

IMPLEMENTATION AND EVALUATION OF THE DEPENDABILITY PLANE

FOR THE

DYNAMIC DISTRIBUTED DEPENDABLE REAL TIME INDUSTRIAL PROTOCOL

(D
3
RIP)

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖMER BERAT SEZER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2013

Approval of the thesis:

IMPLEMENTATION AND EVALUATION OF THE DEPENDABILITY PLANE

 FOR THE

DYNAMIC DISTRIBUTED DEPENDABLE REAL TIME INDUSTRIAL

PROTOCOL

(D
3
RIP)

submitted by ÖMER BERAT SEZER in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronics Engineering Department,

Middle East Technical University by,

Prof. Dr. Canan Özgen _____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan _____________________

Head of Department, Electrical and Electronics Engineering

Assoc.Prof. Dr. Şenan Ece Schmidt _____________________

Supervisor, Electrical and Electronics Eng. Dept., METU

Assoc. Prof. Dr. Klaus Werner Schmidt _____________________

Co-Supervisor, Dept., of Mechatronics Eng., Çankaya U.

Examining Committee Members:

Prof. Dr. Semih Bilgen _____________________

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Şenan Ece Schmidt _____________________

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt Bazlamaççı _____________________

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün _____________________

Computer Engineering Dept., METU

Yusuf Bora Kartal _____________________

M.Sc. ASELSAN A.Ş

Date:

iv

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this work.

 Name, Last Name: ÖMER BERAT SEZER

 Signature:

v

ABSTRACT

IMPLEMENTATION AND EVALUATION OF THE DEPENDABILITY PLANE

FOR THE

DYNAMIC DISTRIBUTED DEPENDABLE REAL TIME INDUSTRIAL PROTOCOL

(D
3
RIP)

Sezer, Ömer Berat

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

September 2013, 93 pages

Dynamic Distributed Dependable Real Time Ethernet Industrial Protocol (D
3
RIP) is a real

time industrial communication protocol that runs over shared-medium Ethernet with COTS

hardware. The protocol consists of an interface layer that enables time slotted

communication and a coordination layer that guarantees collision avoidance and timely

delivery of real time messages generated by the control application. At the current

development stage, these two layers of the protocol are fully implemented and tested. The

scope of this thesis is the implementation of a new plane for D
3
RIP to achieve dependability.

To this end, mechanisms of fault detection and roll back recovery are applied. The interface

of the dependability plane to the existing interface layer and coordination layer is defined.

Finally the dependability plane is implemented and integrated to the existing protocol stack.

A number of tests under different fault scenarios are conducted to demonstrate the plane

functionality.

Keywords: Ethernet, industrial communication network, real time industrial communication

vi

ÖZ

DİNAMİK DAĞITILMIŞ GÜVENİLİR GERÇEK ZAMANLI ENDÜSTRİYEL

PROTOKOLÜ (D
2
G

2
EP)

İÇİN

GÜVENİLEBİLİRLİK DÜZLEMİ GERÇEKLENMESİ VE DEĞERLENDİRİLMESİ

Sezer, Ömer Berat

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Şenan Ece Schmidt

Ortak Tez Yöneticisi : Doç. Dr. Klaus Werner Schmidt

Eylül 2013, 93 sayfa

Dinamik Dağıtılmış Güvenilir Gerçek Zamanlı Endüstriyel Protokolü (D
2
G

2
EP), (COTs)

orjinal donanımıyla ortam paylaşımlı Ethernet üzerinde çalışan gerçek zamanlı endüstriyel

haberleşme protokolüdür. Protokol zaman oluklu iletişimi sağlayan arayüz katmanından

(AK) ve kontrol uygulaması tarafından üretilen gerçek zamanlı mesajların iletimini ve

çakışmayı önlemeyi garantileyen koordinasyon katmanından (KK) oluşur. Mevcut

geliştirme aşamasında, bu iki protokol katmanı eksiksiz gerçeklenmiş ve test edilmiştir. Bu

tezin kapsamı D
2
G

2
EP’in güvenirliliğini sağlayan yeni bir düzlem uygulamasıdır. Bu amaçla,

hata belirleme ve hata öncesi duruma geri döndürme mekanizmaları oluşturulmuştur.

Varolan arayüz katmanı ve koordinasyon katmanı için güvenirlilik düzlemi arayüzü

tanımlanmıştır. Son olarak güvenirlilik düzlemi uygulanmış ve varolan yapıya entegre

edilmiştir. Farklı hata senaryolarına göre bir çok test gerçekleştirilmiş ve düzlemin

işlevselliği gösterilmiştir.

Anahtar Kelimeler: Ethernet, endüstriyel iletişim ağları, gerçek zamanlı endüstriyel

haberleşme

vii

To My Family

viii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Associate Prof. Dr. Şenan Ece Schmidt and my

co-supervisor Associate Prof. Dr. Klaus Werner Schmidt for their valuable supervision and

support. In addition to this, I like to thank them for giving me an opportunity to study

industrial communication protocols. I also thank my colleagues Adem Kaya and Yusuf Bora

Kartal for their contribution on integration of my thesis work to the system and system tests.

My thesis was a part of a research project that was funded by The Scientific and

Technological Research Council of Turkey (TUBITAK). I would like to thank TUBITAK

for their project support.

I would like to thank my family, my wife and my colleagues in TUBITAK-UZAY for their

support.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

INTRODUCTION ... 1

BACKGROUND ... 3

2.1 Real -Time Ethernet for Industrial Communication Protocols 3

2.1.1 Requirements .. 5

2.1.2 Real Time Ethernet Protocols ... 6

2.2 Dependability ... 10

PREVIOUS WORK ... 15

3.1 Dynamic Distributed Dependable Real Time Industrial Protocol (D
3
RIP) Protocol

Overview .. 15

3.2 D
3
RIP Formal Protocol Model: .. 17

3.2.1 Generic Interface Layer: ... 17

3.2.2 Generic Coordination Layer: .. 20

3.2.3 Generic Shared Medium Model: ... 23

3.2.4 Generic Dependability Plane Model: .. 24

3.3 D
2
RIP Implementation ... 27

3.3.1 Interface Layer (IL) : .. 28

3.3.2 Coordination Layer (CL): ... 34

3.3.3 D
2
RIP Implementation Summary and Its Operation ... 37

DEPENDABILITY PLANE IMPLEMENTATION ... 41

4.1 Overview .. 41

4.1.1 DP Implementation ... 42

4.2 Data Structures ... 52

4.3 Actions and Operation ... 54

4.3.1 Actions .. 54

x

4.3.2 Operations ... 55

EVALUATION OF THE DEPENDABILITY PLANE ... 59

5.1 Example Description .. 59

5.2 Performance Parameters ... 66

5.3 Experiments and Results .. 69

CONCLUSION & FUTURE WORK .. 73

6.1 Conclusion .. 73

6.2 Future Work ... 74

REFERENCES ... 75

APPENDIX .. 79

XML FILES ... 79

xi

LIST OF TABLES

TABLES

Table 1:Shared Medium Industrial Ethernet Protocol...10

Table 2: Frame Header Structure ... 30

Table 3: vCL_Q_TYPE ... 53

Table 4: vIL_Q_TYPE ... 53

Table 5: QUEUE_TYPE .. 53

Table 6: Synchronization Accuracy and Sequential Actions in D
3
RIP Operation Without Any

Fault ... 67

Table 7: Sequential Actions in D
3
RIP Operation With Fault... 67

Table 8: Synchronization Accuracy and Sequential Actions in D
2
RIP Operation Before

Adding Dependability Plane [44] .. 68

xii

LIST OF FIGURES

FIGURES

Figure 1: Industrial Communication Levels [14] ... 4

Figure 2: Additional Protocol on Ethernet Layers [29] .. 8

Figure 3: TC-Net Structure [31] ... 9

Figure 4: Dependability Threats [20] ... 11

Figure 5: Domino Effect [38] ... 12

Figure 6: Creating Control Point and Rollback [40] .. 13

Figure 7: D
3
RIP Layer Architecture ... 15

Figure 8: Time Slot Structure ... 16

Figure 9: IL Model as TIOA .. 19

Figure 10: Internal Functions in IL Layer .. 20

Figure 11: CL Model as TIOA ... 22

Figure 12: Update Functions for CL .. 23

Figure 13: SM Model as TIOA .. 24

Figure 14: Functions in Dependability Plane ... 25

Figure 16: Data Encapsulation of RT and Long nRT messages [44] 28

Figure 17: Message Transmission in IL layer .. 29

Figure 18: The Algorithm of the Transmit Function .. 32

Figure 19: The Algorithm of the Receive Function ... 33

Figure 21: Message Structure ... 35

Figure 22: Message Format in CL [29] .. 35

Figure 23: CL Algorithm [29] [41] .. 36

Figure 24: The Message Transmissions of the Layers and Functions of D
2
RIP 37

Figure 25: The Timing of the Sending RT request with RT packet 38

Figure 26: The Timing of the Sending RT request without RT packet 38

Figure 27: The Timing of the Sending nRT packet .. 39

Figure 28: Message exchange of DP with other layers. ... 42

Figure 29: Structure of DP ... 43

Figure 30: CL Implementation with DP ... 44

Figure 31: Transmission Part of IL with DP Implementation .. 45

Figure 33: DoListenCLModule Thread in AP.. 47

Figure 34: listenCoordinationLayer Thread in DP Implementation 49

Figure 35: listenInterfaceLayer in DP Implementation .. 50

Figure 36: fAT Implementation in DP ... 51

Figure 37: Dependability Plane UML Class Diagram ... 52

Figure 38: The Timing of the D
3
RIP without Any Fault .. 56

Figure 39: The Timing of the D
3
RIP with Fault ... 57

Figure 40: A Manufacturing System [44] .. 59

Figure 41: State Machines of Workcell [12] .. 60

Figure 42: The Timing Diagram for the PLC Communication of the Example Workcell [44]

 .. 61

xiii

Figure 43: The Connection of the Controllers and Plant ... 61

Figure 44: D
3
RIP XML Configuration File for Controller C .. 64

Figure 45: SimpleNet XML Configuration File for Controller C .. 64

Figure 46: Simulator XML Configuration File for Controller C .. 66

Figure 47: The Experiment Result of the First Experiment ... 69

Figure 48: The Experiment Result of the Second Experiment .. 70

Figure 49: The Experiment Result of the Third Experiment ... 70

xiv

1

CHAPTER 1

INTRODUCTION

Industrial control applications are nowadays realized using distributed controller devices that

are connected by a real-time communication network. The amount of the transmitted data

has been increased with the new control systems and the demand of these systems will be

increased more and more in the near future. Traditional bus and control network solutions

such as CAN [1], ProfiBus [2] and LonWorks [3] do not support the demanded

requirements, because of their low speed, high cost and incompatibility with other devices

and equipment.

Therefore, a different protocol is needed to support the stated requirements. Ethernet (IEEE

802.3) is a common proposition for the support of industrial control applications since it is

cheap, commonly used, high speed andcompatible with other protocols. However, there is a

problem to use Ethernet in real time (RT) communication. The reason is the CSMA/CD

(Carrier Sense Multiple Access / Collision Detection) access protocol. In CSMA/CD access

protocol, if a collision occurs on the network, the node which sends the packet to the other

node, waits a random time to resend the packet. Also, the random amount of time is double

increased if a collision occurs again. This causes non-determinism and impairs the RT timing

requirements. To overcome this problem, there are various solutions in the literature.

Common solutions are:

 Modification of the Medium Access Control

 Adding Transmission Control Over Ethernet

 Using Switched Ethernet

In modification of MAC solution, specialized chips (ASICs) are used to modify the Ethernet

hardware. Sercos [4], Ethercat [5], Profinet IO [6] are examples of modification of MAC

solutions. They are used as RT Ethernet protocol, but their high cost and incompatible with

other equipments are the problem of the modification of MAC. In adding transmission

control over Ethernet solution, there are several different ways of doing this. Master /slave,

Token Passing and TDMA methods are used to solve the problem by adding transmission

control over Ethernet. Virtual Token Passing Ethernet [7], Ethernet Powerlink [8],

Modbus/TCP [9], Ethernet for Plant Automation (EPA) [10], FTT Ethernet [11] are

examples of adding transmission control over Ethernet. In using switched Ethernet solution,

there are multiple transmission paths and switches are used instead of hubs that is, each

network ınterface card (NIC) only receives traffic which is addressed to it. However, this

solution is not enough to make Ethernet real-time due to the non-deterministic queuing

delays in switches.

2

The new RT Ethernet protocol, Dynamic Distributed Dependable Real Time Ethernet

Industrial Protocol (D
3
RIP) is proposed in article [12]. This protocol is fully distributed, uses

COTS Ethernet hardware and time-slotted transmission control based on the IEEE 1588 time

synchronization protocol [13]. No hardware modification is required. It supports both RT

and nRT traffic. D
3
RIP is an extension of the two-layer protocol D

2
RIP by dependability

functionality in the form of a dependability plane. The interface layer (IL) and coordination

layer (CL) of D
2
RIP were implemented in [41]. In this thesis, the additional dependability

plane of D
3
RIP is studied, implemented and evaluated based on an application example, In

this example, four distributed controller devices communicate with each other over D
3
RIP.

Several test scenarios show the functionality of the dependability plane.The remainder of the

thesis is organized as follows. RT Ethernet for industrial communication, requirements of

them and dependability are discussed and available RT Ethernet protocols are reviewed in

Chapter 2. Formal protocol models and the implementation of a generic shared medium, a

generic interface layer, a generic coordination layer and a generic dependability plane are

explained in Chapter 3. The implementation of the dependability plane is described in detail

in Chapter 4. The test scenario with 4 controllers and configuration of simulator,

performance parameters, experiments and results are studied in Chapter 5. The conclusion

and future works are presented in Chapter 6.

3

CHAPTER 2

BACKGROUND

2.1 Real -Time Ethernet for Industrial Communication Protocols

In industrial applications, industrial communication network and protocol are used for

communication among control nodes and equipments. RT access, deterministic behavior and

RT are the reasons why industrial communication protocols are used so often in control

applications. In control applications, different components are used to implement the control

system: controllers, remote controllers, supervisory stations, actuators and sensors are some

of the components that are used. Sensors collect feedback data, controllers control the system

according to receiving data from sensors using actuators. Actuators transform input signals

into motion. Supervisory stations are the intelligent part of the control system. It is used as a

monitoring part and computer in the system. All different parts are connected with each other

using industrial communication networks.

Nowadays, industrial communication networks are widely used by industrial control

applications and these industrial control applications become more complex and large-scale.

Also computer aided industrial control devices with the network access are manufactured in

recentyears. These developments make industrial control systems become an important

industrial and academic research topic. Different industrial communication networks have

been developed for the last twenty years for these systems.

In different industrial communication networks, messages for the different purposes are

transmitted to each device in the system. These industrial communication networks are

divided as follows: [14] (Figure1)

 T1) Device level data transmission between sensors, controllers and actuators: The

receiving sampled data is periodic and it must be sent with time constraints.

 T2) Control level data transmission between supervisory controllers and the system

components: It is needed that controllers and the system components at different

hierarchical levels communicate each other for their coordination in the system.

Mostly, components and controllers send the data which is event-based and requires

deterministic response times, to each other. Because of the changing of the system

behavior in discrete time, the next state of the system and the message which is sent

in that case, have been already known using system dynamic model. For example,

the controller which controls the two machines sends a message to the second

machine to start, when the first machine completes its operation.

 T3) Information level data transmission: Mostly, it is used for the nRT and event-

based communication.

When these traffic types are analyzed, there are four requirements that should be fulfilled by

4

the network to make it usable for industrial control: there should be RT traffic transfer,

synchronized communication, dependable operation and support for nRT traffic. In RT

traffic transfer requirement, when a node in the control system wants to send a message to

other nodes, this message transfer time should be less than a deadline time of the message. In

synchronized communication requirement, before the RT communication starts, all nodes in

the system are synchronized to get the RT message successfully. In dependability

requirement, if there is a failure in the system, the system should be able to fix the problem

and resume its correct operation. In support for nRT traffic requirement, nRT messages

should be sent without corrupting the RT traffic.

Desktop
PC

Programmable
Device

Information Level
(T3, Non Real Time)

Control Level
(T2, Real Time, Sporadic)

Device Level
(T1, Real Time, Periodic)

PLC or Connection
Device

DriverController

Actuator
Sensor Sensor

Figure 1: Industrial Communication Levels [14]

5

In 1980’s CAN, Lonworks, Profibus started to be used as industrial communication network.

[15]. But, their implementation cost is high, expanding the system is difficult and they are

not compatible with other communication protocols. So, these problems are the reason for

developing and using different protocols. Ethernet can be used for industrial communication

protocol. However, Ethernet is not directly usable as industrial communication

protocolwithout any modification on hardware or software. Because, it does not support the

RT traffic when collisions occur in the system. When a collision happens, back-off algorithm

runs and the node which wants to send a message to the system, waits a random time. It

creates non-determinism on the system. So, generic Ethernet without any modifications

cannot be used for industrial communication. However, the application of Ethernet is simple,

widely used and low cost are the reason why there is a considerable research effort on

modifications and additions to Ethernet in order to make ıt usable as a RT communication

protocol.

2.1.1 Requirements

The requirements for the development of the real-time Ethernet protocol are listed below:

[16]

Real Time Data Transmission: Message transmission time is measured between the

applications which are sent and received. The requirements of the message transmission time

for the different level communications are different. While the applications including human

operators require 100 ms transmission time, applications working with programmable logıc

controllers (PLCs) require 10 ms transmission time and applications which coordinate many

devices, require 1 ms transmission time.

Synchronization Support: In industrial communication network, RT response time and

common reference time between nodes are provided by synchronization protocol. The

sensitivity of the synchronization is defined the maximum deviation between the time of two

nodes [16]. To protect this sensitivity of the synchronization, guard periods are used and this

causes the increasing of the time delay. The most common and used synchronization

protocol for Ethernet is IEEE 1588 time synchronization protocol [13] [17].

IEEE 1588 time synchronization protocol works according to Precision-time protocol (PTP).

In this protocol, time difference and delay time between the selected master node and other

nodes are calculated using message exchanges between master node and slave nodes. Thus,

nodes are synchronized. Except IEEE 1588, special time synchronization mechanisms are

used in EtherCAT [4] and Sercos (IEC 61491) [5] protocols.

Non-Real Time Traffic Support: It is provided that while nRT traffic is supported, the RT

traffic is not affected nRT traffic.

Compatibility: The most important reason that makes Ethernet an attractive technology is

inexpensive hardware and software interface. It is required that when industrial Ethernet

works, it is compatible with standard Ethernet to make implementation with COTS

(Commercial Off-The-Shelf) components and to take advantage of inexpensive hardware

andsoftware interface. In addition to this, it is also supposed thatcommonly used application

protocols such as HTTP and FTP and synchronization protocols such as IEEE 1588 are

supported.There are backward-compatibility requirements. For this reason, it is expected that

6

once a protocol has been established, it works for years. As a result, an industrial Ethernet

protocol should be conducive to adding new devices.

Dynamic Resource Separation for the Real-Time Traffic: The communication requirements

of the industrial system which communicates with a network, change dynamically in time

[18]. For instance, in the self-triggered control concept, at the device level, calculation times

are reserved before. In addition to this, high-level controllers which coordinate the

distributed systems, communicate only when they are needed. It is supposed that according

to instantaneous needs, RT bandwidth should be separated to devices in the industrial

Ethernet protocols.

Dependability: Dependability is an important requirement for the applications which have

critical security constraints and work in the industrial control systems [19]. Availability,

safety, integrity and maintainability are the elements of dependability [20]. To talk about the

dependability of a distributed industrial control system which communicates with the

network, it is provided that the dependability of the network and controller is necessary.

When designing a dependable industrial communication network, dependable

synchronization and the consistence of values which are sent with messages, are important.

The problem of dependability stands outmore RT Ethernet-based solutions due to non-

deterministic feature of Ethernet [21]. Dependable communications provide that accurate

information should be sent to the right place, at the right timeand right order. Dependability

support is often done by the separation of the static additional capacity according to default

worst case [22]. For example, for the TDMA-based protocol additional time slots might be

allocated to the transmitting nodes inorder to send each message which is lost, in repetition

time and only half of the capacity can be used.

2.1.2 Real Time Ethernet Protocols

In the literature, there are four major approaches to add Ethernet real-timeliness:

 Changing the non-deterministic sending messages mechanism with the hardware

modification on Ethernet network interface card,

 Minimizing response time and the probability of the collision,

 Removal of the probability ofcollision on shared medium using point-to-point

connections and switches,

 Constructing layers on top of shared medium to avoid collision.

Specialized Hardware: EtherCat [4], SERCOS III [5] and ProfiNet [6] use specially

designed node and switch hardware. Ethercat and ProfiNet use IEEE 1588 for time

synchronization. On the other hand, SERCOS III uses special messages to synchronize the

nodes in the system. These three protocols are supported by special designed dependable

protocols. Special designed, Twinsafe Protocol operates as separate layer under EtherCAT

protocol. Devices get addresses and data safety is provided with CRC. In SERCOS III

Safety, there are sequence numberanda timestamp in the message. The receiver node sends

an acknowledgment message to the sender node. Devices get addresses and data safety is

provided with HDLC coding.PROFIsafe is developed for ProfiNet [6]. Sequence number and

a timestamp are added in the message. Devices get addresses and data safety is provided

with CRC.

7

Non-Guaranteed Approaches: MODBUS/TCP [9] and similar protocols work on TCP/IP to

be compatible with standard Ethernet [23] [24]. With traffic shaping, it low delays can be

achieved in these systems. In these approaches, there is no guarantee that messages will be

transmitted in time.

Switched Ethernet: Since collisions are possible on standard Ethernet, the solution of the

non-deterministic network access problem is full-duplex, switched and point-to-point

Ethernet (IEEE802.3x). With this structure, even if shared medium and the collision problem

are eliminated, the problem of network access is carried to queueuing delays in the network

[22][25][26]. To provide the RT communication, Ethernet switches that make scheduling

and prioritization are needed. Giving priority to the messages, according to these priorities,

providing different service like 802.1p and 802.1Q Ethernet protocols and protocol

extensions are proposed. Unlike the standard Ethernet protocols, these protocols require

specialized switches. Under the assumption of an infinite buffer for real-time traffic, even if

scheduling analysis can be made, the actual conditions require the use of a limited buffer

[27]. On switched Ethernet, the implementation of the sensitive time synchronization which

is important for RT communication, can be difficult.

Ethernet/IP (EIP) [28] works on the TCP/IP with full-duplex Ethernet switches which have

special prioritization mechanism. Ethernet /IP protocol does notensure the real-time

communication. Time synchronization is made with special messages which are compatible

with IEEE 1588 protocol. Also, the coordination between sender and receiver, is provided

with the ping messages. There is also timestamp in the messages. Devices get addresses and

data safety is provided with CRC.

Constructing Layer on Shared Medium: A variety of academic and industrial protocols are

proposed to prevent collisions on shared medium by adding RT properties. These protocols

aim at adding a layer on IEEE 802.3 that prevents collision and non-deterministic sending

messages after collision. NRT and RT traffic pass over this layer. On this layer, there may be

a specific protocol which is responsible for transmission of RT traffic. TCP-UDP/IP layers

may be responsible for transmission of RT traffic. Figure 2 shows the additional protocol on

Ethernet layers.

There are 3 different approaches for adding layer on medium access layer:

 Time Division Multiple Access (TDMA)

 Master-Slave

 Token Passing

Time Division Multiple Access (TDMA) : In this approach, time is divided into equivalent

slots. The owners of one or more time slots are determined statically for each node. Time

synchronization between all nodes in the system, is important for communication between

nodes. This approach provides reliable network access for all nodes. Working with low

efficiency is the disadvantage of TDMA. If a node does not send a message in the time slot

which is belongs to that node, another node in the system cannot send a message in that

unused time slot. In addition to this, the delay in the software and switches is also considered

while choosing the time slot. If the messages in the network arelostdue to network errors,

additional time periods must be allocated to send messages again.

8

Physical Layer

Medium Access Layer

Additional Medium Access Layer

Additional Protocol IP

TCP/UDP

Non Real-Time TrafficReal-Time Traffic

Communication Network

Figure 2: Additional Protocol on Ethernet Layers [29]

Master-Slave: A chosen master node sends messages to the other nodes (slaves) to ask

whether it needs to send a message or not (polling). Slave nodes only send message when

master nodes poll them. This approach is used in the network which has small number of

nodes. The efficiency of master slave is affected negatively while polling the system.

Especially in cases wherethe trafficis very variable and nodes do not have any message to

send, the efficiency decreases. Also, the delay time which is passed when the master node

waits slave node’s answer, decreases the efficiency. When the number of nodes is large, the

polling cycle time for all nodes, is more than the delay time of sending message. In that case,

the delay time is much more than acceptable limit. The speed of software in the slave nodes

also is the one of thedetermining factors of the polling process time. If the software is too

slow, the importance of the network speed is ignored and the efficiency of the network is

decreased. In addition to the problem of the efficiency, master-slave communication is not a

suitable structure for distribution. Because of master node, it is single-centered and there

might be a problem at a single point.

Token Passing: In this approach, one node can send a message if and only if it has a token to

send a message. When it sends its message, it transmits the token to another node with a

special message. In token-based approaches, the possibility of losing the token, token

circulationtime which causes decreased communication speed and the difficulty of adding a

new component are the disadvantages of token passing system.

There are lots of solutions which are created in industry and academia. These solutions and

standards follow the approaches which are explained the section above and they carry on the

negative aspects of them.

Time Critical Control Network (TC-Net) [30] is implemented with adding a layer on

standard Ethernet which provides the token passing. NRT traffic has low priority. Time

9

synchronization is provided with the special message. The dependability of the protocol is

also provided using an extra TC-Net card. Figure 3 shows the TC-Net structure. [26][31].

Figure 3: TC-Net Structure [31]

Powerlink (EPL) [8] is implemented with adding a layer on standard Ethernet which

provides the master-slave. With the inefficiency of the master-slave structure, EPL efficiency

is calculated as 25% [22]. Time synchronization is provided with the special message similar

to the IEEE 1588 protocol. RT and nRT data are sent in different time slots. Sequence

number and a timestamp are added in the message. Devices get addresses and data safety is

provided with CRC.

Ethernet for Plant Automation (EPA) [10] works with static TDMA. Time slots for nRT and

RT are determined before the communication. It supports both RT and nRT traffic. IEEE

1588 time synchronization protocol is used to synchronize the nodes in the network. The

disadvantage of this protocol is static slot scheduling and TDMA. Slot scheduling is done by

periodic message broadcast. Also, to the guard periods and error recovery precautions cause

low efficiency in TDMA solutions like EPA. [16] [26]

In FTT Ethernet protocol, master/multi-slave model is used to implement the protocol. It

uses COTS Ethernet hardware.The communication is TDMA based and time slot durations

are fixed. Nodes can be connected to share or switched medium. It supports both RT and

nRT traffic, also in addition to them, there is online admission control to guarantee

timeliness to the RT traffic. Also there is no specific synchronization protocol. But,

elementary cycle begins with master node trigger. When master node broadcast to trigger

message, elementary cycle is started with that trigger message. The disadvantage of the FTT

Ethernet protocol is that master-slave method. Master-slave models have single point of

failure, undistributed structure and low efficiency. [11][32]

In Virtual Token Passing Ethernet (VTPE), if a node wants to hold a network, it should

takethe virtual token to send a message to other node. In this method a virtual token is

circulating between nodes and it works with closing the binary exponential back off (BEB)

algorithm. When there is collision in the system, it provides that the nodes send the RT

message again immediately. In this protocol, Ethernet hardware is not modified. It uses

10

COTS (commercial off-the-shelf) Ethernet. Software Ethernet driver modification is required

for RT stations. Figure 4 shows the algorithm of VTPE.The disadvantage of the VTPE is

losing token which is the dependability problem of token passing method. [7]

The focus of this study is working with compatible components without changing the

working principle of Ethernet and providing guaranteed real-time performance for shared

media protocols. Table 1 shows the comparison of the defined requirements and

performance criteria for these protocols. In table, A/I: Academic/ Industrial Purpose, RT

Cap: RT Data Transmission Capacity, nRT Cap: NRT Data Transmission Capacity, Time

Sync: Time Synchronization Protocol are used as abbreviations.

Table 1: Shared Medium Industrial Ethernet Protocol

A/I Protocol

Mediu

m

Access

Delay
Node

Number

RT

Cap.(bps

)

nRT Cap. Time Sync

I EPA TDMA
5ms,

100µs
32, 64 12.28M 0,85

IEEE

1588,10µs,

1µs

I EPL
Master-

Slave

400µs,

5.5ms
4,15

15.2M,

32M

19.6%,

4.4%
IEEE 1588,1s

I

Time

Critical

Control

Network

(TCNet)

Token-

Passing

2ms/

20ms/

200m

24,13

58.4M/

51.2M/

7.2M,

45.6M/

40.8M/

4.8M

0%,

20%
-

A FTT-E
Master-

Slave
1ms

Unspecifie

d

36M,

36%
0,11

Periodic Time

Sychronizatio

n Message

from Master

Node

A VTPE
Token-

Passing
5.8ms 256

Under

40%

Ethernet

Cap.

Unspecifie

d
-

2.2 Dependability

Dependability is defined as the ability to deliver service that can be justifiably trusted. Also,

it includes the attributes below: [20][33].

 Availability: A system is ready to provide the right service.

 Reliability: A system continues to right service in a time.

 Safety: A system does not lead to irreversible errors at the user level.

11

 Maintainability: A system can be conducive to repair and can be available to

maintain when needed

 Integrity: System changes are suitable for designed sequence and there are not any

unexpected system changes in the system design sequence.

System is dependable when it fulfills (some of) the above attributes. Also, system must have

precautions against threatened dependability of the system elements at the design and

operation stages. Threatened dependability of the system elements are divided into the three

main categories. These categories are: [20] [33] [34]

 Component-Level Errors (Faults)

 System-Level Errors (Errors)

 User-Level Errors (Failures)

Figure 4 shows the faults cause-effect relationship.

Internal
Dormant

 Fault

Error Error

Activation

External Fault

Propagation Propagation

Error

Input
Error

Propagation Propagation

Error

Propagation

Error

Service
Interface

Correct Service

Incorrect
Service

Service status of
component A Failure

Correct Service
Incorrect
Service

Service status of
component B

Boundary

Service
Interface

Component A Component B

Figure 4: Dependability Threats [20]

As can be seen in Figure 5, faults which occurred and are not solved at the component level

proceed to the user level. After that the system cannot work properly. Bringing back the

correct function of the system, error conditions should be eliminated.

Means (dependability activities) are activities for elimination of errors and allocation of the

dependability of the system at various levels. They are divided into 4 main groups: [20] [33]

[35]

 Component-Level Fault Prevention Activities: Fault prevention activities are the

activities which prevent the faults at the design stage. Keeping records of faults at

the designed system and modify it during the design process is the most common

example. [36] [37].

 Component-Level Fault Removal Activities: Error detection, classification and

validation phases of the system design phase of these activities aims to eliminate the

errors. System verification is a method which provides confirmation of fault before

debugging and supports system requirements after debugging.

12

 Component-Level Fault Forecasting Activities: Fault forecasting activities are the

activities which determine the state changes that cause user-level faults after

completed system design.

 Component-Level Fault Tolerance Activities: Activities of detection and

elimination of errors that can occur during operation of the system. Elimination of

effects of the system faults is called system recovery [20]. The most common

method without having to initialization (reset) while system is operating is making

checkpoint and rolling back.

In this method, functions in a distributed system record their state in error conditions that

may occur. In the event of any error, functions return to their pre-recorded states within the

scope of the error recovery scenario operated by the system. Although at first glance it seems

to be an easy method of application, in some conditions rollback mechanism causes

consecutive rollbacks which might return the system to its initial state. In other words, it

causes reset of the system. Figure 5 shows that situation which is called domino effect.

Figure 5: Domino Effect [38]

In Figure 6, lines with dashed vertical show the communication of functions. 3 processes in

Figure determine the rollback point periodically. For example in process 3, an error after 4th

recovery block is identified. This situation causes that process 3 returns to the 4th recovery

block. When process 3 returns to the 4th recovery block, the other two processes have to

return to their previous recovery point to be compatible with process 3. The reason why the

other two processes have to return to their previous recovery point is that process 3

communicates with the other two processes between error and 4th recovery block. With the

same logic, rollback mechanism causes that the system returns to its initial state, like toppled

dominoes one after the other.

In order to stop the domino effect, a communication mechanism between processes is

recommended [39] [40]. In these articles, proposed communication mechanisms cause

additional load on the system message traffic. However, it seems that [40]’s proposed idea

causes less additional load on the system message traffic than other one. In [40], the use of a

common reference time between functions is proposed to reduce the additional load on the

system message traffic. Figure 6 shows the proposed control point description and rollback

mechanism.

13

Figure 6: Creating Control Point and Rollback [40]

Figure 7 shows that distributed nodes run synchronous with each other. Common period of

time is determined for synchronous nodes to make an acceptance test. Node which does not

complete acceptance test within the specified time, sends its delay time to other nodes to

determine the synchronous recovery points. This reduces the additional load on the system

message traffic. However, currently only available in recovery point messages are used for

identification purposes in the network, and this adversely affects the efficiency of the

network. In our framework, distributed nodes are synchronous. In addition to this,

communication between the nodes is on the shared medium. Dependability plane in our

framework uses the advantages of these two features and it is aimed to eliminate the

additional message load on the system.

14

15

CHAPTER 3

PREVIOUS WORK

3.1 Dynamic Distributed Dependable Real Time Industrial Protocol (D
3
RIP) Protocol

Overview

Dynamic Distributed Dependable Real Time Ethernet Industrial Protocol can be used for the

communication of controllers in distributed control systems. Dynamic Distributed Real Time

Ethernet Industrial Protocol works over Ethernet protocol with non-real and RT traffic.

There is no need to change the physical MAC layer, it uses COTS Ethernet hardware. D
3
RIP

protocol works on shared medium without using any switch. It realizes TDMA on top of

Ethernet, whereby synchronization is achieved by the IEEE 1588 protocol. It requires small

software Ethernet driver modification and modifications of the software stack between MAC

and Application layer. Figure 7 shows the layered architecture of D
3
RIP. The Dependability

Plane works over D
2
RIP structure that is implemented in [41].

Shared Medium

MAC Layer

Interface Layer

TCP / IP LayerCoordination Layer

Real Time Application Layer Non-Real Time

Application Layer

IEEE

1588 Protocol

Dependability

Plane

Figure 7: D
3
RIP Layer Architecture

In D
3
RIP Layer Architecture, there are 3 different layers added to the original Ethernet layer

architecture namely interface layer (IL), coordination layer (CL) and dependability plane

(DP). Interface layer is responsible for the time-slotted TDMA structure that is implemented

and synchronized with other nodes using IEEE 1588 time synchronizing protocol. At the

beginning of each time slot, CL sends information to the IL about the usage of the time slot

and IL sends Ethernet frame within time slot when it gets information from CL.

Coordination layer is responsible for determining the allocation of the type of slot whether

16

RT or nRT and the allocation of the owner of the slot. CL is implemented in the user space

of Linux and IL is implemented in the kernel space of Linux in previous works [29][42]. In

these works, CL is implemented as 2 types: DART (Dynamic Allocation Real-Time

Protocol) and URT (Urgency-Based Real-Time Protocol). In DART, variables in the

protocol are hold in the form of allocated RT slots. In URT, control application variables are

stored in the form of the communication requests [29]. Also, IL is implemented as 2 types:

RAIL (Real-Time Access Interface Layer Protocol) and TSIL (Time-Slotted Interface

Layer). In RAIL, slot allocations for nRT and RT traffic are made statistically. In TSIL, slot

allocations for nRT and RT traffic are made dynamically by CL [42].

Dependability Plane is responsible for dependability of the framework. DP makes an

acceptance test whether the protocol works without problem or not. If there is a fault, it

sends stored CL parameters using rollback message to CL and when CL gets the rollback

message from DP, it warns application layer to resend the fault messages. Thus DP protects

the framework. Timing of messaging between layers is important to determine the slot

timing duration. Figure 8 illustrates the timings of 1 slot. CLcmp which is a calculation time

for CL, ILcmp which is a calculation time for IL and Message Tx, which represents

transmission of an application message on Ethernet.

Figure 8: Time Slot Structure

D
3
RIP Layer Architecture works on the RT operating system. RT features of the operating

system kernel are gained with RT patches over the Linux kernel. The latest stable kernel is

3.6.2. The configurations below are needed for RT operating system after RT patches

implemented over Linux kernel:

 Activate Tickless System (Dynamics Ticks).

 Activate High Resolution Timer Support.

 Set“Preemption Model” parameter to “Fully Preemptible Kernel(RT)”.

 Set “Timer frequency” parameter to “1000Hz”.

 Deactivate “Suspend to RAM and standby”.

 Activate “Timestamping in PHY devices”.

 Activate “PTP Hardware Clock (PHC)”.

 Activate “PTP clock support”.

 Deactivate “Show timing information on printks”.

 Set “I/O scheduler” parameter to “Deadline”.

17

3.2 D
3
RIP Formal Protocol Model:

3.2.1 Generic Interface Layer:

Interface Layer Generic Model is defined using TIOA Model in [12][43]. Figure 9 shows the

IL Model using TIOA. There are 6 parameters in the IL Model: dSlot, t0,t1,t2, t3, M , Q ,

AIL,HIL.

 dSlot: Slot duration,

 t0,t1,t2, t3: Time of events,

 M: The type of transmitted messages,

 Q: The type of a FIFO queue messages,

 AIL: Abstract variable of IL.

 HIL:Abstract variable of IL

IL Model as TIOA has variables to define the model and operations: nowi
a

, nexti
d
, TxRTi

d
,

TxnRTi
d
, RxRTi

d
, RxnRTi

d
, RTILi

d
, myILi

d
, vILi

d
, reqILi

d
.

 nowi
a
: Analog variable which evolves with the time derivative of 1 , the updated

time information is provided by this variable.

 nexti
d
: The end of the current time slot is stored by this variable.

 TxRTi
d
: The buffer that stores the RT messages to be transmitted.

 TxnRTi
d
: The buffer that stores the nRT messages to be transmitted.

 RxRTi
d
: The buffer that stores the RT messages that are received.

 RxnRTi
d
: The buffer that stores the nRT messages that are received.

 RTILi
d
: The variable that stores the type of next slot whether RT or nRT.

 myILi
d
: The variable that stores whether the device owns the next time slot or not.

 vILi
d
: The variable that holds the additional information of the protocol operations.

 reqILi
d
: The variable that stores the request to the CL to determine RTIL and myIL.

 sendVILi
d
: The variable that stores the whether vIL is sent or not.

 ati
d
: The variable that shows the acceptance test result.

 checkPTi
d
: The variable that stores the rollback status of that node.

Actions in IL:

 output IL2SM (m:M)i

 output UPDVIL(vIL: AIL, TxnRT: Q, RxnRT:Q)i

 input SENDRES(atRes:bool, rbSt: int)

 input RBACK(ILHT: HIL, cLHT: HIL, rbSt: int)

 input SM2ILDP (m:M)i

 input CL2ILRT(bmy:bool, bRT:bool, m:M)i

 input AP2ILNRT(m:M) i

 input IL2APNRT(q:Q) i

 output IL2CLRT (m:M) i

 internal UPDATE()i

 output REQRT()i

18

19

Figure 9: IL Model as TIOA

myILi
d

and vILi
d
 variables are updated by internal operations fmy and fupd. After the data

transmission is finished, UPDATE()is called for the update of variables of the next slot. vIL

is updated first. When IL does not need the information if the next time slot is RT or nRT,

reqIL gets false value (reqILi
d
=false) and the owner of the next time slot is determined

locally. If IL needs to information if the next time slot is RT or nRT, reqIL gets true value

(reqILi
d
=true). IL triggers the action REQRT to the CL. REQRT() requests the type of the

next time and the owner of the next time slot. After the calculation time of CL, the action

CL2ILRT(b1,b2,m) indicates the type of the next time slot (b1), the owner of the next

time slot (b2) and RT message (m) in CL if it has. RTIL and myIL variables update their new

values according to b1 and b2.

In IL2SM(m), IL sends messages to all nodes, when current time now equals to next

starting time next and myIL is true. The value in RTILi
d
 determines if the transmitted message

is RT or nRT message. Also, in SM2ILDP(m), RTILi
d
 is important too, to send message to

upper layer RT buffer (RxRTi
d
) or nRT buffer (RxnRTi

d
). In IL2CLRT(m), RT messages are

send to the upper layer immediately. In IL2APNRT(RxnRTi
d
) and AP2ILNRT(m), upper

layer can reach TxnRTi
d
 and RxnRTi

d
buffers in the IL at any time.

If there is no collision on the shared medium, IL sends message to SM in a one slot and after

every update in IL, parameters which are related protocol are same. But, RTIL variable gets

its b1 parameter from upper layer CL and this b1 parameter shows the next time slot is RT or

NRT. Also, infmy (vILi
d
,RTILi

d
,b2,i) function gets its b2 parameter from CL and b2

parameter indicates that the next time slot belongs to the device i or not.

fmy(vILi
d
,false,-,i) = true

(j I – {i}) fmy(vILi
d
,false,-,i) = false

fmy(vILi
d
,true,b2,i)= b2

In UPDVIL, if sendVIL is true, IL sends vIL parameters of that time slot to DP in each time

slot. In SENDRES(atRes,rbSt), IL gets information from the DP about acceptance test

20

result (atRes) and rollback status (rbSt). After getting atRes and rbSt, these variables are sent

to other nodes with IL2SM(m).In RBACK, IL gets stored vIL parameters, Rx and Tx

message from DP and updates its vIL parameters with the received vIL parameters.

Also, IL obeys some requirements below:

 Transmission window covers all messages.

m.length < dSlot – rem m M

 The time between REQRTiand CL2ILRTiis rem-cmp. After each REQRTi function,

CL2ILRTioccurs.

 If REQRT(t)I and REQRT(t)ji, j I, i j occur at the same time t, then, it holds

for the

next occurrence ofCL2ILRT(b1,b2,m) and CL2ILRT()j that and b2 =

true = false [12]

In framework, IL asks to the CL layer whether the next time slot is RT or nRT. There are 3

variables in vIL such asvIL.cnt, vIL.cyc, vIL.slots. These vIL parameters show which node

owns the nRT slot at that time slot. Internal functions fupd and fmy are defined in Figure 10.

In fupd function, vIL.cnt is incremented with modulo vIL.cyc. After sending action REQRT to

the CL, CL does action CL2ILRT (b1, b2, m). In fmy internal function, if the next time slot

is RT, it determines with action CL2ILRT, fmy function returns b2 variable which returns

with action CL2ILRT. If the next time slot is nRT, it determines with RTILi
d
 and

vIL.nRTSet, fmy internal function returns true and the owner of the next time slot is

determined by IL.

Figure 10: Internal Functions in IL Layer

3.2.2 Generic Coordination Layer:

Coordination Layer Generic Model is defined using TIOA Model in the article [12] [43].

Figure 11 shows the CL Model using TIOA. There are 8 parameters in the CL Model : deli,

t0, M, Q, V, ACL, HCL, InitCL .

 deli:A processing delay value,

 t0: Time of event,

 M: The type of transmitted messages,

 Q: The type of a FIFO queue messages,

 V: A vector of messages with type M,

 ACL: Abstract variable of CL.

21

 HCL: Abstract variable of CL.

CL Model as TIOA has variables to define the model and operations: sendi
a
, Txi

d
,Rxi

d
,

RTCLi
d
,myCLi

d
, chi

d
, reqCLi

d
 , vCLi

d
.

 sendi
a
: Analog variable which evolves with the time derivative of 1defines the

passage of time after a request is sent by IL, it is bounded by deli.

 Txi
d
: The buffer that represents the transmission of messages.

 Rxi
d
: The buffer that represents the reception of messages.

 RTCLi
d
: The variable that stores the type of next slot whether RT or nRT.

 myCLi
d
: The variable that stores whether the device owns the next time slot or not.

 chi
d
 : The channel variable.

 reqCLi
d
: The variable that stores the request from IL to determine RTIL and myIL.

 sendvCLi
d
: The variable that stores the whether vCL is sent or not.

 vCLi
d
: The variable that holds the additional information of the protocol operations.

Actions in CL:

 input AP2CL (m:M, ch: int)i

 input IL2CLRT(m:M)i

 input REQRT(m:M)

 output UPDVCL(vCL: ACL, Tx: V, Rx:Q, RTCLi
d
: bool)i

 output RBACK(ILHT: HIL, cLHT: HIL, rbSt: int)i

 output CL2ILRT(RTCLi
d
:bool,myCLi

d
: bool, m:M)i

 input CL2AP(q:Q)i

The transmission of messages for different channels are supported in CL. Channels have 2

parameters namely b which shows the device number and c which shows the channel

number of that device. Current message for one channel is stored in Tx message buffer. Tx

and Rx buffers are used to stores messages. RTCLi
d
, myCl and channel variable ch indicate if

the next time slot is RT or nRT, the owner of the next time slot and its channel. These

variables are updated when vCL is updated with internal functions. Send variable shows the

passage of the time after a request is sent by IL and it is also bounded by deli.

When CL gets message REQRT(t)i from IL layer, RTCLi
d
, myCL and ch variables are

updated for the next time slot using gRT(vCLi
d
,RTCLi

d
,t)and gmy(vCLi

d
,RTCLi

d
,t,

i) functions. After getting REQRT(t)i message from IL, send analog variable gets 0 and

reqCL boolean variable gets true. In the computation, unique sender for RT slot is

determined to avoid collision. myCL variable shows the owner of the next time slot. While

computing in CL layer, RTCLi
d
, myCLi

d
, vCLi

d
, reqCLi

d
, chi

d
, t(timing information) and

m.par (RT message parameters) are used by CL. If send (the computation time) does not

exceed the deli and reqCLi
d
 variable is true, CL sends CL2ILRT(RTCLi

d
,myCLi

d
,m)to the

IL layer. Also deli variable should be less than rem-cmp time. In CL2ILRT(RTCLi
d
,

myCLi
d
,m),if myCLi

d
variable is true, Txi

d
buffer gives message m to the IL layer.

In action UPDVCL, if sendVCL is true, CL sends vCL parameters of that time slot to DP each

time slot. In action RBACK, IL gets vCL parameters, Rx and Tx message from DP and update

its vCL parameters with the receved vCL parameters.

22

Figure 11: CL Model as TIOA

CL shares the action AP2CL(dat,p,ch)i with the upper layer. and the action

IL2CLRT(m,t)i with the lower layer . After AP2CL(dat,p,ch)i, data dat and the

protocol parameters p are stored in Txi
d
[ch].data and Txi

d
[ch].par on the CL layer. After

IL2CLRT(m,t), the message m from IL is stored in Rxi
d

buffer and vCLi
d

variable is

updated with the action of gupd(vCLi
d
,m.par,t). Upper Layer control application shares

the action CL2AP(Rxi
d
)i with CL. After CL2AP(Rxi

d
), message in Rxi

d
buffer is sent to

the control application. The decision variables vCLi
d

, the slot type RTCLi
d
 , variable which

indicates the owner of the next slot time myCLi
d
 and related channel variable chi

d
 are

updated with gupd(vCLi
d
,m.par,t), gRT(vCLi

d
,RTCLi

d
,t) and

gmy(vCLi
d
,RTCLi

d
,t, i) functions.

gmy(vCLi
d
,false ,t,i) = (false, 0),

23

gmy(vCLi
d
,true,t,i) = (true, ch),

gmy(vCLi
d
,true,t,j) = (false, 0) for all j I – {i}

In CL, variables are stored in the form of communication requests. Priority queue is a queue

which stores the communication requests in the form of (b,c,eT,dT). b indicates a device, c

shows the channel of that device, eT holds the eligibility time of the message and dT is the

deadline time of the message which is started when the request is issued. In other words, the

message in the priority queue is sent by device b with channel c at the eligible time eT and it

should be sent before the deadline time dT. m.par.req parameter is a set of request from

control application. After getting messages from control application, messages are pushed

into vCL.PQ and they are ordered according to their eligibility time eT and deadline time dT.

The request which is the most urgent eligibility time eT is sent to the lower layer.

Figure 12: Update Functions for CL

Figure 12 shows the update functions for CL. In gupd(vCLi
d
,m.par,t)function, if RTCL

equals true,in other words , the next time slot is RT slot, the first request in the priority queue

is popped and the request is sent to the lower layer. However, if RTCL is false (the next time

slot is nRT slot), the first request reenters the priority queue. If the eligibility time of the

request at the top of the priority queue (vCLi
d
.PQ.Top.eT) is smaller than current time t,

gRT(vCLi
d
,RTCLi

d
,t)function returns true. Thus, the type of next slot time is determined

whether it is RT or nRT. If the request at the top of the priority queue’s owner is (PQi.Top.c)

that device and the request at the top of the priority queue’s channel is that device’s channel

gmy(vCLi
d
,RTCLi

d
,t,i)function returns true and that device’s channel a.

3.2.3 Generic Shared Medium Model:

Shared Medium Layer Generic Model is defined using TIOA Model in the article [12] [43].

Figure 13 shows the SM Model using TIOA. There are 6 variables in the SM Model : mess
d
,

coll
d
 , next

d
 , now

a
, M, N.

 mess
d
: The parameter that indicates currently transmitted message

 coll
d
: Theparameter that indicates whether the collision is happened or not.

 next
d
: The parameter that indicates the next reception time

 now
a
: Analog parameter which evolves with the time derivative of 1 , the updated

time information is provided by this variable.

24

 M: The type of transmitted messages.

 N: The parameter that indicates the number of messages.

Actions in SM:

 input IL2SM(m:M)i

 output SM2ILDP(m:M)

Figure 13: SM Model as TIOA

There are 2 actions shared with the IL layer namely IL2SM(m) and SM2IL(m). In

IL2SM(m), if mess variable is empty in SM layer, message m is sent to the SM layer and

next variable is updated. If mess variable is not empty in SM layer, collision is occurred and

coll variable equals true. In this case next variable is set to 0 and mess variable is set to

empty. If next equals to now in SM layer, SM does action SM2IL to the IL layer. In SM2IL

transition, m variable is set to mess variable. Thus the message m can be sent by SM. After

that, mess variable is set to be empty.

3.2.4 Generic Dependability Plane Model:

Dependability Plane (DP) Generic Model is defined using TIOA Model [43]. Figure 14

shows the DP Model using TIOA. There are 7 parameters in the DL Model : cyc, t0,t1,AIL,

ACL, ADP, InitDP .

 cyc: The variable shows the number of the cycle.

25

 t0,t1: Time of events.

 AIL: Abstract variable of IL.

 ACL: Abstract variable of CL.

 ADP: Abstract variable of DP.

 InitDP: Abstract variable of DP

Figure 14: Functions in Dependability Plane

26

DP Model as TIOA has variables to define the model and operations: atResi
a
, rbReqi

d
,

rtSloti
d
, stNoi

d
, nodeIDi

d
, rbSti

d
, cnti

d
, vILHisti

d
[cyc] , vCLHisti

d
[cyc] , vDPi

d
, rVCLi

d
.

 atResi
a
: Boolean variable keeping the acceptance test results

 rbReqi
d
: Boolean variable keeping the rollback requirement.

 rtSloti
d
: Boolean variable keeping the type of the time slot.

 stNoi
d
:Integer variable used for state transition

 nodeIDi
d
:Integer variable keeping the message transmitting node ID

 rbSti
d
:Integer variable keeping the rollback state number

 cnti
d
: Integer counter variable for periodic operation

 vILHisti
d
[cyc]: Data structure keeping the vIL history

 vCLHisti
d
[cyc]: Data structure keeping the vCL history

 vDPi
d
: Data structure to keep the information required for dependability checks.

Now it just holds the non real-time slot ownership information as an integer array

 rVCLi
d
. Data structure keeping the transmitting node’s vCL variable for

dependability checks.

Also, some new parameters are added to the header of the messages.

 nodeIDi
d
 : transmitting node’s ID.

 vCLi
d
: transmitting node’s vCL.

 atResi
a
 : transmitting node’s acceptance test result.

 rbSti
d
: the rollback state in case of a failure.

Actions in DP:

 input UPDVIL(vIL: AIL, TxnRT: Q, RXnRT: Q)i

 input UPDVCL(vCL: ACL, Tx: V, Rx:Q, RTCLi
d
: bool)i

 input SM2ILDP(m:M)

 internal ATEST()i

 output RBACK(ILHT: HIL, cLHT: HIL, rbSt: int)i

 output SENDRES(atRes:bool, rbSt:int)i

Dependability Plane has interfaces with IL and CL. There are input actions shared with IL

and CL namely UPDVIL(vIL) and UPDVCL(vCL,RTCL). In UPDVIL(vIL), vIL

history vILHisti
d
[cyc] is updated with vIL decision variable taken from IL. In

UPDVCL(vCL,RTCL), the type of the time slot, rtSloti
d

is updated with RTCL which is

taken from CL layer that shows the next time slot is whether RT or nRT. Also, vCL history

vCLHisti
d
[cyc] is updated with vCL decision variable taken from CL. Also, an action

SM2ILDP(m) is occurred in DP. In SM2ILDP(m), transmitting node’s ID (m.nodeID) is

assigned to nodeIDi
d
, transmitting node’s vCL is assigned to rVCLi

d
 which keeps the

transmitting node’s vCL variable for dependability checks. The rollback state number rbSti
d

of message m is assigned to rbSti
d
 in DP. If transmitting node’s acceptance test result atResi

a

equals to false, the state transition number stNoi
d
equals 3, if atResi

a
equals to true, the state

transition number stNoi
d
equals 1.

There are 2 output actions from dependability plane: SENDRES(atResi
a
,rbSti

d
) and

RBACK(vILi
d
,vCLi

d
). Before SENDRES occurs, the state transition number stNoi

d
should

be 2, and after SENDRES stNoi
d
 is -1. Before RBACK occurs stNoi

d
 should be, and after

that, counter variable for periodic operation equals to rollback state number plus 1 (cnti
d
=

rtSloti
d
 +1). If counter for periodic operation cnti

d
 equals to number of the cycle, cnti

d
 gets 0.

27

vILHisti
d
[cyc] and vCLHisti

d
[cyc] variables are assigned to vILi

d
and vCLi

d
 variables in IL

and CL . The state transition number stNoi
d
equals -1 and the rollback requirement rbReqi

d

gets false.

In the dependability plane, there is also an internal action ATEST().Before ATEST()

occurs, the state transition number stNoi
d
 should be 1, and after ATEST(), stNoi

d
 is -1.The

counter variable cnti
d
 is incremented by 1 firstly in ATEST().Then if rollback requirement

rbReqi
d
 equals false, fAT(vCLHist,vDP,cnt,nodeID,rtSlot) function result is

assigned to the transmitting node’s acceptance test result atResi
a

and if acceptance test result

atResi
a
equals true, the rollback state number rbSti

d
equals the counter cnti

d
minus 1 (rbSti

d
 =

cnti
d
- 1). If acceptance test result atResi

a
equals false, rollback requirement is needed and

rollback state number rbSti
d
 equals the counter cnti

d
 minus 2 (rbSti

d
 = cnti

d
- 2). If rollback

state number rbSti
d

equals -1, rollback state number rbSti
d
 equals cyc minus 1 (rbSti

d
 =

cyc- 1). If the counter cnti
d

equals to cyc, counter cnti
d
 is assigned to 0 and , the state

transition number stNoi
d
 is assigned to 2.

Figure 15 shows the example of fAT. In function of acceptance test fAT , there are 4

parameters using input of function, vCLHisti
d
, vDPi

d
, cnti

d
, nodeIDi

d
, rtSloti

d
 . If vIL

historyvILHisti
d
[cnt-1] equals to the transmitting node’s vCL variable for dependability

checks rVCLi
d
 and if the type of the time slot rtSloti

d
equals true (slot is RT) and the device

of the on the top of the priority queue of vIL history vILHisti
d
[cnt-1].PQ.Top.b equals the

nodeID, fAT function returns true in other words acceptance test result is passed . If slot

rtSloti
d
equals false (slot is nRT) and vDPi

d
[cnt-1] equals nodeID, fAT function returns true,

otherwise fAT function returns false and acceptance test result is failed.

Figure 15: Example for fAT

3.3 D
2
RIP Implementation

D
2
RIP is the predecessor of D

3
RIP which includes all layers as described before except for

the dependability plane. D
2
RIP is implemented over Intel Gigabit Ethernet driver on PCs.

While developing the framework, Lubuntu (Linux Kernel 3.6.2 with the RT patch) is used as

28

the operating system. Several changes are made on kernel configuration of Linux to provide

precise timing and needed task scheduling mechanism. These changes are: [44]

 The amount of memory is increased for TCP/UDP socket I/O queues.

 BIOS Settings are changed to disable non-maskable interrupts. Because operating

system cannot disable these interrupts.

 For low latency, network interface card NAPI is disabled.

 To create an interrupt for all incoming messages, InterruptThrottleRate is set to 0.0

 For instant message transmission starting, TxIntDelay is set to 0.0

 To prevent power saving state, EEE is set to 0.0

 To disable re transmission in Ethernet, E1000_COLLISION_THRESHOLD is set to

0.

In implementation, synchronization of nodes is needed to run system. IEEE 1588 protocol

with hardware time-stamping is used for precise clock synchronization. For IEEE 1588

protocol, Intel Gigabit CT Desktop Adapter is used. In this adapter, e1000 driver module

with version 2.2.14 is used. So, while software development, codes regarding

implementation are added on the e1000 driver module.

In D
2
RIP, standard Ethernet frames are used. Different types of frames are used in standard

Ethernet frames. In RT frame type, RT messages have 14 Bytes CL message header and CL

messages have 14 Bytes Ethernet header. In fragmented nRT frame type, fragmented

payload messages have 8 Bytes fragment header and nRT Fragment messages have 14 Bytes

Ethernet header. Figure 16 below shows the data encapsulation of RT and long nRT

messages.

Figure 16: Data Encapsulation of RT and Long nRT messages [44]

3.3.1 Interface Layer (IL) :

Interface layer (IL) is the layer which lies between shared medium and coordination layer

(CL). It gets RT and nRT messages from shared medium and stores RT messages in the

RxRT message buffer and stores nRT messages in the RxnRt message buffer. It sends RT

messages to the CL using IL2CLRT message and sends nRT messages to the application

layer using IL2APNRT. IL layer gets also RT message and nRT messages from CL and

29

application layer. It stores these messages in the TxRT and TxnRT message buffers and they

are sent to the shared medium using IL2SM message.

Interface layer was implemented in RT Linux kernel-space part. Figure 17 illustrates the

message transmission in IL.

CL nRT Applications

nRTRxQ nRTTxQHighPriRTRxData RTTxData nRTTxQLowPri

IL2APNRT

IEEE 1588 Time

Synchronization Application

AP2ILNRT 1588 Time SyncIL2CL
CL2IL

IL

SM

SM2IL IL2SM

Figure 17: Message Transmission in IL layer

The communication method in D
2
RIP is time division multiple access (TDMA). In TDMA

structure, all nodes have different slots to transmit the message to the other nodes. IL

provides this TDMA structure to avoid collision in the shared medium. This TDMA

structure is synchronized using 1588 precise time synchronizing protocol and all nodes start

TDMA at the same time to be synchronized using SYNC message. At the startup point, one

of the nodes in the network behaves as a master node and sends a special SYNC message to

all nodes to determine the start of the operation. After that, TDMA structure is started and all

nodes in the network know that TDMA is started. It is also maintained using IEEE 1588

Precise Time Protocol. When TDMA structure is implemented on this framework, the issue

which is related TDMA structure with fixed time slots is raised. Message packets especially

nRT packets can be bigger than time-slot size. To overcome this problem, nRT packets

which are bigger than determined message size should be fragmented before transmission

and reassembled after transmission. So that, there are fragmenter and defragmenter threads

in the IL thread. Table 2 shows the frame header structure. In the frame header structure,

nodeID shows the id of the source node, packetID indicates the id of the packet which is

transmitted from source node (nodeID), packetLength stores the total length of packet which

is unfragmented, frameNum shows the total frame number, frameSeq indicates the sequence

number of the frame, frameLength stores the data length in the frame. Fragmenter thread

fragments the nRT packets which is bigger than determined message size and transmits the

30

fragmented packets to shared medium. After destination node receives the fragmented

packets, reassembly thread assemblies the fragmented packets.

Table 2: Frame Header Structure

nodeID: unsigned char

packetID: unsigned char

packetLength: unsigned short int

fragNum: unsigned char

frameSeq: unsigned char

frameLength: unsigned short int

If the received message is nRT, IL triggers the IL2APNRT action which is shared with

application layer to transmit the nRT message and application layer sends nRT message to

the IL using AP2ILNRT. Also, the time synchronization messages are sent as nRT message

to the application layer. The difference between nRT and the time synchronization messages

is 1588 messages’ priority is higher than nRT messages’. So that, there are 2 priority queue

in the IL to separate the nRT messages and time synchronization messages namely high

priority queue (nRTTxQHighPri) and low priority queue (nRTTxQLowPri). When nRT

packet comes from SM, IL puts time synchronizing packets into the high priority queue and

puts nRT packets into the low priority queue. When an nRT slot comes for that device, IL

controls the high priority queue firstly and packets in the high priority queue is sent to

application layer.

There are two shared actions between the shared medium layer and the interface layer:

SM2IL and IL2SM. In SM2IL, shared medium sends RT and nRT message to the IL. There

are 3 different cases. If ETHERTYPE is 0x2200 in the frame, it means that fragmented nRT

packet is received and this message is forwarded to Reassembly thread. After reassembling,

packet is sent to IL. If the packet is nRT and shorter than packet size, it also sends to the IL.

In third type, ETHERTYPE is 0x1100 in the frame, it is also sent to the IL. Then IL

transmits the received message to the RTRxData or nRTRxQ buffer depends on receiving

packet’s protocol which is written in IL2SM action before packet is sent by other node.If

receiving packet’s protocol is RT, the received message is stored in the RTRxData message

queue. If receiving packet’s protocol is nRT, the received message is stored in nRTRxQ

message queue. In IL2SM, if the device owns the time slot (myIL=true, if and only if cnt

belongs to nRTSet), the type of time slot is determined and the message queue which is

related the type of message has at least a message, IL sends message to the SM. If the slot is

determined for RT traffic (RTIL=true), the message m is transferred from RTTxData. If the

slot is determined for nRT traffic (RTIL=false), the message m is transferred from

nRTTxQHighPri or nRTTxQLowPri depends on the type of nRT message. (IEEE 1588 Time

Synch or nRT from AP) If the message m is nRT message from the application and it’s

longer than standard packet size, IL wakes up Fragmentation Thread and then send

fragmented message m to SM.

There are also two shared actions between the interface layer and the coordination layer

namely IL2CL and CL2IL. In IL2CL, interface layer gets packet from SM, it copies that

packet into the RTRxData message queue, then it sends RT message m to the coordination

layer. In CL2IL communication message, message m is copied from CL using

31

copy_from_user function. Then the message length is different from 1 byte, receiving

message is copied into the RTTxData message queue. If the message length is 1 byte and the

receiving message’s first byte is set to RTIL and myIL variable is set according to return of

slotOwner(RTIL). If the receiving message is 0xFF, RTIL is set to false. Thus, it can be

seen that RTIL and myIL is determined according to message coming from CL.

For nRT communication between application layer and interface layer, there are 2 actions:

IL2APNRT and AP2ILNRT. In IL2APNRT, the nRT message m which is stored in

nRTRxQ message buffer is sent to the application layer and nRTRxQ message queue is set

empty. In AP2ILNRT, application layer sends nRT message and it is stored in

nRTTxQLowPrimessage buffer in the IL.

3.3.1.1 SM- IL Interface Implementation

In the implementation of SM-IL interface, Ethernet driver functions are used and new

functions are implemented on the Ethernet driver source code. For implementing the

interface between SM and IL, modular structure of Linux is used. The driver source code did

not change directly, instead the driver source code of the network internet card (NIC) is

downloaded from its website and modification of driver functions and new functions are

added to the driver source code. After that, the original Ethernet driver module is removed

and the updated version module is added to the kernel.

In the implementation of the IL, receive and transmit functions are used and modified.

Binary exponential back-off algorithm is disabled. Because in back-off algorithm, if a

collision occurs on the network, a node which wants to communicate to other one wait a

random time and start a communication again. This causes that TDMA operation is

collapsed. So back-off algorithm is disabled. Figure19 shows the algorithm of the transmit

function and modification in the transmit function. In Figure 18, IL gets RT and nRT

messages from user space. RT packets go into IL module firstly, then they are transmitted to

SM by e1000_xmit_frame() function. nRT packets go into e1000e module firstly. If

the packets length bigger than standard packet size, they are transmitted to fragmentation

module. If the packet length is smaller than standard packet size, they are transmitted to

e1000_xmit_frame() function. If the packets are 1588 time synch packets, they are

transmitted to IL module.

32

Figure 18: The Algorithm of the Transmit Function

Figure 19 shows the algorithm of the receive function and modification in the receive

function. In Figure 19, packets come from SM and they go into the e1000e module. In this

module, if packets are not fragmented, they continue to receive function and nRT

33

application. If packets are fragmented, they continue to defragmentation thread. If packets

are RT, they continue to IL2CL function. Then they are sent to CL.

Figure 19: The Algorithm of the Receive Function

34

3.3.1.2 CL- IL Interface Implementation

In the implementation of IL-CL Interface, character device files are used to transfer the

messages between IL and CL. charDev_IL2CL and charDev_CL2IL device files are used for

the communication of each layer. The reason why using character device file is that IL is

implemented on kernel space and CL is implemented on user space.

Copy_from_user()and copy_to_user()functions in the IL are used to write

messages to the file and to read messages from file.

3.3.2 Coordination Layer (CL):

Coordination layer (CL) is the layer which lies between the control application and interface

layer (IL). It gets the RT messages from control application, sends the RT messages to the

interface layer. While processing the RT traffic, it calculates the best performance of

delivery of the RT messages to the network. Also, CL calculates the slot allocations

according to RT messages coming from control application and coordinates the RT

traffic.Figure 20 below shows the message transmission in CL.

AP2CL

CL

IL

IL2CL

mMQueueToReceive

chardev_D2RIP

mMQueueToTransmit

CL2AP

 *_d3.dev *.sim

AP (SIMFAUDES)

Write()

CL2IL

TxRTmsg RxRTmsg

Read()

Figure 20: Message Transmission in CL layer

In coordination layer implementation, there is a thread which wakes up periodically at the

start of the each time slot. At the beginning of the time slot, if mMQueueToReceive message

queue has a message from AP, CL continues with processAP2CL. In processAP2CL,

receiving message is copied to Tx. After that CL continues with the processCLUPDATE

function. In this function, the type of the time slot (RT or nRT) is determined by looking at

the PQ_dT priority queue. If there is no message in PQ_dT, RTCL is nRT. If there is any

message in PQ_dT, RTCL is RT. The owner of the time slot is determined by looking at vCL

35

parameters in PQ_dT. If vCL parameter’s node id equals that node’s node id, mySlot returns

true. If vCL parameter’s node id does not equal that node’s node id, mySlot returns false.

After determining the type of the time slot and the owner of the time slot, if the time slot is

RT and the owner of the time slot is mine (myCL=true), the message in the Tx is assigned to

chardev_D2RIP character file. The reason why character file is used to communicate with IL

is that CL is implemented on user-space. If the time slot is RT or nRT and the owner of the

time slot is other (myCL=false), CL sends IL 1 byte to inform it.

If there is a message in chardev_D2RIP character file, CL calls processCL2AP function.

In processCL2AP, receiving message is copied into Rx. After that gUpdate function is

called to update the vCL parameters in the PQ_dT. Then the message in the Rx is assigned to

mMQueueToTransmit message queue to send the message to Application Layer (AP).

Figure 21 shows the structure of the message which is send to AP. It contains channel

information (ch), CL protocol parameters and payload.

Figure 21: Message Structure

In CL, two priority queueare used to implement the protocol namely PQ_dT and PQ_eT.In

PQ_dT, the communication requests are ordered with the deadline time of the events. In

PQ_eT, the communication requests are ordered with the eligibility time of the events.

PQ_dT and PQ_eT are used to store the communication requests which are needed at the

time slot. Figure 22 shows the message format in the CL. It contains 3 parameters: number

of requests (NoR), communication requests and control message payload. The number of

requests (NoR) shows the count of request. Communication requests part contains requests

with the node (b), channel (c), eligibility time (eT) and the deadline time (dT).

Figure 22: Message Format in CL [29]

36

Figure 23 shows the algorithm of the CL. CL waits until a RT message comes from IL in the

runCL thread. Then it reads the start time from receiving RT message header. Meanwhile, it

controls Tx for RT message. If there is no RT data available, it continues process

CLUPDATE. In process CLUPDATE, RTCL and myCL are determined. If RTCL or myCL

are false, CL sends 1 byte to IL and sleeps until the next slot. If RTCL and myCL true, CL

gets packets from FIFO queue and send it to IL. It waits until a RT message comes from IL.

Then it continues to process CL2AP. In this process, CL gets slot number, time and packet

length info from the received RT message. If the packet length info is equal to the received

RT message size and the packet length is not equal to the CL header length, the priority

queue is updated and the received message is sent to AP. Finally, CL sleeps until next slot.

Figure 23: CL Algorithm [29] [41]

37

3.3.3 D
2
RIP Implementation Summary and Its Operation

As mentioned before, in D
2
RIP implementation, there are 2 layers over SM: CL and IL.

Figure 24 shows the message transmissions of the layers and functions of D
2
RIP. When RT

applications send message AP2CL, CL stores it in TxRT and it sends message CL2IL. After

buffering in IL (inTxRT), IL sends SM and other nodes get the transmitted message using

message SM2IL. Node which takes the RT message, stores its RxRT buffer. After that it

sends to CL using message IL2CL. CL stores the message in RxRT and sends the message

to the RT applications using CL2AP. When nRT applications send message to IL, IL buffers

the nRT message in its TxnRT and sends the message to SM using IL2SM. Node which

takes this nRT message, stores its RxnRT buffer in IL. After that it sends to nRT applications

using UDP/TCP Socket.

nRT Applications

UDP/TCP Socket (4)

UDP/TCP Socket (1)

IL2CL (5) CL2IL (2)

IL

SM

SM2IL (4)

IL2SM (3) IL2SM (2)

RxRT TxRT RxnRT TxnRT

RxRT TxRT

RT Applications

CL2AP (6) AP2CL (1)

SM2IL (3)

Message

CL

Figure 24: The Message Transmissions of the Layers and Functions of D
2
RIP

There are 3 different transmission events in the D
2
RIP framework: Sending RT request with

RT packet, sending RT request without RT packet, sending nRT packet. Figure 25 shows the

timing of the sending RT request with RT packet.

38

Time

RT Application

CL

IL

Ethernet

RT Request with RT Packet

Slot Duration

AP2CL (1)

CL2IL (CLUPDATE) (2)

IL2SM (3) SM2IL (4)

IL2CL(5)

CL2AP (6)

Figure 25: The Timing of the Sending RT request with RT packet

Figure 26 shows the timing of the sending RT request without RT packet.

Time

RT Application

CL

IL

Ethernet

RT Request without RT Packet

Slot Duration

CL2IL (CLUPDATE) (1)

IL2SM (2) SM2IL (3)

IL2CL(4)

Figure 26: The Timing of the Sending RT request without RT packet

39

Figure 27 shows the timing of the sending nRT packet.

CL

Time

nRT Application

IL

Ethernet

nRT Packet

Slot Duration

IL2SM (3) SM2IL (4)

...

UDP – TCP Socket (1)

CL2IL (CLUPDATE) (2)

UDP – TCP Socket (5)

Figure 27: The Timing of the Sending nRT packet

40

41

CHAPTER 4

DEPENDABILITY PLANE IMPLEMENTATION

4.1 Overview

The dependability plane (DP) is the layer which has interfaces with the shared medium

(SM), interface layer (IL) and coordination layer (CL). If there is a fault in the operation of

D
3
RIP, DP is supposed make sure that the fault is tolerated and the protocol maintains its

correct operation. At the beginning of each time slot, the actions UPDVIL and UPDVCL are

triggered by IL and CL to update the vCL and vIL history queues in DP. In the action

UPDVIL , IL sends vIL parameters of the time slot (cnt, cyc and slot) to the DP. In the action

UPDVCL , CL sends vCL parameters of the time slot priority queue of (nodeid, ch, eT and

dT) tuples to the DP. DP also gets action SM2ILDP from IL when a message m is sent from

any node. In the action SM2ILDP, there are 6 parameters (atRes, rbSt, rVCl.nodeId, rVCl.ch,

rVCl.eT, rVCl.dT) which are sent for information about node which sends message m. In

each time slot, the receiving vCL parameters and the vCL parameters of that time slot are

compared with each other in the fAT function in DP. If they are equal to each other, the

function returns 1. Otherwise, the function returns 0. The returning parameter shows the

acceptance test result. If a faultoccurred in the system (acceptance test result is failed), DP

sends RBACK to the IL and CL to roll back the time slots. Messages m before the fault, are

sent again and the system returns to its normal operation.

In this thesis, the dependability plane is implemented in the RT Linux user-space part. It

communicates with the IL (in the kernel space) using a character device file and

communicates with the CL using message queues. Figure 28 below shows message exchange

of DP with other layers.

42

DP

IL

chardev_IL2D

P

AP (SIMFAUDES)

UPDVIL

vCLHistory Queue

CL

MQUEUE_CL2DPUP

DVCL

vILHistory Queue

insertvCLQ

insertvILQ
chardev_DP2

IL

SENDRESSM2ILDP

popvCLQ
MQUEUE_DP2CLRB

ACK

popvILQ

UPDVCL

RBACK

RBACK

mMQueueToReceive

MessageBuffer

MQUEUE_CL2DPUP

DVCL

MQUEUE_DP2CLRB

ACK

mMQueueToSend

When Rback=1

chardev_DP2

IL

chardev_IL2D

P

Figure 28: Message exchange of DP with other layers.

4.1.1 DP Implementation

In the dependability plane implementation, there are 2 threads which wake up periodically at

the start of the each time slot. In the listenCoordinationLayer thread, DP is listening to the

CL. If the MQUEUE_CL2DPUPDVCL message queue has a message from DP, DP

continues with processCL2DPUPDVCL. In processCL2DPUPDVCL, DP calls the

UPVCL function. In this function, the received vCL parameters are inserted into the

vCLHistory FIFO queue. In the listenInterfaceLayer thread, DP is listening to the IL. If

chardev_IL2DP character device file has a message from IL, DP looks at the first bit of the

message. If that message bit (msg[0]) equals to 0, it continues with

processIL2DPUPDVIL. In processIL2DPUPDVIL, DP calls the UPVIL function. In

this function, the received vIL parameters are inserted into the vILHistory FIFO queue. If

that message bit (msg[0]) equals to 1, DP continues with processSM2IL. In this process,

the received message parameters (atRes, rbSt, rvCl.nodeId, rvCl.ch, rvCl.eT, rvCl.dT) are

assigned to the variables. If atRes equals to 1, DP continues with the ATEST() function. In

this function, DP calls fAT() and the variables (atResrbSt) are changed to coordinate the

operations. In fAT, vCL parameters which are came with SM2ILDP (rvCl.nodeId, rvCl.ch,

rvCl.eT, rvCl.dT) and vCL parameters which came with UPDVCL (nodeid, ch, eT and dT)

are compared to each other. If they are equal, fAT() returns true. If they are not equal,

fAT() returns false. After that the obtained results are sent with SENDRES. In SENDRES,

atRes and rbSt are sent to IL. In IL, these variables are inserted to the message header when

a message is sent to other nodes Thus, other nodes can learn the results of the acceptance

test. If the time slot passes the acceptance test, the protocol operation continues with the next

43

time slot. If the time slot doesn't pass the acceptance test, DP triggers RBACK in IL and CL.

In the action RBACK, the latest vCL and vIL parameters in the FIFO queues are popped up

and these variables are sent to CL and IL. Figure 29 shows the structure of DP

DP

vCLHistory Queue

vILHistory Queue

chardev_D

P2IL

SENDRES

RBACKCL

MQUEUE_DP2CLRB

ACKpopvILQ
RBACK

RBACK

MQUEUE_CL2DPUP

DVCL

insertvCLQ

UPDVCL

Listening CL

Thread

chardev_IL

2DP
insertvILQ

UPDVIL

Listening IL Thread

SM2ILDP

SM2ILDP

popvCLQ

RBACKIL

SENDRES

Figure 29: Structure of DP

In DP implementation, some changes are also made in IL, CL and AP, since the DP has

interfaces with IL and CL. So there must be interfaces with DP in CL and IL. The

implementation of these interfaces in CL and IL and the detailed information of the changes

on the other layers with the flowchart of the IL, CL, AP are explained in the following

sections. The first change on the other layers is adding a process and thread to CL. Figure 30

shows the CL implementation for dependability support. In CL, processCL2DPUPDVCL

function is added to the runCL thread to send vCL parameters to the DP using the message

queue. In processCL2DPUPDVCL, CL gets the vCL parameters of the time slot from

PQ_dT. It assigns the vCL parameters to msgCL2DP. Then CL sends msgCL2DP to DP

using message queue MQUEUE_CL2DPUPDVCL. Also, a new thread, Listen

Dependability Plane Thread is created in CL to listen to DP. In this thread, CL listens to DP

to get a RBACK message whenever DP issues RBACK. In processDP2CLRBACK

function, CL reads vCL parameters from the message queue MQUEUE_DP2CLRBACK. It

creates free space to insert vCL parameters into the PQ_dT. Then it assigns the msgDP2CL

to vCL parameters and they are inserted into the priority queue.

44

runCL THREAD

processCLUPDATE()

processCL2AP()

processAP2CL()

Wait until a RT message
comes from IL

RT message slot
number == 0?

Read the start time from
the RT message header
and sleep until the start

time

§ Get Slot type (RTCL)
§ Get Slot owner (myCL)

RTCL?

Sleep until the
next slot

myCL?

Send 1 byte
Slot type info

to IL

Send 1 byte
Slot type
info to IL

FALSE

 FIFO
queue is

not empty?

§ Get CL packet from
FIFO queue
§ Update slotnumber
and time info in CL
packet header
§ Send CL packet to IL

§ Update slotnumber,
and time info in CL
header
§ Send CLheader to IL

FALSE

TRUE TRUE

TRUE

FALSE

Wait until a RT
message

comes from IL

TRUE

ERRORFALSE

Ask Control Application
for RT data

RT data
available?

TRUE

FALSE

TRUE

sendvCL?

processCL2DPUPDVCL()
TRUE

§ Get vCL parameters
from PQ_dT.
§ Assign the vCL
paremeters to msgCL2DP.
§ Send msgCL2DP to DP
using message queue.

Listen Dependable Plane THREAD

Wait until a RBACK message
comes from DP

length > 0 ?

TRUE

FALSE

processDP2CLRBACK()

msg==Null ||
msgLength==0 ?

 Create free space to insert
the vCL parameters.

 Assign the msgDP2CL to
vCL paremeters.

 Insert vCL parameters into
the PQ_dT

FALSE

ERROR

TRUE

Sleep until the
next slot

processCL2DPUPDVCL()

Figure 30: CL Implementation with DP

The second change on the other layers is adding a process and functions to IL. Figure 31

shows the transmission part of IL with dependability support. In IL, UPDVIL function is

added to send vIL parameters to DP. In IL module, after getting slot information or RT data

from CL, message is read and IL continues with CL2IL. After CL2IL function, UPDVIL

function is called. After sending vIL parameters to DP, IL continues with IL2SM function.

In the IL2SM function, IL sends atRes, rbSt and vCL parameters to the DP to loopback.

Also, SENDRES and RBACK mechanisms are added to IL. If IL reads SENDRES or RBACK

45

from DP, it controls the first bit (MyBuf[0]) of the receiving message. If it equals to 0, IL

continues RBACK process. If it equals to 1, IL continues SENDRES process.

K

E
R

N
E

L
S

P
A

C
E

IL MODULE

IL2SM()

U
S

E
R

S

P
A

C
E

CL2IL()

UPDVIL()

DP2IL()

CL
Send slot information

 or RT data

Is data size
1?

myIL?RTIL? TRUE

TRUE

END

FALSE

Is not
nRTTxQHighP

ri empty?

Is not
nRTTxQLowPr

i empty?

FALSE

TRUE

Send high priority nRT
packet to ethernet driver

transmit function

TRUE

Send low priority nRT
packet to ethernet driver

transmit functionTRUE

ECHO_SENDER

TRUE

END

TRUE

FALSE

slotnumber ==
1?

END

Send RT packet to
ethernet driver

transmit function

!D3RIP_Init?
TRUE

FALSE

TRUE

TRUE

D3RIP_Init =
true

Send atRes,checkPt
and vIL paramaters to

DP

Read RT Data size from
the packet header

FALSE

Does data size
equal to the size

in the packet
header

ERROR

FALSE

slotnumber !=
0?

FALSE

FALSE
ERROR

TRUE

sendvIL ?

Assign to vIL parameters
to msgIL2DP

Send message to DP
using file charecter

device IL2DP

TRUE

Loopback RT
packet back to

CL

DP
Send SENDRES or RBACK

message

TRUE

Read the
message from

file DP2IL

Mybuf[0]=
=0 ?

Copy the vIL
parameters to vIL

temp variables

TRUE

RBACK
Assign to vIL

temp variables
to vIL variables

Copy atRes and
checkPt to temp

variables

SENDRES
Assign to atRes and

checkPt temp
variables to real

variables

FALSE

Figure 31: Transmission Part of IL with DP Implementation

46

Figure 32 shows the reception part of the IL with dependability support. In the e1000e

module, SM2ILDP function is added to send vIL parameters to DP. After receiving a

message from SM, IL continues with the SM2IL and IL2CL functions. In IL2CL function,

RT data packet is read and IL sends atRes, rbSt (checkPt) and vCL parameters to DP. Then

IL sends RT packet to CL.

K
E

R
N

E
L

S
P

A
C

E

E1000E MODULE

E
T

H
E

R
N

E
T

U
S

E
R

 S
P

A
C

E

IL2CL()

SM2IL()

Receive Packet from SM

Is packet
coming from

the eth0?

Is packet
protocol RT?

TRUE

Is packet
protocol nRT?

D3RIP_Init
&&

RTIL?

FALSE

ERROR

TRUE

D3RIP_Init
&&

RTIL?

Is
defragmentatio

n initialized?

TRUE FALSE

TRUE

TRUE

FALSE

FALSE

FALSE

Defragmentation
Thread

TRUE

D3RIP_Init ?

FALSE

!RTIL? TRUEERROR TRUE

D3RIP_Init = true

FALSE

nRT Application

RT Application

CL

 Read RT data size
from the packet
header.

 Read the data and
get atRes, checkPt
and vCL parameters
from message packet
and send them to DP.

 Send RT data to CL.

Continue to
ethernet

driver
receive
function

FALSE

Slotnumber ==
1?

TRUE

FALSE
Slotnumber !=

0?

FALSE

ERRORTRUE

Figure 32: Reception Part of IL with DP Implementation

47

The third change on the other layers is adding functions to the RT application layer (AP). RT

application layer sends RT messages via the CL. However, AP is not expected to resend

messages when RBACK occurs. Hence, this feature is added to AP to resend messages after

RBACK. The inclusion of RBACK in AP is performed as shown in Figure 33.

DoListenCLModule THREAD

Wait until a CL2AP message
comes from CL

msgLength>0 ?

FALSE

§ receivedEventRBackFlag=msg[7]
§ Copy msg to msgIndex[k]

receivedEventRBackFla
g==1 ?

msgIndex[k-6][2]==NODEID ?

TRUE

TRUE

FALSE

FALSE

§ communicationRequestCo
unt=msg[0]
§ eventIdCount=msg[1+com
municationRequestCount*D3
RIPSIZE]

§ Send msgIndex[k-5][0] using
message queue
mMQueueToSend

Push Back
receivedEventId to

pInputBuffer

i< eventIdCount ?

receivedEventRBackFla
g==0?

k++

ii != EventIdMap.end() ?

ii=EventIdMap.begin()

ii++

i=0

i++

receivedEventId
=msg[i+communicationRequestCount+D3RIPSIZE]

TRUE

FALSE

FALSE

TRUE

FALSE

TRUE

msg[6]==TOTAL_NUMB
ER_EVENTS ?

k=0

TRUE

FALSE

Sleep Until Next
Slot

TRUE

Figure 33: DoListenCLModule Thread in AP

48

Figure 33 shows DoListenCLModule thread in AP. It waits until action CL2AP comes from

CL. When it reads the message, it takes the receivedEventRBackFlag from msg and copies

the received message into the msgIndex[k]. If receivedEventRBackFlag does not equal to 1,

it operates normally. If receivedEventRBackFlag equals to 1, it controls the message which

is the last entry in the history of DP. If that message nodeID’s equals that nodeId, it sends the

message which is sent before and in rollback situation, it does not increment the index of the

EventIdMap. So, it sends message using buffer msgIndex until rollback is finished.

Detailed information about DP implementation and their flowchart are mentioned in the

following section.

Figure 34 shows thelistenCoordinationLayer thread in DP implementation. In

listenCoordinationLayer thread, DP waits until action UPDVCL comes from CL. After

getting message, DP continues with the UPDVCL function. In this function, it creates free

space to insert vCL parameters (nodeid,ch, eT and dT) into the vCL History Queue. After

inserting vCL parameters into the queue, size is controlled to prevent overflow. If it exceeds

the cyc, queue pops up a node from top of the queue and thread sleeps until next slot.

Figure 35 shows the listenInterfaceLayer thread in DP implementation. In

listenInterfaceLayer thread, DP waits until UPDVIL or SM2ILDP comes from IL. After

getting UPDVIL or SM2ILDP, DP continues according to first bit of message (msg[0]). If

the first bit of the message is 1, DP continues with processSM2IL. In processSM2IL,

message is read from character device file charDev_DP2IL. atRes, rbSt and vCL parameters

in the received message are assigned to the variables in the DP. If atRes equals to 1, DP

continues with ATEST. In ATEST() function, firstly cnt is incremented by 1. Then DP calls

fAT() to make acceptance test. After acceptance test, if atRes is true, rbSt is determined

and result of acceptance test is sent to IL using action SENDRES. In SENDRES, atRes and

rbSt are assigned to the msgDP2IL and it is sent to IL using character device file

charDev_DP2IL. If atRes equals to 0, DP continues with RBACK.

49

Listen Coordination Layer THREAD

processCL2DPUPDVCL()

UpdVCL()

Wait until a UPDVCL message
comes from CL

length>0 ?

TRUE

FALSE

Msg==Null ||
msgLength==0 ?

ERROR
FALSE

§ Create free space to insert the
vCL parameters.
§ Copy the message which is
received, to vCL parameters
§ Insert the vCL parameters into
the CLQ

TRUE

getSizeQueueCLQ() >3 ?

§ PopNodeFromCLQ()

Sleep until the next
slot

TRUE

Figure 34: listenCoordinationLayer Thread in DP Implementation

50

Listen Interface Layer THREAD

processSM2IL()
processIL2DPUPDVIL()

Wait until UPDVIL or SM2IL
Message comes from IL

retRead>0 ?

TRUE

ERROR FALSE

Msg[0] Case 0Case 1

§ Create free space to insert
the vIL parameters.
§ Copy the message which is
received, to vIL parameters
§ Insert the vIL parameters
into the ILQ

getSizeILQ()
>3 ?

§ PopNodeFromCLQ()

Sleep until the
next slot

TRUE

§ Assign atRes,rbSt and vCL parameters from received messages

Msg==Null ||
msgLength==0 ?

ERROR
FALSE

TRUE

m.atRes==0 ?

Msg==Null ||
msgLength==0 ? ERRORFALSE

TRUE

§ stNo=3 § stNo=1
TRUE

FALSE

rbReq==false
?

§ atRes= fAT()

TRUE

atRes==true ?

§ rbSt=cnt-1

TRUE

§ rbReq=False
§ rbSt=cnt-2

FALSE

rbSt==-1 ?

§ rbSt=cyc-1

TRUE

§ cnt=0
cnt==cyc ?

TRUE

§ Assign to msgDP2IL
from variables atRes and
rbSt.
§ Send to DP using file
character device
fileIL2DP

stNo==2 ?

stNo==1 ?

§ cnt=cnt+1 § cnt=rbSt+1

TRUE

FALSE

cnt==cyc ?

§ cnt=0

TRUE

§ Assign to msgDP2CL with
vCL variables which are
popped from vCL_Q
§ Send to CL using Message
Queue

§ Assign to msgDP2IL with
vIL variables which are
popped from vIL_Q
§ Send to IL using file
character device fileIL2DP

Figure 35: listenInterfaceLayer in DP Implementation

In RBACK() function, cnt is determined firstly. Then, vCL parameters which are popped

from vCL History Queue, are assigned to msgDP2CL and it is sent to CL using message

queue MQUEUE_DP2CLRBACK. After that vIL parameters which are popped from vIL

History Queue, are assigned to msgDP2IL and it is sent to IL using character file device

charDev_DP2IL. Then if the first bit of the message is 0, DP continues with

processIL2DPUPDVIL. In processIL2DPUPDVIL, DP creates free space to insert the vIL

parameters. Then it inserts the vIL parameters which are coming from IL using thecharacter

51

device file charDev_IL2DP, into the vIL History Queue. After inserting vIL parameters into

the queue, size is controlled to prevent overflow. If it exceeds the cyc, queue pops up a node

from top of the queue and thread sleeps until next slot.

fAT()

Get the Parameters
(rVCL,cnt,rtSlot,vCL_Q, vDP)

vCLNode==NULL ?

rtSlot==1 &&
vCLNode.nodeID==rVCL.nod

eID

ERROR

§ vCLNode= Peek(cnt-1) from
vCL_Q

TRUE

return 0

vCLNode==rVCLreturn 1
TRUE

rtSlot==0 && vDP[cnt-
1]==rVCL.nodeID

TRUE

FALSE

FALSE

return 1

TRUE

Figure 36: fAT Implementation in DP

52

Figure 36 shows the fAT implementation in DP. fAT() function is called by DP in

processSM2IL. In fAT, DP gets rvCL, cnt, rtSlot and m.nodeid parameters. Then it takes

a node from the top of the vCL_Q. vCL parameters which are received from SM2ILDP and

vCL parameters which are taken from vCL_Q are compared to each other. If they are equal

to each other, fAT returns 1. If they are not equal to each other, fAT returns 0. Also for nRT

comparison, if the received nodeid equals the node id which is stored in vDP, fAT returns 1.

If the received nodeid is not equal to the node id which is stored in vDP, fAT returns 0.

4.2 Data Structures

Figure 37 illustrates the UML Class Diagram for the dependability plane. DPProtocol class

is an abstract class that controls the operations of DP and interfaces to other layers (CL and

IL). URT class is derived from DPProtocol that consist of functions of process in

DPProtocol. vDPURT class stores the vCL and vIL parameters and makes operations on

them.

Figure 37: Dependability Plane UML Class Diagram

53

In vDPURT class, vCL_Q_TYPE, vIL_Q_TYPE and QUEUE_TYPE data structures are

used. Table 3 shows the vCL_Q_TYPE. There are 4 variables defined in vCL_Q_TYPE data

structure: nodeID, ch, eT and dT. In vCL parameters, nodeId shows the id of the node which

sends the RT message in that time slot. ch shows the channel of the RT communication. eT

and dT show the eligibility time and deadline time of the RT message.

Table 3: vCL_Q_TYPE

nodeID: U8 (unsigned char)

ch:U8 (unsigned char)

eT:U8 (unsigned char)

dT:U8 (unsigned char)

Table 4 shows the vIL_Q_TYPE. There are 3 variables defined in vIL_Q_TYPE data

structure: cnt, cyc and slots. In vIL parameters, cnt shows the count which is incremented by

1 with modulo of cyc at the each nRT time slot.cyc indicates the cycle of the nRT. In other

words, it shows the total node number. Slots show the nRT time slot owner’s node Id.

Table 4: vIL_Q_TYPE

cnt: U8 (unsigned char)

cyc:U8 (unsigned char)

slots: U8 (unsigned char)

Table 5 shows the QUEUE_TYPE. There are 3 variables defined in QUEUE_TYPE data

structure: currentSize, availableSize and nodes.

Table 5: QUEUE_TYPE

currentSize: U32 (unsigned int)

availableSize:U32 (unsigned int)

nodes: void **

54

4.3 Actions and Operation

In the DP operation, there are many actions that are shared with other layers. Flowcharts of

DP and the functions in the DP are mentioned in the previous section. In this section, actions

and operations of the DP are described.

4.3.1 Actions

4.3.1.1 Actions of DP

ListenCoordinationLayer Thread: It listens to messages coming from CL. When it

takes action UPDVCL from CL, it calls processCL2DPUPDVCL function.

processCL2DPUPDVCL Function: It calls UPDVCL(msg,msgLength) function.

UPDVCL()Function: It takes the vCL parameters from a received message and calls

insertNodeIntoCLQ () function.

ListenInterfaceLayer Thread: It listens to the message coming from IL. When it

takes the action UPDVIL from IL, it calls processIL2DPUPDVIL function. When it takes

the action SM2ILDP from IL, it calls processSM2IL function.

processIL2DPUPDVIL Function: It calls UPDVIL(msg,msgLength) function.

UPDVIL()Function: It takes the vIL parameters from a received message and calls

insertNodeIntoQ () function.

processSM2IL Function: It takes the atRes, rbSt (checkPt), vCL parameters

and assigns the variables in DP. If atRes is true, it calls the fAT function to make ATEST

and it sends the results to IL using the SENDRES function. .If atResis false, it calls

RBACKCL and RBACKIL functions.

fAT() Function: It compares popped up vCL parameters from vCLHistoryQueue and

received vCL parameters from IL. If they are equal, it returns true. If they are not equal, it

returns false.

RBACKCL()Function: If there is a fault, it calls popWantedNodeFromCLQ()function.

After popWantedNodeFromCLQ()function returns vCL parameters, it sends them to the

CL.

RBACKIL()Function: If there is a fault, it calls popWantedNodeFromQ()function.

After popWantedNodeFromQ()function returns vIL parameters, it sends them to the IL.

Initialize_VCLHist()Function: It starts the vCLHistoryQueue.

Initialize_VILHist()Function: It starts the vILHistoryQueue.

insertNodeIntoCLQ() Function: This function is called by UPDVCL()function. It

inserts the vCL parameters into the vCLHistoryQueue.

insertNodeIntoQ() Function: This function is called by UPDVIL()function. It inserts

the vIL parameters into the vILHistoryQueue.

popWantedNodeFromQ()Function: This function is called by RBACKIL()function. It

pops up the vIL parameters at the top of the vILHistoryQueue.

popWantedNodeFromCLQ()Function: This function is called by RBACKCL()function.

It pops up the vCL parameters at the top of the vCLHistoryQueue.

peekCLQ()Function: This function is called by fAT()function. It shows the vCL

parameters at the top of the vCLHistoryQueue.

getSizeQueueCLQ()Function: This function is called by UPDVCL()function. It returns

the size of the vCLHistoryQueue.

getSizeQueueILQ()Function: This function is called by UPDVIL()function. It returns

the size of the vILHistoryQueue.

55

freeCLQ()Function: It releases the vCLHistoryQueue.

freeILQ()Function: It releases the vILHistoryQueue.

4.3.1.2 Actions of CL related with DP

ListenDependableLayer Thread: It listens to messages coming from DP. When it

takes RBACK from CL, it calls processDP2CLRBACK function.

processDP2CLRBACK Function:It calls RBACK(msg,msgLength) function.

RBACK()Function: It takes the vCL parameters from a receivedmessage and inserts them

into the priority queue PQ_dT in the CL.

UPDVCL()Function: It is called by CL in the processCLUPDATE function and it sends

vCL parameters of the time slot to the DP using message queue.

4.3.1.3 Actions of IL related with DP

UPDVIL()Function: It sends vIL parameters of the time slot to the DP using character

device file charDev_IL2DP.

RBACK()Function: It takes the vIL parameters from a receivedmessage and assigns them to

the variables in the IL.

4.3.2 Operations

Figure 38 illustrates the operation and timing of D
3
RIP, if there is no fault before the

considered slot. In the figure, AP2CL is sent by RT application. CL takes this message, after

that it sends the RT message to IL. Before sending RT message to IL, CL sends the vCL

parameters (nodeid, ch, eT, dT) of that time slot to DP using UPDVCL. When IL takes the RT

message from CL, it sends the vIL parameters (cnt, cyc, slots) of that time slot to DP using

UPDVIL. Then IL sends the RT message to SM using IL2SM. Destination node and that

node get this RT message using SM2IL. IL sends this RT message to CL immediately and

sends SM2ILDP to DP to provide the parameters (atRes, rbSt, rvCL.nodeid, rvCL.ch,

rvCL.eT, rvCL.dT) which come from the sender node. If the received atRes is true, DP

performs itsacceptance test using the internal action ATEST. In ATEST, vCL which comes

with UPDVCL and vCL which comes with SM2ILDP are compared. If they are equal to each

other, atRes returns true. If they are not equal to each other, atRes returns false. After that,

DP sends SENDRES to IL to provide atRes and rbSt. IL sends these parameters to other

nodes when an RT message comes from CL in the next time slot. While DP is making

ATEST, CL sends the received RT message to AP using CL2AP.

56

Time

RT Application

CL

IL

Ethernet

RT Request with RT Packet

Slot Duration

UPDVIL(4)

DL

UPDVCL(2)

AP2CL (1)

CL2IL(3)

IL2SM(5)
SM2IL(6)

SM2ILDP(8)

IL2CL(7)
ATEST(9)

SENDRES (10)

CL2AP(10)

Figure 38: The Timing of the D

3
RIP without Any Fault

Figure 39 shows the operation and timing of D
3
RIP, if a fault is communicated in the

considered slot. The difference between the conditions with fault and without fault is that DP

behaves differently when it takes SM2ILDP. If there is a fault before that time slot, DP sends

RBACK to CL and IL to bring back the recovery point. In RBACK, it pops out the recovery

points in vCL and vIL History queues. When CL takes the RBACK, it sends a flag with RT

message using CL2AP. Thus, AP knows that there is a RBACK situation and sends RT

message which is earliest in the history of DP in the next time slot. Then nodes send the RT

message each other according tohistory of DP. The length of history of DP is calculated

using formula below:

ΔF=ΔI+ΔS+ΔC+ΔN

ΔF: Longest fault detection time.

ΔI: Maximum number of time slots between sending two packets by the same node is

calculated by using maximum number of time slots which is assigned to a node between two

time slots.

ΔS: Consecutive time slots which are not assigned to any node in the system use all the time.

ΔC: Possible maximum consecutive collision number on the shared medium.

ΔN: The maximum number of the consecutive message which is sent by one node.

It is assumed that these parameters are known from the operation of the respective

application. Also, there are assumptions and necessary conditions for DP to work properly.

[43]

 There is not any fault that occurs successively in the system. There can be only

one fault after the previous fault is resolved.

57

 In the system, each node has a slot to transmit its message to the other nodes.

So, there has to be a bounded interval of at most ΔI time slots between two

successive transmission slots.

 There is not any fault in the first time slot.

 There has to be at least 3 nodes that are connected to the system.

Time

RT Application

CL

IL

Ethernet

RT Request with RT Packet

Slot Duration

UPDVIL(4)

DL

UPDVCL(2)

AP2CL(1)

CL2IL(3)

IL2SM(5)
SM2IL(6)

SM2ILDP(8)

IL2CL(7)

RBACK(9)

CL2AP(11)

RBACK(9)

RBACK(10)

Figure 39: The Timing of the D

3
RIP with Fault

58

59

CHAPTER 5

EVALUATION OF THE DEPENDABILITY PLANE

5.1 Example Description

In this thesis, the manufacturing cell in Figure 41 is considered as an application example

[44]. In Figure 40, there are 4 controllers working with each other synchronously, these

controllers are: PLC-S, PLC-R, PLC-C, and PLC-PD. PLC-S coordinates the other

controllers. PLC-R, PLC-C and PLC-PD control the 3 parts of the system namely robot (R)

that moves a robot arm, conveyor (C) that carries parts and apainting device (PD) that paints

parts using a spray gun.

Figure 40: A Manufacturing System [44]

60

This workcell has an event-based operation. All controllers have a state machine and the

states show the state of the controller, arrows between states indicate transitions, whereby all

transitions are labeled with event names. Figure 41 shows the state machines of the workcell.

Synchronized actions among the different controllers are represented by transitions with

equal names. For example, the transition mvC occurs synchronously in PLC-S and PLC-R.

Figure 41: State Machines of Workcell [12]

In the state machines of the workcell, PLC-S initiates the system start by triggering mvC that

is shared withPLC-R. PLC-R sends a signal to the robot arm to move a part to the conveyor

(Event sC is occurred). Closed-loop control posR which gives the position of robot arm and

actR which indicates the actuator signal of robot arm, are sent to move the robot arm to the

conveyor. When robot arm reaches the conveyor, stpR signal is sent to stop the robot arm

and arC signal notifies PLC-S about the arrival of the robot arm at the conveyor. PLC-S

sends mvPD command to PLC-C to move the part to the painting device. PLC-C sends

signal to the conveyor to move part to the painting device (Event sPD occurs). Position

control signal posC is sent to the conveyor to inform the position of conveyor. When

conveyor reaches the painting device, stpC signal is sent to stop the conveyor and arPD

signal notifies PLC-S controller about the arrival of the robot arm at the conveyor. PLC-S

sends PDon command to the PLC-PD to start operation of the painting device. lPD signal

locks the painting device for painting operation, iPD initiates the painting process. Then,

posPD which gives the position of painting device and actPD which indicates the actuator

signal of painting device are sent to operate the painting device. After that, fPD signal which

shows that the painting device finishes the painting operation is sent by painting device.

After finishing painting operation, unlock painting device ulPD signal is sent and painting

device is turned off by PLC-S with PDoff signal. After that, conveyor moves back to the

robot arm with signal mvR, sR, arR (These signals are same with mvPD, sPD and arPD) and

robot arm gets part from conveyor and put it on its old place with signal mvI, sI, arI (These

signals are same with mvC, sC and arC).

61

Figure 42 illustrates the timing diagram for the PLC communication of the example

workcell. PLC-S sends event message to the related controller with queries (?). Then the

other PLC controller responds that event message with a notification (!) to PLC-S whenever

it is ready to execute the event. When PLC-S gets the event message with a notification (!), it

sends a message with a single command (√) to execute the event.

Figure 42: The Timing Diagram for the PLC Communication of the Example Workcell [44]

S R C PD

2.1.mvPD?
3.3.mvPDc
2.6.arPD?
2.8.arPDc
5.1.mvR?
5.3.mvRc
5.6.arR?
5.8.arRc

1.1.mvC?
1.3.mvCc
1.6.arC?
1.8.arCc
6.1.mvI?
6.3.mvIc
6.6.arI?
6.8.arIc

3.1.PDon?
3.3.PDonc
4.1.PDoff?
4.3.PDoffc

2.2.mvPD!
2.7.arPD!
5.2.mvR!
5.7.arR!

3.2.PDon!
4.2.PDoff!

1.2.mvC!
1.7.arC!
6.2.mvI!
6.7.arI!

PLANT

3.4.fPD

1.5. & 6.5.stpR

2.5. & 5.5.stpC

1.4.sC
6.4.sI

2.4.sPD
5.4.sR

D3RIP SimpleNET

1) The Robot transport a PART to the Conveyor.
2) The Conveyor moves a PART to the Painting Device.
3) The Painting Device is initiated and operated.
4) The Painting Device is stopped.
5) The Conveyor moves a PART to the Robot.
6) The Robot transport a PART to the Initial Place.

Figure 43: The Connection of the Controllers and Plant

In the system simulation and implementation, each computer behaves like controller in the

system. There are 4 controllers in the system: PLC-S, PLC-R, PLC-C and PLC-PD. Also,

these controllers are connected to another computer which runs as a plant to simulate the

actual system operation. So, there are 5 computers in the system which are connected to each

other for all system simulation and implementation. Figure 43 shows the connection of the

controllers and plant computer. There are 4 controllers and plant computer in the system.

Plant and other controllers are connected with Ethernet 802.3. This is called Simplenet

62

communication. Simplenet communication carries on the bold black connections.

Controllers exchange signal data (sensor/actuator) with the plant. This is done using the

simplenet protocol which is specific to libfaudes and fits to our application.

 Also our RT Ethernet protocol D
3
RIP is used for industrial communication between

controllers. D3RIP communication carries on the black connections. In D
3
RIP

communication, signal data (sensor/actuator) between controllers are carried RT. The

numbers of the signals show the order of event occurrence. A part is taken, carried, painted

and moved back to the old places with events in Figure 41.

On the plant computer, simfaudes which is a simulator for the example control application,

runs and it controls the system operation. Simfaudes uses XML files to configure the system

operation. There are different XML files which are used as input files for D
3
RIP, simplenet

connection definition and simulator description. Figure 45 below shows the D
3
RIP XML

configuration file for controller C. Event name, event type, event id, channel transmit value,

parameter record, destination node id, destination channel value, eligibility and deadline time

of events are defined and configured in D
3
RIP XML file according to the connection of the

controllers.

Communication Example between controllers (Figure 43-44):

Controller S sends event “mvPD?” to Controller C to move the part to the painting device

(PD). Controller C sends back event “mvPD!” to ask the confirmation of the action and then

Controller S sends event “mvPDc” to confirm that action. These actions are defined in

D
3
RIP XML file for each controller. In Figure 44 below, event “mvPD?” is defined. It is

“output” event, its eventid is “14” which shows the order of occurance in the system. Its

channel value is “1” and parameter record is “11”. The destination node of event is “1”. In

other words, it is sent to Controller S by Controller C (Controller S’s node id equals 1). The

destination channel value is “1”. The eligibility time of event is “8” which shows that how

much time that event is eligible for the system. Also in that definition, deadline time of event

is defined. For event “mvPD!”, the deadline time is “10”.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE D3RIP SYSTEM "controllerC_d3rip.dtd">

<D3RipUrtDevice name="controllerC_d3rip">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>

<Event name="mvPD?" iotype="input">

<EventId value="13"/>

</Event>

<Event name="mvPD!" iotype="output">

<EventId value="14"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="1"/>

<DestinationChannel value="1"/>

<EligibilityTime value="8" />

<DeadlineTime value="10"/>

</ParameterRecord>

63

</Event>

<Event name="mvPDc" iotype="input">

<EventId value="15"/>

</Event>

<Event name="arPD?" iotype="input">

<EventId value="16"/>

</Event>

<Event name="arPD!" iotype="output">

<EventId value="17"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="1"/>

<DestinationChannel value="1"/>

<EligibilityTime value="8" />

<DeadlineTime value="10"/>

</ParameterRecord>

</Event>

<Event name="arPDc" iotype="input">

<EventId value="18"/>

</Event>

<Event name="mvR?" iotype="input">

<EventId value="19"/>

</Event>

<Event name="mvR!" iotype="output">

<EventId value="20"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="1"/>

<DestinationChannel value="1"/>

<EligibilityTime value="8" />

<DeadlineTime value="10"/>

</ParameterRecord>

</Event>

<Event name="mvRc" iotype="input">

<EventId value="21"/>

</Event>

<Event name="arR?" iotype="input">

<EventId value="22"/>

</Event>

<Event name="arR!" iotype="output">

<EventId value="23"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="1"/>

<DestinationChannel value="1"/>

64

<EligibilityTime value="8" />

<DeadlineTime value="10"/>

</ParameterRecord>

</Event>

<Event name="arRc" iotype="input">

<EventId value="24"/>

</Event>

</EventConfiguration>

</D3RipUrtDevice>

Figure 44: D
3
RIP XML Configuration File for Controller C

Simplenet XML files show the connection between controller and plant computer and the

physical connection of simplenet is over ethernet. Figure 45 shows the Simplenet XML

configuration file for controller C. Network topology is defined with network name and

nodes which are in the network and events are configured with event names, event types

according to the connection of the controllers and plant in Figure 43.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE SimplenetDevice SYSTEM "controllerC.dtd">

<SimplenetDevice name="controllerC">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>

<!-- Network topology -->

<Network name="paintingNet">

<Node name="plant"/>

<Node name="controllerR"/>

<Node name="controllerC"/>

<Node name="controllerPD"/>

</Network>

<EventConfiguration>

<Event name="sPD" iotype="output"/>

<Event name="stpC" iotype="input"/>

<Event name="sR" iotype="output"/>

</EventConfiguration>

</SimplenetDevice>

Figure 45: SimpleNet XML Configuration File for Controller C

Simulator XML files define the protocol parameters and properties of the controller.

Simulator files help the generation of simulator in the simfaudes. Figure 46 shows the

simulator XML configuration file for controller C. Alphabet tag shows the commands which

65

are related that node. States tag shows the state status and definition. TransRel tag shows the

state transition diagrams members and description how the states are connected to each

other. InitStates tag indicates the initial state of that state diagram. MarkedStates tag shows

the marked state in the state diagram. SimEventAttributes tag shows the event properties and

priorities in the system.

<Executor>

<Generators>

<Generator>

controllerC

<Alphabet>

mvPD? mvPD! mvPDc mvPD arPD? arPD! arPDc arPD sPD stpPD

mvR? mvR! mvRc mvR sR arR? arR! arRc arR

</Alphabet>

<States>

<Consecutive> 1 28 </Consecutive>

</States>

<TransRel>

1 mvPD? 2

2 mvPD! 3

3 mvPDc 4

4 arPD? 5

4 mvPD 6

5 mvPD 7

6 arPD? 7

6 sPD 8

7 sPD 9

8 arPD? 9

8 stpPD 10

9 stpPD 11

10 arPD? 11

11 arPD! 12

12 arPDc 13

13 arPD 14

13 mvR? 15

14 mvR? 16

15 arPD 16

16 mvR! 17

17 mvRc 18

18 arR? 19

18 mvR 20

19 mvR 21

20 arR? 21

20 sR 22

21 sR 23

22 arR? 23

22 stpPD 24

23 stpPD 25

24 arR? 25

25 arR! 26

26 arRc 27

27 arR 1

27 mvPD? 28

28 arR 2

</TransRel>

66

<InitStates> 1 </InitStates>

<MarkedStates> 1 </MarkedStates>

</Generator>

</Generators>

<SimEventAttributes>

"stpR" <Priority>-1 </Priority>

"fPD" <Priority>-1 </Priority>

"mvC" <Priority> 1 </Priority>

"sC" <Priority> 1 </Priority>

"arC" <Priority> 1 </Priority>

"mvI" <Priority> 1 </Priority>

"sI" <Priority> 1 </Priority>

"arI" <Priority> 1 </Priority>

"mvPD" <Priority> 1 </Priority>

"sPD" <Priority> 1 </Priority>

"arPD" <Priority> 1 </Priority>

"mvR" <Priority> 1 </Priority>

"sR" <Priority> 1 </Priority>

"arR" <Priority> 1 </Priority>

"PDon" <Priority> 1 </Priority>

"PDoff" <Priority> 1 </Priority>

</SimEventAttributes>

</Executor>

Figure 46: Simulator XML Configuration File for Controller C

D
3
RIP, Simplenet and simulator XML configuration files of all controllers and plant can be

found in the appendix part of this thesis.

5.2 Performance Parameters

The duration of the time slot is calculated using the timing of the D
3
RIP operation. In Figure

39 the timing of the D
3
RIP without any fault, there are 11 sequential actions. In Table 6, the

total number of sequential actions time duration shows the duration of the time slot without

any fault. Also, 900 sample results (30 loop tests are made) are taken to show the duration of

the time slot in Table 6.

In Figure 40 the timing of the D
3
RIP with fault, there are also 11 sequential actions. In Table

7, the total number of sequential actions time duration shows the duration of the time slot

with fault. Also, in Table 7, 900 sample results (30 loop tests are made) are taken to show the

the duration of the time slot.

67

Table 6: Synchronization Accuracy and Sequential Actions in D
3
RIP Operation Without Any

Fault

IEEE 1588 Synchronization

Mean (µs) Max.(µs) +/- % CI (99%)

Path Delay [44] 1.6 1.7 %0

Accuracy [44] 1.4 4.2 %3.71

Sequential Actions

Mean (µs) Max. (µs) +/- % CI (99%)

CL Thread Wake-up 0.7 23.5 %0.21

AP2CL 3,2 6.1 %3.23

UPDVCL 17.9 36.4 %2.47

CL2IL 1.3 6.5 %0.45

IL2SM 15.4 27.9 %0.38

UPDVIL 20.4 41.5 %1.96

SM2IL 15.4 27.9 %0.38

IL2CL 12.6 64.2 %1.22

SM2ILDP 15.6 34.6 %2.37

ATEST 1.4 4.2 %2.63

SENDRES 6.3 16.6 %2.85

CL2AP 2.3 12.8 %4.07

Completion Time 189.1 502.2 %1.58

Table 7: Sequential Actions in D
3
RIP Operation With Fault

Sequential Actions

 Mean (µs) Max. (µs) +/- % CI (99%)

CL Thread Wake-up 0.7 23.5 %0.21

AP2CL 3.2 6.1 %3.23

UPDVCL 17.9 36.4 %2.47

CL2IL 1.3 6.5 %0.45

IL2SM 15,4 27.9 %0.38

UPDVIL 20.4 41.5 %1.96

SM2IL 15.4 27.9 %0.38

IL2CL 12.6 64.2 %1.22

SM2ILDP 15.6 34.6 %2.37

RBACKCL 56.5 90.5 %1.19

RBACKIL 58.2 98.2 %1.13

CL2AP 2.3 12.8 %4.07

Completion Time 339.5 770.3 %0.93

68

Table 8: Synchronization Accuracy and Sequential Actions in D
2
RIP Operation Before

Adding Dependability Plane [44]

IEEE 1588 Synchronization

 Mean (µs) Max. (µs) +/- % CI (99%)

Path Delay [44] 1.6 1.7 % 0

Accuracy [44] 1.4 4.2 %3.71

Sequential Actions

 Mean (µs) Max. (µs) +/- % CI (99%)

CL Thread Wake-up 0.7 23.5 %0.21

AP2CL 3,2 6.1 %3.23

CL2IL 1.3 6.5 %0.45

IL2SM 15.4 27.9 %0.38

SM2IL 15.4 27.9 %0.38

IL2CL 9.2 46.1 %1.22

CL2AP 2.3 12.8 %4.07

Completion Time 94.1 231.1 %1.82

After implementation of dependability plane, sample measurements were made for the

system dependability. Table 6 and Table 7 show these measurements. In these

measurements, duration of time slot is chosen as 1ms to cover all operations for

dependability. Table 8 shows the timing of sequential actions in D
2
RIP operation before

adding dependability plane. In Table 6, 7, 8, the completion time includes the duration of

sequential action, the spending time in hub and the transmission delay.

In the example (Figure 41), maximum number of time slots (denoted as ΔI) between sending

two packets by the same node is calculated by using maximum number of time slots which is

assigned to a node between two time slots. This parameter is ΔI=6 time slots for the example

system. Consecutive time slots which are not assigned to any node in the system use all the

time slots. So ΔS=0. Possible maximum consecutive collision number on the shared medium

is assumed as ΔC=4. The maximum number of the consecutive message which is sent by one

node is ΔN=2. For these assumptions the longest fault detection time ΔF is calculated below.

ΔF=ΔI+ΔS+ΔC+ΔN=12

So Dependablity Plane stores at least ΔF=12 state variables in its memory. Also if there is a

fault (when acceptance test is made) at time slot x, rollback time slot is x−ΔI [45]. In this

example, rollback time slot equals to the 6. When there is a fault, node rolls back 6 messages

before and determines the state variables for this time slot. Application layer sends the

related message.

69

5.3 Experiments and Results

According to performance parameters (Section 5.2), three experiments are made to show the

Dependability Plane functionality and performance.

In the first experiment, there is a problem at the vCL data structure in the PLC-S component.

In this example, there is a vCL fault (eT parameters fault) at the 9
th

time slot (belongs to

PLC-S if the system is started up correctly). DP of another node detects the fault, assigns

atRes to 0 at that time slot and it sends the result to all nodes in the 10
th

time slot. Then, DP

of all nodes sends RollBack to CL and IL. Application layer sends 5
th
 event message instead

of 11
th
 event message in the PLC-S component. S component rolls back the system 6 time

slots before. Figure 47 shows the experiment result of the first experiment.

Figure 47: The Experiment Result of the First Experiment

In the second experiment, there is a problem at the message transmission when message is

taken from the shared medium. In this example, there is a fault at the 16
th
 time slot (belongs

to PLC-S). PLC-S component sends 16
th
 event message to all components in the system.

That message cannot reach the destination node. DP of another node detects the fault,

assigns atRes to 0 at that time slot and it sends the result to all nodes in the 17
th

time slot.

Then, DP of all nodes sends RollBack to CL and IL. Application layer sends 12
th
 event

message instead of 18
th
 event message in the PLC-S component. PLC-S component rolls

back the system 6 time slots before. Figure 48 shows the experiment result of the second

experiment.

70

Figure 48: The Experiment Result of the Second Experiment

In the third experiment, there is a problem at the vCL data structure in the PLC-R (Robot

Arm) component. In this example, there is a vCL fault (eT parameters fault) at the 25
th
 time

slot when R component gets the message from PLC-S component. DP realizes the fault,

assigns atRes to 0 at that time slot and it sends the result to all nodes in the 26
th

time slot.

Then, DP of all nodes sends RollBack to CL and IL. Application layer sends 21
th
 event

message instead of 27
th
 event message in the PLC-S component. PLC-S component rolls

back the system 6 time slots before. Figure 49 shows the experiment result of the third

experiment.

Figure 49: The Experiment Result of the Third Experiment

Also, another experiment was wanted to be applied on the system. It was about the packet

loss and packet collision. The reason why it was not applied is that IL-CL communication is

implemented with blocking read in the previous and current implementation. Thus, this

method give us guarentee not to miss any packet while transmission between IL and CL. But

71

when the experiment is wanted to implement, IL-CL communication method must be

changed to non-blocking read method. Also, this modification affects the flow of the

program operation of CL and IL. When communication method, the flow of the program

operation of CL, reading data from charecter device file in main CL thread, writing data to

charecter device file in IL section are changed and extra communication between CL-DP is

added, this experiment can be implemented. This change is intended for future work.

72

73

CHAPTER 6

CONCLUSION & FUTURE WORK

6.1 Conclusion

With the development of technology, the industrial RT Ethernet networks have become an

important subject in academia and industry. In the literature, there are different types of the

protocols and solutions to implement industrial RT Ethernet networks. In our solution, the

Distributed, Dependable and Dynamic Real Time Industrial Protocol (D
3
RIP) is proposed for

the industrial RT Ethernet network.

In this thesis, the implementation of the dependability plane for D
3
RIP and its evaluation are

studied. First, generic interface, coordination layers and dependability plane of D
3
RIP are

explained and formally represented by timed input output automata models. Then, based on

an existing implementation of the predecessor protocol D
2
RIP, the implementation of the

dependability support for D
3
RIP is discussed. The operation of D

3
RIP is demonstrated by a

manufacturing cell example with 4 controller nodes. In summary, the following main tasks

are performed in this thesis:

 Dependability plane implementation,

 Integration of the dependability plane with coordination layer, interface layer and

application layer (AP),

 Testing overall structure with all layers in the D
3
RIP with 4 controllers real scenario,

 Measurement of the dependability plane performance,

 Different experiments over dependability plane to show the functionality and

performance of the dependability plane.

In this thesis, the dependability plane is implemented over a specific D
2
RIP structure that is

implemented in [41], whereby implementation of DP is independent of the D
2
RIP structure.

While implementing the DP, the interface rfunctions between CL-DP and IL-DP are

implemented in IL and CL sides. Also a buffer structure is added to the AP to recover

messages when the RBACK event occurs. Other than these modifications, there are not any

extra modifications on D
2
RIP structure. After adding the dependability plane over specific

D
2
RIP structure [41], the slot duration is increased to 1ms because of new actions that have

to be performed in each time slot.

Finally it can be seen that with dependability plane, possible D
3
RIP failures are prevented

and if there is a failure in the system, the system can recover and continue its operation.

74

6.2 Future Work

In D
3
RIP implementation and test, system and protocol are observed.The following works

make the framework much better when it runs in real operation:

 Implementation on Different Operating System: The framework might show

improved performance on RT operating systems such as VxWorks, RTLinux,

LynxOS.

 Extended Implementation to cover the packet loss and collision scenario: It can be

implemented when the communication method between IL and CL, the flow of the

program operation of CL are modified and extra communication between CL-DP is

added.

http://en.wikipedia.org/wiki/LynxOS

75

REFERENCES

[1] (2013) Bosch CAN Specification Version 2.0. [last accessed on 31/07/2013]. [Online].

Available: http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf

[2] (2013) Profibus. [last accessed on 31/07/2013]. [Online]. Available:

http://www.profibus.com

[3] (2013) Lonworks Protocol Specifications. [last accessed on 31/07/2013]. [Online].

Available: http://www.echelon.com/technology/lonworks/

[4] D. Jansen, H. Buttner, “Real-time Ethernet the EtherCAT solution”, Computing

& Control Engineering Journal, 15, 16–21, 2004.

[5] E. Schemm, “Sercos to link with Ethernet for its third generation”, Computing

& Control Engineering Journal, 15, 30–33, 2004.

[6] “Real-time Ethernet: Profinet IO: Proposal for a publicly available specification for real-

time Ethernet”, Doc. IEC 65C/359/NP, 2004.

[7] F.B. Carreiro, J.A.G. Fonseca, P. Pedreiras, “Virtual Token-Passing Ethernet – VTPE” ,

IFAC, 2003.

[8] “Real-time Ethernet: EPL (Ethernet powerlink): Proposal for a publicly available

specification for real-time Ethernet”, Doc. IEC 65C/356a/NP, 2004.

[9] (2013) Schneider automation – modbus messaging on TCP/IP implementation guide.

[last accessed on 31/07/2013]. [Online]. Available: http://www.modbus.org/

[10] “Real-time Ethernet: EPA (Ethernet for plant automation): Proposal for a publicly

available specification for real-time Ethernet”, Doc. IEC 65C/357/NP, 2004.

[11] P. Pedreiras, P. Gai, L. Almeida, and G. C. Buttazzo, “FTT-Ethernet: A Flexible Real-

Time Communication Protocol That Supports Dynamic QoS Management on Ethernet-

Based Systems” , IEEE Transactions on Industrial Informatics, vol 1, no. 3, 2005.

[12] K.W. Schmidt, E.G. Schmidt, “Distributed Real-Time Protocols for Industrial Control

Systems: Framework and Examples”, IEEE Transactions on Parallel and Distributed

Systems, vol. 23, no. 10, pp. 1856 - 1866, 2012.

[13] (2013) IEEE 1588 standard for a precision clock synchronization protocol for

networked measurement and control systems. [last accessed on 31/07/2013]. [Online].

Available: http://ieee1588.nist.gov

[14] J. Moyne, D. Tilbury, “The emergence of industrial control networks for manufacturing

control, diagnostics, and safety data”, Proceedings of the IEEE, 95, 29–47, 2007.

http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf
http://www.profibus.com/
http://www.echelon.com/technology/lonworks/

76

[15] J. P.Thomesse, “Fieldbus technology in industrial automation”, Proceedings of the

IEEE, 93, 1073–1101, 2005.

[16] M. Felser, R. Zurawski ,“Real-time Ethernet for automation applications”, Embedded

Systems Handbook, Second Edition: Networked Embedded Systems, pp. 21–1–21–20 2nd

edition, 2009.

[17] J. C. Eidson, “Measurement, Control, and Communication Using IEEE 1588”,

Springer, 2006.

[18] K. W. Schmidt, E. G.Schmidt, “Distributed real-time protocols for industrial control

systems: Framework and examples”, Parallel and Distributed Systems, IEEE Transactions

on, 23, 1856–1866, 2012.

[19] “1st IFAC workshop on dependable control of discrete systems”, Proceedings of a

meeting held in Cachan, France, 2007.

[20] A. Avizienis, J.C Laprie, B.Randell, C.Landwehr, “Basic concepts and taxonomy of

dependable and secure computing”, Dependable and Secure Computing, IEEE Transactions

on, 1, 11–33, 2004.

[21] M. Felser, T. Sauter, “Standardization of industrial Ethernet - the next battlefield”,

Factory Communication Systems, Proceedings. IEEE International workshop on, 413–420,

2004.

[22] J. D. Decotignie, “The many faces of industrial Ethernet [past, present]”, Industrial

Electronics Magazine, IEEE, 3, 8–19, 2009.

[23] S.K. Kweon, K. G. Shin, “Statistical real-time communication over Ethernet, Parallel ,

Distributed Systems”, IEEE Transactions on, 14, 322–335, 2003.

[24] S.K. Kweon, M.G. Cho, K. G. Shin, “Soft real-time communication over Ethernet with

adaptive traffic smoothing”, Parallel and Distributed Systems, IEEE Transactions on, 15,

946–959, 2004.

[25]J.D. Decotignie, “Ethernet-based real-time and industrial communications”, Proceedings

of the IEEE, 93, 1102–1117, 2005.

[26] M. Felser, “Real-time Ethernet - industry prospective”, Proceedings of the IEEE, 93,

1118–1129, 2005.

[27] Z. Wang, Y. Song, J. Chen, Y. Sun, “Real time characteristics of Ethernet and its

improvement”, 4th World Congr. Intelligent Control, Automation, pp. 1311–1318, 2002.

[28] “Real-time Ethernet: Ethernet/IP with time synchronization: Proposal for a publicly

available specification for real-time Ethernet”, Doc. IEC 65C/361/NP, 2004.

[29] U.Turan, “Implementation and Evaluation of a New Protocol for Industrial

Communication Networks” , M.Sc. Thesis, METU Sept.2011.

77

[30] “Real-time Ethernet: TCnet (Time-Critical Control Network): Proposal for a publicly

available specification for real-time Ethernet”, Doc. IEC 65C/353/NP, 2004.

[31] T. Akima and K. Shibata, “Development of Real-Time Ethernet Based I/O Network,

SICE Annual Conference”, The University Electro-Communications, Japan, 2008.

[32] (2013) Flexible Time-Triggered (FTT) paradigm. [last accessed on 05/01/2013]

[Online].Available: http:// http://www.ieeta.pt/lse/ftt/

[33] V. Nelson, “Fault-tolerant computing: fundamental concepts”, Computer, 23, 19 –25,

1990.

[34] A. Avizienis, J.C. Laprie, B. Randell, “Fundamental concepts of Dependability”,

Technical Report Series University Of Newcastle, 1145, 7–12, 2001.

[35] B.Meyer, “Every little bit counts: toward more reliable software”, Computer, 32, 131 –

135, 1999.

[36] R.Chillarege, I. Bhandari, J. Chaar, M.Halliday, D. Moebus, B. Ray, M.Y. Wong,

“Orthogonal defect classification-a concept for in-process measurements”, IEEE

Transactions on Software Engineering, 18, 943–956, 1992.

[37] M. C.Paulk, B. Curtis, M. B.Chrissis, C. V. Weber, “Capability maturity model,

version 1.1”, IEEE Softw., 10, 18–27, 1993.

[38] B.Randell, “System structure for software fault tolerance”, SIGPLAN Not., 10, 437–449,

1975.

[39] K. G.Shin, Y. H. Lee, “Evaluation of error recovery blocks used for cooperating

processes”, IEEE Trans Soft Eng, SE-10, 692–700, 1984.

[40] P.Ramanathan, K. G.Shin, “Use of common time base for checkpointing and rollback

recovery in a distributed system”, IEEE Trans. Softw. Eng., 19, 571–583, 1993.

[41] A. Kaya, “Implementation and Evaluation of the Dynamic Distributed Real Time

Industrial Protocol (D
2
RIP)” , M.Sc. Thesis, METU Sept. 2013.

[42] A. K. Gözcü, “Implementation and Evaluation of a Synchronous Time-Slotted Medium

Access Protocol for Networked Industrial Embedded Systems”, M.Sc. Thesis, METU Sept.

2011.

[43] Y. B. Kartal, “Dependable Framework Design for Distributed Real-Time Network

Protocols Running On Shared Medium: Design, Simulation and Verification”, Phd. Thesis,

METU, 2013. (Under Preparation).

[44] K. Schmidt , E. Schmidt, A. Kaya, “Dynamic Distributed Real-time Industrial

Ethernet Protocol (D
2
RIP): Architecture, Implementation and Experimental Evaluation”,

Submitted to IEEE Transactions on Industrial Informatics, 2013.

http://www.ieeta.pt/lse/ftt/

78

[45] Y. B.Kartal, K. W. Schmidt, E. G. Schmidt, “Dependability design for a distributed

real-time protocol family, Parallel and Distributed Systems”, IEEE Transactions on, (to be

submitted), 2013.

79

APPENDIX

XML FILES

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE D3RIP SYSTEM "controllerPD_d3rip.dtd">

<D3RipUrtDevice name="controllerPD_d3rip">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>

<!-- Event configuration -->

<Event name="PDon?" iotype="input">

<EventId value="25"/>

</Event>

<Event name="PDon!" iotype="output">

<EventId value="26"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="1"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="PDonc" iotype="input">

<EventId value="27"/>

</Event>

<Event name="PDoff?" iotype="input">

<EventId value="28"/>

</Event>

<Event name="PDoff!" iotype="output">

<EventId value="29"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="1"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="PDoffc" iotype="input">

<EventId value="30"/>

</Event>

80

</EventConfiguration>

</D3RipUrtDevice>

D3RIP XML Configuration File for Controller PD

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE SimplenetDevice SYSTEM "controllerPD.dtd">

<SimplenetDevice name="controllerPD">

<TimeScale value="10"/>

<!-- Ip address of this node, incl. server tcp port -->

<ServerAddress value="localhost:40000"/>

<!-- Network topology -->

<Network name="paintingNet">

<Node name="plant"/>

<Node name="controllerR"/>

<Node name="controllerC"/>

<Node name="controllerPD"/>

</Network>

<!-- Event configuration -->

<EventConfiguration>

<Event name="fPD" iotype="input"/>

</EventConfiguration>

</SimplenetDevice>

SimpleNet XML Configuration File for Controller PD

<Executor>

<Generators>

<Generator>

controllerC

<Alphabet>

PDon? PDon! PDonc PDon fPD PDoff? PDoff! PDoffc PDoff

</Alphabet>

<States>

<Consecutive>

1 12

</Consecutive>

</States>

<TransRel>

1 PDon? 2

2 PDon! 3

3 PDonc 4

4 PDoff? 5

4 PDon 6

5 PDon 7

6 PDoff? 7

6 fPD 8

7 fPD 9

81

8 PDoff? 9

9 PDoff! 10

10 PDoffc 11

11 PDoff 1

11 PDon? 12

12 PDoff 2

</TransRel>

<InitStates> 1 </InitStates>

<MarkedStates> 1 </MarkedStates>

</Generator>

</Generators>

% specify event attributes

<SimEventAttributes>

% Sensor Events

"stpR" <Priority>-1</Priority>

"stpC" <Priority>-1</Priority>

"fPD" <Priority>-1</Priority>

% Actuator Events

"mvC" <Priority>1</Priority>

"sC" <Priority>1 </Priority>

"arC" <Priority>1 </Priority>

"mvI" <Priority>1 </Priority>

"sI" <Priority>1 </Priority>

"arI" <Priority>1</Priority>

"mvPD" <Priority>1</Priority>

"sPD" <Priority>1</Priority>

"arPD" <Priority>1 </Priority>

"mvR" <Priority>1 </Priority>

"sR" <Priority>1 </Priority>

"arR" <Priority>1</Priority>

"PDon" <Priority>1</Priority>

"PDoff" <Priority>1</Priority>

</SimEventAttributes>

</Executor>

Simulator XML Configuration File for Controller PD

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE D3RIP SYSTEM "controllerR_d3rip.dtd">

<D3RipUrtDevice name="controllerR_d3rip">

<TimeScale value="10"/>

<!-- Ip address of this node, incl. server tcp port -->

<ServerAddress value="localhost:40000"/>

<Event name="mvC?" iotype="input">

<EventId value="1"/>

</Event>

<Event name="mvC!" iotype="output">

<EventId value="2"/>

<ChannelToTransmit value="1"/>

82

<ParameterRecord name="11">

<DestinationNode value="1"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="mvCc" iotype="input">

<EventId value="3"/>

</Event>

<Event name="arC?" iotype="input">

<EventId value="4"/>

</Event>

<Event name="arC!" iotype="output">

<EventId value="5"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="1"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="arCc" iotype="input">

<EventId value="6"/>

</Event>

<Event name="mvI?" iotype="input">

<EventId value="7"/>

</Event>

<Event name="mvI!" iotype="output">

<EventId value="8"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="1"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="mvIc" iotype="input">

<EventId value="9"/>

</Event>

<Event name="arI?" iotype="input">

<EventId value="10"/>

</Event>

<Event name="arI!" iotype="output">

<EventId value="11"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

83

<DestinationNode value="1"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="arIc" iotype="input">

<EventId value="12"/>

</Event>

</EventConfiguration>

</D3RipUrtDevice>

D3RIP XML Configuration File for Controller R

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE SimplenetDevice SYSTEM "controllerR.dtd">

<SimplenetDevice name="controllerR">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>

<!-- Network topology -->

<Network name="paintingNet">

<Node name="plant"/>

<Node name="controllerR"/>

<Node name="controllerC"/>

<Node name="controllerPD"/>

</Network>

<!-- Event configuration -->

<EventConfiguration>

<Event name="sC" iotype="output"/>

<Event name="stpR" iotype="input"/>

<Event name="sI" iotype="output"/>

</EventConfiguration>

</SimplenetDevice>

SimpleNet XML Configuration File for Controller R

<Executor>

<Generators>

<Generator>controllerR

<Alphabet>

mvC? mvC! mvCc mvC arC? arC! arCc arC sC stpR

mvI? mvI! mvIc mvI sI arI? arI! arIc arI

</Alphabet>

<States>

<Consecutive>

1 28

</Consecutive>

84

</States>

<TransRel>

1 mvC? 2

2 mvC! 3

3 mvCc 4

4 arC? 5

4 mvC 6

5 mvC 7

6 arC? 7

6 sC 8

7 sC 9

8 arC? 9

8 stpR 10

9 stpR 11

10 arC? 11

11 arC! 12

12 arCc 13

13 arC 14

13 mvI? 15

14 mvI? 16

15 arC 16

16 mvI! 17

17 mvIc 18

18 arI? 19

18 mvI 20

19 mvI 21

20 arI? 21

20 sI 22

21 sI 23

22 arI? 23

22 stpR 24

23 stpR 25

24 arI? 25

25 arI! 26

26 arIc 27

27 arI 1

27 mvC? 28

28 arI 2

</TransRel>

<InitStates>1 </InitStates>

<MarkedStates>1 </MarkedStates>

</Generator>

</Generators>

<SimEventAttributes>

% Sensor Events

"stpR" <Priority>-1 </Priority>

"stpC" <Priority>-1 </Priority>

"fPD" <Priority>-1 </Priority>

% Actuator Events

"mvC" <Priority>1 </Priority>

"sC" <Priority>1 </Priority>

"arC" <Priority>1 </Priority>

"mvI" <Priority>1 </Priority>

"sI" <Priority>1 </Priority>

"arI" <Priority>1 </Priority>

"mvPD" <Priority>1 </Priority>

"sPD" <Priority>1 </Priority>

85

"arPD" <Priority>1 </Priority>

"mvR" <Priority>1 </Priority>

"sR" <Priority>1 </Priority>

"arR" <Priority>1 </Priority>

"PDon" <Priority>1 </Priority>

"PDoff" <Priority>1 </Priority>

</SimEventAttributes>

</Executor>

Simulator XML Configuration File for Controller R

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE D3RIP SYSTEM "controllerS_d3rip.dtd">

<D3RipUrtDevice name="controllerS_d3rip">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>

<!-- Event configuration -->

<!-- Communication with robot (node 1) -->

<Event name="mvC?" iotype="output">

<EventId value="1"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="2"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="mvC!" iotype="input">

<EventId value="2"/>

</Event>

<Event name="mvCc" iotype="output">

<EventId value="3"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="2"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="arC?" iotype="output">

<EventId value="4"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="2"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

86

<Event name="arC!" iotype="input">

<EventId value="5"/>

</Event>

<Event name="arCc" iotype="output">

<EventId value="6"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="2"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="mvI?" iotype="output">

<EventId value="7"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="2"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="mvI!" iotype="input">

<EventId value="8"/>

</Event>

<Event name="mvIc" iotype="output">

<EventId value="9"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="2"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="arI?" iotype="output">

<EventId value="10"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="2"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="arI!" iotype="input">

<EventId value="11"/>

</Event>

<Event name="arIc" iotype="output">

<EventId value="12"/>

87

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="2"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<!-- Communication with conveyor (node 3) -->

<Event name="mvPD?" iotype="output">

<EventId value="13"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="3"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="mvPD!" iotype="input">

<EventId value="14"/>

</Event>

<Event name="mvPDc" iotype="output">

<EventId value="15"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="3"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="arPD?" iotype="output">

<EventId value="16"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="3"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="arPD!" iotype="input">

<EventId value="17"/>

</Event>

<Event name="arPDc" iotype="output">

<EventId value="18"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="3"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

88

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="mvR?" iotype="output">

<EventId value="19"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="3"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="mvR!" iotype="input">

<EventId value="20"/>

</Event>

<Event name="mvRc" iotype="output">

<EventId value="21"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="3"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="arR?" iotype="output">

<EventId value="22"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="3"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="arR!" iotype="input">

<EventId value="23"/>

</Event>

<Event name="arRc" iotype="output">

<EventId value="24"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="3"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<!-- Communication with painting device (node 4) -->

<Event name="PDon?" iotype="output">

89

<EventId value="25"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="4"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="PDon!" iotype="input">

<EventId value="26"/>

</Event>

<Event name="PDonc" iotype="output">

<EventId value="27"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="4"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="PDoff?" iotype="output">

<EventId value="28"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="4"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

<Event name="PDoff!" iotype="input">

<EventId value="29"/>

</Event>

<Event name="PDoffc" iotype="output">

<EventId value="30"/>

<ChannelToTransmit value="1"/>

<ParameterRecord name="11">

<DestinationNode value="4"/>

<DestinationChannel value="1"/>

<EligibilityTime value="2" />

<DeadlineTime value="5"/>

</ParameterRecord>

</Event>

</EventConfiguration>

</D3RipUrtDevice>

D3RIP XML Configuration File for Controller S

90

<Executor>

<Generators>

<Generator>controllerS

<Alphabet>

mvC? mvC! mvCc arC? arC! arCc

mvI? mvI! mvIc arI? arI! arIc

mvPD? mvPD! mvPDc arPD? arPD! arPDc

mvR? mvR! mvRc arR? arR! arRc

PDon? PDon! PDonc PDoff? PDoff! PDoffc

</Alphabet>

<States>

<Consecutive>1 30</Consecutive>

</States>

<TransRel>

1 mvC? 2

2 mvC! 3

3 mvCc 4

4 arC? 5

5 arC! 6

6 arCc 7

7 mvPD? 8

8 mvPD! 9

9 mvPDc 10

10 arPD? 11

11 arPD! 12

12 arPDc 13

13 PDon? 14

14 PDon! 15

15 PDonc 16

16 PDoff? 17

17 PDoff! 18

18 PDoffc 19

19 mvR? 20

20 mvR! 21

21 mvRc 22

22 arR? 23

23 arR! 24

24 arRc 25

25 mvI? 26

26 mvI! 27

27 mvIc 28

28 arI? 29

29 arI! 30

30 arIc 1

</TransRel>

<InitStates>1 </InitStates>

<MarkedStates>1 </MarkedStates>

</Generator>

</Generators>

<SimEventAttributes>

% Sensor Events

"stpR" <Priority>-1 </Priority>

"stpC" <Priority>-1</Priority>

"fPD" <Priority>-1</Priority>

% Actuator Events

"mvC" <Priority> 1 </Priority>

"sC" <Priority> 1 </Priority>

"arC" <Priority> 1 </Priority>

91

"mvI" <Priority>1 </Priority>

"sI" <Priority> 1 </Priority>

"arI" <Priority> 1 </Priority>

"mvPD" <Priority>1 </Priority>

"sPD" <Priority>1 </Priority>

"arPD" <Priority>1 </Priority>

"mvR" <Priority>1 </Priority>

"sR" <Priority>1 </Priority>

"arR" <Priority>1 </Priority>

"PDon" <Priority>1 </Priority>

"PDoff" <Priority>1 </Priority>

</SimEventAttributes>

</Executor>

 Simulator XML Configuration File for Controller R

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE SimplenetDevice SYSTEM "plant.dtd">

<SimplenetDevice name="plant">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>

<Network name="paintingNet">

<Node name="plant"/>

<Node name="controllerR"/>

<Node name="controllerC"/>

<Node name="controllerPD"/>

</Network>

<EventConfiguration>

<Event name="sC" iotype="input"/>

<Event name="stpR" iotype="output"/>

<Event name="sI" iotype="input"/>

<Event name="sPD" iotype="input"/>

<Event name="stpC" iotype="output"/>

<Event name="sR" iotype="input"/>

<Event name="fPD" iotype="output"/>

</EventConfiguration>

</SimplenetDevice>

SimpleNet XML Configuration File for Plant

<Executor>

<Generators>

<Generator>plantConveyor

<Alphabet>

mvPD sPD stpC arPD mvR sR stpC arR

</Alphabet>

<States>

1 2

3 <Invariant> "cMove" "LT" 10 </Invariant>

4 5 6

7 <Invariant> "cMove" "LT" 10 </Invariant>

8

</States>

92

<TransRel>

1 mvPD 2

2 sPD 3

<Timing>

<Resets>"cMove" </Resets>

</Timing>3 stpC 4 <Timing>

<Guard> "cMove" "GT" 5 </Guard>

</Timing>

4 arPD 5

5 mvR 6

6 sR 7

<Timing>

<Resets>"cMove"</Resets>

</Timing>7 stpC 8<Timing>

<Guard> "cMove" "GT" 5</Guard>

</Timing>8 arR 1

</TransRel>

<InitStates>1 </InitStates>

<MarkedStates>1 </MarkedStates>

<Clocks>"cMove" </Clocks>

</Generator>

<Generator>plantPaintingDevice

<Alphabet>PDon fPD PDoff</Alphabet>

<States>

1

2 <Invariant> "pdMove" "LT" 10 </Invariant>

3

</States>

<TransRel>1 PDon 2<Timing>

<Resets>"pdMove"</Resets>

</Timing>2 fPD 3<Timing>

<Guard> "pdMove" "GT" 5</Guard>

</Timing>3 PDoff 1</TransRel>

<InitStates>1 </InitStates>

<MarkedStates>1 </MarkedStates>

<Clocks>"pdMove" </Clocks>

</Generator>

<Generator>plantRobot

<Alphabet>mvC sC stpR arC mvI sI stpR arI</Alphabet>

<States>

1 2

3 <Invariant> "rMove" "LT" 10 </Invariant>

4 5 6

7 <Invariant> "rMove" "LT" 10 </Invariant>

8

</States>

<TransRel>

1 mvC 2

2 sC 3

<Timing>

<Resets>"rMove"</Resets>

</Timing>3 stpR 4<Timing>

<Guard> "rMove" "GT" 5</Guard>

</Timing>

4 arC 5

5 mvI 6

6 sI 7

<Timing>

93

<Resets>"rMove"</Resets>

</Timing>7 stpR 8<Timing>

<Guard> "rMove" "GT" 5</Guard>

</Timing>8 arI 1

</TransRel>

<InitStates>1 </InitStates>

<MarkedStates>1 </MarkedStates>

<Clocks>"rMove" </Clocks>

</Generator>

</Generators>

<SimEventAttributes>

"stpR" <Priority>-1 </Priority>

"stpC" <Priority>-1</Priority>

"fPD" <Priority>-1</Priority>

"mvC" <Priority>1 </Priority>

"sC" <Priority>1 </Priority>

"arC" <Priority>1 </Priority>

"mvI" <Priority>1 </Priority>

"sI" <Priority>1 </Priority>

"arI" <Priority>1 </Priority>

"mvPD" <Priority>1 </Priority>

"sPD" <Priority>1 </Priority>

"arPD" <Priority>1 </Priority>

"mvR" <Priority>1 </Priority>

"sR" <Priority>1 </Priority>

"arR" <Priority>1 </Priority>

"PDon" <Priority>1 </Priority>

"PDoff" <Priority>1 </Priority>

</SimEventAttributes>

</Executor>

Simulator XML Configuration File for Plant

