDUE with such capabilities has been proposed by Romero et al.
in 2010 [45, 46]. Their method, like [35], is limited to one-dimensional attributes such
as a single number. They perform a data-range generating process based on the input
data, e�ectively partitioning the given attribute values into clusters. These cluster
numbers are then assigned to the attribute nodes as conceptual labels. The knowledge
discovery phase runs over the quantized graph. Similarly, Davis et al. [48] present their
own implementation of the SUBDUE system, while introducing an outlier-detection
based quantization step. Their method basically detects the outliers in each numeric
attribute and labels them as anomalies. Thus, for each attribute, they assign samples
regular labels such as Normal or Abnormal. Interestingly, they focus on only the
detection of subgraphs having vertexes with Abnormal attributes. Although they are
lower on count, such information is valuable in security-based applications, where ab-
normal patterns are generally considered as suspicious. In 2012, Davis et al. developed
a more generalized approach towards handling of numeric attributes in [47]. Following
a similar pre-processing step to [48] to detect abnormal attributes, they prune the
graph by removing vertexes having abnormal values. The edges connecting to these
vertices from others are also removed. As a result, they perform %30 less isomorphism
tests when compared to unconstrained search.
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CHAPTER 3

A GRAPH MINING TOOL: EXTSUBDUE

In this chapter, �rst, the SUBDUE algorithm that forms the basis of this thesis is
presented. We extend SUBDUE by adding it numeric and vector data label handling
capabilities. We introduce the notation and SUBDUE's input format that will be used
through this work in section 3.1 and 3.2, respectively, as well as the formal de�nition
of our problem. In section 3.3, we give a detailed overview of SUBDUE, and discuss
about its de�ciencies as well as our contributions that lead to ExtSUBDUE in section
3.4.

3.1 Terminology and Notation

Graphs are versatile representations of structured data, in that they can model very
complex relationships with simple elements such as vertexes and edges. A graph G

can be represented with a triple G = (V,E, λ), where V is the set of vertices, E is
the set of edges, and λ is the labeling function that assigns a node or edge its label.
A graph S is called a subgraph of G, if ∀vi ∈ S, vi ∈ G. S is connected if there is a
path from each vertex vi to each vertex vj in S. Although it is possible and certainly
useful to de�ne unconnected subgraphs, we assume that each subgraph is connected.
An edge e = (vi, vj , type), s.t. vi, vj ∈ G should have either directed or undirected in
its type �eld. Directed edges have the property (vi, vj , directed) 6= (vj , vi, directed),
whereas (vi, vj , undirected) = (vj , vi, undirected).

Conceptually, nodes (vertexes) in a graph usually map to objects or entities, while
edges are used to de�ne structural relations between these entities. A simple graph
is given in �gure 3.1a. This example features a unconnected graph which represents
persons in a database. Here, the center nodes are labeled with the names of the people,
which connect to attribute nodes using directed links. Even though unstructured
datasets can be modeled with such star-shaped graphs, the knowledge to be learned
from them is rather limited. More structured data can also be embedded in graphs,
exempli�ed with a very simple social network in �gure 3.1b. In this graph, the vertexes
correspond to the people, and unlabeled edges link friends. The reader should be aware
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that the labeling function λ indeed allows unlabeled edges/nodes. Even in such graphs,
structured patterns such as cliques or paths can be discovered by an unsupervised
algorithm.

Many graph mining algorithms including gSpan [1], FSG [5] and GASTON [4] aim
to �nd all subgraphs having a certain support in the input graphs. SUBDUE, on
the other hand, returns much fewer substructures that compress the dataset most.
Formally speaking, given a graph dataset DS = G1, G2, ..., Gn, we aim to �nd the
pattern set S = s1, s2, ..., sn, such that ∀si ∈ S, V (sj) > V (si) ⇒ sj ∈ S, with
value function V (s) in 2.1. Each substructure si is evaluated separately on DS, so
compression value of one element does not a�ect another. A detailed explanation of
V (s) is given in section 2.3.3.

An inexact matching algorithm similar to [43] is center to SUBDUE's search pro-
cedure. In exact matching, two subgraphs si and sj match exactly if and only if
GraphMatch(si, sj) = true. GraphMatch() essentially checks whether size(si) =

size(sj) and subgraph isomorphism test between si and sj is true. In SUBDUE, the
interpretation of GraphMatch(si, sj) slightly di�ers:

GraphMatch(si, sj) = InexactGraphMatch(si, sj , threshold), (3.1)

where InexactGraphMatch(si, sj , 0) implements exact matching. On the other hand,
threshold parameter allows the user to match two graphs si and sj if the cost of
transforming si to sj does not exceed a user-speci�ed positive value. The operations
allowed in this so-called transformation are vertex and edge deletion/addition, label
changing on a vertex or edge, and reversing the direction of an edge. Each modi�cation
is penalized with a constant cost of 1.0. The purpose of InexactGraphMatch() is to
determine an optimal mapping between the two input graphs' vertices and edges.
To avoid exponential exhaustion of the search space, the function switches to greedy
search to determine an albeit sub-optimal mapping if the global optimum is not reached
within a speci�ed number of steps.

3.2 Input Format and Options in SUBDUE

Input Graph(s): SUBDUE can take a number of positive and negative graphs as
input, each prefaced by either XP or XN, respectively. Positive and negative graphs
only di�er in their interpretations: SUBDUE, by default, discovers subgraphs that
compress positive graphs most, and negative graphs least. This property makes it a
feasible tool for supervised learning. In case a single graph is provided, the XP pre�x
can be omitted. Each graph consists of a set of vertices and edges, along with their
labels. Below, we give de�nitions of vertexes and edges in input �les. For example, a
new vertex can be introduced with the following:
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(a) Graph of an unstructured database

(b) A very simple social network

Figure 3.1: Graph examples.

v <#> <label>

Here, <#> is the identi�er of this vertex, and <label> is its label. Vertex identi�ers
introduced within a graph should start at 1, and they must increment by 1 for each
new vertex. Edges, on the other hand, embed both vertex IDs at each end, direction
if any, and a label. There are three ways to de�ne an edge in a graph:

e <vertex #1> <vertex #2> <label>

u <vertex #1> <vertex #2> <label>

d <vertex #1> <vertex #2> <label>

In this scheme, <vertex#1> is the ID of the source, and <vertex#2> is the ID of
the destination vertex. d is used to de�ne a directed edge, u symbolizes an undirected
edge, and the interpretation of e depends on the -undirected option speci�ed at the
command line. Only if the -undirected �ag is set, edges de�ned by e are assumed
undirected, otherwise they are considered directed. The pre-de�ned substructures are
given as separate input graphs to SUBDUE, each prefaced by a PS keyword.

Each <label> is given as a text sequence, regardless of its type. In SUBDUE, two
types of labels are available: numeric and string. A numeric label consists of encoding
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of a single decimal number such as 15 or 23, whereas a string label is any sequence
that does not correspond to a number as a whole(e.g. label, cat, 12Racing, ...). In
addition to these, we add vector labels, that consists of a string label and the following
<data> �eld. The <data> is the attribute of the node or the edge it belongs to,
which turns the input graph into an attributed relational graph (ARG). This label
type is explained in detail in section 3.4.

A simple example graph and pre-de�ned substructure is given below. Comments at
each line start with a % symbol.

graph.g including input graph:

XP % Can be omitted since only one graph is provided

v 1 person % vertex with string label

v 2 18 % vertex with numeric label

v 3 person

v 4 22

v 5 person

v 6 18

v 7 money 1:1:3200 % vertex with vector label

v 8 money 1:1:2800

u 1 2 is % edge with string label

u 3 4 is

u 5 6 is

d 5 7 has

d 1 8 has

ps-graph.g including a pre-de�ned substructure:

PS %Pre-defined sub prefix

v 1 person

v 2 18

u 1 2 is

Visualizations of graph.g and ps-graph.g are shown in �gure 3.2. The pre-de�ned
substructure has 2 instances in the input graph.

Command-line Options of SUBDUE: SUBDUE has a number of command line
options that determine the input/output operations, complexity of the search process
and more. Here, we give a summary of these options.

To start with, SUBDUE executable can be called with this line on a Linux machine:

subdue <options> <graph input file>
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(a) Input graph
(b) Pre-de�ned

substructure

Figure 3.2: Visualization of sample graph and substructure.

where<options> consists of speci�ed command line parameters, and<graph input
�le> is the �le that includes input graph(s) (e.g. example.g). Some key options are
given below, while the curious reader is advised to read through the SUBDUE Manual
[49] for a full list:

• -beam <#>: The beam length of SUBDUE's search queue. Formal de�nition of
this parameter is explained in section 3.3.

• -compress: If this option speci�ed, the compressed input graph at the end of the
iteration is written to a �le.

• -eval <#>: Setting this parameter to 1 results in using MDL [25] in evaluation
of candidate substructures. If eval is set to 2, a size-based heuristic is used, while
a value of 3 di�erent evaluation function called Set Cover.

• -inc: If -inc option is speci�ed, data is handled incrementally, rather than pro-
cessing a single input �le. If the input graph is too big to �t into memory, it
can be divided into multiple �les, enabling SUBDUE to work within low-memory
con�gurations.

• -limit <#>: Upper limit of number of patterns to be considered for extension
at each iteration.

• -iterations <#>: If the argument is larger than 1, SUBDUE is run in multiple
iterations. At the end of each iteration, the best substructure discovered is used
to compress the input graph G, and the compressed graph becomes the input of
the next iteration.

• -maxsize <#>: Maximum number of vertexes allowed in �nal substructures.

• -minsize <#>: Minimum number of vertexes allowed in �nal substructures.

• -nsubs <#>: The number of best substructures in the �nal list.

• -overlap: If overlap �ag is speci�ed, overlaps among patterns' instances are al-
lowed.
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• -threshold <#>: Tolerance level with respect to a substructure's size in graph
matching step. It basically de�nes the maximum allowed ratio of structural
discrepancy between a pattern and its instances.

3.3 SUBDUE: A Substructure Discovery Method

SUBDUE is a greedy graph mining tool that discovers structural regularities in graphs.
It uses a variant of beam search [50] to limit the number of extended substructures.
The frequent pattern search starts with single vertexes. In the second level, these
single-vertex substructures are extended in all possible ways, based on the actual
examples. After all extended patterns are generated, top beam subgraphs are selected
to be parents in the next level. Search operation continues until no new substructures
are generated, or a user-speci�ed time/extension limit is exceeded. SUBDUE uses
MDL [26] heuristic to evaluate and rank the patterns. MDL principle suggests that
the subgraphs that compress the dataset most are indeed the best ones. SUBDUE's
pattern discovery process is given in algorithm 1, adapted from [41].

Initial compression: Before SUBDUE begins its unsupervised discovery, i.e. �nding
frequent substructures in the input graph G, it can optionally compress G with a set
of pre-de�ned substructures (Line 3, algorithm 1). Examples of such subgraphs can
be a carbon ring in molecular graphs as given in �gure 3.3, or any other substructure
that is known to span the given data. Embedding domain information with pre-
de�ned substructures helps SUBDUE to focus on more complex patterns. If such
domain information is not available, SUBDUE can also be run in multiple iterations.
In the �rst iteration, it can discover the basic units that cover the data. In the second
iteration, interactions between these units and the rest of the nodes in G are modeled.
This idea is implemented in MoFa [5], where an initial run over the data with a very
high support threshold is used to �nd out the underlying simple patterns. These basic
subgraphs, not surprisingly, correspond to frequent structures such as carbon rings.

Figure 3.3: Carbon ring in molecules.

As opposed to SUBDUE's e�cient beam search strategy,
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Algorithm 1: Discovery Procedure of SUBDUE.
1
Input: Input graph G, beam, maxBest, maxSubSize, limit
Output: bestSubList

1 parentList = null; childList = null; bestSubList = null; subCounter = 0;
2 // If there are pre-de�ned subs, compress with them
3 CompressWithPreDefinedSubs(G);
4 // Initialize the parent list with single vertex subs
5 parentList = FindSingleV ertexSubstructures(G);
6 while subCounter ≤ limit and parentList not empty do
7 while parentList not empty do
8 parent = RemoveHead(parentList);
9 Extend parent in all possible ways based on its instances;

10 Group extended subs into currentChildList;
11 foreach child in currentChildList do
12 if size(child) ≤ maxSubSize then
13 childV alue = EvaluateSub(child,G);
14 Insert child to childList ordered by childV alue;
15 if length(childList) > beam then
16 Trim childList to beam di�erent valued elements;

17 subCounter + +;
18 Insert parent to bestSubList in order by value;
19 if length(bestSubList) > maxBest then
20 Trim bestSubList to maxBest elements;

21 Switch parentList and childList;
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CompressWithPreDefinedSubs() function performs an exact subgraph isomorphism
test. This design choice e�ects the run-time performance of early compression with do-
main information. As the size of pre-de�ned substructures increases, the performance
drops rapidly. Thus, this function should be used to a limited extent. Another notable
feature with CompressWithPreDefinedSubs() is that, given multiple basic patterns
to build on, the graph is compressed with respect to the order of the initial patterns.
However, it precisely follows the inexact matching scheme if needed, which is one of
SUBDUE's strengths. Therefore, the domain knowledge injected into SUBDUE can
be designed according to these tips:

• If the pre-de�ned substructures are subgraphs of each other, their order a�ects
the compressed graph G′.

• If the matching tolerance is set too high, pre-de�ned patterns that are relatively
similar, match each other's instances. In this case, their order also a�ects the
�nal graph.

These tips are intended for guidance rather than restriction, as such behavior can
as well be desired. In the �nal graph, each instance of pre-de�ned substructures is
replaced by a single vertex. This vertex is labeled with the identi�er of the pattern it
refers to. The discovery process is performed after this initial compression, if any.

Subgraph extension: In algorithm 1, G is the input graph(s), beam is beam length
of the search, maxBest is the maximum number of best substructures to be reported,
maxSubSize is the maximum number of vertexes to be allowed for output patterns.
The operation that initializes the current substructure list parentList is
FindSingleV ertexSubstructures() function. parentList initially contains each vertex
v, whose label L(v) is encountered at least twice in G. The main loop starting at line
6 continues until the user-speci�ed limit number of substructures are considered for
extension, or the list of extensible subgraphs is empty.

Each substructure in parentList is expanded in all possible directions in algorithm
1 (lines 7-10). The resulting instances are grouped such that isomorphic embeddings
are represented with a single pattern. Each augmented substructure is evaluated to
determine its compression ratio, in lines 11-16. EvaluateSub(child,G) function com-
presses G with child based on MDL principle, and sets value V (child) as explained in
2.1. An overview of the Description Length (DL) used in MDL is given in 2.3.3. After
evaluation, child is placed in childList which keeps track of all new substructures at
the current iteration. As opposed to unconstrained search, the length of childList is
restricted by the beam parameter.

Value-based queue: In early versions of SUBDUE, the actual length of childList is
limited, rather than the number of di�erent-valued substructures in it. This de�ciency
was later �xed on newer versions of SUBDUE, using a value-based restriction. The

26



e�ect of limiting the length rather than number of values can be seen in example 3.3.1:

Example 3.3.1. Limited queue example in SUBDUE.

Consider a fully-connected pattern S having 8 vertexes embedded in graph G. Since

SUBDUE iteratively discovers the substructures in graphs, each subgraph of S is also a

frequent pattern. For example, if each vertex of S has a unique label, S has
(
8
3

)
= 56 3-

vertex subgraphs. If these subgraphs do not exist throughout G in anywhere other than

instances of S, each of these subgraphs compress G with the same ratio. Therefore,

the value of each sub-pattern is actually the same. If the beam parameter is set to 4,

childList can only have 4 of these 56 subgraphs, although all of them have the same

value. To cope with these cases, a value-based queue is implemented in SUBDUE,

allowing childList to have no more than beam di�erent-valued substructures. With

this approach, any number of subgraphs having the same compression ratio claim only

one spot in the queue. Current implementation of SUBDUE uses a value-based queue

to implement childList, rather than a size-limited earlier version. As stated in [31],

this method also has its shortcomings in that the number of substructures in the queue

tends to grow exponentially. In [31], look-ahead functions are utilized to prune patterns

whose extended children overlap, hinting they are part of the same large substructure.

�

After all possible extensions of a parent subgraph are considered, they are put into
the value-ordered bestSubList that includes the best, highest-valued substructures en-
countered so far. The subgraphs in childList become the parent substructures to be
extended in the next turn. The process continues until a user-speci�ed limit is reached,
or no further extension is possible. After the process is �nished, top maxBest patterns
in bestSubList are reported.

3.4 ExtSUBDUE: Addressed Problems and Our Contributions

One of the main problems in SUBDUE is its incapability to work with numeric and
continuous attributes. In its default version, SUBDUE considers each label as a
unique identi�er. For example, the two subgraphs in �gure 3.4 are considered as
non-isomorphic. In fact, SUBDUE estimates that the dissimilarity between these two
graphs is indeed 0.5, considering 0 as isomorphic, and 1 as most dissimilar. Trans-
forming the �rst graph to the second involves three label substitution operations, each
of which brings a �xed penalty of 1.0. The calculation of the dissimilarity measure
used in SUBDUE, MatchCost(g1, g2), is given in equation 3.2. The operations in
this transformation scheme are symmetric, since addition/deletion of a vertex or edge,
substitution of a label and edge direction changing are all penalized with a cost of
1.0. Therefore, MatchCost(g1, g2) = MatchCost(g2, g1). MatchCost(g1, g2) of the
two graphs g1, g2 in �gure 3.4 is 3

6 = 0.5. g1 can be transformed to g2 in three steps,
by changing the labels of the three vertexes to their counterparts in g2. Both graphs
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have the same size of 6 with 3 vertices and 3 labels. The fact that these two graphs
are intuitively almost isomorphic suggests improvement to SUBDUE's rigid matching
function. Below, we give a list of our contributions to SUBDUE.

MatchCost(g1, g2) =
cost of transforming g1 to g2
max(size(g1), size(g2))

,

size(g) = Number of vertices in g + Number of edges in g.
(3.2)

Figure 3.4: Non-isomorphic graphs.

1. Elastic Matching of Labels: Our �rst and most critical contribution to SUB-
DUE is in its label matching function, called LabelMatchFactor(l1, l2), given in
3.3.

LabelMatchFactor(l1, l2) =


1, if l1.labelType 6= l2.labelType

0, if l1 = l2

for numeric/string labels l1, l2

(3.3)

where l1, l2 are the labels to be compared. Each label has a labelType which
de�nes its label type (numeric, string, vector).

By default, SUBDUE considers two types of labels: numeric and string. How-
ever, SUBDUE's label matching for these two types are intrinsically the same:
it checks for exact matching in both. This approach results in a certain decrease
in terms of abstraction and expressive power: For example, consider the sample
comparisons below:

Example 3.4.1. The arguments in the examples below are denoted with their

values for easy reading. You may assume that each number corresponds to a

numeric label, while others are string labels.

• LabelMatchFactor(1.0, 1.0) = 0;

• LabelMatchFactor(1.001, 1.0) = 1;

• LabelMatchFactor(1.001, 989) = 1;

• LabelMatchFactor(2.7, AStringLabel) = 1;
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• LabelMatchFactor(AStringLabel, Y etAnotherStringLabel) = 1;

• LabelMatchFactor(AStringLabel, AStringLabel) = 0.�

As it can be seen from these examples, LabelMatchFactor(l1, l2) is used to match
two labels in SUBDUE's discovery process. In other words, it de�nes the cost of
label substitution operation. l1 and l2 can belong to either nodes or edges in the
input graph G. By default, LabelMatchFactor() is LxL → {0, 1}, where L is
the set of available labels, and does not allow any elasticity in terms of matching
labels. We attempt to �x this de�ciency by modifying LabelMatchFactor()

so that it is LxL → [0, 1]. We add a third label type to L, named as vector
label. This new label type consists of a string label for conceptual matching,
as well as a data vector of any length as its attribute. Its format is "name
distFunc : length : d1 : d2 : ...dlength". Each vector label has a name �eld that
de�nes what it is, such as temperature or color. If no such distinction is needed
to represent the input data, it can be �lled with a uniform name such as label
throughout the dataset. Following SUBDUE's default label matching procedure,
two vector labels whose string parts are not strictly same result in a matching
cost of 1. The rest of a vector label is its data part. This string consists of
a header including two parameters, and the subsequent data vector. The �rst
parameter, distFunc, de�nes the distance function type to be used with these
types of labels. Implemented distance functions are:

• City Block Distance in equation 3.6, with identi�ers CB and 1,

• Euclidean Distance in equation 3.7, with identi�ers EU and 2,

• Cosine Distance in equation 3.8, with identi�ers CS and 3,

• Correlation Distance in equation 3.9, with identi�ers CR and 4,

• Hamming Distance in equation 3.10, with identi�ers HM and 5.

The length parameter, on the other hand, equals to the number of elements in
the following data vector. The subsequent data entries d1 .. dlength consist of
length double-precision numbers. Some vector label examples are given below:

• position 2 : 2 : 35.2928 : −87.108

• temperature 1 : 1 : 26

• color 2 : 3 : 144 : 56 : 215

• data 1 : 10 : 0.9 : 0.12 : 0.54 : 0.76 : −0.19 : 0 : 0 : 0.98 : −1.5 : 1

With the addition of vector labels, LabelMatchFactor() function is re-formulated
into ExtLabelMatchFactor() to as seen in equation 3.4. Single numeric data

29



values can be written as a data vector of length = 1, distFunc = 1.

ExtLabelMatchFactor(l1, l2) =



1, if l1.labelType 6= l2.labelType

0, if l1 = l2

for numeric/string labels l1, l2

V ectorMatch(l1, l2)

for vector labels l1, l2

1 otherwise.

(3.4)

Where

V ectorMatch(l1, l2) =



1, if l1.name 6= l2.name,

1, if l1.distFunc 6= l2.distFunc,

1, if l1.length 6= l2.length

V ectorDistance(l1.data, l2.data, l1.name,

l1.length, l1.distFunc).

(3.5)

With the extended ExtLabelMatchFactor() de�nition in equation 3.4, vector
labels are treated in a di�erent way than numeric or string labels. The elastic
matching of vector labels is implemented in V ectorMatch(l1, l2). Similarly with
LabelMatchFactor(), ExtLabelMatchFactor() returns a maximum cost of 1 if
the two input labels are of di�erent types. For numeric and string types, it
performs an exact comparison. For two vector labels l1 and l2, V ectorMatch()

is called to get their distance in terms of pair-wise distance function speci�ed by
distFunc parameter.

V ectorMatch(l1, l2) function in equation 3.5 �rst checks for header �elds to see
if l1 and l2 have the same name, use the same distance function (distFunc) and
have the same length. If one of these checks fail, the maximum matching cost is
returned. However, if they are fully compatible, the distance between their data
sequences is returned.

The distance functions implemented in this study are:

(a) City Block Distance :

V ectorDistance(p,q, name, l, CB) =

l∑
i=1
|pi − qi|

maxDistancename,l,CB
.

(3.6)

Where p and q are data sequences to be compared, name is the string label
and l is the length of each sequence.
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(b) Euclidean Distance:

V ectorDistance(p,q, name, l, EU) =

l∑
i=1

(pi − qi)2

maxDistancename,l,EU
. (3.7)

(c) Cosine Distance, 1 - (cosine of the angle between p and q as vectors in
l-dimensional space):

V ectorDistance(p,q, name, l, CS) = 1− pq′√
(pp′)(qq′)

. (3.8)

(d) Correlation Distance, 1 - (sample correlation between data sequences p and
q):

V ectorDistance(p,q, name, l, CR) = 1− (p− p̄)(q− q̄)′

||(p− p̄)||.||(q− q̄)||
.

where p̄ =
1

l

l∑
j=1

pj , q̄ =
1

l

l∑
j=1

qj

(3.9)

(e) Hamming Distance, percentage of positions having di�erent values in p and
q:

V ectorDistance(p,q, name, l,HM) =
#(pj 6= qj)

l
. (3.10)

The newly added V ectorDistance(p,q, name, l, distFunc) considers p and q as
points in multi-dimensional space for City Block and Euclidean distances, vectors
in Cosine distance, and data sequences in Correlation and Hamming distance
functions. While three of the functions (3.8, 3.9, 3.10) result in a distance in
the range of [1, 2], City Block Distance 3.6 (1,CS) and Euclidean Distance 3.7
(2,EU) functions need to be normalized. For this purpose, we normalize them
by dividing them with a constant value called maxDistancename,l,i where i ∈
{1, 2} that is calculated from the set of labels L in input graph G. Calculation
of maxDistancename,length,distFunc involves going over the label list L twice to
�nd the maximum unnormalized distance between each compatible label pair
l1, l2 ∈ L.

maxDistancename,l,c = max
l1,l2 in L

LearnDistance(l1, l2, name, l, c).

where

LearnDistance(l1, l2, name, l, c) =



l∑
i=1
|l1.data[i]− l2.data[i]|c if

(l1.name, l2.name = name,

l1.distFunc, l2.distFunc = c,

l1.length = l2.length = l),

0 otherwise.
(3.11)
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The value ofmaxDistancename,l,c is calculated for each possible triplet (name, l, c)

where c ∈ {1, 2} existing in the dataset. Therefore, we ensure that each vector
label type can be normalized. Using this approach, di�erent features embedded
in the same graph with di�erent headers (name, length, distFunc) will have their
own distance functions for City Block and Euclidean options. This essentially
increases the power of this representation: information from multiple domains
can be incorporated within the same graph, using the same vector space and
dimension. ExtSUBDUE can discover patterns which is a combination of vari-
ous sources of information. Another workaround for this speci�c problem is to
assume that all embedded vector labels (features) are normalized so that for
li = name distFunc : l : di1 : di2 : ... : dil, ∀j ∈ {1, 2, ..., l}, dij ∈ [0, 1]. However,
it is often impossible to de�ne such data vectors. For example, to normalize a
data type li = celcius 1 : 1 : degreei such that degreei ∈ [0, 1], a minimum and
maximum degree should be speci�ed for temperature information. SUBDUE au-
tomatically determines the high and low values from these type of labels in input
graph G, therefore easily generalizing over any set of attributes.

If the desired behavior of ExtSUBDUE is to work on a speci�c range for a certain
vector data type across current and future graphs, these ranges can be speci�ed
by additional nodes in each input graph G. For example, if the user works within
a range of [0, 100] ◦C for temperature data, additional two vertexes which are not
connected to any other vertex can be inserted into the input graph so that the
distance between them is the maximum value allowed for that data type. An
example of this situation is given in example 3.4.2.

Example 3.4.2. Range Setting Example in ExtSUBDUE.

Consider an input graph G that has node labels of the form li = name 1 : 1 : di

that contains a set of temperature measurements in ◦C. To allow ExtSUBDUE

to work with these type of graphs consistently, the range can be set explicitly.

If no such range information is provided, each graph G ExtSUBDUE works on

can result in a di�erent maxDistancename,1,CB, and therefore an inconsistent

distance function. Example Graph G is represented as follows:

v 1 temperature 1:1:28

v 2 temperature 1:1:35

v 3 temperature 1:1:-12

v 4 temperature 1:1:-5

v 5 temperature 1:1:17

... (edges)

For input graph G given above, SUBDUE will automatically setmaxDistancetemperature,1,1

to 47. For example, for label1 = temperature 1 : 1 : 28, label3 = temperature 1 :

1 : −12 and label5 = temperature 1 : 1 : 17, the distance function V ectorDistance()

will return the following:
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• label1 and label3:

V ectorDistance(28,−12, temperature, 1, 1) = 40
47 = 0.85

• label1 and label5:

V ectorDistance(28, 17, temperature, 1, 1) = 11
47 = 0.23

• label3 and label5:

V ectorDistance(−12, 17, temperature, 1, 1) = 29
47 = 0.62

If the two vertices de�ning the two extremes are added to G, a new distance

function is generated. Extended Graph G′ is given below:

v 1 temperature 1:1:28

v 2 temperature 1:1:35

v 3 temperature 1:1:-12

v 4 temperature 1:1:-5

v 5 temperature 1:1:17

... (edges)

v 6 temperature 1:1:-20

v 7 temperature 1:1:100

In G′, maxDistancetemperature,1,1 = 120. If, for any graph Gi, these two vertexes

are added at the end of the graph, then maxDistancetemperature,1,1 will always be

set to 120, regardless of the samples in it. The distance function can now work

consistently across a set of graphs. The distance function given above changes

accordingly:

• label1 and label3:

V ectorDistance(1 : 1 : 28, 1 : 1 : −12, temperature, 1, 1) = 40
120 = 0.33

• label1 and label5:

V ectorDistance(1 : 1 : 28, 1 : 1 : 17, temperature, 1, 1) = 11
120 = 0.09

• label3 and label5:

V ectorDistance(1 : 1 : −12, 1 : 1 : 17, temperature, 1, 1) = 29
120 = 0.24

While setting such extremes can be di�cult in n-dimensional data where n� 1,

ExtSUBDUE handles these vectors based on their own distribution. If there is

enough data, this would be su�cient for many real-world applications. �

2. Modi�ed Match Cost Calculation: When matching two subgraphs in SUB-
DUE, the following transformations are allowed to accommodate inexact match-
ing:

• Vertex/edge addition

• Vertex/edge deletion

• Edge direction changing
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• Label substitution

The cost of each transformation is �xed in classical approach of SUBDUE. We
think that a better inexact matching algorithm would be the one that assigns
a cost to label substitution based on their semantic meaning. For numeric and
string labels, we do not modify this cost, which equals to the default cost of
1.0. On the other hand, vector labels have both string and data parts, therefore
the dissimilarities between their data counterparts can determine the matching
(transformation) cost of two labels.

Going back to the example in �gure 3.4, we consider the vertexes in g1 and g2
as having vector labels by assigning them a uniform node label and a distance
function. For simplicity, each vertex's numeric label li is transformed to its
equivalent vector label l′i in the form of node 1 : 1 : li. G, g1 and g2 then becomes
G′, g′1 and g′2, respectively. In this case, it is certain that MatchCost(g′1, g

′
2) ≤

0.5. In fact, if the modi�ed input graph G′ is considered to be limited to g′1
and g′2, maxDistancenode,1,1 = 8.59 − 0.08 = 8.51. The matching cost of two
subgraphs MatchCost(g′1, g2) then becomes:

MatchCost(g′1, g
′
2) =

totalCost

6
. (3.12)

where totalCost is calculated as:

totalCost = (LabelMatchFactor(node 1 : 1 : 2.21, node 1 : 1 : 2.22)+

LabelMatchFactor(node 1 : 1 : 8.56, node 1 : 1 : 8.59)+

LabelMatchFactor(node 1 : 1 : 0.12, node 1 : 1 : 0.08))

totalCost = 0.001 + 0.003 + 0.004 = 0.008 < 0.5.

The suggested cost calculation is more intuitive and useful than not considering
semantic meaning of labels. Normally, real-world graphs having continuous at-
tributes need to be discretized so that graph mining tools can work on them. We
lift this limitation by handling these type of labels within the mining algorithm.

3. Controlled Discovery: In some tasks, we felt the need to limit the discovery
process to get a quick analysis of the pre-de�ned substructures we feed into
ExtSUBDUE. For this purpose, we de�ne three modes for the discovery process,
speci�ed via -discovery parameter:

• No discovery (-discovery 1 ): In this mode, the unsupervised pattern mining
process is not performed. The graph is compressed with only pre-de�ned
subgraphs, if there are any.

• Pre-de�ned discovery (-discovery 2 ): First, the graph is compressed with
pre-de�ned subgraphs. In the frequent pattern mining algorithm, we limit
the initial one-vertex substructures to vertexes representing compressed pre-
de�ned subgraphs' instances. The user can then use ExtSUBDUE to ana-
lyze the interactions of the structures provided by the domain expert and
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Figure 3.5: An example graph that requires forcing diversity.

their surrounding nodes. While the initial one-vertex patterns are limited,
they are extended in every possible way in later steps. In e�ect, the only
limitation enforced is that each �nal frequent subgraph will include at least
one pre-de�ned substructure as one of its vertices.

• Regular discovery (-discovery 3, default): If no discovery mode is provided
explicitly, ExtSUBDUE's default behavior is to have no limitations in its
mining procedure.

4. Forcing Diversity: Since ExtSUBDUE is able to work in the space of real
numbers in graphs, subgraphs with slightly di�erent labels can be instances of
each other with very low matching costs. On the other hand, this phonemenon is
likely to result in reporting of very similar substructures in the output. Example
3.4.3 is essentially a showcase of this problem:

Example 3.4.3. Final Output Similarity Example.

Consider the partially shown input graph G in �gure3.5. Each edge in G is labeled

as `link'. For the sake of simplicity, we leave out the details of the distance

functions for given labels (distance function type, normalization constant etc.).

We assume that the labels having the same name simply match each other within

the current con�guration. If the rest of the graph is not taken into account, an

unsupervised discovery step will bring about these di�erent substructures in order:

Subgraph 1:
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v 1 temp 1:1:35

v 2 wind 1:1:3.1

u 1 2 link

(3 instances)

Subgraph 2:

v 1 temp 1:1:30

v 2 wind 1:1:5.3

u 1 2 link

(3 instances)

Subgraph 3:

v 1 temp 1:1:27

v 2 wind 1:1:2.9

u 1 2 link

(3 instances)

Subgraph 4:

v 1 pos 2:2:3.5:9.2

v 2 altitude 1:1:1500

u 1 2 link

(2 instances)

Subgraph 5:

v 1 pos 2:2:3.8:9.1

v 2 altitude 1650

u 1 2 link

(2 instances)

One property of ExtSUBDUE is that slightly di�erent frequent substructures, al-

though they match with a substructure with a higher score, will be reported if their

values are high enough. In this speci�c example, the �rst three patterns represent

the same structure, while the subsequent two are instances of a di�erent concept.

Given enough number of output substructures, all frequent and distinct subgraphs

may be captured by ExtSUBDUE. However, a substructure having 1000 instances

is bound to surpress another with 500 instances in the output list if the number

of desired �nal patterns is less than 1000, since each embedding of the former

may occupy a spot on the �nal list. This causes the algorithm to miss distinct

patterns in such cases. To cope with this problem, we force ExtSUBDUE to in-

clude a frequent pattern in its output list, only if it does not match one with a

higher score that is already on that list, within the elasticity limits allowed. If

output diversity is forced with (-diverse) option, the result obtained as:

Subgraph 1:
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v 1 temp 1:1:35

v 2 wind 1:1:3.1

u 1 2 edge

(3 instances)

Subgraph 2:

v 1 pos 2:2:3.5:9.2

v 2 altitude 1:1:1500

u 1 2 edge

(2 instances)

�

The e�ect of (-diverse) option is that it drastically reduces the number of redun-
dant patterns in the output list, while retaining the most representative instance
of each class. As a result, each output substructure is di�erent from others.
Substructures with better values do not overwhelm less-frequent but diverse pat-
terns. One side e�ect is that if inexact matching is allowed, a pattern may also
match its sub-patterns, even in graphs having only numeric or string labels.
As a result, the best one among a pattern and its matching subgraphs will be
reported in the output, excluding others with lower compression ratios.

5. Machine-Readable Output of Instances: In many real-world tasks, the ac-
tual instances along with frequent substructures can also be of great use. For
example, in section 4, we develop a novel interactive object detection framework
that aims to detect and localize desired objects in satellite images. We solve
object detection task by reducing it to Subgraph Isomorphism (SI) problem, in
which each instance corresponds to an object. Thus, the instances also need to
be reported in a machine-readable format so that the result can be parsed to
highlight the detections. For this purpose, we implemented options in ExtSUB-
DUE that allows printing instances of both pre-de�ned and unsupervised frequent
substructures to �le.
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CHAPTER 4

AN OBJECT DETECTION FRAMEWORK USING

EXTSUBDUE: GODFREY

In this section, we present a graph-based object detection method for satellite images,
using ExtSUBDUE introduced in section 3.4. The proposed algorithm robustly de-
tects repetitive objects, such as buildings, airplanes, trees etc. once the user speci�es
a template by drawing a bounding box around the target object. The algorithm starts
with converting the given image into a relational graph, in which simple image ele-
ments such as image segments [51] are represented by nodes and spatial adjacency is
embedded via edges. The next step involves user intervention by marking a target
object by hand to �nd similar objects in the scene. The target object is translated
into a subgraph having the same form as the main graph, yet it only includes a subset
of the nodes belonging or adjacent to the object. After a representative subgraph of
the object is extracted, we elaborate graph isomorphism to �nd similar subgraphs in
the scene. The resulting instances are examples of our target object class. Figure 4.1
re�ects the �ow chart of our proposed algorithm. We optimize the system to help
the user re�ne the output by receiving feedback in the discovery process. We utilize
ExtSUBDUE to solve the graph matching problem. Experiments are conducted with
buildings and airplanes, using GeoEye and Ikonos images. We name the method GOD-
FREY, standing for Generalized Object Detection Framework for REmotelY Sensed
Images.

4.0.1 Problems of Object Detection in Remotely Sensed Images

A quick look in the remote sensing literature shows that there is not a single route
map in detecting man-made objects like buildings or roads, nor there exists a single
appearance model capable of representing natural objects, such as, trees or rocks.
Countries, even regions have di�erent styles for building even the most basic structures.
The intra-class variance emerging in many real-life problems constitutes the main
reason why pattern recognition has recently evolved from traditional method of object-
based training and testing, to using semantic analysis and interactions of objects [52].
For example, it is easier to recognize rooftops using the accompanying shadows [53].
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Figure 4.1: Flowchart of GODFREY.

Moreover, nearby objects tend to look like each other, such as buildings of a site sharing
the same roof material. In this study, we propose an object detection framework,
which aims to use such kinds of guiding information in object matching problems.
We embed the contextual knowledge both implicitly and explicitly, in the form of
adjacency relations with surroundings and in node labels as additional information,
respectively.

With the increasing spatial resolution available in satellites, object detection methods
in remote sensing have taken a leap from pixel-based measurements to region-based
similarities. Early methods in Object Based Image Analysis(OBIA) classify pixels,
because objects like buildings, trees and many others �t in a single pixel [54]. With
commercial satellites at resolutions surpassing 0.5 meters per pixel (Worldview-2),
many objects consist of numerous pixels, and can be seen as a combination of separately
recognizable sub-parts.

In High-Resolution Remote Sensing imagery, due to the high variation among the
samples of the target objects, the success of generic object detection approaches such
as the work of Viola & Jones [55] or that of Jain et al. [56] are limited. Methods
depending on independent detection of object components [57] are not practical for
remote sensing objects, since object parts may not be easily identi�able. Pure learning
based supervised methods [58] perform very well on well-de�ned objects like faces or
airplanes. However, they require a high number of positive and negative samples to
train an object. The main advantage of our method is that, to train a new class, only
one representative example is su�cient. Our system allows the user to re�ne the results
by marking more objects of the same type, correcting false positives, or lowering the
similarity threshold. In this sense, we employ an interactive approach to improve the
�nal results, similar to the live feedback procedure of Yao et al. [59].
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4.1 Object Detection as a Graph Mining Problem

Our methodology exploits a graph-based data mining tool on the graph representation
of input image to detect instances of a template object. Among many others, a suc-
cessful detection algorithm with a data mining approach is presented by Inglada and
Michel in [60]. Their method runs on a multi-level segmentation, representing the
image segments and their relationships in an attributed relational graph form. They
utilize explicit shape features of segments as node attributes and use this information
in the graph matching step, similarly with our algorithm.

The marriage of image segmentation and SUBDUE is �rst reported in [61], while an
application of such an approach on real data is presented in [62]. In [61], a hierarchical
segmentation algorithm called RHSeg [63] is used to form a more abstract representa-
tion of the image. RHSeg, Recursive Hierarchical Segmentation, can optionally group
the homogenous segments into clusters based on their spectral features. A layer of
the hierarchic segmentation is selected manually, and it is transformed into a graph
in which segments are represented with vertexes, and edges link adjacent segments.
The cluster index of a segment is used as its conceptual vertex label. SUBDUE is
run over this graph to discover repetitive patterns, just as in [62]. Zamalieva et al.
[62], although their methodology is also based on RHSeg, generate graphs in a di�er-
ent manner. Their algorithm �rst discovers frequent relations on graphs by clustering
edges based on the features of the two vertexes at each end, forming a vertex feature
co-occurence space. The corresponding graph of the image is generated using unla-
beled nodes and labeled edges, with each edge bearing a repetitive relation type. Both
methods use unsupervised learning feature of SUBDUE, and therefore discover abun-
dant patterns in the image. We utilize the pre-de�ned compression stage instead of
unsupervised learning to work in a more controlled environment where we can detect
desired objects.

4.1.1 Scene Graph Generation

The initial process in SUBDUE is graph generation, i.e. creating a graph representa-
tion of the input image. In order to work on a more compact level rather than the
pixels, we apply an oversegmentation operation to get homogenous image segments,
using a graph-based segmentation by Felzenszwalb et Huttenlocher [51]. The preferred
segment size depends on the template object's size, and is set as a fraction of it. While
optimal segmentation parameters can be learned using a metric such as Normalized
Mutual Information (NMI), we choose not to. The fact that we do not need a perfect
segmentation wipes away the burden of choosing the right parameters. Instead, we
only perform an over-segmentation of the image to reduce the number of nodes in the
�nal graph. Segments, the basic local structures obtained from the image, are repre-
sented with vertices in the scene graph. The labels of these nodes basically summarize

41



the local features, and the spatial arrangement of local patches is preserved via putting
edges between neighbor nodes.

Algorithm 2 summarizes our approach in the scene generation process. The reader may
assume that the node list V consists of image segments. The edge list E is generated
according to the rules mentioned above.

Algorithm 2: Graph Generation in GODFREY
1
Input: Node list V , edge list E, distance function distFunc
Output: Graph G

1 foreach node vi in V do
2 Extract features fi = (f1, ..., fD);
3 Form node label li = `node distFunc : D : f1 : f2 : ... : fD';
4 Add node ni to G, with label li representing vi;
5 foreach neighbor node vj in V do
6 Add edge ei,j to G;

At step 2 of algorithm 2, local description of the node is extracted and stored in a
1xD array, which constitutes the feature vector fi. We have implemented a number of
features to be used single-handedly, or within combinations. All of the features store
local geometry rather than global features, thus they are, by de�nition, descriptions
of implicit object parts. Below, we give a list of implemented features for this step:

• Mean color of the segment on R-G-B bands (D = 3),

• Mean entropy of the segment on R-G-B bands (D = 3), with entropy de�ned as
in [64],

• A set of shape features de�ning the segment including MajorAxisLength
MinorAxisLength ,

MajorAxisLength
Perimeter , Perimeter

Area , Eccentricity, Solidity (D = 5),

• Hu moments of the segment [65] as a shape descriptor (D = 7),

• Angular Radial Transform moments of the segment [66] as a shape descriptor
(D = 35).

Among these features, mean color and entropy represent color and texture information
of a segment, respectively. The remaining three features implemented for segments
encode contour-based shape context of the region. All of these features are normalized
to [0, 1] range. Combinations of them are generated by concatenating di�erent features
to obtain a longer vector.
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Context Information: A vertex's label can additionally embed the features of its
surrounding vertices, representing the context the object is in. If context is enabled
and context level is set to 1, feature vectors of a vertex's immediate neighbors are
averaged, and the result is concatenated with its own feature vector (2×D). The data
vector representing the context is weighted to reduce its e�ect, which would otherwise
equal that of a segment's own data. If the context level is set to 2, averaged features
of second-degree surroundings (neighbors of neighbors) is added to the end of its own
feature vector (3×D), and so on.

The major idea behind scene generation and object speci�cation is given in �gure 4.2.
The original (small) image is shown in �gure 4.2a, with the segmentation of the image
in �gure 4.2b. The user speci�es the target object by drawing a bounding box around it
as in �gure 4.2c, and the segments representing the object in �gure 4.2d are processed
to form the object graph. Figure 4.2e shows the additional segments contributing to
the object graph if context (level 1) is enabled.

(a) Image (b) Segmentation

(c) Template selection (d) Object segments

(e) Context contribution

Figure 4.2: Object segment selection example.

4.1.2 Object Graph Generation

The initial scene graph generation is followed by a speci�cation of the object via user
input. To detect instances of a class in the input image, the user draws a bounding
box around the target object. The nodes within the graph extracted from inside
the bounding box, along with their edges, de�ne the object. However, the full object
subgraph under the bounding box does not model the �nal template for e�ciency
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considerations. From the object graph, the connected 4-vertex subgraph whose corre-
sponding segments cover most area of the bounding box is selected to represent the
object. As a result, we select the object parts that cover the coarse appearance of
the object, rather than focusing on the details. This pre-de�ned model is a structured
part of the object that covers most of its area, i.e. which constitutes an improvement
over bag-of-visual-words methods in Computer Vision(BOW) [67] where spatial infor-
mation is mostly discarded. Such approaches ignore the relative spatial arrangement
of words (segments in our case). The number of vertices to be included in the object
graph can be more, and the representative power of the object graph increases with
this count. However, 4 is found to be the sweet spot of the performance vs. accuracy
trade-o�, since the SI checks often take exponential time with the size of the patterns
to be searched for.

4.1.3 Object Detection with Subgraph Discovery

After the object and the scene graphs are constructed, they are passed to ExtSUBDUE.
In the search step, we simply �nd the embeddings of the pre-de�ned object graph in the
scene graph, which yields similar objects in the scene. The reader should be aware of
the fact that this supervised search is the CompressWithPreDefinedSubs() function
in algorithm 1. The rest of the search to �nd the frequent patterns is not performed.
After the instances of the object graph is found, they are recorded. For each instance
in the list, its segment with highest intensity is marked as a detection on the �nal
graph. After all detections are marked, they are compared with the ground truth, and
the performance of the algorithm is calculated.

Post-processing: An interesting feature of ExtSUBDUE is that for each instance, we
have a match cost that de�nes the cost of matching this speci�c instance to the object
graph. To be less reliant on selection of similarity degree, we apply Otsu's thresholding
[68] to the match costs of the detections, and eliminate those instances that have a cost
more than the result. To eliminate false detections, we remove very large results from
the �nal mask. This size-based post-processing depends on the size of the template
object, with maximum size allowed set empirically as 2× size(template).

The pre-de�ned search mechanism of SUBDUE is subject to the same parameters as
the main body of the algorithm, though it is not as much optimized. The threshold
parameter a�ects the detection performance. In the chapter 5, we show how robust
GODFREY is to the selection of this parameter. The proposed approach is meant to
solve the problem of detecting small objects in satellite images.
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CHAPTER 5

EXPERIMENTS

In this chapter, we demonstrate ExtSUBDUE's advantages in working with numeric
attributes over a number of methods. In section 5.1, using an arti�cially-generated
dataset, we estimate ExtSUBDUE's performance in the problem of �nding speci�c
frequent patterns embedded in a database. In contrast to other methods, the node
labels in this database consist of numeric values, rather than class labels. Then, we
evaluate GODFREY, our object detection framework for remote sensing images, in sec-
tion 5.2. GODFREY uses ExtSUBDUE to solve the object matching and localization
problem.

5.1 Arti�cial Dataset Results

We compare the performance of our proposed approach with other methods imple-
mented on SUBDUE to work with graphs having numeric attributes. Although ExtSUB-
DUE can work with data vectors of any length, we stick to one-dimensional continuous
data to be able to make a fair comparison with other works. As a result, each vector

label that combines a conceptual name and a numeric attribute is of the form:

label 1:1:data

Below, we mention how the input graph transaction database is generated:

Database Generation: To evaluate ExtSUBDUE, we form a graph transaction
database that embeds 6 di�erent substructures, similar to [41]. The embedded sub-
graphs are given in �gure 5.1. For each substructure, we create 5 separate databases
including 40,80, 120, 160 and 200 graphs, respectively. In each database, %60 of the
graphs include the relevant substructure, and others are randomly created. In addi-
tion, the de�ned substructure occupies roughly %60 of the graph it is included in, and
the rest of the graph is generated randomly. In total, 6 × 5 = 30 database �les are
generated, with the overall graph count reaching 6× 400 = 2400. In the setup of this
experiment, we opt to work with databases of small graphs (10-15 vertices) instead of
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a large single graph with thousands of vertexes. The motivation behind this choice is
to analyze several aspects of the problem by grouping transactions to obtain di�erent
con�gurations. In the labels of ExtSUBDUE's graphs, City Block (CB) distance is
used.

(a) Substructure 1 (b) Substructure 2

(c) Substructure 3 (d) Substructure 4

(e) Substructure 5 (f) Substructure 6

Figure 5.1: Patterns embedded in transactions.

As opposed to Ketkar et al. in [41], who use string labels such as "V-2" or "E-1",
we distinguish labels in the graph with their data �elds. While edge labels simply
de�ne one of the four connection types "E-1", "E-2", "E-3", "E-4" as string labels,
the vertexes have vector labels whose name �elds are uniform. There are four types
of vertexes in the subgraphs given in �gure 5.1. We distinguish such vector labels by
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their data �elds, while giving them a uniform name such as "label". With the addition
of a single-dimensional data �eld, the nodes in the graph are di�erentiable from each
other.

The data attributes of these vertices are sampled from four di�erent Gaussian dis-
tributions, corresponding to the four vertex label types. An histogram depicting the
values sampled from each distribution is given in �gure 5.2. The data �elds of the four
vertex classes are sampled from Gaussian distributions speci�ed below:

• V-1 class: µ = 0;σ = 3,

• V-2 class: µ = 10;σ = 3,

• V-3 class: µ = 20;σ = 5,

• V-4 class: µ = 30;σ = 5,

Figure 5.2: The distribution of data points for vertex classes.

We have implemented several methods based on SUBDUE that can work with numeric
labels to evaluate our algorithm. Approaches using clustering as a pre-processing step
are given in section 5.1.1. Additionally, 3 methods working on directly numeric labels
are given in section 5.1.2.

5.1.1 SUBDUE with Clustering

First family of algorithms include a pre-processing phase to cluster the data attributes
and assign corresponding vertices the group information as the string label. If a node's
data �eld is labeled to be in cluster 4, it is assigned the label "V-4". After the graph
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databases are pre-processed by using one of the methods, default SUBDUE works on
this compatible graph to discover the best substructure and its instances in each. The
implemented approaches in this class are:

• GT: The index of the distribution for each data sample de�nes its label. The
resulting graph is used as the ground truth, and its results basically signal the
best achievable performance by SUBDUE.

• Kmeans-4: Clustering the data samples using K-Means clustering [69] into 4
groups. The number of clusters is given as auxiliary information to improve the
results.

• Kmeans-5: Clustering the data samples using K-Means clustering into 5 groups.

• MEC: Clustering the data using Minimum Entropy Clustering [70] into a maxi-
mum of 10 groups. MEC algorithm aims to �nd the correct number of classes by
estimating intra-class and inter-class variance, and then clusters the data using
standard K-Means. In our case, it failed to �nd all four classes by determining
the cluster count as 3, by putting V-3 and V-4 into the same class.

• NoLabels: The data �elds of vertices' labels are discarded, meaning they are
uniformly labeled.

• Ranges: Implementation of the work in Romero et al., presented in [45] and
[46]. The data samples are separated into four data ranges using an iterative
optimization function on pair-wise distances, and the index of the range for each
sample is used as its conceptual label in the pre-processed graph.

5.1.2 SUBDUE with Numeric Labels

In addition to the aforementioned solutions that process the data and replace them
with their grouping labels in the knowledge discovery process, there have been e�orts
to use the numeric labels directly in SUBDUE. The three approaches introduced by
Baritchi et al. in [35] are:

• Exact: The numeric labels li and lj match if and only if li = lj . This is SUB-
DUE's default behavior if it encounters numeric labels in graphs.

• Inexact: Introducing tolerance to the label matching procedure, li matches lj , if
and only if ||li − lj || < threshold.

• Prob (Probabilistic): MatchCost(li, lj) is the probability of lj being drawn from
a probability distribution with mean li and standard deviation σ. σ is set as 1,
letting the program know its correct value.
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The algorithms in section 5.1.2 require no pre-processing to discretize the data at-
tributes. We have implemented them by modifying SUBDUE. Their alternatives in
section 5.1.1, on the other hand, use the original SUBDUE implementation without
any improvements. After the pre-process step, if any, the graph is fed into the cor-
responding SUBDUE implementation (original, modi�ed, ExtSUBDUE) and the best
substructure in each database is searched for. If the structure of the discovered sub-
graph matches the actual embedded substructure, we mark it as a match. Otherwise,
it is considered as a miss. We also calculate the ratio of number of detected instances
over the correct number in the database. The results are averaged for the 40, 80, 120,
160, 200-sized transaction databases for each pre-de�ned substructure and similarity
threshold setting.

Accuracy vs. threshold: threshold is provided to SUBDUE or ExtSUBDUE using
the -threshold parameter. In �gure 5.3, an accuracy-based comparison of the imple-
mented algorithms is shown. Based on this chart, it can be inferred that SUBDUE
reaches the peak of its performance with threshold set at a small value of 0.06 and
outperforms is alternatives even with very small tolerance allowed. In this case, MEC
fails to estimate the correct number of clusters by determining it as 3, instead of 4 (by
assigning V-3 and V-4 to the same class). As a result, its �nal discovered patterns
incorrectly include only three types of labels for vertexes, which is quite misleading.
In fact, the errors in the pre-processing step are not recoverable in later stages, which
applies to all clustering-based methods. On the other hand, ExtSUBDUE correctly
distinguishes the four classes from each other in all of its detections.

Figure 5.3: Accuracy vs. threshold of SUBDUE variants.

The di�erence between Inexact and ExtSUBDUE is that ExtSUBDUE is more error-
tolerant even with a small threshold, although they use a very similar logic in matching
of two vector labels. The di�erence is that in ExtSUBDUE, a collective matching cost
is calculated, whereas in Inexact label matching [45], only pair-wise label matching
costs are considered. Since graph isomorphism is an iterative process consisting many
label matching calls, this results in the following advantage of ExtSUBDUE: Similarity
threshold is enforced over the total cost, rather than applying it separately to each
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label matching function call. In e�ect, existence of strong partial mappings helps
the algorithm to be even more tolerant in considering relatively non-similar parts
as matches, which is not the case in Inexact [45] scheme. Probabilistic matching,
on the other hand, fails to outperform ExtSUBDUE for any of the given threshold

con�gurations.

The decline in ExtSUBDUE's performance as threshold increases can be attributed
to the fact that it overextends the substructures after the peak, since its tolerance
gets too high. ExtSUBDUE uses a single threshold for both structural (vertex/egde
deletion, insertion) and label-wise (label matching) transformations. However, other
methods compute such operations separately. We argue that if no overextension is
allowed, threshold should be selected as low as possible.

The challenging performance of SUBDUE using K-means with 4 classes emerges from
the fact that the correct number of classes is known. This method is highly reliant on
the nature of the data, which may not be easily inferred if the data is multi-dimensional.
K-means with 5 classes, for example, fails miserably since the correct vertex classes
can not be inferred. Automatic determination of the number of groups, as in the case
of MEC, can fail even in the given one-dimensional feature space. ExtSUBDUE is less
reliant on the true distribution of the data as showcased in �gure 5.2.

Instance recall vs threshold: Figure 5.4 shows the ratio of correctly detected in-
stances that the algorithms could identify over actual embeddings. For each algorithm,
only correctly detected substructures' instances are taken into account for this met-
ric. The results are averaged for all substructure types, and all transaction sizes.
As threshold increases, ExtSUBDUE catches up with its alternatives. An interesting
point is that although SUBDUE with probabilistic matching (Prob) misses most of the
patterns, the instances of detected ones are mostly obtained. The sweet spot between
accuracy and recall for ExtSUBDUE depends on the data. However, even with small
threshold values, ExtSUBDUE hints enough information on the substructures present
in the input graph(s), which often su�ces for a quick initial analysis.

Figure 5.4: Recall vs. threshold curve of SUBDUE variants.
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Time vs. threshold: Since label matching for vector labels is much more costly
than a strict equality check, ExtSUBDUE's performance is in direct proportion with
the number of label matching checks. A time analysis of the algorithms is given in
�gure 5.5. We believe that the gap between ExtSUBDUE and others can be closed
by optimizing its LabelMatchFactor() function. In the future, we plan to implement
a hash table that consists of values for latest comparisons, to avoid re-calculation of
pairwise match costs as much as possible.

Figure 5.5: Time vs. threshold curve of SUBDUE variants.

5.2 Object Detection Evaluation

In order to test the object detection capabilities of GODFREY, we have prepared a
dataset of 10 satellite images that include building and airplane objects. The dataset
is divided into two parts, with 5 images used in building detection, and 5 images in
airplane detection evaluation. Each image has a size around 1000x1000 or 1500x1000
pixels. For building detection, we used images having a resolution of 2 meters/pixel,
while the airplane dataset consists of images at 1 meter/pixel. Each image contains 15-
100 samples from the target object class. In �gure 5.6, building and airplane examples
existing in the dataset are demonstrated. Each image contains samples of either a
speci�c building class or the airplane class. Although the buildings in di�erent images
vary greatly from each other, the airplanes are very similar in terms of appearance
(commercial aircraft only). Therefore, we have 5 di�erent types of buildings, yet only
one aircraft class in 5 images.

Each class resides in a separate image (excluding Airplane class, which has samples in
5 images). The number of objects in each class is given below:

• Building class 1: 58 samples,

• Building class 2: 99 samples,

• Building class 3: 52 samples,
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(a) Building class 1

(b) Building class 2

(c) Building class 3

(d) Building class 4

(e) Building class 5

(f) Airplane class

Figure 5.6: Object classes in the dataset.

• Building class 4: 74 samples,

• Building class 5: 37 samples,

• Airplane class: 205 samples across 5 images.

The experiment setup is con�gured as follows:

• 8 samples are selected from each class as templates. Up to 2 faulty ones are
discarded manually (will be explained below).

• GODFREY is run independently with each valid template.

• Performances of algorithms with each template of the class are averaged to get
the �nal score.

The curse of working with a single template strikes at this point: The performance of
the algorithm relies on the selection of the template, and more importantly, quality
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of the object graph extracted from the template. Automated selection of representa-
tive segments among all within the bounding box is prone to errors, and sometimes
ambiguous background segments are incorrectly included in the object graph, rather
than more descriptive object parts (such as tail of an airplane, or part of a roof for a
building). When there is a single template for each run, which is our case, we think
that manual selection of object segments will yield better results. However, for mul-
tiple images, the system can be fully automatic. We discuss a solution in the next
chapter.

For these experiments, we discard faulty templates by checking their object graphs.
The object graphs that include background segments are considered as faulty and
are eliminated. In addition to GODFREY, we use two standard template matching
functions implemented by D. Kroon from University of Twente, Italy to benchmark
our method:

• Template_SSD: Template matching using sum-of-square di�erences, used in [71]
and many other applications.

• Template_NCC: Template matching using normalized cross-correlation distance,
used in [72, 73].

Template matching is a technique that is used to match two images based on their
distances from each other. A smaller template mask is convolved with the large im-
age to match the template to its instances. However, an important discrepancy with
our case is that they work better when only a single object is present in the image.
Their variations have been used in certain object detection tasks [56, 74]. Since tem-
plate matching works with a single image patch representing the object, it is directly
comparable with our algorithm. Learning-based approaches which are abundant in
the literature need more training samples, and are therefore beyond the scope of this
study.

Rotation Invariance: In order to achieve rotation invariance in the experiments, we
rotate the template with 30-degree steps to obtain 12 versions. Then, we let the tem-
plate matching functions work on these patches separately. GODFREY uses segments
whose relative spacing does not change much, even though the object is rotated, and it
is therefore already rotation-invariant to a great extent (though illumination changes
are a factor here). As a result, GODFREY is called only once for each template,
whereas Template_SSD and Template_NCC are called 12 times. Detections of all
rotated versions are combined to form the �nal result image. Template_SSD and
Template_NCC are given the exact same templates as GODFREY, and their results
are averaged for each image, allowing a feasible comparison of the algorithms. Over the
binary detection masks of all three algorithms, we apply a size-based check to discard
very large detections. For each template, detections larger than 2*size(template) are
eliminated.
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The key parameters for GODFREY are:

• threshold is set at six di�erent values (0.1, 0.12, 0.14, 0.16, 0.18, 0.2). Since we
apply Otsu's method to the match cost space of detections, a loose value towards
the end of the spectrum (0.2) does give the algorithm stability which would not
happen with a strict threshold. A large threshold will bring many false positives
whose con�dence scores are low, which are eliminated with adaptive thresholding.

• Features in the scene/object graphs are: Combination of color (D = 3) and basic
shape features (D = 5), resulting in a purely feature vector with D = 8.

• First-level context is exploited. Conceptually, shadow segments near the rooftops
and asphalt regions next to airplanes contribute to their graphs. As a result, we
end up with a feature vector of D = 16.

• The vector labels in which node features are embedded use Euclidean distance.

In section 5.2.1, the quantitative and qualitative results are analyzed.

5.2.1 Comparison of GODFREY and Template Matching Methods

In this section, the performances of GODFREY, Template_SSD and Template_NCC
are compared in "Building Detection" and "Airplane Detection" tasks. The two prob-
lems are solved using the same approach: Marking the template and �nding similar
objects in the scene. Below, we give the analysis for the two problems:

Figure 5.7: Precision vs. Recall among Building classes.

Building detection: In the building detection problem, the experiments show that
ExtSUBDUE outperforms both template matching algorithms, as seen in the preci-
sion/recall chart �gure 5.7. This �gure is obtained by changing the threshold param-
eter in ExtSUBDUE (GODFREY) and binarizing the convolved image resulting from
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Template_SSD and Template_NCC by varying threshold values. The results of the
three algorithms are averaged over all images in the dataset. The asymptotic behavior
of the three functions is clear enough to distinguish the template-based approaches
from GODFREY. However, the relative competition of NCC-based and SSD-based
template matching functions depends on the type of the template.

One of the main reasons why GODFREY performs better than template matching
methods in this experiment is that buildings often emerge in radically varying shapes.
For example, the buildings in �gure 5.6a can not be matched using any pixel-based
methodology. We consider image segments as a reliable abstraction level over low-level
image. In addition to reducing the complexity, segmentation helps the algorithm to
generalize over an object class with very simple features and their relations.

Table 5.1 features an image-based comparison of the performances in terms of their
fscores, where fscore = 2∗precision∗recall

precision+recall . In each algorithm, the similarity thresholds
are �xed across images, with their best overall performing settings taken into account.
Table 5.1 hints that GODFREY is not only the most suitable, but also the most robust
one for this task, since its performance does not vary as much as the others among
images. Except Building Class 2, GODFREY performs better than template matching
approaches. Building Class 2 is an exceptional case since it is well-suited for pixel-
wise template matching. Its instances are relatively similar-shaped, and it has a high
contrast with the background.

Table 5.1: F-score comparison of GODFREY, TM-1 and TM-2 in building detection.

Image ID GODFREY Template_SSD Template_NCC
Image 1 0.46 0.16 0.21
Image 2 0.45 0.52 0.35
Image 3 0.40 0.34 0.28
Image 4 0.5 0.36 0.29
Image 5 0.42 0.35 0.3

Airplane detection: Airplanes are much more structured objects than buildings,
so it is expected that pixel-based approaches perform better. However, while GOD-
FREY and Template_NCC performs similarly with a slight decrease, the performance
of Template_SSD takes a steep decline. This situation can be attributed to the fact
that the aircraft, generally, are parked over asphalt areas, which decreases the contrast
around the target object. GODFREY can compensate for this loss of precision by uti-
lizing context information, since it represents the information that airplanes should be
near or over grey regions. It should, also, be noted that template matching algorithms
are generally used to �nd single objects, not multiple instances. The parameter set-
tings for aircraft tests are the same in all algorithms as those in building detection
experiments.

The precision vs. recall curve in �gure 5.8 shows the dramatic performance decrease in
Template_SSD, with GODFREY and Template_NCC experiencing slight di�erences.
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Figure 5.8: Precision vs. Recall among Building classes.

Similarly with table 5.1, table 5.2 compares f-scores of the algorithms for all of the
input images. This check is useful to avoid perfect runs on one image biasing the
overall performance.

Table 5.2: F-score comparison of algorithms in aircraft detection.

Image ID GODFREY Template_SSD Template_NCC
Image 6 0.62 0.30 0.17
Image 7 0.32 0.06 0.17
Image 3 0.34 0.06 0.17
Image 4 0.24 0.10 0.07
Image 5 0.31 0.09 0.65

Visual results: Samples from each class can be seen in �gure 5.9. Please keep in
mind that these images are intended to be useful for illustration purposes. Actual
images are much larger. If an object is detected multiple times, as in �gure 5.9f, it is
counted as one true positive, with second detection being ignored.

To sum up, GODFREY is an algorithm that boosts the following key features:

• It is quite robust object modeling using graphs, which introduces rotation and
scale invariance,

• It is relatively less dependent on the speci�ed threshold when compared to tem-
plate matching methods since it applies Otsu's thresholding on the costs of de-
tections,

• It localizes objects rather than purely detecting them in the scene.
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(a) Building class 1 results (b) Building class 2 results

(c) Building class 3 results (d) Building class 4 results

(e) Building class 5 results (f) Airplane class results

Figure 5.9: Sample detections (Best viewed in color).
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis proposes a new approach to the graph mining problem by extending
the classical SUBDUE algorithm. The proposed method, called Extended SUBDUE
(ExtSUBDUE), is capable of working with labels having data vectors of any length
as their attributes. This relieves the burden of pre-processing the data such that the
numeric attributes are clustered into bins, and the cluster information replace the orig-
inal data samples. The advantage of using the attributes in the discovery process helps
ExtSUBDUE to discover the structural regularities in graphs with no assumptions on
the distribution of the data samples. Information from various channels can be com-
bined within the same graph with di�erent vector label types, allowing formation of
patterns across many data types and domains.

A powerful aspect of ExtSUBDUE is that it does not assume any true distribution of
the data, as opposed to clustering algorithms that require the correct number of clus-
ters. Clustering-based approaches perfom a one-time grouping procedure to quantize
the feature space into a few clusters. This operation is prone to errors especially if
the data is not linearly separable, which is mostly the case. Moreover, clustering is an
operation that highly depends on the number of clusters, which is usually speci�ed by
the user. ExtSUBDUE already performs a clustering-like approach in that the �nal
substructures discovered correspond to the most representative ones, i.e. those hav-
ing most instances within allowed limits. Since cluster centers are more dense than
outliers, points equal to or nearby these centers will exist in the �nal patterns.

Based on ExtSUBDUE, we develop an object detection framework for remote sensing
images. The motivation behind the development of this system is to bring a uni�ed
solution to detection of various objects in satellite images, such as buildings, airplanes,
trees, etc. These objects di�er from regional targets such as residential areas, airports,
and harbours in that they can be modeled with a few homogenous image segments.
We believe that the proposed framework, GODFREY, is a �exible tool that can be ex-
tended to include more image features such as shape, color and texture features. While
its current implementation only includes image segments as vertices in the scene graph,
drastically di�erent approaches can be exploited in the graph generation step. For ex-
ample, SIFT keypoints [75] can be represented with vertices, with the edges embedding
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spatial arrangement of keypoints. Many more features can be extracted from image
segments/keypoints since ExtSUBDUE works on data vectors of any length.

A potential drawback of GODFREY is that the results are heavily a�ected by the
choice of the template, and formation of the object graph. We automatically form
the object graph after the bounding box is drawn. However, existence of background
segments in the object graphs becomes inevitable in some cases. There are two possible
solutions in mind for this problem:

• Manual selection of object segments by letting the user click on object segments,

• Multiple training samples. If multiple object examples are provided for training,
unsupervised ExtSUBDUE can be used to discover the representative subgraphs
across the graphs of these examples (not the whole scene). The discovered best
substructure becomes the best pattern representing that class. This subgraph
can then be fed to GODFREY as the object graph.

Determination of similarity threshold to be used in GODFREY, on the other hand,
is a di�erent problem. It depends on the nature of the image and the object, and
can not be easily inferred using unsupervised approaches. To overcome this de�cit,
we have decided to speed-up the algorithm on its second or latter runs. We save
all of the intermediate data structures such as the image segmentation, scene graph,
and image features. In e�ect, if the same image is processed again, only the object

graph generation, knowledge discovery and subsequent segment highlighting phases
are executed. Therefore, the run time of the algorithm improves greatly, allowing the
user experiment with several values of threshold.

In summary, both ExtSUBDUE and and its application to remote sensing domain,
GODFREY, are �exible approaches that can generalize over various problems. Our
future plans include working with standard object detection databases such as Caltech-
101 [76] to estimate the performance of GODFREY in slightly di�erent problems.
Moreover, ExtSUBDUE itself has room for further development, via optimization of
its label matching function and adding canonical labeling for e�cient subgraph iso-
morphism tests. While we are content with the results so far, the experiments and
analyses hint that there is still much work that can be done.
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