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ABSTRACT 

 
IMPLEMENTATION AND EVALUATION OF THE DEPENDABILITY PLANE 
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(D
3
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Sezer, Ömer Berat 

 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor : Assoc. Prof. Dr. Şenan Ece Schmidt 

Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt 

 

September 2013, 93 pages 

 

 

 

 

Dynamic Distributed Dependable Real Time Ethernet Industrial Protocol (D
3
RIP) is a real 

time industrial communication protocol that runs over shared-medium Ethernet with COTS 

hardware. The protocol consists of an interface layer that enables time slotted 

communication and a coordination layer that guarantees collision avoidance and timely 

delivery of real time messages generated by the control application. At the current 

development stage, these two layers of the protocol are fully implemented and tested. The 

scope of this thesis is the implementation of a new plane for D
3
RIP to achieve dependability. 

To this end, mechanisms of fault detection and roll back recovery are applied. The interface 

of the dependability plane to the existing interface layer and coordination layer is defined. 

Finally the dependability plane is implemented and integrated to the existing protocol stack. 

A number of tests under different fault scenarios are conducted to demonstrate the plane 

functionality. 

 

Keywords: Ethernet, industrial communication network, real time industrial communication 
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DİNAMİK DAĞITILMIŞ GÜVENİLİR GERÇEK ZAMANLI ENDÜSTRİYEL 
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2
G

2
EP) 

İÇİN  

GÜVENİLEBİLİRLİK DÜZLEMİ GERÇEKLENMESİ VE DEĞERLENDİRİLMESİ 
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Dinamik Dağıtılmış Güvenilir Gerçek Zamanlı Endüstriyel Protokolü (D
2
G

2
EP),  (COTs) 

orjinal donanımıyla ortam paylaşımlı Ethernet üzerinde çalışan gerçek zamanlı endüstriyel 

haberleşme protokolüdür.  Protokol zaman oluklu iletişimi sağlayan arayüz katmanından 

(AK)  ve  kontrol uygulaması tarafından üretilen gerçek zamanlı mesajların  iletimini ve 

çakışmayı önlemeyi garantileyen koordinasyon katmanından  (KK)   oluşur. Mevcut 

geliştirme aşamasında, bu iki protokol  katmanı eksiksiz gerçeklenmiş ve test edilmiştir. Bu 

tezin kapsamı D
2
G

2
EP’in güvenirliliğini sağlayan yeni bir düzlem uygulamasıdır. Bu amaçla, 

hata belirleme  ve hata öncesi duruma geri döndürme mekanizmaları oluşturulmuştur. 

Varolan arayüz katmanı ve koordinasyon katmanı için güvenirlilik düzlemi arayüzü  

tanımlanmıştır. Son olarak güvenirlilik düzlemi uygulanmış ve varolan yapıya entegre 

edilmiştir. Farklı hata senaryolarına göre bir çok test gerçekleştirilmiş ve düzlemin 

işlevselliği gösterilmiştir. 

 

Anahtar Kelimeler: Ethernet, endüstriyel iletişim ağları, gerçek zamanlı endüstriyel 

haberleşme 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Industrial control applications are nowadays realized using distributed controller devices that 

are connected by a real-time communication network. The amount of the transmitted data 

has been increased with the new control systems and the demand of these systems will be 

increased more and more in the near future. Traditional bus and control network solutions 

such as CAN [1], ProfiBus [2] and LonWorks [3] do not support the demanded 

requirements, because of their low speed, high cost and incompatibility with other devices 

and equipment.  

 

Therefore, a different protocol is needed to support the stated requirements. Ethernet (IEEE 

802.3) is a common proposition for the support of industrial control applications since it is 

cheap, commonly used, high speed andcompatible with other protocols. However, there is a 

problem to use Ethernet in real time (RT) communication. The reason is the CSMA/CD 

(Carrier Sense Multiple Access / Collision Detection) access protocol.  In CSMA/CD access 

protocol, if a collision occurs on the network, the node which sends the packet to the other 

node, waits a random time to resend the packet. Also, the random amount of time is double 

increased if a collision occurs again. This causes non-determinism and impairs the RT timing 

requirements. To overcome this problem, there are various solutions in the literature. 

Common solutions are: 

 

 Modification of the Medium Access Control 

 Adding Transmission Control Over Ethernet 

 Using Switched Ethernet 

 

In modification of MAC solution, specialized chips (ASICs) are used to modify the Ethernet 

hardware. Sercos [4], Ethercat [5], Profinet IO [6] are examples of modification of MAC 

solutions. They are used as RT Ethernet protocol, but their high cost and incompatible with 

other equipments are the problem of the modification of MAC. In adding transmission 

control over Ethernet solution, there are several different ways of doing this. Master /slave, 

Token Passing and TDMA methods are used to solve the problem by adding transmission 

control over Ethernet. Virtual Token Passing Ethernet [7], Ethernet Powerlink [8], 

Modbus/TCP [9], Ethernet for Plant Automation (EPA) [10], FTT Ethernet [11] are 

examples of adding transmission control over Ethernet. In using switched Ethernet solution, 

there are multiple transmission paths and switches are used instead of hubs that is, each 

network ınterface card (NIC) only receives traffic which is addressed to it. However, this 

solution is not enough to make Ethernet real-time due to the non-deterministic queuing 

delays in switches.  
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The new RT Ethernet protocol, Dynamic Distributed Dependable Real Time Ethernet 

Industrial Protocol (D
3
RIP) is proposed in article [12]. This protocol is fully distributed, uses 

COTS Ethernet hardware and time-slotted transmission control based on the IEEE 1588 time 

synchronization protocol [13]. No hardware modification is required. It supports both RT 

and nRT traffic. D
3
RIP is an extension of the two-layer protocol D

2
RIP by dependability 

functionality in the form of a dependability plane. The interface layer (IL) and coordination 

layer (CL) of D
2
RIP were implemented in [41]. In this thesis, the additional dependability 

plane of D
3
RIP is studied, implemented and evaluated based on an application example, In 

this example, four distributed controller devices communicate with each other over D
3
RIP. 

Several test scenarios show the functionality of the dependability plane.The remainder of the 

thesis is organized as follows. RT Ethernet for industrial communication, requirements of 

them and dependability are discussed and available RT Ethernet protocols are reviewed in 

Chapter 2. Formal protocol models and the implementation of a generic shared medium, a 

generic interface layer, a generic coordination layer and a generic dependability plane are 

explained in Chapter 3. The implementation of the dependability plane is described in detail 

in Chapter 4. The test scenario with 4 controllers and configuration of simulator, 

performance parameters, experiments and results are studied in Chapter 5. The conclusion 

and future works are presented in Chapter 6. 
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CHAPTER 2 

 

 

BACKGROUND 

 

 

2.1 Real -Time Ethernet for Industrial Communication Protocols 

In industrial applications, industrial communication network and protocol are used for 

communication among control nodes and equipments. RT access, deterministic behavior and 

RT are the reasons why industrial communication protocols are used so often in control 

applications. In control applications, different components are used to implement the control 

system:  controllers, remote controllers, supervisory stations, actuators and sensors are some 

of the components that are used. Sensors collect feedback data, controllers control the system 

according to receiving data from sensors using actuators. Actuators transform input signals 

into motion. Supervisory stations are the intelligent part of the control system. It is used as a 

monitoring part and computer in the system. All different parts are connected with each other 

using industrial communication networks. 

 

Nowadays, industrial communication networks are widely used by industrial control 

applications and these industrial control applications become more complex and large-scale. 

Also computer aided industrial control devices with the network access are manufactured in 

recentyears. These developments make industrial control systems become an important 

industrial and academic research topic. Different industrial communication networks have 

been developed for the last twenty years for these systems. 

In different industrial communication networks, messages for the different purposes are 

transmitted to each device in the system. These industrial communication networks are 

divided as follows: [14] (Figure1) 

 

 T1)  Device level data transmission between sensors, controllers and actuators:  The 

receiving sampled data is periodic and it must be sent with time constraints. 

 T2) Control level data transmission between supervisory controllers and the system 

components: It is needed that controllers and the system components at different 

hierarchical levels communicate each other for their coordination in the system. 

Mostly, components and controllers send the data which is event-based and requires 

deterministic response times, to each other. Because of the changing of the system 

behavior in discrete time, the next state of the system and the message which is sent 

in that case, have been already known using system dynamic model. For example, 

the controller which controls the two machines sends a message to the second 

machine to start, when the first machine completes its operation.   

 T3) Information level data transmission: Mostly, it is used for the nRT and event-

based communication. 

 

When these traffic types are analyzed, there are four requirements that should be fulfilled by 
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the network to make it usable for industrial control: there should be RT traffic transfer, 

synchronized communication, dependable operation and support for nRT traffic. In RT 

traffic transfer requirement, when a node in the control system wants to send a message to 

other nodes, this message transfer time should be less than a deadline time of the message. In 

synchronized communication requirement, before the RT communication starts, all nodes in 

the system are synchronized to get the RT message successfully. In dependability 

requirement, if there is a failure in the system, the system should be able to fix the problem 

and resume its correct operation. In support for nRT traffic requirement, nRT messages 

should be sent without corrupting the RT traffic. 

 

 

 

Desktop 
PC

Programmable 
Device

Information Level
(T3, Non Real Time)

Control Level
(T2, Real Time, Sporadic)

Device Level
(T1, Real Time, Periodic)

PLC or Connection 
Device

DriverController

Actuator
Sensor Sensor

 
Figure 1: Industrial Communication Levels [14]  
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In 1980’s CAN, Lonworks, Profibus started to be used as industrial communication network. 

[15]. But, their implementation cost is high, expanding the system is difficult and they are 

not compatible with other communication protocols. So, these problems are the reason for 

developing and using different protocols. Ethernet can be used for industrial communication 

protocol. However, Ethernet is not directly usable as industrial communication 

protocolwithout any modification on hardware or software. Because, it does not support the 

RT traffic when collisions occur in the system. When a collision happens, back-off algorithm 

runs and the node which wants to send a message to the system, waits a random time. It 

creates non-determinism on the system. So, generic Ethernet without any modifications 

cannot be used for industrial communication. However, the application of Ethernet is simple, 

widely used and low cost are the reason why there is a considerable research effort on 

modifications and additions to Ethernet in order to make ıt usable as a RT communication 

protocol. 

 

2.1.1 Requirements 

The requirements for the development of the real-time Ethernet protocol are listed below: 

[16] 

 

Real Time Data Transmission: Message transmission time is measured between the 

applications which are sent and received. The requirements of the message transmission time 

for the different level communications are different. While the applications including human 

operators require 100 ms transmission time, applications working with programmable logıc 

controllers (PLCs) require 10 ms transmission time and applications which coordinate many 

devices, require 1 ms transmission time. 

 

Synchronization Support: In industrial communication network, RT response time and 

common reference time between nodes are provided by synchronization protocol. The 

sensitivity of the synchronization is defined the maximum deviation between the time of two 

nodes [16]. To protect this sensitivity of the synchronization, guard periods are used and this 

causes the increasing of the time delay. The most common and used synchronization 

protocol for Ethernet is IEEE 1588 time synchronization protocol [13] [17]. 

 

IEEE 1588 time synchronization protocol works according to Precision-time protocol (PTP). 

In this protocol, time difference and delay time between the selected master node and other 

nodes are calculated using message exchanges between master node and slave nodes. Thus, 

nodes are synchronized. Except IEEE 1588, special time synchronization mechanisms are 

used in EtherCAT [4] and Sercos (IEC 61491) [5]  protocols. 

 

Non-Real Time Traffic Support:  It is provided that while nRT traffic is supported, the RT 

traffic is not affected nRT traffic. 

 

Compatibility: The most important reason that makes Ethernet an attractive technology is 

inexpensive hardware and software interface. It is required that when industrial Ethernet 

works, it is compatible with standard Ethernet to make implementation with COTS 

(Commercial Off-The-Shelf) components and to take advantage of inexpensive hardware 

andsoftware interface. In addition to this, it is also supposed thatcommonly used application 

protocols such as HTTP and FTP and synchronization protocols such as IEEE 1588 are 

supported.There are backward-compatibility requirements. For this reason, it is expected that 
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once a protocol has been established, it works for years. As a result, an industrial Ethernet 

protocol should be conducive to adding new devices. 

 

Dynamic Resource Separation for the Real-Time Traffic: The communication requirements 

of the industrial system which communicates with a network, change dynamically in time 

[18]. For instance, in the self-triggered control concept, at the device level, calculation times 

are reserved before. In addition to this, high-level controllers which coordinate the 

distributed systems, communicate only when they are needed. It is supposed that according 

to instantaneous needs, RT bandwidth should be separated to devices in the industrial 

Ethernet protocols. 

 

Dependability: Dependability is an important requirement for the applications which have 

critical security constraints and work in the industrial control systems [19]. Availability, 

safety, integrity and maintainability are the elements of dependability [20]. To talk about the 

dependability of a distributed industrial control system which communicates with the 

network, it is provided that the dependability of the network and controller is necessary. 

When designing a dependable industrial communication network, dependable 

synchronization and the consistence of values which are sent with messages, are important. 

The problem of dependability stands outmore RT Ethernet-based solutions due to non-

deterministic feature of Ethernet [21]. Dependable communications provide that accurate 

information should be sent to the right place, at the right timeand right order. Dependability 

support is often done by the separation of the static additional capacity according to default 

worst case [22]. For example, for the TDMA-based protocol additional time slots might be 

allocated to the transmitting nodes inorder to send each message which is lost, in repetition 

time and only half of the capacity can be used. 

 

2.1.2 Real Time Ethernet Protocols 

In the literature, there are four major approaches to add Ethernet real-timeliness:  

 Changing the non-deterministic sending messages mechanism with  the hardware 

modification on Ethernet network interface card,  

 Minimizing response time and the probability of the collision, 

 Removal of the probability ofcollision on shared medium using point-to-point 

connections and switches, 

 Constructing layers on top of shared medium to avoid collision. 

 

Specialized Hardware: EtherCat [4], SERCOS III [5] and ProfiNet [6]  use specially 

designed node and switch hardware. Ethercat and ProfiNet use IEEE 1588 for time 

synchronization. On the other hand, SERCOS III uses special messages to synchronize the 

nodes in the system. These three protocols are supported by special designed dependable 

protocols. Special designed, Twinsafe Protocol operates as separate layer under EtherCAT 

protocol. Devices get addresses and data safety is provided with CRC. In SERCOS III 

Safety, there are sequence numberanda timestamp in the message. The receiver node sends 

an acknowledgment message to the sender node. Devices get addresses and data safety is 

provided with HDLC coding.PROFIsafe is developed for ProfiNet [6]. Sequence number and 

a timestamp are added in the message. Devices get addresses and data safety is provided 

with CRC. 
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Non-Guaranteed Approaches: MODBUS/TCP [9] and similar protocols work on TCP/IP to 

be compatible with standard Ethernet [23] [24]. With traffic shaping, it low delays can be 

achieved in these systems. In these approaches, there is no guarantee that messages will be 

transmitted in time. 

 

Switched Ethernet: Since collisions are possible on standard Ethernet, the solution of the 

non-deterministic network access problem is full-duplex, switched and point-to-point 

Ethernet (IEEE802.3x). With this structure, even if shared medium and the collision problem 

are eliminated, the problem of network access is carried to queueuing delays in the network 

[22][25][26]. To provide the RT communication, Ethernet switches that make scheduling 

and prioritization are needed. Giving priority to the messages, according to these priorities, 

providing different service like 802.1p and 802.1Q Ethernet protocols and protocol 

extensions are proposed. Unlike the standard Ethernet protocols, these protocols require 

specialized switches. Under the assumption of an infinite buffer for real-time traffic, even if 

scheduling analysis can be made, the actual conditions require the use of a limited buffer 

[27]. On switched Ethernet, the implementation of the sensitive time synchronization which 

is important for RT communication, can be difficult. 

 

Ethernet/IP (EIP) [28] works on the TCP/IP with full-duplex Ethernet switches which have 

special prioritization mechanism. Ethernet /IP protocol does notensure the real-time 

communication. Time synchronization is made with special messages which are compatible 

with IEEE 1588 protocol. Also, the coordination between sender and receiver, is provided 

with the ping messages. There is also timestamp in the messages. Devices get addresses and 

data safety is provided with CRC. 

 

Constructing Layer on Shared Medium: A variety of academic and industrial protocols are 

proposed to prevent collisions on shared medium by adding RT properties. These protocols 

aim at adding a layer on IEEE 802.3 that prevents collision and non-deterministic sending 

messages after collision. NRT and RT traffic pass over this layer. On this layer, there may be 

a specific protocol which is responsible for transmission of RT traffic.  TCP-UDP/IP layers 

may be responsible for transmission of RT traffic. Figure 2 shows the additional protocol on 

Ethernet layers.  

 

There are 3 different approaches for adding layer on medium access layer:  

 Time Division Multiple Access (TDMA) 

 Master-Slave 

 Token Passing 

 

Time Division Multiple Access (TDMA) : In this approach, time is divided into equivalent 

slots. The owners of one or more time slots are determined statically for each node.  Time 

synchronization between all nodes in the system, is important for communication between 

nodes. This approach provides reliable network access for all nodes. Working with low 

efficiency is the disadvantage of TDMA. If a node does not send a message in the time slot 

which is belongs to that node, another node in the system cannot send a message in that 

unused time slot. In addition to this, the delay in the software and switches is also considered 

while choosing the time slot. If the messages in the network arelostdue to network errors, 

additional time periods must be allocated to send messages again. 
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Physical Layer

Medium Access Layer

Additional Medium Access Layer
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TCP/UDP

Non Real-Time TrafficReal-Time Traffic

Communication Network
 

Figure 2: Additional Protocol on Ethernet Layers [29] 

 

 

 

Master-Slave: A chosen master node sends messages to the other nodes (slaves) to ask 

whether it needs to send a message or not (polling). Slave nodes only send message when 

master nodes poll them. This approach is used in the network which has small number of 

nodes.  The efficiency of master slave is affected negatively while polling the system. 

Especially in cases wherethe trafficis very variable and nodes do not have any message to 

send, the efficiency decreases. Also, the delay time which is passed when the master node 

waits slave node’s answer, decreases the efficiency. When the number of nodes is large, the 

polling cycle time for all nodes, is more than the delay time of sending message. In that case, 

the delay time is much more than acceptable limit. The speed of software in the slave nodes 

also is the one of thedetermining factors of the polling process time. If the software is too 

slow, the importance of the network speed is ignored and the efficiency of the network is 

decreased.   In addition to the problem of the efficiency, master-slave communication is not a 

suitable structure for distribution. Because of master node, it is single-centered and there 

might be a problem at a single point.  

 

Token Passing:  In this approach, one node can send a message if and only if it has a token to 

send a message. When it sends its message, it transmits the token to another node with a 

special message. In token-based approaches, the possibility of losing the token, token 

circulationtime which causes decreased communication speed and the difficulty of adding a 

new component are the disadvantages of token passing system. 

 

There are lots of solutions which are created in industry and academia.  These solutions and 

standards follow the approaches which are explained the section above and they carry on the 

negative aspects of them. 

 

Time Critical Control Network (TC-Net) [30] is implemented with adding a layer on 

standard Ethernet which provides the token passing. NRT traffic has low priority. Time 
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synchronization is provided with the special message. The dependability of the protocol is 

also provided using an extra TC-Net card. Figure 3 shows the TC-Net structure. [26][31]. 

 

 

 

 
Figure 3: TC-Net Structure [31]  

 

 

 

Powerlink (EPL) [8] is implemented with adding a layer on standard Ethernet which 

provides the master-slave. With the inefficiency of the master-slave structure, EPL efficiency 

is calculated as 25% [22]. Time synchronization is provided with the special message similar 

to the IEEE 1588 protocol. RT and nRT data are sent in different time slots. Sequence 

number and a timestamp are added in the message. Devices get addresses and data safety is 

provided with CRC. 

 

Ethernet for Plant Automation (EPA) [10] works with static TDMA. Time slots for nRT and 

RT are determined before the communication. It supports both RT and nRT traffic. IEEE 

1588 time synchronization protocol is used to synchronize the nodes in the network.  The 

disadvantage of this protocol is static slot scheduling and TDMA. Slot scheduling is done by 

periodic message broadcast. Also, to the guard periods and error recovery precautions cause 

low efficiency in TDMA solutions like EPA. [16] [26] 

 

In FTT Ethernet protocol, master/multi-slave model is used to implement the protocol. It 

uses COTS Ethernet hardware.The communication is TDMA based and time slot durations 

are fixed. Nodes can be connected to share or switched medium. It supports both RT and 

nRT traffic, also in addition to them, there is online admission control to guarantee 

timeliness to the RT traffic. Also there is no specific synchronization protocol. But, 

elementary cycle begins with master node trigger. When master node broadcast to trigger 

message, elementary cycle is started with that trigger message. The disadvantage of the FTT 

Ethernet protocol is that master-slave method. Master-slave models have single point of 

failure, undistributed structure and low efficiency. [11][32]  

 

In Virtual Token Passing Ethernet (VTPE), if a node wants to hold a network, it should 

takethe virtual token to send a message to other node. In this method a virtual token is 

circulating between nodes and it works with closing the binary exponential back off (BEB) 

algorithm. When there is collision in the system, it provides that the nodes send the RT 

message again immediately. In this protocol, Ethernet hardware is not modified. It uses 
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COTS (commercial off-the-shelf) Ethernet. Software Ethernet driver modification is required 

for RT stations. Figure 4 shows the algorithm of VTPE.The disadvantage of the VTPE is 

losing token which is the dependability problem of token passing method.  [7] 

 

The focus of this study is working with compatible components without changing the 

working principle of Ethernet and providing guaranteed real-time performance for shared 

media protocols.  Table 1 shows the comparison of the defined requirements and 

performance criteria for these protocols. In table, A/I: Academic/ Industrial Purpose, RT 

Cap: RT Data Transmission Capacity, nRT Cap: NRT Data Transmission Capacity, Time 

Sync: Time Synchronization Protocol are used as abbreviations. 

 

 

 

Table 1: Shared Medium Industrial Ethernet Protocol 

A/I Protocol 

Mediu

m 

Access 

Delay 
Node 

Number 

RT 

Cap.(bps

) 

nRT Cap. Time Sync 

I EPA TDMA  
5ms, 

100µs 
32, 64  12.28M 0,85 

IEEE 

1588,10µs, 

1µs 

I EPL  
Master-

Slave 

400µs, 

5.5ms 
4,15 

15.2M, 

32M 

19.6%, 

4.4% 
IEEE 1588,1s 

I 

Time 

Critical 

Control  

Network 

(TCNet) 

Token-

Passing 

2ms/ 

20ms/ 

200m 

24,13 

58.4M/ 

51.2M/ 

7.2M, 

45.6M/ 

40.8M/ 

4.8M 

0%, 

20% 
- 

A FTT-E 
Master-

Slave 
1ms 

Unspecifie

d 

36M, 

36% 
0,11 

Periodic Time 

Sychronizatio

n Message 

from Master 

Node 

A VTPE 
Token-

Passing 
5.8ms 256 

Under 

40% 

Ethernet 

Cap. 

Unspecifie

d 
- 

 

 

 

2.2 Dependability 

Dependability is defined as the ability to deliver service that can be justifiably trusted. Also, 

it includes the attributes below: [20][33]. 

 Availability:  A system is ready to provide the right service. 

 Reliability: A system continues to right service in a time. 

 Safety: A system does not lead to irreversible errors at the user level. 
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 Maintainability:  A system can be conducive to repair and  can be available to 

maintain when needed 

 Integrity:  System changes are suitable for designed sequence and there are not any 

unexpected system changes in the system design sequence. 

 

System is dependable when it fulfills (some of) the above attributes. Also, system must have 

precautions against threatened dependability of the system elements at the design and 

operation stages. Threatened dependability of the system elements are divided into the three 

main categories. These categories are: [20] [33] [34]  

 Component-Level Errors (Faults) 

 System-Level Errors (Errors) 

 User-Level Errors (Failures) 

 

Figure 4 shows the faults cause-effect relationship. 
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Figure 4: Dependability Threats [20] 

 

 

 

As can be seen in Figure 5, faults which occurred and are not solved at the component level 

proceed to the user level. After that the system cannot work properly. Bringing back the 

correct function of the system, error conditions should be eliminated. 

Means (dependability activities) are activities for elimination of errors and allocation of the 

dependability of the system at various levels. They are divided into 4 main groups: [20] [33] 

[35]  

 Component-Level Fault Prevention Activities: Fault prevention activities are the 

activities which prevent the faults at the design stage. Keeping records of faults at 

the designed system and modify it during the design process is the most common 

example. [36] [37]. 

 Component-Level Fault Removal Activities: Error detection, classification and 

validation phases of the system design phase of these activities aims to eliminate the 

errors. System verification is a method which provides confirmation of fault before 

debugging and supports system requirements after debugging. 
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 Component-Level Fault Forecasting Activities: Fault forecasting activities are the 

activities which determine the state changes that cause user-level faults after 

completed system design. 

 Component-Level Fault Tolerance Activities:  Activities of detection and 

elimination of errors that can occur during operation of the system. Elimination of 

effects of the system faults is called system recovery [20]. The most common 

method without having to initialization (reset) while system is operating is making 

checkpoint and rolling back. 

 

In this method, functions in a distributed system record their state in error conditions that 

may occur. In the event of any error, functions return to their pre-recorded states within the 

scope of the error recovery scenario operated by the system. Although at first glance it seems 

to be an easy method of application, in some conditions rollback mechanism causes 

consecutive rollbacks which might return the system to its initial state. In other words, it 

causes reset of the system. Figure 5 shows that situation which is called domino effect. 

 

 

 

 
Figure 5: Domino Effect [38] 

 

 

 

In Figure 6, lines with dashed vertical show the communication of functions. 3 processes in 

Figure determine the rollback point periodically. For example in process 3, an error after 4th 

recovery block is identified. This situation causes that process 3 returns to the 4th recovery 

block. When process 3 returns to the 4th recovery block, the other two processes have to 

return to their previous recovery point to be compatible with process 3.  The reason why the 

other two processes have to return to their previous recovery point is that process 3 

communicates with the other two processes between error and 4th recovery block. With the 

same logic, rollback mechanism causes that the system returns to its initial state, like toppled 

dominoes one after the other. 

 

In order to stop the domino effect, a communication mechanism between processes is 

recommended [39] [40]. In these articles, proposed communication mechanisms cause 

additional load on the system message traffic. However, it seems that [40]’s proposed idea 

causes less additional load on the system message traffic than other one. In [40], the use of a 

common reference time between functions is proposed to reduce the additional load on the 

system message traffic. Figure 6 shows the proposed control point description and rollback 

mechanism. 
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Figure 6: Creating Control Point and Rollback [40] 

 

 

 

Figure 7 shows that distributed nodes run synchronous with each other. Common period of 

time is determined for synchronous nodes to make an acceptance test. Node which does not 

complete acceptance test within the specified time, sends its delay time to other nodes to 

determine the synchronous recovery points. This reduces the additional load on the system 

message traffic. However, currently only available in recovery point messages are used for 

identification purposes in the network, and this adversely affects the efficiency of the 

network. In our framework, distributed nodes are synchronous. In addition to this, 

communication between the nodes is on the shared medium. Dependability plane in our 

framework uses the advantages of these two features and it is aimed to eliminate the 

additional message load on the system. 
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CHAPTER 3 

 

 

PREVIOUS WORK 

 

 

3.1 Dynamic Distributed Dependable Real Time Industrial Protocol (D
3
RIP) Protocol 

Overview 

Dynamic Distributed Dependable Real Time Ethernet Industrial Protocol can be used for the 

communication of controllers in distributed control systems. Dynamic Distributed Real Time 

Ethernet Industrial Protocol works over Ethernet protocol with non-real and RT traffic. 

There is no need to change the physical MAC layer, it uses COTS Ethernet hardware. D
3
RIP 

protocol works on shared medium without using any switch. It realizes TDMA on top of 

Ethernet, whereby synchronization is achieved by the IEEE 1588 protocol.  It requires small 

software Ethernet driver modification and modifications of the software stack between MAC 

and Application layer.  Figure 7 shows the layered architecture of D
3
RIP. The Dependability 

Plane works over D
2
RIP structure that is implemented in [41]. 

 

 

 

Shared Medium

MAC Layer

Interface Layer

TCP / IP LayerCoordination Layer

Real Time Application Layer Non-Real Time 

Application Layer

IEEE

1588 Protocol

Dependability 

Plane

 

Figure 7: D
3
RIP Layer Architecture 

 

 

 

In D
3
RIP Layer Architecture, there are 3 different layers added to the original Ethernet layer 

architecture namely interface layer (IL), coordination layer (CL) and dependability plane 

(DP). Interface layer is responsible for the time-slotted TDMA structure that is implemented 

and synchronized with other nodes using IEEE 1588 time synchronizing protocol. At the 

beginning of each time slot, CL sends information to the IL about the usage of the time slot 

and IL sends Ethernet frame within time slot when it gets information from CL. 

Coordination layer is responsible for determining the allocation of the type of slot whether 
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RT or nRT and the allocation of the owner of the slot.  CL is implemented in the user space 

of Linux and IL is implemented in the kernel space of Linux in previous works [29][42]. In 

these works, CL is implemented as 2 types:  DART (Dynamic Allocation Real-Time 

Protocol) and URT (Urgency-Based Real-Time Protocol). In DART, variables in the 

protocol are hold in the form of allocated RT slots. In URT, control application variables are 

stored in the form of the communication requests [29]. Also, IL is implemented as 2 types:  

RAIL (Real-Time Access Interface Layer Protocol) and TSIL (Time-Slotted Interface 

Layer).  In RAIL, slot allocations for nRT and RT traffic are made statistically. In TSIL, slot 

allocations for nRT and RT traffic are made dynamically by CL [42]. 

 

Dependability Plane is responsible for dependability of the framework. DP makes an 

acceptance test whether the protocol works without problem or not. If there is a fault, it 

sends stored CL parameters using rollback message to CL and when CL gets the rollback 

message from DP, it warns application layer to resend the fault messages. Thus DP protects 

the framework. Timing of messaging between layers is important to determine the slot 

timing duration. Figure 8 illustrates the timings of 1 slot. CLcmp which is a calculation time 

for CL, ILcmp which is a calculation time for IL and Message Tx, which represents 

transmission of an application message on Ethernet. 

 

 

 

 
Figure 8: Time Slot Structure 

 

 

 

D
3
RIP Layer Architecture works on the RT operating system. RT features of the operating 

system kernel are gained with RT patches over the Linux kernel. The latest stable kernel is 

3.6.2. The configurations below are needed for RT operating system after RT patches 

implemented over Linux kernel: 

 Activate Tickless System (Dynamics Ticks).   

 Activate High Resolution Timer Support. 

 Set“Preemption Model” parameter to “Fully Preemptible Kernel(RT)”. 

 Set “Timer frequency” parameter to “1000Hz”. 

 Deactivate “Suspend to RAM and standby”. 

 Activate “Timestamping in PHY devices”. 

 Activate “PTP Hardware Clock (PHC)”. 

 Activate “PTP clock support”. 

 Deactivate “Show timing information on printks”. 

 Set “I/O scheduler” parameter to “Deadline”. 
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3.2 D
3
RIP Formal Protocol Model: 

3.2.1 Generic Interface Layer: 

Interface Layer Generic Model is defined using TIOA Model in [12][43]. Figure 9 shows the 

IL Model using TIOA. There are 6 parameters in the IL Model: dSlot, t0,t1,t2, t3, M , Q , 

AIL,HIL. 

 dSlot: Slot duration, 

 t0,t1,t2, t3:  Time of events,  

 M: The type of transmitted messages, 

 Q: The type of a FIFO queue messages, 

 AIL: Abstract variable of IL. 

 HIL:Abstract variable of IL 

 

IL Model as TIOA has variables to define the model and operations:  nowi
a 

, nexti
d
, TxRTi

d
, 

TxnRTi
d
, RxRTi

d
, RxnRTi

d
, RTILi

d
, myILi

d
, vILi

d
, reqILi

d
. 

 nowi
a
:  Analog variable which evolves with the time derivative of 1 , the updated 

time information is provided by this variable. 

 nexti
d
: The end of the current time slot is stored by this variable. 

 TxRTi
d
: The buffer that stores the RT messages to be transmitted. 

 TxnRTi
d
: The buffer that stores the nRT messages to be transmitted. 

 RxRTi
d
: The buffer that stores the RT messages that are received. 

 RxnRTi
d
: The buffer that stores the nRT messages that are received. 

 RTILi
d
:  The variable that stores the type of next slot whether RT or nRT. 

 myILi
d
: The variable that stores whether  the device owns the next time slot or not. 

 vILi
d
: The variable that holds the additional information of the protocol operations. 

 reqILi
d
:  The variable that stores the request to the CL to determine RTIL and myIL. 

 sendVILi
d
:  The variable that stores the whether vIL is sent or not. 

 ati
d
:  The variable that shows the acceptance test  result. 

 checkPTi
d
:  The variable that stores the rollback status of that node. 

 

Actions in IL: 

 output  IL2SM (m:M )i 

 output UPDVIL(vIL: AIL, TxnRT: Q, RxnRT:Q)i 

 input SENDRES(atRes:bool, rbSt: int) 

 input RBACK(ILHT: HIL, cLHT: HIL, rbSt: int) 

 input SM2ILDP (m:M)i 

 input CL2ILRT(bmy:bool, bRT:bool, m:M)i 

 input AP2ILNRT(m:M) i 

 input IL2APNRT(q:Q) i 

 output IL2CLRT (m:M) i 

 internal UPDATE()i 

 output REQRT()i 
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Figure 9: IL Model as TIOA 

 

 

 

myILi
d 

and vILi
d
 variables are updated by internal operations fmy and fupd. After the data 

transmission is finished, UPDATE()is called for the update of variables of the next slot. vIL 

is updated first. When IL does not need the information if the next time slot is RT or nRT, 

reqIL gets false value (reqILi
d
=false) and the owner of the next time slot is determined 

locally. If IL needs to information if the next time slot is RT or nRT, reqIL gets true value 

(reqILi
d
=true). IL triggers the action REQRT to the CL. REQRT() requests the type of the 

next time and the owner of the next time slot.  After the calculation time of CL, the action 

CL2ILRT(b1,b2,m) indicates the type of the next time slot (b1), the owner of the next 

time slot (b2) and RT message (m) in CL if it has. RTIL and myIL variables update their new 

values according to b1 and b2. 

In IL2SM(m), IL sends messages to all nodes, when current time now equals to next 

starting time next and myIL is true. The value in RTILi
d
 determines if the transmitted message 

is RT or nRT message. Also, in SM2ILDP(m), RTILi
d
 is important too, to send message to 

upper layer RT buffer (RxRTi
d
) or nRT buffer (RxnRTi

d
). In IL2CLRT(m), RT messages are 

send to the upper layer immediately. In IL2APNRT(RxnRTi
d
) and AP2ILNRT(m), upper 

layer can reach TxnRTi
d
 and RxnRTi

d 
buffers in the IL at any time. 

If there is no collision on the shared medium, IL sends message to SM in a one slot and after 

every update in IL, parameters which are related protocol are same. But, RTIL variable gets 

its b1 parameter from upper layer CL and this b1 parameter shows the next time slot is RT or 

NRT. Also, infmy (vILi
d
,RTILi

d
,b2,i) function gets its b2 parameter from CL  and b2 

parameter indicates  that the next time slot belongs to the device i or not. 

 

fmy(vILi
d
,false,-,i)  = true 

( j  I – {i})  fmy(vILi
d
,false,-,i)  = false 

fmy(vILi
d
,true,b2,i)= b2 

 

In UPDVIL, if sendVIL is true, IL sends vIL parameters of that time slot to DP in each time 

slot. In SENDRES(atRes,rbSt), IL gets information from the  DP about acceptance test 
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result (atRes) and rollback status (rbSt). After getting atRes and rbSt, these variables are sent 

to other nodes with IL2SM(m).In RBACK, IL gets stored vIL parameters, Rx and Tx 

message from DP and updates its vIL parameters with the received vIL parameters. 

 

Also, IL obeys some requirements below: 

 Transmission window covers all messages. 

m.length < dSlot – rem   m  M 

 The time between REQRTiand CL2ILRTiis rem-cmp. After each REQRTi   function, 

CL2ILRTioccurs.  

 If REQRT(t)I   and REQRT(t)ji, j  I, i  j  occur at the same time t, then, it holds 

for the 

next occurrence ofCL2ILRT(b1,b2,m) and CL2ILRT( )j that and b2 = 

true  = false [12] 

 

In framework, IL asks to the CL layer whether the next time slot is RT or nRT. There are 3 

variables in vIL such asvIL.cnt, vIL.cyc, vIL.slots. These vIL parameters show which node 

owns the nRT slot at that time slot. Internal functions fupd and fmy are defined in Figure 10. 

In fupd function, vIL.cnt is incremented with modulo vIL.cyc. After sending action REQRT to 

the CL, CL does action CL2ILRT (b1, b2, m). In fmy internal function, if the next time slot 

is RT, it determines with action CL2ILRT, fmy function returns b2 variable which returns 

with action CL2ILRT. If the next time slot is nRT, it determines with RTILi
d
 and 

vIL.nRTSet, fmy internal function returns true and the owner of the next time slot is 

determined by IL. 

 

 

 

 
Figure 10: Internal Functions in IL Layer 

 

 

 

3.2.2 Generic Coordination Layer: 

Coordination Layer Generic Model is defined using TIOA Model in the article [12] [43]. 

Figure 11 shows the CL Model using TIOA. There are 8 parameters in the CL Model : deli, 

t0, M, Q, V, ACL, HCL, InitCL . 

 deli:A processing delay value, 

 t0: Time of event, 

 M: The type of transmitted messages, 

 Q: The type of a FIFO queue messages, 

 V:  A vector of messages with type M, 

 ACL: Abstract variable of CL. 
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 HCL: Abstract variable of CL. 

 

CL Model as TIOA has variables to define the model and operations:  sendi
a
, Txi

d
,Rxi

d
, 

RTCLi
d
,myCLi

d
,  chi

d
, reqCLi

d
 , vCLi

d  
. 

 sendi
a
: Analog variable which evolves with the time derivative of 1defines the 

passage of time after a request is sent by IL, it is bounded by deli. 

 Txi
d
: The buffer that represents the transmission of messages. 

 Rxi
d
: The buffer that represents the reception of messages. 

 RTCLi
d
:  The variable that stores the type of next slot whether RT or nRT. 

 myCLi
d
: The variable that stores whether  the device owns the next time slot or not. 

 chi
d
 :  The channel variable. 

 reqCLi
d
: The variable that stores the request from IL to determine RTIL and myIL. 

 sendvCLi
d
: The variable that stores the whether vCL is sent or not. 

 vCLi
d
: The variable that holds the additional information of the protocol operations. 

Actions in CL: 

 input AP2CL (m:M, ch: int)i 

 input IL2CLRT(m:M)i 

 input REQRT(m:M) 

 output UPDVCL(vCL: ACL, Tx: V, Rx:Q,  RTCLi
d
: bool)i 

 output RBACK(ILHT: HIL, cLHT: HIL, rbSt: int)i 

 output CL2ILRT(RTCLi
d
:bool,myCLi

d
: bool,  m:M)i 

 input CL2AP(q:Q)i 

 

The transmission of messages for different channels are supported in CL. Channels have 2 

parameters namely b which shows the device number and c which shows the channel 

number of that device. Current message for one channel is stored in Tx message buffer. Tx 

and Rx buffers are used to stores messages. RTCLi
d
, myCl and channel variable ch indicate if 

the next time slot is RT or nRT, the owner of the next time slot and its channel. These 

variables are updated when vCL is updated with internal functions. Send variable shows the 

passage of the time after a request is sent by IL and it is also bounded by deli. 

When CL gets message REQRT(t)i from IL layer, RTCLi
d
, myCL and ch variables are 

updated for the next time slot using gRT(vCLi
d
,RTCLi

d
,t)and gmy(vCLi

d
,RTCLi

d
,t, 

i) functions. After getting REQRT(t)i message from IL, send analog variable gets 0 and 

reqCL boolean variable gets true. In the computation, unique sender for RT slot is 

determined to avoid collision. myCL variable shows the owner of the next time slot. While 

computing in CL layer, RTCLi
d
, myCLi

d
, vCLi

d
, reqCLi

d
, chi

d
, t( timing information ) and 

m.par (RT message parameters) are used by CL. If send (the computation time) does not 

exceed the deli and reqCLi
d
 variable is true, CL sends CL2ILRT(RTCLi

d
,myCLi

d
,m)to the 

IL layer. Also deli variable should be less than rem-cmp time. In CL2ILRT(RTCLi
d
, 

myCLi
d
,m),if myCLi

d  
variable is true, Txi

d   
buffer gives message m to the IL layer. 

 

In action UPDVCL, if sendVCL is true, CL sends vCL parameters of that time slot to DP each 

time slot. In action RBACK, IL gets vCL parameters, Rx and Tx message from DP and update 

its vCL parameters with the receved vCL parameters. 
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Figure 11:  CL Model  as TIOA 

 

 

 

CL shares the action AP2CL(dat,p,ch)i with the upper layer.  and the action 

IL2CLRT(m,t)i with the lower layer . After AP2CL(dat,p,ch)i, data dat and the 

protocol parameters p are stored in Txi
d
[ch].data and Txi

d
[ch].par on the CL layer. After 

IL2CLRT(m,t), the message m from IL is stored in Rxi
d 

buffer and vCLi
d 

variable is 

updated with the  action of gupd(vCLi
d
,m.par,t). Upper Layer control application shares 

the action CL2AP(Rxi
d
)i with CL. After CL2AP(Rxi

d
), message in Rxi

d 
buffer is sent to 

the control application. The decision variables vCLi
d 

, the slot type RTCLi
d
 , variable which 

indicates the owner of the next slot time myCLi
d
 and related channel variable chi

d 
 are 

updated with  gupd(vCLi
d
,m.par,t), gRT(vCLi

d
,RTCLi

d
,t) and 

gmy(vCLi
d
,RTCLi

d
,t, i) functions.  

 

gmy(vCLi
d
,false ,t,i) = (false, 0), 
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gmy(vCLi
d
,true,t,i) = (true, ch), 

gmy(vCLi
d
,true,t,j) = (false, 0) for all j  I – {i} 

 

In CL, variables are stored in the form of communication requests. Priority queue  is a queue 

which stores the communication requests in the form of (b,c,eT,dT). b indicates a device, c 

shows the channel of that device, eT holds the eligibility time of the message and dT is the 

deadline time of the message which is started when the request is issued. In other words, the 

message in the priority queue is sent by device b with channel c at the eligible time eT and it 

should be sent before the deadline time dT. m.par.req parameter is a set of request from 

control application. After getting messages from control application, messages are pushed 

into vCL.PQ and they are ordered according to their eligibility time eT and deadline time dT. 

The request which is the most urgent eligibility time eT is sent to the lower layer. 

 

 

 

 
Figure 12: Update Functions for CL 

 

 

 

Figure 12 shows the update functions for CL. In gupd(vCLi
d
,m.par,t)function, if RTCL 

equals true,in other words , the next time slot is RT slot, the first request in the priority queue 

is popped and the request is sent to the lower layer. However, if RTCL is false (the next time 

slot is nRT slot), the first request reenters the priority queue. If the eligibility time of the 

request at the top of the priority queue (vCLi
d
.PQ.Top.eT) is smaller than current time t, 

gRT(vCLi
d
,RTCLi

d
,t)function returns true. Thus, the type of next slot time is determined 

whether it is RT or nRT. If the request at the top of the priority queue’s owner is (PQi.Top.c) 

that device and the request at the top of the priority queue’s channel is that device’s channel 

gmy(vCLi
d
,RTCLi

d
,t,i)function returns true and that device’s channel a. 

 

3.2.3  Generic  Shared Medium Model: 

Shared Medium Layer Generic Model is defined using TIOA Model in the article [12] [43]. 

Figure 13 shows the SM Model using TIOA. There are 6 variables in the SM Model : mess
d
, 

coll
d
 , next

d
 , now

a
, M, N. 

 mess
d
: The parameter that indicates currently transmitted message 

 coll
d
: Theparameter that indicates whether the collision is happened or not. 

 next
d
: The parameter that indicates  the next reception time 

 now
a
: Analog parameter which evolves with the time derivative of 1 , the updated 

time information is provided by this variable. 
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 M: The type of transmitted messages. 

 N:  The parameter that indicates  the number of messages. 

Actions in SM: 

 input IL2SM(m:M)i 

 output SM2ILDP(m:M) 

 

 

 

 
Figure 13: SM Model as TIOA 

 

 

 

There are 2 actions shared with the IL layer namely IL2SM(m) and SM2IL(m). In 

IL2SM(m), if mess variable is empty in SM layer, message m is sent to the SM layer and 

next variable is updated. If mess variable is not empty in SM layer, collision is occurred and 

coll variable equals true. In this case next variable is set to 0 and mess variable is set to 

empty. If next equals to now in SM layer, SM does action SM2IL  to the IL layer. In SM2IL 

transition, m variable is set to mess variable. Thus the message m can be sent by SM. After 

that, mess variable is set to be empty.  

 

3.2.4  Generic  Dependability Plane Model: 

Dependability Plane (DP) Generic Model is defined using TIOA Model [43]. Figure 14 

shows the DP Model using TIOA. There are 7 parameters in the DL Model : cyc, t0,t1,AIL, 

ACL, ADP, InitDP . 

 cyc: The variable shows the number of the cycle. 
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 t0,t1: Time of events. 

 AIL: Abstract variable of IL. 

 ACL: Abstract variable of CL. 

 ADP: Abstract variable of DP. 

 InitDP: Abstract variable of DP 

 

 

 

 
Figure 14: Functions in Dependability Plane 



26 

 

DP Model as TIOA has variables to define the model and operations:  atResi
a
, rbReqi

d
,  

rtSloti
d
,  stNoi

d
, nodeIDi

d
,  rbSti

d
,  cnti

d
,  vILHisti

d
[cyc] , vCLHisti

d
[cyc] , vDPi

d
,  rVCLi

d
. 

 atResi
a
:  Boolean variable keeping the acceptance test results 

 rbReqi
d
: Boolean variable keeping the rollback requirement. 

 rtSloti
d
: Boolean variable keeping the type of the time slot. 

 stNoi
d
:Integer variable used for state transition 

 nodeIDi
d
:Integer variable keeping the message transmitting node ID 

 rbSti
d
:Integer variable keeping the rollback state number 

 cnti
d
: Integer counter variable for periodic operation 

 vILHisti 
d
[cyc]:  Data structure keeping the vIL history 

 vCLHisti 
d
[cyc]: Data structure keeping the vCL history 

 vDPi
d
: Data structure to keep the information required for dependability checks. 

Now it just holds the non real-time slot ownership information as an integer array 

 rVCLi
d
. Data structure keeping the transmitting node’s vCL variable for 

dependability checks. 

Also, some new parameters are added to the header of the messages. 

 nodeIDi
d
 : transmitting node’s ID. 

 vCLi
d
: transmitting node’s vCL. 

 atResi
a
 : transmitting node’s acceptance test result. 

 rbSti
d
: the rollback state in case of a failure. 

Actions in DP: 

 input UPDVIL(vIL: AIL, TxnRT: Q, RXnRT: Q)i 

 input UPDVCL(vCL: ACL, Tx: V, Rx:Q,  RTCLi
d
: bool)i 

 input SM2ILDP(m:M) 

 internal ATEST()i 

 output RBACK(ILHT: HIL, cLHT: HIL, rbSt: int)i 

 output SENDRES(atRes:bool, rbSt:int )i 

 

Dependability Plane has interfaces with IL and CL. There are input actions shared with  IL 

and CL namely UPDVIL(vIL) and UPDVCL(vCL,RTCL). In UPDVIL(vIL), vIL 

history vILHisti 
d
[cyc] is updated with vIL decision variable taken from IL. In  

UPDVCL(vCL,RTCL), the type of the time slot, rtSloti
d 

is updated with RTCL which is 

taken from CL layer that shows the next time slot is whether RT or nRT. Also, vCL history 

vCLHisti 
d
[cyc]  is updated with vCL decision variable taken from CL. Also, an action 

SM2ILDP(m) is occurred in DP. In SM2ILDP(m), transmitting node’s ID (m.nodeID)  is 

assigned to nodeIDi
d
, transmitting node’s vCL is assigned to  rVCLi

d
 which keeps the 

transmitting node’s vCL variable for dependability checks. The rollback state number rbSti
d 

of message m is assigned to rbSti
d
 in DP. If transmitting node’s acceptance test result atResi

a
 

equals to false, the state transition number stNoi
d 
equals 3, if atResi

a 
equals to true, the state 

transition number stNoi
d 
equals 1. 

 

There are 2 output actions from dependability plane: SENDRES(atResi
a
,rbSti

d
) and 

RBACK(vILi
d
,vCLi

d
). Before SENDRES occurs, the state transition number stNoi

d 
should 

be 2, and after SENDRES stNoi
d
  is -1. Before RBACK occurs stNoi

d
 should be, and after 

that, counter variable for periodic operation equals to rollback state number plus 1 (cnti
d
= 

rtSloti
d
 +1). If counter for periodic operation cnti

d
 equals to number of the cycle, cnti

d
 gets 0. 
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vILHisti
d
[cyc] and  vCLHisti 

d
[cyc] variables are assigned to vILi

d 
and  vCLi

d
 variables in IL 

and CL . The state transition number stNoi
d
equals -1 and the rollback requirement rbReqi

d
  

gets false. 

 

In the dependability plane, there is also an internal action ATEST().Before ATEST() 

occurs, the state transition number stNoi
d
 should be 1, and after  ATEST(), stNoi

d
  is -1.The 

counter variable cnti
d
 is incremented by 1 firstly in ATEST().Then if rollback requirement 

rbReqi
d
  equals false, fAT(vCLHist,vDP,cnt,nodeID,rtSlot) function result is 

assigned to the transmitting node’s acceptance test result atResi
a  

and if acceptance test result 

atResi
a 
equals true, the rollback state number rbSti

d 
equals the counter cnti

d
minus 1 (rbSti

d
 = 

cnti
d
- 1). If acceptance test result atResi

a 
equals false, rollback requirement is needed and 

rollback state number rbSti
d
 equals the counter cnti

d
 minus 2 (rbSti

d
 = cnti

d
- 2). If rollback 

state number rbSti
d   

equals  -1, rollback state number rbSti
d
 equals cyc minus 1   (rbSti

d
 = 

cyc- 1). If the counter cnti
d 

equals to cyc,  counter cnti
d
 is assigned to 0 and , the state 

transition number stNoi
d
  is assigned to 2. 

 

Figure 15 shows the example of fAT. In function of acceptance test fAT , there are 4  

parameters using input of function,  vCLHisti 
d
, vDPi

d
, cnti

d
, nodeIDi

d
,  rtSloti

d
 . If vIL 

historyvILHisti 
d
[cnt-1] equals to  the transmitting node’s vCL variable for dependability 

checks rVCLi
d
 and  if the type of the time slot rtSloti

d 
equals true (slot is RT) and the device 

of the on the top of the priority queue of vIL history  vILHisti 
d
[cnt-1].PQ.Top.b equals the 

nodeID, fAT function returns true in other words acceptance test result is passed . If slot 

rtSloti
d 
equals false (slot is nRT) and  vDPi 

d
[cnt-1] equals nodeID, fAT function returns true, 

otherwise fAT function returns false and acceptance test result is failed. 

 

 

 

 
Figure 15: Example for fAT 

 

 

 

3.3 D
2
RIP Implementation 

D
2
RIP is the predecessor of D

3
RIP which includes all layers as described before except for 

the dependability plane. D
2
RIP is implemented over Intel Gigabit Ethernet driver on PCs. 

While developing the framework, Lubuntu (Linux Kernel 3.6.2 with the RT patch) is used as 



28 

 

the operating system. Several changes are made on kernel configuration of Linux to provide 

precise timing and needed task scheduling mechanism. These changes are: [44]  

 The amount of memory is increased for TCP/UDP socket I/O queues. 

 BIOS Settings are changed to disable non-maskable interrupts. Because operating 

system cannot disable these interrupts. 

 For low latency, network interface card NAPI is disabled. 

 To create an interrupt for all incoming messages, InterruptThrottleRate is set to 0.0 

 For instant message transmission starting, TxIntDelay is set to 0.0 

 To prevent power saving state, EEE is set to 0.0 

 To disable re transmission in Ethernet, E1000_COLLISION_THRESHOLD is set to 

0. 

 

In implementation, synchronization of nodes is needed to run system. IEEE 1588 protocol 

with hardware time-stamping is used for precise clock synchronization. For IEEE 1588 

protocol, Intel Gigabit CT Desktop Adapter is used. In this adapter, e1000 driver module 

with version 2.2.14 is used. So, while software development, codes regarding 

implementation are added on the e1000 driver module.  

In D
2
RIP, standard Ethernet frames are used. Different types of frames are used in standard 

Ethernet frames. In RT frame type, RT messages have 14 Bytes CL message header and CL 

messages have 14 Bytes Ethernet header. In fragmented nRT frame type, fragmented 

payload messages have 8 Bytes fragment header and nRT Fragment messages have 14 Bytes 

Ethernet header. Figure 16 below shows the data encapsulation of RT and long nRT 

messages. 

 

 

 

 
Figure 16: Data Encapsulation of RT and Long nRT messages [44] 

 

 

 

3.3.1  Interface Layer (IL) : 

Interface layer (IL) is the layer which lies between shared medium and coordination layer 

(CL). It gets RT and nRT messages from shared medium and stores RT messages in the 

RxRT message buffer and stores nRT messages in the RxnRt message buffer.  It sends RT 

messages to the CL using IL2CLRT message and sends nRT messages to the application 

layer using IL2APNRT. IL layer gets also RT message and nRT messages from CL and 
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application layer. It stores these messages in the TxRT and TxnRT message buffers and they 

are sent to the shared medium using IL2SM message. 

Interface layer was implemented in RT Linux kernel-space part. Figure 17 illustrates the 

message transmission in IL.  

 

 

 

CL nRT Applications

nRTRxQ nRTTxQHighPriRTRxData RTTxData nRTTxQLowPri

IL2APNRT

IEEE 1588 Time 

Synchronization Application

AP2ILNRT 1588 Time SyncIL2CL
CL2IL

IL

SM

SM2IL IL2SM

 

Figure 17: Message Transmission in IL layer 

 

 

 

The communication method in D
2
RIP is time division multiple access (TDMA). In TDMA 

structure, all nodes have different slots to transmit the message to the other nodes. IL 

provides this TDMA structure to avoid collision in the shared medium. This TDMA 

structure is synchronized using 1588 precise time synchronizing protocol and all nodes start 

TDMA at the same time to be synchronized using SYNC message. At the startup point, one 

of the nodes in the network behaves as a master node and sends a special SYNC message to 

all nodes to determine the start of the operation. After that, TDMA structure is started and all 

nodes in the network know that TDMA is started. It is also maintained using IEEE 1588 

Precise Time Protocol. When TDMA structure is implemented on this framework, the issue 

which is related TDMA structure with fixed time slots is raised. Message packets especially 

nRT packets can be bigger than time-slot size. To overcome this problem, nRT packets 

which are bigger than determined message size should be fragmented before transmission 

and reassembled after transmission. So that, there are fragmenter and defragmenter threads 

in the IL thread. Table 2 shows the frame header structure. In the frame header structure, 

nodeID shows the id of the source node, packetID indicates the id of the packet which is 

transmitted from source node (nodeID), packetLength stores the total length of packet which 

is unfragmented, frameNum shows the total frame number, frameSeq indicates the sequence 

number of the frame, frameLength stores the data length in the frame.  Fragmenter thread 

fragments the nRT packets which is bigger than determined message size and transmits the 
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fragmented packets to shared medium. After destination node receives the fragmented 

packets, reassembly thread assemblies the fragmented packets.  

 

 

Table 2: Frame Header Structure 

 

nodeID:  unsigned char

packetID: unsigned char

packetLength: unsigned short int

fragNum: unsigned char

frameSeq: unsigned char

frameLength: unsigned short int

 
 

 

 

If the received message is nRT, IL triggers the IL2APNRT action which is shared with  

application layer to transmit the nRT message and application layer sends nRT message to 

the IL using AP2ILNRT. Also, the time synchronization messages are sent as nRT message 

to the application layer. The difference between nRT and the time synchronization messages 

is 1588 messages’ priority is higher than nRT messages’. So that, there are 2 priority queue 

in the IL to separate the nRT messages and time synchronization messages namely high 

priority queue (nRTTxQHighPri) and low priority queue (nRTTxQLowPri). When nRT 

packet comes from SM, IL puts time synchronizing packets into the high priority queue and 

puts nRT packets into the low priority queue. When an nRT slot comes for that device, IL 

controls the high priority queue firstly and packets in the high priority queue is sent to 

application layer. 

There are two shared actions between the shared medium layer and the interface layer: 

SM2IL and IL2SM.  In SM2IL, shared medium sends RT and nRT message to the IL. There 

are 3 different cases. If ETHERTYPE is 0x2200 in the frame, it means that fragmented nRT 

packet is received and this message is forwarded to Reassembly thread. After reassembling, 

packet is sent to IL. If the packet is nRT and shorter than packet size, it also sends to the IL. 

In third type, ETHERTYPE is 0x1100 in the frame, it is also sent to the IL. Then IL 

transmits the received message to the RTRxData or nRTRxQ buffer depends on receiving 

packet’s protocol which is written in IL2SM action before packet is sent by other node.If 

receiving packet’s protocol is RT, the received message is stored in the RTRxData message 

queue. If receiving packet’s protocol is nRT, the received message is stored in nRTRxQ 

message queue. In IL2SM, if the device owns the time slot (myIL=true, if and only if cnt 

belongs to nRTSet), the type of time slot is determined and the message queue which is 

related the type of message has at least a message, IL sends message to the SM. If the slot is 

determined for RT traffic (RTIL=true), the message m is transferred from RTTxData. If the 

slot is determined for nRT traffic (RTIL=false), the message m is transferred from 

nRTTxQHighPri or nRTTxQLowPri depends on the type of nRT message. (IEEE 1588 Time 

Synch or nRT from AP) If the message m is nRT message from the application and it’s 

longer than standard packet size, IL wakes up Fragmentation Thread and then send 

fragmented message m to SM. 

There are also two shared actions between the interface layer and the coordination layer 

namely IL2CL and CL2IL.   In IL2CL, interface layer gets packet from SM, it copies that 

packet into the RTRxData message queue, then it sends RT message m to the coordination 

layer. In CL2IL communication message, message m is copied from CL using 
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copy_from_user function. Then the message length is different from 1 byte, receiving 

message is copied into the RTTxData message queue. If the message length is 1 byte and the 

receiving message’s first byte is set to RTIL and myIL variable is set according to return of 

slotOwner( RTIL). If the receiving message is 0xFF, RTIL is set to false. Thus, it can be 

seen that RTIL and myIL is determined according to message coming from CL. 

 

For nRT communication between application layer and interface layer, there are 2 actions: 

IL2APNRT and AP2ILNRT. In IL2APNRT, the nRT message m which is stored in 

nRTRxQ message buffer is sent to the application layer and nRTRxQ message queue is set 

empty. In AP2ILNRT, application layer sends nRT message and it is stored in 

nRTTxQLowPrimessage buffer in the IL. 

 

 

3.3.1.1 SM- IL Interface Implementation 

In the implementation of SM-IL interface, Ethernet driver functions are used and new 

functions are implemented on the Ethernet driver source code. For implementing the 

interface between SM and IL, modular structure of Linux is used. The driver source code did 

not change directly, instead the driver source code of the network internet card (NIC) is 

downloaded from its website and modification of driver functions and new functions are 

added to the driver source code. After that, the original Ethernet driver module is removed 

and the updated version module is added to the kernel.  

 

In the implementation of the IL, receive and transmit functions are used and modified. 

Binary exponential back-off algorithm is disabled. Because in back-off algorithm, if a 

collision occurs on the network, a node which wants to communicate to other one wait a 

random time and start a communication again. This causes that TDMA operation is 

collapsed. So back-off algorithm is disabled. Figure19 shows the algorithm of the transmit 

function and modification in the transmit function. In Figure 18, IL gets RT and nRT 

messages from user space. RT packets go into IL module firstly, then they are transmitted to 

SM by e1000_xmit_frame() function. nRT packets go into e1000e module firstly. If 

the packets length bigger than standard packet size, they are transmitted to fragmentation 

module. If the packet length is smaller than standard packet size, they are transmitted to 

e1000_xmit_frame() function. If the packets are 1588 time synch packets, they are 

transmitted to IL module. 
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Figure 18: The Algorithm of the Transmit Function 

 

 

 

Figure 19 shows the algorithm of the receive function and modification in the receive 

function. In Figure 19, packets come from SM and they go into the e1000e module. In this 

module, if packets are not fragmented, they continue to receive function and nRT 
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application. If packets are fragmented, they continue to defragmentation thread. If packets 

are RT, they continue to IL2CL function. Then they are sent to CL.  

 

 

 

 
Figure 19: The Algorithm of the Receive Function 
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3.3.1.2 CL- IL Interface Implementation 

In the implementation of IL-CL Interface, character device files are used to transfer the 

messages between IL and CL. charDev_IL2CL and charDev_CL2IL device files are used for 

the communication of each layer.  The reason why using character device file is that IL is 

implemented on kernel space and CL is implemented on user space. 

Copy_from_user()and copy_to_user()functions in the IL are used to write 

messages to the file and to read messages from file. 

 

3.3.2 Coordination Layer (CL): 

Coordination layer (CL) is the layer which lies between the control application and interface 

layer (IL). It gets the RT messages from control application, sends the RT messages to the 

interface layer. While processing the RT traffic, it calculates the best performance of 

delivery of the RT messages to the network. Also, CL calculates the slot allocations 

according to RT messages coming from control application and coordinates the RT 

traffic.Figure 20 below shows the message transmission in CL.  

 

 

 

AP2CL

CL

IL

IL2CL

mMQueueToReceive

chardev_D2RIP

mMQueueToTransmit

CL2AP

      *_d3.dev        *.sim

AP (SIMFAUDES)

Write()

CL2IL

TxRTmsg RxRTmsg

Read()

 
Figure 20: Message Transmission in CL layer 

 

 

 

In coordination layer implementation, there is a thread which wakes up periodically at the 

start of the each time slot. At the beginning of the time slot, if mMQueueToReceive message 

queue has a message from AP, CL continues with processAP2CL. In processAP2CL, 

receiving message is copied to Tx. After that CL continues with the processCLUPDATE 

function. In this function, the type of the time slot (RT or nRT) is determined by looking at 

the PQ_dT priority queue.  If there is no message in PQ_dT, RTCL is nRT. If there is any 

message in PQ_dT, RTCL is RT. The owner of the time slot is determined by looking at vCL 
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parameters in PQ_dT. If vCL parameter’s node id equals that node’s node id, mySlot returns 

true. If vCL parameter’s node id does not equal that node’s node id, mySlot returns false. 

After determining the type of the time slot and the owner of the time slot, if the time slot is 

RT and the owner of the time slot is mine (myCL=true), the message in the Tx is assigned to 

chardev_D2RIP character file. The reason why character file is used to communicate with IL 

is that CL is implemented on user-space. If the time slot is RT or nRT and the owner of the 

time slot is other (myCL=false), CL sends IL 1 byte to inform it. 

If there is a message in chardev_D2RIP character file, CL calls processCL2AP function. 

In processCL2AP, receiving message is copied into Rx. After that gUpdate function is 

called to update the vCL parameters in the PQ_dT. Then the message in the Rx is assigned to 

mMQueueToTransmit message queue to send the message to Application Layer (AP). 

Figure 21 shows the structure of the message which is send to AP. It contains channel 

information (ch), CL protocol parameters and payload. 

 

 

 

 
Figure 21: Message Structure 

 

 

 

In CL, two priority queueare used to implement the protocol namely PQ_dT and PQ_eT.In 

PQ_dT, the communication requests are ordered with the deadline time of the events. In 

PQ_eT, the communication requests are ordered with the eligibility time of the events. 

PQ_dT and PQ_eT are used to store the communication requests which are needed at the 

time slot.  Figure 22 shows the message format in the CL. It contains 3 parameters: number 

of requests (NoR), communication requests and control message payload. The number of 

requests (NoR) shows the count of request. Communication requests part contains requests 

with the node (b), channel (c), eligibility time (eT) and the deadline time (dT).  

 

 

 
Figure 22: Message Format in CL [29] 
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Figure 23 shows the algorithm of the CL.  CL waits until a RT message comes from IL in the 

runCL thread. Then it reads the start time from receiving RT message header. Meanwhile, it 

controls Tx for RT message. If there is no RT data available, it continues process 

CLUPDATE. In process CLUPDATE, RTCL and myCL are determined. If RTCL or myCL 

are false, CL sends 1 byte to IL and sleeps until the next slot. If RTCL and myCL true, CL 

gets packets from FIFO queue and send it to IL. It waits until a RT message comes from IL. 

Then it continues to process CL2AP. In this process, CL gets slot number, time and packet 

length info from the received RT message. If the packet length info is equal to the received 

RT message size and the packet length is not equal to the CL header length, the priority 

queue is updated and the received message is sent to AP. Finally, CL sleeps until next slot. 

 

 

 

 
Figure 23: CL Algorithm [29] [41] 
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3.3.3 D
2
RIP Implementation Summary and Its Operation 

As mentioned before, in D
2
RIP implementation, there are 2 layers over SM: CL and IL. 

Figure 24 shows the message transmissions of the layers and functions of D
2
RIP. When RT 

applications send message AP2CL, CL stores it in TxRT and it sends message CL2IL. After 

buffering in IL (inTxRT), IL sends SM and other nodes get the transmitted message using 

message SM2IL. Node which takes the RT message, stores its RxRT buffer. After that it 

sends to CL using message IL2CL. CL stores the message in RxRT and sends the message 

to the RT applications using CL2AP. When nRT applications send message to IL, IL buffers 

the nRT message in its TxnRT and sends the message to SM using IL2SM. Node which 

takes this nRT message, stores its RxnRT buffer in IL. After that it sends to nRT applications 

using UDP/TCP Socket. 

 

 

 

nRT Applications

UDP/TCP Socket (4)

UDP/TCP Socket (1)

IL2CL (5) CL2IL (2)

IL

SM
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Figure 24: The Message Transmissions of the Layers and Functions of D
2
RIP 

 

 

 

There are 3 different transmission events in the D
2
RIP framework: Sending RT request with 

RT packet, sending RT request without RT packet, sending nRT packet. Figure 25 shows the 

timing of the sending RT request with RT packet. 
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Figure 25: The Timing of the Sending RT request with RT packet 

 

 

 

Figure 26 shows the timing of the sending RT request without RT packet. 
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Figure 26: The Timing of the Sending RT request without RT packet 

 

 

 

 

 

 

 

 

 



39 

 

 

Figure 27 shows the timing of the sending nRT packet. 
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Figure 27: The Timing of the Sending nRT packet 
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CHAPTER 4 

 

 

DEPENDABILITY PLANE IMPLEMENTATION 
 

 

4.1 Overview 

The dependability plane (DP) is the layer which has interfaces with the shared medium 

(SM), interface layer (IL) and coordination layer (CL). If there is a fault in the operation of 

D
3
RIP, DP is supposed make sure that the fault is tolerated and the protocol maintains its 

correct operation. At the beginning of each time slot,  the actions UPDVIL and UPDVCL are 

triggered by IL and CL to update the vCL and vIL history queues in DP. In the action 

UPDVIL , IL sends vIL parameters of the time slot (cnt, cyc and slot) to the DP. In the action 

UPDVCL , CL sends vCL parameters of the time slot priority queue of (nodeid, ch, eT and 

dT) tuples to the DP.  DP also gets action SM2ILDP from IL when a message m is sent from 

any node. In the action SM2ILDP, there are 6 parameters (atRes, rbSt, rVCl.nodeId, rVCl.ch, 

rVCl.eT, rVCl.dT) which are sent for information about node which sends message m. In 

each time slot, the receiving vCL parameters and the vCL parameters of that time slot are 

compared with each other in the fAT function in DP. If they are equal to each other, the 

function returns 1. Otherwise, the function returns 0. The returning parameter shows the 

acceptance test result. If a faultoccurred in the system (acceptance test result is failed), DP 

sends RBACK to the IL and CL to roll back the time slots. Messages m before the fault, are 

sent again and the system returns to its normal operation.  

 

In this thesis, the dependability plane is implemented in the RT Linux user-space part. It 

communicates with the IL (in the kernel space) using a character device file and 

communicates with the CL using message queues. Figure 28 below shows message exchange 

of DP with other layers. 
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Figure 28: Message exchange of DP with other layers.  

 

 

 

4.1.1 DP Implementation 

In the dependability plane implementation, there are 2 threads which wake up periodically at 

the start of the each time slot. In the listenCoordinationLayer thread, DP is listening to the 

CL. If the MQUEUE_CL2DPUPDVCL message queue has a message from DP, DP 

continues with processCL2DPUPDVCL. In processCL2DPUPDVCL, DP calls the 

UPVCL function. In this function, the received vCL parameters are inserted into the 

vCLHistory FIFO queue. In the listenInterfaceLayer thread, DP is listening to the IL. If 

chardev_IL2DP character device file has a message from IL, DP looks at the first bit of the 

message. If that message bit (msg[0]) equals to 0, it continues with 

processIL2DPUPDVIL. In processIL2DPUPDVIL, DP calls the UPVIL function. In 

this function, the received vIL parameters are inserted into the vILHistory FIFO queue. If 

that message bit (msg[0]) equals to 1, DP continues with processSM2IL. In this process, 

the received message parameters (atRes, rbSt, rvCl.nodeId, rvCl.ch, rvCl.eT, rvCl.dT) are 

assigned to the variables. If atRes equals to 1, DP continues with the ATEST() function. In 

this function, DP calls fAT() and the variables (atResrbSt) are changed to coordinate the 

operations. In fAT, vCL parameters which are came with SM2ILDP (rvCl.nodeId, rvCl.ch, 

rvCl.eT, rvCl.dT) and vCL parameters which came with UPDVCL (nodeid, ch, eT and dT ) 

are compared to each other. If they are equal, fAT() returns true. If they are not equal, 

fAT() returns false. After that the obtained results are sent with SENDRES. In SENDRES, 

atRes and rbSt are sent to IL. In IL, these variables are inserted to the message header when 

a message is sent to other nodes Thus, other nodes can learn the results of the acceptance 

test. If the time slot passes the acceptance test, the protocol operation continues with the next 



43 

 

time slot. If the time slot doesn't pass the acceptance test, DP triggers RBACK in IL and CL. 

In the action RBACK, the latest vCL and vIL parameters in the FIFO queues are popped up 

and these variables are sent to CL and IL. Figure 29 shows the structure of DP 
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Figure 29: Structure of DP 

 

 

 

In DP implementation, some changes are also made in IL, CL and AP, since the DP has 

interfaces with IL and CL. So there must be interfaces with DP in CL and IL. The 

implementation of these interfaces in CL and IL and the detailed information of the changes 

on the other layers with the flowchart of the IL, CL, AP are explained in the following 

sections. The first change on the other layers is adding a process and thread to CL. Figure 30 

shows the CL implementation for dependability support. In CL, processCL2DPUPDVCL 

function is added to the runCL thread to send vCL parameters to the DP using the message 

queue. In processCL2DPUPDVCL, CL gets the vCL parameters of the time slot from 

PQ_dT. It assigns the vCL parameters to msgCL2DP. Then CL sends msgCL2DP to DP 

using message queue MQUEUE_CL2DPUPDVCL. Also, a new thread, Listen 

Dependability Plane Thread is created in CL to listen to DP. In this thread, CL listens to DP 

to get a RBACK message whenever DP issues RBACK. In processDP2CLRBACK 

function, CL reads vCL parameters from the message queue MQUEUE_DP2CLRBACK. It 

creates free space to insert vCL parameters into the PQ_dT. Then it assigns the msgDP2CL 

to vCL parameters and they are inserted into the priority queue. 
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Figure 30: CL Implementation with DP 

 

 

 

The second change on the other layers is adding a process and functions to IL. Figure 31 

shows the transmission part of IL with dependability support. In IL, UPDVIL function is 

added to send vIL parameters to DP. In IL module, after getting slot information or RT data 

from CL, message is read and IL continues with CL2IL. After CL2IL function, UPDVIL 

function is called. After sending vIL parameters to DP, IL continues with IL2SM function. 

In the IL2SM function, IL sends atRes, rbSt and vCL parameters to the DP to loopback. 

Also, SENDRES and RBACK mechanisms are added to IL. If IL reads SENDRES or RBACK 
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from DP, it controls the first bit (MyBuf[0]) of the receiving message. If it equals to 0, IL 

continues RBACK process. If it equals to 1, IL continues SENDRES process. 
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Figure 31: Transmission Part of IL with DP Implementation 
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Figure 32 shows the reception part of the IL with dependability support. In the e1000e 

module, SM2ILDP function is added to send vIL parameters to DP. After receiving a 

message from SM, IL continues with the SM2IL and IL2CL functions. In IL2CL function, 

RT data packet is read and IL sends atRes, rbSt (checkPt) and vCL parameters to DP. Then 

IL sends RT packet to CL. 
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Figure 32: Reception Part of IL with DP Implementation 
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The third change on the other layers is adding functions to the RT application layer (AP). RT 

application layer sends RT messages via the CL. However, AP is not expected to resend 

messages when RBACK occurs. Hence, this feature is added to AP to resend messages after 

RBACK.  The inclusion of RBACK in AP is performed as shown in Figure 33.  
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Figure 33: DoListenCLModule Thread in AP 
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Figure 33 shows DoListenCLModule thread in AP.  It waits until action CL2AP comes from 

CL. When it reads the message, it takes the receivedEventRBackFlag from msg and copies  

the received message into the msgIndex[k]. If receivedEventRBackFlag does not equal to 1, 

it operates normally. If receivedEventRBackFlag equals to 1, it controls the message which 

is the last entry in the history of DP. If that message nodeID’s equals that nodeId, it sends the 

message which is sent before and in rollback situation, it does not increment the index of the 

EventIdMap. So, it sends message using buffer msgIndex until rollback is finished. 

Detailed information about DP implementation and their flowchart are mentioned in the 

following section.  

 

Figure 34 shows thelistenCoordinationLayer thread in DP implementation. In 

listenCoordinationLayer thread, DP waits until action UPDVCL comes from CL. After 

getting message, DP continues with the UPDVCL function. In this function, it creates free 

space to insert vCL parameters (nodeid,ch, eT and dT )  into the vCL History Queue. After 

inserting vCL parameters into the queue, size is controlled to prevent overflow. If it exceeds 

the cyc, queue pops up a node from top of the queue and thread sleeps until next slot. 

 

Figure 35 shows the listenInterfaceLayer thread in DP implementation. In 

listenInterfaceLayer thread, DP waits until UPDVIL or SM2ILDP comes from IL. After 

getting UPDVIL or SM2ILDP, DP continues according to first bit of message (msg[0]). If 

the first bit of the message is 1, DP continues with processSM2IL. In processSM2IL, 

message is read from character device file charDev_DP2IL. atRes, rbSt and vCL parameters 

in the received message are assigned to the variables in the DP. If atRes equals to 1, DP 

continues with ATEST. In ATEST() function, firstly cnt is incremented by 1. Then DP calls 

fAT() to make acceptance test. After acceptance test, if atRes is true, rbSt is determined 

and result of acceptance test is sent to IL using action SENDRES. In SENDRES, atRes and 

rbSt are assigned to the msgDP2IL and it is sent to IL using character device file 

charDev_DP2IL. If atRes equals to 0, DP continues with RBACK.  
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Figure 34: listenCoordinationLayer Thread in DP Implementation 
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Figure 35: listenInterfaceLayer in DP Implementation 

 

 

 

In RBACK() function, cnt is determined firstly. Then, vCL parameters which are popped 

from vCL History Queue, are assigned to msgDP2CL and it is sent to CL using message 

queue MQUEUE_DP2CLRBACK. After that vIL parameters which are popped from vIL 

History Queue, are assigned to msgDP2IL and it is sent to IL using character file device   

charDev_DP2IL. Then if the first bit of the message is 0, DP continues with 

processIL2DPUPDVIL. In processIL2DPUPDVIL, DP creates free space to insert the vIL 

parameters. Then it inserts the vIL parameters which are coming from IL using thecharacter 
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device file charDev_IL2DP, into the vIL History Queue. After inserting vIL parameters into 

the queue, size is controlled to prevent overflow. If it exceeds the cyc, queue pops up a node 

from top of the queue and thread sleeps until next slot. 
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Figure 36: fAT Implementation in DP 
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Figure 36 shows the fAT implementation in DP. fAT() function is called by DP in 

processSM2IL.  In fAT, DP gets rvCL, cnt, rtSlot and m.nodeid parameters. Then it takes 

a node from the top of the vCL_Q. vCL parameters which are received from SM2ILDP and 

vCL parameters which are taken from vCL_Q are compared to each other. If they are equal 

to each other, fAT returns 1. If they are not equal to each other, fAT returns 0. Also for nRT 

comparison, if the received nodeid equals the node id which is stored in vDP, fAT returns 1.  

If the received nodeid is not equal to the node id which is stored in vDP, fAT returns 0.   

 

4.2 Data Structures 

Figure 37 illustrates the UML Class Diagram for the dependability plane. DPProtocol class 

is an abstract class that controls the operations of DP and interfaces to other layers (CL and 

IL). URT class is derived from DPProtocol that consist of functions of process in 

DPProtocol. vDPURT class stores the vCL and vIL parameters and makes operations on 

them. 

 

 

 

 
Figure 37: Dependability Plane UML Class Diagram 
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In vDPURT class, vCL_Q_TYPE, vIL_Q_TYPE and QUEUE_TYPE data structures are 

used. Table 3 shows the vCL_Q_TYPE. There are 4 variables defined in vCL_Q_TYPE data 

structure: nodeID, ch, eT and dT. In vCL parameters, nodeId shows the id of the node which 

sends the RT message in that time slot. ch shows the channel of the RT communication. eT 

and dT show the eligibility time and deadline time of the RT message. 

 

 

 

Table 3: vCL_Q_TYPE 

nodeID: U8 (unsigned char)

ch:U8 (unsigned char)

eT:U8 (unsigned char)

dT:U8 (unsigned char)

 
 

 

 

Table 4 shows the vIL_Q_TYPE. There are 3 variables defined in vIL_Q_TYPE data 

structure: cnt, cyc and slots. In vIL parameters, cnt shows the count which is incremented by 

1 with modulo of cyc at the each nRT time slot.cyc indicates the cycle of the nRT. In other 

words, it shows the total node number. Slots show the nRT time slot owner’s node Id. 

 

 

 

Table 4: vIL_Q_TYPE 

cnt: U8 (unsigned char)

cyc:U8 (unsigned char)

slots: U8 (unsigned char)

 
 

 

 

Table 5 shows the QUEUE_TYPE. There are 3 variables defined in QUEUE_TYPE data 

structure: currentSize, availableSize and nodes. 

 

 

 

Table 5: QUEUE_TYPE 

currentSize: U32 (unsigned int)

availableSize:U32 (unsigned int)

nodes: void **
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4.3 Actions and Operation 

In the DP operation, there are many actions that are shared with other layers. Flowcharts of 

DP and the functions in the DP are mentioned in the previous section. In this section, actions 

and operations of the DP are described. 

 

4.3.1 Actions 

4.3.1.1 Actions of DP 

ListenCoordinationLayer Thread: It listens to messages coming from CL. When it 

takes action UPDVCL from CL, it calls processCL2DPUPDVCL function. 

processCL2DPUPDVCL Function: It calls UPDVCL(msg,msgLength) function. 

UPDVCL()Function: It takes the vCL parameters from a received message and calls 

insertNodeIntoCLQ () function. 

ListenInterfaceLayer Thread: It listens to the message coming from IL. When it 

takes the action UPDVIL from IL, it calls processIL2DPUPDVIL function. When it takes 

the action SM2ILDP from IL, it calls processSM2IL function. 

processIL2DPUPDVIL  Function: It calls UPDVIL(msg,msgLength) function. 

UPDVIL()Function: It takes the vIL parameters from a received message and calls 

insertNodeIntoQ () function. 

processSM2IL Function: It takes the atRes, rbSt (checkPt), vCL  parameters 

and assigns the variables in DP. If atRes is true, it calls the fAT function to make ATEST 

and it sends the results to IL using the SENDRES function. .If atResis false, it calls 

RBACKCL and RBACKIL functions. 

fAT() Function: It compares popped up vCL parameters from vCLHistoryQueue and 

received  vCL parameters from IL. If they are equal, it returns true. If they are not equal, it 

returns false. 

RBACKCL()Function: If there is a fault, it calls popWantedNodeFromCLQ()function. 

After popWantedNodeFromCLQ()function returns vCL parameters, it sends them to the 

CL. 

RBACKIL()Function: If there is a fault, it calls popWantedNodeFromQ()function. 

After popWantedNodeFromQ()function returns vIL parameters, it sends them to the IL. 

Initialize_VCLHist()Function: It starts the vCLHistoryQueue. 

Initialize_VILHist()Function: It starts the vILHistoryQueue. 

insertNodeIntoCLQ() Function: This function is called by UPDVCL()function. It 

inserts the vCL parameters into the vCLHistoryQueue. 

insertNodeIntoQ() Function: This function is called by UPDVIL()function. It inserts 

the vIL parameters into the vILHistoryQueue. 

popWantedNodeFromQ()Function: This function is called by RBACKIL()function. It 

pops up the vIL parameters at the top of the vILHistoryQueue. 

popWantedNodeFromCLQ()Function: This function is called by RBACKCL()function. 

It pops up the vCL parameters at the top of the vCLHistoryQueue. 

peekCLQ()Function: This function is called by fAT()function. It shows the vCL 

parameters at the top of the vCLHistoryQueue. 

getSizeQueueCLQ()Function: This function is called by UPDVCL()function. It returns 

the size of the vCLHistoryQueue. 

getSizeQueueILQ()Function: This function is called by UPDVIL()function. It returns 

the size of the vILHistoryQueue. 
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freeCLQ()Function:  It releases the vCLHistoryQueue. 

freeILQ()Function:  It releases the vILHistoryQueue. 

 

4.3.1.2 Actions of CL related with DP 

ListenDependableLayer Thread: It listens to messages coming from DP. When it 

takes RBACK from CL, it calls processDP2CLRBACK function. 

processDP2CLRBACK Function:It calls RBACK(msg,msgLength) function. 

RBACK()Function: It takes the vCL parameters from a receivedmessage and inserts them 

into the priority queue PQ_dT in the CL. 

UPDVCL()Function: It is called by CL in the processCLUPDATE function and it sends 

vCL parameters of the time slot to the DP using message queue. 

 

4.3.1.3 Actions of IL related with DP 

UPDVIL()Function: It sends vIL parameters of the time slot to the DP using character 

device file charDev_IL2DP. 

RBACK()Function: It takes the vIL parameters from a receivedmessage and assigns them to 

the variables in the IL. 

 

 

4.3.2 Operations 

Figure 38 illustrates the operation and timing of D
3
RIP, if there is no fault before the 

considered slot. In the figure, AP2CL is sent by RT application. CL takes this message, after 

that it sends the RT message to IL. Before sending RT message to IL, CL sends the vCL 

parameters (nodeid, ch, eT, dT) of that time slot to DP using UPDVCL. When IL takes the RT 

message from CL, it sends the vIL parameters (cnt, cyc, slots) of that time slot to DP using 

UPDVIL. Then IL sends the RT message to SM using IL2SM. Destination node and that 

node get this RT message using SM2IL. IL sends this RT message to CL immediately and 

sends SM2ILDP to DP to provide the parameters (atRes, rbSt, rvCL.nodeid, rvCL.ch, 

rvCL.eT, rvCL.dT) which come from the sender node. If the received atRes is true, DP 

performs itsacceptance test using the internal action ATEST. In ATEST, vCL which comes 

with UPDVCL and vCL which comes with SM2ILDP are compared. If they are equal to each 

other, atRes returns true. If they are not equal to each other, atRes returns false. After that, 

DP sends SENDRES to IL to provide atRes and rbSt. IL sends these parameters to other 

nodes when an RT message comes from CL in the next time slot. While DP is making 

ATEST, CL sends the received RT message to AP using CL2AP. 
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Figure 38: The Timing of the D

3
RIP without Any Fault 

 

 

 

Figure 39 shows the operation and timing of D
3
RIP, if a fault is communicated in the 

considered slot. The difference between the conditions with fault and without fault is that DP 

behaves differently when it takes SM2ILDP. If there is a fault before that time slot, DP sends 

RBACK to CL and IL to bring back the recovery point. In RBACK, it pops out the recovery 

points in vCL and vIL History queues. When CL takes the RBACK, it sends a flag with RT 

message using CL2AP. Thus, AP knows that there is a RBACK situation and sends  RT 

message which is earliest in the history of DP in the next time slot. Then nodes send the RT 

message each other according tohistory of DP.  The length of history of DP is calculated 

using formula below:   

 

ΔF=ΔI+ΔS+ΔC+ΔN 

 

ΔF: Longest fault detection time. 

ΔI: Maximum number of time slots between sending two packets by the same node is 

calculated by using maximum number of time slots which is assigned to a node between two 

time slots. 

ΔS: Consecutive time slots which are not assigned to any node in the system use all the time. 

ΔC: Possible maximum consecutive collision number on the shared medium. 

ΔN: The maximum number of the consecutive message which is sent by one node. 

 

It is assumed that these parameters are known from the operation of the respective 

application. Also, there are assumptions and necessary conditions for DP to work properly. 

[43] 

 There is not any fault that occurs successively in the system. There can be only 

one fault after the previous fault is resolved.  
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 In the system, each node has a slot to transmit its message to the other nodes.  

So, there has to be a bounded interval of at most ΔI time slots between two  

successive transmission slots. 

 There is not any fault in the first time slot.  

 There has to be at least 3 nodes that are connected to the system.  
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Figure 39: The Timing of the D

3
RIP with Fault 
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CHAPTER 5 

 

 

EVALUATION OF THE DEPENDABILITY PLANE 

 

 

5.1 Example Description 

In this thesis, the manufacturing cell in Figure 41 is considered as an application example 

[44]. In Figure 40, there are 4 controllers working with each other synchronously, these 

controllers are: PLC-S, PLC-R, PLC-C, and PLC-PD. PLC-S coordinates the other 

controllers. PLC-R, PLC-C and PLC-PD control the 3 parts of the system namely robot (R) 

that moves a robot arm, conveyor (C) that carries parts and apainting device (PD) that paints 

parts using a spray gun.  

 

 

 

 
Figure 40: A Manufacturing System [44] 
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This workcell has an event-based operation. All controllers have a state machine and the 

states show the state of the controller, arrows between states indicate transitions, whereby all 

transitions are labeled with event names. Figure 41 shows the state machines of the workcell. 

Synchronized actions among the different controllers are represented by transitions with 

equal names. For example, the transition mvC occurs synchronously in PLC-S and PLC-R.  

 

 

 

 
Figure 41: State Machines of Workcell [12] 

 

 

 

In the state machines of the workcell, PLC-S initiates the system start by triggering mvC that 

is shared withPLC-R. PLC-R sends a signal to the robot arm to move a part to the conveyor 

(Event sC is occurred). Closed-loop control posR which gives the position of robot arm and 

actR which indicates the actuator signal of robot arm, are sent to move the robot arm to the 

conveyor. When robot arm reaches the conveyor, stpR signal is sent to stop the robot arm 

and arC signal notifies PLC-S about the arrival of the robot arm at the conveyor. PLC-S 

sends mvPD command to PLC-C to move the part to the painting device. PLC-C sends 

signal to the conveyor to move part to the painting device (Event sPD occurs). Position 

control signal posC is sent to the conveyor to inform the position of conveyor. When 

conveyor reaches the painting device, stpC signal is sent to stop the conveyor and arPD 

signal notifies PLC-S controller about the arrival of the robot arm at the conveyor. PLC-S 

sends PDon command to the PLC-PD to start operation of the painting device. lPD signal 

locks the painting device for painting operation, iPD initiates the painting process. Then, 

posPD which gives the position of painting device and actPD which indicates the actuator 

signal of painting device are sent to operate the painting device. After that, fPD signal which 

shows that the painting device finishes the painting operation is sent by painting device. 

After finishing painting operation, unlock painting device ulPD signal is sent and painting 

device is turned off by PLC-S with PDoff signal. After that, conveyor moves back to the 

robot arm with signal mvR, sR, arR (These signals are same with mvPD, sPD and arPD) and 

robot arm gets part from conveyor and put it on its old place with signal mvI, sI, arI (These 

signals are same with mvC, sC and arC).  
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Figure 42 illustrates the timing diagram for the PLC communication of the example 

workcell.  PLC-S sends event message to the related controller with queries (?). Then the 

other PLC controller responds that event message with a notification (!) to PLC-S whenever 

it is ready to execute the event. When PLC-S gets the event message with a notification (!), it 

sends a message with a single command (√) to execute the event.   

 

 

 

 
Figure 42: The Timing Diagram for the PLC Communication of the Example Workcell [44]  

 

 

 

S R C PD

2.1.mvPD?
3.3.mvPDc
2.6.arPD?
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3.3.PDonc
4.1.PDoff?
4.3.PDoffc

2.2.mvPD!
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1.2.mvC!
1.7.arC!
6.2.mvI!
6.7.arI!

PLANT

3.4.fPD

1.5. & 6.5.stpR

2.5. & 5.5.stpC

1.4.sC
6.4.sI

2.4.sPD
5.4.sR

D3RIP SimpleNET

1)  The Robot transport  a PART  to the Conveyor.
2)  The Conveyor moves a PART to the Painting Device.
3)  The Painting Device is initiated and operated.
4)  The Painting Device is stopped.
5)  The Conveyor moves a PART to the Robot.
6)  The Robot transport  a PART  to the Initial Place.

 
Figure 43: The Connection of the Controllers and Plant 

 

 

 

In the system simulation and implementation, each computer behaves like controller in the 

system. There are 4 controllers in the system: PLC-S, PLC-R, PLC-C and PLC-PD. Also, 

these controllers are connected to another computer which runs as a plant to simulate the 

actual system operation. So, there are 5 computers in the system which are connected to each 

other for all system simulation and implementation. Figure 43 shows the connection of the 

controllers and plant computer. There are 4 controllers and plant computer in the system. 

Plant and other controllers are connected with Ethernet 802.3. This is called Simplenet 
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communication.  Simplenet communication carries on the bold black connections. 

Controllers exchange signal data (sensor/actuator) with the plant. This is done using the 

simplenet protocol which is specific to libfaudes and fits to our application.  

 Also our RT Ethernet protocol D
3
RIP is used for industrial communication between 

controllers. D3RIP communication carries on the black connections. In D
3
RIP 

communication, signal data (sensor/actuator) between controllers are carried RT. The 

numbers of the signals show the order of event occurrence. A part is taken, carried, painted 

and moved back to the old places with events in Figure 41. 

 

On the plant computer, simfaudes which is a simulator for the example control application, 

runs and it controls the system operation. Simfaudes uses XML files to configure the system 

operation. There are different XML files which are used as input files for D
3
RIP, simplenet 

connection definition and simulator description. Figure 45 below shows the D
3
RIP XML 

configuration file for controller C. Event name, event type, event id, channel transmit value, 

parameter record, destination node id, destination channel value, eligibility and deadline time 

of events are defined and configured in  D
3
RIP XML file according to the connection of the 

controllers. 

 

Communication Example between controllers (Figure  43-44): 

Controller S sends event “mvPD?” to Controller C to move the part to the painting device 

(PD). Controller C sends back event “mvPD!” to ask the confirmation of the action and then 

Controller S sends event “mvPDc” to confirm that action. These actions are defined in 

D
3
RIP XML file for each controller. In Figure 44 below, event “mvPD?” is defined. It is 

“output” event, its eventid is “14” which shows the order of occurance in the system. Its 

channel value is “1” and parameter record is “11”. The destination node of event is “1”. In 

other words, it is sent to Controller S by Controller C (Controller S’s node id equals 1). The 

destination channel value is “1”. The eligibility time of event is “8” which shows that how 

much time that event is eligible for the system. Also in that definition, deadline time of event 

is defined. For event “mvPD!”, the deadline time is “10”. 

 

 

 

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> 

<!DOCTYPE D3RIP SYSTEM "controllerC_d3rip.dtd"> 

<D3RipUrtDevice  name="controllerC_d3rip"> 

<TimeScale value="10"/> 

<ServerAddress value="localhost:40000"/> 

 

<Event name="mvPD?" iotype="input"> 

<EventId value="13"/> 

</Event> 

 

<Event name="mvPD!" iotype="output"> 

<EventId value="14"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="1"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="8" /> 

<DeadlineTime value="10"/> 

</ParameterRecord> 



63 

 

</Event> 

 

<Event name="mvPDc" iotype="input"> 

<EventId value="15"/> 

</Event> 

 

<Event name="arPD?" iotype="input"> 

<EventId value="16"/> 

</Event> 

 

<Event name="arPD!" iotype="output"> 

<EventId value="17"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="1"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="8" /> 

<DeadlineTime value="10"/> 

</ParameterRecord> 

</Event> 

 

<Event name="arPDc" iotype="input"> 

<EventId value="18"/> 

</Event> 

 

<Event name="mvR?" iotype="input"> 

<EventId value="19"/> 

</Event> 

 

 

<Event name="mvR!" iotype="output"> 

<EventId value="20"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="1"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="8" /> 

<DeadlineTime value="10"/> 

</ParameterRecord> 

</Event> 

 

 

<Event name="mvRc" iotype="input"> 

<EventId value="21"/> 

</Event> 

 

 

<Event name="arR?" iotype="input"> 

<EventId value="22"/> 

</Event> 

 

 

<Event name="arR!" iotype="output"> 

<EventId value="23"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="1"/> 

<DestinationChannel value="1"/> 
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<EligibilityTime value="8" /> 

<DeadlineTime value="10"/> 

</ParameterRecord> 

</Event> 

 

 

<Event name="arRc" iotype="input"> 

<EventId value="24"/> 

</Event> 

</EventConfiguration> 

</D3RipUrtDevice> 

 

Figure 44: D
3
RIP XML Configuration File for Controller C 

 

 

 

Simplenet XML files show the connection between controller and plant computer and the 

physical connection of simplenet is over ethernet. Figure 45 shows the Simplenet XML 

configuration file for controller C. Network topology is defined with network name and 

nodes which are in the network and events are configured with event names, event types 

according to the connection of the controllers and plant in Figure 43. 

 

 

 

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> 

<!DOCTYPE SimplenetDevice SYSTEM "controllerC.dtd"> 

<SimplenetDevice name="controllerC"> 

<TimeScale value="10"/> 

<ServerAddress value="localhost:40000"/> 

 

<!-- Network topology --> 

<Network name="paintingNet"> 

<Node name="plant"/> 

<Node name="controllerR"/> 

<Node name="controllerC"/> 

<Node name="controllerPD"/> 

</Network> 

 

<EventConfiguration> 

<Event name="sPD" iotype="output"/> 

<Event name="stpC" iotype="input"/> 

<Event name="sR" iotype="output"/> 

</EventConfiguration> 

 

</SimplenetDevice> 

 

Figure 45: SimpleNet XML Configuration File for Controller C 

 

 

 

Simulator XML files define the protocol parameters and properties of the controller. 

Simulator files help the generation of simulator in the simfaudes.  Figure 46 shows the 

simulator XML configuration file for controller C. Alphabet tag shows the commands which 
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are related that node. States tag shows the state status and definition. TransRel tag shows the 

state transition diagrams members and description how the states are connected to each 

other. InitStates tag indicates the initial state of that state diagram. MarkedStates tag shows 

the marked state in the state diagram. SimEventAttributes tag shows the event properties and 

priorities in the system. 

 

 

 

<Executor> 

<Generators> 

<Generator> 

controllerC 

<Alphabet> 

mvPD? mvPD! mvPDc mvPD arPD? arPD! arPDc arPD sPD stpPD 

mvR? mvR! mvRc mvR  sR arR? arR! arRc arR 

</Alphabet> 

<States> 

<Consecutive> 1   28  </Consecutive> 

</States> 

<TransRel> 

1 mvPD? 2 

2 mvPD! 3 

3 mvPDc 4 

4 arPD? 5 

4 mvPD 6 

5 mvPD 7 

6 arPD? 7 

6 sPD 8 

7 sPD 9 

8 arPD? 9 

8 stpPD 10 

9 stpPD 11 

10 arPD? 11 

11 arPD! 12 

12 arPDc 13 

13 arPD 14 

13 mvR? 15 

14 mvR? 16 

15 arPD 16 

16 mvR! 17 

17 mvRc 18 

18 arR? 19 

18 mvR 20 

19 mvR 21 

20 arR? 21 

20 sR 22 

21 sR 23 

22 arR? 23 

22 stpPD 24 

23 stpPD 25 

24 arR? 25 

25 arR! 26 

26 arRc 27 

27 arR 1 

27 mvPD? 28 

28 arR 2 

</TransRel> 
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<InitStates>    1       </InitStates> 

<MarkedStates>   1      </MarkedStates> 

</Generator> 

</Generators> 

<SimEventAttributes> 

"stpR"     <Priority>-1 </Priority> 

"fPD"          <Priority>-1 </Priority> 

"mvC"       <Priority> 1 </Priority> 

"sC"           <Priority> 1 </Priority> 

"arC"  <Priority> 1 </Priority> 

"mvI"        <Priority> 1 </Priority> 

"sI"           <Priority> 1 </Priority> 

"arI"          <Priority> 1 </Priority> 

"mvPD"     <Priority> 1 </Priority> 

"sPD"        <Priority> 1 </Priority> 

"arPD"      <Priority> 1 </Priority> 

"mvR"       <Priority> 1 </Priority> 

"sR"           <Priority> 1 </Priority> 

"arR"          <Priority> 1 </Priority> 

"PDon"      <Priority> 1 </Priority> 

"PDoff"       <Priority> 1 </Priority> 

</SimEventAttributes> 

</Executor> 

 

Figure 46: Simulator  XML Configuration File for Controller C 

 

 

 

D
3
RIP, Simplenet and simulator XML configuration files of all controllers and plant can be 

found in the appendix part of this thesis.  

 

 

5.2 Performance Parameters 

The duration of the time slot is calculated using the timing of the D
3
RIP operation.  In Figure 

39 the timing of the D
3
RIP without any fault, there are 11 sequential actions. In Table 6, the 

total number of sequential actions time duration shows the duration of the time slot without 

any fault. Also, 900 sample results (30 loop tests are made) are taken to show the duration of 

the time slot in Table 6. 

 

In Figure 40 the timing of the D
3
RIP with fault, there are also 11 sequential actions. In Table 

7, the total number of sequential actions time duration shows the duration of the time slot 

with fault. Also, in Table 7, 900 sample results (30 loop tests are made) are taken to show the 

the duration of the time slot. 
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Table 6: Synchronization Accuracy and Sequential Actions in D
3
RIP Operation Without Any 

Fault 

 

 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

IEEE 1588 Synchronization 

 
Mean (µs) Max.(µs) +/- % CI (99%) 

Path Delay [44] 1.6 1.7 %0 

Accuracy [44] 1.4 4.2 %3.71 

Sequential Actions 

 
Mean (µs) Max. (µs) +/- % CI (99%) 

CL Thread Wake-up 0.7 23.5 %0.21 

AP2CL 3,2 6.1 %3.23 

UPDVCL 17.9 36.4 %2.47 

CL2IL 1.3 6.5 %0.45 

IL2SM 15.4 27.9 %0.38 

UPDVIL 20.4 41.5 %1.96 

SM2IL 15.4 27.9 %0.38 

IL2CL 12.6 64.2 %1.22 

SM2ILDP 15.6 34.6 %2.37 

ATEST 1.4 4.2 %2.63 

SENDRES 6.3 16.6 %2.85 

CL2AP 2.3 12.8 %4.07 

Completion Time 189.1 502.2 %1.58 

 

 

Table 7: Sequential Actions in D
3
RIP Operation With Fault 

Sequential Actions 

  Mean (µs) Max. (µs) +/- % CI (99%) 

CL Thread Wake-up 0.7 23.5 %0.21 

AP2CL 3.2  6.1 %3.23 

UPDVCL 17.9 36.4 %2.47 

CL2IL 1.3  6.5 %0.45 

IL2SM 15,4  27.9 %0.38 

UPDVIL  20.4  41.5 %1.96 

SM2IL  15.4  27.9 %0.38 

IL2CL  12.6  64.2 %1.22 

SM2ILDP  15.6  34.6 %2.37 

RBACKCL  56.5  90.5 %1.19 

RBACKIL  58.2  98.2 %1.13 

CL2AP  2.3  12.8 %4.07 

Completion Time  339.5  770.3  %0.93 
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Table 8: Synchronization Accuracy and Sequential Actions in D
2
RIP Operation Before 

Adding Dependability Plane [44] 

 

IEEE 1588 Synchronization  

  Mean (µs) Max. (µs) +/- % CI (99%) 

Path Delay [44] 1.6 1.7 % 0 

Accuracy [44] 1.4 4.2 %3.71 

Sequential Actions 

  Mean (µs) Max. (µs) +/- % CI (99%) 

CL Thread Wake-up 0.7 23.5 %0.21 

AP2CL 3,2  6.1 %3.23 

CL2IL  1.3  6.5 %0.45 

IL2SM  15.4  27.9 %0.38 

SM2IL  15.4  27.9 %0.38 

IL2CL 9.2 46.1 %1.22 

CL2AP  2.3  12.8 %4.07 

Completion Time 94.1  231.1  %1.82 

 

 

 

After implementation of dependability plane, sample measurements were made for the 

system dependability. Table 6 and Table 7 show these measurements. In these 

measurements, duration of time slot is chosen as 1ms to cover all operations for 

dependability. Table 8 shows the timing of sequential actions in D
2
RIP operation before 

adding dependability plane.  In Table 6, 7, 8, the completion time includes the duration of 

sequential action, the spending time in hub and the transmission delay. 

 

In the example (Figure 41), maximum number of time slots (denoted as ΔI) between sending 

two packets by the same node is calculated by using maximum number of time slots which is 

assigned to a node between two time slots. This parameter is ΔI=6 time slots for the example 

system. Consecutive time slots which are not assigned to any node in the system use all the 

time slots. So ΔS=0. Possible maximum consecutive collision number on the shared medium 

is assumed as ΔC=4. The maximum number of the consecutive message which is sent by one 

node is ΔN=2. For these assumptions the longest fault detection time ΔF is calculated below.  

 

ΔF=ΔI+ΔS+ΔC+ΔN=12 

 

So Dependablity Plane stores at least ΔF=12 state variables in its memory. Also if there is a 

fault (when acceptance test is made) at time slot x, rollback time slot is x−ΔI [45]. In this 

example, rollback time slot equals to the 6. When there is a fault, node rolls back 6 messages 

before and determines the state variables for this time slot. Application layer sends the 

related message. 
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5.3 Experiments and Results 

According to performance parameters (Section 5.2), three experiments are made to show the 

Dependability Plane functionality and performance. 

 

In the first experiment, there is a problem at the vCL data structure in the PLC-S component. 

In this example, there is a vCL fault (eT parameters fault) at the 9
th 

time slot (belongs to 

PLC-S if the system is started up correctly). DP of another node detects the fault, assigns 

atRes to 0 at that time slot and it sends the result to all nodes in the 10
th 

time slot. Then, DP 

of all nodes sends RollBack to CL and IL. Application layer sends 5
th
 event message instead 

of 11
th
 event message in the PLC-S component. S component rolls back the system 6 time 

slots before. Figure 47 shows the experiment result of the first experiment.    

 

 

 

 
 

Figure 47: The Experiment Result of the First Experiment 

 

 

 

In the second experiment, there is a problem at the message transmission when message is 

taken from the shared medium.  In this example, there is a fault at the 16
th
 time slot (belongs 

to PLC-S). PLC-S component sends 16
th
 event message to all components in the system. 

That message cannot reach the destination node. DP of another node detects the fault, 

assigns atRes to 0 at that time slot and it sends the result to all nodes in the 17
th 

time slot.  

Then, DP of all nodes sends RollBack to CL and IL.  Application layer sends 12
th
 event 

message instead of 18
th
 event message in the PLC-S component. PLC-S component rolls 

back the system 6 time slots before.  Figure 48 shows the experiment result of the second 

experiment.    
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Figure 48: The Experiment Result of the Second Experiment 

 

 

 

In the third experiment, there is a problem at the vCL data structure in the PLC-R (Robot 

Arm) component. In this example, there is a vCL fault (eT parameters fault) at the 25
th
 time 

slot when R component gets the message from PLC-S component. DP realizes the fault, 

assigns atRes to 0 at that time slot and it sends the result to all nodes in the 26
th 

time slot.  

Then, DP of all nodes sends RollBack to CL and IL.  Application layer sends 21
th
 event 

message instead of 27
th
 event message in the PLC-S component. PLC-S component rolls 

back the system 6 time slots before.   Figure 49 shows the experiment result of the third 

experiment.    

 

 

 

 
 

Figure 49: The Experiment Result of the Third Experiment 

 

 

 

Also, another experiment was wanted to be applied on the system. It was about the packet 

loss and packet collision. The reason why it was not applied is that IL-CL communication is 

implemented with blocking read in the previous and current implementation. Thus, this 

method give us guarentee not to miss any packet while transmission between IL and CL. But 
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when the experiment is wanted to implement, IL-CL communication method must be 

changed to non-blocking read method. Also, this modification affects the flow of the 

program operation of CL and IL. When communication method, the flow of the program 

operation of CL, reading data from charecter device file in main CL thread, writing data to 

charecter device file in IL section are changed and extra communication between CL-DP is 

added, this experiment can be implemented. This change is intended for future work. 
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CHAPTER 6 

 

 

CONCLUSION & FUTURE WORK 

 

 

6.1 Conclusion 

With the development of technology, the industrial RT Ethernet networks have become an 

important subject in academia and industry. In the literature, there are different types of the 

protocols and solutions to implement industrial RT Ethernet networks. In our solution, the 

Distributed, Dependable and Dynamic Real Time Industrial Protocol (D
3
RIP) is proposed for 

the industrial RT Ethernet network. 

 

In this thesis, the implementation of the dependability plane for D
3
RIP and its evaluation are 

studied. First, generic interface, coordination layers and dependability plane of D
3
RIP are 

explained and formally represented by timed input output automata models. Then, based on 

an existing implementation of the predecessor protocol D
2
RIP, the implementation of the 

dependability support for D
3
RIP is discussed. The operation of D

3
RIP is demonstrated by a 

manufacturing cell example with 4 controller nodes. In summary, the following main tasks 

are performed in this thesis: 

 

 Dependability plane  implementation, 

 Integration of the dependability plane with coordination layer, interface layer and 

application layer (AP), 

 Testing overall structure with all layers in the D
3
RIP with 4 controllers real scenario, 

 Measurement of the dependability plane performance, 

 Different experiments over dependability plane to show the functionality and 

performance of the dependability plane. 

 

In this thesis, the dependability plane is implemented over a specific D
2
RIP structure that is 

implemented in [41], whereby implementation of DP is independent of the D
2
RIP structure. 

While implementing the DP, the interface rfunctions between CL-DP and IL-DP are 

implemented in IL and CL sides. Also a buffer structure is added to the AP to recover 

messages when the RBACK event occurs. Other than these modifications, there are not any 

extra modifications on D
2
RIP structure. After adding the dependability plane over specific 

D
2
RIP structure [41],  the slot duration is increased to 1ms because of new actions that have 

to be performed in each time slot.  

 

Finally it can be seen that with dependability plane, possible D
3
RIP failures are prevented 

and if there is a failure in the system, the system can recover and continue its operation. 
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6.2 Future Work 

In D
3
RIP implementation and test, system and protocol are observed.The following works 

make the framework much better when it runs in real operation:  

 

 Implementation on Different Operating System: The framework might show 

improved performance on RT operating systems such as VxWorks, RTLinux, 

LynxOS. 

 Extended Implementation to cover the packet loss and collision scenario: It can be 

implemented when the communication method between IL and CL, the flow of the 

program operation of CL are modified and extra communication between CL-DP is 

added. 

  

http://en.wikipedia.org/wiki/LynxOS
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APPENDIX 

 

XML FILES 
 

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> 

<!DOCTYPE D3RIP SYSTEM "controllerPD_d3rip.dtd"> 

<D3RipUrtDevice  name="controllerPD_d3rip"> 

<TimeScale value="10"/> 

<ServerAddress value="localhost:40000"/> 

 

 

<!-- Event configuration --> 

<Event name="PDon?" iotype="input"> 

<EventId value="25"/> 

</Event> 

 

 

<Event name="PDon!" iotype="output"> 

<EventId value="26"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="1"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

 

<Event name="PDonc" iotype="input"> 

<EventId value="27"/> 

</Event> 

 

 

<Event name="PDoff?" iotype="input"> 

<EventId value="28"/> 

</Event> 

 

 

<Event name="PDoff!" iotype="output"> 

<EventId value="29"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="1"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="PDoffc" iotype="input"> 

<EventId value="30"/> 

</Event> 
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</EventConfiguration> 

 

</D3RipUrtDevice> 

 

 

D3RIP XML Configuration File for Controller PD 

 

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> 

<!DOCTYPE SimplenetDevice SYSTEM "controllerPD.dtd"> 

 

<SimplenetDevice name="controllerPD"> 

<TimeScale value="10"/> 

 

<!-- Ip address of this node, incl. server tcp port --> 

<ServerAddress value="localhost:40000"/> 

 

<!-- Network topology --> 

<Network name="paintingNet"> 

<Node name="plant"/> 

<Node name="controllerR"/> 

<Node name="controllerC"/> 

<Node name="controllerPD"/> 

</Network> 

 

<!-- Event configuration --> 

<EventConfiguration> 

<Event name="fPD" iotype="input"/> 

</EventConfiguration> 

 

</SimplenetDevice> 

 

SimpleNet XML Configuration File for Controller PD 

 

 

 

 

<Executor> 

<Generators> 

<Generator> 

controllerC 

<Alphabet> 

PDon? PDon! PDonc PDon fPD PDoff? PDoff! PDoffc PDoff 

</Alphabet> 

<States> 

<Consecutive> 

1 12 

</Consecutive> 

</States> 

<TransRel> 

1 PDon? 2 

2 PDon! 3 

3 PDonc 4 

4 PDoff? 5 

4 PDon 6 

5 PDon 7 

6 PDoff? 7 

6 fPD 8 

7 fPD 9 
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8 PDoff? 9 

9 PDoff! 10 

10 PDoffc 11 

11 PDoff 1 

11 PDon? 12 

12 PDoff 2 

</TransRel> 

 

<InitStates> 1         </InitStates> 

 

<MarkedStates> 1     </MarkedStates> 

</Generator> 

</Generators> 

 

% specify event attributes 

<SimEventAttributes> 

% Sensor Events 

"stpR"     <Priority>-1</Priority> 

"stpC"     <Priority>-1</Priority> 

"fPD"       <Priority>-1</Priority> 

% Actuator Events 

"mvC"    <Priority>1</Priority> 

"sC"       <Priority>1 </Priority> 

"arC"      <Priority>1 </Priority> 

"mvI"      <Priority>1  </Priority> 

"sI"       <Priority>1  </Priority> 

"arI"       <Priority>1</Priority> 

"mvPD" <Priority>1</Priority> 

"sPD"     <Priority>1</Priority> 

"arPD"    <Priority>1 </Priority> 

"mvR"     <Priority>1 </Priority> 

"sR"       <Priority>1 </Priority> 

"arR"       <Priority>1</Priority> 

"PDon"    <Priority>1</Priority> 

"PDoff"    <Priority>1</Priority> 

 

</SimEventAttributes> 

 

</Executor> 

 

Simulator  XML Configuration File for Controller PD 

 

 

 

 

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> 

<!DOCTYPE D3RIP SYSTEM "controllerR_d3rip.dtd"> 

<D3RipUrtDevice  name="controllerR_d3rip"> 

<TimeScale value="10"/> 

<!-- Ip address of this node, incl. server tcp port --> 

<ServerAddress value="localhost:40000"/> 

<Event name="mvC?" iotype="input"> 

<EventId value="1"/> 

</Event> 

 

<Event name="mvC!" iotype="output"> 

<EventId value="2"/> 

<ChannelToTransmit value="1"/> 
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<ParameterRecord name="11"> 

<DestinationNode value="1"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="mvCc" iotype="input"> 

<EventId value="3"/> 

</Event> 

 

<Event name="arC?" iotype="input"> 

<EventId value="4"/> 

</Event> 

 

<Event name="arC!" iotype="output"> 

<EventId value="5"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="1"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="arCc" iotype="input"> 

<EventId value="6"/> 

</Event> 

 

<Event name="mvI?" iotype="input"> 

<EventId value="7"/> 

</Event> 

 

<Event name="mvI!" iotype="output"> 

<EventId value="8"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="1"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="mvIc" iotype="input"> 

<EventId value="9"/> 

</Event> 

 

<Event name="arI?" iotype="input"> 

<EventId value="10"/> 

</Event> 

 

<Event name="arI!" iotype="output"> 

<EventId value="11"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 
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<DestinationNode value="1"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="arIc" iotype="input"> 

<EventId value="12"/> 

</Event> 

</EventConfiguration> 

</D3RipUrtDevice> 

 

D3RIP XML Configuration File for Controller R 

 

 

 

 

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> 

<!DOCTYPE SimplenetDevice SYSTEM "controllerR.dtd"> 

 

<SimplenetDevice name="controllerR"> 

<TimeScale value="10"/> 

<ServerAddress value="localhost:40000"/> 

 

<!-- Network topology --> 

<Network name="paintingNet"> 

<Node name="plant"/> 

<Node name="controllerR"/> 

<Node name="controllerC"/> 

<Node name="controllerPD"/> 

</Network> 

 

<!-- Event configuration --> 

<EventConfiguration> 

<Event name="sC" iotype="output"/> 

<Event name="stpR" iotype="input"/> 

<Event name="sI" iotype="output"/> 

</EventConfiguration> 

 

</SimplenetDevice> 

 

SimpleNet XML Configuration File for Controller R 

 

 

 

 

<Executor> 

<Generators> 

<Generator>controllerR          

<Alphabet> 

mvC? mvC! mvCc mvC arC? arC! arCc arC sC stpR 

mvI? mvI! mvIc mvI  sI arI? arI! arIc arI 

</Alphabet> 

<States> 

<Consecutive> 

1 28 

</Consecutive> 
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</States> 

<TransRel> 

1 mvC? 2 

2 mvC! 3 

3 mvCc 4 

4 arC? 5 

4 mvC 6 

5 mvC 7 

6 arC? 7 

6 sC 8 

7 sC 9 

8 arC? 9 

8 stpR 10 

9 stpR 11 

10 arC? 11 

11 arC! 12 

12 arCc 13 

13 arC 14 

13 mvI? 15 

14 mvI? 16 

15 arC 16 

16 mvI! 17 

17 mvIc 18 

18 arI? 19 

18 mvI 20 

19 mvI 21 

20 arI? 21 

20 sI 22 

21 sI 23 

22 arI? 23 

22 stpR 24 

23 stpR 25 

24 arI? 25 

25 arI! 26 

26 arIc 27 

27 arI 1 

27 mvC? 28 

28 arI 2 

</TransRel> 

 

<InitStates>1         </InitStates> 

<MarkedStates>1     </MarkedStates> 

</Generator> 

</Generators> 

<SimEventAttributes> 

% Sensor Events 

"stpR"     <Priority>-1                 </Priority> 

"stpC"      <Priority>-1  </Priority> 

"fPD"       <Priority>-1  </Priority> 

% Actuator Events 

"mvC"       <Priority>1           </Priority> 

"sC"       <Priority>1            </Priority> 

"arC"       <Priority>1           </Priority> 

"mvI"       <Priority>1           </Priority> 

"sI"       <Priority>1             </Priority> 

"arI"       <Priority>1         </Priority> 

"mvPD"       <Priority>1           </Priority> 

"sPD"       <Priority>1            </Priority> 
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"arPD"       <Priority>1          </Priority> 

"mvR"       <Priority>1           </Priority> 

"sR"       <Priority>1             </Priority> 

"arR"       <Priority>1           </Priority> 

"PDon"       <Priority>1         </Priority> 

"PDoff"       <Priority>1           </Priority> 

 

</SimEventAttributes> 

</Executor> 

Simulator  XML Configuration File for Controller R 

 

 

 

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> 

<!DOCTYPE D3RIP SYSTEM "controllerS_d3rip.dtd"> 

<D3RipUrtDevice  name="controllerS_d3rip"> 

<TimeScale value="10"/> 

<ServerAddress value="localhost:40000"/> 

 

<!-- Event configuration --> 

<!-- Communication with robot (node 1) --> 

<Event name="mvC?" iotype="output"> 

<EventId value="1"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="2"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="mvC!" iotype="input"> 

<EventId value="2"/> 

</Event> 

 

<Event name="mvCc" iotype="output"> 

<EventId value="3"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="2"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="arC?" iotype="output"> 

<EventId value="4"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="2"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 



86 

 

<Event name="arC!" iotype="input"> 

<EventId value="5"/> 

</Event> 

 

<Event name="arCc" iotype="output"> 

<EventId value="6"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="2"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="mvI?" iotype="output"> 

<EventId value="7"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="2"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="mvI!" iotype="input"> 

<EventId value="8"/> 

</Event> 

 

<Event name="mvIc" iotype="output"> 

<EventId value="9"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="2"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="arI?" iotype="output"> 

<EventId value="10"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="2"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="arI!" iotype="input"> 

<EventId value="11"/> 

</Event> 

 

<Event name="arIc" iotype="output"> 

<EventId value="12"/> 
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<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="2"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<!-- Communication with conveyor (node 3) --> 

<Event name="mvPD?" iotype="output"> 

<EventId value="13"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="3"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="mvPD!" iotype="input"> 

<EventId value="14"/> 

</Event> 

 

<Event name="mvPDc" iotype="output"> 

<EventId value="15"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="3"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="arPD?" iotype="output"> 

<EventId value="16"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="3"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="arPD!" iotype="input"> 

<EventId value="17"/> 

</Event> 

 

<Event name="arPDc" iotype="output"> 

<EventId value="18"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="3"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 
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<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="mvR?" iotype="output"> 

<EventId value="19"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="3"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="mvR!" iotype="input"> 

<EventId value="20"/> 

</Event> 

 

<Event name="mvRc" iotype="output"> 

<EventId value="21"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="3"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="arR?" iotype="output"> 

<EventId value="22"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="3"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="arR!" iotype="input"> 

<EventId value="23"/> 

</Event> 

 

<Event name="arRc" iotype="output"> 

<EventId value="24"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="3"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<!-- Communication with painting device (node 4) --> 

<Event name="PDon?" iotype="output"> 
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<EventId value="25"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="4"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="PDon!" iotype="input"> 

<EventId value="26"/> 

</Event> 

 

<Event name="PDonc" iotype="output"> 

<EventId value="27"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="4"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="PDoff?" iotype="output"> 

<EventId value="28"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="4"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

 

<Event name="PDoff!" iotype="input"> 

<EventId value="29"/> 

</Event> 

 

<Event name="PDoffc" iotype="output"> 

<EventId value="30"/> 

<ChannelToTransmit value="1"/> 

<ParameterRecord name="11"> 

<DestinationNode value="4"/> 

<DestinationChannel value="1"/> 

<EligibilityTime value="2" /> 

<DeadlineTime value="5"/> 

</ParameterRecord> 

</Event> 

</EventConfiguration> 

</D3RipUrtDevice> 

 

D3RIP XML Configuration File for Controller S 
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<Executor> 

<Generators> 

<Generator>controllerS          

<Alphabet> 

mvC? mvC! mvCc arC? arC! arCc    

mvI? mvI! mvIc arI? arI! arIc  

mvPD? mvPD! mvPDc arPD? arPD! arPDc 

mvR? mvR! mvRc arR? arR! arRc 

PDon? PDon! PDonc PDoff? PDoff! PDoffc 

</Alphabet> 

<States> 

<Consecutive>1 30</Consecutive> 

</States> 

<TransRel> 

1 mvC? 2 

2 mvC! 3 

3 mvCc 4 

4 arC? 5 

5 arC! 6 

6 arCc 7 

7 mvPD? 8 

8 mvPD! 9 

9 mvPDc 10 

10 arPD? 11 

11 arPD! 12 

12 arPDc 13 

13 PDon? 14 

14 PDon! 15 

15 PDonc 16 

16 PDoff? 17 

17 PDoff! 18 

18 PDoffc 19 

19 mvR? 20 

20 mvR! 21 

21 mvRc 22 

22 arR? 23 

23 arR! 24 

24 arRc 25 

25 mvI? 26 

26 mvI! 27 

27 mvIc 28 

28 arI? 29 

29 arI! 30 

30 arIc 1 

</TransRel> 

<InitStates>1         </InitStates> 

<MarkedStates>1     </MarkedStates> 

</Generator> 

</Generators> 

<SimEventAttributes> 

% Sensor Events 

"stpR"     <Priority>-1 </Priority> 

"stpC"      <Priority>-1</Priority> 

"fPD"       <Priority>-1</Priority> 

% Actuator Events 

"mvC"       <Priority> 1            </Priority> 

"sC"       <Priority>   1            </Priority> 

"arC"       <Priority> 1            </Priority> 
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"mvI"       <Priority>1            </Priority> 

"sI"       <Priority>   1            </Priority> 

"arI"       <Priority>  1            </Priority> 

"mvPD"       <Priority>1         </Priority> 

"sPD"       <Priority>1            </Priority> 

"arPD"       <Priority>1           </Priority> 

"mvR"       <Priority>1           </Priority> 

"sR"       <Priority>1               </Priority> 

"arR"       <Priority>1             </Priority> 

"PDon"      <Priority>1            </Priority> 

"PDoff"      <Priority>1            </Priority> 

</SimEventAttributes> 

</Executor> 

   Simulator  XML Configuration File for Controller R 

 

 

 

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> 

<!DOCTYPE SimplenetDevice SYSTEM "plant.dtd"> 

<SimplenetDevice name="plant"> 

<TimeScale value="10"/> 

<ServerAddress value="localhost:40000"/> 

<Network name="paintingNet"> 

<Node name="plant"/> 

<Node name="controllerR"/> 

<Node name="controllerC"/> 

<Node name="controllerPD"/> 

</Network> 

 

<EventConfiguration> 

<Event name="sC" iotype="input"/> 

<Event name="stpR" iotype="output"/> 

<Event name="sI" iotype="input"/> 

<Event name="sPD" iotype="input"/> 

<Event name="stpC" iotype="output"/> 

<Event name="sR" iotype="input"/> 

<Event name="fPD" iotype="output"/> 

</EventConfiguration> 

</SimplenetDevice> 

 

SimpleNet XML Configuration File for Plant 

 

 

 

 

<Executor> 

<Generators> 

<Generator>plantConveyor         

<Alphabet> 

mvPD sPD stpC arPD mvR sR stpC arR 

</Alphabet> 

<States> 

1 2  

3   <Invariant> "cMove"   "LT" 10 </Invariant> 

4 5 6 

7  <Invariant> "cMove"   "LT" 10 </Invariant> 

8 

</States> 
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<TransRel> 

1 mvPD 2 

2 sPD 3 

<Timing> 

<Resets>"cMove"   </Resets> 

</Timing>3 stpC 4     <Timing> 

<Guard>    "cMove" "GT" 5 </Guard> 

</Timing> 

4 arPD 5 

5 mvR 6 

6 sR 7 

<Timing> 

<Resets>"cMove"</Resets> 

</Timing>7 stpC 8<Timing> 

<Guard>    "cMove" "GT" 5</Guard> 

</Timing>8 arR 1 

</TransRel> 

<InitStates>1         </InitStates> 

<MarkedStates>1     </MarkedStates> 

<Clocks>"cMove" </Clocks> 

</Generator> 

<Generator>plantPaintingDevice         

<Alphabet>PDon fPD PDoff</Alphabet> 

<States> 

1  

2 <Invariant> "pdMove"   "LT" 10 </Invariant> 

3   

</States> 

<TransRel>1 PDon 2<Timing> 

<Resets>"pdMove"</Resets> 

</Timing>2 fPD  3<Timing> 

<Guard>    "pdMove" "GT" 5</Guard> 

</Timing>3 PDoff 1</TransRel> 

<InitStates>1         </InitStates> 

<MarkedStates>1     </MarkedStates> 

<Clocks>"pdMove" </Clocks> 

</Generator> 

<Generator>plantRobot          

<Alphabet>mvC sC stpR arC mvI sI stpR arI</Alphabet> 

<States> 

1 2  

3  <Invariant> "rMove"   "LT" 10 </Invariant> 

4 5 6 

7 <Invariant> "rMove"   "LT" 10 </Invariant> 

8 

</States> 

<TransRel> 

1 mvC 2 

2 sC 3 

<Timing> 

<Resets>"rMove"</Resets> 

</Timing>3 stpR 4<Timing> 

<Guard>    "rMove" "GT" 5</Guard> 

</Timing> 

4 arC 5 

5 mvI 6 

6 sI 7 

<Timing> 
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<Resets>"rMove"</Resets> 

</Timing>7 stpR 8<Timing> 

<Guard>    "rMove" "GT" 5</Guard> 

</Timing>8 arI 1 

</TransRel> 

<InitStates>1         </InitStates> 

<MarkedStates>1     </MarkedStates> 

<Clocks>"rMove" </Clocks> 

</Generator> 

</Generators> 

<SimEventAttributes> 

"stpR"     <Priority>-1           </Priority> 

"stpC"      <Priority>-1</Priority> 

"fPD"       <Priority>-1</Priority> 

"mvC"       <Priority>1            </Priority> 

"sC"       <Priority>1            </Priority> 

"arC"       <Priority>1            </Priority> 

"mvI"       <Priority>1            </Priority> 

"sI"       <Priority>1            </Priority> 

"arI"       <Priority>1            </Priority> 

"mvPD"       <Priority>1            </Priority> 

"sPD"       <Priority>1            </Priority> 

"arPD"       <Priority>1            </Priority> 

"mvR"       <Priority>1            </Priority> 

"sR"       <Priority>1            </Priority> 

"arR"       <Priority>1            </Priority> 

"PDon"       <Priority>1            </Priority> 

"PDoff"       <Priority>1            </Priority> 

</SimEventAttributes> 

</Executor> 

 

Simulator  XML Configuration File for Plant 


