
THE DEVELOPMENT AND HARDWARE IMPLEMENTATION OF

A DYNAMICALLY RECONFIGURABLE AND AREA OPTIMIZED

CYCLIC REDUNDANCY CHECK ARCHITECTURE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZCAN YURT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2013

Approval of the thesis:

THE DEVELOPMENT AND HARDWARE IMPLEMENTATION OF A

DYNAMICALLY RECONFIGURABLE AND AREA OPTIMIZED

CYCLIC REDUNDANCY CHECK ARCHITECTURE

submitted by ÖZCAN YURT in partial fulfillment of the requirements for the degree

of Master of Science in Electrical and Electronics Engineering Department,

Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan

Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Ece Güran Schmidt

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ece Güran Schmidt

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

Electrical and Electronics Engineering Dept., METU

Dr. Nizam Ayyıldız

ASELSAN Inc.

 Date: 27/08/2013

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last name : Özcan YURT

Signature :

v

ABSTRACT

THE DEVELOPMENT AND HARDWARE IMPLEMENTATION OF A

DYNAMICALLY RECONFIGURABLE AND AREA OPTIMIZED

CYCLIC REDUNDANCY CHECK ARCHITECTURE

Yurt, Özcan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Ece Güran Schmidt

August 2013, 62 pages

The Cyclic Redundancy Check (CRC) calculation for data communication protocols is

implemented by hardware calculators in several systems due to increasing throughput

requirements of data communication protocols. Furthermore CRC is employed in many

small scale embedded systems with different types of data communication interfaces that

are implemented on FPGA. Resource utilization of these systems is frequently a critical

parameter with regards to cost. In many cases, limited logic units of an FPGA have to be

used very carefully to fit the design into that platform. In this thesis, we present DAROC-

Dynamically Reconfigurable and ARea Optimized CRC, which is a run-time

reconfigurable and area-minimized CRC calculator. The ability of reconfiguration enables

DAROC calculating different CRCs for several standards with a single instance of

implementation. DAROC reaches the throughput of 705 Mbps that is sufficient for the

target embedded systems with less resource consumption compared to the previous

reconfigurable CRC implementations.

Keywords: CRC, Cyclic Redundancy Check, FPGA, dynamic reconfiguration, area

optimization.

vi

ÖZ

DİNAMİK OLARAK YENİDEN YAPILANDIRILABİLEN VE ALAN

İYİLEŞTİRİLMİŞ BİR DÖNGÜSEL ARTIKLIK DENETİMİ MİMAMİRİSİ

GELİŞTİRİLMESİ VE DONANIM GERÇEKLEMESİ

Yurt, Özcan

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ece Güran Schmidt

Ağustos 2013, 62 sayfa

Veri iletişim protokollerinin hız gereksinimleri arttığı için, bu protokollerde yer alan

döngüsel artıklık denetimi (CRC) hesaplaması birçok sistemde donanım tabanlı

hesaplayıcılar ile gerçeklenmektedir. Ayrıca, birden fazla iletişim ara yüzüne sahip, FPGA

üzerinde gerçeklenmiş, birçok küçük ölçekli gömülü sistemde CRC kullanılmaktadır. Bu

sistemlerde donanımsal kaynak kullanımı, maliyet açısından, çoğu zaman kritik bir

parametredir. Birçok durumda, tasarımı hedef platform olan FPGA içerisine sığdırabilmek

için, o FPGA’e ait kısıtlı mantık birimlerini idareli bir şekilde kullanmak gerekir. Bu

tezde, koşum zamanında yeniden yapılandırılabilen ve alan anlamında küçültülmüş bir

CRC hesaplayıcı olan DAROC – Dinamik Olarak Yeniden Yapılandırılabilen ve Alan

İyileştirilmiş Döngüsel Artıklık Denetimi sunulmaktadır. Yeniden yapılandırılabilme

yeteneği, DAROC’un sadece bir örnek gerçeklenmesi ile birçok standart için farklı CRC

hesaplama yapabilmesini sağlamaktadır. DAROC, daha önceki yeniden yapılandırılabilir

CRC uygulamalarıyla karşılaştırıldığında daha az kaynak kullanımı ile hedef gömülü

sistemler için yeterli olan 705 Mbps veri işleme hacmine ulaşmaktadır.

Anahtar Kelimeler: CRC, Döngüsel Artıklık Denetimi, FPGA, dinamik yeniden

yapılandırma, alan en iyileştirme.

vii

To My Family,

viii

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Assoc. Prof. Dr. Ece Güran

Schmidt for her guidance, support, encouragement, trust, patience and valuable

contributions throughout the preparation of my thesis.

I would like to acknowledge the support of ROKETSAN Inc. for the realization of this

thesis.

The last but not the least, I express my sincerest thanks to Muhammet Hamdi Yavuz,

Yılmaz Fırat Kaya, Metin Kazkayası, Fatih Çelik, Serkan Öztürk, Çiğdem Türkmendağ,

İpek Yağcan, Enes Aykurt, Tamer Uz, Mazhar Gökhan Özkeser, Halil Ertuğrul, my wife

Elif and my family who have given me encourage and support.

ix

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vi

ACKNOWLEDGEMENTS ... viii

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS ... xii

CHAPTERS

1 INTRODUCTION... 1

2 LITERATURE OVERVIEW .. 5

2.1 CYCLIC REDUNDANCY CHECK ... 5

2.1.1 Computation of CRC .. 5

2.1.2 CRC Standards .. 9

2.2 HARDWARE IMPLEMENTATION TECHNIQUES FOR CYCLIC REDUNDANCY CHECK 10

2.2.1 Serial Implementation ... 11

2.2.2 Parallel Implementation .. 12

2.2.3 Table-Based Implementation .. 13

2.3 PERFORMANCE METRICS ... 15

2.3.1 Resource Utilization .. 15

2.3.2 Throughput .. 15

2.3.3 Polynomial Length .. 15

2.3.4 Reconfiguration Time ... 16

2.4 PREVIOUS WORK ON DYNAMICALLY RECONFIGURABLE CRC IMPLEMENTATIONS 16

3 DAROC: DYNAMICALLY RECONFIGURABLE AND AREA OPTIMIZED

CRC ARCHITECTURE AND FPGA IMPLEMENTATION 23

3.1 DAROC ARCHITECTURE ... 23

3.1.1 CRC Calculator Module (CCAM) .. 26

3.1.2 CRC Configurator Module (CCOM) .. 34

3.2 FPGA IMPLEMENTATION OF DAROC ARCHITECTURE ... 37

3.2.1 CFGLUT5 ... 37

3.2.2 DAROC CFGLUT5-Based FPGA Implementation ... 41

4 PERFORMANCE EVALUATION ... 47

4.1 SIMULATIONS ... 47

4.2 TEST SETUP .. 49

4.3 EVALUATION RESULTS... 52

4.4 DISCUSSION .. 56

5 CONCLUSIONS ... 59

REFERENCES ... 61

x

LIST OF TABLES

TABLES

Table 2-1 Binary Representations of Polynomials ... 6

Table 2-2 Commonly Used CRCs .. 9

Table 2-3 Truth Table of Addition ... 10

Table 2-4 Truth Table of Subtraction ... 10

Table 2-5 Implementation Comparison .. 21

Table 3-1 DAROC Inputs and Outputs .. 24

Table 3-2 Inputs and Outputs of CCAM .. 34

Table 3-3 CCOM Inputs and Outputs .. 36

Table 3-4 CFGLUT5 Inputs and Outputs ... 39

Table 3-5 CFGLUT5 Truth Table .. 40

Table 4-1 Command List of Test Setup ... 50

Table 4-2 DAROC Implementation Results .. 52

Table 4-3 DAROC Device Utilization Summary on Xilinx XC6SLX45T 53

Table 4-4 Module Level Resource Utilization ... 55

Table 4-5 Communication Protocols That Uses 16-bits CRC .. 57

xi

LIST OF FIGURES

FIGURES

Figure 2-1 Polynomial Division ... 8

Figure 2-2 Polynomial Division in the Binary Field .. 11

Figure 2-3 A LFSR-based Serial CRC Circuit... 12

Figure 2-4 A Parallel (2-bits) CRC Circuit .. 12

Figure 2-5 Look-Up Table of CRC-16 (0x1021 Polynomial) ... 14

Figure 2-6 The Architecture of Field Programmable CRC Design (adapted from [4]) 17

Figure 2-7 Programmable CRC Array Cell (adapted from [4]) ... 18

Figure 2-8 Programmable Parallel CRC Circuit for CRC bit ci (adapted from [5]) 19

Figure 2-9 General Block Diagram of Table-based CRC (adapted from [6]) 20

Figure 3-1 General Block Diagram of DAROC .. 23

Figure 3-2 Flowchart of DAROC .. 26

Figure 3-3 Serial Reconfigurable CRC Circuit with Multiplexers 27

Figure 3-4 Serial Reconfigurable CRC Circuit for 4-bits Polynomials 28

Figure 3-5 Unrolling the Serial CRC Circuit to Achieve Parallelization 29

Figure 3-6 Parallel (2-bits) Reconfigurable CRC Circuit with Multiplexers 30

Figure 3-7 Parallel Reconfigurable CRC Circuit with Configurable LUTs....................... 31

Figure 3-8 Architecture of CRC Calculator Module (CCAM) .. 32

Figure 3-9 CCOM-CRC Configurator Module .. 35

Figure 3-10 Reconfigurable CFGLUT5 Element .. 38

Figure 3-11 CFGLUT5 Instance in Verilog HDL ... 41

Figure 3-12 Serial Implementation of DAROC on Xilinx Spartan-6 42

Figure 3-13 CFGLUT5 Utilization with increasing Parallelization Level 43

Figure 3-14 2-Bits Parallel Implementation of DAROC on Xilinx Spartan-6 44

Figure 3-15 DAROC Top Level RTL Schematic .. 45

Figure 4-1 Simulation for CRC Computation of DAROC... 48

Figure 4-2 Test Setup ... 49

Figure 4-3 Block Diagram of DAROC Test System ... 51

xii

LIST OF ABBREVIATIONS

ASIC : Application Specific Integrated Circuit

BRAM : Block Random-Access-Memory

CRC : Cyclic Redundancy Check

DECT : Digital Enhanced Cordless Telecommunications

DUT : Device Under Test

FPGA : Field Programmable Gate Array

HDL : Hardware Description Language

iSCSI : Internet Small Computer System Interface

LFSR : Linear Feedback Shift Register

LSB : Least Significant Bit

LUT : Look Up Table

MSB : Most Significant Bit

NA : Not Applicable

NoC : Network on Chip

SoC : System on Chip

SPI : Serial Peripheral Interface

UART : Universal Asynchronous Receiver/Transmitter

UMC : United Microelectronics Corporation

1

CHAPTER 1

INTRODUCTION

Cyclic Redundancy Check (CRC) is an error-detecting code based upon polynomial

division. It is widely-used in communication protocols because of the efficiency on

detecting transmission errors [1]. It is also used in data storage systems.

Due to increasing throughput requirements of data communication protocols, software

implementations of CRC calculation can be inadequate [2]. When speed requirements of

the CRC calculation cannot be met with a software implementation, a hardware solution is

employed.

Hardware implementation methods of CRC are generally categorized as serial, parallel

and table-based [3]. The data is processed one bit per clock cycle in the serial

implementation. Parallel implementation method is based on unrolling the serial circuit.

So, n-bit data is processed per clock cycle where the n is parallelization level. Lastly, in

table-based implementation, pre-calculated values are read from a table for given input

values.

FPGA is a preferred hardware platform for CRC implementations because of their

programmability. Resource utilization of these systems is frequently a critical parameter

with regards to cost. In many cases, limited logic units of an FPGA required to be used

very carefully with the aim of fitting the design into that platform. In such a case, the

system may have multiple communication protocols with different CRC standards. If the

area utilizations of the CRC calculators are minimized as far as possible in such a system,

it can be helpful for that system in terms of fitting into platform. Furthermore, many

FPGA-based systems have different types of data communication interfaces and protocols

that possibly require different CRC calculations.

Most of the studies about hardware implementation of CRC are based on one-polynomial

CRC calculation which calculates CRC only for a specific CRC standard. Although the

polynomials of these CRC calculators can be changed easily, this operation has to be done

before the run-time.

2

In this thesis, we focus on run-time reconfigurable CRC calculators where one calculator

can be used for all CRC standards that required for the system. In other words, the

calculator can be shared in time by communication protocols. The main advantage of this

approach is that only one instance of a CRC calculator is in use at a time resulting in

reduction of area utilization.

There are previous hardware CRC implementation studies such as [4], [5] and [6] which

have the ability of run-time reconfiguration. They proposed a cell-array based parallel

CRC calculator in [4]. Cell arrays consist of an XOR gate, two MUX and a register.

Similarly, in [5], they proposed a design which consist of XOR and AND gate arrays. A

LUT-based reconfigurable approach was proposed in [6]. Although these designs are run-

time reconfigurable, they require relatively high area utilization with respect to logic for

small-scale systems. These systems may require a reduced calculator in terms of area

utilization mitigating the advantages of the reconfigurable CRC design.

In this thesis, we propose DAROC-Dynamically Reconfigurable and ARea Optimized

CRC, which is a run-time reconfigurable and area-minimized CRC calculator. Due to the

ability of reconfiguration, DAROC meets the need of the systems that have to calculate

CRC for several standards. Although the throughput is doubled, DAROC requires the

same number of logic blocks on FPGA with the serial implementation. Area minimization

is achieved by using the minimum number of logic blocks, which are required for CRC

implementation, in full capacity.

The proposed design is implemented on Xilinx XC6SLX45T platform which has

dynamically reconfigurable blocks. Number of slice register utilization is 32 out of 54576.

It utilizes 37 out of 27288 slice LUTs. On the other hand, maximum achieved throughput

is 705 Mbps for processing 2-bits at a time with 16 bit polynomial.

The remainder of this thesis organized as follows. CHAPTER 2 introduces the literature

overview on CRC and its hardware implementations. Performance metrics of CRC

calculation such as resource utilization and throughput are defined. Then, relevant

previous works on dynamically reconfigurable CRC calculation in hardware are

discussed.

CHAPTER 3 describes the architecture of DAROC-Dynamically Reconfigurable and

ARea Optimized CRC and the implementation of DAROC architecture that is constructed

with the dynamically reconfigurable Look-Up-Table (LUT) resources on FPGA.

In CHAPTER 4, the simulation and hardware platforms for implementing DAROC are

introduced. Simulation and implementation results are presented in terms of performance

metrics that we define in CHAPTER 2. Evaluation results are discussed.

3

Finally, in CHAPTER 5, the conclusion is drawn and potential future directions are listed.

The summary of studies and evaluations in this thesis is presented. The implementation

results are summarized.

4

5

CHAPTER 2

LITERATURE OVERVIEW

2.1 Cyclic Redundancy Check

CRC is used to keep the integrity of data in communication and storage systems [7]. It is a

commonly used polynomial division based error detection method.

The basic idea behind the CRC is calculating a check value over a data stream and

attaching this check value to the data stream. So, the data integrity can be checked with

the calculated value. This check value is called as CRC value. In communication systems,

the transmitter calculates the CRC of the data stream which is going to be transmitted and

concatenates the data stream and CRC. Then, the transmitter sends the concatenated

stream to the receiver. In the receiver side, the CRC of received data stream is calculated.

Afterwards, the receiver compares the calculated CRC and received CRC value. If there is

a difference between these values, the receiver realizes that an error has been occurred

during the transmission. After the error detection, the action to take is determined by the

protocol of the communication system. Correspondingly to the communication systems,

data validity is checked by CRC code in various data storage systems such as magnetic

and optical storages.

The following subsection describes the CRC computation. Then the most common CRC

standards are proposed in adjacent subsection.

2.1.1 Computation of CRC

Computation of a Cyclic Redundancy Check is based on polynomial division in finite

binary field [7]. In the finite field arithmetic, a binary polynomial is a polynomial that has

coefficients in binary field (0 or 1). Binary representations of some polynomials can be

seen in Table 2-1. The leftmost bit of a binary sequence represents the highest degree term

of the associated polynomial.

6

Table 2-1 Binary Representations of Polynomials

Polynomial
Polynomial

(with coefficients)

Binary

Representation

x
7
 + x

4
 + x

3
 + 1

1.x
7
 +0.x

6
 + 0.x

5
 +1.x

4
 + 1.x

3
 +

0.x
2
 + 0.x

1
 + 1.x

0

10011001

x
3
 + x

1
1.x

3
 + 0.x

2
 + 1.x

1
 0.x

0
 1010

x
4
 + x

2
 + 1 1.x

4
 +0.x

3
 + 1.x

2
 +0.x

1
 + 1.x

0
 10101

x
6
 + x

5
 + x

1 1.x
6
 + 1.x

5
 +0.x

4
 + 0.x

3
 + 0.x

2
 +

1.x
1
 + 0.x

0

1100010

Computation procedure of CRC is described as follows. The data sequence that we want

to calculate the CRC for is represented as a polynomial P(x). As an example, P(x) is a

seventh degree polynomial in (1) that is derived from the binary data sequence

“11001001”.

𝑃 𝑥 = 1 ∙ 𝑥7 + 1 ∙ 𝑥6 + 0 ∙ 𝑥5 + 0 ∙ 𝑥4 + 1 ∙ 𝑥3 + 0 ∙ 𝑥2 + 0 ∙ 𝑥1 + 1 ∙ 𝑥0 (1)

𝑃 𝑥 = 𝑥7 + 𝑥6 + 𝑥3 + 1 (2)

P(x) is multiplied by a polynomial x
p
 where p is the degree of a certain polynomial G(x)

called the generator polynomial.

𝑃 𝑥 ∙ 𝑥𝑝 = 𝑥7 + 𝑥6 + 𝑥3 + 1 ∙ 𝑥𝑝 3

 = 𝑥7+𝑝 + 𝑥6+𝑝 + 𝑥3+𝑝 + 𝑥0+𝑝

The generator polynomial is used to generate the CRC value of a given data sequence. An

example G(x) is given in (4).

7

𝐺 𝑥 = 𝑥3 + 𝑥1 + 1 (4)

The degree of the polynomial G(x) is 3 (p = 3). So, P(x) is multiplied by x
3
.

𝑃 𝑥 ∙ 𝑥𝑝 = 𝑥7 + 𝑥6 + 𝑥3 + 1 ∙ 𝑥3 (5)

 = 𝑥10 + 𝑥9 + 𝑥6 + 𝑥3

So, the new data sequence can be represented in binary format as in (6).

𝑅 𝑥 = 11001001000 (6)

𝑅 𝑥 𝑖𝑠 𝑃(𝑥) 𝑠ℎ𝑖𝑓𝑡𝑒𝑑 𝑏𝑦 𝑝

The derived polynomial is divided by the generator polynomial G(x).

 𝑥10 + 𝑥9 + 𝑥6 + 𝑥3 ÷ 𝑥3 + 𝑥1 + 1 = 𝑥7 + 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥1 + 1 (7)

 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 1

The division is shown in Figure 2-1.

8

x10 + x9 + x6 + x3 x3 + x1 + 1

x10 + x8 + x7

x9 + x8 + x7 + x6 + x3

x9 + x7 + x6

x8 + x3

x8 + x6 + x5

x6 + x5 + x3

x6 + x4 + x3

x5 + x4

x5 + x3 + x2

x4 + x3 + x2

x4 + x2 + x1

x3 + x1

x3 + x1 + 1

1

x7 + x6 + x5 + x3 + x2 + x1 + 1

quotient

remainder

Figure 2-1 Polynomial Division

Finally, the remainder of the division is added to R(x) as seen in (8). The remainder “001”

is the CRC value of the data sequence “110010011”.

11001001000 + 001 = 11001001001 (8)

So, the derived data sequence is a multiple of the generator polynomial G(x). In

communication systems, the receiver checks the received data by dividing it to the G(x). If

the remainder is different than zero, the receiver realizes that an error has occurred during

the transmission. Otherwise, the data sequence is passed from CRC. Similarly, in data

storage systems, the validity of data which is on a storage device is checked by memory

controller using the division procedure of CRC.

There is a possibility that the remainder of division is zero in CRC computation even if an

error has been occurred. Such a situation may arise when the data sequence is a multiple

of G(x) after a corruption.

9

These undetected errors may occur in a probability that depends on various factors such as

the generator polynomial, the degree of the generator polynomial and lengths of data

sequences.

Although the possibility exists that the occurrence of undetected errors, CRC is a powerful

and simple method for error detection. It can be controlled by suitable choice of the

generator polynomial. In addition, there is a final XOR operation in some CRC standards

for obfuscation.

2.1.2 CRC Standards

Some commonly used standards are listed in Table 2-2.

Table 2-2 Commonly Used CRCs

Name Polynomial Uses

CRC-4-ITU 𝑥4 + 𝑥1 + 1 G.704

CRC-5-EPC 𝑥5 + 𝑥3 + 1 Gen 2 RFID

CRC-5-USB 𝑥5 + 𝑥2 + 1 USB

CRC-7 𝑥7 + 𝑥3 + 1 MMC, SD

CRC-8-CCIT 𝑥8 + 𝑥2 + 𝑥1 + 1 ATM

CRC-8-WCDMA 𝑥8 + 𝑥7 + 𝑥4 + 𝑥3 + 𝑥1 + 1 WCDMA

CRC-11 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥2 + 1 FlexRay

CRC-15-CAN
𝑥15 + 𝑥14 + 𝑥10 + 𝑥8 + 𝑥7 +

𝑥4 + 𝑥3 + 1
CAN

CRC-16-IBM 𝑥16 + 𝑥15 + 𝑥2 + 1
USB, MODBUS,

ANSI X3.28

CRC-16-CCIT 𝑥16 + 𝑥12 + 𝑥5 + 1
HDLC, XMODEM,

Bluetooth

CRC-16-DECT 𝑥16 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥3 + 1 DECT

CRC-16-T10 DIF
𝑥16 + 𝑥15 + 𝑥11 + 𝑥9 + 𝑥8 +

𝑥7 + 𝑥5 + 𝑥4 + 𝑥2 + 1
SCSI DIF

CRC-24

𝑥24 + 𝑥22 + 𝑥20 + 𝑥19 + 𝑥18 +

𝑥16 + 𝑥14 + 𝑥13 + 𝑥11 + 𝑥10 +

𝑥8 + 𝑥7 + 𝑥6 + 𝑥3 + 𝑥1 + 1

FlexRay

CRC-32

𝑥32 + 𝑥26 + 𝑥23 + 𝑥22 + 𝑥16 +

𝑥12 + 𝑥11 + 𝑥10 + 𝑥8 + 𝑥7 +

𝑥5 + 𝑥4 + 𝑥2 + 𝑥1 + 1

Ethernet, SATA,

MPEG-2

10

2.2 Hardware Implementation Techniques for Cyclic Redundancy Check

Hardware implementation techniques for CRC are classified as serial, parallel and table-

based. Serial implementation has the lowest cost. On the other hand, the throughputs of

parallel and table-based implementations are generally higher than the serial one.

To implement the CRC in hardware, required components are determined depending on

the operations in calculation procedure.

In binary field, operations are performed using modulo-2. Truth table of the addition

operation which is defined in the binary field is given in Table 2-3. A and B are the binary

digits that are added.

Table 2-3 Truth Table of Addition

Inputs Output

A B Sum

0 0 0

0 1 1

1 0 1

1 1 0

Correspondingly, the subtraction operation is defined in Table 2-4. A is the minuend and B

is subtrahend.

Table 2-4 Truth Table of Subtraction

Inputs Output

A B Difference

0 0 0

0 1 1

1 0 1

1 1 0

11

As seen on truth tables in Table 2-3 and Table 2-4, subtraction in the binary field is the

same as addition. So, an exclusive or (XOR) gate can be used for the addition and

subtraction operation in the binary field.

In polynomial arithmetic, a division operation can be made as demonstrated in Figure 2-2.

1 1 0 0 1 0 0 1 1 0 1 1

1 1 0 0

quotient

remainder

1 0 1 1

1 1 1 1

1 0 1 1

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 1

Figure 2-2 Polynomial Division in the Binary Field

The division operation that is shown in Figure 2-2 can be implemented by a shift register

and XOR gates [14]. Shift register is used for shifting the dividend and XOR gates are

used for subtraction operations.

In the following subsections, hardware implementation techniques are described briefly.

2.2.1 Serial Implementation

Serial implementation is the simplest approach in the hardware implementation methods

of CRC calculation. Traditionally, a simple CRC architecture is based on a linear feedback

shift register (LFSR) [8]. A typical LFSR based serial CRC architecture is shown in

Figure 2-3.

12

Figure 2-3 A LFSR-based Serial CRC Circuit

The data is processed one bit per clock cycle in the serial circuit depicted in Figure 2-3.

The serial input of the circuit is marked as Serial_in. The data which we wanted to

compute the CRC for are provided from Serial_in. The output of the circuit is the

CRC_out which gives the CRC result of computation. At each clock pulse, some bits are

shifted directly and the others are shifted after XOR operation. The bits to be XOR

operated are determined by the used CRC polynomial. The computation takes as many

cycles as the number of bits in the data + n bits shift where the n is the length of the

generator polynomial.

2.2.2 Parallel Implementation

A serial LFSR circuit sometimes can be inadequate with regards to throughput. This

limitation led to various other studies that focused on parallel implementations. Generally,

parallelization is recommended in the cases where the data transfer is parallel or transfer

rates are very high [9].

The parallelization method of CRC implementation is unrolling the serial circuit [10]. In

terms of combinational logic, parallel implementation requires more elements and area

than the serial one. In Figure 2-4, a 2-bit parallel CRC calculator is shown.

Figure 2-4 A Parallel (2-bits) CRC Circuit

13

In Figure 2-4, the parallel circuit implements CRC calculation where data_in[1:0] and

CRC[1:0] are the inputs and outputs of the circuit respectively. In each cycle, 2-bits of

CRC is computed for a given input data sequence. So, the 2-bit parallel implementation is

almost 2 times faster than the serial one. Logic utilization of parallel implementation is

more than the serial one but the rate of increase is due to the polynomial.

2.2.3 Table-Based Implementation

Lastly, table-based CRC implementation is another alternative for hardware-based CRC

computation when the data rates are considerably high. However, table-based

implementations may be too expensive for small-scale systems when the table-sizes are

considerably high.

For all of the possible input data bytes, the CRC values can be pre-computed and stored in

a table. In this manner, a table with 256-entries is required. In Figure 2-5, a LUT’s content

is shown. This LUT is generated for CRC-16 by using the generator polynomial

“0x1021”. Each entry has 16-bit values corresponds to the input byte value.

14

Figure 2-5 Look-Up Table of CRC-16 (0x1021 Polynomial)

In Figure 2-5, the values in the table are generated for input data ranging from 0 to 255

and increasing first by column and then by row. For this byte-wise table, a 2048-bit

memory element is required. Computation of CRC is occurred in a manner that one byte

input data is processed in one computation cycle.

The memory requirement for CRC table is can be reduced by decreasing the

parallelization level. In other words, if the input length of table is shortened, the size of the

table is reduced.

15

A nibble-wise approach reduces the memory requirement of table from 2048-bits to 256-

bits. However, decreasing the input data size reduces the throughput. In nibble-wise

approach, 4-bit data is processed in a computation cycle. So, the size of table can be

chosen due to the memory and area limitations of the platform which the CRC calculator

is implemented on it.

2.3 Performance Metrics

All of the proposed hardware implementation techniques have their own advantages and

disadvantages in terms of some specific performance metrics. These metrics are namely

resource utilization, throughput, polynomial length and reconfiguration time.

2.3.1 Resource Utilization

Resource utilization is usage of the hardware elements on a platform for implementing the

design. Resource types can vary due to implementation technique and the hardware

platform. The basic elements of a CRC calculator are registers, XOR gates and memory

blocks. In addition, the number of used unit logic blocks on an FPGA is also the resource

utilization parameter.

2.3.2 Throughput

The throughput of a CRC calculator is the maximum processed bits of input data in unit

time. In other words, the maximum length of the calculated data sequence in unit time is

the throughput of the CRC calculator. The throughput requirement of CRC calculator is

determined by the communication protocols in data communication systems. In [13], CRC

has been described as the biggest bottleneck in iSCSI protocol processing. So, the

throughput is an important performance metric for various communication protocols.

In a similar way, several data storage systems require different access speeds on their

interfaces. Therefore, the throughput requirement of the CRC calculator in a data storage

system is adjusted by the interface speed of that system.

2.3.3 Polynomial Length

Since the CRC computation is based-on polynomial division, the length of the polynomial

is an important parameter. The resource utilization of a calculator varies by the

polynomial length. Also, the throughput is affected by the polynomial length indirectly.

For example, the polynomial length determines the number of required registers in a serial

implementation. Accordingly, the throughput of the calculator changes by the length of

logic paths.

The polynomial length is determined by the CRC standards as mention before.

16

2.3.4 Reconfiguration Time

The dynamically reconfigurable CRC calculators have another parameter which is called

reconfiguration time. It is the time of reconfiguring the polynomial of the calculator for

different CRC standards.

As an example, a system which has multiple communication interfaces may use only one

instance of a dynamically reconfigurable CRC calculator. To communicate over an

interface, the system has to configure the calculator for that interface. Then, the system

may communicate over another interface that has another CRC standard. Herein, a run-

time reconfiguration of the calculator is required for communication over the new

interface. After a time period which is named as the reconfiguration time the calculator

can be used for new interface.

2.4 Previous Work on Dynamically Reconfigurable CRC Implementations

In this section, we present previous studies on dynamically reconfigurable CRC

implementations on hardware. The architectures of these designs and some important

properties of them are described.

In [4], a 32-bit parallel field programmable CRC implementation is proposed. The design

was implemented on ASIC technology using 130-nm UMC standard cell. They proposed a

cell-array based architecture which is run-time programmable. There are two main blocks

in the architecture which is shown in Figure 2-6. First block is the calculator of the design

and the second one is the configuration circuitry which is responsible for configuring the

calculator.

The configuration circuitry of this design has a microprocessor interface. The polynomial

of the CRC calculator can be changed over this interface by a microprocessor. The matrix

computation block of the configuration circuitry computes the cell-array values of the

calculator. The configuration takes place by writing the calculated values to the CRC array

cells. After the configuration, the calculator can be used for CRC computation with the

new polynomial.

17

Figure 2-6 The Architecture of Field Programmable CRC Design (adapted from [4])

The reconfigurable block of the architecture is the programmable CRC array cell which is

shown in Figure 2-7. This cell consists of two parts which are the data-path and the

control-path. The control-path has a configuration register that is used for selecting the

data-path function. The configuration register is configured by the Config Data when

the Config Enable input goes high. The data-path can be configured in two different

ways. The Input 1 or the result of the XOR operation between two inputs is derived to

the Output.

18

Figure 2-7 Programmable CRC Array Cell (adapted from [4])

The programmable CRC array cells in the architecture which proposed in [4] provide the

ability of reconfiguration. The main approach of this design is locating XOR gates for all

possible combinations of input paths and choosing the required ones for the selected

polynomial. The disadvantage of this design is that the critical path and the number of

multiplexers increase rapidly in proportion to the parallelization level.

Another hardware-based CRC architecture is presented in [5]. This programmable parallel

CRC circuit was implemented on ASIC with the 130-nm standard cell technology as so

the previous study in [4].

There is a similar approach in study [5]. First difference between these architectures is the

basic components of the logics. In [5], their preference is using the XOR and AND gates

with latches instead of XOR gates, multiplexers and registers. The basic logic diagram for

computing a CRC bit in this study is shown in Figure 2-8. This general diagram describes

the outline of their study where the cx is CRC bits, the dx is the data input and fx is the

latches used for polynomial select.

19

Figure 2-8 Programmable Parallel CRC Circuit for CRC bit ci (adapted from [5])

Programmable parts of the design are the latches which they controls the XOR inputs by

driving the AND gates. Similarly the approach in [4], the latch values can be

reprogrammed at run-time. So, the polynomial of CRC circuit is dynamically

reconfigurable.

Second improvement of this study is using a XNOR and a NAND gate instead of a latch

in the logic. The purpose of this update is decreasing the area utilization and the

configuration time. Due to utilization of XNOR and NAND gates in ASIC standard cells,

there is approximately %6 area saving in comparison to a latch [5]. In addition, there is no

need for calculating the latch values in reconfiguration process.

Lastly, a table-based approach is presented in [6]. Different than the previous run-time

reconfigurable studies, the table-based implementation technique is used on FPGA

platform which is named Xilinx Virtex-6 LX550T. There are two main blocks in the

architecture which are the Table Generation Module and the CRC Module. A general

block diagram of this design is shown in Figure 2-9.

20

Figure 2-9 General Block Diagram of Table-based CRC (adapted from [6])

Table Generation Module is the module that generates the pre-computed CRC values for

given polynomial through the poly input. While it is generating the CRC values, it stores

these computed values to the tables which consist of the BRAMs or LUTs. After the

completion of table generation process, the CRC Generation Module can compute the

CRC values for given input data frames from the input port.

The design proposed in [6] can be extended in terms of polynomial length and the parallel

input data length. However, these extensions are only possible at the synthesizing phase

before the implementation. The architecture relatively requires a huge number of

resources in terms of BRAM and unit logic block. For example, 64-bit parallel CRC

generation requires 3398 Slice LUTs and 288Kb BRAM for BRAM-based

implementation and 5571 Slice LUTs for logic-based implementation. The throughput is

high with a cost of high resource utilization. Increasing the throughput is the main goal of

this study.

21

We observe that, there is generally a tradeoff between the resource utilization and the

throughput. So, one of the designs may have the maximum throughput, but at the same

time, the resource utilization of it may be the highest. The mentioned run-time

reconfigurable designs have some advantages with respect to each other. On the one hand,

some of them have higher parallelization level than the others. On the other hand, some of

them are more flexible than others in terms of input data width selection. However, their

common motivation is that achieving very high throughput by increasing the

parallelization level. The mentioned designs are compared in Table 2-5.

Table 2-5 Implementation Comparison

Cell Array [4]

Programmable

Parallel [5]

Table-based

(logic) [6]

Platform

ASIC - 130-nm

standard cell

technology

ASIC - 130-nm

standard cell

technology

FPGA – Xilinx

Virtex 6 LX550T

Core Area

Utilization

(mm
2
)

0.150 0.033 NA

Slice LUTs

Utilization
NA NA 5571

Parallelization

Level
32 32 64

Clock

Frequency

(MHz)

154 481 443.9

Throughput

(Mbps)
4920 15380 28410

Throughput

(Mbps) / Slice

LUTs

NA NA 5.1

Reconfiguration

Time

33 clock cycle

214 ns

4 clock cycle

8 ns

320 clock cycle

720 ns

22

23

CHAPTER 3

DAROC: DYNAMICALLY RECONFIGURABLE AND AREA OPTIMIZED CRC

ARCHITECTURE AND FPGA IMPLEMENTATION

3.1 DAROC Architecture

DAROC is an area-optimized CRC architecture that is designed to perform calculations for

all 16-bit CRC standards. Its CRC standard is dynamically reconfigurable. In other words,

the CRC polynomial, the initial value and the final XOR value of the CRC calculator can

be reprogrammed at run-time through the configuration ports. A general block diagram of

DAROC is depicted in Figure 3-1.

Figure 3-1 General Block Diagram of DAROC

24

The main component of DAROC is the CRC Calculator Module (CCAM). CCAM is

responsible for calculating CRC values of input data which is driven to it. CCAM can be

configured by the CRC Configurator Module (CCOM) to change the parameters of

calculation such as polynomial and initial value of CRC. The inputs and outputs of the

DAROC’s top module are defined in Table 3-1. The internal signals are defined in the

following subsections.

Table 3-1 DAROC Inputs and Outputs

Port Width Type Function

config_clk_i 1 input Configuration clock

polynomial_i
16 input

Polynomial input for reconfiguring the

calculator with driven polynomial value

initialize_i

1 input

1 : For reconfiguring the calculator with

the values at configuration ports,

0 : Otherwise

clk_i 1 input System clock signal

data_i 2 input Data input of CRC calculation

enable_i
1 input

1 : For data ready notification,

0 : Otherwise

reset_i
1 input

1 : For reset request,

0 : Otherwise

final_xor_i
16 input

CRC result is XOR operated with this

value

initial_value_i 16 input Initial value of the CRC result

config_done_o
1 output

1 : Configuration is completed,

0 : Otherwise

crc_o 16 output CRC calculation result

25

CRC computation process is started when the enable_i input goes to high together with

the valid input data at data_i input. CCAM computes the CRC whenever the

enable_i input is at high. The result of the computation can be read from the crc_o

output at any moment. If a new computation is requested, the reset_i input have to be

driven to high. So, the CRC computation process starts with the initial value of CRC.

Reconfiguration process is started when the initialize_i input goes to high. At this

moment, the configuration parameters are read from the configuration input ports which

are the polynomial_i, the final_xor_i and the initial_value_i.

CRC computation and the configuration processes are presented by a general flowchart

which is showed in Figure 3-2.

26

Figure 3-2 Flowchart of DAROC

3.1.1 CRC Calculator Module (CCAM)

In this section, CCAM architecture is defined in detail. CRC computation process is

presented step by step. Furthermore, the configuration interface is described.

By extending a basic serial LFSR-based one-polynomial CRC calculator, a generalized

architecture can be built so that the calculator can be used with various CRC polynomials.

The architecture proposed in the Serial Implementation section can be transformed into a

reconfigurable structure that does not bound to a specific CRC standard.

27

The reconfiguration ability is acquired by adding a multiplexer and a XOR gate between

all the consecutive registers which keep the CRC bit values. The first input of the

multiplexers is the preceding CRC bit value. Second one is the XOR operation result of

the preceding CRC bit value and the input of first CRC bit register. Due to this

modification, any polynomials can be implemented for the CRC computation by selecting

the bits to be XOR operated. In Figure 3-3, the modified architecture which is dynamically

reconfigurable is shown.

Figure 3-3 Serial Reconfigurable CRC Circuit with Multiplexers

The combinational logic blocks consist of XOR gates and multiplexers. According to the

binary representation of the polynomial (polynomial_i input in Figure 3-3),

multiplexers select the bits that are to be XOR operated. This makes the CRC circuit

configurable for any CRC polynomial which has 16-bits length.

To illustrate the polynomial selection, a CRC calculator for 4-bits polynomial is shown in

Figure 3-4. The polynomial G(x) that specified in equation in (9) is driven to the

polynomial_i input of the circuit.

𝐺 𝑥 = 𝑥4 + 𝑥1 + 1 (9)

28

Figure 3-4 Serial Reconfigurable CRC Circuit for 4-bits Polynomials

The serial implementation of CRC processes the incoming data by one bit per clock cycle.

To increment the throughput of CRC computation circuit, parallelization can be applied.

As mentioned before, the parallelization method of CRC implementation is unrolling the

serial circuit. This unrolling method is illustrated in Figure 3-5 by using a commonly used

polynomial “0x1021”.

29

next_1_crc_o[0]

next_1_crc_o[1]

next_1_crc_o[2]

next_1_crc_o[3]

next_1_crc_o[4]

next_1_crc_o[5]

next_1_crc_o[6]

next_1_crc_o[7]

next_1_crc_o[8]

next_1_crc_o[9]

next_1_crc_o[10]

next_1_crc_o[11]

next_1_crc_o[12]

next_1_crc_o[13]

next_1_crc_o[14]

next_1_crc_o[15]

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

Polynomial (binary) : 0001'0000'0010'0001

Polynomial (hexadecimal) : 0x1021

crc_o[15] XOR data_i[0]

crc_o[0]

crc_o[1]

crc_o[2]

crc_o[3]

crc_o[4] XOR crc_o[15] XOR data_i[0]

crc_o[5]

crc_o[6]

crc_o[7]

crc_o[8]

crc_o[9]

crc_o[10]

crc_o[11] XOR crc_o[15] XOR data_i[0]

crc_o[12]

crc_o[13]

crc_o[14]

next_2_crc_o[0]

next_2_crc_o[1]

next_2_crc_o[2]

next_2_crc_o[3]

next_2_crc_o[4]

next_2_crc_o[5]

next_2_crc_o[6]

next_2_crc_o[7]

next_2_crc_o[8]

next_2_crc_o[9]

next_2_crc_o[10]

next_2_crc_o[11]

next_2_crc_o[12]

next_2_crc_o[13]

next_2_crc_o[14]

next_2_crc_o[15]

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

next_1_crc_o[15] XOR data_i[1]

next_1_crc_o[0]

next_1_crc_o[1]

next_1_crc_o[2]

next_1_crc_o[3]

next_1_crc_o[4] XOR next_1_crc_o[15] XOR data_i[1]

next_1_crc_o[5]

next_1_crc_o[6]

next_1_crc_o[7]

next_1_crc_o[8]

next_1_crc_o[9]

next_1_crc_o[10]

next_1_crc_o[11] XOR next_1_crc_o[15] XOR data_i[1]

next_1_crc_o[12]

next_1_crc_o[13]

next_1_crc_o[14]

STEP-1

STEP-2

next_2_crc_o[0]

next_2_crc_o[1]

next_2_crc_o[2]

next_2_crc_o[3]

next_2_crc_o[4]

next_2_crc_o[5]

next_2_crc_o[6]

next_2_crc_o[7]

next_2_crc_o[8]

next_2_crc_o[9]

next_2_crc_o[10]

next_2_crc_o[11]

next_2_crc_o[12]

next_2_crc_o[13]

next_2_crc_o[14]

next_2_crc_o[15]

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

crc_o[14] XOR data_i[1]

crc_o[15] XOR data_i[0]

crc_o[0]

crc_o[1]

crc_o[2]

crc_o[3] XOR crc_o[14] XOR data_i[1]

crc_o[4] XOR crc_o[15] XOR data_i[0]

crc_o[5]

crc_o[6]

crc_o[7]

crc_o[8]

crc_o[9]

crc_o[10] XOR crc_o[14] XOR data_i[1]

crc_o[11] XOR crc_o[15] XOR data_i[0]

crc_o[12]

crc_o[13]

STEP-3

(put the right-handside values of next_1_crc_o at step-1

into equations at step-2)

Figure 3-5 Unrolling the Serial CRC Circuit to Achieve Parallelization

30

The parallelization method that is illustrated in Figure 3-5 can be applied for all

polynomials. The polynomial “0x1021” which has 16-bits length is used in this

illustration. At the first step, the next_1_crc_o which is the CRC result for the first bit

of input data sequence is computed. Then, the computation of CRC for the second bit of

input data sequence is given at the second step. The next_2_crc_o is the CRC result

for two bits of data. At the last step, the equation of 2-bits parallel computation is

represented by putting the right hand-side equivalent of the next_1_crc_o to

equalization in step-2.

By this method, the dynamically reconfigurable CRC calculator which is shown in Figure

3-3 can be upgraded from serial to parallel. A 2-bits parallel and dynamically

reconfigurable CRC calculator which is achieved by applying the proposed unrolling

method is shown in Figure 3-6. The proposed multiplexer-based design is implemented on

Xilinx XC6SLX45T platform. Number of slice register utilization is 33 out of 54576. It

utilizes 63 out of 27288 slice LUTs.

Figure 3-6 Parallel (2-bits) Reconfigurable CRC Circuit with Multiplexers

The CRC calculator which is shown in Figure 3-6 can be used for all the polynomials

which have 16-bits length. There are two main parts in each stage of this circuit which are

the combinational logic part and a register part. We can say the programmable part is the

combinational part. If we make an abstraction on the programmable part, the

combinational part of the circuit can be assumed as a configurable block. So, the CRC

calculator consists of configurable blocks and registers.

31

The configurable blocks are assumed as LUT blocks considering the target platform of

this study is FPGA, because the combinational logic operations are implemented by using

programmable LUTs on FPGAs. The design transforms into a LUT-based entity. A high-

level view of this 2-bits parallel calculator is shown in Figure 3-7.

Figure 3-7 Parallel Reconfigurable CRC Circuit with Configurable LUTs

In Figure 3-7, the modified version of the previous 2-bits parallel and dynamically

reconfigurable CRC circuit is shown. Polynomial selection is made by configuring the

Configurable LUT blocks in proposed architecture. This generalized CRC calculator

architecture in Figure 3-7 can be implemented with LUT resources on an FPGA. If these

LUT blocks of the FPGA are dynamically reconfigurable, the architecture allows run-time

switching the CRC polynomial for different CRC standards. To that end, this thesis

proposes a generalized 2-bit parallel architecture for all CRC polynomials of a given

length. A structural view of this architecture which is named CCAM is depicted in Figure

3-8.

32

Figure 3-8 Architecture of CRC Calculator Module (CCAM)

CCAM implements CRC calculation where data_i and crc_o are the input and output

of the CCAM, respectively. To change the polynomial of the CCAM, dynamically

reconfigurable LUTs’ contents can be replaced through the reconfiguration interface of

the CCAM.

Before a new CRC computation start, the initialization process have to be executed unless

it has not already be done for intended CRC standard. The initialization process starts by

driving the initial value of CRC to the initial_value_i input and the value, which is

used in final XOR operation, to the final_xor_i input. These values are customized

by the CRC standards. Then, the initialize_i input is driven to high for registering

these values. The reconfiguration takes place in this initialization process. The

dynamically reconfigurable LUTs are updated through the reconfiguration interface of the

CCAM. This interface has three inputs which are the config_clk_i, the

config_enable_i and the config_data_i. The configuration data input ports of

all the reconfigurable LUTs are combined with the purpose of simplifying the

configuration interface and decreasing the resource utilization. So, the LUTs are

configured in a serial way starting from the first LUT which calculates the least significant

bit value of CRC. The mentioned inputs and outputs of the CCAM are described in Table

3-2.

33

The computation takes place by driving the 2-bits data to the data_i input when the

enable_i input is at high. The enable_i input has to be held in high through one

clock cycle for each 2-bits of the data sequence which we want to calculate the CRC for.

The CRC computation of a given data sequence is completed by processing the last 2-bits

of it and driving the enable_i input to low. The CRC of the given data sequence is

produced through the crc_o output.

After a computation, a reset operation has to be executed for subsequent computations. If

we want to resume calculating the CRC, the reset operation is not executed. The

computation continues with the last value in CRC register in such a case. Otherwise, a

reset operation is a must for a new computation. The reset operation can be executed by

driving the reset_i input of CCAM to high for one clock cycle. After the reset, the

initial value which was stored in last initialization process is written to the CRC register.

So, the CCAM can be utilized for a new computation.

34

Table 3-2 Inputs and Outputs of CCAM

Port Width Type Function

conf_clk_i 1 input Clock input for dynamic reconfiguration

conf_enable_i 16 input

Enable/disable control input for

reconfigurable LUTs. Each bit

enables/disables the corresponding LUTs

starting from the LSB.

conf_data_i 1 input Data input for dynamic reconfiguration

initialize_i 1 input

1 : For registering the initial and final XOR

values,

0 : Otherwise

clk_i 1 input System clock signal

data_i 2 input Data input of CRC calculation

enable_i 1 input
1 : For data ready notification,

0 : Otherwise

reset_i 1 input
1 : For reset request,

0 : Otherwise

final_xor_i 16 input
CRC result is XOR operated with this

value

initial_value_i 16 input Initial value of the CRC register

crc_o 16 output Calculated CRC value

3.1.2 CRC Configurator Module (CCOM)

The proposed CRC calculator CCAM can be configured through the reconfiguration

interface. Any microcontroller or microprocessor which has a compatible interface can

configure the CCAM. However, a hardware-based module which can configure the CCAM

was developed in this study.

35

This module which is named as CCOM-CRC COnfigurator Module determines the table

contents of CCAM for a given CRC standard and updates the tables with these values. The

table contents are determined due to the utilized dynamically reconfigurable block of the

target platform for a given CRC polynomial.

Figure 3-9 CCOM-CRC Configurator Module

The general structure of the CCOM is shown in Figure 3-9. It has a simple state machine

which organizes the configuration process. There is a reconfiguration interface that

provides to communicate with the CCAM. There are also some counters which are utilized

for counting the sent bits of a table’s content and counting the updated tables. Lastly,

CCOM has a ROM which the LUT configuration values stored in it.

36

The configuration process is started by the rising edge of initialize_i input. Then,

reconfigurable LUTs’ contents are replaced with pre-calculated values for different CRC

polynomial computations over the conf_data_i input of CCAM. The configuration

data transmission takes place in synchronization with the conf_clk_o clock signal.

Each LUT is controlled by the corresponding conf_enable_o signal. At the end of the

configuration, config_done_o output of the CCOM goes to logic high. In Table 3-3,

the inputs and outputs of the CCOM are described.

Table 3-3 CCOM Inputs and Outputs

Port Width Type Function

config_clk_i 1 input Clock input for dynamic reconfiguration

polynomial_i 16 input
Polynomial input for reconfiguring the

calculator with driven polynomial value

initialize_i 1 input
1 : For reconfiguration start request

0 : Otherwise

clk_i 1 input System clock signal

config_done_o 1 output
1 : Configuration is completed,

0 : Otherwise

conf_clk_o 1 output Clock output for dynamic reconfiguration

conf_enable_o 16 output

Enable/disable control output for

reconfigurable LUTs. Each bit

enables/disables the corresponding LUTs

starting from the LSB.

conf_data_o 1 output Data output for dynamic reconfiguration

37

3.2 FPGA Implementation of DAROC Architecture

DAROC architecture can be implemented on any hardware platform which has

dynamically reconfigurable LUTs. Xilinx Spartan-6 series FPGAs are appropriate for

DAROC implementation. The first reason is that Xilinx Spartan-6 series FPGAs have a

dynamically reconfigurable component which is named CFGLUT5. CFGLUT5 is a 5-

input Look-Up Table. The second reason for implementing DAROC on Xilinx Spartan-6

is that the Spartan-6 is relatively a cost effective selection when considered the target

systems.

The details of CFGLUT5 component and the DAROC implementation on FPGA by

utilizing this component are described in following subsections.

3.2.1 CFGLUT5

The logic / Boolean functions are generally implemented by function generators on

FPGAs. These function generators are implemented by look-up tables in Spartan-6 FPGAs

[11].

CFGLUT5 is an element of Xilinx Spartan-6 FPGAs which is runtime, dynamically

reconfigurable, 5-input look-up table. During the circuit operation, the logical function of

this 5-input look-up table can be changed [12]. A general view of this element is shown in

Figure 3-10.

38

Figure 3-10 Reconfigurable CFGLUT5 Element

The inputs which are utilized in logical function are I0, I1, I2, I3 and I4. The outputs

of the logical function are driven through O6 and O5 ports of CFGLUT5. The inputs and

the outputs of the CFGLUT5 are described in Table 3-4.

39

Table 3-4 CFGLUT5 Inputs and Outputs

Port Width Type Function

O6 1 output Output of 5-input look-up table

O5 1 output Output of 4-input look-up table

I0, I1, I2, I3,

I4
1 input Look-up table inputs

CDO 1 output

Cascaded reconfiguration data output

(For reconfiguring multiple

CFGLUT5s in a chain)

CDI 1 input Serial reconfiguration data input

CLK 1 input Clock signal for reconfiguration

CE 1 input
Clock enable signal for CLK (Active

high)

There are two outputs of the logical function which is implemented on CFGLUT5. O6 is

the output of the function that has 5 inputs. On the other hand, O5 can be used as an output

of 4-input function that is a subset of 5-input function. CFGLUT5 has an attribute which is

named as INIT. The value loaded into INIT determines the logical function of the

CFGLUT5 instance. The truth table of this reconfigurable element based on the current

INIT value is shown in Table 3-5.

Reconfiguration of CFGLUT5 is executed by using three configuration ports of it, which

are CDI, CE and CLK. The method of reconfiguration is loading the values of intended

logical function into the INIT attribute. The reconfiguration process starts with shifting the

MSB (INIT [31]) of data into the LUT. The data is transmitted through the CDI input

synchronously with the reconfiguration clock signal CLK. Clock enable signal should be

held at high during the reconfiguration. The logical function of the CFGLUT5 is updated

as new INIT value which is shifted into it. This process can be occurred any time during

circuit operation.

40

Table 3-5 CFGLUT5 Truth Table

Inputs Outputs

I4 I3 I2 I1 I0 O6 O5

1 1 1 1 1 INIT [31] INIT [15]

1 1 1 1 0 INIT [30] INIT [14]

… … … … … … …

1 0 0 0 1 INIT [17] INIT [1]

1 0 0 0 0 INIT [16] INIT [0]

0 1 1 1 1 INIT [15] INIT [15]

0 1 1 1 0 INIT [14] INIT [14]

… … … … … … …

0 0 0 0 1 INIT [1] INIT [1]

0 0 0 0 0 INIT [0] INIT [0]

A CFGLUT5 instance can be implemented by using the VHDL (Very High Speed

Integrated Circuits Hardware Description Language) or the Verilog HDL (Hardware

Description Language) instantiation template of it. In Figure 3-11, a CFGLUT5

instantiation in Verilog HDL is shown.

41

Figure 3-11 CFGLUT5 Instance in Verilog HDL

3.2.2 DAROC CFGLUT5-Based FPGA Implementation

Due to the run-time reconfiguration property of CFGLUT5 element, Xilinx Spartan-6

series FPGAs are appropriate for the implementation of DAROC. The combinational logic

blocks of the DAROC can be implemented by utilizing this reconfigurable element.

To start with the simple CRC structure, a serial implementation of DAROC for 16-bits

CRC polynomials is shown in Figure 3-12. In this structure, the CRC of a data sequence is

computed in such a way that one bit is processed at one clock cycle. So, the data is driven

serially through the data_i input during the CRC computation.

To reconfigure the DAROC for a new polynomial that has 16-bits length, the initialization

operations are executed. The initialization starts by driving the new values to the input

ports which are the polynomial_i, the final_xor_i and the initial_value_i.

Then, the initialize_i input is driven to high. CCOM starts to update the contents of

CCAM’s CFGLUT5 blocks through the reconfiguration interface. After the completion of

reconfiguration, the config_done_o output goes to high for “configuration is done”

notification.

42

Figure 3-12 Serial Implementation of DAROC on Xilinx Spartan-6

CCAM implementation, which is shown in Figure 3-12, is the minimal CRC calculator for

16-bits polynomial CRC standards in terms of resource utilization. The proposed design is

implemented on Xilinx Spartan-6 XC6SLX45T platform. Number of slice register

utilization is 32 out of 54576. It utilizes 37 out of 27288 slice LUTs.

The parallelization method of DAROC which is proposed before is implemented to

increase the CRC computation throughput as much as possible. It is straightforward to

increase the parallelization level. However, the motivation of this study is to design a

dynamically reconfigurable CRC calculator for small scale systems. Therefore, the

minimal resource utilization is one of the most important goals of this study. Considering

the tradeoff between the throughput and the resource utilization, the optimum

parallelization level can be determined by the requirements of target systems.

It can be noticed that the maximum input utilization of CFLUT5 is three in serial DAROC

implementation which is shown in Figure 3-12. These inputs are the data_i signal, the

output of the former CRC register and the output of the last CRC register (CRC [15] in the

16-bits design). Considering the input number of CFGLUT5 element, 2 out of 5 input

ports are not used. In such a case, the maximum operation capacity of the element is not

used in implemented logical function. Consequently, a more efficient design can be

investigated in terms of resource utilization.

43

The previously proposed unrolling method is used to parallelize the CRC computation. By

the simplicity of this unrolling method, it can be realized that each step, which increases

the parallelization level by one bit, adds extra two inputs. These inputs are added to all

LUT blocks which are corresponded to CRC bits. The reason for adding these extra inputs

is handling all possible CRC polynomials for computation.

The CFGLUT5 elements have two unused input ports in the previous implementation. If

the design is updated from serial form to 2 bit parallel form, the 5-input reconfigurable

look-up tables would be utilized in an efficient way. Because, all the input ports of

CFGLUT5s would be used in the logical functions. In other words, there is no missing

input port of a CFGLUT5 and there is no redundant field in the look-up table.

The number of required CFGLUT5 per 1-bit of CCAM changes by parallelization level in

the way that is given in Figure 3-13.

Figure 3-13 CFGLUT5 Utilization with increasing Parallelization Level

44

A structural view of 2-bits parallel DAROC implementation on Xilinx Spartan-6

XC6SLX45T is shown in Figure 3-14. The proposed architecture is implemented by

utilizing CFGLUT5 elements in place of the Dynamically Reconfigurable LUTs which are

shown in Figure 3-8.

Figure 3-14 2-Bits Parallel Implementation of DAROC on Xilinx Spartan-6

The resource utilization of this 2-bit parallel implementation is as low as the serial

implementation of DAROC although the throughput is doubled. It is achieved by utilizing

the unit logical function generators of the Spartan-6 in an efficient way. There are no more

elements than the serial implementation. Also, the throughput is doubled properly due to

the fact that the critical path is not changed.

45

Figure 3-15 DAROC Top Level RTL Schematic

DAROC was designed and implemented in Verilog HDL. Xilinx ISE 14.4 design

environment was used for all parts of the design flow including “the synthesis”, “the

mapping” and “the place and route”. DAROC top level RTL schematic which is generated

in Xilinx ISE 14.4 platform is shown in Figure 3-15.

46

47

CHAPTER 4

PERFORMANCE EVALUATION

The proposed architecture is tested and verified in simulations. During the simulations, the

functional analysis of DAROC is performed. Also, timing simulations are executed for

performance measurement. After the simulations, the HardWare - In - the - Loop (HWIL)

tests are performed for precise evaluations. In this chapter, performance evaluations of

DAROC are presented.

4.1 Simulations

Simulations were executed for functional tests of the proposed architecture. Xilinx ISE

Design Suite 14.4 has a Hardware Description Language simulator for behavioral and

timing simulations [16].

Before the simulations, the test benches have been designed for testing the DAROC with

full coverage. These test benches have been written in Verilog HDL. Then the behavioral

and timing simulations were performed. In Figure 4-1, a simple simulation for CRC

calculation is shown.

48

Figure 4-1 Simulation for CRC Computation of DAROC

In this simulation, the basic flow of CRC computation is shown. First of all, a reset

operation has to be executed to start a new computation by driving the reset_i input. It

is simulated by driving the reset_i input from low to high at the time of 100 ns in

simulation shown in Figure 4-1. Then, reset is completed by driving the input from high to

low. The computation of CRC can be started anymore.

CRC computation is started by driving the enable_i input from low to high. Starting

point of the computation is approximately at 120ns of the simulation which is shown in

Figure 4-1. During a period of time, a data sequence is driven from the data_i input. At

the end, the enable_i input goes to low which means the computation is halted. If the

data sequence is completed at this point, the CRC result can be read from the crc_o

output. In this simulation, the calculated CRC is “0x98FC” at the halt point.

49

4.2 Test Setup

The test setup of DAROC implementation consists of a computer which the Xilinx ISE

Design Suite 14.4 Evaluation Platform is installed on it, interface cables for FPGA

configuration and serial communication between the FPGA and the computer, a Spartan-6

evaluation board and a two channel oscilloscope. This setup is shown in Figure 4-2.

Figure 4-2 Test Setup

Xilinx Spartan-6 FPGA SP605 Evaluation Kit is used for hardware implementation tests.

There is a Xilinx Spartan-6 XC6SLX45T FPGA on the board. Four FPGA configuration

options are available. During the tests, 8 MB Quad SPI flash memory is used for FPGA

configuration. 27 MHz on board user clock is used as the system clock signal of DAROC.

50

The Silicon Labs CP2103GM USB to UART Bridge component is available for serial

communication on SP605 board [15]. By using a terminal program on PC, the test

messages are transmitted to and received from FPGA over this UART interface. There are

three types of test message. First one is used for configuration of CRC standard. The

second is the message that resets the CRC computation. Lastly, there is a data sequence

message to make the CCAM calculate the CRC of it. In Table 4-1, the details of these

message commands are shown.

Table 4-1 Command List of Test Setup

Command

Name
ID

Length

(byte)
Function

Message

Reply

CONFIGURE 0x01 7

Used for reconfiguration of CRC

calculator at runtime.

Message Format:

 Command ID (1 – byte),

 Polynomial (2 - byte),

 Initial Value (2 - byte),

 Final XOR Value (2 – byte).

“ACK”

RESET 0x02 1

Used for resetting the CRC

calculator for new calculations.

After reset, the stored initial value

is written to CRC register.

Message Format:

 Command ID (1 – byte).

“ACK”

COMPUTE 0x03 2

CRC computation of given data

byte is occurred by this command.

The computation continues with

the last value in CRC registers for

new COMPUTE commands.

 Message Format:

 Command ID (1 – byte),

 Data byte (1 – byte).

The calculated

2 byte CRC

value is

returned.

51

For the purpose of performing the DAROC tests an environment designed on FPGA that

covers the DAROC. The design has an instance of DAROC and a UART that is used for

command transmission. Also, a central state machine is designed for fetching and

executing the commands. The block diagram of the test design which is implemented on

FPGA is shown in Figure 4-3.

Figure 4-3 Block Diagram of DAROC Test System

52

4.3 Evaluation Results

DAROC implementation is simulated in ISIM platform. The simulation results are

verified by the HWIL tests executed on Xilinx Spartan-6 FPGA SP605 Evaluation Kit.

The results are presented in Table 4-2.

Table 4-2 DAROC Implementation Results

 DAROC

Implementation

Platform
Spartan-6

XC6SLX45T

Slice LUTs

Utilization
37

Parallelization

Level
2

Clock

Frequency

(MHz)

353

Throughput

(Mbps)
705

Throughput

(Mbps) / Slice

LUTs

19.1

Reconfiguration

Time

512 clock cycle

1450 ns

53

Resource utilization details of DAROC on Xilinx Spartan-6 XC6SLX45T are shown in

Table 4-3.

Table 4-3 DAROC Device Utilization Summary on Xilinx XC6SLX45T

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 70 54,576 1%

 Number used as Flip Flops 70

 Number used as Latches 0

 Number used as Latch-thrus 0

 Number used as AND/OR logics 0

Number of Slice LUTs 87 27,288 1%

 Number used as logic 67 27,288 1%

 Number using O6 output only 47

 Number using O5 output only 0

 Number using O5 and O6 20

 Number used as ROM 0

 Number used as Memory 16 6,408 1%

 Number used as Dual Port RAM 0

 Number used as Single Port RAM 0

 Number used as Shift Register 16

 Number using O6 output only 16

 Number using O5 output only 0

 Number using O5 and O6 0

 Number used exclusively as route-thrus 4

 Number with same-slice register load 4

 Number with same-slice carry load 0

54

Table 4-3 (continued)

Slice Logic Utilization Used Available Utilization

 Number with other load 0

Number of occupied Slices 46 6,822 1%

Number of MUXCYs used 0 13,644 0%

Number of LUT Flip Flop pairs used 96

 Number with an unused Flip Flop 42 96 43%

 Number with an unused LUT 9 96 9%

 Number of fully used LUT-FF pairs 45 96 46%

 Number of unique control sets 22

 Number of slice register sites lost to

control set restrictions

122 54,576 1%

Number of bonded IOBs 72 296 24%

 IOB Flip Flops 16

Number of RAMB16BWERs 0 116 0%

Number of RAMB8BWERs 0 232 0%

Number of BUFIO2/BUFIO2_2CLKs 0 32 0%

Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%

Number of BUFG/BUFGMUXs 2 16 12%

 Number used as BUFGs 2

 Number used as BUFGMUX 0

Number of DCM/DCM_CLKGENs 0 8 0%

Number of ILOGIC2/ISERDES2s 16 376 4%

 Number used as ILOGIC2s 16

 Number used as ISERDES2s 0

Number of IODELAY2/ IODRP2/

IODRP2_MCBs

0 376 0%

Number of OLOGIC2/OSERDES2s 0 376 0%

Number of BSCANs 0 4 0%

Number of BUFHs 0 256 0%

55

Table 4-3 (continued)

Slice Logic Utilization Used Available Utilization

Number of BUFPLLs 0 8 0%

Number of BUFPLL_MCBs 0 4 0%

Number of DSP48A1s 0 58 0%

Number of GTPA1_DUALs 0 2 0%

Number of ICAPs 0 1 0%

Number of MCBs 0 2 0%

Number of PCIE_A1s 0 1 0%

Number of PCILOGICSEs 0 2 0%

Number of PLL_ADVs 0 4 0%

Number of PMVs 0 1 0%

Number of STARTUPs 0 1 0%

Number of SUSPEND_SYNCs 0 1 0%

Average Fan-out of Non-Clock Nets 2.78

Module level utilization is presented in Table 4-4.

Table 4-4 Module Level Resource Utilization

Module

Name
Slices Slice Reg LUTs LUTRAM

CCAM 29 32 37 16

CCOM 17 38 50 0

56

4.4 Discussion

While the parallelization level is 2, resource utilization is as low as in serial

implementation. This area optimization is succeeded by considering the input size of

configurable logic unit in Spartan-6’s. The aim is achieving the maximum throughput by

minimum resource utilization. So, while the minimum resource requirement is obvious

according to the serial implementation, an optimized design is achieved by increasing the

throughput using this resource limitation.

The propagation delay through a LUT does not change due to the implemented function in

it [11]. Therefore, there is not an increment in critical path delay while the parallelization

level goes from 1 to 2.

In addition, DAROC is more advantageous than the other table-based design proposed in

[6] in terms of reconfiguration port size. DAROC has serial reconfiguration ports for CRC

LUTs. On the contrary, the proposed table-based design requires wider reconfiguration

ports for memory interfaces. Therefore, the resource utilization is reduced also by

serializing the reconfiguration interface.

DAROC has a considerably high Throughput/Slice LUTs value in comparison to the

proposed table-based design.

Although the throughput is lower than the mentioned run-time reconfigurable studies, the

performance of DAROC is remarkably sufficient for targeted systems. In Table 4-5, some

communication protocols which have CRC polynomials in 16-bits length are listed. Also,

the line rates of these interfaces are presented.

57

Table 4-5 Communication Protocols That Uses 16-bits CRC

Communication Protocol Line Rate

DECT 32 kbps

ANSI X3.28 14.4 kbps

MODBUS 19.2 kbps

USB 1.0 12 Mbps

USB 2.0 480 Mbps

16-bits CRC has a wide range of utilization in communication systems in addition to the

listed protocols. It is used in various serial communication applications which have RS-

232, RS-422 or RS-485 interfaces. DAROC can be implemented in these applications that

require 16-bits CRC for reducing the resource utilization.

58

59

CHAPTER 5

CONCLUSIONS

In this thesis we presented an area minimized and dynamically reconfigurable hardware

CRC calculator for 16-bits CRC standards.

We add multiplexers to the standard serial implementation of calculator to achieve the

capability of switching between the CRC standards. Then, the combinational parts of the

calculator which consist of multiplexers and XOR gates are implemented by

reconfigurable logic blocks for dynamically changing the CRC polynomial during run

time. We parallelize the serial architecture to 2 bits to fully utilize the available

reconfigurable LUT resources. So, the throughput is doubled while the resource utilization

remains the same. In addition, the resource utilization is reduced by using a serial

reconfiguration interface with respect to the other table-based architectures.

The proposed architecture is implemented on Xilinx Spartan-6 XC6SLX45T platform.

The design is simulated by using ISIM - Xilinx ISE Design Suite 14.4 Simulator. We

execute the HWIL tests on Xilinx SP605 Evaluation Kit. The results show that it works

properly. We achieved 705 Mbps throughput with 32 out of 54576 slice register and 37

out of 27288 slice LUTs utilization on Xilinx Spartan-6 XC6SLX45T for 16-bits CRC.

In this thesis, a 2-bits parallel CRC calculator is implemented for 16-bits CRC

polynomials. In the future, the proposed architecture might be extended for wider CRC

polynomials. A flexible structure might be designed in terms of polynomial length. In

addition, the reconfiguration interface of the calculator might be reduced by cascading the

LUTs.

One of the most important metrics for a dynamically reconfigurable CRC calculator is the

reconfiguration time in the systems that have multiple communication interfaces.

Therefore, decreasing the reconfiguration time of a CRC calculator is suggested as a

further study.

60

61

REFERENCES

[1] Walma, M., "Pipelined Cyclic Redundancy Check (CRC) Calculation," Computer

Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th

International Conference on , pp.365,370, 13-16 Aug. 2007

[2] Akagic, A.; Amano, H., "Performance evaluation of multiple lookup tables

algorithms for generating CRC on an FPGA," Access Spaces (ISAS), 2011 1st

International Symposium on , pp.164,169, 17-19 June 2011

[3] Shukla, S.; Bergmann, N.W., "Single bit error correction implementation in CRC-

16 on FPGA," Field-Programmable Technology, 2004. Proceedings. 2004 IEEE

International Conference on , pp.319,322, 6-8 Dec. 2004

[4] Toal, C.; McLaughlin, K.; Sezer, S.; Xin Yang, "Design and Implementation of a

Field Programmable CRC Circuit Architecture," Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on , vol.17, no.8, pp.1142,1147, Aug. 2009

[5] Grymel, M.; Furber, S.B., "A Novel Programmable Parallel CRC Circuit," Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.19, no.10,

pp.1898,1902, Oct. 2011

[6] Akagic, A.; Amano, H., "Performance analysis of fully-adaptable CRC accelerators

on an FPGA," Field Programmable Logic and Applications (FPL), 2012 22nd

International Conference on , pp.575,578, 29-31 Aug. 2012

[7] Ramabadran, T.V.; Gaitonde, S.S., "A tutorial on CRC computations," Micro, IEEE

, vol.8, no.4, pp.62,75, Aug. 1988

[8] Campobello, G.; Patane, G.; Russo, M., "Parallel CRC realization," Computers,

IEEE Transactions on , vol.52, no.10, pp.1312,1319, Oct. 2003

[9] Albertengo, G.; Sisto, R., "Parallel CRC generation," Micro, IEEE , vol.10, no.5,

pp.63,71, Oct. 1990

[10] Yan Sun; Min Sik Kim, "A Table-Based Algorithm for Pipelined CRC

Calculation," Communications (ICC), 2010 IEEE International Conference on ,

pp.1,5, 23-27 May 2010

[11] http://www.xilinx.com/support/documentation/user_guides/ug384.pdf (last visited

on 18.08.2013)

[12] http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.p

df (last visited on 18.08.2013)

[13] Joglekar, A.; Kounavis, M.E.; Berry. F.L., “A Scalable and High Performance

Software iSCSI Implementation,” File and Storage Technologies (FAST’05) ,

Proceedings of 4th USENIX Conference on , Vol.4. USENIX Dec, 2005

62

[14] Peterson, W.W.; Brown, D.T., "Cyclic Codes for Error Detection," Proceedings of

the IRE , vol.49, no.1, pp.228,235, Jan. 1961

[15] http://www.xilinx.com/support/documentation/boards_and_kits/ug526.pdf (last

visited on 19.08.2013)

[16] http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/plugin_ism.

pdf (last visited on 19.08.2013)

