IMPLEMENTATION AND EVALUATION OF THE DEPENDABILITY PLANE
FOR THE
DYNAMIC DISTRIBUTED DEPENDABLE REAL TIME INDUSTRIAL PROTOCOL
(D°RIP)

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OMER BERAT SEZER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2013

Approval of the thesis:

IMPLEMENTATION AND EVALUATION OF THE DEPENDABILITY PLANE
FOR THE
DYNAMIC DISTRIBUTED DEPENDABLE REAL TIME INDUSTRIAL
PROTOCOL
(D°RIP)

submitted by OMER BERAT SEZER in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Goniil Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Assoc.Prof. Dr. Senan Ece Schmidt
Supervisor, Electrical and Electronics Eng. Dept., METU

Assoc. Prof. Dr. Klaus Werner Schmidt
Co-Supervisor, Dept., of Mechatronics Eng., Cankaya U.

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Senan Ece Schmidt
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ciineyt Bazlamaggi
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Halit Oguztiiziin
Computer Engineering Dept., METU

Yusuf Bora Kartal
M.Sc. ASELSAN A.S

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. | also declare that, as required
by these rules and conduct, | have fully cited and referenced all material and results
that are not original to this work.

Name, Last Name: OMER BERAT SEZER
Signature:

ABSTRACT

IMPLEMENTATION AND EVALUATION OF THE DEPENDABILITY PLANE
FOR THE
DYNAMIC DISTRIBUTED DEPENDABLE REAL TIME INDUSTRIAL PROTOCOL
(D°RIP)

Sezer, Omer Berat

M.Sc., Department of Electrical and Electronics Engineering
Supervisor : Assoc. Prof. Dr. Senan Ece Schmidt
Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

September 2013, 93 pages

Dynamic Distributed Dependable Real Time Ethernet Industrial Protocol (D°RIP) is a real
time industrial communication protocol that runs over shared-medium Ethernet with COTS
hardware. The protocol consists of an interface layer that enables time slotted
communication and a coordination layer that guarantees collision avoidance and timely
delivery of real time messages generated by the control application. At the current
development stage, these two layers of the protocol are fully implemented and tested. The
scope of this thesis is the implementation of a new plane for D°RIP to achieve dependability.
To this end, mechanisms of fault detection and roll back recovery are applied. The interface
of the dependability plane to the existing interface layer and coordination layer is defined.
Finally the dependability plane is implemented and integrated to the existing protocol stack.
A number of tests under different fault scenarios are conducted to demonstrate the plane
functionality.

Keywords: Ethernet, industrial communication network, real time industrial communication

0z

DINAMIK DAGITILMIS GUVENILIR GERCEK ZAMANLI ENDUSTRIYEL
PROTOKOLU (D’G?EP)
ICIN
GUVENILEBILIRLIK DUZLEMI GERCEKLENMESI VE DEGERLENDIRILMESI

Sezer, Omer Berat

Yiiksek Lisans, Elektrik ve Elektronik Miithendisligi Boliimii
Tez Yoneticisi : Dog. Dr. Senan Ece Schmidt
Ortak Tez Yoneticisi : Dog. Dr. Klaus Werner Schmidt

Eyliil 2013, 93 sayfa

Dinamik Dagitilmis Giivenilir Gergek Zamanl Endiistriyel Protokolii (D?*G’EP), (COTS)
orjinal donanimiyla ortam paylagimli Ethernet lizerinde ¢alisan gercek zamanli endiistriyel
haberlesme protokoliidiir. Protokol zaman oluklu iletisimi saglayan arayiiz katmanindan
(AK) ve kontrol uygulamasi tarafindan iiretilen gercek zamanli mesajlarin iletimini ve
cakismay1 Onlemeyi garantileyen koordinasyon katmanindan (KK) olusur. Mevcut
gelistirme asamasinda, bu iki protokol katmani eksiksiz ger¢eklenmis ve test edilmistir. Bu
tezin kapsami D°G’EP’in giivenirliligini saglayan yeni bir diizlem uygulamasidir. Bu amagla,
hata belirleme ve hata Oncesi duruma geri dondiirme mekanizmalar1 olusturulmustur.
Varolan arayiiz katmani ve koordinasyon katmani igin giivenirlilik diizlemi arayiizii
tamimlanmugtir. Son olarak giivenirlilik diizlemi uygulanmig ve varolan yapiya entegre
edilmistir. Farkli hata senaryolarina gore bir ¢ok test gerceklestirilmis ve diizlemin
islevselligi gosterilmistir.

Anahtar Kelimeler: Ethernet, endiistriyel iletisim aglari, gercek zamanli endiistriyel
haberlesme

Vi

To My Family

vii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Associate Prof. Dr. Senan Ece Schmidt and my
co-supervisor Associate Prof. Dr. Klaus Werner Schmidt for their valuable supervision and
support. In addition to this, I like to thank them for giving me an opportunity to study
industrial communication protocols. | also thank my colleagues Adem Kaya and Yusuf Bora
Kartal for their contribution on integration of my thesis work to the system and system tests.
My thesis was a part of a research project that was funded by The Scientific and
Technological Research Council of Turkey (TUBITAK). I would like to thank TUBITAK
for their project support.

I would like to thank my family, my wife and my colleagues in TUBITAK-UZAY for their
support.

viii

TABLE OF CONTENTS

ABSTRACT et b bbbt et b e bt bRt bbb bt e b et e nrenre e v
OZ oo vi
ACKNOWLEDGEMENTS ...ttt ettt viii
TABLE OF CONTENTSottt et sb et bbb iX
LIST OF TABLESottt bbb sb et e e abeenbeebe e Xi
LIST OF FIGURES ...ttt et et Xii
INTRODUCTION ...ttt ettt st et sb e b e snbesnae et 1
BACKGROUND ...ttt sttt ettt et st esan e s sb e nb e e sbeesbeesrne s 3
2.1 Real -Time Ethernet for Industrial Communication Protocolsc.ccocevrennennen. 3

2. 1.1 REQUITEIMENTS ...ttt sttt nn e 5

2.1.2 Real Time Ethernet ProtoColScccooviiiiiiniiiccc e 6

2.2 DEPENUADITITYcveeiiiseeee s 10
PREVIOUS WORK ...ttt r et sb e s 15
3.1 Dynamic Distributed Dependable Real Time Industrial Protocol (D°RIP) Protocol
OVEBIVIBW ...ttt bbb bbb bbb bbbt 15

3.2 DRIP FOrmal ProtoCOl MOTEL:vuemrieriirriieiiseeisissseisesissesessssssssessssseens 17
3.2.1 Generic INterface LaYer:coiiieie et s 17

3.2.2 Generic Coordination LAYET:ccccoreierieieiiisiesie e 20

3.2.3 Generic Shared Medium Model:ccooiiiiiiiii e 23

3.2.4 Generic Dependability Plane Model: ... 24

3.3 D?RIP IMPIEMENLALION ..o 27
3.3.1 Interface Layer (IL) vttt 28

3.3.2 Coordination Layer (CL): ...cocieiiiieieieieeeeesie st 34

3.3.3 D°RIP Implementation Summary and Its Operation...............cccoceereeereerreennn. 37
DEPENDABILITY PLANE IMPLEMENTATIONoooiiiiiiiiiiieieee e 41
4.1 OVEIVIEBW ...tttk ettt b et n ettt bt b n e nen e 41
4.1.1 DP IMPIEMENTALIONeoviiiiiiiiiitesieie e 42

4.2 DALA STTUCKUIESeveeeeeiieciecie e nenne e 52

4.3 ACtionS and OPEIatioNcviiiiiiiirieierie et 54
A.3.1 ACHIONS ..o 54

A @ 1= - 11 o] 1RSSR 55

EVALUATION OF THE DEPENDABILITY PLANE.......cocoiiiiie e 59
5.1 EXamPple DESCIIPLIONc.voiviiiicie ettt sttt s 59

5.2 Performance PArameters...........cooiirieiriiirei e 66

5.3 EXperiments and RESUILS ..o 69
CONCLUSION & FUTURE WORKooiiitiiii ittt 73
6.1 CONCIUSTON......oiniiiieiieiie et bt 73

6.2 FULUIE WOTK ..o 74
REFERENCES ...ttt b e bbbt et sbe e sbe e saee e 75
APPENDIX .t b e nne s 79
KIML FILES .ottt ettt et e b et esbe e e nneebe e 79

LIST OF TABLES

TABLES

Table 1:Shared Medium Industrial Ethernet Protocol............ccccooovieiiniiiiieinccee e 10
Table 2: Frame Header SITUCTUIEvoviiiieeieece et s 30
Table 3: VCL_Q TYPE ..ottt sttt st et te st ntenne s 53
Table 4: VIL_Q _TYPE ...ttt sttt ettt e e ens 53
Table 5: QUEUE _TYPE ..ot 53
Table 6: Synchronization Accuracy and Sequential Actions in D*RIP Operation Without Any
FAUIL ettt et neete Rt nrerenre e 67
Table 7: Sequential Actions in D®RIP Operation With Fault..............cccoveveveeeeeeeereeenne 67
Table 8: Synchronization Accuracy and Sequential Actions in D?’RIP Operation Before
Adding Dependability PIane [44] ..ottt 68

Xi

LIST OF FIGURES

FIGURES

Figure 1: Industrial Communication LeVelS [14] ... 4
Figure 2: Additional Protocol on Ethernet Layers [29].........ccooeveiiiiiiniiniinineneeeceee 8
Figure 3: TC-Net StrUCLUIE [31]ecoveiieieii ittt 9
Figure 4: Dependability Threats [20]cccooeieiiiiiieie s 11
Figure 5: Domino EffeCt [38].....ccviiieiiiiiie ettt 12
Figure 6: Creating Control Point and Rollback [40]cccccoeeiiieiiiece e 13
Figure 7: D°RIP Layer ArCRItECIUEc.eveveceeeeeeeeeeeeeseseeeseeseseess s 15
Figure 8: Time SIOt SLIUCIUIEc.veieeie ettt st re e 16
Figure 9: IL MOdEel 8S TIOA ..ot 19

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 16:
Figure 17:
Figure 18:

Internal FUNCLIONS iN TL LAYEKccuoiieieciecec et 20
CL MOUEI @S TIOA ..ottt 22
Update FUNCLIONS TOF CLoviiiiiiciceees e 23
SM MOUEL @S TIOA ...t ere s 24
Functions in Dependability PIane ... 25
Data Encapsulation of RT and Long nRT messages [44]ccocuvvrenereiinnnnnn. 28
Message Transmission iN IL TaYEr ... 29
The Algorithm of the Transmit FUNCLION..........ccccooiiiiiiiii e 32

Figure 19: The Algorithm of the Receive FUNCLION ... 33
Figure 21: MESSagE SITUCLUIE..........c.viiiiiiieiieiteee ettt 35
Figure 22: Message FOrmat in CL [29]ccooeiieieieiie e 35
Figure 23: CL AIGOrithm [29] [41] c.eeoveoeie ettt e 36
Figure 24: The Message Transmissions of the Layers and Functions of D’RIP 37
Figure 25: The Timing of the Sending RT request with RT packet..........ccccevevivevieieiecnnn, 38
Figure 26: The Timing of the Sending RT request without RT packet........c...cccccceeviniennene. 38
Figure 27: The Timing of the Sending NRT PACKEL..........ccoviieriiiiiirereeeee e 39
Figure 28: Message exchange of DP with other layers.cocooeviiiiiiccccc e 42
Figure 29: SrUCTUIE OF DPoiiiiiiiiiie e 43
Figure 30: CL Implementation With DPcccccoiiiiiiiiie e 44
Figure 31: Transmission Part of IL with DP Implementationccccccoevevvevieiieciicncse e, 45
Figure 33: DoListenCLModule Thread iN AP........c.cciiiiiiiieeeesese s 47
Figure 34: listenCoordinationLayer Thread in DP Implementation...........c.cccccvvveiciciecnene, 49
Figure 35: listenInterfaceLayer in DP Implementation............ccccooevviiininineneneecceee 50
Figure 36: far Implementation iN DP ... e e 51
Figure 37: Dependability Plane UML Class Diagramccccooeerrienieieniene e 52
Figure 38: The Timing of the D®RIP without Any Fault............c.cc.coveevverererreerereeeeesesneeene 56
Figure 39: The Timing of the D®RIP With FaUIL.............ccccoevvevriieeeceeseeeesseessesses s, 57
Figure 40: A Manufacturing SYStem [44]coeeiiiiiiiiee s 59
Figure 41: State Machines of WOorkcell [12]cooiiiiiiiniiee e 60

Figure 42: The Timing Diagram for the PLC Communication of the Example Workcell [44]

xii

Figure 43: The Connection of the Controllers and Plantc.ccooeiiiiii i 61

Figure 44: D®RIP XML Configuration File for Controller Ccccoovoeeeeeeieeeeeieeeseeeenn. 64
Figure 45: SimpleNet XML Configuration File for Controller C...........cccccooiiiiiiiiiincienns 64
Figure 46: Simulator XML Configuration File for Controller C..........cccccooivviviiiiinciennn, 66
Figure 47: The Experiment Result of the First EXperiment............ccoccovvvviive i ciene e, 69
Figure 48: The Experiment Result of the Second EXperimentcccooevviviinininencnennns 70
Figure 49: The Experiment Result of the Third EXperimentc.ccocvvvevevvcieie e, 70

Xiii

Xiv

CHAPTER 1

INTRODUCTION

Industrial control applications are nowadays realized using distributed controller devices that
are connected by a real-time communication network. The amount of the transmitted data
has been increased with the new control systems and the demand of these systems will be
increased more and more in the near future. Traditional bus and control network solutions
such as CAN [1], ProfiBus [2] and LonWorks [3] do not support the demanded
requirements, because of their low speed, high cost and incompatibility with other devices
and equipment.

Therefore, a different protocol is needed to support the stated requirements. Ethernet (IEEE
802.3) is a common proposition for the support of industrial control applications since it is
cheap, commonly used, high speed andcompatible with other protocols. However, there is a
problem to use Ethernet in real time (RT) communication. The reason is the CSMA/CD
(Carrier Sense Multiple Access / Collision Detection) access protocol. In CSMA/CD access
protocol, if a collision occurs on the network, the node which sends the packet to the other
node, waits a random time to resend the packet. Also, the random amount of time is double
increased if a collision occurs again. This causes non-determinism and impairs the RT timing
requirements. To overcome this problem, there are various solutions in the literature.
Common solutions are:

¢ Modification of the Medium Access Control
e Adding Transmission Control Over Ethernet
e Using Switched Ethernet

In modification of MAC solution, specialized chips (ASICs) are used to modify the Ethernet
hardware. Sercos [4], Ethercat [5], Profinet 10 [6] are examples of modification of MAC
solutions. They are used as RT Ethernet protocol, but their high cost and incompatible with
other equipments are the problem of the modification of MAC. In adding transmission
control over Ethernet solution, there are several different ways of doing this. Master /slave,
Token Passing and TDMA methods are used to solve the problem by adding transmission
control over Ethernet. Virtual Token Passing Ethernet [7], Ethernet Powerlink [8],
Modbus/TCP [9], Ethernet for Plant Automation (EPA) [10], FTT Ethernet [11] are
examples of adding transmission control over Ethernet. In using switched Ethernet solution,
there are multiple transmission paths and switches are used instead of hubs that is, each
network 1nterface card (NIC) only receives traffic which is addressed to it. However, this
solution is not enough to make Ethernet real-time due to the non-deterministic queuing
delays in switches.

The new RT Ethernet protocol, Dynamic Distributed Dependable Real Time Ethernet
Industrial Protocol (D°RIP) is proposed in article [12]. This protocol is fully distributed, uses
COTS Ethernet hardware and time-slotted transmission control based on the IEEE 1588 time
synchronization protocol [13]. No hardware modification is required. It supports both RT
and nRT traffic. D°RIP is an extension of the two-layer protocol D’RIP by dependability
functionality in the form of a dependability plane. The interface layer (IL) and coordination
layer (CL) of D?RIP were implemented in [41]. In this thesis, the additional dependability
plane of D°RIP is studied, implemented and evaluated based on an application example, In
this example, four distributed controller devices communicate with each other over D°RIP.
Several test scenarios show the functionality of the dependability plane.The remainder of the
thesis is organized as follows. RT Ethernet for industrial communication, requirements of
them and dependability are discussed and available RT Ethernet protocols are reviewed in
Chapter 2. Formal protocol models and the implementation of a generic shared medium, a
generic interface layer, a generic coordination layer and a generic dependability plane are
explained in Chapter 3. The implementation of the dependability plane is described in detail
in Chapter 4. The test scenario with 4 controllers and configuration of simulator,
performance parameters, experiments and results are studied in Chapter 5. The conclusion
and future works are presented in Chapter 6.

CHAPTER 2

BACKGROUND

2.1 Real -Time Ethernet for Industrial Communication Protocols

In industrial applications, industrial communication network and protocol are used for
communication among control nodes and equipments. RT access, deterministic behavior and
RT are the reasons why industrial communication protocols are used so often in control
applications. In control applications, different components are used to implement the control
system: controllers, remote controllers, supervisory stations, actuators and sensors are some
of the components that are used. Sensors collect feedback data, controllers control the system
according to receiving data from sensors using actuators. Actuators transform input signals
into motion. Supervisory stations are the intelligent part of the control system. It is used as a
monitoring part and computer in the system. All different parts are connected with each other
using industrial communication networks.

Nowadays, industrial communication networks are widely used by industrial control
applications and these industrial control applications become more complex and large-scale.
Also computer aided industrial control devices with the network access are manufactured in
recentyears. These developments make industrial control systems become an important
industrial and academic research topic. Different industrial communication networks have
been developed for the last twenty years for these systems.

In different industrial communication networks, messages for the different purposes are
transmitted to each device in the system. These industrial communication networks are
divided as follows: [14] (Figurel)

e T1) Device level data transmission between sensors, controllers and actuators: The
receiving sampled data is periodic and it must be sent with time constraints.

e T2) Control level data transmission between supervisory controllers and the system
components: It is needed that controllers and the system components at different
hierarchical levels communicate each other for their coordination in the system.
Mostly, components and controllers send the data which is event-based and requires
deterministic response times, to each other. Because of the changing of the system
behavior in discrete time, the next state of the system and the message which is sent
in that case, have been already known using system dynamic model. For example,
the controller which controls the two machines sends a message to the second
machine to start, when the first machine completes its operation.

e T3) Information level data transmission: Mostly, it is used for the nRT and event-
based communication.

When these traffic types are analyzed, there are four requirements that should be fulfilled by

the network to make it usable for industrial control: there should be RT traffic transfer,
synchronized communication, dependable operation and support for nRT traffic. In RT
traffic transfer requirement, when a node in the control system wants to send a message to
other nodes, this message transfer time should be less than a deadline time of the message. In
synchronized communication requirement, before the RT communication starts, all nodes in
the system are synchronized to get the RT message successfully. In dependability
requirement, if there is a failure in the system, the system should be able to fix the problem
and resume its correct operation. In support for nRT traffic requirement, nRT messages
should be sent without corrupting the RT traffic.

Desktop Programmable
PC Device
Information Level
(T3, Non Real Time)
(; - ; l D

PLC or Connection
Device
Control Level

(T2, Real Time, Sporadic)

I

0

Driver Device Level
(T1, Real Time, Periodic)

|
i 0

Sensor Sensor

Actuator

Figure 1: Industrial Communication Levels [14]

In 1980°s CAN, Lonworks, Profibus started to be used as industrial communication network.
[15]. But, their implementation cost is high, expanding the system is difficult and they are
not compatible with other communication protocols. So, these problems are the reason for
developing and using different protocols. Ethernet can be used for industrial communication
protocol. However, Ethernet is not directly usable as industrial communication
protocolwithout any modification on hardware or software. Because, it does not support the
RT traffic when collisions occur in the system. When a collision happens, back-off algorithm
runs and the node which wants to send a message to the system, waits a random time. It
creates non-determinism on the system. So, generic Ethernet without any modifications
cannot be used for industrial communication. However, the application of Ethernet is simple,
widely used and low cost are the reason why there is a considerable research effort on
modifications and additions to Ethernet in order to make 1t usable as a RT communication
protocol.

2.1.1 Requirements
The requirements for the development of the real-time Ethernet protocol are listed below:
[16]

Real Time Data Transmission: Message transmission time is measured between the
applications which are sent and received. The requirements of the message transmission time
for the different level communications are different. While the applications including human
operators require 100 ms transmission time, applications working with programmable logic
controllers (PLCs) require 10 ms transmission time and applications which coordinate many
devices, require 1 ms transmission time.

Synchronization Support: In industrial communication network, RT response time and
common reference time between nodes are provided by synchronization protocol. The
sensitivity of the synchronization is defined the maximum deviation between the time of two
nodes [16]. To protect this sensitivity of the synchronization, guard periods are used and this
causes the increasing of the time delay. The most common and used synchronization
protocol for Ethernet is IEEE 1588 time synchronization protocol [13] [17].

IEEE 1588 time synchronization protocol works according to Precision-time protocol (PTP).
In this protocol, time difference and delay time between the selected master node and other
nodes are calculated using message exchanges between master node and slave nodes. Thus,
nodes are synchronized. Except IEEE 1588, special time synchronization mechanisms are
used in EtherCAT [4] and Sercos (IEC 61491) [5] protocols.

Non-Real Time Traffic Support: It is provided that while nRT traffic is supported, the RT
traffic is not affected nRT traffic.

Compatibility: The most important reason that makes Ethernet an attractive technology is
inexpensive hardware and software interface. It is required that when industrial Ethernet
works, it is compatible with standard Ethernet to make implementation with COTS
(Commercial Off-The-Shelf) components and to take advantage of inexpensive hardware
andsoftware interface. In addition to this, it is also supposed thatcommonly used application
protocols such as HTTP and FTP and synchronization protocols such as IEEE 1588 are
supported.There are backward-compatibility requirements. For this reason, it is expected that

5

once a protocol has been established, it works for years. As a result, an industrial Ethernet
protocol should be conducive to adding new devices.

Dynamic Resource Separation for the Real-Time Traffic: The communication requirements
of the industrial system which communicates with a network, change dynamically in time
[18]. For instance, in the self-triggered control concept, at the device level, calculation times
are reserved before. In addition to this, high-level controllers which coordinate the
distributed systems, communicate only when they are needed. It is supposed that according
to instantaneous needs, RT bandwidth should be separated to devices in the industrial
Ethernet protocols.

Dependability: Dependability is an important requirement for the applications which have
critical security constraints and work in the industrial control systems [19]. Availability,
safety, integrity and maintainability are the elements of dependability [20]. To talk about the
dependability of a distributed industrial control system which communicates with the
network, it is provided that the dependability of the network and controller is necessary.
When designing a dependable industrial communication network, dependable
synchronization and the consistence of values which are sent with messages, are important.
The problem of dependability stands outmore RT Ethernet-based solutions due to non-
deterministic feature of Ethernet [21]. Dependable communications provide that accurate
information should be sent to the right place, at the right timeand right order. Dependability
support is often done by the separation of the static additional capacity according to default
worst case [22]. For example, for the TDMA-based protocol additional time slots might be
allocated to the transmitting nodes inorder to send each message which is lost, in repetition
time and only half of the capacity can be used.

2.1.2 Real Time Ethernet Protocols
In the literature, there are four major approaches to add Ethernet real-timeliness:
e Changing the non-deterministic sending messages mechanism with the hardware
modification on Ethernet network interface card,
¢ Minimizing response time and the probability of the collision,
e Removal of the probability ofcollision on shared medium using point-to-point
connections and switches,
e Constructing layers on top of shared medium to avoid collision.

Specialized Hardware: EtherCat [4], SERCOS IIl [5] and ProfiNet [6] use specially
designed node and switch hardware. Ethercat and ProfiNet use IEEE 1588 for time
synchronization. On the other hand, SERCOS Ill uses special messages to synchronize the
nodes in the system. These three protocols are supported by special designed dependable
protocols. Special designed, Twinsafe Protocol operates as separate layer under EtherCAT
protocol. Devices get addresses and data safety is provided with CRC. In SERCOS IlI
Safety, there are sequence numberanda timestamp in the message. The receiver node sends
an acknowledgment message to the sender node. Devices get addresses and data safety is
provided with HDLC coding.PROFIsafe is developed for ProfiNet [6]. Sequence number and
a timestamp are added in the message. Devices get addresses and data safety is provided
with CRC.

Non-Guaranteed Approaches: MODBUS/TCP [9] and similar protocols work on TCP/IP to
be compatible with standard Ethernet [23] [24]. With traffic shaping, it low delays can be
achieved in these systems. In these approaches, there is no guarantee that messages will be
transmitted in time.

Switched Ethernet: Since collisions are possible on standard Ethernet, the solution of the
non-deterministic network access problem is full-duplex, switched and point-to-point
Ethernet (IEEE802.3x). With this structure, even if shared medium and the collision problem
are eliminated, the problem of network access is carried to queueuing delays in the network
[22][25][26]. To provide the RT communication, Ethernet switches that make scheduling
and prioritization are needed. Giving priority to the messages, according to these priorities,
providing different service like 802.1p and 802.1Q Ethernet protocols and protocol
extensions are proposed. Unlike the standard Ethernet protocols, these protocols require
specialized switches. Under the assumption of an infinite buffer for real-time traffic, even if
scheduling analysis can be made, the actual conditions require the use of a limited buffer
[27]. On switched Ethernet, the implementation of the sensitive time synchronization which
is important for RT communication, can be difficult.

Ethernet/IP (EIP) [28] works on the TCP/IP with full-duplex Ethernet switches which have
special prioritization mechanism. Ethernet /IP protocol does notensure the real-time
communication. Time synchronization is made with special messages which are compatible
with IEEE 1588 protocol. Also, the coordination between sender and receiver, is provided
with the ping messages. There is also timestamp in the messages. Devices get addresses and
data safety is provided with CRC.

Constructing Layer on Shared Medium: A variety of academic and industrial protocols are
proposed to prevent collisions on shared medium by adding RT properties. These protocols
aim at adding a layer on IEEE 802.3 that prevents collision and non-deterministic sending
messages after collision. NRT and RT traffic pass over this layer. On this layer, there may be
a specific protocol which is responsible for transmission of RT traffic. TCP-UDP/IP layers
may be responsible for transmission of RT traffic. Figure 2 shows the additional protocol on
Ethernet layers.

There are 3 different approaches for adding layer on medium access layer:
e Time Division Multiple Access (TDMA)
e Master-Slave
e Token Passing

Time Division Multiple Access (TDMA) : In this approach, time is divided into equivalent
slots. The owners of one or more time slots are determined statically for each node. Time
synchronization between all nodes in the system, is important for communication between
nodes. This approach provides reliable network access for all nodes. Working with low
efficiency is the disadvantage of TDMA. If a node does not send a message in the time slot
which is belongs to that node, another node in the system cannot send a message in that
unused time slot. In addition to this, the delay in the software and switches is also considered
while choosing the time slot. If the messages in the network arelostdue to network errors,
additional time periods must be allocated to send messages again.

Real-Time Traffic Non Real-Time Traffic

!

TCP/UDP

Additional Protocol IP

Additional Medium Access Layer

Medium Access Layer

Physical Layer

1

Communication Network

Figure 2: Additional Protocol on Ethernet Layers [29]

Master-Slave: A chosen master node sends messages to the other nodes (slaves) to ask
whether it needs to send a message or not (polling). Slave nodes only send message when
master nodes poll them. This approach is used in the network which has small number of
nodes. The efficiency of master slave is affected negatively while polling the system.
Especially in cases wherethe trafficis very variable and nodes do not have any message to
send, the efficiency decreases. Also, the delay time which is passed when the master node
waits slave node’s answer, decreases the efficiency. When the number of nodes is large, the
polling cycle time for all nodes, is more than the delay time of sending message. In that case,
the delay time is much more than acceptable limit. The speed of software in the slave nodes
also is the one of thedetermining factors of the polling process time. If the software is too
slow, the importance of the network speed is ignored and the efficiency of the network is
decreased. In addition to the problem of the efficiency, master-slave communication is not a
suitable structure for distribution. Because of master node, it is single-centered and there
might be a problem at a single point.

Token Passing: In this approach, one node can send a message if and only if it has a token to
send a message. When it sends its message, it transmits the token to another node with a
special message. In token-based approaches, the possibility of losing the token, token
circulationtime which causes decreased communication speed and the difficulty of adding a
new component are the disadvantages of token passing system.

There are lots of solutions which are created in industry and academia. These solutions and
standards follow the approaches which are explained the section above and they carry on the
negative aspects of them.

Time Critical Control Network (TC-Net) [30] is implemented with adding a layer on
standard Ethernet which provides the token passing. NRT traffic has low priority. Time

synchronization is provided with the special message. The dependability of the protocol is
also provided using an extra TC-Net card. Figure 3 shows the TC-Net structure. [26][31].

Message data Real-time data
application application
| 1
TCP/UDP/IP Common memory

we ——1
TCnet MAC

1 1
Ethernet PHY Ethernet PHY

Figure 3: TC-Net Structure [31]

Powerlink (EPL) [8] is implemented with adding a layer on standard Ethernet which
provides the master-slave. With the inefficiency of the master-slave structure, EPL efficiency
is calculated as 25% [22]. Time synchronization is provided with the special message similar
to the IEEE 1588 protocol. RT and nRT data are sent in different time slots. Sequence
number and a timestamp are added in the message. Devices get addresses and data safety is
provided with CRC.

Ethernet for Plant Automation (EPA) [10] works with static TDMA. Time slots for nRT and
RT are determined before the communication. It supports both RT and nRT traffic. IEEE
1588 time synchronization protocol is used to synchronize the nodes in the network. The
disadvantage of this protocol is static slot scheduling and TDMA. Slot scheduling is done by
periodic message broadcast. Also, to the guard periods and error recovery precautions cause
low efficiency in TDMA solutions like EPA. [16] [26]

In FTT Ethernet protocol, master/multi-slave model is used to implement the protocol. It
uses COTS Ethernet hardware. The communication is TDMA based and time slot durations
are fixed. Nodes can be connected to share or switched medium. It supports both RT and
nRT traffic, also in addition to them, there is online admission control to guarantee
timeliness to the RT traffic. Also there is no specific synchronization protocol. But,
elementary cycle begins with master node trigger. When master node broadcast to trigger
message, elementary cycle is started with that trigger message. The disadvantage of the FTT
Ethernet protocol is that master-slave method. Master-slave models have single point of
failure, undistributed structure and low efficiency. [11][32]

In Virtual Token Passing Ethernet (VTPE), if a node wants to hold a network, it should
takethe virtual token to send a message to other node. In this method a virtual token is
circulating between nodes and it works with closing the binary exponential back off (BEB)
algorithm. When there is collision in the system, it provides that the nodes send the RT
message again immediately. In this protocol, Ethernet hardware is not modified. It uses

9

COTS (commercial off-the-shelf) Ethernet. Software Ethernet driver modification is required
for RT stations. Figure 4 shows the algorithm of VTPE.The disadvantage of the VTPE is
losing token which is the dependability problem of token passing method. [7]

The focus of this study is working with compatible components without changing the
working principle of Ethernet and providing guaranteed real-time performance for shared
media protocols. Table 1 shows the comparison of the defined requirements and
performance criteria for these protocols. In table, A/l: Academic/ Industrial Purpose, RT
Cap: RT Data Transmission Capacity, nRT Cap: NRT Data Transmission Capacity, Time
Sync: Time Synchronization Protocol are used as abbreviations.

Table 1: Shared Medium Industrial Ethernet Protocol

Mediu Nod RT
ode
A/l | Protocol m Delay Cap.(bps | nRT Cap. Time Sync
Number
Access)
IEEE
5ms,
I EPA TDMA 32,64 12.28M 0,85 1588,10us,
100us
lus
Master- | 400us, 15.2M, 19.6%,
| EPL 4,15 IEEE 1588,1s
Slave 5.5ms 32M 4.4%
. 58.4M/
Time
- 51.2M/
Critical 2ms/
Token- 7.2M, 0%,
I Control] 20ms/ 24,13 -
Passing 45.6M/ 20%
Network 200m
40.8M/
(TCNet)
4.8M
Periodic Time
o Sychronizatio
Master- Unspecifie 36M,
A FTT-E Ims 0,11 n Message
Slave d 36%
from Master
Node
Under
Token- 40% Unspecifie
A VTPE] 5.8ms 256 -
Passing Ethernet d
Cap.

2.2 Dependability

Dependability is defined as the ability to deliver service that can be justifiably trusted. Also,
it includes the attributes below: [20][33].

e Availability: A system is ready to provide the right service.
o Reliability: A system continues to right service in a time.
o Safety: A system does not lead to irreversible errors at the user level.

10

Maintainability: A system can be conducive to repair and can be available to
maintain when needed

Integrity: System changes are suitable for designed sequence and there are not any
unexpected system changes in the system design sequence.

System is dependable when it fulfills (some of) the above attributes. Also, system must have
precautions against threatened dependability of the system elements at the design and
operation stages. Threatened dependability of the system elements are divided into the three
main categories. These categories are: [20] [33] [34]

Component-Level Errors (Faults)
System-Level Errors (Errors)
User-Level Errors (Failures)

Figure 4 shows the faults cause-effect relationship.

External Fault

Component A

Error |

Component B

{@‘EF"BN*_A tivati Service Service
t
x\\"F’:“fID ctiva in Interface Interface
_ Y i ____ Propagation | Propagation ____ Propagation ____ Propagation
Ve \Propagatlon N /1 /Inpm\ N
[Error »— — — »{ Error ; »f > peor - — — — P Error ———»{—
o/ \ \Erer) _/ \

Service status of

Correct Service

component A

Service status of
component B

Failure

\ 4

Incorrect
Service

Correct Service

Incorrect
Service

\4

Figure 4: Dependability Threats [20]

As can be seen in Figure 5, faults which occurred and are not solved at the component level
proceed to the user level. After that the system cannot work properly. Bringing back the
correct function of the system, error conditions should be eliminated.

Means (dependability activities) are activities for elimination of errors and allocation of the
dependability of the system at various levels. They are divided into 4 main groups: [20] [33]

[35]

Component-Level Fault Prevention Activities: Fault prevention activities are the
activities which prevent the faults at the design stage. Keeping records of faults at
the designed system and modify it during the design process is the most common
example. [36] [37].

Component-Level Fault Removal Activities: Error detection, classification and
validation phases of the system design phase of these activities aims to eliminate the
errors. System verification is a method which provides confirmation of fault before
debugging and supports system requirements after debugging.

11

e Component-Level Fault Forecasting Activities: Fault forecasting activities are the
activities which determine the state changes that cause user-level faults after
completed system design.

e Component-Level Fault Tolerance Activities: Activities of detection and
elimination of errors that can occur during operation of the system. Elimination of
effects of the system faults is called system recovery [20]. The most common
method without having to initialization (reset) while system is operating is making
checkpoint and rolling back.

In this method, functions in a distributed system record their state in error conditions that
may occur. In the event of any error, functions return to their pre-recorded states within the
scope of the error recovery scenario operated by the system. Although at first glance it seems
to be an easy method of application, in some conditions rollback mechanism causes
consecutive rollbacks which might return the system to its initial state. In other words, it
causes reset of the system. Figure 5 shows that situation which is called domino effect.

Process 2 [T { T {] {
E_ b 43 r ru < 10 T | 4
Process 3 ! %l | (N | «
S N N :
! 2 3 time 4

Figure 5: Domino Effect [38]

In Figure 6, lines with dashed vertical show the communication of functions. 3 processes in
Figure determine the rollback point periodically. For example in process 3, an error after 4th
recovery block is identified. This situation causes that process 3 returns to the 4th recovery
block. When process 3 returns to the 4th recovery block, the other two processes have to
return to their previous recovery point to be compatible with process 3. The reason why the
other two processes have to return to their previous recovery point is that process 3
communicates with the other two processes between error and 4th recovery block. With the
same logic, rollback mechanism causes that the system returns to its initial state, like toppled
dominoes one after the other.

In order to stop the domino effect, a communication mechanism between processes is
recommended [39] [40]. In these articles, proposed communication mechanisms cause
additional load on the system message traffic. However, it seems that [40]’s proposed idea
causes less additional load on the system message traffic than other one. In [40], the use of a
common reference time between functions is proposed to reduce the additional load on the
system message traffic. Figure 6 shows the proposed control point description and rollback
mechanism.

12

-]
e
o

I
[
Hi H

Egtimated timeg for h'l.'j
Actal Hime for ATJ
Estimated times for JL'I."J-ﬂ
Actual time for AT,

Chosen time for PRP;
Choseén Lime for PRPJ-

Chasen time for PRP; |

Figure 6: Creating Control Point and Rollback [40]

Figure 7 shows that distributed nodes run synchronous with each other. Common period of
time is determined for synchronous nodes to make an acceptance test. Node which does not
complete acceptance test within the specified time, sends its delay time to other nodes to
determine the synchronous recovery points. This reduces the additional load on the system
message traffic. However, currently only available in recovery point messages are used for
identification purposes in the network, and this adversely affects the efficiency of the
network. In our framework, distributed nodes are synchronous. In addition to this,
communication between the nodes is on the shared medium. Dependability plane in our
framework uses the advantages of these two features and it is aimed to eliminate the

additional message load on the system.

13

14

CHAPTER 3

PREVIOUS WORK

3.1 Dynamic Distributed Dependable Real Time Industrial Protocol (D°RIP) Protocol
Overview

Dynamic Distributed Dependable Real Time Ethernet Industrial Protocol can be used for the
communication of controllers in distributed control systems. Dynamic Distributed Real Time
Ethernet Industrial Protocol works over Ethernet protocol with non-real and RT traffic.
There is no need to change the physical MAC layer, it uses COTS Ethernet hardware. D°RIP
protocol works on shared medium without using any switch. It realizes TDMA on top of
Ethernet, whereby synchronization is achieved by the IEEE 1588 protocol. It requires small
software Ethernet driver modification and modifications of the software stack between MAC
and Application layer. Figure 7 shows the layered architecture of D°RIP. The Dependability
Plane works over D?RIP structure that is implemented in [41].

IEEE Non-Real Time

Real Time Application Layer mRe
1588 Protocol| Application Layer

Coordination Layer TCP /IP Layer

Dependability
Plane Interface Layer

MAC Layer

Shared Medium

Figure 7: D°RIP Layer Architecture

In D®RIP Layer Architecture, there are 3 different layers added to the original Ethernet layer
architecture namely interface layer (IL), coordination layer (CL) and dependability plane
(DP). Interface layer is responsible for the time-slotted TDMA structure that is implemented
and synchronized with other nodes using IEEE 1588 time synchronizing protocol. At the
beginning of each time slot, CL sends information to the IL about the usage of the time slot
and IL sends Ethernet frame within time slot when it gets information from CL.
Coordination layer is responsible for determining the allocation of the type of slot whether

15

RT or nRT and the allocation of the owner of the slot. CL is implemented in the user space
of Linux and IL is implemented in the kernel space of Linux in previous works [29][42]. In
these works, CL is implemented as 2 types: DART (Dynamic Allocation Real-Time
Protocol) and URT (Urgency-Based Real-Time Protocol). In DART, variables in the
protocol are hold in the form of allocated RT slots. In URT, control application variables are
stored in the form of the communication requests [29]. Also, IL is implemented as 2 types:
RAIL (Real-Time Access Interface Layer Protocol) and TSIL (Time-Slotted Interface
Layer). In RAIL, slot allocations for nRT and RT traffic are made statistically. In TSIL, slot
allocations for nRT and RT traffic are made dynamically by CL [42].

Dependability Plane is responsible for dependability of the framework. DP makes an
acceptance test whether the protocol works without problem or not. If there is a fault, it
sends stored CL parameters using rollback message to CL and when CL gets the rollback
message from DP, it warns application layer to resend the fault messages. Thus DP protects
the framework. Timing of messaging between layers is important to determine the slot
timing duration. Figure 8 illustrates the timings of 1 slot. CL.y, which is a calculation time
for CL, IL¢mp Which is a calculation time for IL and Message Tx, which represents
transmission of an application message on Ethernet.

dSlot dSlot

CLc'm P I Lc‘m P F rame;, F. ramegy,]]] .

Figure 8: Time Slot Structure

D°RIP Layer Architecture works on the RT operating system. RT features of the operating
system kernel are gained with RT patches over the Linux kernel. The latest stable kernel is
3.6.2. The configurations below are needed for RT operating system after RT patches
implemented over Linux kernel:

e Activate Tickless System (Dynamics Ticks).

e Activate High Resolution Timer Support.

o Set“Preemption Model” parameter to “Fully Preemptible Kernel(RT)”.

o Set “Timer frequency” parameter to “1000Hz”.

e Deactivate “Suspend to RAM and standby”’.

e Activate “Timestamping in PHY devices”.

e Activate “PTP Hardware Clock (PHC)”.

e Activate “PTP clock support”.

e Deactivate “Show timing information on printks”.

e Set “I/O scheduler” parameter to “Deadline”.

16

3.2 D°RIP Formal Protocol Model:

3.2.1 Generic Interface Layer:

Interface Layer Generic Model is defined using TIOA Model in [12][43]. Figure 9 shows the
IL Model using TIOA. There are 6 parameters in the IL Model: dSlot, t0,t1,t2, t3, M , Q ,
AIL,HIL.

dSlot: Slot duration,

t0,t1,t2, t3: Time of events,

M: The type of transmitted messages,
Q: The type of a FIFO queue messages,
AIL: Abstract variable of IL.
HIL:Abstract variable of IL

IL Model as TIOA has variables to define the model and operations: now;®, next®, TXRTS,
TXnRTY, RXRTY, RxnRTY, RTIL?, mylL, vILY, reqlL.

now;*: Analog variable which evolves with the time derivative of 1 , the updated
time information is provided by this variable.

next,%: The end of the current time slot is stored by this variable.

TXRT: The buffer that stores the RT messages to be transmitted.

TxnRT%: The buffer that stores the nRT messages to be transmitted.

RXRT: The buffer that stores the RT messages that are received.

RxnRT,": The buffer that stores the nRT messages that are received.

RTIL": The variable that stores the type of next slot whether RT or nRT.

myILid: The variable that stores whether the device owns the next time slot or not.
vIL;": The variable that holds the additional information of the protocol operations.
reqlL;: The variable that stores the request to the CL to determine RTIL and myIL.
sendVIL® The variable that stores the whether vIL is sent or not.

at®: The variable that shows the acceptance test result.

checkPT,": The variable that stores the rollback status of that node.

Actions in IL;

output IL2SM (m:M),

output UPDVIL(VIL: A, TXnRT: Q, RXnRT:Q);
input SENDRES(atRes:bool, rbSt: int)

input RBACK(ILHT: Hy cLHT: H,, rbSt: int)
input SM2ILDP (m:M);

input CL2ILRT(bmy:bool, bgr:bool, m:M);
input AP2ILNRT(m:M);

input IL2APNRT(9:Q);

output IL2CLRT (m:M);

internal UPDATE();

output REQRT();

17

TUHOA FL (I STow e for b fr 02 Gt 02 dwr s e M2 Type, O Type A 2 Type Hyp @ Tipe)
Alafes

oW s R 1= dSlen signature
TXRT]: M := empty output 1IL25M(m: M),
TxnRT) : (F 7= emply output UPDVIL{vIL: Ar TXRRT: QLRXnRT: Q)

MT?! M = emply Input SENDRES (arRes: bool, rbSr: inr)
M’I‘;’:) = emply input REACK{HHT : My olHT : Hey rbSe: i)
BTILY: bool = false input SM2ILDF(m: M)
myILY: bool := false :P“: ::E:E;Té:r :._’;‘{ brgr ; bl m: M)
d, - pu L i
rquﬁ" :Jmp,:m; .m; input ILZAPNET[g: ()
“'d‘d IL: o e output ILZCLRT{m: M)
aty: hool 1= trug internal UPDATE(),
checkpTd: ins = -1 output REQRET();
wILE: A o= InitV
-
intermal UPDATE(Y Input 1L2APNET(RxaRT?),
pre- eff:
nowl= dSlol set Fxn®T; emply
eflt input AP2ILNET(mr);
vILy = foalvitd, RTILY) off
"=
reqTif :m true TocnR T Push{r)
sendVILY o= true output IL25M(m),
output UPDVIL(WL, TXaRT, RXnRT); pre:
- il
pre: (monw —T::J Amylioh . .
(~(TxrTd empty) A RTILY) v (-RTILY A
ndvILd = : ! !
fL:...; i ~(TxnrT Top empty))
eff: eff:
sendVIL? = false i RTILY
. ot = 'I‘JLR’["r
input SENDRES (ar Res, rhSt); st TxRT empty
el elie
at? = arRes sct = TxnRTY. Top
checkPT? := rbst Tk Pop
input REACK (T, elH T, rbS1); set m.rbSit = check#T{
off: et m.arfes = ar?
' A = false
vInd = {1wr_wind ity =1
TEnRTY := i1HT. TEORT] input SM2ILDP(m)
REaRTY ;= L1HT.R¥ARTY eff:
“““‘J:H; 0 e ifrTId
reqIld := B
sendVIL] i= true RRT]' =
atd ;= true else
‘ RecnR T Push(m)
output REQRT(); output IL2CLET(m);
pres _
d_ _— pre:
reqll] = .
nw: =‘" oW = I3
~(RxRT] empty)
ell:
reqIL? = false eff.
set it = RaRT
set BXRT] emply

18

input CL2ILRT(by,ba,m);

eff:

RTILS = b,

myILd = froy (VILE, RTILY, by, i)
TxRTd = m

Trajectories T

stop when evolve

now? = dSlot d(now?) =1
(sendVIL}j = true) A (now? =1o)

(now? = 1;) A (reqILd = true)

((now? = 1) A (myIL¢ = true) A

i
(=(TxRT¢ empty) A RTIL{) Vv (-RTILS A
—(TxnRTY. Top empty)))
nows= 3 A\ ﬁ(RxRT? empty)

Figure 9: IL Model as TIOA

mylL and vIL;® variables are updated by internal operations £, and f,... After the data
transmission is finished, UPDATE () is called for the update of variables of the next slot. vIL
is updated first. When IL does not need the information if the next time slot is RT or nRT,
reqlL gets false value (reqlL’=false) and the owner of the next time slot is determined
locally. If IL needs to information if the next time slot is RT or nRT, reqlL gets true value
(reqlL=true). IL triggers the action REQRT to the CL. REQRT () requests the type of the
next time and the owner of the next time slot. After the calculation time of CL, the action
CL2ILRT (b;,b,,m) indicates the type of the next time slot (b,), the owner of the next
time slot (b,) and RT message (m) in CL if it has. RTIL and mylL variables update their new
values according to b, and b,.

In 1L2SM (m), IL sends messages to all nodes, when current time now equals to next
starting time next and mylIL is true. The value in RTIL? determines if the transmitted message
is RT or nRT message. Also, in SM2ILDP (m), RTIL is important too, to send message to
upper layer RT buffer (RXRT,%) or nRT buffer (RxnRT%). In IL2CLRT (m), RT messages are
send to the upper layer immediately. In IL2APNRT (RxnRT;%) and AP2ILNRT (m), upper
layer can reach TxnRT;" and RxnRT* buffers in the IL at any time.

If there is no collision on the shared medium, IL sends message to SM in a one slot and after
every update in IL, parameters which are related protocol are same. But, RTIL variable gets
its b, parameter from upper layer CL and this b; parameter shows the next time slot is RT or
NRT. Also, inf,, (vIL;%,RTIL;,b,,1i) function gets its b, parameter from CL and b,
parameter indicates that the next time slot belongs to the device i or not.

fuy (VIL;Y, false,-,1i) =true
(Vi€ T - {i}) fu (vIL,Y false,-,1) =false
fuy (VIL,, true,b,,1)=h,

In UPDVIL, if sendVIL is true, IL sends vIL parameters of that time slot to DP in each time
slot. In SENDRES (atRes, rbSt), IL gets information from the DP about acceptance test

19

result (atRes) and rollback status (rbSt). After getting atRes and rbSt, these variables are sent
to other nodes with I1L.2SM (m).In RBACK, IL gets stored vIL parameters, Rx and Tx
message from DP and updates its vIL parameters with the received vIL parameters.

Also, IL obeys some requirements below:
e Transmission window covers all messages.
m.length < dSlot—rem ¥ m & M
e The time between REQRT;and CL2ILRT;is rem-cmp. After each REQRT; function,
CL2ILRT;0CCUTS.
e If REQRT (t), and REQRT (t)ii, J €I, i# J occur at the same time t, then, it holds
for the
next occurrence of CL2ILRT (b;,b,, m) and CL2ILRT (4.b.i) 5 thatand by = by = b,

true = b>= false [12]

In framework, IL asks to the CL layer whether the next time slot is RT or nRT. There are 3
variables in vIL such asviL.cnt, viL.cyc, viL.slots. These vIL parameters show which node
owns the nRT slot at that time slot. Internal functions £, and £, are defined in Figure 10.
In £,,4 function, viL.cnt is incremented with modulo viL.cyc. After sending action REQRT to
the CL, CL does action CL2ILRT (by, by, m). In £, internal function, if the next time slot
is RT, it determines with action CL2ILRT, fy, function returns b, variable which returns
with action CL2ILRT. If the next time slot is nRT, it determines with RTILid and
VIL.NRTSet, £y, internal function returns true and the owner of the next time slot is
determined by IL.

fupd(VILZ{L:RTIL;—_l)-Cnt ={ (virdent +1) mod vIiLl.cyc

by if RTTLY = true
Jony (leL;-_-l. _) true if -RTIL{ AvIL{.cnt
RTILY, by, i) € vILY.nRTSet
false otherwise.

Figure 10: Internal Functions in IL Layer

3.2.2 Generic Coordination Layer:
Coordination Layer Generic Model is defined using TIOA Model in the article [12] [43].
Figure 11 shows the CL Model using TIOA. There are 8 parameters in the CL Model : del;,
t0, M, Q, V, Acy, He, InitCL .

e del;:A processing delay value,

e t0: Time of event,

e M: The type of transmitted messages,

e Q: The type of a FIFO queue messages,

e V: A vector of messages with type M,

e Ac.: Abstract variable of CL.

20

e Hc.: Abstract variable of CL.

CL Model as TIOA has variables to define the model and operations: send;?, x4 Rx,
RTCL myCL?, ch? reqCL®, vCL" .

e send®: Analog variable which evolves with the time derivative of 1defines the

passage of time after a request is sent by IL, it is bounded by del;.

e Tx: The buffer that represents the transmission of messages.

e Rx" The buffer that represents the reception of messages.

e RTCL® The variable that stores the type of next slot whether RT or nRT.

e myCL": The variable that stores whether the device owns the next time slot or not.

e ch®: The channel variable.

e reqCL The variable that stores the request from IL to determine RTIL and myIL.

e sendvCL;%: The variable that stores the whether vCL is sent or not.

e VCL": The variable that holds the additional information of the protocol operations.
Actions in CL:

e input AP2CL (m:M, ch: int);

e input IL2CLRT(m:M);

e input REQRT(m:M)

e output UPDVCL(VCL: Ac., Tx: V, Rx:Q, RTCL: bool);

e output RBACK(ILHT: Hy_ cLHT: Hy, rbSt: int);

e output CL2ILRT(RTCL":bool,myCL: bool, m:M);

e input CL2AP(q:Q);

The transmission of messages for different channels are supported in CL. Channels have 2
parameters namely b which shows the device number and ¢ which shows the channel
number of that device. Current message for one channel is stored in Tx message buffer. Tx
and Rx buffers are used to stores messages. RTCLS, myCl and channel variable ch indicate if
the next time slot is RT or nRT, the owner of the next time slot and its channel. These
variables are updated when vCL is updated with internal functions. Send variable shows the
passage of the time after a request is sent by IL and it is also bounded by del;.

When CL gets message REQRT (t); from IL layer, RTCL, myCL and ch variables are
updated for the next time slot using gg; (vCL;,RTCL;%, t)and g, (vCL;%,RTCL;?, ¢,
1) functions. After getting REQRT (t); message from IL, send analog variable gets 0 and
reqCL boolean variable gets true. In the computation, unique sender for RT slot is
determined to avoid collision. myCL variable shows the owner of the next time slot. While
computing in CL layer, RTCL", myCL®, vCL", reqCL, ch?, t(timing information) and
m.par (RT message parameters) are used by CL. If send (the computation time) does not
exceed the del;and reqCL" variable is true, CL sends CL2 ILRT (RTCL;%, myCL;%,m) to the
IL layer. Also del; variable should be less than rem-cmp time. In CL2ILRT (RTCL,®,
myCL;®, m) ,if myCL;" variable is true, Tx" buffer gives message m to the IL layer.

In action UPDVCL, if sendVCL is true, CL sends vCL parameters of that time slot to DP each

time slot. In action RBACK, IL gets vCL parameters, Rx and Tx message from DP and update
its vCL parameters with the receved vCL parameters.

21

TIOA CL;{del;: int.ty: int, M: Type, Q: Type. V: Twpe, Acr: Tvpe, Hey: Tvpe, InitCL: Aeyg)

states
gend}: real = del; signatures
T:c:.i: V := empty . - B -

input AP2CL{m: M, ch: int);
Rxf': Q == empty input IL2CLET(m: M);
RTCL:.j: bool := false input REQRT();
rrryCL:.j: bool = false output UPDVCL{VCL: Aqp, Tx: V. Rx: O, ETCI.j.i: bool);
-::'_'1:.1: inft =10 input REBACK (i[HT : Hy .clHT : Hpp.rbSt: int)
reqCLy: bool: = false output CL21LRT(RTCLY : hool. myCLE : hoal.m: M);
senﬂvtl}i: bool: = false input CL2AP(g: Q);

vClj.i: Acp: =InitCL

transitions

input AP2CL(m,ch); input REACK({HT, clHT, rbSi);
eff: eff:
T:[ch].data = m.dar veLd := c1BTdvCL
T[ch] par ;= m.p Tl = 1T Tx
input IL2ZCLRT(m); Rxf' := c1HT{ Rx
eff:

output CL2ILRT(RTCLY mycLd m);
Ract! Push(m) P (§ Iy CLy, m);

d. d pre:
vCLY = gupd | VCL: , m.par
i = gupa(vCL], m.par) reqCI_fA{ser_d? = del;)
input REQRT(); eff:
eff: . ; . if I.'II}’CL:-“
RTCL = gar (ver RICL) m o= Tx[chd]
(myCL{ . chy) == Gumy(VCLy, 1) mCL:=vCL
send? ;=10 set T [chd] empty
reqCL:.j = true else
sendVeLy = true set m empty
d._ .
output UPDVCL(vCL, Tx, Rx, RTCL), reqCL; := false
pre: input cL2AP(Re);
snar.u:l‘uu":ZL:-j = true eff
L :
send; =1y set Rxd empty
eff:

snar.u:l‘uu"::L:.j = false
trajectories
stop when evolve
{sendVCLy = true) A (send? =1p)) d(send}) =1
reqCLd A (send? = del;)

Figure 11: CL Model as TIOA

CL shares the action AP2CL (dat,p,ch); with the upper layer. and the action
IL2CLRT (m, t); with the lower layer . After AP2CL (dat,p, ch);, data dat and the
protocol parameters p are stored in Tx’[ch].data and Tx[ch].par on the CL layer. After
IL2CLRT (m, t), the message m from IL is stored in Rx;¢ buffer and vCL? variable is
updated with the action of g, (vCL;*, m.par, t). Upper Layer control application shares
the action CL2AP (Rx;%); with CL. After CL2AP (Rx;%) , message in Rx’ buffer is sent to
the control application. The decision variables vCL;", the slot type RTCL;® , variable which
indicates the owner of the next slot time myCLid and related channel variable ch® are
updated with Gupa (VCL;%, m.par, t), gzr (VCL;9, RTCL;%, t) and
Gny (VCL;?,RTCL;, t, 1) functions.

Ony (VCL;?, false ,t,1i) =(false, 0),

22

Oy (vCL,?, true, t, 1) = (true, ch),
2g,., (vCL;?, true, t,) =(false, 0) forall j € I - {i}

In CL, variables are stored in the form of communication requests. Priority queue is a queue
which stores the communication requests in the form of (b,c,eT,dT). b indicates a device, ¢
shows the channel of that device, eT holds the eligibility time of the message and dT is the
deadline time of the message which is started when the request is issued. In other words, the
message in the priority queue is sent by device b with channel c at the eligible time eT and it
should be sent before the deadline time dT. m.par.req parameter is a set of request from
control application. After getting messages from control application, messages are pushed
into vCL.PQ and they are ordered according to their eligibility time eT and deadline time dT.
The request which is the most urgent eligibility time eT is sent to the lower layer.

true if vCL;.PQ.Top.eT <t

grr(VvCL;, RT; 1) =
false otherwise
(true,a) if PQ;. Top.h =i A RT;
gmy(VCL, RT;, 1,1) = = true A PQ;.Top.c = a

(false,0) otherwise

Figure 12: Update Functions for CL

Figure 12 shows the update functions for CL. In g, (vCL;?, m. par, t) function, if RTCL
equals true,in other words , the next time slot is RT slot, the first request in the priority queue
is popped and the request is sent to the lower layer. However, if RTCL is false (the next time
slot is nRT slot), the first request reenters the priority queue. If the eligibility time of the
request at the top of the priority queue (VCL{.PQ.Top.eT) is smaller than current time t,
gzr (VCL;%, RTCL;?, t) function returns true. Thus, the type of next slot time is determined
whether it is RT or nRT. If the request at the top of the priority queue’s owner is (PQ;.Top.c)
that device and the request at the top of the priority queue’s channel is that device’s channel
Gny (VCL;%,RTCL,%, t, 1) function returns true and that device’s channel a.

3.2.3 Generic Shared Medium Model:
Shared Medium Layer Generic Model is defined using TIOA Model in the article [12] [43].
Figure 13 shows the SM Model using TIOA. There are 6 variables in the SM Model : mess®,
coll”, next®, now?, M, N.

e mess”: The parameter that indicates currently transmitted message

e coll®: Theparameter that indicates whether the collision is happened or not.

e next”: The parameter that indicates the next reception time

e now®: Analog parameter which evolves with the time derivative of 1 , the updated

time information is provided by this variable.

23

e M: The type of transmitted messages.

e N: The parameter that indicates the number of messages.
Actions in SM:

e input IL2SM(m:M);

e output SM2ILDP(m:M)

TIOA SMIN :int, M : type)

siates

s M = empty

-

col1Y : Bool := false signature
next® :int := 0 input 1L25M(m - M),
now" ; Real =0 output SM2ILDP (m : M)
transitions
input 1.25M(m); output SM2ILDF ()
eff: pre:
if ((coll” = false) Almess® is empty)) (now® = next?) A (mess? not empty

mess? 1= m off:

bl '
next=im.length .
N sel mess? empty
else d
L next® =)
= Lrue

next® =10

set mes s empty
now® =10
trajectories
stop when

{now* = next9) A (mess? not cmpty)
evolve

dinow*) =1

Figure 13: SM Model as TIOA

There are 2 actions shared with the IL layer namely I11.2SM(m) and SM2IL (m) . In
IL2SM (m), if mess variable is empty in SM layer, message m is sent to the SM layer and
next variable is updated. If mess variable is not empty in SM layer, collision is occurred and
coll variable equals true. In this case next variable is set to 0 and mess variable is set to
empty. If next equals to now in SM layer, SM does action SM2TL to the IL layer. In SM2TL
transition, m variable is set to mess variable. Thus the message m can be sent by SM. After
that, mess variable is set to be empty.

3.2.4 Generic Dependability Plane Model:
Dependability Plane (DP) Generic Model is defined using TIOA Model [43]. Figure 14
shows the DP Model using TIOA. There are 7 parameters in the DL Model : cyc, to,t3,A,
Act, App, InitDP .

e cyc: The variable shows the number of the cycle.

24

o fo,t;: Time of events.

e Ay: Abstract variable of IL.

e A : Abstract variable of CL.

e App: Abstract variable of DP.

e |nitDP: Abstract variable of DP

TIOA DP{cyc:imt to z int ty int Ay : Type, Acy : Type, Ape: Tyvpe, InitDL : Ap: .Q : Type)

states signatures

now: R:=0 input UPDVIL(VIL: Ai. TXnRT: Q.RXnRT: Q)
atRes?: hool := true input UPDVCL(VCL: A¢y, Tx: V. Rx: Q.RTCLY: bool),
rbReqd: bool := false input SM21LDP (m: M)

rtslotd: bool := false internal ATEST(),

stNo!: int :=—1 output REACK(JLHT : Hy ,cIHT : Hey ,rbSt: int),
nodeID!: inf 1= —1 output SENDRES(atRes : bool .rbSt: int),

rostl: int im —1 i

d. c ectones

cnty: int 1= 0 o

ILHist dove]: Hy P

vewkistd o) Aa (stNof = 1) A (now? =1)

vOre: Ape = InitDL (stho! =2) A (now? =1y)

veLd: Acy (stNof = 3) A (now? = to)

o

input UPDVIL(VIL, TXnRT RXnRT), internal ATEST(),

eff: pre:

1L st8fent).vIL := viL stiof = 1

ILHistdfent]. TXnRT = TXnRT now] =l

1Listéfont] RYnRT := RXnRT eff:

d

input UPDVCL(YCL, Tx, Ry, RTCL), caty+=1

x if tbReqf == faise

cu:

tRes) = fAT(CLHist[ent — 1]vCL.vDP,

rtslot] = RTCL SLRAR) = LAT\CLH I ey

rVCL. nodelD.rtSlot)
if atkes? == rrue
rbStd = cntd ~ |

craistdfem]) vCL :=1vCL
cLaistdfem).Tx 1= Tx
cLaistfent). Ry = Rx

else
input SM21LD? (m) rbReq! = true
eff: x‘bSt:’ = Cﬂt,d -2
nodeld = m.nodelD if roge) == 1
VCL = maCL st =ae—1
rbstd = m.rbSt if cntf ==cye
nowj :=0 cnté =0
if m.atRes == false sthof =2
stiof =3 output RBACK (11879 c1HT rbst!),
clse , pre:
stNoj = | sthof =3
output SENDRES(atRes!, rbst?), now! = iy
pre: eff:
sthof =2 cntd = rbstd
nowj = 1y if catf == cye
cff: cnté=0
sthoj = —1 {16 = TLHistdrbSY]
c1urd = cLuise[rbst]
s:Ho;' = -]

rbReq! = false
Figure 14: Functions in Dependability Plane

25

DP Model as TIOA has variables to define the model and operations: atRes?, rbReqid,
rtSlot, stNo, nodelD, rbSt, cnt, vILHist[cyc] , vCLHist [cyc] , vDP®, rVCL".
e atRes;: Boolean variable keeping the acceptance test results
 rbReq": Boolean variable keeping the rollback requirement.
e rtSlot": Boolean variable keeping the type of the time slot.
. stNoid: Integer variable used for state transition
e nodelD:Integer variable keeping the message transmitting node 1D
e rbSt: Integer variable keeping the rollback state number
e cnt”: Integer counter variable for periodic operation
e VILHist;“[cyc]: Data structure keeping the vIL history
e VCLHist; “[cyc]: Data structure keeping the vCL history
e VDP® Data structure to keep the information required for dependability checks.
Now it just holds the non real-time slot ownership information as an integer array
e rVCL" Data structure keeping the transmitting node’s vCL variable for
dependability checks.
Also, some new parameters are added to the header of the messages.
e nodelD: transmitting node’s ID.
. vCLid: transmitting node’s vCL.
e atRes;® : transmitting node’s acceptance test result.
e rbSt: the rollback state in case of a failure.
Actions in DP:
e input UPDVIL(vIL: A, TXnRT: Q, RXnRT: Q);
e input UPDVCL(VCL: A, Tx: V, Rx:Q, RTCL": bool);
e input SM2ILDP(m:M)
e internal ATEST();
e output RBACK(ILHT: Hy_ cLHT: Hy, rbSt: int);
e output SENDRES(atRes:bool, rbSt:int);

Dependability Plane has interfaces with IL and CL. There are input actions shared with 1L
and CL namely UPDVIL (vIL) and UPDVCL (vCL,RTCL) . In UPDVIL (vIL), VIL
history vILHist; “[cyc] is updated with vIL decision variable taken from IL. In
UPDVCL (vCL,RTCL) , the type of the time slot, rtSlot is updated with RTCL which is
taken from CL layer that shows the next time slot is whether RT or nRT. Also, vCL history
vCLHist; °[cyc] is updated with vCL decision variable taken from CL. Also, an action
SM2ILDP (m) is occurred in DP. In SM2ILDP (m) , transmitting node’s ID (m.nodelD) is
assigned to nodelD;’, transmitting node’s vCL is assigned to rVCL which keeps the
transmitting node’s vCL variable for dependability checks. The rollback state number rbSt
of message m is assigned to rbSt® in DP. If transmitting node’s acceptance test result atRes;?
equals to false, the state transition number stNo;® equals 3, if atRes;® equals to true, the state
transition number stNo;® equals 1.

There are 2 output actions from dependability plane: SENDRES (atRes;*, rbSt;%) and
RBACK (vIL,%, vCL;") . Before SENDRES occurs, the state transition number stNo;* should
be 2, and after SENDRES stNo; is -1. Before RBACK occurs stNo? should be, and after
that, counter variable for periodic operation equals to rollback state number plus 1 (cnt=
rtSlot,® +1). If counter for periodic operation cnt® equals to number of the cycle, cnt;® gets 0.

26

vILHist[cyc] and VCLHist; °[cyc] variables are assigned to viL{*and vCL;® variables in IL
and CL . The state transition number stNo;equals -1 and the rollback requirement rbReg;
gets false.

In the dependability plane, there is also an internal action ATEST () . Before ATEST ()
occurs, the state transition number stNo;” should be 1, and after ATEST (), stNo® is -1.The
counter variable cnt” is incremented by 1 firstly in ATEST () . Then if rollback requirement
rbReqid equals false, f,.(vCLHist,vDP,cnt,nodeID,rtSlot) function result is
assigned to the transmitting node’s acceptance test result atRes;* and if acceptance test result
atRes? equals true, the rollback state number rbSt equals the counter cnt’minus 1 (rbSt =
cnt®- 1). If acceptance test result atRes;* equals false, rollback requirement is needed and
rollback state number rbSt® equals the counter cnt;’ minus 2 (rbSt® = cnt’- 2). If rollback
state number rbSt equals -1, rollback state number rbSt;? equals cyc minus 1 (rbStid =
cyc- 1). If the counter cnt’ equals to cyc, counter cnt® is assigned to 0 and , the state
transition number stNo;” is assigned to 2.

Figure 15 shows the example of f,;. In function of acceptance test f.. , there are 4
parameters using input of function, VvCLHist; ¢, vDP%, cnt’, nodelD®, rtSlot® . If vIL
historyvILHist; °[cnt-1] equals to the transmitting node’s vCL variable for dependability
checks rvVCL and if the type of the time slot rtSlot,’ equals true (slot is RT) and the device
of the on the top of the priority queue of vIL history VILHist;°[cnt-1].PQ.Top.b equals the
nodelD, f.r function returns true in other words acceptance test result is passed . If slot
rtSlot,® equals false (slot is NRT) and vDPid[cnt—l] equals nodelD, £, function returns true,
otherwise £, function returns false and acceptance test result is failed.

fAT(vCLHTY, vDLd, rveLd, node1Dd, rtSlot?)
if(rtsl Dt}J == true) NvCLET.PQ;. Top.b == nodel D)
if vCLHT! == rvcLd
return(true)
else if (rts 10::‘j == false) N(vDL[cnt — 1] == nodel D)
return(true)
else

return(false)

Figure 15: Example for £,;

3.3 D’RIP Implementation

D?RIP is the predecessor of D°RIP which includes all layers as described before except for
the dependability plane. D°RIP is implemented over Intel Gigabit Ethernet driver on PCs.
While developing the framework, Lubuntu (Linux Kernel 3.6.2 with the RT patch) is used as

27

the operating system. Several changes are made on kernel configuration of Linux to provide
precise timing and needed task scheduling mechanism. These changes are: [44]
e The amount of memory is increased for TCP/UDP socket 1/0 queues.
e BIOS Settings are changed to disable non-maskable interrupts. Because operating
system cannot disable these interrupts.
o For low latency, network interface card NAPI is disabled.
e To create an interrupt for all incoming messages, InterruptThrottleRate is set to 0.0
e For instant message transmission starting, TxIntDelay is set to 0.0
e To prevent power saving state, EEE is set to 0.0
e To disable re transmission in Ethernet, EL000_COLLISION_THRESHOLD is set to
0.

In implementation, synchronization of nodes is needed to run system. IEEE 1588 protocol
with hardware time-stamping is used for precise clock synchronization. For IEEE 1588
protocol, Intel Gigabit CT Desktop Adapter is used. In this adapter, e1000 driver module
with version 2.2.14 is used. So, while software development, codes regarding
implementation are added on the e1000 driver module.

In DRIP, standard Ethernet frames are used. Different types of frames are used in standard
Ethernet frames. In RT frame type, RT messages have 14 Bytes CL message header and CL
messages have 14 Bytes Ethernet header. In fragmented nRT frame type, fragmented
payload messages have 8 Bytes fragment header and nRT Fragment messages have 14 Bytes
Ethernet header. Figure 16 below shows the data encapsulation of RT and long nRT
messages.

Time | Slot Number Size Control Application
Eth
[;e:;:t 8DBytes 4 Bytes 2Bytes CONTROLfHEADER Data CRC
14Bytes| CL_PACKET HEADER T APP MESSACE 4 Bytes
CL PACKET
ETHERNET FRAME
(a)
Ethemet NodeN | PacN | PacL | FraN | FraO | Fral
Header 1 Byte | 1Byte |2ByteqlByte| 1 Byte] 2Bytes nRT_PACK—ET fragment CRC
14 Bytes RAGMENT HEADER FRAGMENT DAVI.OAD 4 Bytes
nkT GMENT —
ETHERNET FRAME

(b)

Figure 16: Data Encapsulation of RT and Long nRT messages [44]

3.3.1 Interface Layer (IL) :

Interface layer (IL) is the layer which lies between shared medium and coordination layer
(CL). It gets RT and nRT messages from shared medium and stores RT messages in the
RXRT message buffer and stores nRT messages in the RxnRt message buffer. It sends RT
messages to the CL using TL.2CLRT message and sends nRT messages to the application
layer using TL2APNRT. IL layer gets also RT message and nRT messages from CL and

28

application layer. It stores these messages in the TXRT and TxnRT message buffers and they
are sent to the shared medium using I1.2SM message.

Interface layer was implemented in RT Linux kernel-space part. Figure 17 illustrates the
message transmission in IL.

|EEE 1588 Time
CL nRT Applications Synchronization Application
A A
IL2CL cta IL2APNRT AP2ILNRT 1588 Time Sync
RTRxData RTTxData NRTRXQ NRTTXQLowWPri NRTTxQHighPri
A A
IL
SM2IL IL2SM
SM

Figure 17: Message Transmission in IL layer

The communication method in D?RIP is time division multiple access (TDMA). In TDMA
structure, all nodes have different slots to transmit the message to the other nodes. IL
provides this TDMA structure to avoid collision in the shared medium. This TDMA
structure is synchronized using 1588 precise time synchronizing protocol and all nodes start
TDMA at the same time to be synchronized using SYNC message. At the startup point, one
of the nodes in the network behaves as a master node and sends a special SYNC message to
all nodes to determine the start of the operation. After that, TDMA structure is started and all
nodes in the network know that TDMA is started. It is also maintained using IEEE 1588
Precise Time Protocol. When TDMA structure is implemented on this framework, the issue
which is related TDMA structure with fixed time slots is raised. Message packets especially
nNRT packets can be bigger than time-slot size. To overcome this problem, nRT packets
which are bigger than determined message size should be fragmented before transmission
and reassembled after transmission. So that, there are fragmenter and defragmenter threads
in the IL thread. Table 2 shows the frame header structure. In the frame header structure,
nodelD shows the id of the source node, packetID indicates the id of the packet which is
transmitted from source node (nodelD), packetLength stores the total length of packet which
is unfragmented, frameNum shows the total frame number, frameSeq indicates the sequence
number of the frame, frameLength stores the data length in the frame. Fragmenter thread
fragments the nRT packets which is bigger than determined message size and transmits the

29

fragmented packets to shared medium. After destination node receives the fragmented
packets, reassembly thread assemblies the fragmented packets.

Table 2: Frame Header Structure

nodelD: unsigned char
packetID: unsigned char
packetLength: unsigned short int
fragNum: unsigned char
frameSeq: unsigned char
frameLength: unsigned short int

If the received message is NnRT, IL triggers the IL2APNRT action which is shared with
application layer to transmit the nNRT message and application layer sends nRT message to
the IL using AP2ILNRT. Also, the time synchronization messages are sent as nRT message
to the application layer. The difference between nRT and the time synchronization messages
is 1588 messages’ priority is higher than nRT messages’. So that, there are 2 priority queue
in the IL to separate the nRT messages and time synchronization messages namely high
priority queue (NRTTxQHighPri) and low priority queue (nRTTxQLowPri). When nRT
packet comes from SM, IL puts time synchronizing packets into the high priority queue and
puts nRT packets into the low priority queue. When an nRT slot comes for that device, IL
controls the high priority queue firstly and packets in the high priority queue is sent to
application layer.

There are two shared actions between the shared medium layer and the interface layer:
SM2ILand IL2SM. In SM21L, shared medium sends RT and nRT message to the IL. There
are 3 different cases. If ETHERTYPE is 0x2200 in the frame, it means that fragmented nRT
packet is received and this message is forwarded to Reassembly thread. After reassembling,
packet is sent to IL. If the packet is nRT and shorter than packet size, it also sends to the IL.
In third type, ETHERTYPE is 0x1100 in the frame, it is also sent to the IL. Then IL
transmits the received message to the RTRxData or nRTRxQ buffer depends on receiving
packet’s protocol which is written in T1.2SM action before packet is sent by other node.lf
receiving packet’s protocol is RT, the received message is stored in the RTRxData message
queue. If receiving packet’s protocol is nRT, the received message is stored in NRTRxQ
message queue. In T1L.2SV, if the device owns the time slot (mylL=true, if and only if cnt
belongs to nRTSet), the type of time slot is determined and the message queue which is
related the type of message has at least a message, IL sends message to the SM. If the slot is
determined for RT traffic (RTIL=true), the message m is transferred from RTTxData. If the
slot is determined for nRT traffic (RTIL=false), the message m is transferred from
NRTTxQHighPri or nRTTxQLowPri depends on the type of nRT message. (IEEE 1588 Time
Synch or nRT from AP) If the message m is nRT message from the application and it’s
longer than standard packet size, IL wakes up Fragmentation Thread and then send
fragmented message m to SM.

There are also two shared actions between the interface layer and the coordination layer
namely T1.2CL and CL2IL. In IL2CL, interface layer gets packet from SM, it copies that
packet into the RTRxData message queue, then it sends RT message m to the coordination
layer. In CL2IL communication message, message m is copied from CL using

30

copy from user function. Then the message length is different from 1 byte, receiving
message is copied into the RTTxData message queue. If the message length is 1 byte and the
receiving message’s first byte is set to RTIL and myIL variable is set according to return of
slotOwner(RTIL). If the receiving message is OXFF, RTIL is set to false. Thus, it can be
seen that RTIL and mylL is determined according to message coming from CL.

For nRT communication between application layer and interface layer, there are 2 actions:
IL2APNRT and AP2ILNRT. In IL2APNRT, the nRT message m which is stored in
NRTRxQ message buffer is sent to the application layer and nRTRXQ message queue is set
empty. In AP2ILNRT, application layer sends nRT message and it is stored in
NRTTxQLowPrimessage buffer in the IL.

3.3.1.1 SM- IL Interface Implementation

In the implementation of SM-IL interface, Ethernet driver functions are used and new
functions are implemented on the Ethernet driver source code. For implementing the
interface between SM and IL, modular structure of Linux is used. The driver source code did
not change directly, instead the driver source code of the network internet card (NIC) is
downloaded from its website and modification of driver functions and new functions are
added to the driver source code. After that, the original Ethernet driver module is removed
and the updated version module is added to the kernel.

In the implementation of the IL, receive and transmit functions are used and modified.
Binary exponential back-off algorithm is disabled. Because in back-off algorithm, if a
collision occurs on the network, a node which wants to communicate to other one wait a
random time and start a communication again. This causes that TDMA operation is
collapsed. So back-off algorithm is disabled. Figurel9 shows the algorithm of the transmit
function and modification in the transmit function. In Figure 18, IL gets RT and nRT
messages from user space. RT packets go into IL module firstly, then they are transmitted to
SM by e1000 xmit frame () function. nRT packets go into e1000e module firstly. If
the packets length bigger than standard packet size, they are transmitted to fragmentation
module. If the packet length is smaller than standard packet size, they are transmitted to
e1000_xmit frame () function. If the packets are 1588 time synch packets, they are
transmitted to IL module.

31

RT APPLICATION
NRT APPLICATION
NRT Packet

nRT Packets from
ARTTxQHighPri
- Fragmented nRT packets Y RT Packets From CL
nRT Packets from
r’ nRTTXQLowPri
L
\ oY
'
.
\
e1000_xmit_Frame_modified()
TRUE
L 4
Is packet length
5 packet going to TRU smaller or equal than Is fragmentation
the etho? ALSE initialized?
TRUE FALSE
TRUE
Is packet sent by TRUE J
1588 apﬂ?
FALSE J
FALSE
e1000_xmit_frame(}
/ Continue to
. o ethernet driver —
transmit function

v

l Transmit Packet to SM l

Figure 18: The Algorithm of the Transmit Function

Figure 19 shows the algorithm of the receive function and modification in the receive
function. In Figure 19, packets come from SM and they go into the e1000e module. In this
module, if packets are not fragmented, they continue to receive function and nRT

32

application. If packets are fragmented, they continue to defragmentation thread. If packets

are RT, they continue to T1.2CL function. Then they are sent to CL.

(Receiw Packet from SM)

FALSE

TRUE

ethernet driver ALS|

IL2CL()

ERROR

FALSE!

4

Read RT data
size From the
packet header
and send RT
datako CL

D3RIP_Init =true |g=TRU

FALSE

TRU

SMZIL()
Is packet
|s packet
‘m?tm'?m TRU protocol RT? TRUE)
Defragmentation
Thread

FALSE
D3RIP_Imit
|5 packet
protocol nRT?. TRU R?I&L? ALS
FALSE
FALSE
o

Is
defragmentation
initialized?

FALSE

lotnumber == 17

ALS|

ERROR

Y

(nRT Application)

cL

oo

Figure 19: The Algorithm of the Receive Function

33

3.3.1.2 CL- IL Interface Implementation

In the implementation of IL-CL Interface, character device files are used to transfer the
messages between IL and CL. charDev_IL2CL and charDev_CL2IL device files are used for
the communication of each layer. The reason why using character device file is that IL is
implemented on kernel space and CL is implemented on user space.
Copy_ from user ()and copy to user ()functions in the IL are used to write
messages to the file and to read messages from file.

3.3.2 Coordination Layer (CL):

Coordination layer (CL) is the layer which lies between the control application and interface
layer (IL). It gets the RT messages from control application, sends the RT messages to the
interface layer. While processing the RT traffic, it calculates the best performance of
delivery of the RT messages to the network. Also, CL calculates the slot allocations
according to RT messages coming from control application and coordinates the RT
traffic.Figure 20 below shows the message transmission in CL.

*_d3.dev *.sim

AP (SIMFAUDES)

CL2AP
AP2CL

A\ 4

mMQueueToTransmit

mMQueueToReceive

v

A

TxRTmsg RxRTmsg
(o
I Write() P chardev_D2RIP Read() *
CL A

CL2IL

IL2CL
v

Figure 20: Message Transmission in CL layer

In coordination layer implementation, there is a thread which wakes up periodically at the
start of the each time slot. At the beginning of the time slot, if mMQueueToReceive message
gueue has a message from AP, CL continues with processAP2CL. In processAP2CL,
receiving message is copied to Tx. After that CL continues with the processCLUPDATE
function. In this function, the type of the time slot (RT or nRT) is determined by looking at
the PQ_dT priority queue. If there is no message in PQ_dT, RTCL is nRT. If there is any
message in PQ_dT, RTCL is RT. The owner of the time slot is determined by looking at vCL

34

parameters in PQ_dT. If vCL parameter’s node id equals that node’s node id, mySlot returns
true. If vCL parameter’s node id does not equal that node’s node id, mySlot returns false.
After determining the type of the time slot and the owner of the time slot, if the time slot is
RT and the owner of the time slot is mine (myCL=true), the message in the Tx is assigned to
chardev_D2RIP character file. The reason why character file is used to communicate with IL
is that CL is implemented on user-space. If the time slot is RT or nRT and the owner of the
time slot is other (myCL=false), CL sends IL 1 byte to inform it.

If there is a message in chardev_D2RIP character file, CL calls processCL2AP function.
In processCL2AP, receiving message is copied into Rx. After that gUpdate function is
called to update the vCL parameters in the PQ_dT. Then the message in the Rx is assigned to
mMQueueToTransmit message queue to send the message to Application Layer (AP).
Figure 21 shows the structure of the message which is send to AP. It contains channel
information (ch), CL protocol parameters and payload.

ch CL Protocol Parameters Control Message Payload

Control Message

Figure 21: Message Structure

In CL, two priority queueare used to implement the protocol namely PQ_dT and PQ_eT.In
PQ_dT, the communication requests are ordered with the deadline time of the events. In
PQ_eT, the communication requests are ordered with the eligibility time of the events.
PQ_dT and PQ_eT are used to store the communication requests which are needed at the
time slot. Figure 22 shows the message format in the CL. It contains 3 parameters: number
of requests (NoR), communication requests and control message payload. The number of
requests (NoR) shows the count of request. Communication requests part contains requests
with the node (b), channel (c), eligibility time (eT) and the deadline time (dT).

1 Byte
| NoR | Communication I Control Message Payload
Requests
Request | Request | -
| Node | ch | eT | dT |

-~ et ra—— o>
1Byte 1Byte 1Byte 1Byte

Figure 22: Message Format in CL [29]

35

Figure 23 shows the algorithm of the CL. CL waits until a RT message comes from IL in the
runCL thread. Then it reads the start time from receiving RT message header. Meanwhile, it
controls Tx for RT message. If there is no RT data available, it continues process
CLUPDATE. In process CLUPDATE, RTCL and myCL are determined. If RTCL or myCL
are false, CL sends 1 byte to IL and sleeps until the next slot. If RTCL and myCL true, CL
gets packets from FIFO queue and send it to IL. It waits until a RT message comes from IL.
Then it continues to process CL2AP. In this process, CL gets slot number, time and packet
length info from the received RT message. If the packet length info is equal to the received
RT message size and the packet length is not equal to the CL header length, the priority
gueue is updated and the received message is sent to AP. Finally, CL sleeps until next slot.

Wait until a RT message
comes from IL

RT message slot
number == 07

Read the start time
from the RT message
header and sleep until
the skart time

ALS ERROR

Ask Control Application

forfdote processAP2CL()
RT data = Insert RT data into CL packet struct
available? Q| || == Update packet lengthinfo in CL
packet header
FALSE
- TRUE inserted inta FIFO ALS
queue?

processCLUPDATE()

) 4
» Update slotnumber,
» Gt Slot type (RTCL) and time info in CL /
» Get Slot owner (myCL) ALS| header
= Send CLheaderto IL
@ TRU @ TRUE:

FALSE FALSE

~

FFIFO
queue is not

empty?

» Get CL packet From
FIFD queus

TRU = Update slotnumber
and time info in CL

Send 1 byte packet header
_51;-‘; Eiﬂit _Sl?; gﬂli = Send CL packet to IL
in inl
Yy
processCLZAP()
h 4
= Update PRIORITY queue Get slotnumber, time and packet Wait until a
— send received RT length info From the received RT RT message
message to AP message comes from IL
packetLength 1= pafkelt Lengtlh inzo is
P —FALSE r RUI equal with recieved RT
LS| CL_HEADER_LENGTHT, message size?
FALSE
h 4

Sleap until the
=" D

Figure 23: CL Algorithm [29] [41]
36

3.3.3 D’°RIP Implementation Summary and Its Operation

As mentioned before, in DRIP implementation, there are 2 layers over SM: CL and IL.
Figure 24 shows the message transmissions of the layers and functions of D°RIP. When RT
applications send message AP2CL, CL stores it in TXRT and it sends message CL2IL. After
buffering in IL (inTXRT), IL sends SM and other nodes get the transmitted message using
message SM2IL. Node which takes the RT message, stores its RXRT buffer. After that it
sends to CL using message IL2CL. CL stores the message in RXRT and sends the message
to the RT applications using CL2AP. When nRT applications send message to IL, IL buffers
the NRT message in its TXnRT and sends the message to SM using T11.2SM. Node which
takes this nRT message, stores its RxnRT buffer in IL. After that it sends to nRT applications
using UDP/TCP Socket.

RT Applications nRT Applications
A
CL2AP (6) AP2CL (1)
h 4
RxRT TXRT
A
cL UDP/TCP Socket (1)
UDP/TCP Socket (4)
IL2CL (5) CL2IL (2)
h 4
h 4
RxRT TxRT RxnRT TXnRT
- A A
IL2SM (3) IL2SM (2)J
SM2IL (4) SM2IL (3)
IL
v
Message
SM

Figure 24: The Message Transmissions of the Layers and Functions of D’RIP

There are 3 different transmission events in the D’°RIP framework: Sending RT request with
RT packet, sending RT request without RT packet, sending nRT packet. Figure 25 shows the
timing of the sending RT request with RT packet.

37

Time

v

CL2IL (CLUPDATE) (2) IL2CL(5)
,,,,,,,,,,,,,,,,,,,,,,,,, ”_,,,,,,,,,,, —

IL2SM (3) SM2IL (4)

RT Request with RT Packet

- Slot Duration >

Figure 25: The Timing of the Sending RT request with RT packet

Figure 26 shows the timing of the sending RT request without RT packet.

Time

\/

CL2IL (CLUPDATE) (1) IL2CL(4)

,,,,,,,, \\ .L//

IL2SM (2) SM2IL (3)

7777777777777777777 h Ethernet —— ——————————————————

RT Request without RT Packet

- Slot Duration |

Figure 26: The Timing of the Sending RT request without RT packet

38

Figure 27 shows the timing of the sending nRT packet.

Time »
777777777777777777777777777777777 nRT Application-—--------—---———————— g
UDP — TCP Socket (1)- +<———————————————————————— CL-———————————— UDP — TCP Socket (5)
CL2IL (CLUPDATE) (2)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |L,,,,,,,,,,,,, Ll
IL2SM (3) SM2IL (4)
7777777777777777777777777777777777 -Ethernet —---------------- -~
nRT Packet
- Slot Duration -

Figure 27: The Timing of the Sending nRT packet

39

40

CHAPTER 4

DEPENDABILITY PLANE IMPLEMENTATION

4.1 Overview

The dependability plane (DP) is the layer which has interfaces with the shared medium
(SM), interface layer (IL) and coordination layer (CL). If there is a fault in the operation of
D°RIP, DP is supposed make sure that the fault is tolerated and the protocol maintains its
correct operation. At the beginning of each time slot, the actions UPDVIL and UPDVCL are
triggered by IL and CL to update the vCL and vIL history queues in DP. In the action
UPDVIL, IL sends vIL parameters of the time slot (cnt, cyc and slot) to the DP. In the action
UPDVCL , CL sends vCL parameters of the time slot priority queue of (nodeid, ch, eT and
dT) tuples to the DP. DP also gets action sSM21L.DP from IL when a message m is sent from
any node. In the action SM2ILDP, there are 6 parameters (atRes, rbSt, rvVCl.nodeld, rVCl.ch,
rVCl.eT, rVCIL.dT) which are sent for information about node which sends message m. In
each time slot, the receiving vCL parameters and the vCL parameters of that time slot are
compared with each other in the far function in DP. If they are equal to each other, the
function returns 1. Otherwise, the function returns 0. The returning parameter shows the
acceptance test result. If a faultoccurred in the system (acceptance test result is failed), DP
sends RBACK to the IL and CL to roll back the time slots. Messages m before the fault, are
sent again and the system returns to its normal operation.

In this thesis, the dependability plane is implemented in the RT Linux user-space part. It
communicates with the IL (in the kernel space) using a character device file and
communicates with the CL using message queues. Figure 28 below shows message exchange
of DP with other layers.

41

MessageBuffer

h When Rback=1

I ;} mMQueueToSend ‘ ‘mMQueueToReceive
AP (SIMFAUDES) | A

vy 1

v insertvCLQ!
VCLHistory Queue MQUEUE_CL2DPUP MQUEUE_CL2DPUP
—| DVCL < TPDVCL DVCL
MQUEUE_DP2CLRB MQUEUE_DP2CLRB
. il _ |

[popvILQ'
vILHistory Queue
chardev_IL2D chardev_DP2
A insertvILQ, p L
DP CL

7 Y

UPDVIL
|

popvCLQ!

SM2ILDP RBACK SENDRES

chardev_IL2D chardev_DP2
P IL

Figure 28: Message exchange of DP with other layers.

4.1.1 DP Implementation

In the dependability plane implementation, there are 2 threads which wake up periodically at
the start of the each time slot. In the listenCoordinationLayer thread, DP is listening to the
CL. If the MQUEUE_CL2DPUPDVCL message queue has a message from DP, DP
continues with processCL2DPUPDVCL. In processCL2DPUPDVCL, DP calls the
UPVCL function. In this function, the received vCL parameters are inserted into the
vCLHistory FIFO queue. In the listeninterfaceLayer thread, DP is listening to the IL. If
chardev_IL2DP character device file has a message from IL, DP looks at the first bit of the
message. If that message bit (msg[0]) equals to O, it continues with
processIL2DPUPDVIL. In processIL2DPUPDVIL, DP calls the UPVIL function. In
this function, the received vIL parameters are inserted into the viLHistory FIFO queue. If
that message bit (msg[0]) equals to 1, DP continues with processSM2TL. In this process,
the received message parameters (atRes, rbSt, rvCl.nodeld, rvCl.ch, rvCl.eT, rvCL.dT) are
assigned to the variables. If atRes equals to 1, DP continues with the ATEST () function. In
this function, DP calls £AT () and the variables (atResrbSt) are changed to coordinate the
operations. In £AT, vCL parameters which are came with SM2ILDP (rvCl.nodeld, rvCl.ch,
rvCl.eT, rvCl.dT) and vCL parameters which came with UPDVCL (nodeid, ch, eT and dT)
are compared to each other. If they are equal, £AT () returns true. If they are not equal,
fAT () returns false. After that the obtained results are sent with SENDRES. In SENDRES,
atRes and rbSt are sent to IL. In IL, these variables are inserted to the message header when
a message is sent to other nodes Thus, other nodes can learn the results of the acceptance
test. If the time slot passes the acceptance test, the protocol operation continues with the next

42

time slot. If the time slot doesn't pass the acceptance test, DP triggers RBACK in IL and CL.
In the action RBACK, the latest vCL and vIL parameters in the FIFO queues are popped up
and these variables are sent to CL and IL. Figure 29 shows the structure of DP

insertvCLQ:
povaLQ_L VCLHistory Queue Lisﬁ:rgdCL
RBACKIL " o e ueoveL—
RBACKCL:
SENDRE‘CZLpopvlLQj SI\;IZILDP =T?RBACK_’

VILHistory Queue

Listening IL Thread

chardev_D
P2IL

? 1 chardev_IL
2DP

insertviLQ
DP

SENDRES
RBACK__}

UPDVIL SM2ILDP

Figure 29: Structure of DP

In DP implementation, some changes are also made in IL, CL and AP, since the DP has
interfaces with IL and CL. So there must be interfaces with DP in CL and IL. The
implementation of these interfaces in CL and IL and the detailed information of the changes
on the other layers with the flowchart of the IL, CL, AP are explained in the following
sections. The first change on the other layers is adding a process and thread to CL. Figure 30
shows the CL implementation for dependability support. In CL, processCL2DPUPDVCL
function is added to the runCL thread to send vCL parameters to the DP using the message
queue. In processCL2DPUPDVCL, CL gets the vCL parameters of the time slot from
PQ_dT. It assigns the vCL parameters to msgCL2DP. Then CL sends msgCL2DP to DP
using message queue MQUEUE _CL2DPUPDVCL. Also, a new thread, Listen
Dependability Plane Thread is created in CL to listen to DP. In this thread, CL listens to DP
to get a RBACK message whenever DP issues RBACK. In processDP2CLRBACK
function, CL reads vCL parameters from the message queue MQUEUE_DP2CLRBACK. It
creates free space to insert vCL parameters into the PQ_dT. Then it assigns the msgDP2CL
to vCL parameters and they are inserted into the priority queue.

43

|TRUE

Figure 30: CL Implementation with DP

The second change on the other layers is adding a process and functions to IL. Figure 31
shows the transmission part of IL with dependability support. In IL, UPDVIL function is
added to send vIL parameters to DP. In IL module, after getting slot information or RT data
from CL, message is read and IL continues with CL2T1. After CL21L function, UPDVIL
function is called. After sending vIL parameters to DP, IL continues with T1.2sM function.
In the IL2SM function, IL sends atRes, rbSt and vCL parameters to the DP to loopback.
Also, SENDRES and RBACK mechanisms are added to IL. If IL reads SENDRES or RBACK

44

from DP, it controls the first bit (MyBuf[0]) of the receiving message. If it equals to O, IL
continues RBACK process. If it equals to 1, IL continues SENDRES process.

CcL
Send slot information
or RT data

DP
Send SENDRES or RBACK
message

DP2IL()

TRU Emmep- CL2IL()

s / Read the
message from
file DP2IL
FALSE ’
v TRUE
Read RT Data size from
the packet header Copy the vIL
TRUE parameters to viL
temp variables
5 darad FALSE
6es da e '—’
equal to the size k Gafay EURES 2
1018 A g RBACK checkPt to temp
fieader UPDVI L() Assign to vIL variables
temp variables
Assign to vIL parameters to vIL variables r—
FALSE to msgIL2DP /
Send message to DP SENDRES
using file charecter Assign to atRes and
device IL2DP checkPt temp
variables to real
variables
IL2SM()
Send RT packet to
ethernet driver
transmit function TRUE
TRUE FALSE

ID3RIP_Init?

Send high priority nRT
packet to ethernet driver
transmit function

FALSE

Send low priority nRT
packet to ethernet driver
transmit function

D3RIP_Init =

true
FALSE

end atRes,checkPt
and vIL paramaters to
DP

packet back to
CL

Figure 31: Transmission Part of IL with DP Implementation

45

Figure 32 shows the reception part of the IL with dependability support. In the €1000e
module, sM21LDP function is added to send vIL parameters to DP. After receiving a
message from SM, IL continues with the SM2T1, and T1.2CL functions. In T1.2CL function,
RT data packet is read and IL sends atRes, rbSt (checkPt) and vCL parameters to DP. Then
IL sends RT packet to CL.

Receive Packet from SM

SM21IL()

s packet
coming from »=TRUE
he eth0?,

Is packet
rotocol RT?2,

TRUE N

FALSE

FALSE

Is packet
Rrotocol nRT2

defragmentatio
jnitialized?

A

Continue to
ethernet
driver
receive
function

FALSE

IL2CL()

FALSE

Read RT data size
from the packet
header.

Read the data and D3RIP_Init = true
get atRes, checkPt
and vCL parameters
from message packet FALSE
and send them to DP.

Send RT data to CL.

f_) f—FALSE_\
Ll
L]

otnumber >
0?

N
.

N
A 4

L« |
nRT Application *

(RT Application)

Figure 32: Reception Part of IL with DP Implementation

46

The third change on the other layers is adding functions to the RT application layer (AP). RT
application layer sends RT messages via the CL. However, AP is not expected to resend
messages when RBACK occurs. Hence, this feature is added to AP to resend messages after

RBACK. The inclusion of RBACK in AP is performed as shown in Figure 33.

Wait until a CL2AP message
comes from CL

= receivedEventRBackFlag=msg[7]
= Copy msg to msgindex[k] msglength>0 ?

FALSE,

$g[6]==TOTAL_NUMSB
ER_EVENTS ?

f_P i=0

TRUE
> FALSE p
k= v R

receivedEventld
=msg[i+communicationRequestCount+D3RIPSIZE]

A 4

ceivedEventRBackl
g==17?

FALSE
ii=EventldMap.begin()

la

o)

TRUE

€ceivedEventRBackFTa
g==0?

msglindex[k-6][2]==NODEID ?

TRUE TRU'E
= Send msgindex[k-5][0] using Push Back it i+
message queue FALSE receivedEventld to | "“ | | '“ |
mMQueueToSend pInquBuffer
v ii I= EventldMap.end() ? FALSE
\————p K+
TRUE
FALSE
v)

i< eventldCount ?
= communicationRequestCo
unt=msg[0]

= eventldCount=msg[1+com
municationRequestCount*D3 TRUE

RIPSIZE]
leep Until Next
Slot

Figure 33: DoListenCLModule Thread in AP

47

Figure 33 shows DoListenCLModule thread in AP. It waits until action CL2AP comes from
CL. When it reads the message, it takes the receivedEventRBackFlag from msg and copies
the received message into the msgindex[k]. If receivedEventRBackFlag does not equal to 1,
it operates normally. If receivedEventRBackFlag equals to 1, it controls the message which
is the last entry in the history of DP. If that message nodeID’s equals that nodeld, it sends the
message which is sent before and in rollback situation, it does not increment the index of the
EventldMap. So, it sends message using buffer msgindex until rollback is finished.

Detailed information about DP implementation and their flowchart are mentioned in the
following section.

Figure 34 shows thelistenCoordinationLayer thread in DP implementation. In
listenCoordinationLayer thread, DP waits until action UPDVCL comes from CL. After
getting message, DP continues with the UPDVCL function. In this function, it creates free
space to insert vCL parameters (nodeid,ch, eT and dT) into the vCL History Queue. After
inserting vCL parameters into the queue, size is controlled to prevent overflow. If it exceeds
the cyc, queue pops up a node from top of the queue and thread sleeps until next slot.

Figure 35 shows the listeninterfaceLayer thread in DP implementation. In
listenInterfaceLayer thread, DP waits until UPDVIL or SM2ILDP comes from IL. After
getting UPDVIL or SM2ILDP, DP continues according to first bit of message (msg[0]). If
the first bit of the message is 1, DP continues with processSM2IL. In processSM21IL,
message is read from character device file charDev_DP2IL. atRes, rbSt and vCL parameters
in the received message are assigned to the variables in the DP. If atRes equals to 1, DP
continues with ATEST. In ATEST () function, firstly cnt is incremented by 1. Then DP calls
fAT () to make acceptance test. After acceptance test, if atRes is true, rbSt is determined
and result of acceptance test is sent to IL using action SENDRES. In SENDRES, atRes and
rbSt are assigned to the msgDP2IL and it is sent to IL using character device file
charDev_DP2IL. If atRes equals to 0, DP continues with RBACK.

48

Wait until a UPDVCL message
comes from CL

length>0 ?

s UpdVCL()

= Create free space to insert the
VCL parameters.

= Copy the message which is
received, to vCL parameters

= Insert the vCL parameters into
the CLQ

¢

TRUE

-

Figure 34: listenCoordinationLayer Thread in DP Implementation

Wait until UPDVIL or SM2IL
Message comes from IL

retRead>0 ?

‘ ERROR :: FALSE'

TRUE

Case 1 Msg[0] Case 0
processIL2DPUPDVIL()

processSM2IL()

Msg==Null ||
sglength==0 ?2,

Msg==Null ||
sglength==0 27 FaSE ERROR

TRUE
TRUE = (Create free space to insert
)) the vIL parameters.
|' Assign atRes,rbSt and vCL parameters from received messages | = Copy the message which is

received, to vIL parameters
= |Insert the vIL parameters
into the ILQ

getSizelLQ(
>37?

TRUE

= cnt=cnt+1 = cnt=rbSt+1
X = PopNodeFromCLQ()

TRUE"

= stNo=3

L

® cnt=0 v

* N4 Sleep until the
= Assign to msgDP2CL with TN next slot
VvCL variables which are

TRUE 'y
popped from vCL_Q
® rbSt=cnt-1 = Send to CL using Message

Queue

v

= Assign to msgDP2IL with
viL variables which are
popped from viL_Q

= Send to IL using file
character device filelL2DP

= Assign to msgDP2IL
from variables atRes and
rbSt.

= Send to DP using file
character device
fileIL2DP

Figure 35: listenInterfaceLayer in DP Implementation

In RBACK () function, cnt is determined firstly. Then, vCL parameters which are popped
from vCL History Queue, are assigned to msgDP2CL and it is sent to CL using message
queue MQUEUE_DP2CLRBACK. After that vIL parameters which are popped from vIL
History Queue, are assigned to msgDP2IL and it is sent to IL using character file device
charDev_DP2IL. Then if the first bit of the message is 0, DP continues with
processIL2DPUPDVIL. In processIL2DPUPDVIL, DP creates free space to insert the vIL
parameters. Then it inserts the vIL parameters which are coming from IL using thecharacter

50

device file charDev_IL2DP, into the vIL History Queue. After inserting vIL parameters into
the queue, size is controlled to prevent overflow. If it exceeds the cyc, queue pops up a node
from top of the queue and thread sleeps until next slot.

Get the Parameters
(rVCL,cnt,rtSlot,vCL_Q, vDP)

vCLNode==NULL ?

FALSE

TRUE

TRUE

FALSE

=0

Figure 36: far Implementation in DP

Figure 36 shows the far implementation in DP. far() function is called by DP in
processSM2IL. In £a1, DP gets rvCL, cnt, rtSlot and m.nodeid parameters. Then it takes
a node from the top of the vCL_Q. vCL parameters which are received from SM2T1.DP and
vCL parameters which are taken from vCL_Q are compared to each other. If they are equal
to each other, fa7 returns 1. If they are not equal to each other, fr returns 0. Also for nRT
comparison, if the received nodeid equals the node id which is stored in vDP, far returns 1.
If the received nodeid is not equal to the node id which is stored in vDP, farreturns O.

4.2 Data Structures

Figure 37 illustrates the UML Class Diagram for the dependability plane. DPProtocol class
is an abstract class that controls the operations of DP and interfaces to other layers (CL and
IL). URT class is derived from DPProtocol that consist of functions of process in
DPProtocol. vDPURT class stores the vCL and vIL parameters and makes operations on
them.

Dp Protocol

HilslLZDP : int

HileDPZIL : int

+mad EmgListiMQUEUE COUNT]

4 DP Pratocaliin UB nedelD) : void

HprocessCL2DPUPDVCLIR UB* msg, in U116 msglength) : woid
+procassDP2ZCLREBACK]) - void

+procesell20 PUPDVIL(IN US" meg. in UG meglength) - vosd
+processSMEILIN UB* msg, in UG msglangth) ; woid

URT

FETE

-atRes @ int

-stMo Cint

LUPDVCL{IN UB" msg, i LS msgLength, in LB et} unsigned char

+UPDWIL{IN LIB* msg. in U16 megLangth) : void

HREBACKCL{Im Ua rbSt) : vold

+REBACKIL(In UB rbi3t) @ char

HAT(IN U8 vCLlnodelD, in U8 wCLch, in UB vCLaT, in U8 «CLdT, in U8 mnodeld, in U8 rtSlot, inint ent) - unsigned char

|

vOFURT

FOUELUE TYPE® WIL_O

LQUEUE_TYPE" WVCL O

Hinitialize VICLHIsY(] : wold

Hinitialize VILHist() | waid

HinsartModalntoC LGN vaold™ node, in UB ont) © vold
insartModelntaCln void® noda, in UG ont) @ woid
HpopWantedModeFromQyin UE WantedNodeMo) : waid
+popWantedModeFromCLG(In LS WantedModeho) - vold
- peekCLOYIN BAt ent) @ vold

HgatSizeCueusCLO() | unsigned int
+getSizeCueuelL3) : unsigned int

HreaCLO) © void

Hrealll) : void

Figure 37: Dependability Plane UML Class Diagram

52

In vDPURT class, vCL_Q TYPE, viL_ Q TYPE and QUEUE_TYPE data structures are
used. Table 3 shows the vCL_Q_TYPE. There are 4 variables defined in vCL_Q_TYPE data
structure: nodelD, ch, eT and dT. In vCL parameters, nodeld shows the id of the node which
sends the RT message in that time slot. ch shows the channel of the RT communication. eT
and dT show the eligibility time and deadline time of the RT message.

Table 3: vCL_Q_TYPE

nodelD: U8 (unsigned char)
ch:U8 (unsigned char)
eT:U8 (unsigned char)
dT:U8 (unsigned char)

Table 4 shows the viIL_Q TYPE. There are 3 variables defined in viL_Q TYPE data
structure: cnt, cyc and slots. In vIL parameters, cnt shows the count which is incremented by
1 with modulo of cyc at the each nRT time slot.cyc indicates the cycle of the nRT. In other
words, it shows the total node number. Slots show the nRT time slot owner’s node Id.

Table 4: viL_Q TYPE

cnt: U8 (unsigned char)
cyc:U8 (unsigned char)
slots: U8 (unsigned char)

Table 5 shows the QUEUE_TYPE. There are 3 variables defined in QUEUE_TYPE data
structure: currentSize, availableSize and nodes.

Table 5: QUEUE_TYPE

currentSize: U32 (unsigned int)
availableSize:U32 (unsigned int)
nodes: void **

53

4.3 Actions and Operation

In the DP operation, there are many actions that are shared with other layers. Flowcharts of
DP and the functions in the DP are mentioned in the previous section. In this section, actions
and operations of the DP are described.

4.3.1 Actions

4.3.1.1 Actions of DP

ListenCoordinationLayer Thread: It listens to messages coming from CL. When it
takes action UPDVCL from CL, it calls processCL2DPUPDVCL function.
processCL2DPUPDVCL Function: It calls UPDVCL (msg, msgLength) function.
UPDVCL () Function: It takes the vCL parameters from a received message and calls
insertNodeIntoCLQ () function.

ListenInterfacelayer Thread: It listens to the message coming from IL. When it
takes the action UPDVIL from IL, it calls processIL2DPUPDVIL function. When it takes
the action sM21LDP from IL, it calls processSM2IL function.

processIL2DPUPDVIL Function: It calls UPDVIL (msg, msgLength) function.
UPDVIL () Function: It takes the vIL parameters from a received message and calls
insertNodeIntoQ () function.

processSM21IL Function: It takes the atRes, rbSt (checkPt), vCL parameters
and assigns the variables in DP. If atRes is true, it calls the £AT function to make ATEST
and it sends the results to IL using the SENDRES function. .If atResis false, it calls
RBACKCL and RBACKIL functions.

fAT () Function: It compares popped up vCL parameters from vCLHistoryQueue and
received vCL parameters from IL. If they are equal, it returns true. If they are not equal, it
returns false.

RBACKCL () Function: If there is a fault, it calls popWantedNodeFromCLQ () function.
After popWantedNodeFromCLQ () function returns vCL parameters, it sends them to the
CL.

RBACKIL () Function: If there is a fault, it calls popWantedNodeFromQ () function.
After popWantedNodeFromQ () function returns vIL parameters, it sends them to the IL.
Initialize VCLHist () Function: It starts the vCLHistoryQueue.

Initialize VILHist () Function: It starts the vILHistoryQueue.
insertNodeIntoCLQ() Function: This function is called by UPDVCL () function. It
inserts the vCL parameters into the vCLHistoryQueue.

insertNodeIntoQ() Function: This function is called by UPDVIL () function. It inserts
the vIL parameters into the vILHistoryQueue.

popWantedNodeFromQ () Function: This function is called by RBACKIL () function. It
pops up the vIL parameters at the top of the vILHistoryQueue.
popWantedNodeFromCLQ () Function: This function is called by RBACKCL () function.
It pops up the vCL parameters at the top of the vCLHistoryQueue.

peekCLQ () Function: This function is called by fAT ()function. It shows the vCL
parameters at the top of the vCLHistoryQueue.

getSizeQueueCLQ () Function: This function is called by UPDVCT () function. It returns
the size of the vCLHistoryQueue.

getSizeQueuelLQ () Function: This function is called by UPDVIT () function. It returns
the size of the vILHistoryQueue.

54

freeCLQ () Function: It releases the vCLHistoryQueue.
freeILQ () Function: It releases the vILHistoryQueue.

4.3.1.2 Actions of CL related with DP

ListenDependableLayer Thread: It listens to messages coming from DP. When it
takes RBACK from CL, it calls processDP2CLRBACK function.

processDP2CLRBACK Function:It calls RBACK (msg, msgLength) function.

RBACK () Function: It takes the vCL parameters from a receivedmessage and inserts them
into the priority queue PQ_dT in the CL.

UPDVCL () Function: It is called by CL in the processCLUPDATE function and it sends
vCL parameters of the time slot to the DP using message queue.

4.3.1.3 Actions of IL related with DP

UPDVIL () Function: It sends vIL parameters of the time slot to the DP using character
device file charDev_IL2DP.

RBACK () Function: It takes the vIL parameters from a receivedmessage and assigns them to
the variables in the IL.

4.3.2 Operations

Figure 38 illustrates the operation and timing of D°RIP, if there is no fault before the
considered slot. In the figure, AP2CL is sent by RT application. CL takes this message, after
that it sends the RT message to IL. Before sending RT message to IL, CL sends the vCL
parameters (nodeid, ch, eT, dT) of that time slot to DP using UPDVCL. When IL takes the RT
message from CL, it sends the vIL parameters (cnt, cyc, slots) of that time slot to DP using
UPDVIL. Then IL sends the RT message to SM using I11.2SM. Destination node and that
node get this RT message using SM2TL. IL sends this RT message to CL immediately and
sends SM2ILDP to DP to provide the parameters (atRes, rbSt, rvCL.nodeid, rvCL.ch,
rvCL.eT, rvCL.dT) which come from the sender node. If the received atRes is true, DP
performs itsacceptance test using the internal action ATEST. In ATEST, VCL which comes
with UPDVCL and vCL which comes with SM2IL.DP are compared. If they are equal to each
other, atRes returns true. If they are not equal to each other, atRes returns false. After that,
DP sends SENDRES to IL to provide atRes and rbSt. IL sends these parameters to other
nodes when an RT message comes from CL in the next time slot. While DP is making
ATEST, CL sends the received RT message to AP using CL2AP.

55

\/

Time

77777777777777777777777777777777777 /3 ———RT Application

AP2CL (1) CL2AP(10)

e S o
UPDVCL(& IL2CL(7)/ /'zTEST(g)

,,,,,,,, ALY DL
SENDRES (10)

M2ILDP(8)

RT Request with RT Packet

44— Slot Duraton—— P

Figure 38: The Timing of the D°RIP without Any Fault

Figure 39 shows the operation and timing of D°RIP, if a fault is communicated in the
considered slot. The difference between the conditions with fault and without fault is that DP
behaves differently when it takes SM2 ILDP. If there is a fault before that time slot, DP sends
RBACK to CL and IL to bring back the recovery point. In RBACK, it pops out the recovery
points in vCL and vIL History queues. When CL takes the RBACK, it sends a flag with RT
message using CL2AP. Thus, AP knows that there is a RBACK situation and sends RT
message which is earliest in the history of DP in the next time slot. Then nodes send the RT
message each other according tohistory of DP. The length of history of DP is calculated
using formula below:

AF=AI+AS+AC+AN

AF: Longest fault detection time.

AI: Maximum number of time slots between sending two packets by the same node is
calculated by using maximum number of time slots which is assigned to a node between two
time slots.

AS: Consecutive time slots which are not assigned to any node in the system use all the time.
AC: Possible maximum consecutive collision number on the shared medium.

AN: The maximum number of the consecutive message which is sent by one node.

It is assumed that these parameters are known from the operation of the respective
application. Also, there are assumptions and necessary conditions for DP to work properly.
[43]
e There is not any fault that occurs successively in the system. There can be only
one fault after the previous fault is resolved.

56

In the system, each node has a slot to transmit its message to the other nodes.
So, there has to be a bounded interval of at most Al time slots between two
successive transmission slots.

There is not any fault in the first time slot.

There has to be at least 3 nodes that are connected to the system.

v

Time

fff RT Application

RBACK(loyCLZAP(ll)
—————————————————————————————————— CL
RBACK(9)
N - - Iy, Y A——— DL-
CL2IL(3) UPDVIL(4) RBACK(9)
7777777777 < ~/SM2ILDP(8) ¥ —————————IL
IL2SM(5)
\ SM2IL(6)
77777777777777777 S-——————————————————————FEthernet

RT Request with RT Packet

- Slot Duration >

Figure 39: The Timing of the D°RIP with Fault

57

58

CHAPTER 5

EVALUATION OF THE DEPENDABILITY PLANE

5.1 Example Description

In this thesis, the manufacturing cell in Figure 41 is considered as an application example
[44]. In Figure 40, there are 4 controllers working with each other synchronously, these
controllers are: PLC-S, PLC-R, PLC-C, and PLC-PD. PLC-S coordinates the other
controllers. PLC-R, PLC-C and PLC-PD control the 3 parts of the system namely robot (R)
that moves a robot arm, conveyor (C) that carries parts and apainting device (PD) that paints
parts using a spray gun.

I
Painting
Device
Conveyor
Robot () ()
PLC-C I
PLC-R PLC-PD
PLC-S l]

Workcell

S
PLC- PLc-Q%@} PLC-C%@PLC-PD% |

D3RIP on shared-medium Ethernet

Figure 40: A Manufacturing System [44]

59

This workcell has an event-based operation. All controllers have a state machine and the
states show the state of the controller, arrows between states indicate transitions, whereby all
transitions are labeled with event names. Figure 41 shows the state machines of the workeell.
Synchronized actions among the different controllers are represented by transitions with
equal names. For example, the transition mvC occurs synchronously in PLC-S and PLC-R.

FLC-S mviC arc mvPD —~ arPD
| O—0——0 .
arl mvI~ arR ~ MmVR ~ PDoff AFDon
oy ey e

PLC-C - PLC-FED

PDon

PDoff

Figure 41: State Machines of Workcell [12]

In the state machines of the workcell, PLC-S initiates the system start by triggering mvC that
is shared withPLC-R. PLC-R sends a signal to the robot arm to move a part to the conveyor
(Event sC is occurred). Closed-loop control posR which gives the position of robot arm and
actR which indicates the actuator signal of robot arm, are sent to move the robot arm to the
conveyor. When robot arm reaches the conveyor, stpR signal is sent to stop the robot arm
and arC signal notifies PLC-S about the arrival of the robot arm at the conveyor. PLC-S
sends mvPD command to PLC-C to move the part to the painting device. PLC-C sends
signal to the conveyor to move part to the painting device (Event sPD occurs). Position
control signal posC is sent to the conveyor to inform the position of conveyor. When
conveyor reaches the painting device, stpC signal is sent to stop the conveyor and arPD
signal notifies PLC-S controller about the arrival of the robot arm at the conveyor. PLC-S
sends PDon command to the PLC-PD to start operation of the painting device. IPD signal
locks the painting device for painting operation, iPD initiates the painting process. Then,
posPD which gives the position of painting device and actPD which indicates the actuator
signal of painting device are sent to operate the painting device. After that, fPD signal which
shows that the painting device finishes the painting operation is sent by painting device.
After finishing painting operation, unlock painting device ulPD signal is sent and painting
device is turned off by PLC-S with PDoff signal. After that, conveyor moves back to the
robot arm with signal mvR, sR, arR (These signals are same with mvPD, sPD and arPD) and
robot arm gets part from conveyor and put it on its old place with signal mvl, sl, arl (These
signals are same with mvC, sC and arC).

60

Figure 42 illustrates the timing diagram for the PLC communication of the example
workcell. PLC-S sends event message to the related controller with queries (?). Then the
other PLC controller responds that event message with a notification (!) to PLC-S whenever
it is ready to execute the event. When PLC-S gets the event message with a notification (1), it
sends a message with a single command (V) to execute the event.

L2 Lo Ly e v Ly L2 |

PLC-S PLC-R PLC-S PLC-S PLC-R PLC-S PLC-S PLC-C

v

Figure 42: The Timing Diagram for the PLC Communication of the Example Workcell [44]

D3RIP—> ===SimpleNET=$>

1) The Robot transport a PART to the Conveyor. 1.5. & 6.5.stpR
2) The Conveyor moves a PART to the Painting Device.
3; The Painti:g Device is initiated and operategd. 1.4.sC - P LA NT
4) The Painting Device is stopped. 6.4.sl ”
5) The Conveyor moves a PART to the Robot. 2.1.mvPD?
6) The Robot transport a PART to the Initial Place.
3.3.mvPDc
2.6.arPD? ™|
2.8.arPDc 3.4.fPD
1.2.mvC! 5.1.mvR?
1.7.arC!
6.2.mul! ame 2.5. & 5.5.5tpC
6.7.arl! 5.8.arRc 2.4.5PD
4 Y 5.4.5R
1.1.mvC? - < |
S 1.3.mvCc R C 1 PD «
3 1.6.arC? K
1.8.arCc
6.1.mvlI?
6.3.mvlc
6.6.arl?
6.8.arlc
2.2.mvPD!
2.7.arPD!
5.2.mvR!
5.7.arR! 3.1.PDon?
3.3.PDonc
4.1.PDoff?
4.3.PDoffc
3.2.PDon!
4.2.PDoff!

Figure 43: The Connection of the Controllers and Plant

In the system simulation and implementation, each computer behaves like controller in the
system. There are 4 controllers in the system: PLC-S, PLC-R, PLC-C and PLC-PD. Also,
these controllers are connected to another computer which runs as a plant to simulate the
actual system operation. So, there are 5 computers in the system which are connected to each
other for all system simulation and implementation. Figure 43 shows the connection of the
controllers and plant computer. There are 4 controllers and plant computer in the system.
Plant and other controllers are connected with Ethernet 802.3. This is called Simplenet

61

communication. Simplenet communication carries on the bold black connections.
Controllers exchange signal data (sensor/actuator) with the plant. This is done using the
simplenet protocol which is specific to libfaudes and fits to our application.

Also our RT Ethernet protocol D®RIP is used for industrial communication between
controllers. D3RIP communication carries on the black connections. In D°RIP
communication, signal data (sensor/actuator) between controllers are carried RT. The
numbers of the signals show the order of event occurrence. A part is taken, carried, painted
and moved back to the old places with events in Figure 41.

On the plant computer, simfaudes which is a simulator for the example control application,
runs and it controls the system operation. Simfaudes uses XML files to configure the system
operation. There are different XML files which are used as input files for D°RIP, simplenet
connection definition and simulator description. Figure 45 below shows the D*RIP XML
configuration file for controller C. Event name, event type, event id, channel transmit value,
parameter record, destination node id, destination channel value, eligibility and deadline time
of events are defined and configured in D®RIP XML file according to the connection of the
controllers.

Communication Example between controllers (Figure 43-44):

Controller S sends event “mvPD?” to Controller C to move the part to the painting device
(PD). Controller C sends back event “mvPD!” to ask the confirmation of the action and then
Controller S sends event “mvPDc” to confirm that action. These actions are defined in
D3RIP XML file for each controller. In Figure 44 below, event “mvPD?” is defined. It is
“output” event, its eventid is “14” which shows the order of occurance in the system. Its
channel value is “1” and parameter record is “11”. The destination node of event is “1”. In
other words, it is sent to Controller S by Controller C (Controller S’s node id equals 1). The
destination channel value is “1”. The eligibility time of event is “8” which shows that how
much time that event is eligible for the system. Also in that definition, deadline time of event
is defined. For event “mvPD!”, the deadline time is “10”.

<?xml version="1.0" encoding="1S0-8859-1" standalone="no"?>
<IDOCTYPE D3RIP SYSTEM "controllerC_d3rip.dtd">
<D3RipUrtDevice name="controllerC_d3rip">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>

<Event name="mvPD?" iotype="input">
<Eventld value="13"/>
</Event>

<Event name="mvPD!" iotype="output">
<Eventld value="14"/>
<ParameterRecord name="11">
<DestinationNode value="1"/>
<DestinationChannel value="1"/>
<EligibilityTime value="8" />
<DeadlineTime value="10"/>
</ParameterRecord>

62

</Event>

<Event name="mvPDc" iotype="input">
<Eventld value="15"/>
</Event>

<Event name="arPD?" iotype="input">
<Eventld value="16"/>
</Event>

<Event name="arPD!" iotype="output">
<Eventld value="17"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="1"/>
<DestinationChannel value="1"/>
<EligibilityTime value="8" />
<DeadlineTime value="10"/>
</ParameterRecord>

</Event>

<Event name="arPDc" iotype="input">
<Eventld value="18"/>
</Event>

<Event name="mvR?" iotype="input">
<Eventld value="19"/>
</Event>

<Event name="mvR!" iotype="output">
<Eventld value="20"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="1"/>
<DestinationChannel value="1"/>
<EligibilityTime value="8" />
<DeadlineTime value="10"/>
</ParameterRecord>

</Event>

<Event name="mvRc" iotype="input">
<Eventld value="21"/>
</Event>

<Event name="arR?" iotype="input">
<Eventld value="22"/>
</Event>

<Event name="arR!" iotype="output">
<Eventld value="23"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="1"/>
<DestinationChannel value="1"/>

63

<EligibilityTime value="8" />
<DeadlineTime value="10"/>
</ParameterRecord>
</Event>

<Event name="arRc" iotype="input">
<Eventld value="24"/>

</Event>

</EventConfiguration>
</D3RipUrtDevice>

Figure 44: D®RIP XML Configuration File for Controller C

Simplenet XML files show the connection between controller and plant computer and the
physical connection of simplenet is over ethernet. Figure 45 shows the Simplenet XML
configuration file for controller C. Network topology is defined with network name and
nodes which are in the network and events are configured with event names, event types
according to the connection of the controllers and plant in Figure 43.

<?xml version="1.0" encoding="1S0-8859-1" standalone="no"?>
<IDOCTYPE SimplenetDevice SYSTEM "controllerC.dtd">
<SimplenetDevice name="controllerC">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>

<!-- Network topology -->
<Network name="paintingNet">
<Node name="plant"/>

<Node name="controllerR"/>
<Node name="controllerC"/>
<Node name="controllerPD"/>
</Network>

<EventConfiguration>

<Event name="sPD" iotype="output"/>
<Event name="stpC" iotype="input"/>
<Event name="sR" iotype="output"/>
</EventConfiguration>

</SimplenetDevice>

Figure 45: SimpleNet XML Configuration File for Controller C

Simulator XML files define the protocol parameters and properties of the controller.
Simulator files help the generation of simulator in the simfaudes. Figure 46 shows the
simulator XML configuration file for controller C. Alphabet tag shows the commands which

64

are related that node. States tag shows the state status and definition. TransRel tag shows the
state transition diagrams members and description how the states are connected to each
other. InitStates tag indicates the initial state of that state diagram. MarkedStates tag shows
the marked state in the state diagram. SimEventAttributes tag shows the event properties and
priorities in the system.

<Executor>
<Generators>
<Generator>
controllerC
<Alphabet>
mvPD? mvPD! mvPDc mvPD arPD? arPD! arPDc arPD sPD stpPD
mvRkR? mvR! mvRc mvR sR arR? arR! arRc arR
</Alphabet>
<States>
<Consecutive>1 28 </Consecutive>
</States>
<TransRel>

1 mvPD? 2
2 mvPD! 3
3 mvPDc 4
4 arPD? 5
4 mvPD 6
5 mvPD 7
6 arPD? 7
6 sPD 8
7 sPD 9
8 arPD? 9
8 stpPD 10
9 stpPD 11
10 arPD? 11
11 arPD! 12
12 arPDc 13
13 arPD 14
13 mvR? 15
14 mvR? 16
15 arPD 16
16 mvR! 17
17 mvRc 18
18 arR? 19
18 mvR 20
19 mvR 21
20 arR? 21
20 sR 22
21 sR 23
22 arR? 23
22 stpPD 24
23 stpPD 25
24 arR? 25
25 arR! 26
26 arRc 27
27 arR 1
27 mvPD? 28
28 arR 2

</TransRel>

65

<InitStates> 1
<MarkedStates> 1
</Generator>
</Generators>
<SimEventAttributes>

</InitStates>
</MarkedStates>

"stpR" <Priority>-1 </Priority>
"fPD" <Priority>-1 </Priority>
"mvC" <Priority> 1 </Priority>
"sC" <Priority> 1 </Priority>

"arC" <Priority>1 </Priority>

"mvl" <Priority> 1 </Priority>
"s|" <Priority> 1 </Priority>
"arl" <Priority> 1 </Priority>
"mvPD" <Priority> 1 </Priority>
"sPD" <Priority> 1 </Priority>
"arPD" <Priority> 1 </Priority>
"mvR" <Priority> 1 </Priority>
"sR" <Priority> 1 </Priority>
"arR" <Priority> 1 </Priority>
"PDon" <Priority> 1 </Priority>
"PDoff" <Priority> 1 </Priority>
</SimEventAttributes>

</Executor>

Figure 46: Simulator XML Configuration File for Controller C

D°RIP, Simplenet and simulator XML configuration files of all controllers and plant can be
found in the appendix part of this thesis.

5.2 Performance Parameters

The duration of the time slot is calculated using the timing of the D°RIP operation. In Figure
39 the timing of the D®RIP without any fault, there are 11 sequential actions. In Table 6, the
total number of sequential actions time duration shows the duration of the time slot without
any fault. Also, 900 sample results (30 loop tests are made) are taken to show the duration of
the time slot in Table 6.

In Figure 40 the timing of the D°RIP with fault, there are also 11 sequential actions. In Table
7, the total number of sequential actions time duration shows the duration of the time slot
with fault. Also, in Table 7, 900 sample results (30 loop tests are made) are taken to show the
the duration of the time slot.

66

Table 6: Synchronization Accuracy and Sequential Actions in D°RIP Operation Without Any

Fault
IEEE 1588 Synchronization
Mean (us) | Max.(us) +/-% ClI (99%)
Path Delay [44] 1.6 1.7 %0
Accuracy [44] 1.4 4.2 %3.71
Sequential Actions

Mean (us) Max. (us) +/-% ClI (99%)
CL Thread Wake-up 0.7 23.5 %0.21
AP2CL 3,2 6.1 %3.23
UPDVCL 17.9 36.4 %2.47
CL2IL 1.3 6.5 %0.45
IL2SM 15.4 27.9 %0.38
UPDVIL 20.4 41.5 %1.96
SM2IL 15.4 27.9 %0.38
IL2CL 12.6 64.2 %1.22
SM2ILDP 15.6 34.6 %2.37
ATEST 14 4.2 %2.63
SENDRES 6.3 16.6 %2.85
CL2AP 2.3 12.8 %4.07
Completion Time 189.1 502.2 %1.58

Table 7: Sequential Actions in D°RIP Operation With Fault

Sequential Actions

Mean (us) Max. (us) [+/-% Cl (99%)
CL Thread Wake-up 0.7 235 %0.21
AP2CL 3.2 6.1 %3.23
UPDVCL 17.9 36.4 %2.47
CL2IL 1.3 6.5 %0.45
IL2SM 15,4 27.9 %0.38
UPDVIL 204 41.5 %1.96
SM2IL 154 27.9 %0.38
IL2CL 12.6 64.2 %1.22
SM2ILDP 15.6 34.6 %2.37
RBACKCL 56.5 90.5 %1.19
RBACKIL 58.2 98.2 %1.13
CL2AP 2.3 12.8 %4.07
Completion Time 339.5 770.3 %0.93

67

Table 8: Synchronization Accuracy and Sequential Actions in D’RIP Operation Before
Adding Dependability Plane [44]

IEEE 1588 Synchronization

Mean (ps) Max. (us) | +/- % Cl (99%)

Path Delay [44] 1.6 1.7 %0
Accuracy [44] 1.4 4.2 %3.71

Sequential Actions
Mean (us) Max. (us) |+/- % ClI (99%)

CL Thread Wake-up 0.7 23.5 %0.21
AP2CL 3,2 6.1 %3.23
CL2IL 13 6.5 %0.45
IL2SM 15.4 27.9 %0.38
SM2IL 15.4 27.9 %0.38
IL2CL 9.2 46.1 %1.22
CL2AP 2.3 12.8 %4.07
Completion Time 94.1 231.1 %1.82

After implementation of dependability plane, sample measurements were made for the
system dependability. Table 6 and Table 7 show these measurements. In these
measurements, duration of time slot is chosen as 1ms to cover all operations for
dependability. Table 8 shows the timing of sequential actions in D’RIP operation before
adding dependability plane. In Table 6, 7, 8, the completion time includes the duration of
sequential action, the spending time in hub and the transmission delay.

In the example (Figure 41), maximum number of time slots (denoted as AT) between sending
two packets by the same node is calculated by using maximum number of time slots which is
assigned to a node between two time slots. This parameter is AI=6 time slots for the example
system. Consecutive time slots which are not assigned to any node in the system use all the
time slots. So AS=0. Possible maximum consecutive collision number on the shared medium
is assumed as AC=4. The maximum number of the consecutive message which is sent by one
node is AN=2. For these assumptions the longest fault detection time AF is calculated below.

AF=AI+AS+AC+AN=12

So Dependablity Plane stores at least AF=12 state variables in its memory. Also if there is a
fault (when acceptance test is made) at time slot x, rollback time slot is x—AI [45]. In this
example, rollback time slot equals to the 6. When there is a fault, node rolls back 6 messages
before and determines the state variables for this time slot. Application layer sends the
related message.

68

5.3 Experiments and Results
According to performance parameters (Section 5.2), three experiments are made to show the
Dependability Plane functionality and performance.

In the first experiment, there is a problem at the vCL data structure in the PLC-S component.
In this example, there is a vCL fault (eT parameters fault) at the 9" time slot (belongs to
PLC-S if the system is started up correctly). DP of another node detects the fault, assigns
atRes to 0 at that time slot and it sends the result to all nodes in the 10" time slot. Then, DP
of all nodes sends RollBack to CL and IL. Application layer sends 5" event message instead
of 11" event message in the PLC-S component. S component rolls back the system 6 time
slots before. Figure 47 shows the experiment result of the first experiment.

1711816089

@ m

) AP2CL:
) UPDVCL:
) CL2IL:
) IL2CL:
.) AP2CL:
SM2ILDL-inDL-nodeld,atRes C!) UPDVCL:
—4TDT-RBACKCL: | .) CL2IL:
DL-RBACKIL)) IL2CL:
=) UPDVCL:
) IL2CL:
) AP2CL:
") UPDVCL:
DL2CL-cnt-1- : vl . CLeT,vCLdT,M, mnodeld, Lot: 18) CL2IL:
DL2CL-inDL-fAT: vCLnodeld,v CLeT,vCLdT,mnodeld, rtSlot: 2 1 8) IL2CL:
SENDRES-inDL-rb,1,atRes,rbSt: 51 1 5) AP2CL:
118) UPDVCL:
) CL2IL:
SM2ILDL-inDL-nodeld,atRes,checkPt,r 118) IL2CL:
DL2CL-cnt-1-fAT: vCLnodeId,vCLch,vCLeT,vCLdT, 8) RBACKCL-in C
DL2CL-inDL-fAT: wCLnodeId,vCLch,vCLeT,vCLdT, f) bL2C
SENDRES-inDL-rb,1,atRes,rbSt: 6 1 1 6 -
118

8906
89087

® o e

8914
8914

© o

8922
8923

-

8928
8928
8929

m o,

8936
8936

| PGSR e

| mom

%

o m

SM2ILDL-inDL-nodeld,atRes,checkPt,r

) UPDVCL:

DL2CL-inDL-fAT: wCLnodeId,wCL CLeT, ,mnodeTd,rtSlot: 1 1 8) CL2IL:

SENDRES-inDL-rb,1,atRes,rbSt: 7 1 1 7) IL2CL:

UPDVCL: 3 1 8 18) AP2CL:
UPDVCL :

@ o e

Figure 47: The Experiment Result of the First Experiment

In the second experiment, there is a problem at the message transmission when message is
taken from the shared medium. In this example, there is a fault at the 16" time slot (belongs
to PLC-S). PLC-S component sends 16" event message to all components in the system.
That message cannot reach the destination node. DP of another node detects the fault,
assigns atRes to 0 at that time slot and it sends the result to all nodes in the 17" time slot.
Then, DP of all nodes sends RollBack to CL and IL. Application layer sends 12" event
message instead of 18" event message in the PLC-S component. PLC-S component rolls
back the system 6 time slots before. Figure 48 shows the experiment result of the second
experiment.

69

) IL2C L 4 8 12141

= :) UPDVCL:
DLZEL inDL-fAT: u! Lnodeld, ch,vC T wlLdT mnodeld, rtS10t 8 ice) TL2CL: 8 4 12149

SENDRES-inDL-rb,1,atRes,rbSt: 1511150 0 0 8 @ ice) UPDVCL:
UPDVCL: 11 8 18 ice) IL2CL: 8 12157
cntfAT=22 ce) UPDVCL:
-- i 12165
SM2ILDL-inDL-nodeld,atRes, checkPt, rvC! 1)| S 5 : o
DL2CL-cnt-1-fAT: wCLnodeld,vCL ,vC s . 1 8 10 ce) CL: g 14927
DL2CL-inDL-fAT \ ~ i ¢
SENDRES-inDL-rb,
UPDVCL: 4 1 8 1@
cntfAT=23
14936
) UPDVCL:
ce) IL2CL: : 8 14944
) UPDVCL: 4 B
RBACK-mesg-inDL-0, : 4 4 ce) IL2CL: 8 2 14952
UPDVCL: 1 1 8 1@ ice) UPDVCL:
cntfAT=24 ice) IL2CL: 8 14960
. ce) UPDVCL: 8
) IL2CL: : 8 14968
' :) UPDVCL: 4 8
DL2CL-inDL-AT: B ice) IL2CL: : 14976
SENDRES-inDL-rb, 1, :tRes rbSt: 13 1 1 13 B B 0oe ce) UPDVCL:
UPDVCL: 118 18 ic TL2CL: 8 8 14984

Figure 48: The Experiment Result of the Second Experiment

In the third experiment, there is a problem at the vCL data structure in the PLC-R (Robot
Arm) component. In this example, there is a vCL fault (T parameters fault) at the 25" time
slot when R component gets the message from PLC-S component. DP realizes the fault,
assigns atRes to 0 at that time slot and it sends the result to all nodes in the 26™ time slot.
Then, DP of all nodes sends RollBack to CL and IL. Application layer sends 21™ event
message instead of 27" event message in the PLC-S component. PLC-S component rolls
back the system 6 time slots before. Figure 49 shows the experiment result of the third
experiment.

) UPDVCL:
) IL2 B 12471
) UPDVCL: B
) IL2CL: B 12479
) UPDVCL: B
) IL2CL: B 12487
) UPDVCL: B
) IL2CL: B 220889
) UPDVCL:

ce) IL2CL: 22097

SM2ILDL-inDL-nodeld,atRes, checkPt, rvCL- l 1251181625

DL2CL-cnt-1-fAT: wvCLnodeld,vCLch,vC C .M, mnodeld, rtSlo
DL2CL-inDL-fAT: le: vC C .mnodeld, rtSlot:
SENDRES-inDL-rb,

UPDVCL: 218 1@

) UPDVCL:

) IL2CL: B 22102

) AP2CL: 1 B 22183

) UPDVCL: B

) (LZlL B prabl:]
B 221180

SM2ILDL-inDL-node E
DL2CL-cnt-1-fAT: wCl vl NV .M,mnodeld, rtSlot:
DL2CL-inDL-fAT: wC R vl v .mnodeld, rtSlot:

Figure 49: The Experiment Result of the Third Experiment

Also, another experiment was wanted to be applied on the system. It was about the packet
loss and packet collision. The reason why it was not applied is that IL-CL communication is
implemented with blocking read in the previous and current implementation. Thus, this
method give us guarentee not to miss any packet while transmission between IL and CL. But

70

when the experiment is wanted to implement, IL-CL communication method must be
changed to non-blocking read method. Also, this modification affects the flow of the
program operation of CL and IL. When communication method, the flow of the program
operation of CL, reading data from charecter device file in main CL thread, writing data to
charecter device file in IL section are changed and extra communication between CL-DP is
added, this experiment can be implemented. This change is intended for future work.

71

72

CHAPTER 6

CONCLUSION & FUTURE WORK

6.1 Conclusion

With the development of technology, the industrial RT Ethernet networks have become an
important subject in academia and industry. In the literature, there are different types of the
protocols and solutions to implement industrial RT Ethernet networks. In our solution, the
Distributed, Dependable and Dynamic Real Time Industrial Protocol (D*RIP) is proposed for
the industrial RT Ethernet network.

In this thesis, the implementation of the dependability plane for DRIP and its evaluation are
studied. First, generic interface, coordination layers and dependability plane of D°RIP are
explained and formally represented by timed input output automata models. Then, based on
an existing implementation of the predecessor protocol DRIP, the implementation of the
dependability support for D®RIP is discussed. The operation of D°RIP is demonstrated by a
manufacturing cell example with 4 controller nodes. In summary, the following main tasks
are performed in this thesis:

o Dependability plane implementation,

¢ Integration of the dependability plane with coordination layer, interface layer and
application layer (AP),

e Testing overall structure with all layers in the D*RIP with 4 controllers real scenario,

e Measurement of the dependability plane performance,

o Different experiments over dependability plane to show the functionality and
performance of the dependability plane.

In this thesis, the dependability plane is implemented over a specific D?RIP structure that is
implemented in [41], whereby implementation of DP is independent of the D°RIP structure.
While implementing the DP, the interface rfunctions between CL-DP and IL-DP are
implemented in IL and CL sides. Also a buffer structure is added to the AP to recover
messages when the RBACK event occurs. Other than these modifications, there are not any
extra modifications on DRIP structure. After adding the dependability plane over specific
D’RIP structure [41], the slot duration is increased to 1ms because of new actions that have
to be performed in each time slot.

Finally it can be seen that with dependability plane, possible D°RIP failures are prevented
and if there is a failure in the system, the system can recover and continue its operation.

73

6.2 Future Work
In D*RIP implementation and test, system and protocol are observed.The following works

make the framework much better when it runs in real operation:

e Implementation on Different Operating System: The framework might show
improved performance on RT operating systems such as VxWorks, RTLinux,
LynxOS.

e Extended Implementation to cover the packet loss and collision scenario: It can be
implemented when the communication method between IL and CL, the flow of the
program operation of CL are modified and extra communication between CL-DP is
added.

74

http://en.wikipedia.org/wiki/LynxOS

REFERENCES

[1] (2013) Bosch CAN Specification Version 2.0. [last accessed on 31/07/2013]. [Online].
Available: http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf

[2] (2013) Profibus. [last accessed on 31/07/2013]. [Online]. Available:
http://www.profibus.com

[3] (2013) Lonworks Protocol Specifications. [last accessed on 31/07/2013]. [Online].
Available: http://www.echelon.com/technology/lonworks/

[4] D. Jansen, H. Buttner, “Real-time Ethernet the EtherCAT solution ”, Computing
& Control Engineering Journal, 15, 16-21, 2004.

[5] E. Schemm, “Sercos to link with Ethernet for its third generation”, Computing
& Control Engineering Journal, 15, 30-33, 2004.

[6] “Real-time Ethernet: Profinet 10: Proposal for a publicly available specification for real-
time Ethernet”, Doc. IEC 65C/359/NP, 2004.

[7] F.B. Carreiro, J.A.G. Fonseca, P. Pedreiras, “Virtual Token-Passing Ethernet — VTPE” ,
IFAC, 2003.

[8] “Real-time Ethernet: EPL (Ethernet powerlink): Proposal for a publicly available
specification for real-time Ethernet”, Doc. IEC 65C/356a/NP, 2004.

[9] (2013) Schneider automation — modbus messaging on TCP/IP implementation guide.
[last accessed on 31/07/2013]. [Online]. Available: http://www.modbus.org/

[10] “Real-time Ethernet: EPA (Ethernet for plant automation): Proposal for a publicly
available specification for real-time Ethernet”, Doc. IEC 65C/357/NP, 2004.

[11] P. Pedreiras, P. Gai, L. Almeida, and G. C. Buttazzo, “FTT-Ethernet: A Flexible Real-
Time Communication Protocol That Supports Dynamic QoS Management on Ethernet-
Based Systems” , IEEE Transactions on Industrial Informatics, vol 1, no. 3, 2005.

[12] K.W. Schmidt, E.G. Schmidt, “Distributed Real-Time Protocols for Industrial Control
Systems: Framework and Examples”, IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 10, pp. 1856 - 1866, 2012.

[13] (2013) IEEE 1588 standard for a precision clock synchronization protocol for
networked measurement and control systems. [last accessed on 31/07/2013]. [Online].
Available: http://ieee1588.nist.gov

[14] J. Moyne, D. Tilbury, “The emergence of industrial control networks for manufacturing
control, diagnostics, and safety data”, Proceedings of the IEEE, 95, 29-47, 2007.

75

http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf
http://www.profibus.com/
http://www.echelon.com/technology/lonworks/

[15] J. P.Thomesse, “Fieldbus technology in industrial automation”, Proceedings of the
IEEE, 93, 1073-1101, 2005.

[16] M. Felser, R. Zurawski ,“Real-time Ethernet for automation applications ”, Embedded
Systems Handbook, Second Edition: Networked Embedded Systems, pp. 21-1-21-20 2nd
edition, 2009.

[17] J. C. Eidson, “Measurement, Control, and Communication Using IEEE 1588,
Springer, 2006.

[18] K. W. Schmidt, E. G.Schmidt, “Distributed real-time protocols for industrial control
systems: Framework and examples”, Parallel and Distributed Systems, IEEE Transactions
on, 23, 1856-1866, 2012.

[19] “1st IFAC workshop on dependable control of discrete systems”, Proceedings of a
meeting held in Cachan, France, 2007.

[20] A. Avizienis, J.C Laprie, B.Randell, C.Landwehr, “Basic concepts and taxonomy of
dependable and secure computing”, Dependable and Secure Computing, IEEE Transactions
on, 1, 11-33, 2004.

[21] M. Felser, T. Sauter, “Standardization of industrial Ethernet - the next battlefield”,
Factory Communication Systems, Proceedings. IEEE International workshop on, 413-420,
2004.

[22] J. D. Decotignie, “The many faces of industrial Ethernet [past, present]”, Industrial
Electronics Magazine, IEEE, 3, 8-19, 2009.

[23] S.K. Kweon, K. G. Shin, “Statistical real-time communication over Ethernet, Parallel ,
Distributed Systems”, IEEE Transactions on, 14, 322-335, 2003.

[24] S.K. Kweon, M.G. Cho, K. G. Shin, “Soft real-time communication over Ethernet with
adaptive traffic smoothing”, Parallel and Distributed Systems, IEEE Transactions on, 15,

946-959, 2004.

[25]J.D. Decotignie, “Ethernet-based real-time and industrial communications”, Proceedings
of the IEEE, 93, 1102-1117, 2005.

[26] M. Felser, “Real-time Ethernet - industry prospective”, Proceedings of the IEEE, 93,
1118-1129, 2005.

[27] Z. Wang, Y. Song, J. Chen, Y. Sun, “Real time characteristics of Ethernet and its
improvement”, 4th World Congr. Intelligent Control, Automation, pp. 1311-1318, 2002.

[28] “Real-time Ethernet: Ethernet/IP with time synchronization: Proposal for a publicly
available specification for real-time Ethernet”, Doc. IEC 65C/361/NP, 2004.

[29] U.Turan, “Implementation and Evaluation of a New Protocol for Industrial
Communication Networks” , M.Sc. Thesis, METU Sept.2011.

76

[30] “Real-time Ethernet: TCnet (Time-Critical Control Network): Proposal for a publicly
available specification for real-time Ethernet”, Doc. IEC 65C/353/NP, 2004.

[31] T. Akima and K. Shibata, “Development of Real-Time Ethernet Based 1/0O Network,
SICE Annual Conference”, The University Electro-Communications, Japan, 2008.

[32] (2013) Flexible Time-Triggered (FTT) paradigm. [last accessed on 05/01/2013]
[Online].Available: http:// http://www.ieeta.pt/Ise/ftt/

[33] V. Nelson, “Fault-tolerant computing: fundamental concepts”, Computer, 23, 19 -25,
1990.

[34] A. Avizienis, J.C. Laprie, B. Randell, “Fundamental concepts of Dependability”,
Technical Report Series University Of Newcastle, 1145, 7-12, 2001.

[35] B.Meyer, “Every little bit counts: toward more reliable software”, Computer, 32, 131 —
135, 1999.

[36] R.Chillarege, 1. Bhandari, J. Chaar, M.Halliday, D. Moebus, B. Ray, M.Y. Wong,
“Orthogonal defect classification-a concept for in-process measurements”, IEEE
Transactions on Software Engineering, 18, 943-956, 1992.

[37] M. C.Paulk, B. Curtis, M. B.Chrissis, C. V. Weber, “Capability maturity model,
version 1.1”, |EEE Softw., 10, 18-27, 1993.

[38] B.Randell, “System structure for software fault tolerance”, SIGPLAN Not., 10, 437449,
1975.

[39] K. G.Shin, Y. H. Lee, “Evaluation of error recovery blocks used for cooperating
processes”, |EEE Trans Soft Eng, SE-10, 692700, 1984.

[40] P.Ramanathan, K. G.Shin, “Use of common time base for checkpointing and rollback
recovery in a distributed system”, |EEE Trans. Softw. Eng., 19, 571-583, 1993.

[41] A. Kaya, “Implementation and Evaluation of the Dynamic Distributed Real Time
Industrial Protocol (D?RIP)”, M.Sc. Thesis, METU Sept. 2013.

[42] A. K. Gozceii, “Implementation and Evaluation of a Synchronous Time-Slotted Medium
Access Protocol for Networked Industrial Embedded Systems”, M.Sc. Thesis, METU Sept.
2011.

[43] Y. B. Kartal, “Dependable Framework Design for Distributed Real-Time Network
Protocols Running On Shared Medium: Design, Simulation and Verification”, Phd. Thesis,
METU, 2013. (Under Preparation).

[44] K. Schmidt, E. Schmidt, A. Kaya, “Dynamic Distributed Real-time Industrial
Ethernet Protocol (D°RIP): Architecture, Implementation and Experimental Evaluation”,
Submitted to IEEE Transactions on Industrial Informatics, 2013.

77

http://www.ieeta.pt/lse/ftt/

[45] Y. B.Kartal, K. W. Schmidt, E. G. Schmidt, “Dependability design for a distributed
real-time protocol family, Parallel and Distributed Systems”, IEEE Transactions on, (to be
submitted), 2013.

78

APPENDIX

XML FILES

<?xml version="1.0" encoding="1S0-8859-1" standalone="no"?>
<IDOCTYPE D3RIP SYSTEM "controllerPD_d3rip.dtd">
<D3RipUrtDevice name="controllerPD_d3rip">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>

<!-- Event configuration -->

<Event name="PDon?" iotype="input">
<Eventld value="25"/>

</Event>

<Event name="PDon!" iotype="output">
<Eventld value="26"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="1"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="PDonc" iotype="input">
<Eventld value="27"/>
</Event>

<Event name="PDoff?" iotype="input">
<Eventld value="28"/>
</Event>

<Event name="PDoff!" iotype="output">
<Eventld value="29"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="1"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="PDoffc" iotype="input">
<Eventld value="30"/>
</Event>

79

</EventConfiguration>

</D3RipUrtDevice>

D3RIP XML Configuration File for Controller PD

<?xml version="1.0" encoding="1S0O-8859-1" standalone="no"?>
<IDOCTYPE SimplenetDevice SYSTEM "controllerPD.dtd" >

<SimplenetDevice name="controllerPD">
<TimeScale value="10"/>

<!-- Ip address of this node, incl. server tcp port -->
<ServerAddress value="localhost:40000" />

<!-- Network topology -->
<Network name="paintingNet">
<Node name="plant"/>

<Node name="controllerR"/>
<Node name="controllerC"/>
<Node name="controllerPD"/>
</Network>

<!-- Event configuration -->
<EventConfiguration>

<Event name="fPD" iotype="input"/>
</EventConfiguration>

</SimplenetDevice>

SimpleNet XML Configuration File for Controller PD

<Executor>

<Generators>

<Generator>

controllerC

<Alphabet>

PDon? PDon! PDonc PDon fPD PDoff? PDoffl PDoffc PDoff
</Alphabet>

<States>
<Consecutive>
1 12
</Consecutive>
</States>
<TransRel>

1 PDon? 2
2 PDon! 3
3 PDonc 4
4 PDoff? 5
4 PDon 6
5 PDon 7
6 PDoff? 7
6 fPD 8
7 fPD 9

80

8 PDoff? 9

9 PDoff! 10
10 PDoffc 11
11 PDoff 1
11 PDon? 12
12 PDoff 2

</TransRel>
<InitStates> 1 </InitStates>

<MarkedStates>1 </MarkedStates>
</Generator>
</Generators>

% specify event attributes
<SimEventAttributes>

% Sensor Events

"stpR" <Priority>-1</Priority>
"stpC" <Priority>-1</Priority>
"fPD" <Priority>-1</Priority>
% Actuator Events

"mvC" <Priority>1</Priority>
"sC" <Priority>1 </Priority>
"arC" <Priority>1 </Priority>

"mvI" <Priority>1 </Priority>
"slI" <Priority>1 </Priority>
“arl" <Priority>1</Priority>

"mvPD" <Priority>1</Priority>

"sPD" <Priority>1</Priority>

"arPD" <Priority>1 </Priority>
"mvR" <Priority>1 </Priority>
"sR" <Priority>1 </Priority>
"arR" <Priority>1</Priority>
"PDon" <Priority>1</Priority>
"PDoff" <Priority>1</Priority>

</SimEventAttributes>

</Executor>

Simulator XML Configuration File for Controller PD

<?xml version="1.0" encoding="1S0O-8859-1" standalone="no"?>
<IDOCTYPE D3RIP SYSTEM "controllerR_d3rip.dtd">
<D3RipUrtDevice name="controllerR_d3rip">

<TimeScale value="10"/>

<!-- Ip address of this node, incl. server tcp port -->
<ServerAddress value="localhost:40000"/>

<Event name="mvC?" iotype="input">

<Eventld value="1"/>

</Event>

<Event name="mvC!" iotype="output">
<Eventld value="2"/>
<ChannelToTransmit value="1"/>

81

<ParameterRecord name="11">
<DestinationNode value="1"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="mvCc" iotype="input">
<Eventld value="3"/>
</Event>

<Event name="arC?" iotype="input">
<Eventld value="4"/>
</Event>

<Event name="arC!" iotype="output">
<Eventld value="5"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="1"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="arCc" iotype="input">
<Eventld value="6"/>
</Event>

<Event name="mvI?" iotype="input">
<Eventld value="7"/>
</Event>

<Event name="mvI!" iotype="output">
<Eventld value="8"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="1"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="myvIc" iotype="input">
<Eventld value="9"/>
</Event>

<Event name="arl?" iotype="input">
<Eventld value="10"/>
</Event>

<Event name="arl!" iotype="output">
<Eventld value="11"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">

82

<DestinationNode value="1"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="arlc" iotype="input">
<Eventld value="12"/>

</Event>

</EventConfiguration>
</D3RipUrtDevice>

D3RIP XML Configuration File for Controller R

<?xml version="1.0" encoding="1S0-8859-1" standalone="no"?>
<IDOCTYPE SimplenetDevice SYSTEM "controllerR.dtd">

<SimplenetDevice name="controllerR">
<TimeScale value="10"/>
<ServerAddress value="localhost:40000" />

<!-- Network topology -->
<Network name="paintingNet">
<Node name="plant"/>

<Node name="controllerR"/>
<Node name="controllerC"/>
<Node name="controllerPD"/>
</Network>

<!-- Event configuration -->
<EventConfiguration>

<Event name="sC" iotype="output"/>
<Event name="stpR" iotype="input"/>
<Event name="sl|" iotype="output"/>
</EventConfiguration>

</SimplenetDevice>

SimpleNet XML Configuration File for Controller R

<Executor>

<Generators>

<Generator>controllerR

<Alphabet>

mvC? mvC!l mvCc mvC arC? arC! arCc arC sC stpR
mvI1? mvl! mvlc mvl sl arl? arl! arlc arl
</Alphabet>

<States>

<Consecutive>

1 28

</Consecutive>

83

</States>

<TransRel>

1 mvC?
2 mvCl!
3 mvCc
4 arC?
4 mvC
5 mvC
6 arC?
6 sC

7 sC

8 arC?
8 stpR
9 stpR
10 arC?
11 arC!
12 arCc
13 arC
13 mv|?
14 mvI?
15 arC
16 mvl!
17 mvic
18 arl?
18 mvl
19 mv|
20 arl?
20 sl

21 sl

22 arl?
22 stpR
23 stpR
24 arl?
25 arl!
26 arlc
27 arl
27 mvC?
28 arl

</TransRel>

<InitStates>1
<MarkedStates>1
</Generator>

</Generators>
<SimEventAttributes>
% Sensor Events

2

</InitStates>

</MarkedStates>

"stpR" <Priority>-1 </Priority>
"stpC" <Priority>-1 </Priority>
"fPD" <Priority>-1 </Priority>
% Actuator Events

"mvC" <Priority>1 </Priority>
"sC" <Priority>1 </Priority>
"arC" <Priority>1 </Priority>
"mvl" <Priority>1 </Priority>
"sl" <Priority>1 </Priority>
“arl" <Priority>1 </Priority>
"mvPD" <Priority>1 </Priority>
"sPD" <Priority>1 </Priority>

84

"arPD" <Priority>1 </Priority>

"mvR" <Priority>1 </Priority>
"sR" <Priority>1 </Priority>
"arR" <Priority>1 </Priority>
"PDon" <Priority>1 </Priority>
"PDoff" <Priority>1 </Priority>

</SimEventAttributes>
</Executor>

Simulator XML Configuration File for Controller R

<?xml version="1.0" encoding="1S0-8859-1" standalone="no"?>
<IDOCTYPE D3RIP SYSTEM "controllerS_d3rip.dtd">
<D3RipUrtDevice name="controllerS_d3rip">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>

<!-- Event configuration -->

<!-- Communication with robot (node 1) -->
<Event name="mvC?" iotype="output">
<Eventld value="1"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="2"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="mvC!" iotype="input">
<Eventld value="2"/>
</Event>

<Event name="mvCc" iotype="output">
<Eventld value="3"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="2"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="arC?" iotype="output">
<Eventld value="4"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="2"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

85

<Event name="arC!" iotype="input">
<Eventld value="5"/>
</Event>

<Event name="arCc" iotype="output">
<Eventld value="6"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="2"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="mvI?" iotype="output">
<Eventld value="7"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="2"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="myvl!" iotype="input">
<Eventld value="8"/>
</Event>

<Event name="myvIc" iotype="output">
<Eventld value="9"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="2"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="arl?" iotype="output">
<Eventld value="10"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="2"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="arl!" iotype="input">
<Eventld value="11"/>
</Event>

<Event name="arlc" iotype="output">
<Eventld value="12"/>

86

<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="2"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<!-- Communication with conveyor (node 3) -->
<Event name="mvPD?" iotype="output">
<Eventld value="13"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="3"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="mvPD!" iotype="input">
<Eventld value="14"/>
</Event>

<Event name="mvPDc" iotype="output">
<Eventld value="15"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="3"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="arPD?" iotype="output">
<Eventld value="16"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="3"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="arPD!" iotype="input">
<Eventld value="17"/>
</Event>

<Event name="arPDc" iotype="output">
<Eventld value="18"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="3"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />

87

<DeadlineTime value="5"/>
</ParameterRecord>
</Event>

<Event name="mvR?" iotype="output">
<Eventld value="19"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="3"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="mvR!" iotype="input">
<Eventld value="20"/>
</Event>

<Event name="mvRc" iotype="output">
<Eventld value="21"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="3"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="arR?" iotype="output">
<Eventld value="22"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="3"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="arR!" iotype="input">
<Eventld value="23"/>
</Event>

<Event name="arRc" iotype="output">
<Eventld value="24"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="3"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<I-- Communication with painting device (node 4) -->
<Event name="PDon?" iotype="output">

88

<Eventld value="25"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="4"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="PDon!" iotype="input">
<Eventld value="26"/>
</Event>

<Event name="PDonc" iotype="output">
<Eventld value="27"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="4"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="PDoff?" iotype="output">
<Eventld value="28"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="4"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

<Event name="PDoff!" iotype="input">
<Eventld value="29"/>
</Event>

<Event name="PDoffc" iotype="output">
<Eventld value="30"/>
<ChannelToTransmit value="1"/>
<ParameterRecord name="11">
<DestinationNode value="4"/>
<DestinationChannel value="1"/>
<EligibilityTime value="2" />
<DeadlineTime value="5"/>
</ParameterRecord>

</Event>

</EventConfiguration>
</D3RipUrtDevice>

D3RIP XML Configuration File for Controller S

89

<Executor>

<Generators>
<Generator>controllerS
<Alphabet>

mvC? mvC! mvCc arC? arC!
mvI? mvl! mvlic arl? arl!

mvPD? mvPD! mvPDc arPD? arPD!
mvR? mvR! mvRc arR? arR!
PDon? PDon! PDonc PDoff? PDoff!
</Alphabet>

<States>

<Consecutive>1 30</Consecutive>
</States>

<TransRel>

1 mvC? 2
2 mvC! 3
3 mvCc 4
4 arC? 5
5 arC! 6
6 arCc 7
7 mvPD? 8
8 mvPD! 9
9 mvPDc 10
10 arPD? 11
11 arPD! 12
12 arPDc 13
13 PDon? 14
14 PDon! 15
15 PDonc 16
16 PDoff? 17
17 PDoffl 18
18 PDoffc 19
19 mvR? 20
20 mvR! 21
21 mvRc 22
22 arR? 23
23 arR! 24
24 arRc 25
25 mvl? 26
26 mv|! 27
27 mvic 28
28 arl? 29
29 arl! 30
30 arlc 1
</TransRel>
<InitStates>1 </InitStates>

<MarkedStates>1 </MarkedStates>
</Generator>

</Generators>
<SimEventAttributes>

% Sensor Events

"stpR" <Priority>-1 </Priority>
"stpC" <Priority>-1</Priority>
"fPD" <Priority>-1</Priority>

% Actuator Events

"mvC" <Priority> 1 </Priority>
"sC" <Priority> 1 </Priority>
"arC" <Priority> 1 </Priority>

arCc
arlc
arPDc
arRc
PDoffc

90

"mvl" <Priority>1 </Priority>
"s|" <Priority> 1 </Priority>
“arl" <Priority> 1 </Priority>
"mvPD" <Priority>1 </Priority>
"sPD" <Priority>1 </Priority>
"arPD" <Priority>1 </Priority>
"mvR" <Priority>1 </Priority>
"sR" <Priority>1 </Priority>
"arR" <Priority>1 </Priority>
"PDon" <Priority>1 </Priority>
"PDoff" <Priority>1 </Priority>
</SimEventAttributes>

</Executor>

Simulator XML Configuration File for Controller R

<?xml version="1.0" encoding="1S0-8859-1" standalone="no"?>
<IDOCTYPE SimplenetDevice SYSTEM "plant.dtd">
<SimplenetDevice name="plant">

<TimeScale value="10"/>

<ServerAddress value="localhost:40000"/>
<Network name="paintingNet">

<Node name="plant"/>

<Node name="controllerR"/>

<Node name="controllerC"/>

<Node name="controllerPD"/>

</Network>

<EventConfiguration>

<Event name="sC" iotype="input"/>
<Event name="stpR" iotype="output"/>
<Event name="sl|" iotype="input"/>
<Event name="sPD" iotype="input"/>
<Event name="stpC" iotype="output"/>
<Event name="sR" iotype="input"/>
<Event name="fPD" iotype="output"/>
</EventConfiguration>
</SimplenetDevice>

SimpleNet XML Configuration File for Plant

<Executor>

<Generators>

<Generator>plantConveyor

<Alphabet>

mvPD sPD stpC arPD mvR sR stpC arR
</Alphabet>

<States>

1 2

3 <lInvariant>"cMove" "LT" 10 </Invariant>
4 5 6

7 <Invariant>"cMove" "LT" 10 </Invariant>
8

</States>

91

<TransRel>

1 mvPD 2
2 sPD 3
<Timing>

<Resets>"cMove" </Resets>
</Timing>3 stpC 4 <Timing>
<Guard> "cMove" "GT" 5 </Guard>

</Timing>
4 arPD 5
5 mvR 6
6 SR 7
<Timing>

<Resets>"cMove"</Resets>

</Timing>7 stpC 8<Timing>
<Guard> "cMove" "GT" 5</Guard>
</Timing>8 arR 1

</TransRel>

<InitStates>1 </InitStates>
<MarkedStates>1 </MarkedStates>
<Clocks>"cMove" </Clocks>

</Generator>
<Generator>plantPaintingDevice
<Alphabet>PDon fPD PDoff</Alphabet>
<States>

1

2 <Invariant>"pdMove" "LT" 10 </Invariant>
3

</States>

<TransRel>1 PDon 2<Timing>
<Resets>"pdMove"</Resets>

</Timing>2 fPD 3<Timing>
<Guard> "pdMove" "GT" 5</Guard>
</Timing>3 PDoff 1</TransRel>
<InitStates>1 </InitStates>
<MarkedStates>1 </MarkedStates>
<Clocks>"pdMove" </Clocks>

</Generator>

<Generator>plantRobot

<Alphabet>mvC sC stpR arC mv| sl
<States>

1 2

3 <lInvariant>"rMove" "LT" 10 </Invariant>
4 5 6

7 <Invariant>"rMove" "LT" 10 </Invariant>
8

</States>

<TransRel>

1 mvC 2

2 sC 3

<Timing>

<Resets>"rMove"</Resets>
</Timing>3 stpR 4<Timing>
<Guard> "rMove" "GT" 5</Guard>

</Timing>
4 arC 5
5 mv| 6
6 sl 7
<Timing>

stpR

arl</Alphabet>

92

<Resets>"rMove"</Resets>
</Timing>7 stpR 8<Timing>
<Guard> "rMove" "GT" 5</Guard>

</Timing>8 arl 1
</TransRel>
<InitStates>1 </InitStates>

<MarkedStates>1 </MarkedStates>
<Clocks>"rMove" </Clocks>
</Generator>

</Generators>
<SimEventAttributes>

"stpR" <Priority>-1 </Priority>
"stpC" <Priority>-1</Priority>
"fPD" <Priority>-1</Priority>

"mvC" <Priority>1 </Priority>
"sC" <Priority>1 </Priority>
"arC" <Priority>1 </Priority>
"mvl" <Priority>1 </Priority>
"slI" <Priority>1 </Priority>
“arl" <Priority>1 </Priority>
"mvPD" <Priority>1 </Priority>
"sPD" <Priority>1 </Priority>
"arPD" <Priority>1 </Priority>
"mvR" <Priority>1 </Priority>
"sR" <Priority>1 </Priority>
"arR" <Priority>1 </Priority>
"PDon" <Priority>1 </Priority>
"PDoff" <Priority>1 </Priority>
</SimEventAttributes>

</Executor>

Simulator XML Configuration File for Plant

93

