

IMPLEMENTATION AND EVALUATION OF THE DEPENDABILITY PLANE

FOR THE

DYNAMIC DISTRIBUTED DEPENDABLE REAL TIME INDUSTRIAL PROTOCOL

(D
3
RIP)

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

¥MER BERAT SEZER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2013

Approval of the thesis:

IMPLEMENTATION AND EVALUATION OF THE DEPENDABILITY PLANE

 FOR THE

DYNAMIC DISTRIBUTED DEPENDABLE REAL TIME INDUSTRIAL

PROTOCOL

(D
3
RIP)

submitted by ¥MER BERAT SEZER in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronics Engineering Department,

Mi ddle East Technical University by,

Prof. Dr. Canan ¥zgen _____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gºn¿l Turhan Sayan _____________________

Head of Department, Electrical and Electronics Engineering

Assoc.Prof. Dr. ķenan Ece Schmidt _____________________

Supervisor, Electrical and Electronics Eng. Dept., METU

Assoc. Prof. Dr. Klaus Werner Schmidt _____________________

Co-Supervisor, Dept., of Mechatronics Eng., ¢ankaya U.

Examining Committee Members:

Prof. Dr. Semih Bilgen _____________________

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. ķenan Ece Schmidt _____________________

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. C¿neyt Bazlamaē _____________________

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Halit Oĵuzt¿z¿n _____________________

Computer Engineering Dept., METU

Yusuf Bora Kartal _____________________

M.Sc. ASELSAN A.ķ

Date:

iv

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this work.

 Name, Last Name: ¥MER BERAT SEZER

 Signature:

v

ABSTRACT

IMPLEMENTATION AND EVALUATION OF THE DEPENDABILITY PLANE

FOR THE

DYNAMIC DISTRIBUTED DEPENDABLE REAL TIME INDUSTRIAL PROTOCOL

(D
3
RIP)

Sezer, ¥mer Berat

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. ķenan Ece Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

September 2013, 93 pages

Dynamic Distributed Dependable Real Time Ethernet Industrial Protocol (D
3
RIP) is a real

time industrial communication protocol that runs over shared-medium Ethernet with COTS

hardware. The protocol consists of an interface layer that enables time slotted

communication and a coordination layer that guarantees collision avoidance and timely

delivery of real time messages generated by the control application. At the current

development stage, these two layers of the protocol are fully implemented and tested. The

scope of this thesis is the implementation of a new plane for D
3
RIP to achieve dependability.

To this end, mechanisms of fault detection and roll back recovery are applied. The interface

of the dependability plane to the existing interface layer and coordination layer is defined.

Finally the dependability plane is implemented and integrated to the existing protocol stack.

A number of tests under different fault scenarios are conducted to demonstrate the plane

functionality.

Keywords: Ethernet, industrial communication network, real time industrial communication

vi

¥Z

DĶNAMĶK DAĴITILMIķ G¦VENĶLĶR GER¢EK ZAMANLI END¦STRĶYEL

PROTOKOL¦ (D
2
G

2
EP)

Ķ¢ĶN

G¦VENĶLEBĶLĶRLĶK D¦ZLEMĶ GER¢EKLENMESĶ VE DEĴERLENDĶRĶLMESĶ

Sezer, ¥mer Berat

Y¿ksek Lisans, Elektrik ve Elektronik M¿hendisliĵi Bºl¿m¿

Tez Yºneticisi : Do. Dr. ķenan Ece Schmidt

Ortak Tez Yºneticisi : Do. Dr. Klaus Werner Schmidt

Eyl¿l 2013, 93 sayfa

Dinamik Daĵētēlmēĸ G¿venilir Gerek Zamanlē End¿striyel Protokol¿ (D
2
G

2
EP), (COTs)

orjinal donanēmēyla ortam paylaĸēmlē Ethernet ¿zerinde alēĸan gerek zamanlē end¿striyel

haberleĸme protokol¿d¿r. Protokol zaman oluklu iletiĸimi saĵlayan aray¿z katmanēndan

(AK) ve kontrol uygulamasē tarafēndan ¿retilen gerek zamanlē mesajlarēn iletimini ve

akēĸmayē ºnlemeyi garantileyen koordinasyon katmanēndan (KK) oluĸur. Mevcut

geliĸtirme aĸamasēnda, bu iki protokol katmanē eksiksiz gereklenmiĸ ve test edilmiĸtir. Bu

tezin kapsamē D
2
G

2
EPôin g¿venirliliĵini saĵlayan yeni bir d¿zlem uygulamasēdēr. Bu amala,

hata belirleme ve hata ºncesi duruma geri dºnd¿rme mekanizmalarē oluĸturulmuĸtur.

Varolan aray¿z katmanē ve koordinasyon katmanē iin g¿venirlilik d¿zlemi aray¿z¿

tanēmlanmēĸtēr. Son olarak g¿venirlilik d¿zlemi uygulanmēĸ ve varolan yapēya entegre

edilmiĸtir. Farklē hata senaryolarēna gºre bir ok test gerekleĸtirilmiĸ ve d¿zlemin

iĸlevselliĵi gºsterilmiĸtir.

Anahtar Kelimeler: Ethernet, end¿striyel iletiĸim aĵlarē, gerek zamanlē end¿striyel

haberleĸme

vii

To My Family

viii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Associate Prof. Dr. ķenan Ece Schmidt and my

co-supervisor Associate Prof. Dr. Klaus Werner Schmidt for their valuable supervision and

support. In addition to this, I like to thank them for giving me an opportunity to study

industrial communication protocols. I also thank my colleagues Adem Kaya and Yusuf Bora

Kartal for their contribution on integration of my thesis work to the system and system tests.

My thesis was a part of a research project that was funded by The Scientific and

Technological Research Council of Turkey (TUBITAK). I would like to thank TUBITAK

for their project support.

I would like to thank my family, my wife and my colleagues in TUBITAK-UZAY for their

support.

ix

TABLE OF CONTENTS

ABSTRACT ... v

¥Z ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

INTRODUCTION ... 1

BACKGROUND ... 3

2.1 Real -Time Ethernet for Industrial Communication Protocols 3

2.1.1 Requirements .. 5

2.1.2 Real Time Ethernet Protocols ... 6

2.2 Dependability ... 10

PREVIOUS WORK ... 15

3.1 Dynamic Distributed Dependable Real Time Industrial Protocol (D
3
RIP) Protocol

Overview .. 15

3.2 D
3
RIP Formal Protocol Model: .. 17

3.2.1 Generic Interface Layer: ... 17

3.2.2 Generic Coordination Layer: .. 20

3.2.3 Generic Shared Medium Model: ... 23

3.2.4 Generic Dependability Plane Model: .. 24

3.3 D
2
RIP Implementation ... 27

3.3.1 Interface Layer (IL) : .. 28

3.3.2 Coordination Layer (CL): ... 34

3.3.3 D
2
RIP Implementation Summary and Its Operation ... 37

DEPENDABILITY PLANE IMPLEMENTATION ... 41

4.1 Overview .. 41

4.1.1 DP Implementation ... 42

4.2 Data Structures ... 52

4.3 Actions and Operation ... 54

4.3.1 Actions .. 54

x

4.3.2 Operations ... 55

EVALUATION OF THE DEPENDABILITY PLANE ... 59

5.1 Example Description .. 59

5.2 Performance Parameters ... 66

5.3 Experiments and Results .. 69

CONCLUSION & FUTURE WORK .. 73

6.1 Conclusion .. 73

6.2 Future Work ... 74

REFERENCES ... 75

APPENDIX .. 79

XML FILES ... 79

xi

LIST OF TABLES

TABLES

Table 1:Shared Medium Industrial Ethernet Protocol...10

Table 2: Frame Header Structure ... 30

Table 3: vCL_Q_TYPE ... 53

Table 4: vIL_Q_TYPE ... 53

Table 5: QUEUE_TYPE .. 53

Table 6: Synchronization Accuracy and Sequential Actions in D
3
RIP Operation Without Any

Fault ... 67

Table 7: Sequential Actions in D
3
RIP Operation With Fault... 67

Table 8: Synchronization Accuracy and Sequential Actions in D
2
RIP Operation Before

Adding Dependability Plane [44] .. 68

xii

LIST OF FIGURES

FIGURES

Figure 1: Industrial Communication Levels [14] ... 4

Figure 2: Additional Protocol on Ethernet Layers [29] .. 8

Figure 3: TC-Net Structure [31] ... 9

Figure 4: Dependability Threats [20] ... 11

Figure 5: Domino Effect [38] ... 12

Figure 6: Creating Control Point and Rollback [40] .. 13

Figure 7: D
3
RIP Layer Architecture ... 15

Figure 8: Time Slot Structure ... 16

Figure 9: IL Model as TIOA .. 19

Figure 10: Internal Functions in IL Layer .. 20

Figure 11: CL Model as TIOA ... 22

Figure 12: Update Functions for CL .. 23

Figure 13: SM Model as TIOA .. 24

Figure 14: Functions in Dependability Plane ... 25

Figure 16: Data Encapsulation of RT and Long nRT messages [44] 28

Figure 17: Message Transmission in IL layer .. 29

Figure 18: The Algorithm of the Transmit Function .. 32

Figure 19: The Algorithm of the Receive Function ... 33

Figure 21: Message Structure ... 35

Figure 22: Message Format in CL [29] .. 35

Figure 23: CL Algorithm [29] [41] .. 36

Figure 24: The Message Transmissions of the Layers and Functions of D
2
RIP 37

Figure 25: The Timing of the Sending RT request with RT packet 38

Figure 26: The Timing of the Sending RT request without RT packet 38

Figure 27: The Timing of the Sending nRT packet .. 39

Figure 28: Message exchange of DP with other layers. ... 42

Figure 29: Structure of DP ... 43

Figure 30: CL Implementation with DP ... 44

Figure 31: Transmission Part of IL with DP Implementation .. 45

Figure 33: DoListenCLModule Thread in AP.. 47

Figure 34: listenCoordinationLayer Thread in DP Implementation 49

Figure 35: listenInterfaceLayer in DP Implementation .. 50

Figure 36: fAT Implementation in DP ... 51

Figure 37: Dependability Plane UML Class Diagram ... 52

Figure 38: The Timing of the D
3
RIP without Any Fault .. 56

Figure 39: The Timing of the D
3
RIP with Fault ... 57

Figure 40: A Manufacturing System [44] .. 59

Figure 41: State Machines of Workcell [12] .. 60

Figure 42: The Timing Diagram for the PLC Communication of the Example Workcell [44]

 .. 61

xiii

Figure 43: The Connection of the Controllers and Plant ... 61

Figure 44: D
3
RIP XML Configuration File for Controller C .. 64

Figure 45: SimpleNet XML Configuration File for Controller C .. 64

Figure 46: Simulator XML Configuration File for Controller C .. 66

Figure 47: The Experiment Result of the First Experiment ... 69

Figure 48: The Experiment Result of the Second Experiment .. 70

Figure 49: The Experiment Result of the Third Experiment ... 70

xiv

1

CHAPTER 1

INTRODUCTION

Industrial control applications are nowadays realized using distributed controller devices that

are connected by a real-time communication network. The amount of the transmitted data

has been increased with the new control systems and the demand of these systems will be

increased more and more in the near future. Traditional bus and control network solutions

such as CAN [1], ProfiBus [2] and LonWorks [3] do not support the demanded

requirements, because of their low speed, high cost and incompatibility with other devices

and equipment.

Therefore, a different protocol is needed to support the stated requirements. Ethernet (IEEE

802.3) is a common proposition for the support of industrial control applications since it is

cheap, commonly used, high speed andcompatible with other protocols. However, there is a

problem to use Ethernet in real time (RT) communication. The reason is the CSMA/CD

(Carrier Sense Multiple Access / Collision Detection) access protocol. In CSMA/CD access

protocol, if a collision occurs on the network, the node which sends the packet to the other

node, waits a random time to resend the packet. Also, the random amount of time is double

increased if a collision occurs again. This causes non-determinism and impairs the RT timing

requirements. To overcome this problem, there are various solutions in the literature.

Common solutions are:

¶ Modification of the Medium Access Control

¶ Adding Transmission Control Over Ethernet

¶ Using Switched Ethernet

In modification of MAC solution, specialized chips (ASICs) are used to modify the Ethernet

hardware. Sercos [4], Ethercat [5], Profinet IO [6] are examples of modification of MAC

solutions. They are used as RT Ethernet protocol, but their high cost and incompatible with

other equipments are the problem of the modification of MAC. In adding transmission

control over Ethernet solution, there are several different ways of doing this. Master /slave,

Token Passing and TDMA methods are used to solve the problem by adding transmission

control over Ethernet. Virtual Token Passing Ethernet [7], Ethernet Powerlink [8],

Modbus/TCP [9], Ethernet for Plant Automation (EPA) [10], FTT Ethernet [11] are

examples of adding transmission control over Ethernet. In using switched Ethernet solution,

there are multiple transmission paths and switches are used instead of hubs that is, each

network ēnterface card (NIC) only receives traffic which is addressed to it. However, this

solution is not enough to make Ethernet real-time due to the non-deterministic queuing

delays in switches.

2

The new RT Ethernet protocol, Dynamic Distributed Dependable Real Time Ethernet

Industrial Protocol (D
3
RIP) is proposed in article [12]. This protocol is fully distributed, uses

COTS Ethernet hardware and time-slotted transmission control based on the IEEE 1588 time

synchronization protocol [13]. No hardware modification is required. It supports both RT

and nRT traffic. D
3
RIP is an extension of the two-layer protocol D

2
RIP by dependability

functionality in the form of a dependability plane. The interface layer (IL) and coordination

layer (CL) of D
2
RIP were implemented in [41]. In this thesis, the additional dependability

plane of D
3
RIP is studied, implemented and evaluated based on an application example, In

this example, four distributed controller devices communicate with each other over D
3
RIP.

Several test scenarios show the functionality of the dependability plane.The remainder of the

thesis is organized as follows. RT Ethernet for industrial communication, requirements of

them and dependability are discussed and available RT Ethernet protocols are reviewed in

Chapter 2. Formal protocol models and the implementation of a generic shared medium, a

generic interface layer, a generic coordination layer and a generic dependability plane are

explained in Chapter 3. The implementation of the dependability plane is described in detail

in Chapter 4. The test scenario with 4 controllers and configuration of simulator,

performance parameters, experiments and results are studied in Chapter 5. The conclusion

and future works are presented in Chapter 6.

3

CHAPTER 2

BACKGROUND

2.1 Real -Time Ethernet for Industrial Communication Protocols

In industrial applications, industrial communication network and protocol are used for

communication among control nodes and equipments. RT access, deterministic behavior and

RT are the reasons why industrial communication protocols are used so often in control

applications. In control applications, different components are used to implement the control

system: controllers, remote controllers, supervisory stations, actuators and sensors are some

of the components that are used. Sensors collect feedback data, controllers control the system

according to receiving data from sensors using actuators. Actuators transform input signals

into motion. Supervisory stations are the intelligent part of the control system. It is used as a

monitoring part and computer in the system. All different parts are connected with each other

using industrial communication networks.

Nowadays, industrial communication networks are widely used by industrial control

applications and these industrial control applications become more complex and large-scale.

Also computer aided industrial control devices with the network access are manufactured in

recentyears. These developments make industrial control systems become an important

industrial and academic research topic. Different industrial communication networks have

been developed for the last twenty years for these systems.

In different industrial communication networks, messages for the different purposes are

transmitted to each device in the system. These industrial communication networks are

divided as follows: [14] (Figure1)

¶ T1) Device level data transmission between sensors, controllers and actuators: The

receiving sampled data is periodic and it must be sent with time constraints.

¶ T2) Control level data transmission between supervisory controllers and the system

components: It is needed that controllers and the system components at different

hierarchical levels communicate each other for their coordination in the system.

Mostly, components and controllers send the data which is event-based and requires

deterministic response times, to each other. Because of the changing of the system

behavior in discrete time, the next state of the system and the message which is sent

in that case, have been already known using system dynamic model. For example,

the controller which controls the two machines sends a message to the second

machine to start, when the first machine completes its operation.

¶ T3) Information level data transmission: Mostly, it is used for the nRT and event-

based communication.

When these traffic types are analyzed, there are four requirements that should be fulfilled by

4

the network to make it usable for industrial control: there should be RT traffic transfer,

synchronized communication, dependable operation and support for nRT traffic. In RT

traffic transfer requirement, when a node in the control system wants to send a message to

other nodes, this message transfer time should be less than a deadline time of the message. In

synchronized communication requirement, before the RT communication starts, all nodes in

the system are synchronized to get the RT message successfully. In dependability

requirement, if there is a failure in the system, the system should be able to fix the problem

and resume its correct operation. In support for nRT traffic requirement, nRT messages

should be sent without corrupting the RT traffic.

Desktop
PC

Programmable
Device

Information Level
(T3, Non Real Time)

Control Level
(T2, Real Time, Sporadic)

Device Level
(T1, Real Time, Periodic)

PLC or Connection
Device

DriverController

Actuator
Sensor Sensor

Figure 1: Industrial Communication Levels [14]

5

In 1980ôs CAN, Lonworks, Profibus started to be used as industrial communication network.

[15]. But, their implementation cost is high, expanding the system is difficult and they are

not compatible with other communication protocols. So, these problems are the reason for

developing and using different protocols. Ethernet can be used for industrial communication

protocol. However, Ethernet is not directly usable as industrial communication

protocolwithout any modification on hardware or software. Because, it does not support the

RT traffic when collisions occur in the system. When a collision happens, back-off algorithm

runs and the node which wants to send a message to the system, waits a random time. It

creates non-determinism on the system. So, generic Ethernet without any modifications

cannot be used for industrial communication. However, the application of Ethernet is simple,

widely used and low cost are the reason why there is a considerable research effort on

modifications and additions to Ethernet in order to make ēt usable as a RT communication

protocol.

2.1.1 Requirements

The requirements for the development of the real-time Ethernet protocol are listed below:

[16]

Real Time Data Transmission: Message transmission time is measured between the

applications which are sent and received. The requirements of the message transmission time

for the different level communications are different. While the applications including human

operators require 100 ms transmission time, applications working with programmable logēc

controllers (PLCs) require 10 ms transmission time and applications which coordinate many

devices, require 1 ms transmission time.

Synchronization Support: In industrial communication network, RT response time and

common reference time between nodes are provided by synchronization protocol. The

sensitivity of the synchronization is defined the maximum deviation between the time of two

nodes [16]. To protect this sensitivity of the synchronization, guard periods are used and this

causes the increasing of the time delay. The most common and used synchronization

protocol for Ethernet is IEEE 1588 time synchronization protocol [13] [17].

IEEE 1588 time synchronization protocol works according to Precision-time protocol (PTP).

In this protocol, time difference and delay time between the selected master node and other

nodes are calculated using message exchanges between master node and slave nodes. Thus,

nodes are synchronized. Except IEEE 1588, special time synchronization mechanisms are

used in EtherCAT [4] and Sercos (IEC 61491) [5] protocols.

Non-Real Time Traffic Support: It is provided that while nRT traffic is supported, the RT

traffic is not affected nRT traffic.

Compatibilit y: The most important reason that makes Ethernet an attractive technology is

inexpensive hardware and software interface. It is required that when industrial Ethernet

works, it is compatible with standard Ethernet to make implementation with COTS

(Commercial Off-The-Shelf) components and to take advantage of inexpensive hardware

andsoftware interface. In addition to this, it is also supposed thatcommonly used application

protocols such as HTTP and FTP and synchronization protocols such as IEEE 1588 are

supported.There are backward-compatibility requirements. For this reason, it is expected that

6

once a protocol has been established, it works for years. As a result, an industrial Ethernet

protocol should be conducive to adding new devices.

Dynamic Resource Separation for the Real-Time Traffic: The communication requirements

of the industrial system which communicates with a network, change dynamically in time

[18]. For instance, in the self-triggered control concept, at the device level, calculation times

are reserved before. In addition to this, high-level controllers which coordinate the

distributed systems, communicate only when they are needed. It is supposed that according

to instantaneous needs, RT bandwidth should be separated to devices in the industrial

Ethernet protocols.

Dependability: Dependability is an important requirement for the applications which have

critical security constraints and work in the industrial control systems [19]. Availability,

safety, integrity and maintainability are the elements of dependability [20]. To talk about the

dependability of a distributed industrial control system which communicates with the

network, it is provided that the dependability of the network and controller is necessary.

When designing a dependable industrial communication network, dependable

synchronization and the consistence of values which are sent with messages, are important.

The problem of dependability stands outmore RT Ethernet-based solutions due to non-

deterministic feature of Ethernet [21]. Dependable communications provide that accurate

information should be sent to the right place, at the right timeand right order. Dependability

support is often done by the separation of the static additional capacity according to default

worst case [22]. For example, for the TDMA-based protocol additional time slots might be

allocated to the transmitting nodes inorder to send each message which is lost, in repetition

time and only half of the capacity can be used.

2.1.2 Real Time Ethernet Protocols

In the literature, there are four major approaches to add Ethernet real-timeliness:

¶ Changing the non-deterministic sending messages mechanism with the hardware

modification on Ethernet network interface card,

¶ Minimizing response time and the probability of the collision,

¶ Removal of the probability ofcollision on shared medium using point-to-point

connections and switches,

¶ Constructing layers on top of shared medium to avoid collision.

Specialized Hardware: EtherCat [4], SERCOS III [5] and ProfiNet [6] use specially

designed node and switch hardware. Ethercat and ProfiNet use IEEE 1588 for time

synchronization. On the other hand, SERCOS III uses special messages to synchronize the

nodes in the system. These three protocols are supported by special designed dependable

protocols. Special designed, Twinsafe Protocol operates as separate layer under EtherCAT

protocol. Devices get addresses and data safety is provided with CRC. In SERCOS III

Safety, there are sequence numberanda timestamp in the message. The receiver node sends

an acknowledgment message to the sender node. Devices get addresses and data safety is

provided with HDLC coding.PROFIsafe is developed for ProfiNet [6]. Sequence number and

a timestamp are added in the message. Devices get addresses and data safety is provided

with CRC.

7

Non-Guaranteed Approaches: MODBUS/TCP [9] and similar protocols work on TCP/IP to

be compatible with standard Ethernet [23] [24]. With traffic shaping, it low delays can be

achieved in these systems. In these approaches, there is no guarantee that messages will be

transmitted in time.

Switched Ethernet: Since collisions are possible on standard Ethernet, the solution of the

non-deterministic network access problem is full-duplex, switched and point-to-point

Ethernet (IEEE802.3x). With this structure, even if shared medium and the collision problem

are eliminated, the problem of network access is carried to queueuing delays in the network

[22][25][26]. To provide the RT communication, Ethernet switches that make scheduling

and prioritization are needed. Giving priority to the messages, according to these priorities,

providing different service like 802.1p and 802.1Q Ethernet protocols and protocol

extensions are proposed. Unlike the standard Ethernet protocols, these protocols require

specialized switches. Under the assumption of an infinite buffer for real-time traffic, even if

scheduling analysis can be made, the actual conditions require the use of a limited buffer

[27]. On switched Ethernet, the implementation of the sensitive time synchronization which

is important for RT communication, can be difficult.

Ethernet/IP (EIP) [28] works on the TCP/IP with full-duplex Ethernet switches which have

special prioritization mechanism. Ethernet /IP protocol does notensure the real-time

communication. Time synchronization is made with special messages which are compatible

with IEEE 1588 protocol. Also, the coordination between sender and receiver, is provided

with the ping messages. There is also timestamp in the messages. Devices get addresses and

data safety is provided with CRC.

Constructing Layer on Shared Medium: A variety of academic and industrial protocols are

proposed to prevent collisions on shared medium by adding RT properties. These protocols

aim at adding a layer on IEEE 802.3 that prevents collision and non-deterministic sending

messages after collision. NRT and RT traffic pass over this layer. On this layer, there may be

a specific protocol which is responsible for transmission of RT traffic. TCP-UDP/IP layers

may be responsible for transmission of RT traffic. Figure 2 shows the additional protocol on

Ethernet layers.

There are 3 different approaches for adding layer on medium access layer:

¶ Time Division Multiple Access (TDMA)

¶ Master-Slave

¶ Token Passing

Time Division Multiple Access (TDMA) : In this approach, time is divided into equivalent

slots. The owners of one or more time slots are determined statically for each node. Time

synchronization between all nodes in the system, is important for communication between

nodes. This approach provides reliable network access for all nodes. Working with low

efficiency is the disadvantage of TDMA. If a node does not send a message in the time slot

which is belongs to that node, another node in the system cannot send a message in that

unused time slot. In addition to this, the delay in the software and switches is also considered

while choosing the time slot. If the messages in the network arelostdue to network errors,

additional time periods must be allocated to send messages again.

8

Physical Layer

Medium Access Layer

Additional Medium Access Layer

Additional Protocol IP

TCP/UDP

Non Real-Time TrafficReal-Time Traffic

Communication Network

Figure 2: Additional Protocol on Ethernet Layers [29]

Master-Slave: A chosen master node sends messages to the other nodes (slaves) to ask

whether it needs to send a message or not (polling). Slave nodes only send message when

master nodes poll them. This approach is used in the network which has small number of

nodes. The efficiency of master slave is affected negatively while polling the system.

Especially in cases wherethe trafficis very variable and nodes do not have any message to

send, the efficiency decreases. Also, the delay time which is passed when the master node

waits slave nodeôs answer, decreases the efficiency. When the number of nodes is large, the

polling cycle time for all nodes, is more than the delay time of sending message. In that case,

the delay time is much more than acceptable limit. The speed of software in the slave nodes

also is the one of thedetermining factors of the polling process time. If the software is too

slow, the importance of the network speed is ignored and the efficiency of the network is

decreased. In addition to the problem of the efficiency, master-slave communication is not a

suitable structure for distribution. Because of master node, it is single-centered and there

might be a problem at a single point.

Token Passing: In this approach, one node can send a message if and only if it has a token to

send a message. When it sends its message, it transmits the token to another node with a

special message. In token-based approaches, the possibility of losing the token, token

circulationtime which causes decreased communication speed and the difficulty of adding a

new component are the disadvantages of token passing system.

There are lots of solutions which are created in industry and academia. These solutions and

standards follow the approaches which are explained the section above and they carry on the

negative aspects of them.

Time Critical Control Network (TC-Net) [30] is implemented with adding a layer on

standard Ethernet which provides the token passing. NRT traffic has low priority. Time

9

synchronization is provided with the special message. The dependability of the protocol is

also provided using an extra TC-Net card. Figure 3 shows the TC-Net structure. [26][31].

Figure 3: TC-Net Structure [31]

Powerlink (EPL) [8] is implemented with adding a layer on standard Ethernet which

provides the master-slave. With the inefficiency of the master-slave structure, EPL efficiency

is calculated as 25% [22]. Time synchronization is provided with the special message similar

to the IEEE 1588 protocol. RT and nRT data are sent in different time slots. Sequence

number and a timestamp are added in the message. Devices get addresses and data safety is

provided with CRC.

Ethernet for Plant Automation (EPA) [10] works with static TDMA. Time slots for nRT and

RT are determined before the communication. It supports both RT and nRT traffic. IEEE

1588 time synchronization protocol is used to synchronize the nodes in the network. The

disadvantage of this protocol is static slot scheduling and TDMA. Slot scheduling is done by

periodic message broadcast. Also, to the guard periods and error recovery precautions cause

low efficiency in TDMA solutions like EPA. [16] [26]

In FTT Ethernet protocol, master/multi-slave model is used to implement the protocol. It

uses COTS Ethernet hardware.The communication is TDMA based and time slot durations

are fixed. Nodes can be connected to share or switched medium. It supports both RT and

nRT traffic, also in addition to them, there is online admission control to guarantee

timeliness to the RT traffic. Also there is no specific synchronization protocol. But,

elementary cycle begins with master node trigger. When master node broadcast to trigger

message, elementary cycle is started with that trigger message. The disadvantage of the FTT

Ethernet protocol is that master-slave method. Master-slave models have single point of

failure, undistributed structure and low efficiency. [11][32]

In Virtual Token Passing Ethernet (VTPE), if a node wants to hold a network, it should

takethe virtual token to send a message to other node. In this method a virtual token is

circulating between nodes and it works with closing the binary exponential back off (BEB)

algorithm. When there is collision in the system, it provides that the nodes send the RT

message again immediately. In this protocol, Ethernet hardware is not modified. It uses

10

COTS (commercial off-the-shelf) Ethernet. Software Ethernet driver modification is required

for RT stations. Figure 4 shows the algorithm of VTPE.The disadvantage of the VTPE is

losing token which is the dependability problem of token passing method. [7]

The focus of this study is working with compatible components without changing the

working principle of Ethernet and providing guaranteed real-time performance for shared

media protocols. Table 1 shows the comparison of the defined requirements and

performance criteria for these protocols. In table, A/I: Academic/ Industrial Purpose, RT

Cap: RT Data Transmission Capacity, nRT Cap: NRT Data Transmission Capacity, Time

Sync: Time Synchronization Protocol are used as abbreviations.

Table 1: Shared Medium Industrial Ethernet Protocol

A/I Protocol

Mediu

m

Access

Delay
Node

Number

RT

Cap.(bps

)

nRT Cap. Time Sync

I EPA TDMA
5ms,

мллҡǎ
32, 64 12.28M 0,85

IEEE

мрууΣмлҡǎΣ

мҡǎ

I EPL
Master-

Slave

пллҡǎΣ

5.5ms
4,15

15.2M,

32M

19.6%,

4.4%
IEEE 1588,1s

I

Time

Critical

Control

Network

(TCNet)

Token-

Passing

2ms/

20ms/

200m

24,13

58.4M/

51.2M/

7.2M,

45.6M/

40.8M/

4.8M

0%,

20%
-

A FTT-E
Master-

Slave
1ms

Unspecifie

d

36M,

36%
0,11

Periodic Time

Sychronizatio

n Message

from Master

Node

A VTPE
Token-

Passing
5.8ms 256

Under

40%

Ethernet

Cap.

Unspecifie

d
-

2.2 Dependability

Dependability is defined as the ability to deliver service that can be justifiably trusted. Also,

it includes the attributes below: [20][33].

¶ Availability: A system is ready to provide the right service.

¶ Reliability: A system continues to right service in a time.

¶ Safety: A system does not lead to irreversible errors at the user level.

11

¶ Maintainability: A system can be conducive to repair and can be available to

maintain when needed

¶ Integrity: System changes are suitable for designed sequence and there are not any

unexpected system changes in the system design sequence.

System is dependable when it fulfills (some of) the above attributes. Also, system must have

precautions against threatened dependability of the system elements at the design and

operation stages. Threatened dependability of the system elements are divided into the three

main categories. These categories are: [20] [33] [34]

¶ Component-Level Errors (Faults)

¶ System-Level Errors (Errors)

¶ User-Level Errors (Failures)

Figure 4 shows the faults cause-effect relationship.

Internal
Dormant

 Fault

Error Error

Activation

External Fault

Propagation Propagation

Error

Input
Error

Propagation Propagation

Error

Propagation

Error

Service
Interface

Correct Service

Incorrect
Service

Service status of
component A Failure

Correct Service
Incorrect
Service

Service status of
component B

Boundary

Service
Interface

Component A Component B

Figure 4: Dependability Threats [20]

As can be seen in Figure 5, faults which occurred and are not solved at the component level

proceed to the user level. After that the system cannot work properly. Bringing back the

correct function of the system, error conditions should be eliminated.

Means (dependability activities) are activities for elimination of errors and allocation of the

dependability of the system at various levels. They are divided into 4 main groups: [20] [33]

[35]

¶ Component-Level Fault Prevention Activities: Fault prevention activities are the

activities which prevent the faults at the design stage. Keeping records of faults at

the designed system and modify it during the design process is the most common

example. [36] [37].

¶ Component-Level Fault Removal Activities: Error detection, classification and

validation phases of the system design phase of these activities aims to eliminate the

errors. System verification is a method which provides confirmation of fault before

debugging and supports system requirements after debugging.

12

¶ Component-Level Fault Forecasting Activities: Fault forecasting activities are the

activities which determine the state changes that cause user-level faults after

completed system design.

¶ Component-Level Fault Tolerance Activities: Activities of detection and

elimination of errors that can occur during operation of the system. Elimination of

effects of the system faults is called system recovery [20]. The most common

method without having to initialization (reset) while system is operating is making

checkpoint and rolling back.

In this method, functions in a distributed system record their state in error conditions that

may occur. In the event of any error, functions return to their pre-recorded states within the

scope of the error recovery scenario operated by the system. Although at first glance it seems

to be an easy method of application, in some conditions rollback mechanism causes

consecutive rollbacks which might return the system to its initial state. In other words, it

causes reset of the system. Figure 5 shows that situation which is called domino effect.

Figure 5: Domino Effect [38]

In Figure 6, lines with dashed vertical show the communication of functions. 3 processes in

Figure determine the rollback point periodically. For example in process 3, an error after 4th

recovery block is identified. This situation causes that process 3 returns to the 4th recovery

block. When process 3 returns to the 4th recovery block, the other two processes have to

return to their previous recovery point to be compatible with process 3. The reason why the

other two processes have to return to their previous recovery point is that process 3

communicates with the other two processes between error and 4th recovery block. With the

same logic, rollback mechanism causes that the system returns to its initial state, like toppled

dominoes one after the other.

In order to stop the domino effect, a communication mechanism between processes is

recommended [39] [40]. In these articles, proposed communication mechanisms cause

additional load on the system message traffic. However, it seems that [40]ôs proposed idea

causes less additional load on the system message traffic than other one. In [40], the use of a

common reference time between functions is proposed to reduce the additional load on the

system message traffic. Figure 6 shows the proposed control point description and rollback

mechanism.

13

Figure 6: Creating Control Point and Rollback [40]

Figure 7 shows that distributed nodes run synchronous with each other. Common period of

time is determined for synchronous nodes to make an acceptance test. Node which does not

complete acceptance test within the specified time, sends its delay time to other nodes to

determine the synchronous recovery points. This reduces the additional load on the system

message traffic. However, currently only available in recovery point messages are used for

identification purposes in the network, and this adversely affects the efficiency of the

network. In our framework, distributed nodes are synchronous. In addition to this,

communication between the nodes is on the shared medium. Dependability plane in our

framework uses the advantages of these two features and it is aimed to eliminate the

additional message load on the system.

14

15

CHAPTER 3

PREVIOUS WORK

3.1 Dynamic Distributed Dependable Real Time Industrial Protocol (D
3
RIP) Protocol

Overview

Dynamic Distributed Dependable Real Time Ethernet Industrial Protocol can be used for the

communication of controllers in distributed control systems. Dynamic Distributed Real Time

Ethernet Industrial Protocol works over Ethernet protocol with non-real and RT traffic.

There is no need to change the physical MAC layer, it uses COTS Ethernet hardware. D
3
RIP

protocol works on shared medium without using any switch. It realizes TDMA on top of

Ethernet, whereby synchronization is achieved by the IEEE 1588 protocol. It requires small

software Ethernet driver modification and modifications of the software stack between MAC

and Application layer. Figure 7 shows the layered architecture of D
3
RIP. The Dependability

Plane works over D
2
RIP structure that is implemented in [41].

Shared Medium

MAC Layer

Interface Layer

TCP / IP LayerCoordination Layer

Real Time Application Layer Non-Real Time

Application Layer

IEEE

1588 Protocol

Dependability

Plane

Figure 7: D
3
RIP Layer Architecture

In D
3
RIP Layer Architecture, there are 3 different layers added to the original Ethernet layer

architecture namely interface layer (IL), coordination layer (CL) and dependability plane

(DP). Interface layer is responsible for the time-slotted TDMA structure that is implemented

and synchronized with other nodes using IEEE 1588 time synchronizing protocol. At the

beginning of each time slot, CL sends information to the IL about the usage of the time slot

and IL sends Ethernet frame within time slot when it gets information from CL.

Coordination layer is responsible for determining the allocation of the type of slot whether

16

RT or nRT and the allocation of the owner of the slot. CL is implemented in the user space

of Linux and IL is implemented in the kernel space of Linux in previous works [29][42]. In

these works, CL is implemented as 2 types: DART (Dynamic Allocation Real-Time

Protocol) and URT (Urgency-Based Real-Time Protocol). In DART, variables in the

protocol are hold in the form of allocated RT slots. In URT, control application variables are

stored in the form of the communication requests [29]. Also, IL is implemented as 2 types:

RAIL (Real-Time Access Interface Layer Protocol) and TSIL (Time-Slotted Interface

Layer). In RAIL, slot allocations for nRT and RT traffic are made statistically. In TSIL, slot

allocations for nRT and RT traffic are made dynamically by CL [42].

Dependability Plane is responsible for dependability of the framework. DP makes an

acceptance test whether the protocol works without problem or not. If there is a fault, it

sends stored CL parameters using rollback message to CL and when CL gets the rollback

message from DP, it warns application layer to resend the fault messages. Thus DP protects

the framework. Timing of messaging between layers is important to determine the slot

timing duration. Figure 8 illustrates the timings of 1 slot. CLcmp which is a calculation time

for CL, IL cmp which is a calculation time for IL and Message Tx, which represents

transmission of an application message on Ethernet.

Figure 8: Time Slot Structure

D
3
RIP Layer Architecture works on the RT operating system. RT features of the operating

system kernel are gained with RT patches over the Linux kernel. The latest stable kernel is

3.6.2. The configurations below are needed for RT operating system after RT patches

implemented over Linux kernel:

¶ Activate Tickless System (Dynamics Ticks).

¶ Activate High Resolution Timer Support.

¶ SetñPreemption Modelò parameter to ñFully Preemptible Kernel(RT)ò.

¶ Set ñTimer frequencyò parameter to ñ1000Hzò.

¶ Deactivate ñSuspend to RAM and standbyò.

¶ Activate ñTimestamping in PHY devicesò.

¶ Activate ñPTP Hardware Clock (PHC)ò.

¶ Activate ñPTP clock supportò.

¶ Deactivate ñShow timing information on printksò.

¶ Set ñI/O schedulerò parameter to ñDeadlineò.

17

3.2 D
3
RIP Formal Protocol Model:

3.2.1 Generic Interface Layer:

Interface Layer Generic Model is defined using TIOA Model in [12][43]. Figure 9 shows the

IL Model using TIOA. There are 6 parameters in the IL Model: dSlot, t0,t1,t2, t3, M , Q ,

AIL,HIL.

¶ dSlot: Slot duration,

¶ t0,t1,t2, t3: Time of events,

¶ M: The type of transmitted messages,

¶ Q: The type of a FIFO queue messages,

¶ AIL: Abstract variable of IL.

¶ HIL:Abstract variable of IL

IL Model as TIOA has variables to define the model and operations: nowi
a
, nexti

d
, TxRTi

d
,

TxnRTi
d
, RxRTi

d
, RxnRTi

d
, RTILi

d
, myILi

d
, vILi

d
, reqILi

d
.

¶ nowi
a
: Analog variable which evolves with the time derivative of 1 , the updated

time information is provided by this variable.

¶ nexti
d
: The end of the current time slot is stored by this variable.

¶ TxRTi
d
: The buffer that stores the RT messages to be transmitted.

¶ TxnRTi
d
: The buffer that stores the nRT messages to be transmitted.

¶ RxRTi
d
: The buffer that stores the RT messages that are received.

¶ RxnRTi
d
: The buffer that stores the nRT messages that are received.

¶ RTILi
d
: The variable that stores the type of next slot whether RT or nRT.

¶ myILi
d
: The variable that stores whether the device owns the next time slot or not.

¶ vILi
d
: The variable that holds the additional information of the protocol operations.

¶ reqILi
d
: The variable that stores the request to the CL to determine RTIL and myIL.

¶ sendVILi
d
: The variable that stores the whether vIL is sent or not.

¶ ati
d
: The variable that shows the acceptance test result.

¶ checkPTi
d
: The variable that stores the rollback status of that node.

Actions in IL:

¶ output IL2SM (m:M)i

¶ output UPDVIL(vIL: AIL, TxnRT: Q, RxnRT:Q)i

¶ input SENDRES(atRes:bool, rbSt: int)

¶ input RBACK(ILHT: HIL, cLHT: HIL, rbSt: int)

¶ input SM2ILDP (m:M)i

¶ input CL2ILRT(bmy:bool, bRT:bool, m:M)i

¶ input AP2ILNRT(m:M) i

¶ input IL2APNRT(q:Q) i

¶ output IL2CLRT (m:M) i

¶ internal UPDATE()i

¶ output REQRT()i

18

19

Figure 9: IL Model as TIOA

myILi
d
and vILi

d
 variables are updated by internal operations f my and f upd . After the data

transmission is finished, UPDATE() is called for the update of variables of the next slot. vIL

is updated first. When IL does not need the information if the next time slot is RT or nRT,

reqIL gets false value (reqILi
d
=false) and the owner of the next time slot is determined

locally. If IL needs to information if the next time slot is RT or nRT, reqIL gets true value

(reqILi
d
=true). IL triggers the action REQRT to the CL. REQRT() requests the type of the

next time and the owner of the next time slot. After the calculation time of CL, the action

CL2ILRT(b1,b 2,m) indicates the type of the next time slot (b1), the owner of the next

time slot (b2) and RT message (m) in CL if it has. RTIL and myIL variables update their new

values according to b1 and b2.

In IL2SM(m) , IL sends messages to all nodes, when current time now equals to next

starting time next and myIL is true. The value in RTILi
d
 determines if the transmitted message

is RT or nRT message. Also, in SM2ILDP(m) , RTILi
d
 is important too, to send message to

upper layer RT buffer (RxRTi
d
) or nRT buffer (RxnRTi

d
). In IL2CLRT (m) , RT messages are

send to the upper layer immediately. In IL2APNRT(RxnRTi
d
) and AP2ILNRT(m) , upper

layer can reach TxnRTi
d
 and RxnRTi

d
buffers in the IL at any time.

If there is no collision on the shared medium, IL sends message to SM in a one slot and after

every update in IL, parameters which are related protocol are same. But, RTIL variable gets

its b1 parameter from upper layer CL and this b1 parameter shows the next time slot is RT or

NRT. Also, inf my (vIL i
d
,RTIL i

d
,b 2,i) function gets its b2 parameter from CL and b2

parameter indicates that the next time slot belongs to the device i or not.

f my(vIL i
d
,false, - ,i) = true

(j I ï {i}) f my(vIL i
d
, false, - ,i) = false

f my(vIL i
d
,true,b 2,i) = b2

In UPDVIL, if sendVIL is true, IL sends vIL parameters of that time slot to DP in each time

slot. In SENDRES(atRes,rbSt) , IL gets information from the DP about acceptance test

20

result (atRes) and rollback status (rbSt). After getting atRes and rbSt, these variables are sent

to other nodes with IL2SM(m) .In RBACK, IL gets stored vIL parameters, Rx and Tx

message from DP and updates its vIL parameters with the received vIL parameters.

Also, IL obeys some requirements below:

¶ Transmission window covers all messages.

m.length < dSlot ï rem m M

¶ The time between REQRTi and CL2ILRT i is rem-cmp. After each REQRTi function,

CL2ILRT i occurs.

¶ If REQRT(t) I and REQRT(t) ji, j I, i j occur at the same time t, then, it holds

for the

next occurrence ofCL2ILRT(b1,b 2,m) and CL2ILRT() j that and b2 =

true Č = false [12]

In framework, IL asks to the CL layer whether the next time slot is RT or nRT. There are 3

variables in vIL such asvIL.cnt, vIL.cyc, vIL.slots. These vIL parameters show which node

owns the nRT slot at that time slot. Internal functions f upd and f my are defined in Figure 10.

In f upd function, vIL.cnt is incremented with modulo vIL.cyc. After sending action REQRT to

the CL, CL does action CL2ILRT (b1, b2, m). In f my internal function, if the next time slot

is RT, it determines with action CL2ILRT , f my function returns b2 variable which returns

with action CL2ILRT . If the next time slot is nRT, it determines with RTILi
d
 and

vIL.nRTSet, f my internal function returns true and the owner of the next time slot is

determined by IL.

Figure 10: Internal Functions in IL Layer

3.2.2 Generic Coordination Layer:

Coordination Layer Generic Model is defined using TIOA Model in the article [12] [43].

Figure 11 shows the CL Model using TIOA. There are 8 parameters in the CL Model : deli,

t0, M, Q, V, ACL, HCL, InitCL .

¶ deli:A processing delay value,

¶ t0: Time of event,

¶ M: The type of transmitted messages,

¶ Q: The type of a FIFO queue messages,

¶ V: A vector of messages with type M,

¶ ACL: Abstract variable of CL.

21

¶ HCL: Abstract variable of CL.

CL Model as TIOA has variables to define the model and operations: sendi
a
, Txi

d
,Rxi

d
,

RTCLi
d
,myCLi

d
, chi

d
, reqCLi

d
 , vCLi

d
.

¶ sendi
a
: Analog variable which evolves with the time derivative of 1defines the

passage of time after a request is sent by IL, it is bounded by deli.

¶ Txi
d
: The buffer that represents the transmission of messages.

¶ Rxi
d
: The buffer that represents the reception of messages.

¶ RTCLi
d
: The variable that stores the type of next slot whether RT or nRT.

¶ myCLi
d
: The variable that stores whether the device owns the next time slot or not.

¶ chi
d
 : The channel variable.

¶ reqCLi
d
: The variable that stores the request from IL to determine RTIL and myIL.

¶ sendvCLi
d
: The variable that stores the whether vCL is sent or not.

¶ vCLi
d
: The variable that holds the additional information of the protocol operations.

Actions in CL:

¶ input AP2CL (m:M, ch: int)i

¶ input IL2CLRT(m:M)i

¶ input REQRT(m:M)

¶ output UPDVCL(vCL: ACL, Tx: V, Rx:Q, RTCLi
d
: bool)i

¶ output RBACK(ILHT: HIL, cLHT: HIL, rbSt: int)i

¶ output CL2ILRT(RTCLi
d
:bool,myCLi

d
: bool, m:M)i

¶ input CL2AP(q:Q)i

The transmission of messages for different channels are supported in CL. Channels have 2

parameters namely b which shows the device number and c which shows the channel

number of that device. Current message for one channel is stored in Tx message buffer. Tx

and Rx buffers are used to stores messages. RTCLi
d
, myCl and channel variable ch indicate if

the next time slot is RT or nRT, the owner of the next time slot and its channel. These

variables are updated when vCL is updated with internal functions. Send variable shows the

passage of the time after a request is sent by IL and it is also bounded by deli.

When CL gets message REQRT(t) i from IL layer, RTCLi
d
, myCL and ch variables are

updated for the next time slot using gRT(vCLi
d
,RTCL i

d
,t) and gmy(vCLi

d
,RTCL i

d
,t,

i) functions. After getting REQRT(t) i message from IL, send analog variable gets 0 and

reqCL boolean variable gets true. In the computation, unique sender for RT slot is

determined to avoid collision. myCL variable shows the owner of the next time slot. While

computing in CL layer, RTCLi
d
, myCLi

d
, vCLi

d
, reqCLi

d
, chi

d
, t(timing information) and

m.par (RT message parameters) are used by CL. If send (the computation time) does not

exceed the deli and reqCLi
d
 variable is true, CL sends CL2ILRT(RTCLi

d
,myCL i

d
,m) to the

IL layer. Also deli variable should be less than rem-cmp time. In CL2ILRT(RTCLi
d
,

myCLi
d
,m) ,if myCLi

d
variable is true, Txi

d
buffer gives message m to the IL layer.

In action UPDVCL, if sendVCL is true, CL sends vCL parameters of that time slot to DP each

time slot. In action RBACK, IL gets vCL parameters, Rx and Tx message from DP and update

its vCL parameters with the receved vCL parameters.

22

Figure 11: CL Model as TIOA

CL shares the action AP2CL(dat,p,ch) i with the upper layer. and the action

IL2CLRT(m,t) i with the lower layer . After AP2CL(dat,p,ch) i , data dat and the

protocol parameters p are stored in Txi
d
[ch].data and Txi

d
[ch].par on the CL layer. After

IL 2CLRT(m,t) , the message m from IL is stored in Rxi
d

buffer and vCLi
d

variable is

updated with the action of gupd(vCLi
d
,m.par,t) . Upper Layer control application shares

the action CL2AP(Rxi
d
) i with CL. After CL2AP(Rxi

d
) , message in Rxi

d
buffer is sent to

the control application. The decision variables vCLi
d
, the slot type RTCLi

d
 , variable which

indicates the owner of the next slot time myCLi
d
 and related channel variable chi

d
 are

updated with gupd(vCLi
d
,m.par,t) , gRT(vCLi

d
,RTCL i

d
,t) and

gmy(vCLi
d
,RTCL i

d
,t, i) functions.

gmy(vCLi
d
,false ,t,i) = (false, 0),

23

gmy(vCLi
d
,true,t,i) = (true, ch),

Čgmy(vCLi
d
,true,t,j) = (false, 0) for all j I ï {i}

In CL, variables are stored in the form of communication requests. Priority queue is a queue

which stores the communication requests in the form of (b,c,eT,dT). b indicates a device, c

shows the channel of that device, eT holds the eligibility time of the message and dT is the

deadline time of the message which is started when the request is issued. In other words, the

message in the priority queue is sent by device b with channel c at the eligible time eT and it

should be sent before the deadline time dT. m.par.req parameter is a set of request from

control application. After getting messages from control application, messages are pushed

into vCL.PQ and they are ordered according to their eligibility time eT and deadline time dT.

The request which is the most urgent eligibility time eT is sent to the lower layer.

Figure 12: Update Functions for CL

Figure 12 shows the update functions for CL. In gupd(vCLi
d
,m.par,t) function, if RTCL

equals true,in other words , the next time slot is RT slot, the first request in the priority queue

is popped and the request is sent to the lower layer. However, if RTCL is false (the next time

slot is nRT slot), the first request reenters the priority queue. If the eligibility time of the

request at the top of the priority queue (vCLi
d
.PQ.Top.eT) is smaller than current time t,

gRT(vCLi
d
,RTCL i

d
,t) function returns true. Thus, the type of next slot time is determined

whether it is RT or nRT. If the request at the top of the priority queueôs owner is (PQi.Top.c)

that device and the request at the top of the priority queueôs channel is that deviceôs channel

gmy(vCLi
d
,RTCL i

d
,t,i) function returns true and that deviceôs channel a.

3.2.3 Generic Shared Medium Model:

Shared Medium Layer Generic Model is defined using TIOA Model in the article [12] [43].

Figure 13 shows the SM Model using TIOA. There are 6 variables in the SM Model : mess
d
,

coll
d
 , next

d
 , now

a
, M, N.

¶ mess
d
: The parameter that indicates currently transmitted message

¶ coll
d
: Theparameter that indicates whether the collision is happened or not.

¶ next
d
: The parameter that indicates the next reception time

¶ now
a
: Analog parameter which evolves with the time derivative of 1 , the updated

time information is provided by this variable.

24

¶ M: The type of transmitted messages.

¶ N: The parameter that indicates the number of messages.

Actions in SM:

¶ input IL2SM(m:M)i

¶ output SM2ILDP(m:M)

Figure 13: SM Model as TIOA

There are 2 actions shared with the IL layer namely IL2SM(m) and SM2IL(m) . In

IL2SM(m) , if mess variable is empty in SM layer, message m is sent to the SM layer and

next variable is updated. If mess variable is not empty in SM layer, collision is occurred and

coll variable equals true. In this case next variable is set to 0 and mess variable is set to

empty. If next equals to now in SM layer, SM does action SM2IL to the IL layer. In SM2IL

transition, m variable is set to mess variable. Thus the message m can be sent by SM. After

that, mess variable is set to be empty.

3.2.4 Generic Dependability Plane Model:

Dependability Plane (DP) Generic Model is defined using TIOA Model [43]. Figure 14

shows the DP Model using TIOA. There are 7 parameters in the DL Model : cyc, t0,t1,AIL,

ACL, ADP, InitDP .

¶ cyc: The variable shows the number of the cycle.

25

¶ t0,t1: Time of events.

¶ AIL: Abstract variable of IL.

¶ ACL: Abstract variable of CL.

¶ ADP: Abstract variable of DP.

¶ InitDP: Abstract variable of DP

Figure 14: Functions in Dependability Plane

26

DP Model as TIOA has variables to define the model and operations: atResi
a
, rbReqi

d
,

rtSloti
d
, stNoi

d
, nodeIDi

d
, rbSti

d
, cnti

d
, vILHisti

d
[cyc] , vCLHisti

d
[cyc] , vDPi

d
, rVCLi

d
.

¶ atResi
a
: Boolean variable keeping the acceptance test results

¶ rbReqi
d
: Boolean variable keeping the rollback requirement.

¶ rtSloti
d
: Boolean variable keeping the type of the time slot.

¶ stNoi
d
:Integer variable used for state transition

¶ nodeIDi
d
:Integer variable keeping the message transmitting node ID

¶ rbSti
d
:Integer variable keeping the rollback state number

¶ cnti
d
: Integer counter variable for periodic operation

¶ vILHisti
d
[cyc]: Data structure keeping the vIL history

¶ vCLHisti
d
[cyc]: Data structure keeping the vCL history

¶ vDPi
d
: Data structure to keep the information required for dependability checks.

Now it just holds the non real-time slot ownership information as an integer array

¶ rVCLi
d
. Data structure keeping the transmitting nodeôs vCL variable for

dependability checks.

Also, some new parameters are added to the header of the messages.

¶ nodeIDi
d
 : transmitting nodeôs ID.

¶ vCLi
d
: transmitting nodeôs vCL.

¶ atResi
a
 : transmitting nodeôs acceptance test result.

¶ rbSti
d
: the rollback state in case of a failure.

Actions in DP:

¶ input UPDVIL(vIL: AIL, TxnRT: Q, RXnRT: Q)i

¶ input UPDVCL(vCL: ACL, Tx: V, Rx:Q, RTCLi
d
: bool)i

¶ input SM2ILDP(m:M)

¶ internal ATEST()i

¶ output RBACK(ILHT: HIL, cLHT: HIL, rbSt: int)i

¶ output SENDRES(atRes:bool, rbSt:int)i

Dependability Plane has interfaces with IL and CL. There are input actions shared with IL

and CL namely UPDVIL(vIL) and UPDVCL(vCL,RTCL). In UPDVIL(vIL), vIL

history vILHisti
d
[cyc] is updated with vIL decision variable taken from IL. In

UPDVCL(vCL,RTCL), the type of the time slot, rtSloti
d
is updated with RTCL which is

taken from CL layer that shows the next time slot is whether RT or nRT. Also, vCL history

vCLHisti
d
[cyc] is updated with vCL decision variable taken from CL. Also, an action

SM2ILDP(m) is occurred in DP. In SM2ILDP(m), transmitting nodeôs ID (m.nodeID) is

assigned to nodeIDi
d
, transmitting nodeôs vCL is assigned to rVCLi

d
 which keeps the

transmitting nodeôs vCL variable for dependability checks. The rollback state number rbSti
d

of message m is assigned to rbSti
d
 in DP. If transmitting nodeôs acceptance test result atResi

a

equals to false, the state transition number stNoi
d
equals 3, if atResi

a
equals to true, the state

transition number stNoi
d
equals 1.

There are 2 output actions from dependability plane: SENDRES(atRes i
a
,rbSt i

d
) and

RBACK(vIL i
d
,vCL i

d
) . Before SENDRES occurs, the state transition number stNoi

d
should

be 2, and after SENDRES stNoi
d
 is -1. Before RBACK occurs stNoi

d
 should be, and after

that, counter variable for periodic operation equals to rollback state number plus 1 (cnti
d
=

rtSloti
d
 +1). If counter for periodic operation cnti

d
 equals to number of the cycle, cnti

d
 gets 0.

27

vILHisti
d
[cyc] and vCLHisti

d
[cyc] variables are assigned to vILi

d
and vCLi

d
 variables in IL

and CL . The state transition number stNoi
d
equals -1 and the rollback requirement rbReqi

d

gets false.

In the dependability plane, there is also an internal action ATEST(). Before ATEST()

occurs, the state transition number stNoi
d
 should be 1, and after ATEST() , stNoi

d
 is -1.The

counter variable cnti
d
 is incremented by 1 firstly in ATEST(). Then if rollback requirement

rbReqi
d
 equals false, f AT(vCLHist,v DP,cnt,nodeID,rtSlot) function result is

assigned to the transmitting nodeôs acceptance test result atResi
a

and if acceptance test result

atResi
a
equals true, the rollback state number rbSti

d
equals the counter cnti

d
minus 1 (rbSti

d
 =

cnti
d
- 1). If acceptance test result atResi

a
equals false, rollback requirement is needed and

rollback state number rbSti
d
 equals the counter cnti

d
 minus 2 (rbSti

d
 = cnti

d
- 2). If rollback

state number rbSti
d

equals -1, rollback state number rbSti
d
 equals cyc minus 1 (rbSti

d
 =

cyc- 1). If the counter cnti
d

equals to cyc, counter cnti
d
 is assigned to 0 and , the state

transition number stNoi
d
 is assigned to 2.

Figure 15 shows the example of f AT. In function of acceptance test f AT , there are 4

parameters using input of function, vCLHisti
d
, vDPi

d
, cnti

d
, nodeIDi

d
, rtSloti

d
 . If vIL

historyvILHisti
d
[cnt-1] equals to the transmitting nodeôs vCL variable for dependability

checks rVCLi
d
 and if the type of the time slot rtSloti

d
equals true (slot is RT) and the device

of the on the top of the priority queue of vIL history vILHisti
d
[cnt-1].PQ.Top.b equals the

nodeID, f AT function returns true in other words acceptance test result is passed . If slot

rtSloti
d
equals false (slot is nRT) and vDPi

d
[cnt-1] equals nodeID, f AT function returns true,

otherwise f AT function returns false and acceptance test result is failed.

Figure 15: Example for f AT

3.3 D
2
RIP Implementation

D
2
RIP is the predecessor of D

3
RIP which includes all layers as described before except for

the dependability plane. D
2
RIP is implemented over Intel Gigabit Ethernet driver on PCs.

While developing the framework, Lubuntu (Linux Kernel 3.6.2 with the RT patch) is used as

28

the operating system. Several changes are made on kernel configuration of Linux to provide

precise timing and needed task scheduling mechanism. These changes are: [44]

¶ The amount of memory is increased for TCP/UDP socket I/O queues.

¶ BIOS Settings are changed to disable non-maskable interrupts. Because operating

system cannot disable these interrupts.

¶ For low latency, network interface card NAPI is disabled.

¶ To create an interrupt for all incoming messages, InterruptThrottleRate is set to 0.0

¶ For instant message transmission starting, TxIntDelay is set to 0.0

¶ To prevent power saving state, EEE is set to 0.0

¶ To disable re transmission in Ethernet, E1000_COLLISION_THRESHOLD is set to

0.

In implementation, synchronization of nodes is needed to run system. IEEE 1588 protocol

with hardware time-stamping is used for precise clock synchronization. For IEEE 1588

protocol, Intel Gigabit CT Desktop Adapter is used. In this adapter, e1000 driver module

with version 2.2.14 is used. So, while software development, codes regarding

implementation are added on the e1000 driver module.

In D
2
RIP, standard Ethernet frames are used. Different types of frames are used in standard

Ethernet frames. In RT frame type, RT messages have 14 Bytes CL message header and CL

messages have 14 Bytes Ethernet header. In fragmented nRT frame type, fragmented

payload messages have 8 Bytes fragment header and nRT Fragment messages have 14 Bytes

Ethernet header. Figure 16 below shows the data encapsulation of RT and long nRT

messages.

Figure 16: Data Encapsulation of RT and Long nRT messages [44]

3.3.1 Interface Layer (IL) :

Interface layer (IL) is the layer which lies between shared medium and coordination layer

(CL). It gets RT and nRT messages from shared medium and stores RT messages in the

RxRT message buffer and stores nRT messages in the RxnRt message buffer. It sends RT

messages to the CL using IL2CLRT message and sends nRT messages to the application

layer using IL2APNRT. IL layer gets also RT message and nRT messages from CL and

29

application layer. It stores these messages in the TxRT and TxnRT message buffers and they

are sent to the shared medium using IL2SM message.

Interface layer was implemented in RT Linux kernel-space part. Figure 17 illustrates the

message transmission in IL.

CL nRT Applications

nRTRxQ nRTTxQHighPriRTRxData RTTxData nRTTxQLowPri

IL2APNRT

IEEE 1588 Time

Synchronization Application

AP2ILNRT 1588 Time SyncIL2CL
CL2IL

IL

SM

SM2IL IL2SM

Figure 17: Message Transmission in IL layer

The communication method in D
2
RIP is time division multiple access (TDMA). In TDMA

structure, all nodes have different slots to transmit the message to the other nodes. IL

provides this TDMA structure to avoid collision in the shared medium. This TDMA

structure is synchronized using 1588 precise time synchronizing protocol and all nodes start

TDMA at the same time to be synchronized using SYNC message. At the startup point, one

of the nodes in the network behaves as a master node and sends a special SYNC message to

all nodes to determine the start of the operation. After that, TDMA structure is started and all

nodes in the network know that TDMA is started. It is also maintained using IEEE 1588

Precise Time Protocol. When TDMA structure is implemented on this framework, the issue

which is related TDMA structure with fixed time slots is raised. Message packets especially

nRT packets can be bigger than time-slot size. To overcome this problem, nRT packets

which are bigger than determined message size should be fragmented before transmission

and reassembled after transmission. So that, there are fragmenter and defragmenter threads

in the IL thread. Table 2 shows the frame header structure. In the frame header structure,

nodeID shows the id of the source node, packetID indicates the id of the packet which is

transmitted from source node (nodeID), packetLength stores the total length of packet which

is unfragmented, frameNum shows the total frame number, frameSeq indicates the sequence

number of the frame, frameLength stores the data length in the frame. Fragmenter thread

fragments the nRT packets which is bigger than determined message size and transmits the

30

fragmented packets to shared medium. After destination node receives the fragmented

packets, reassembly thread assemblies the fragmented packets.

Table 2: Frame Header Structure

nodeID: unsigned char

packetID: unsigned char

packetLength: unsigned short int

fragNum: unsigned char

frameSeq: unsigned char

frameLength: unsigned short int

If the received message is nRT, IL triggers the IL2APNRT action which is shared with

application layer to transmit the nRT message and application layer sends nRT message to

the IL using AP2ILNRT. Also, the time synchronization messages are sent as nRT message

to the application layer. The difference between nRT and the time synchronization messages

is 1588 messagesô priority is higher than nRT messagesô. So that, there are 2 priority queue

in the IL to separate the nRT messages and time synchronization messages namely high

priority queue (nRTTxQHighPri) and low priority queue (nRTTxQLowPri). When nRT

packet comes from SM, IL puts time synchronizing packets into the high priority queue and

puts nRT packets into the low priority queue. When an nRT slot comes for that device, IL

controls the high priority queue firstly and packets in the high priority queue is sent to

application layer.

There are two shared actions between the shared medium layer and the interface layer:

SM2IL and IL2SM . In SM2IL , shared medium sends RT and nRT message to the IL. There

are 3 different cases. If ETHERTYPE is 0x2200 in the frame, it means that fragmented nRT

packet is received and this message is forwarded to Reassembly thread. After reassembling,

packet is sent to IL. If the packet is nRT and shorter than packet size, it also sends to the IL.

In third type, ETHERTYPE is 0x1100 in the frame, it is also sent to the IL. Then IL

transmits the received message to the RTRxData or nRTRxQ buffer depends on receiving

packetôs protocol which is written in IL2SM action before packet is sent by other node.If

receiving packetôs protocol is RT, the received message is stored in the RTRxData message

queue. If receiving packetôs protocol is nRT, the received message is stored in nRTRxQ

message queue. In IL2SM , if the device owns the time slot (myIL=true, if and only if cnt

belongs to nRTSet), the type of time slot is determined and the message queue which is

related the type of message has at least a message, IL sends message to the SM. If the slot is

determined for RT traffic (RTIL=true), the message m is transferred from RTTxData. If the

slot is determined for nRT traffic (RTIL=false), the message m is transferred from

nRTTxQHighPri or nRTTxQLowPri depends on the type of nRT message. (IEEE 1588 Time

Synch or nRT from AP) If the message m is nRT message from the application and itôs

longer than standard packet size, IL wakes up Fragmentation Thread and then send

fragmented message m to SM.

There are also two shared actions between the interface layer and the coordination layer

namely IL2CL and CL2IL . In IL2CL , interface layer gets packet from SM, it copies that

packet into the RTRxData message queue, then it sends RT message m to the coordination

layer. In CL2IL communication message, message m is copied from CL using

31

copy_from_user function. Then the message length is different from 1 byte, receiving

message is copied into the RTTxData message queue. If the message length is 1 byte and the

receiving messageôs first byte is set to RTIL and myIL variable is set according to return of

slotOwner(RTIL). If the receiving message is 0xFF, RTIL is set to false. Thus, it can be

seen that RTIL and myIL is determined according to message coming from CL.

For nRT communication between application layer and interface layer, there are 2 actions:

IL2APNRT and AP2ILNRT. In I L2APNRT, the nRT message m which is stored in

nRTRxQ message buffer is sent to the application layer and nRTRxQ message queue is set

empty. In AP2ILNRT, application layer sends nRT message and it is stored in

nRTTxQLowPrimessage buffer in the IL.

3.3.1.1 SM- IL I nterface Implementation

In the implementation of SM-IL interface, Ethernet driver functions are used and new

functions are implemented on the Ethernet driver source code. For implementing the

interface between SM and IL, modular structure of Linux is used. The driver source code did

not change directly, instead the driver source code of the network internet card (NIC) is

downloaded from its website and modification of driver functions and new functions are

added to the driver source code. After that, the original Ethernet driver module is removed

and the updated version module is added to the kernel.

In the implementation of the IL, receive and transmit functions are used and modified.

Binary exponential back-off algorithm is disabled. Because in back-off algorithm, if a

collision occurs on the network, a node which wants to communicate to other one wait a

random time and start a communication again. This causes that TDMA operation is

collapsed. So back-off algorithm is disabled. Figure19 shows the algorithm of the transmit

function and modification in the transmit function. In Figure 18, IL gets RT and nRT

messages from user space. RT packets go into IL module firstly, then they are transmitted to

SM by e1000_xmit_frame() function. nRT packets go into e1000e module firstly. If

the packets length bigger than standard packet size, they are transmitted to fragmentation

module. If the packet length is smaller than standard packet size, they are transmitted to

e1000_xmit_frame() function. If the packets are 1588 time synch packets, they are

transmitted to IL module.

32

Figure 18: The Algorithm of the Transmit Function

Figure 19 shows the algorithm of the receive function and modification in the receive

function. In Figure 19, packets come from SM and they go into the e1000e module. In this

module, if packets are not fragmented, they continue to receive function and nRT

33

application. If packets are fragmented, they continue to defragmentation thread. If packets

are RT, they continue to I L2CL function. Then they are sent to CL.

Figure 19: The Algorithm of the Receive Function

34

3.3.1.2 CL- IL Interface Implementation

In the implementation of IL -CL Interface, character device files are used to transfer the

messages between IL and CL. charDev_IL2CL and charDev_CL2IL device files are used for

the communication of each layer. The reason why using character device file is that IL is

implemented on kernel space and CL is implemented on user space.

Copy_from_user () and copy_to_user() functions in the IL are used to write

messages to the file and to read messages from file.

3.3.2 Coordination Layer (CL):

Coordination layer (CL) is the layer which lies between the control application and interface

layer (IL). It gets the RT messages from control application, sends the RT messages to the

interface layer. While processing the RT traffic, it calculates the best performance of

delivery of the RT messages to the network. Also, CL calculates the slot allocations

according to RT messages coming from control application and coordinates the RT

traffic.Figure 20 below shows the message transmission in CL.

AP2CL

CL

IL

IL2CL

mMQueueToReceive

chardev_D2RIP

mMQueueToTransmit

CL2AP

 *_d3.dev *.sim

AP (SIMFAUDES)

Write()

CL2IL

TxRTmsg RxRTmsg

Read()

Figure 20: Message Transmission in CL layer

In coordination layer implementation, there is a thread which wakes up periodically at the

start of the each time slot. At the beginning of the time slot, if mMQueueToReceive message

queue has a message from AP, CL continues with processAP2CL . In processAP2CL ,

receiving message is copied to Tx. After that CL continues with the processCLUPDATE

function. In this function, the type of the time slot (RT or nRT) is determined by looking at

the PQ_dT priority queue. If there is no message in PQ_dT, RTCL is nRT. If there is any

message in PQ_dT, RTCL is RT. The owner of the time slot is determined by looking at vCL

35

parameters in PQ_dT. If vCL parameterôs node id equals that nodeôs node id, mySlot returns

true. If vCL parameterôs node id does not equal that nodeôs node id, mySlot returns false.

After determining the type of the time slot and the owner of the time slot, if the time slot is

RT and the owner of the time slot is mine (myCL=true), the message in the Tx is assigned to

chardev_D2RIP character file. The reason why character file is used to communicate with IL

is that CL is implemented on user-space. If the time slot is RT or nRT and the owner of the

time slot is other (myCL=false), CL sends IL 1 byte to inform it.

If there is a message in chardev_D2RIP character file, CL calls processCL2AP function.

In processCL2AP , receiving message is copied into Rx. After that gUpdate function is

called to update the vCL parameters in the PQ_dT. Then the message in the Rx is assigned to

mMQueueToTransmit message queue to send the message to Application Layer (AP).

Figure 21 shows the structure of the message which is send to AP. It contains channel

information (ch), CL protocol parameters and payload.

Figure 21: Message Structure

In CL, two priority queueare used to implement the protocol namely PQ_dT and PQ_eT.In

PQ_dT, the communication requests are ordered with the deadline time of the events. In

PQ_eT, the communication requests are ordered with the eligibility time of the events.

PQ_dT and PQ_eT are used to store the communication requests which are needed at the

time slot. Figure 22 shows the message format in the CL. It contains 3 parameters: number

of requests (NoR), communication requests and control message payload. The number of

requests (NoR) shows the count of request. Communication requests part contains requests

with the node (b), channel (c), eligibility time (eT) and the deadline time (dT).

Figure 22: Message Format in CL [29]

