
1

2

FPGA BASED CRYPTOGRAPHY COMPUTATION PLATFORM AND THE
BASIS CONVERSION IN COMPOSITE FINITE FIELDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUHAMMAD RIAZ SIAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

SEPTEMBER 2013

Approval of the thesis:

FPGA BASED CRYPTOGRAPHY COMPUTATION PLATFORM
AND THE BASIS CONVERSION IN COMPOSITE FINITE

FIELDS

submitted by MUHAMMAD RIAZ SIAL in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in Department of Cryptog-
raphy, Middle East Technical University by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Prof. Dr. Ersan Akyıldız
Supervisor, Cryptography, METU

Examining Committee Members:

Prof. Dr. Ferruh Özbudak
Cryptography, METU

Prof. Dr. Ersan Akyıldız
Cryptography, METU

Assoc.Prof.Dr. Ali Doğanaksoy
Cryptography, METU

Dr. Hamdi Murat Yıldırım
CTIS, Bilkent University

Dr. Oğuz Yayla
Cryptography, METU

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: MUHAMMAD RIAZ SIAL

Signature :

v

vi

ABSTRACT

FPGA BASED CRYPTOGRAPHY COMPUTATION PLATFORM AND THE
BASIS CONVERSION IN COMPOSITE FINITE FIELDS

Sial, Muhammad Riaz

Ph.D, Department of Cryptography

Supervisor : Prof. Dr. Ersan Akyıldız

September 2013, 42 pages

In the study of this thesis work we focused on the hardware based cryptographic
algorithms computation platform, especially for elliptic-curve and hyper-elliptic
curve based protocols. We worked for making the hyperelliptic curve based Tate
Pairing computation efficient specially for hardware implementations. To achieve
this one needs to make the underlying finite field arithmetic implementations ef-
ficient. For this we study the finite fields of type Fq, q = p2pn from the efficient
implementation point of view. We found that we can represent these fields with
irreducible polynomials in the form f(x) = xp − x− a over Fp2pn . By using this
representation we have found a way of constructing normal basis for the field,
together with transmission matrix between normal basis and Polynomial Basis
of Fq and vice versa. The key point is that this matrix and its inverse can be
computed very efficiently without any memory requirement. Then we imply the
techniques developed in this work on the Tate pairing computation algorithm pro-
posed by I.Duursma, H.S.Lee in [20] and modified by S.Kwon [27] and hardware
implementation scheme proposed in [2]. We found that by introduction of such
efficient conversion of basis we can significantly reduce the pairing computation
cost as well as the cost of other algorithms based on such composite finite field
structures. In short we give a new efficient way of conversion from polynomial to
normal basis and vice versa with zero memory complexity in the finite fields of
type Fq, q = p2pn for any prime and we reduce the Tate pairing computation cost

vii

by 49.5% after applying such conversions.

Secondly as part of the FPGA based cryptography platform we have implemented
cryptographic algorithms in FPGA, integrated it with other cores inside FPGA
and accessories outside FPGA using Microblaze processor. We also give an effi-
cient implementation of prime field multiplication for p = 7, which is 31% faster
than the one in [2] and by using this multiplier Tate-pairing algorithm in [2] can be
made 17% more efficient. We also implemented modular multiplication, addition,
inversion and efficient squaring modules over binary fields needed to implement
protocols based on NIST recommended elliptic curve K-163 and SHA-1 to use
it for ECDSA and AES-128 for reference purpose to run over existing FPGA
platform.

Keywords : Composite Finite Fields, basis conversion, Vandermonde matrix, Tate
pairing, cryptography, FPGA

viii

ÖZ

FPGA TABANLı KRIPTOGRAFI İŞLEM PLATFORMU VE BILEŞIK
SONLU CISIMLERDE BAZ DÖNÜŞÜMÜ

Sial, Muhammad Riaz

Doktora, Kriptografi

Tez Yöneticisi : Prof. Dr. Ersan Akyıldız

Eylul 2013, 42 sayfa

Bu tezde eliptik ve hipereliptic eğri tabanlı protokoller başta olmak üzere donanım
tabanlı kriptografik algoritmaların işlem platformlarına odaklandık. Hipereliptik
eğri tabanlı Tate Pairing işlemlerinin özellikle donanımsal uygulamalarını ver-
imli hale getirmeye Çalıştık. Bunun için Fq, q = p2pn şeklindeki sonlu cisimlerini
verimli uygulamaya çalıştık. Bu cisimleri f(x) = xp−x−a formundaki indirgene-
mez polinomlarla temsil edebileceğimizi gözlemledik. Bu temsil şeklini kullanarak
cismin normal bazını oluşturmak, normal bazdan Fq’ın polinom bazına geçiş ma-
trisini ve de tersini oluştumak için bir yol bulduk. Burada önemli nokta bu ma-
trisi ve tersini hiç bellek kullanmadan hızlı bir şekilde elde edilebiliyor olmasıdır.
Daha sonra bu çalışmada geliştirdiğimiz teknikleri I.Duursma, H.S.Lee tarafından
[20]’da önerilen algoritmaya, S.Kwon’un [27]’da değiştirdiği algoritmaya ve [2]’de
önerilen donanım uygulaması şemasına uyguladık. Bu hızlı şekildeki baz değişimini
kullanarak pairing işlem maliyetlerini azalttığımız gibi, bileşik sonlu cisim yapıları
tabanlı diğer algoritmaların da maliyetlerini de önemli bir boyutta azaltabileceğimizi
gördük. Kısacası, herhangi bir asal için Fq, q = p2pn türündeki sonlu cisimlerde
polinom bazından normal baza ve tersine geçişi hiç bellek kullanmadan hızlı bir
şekilde yapmak için yeni bir yol gösterdik ve bu dönüşümleri yaparak Tate pairing
işlem maliyetini %49.5 kadar azalttık.

İkinci olarak FPGA tabanlı kriptografinin bir parçası olarak kriptografik algorit-
maları FPGA’lerde uyguladık, FPGA’lerin içindeki diğer çekirdeklerle ve Microb-

ix

laze işlemci kullanarak FPGA dışarsındaki ek birimlerle bütünleştirdik. Ayrıca
p=7 için [2]’dekinden %31 daha hızlı asal cisim çarpımını uyguladık ve bu çarpımı
kullanarak [2]’deki Tate pairing algoritmasını %17 daha hızlı hale getirdik. Son
olarak, NIST’in ECDSA ve AES-128’de kullanılmak üzere tavsiye ettiği K-163
eliptik eğrisi ve SHA-1 protokollerinde kullanılan ikili cisimler üzerinde modüler
çarpma, toplama, tersini alma ve hızlı kare alma işlemlerini de referans olması
için var olan FPGA platformunda uyguladık.

Anahtar Kelimeler : Kompozit Finite Field, temel dŏnŭşŭm, Vandermonde ma-
tris, Tate pairing, kriptografi, FPGA

x

To my family specialy my loving Mother (may her soul rest in peace) who
suffered the most due to my absence in the last days of her life

xi

xii

ACKNOWLEDGMENTS

I thank ALLAH for the wisdom and perseverance that he has been bestowed
upon me during my Ph.D research, and indeed throughout my life: ”I can do
everything through him who give me strength”.

My first debt of gratitude and respect must go to my thesis supervisor Prof. Dr.
Ersan Akyıldız for his patient guidance, enthusiastic encouragement and valuable
advices whilst allowing me the room to work in my own way during the research
and preparation of this thesis. I also thank Dr. Hamdi murat yıldırım for his
valuable tips and guidance during this time.

I want to express my deeply felt thanks to Prof. Dr Feruh Özbudak for his
patience to listen, warm encouragement and thoughtful guidance in the times of
depression during my research in the cryptography lab in odd times.

My special thanks to Prof. Dr. Ali Doğanksoy my first teacher in the field of
cryptography for his motivating and cheerful attitude at the start of my study in
the field of cryptography.

I cant forget the help provided by Dr. Sedat Akleylek and Dr. Oğuz Yayla for
helping in day to day problems faced during my study and their prompt response
in case of any guidance.

Last but not the least I thank my family for their patience to bear me and thank
my cute small angel HUDA RIAZ for her day and night prayers for her baba.

It has been a great privilege to spend the most memorable and demanding 06 years
of my life in such a meritorious Institution like ”Institute of Applied Mathematics”
at Middle East Technical University Ankara, and its members will always remain
dear to me.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF FIGURES . xix

LIST OF TABLES . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 PRELIMINARIES . 3

1.1.1 Finite Fields and their Presentation 3

1.1.1.1 Polynomial Basis 3

1.1.1.2 Normal Basis 3

1.1.1.3 Composite Finite Fields 4

1.1.2 Basis Conversion 4

2 BASIS CONVERSIONS OVER COMPOSITE FINITE FIELDS . 5

2.0.3 Inverse of Matrix M 11

2.0.4 Avoiding the Inversion in Computing M−1 . . . 11

2.1 Basis Conversion . 12

xv

2.1.1 Polynomial to Normal Basis Conversion 12

2.1.2 Normal to Polynomial Conversion 13

2.1.3 Algorithm for PB-NB Conversion 13

2.1.4 Algorithm for NB-PB Conversion 14

2.1.5 Computation Complexity of the Algorithm 2.1.3
for α ∈ Fp2n . 14

2.1.6 Cost Comparison 15

2.1.6.1 Cost of Multiplication in the Finite
Field Fp2pn 15

3 COMPUTING TATE PAIRING EFFICIENTLY OVER THE FI-
NITE FIELDS OF CHAR 7 . 17

3.1 Introduction . 17

3.2 Algorithm for Tate Pairing 18

3.3 Hardware Implementation of DLK algorithm 19

3.3.1 Implementation of DLK Algorithm Using Hybrid
Basis Approach 19

3.3.2 Normal Basis and Final Exponentiation 20

3.4 Cost Estimation if p =7 , n=31 21

4 FPGA IMPLEMENTATIONS . 23

4.1 Introduction . 23

4.2 Multiplication of two Integers mod Mersenne Prime P . . 23

4.2.1 Algorithm Code to Multiply two Elements in F7 25

4.2.2 Complexity Comparison 25

4.3 HARDWARE MODULES IMPLEMENTATION FOR CRYP-
TOGRAPHY PLATFORM 27

xvi

4.3.1 Hardware Implementation of Mult. over Finite
Field 2163 . 28

4.3.2 Inversion Serial and Parallel Algorithm 29

4.3.3 Squaring in Binary Fields 29

4.3.4 Hardware Implementation of AES 30

5 CONCLUSION . 31

5.1 Part-1: . 31

5.2 Part-2: . 31

5.3 Future Work: . 31

REFERENCES . 33

APPENDICES

A Verilog Code For Hardware Implementations 37

B Implementation Guides . 39

CURRICULUM VITAE . 41

xvii

xviii

LIST OF FIGURES

Figure 2.1 Conversion matrix and Inverse matrix 11

Figure 4.1 F7 Multiplier Results . 24

Figure 4.2 F7 Multiplier Algorithm . 25

Figure 4.3 FPGA Implementation Simulation 25

Figure 4.4 Embedded System Layout . 27

Figure 4.5 Tools Flow Chart . 28

Figure 4.6 Finite Field Multiplier . 29

Figure 4.7 Inversion in the Finite Field 29

Figure 4.8 Finite Field Squaring with Barret Reduction 30

Figure 4.9 AES . 30

xix

xx

LIST OF TABLES

Table 2.1 Basis Conversion Cost for Binary Field 15

Table 2.2 Basis Conversion Cost for General odd Prime p 15

Table 2.3 Single Conversion vs Single Multiplication 16

Table 3.1 Exponentiation Complexity Comparison for p = 7 , n = 31 . . . 21

Table 3.2 Tate Pairing Complexity using Polynomial Basis vs Proposed
Hybrid Basis . 21

Table 4.1 F7 Multiplication Comparison 26

xxi

xxii

CHAPTER 1

INTRODUCTION

There are primarily two parts of this thesis work. The first part deals with theo-
retical research over the efficient finite fields basis conversion and its application
to Tate pairing and the second part is the Embedded FPGA based system Im-
plementations.

Motivation of the first part started from [2] and [3], in which authors have pro-
posed efficient ways to compute pairing-based cryptographic protocols on hyper-
elliptic curves of genus 3 over finite fields of characteristics 7 and 3 respectively.
Both authors used the same composite structure of finite fields of type Fp2pn for
Tate-pairing computation. In [2] it is shown that using this structure as the value
of prime p grows the complexity of the algorithm is reduced. Specially using p = 7
is more efficient as compared to p = 3.

It is well known in the finite field arithmetic literature that multiplication in poly-
nomial basis is much faster than in normal basis. On the other hand squaring
in binary fields or exponentiation is much cheaper in the normal basis instead of
polynomial basis as raising to the power p is just a shift operation. Normal basis
are considered very attractive specially for hardware implementations due to the
fact that shift operation is free to implement in hardware. To overcome the multi-
plication difficulty in normal basis many solutions are proposed to make it faster
like Optimal Normal Basis(ONB) of type I and II have been introduced in many
publications e.g [12] and [13]. So researchers had been always looking for the
optimization of the algorithms using optimal choice of basis and algorithm. Con-
version from one basis to other is a costly operation using matrix multiplication,
generally requires O(n2) operations and O(n2) field elements storage [11]. Its
hard specially for memory constrained devices, as one needs to store an (n-by-n)
matrix for this operation.

In past there have been suggested solutions for this sake. In [12] Muchtadi-
Alamsyah and F. Yuliawan focused on the basis conversion from polynomial to
Optimal normal basis(ONB) and vice versa, in the finite fields of type F2nm , where
gcd(n,m) = 1, m+1 must be prime and 2 must be primitive in Z∗m+1 or for ONB
of type II, 2m + 1 must be prime and 2 is a primitive in Z2m+1, or 2m + 1 ≡ 3
mod 4 and 2 generates the quadratic residues in Z2m+1. They suggested a way
to covert basis with O(m) memory complexity and O(m) time complexity.

1

In [10] Authors have suggested that it is more efficient to work in composite fields
instead of binary fields and have devised algorithm to construct composite field
of type F2nm from F2k where k = mn. In [9] authors have suggested algorithms
to convert basis in the finite field of type F2m with the O(m) memory complexity
and O(m) time complexity.

In the literature researchers have also used the hybrid approach for basis to benefit
from both basis advantages. One such example is from v.z.Gathen and Shokrol-
lahi [8]. In this paper authors used hybrid basis system, say when multiplication
is needed, two field elements are converted to polynomial basis and multiplication
is carried out in polynomial basis, then the reduction is carried out in normal ba-
sis after converting back from polynomial basis. In [6] authors have demonstrated
that using the hybrid type of basis representation for implementing elliptic curve
protocol outperforms all existing FPGA set-up to break ECC-130 challenge.

In this work we focused on the efficient basis conversion between polynomial and
normal basis to expedite the computation of such algorithms based on composite
finite fields. Here we noticed that due to Frobenius in Fqp over Fq the computing
exponentiation can be much faster than the other methods when p is an odd
prime. Moreover same can be extended to p2pn type of field for all n co-prime to
p. During this work luckily the basis conversion matrix happened to be a special
type of Vandermonde matrix which can be constructed very efficiently. All the
computations in matrix format are in the prime characteristic field which we show
is very easy to compute as compared to parent field.

Hence we purpose a storage free basis conversion for the composite finite fields
of type Fp2pn over Fp2n which efficiently computes the presentation of an element
from one basis to other with little extra computation cost. We also analyse the
Tate pairing algorithm described in [2] and give an estimate for the hardware im-
plementation improvement for the Tate pairing computation using our approach.

Arrangement of this thesis is as below.
In chapter-1 we will discuss the preliminaries.
In chapter-2 we discuss the composite finite fields and basis conversions.
In chapter-3 we present the efficient way of Tate pairing computation.
In chapter-4 covers the FGPA implementations.
Where as the Appendix-A gives the guide for implementations and in Appendix-B
we append the Verilog and C++ programming Code for FPGA implementations
and embedded system .

2

1.1 PRELIMINARIES

In this part we will give an introduction to what are composite finite fields and
what are the basis.

1.1.1 Finite Fields and their Presentation

In the study of abstract algebra, a finite field or Galois field is a field in which there
are finite number of elements. Finite fields are of prime importance in number
theory, cryptography, error correcting codes, algebraic geometry etc. Elements of
the finite fields are presented using different basis system, a basis for Fpn of size
pn elements over Fp is a set of n elements of Fpn which are linearly independent.
Once the type of basis is chosen then one needs to set the rules for field operations
e.g multiplication, addition etc. There are mainly two types of basis known as
polynomial and normal basis.

1.1.1.1 Polynomial Basis

If α ∈ Fpn is the root of an irreducible primitive polynomial over Fp then Fpn
= Fp(α) and {1, α, α1, α2,, αn−1} is a basis over Fp of the vector space of Fpn
over Fp and is called polynomial basis (algebraic basis). An element A ∈ Fpn can
be written as

A =
n−1∑
i=0

aiα
i,

where a0, a1,, an−1 ∈ Fp are the coefficients.

1.1.1.2 Normal Basis

Let Fpn be the field extension of Fp then a basis of Fpn over Fp of the form

{β, βp, βp2 ,, βpn−1}, where β is a suitable element of Fpn is called Normal basis
of Fpn over Fp. Then an element B ∈ Fpn can be written as

B =
n−1∑
i=0

biβ
pi ,

where b0, b1,, bn−1 ∈ Fp are the coefficients.

Both types of basis are very common in the theory of finite fields and cryptogra-
phy. However the construction of polynomial basis is very easy as compared to
normal basis. It is difficult to find normal basis however these are very popular
due to their property that computing the exponentiation to power p is very easy.
As we can see if we raise any element of the basis to pth power the result is next

3

element of the basis. So when we do the same for for some B then its just the
rotation of the elements bi.

1.1.1.3 Composite Finite Fields

Composite Field can be defined as an extension field defined over a base field
which is already an extension of some field. For instance if we want to construct
a field of size p2pnelements then there exist only one finite field of this size however
its representations may vary depending upon the basis and structure of the field
you choose. Now we may represent the same field using Fpm structure, where
m = 2pn and the elements of the field can be represented as polynomials of degree
m − 1 whose coefficients belong to Fp. The same field can be represented using
composite field structure Fp2pn , then each element A ∈ Fp2pn can be represented
as polynomials of degree p − 1 whose coefficients belong to Fp2n provided p and
n are co-prime. If A ∈ FP 2pn then

A =

p−1∑
i=0

aiα
i,

where a0, a1,, an−1 ∈ Fp2n are the coefficients.

1.1.2 Basis Conversion

Basis conversion refers to change the presentation of a field element from one
basis to other. For cost effective solutions, better performance and compatibility
of different systems its necessary to convert from one type of basis presentation
to other. In some situations where the raising power to a big number is more
costly then hybrid basis approach is more appropriate. By hybrid we mean one
uses the polynomial basis however when ever raising the power is needed con-
verts to normal basis, power is computed and convert back to polynomial basis
as multiplication operation is normally very costly in normal basis.

4

CHAPTER 2

BASIS CONVERSIONS OVER COMPOSITE FINITE
FIELDS

In this chapter we will discuss the conversion from polynomial basis to normal
basis and from normal basis to polynomial basis over the field Fpp . We present
here all the theorems needed to prove the conversion matrix step by step.

Lemma 2.1. f(x) = xp − x+ 1 is irreducible over any Fpn where gcd(p, n) = 1.

Proof. In [1] theorem (3.78) says f(x) = xp − x − a ,a ∈ F∗p is irreducible over
Fq where q = pn, if and only if it has no root ∈ Fq. Now from [1] theorem (2.25)
and [1] corollary (3.79) gives that f(x) = xp − x− a has a root in Fq if and only
if absolute TrFq(a) = 0. Hence f(x) = xp − x − a ,a ∈ F∗p is irreducible over Fq
if TrFq(a) 6= 0. Since according to [1] theorem 2.23, abs TrFq(a) = n ∗ a, so if
TrFq(a) = 0 then either a is zero or n is divisible by p. It completes the proof.

Lemma 2.2. Let β = α−1, where α is the root of f(x) = xp − x + 1 and
Fpp = Fp[x]/ < f(x) = xp − x + 1 > then β generates a normal basis namely

{β, βp, βp2 ,, βpp−1} is a basis of Fpp over Fp.

Proof. Since reciprocal of an irreducible polynomial is also irreducible so the
reciprocal of f(x) = xp − x + 1 (which is irreducible over prime p from lemma
2.1) is xp(f(x−1)) = xp − xp−1 + 1 is also irreducible. It follows from corollary
(2.6) in [4] that Root of this polynomial generates normal basis.

Theorem 2.3. α be the root of irreducible polynomial f(x) = xp− x+ 1 over Fp
and β = α−1 then βp

i
= 1− (α− i)p−1, where i = 0, 1, 2, · · · , p− 1.

Proof. Since α is the root of f(x) = xp − x+ 1, we have

5

αp = α− 1 and

β = f(α) = a0 + a1α + · · ·+ akα
p−1

=
1

α
= 1− αp−1

βp = f(α)p = f(αp) = f(α− 1) = 1− (α− 1)p−1

βp
2

= (βp)p = f(α− 1)p = f(αp − (1)p)

due to Frobenius

= f(α− 2) = 1− (α− 2)p−1

↓
↓

(βp
i−1

)p = f(α− (i− 2))p = f(αp − (i− 2))

= f(α− 1− i+ 2) = 1− (α− (i− 1))p−1

Hence by induction

βp
i

= f(α− (i− 1))p = f(α− i) = 1− (α− i)p−1

(2.1)

Lemma 2.4.

(
p− 1

k

)
≡ (p− 1)!

k!(p− 1− k)!
≡ (−1)k mod p

where k = 0, 1, 2,, p− 1.

Proof. Note that (p− 1)! = (−1) mod p known as Wilson’s Theorem.

6

Let Sk ≡ (k!(p− 1− k)!) mod p,

where 0 ≤ k ≤ p− 1

S0 ≡ 0!(p− 1)! ≡ (−1) mod p

since Sk+1 = (k + 1)!(p− 1− k − 1)!

=
(k + 1)k!(p− 1− k)!

p− 1− k
over Z then

Sk+1(p− 1− k) ≡ Sk(k + 1) mod p

Sk+1(−1− k) ≡ (−1)(Sk)(−k − 1) mod p

Sk+1 ≡ (−1)(Sk) mod p

From the above equality and

Since S0 ≡ (−1) mod p

we can write

Sk ≡ (−1)k+1 mod p

S0
(p− 1)!

k!(p− 1− k)!
≡ (p− 1)!

Sk
mod p

≡ −1

(−1)k+1
≡ (−1)k mod p

Theorem 2.5. The matrix

M =


−1 0 . . . 0 1
−(1)0 −(1)1 . . . −(1)p−2 0
−(2)0 −(2)1 . . . −(2)p−2 0

...
...

. . .
...

...
−(p− 1)0 −(p− 1)1 . . . −(p− 1)p−2 0


is transition matrix from polynomial basis {1, α, α2, · · · , αp−1} to normal basis

{β, βp, βp2 , · · · , βpp−1} of the space Fpp over Fp, where α is the root of f(x) =
xp − x+ 1 and β = 1

α

Proof. Let

Fpp = Fp[x]/ < f(x) = xp − x+ 1 >

= Fp[α]/ < f(α) = αp − α + 1 > and let

β = α−1

(2.2)

From Theorem (2.3) we know that:

βp
i

= 1− (α− i)p−1

7

where
βp

i
for 0 ≤ i ≤ p− 1 = {β, βp, βp2 , · · · , βpp−1} are the normal basis.

From above equation using binomial expansion formulae we get

βp
i

= 1− (α + (−i))p−1

= 1−
p−1∑
k=0

(
p− 1

k

)
αp−1−k(−i)k

(2.3)

From Lemma (2.4) and above Eqn. we can write

(α− i)p−1 =

p−1∑
k=0

(−1)kαp−1−k(−1)k(i)k mod p

=

p−1∑
k=0

(−1)2kαp−1−kik mod p

=

p−1∑
k=0

α(p−1−k)ik mod p (2.4)

From above equations we can easily conclude that,

βp
0

= 1− αp−1, as when i = 0, eqn:(2.4) = αp−1

βi = βp
i

= −
p−2∑
k=0

α(p−1−k)ik mod p, for 1 ≤ i ≤ p− 1 (2.5)

Now if we compute the above equation for all βi in the tabular form we get our
desired matrix and hence normal basis can be computed from polynomial basis
as below:


β
βp

βp
2

. . .

βp
p−1

=


−1 0 . . . 0 1
−(1)0 −(1)1 . . . −(1)p−2 0
−(2)0 −(2)1 . . . −(2)p−2 0

...
...

. . .
...

...
−(p− 1)0 −(p− 1)1 . . . −(p− 1)p−2 0

 ∗

αp−1

αp−2

...
α
1


As each row of the matrix is just raising the power of field element, so no need
of memory to store the matrix.

Lemma 2.6.

p−2∑
m=0

km mod p, k ∈ Fp∗ ≡
{
−1 mod p if k = 1,

0 mod p otherwise.

8

Proof. For k = 1 its straight forward sum of p− 1 number of 1 = -1 mod p
For k 6= 1 lets have

p−2∑
m=0

km mod p ≡ k0 + k1 + k2 + · · ·+ kp−2 mod p

(2.6)

Since this is a simple geometric series
a+ ar + ar2 + ...+ arn−1, where
a = 1
r = k,
n = p− 1.
Then we have

p−2∑
m=0

km mod p ≡ a(1− rp−1)
1− r

mod p

Since rp−1 ≡ 1 mod p, for r = k, k 6= 1, k ∈ Fp∗ So

p−2∑
m=0

km mod p ≡ 0 mod p

Theorem 2.7. If the matrix

M =


−1 0 . . . 0 1
−(1)0 −(1)1 . . . −(1)p−2 0
−(2)0 −(2)1 . . . −(2)p−2 0

...
...

. . .
...

...
−(p− 1)0 −(p− 1)1 . . . −(p− 1)p−2 0


The inverse of the matrix M mod p can be computed by simple transpose of the
permuted rows of matrix M.

Proof. If we analyse the matrix M of dim (p x p) contains a sub-matrix A of
size (p-1) x (p-1) which is of special type known as Vandermonde matrix. This
sub-matrix is shown below.

A =


−(1)0 −(1)1 . . . −(1)p−2

−(2)0 −(2)1 . . . −(2)p−2

...
...

. . .
...

−(p− 1)0 −(p− 1)1 . . . −(p− 1)p−2


This Vandermonde matrix is well known and is invertible.

9

Now if we look at each row then we observe that Ri is nothing but just powers of
i from 0 to p − 2. then we can write corresponding rows and the scalar product
of two rows as under:

−Ri = i0, i1, i2, ...ip−1

−Rj = j0, j1, j2, ...jp−1

Ri ∗Rj = (i ∗ j)0 + (i ∗ j)1 + (i ∗ j)2 ++ (i ∗ j)p−2

= k0 + k1 + k2 + · · ·+ kp−2 mod p, where k = i*j mod p

=

p−2∑
m=0

km mod p, k ∈ Fp∗

=

{
−1 if k = 1,where k = i ∗ j mod p

0 otherwise: due to Lemma (2.6)

Mathematically: if Ri ∗ Ri = 1 and Ri ∗ Rj = 0 where i 6= j then such matrix is
called orthogonal matrix and inverse of such matrix is just the transpose of it.

However in our case matrix A is not orthogonal but has the property that Ri∗Rj =
−1 only if i ∗ j mod p = 1 else 0. This property allows us to find the inverse
A−1 of matrix A, which is accomplished by permuting the rows of A such that
column(i) of A−1 = - (Row(j)ofA)t, where j = i−1 mod p. we can write as

Ci = −(R(i−1 mod p))
t (2.7)

where Rj stands for the jth row of the matrix A.

A =


R1

R2
...

Rp−1


and the column Ci stand for the ith column of the matrix A−1.

A−1 =
[
C1 C2 · · · Cp−1

]

10

2.0.3 Inverse of Matrix M

Inverse of the transition (p x p)matrix M is nothing but the permutation of the
M which can be computed in 3 steps as described below:
1. Column 1 = pth column of M but upside down.
2. Last row of the matrix is all 1.
3. Rest of the (p-1)x(p-1)matrix = A−1 as discussed above

This is very easily comprehensible in the example below, however the detailed
algorithm 2.1.4 is given on the next page.

Example. Here is an example for the case p=7.

Figure 2.1: Conversion matrix and Inverse matrix

2.0.4 Avoiding the Inversion in Computing M−1

In the Above scheme it is shown that in the matrix M−1 we compute sub-matrix
of dimension (p-1)-by-(p-1) as below,

Ci = −(R(i−1 mod p))
t (2.8)

where C is the column of A−1 and R is row of matrix A so to find the row number
of M to fill the Column of M−1 we need inversion for a ∈ Fp. Here we explain
how this inversion is avoided to to compute this permutation.

Each of row of matrix M is nothing but the powers of row number.
In sub-matrix A

Ri = (i0, i1, i2, ..., ip−2) (2.9)

11

In A−1

Ci = −([(i−1)0, (i−1)1, (i−1)2, ..., (i−1)p−2])t (2.10)

where as all computation is mod p.
Now since (i−1)p−1 = 1 then

(i−1)p−1 ∗ i = i = (i−1)p−2

and

(i−1)p−2 ∗ i = i2 = (i−1)p−3

...

(i−1)2 ∗ i = ip−2 = (i−1)1

(i−1)1 ∗ i = ip−1 = (i−1)0

from here we can easily conclude that 2.10 is nothing but the 2.9 with values in
the reverse order. That can be written as 2.10 =¿

Ci = (ip−2, ip−3, ..., i1, i0)

which is nothing but 2.9 with values in the reverse order.

Note: This concludes that construction of matrix M is same as construction of
matrix M−1 and both have equal complexity.

2.1 Basis Conversion

2.1.1 Polynomial to Normal Basis Conversion

Normal basis can be computed from polynomial basis using transition matrix as
discussed in Theorem (2.5). Where as the transition matrix is constructed using

the algorithm given in 2.1.3 with the time complexity of p2

4
. The equation is as

shown below:
β
βp

βp
2

. . .

βp
p−1

=


−1 0 . . . 0 1
−(1)0 −(1)1 . . . −(1)p−2 0
−(2)0 −(2)1 . . . −(2)p−2 0

...
...

. . .
...

...
−(p− 1)0 −(p− 1)1 . . . −(p− 1)p−2 0

 ∗

αp−1

αp−2

...
α
1



12

2.1.2 Normal to Polynomial Conversion

As inverse of conversion matrix discussed in Lemma (2.2) above can be now used
to compute polynomial basis from normal basis using the formulae below.


0 (1)0 . . . (p− 1)0

0 (1)1 . . . (p− 1)1

...
...

...
...

0 (1)p−2 . . . (p− 1)p−2

1 1 . . . 1

 ∗


β
βp

βp
2

. . .

βp
p−1

 =


αp−1

αp−2

...
α
1


Note: Its clear from the above conversion equations that there is no need of
memory to store this matrix, as it can be computed with very little effort during
basis computation.

2.1.3 Algorithm for PB-NB Conversion

Input : alpha(a1, a2,ap);
Output: beta (b1, b2,bp);

Algorithm:
z = (p-1)/2 ;
beta[1] = (alpha[p] - alpha[1]) mod p;
for i = 1 to z do

x = 1; m = 1;
y1 = 0; y2 = 0; x1 = 0; x2 = 0;
for j = 1 to z do

y1 = (y1 - x * alpha[j]) mod p;
y2 = (y2 - x * alpha[z+j]) mod p;
x = x*i mod p;
x1 = (x1 - m * alpha[j]) mod p;
x2 = (x2 - m * alpha[z+j]) mod p;
m = m*(-i) mod p;

end for;
beta[i+1] = (y1+ x*y2) mod p;
beta[p-i+1] = (x1+ m*x2) mod p;

end for;
output = beta;

The above algorithm takes the coefficients of an element A ∈ Fpp in the poly-
nomial basis representation as input and computes its coefficients in the normal
basis. The time complexity of the algorithm can be seen as p2/4 without any
storage requirement. Same algorithm can be extended for the coefficients αi if
they belong to Fp2n .

13

Note: Normal to polynomial basis conversion can be done by using the algorithm
as shown in Figure 2.1, which is given below in detail.

2.1.4 Algorithm for NB-PB Conversion

Input : beta(a1, a2,ap);
Output: alpha(b1, b2,bp);

Algorithm:
z = (p-1)/2 ;
alpha[p] = beta[p];
for i = 1 to z do

alpha[p] = (alpha[p] + beta[i] + beta[p-i]) mod p;
x = 1; m = 1; y =0;
for j = 1 to p-1 do

x = (x*i) mod p;
m = m*(-i) mod p;
y = alpha[p-j];
alpha[p-j] = (y + m*beta[p-i+1] + x*beta[i+1]) mod p;
end for;

end for;
output = alpha;

The complexity of this algorithm is also same as above in algorithm 2.1.3.

2.1.5 Computation Complexity of the Algorithm 2.1.3 for α ∈ Fp2n

To assess the complexity of an algorithm there are mainly two ways to compare.
First we see how much time will it take to execute and the other one is how
many base field operations are required to complete the task. As we can see from

algorithm its time complexity is p2

4
now we compute its binary complexity which

can be described in terms of base field operations.

Let M denote the multiplication in Fp and A the Addition in Fp.
No of rounds = p2

4
.

No of prime field multiplications = 2M
No of multiplications in the field of α ∈ Fp2n with x ∈ Fpis4 = 8nM ∈ Fp
No of additions in the field of α ∈ Fp2nis4 = 8nA ∈ Fp.
Cost of single round = (2n+ 2)nM + 8nA

Total cost of the algorithm = (8n+2)
4

np2M + 4p2nA
which can be approximately estimated to = 4np2M + 4np2A.

14

2.1.6 Cost Comparison

To the best of our knowledge in the literature there is no such basis conversion
discussed over the composite extension fields of odd primes, Moreover our focus
was to explore the mathematics behind such composite fields and to convert to
normal basis for only exponentiation purposes and revert back to polynomial
basis for other operations when ever required. Hence below we compare its cost
to the multiplication in the same extension fields so that the comparison can be
made for exponentiation computations.

Since there are some algorithm discussed in the literature for conversion to Op-
timal normal basis (ONB) of type I and II for efficient multiplication over some
special Field extensions, Hence we compare our result to these suggestion in the
table below.

Algorithm Memory complexity Time complexity Finite Field
B.Sunar,E.Savas [10] m+n mn 2mn

I.Muchtadi,F.Yuliawan[12] m m2 2mn

Table 2.1: Basis Conversion Cost for Binary Field

Algorithm Memory complexity Time complexity Finite Field
Our Proposed 0 p2 p2pn

Table 2.2: Basis Conversion Cost for General odd Prime p

2.1.6.1 Cost of Multiplication in the Finite Field Fp2pn

In [2] authors have discussed the cost in such composite fields with detail at pg-58
where they have explored the Schonhage-Strassen and Karatsuba multiplications
methods and have given the best cost for the case p = 7 as;

M(Fp2pn) = 39M(Fpn) + 728nM + 1079nA

If we take the values of p and n as p = 7 and n = 31, then the finite field will
become of the size approximately 1300 bits. The security of the 1300 bit field size
for pairing based crypto system can be regarded equal to crypto system based on
exponentiation in the multiplicative group of same size. If we compare the cost
of our conversion method with the multiplication then the above estimate can be
regarded as

≥ 39(1004A+ 92M) + (728 ∗ 31)M + (1079 ∗ 31)A

1M = 76952 operations in prime field keeping roughly the cost of addition = cost
of multiplication
1Conv = 8 ∗ 31 ∗ 49 = 6076 operations.

15

The results for comparison are tabulated as below;

Operation No of operations in the Prime Field
Multiplication as in [2] 76952

Proposed Basis Conversion 12152

Table 2.3: Single Conversion vs Single Multiplication

single Multiplication = 6.33 * cost of basis conversion
Hence for efficient implementations one can use the basis conversion whenever
there is need to perform exponentiation to power p and then can convert back to
polynomial basis for the efficient multiplication/inversion operations in polyno-
mial basis with the cost of less than one third of that single multiplication.

Remarks:
1. It is important to highlight here that size of Finite field changes exponentially
with the size of the prime p. For instance if we use the structure Fp2pn and keeping
the size of the n = 29 as in [2] constant then changing the size of the prime from
3 bit to 5 bit will result in changing the size of the finite field from 1000 to 9000
bits approximately. This shows that even at very high security level, the size of
the p is not much so the conversion matrix cost will not be high as compared to
multiplication in the field.
2. The matrix M and its inverse as discussed above are shown to prove the inver-
sion, however for basis transition actually there is no matrix arithmetic involved
because every row can be computed one by one for each basis element as shown
in the algorithm 2.1.3
3. Since f(x) = xp − x − a is also irreducible over Fp2 , this work can be eas-
ily extended to the fields Fp2pn . From this, one can use generic algorithms e.g
Montgomery, Karatsuba, algorithms to have efficient computation of field opera-
tions on Fp2pn , for any n, where gcd(p, n) = 1 as authors in [2] suggested in their
algorithm.

16

CHAPTER 3

COMPUTING TATE PAIRING EFFICIENTLY OVER
THE FINITE FIELDS OF CHAR 7

3.1 Introduction

The importance of Pairing based cryptography was fist realised by the introduc-
tion of ID-based encryption (IBE) by Adi Shamir in 1984. In which first time an
Id(e.g: email address or any personnel id number) could be used as public key
to encrypt the data or signature authentication. Since then much work has been
done in this area and many applications have been devised based on pairings, e.g:
ID-based key agreement, short signatures schemes, group signatures schemes, ring
signatures, certificate-less encryption, hierarchical encryption, attribute-based en-
cryption etc. There are two well knows type of pairings in use such as Weil Pairing
and Tate Pairing.

In this part we study the Tate pairing computation over the Composite Finite
Field of type F714n. Pairing computation over this composite field is only dis-
cussed in [2] till now, we will introduce some improvements in the Tate Pairing
computation over characteristics 7 which can be achieved by using the mathemat-
ical improvements we suggested in the Chapter 2. The interest in implementation
of pairings over elliptic and hyperelliptic curve in the Finite Field of odd charac-
teristics 3 arose in [[15],[28]] and hence it resulted in the study of arithmetic in
these fields. Previously arithmetic over odd primes p and its extension fields of
type Fp2pn was proposed in [[21],[25],[23]] for the case p = 3. Later on the authors
in [23, 29] generalised the arithmetic in this type of composite fields for any prime
p ≡ 3 mod 4 and modified the Tate pairing computation over the hyperelliptic
curve of type Cb = Y 2 = Xp −X + b, b = ∓1 over Fpn . The authors in [16] and
[17] implemented the same arithmetic over the same composite fields structure
and show that char 3 always outperform the char 2 fields for pairing computation
due to the advantage of faster cubing of the field elements.

In [2] the authors conclude that for large enough the value of n, the larger the
prime p we use the lower the complexity of hardware implementation is achieved,
and in this research over the case p = 7 he proves that instead of using p = 3
if we use p = 7 then the speed of Tate-pairing computation over such field is
approximately six times faster.

17

3.2 Algorithm for Tate Pairing

The algorithm we are going to discuss is now known as Duursma-Lee-kwon (DLK)
due to I.Duursma, H.S.Lee [20] and kwon [27]. These authors defined the same
over the finite fields with char 3 however in [2] authors generalised the same for
the case of characteristics 7. The Deatails of the algorithm are as under:

Let Cb = Y 2 = Xp −X + b, b = ∓1 over Fpn and ρ ∈ Fpp ∈ F = Fppn be a root
of the polynomial xp − x + 2b over Fp and σ ∈ Fp2 ∈ K = F2pn

p be a root of

the polynomial x2 + 1. The polynomial xp − x + 2b is an irreducible polynomial
over the field Fp. Hence all its roots belong to the field Fpp . Simultaneously, the
polynomial xp − x+ 2b is also irreducible over the field Fp2 then,

Let the points P = (α, β) ∈ Cb(k) and
Q = (ρ− x, σy) ∈ F ×K, (x, y) ∈ Cb(k), where
σ2 = −1, ρp − ρ+ 2b = 0, k = Fpn , F = Fppn), and K = Fp2pn , be given.

Initialization:
f = 1; x = xp; y = yp; d = −(2n− 1)b

Calculation:
(1) for i = 1 to n,

α = (αp)p

β = (βp)p

g = (βyσ − (α + x+ d− ρ)(p+1)/2

f = fpg; y = −y; d = d+ 2b

(3.1)

(2) f = fp
pn−1

Return f.

In Algorithm above variables and their corresponding fields are as under.
α, β, x, y ∈ Fpn , σ ∈ Fp2 , ρ ∈ Fpp , and d, b ∈ Fp.

In [2] authors considered the case prime p = 7 and used polynomial basis in the
algorithm and estimated its cost to be 6 times faster than the same algorithm in
the case p = 3 with the same security level. As it is shown in algorithm above
that there is pth power computation in the final exponentiation as well as for
f = fp ∗ g . Where as value of f ∈ Fp2pn which is the top field, so if we convert
the polynomial basis element f to normal basis as suggested in Chapter 2 the cost
of the algorithm can be reduced significantly which we will discuss in the next
section.

18

3.3 Hardware Implementation of DLK algorithm

In [2] authors have devised different efficient schemes for arithmetic necessary for
hardware implementation of DLK algorithm over composite field of characteristics
7, where as the same was done for characteristics 3 by [20],[15] etc. We suggest
few changes by using the hybrid approach of finite field basis from the work
in Chapter 2 and estimate the improvement in the implementation of the said
algorithm.

3.3.1 Implementation of DLK Algorithm Using Hybrid Basis Ap-
proach

Here by hybrid basis we mean that for loop in the DLK algorithm we can use the
polynomial basis as discussed in [2] and for final exponentiation we can convert to
normal basis, compute the exponentiation and convert back to polynomial basis
if required.

Before we discuss the computation cost we will give a short introduction to the
involved arithmetic.

Lemma 3.1. The multiplication of a constant a ∈ Fp with any element α ∈ Fpn
can be carried out by the bits rotation only.

Proof. Since a ∈ F7 is constant so it can be multiplied using bit rotations only,
proof of the same follows from Lemma-4 in [2, pp-52] .

Lemma 3.2. Polynomial Basis to Normal Basis conversion and vice versa in
F714n over F72n can be computed using 98n Additions in F7.

Proof. Since multiplication in F7 or an element in Fp and α ∈ F7n can be achieved
by just a rotation of elements as in [2] and lemma 3.1.Now if α ∈ F7n then it can
be written as polynomial of degree n− 1 e.g: α = a0 + a1x+ · · ·+ an−1x

n−1. and
if α ∈ F72n then

α = (a0 + a1x+ · · ·+ an−1x
n−1) + σ(b0 + b1x+ · · ·+ bn−1x

n−1)

= αl + σαr

where σ =
√
−1; ai, bi ∈ F7 and (αl, αr ∈ F7n)

So if (a ∈ F7) , (α ∈ F7n) then their product can be performed free of cost, with
negligible cost for shifting from 3.1 and same is true for (αl, αr ∈ F7n).

Now by looking at Algorithm 2.1.3 we can count the number of mod p additions
which is equal to 4 and there are 72

4
rounds in the algorithm so there are total

2n ∗ 72 number of mod p additions = 98n.

19

3.3.2 Normal Basis and Final Exponentiation

It follows from 3.2 that basis conversion from polynomial to normal and back can
be computed using only 49 additions in prime field of characteristics 7. In the
DLK algorithm we can see that the final exponentiation in the form of fp

pn−1 is
required to be computed. Let q = p2n and let f ∈ Fqp then f can be represented
in Normal basis generated by β ∈ Fqp as below:

f = c0β + c1β
q + c2β

q2 + ...+ cp−1β
qp−1

. (3.2)

where ci ∈ Fq. Now we can write fp
pn−1 as

fp
pn−1 = fp

pn ∗ f−1. (3.3)

on the other hand fp
pn

can be written as

ppn = p2n(
p−1)

2
+n = pn ∗ (p2n)(

p−1
2

) = pn ∗ q(
p−1
2

). (3.4)

Therefore we can rewrite fp
pn−1 as

fp
pn−1 = (f q

(
p−1
2)

)p
n ∗ f−1. (3.5)

now let m = p−1
2

and let f ′ = f q
m

then equation 3.5 can be rewritten as

fp
pn−1 = (f q

m

)p
n ∗ f−1 = (f ′)p

n ∗ f−1. (3.6)

Since f ′ = f q
m

can be computed free of cost from f using Normal basis presen-
tation from equation 3.2 as below.

f = c0β + c1β
q + c2β

q2 + ...+ cp−1β
qp−1

.

and
f q = c0β

q + c1β
q2 + c2β

q3 + ...+ cp−1β
qp .

since βq
p

= β therefore

f q = cp−1β + c0β
q + c1β

q2 + ...+ cp−2β
qp−1

is just the right rotation of the coefficients of f : c0, c1, c2, ..., cp−1.

Then it is clear that f q
m

is just m times right rotation of the coefficients c0, c1, c2, ..., cp−1
in the normal basis representation of f. so we can write f q

m
as below:

f q
m

= cp−mβ + cp−m+1β
q + cp−m+2β

q2 + ...+ cp−m−1β
qp−1

because m < p.

Now we can represent f ′ in polynomial basis and using equation 3.6 we can
compute fp

pn−1 by first computing (f ′)p
n

then multiplying with f−1.

20

3.4 Cost Estimation if p =7 , n=31

Cost of the final exponentiation fp
pn

which is pn fold the cost of single exponen-
tiation from [2, pp-65] is as under:

p(4(p− 1)p+ 2p2log(p))n2A(7) = 9765 ∗ 7 ∗ 31 = 3107874A(7)

From 3.3.2 we compute the f ′ with just 49 ∗ 2n = 98nA(7) and from the above
equation cost of computing f ′p

n

=
3107874

7
= 443982A(7)

So by using hybrid aproach of basis and using our proposed conversion total cost
for computing fp

pn
= 98 ∗ 31 + 443982 = 447020A(7)

These results in terms of A(7) which is the number of additions in prime field
where p =7 can be tabulated as below:

Method Final exp cost A(7)
using poly Basis & Scheme in [2] 3107874

Using Hybrid (proposed) 447020

Table 3.1: Exponentiation Complexity Comparison for p = 7 , n = 31

Total Cost of the DLK algorithm using optimized DFT multiplication as in [2,
pp-66] is given as under :

43nM(F7n) + 2040n2A(7) + 24nA(7) = 43n(2560)A(7) + 2040n2A(7) + 24nA(7)

As 1M(F7n) = 2560 A(7) from [2, pp-56] by assuming the cost of 1M(7) =
1A(7).then the total cost of DLK = 5373664 A(7).
Cost after using our proposed hybrid approach for basis conversion can be esti-
mated by deducting the cost saving in terms of exponentiation using normal basis
from the above total cost. Then we can write cost using our proposed technique
equals

5373664− 3107874 + 447020 = 2660854A(7)

Following table compares the cost of DLK algorithm:

Method Complexity A(7)
using poly Basis & Scheme in [2] 5373664

Using Hybrid (proposed) 2660854

Table 3.2: Tate Pairing Complexity using Polynomial Basis vs Proposed Hybrid
Basis

Hence by introducing the hybrid approach in the DLK algorithm we can make
the system 1.98 times faster than the one proposed in [2], which was previously
the fastest Tate pairing computation over the characteristics 7 composite field.

21

22

CHAPTER 4

FPGA IMPLEMENTATIONS

4.1 Introduction

Field Programmable Gates Array(FPGA) is a reconfigurable chip in which hard-
ware circuit can be configured through software programming(Implementation).
During the study of FPGA based Elliptic Curve Cryptography computation plat-
form we started with Implementations of the necessary components of cryptogra-
phy protocols. In this work we successfully implemented all the components re-
quired for Elliptic Curve based signature algorithm (ECDSA) over binary Koblitz
curve using the latest improvements in the theory of such computations. In this
section we will discuss the following work done during the study of this thesis
work.

1. Improvement in case of multiplication mod Mersenne prime P=7.
2. Hardware implementation of multiplication mod 7.
3. Hardware implementation of AES and SHA-1.
4. Hardware implementation of multiplication and squaring using Barret reduc-
tion with out pre-computation.
5. Hardware implementation of Inversion and Addition operations in the Finite
Field suitable for Koblitz Binary Curve 163 based Elliptic Curve operations.
6. Hardware implementation of Scalar Multiplication over Koblitz Binary Curve
K-163.

4.2 Multiplication of two Integers mod Mersenne Prime P

In [2] authors have elaborated a smart scheme to implement arithmetic of multi-
plication in F7 and given an algorithm to compute 3 bit multiplier with 25 logic
gates with the depth(latency) of 5 gates. Scheme works as under:
Let (x2x1x0)2 and (y2y1y0)2 be the two multiplicands then their product mod-
ulo 7 can be computed by introducing a sign bit and a low hamming weight 3
bit multiplier due to the fact that modulo 7 multiplication with 3 is equal to the
multiplication with -4 so one can omit the multiplier 3 due to its binary hamming

23

weight which is 2, instead multiply with 4 which is of hamming weight 1 (only
single bit is 1) and xor the result with sign bit which is 1 in this case.
Since for any Mersenne prime 2m ≡ 1 mod M Where M is the Mersenne Prime
of length m bits. So in the above case multiplication with 4 is nothing but just
the rotation of the bits of the other multiplier.e.g

(101)2 ∗ (011)2 ≡ (101)2 ∗ (100)2 ⊕m ≡ (110)2 ⊕ 1 ≡ (001)2

5 ∗ 3 ≡ 1 mod 7

Where m is 1 when ever hamming weight of the multiplicand is ≥ 2 in case of
p=7. This scheme is given in [2, pp-50].

Note: This idea is nothing but just the same as discussed in [31] for the bigger
primes multiplication.

After analysing the referred algorithm we have noticed that if we use the same
technique for both multiplicands then the hardware cost (gate count) can further
be reduced, hence we present the new scheme as below.

Instead of finding the sign bit for single value we compute the sign bit for both
multiplicands and reduce the 3 bit multiplier to two bit and a sign bit addition
due to the same reason as above. This fact can be visualised from the table below
as:

Figure 4.1: F7 Multiplier Results

As it is obvious that values in all 4 quadrants are same except the sign bits
addition or the direction of the values so if we compute only 1st quadrant then
rest all values can be derived from that by just managing the sign bit, and we
have done it as below in the algorithm

24

4.2.1 Algorithm Code to Multiply two Elements in F7

Figure 4.2: F7 Multiplier Algorithm

Figure 4.3: FPGA Implementation Simulation

4.2.2 Complexity Comparison

In the above algorithm there are 5 steps, where each step is computed at the
same time so total gate latency = 5 and the gate count is quite evident its just
19 gates which is 25

19
= 1.31 times efficient than the one described in [2]. Output

of the Implementation of the above code is as under.

25

Algorithm # of Gates Latency
as in [2]Algo 25 5

Our Proposed 19 5

Table 4.1: F7 Multiplication Comparison

Remark : In the Tate Pairing Algorithm 3.2 discussed in [2] if we analyse the
complexity of the algorithm in terms of multiplications and addition [2, pp-67].
We can see it is in the form of 43m((m2)M(7) + (m− 1)2A(7)). We can compute
the relation of multiplications to addition as at 1k bits security m = 26 then
there are 52% multiplications. Now if we use this multiplication instead of the
one used in [2], It will result in 17% improvement in the hardware complexity of
Tate Pairing Algorithm.

26

4.3 HARDWAREMODULES IMPLEMENTATION FOR CRYPTOG-
RAPHY PLATFORM

To establish a computation platform for verification of the hardware implemen-
tations or make the system practically work one needs to first understand how
the embedded system works. By embedded system we mean a crypto core, its
surrounding interfaces, a processor to control the flow of data, buses to manage
the flow of signal and data. To achieve this there are many tools to be used for
different tasks. The following picture will elaborate the use of tools for system
development.

Figure 4.4: Embedded System Layout

In the above figure in a single FPGA, Microblaze and the Crypto Core are two
primary cores and all other are supporting items. The Crypto Core handles the
crypto codes where as Microblaze controls the interfaces and the flow of data
from crypto core to the memory or the outer world of interaction.

In the following figure is the flow of tools which are used to implement the system.

27

Figure 4.5: Tools Flow Chart

Above figure illustrates the 3 main parts of the Tools flow. 1. Hardware pro-
gramming to configure the FPGA circuit e.g Crypt Core development. 2. Pro-
gramming of the already built-in processor (MicroBlaze) for the system control.
3. Embeded development kit. Which physically programs the FPGA and gives
the physical access to the out world

Following Modules were implemented in FPGA and were practically verified on
the platform.

4.3.1 Hardware Implementation of Mult. over Finite Field 2163

Montgomery Interlaced Multiplication over Finite Field 2163 was implemented
following is the simulation of the same in 4.6, however the verilog code is appended
in Appendix-A

28

Figure 4.6: Finite Field Multiplier

4.3.2 Inversion Serial and Parallel Algorithm

Inversion in the Finite Field 2163 is implemented using both serial and parallel
application of euclidean algorithm, so that it can be used as required. As in
serial implementation it takes longer time (3.2 ms) but less hardware resources
as compared to parallel which consumes more resources but computation time is
very less, which only 30 µs

Figure 4.7: Inversion in the Finite Field

4.3.3 Squaring in Binary Fields

Squaring in the finite field was specially implemented to use the Barrett reduction
with out pre-computation as in [34]. This is a special reduction algorithm in
which there is no need of pre-computation for special moduli in which reduction
polynomial has none of its co-efficient ai greater than 0 for all i ≥ n

2
except the

leading co-efficient. In the following figure 4.8 simulation results are shown in
which the hex values of the test vectors are verified.

29

Figure 4.8: Finite Field Squaring with Barret Reduction

4.3.4 Hardware Implementation of AES

We implemented the AES-128 just for reference and verification of the embedded
system, which uses all the components on board e.g external memory, Processor,
communication with pc takes the inputs from pc and sends back the the encrypted
output. It also shows the capabilites of the system for throughput which are
shown in the picture 4.9 below.

Figure 4.9: AES

30

CHAPTER 5

CONCLUSION

5.1 Part-1:

In the theoretical work we present new efficient way of basis conversion, which
performs the conversion over composite fields of type Fp2pn and characteristics
p for any prime p. Main advantage is that conversion is possible with out any
memory requirement as compared to such works for binary fields which at least
require m elements of the field to be stored where m is the extension degree.
We apply the same to Tate pairing computation DLK algorithm and it results
in 1.98 times faster computation in hardware in terms of number of prime field
operations.

5.2 Part-2:

We implemented the cryptographic algorithms for Binary Curves based cryptog-
raphy e.g Koblitz-163, Finite Field Arithmetic implementations, AES and SHA-1
Implementations, Efficient Implementation of F7 multiplication, We also give the
codes for micro blaze processor which is used as interface between crypto cores
and the outer world and there interfaces. Our efficient implementation of multi-
plication modulo prime 7 results in 17% better complexity in terms of hardware.

Note: Besides a new basis conversion technique for any prime p and hardware
implementations we suggest Tate pairing implementation which will be overall
2.389 times faster than the previous best known for characteristics p=7.

5.3 Future Work:

In the future we intend to implement the Tate pairing to see the practical results
based on the previous research and the proposed enhancements in this work. we
also study the application of the work discussed here to other algorithm based
on such composite fields e.g Short signature Schemes etc

31

32

REFERENCES

[1] Rudolf Lidl and Harald Niederreiter, Finite fields 2nd edition, 1997

[2] S. B. Gashkov, A. A. Bolotov, A. A. Burtsev, S. Yu. Zhebet, and A. B. Frolov
On hardware and software implementation of arithmetic in finite fields of
characteristic 7 for calculation of pairings,journal of Mathematical Sciences,
Vol. 168, No. 1, 2010.

[3] Eunjeong Lee, Hyang-Sook Lee and Yoonjin LeeFast,computation of Tate
pairing on general divisors of genus 3 hyperelliptic curves,2006.

[4] Chih-Hua Chien, Trieu-Kien Truong, Yaotsu Chang and Chih-Hsuan Chen,
A Fast Algorithm to Determine Normal Polynomial over Finite Fields
,IMECS 2007

[5] Kieren MacMillan and Jonathan Sondow, Proofs of Power Sum and Binomial
Coefficient Congruences Via Pascal’s Identity,2010.

[6] Junfeng Fan , Daniel V. Bailey Breaking Elliptic Curve Cryptosystems using
Reconfigurable Hardware,2010.

[7] Burton S. Kaliski Jr. and Moses Liskov, Efficient Finite Field Basis Conver-
sion Involving Dual Bases,1999.

[8] J. v. z. Gathen, A. Shokrollahi, and J. Shokrollahi, Efficient multiplica-
tion using type 2 optimal normal bases,Lecture Notes in Computer Sci-
ence,Springer, 2007.

[9] Burton S. Kaliski and yiqun Lisa Yin,1999 storage efficient finite field basis
conversion, SAC-98, LNCS 156: 81-93.

[10] Berk Sunar,Erkay Savas, Çetin K.Koc, Constructing Composite Field Rep-
resentations for Efficient Conversion,2003.

[11] Burt Kaliski, Moses Liskov and Yiqun Lisa Yin, Efficient Finite Field Basis
Conversion Techniques,1999.

[12] I.Muchtadi-Alamsyah and F.Yuliawan, Basis Conversion in Composite Field,
International Journal of Mathematics and Computation vol 16 Issue 2 (2013).

[13] Berk Sunar, Cetin K. Koc,Constructing Composite Field Representations for
Efficient Conversion, IEEE Transactions on computers, vol X, No. X, month
2003.

33

[14] Shigeki Kobayashi, Yasuyuki Nogami, Tatsuo Sugimura, A Relation between
Self-Reciprocal Transformation and Normal Basis over OddCharacteristic
Field, 4th ICCIT conferance 2009.

[15] Paulo S.L.M.Barreto, Hae Y.Kim, Ben Lynn, and Michael Scott,Efficient
Algorithms for Pairing-Based Cryptosystems,Crypto 2002.

[16] Beuchat,Detrey,Okamoto,Fast Architectures for the nT Pairing over Small-
Characteristic supersingular elliptic curves ,IEEE Transactions on comput-
ers, VOL. 60, NO. 2, February 2011.

[17] Jean-luc Beuchat , Nicolas Brisebarre , Jeremie Detrey, et al, A Comparison
Between Hardware Accelerators for the Modified Tate Pairing overF2m and
F3m , 2008.

[18] Junfeng Fan,Daniel V. Bailey,Lejla Batina,Tim Guneysu, Christof Paar and
Ingrid Verbauwhede Breaking Elliptic Curve Cryptosystems using Reconfig-
urable Hardware 2009.

[19] R.Granger, D.Page, M.Stam,Hardware and softeware normal basis Arith-
metic for Pairing Based Cryptography in char 3,2004.

[20] I.Duursma and H.S.Lee, Tate pairing implementation for hyperelliptic y2 =
xp − x+ d,Asiacrypt-2003.

[21] R.Granger,D.Page and M.Stam, Hardware and Software Normal Basis Arith-
metic for Pairing Based Cryptography in char three,IEEE Trans.Comput,54
No.7,2005.

[22] Fast computation of Tate pairing on general divisors of genus 3 hyperelliptic
curves

[23] Hardware Implementation of Finite Fields of char 3

[24] M.Scott and P. S. L. M. Barreto, Compressed pairing, Advances in
Cryptology-CRYPTO 2004, Lect. Notes Comput. Sci., Vol. 3152, Springer,
Berlin (2004), pp. 140-156.

[25] T. Kerins, W. P. Marname, E. M. Popovici, and P. S. L. M. Barreto, Efficient
hardware for Tate pairing calculation in characteristic three ,Cryptographic
Hardware and Embedded Systems-CHES 2005, Lect. Notes Comput. Sci.,
Vol. 3659, Springer, Berlin (2005), pp. 412-426.

[26] A. A. Bolotov, S. B. Gashkov, and A. B. Frolov, Introductory Elliptic Curve
Cryptography. Protocols of Elliptic Curve Cryptography, URSS, Moscow
(2006).

[27] S.Kwon, Efficient Tate Pairing Computation for Supersingular Curves over
binary Fields,2004.

[28] Paulo S. L. M. Barreto, Steven Galbraith,Colm O hEigeartaigh, and
Michael Scott,Efficient Pairing Computation on Supersingular Abelian Va-
rieties,2004.

34

[29] Michael Scott and Barreto,Compressed Pairing, Crypto 2004.

[30] Masaaki Shirase1, Tsuyoshi Takagi and Eiji OkamotoSome Efficient Algo-
rithms for the Final Exponentiation of ηT Pairing,eprint.iacr.org,2006.

[31] Jeffrey Hoffstein, Joseph H. Silverman, Random Small Hamming Weight
Products with Applications to Cryptography, 2003.

[32] Simon Blake-Wilson, Hugh MacDonald, GEC 2: Test Vectors for SEC 1
Certicom Research , September, 1999

[33] Behrooz Parhami,Efficient Hamming Weight Comparators for Binary Vec-
tors Based on Accumulative and Up/Down Parallel Counters.IEEE TRANS.
Feb.2009.

[34] Tolga Acar and Dan Shumow,Modular Reduction without Pre-Computation
for Special Moduli,2010.

35

36

APPENDIX A

Verilog Code For Hardware Implementations

Code is provided in DVD format

37

38

APPENDIX B

Implementation Guides

Steps to follow to complete an embedded project to run practically :

•Design the crypto core in Xilinx ISE Design Suite
•Simulate the design and achieve the results.
•Open the embedded system project in Xilinx Platform Studio
•Design processor with necessory peripherals and integrate the crypto core
•Export the hardware to SDK for its drivers and processor software programming
in C
•In SDK implement the microblaze programming for all modules integration.
•Program the fpga and download the processor program
•Establish control platform at pc to use the embedded system

Changing the necessary files after running project wizard

1. Update user logic if required outer ports then add in user logic and define in
top module too
2. Include all he files of vhdl or verilog(of hardware core) in the concern folders
3. Update .PAO file to include hdl files required.
4. Update ucf file if external ports are to be added.
5. Open the project in xps generate netlist and export to sdk.
6. Choose new folder if required for sdk-ws and add standalone bsp
7. Open c project and edit .c file for nessesory computation.
8. Save .c file it will automaticaly compile if selected so, program fpga also .elf
file if required else one can run the software by run-as on hardware

Procedure to create and add ip core to xps system
This procedure illustrates how to integrate the developed core into the system

1. Hardware .. create and import ip core
2. Add IPIF (ip interface) registers e.g user logic software registers
3. Create template drivers for software interface
4. Update MPD file to include IP core PORT to connect the port in xps e.g

39

PORT lcd=””, dir=o, VEC=[0:6].
5. Update ip-core.vhd(lcd-ip.vhd)
(a). add port under user ports (e.g: lcd :out std-logic-vector(0 to 6)
(b). map port under user ports mapped here. (e.g: lcd
6. Update user-logic.vhd and add port as above and then add user signal [signal
lcd-i : std-logic-vector(0 to 6)]
7. Add the user logic implementation and save and close all files opened
8. Project . rescan user repositories to let changes take effect
9. Add ip-core .. make bus interface connection, make port as external if needed,
generate addresses.
10. Update data
system.ucf file for external connections
11. Save close. click hardware generate bitstream .. project-export hardware
design to sdk and open sdk
12. Sdk Select TestApp in the project view, right-click, and select Import..Expand
General category and double-click on File System
13 Select lab3.c or you own c code file for microblaze and click Finish
14. In sdk .. xilinx tools .. program fpga (testApp.elf) .bmm, .bit

40

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Sial, Muhammad Riaz
Nationality: Pakistan
Date and Place of Birth: 14-06-1975, Pakistan
Marital Status: Married
Phone: 0090-534-2644248

EDUCATION

Degree Institution Year of Graduation
Ph.D IAM (METU) ANKARA 2013
M.S. IAM (METU) ANKARA 2009
B.E. CAE (NUST) PAKISTAN 2001

PROFESSIONAL EXPERIENCE

Year Place Enrollment
4 years Pakistan Research Engineer
2 years Pakistan Communication Engineer

PUBLICATIONS

International Conference Publications

Storage Free Basis Conversion over Composite Finite Fields of odd characteristics,
ISCTurkey, 2013.

Thesis submitted on sep 4, 2013.

Riaz Sial is with the Institute of Applied Mathematics, Middle East Technical University

Ankara, Turkey, e-mail: riazsial @gmail,com

Advisor: Prof.Dr Ersan Akyildiz whs is the Dean of the Faculty of Arts and Sciences and is

with the Institute of Applied Mathematics , Middle East Technical University Ankara, Turkey,

e-mail: ersan@metu.edu.tr.

41

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTERS
	INTRODUCTION
	PRELIMINARIES
	Finite Fields and their Presentation
	Polynomial Basis
	Normal Basis
	Composite Finite Fields

	Basis Conversion

	BASIS CONVERSIONS OVER COMPOSITE FINITE FIELDS
	Inverse of Matrix M
	Avoiding the Inversion in Computing M-1

	Basis Conversion
	Polynomial to Normal Basis Conversion
	Normal to Polynomial Conversion
	Algorithm for PB-NB Conversion
	Algorithm for NB-PB Conversion
	Computation Complexity of the Algorithm 2.1.3 for Fp2n
	Cost Comparison
	Cost of Multiplication in the Finite Field Fp2pn

	COMPUTING TATE PAIRING EFFICIENTLY OVER THE FINITE FIELDS OF CHAR 7
	Introduction
	Algorithm for Tate Pairing
	Hardware Implementation of DLK algorithm
	Implementation of DLK Algorithm Using Hybrid Basis Approach
	Normal Basis and Final Exponentiation

	Cost Estimation if p =7 , n=31

	FPGA IMPLEMENTATIONS
	Introduction
	Multiplication of two Integers mod Mersenne Prime P
	Algorithm Code to Multiply two Elements in F7
	Complexity Comparison

	HARDWARE MODULES IMPLEMENTATION FOR CRYPTOGRAPHY PLATFORM
	Hardware Implementation of Mult. over Finite Field 2163
	Inversion Serial and Parallel Algorithm
	Squaring in Binary Fields
	Hardware Implementation of AES

	CONCLUSION
	Part-1:
	Part-2:
	Future Work:

	REFERENCES
	APPENDICES
	Verilog Code For Hardware Implementations
	Implementation Guides
	CURRICULUM VITAE

