THE DEVELOPMENT AND HARDWARE IMPLEMENTATION OF
A DYNAMICALLY RECONFIGURABLE AND AREA OPTIMIZED
CYCLIC REDUNDANCY CHECK ARCHITECTURE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OZCAN YURT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2013

Approval of the thesis:

THE DEVELOPMENT AND HARDWARE IMPLEMENTATION OF A
DYNAMICALLY RECONFIGURABLE AND AREA OPTIMIZED
CYCLIC REDUNDANCY CHECK ARCHITECTURE

submitted by OZCAN YURT in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Ozgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gonll Turhan Sayan

Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Ece Glran Schmidt

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ece Glran Schmidt

Electrical and Electronics Engineering Dept., METU

Prof. Dr. G6zde Bozdagi Akar

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ciineyt F. Bazlamacci

Electrical and Electronics Engineering Dept., METU

Dr. Nizam Ayyildiz

ASELSAN Inc.

Date: 27/08/2013

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also declare that,
as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last name : Ozcan YURT

Signature

ABSTRACT

THE DEVELOPMENT AND HARDWARE IMPLEMENTATION OF A
DYNAMICALLY RECONFIGURABLE AND AREA OPTIMIZED
CYCLIC REDUNDANCY CHECK ARCHITECTURE

Yurt, Ozcan
M.Sc., Department of Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Ece Guran Schmidt

August 2013, 62 pages

The Cyclic Redundancy Check (CRC) calculation for data communication protocols is
implemented by hardware calculators in several systems due to increasing throughput
requirements of data communication protocols. Furthermore CRC is employed in many
small scale embedded systems with different types of data communication interfaces that
are implemented on FPGA. Resource utilization of these systems is frequently a critical
parameter with regards to cost. In many cases, limited logic units of an FPGA have to be
used very carefully to fit the design into that platform. In this thesis, we present DAROC-
Dynamically Reconfigurable and ARea Optimized CRC, which is a run-time
reconfigurable and area-minimized CRC calculator. The ability of reconfiguration enables
DAROC calculating different CRCs for several standards with a single instance of
implementation. DAROC reaches the throughput of 705 Mbps that is sufficient for the
target embedded systems with less resource consumption compared to the previous
reconfigurable CRC implementations.

Keywords: CRC, Cyclic Redundancy Check, FPGA, dynamic reconfiguration, area
optimization.

0z

DINAMIK OLARAK YENIDEN YAPILANDIRILABILEN VE ALAN
IYILESTIRILMIS BiR DONGUSEL ARTIKLIK DENETIMI MIMAMIRISI
GELISTiRILMESI VE DONANIM GERCEKLEMESI

Yurt, Ozcan
Yiiksek Lisans, Elektrik Elektronik Miithendisligi Bolimii
Tez Yoneticisi: Dog. Dr. Ece Giiran Schmidt

Agustos 2013, 62 sayfa

Veri iletisim protokollerinin hiz gereksinimleri arttig1 i¢in, bu protokollerde yer alan
dongiisel artiklik denetimi (CRC) hesaplamasi bircok sistemde donanim tabanh
hesaplayicilar ile gergeklenmektedir. Ayrica, birden fazla iletisim ara yiiziine sahip, FPGA
Uzerinde gergeklenmis, bircok kiglk dlgekli gomiilu sistemde CRC kullanilmaktadir. Bu
sistemlerde donanimsal kaynak kullanimi, maliyet acisindan, ¢cogu zaman kritik bir
parametredir. Birgok durumda, tasarimi hedef platform olan FPGA igerisine sigdirabilmek
icin, 0 FPGA’e ait kisith mantik birimlerini idareli bir sekilde kullanmak gerekir. Bu
tezde, kosum zamaninda yeniden yapilandirilabilen ve alan anlaminda kiigiiltiilmis bir
CRC hesaplayict olan DAROC — Dinamik Olarak Yeniden Yapilandirilabilen ve Alan
Iyilestirilmis Dongiisel Artiklik Denetimi sunulmaktadir. Yeniden yapilandirilabilme
yetenegi, DAROC’un sadece bir 6rnek gerceklenmesi ile birgok standart igin farkli CRC
hesaplama yapabilmesini saglamaktadir. DAROC, daha onceki yeniden yapilandirilabilir
CRC uygulamalariyla karsilastirildiginda daha az kaynak kullanimi ile hedef gomuli
sistemler i¢in yeterli olan 705 Mbps veri isleme hacmine ulagmaktadir.

Anahtar Kelimeler: CRC, Dongiisel Artiklik Denetimi, FPGA, dinamik yeniden
yapilandirma, alan en iyilestirme.

Vi

To My Family,

vii

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Assoc. Prof. Dr. Ece Gilran
Schmidt for her guidance, support, encouragement, trust, patience and valuable
contributions throughout the preparation of my thesis.

I would like to acknowledge the support of ROKETSAN Inc. for the realization of this
thesis.

The last but not the least, | express my sincerest thanks to Muhammet Hamdi Yavuz,
Yilmaz Firat Kaya, Metin Kazkayasi, Fatih Celik, Serkan Oztiirk, Cigdem Tiirkmendag,
Ipek Yagcan, Enes Aykurt, Tamer Uz, Mazhar Gékhan Ozkeser, Halil Ertugrul, my wife
Elif and my family who have given me encourage and support.

viii

TABLE OF CONTENTS

ABSTRACT . ettt b b h b e et b bbb e %
O ettt ettt n ettt n et vi
ACKNOWLEDGEMENTS ...ttt viii
LIST OF TABLES ...ttt bbbttt X
LIST OF FIGURESoo ottt st nenne s Xi
LIST OF ABBREVIATIONS ...ttt Xii
CHAPTERS

L INTRODUCTION. ... oottt sttt sttt sttt et e e esaeteanesbesresrenneneas 1
2 LITERATURE OVERVIEWooiiiiitctt et 5
2.1 CYCLIC REDUNDANCY CHECK ... iuteuietiereitesteitesiesiesseseseesassessessessessessessessssssssssessessessessenes 5
2.1.1 Computation OFf CRCoiiiiiic ettt nre s 5
N B O o O] = 1o - o SRR 9
2.2 HARDWARE IMPLEMENTATION TECHNIQUES FOR CYCLIC REDUNDANCY CHECK 10
2.2.1 Serial IMPIEMENTALION........ccooiiiice e s 11
2.2.2 Parallel Implementationccoooiiiiiiiniiereeee s 12
2.2.3 Table-Based IMplementationccccoeiiiieieii it 13
2.3 PERFORMANCE METRICS ...euvitiiesiesietieiestestesieste e saesae e e sastesaessessesaesaesassassessessessessesens 15
2.3.1 ReSOUICE ULHZAtION.......ccviie ettt e ens 15
2.3.2 TRIOUGNPUL. ...t ettt et et s be e re et sre e sbesba e e e sreens 15
2.3.3 Polynomial LeNGNcooiiiiee e 15
2.3.4 Reconfiguration TIME ..o ne 16
2.4 PREVIOUS WORK ON DYNAMICALLY RECONFIGURABLE CRC IMPLEMENTATIONS 16
3 DAROC: DYNAMICALLY RECONFIGURABLE AND AREA OPTIMIZED
CRC ARCHITECTURE AND FPGA IMPLEMENTATION......cccoiviieiiece e 23
3.1 DAROC ARCHITECTURE ...eivtiteiesiesieseetestessessestessessessesassessassessessessessessesssssssessessessessesses 23
3.1.1 CRC Calculator Module (CCAM)ccoiiiieieiecie ettt 26
3.1.2 CRC Configurator Module (CCOM)cccieiiiiiie ettt 34
3.2 FPGA IMPLEMENTATION OF DAROC ARCHITECTUREcctiiiiieieieeeeetesissre e siesieens 37
K T O] U I USSP 37
3.2.2 DAROC CFGLUT5-Based FPGA Implementationcccoceveveienininniinineneiens 41
4 PERFORMANCE EVALUATIONooiiii ettt st 47
O 1L TNy T N TSP 47
A2 TEST SETUP .oetttiiteeteeteesteesteesteeasteeste e be e sbeesbeesseess e ss e e beesbeesbe e e beeeseeanteenbe e sbeesneeaneeanbeents 49
4.3 EVALUATION RESULTS....uiititeiesiariaseatesteateseeseeseesessessessessessessessessessessssessessessessessessensenes 52
4.4 DISCUSSION ...uetiitieitee ettt e sttt e stee e sttt e st e st be e s beeebee e sabe e e sbbeessbe e e ke e e ssbeeebeeesbbeeabeeesabeennbeas 56
5 CONCLUSIONS ...ttt e e besaesbesresaeteneas 59
REFERENGCES. ...t sttt ettt st neeneens 61

LIST OF TABLES

TABLES

Table 2-1 Binary Representations of Polynomials...........cccccoooviieiiiriiiiiiieccee e 6
Table 2-2 CommONIy USEd CRCS.......cciiiiieieciee sttt st st 9
Table 2-3 Truth Table of AdAItION ..ot 10
Table 2-4 Truth Table 0f SUDLrACLION..........cooiiiiiieec e s 10
Table 2-5 Implementation COMPAISON.........cc.eiiiiierieiiiee e 21
Table 3-1 DAROC INPUtS and OULPULSccveviieieiieiisiisie st 24
Table 3-2 Inputs and OUPULS OF CCAMcviiiiieece e 34
Table 3-3 CCOM Inputs and OULPULScceeieiuiieeieie e et se et sre e sre e e 36
Table 3-4 CFGLUTS INputs and OULPULS.........ooveveiiriiriiniesiesie e 39
Table 3-5 CFGLUTS Truth Tablecooiiiii e 40
Table 4-1 Command LiSt Of TESt SETUPccverveieiiiiisiieree e 50
Table 4-2 DAROC Implementation RESUILSccoviiiieiiiieie e 52
Table 4-3 DAROC Device Utilization Summary on Xilinx XC6SLX45Tc.cccccevenvenee. 53
Table 4-4 Module Level Resource UtIIZationccccoevevviieie i s 55
Table 4-5 Communication Protocols That Uses 16-bits CRC...........ccccvvvrierenenernininnnnns 57

LIST OF FIGURES

FIGURES

Figure 2-1 Polynomial DIVISION.coiiiiiiiieieieieeses e 8
Figure 2-2 Polynomial Division in the Binary Field...........c.ccocooeiiiiiiiiieee 11
Figure 2-3 A LFSR-based Serial CRC CirCUIL..........cccoeiiiiiieiiiiic st 12
Figure 2-4 A Parallel (2-bits) CRC CirCUIL........cceiveiiiiirisie e 12
Figure 2-5 Look-Up Table of CRC-16 (0x1021 Polynomial)ccccceveiveiieiniecniennn, 14
Figure 2-6 The Architecture of Field Programmable CRC Design (adapted from [4])..... 17
Figure 2-7 Programmable CRC Array Cell (adapted from [4])ccoovovviviiiiiiiiineieiee 18
Figure 2-8 Programmable Parallel CRC Circuit for CRC bit c; (adapted from [5]) 19
Figure 2-9 General Block Diagram of Table-based CRC (adapted from [6])c.cc.c...... 20
Figure 3-1 General Block Diagram of DAROCcccoiiiiiiiiie e 23
Figure 3-2 Flowchart 0f DAROC ...ttt s 26
Figure 3-3 Serial Reconfigurable CRC Circuit with MUultiplexersccccoovvnenenennnn. 27
Figure 3-4 Serial Reconfigurable CRC Circuit for 4-bits Polynomials..............ccccoevne.n. 28
Figure 3-5 Unrolling the Serial CRC Circuit to Achieve Parallelization..............cc.cc........ 29
Figure 3-6 Parallel (2-bits) Reconfigurable CRC Circuit with Multiplexers..................... 30
Figure 3-7 Parallel Reconfigurable CRC Circuit with Configurable LUTS...........c.c......... 31
Figure 3-8 Architecture of CRC Calculator Module (CCAM)cccooviiiiiiiniieiesee, 32
Figure 3-9 CCOM-CRC Configurator Module..........c.cccoovviiiiiiiiiic e 35
Figure 3-10 Reconfigurable CFGLUTS EIEMENtccooviiiiiiieicccc e 38
Figure 3-11 CFGLUTS5 Instance in Verilog HDLcccociiviiiiiiicc e 41
Figure 3-12 Serial Implementation of DAROC on Xilinx Spartan-6c.cccceevevenene. 42
Figure 3-13 CFGLUTS5 Utilization with increasing Parallelization Level......................... 43
Figure 3-14 2-Bits Parallel Implementation of DAROC on Xilinx Spartan-6................... 44
Figure 3-15 DAROC Top Level RTL SChematiC..........ccoiririneiiieieisi e 45
Figure 4-1 Simulation for CRC Computation of DAROC...........ccceoviiiiiiiniiinene e 48
FIQUIE 4-2 TSt SBIUP ...eivietiiiti ittt sttt sttt te e s tesba et e sbeetaesbesbeeneeste e 49
Figure 4-3 Block Diagram of DAROC TeSt SYSIEIMccvviriiiiiiieieieiseee e 51

Xi

ASIC
BRAM
CRC
DECT
DUT
FPGA
HDL
iSCSI
LFSR
LSB
LUT
MSB
NA
NoC
SoC
SPI
UART
uMcC

LIST OF ABBREVIATIONS

: Application Specific Integrated Circuit

: Block Random-Access-Memory

: Cyclic Redundancy Check

: Digital Enhanced Cordless Telecommunications
: Device Under Test

: Field Programmable Gate Array

: Hardware Description Language

. Internet Small Computer System Interface

: Linear Feedback Shift Register

. Least Significant Bit

: Look Up Table

: Most Significant Bit

: Not Applicable

: Network on Chip

: System on Chip

: Serial Peripheral Interface

: Universal Asynchronous Receiver/Transmitter
: United Microelectronics Corporation

Xii

CHAPTER 1

INTRODUCTION

Cyclic Redundancy Check (CRC) is an error-detecting code based upon polynomial
division. It is widely-used in communication protocols because of the efficiency on
detecting transmission errors [1]. It is also used in data storage systems.

Due to increasing throughput requirements of data communication protocols, software
implementations of CRC calculation can be inadequate [2]. When speed requirements of
the CRC calculation cannot be met with a software implementation, a hardware solution is
employed.

Hardware implementation methods of CRC are generally categorized as serial, parallel
and table-based [3]. The data is processed one bit per clock cycle in the serial
implementation. Parallel implementation method is based on unrolling the serial circuit.
So, n-bit data is processed per clock cycle where the n is parallelization level. Lastly, in
table-based implementation, pre-calculated values are read from a table for given input
values.

FPGA is a preferred hardware platform for CRC implementations because of their
programmability. Resource utilization of these systems is frequently a critical parameter
with regards to cost. In many cases, limited logic units of an FPGA required to be used
very carefully with the aim of fitting the design into that platform. In such a case, the
system may have multiple communication protocols with different CRC standards. If the
area utilizations of the CRC calculators are minimized as far as possible in such a system,
it can be helpful for that system in terms of fitting into platform. Furthermore, many
FPGA-based systems have different types of data communication interfaces and protocols
that possibly require different CRC calculations.

Most of the studies about hardware implementation of CRC are based on one-polynomial
CRC calculation which calculates CRC only for a specific CRC standard. Although the
polynomials of these CRC calculators can be changed easily, this operation has to be done
before the run-time.

In this thesis, we focus on run-time reconfigurable CRC calculators where one calculator
can be used for all CRC standards that required for the system. In other words, the
calculator can be shared in time by communication protocols. The main advantage of this
approach is that only one instance of a CRC calculator is in use at a time resulting in
reduction of area utilization.

There are previous hardware CRC implementation studies such as [4], [5] and [6] which
have the ability of run-time reconfiguration. They proposed a cell-array based parallel
CRC calculator in [4]. Cell arrays consist of an XOR gate, two MUX and a register.
Similarly, in [5], they proposed a design which consist of XOR and AND gate arrays. A
LUT-based reconfigurable approach was proposed in [6]. Although these designs are run-
time reconfigurable, they require relatively high area utilization with respect to logic for
small-scale systems. These systems may require a reduced calculator in terms of area
utilization mitigating the advantages of the reconfigurable CRC design.

In this thesis, we propose DAROC-Dynamically Reconfigurable and ARea Optimized
CRC, which is a run-time reconfigurable and area-minimized CRC calculator. Due to the
ability of reconfiguration, DAROC meets the need of the systems that have to calculate
CRC for several standards. Although the throughput is doubled, DAROC requires the
same number of logic blocks on FPGA with the serial implementation. Area minimization
is achieved by using the minimum number of logic blocks, which are required for CRC
implementation, in full capacity.

The proposed design is implemented on Xilinx XC6SLX45T platform which has
dynamically reconfigurable blocks. Number of slice register utilization is 32 out of 54576.
It utilizes 37 out of 27288 slice LUTs. On the other hand, maximum achieved throughput
is 705 Mbps for processing 2-bits at a time with 16 bit polynomial.

The remainder of this thesis organized as follows. CHAPTER 2 introduces the literature
overview on CRC and its hardware implementations. Performance metrics of CRC
calculation such as resource utilization and throughput are defined. Then, relevant
previous works on dynamically reconfigurable CRC calculation in hardware are
discussed.

CHAPTER 3 describes the architecture of DAROC-Dynamically Reconfigurable and
ARea Optimized CRC and the implementation of DAROC architecture that is constructed
with the dynamically reconfigurable Look-Up-Table (LUT) resources on FPGA.

In CHAPTER 4, the simulation and hardware platforms for implementing DAROC are
introduced. Simulation and implementation results are presented in terms of performance
metrics that we define in CHAPTER 2. Evaluation results are discussed.

Finally, in CHAPTER 5, the conclusion is drawn and potential future directions are listed.
The summary of studies and evaluations in this thesis is presented. The implementation
results are summarized.

CHAPTER 2

LITERATURE OVERVIEW

2.1 Cyclic Redundancy Check

CRC is used to keep the integrity of data in communication and storage systems [7]. It is a
commonly used polynomial division based error detection method.

The basic idea behind the CRC is calculating a check value over a data stream and
attaching this check value to the data stream. So, the data integrity can be checked with
the calculated value. This check value is called as CRC value. In communication systems,
the transmitter calculates the CRC of the data stream which is going to be transmitted and
concatenates the data stream and CRC. Then, the transmitter sends the concatenated
stream to the receiver. In the receiver side, the CRC of received data stream is calculated.
Afterwards, the receiver compares the calculated CRC and received CRC value. If there is
a difference between these values, the receiver realizes that an error has been occurred
during the transmission. After the error detection, the action to take is determined by the
protocol of the communication system. Correspondingly to the communication systems,
data validity is checked by CRC code in various data storage systems such as magnetic
and optical storages.

The following subsection describes the CRC computation. Then the most common CRC
standards are proposed in adjacent subsection.

2.1.1 Computation of CRC

Computation of a Cyclic Redundancy Check is based on polynomial division in finite
binary field [7]. In the finite field arithmetic, a binary polynomial is a polynomial that has
coefficients in binary field (0 or 1). Binary representations of some polynomials can be
seen in Table 2-1. The leftmost bit of a binary sequence represents the highest degree term
of the associated polynomial.

Table 2-1 Binary Representations of Polynomials

Polviomial Polynomial Binary
y (with coefficients) Representation
1.x" +0.x% + 0. +1.x* + 1.3 +
7 4 3
X +x"+x°+1 00+ 0x" + 15 10011001
X+ x 1.3+ 0. + 1.x1 0.X° 1010
x'+x*+1 1.x" 40 + 1.x° +0.x" + 1.xX° 10101
X+ 1 +0.x" + 0.7 + 0.7 +
36+ X5 + x4 X7+ 1740+ 0.7+ O.x 1100010
1x +0.X

Computation procedure of CRC is described as follows. The data sequence that we want
to calculate the CRC for is represented as a polynomial P(x). As an example, P(x) is a
seventh degree polynomial in (1) that is derived from the binary data sequence
“11001001”.

POX)=1-x"+1-x+ 0-x°+0-x*+ 1-x34+0-x*+0-x1+1-x° (1)

Px)=x"+ x®+ x3+1)

P(x) is multiplied by a polynomial x° where p is the degree of a certain polynomial G(x)
called the generator polynomial.

P(x) - xP =7+ x°+ x3+1) -xP 3)

— x7+p + x6+p + x3+p _|_x0+p

The generator polynomial is used to generate the CRC value of a given data sequence. An
example G(x) is given in (4).

Gx)=x3+x1+ 1 4)

The degree of the polynomial G(x) is 3 (p = 3). So, P(x) is multiplied by x°.

P(x)-xP ="+ x°+ x3+1) -3 5)

= x10+ x% 4+ x6 43

So, the new data sequence can be represented in binary format as in (6).

R(x) = 11001001000 (6)

R(x) is P(x) shifted by p

The derived polynomial is divided by the generator polynomial G(x).

(0 + x4+ x0+x3) =P+ 2+ D=2+ 2+ x°+ x>+ x>+ x1+1 (7)

remainder = 1

The division is shown in Figure 2-1.

X10 + x% + x6 + x3 x3+xt+1

x10 + x8 + x7 XT+X0+x5+x3+x2+xl+1

X9 + X8+ X7 + X8 + X3 T

9 7 6 .
X+x +X quotient

X8+ x3

X8 + x5 + x5

X8+ x5 +x3
X8+ x4 + x3

X° + x4

X5+ X3 + X2

x4+ x3 +x2
x4+ x2 + x1

x3+xt

x3+xt+1

1 <«—— remainder

Figure 2-1 Polynomial Division

Finally, the remainder of the division is added to R(x) as seen in (8). The remainder “001”
is the CRC value of the data sequence “110010011”.

11001001000 + 001 = 11001001001 (8)

So, the derived data sequence is a multiple of the generator polynomial G(x). In
communication systems, the receiver checks the received data by dividing it to the G(x). If
the remainder is different than zero, the receiver realizes that an error has occurred during
the transmission. Otherwise, the data sequence is passed from CRC. Similarly, in data
storage systems, the validity of data which is on a storage device is checked by memory
controller using the division procedure of CRC.

There is a possibility that the remainder of division is zero in CRC computation even if an
error has been occurred. Such a situation may arise when the data sequence is a multiple
of G(x) after a corruption.

These undetected errors may occur in a probability that depends on various factors such as
the generator polynomial, the degree of the generator polynomial and lengths of data
sequences.

Although the possibility exists that the occurrence of undetected errors, CRC is a powerful
and simple method for error detection. It can be controlled by suitable choice of the
generator polynomial. In addition, there is a final XOR operation in some CRC standards
for obfuscation.

2.1.2 CRC Standards

Some commonly used standards are listed in Table 2-2.

Table 2-2 Commonly Used CRCs

Name Polynomial Uses
CRC-4-ITU xt+ xl 41 G.704
CRC-5-EPC x>+ x3+ 1 Gen 2 RFID
CRC-5-USB xS+ x24+ 1 USB
CRC-7 xT+ x4 1 MMC, SD
CRC-8-CCIT x84+ x4+ x4+ 1 ATM
CRC-8-WCDMA B+ + x4 WCDMA
CRC-11 M+ 2%+ x84+ X7+ X2+ 1 FlexRay

15 14 10 8 7
CRC-15-CAN orroEams et ean
x*+x°+ 1
USB, MODBUS
-16- 16 15 2))
CRC-16-1BM x4+ x4+ x4+ 1 ANS| X3.28
HDLC, XMODEM
CRC-16-CCIT x4+ x12 4+ x5+ 1 €\ XMO ’
Bluetooth
CRC-16-DECT 210+ x10 4 x84 x7 + x34 1 | DECT
16 15 11 9 8
CRC-16-TI0DIF |, T X T X F X+ X% | scsipi
x'+x+x"+x2+ 1
X% 4 x%2 4 x20 4 4194 418 4
CRC-24 x10 4+ x4 213 4 1 4 x10 4 FlexRay
B+ x4+ 1
x32 4+ x%0 + x23 4+ x%?2 + x16 +
CRC-32 x4+t 10+ a8 7+ =themet, SATA,
e MPEG-2
x> +x"+x+x+1

2.2 Hardware Implementation Techniques for Cyclic Redundancy Check

Hardware implementation techniques for CRC are classified as serial, parallel and table-
based. Serial implementation has the lowest cost. On the other hand, the throughputs of
parallel and table-based implementations are generally higher than the serial one.

To implement the CRC in hardware, required components are determined depending on
the operations in calculation procedure.

In binary field, operations are performed using modulo-2. Truth table of the addition
operation which is defined in the binary field is given in Table 2-3. A and B are the binary
digits that are added.

Table 2-3 Truth Table of Addition

Inputs | Output
A | B Sum
0|0 0
0|1 1
110 1
1|1 0

Correspondingly, the subtraction operation is defined in Table 2-4. A is the minuend and B
is subtrahend.

Table 2-4 Truth Table of Subtraction

Inputs Output

A | B | Difference
010 0
01 1
110 1
111 0

10

As seen on truth tables in Table 2-3 and Table 2-4, subtraction in the binary field is the
same as addition. So, an exclusive or (XOR) gate can be used for the addition and
subtraction operation in the binary field.

In polynomial arithmetic, a division operation can be made as demonstrated in Figure 2-2.

11001001 | 1011

10111 [1100
1111

1011 - ° T
1000 . guotient
0000

0000
0000

0001
0000

0001 <«— remainder

Figure 2-2 Polynomial Division in the Binary Field

The division operation that is shown in Figure 2-2 can be implemented by a shift register
and XOR gates [14]. Shift register is used for shifting the dividend and XOR gates are
used for subtraction operations.

In the following subsections, hardware implementation techniques are described briefly.

2.2.1 Serial Implementation

Serial implementation is the simplest approach in the hardware implementation methods
of CRC calculation. Traditionally, a simple CRC architecture is based on a linear feedback

shift register (LFSR) [8]. A typical LFSR based serial CRC architecture is shown in
Figure 2-3.

11

Serial in

— — : [
>D >D | D >D CRC_out
Clock | D_00 | DOl |D02 |V|)_n Y

—

Figure 2-3 A LFSR-based Serial CRC Circuit

The data is processed one bit per clock cycle in the serial circuit depicted in Figure 2-3.
The serial input of the circuit is marked as Serial in. The data which we wanted to
compute the CRC for are provided from Serial in. The output of the circuit is the
CRC_out which gives the CRC result of computation. At each clock pulse, some bits are
shifted directly and the others are shifted after XOR operation. The bits to be XOR
operated are determined by the used CRC polynomial. The computation takes as many
cycles as the number of bits in the data + n bits shift where the n is the length of the
generator polynomial.

2.2.2 Parallel Implementation

A serial LFSR circuit sometimes can be inadequate with regards to throughput. This
limitation led to various other studies that focused on parallel implementations. Generally,
parallelization is recommended in the cases where the data transfer is parallel or transfer
rates are very high [9].

The parallelization method of CRC implementation is unrolling the serial circuit [10]. In
terms of combinational logic, parallel implementation requires more elements and area
than the serial one. In Figure 2-4, a 2-bit parallel CRC calculator is shown.

Y

data_in[0] CRCI0)

—pD D >D >D d CRC[1]
Clock 4 0 | 01 n-1 |- n Y

@—r

data_in[1] .

y

Figure 2-4 A Parallel (2-bits) CRC Circuit

12

In Figure 2-4, the parallel circuit implements CRC calculation where data_ in[1:0] and
CRC[1:0] are the inputs and outputs of the circuit respectively. In each cycle, 2-bits of
CRC is computed for a given input data sequence. So, the 2-bit parallel implementation is
almost 2 times faster than the serial one. Logic utilization of parallel implementation is
more than the serial one but the rate of increase is due to the polynomial.

2.2.3 Table-Based Implementation

Lastly, table-based CRC implementation is another alternative for hardware-based CRC
computation when the data rates are considerably high. However, table-based
implementations may be too expensive for small-scale systems when the table-sizes are
considerably high.

For all of the possible input data bytes, the CRC values can be pre-computed and stored in
a table. In this manner, a table with 256-entries is required. In Figure 2-5, a LUT’s content
is shown. This LUT is generated for CRC-16 by using the generator polynomial
“0x1021”. Each entry has 16-bit values corresponds to the input byte value.

13

0x0000
0x8108
0x1231
0x9339
0x2462
Oxa56a
0x3653
0xb75b
0x48c4
0xcScc
O0x5af5s
Oxdbfd
Oxécaé
Oxedae
0x7ed87
Oxffof
0x9188
0x1080
0x83b9
0x02bl
Oxb5Sea
0x34e2
OxaT7db
0x26d3
0xd94c
0x5844
Oxcb7d
0x4a75
Oxfd2e
0x7c26
Oxeflf
Ox6el”

In Figure 2-5, the values in the table are generated for input data ranging from 0 to 255
and increasing first by column and then by row. For this byte-wise table, a 2048-bit
memory element is required. Computation of CRC is occurred in a manner that one byte

0x1021
0x98129
0x0210
0x8318
0x3443
0xb54b
0x2672
Oxa77a
0x58e5
OxdSed
Ox4ad4
Oxcbkdc
0x7c87
Oxfdst
O0xéebé
Oxefbe
Ox81a?%
O0x00al
0x9398
0x1290
Oxa5cb
0x24c3
Oxb7fa
Ox36f2
Oxc39é6d
0x4865
Oxdb5c
0x5a54
OxedOf
0x6c07
Oxff3e
O0xT7e36

0x2042
Oxal4da
0x3273
0xb37b
0x0420
0x8528
0x1611
0x9719
Ox6886
Oxel8e
0x7ab7
Oxfbbf
Ox4ce4d
Oxcdec
0x5ed5
Oxdfdd
Oxblca
0x30c2
Oxa3fb
0x22f3
0x95a8
0x14a0
0x8799
0x0691
0xf390e
0x7806
Oxeb3f
O0x6a37
Oxddéc
0x5c64
Oxcf5d
0Ox4e55

0x3063
Oxbléb
0x2252
Oxa35a
0x1401
0x9509
0x0630
0x8738
0x78a7
Oxfoaf
0x6agé6
OxebSe
0x5cc5
Oxddcd
Ox4ef4
Oxcffc
Oxaleb
0x20e3
Oxb3da
0x32d2
0x8589
0x0481
0x97b8
0x16b0
OxeS82f
0x6827
Oxfble
O0x7alé
Oxcd4d
0x4c45
O0xdf7c
0x5e74

0x4084
Oxcl8c
0x52b5
0xd3bd
Ox64e6
OxeSee
0x76d7
Oxf7df
0x0840
0x8948
O0xl1la71
0xS8b79
O0x2c22
Oxad2a
0x3el3
Oxbflb
0xdioc
0x5004
0xc33d
0x4235
Oxf56e
0x7466
Oxe75f
Ox6657
0x99c8
0x18cO
Ox8bf9
Ox0afl
Oxbdaa
Ox3caz2
OxafSb
0x2e93

0x50a5
Oxdlad
0x4294
0xc38c
0x74c7
Oxf5ct
Ox66f6
OxeTfe
0x1861
0x9969
0x0as0
0Ox8b58
0x3c03
0xbdOb
0x2e32
Oxaf3a
Oxcla2d
0x4025
0xd31lc
0x5214
Oxe54f
0x6447
0xf77e
Ox7676
0x8%e9
0x08el
0xSbdsg
Ox1ado
Oxad8b
0x2c83
Oxbfba
Ox3eb2

0x60cé
Oxelce
0x72£7
Oxf3ff
0x44a4
OxcSac
0x5695
0xd79d
0x2802
Oxal80a
0x3a33
0xbb3b
0x0c60
0x8des
O0xle51
0x9f59
Oxfl4de
0x7046
0xe37f
0x6277
0Oxd52c
0x5424
0xc71d
0x4615
0xb38a
0x388

Oxabbb
0x2ab3
0x9des8
OxiceO
0x8fdS
Ox0edl

Figure 2-5 Look-Up Table of CRC-16 (0x1021 Polynomial)

input data is processed in one computation cycle.

The memory requirement for CRC table is can be reduced by decreasing the
parallelization level. In other words, if the input length of table is shortened, the size of the

table is reduced.

14

0x70e7
Oxflef
0x62d6
Oxe3de
0x5485
Oxd58d
0x46b4
Oxc7bc
0x3823
0xb392b
0x2al2
Oxabla
Oxlc4l
0x9d49
0x0e70
Ox8f78
Oxelsf
0x6067
O0xf35e
0x7256
Oxc50d
0x4405
0xd73c
0x5634
OxaSab
Ox28a3
Oxbb%a
0x3a92
0x8dc9S
0x0ccl
0x9ffs
OxlefO

A nibble-wise approach reduces the memory requirement of table from 2048-bits to 256-
bits. However, decreasing the input data size reduces the throughput. In nibble-wise
approach, 4-bit data is processed in a computation cycle. So, the size of table can be
chosen due to the memory and area limitations of the platform which the CRC calculator
is implemented on it.

2.3 Performance Metrics

All of the proposed hardware implementation techniques have their own advantages and
disadvantages in terms of some specific performance metrics. These metrics are namely
resource utilization, throughput, polynomial length and reconfiguration time.

2.3.1 Resource Utilization

Resource utilization is usage of the hardware elements on a platform for implementing the
design. Resource types can vary due to implementation technique and the hardware
platform. The basic elements of a CRC calculator are registers, XOR gates and memory
blocks. In addition, the number of used unit logic blocks on an FPGA is also the resource
utilization parameter.

2.3.2 Throughput

The throughput of a CRC calculator is the maximum processed bits of input data in unit
time. In other words, the maximum length of the calculated data sequence in unit time is
the throughput of the CRC calculator. The throughput requirement of CRC calculator is
determined by the communication protocols in data communication systems. In [13], CRC
has been described as the biggest bottleneck in iSCSI protocol processing. So, the
throughput is an important performance metric for various communication protocols.

In a similar way, several data storage systems require different access speeds on their
interfaces. Therefore, the throughput requirement of the CRC calculator in a data storage
system is adjusted by the interface speed of that system.

2.3.3 Polynomial Length

Since the CRC computation is based-on polynomial division, the length of the polynomial
is an important parameter. The resource utilization of a calculator varies by the
polynomial length. Also, the throughput is affected by the polynomial length indirectly.
For example, the polynomial length determines the number of required registers in a serial
implementation. Accordingly, the throughput of the calculator changes by the length of
logic paths.

The polynomial length is determined by the CRC standards as mention before.

15

2.3.4 Reconfiguration Time

The dynamically reconfigurable CRC calculators have another parameter which is called
reconfiguration time. It is the time of reconfiguring the polynomial of the calculator for
different CRC standards.

As an example, a system which has multiple communication interfaces may use only one
instance of a dynamically reconfigurable CRC calculator. To communicate over an
interface, the system has to configure the calculator for that interface. Then, the system
may communicate over another interface that has another CRC standard. Herein, a run-
time reconfiguration of the calculator is required for communication over the new
interface. After a time period which is named as the reconfiguration time the calculator
can be used for new interface.

2.4 Previous Work on Dynamically Reconfigurable CRC Implementations

In this section, we present previous studies on dynamically reconfigurable CRC
implementations on hardware. The architectures of these designs and some important
properties of them are described.

In [4], a 32-bit parallel field programmable CRC implementation is proposed. The design
was implemented on ASIC technology using 130-nm UMC standard cell. They proposed a
cell-array based architecture which is run-time programmable. There are two main blocks
in the architecture which is shown in Figure 2-6. First block is the calculator of the design
and the second one is the configuration circuitry which is responsible for configuring the
calculator.

The configuration circuitry of this design has a microprocessor interface. The polynomial
of the CRC calculator can be changed over this interface by a microprocessor. The matrix
computation block of the configuration circuitry computes the cell-array values of the
calculator. The configuration takes place by writing the calculated values to the CRC array
cells. After the configuration, the calculator can be used for CRC computation with the
new polynomial.

16

[Port Size Configuration |
DO DI D31
Col0 Coll -----comommmoomooeo—- Col 31
— 2 P N
zc |1 _fvv\...’
= . W
0 -g __» MM
D2 . : c
I Ay L HI S
gl i it ! : 2
ol i | : o
e 'y | ' =
© o | ' 3]
3 P £
£ Vo MM O
Bl i Ul
e 0:[; VT
0pur ™ >
<pF -
|| = CRC Output
AA AL ALY - AL AA A Registers
LA A A _'_; ______ Al
|
CRC Configuration Enable
Variables | = :
Configuration
P | Circuitry
2L —D Matrix Computation
Interface 1>
—

Figure 2-6 The Architecture of Field Programmable CRC Design (adapted from [4])

The reconfigurable block of the architecture is the programmable CRC array cell which is
shown in Figure 2-7. This cell consists of two parts which are the data-path and the
control-path. The control-path has a configuration register that is used for selecting the
data-path function. The configuration register is configured by the Config Data when
the Config Enable input goes high. The data-path can be configured in two different
ways. The ITnput 1 or the result of the XOR operation between two inputs is derived to
the Output.

17

Config

Enable
> -
L
Config
Data)
Control-Path
—) e— | — 0 e—) -, — —
Input 0 Data-Path
) [~
/>— j Outputl
|
Input 1 /l

Figure 2-7 Programmable CRC Array Cell (adapted from [4])

The programmable CRC array cells in the architecture which proposed in [4] provide the
ability of reconfiguration. The main approach of this design is locating XOR gates for all
possible combinations of input paths and choosing the required ones for the selected
polynomial. The disadvantage of this design is that the critical path and the number of
multiplexers increase rapidly in proportion to the parallelization level.

Another hardware-based CRC architecture is presented in [5]. This programmable parallel
CRC circuit was implemented on ASIC with the 130-nm standard cell technology as so
the previous study in [4].

There is a similar approach in study [5]. First difference between these architectures is the
basic components of the logics. In [5], their preference is using the XOR and AND gates
with latches instead of XOR gates, multiplexers and registers. The basic logic diagram for
computing a CRC bit in this study is shown in Figure 2-8. This general diagram describes
the outline of their study where the ¢, is CRC bits, the d, is the data input and f, is the
latches used for polynomial select.

18

Cin-1
il D}D—
:

1,w-1

Cin-2
f;

iw-2

¢i

Co

do

g

fio

Figure 2-8 Programmable Parallel CRC Circuit for CRC bit c; (adapted from [5])

Programmable parts of the design are the latches which they controls the XOR inputs by
driving the AND gates. Similarly the approach in [4], the latch values can be
reprogrammed at run-time. So, the polynomial of CRC circuit is dynamically
reconfigurable.

Second improvement of this study is using a XNOR and a NAND gate instead of a latch
in the logic. The purpose of this update is decreasing the area utilization and the
configuration time. Due to utilization of XNOR and NAND gates in ASIC standard cells,
there is approximately %6 area saving in comparison to a latch [5]. In addition, there is no
need for calculating the latch values in reconfiguration process.

Lastly, a table-based approach is presented in [6]. Different than the previous run-time
reconfigurable studies, the table-based implementation technique is used on FPGA
platform which is named Xilinx Virtex-6 LX550T. There are two main blocks in the
architecture which are the Table Generation Module and the CRC Module. A general
block diagram of this design is shown in Figure 2-9.

19

start I
tab_crc ! Tabl
- able I
poly &4 . A ! finish tab
;o 1 Gieneration =
ref in
ref out) |
8T 641
Y
[
o 2
2 =)
= BRAM E
= ’5
o
1 64t
81 !
CRC
Generation
61 @ @ L finish_crc
input T ’ 6 cre_output
data_in_rcady '
initial_value 6 o @
final value 64

Figure 2-9 General Block Diagram of Table-based CRC (adapted from [6])

Table Generation Module is the module that generates the pre-computed CRC values for
given polynomial through the poly input. While it is generating the CRC values, it stores
these computed values to the tables which consist of the BRAMs or LUTs. After the
completion of table generation process, the CRC Generation Module can compute the
CRC values for given input data frames from the input port.

The design proposed in [6] can be extended in terms of polynomial length and the parallel
input data length. However, these extensions are only possible at the synthesizing phase
before the implementation. The architecture relatively requires a huge number of
resources in terms of BRAM and unit logic block. For example, 64-bit parallel CRC
generation requires 3398 Slice LUTs and 288Kb BRAM for BRAM-based
implementation and 5571 Slice LUTs for logic-based implementation. The throughput is
high with a cost of high resource utilization. Increasing the throughput is the main goal of
this study.

20

We observe that, there is generally a tradeoff between the resource utilization and the
throughput. So, one of the designs may have the maximum throughput, but at the same
time, the resource utilization of it may be the highest. The mentioned run-time
reconfigurable designs have some advantages with respect to each other. On the one hand,
some of them have higher parallelization level than the others. On the other hand, some of
them are more flexible than others in terms of input data width selection. However, their
common motivation is that achieving very high throughput by increasing the
parallelization level. The mentioned designs are compared in Table 2-5.

Table 2-5 Implementation Comparison

Programmable Table-based
Cell Array [4] Parallel [5] (logic) [6]
ASIC - 130-nm ASIC - 130-nm -
Platform standard cell standard cell FI?GA — Xilinx
Virtex 6 LX550T
technology technology
Core Area
Utilization 0.150 0.033 NA
(mm?)
Slice LUTS NA NA 5571
Utilization
Parallelization 39 39 64
Level
Clock
Frequency 154 481 443.9
(MH2)
Throughput
(Mbps) 4920 15380 28410
Throughput
(Mbps) / Slice NA NA 5.1
LUTs
Reconfiguration | 33 clock cycle 4 clock cycle 320 clock cycle
Time 214 ns 8 ns 720 ns

21

22

CHAPTER 3

DAROC: DYNAMICALLY RECONFIGURABLE AND AREA OPTIMIZED CRC
ARCHITECTURE AND FPGA IMPLEMENTATION

3.1 DAROC Architecture

DAROC is an area-optimized CRC architecture that is designed to perform calculations for
all 16-bit CRC standards. Its CRC standard is dynamically reconfigurable. In other words,
the CRC polynomial, the initial value and the final XOR value of the CRC calculator can
be reprogrammed at run-time through the configuration ports. A general block diagram of
DAROC is depicted in Figure 3-1.

config_clk i :
CRC
; ial i 16 Configurator
polynomial i - [\-l.;gdulc] » config_done o
(CCOM)
'l) [
=l 8ls 8k
G griises p ‘T_,‘; o400 o4
initialize_i ! o st !
5 = S
. 2 Q (]
clk_l—L—> ” 2
Y A 4 A
> Reconfiguration
Interface
I 2
data i = CRC
ciablE 4 1 L 16 »CIC O
chablic 1 : » Calculator -
reset i > Module
final_xor i l§ > (CCAM)
initial_value i4—2

Figure 3-1 General Block Diagram of DAROC

23

The main component of DAROC is the CRC Calculator Module (CCAM). CCAM is
responsible for calculating CRC values of input data which is driven to it. CCAM can be
configured by the CRC Configurator Module (CCOM) to change the parameters of
calculation such as polynomial and initial value of CRC. The inputs and outputs of the
DAROC’s top module are defined in Table 3-1. The internal signals are defined in the
following subsections.

Table 3-1 DAROC Inputs and Outputs

Port Width | Type Function
config clk i 1 input | Configuration clock
polynomial i . Polynomial input for reconfiguring the
- 16 input . . .
calculator with driven polynomial value
initialize i 1 : For reconfiguring the calculator with
1 input | the values at configuration ports,
0 : Otherwise
clk i 1 input | System clock signal
data 1 2 input | Data input of CRC calculation
enable i . 1: For data ready notification,
1 input .
0 : Otherwise
reset 1] 1: For reset request,
1 input .
0 : Otherwise
final xor i . CRC result is XOR operated with this
- = 16 input
value
initial value i | 16 input | Initial value of the CRC result
config done o 1: Configuration is completed,
1 output .
0 : Otherwise
crc_ o 16 | output | CRC calculation result

24

CRC computation process is started when the enable i input goes to high together with
the valid input data at data i input. CCAM computes the CRC whenever the
enable i inputis at high. The result of the computation can be read from the crc o
output at any moment. If a new computation is requested, the reset 1 input have to be
driven to high. So, the CRC computation process starts with the initial value of CRC.

Reconfiguration process is started when the initialize i input goes to high. At this
moment, the configuration parameters are read from the configuration input ports which
are the polynomial i,the final xor iandtheinitial value i.

CRC computation and the configuration processes are presented by a general flowchart
which is showed in Figure 3-2.

25

1.’1;t1ﬁaﬁl'_ze_1 YES
NO _
Read th t
cad the . .
Read the Configure the CCAM
data at A :
Write the initial data at fifedal with the polynomial at
value to the NO final x '."1*1 e polynomial i
CRC register or 1 input ian; 'S input
Store the Store the
value for value for
final XOR initial CRC
operation value
YES
cad the v v
data at —_—r
data_ i
input
Run calculator for
one cycle
v
Drive the new CRC
value tothe crc o
output
]

Figure 3-2 Flowchart of DAROC

3.1.1 CRC Calculator Module (CCAM)

In this section, CCAM architecture is defined in detail. CRC computation process is
presented step by step. Furthermore, the configuration interface is described.

By extending a basic serial LFSR-based one-polynomial CRC calculator, a generalized
architecture can be built so that the calculator can be used with various CRC polynomials.
The architecture proposed in the Serial Implementation section can be transformed into a
reconfigurable structure that does not bound to a specific CRC standard.

26

The reconfiguration ability is acquired by adding a multiplexer and a XOR gate between
all the consecutive registers which keep the CRC bit values. The first input of the
multiplexers is the preceding CRC bit value. Second one is the XOR operation result of
the preceding CRC bit value and the input of first CRC bit register. Due to this
modification, any polynomials can be implemented for the CRC computation by selecting
the bits to be XOR operated. In Figure 3-3, the modified architecture which is dynamically
reconfigurable is shown.

polynomial i

<]

>
16 crc o

1

Figure 3-3 Serial Reconfigurable CRC Circuit with Multiplexers

The combinational logic blocks consist of XOR gates and multiplexers. According to the
binary representation of the polynomial (polynomial i input in Figure 3-3),
multiplexers select the bits that are to be XOR operated. This makes the CRC circuit
configurable for any CRC polynomial which has 16-bits length.

To illustrate the polynomial selection, a CRC calculator for 4-bits polynomial is shown in
Figure 3-4. The polynomial G(x) that specified in equation in (9) is driven to the
polynomial i input of the circuit.

G)=x*+ x1+ 1 9

27

polynomial i

| X] X

Figure 3-4 Serial Reconfigurable CRC Circuit for 4-bits Polynomials

The serial implementation of CRC processes the incoming data by one bit per clock cycle.
To increment the throughput of CRC computation circuit, parallelization can be applied.
As mentioned before, the parallelization method of CRC implementation is unrolling the
serial circuit. This unrolling method is illustrated in Figure 3-5 by using a commonly used
polynomial “0x1021”.

28

Polynomial (hexadecimal) : 0x1021
Polynomial (binary) : 0001'0000'0010'0001

OO O0OPFRPOO0OO0OO0OO0DO0OFr OO0 OOor

STEP-1

next_1_crc_o[0]
next_1_crc_o[1]
next_1_crc_o[2]
next_1 _crc_o[3]
next_1_crc_o[4]
next_1_crc_o[5]
next_1_crc_o[6]
next_1_crc_o[7]
next_1 crc_o[8]
next_1_crc_o[9]
next_1_crc_o[10]
next_1 crc_o[11]
next_1 crc_o[12]
next_1 crc_o[13]
next_1_crc_o[14]
next_1_crc_o[15]

crc_o[15] XOR data_i[0]

crc_o[0]

crc_o[1]

crc_o[2]

crc_o[3]

crc_o[4] XOR crc_o[15] XOR data_i[0]
crc_o[5]

crc_o[6]

crc_o[7]

crc_o[8]

crc_o[9]

crc_o[10]

crc_o[11] XOR crc_o[15] XOR data_i[0]
crc_o[12]

crc_o[13]

crc_o[14]

STEP-2

next_2_crc_o[0]
next_2_crc_o[1]
next_2_crc_o[2]
next_2_crc_o[3]
next_2_crc_o[4]
next_2_crc_o[5]
next_2_crc_o[6]
next_2_crc_o[7]
next_2_crc_o[8]
next_2_crc_o[9]
next_2_crc_o[10]
next_2_crc_o[11]
next_2_crc_o[12]
next_2_crc_o[13]
next_2_crc_o[14]
next_2_crc_o[15]

next_2_crc_o[0]
next_2_crc_o[1]
next_2_crc_o[2]
next_2_crc_o[3]
next_2_crc_o[4]
next_2_crc_o[5]
next_2_crc_o[6]
next_2_crc_o[7]
next_2_crc_o[8]
next_2_crc_o[9]
next_2_crc_o[10]
next_2_crc_o[11]
next_2_crc_o[12]
next_2_crc_o[13]
next_2_crc_o[14]
next_2_crc_o[15]

l (' put the right-handside values of next_1_crc_o at step-1
STEP-3

next_1_crc_o[15] XOR data_i[1]
next_1_crc_o[0]
next_1_crc_o[1]
next_1_crc_o[2]
next_1 crc_o[3]

next_1_crc_o[4] XOR next_1_crc_o[15] XOR data_i[1]

next_1_crc_o[5]
next_1_crc_o[6]
next_1_crc_o[7]
next_1_crc_o[8]
next_1_crc_o[9]
next_1_crc_o[10]

next_1 crc_o[11] XOR next_1 crc_o[15] XOR data_i[1]

next_1_crc_o[12]
next_1 crc_o[13]
next_1_crc_o[14]

into equations at step-2)

crc_o[14] XOR data_i[1]

crc_o[15] XOR data_i[0]

crc_o[0]

crc_o[1]

crc_o[2]

crc_o[3] XOR crc_o[14] XOR data_i[1]
crc_o[4] XOR crc_o[15] XOR data_i[0]
crc_o[5]

crc_o[6]

crc_o[7]

crc_o[8]

crc_o[9]

crc_o[10] XOR crc_o[14] XOR data_i[1]
crc_o[11] XOR crc_o[15] XOR data_i[0]
crc_o[12]

crc_o[13]

Figure 3-5 Unrolling the Serial CRC Circuit to Achieve Parallelization

29

The parallelization method that is illustrated in Figure 3-5 can be applied for all
polynomials. The polynomial “0x1021” which has 16-bits length is used in this
illustration. At the first step, the next 1 crc o which is the CRC result for the first bit
of input data sequence is computed. Then, the computation of CRC for the second bit of
input data sequence is given at the second step. The next 2 crc o is the CRC result
for two bits of data. At the last step, the equation of 2-bits parallel computation is
represented by putting the right hand-side equivalent of the next 1 crc o to
equalization in step-2.

By this method, the dynamically reconfigurable CRC calculator which is shown in Figure
3-3 can be upgraded from serial to parallel. A 2-bits parallel and dynamically
reconfigurable CRC calculator which is achieved by applying the proposed unrolling
method is shown in Figure 3-6. The proposed multiplexer-based design is implemented on
Xilinx XC6SLX45T platform. Number of slice register utilization is 33 out of 54576. It
utilizes 63 out of 27288 slice LUTS.

polynomial i:>l $

data i [0](:»5 :
data_i [IJDJ—«E %
A

»—<jcre_o

D_14Y DI15Y

clk_i

@
Figure 3-6 Parallel (2-bits) Reconfigurable CRC Circuit with Multiplexers

The CRC calculator which is shown in Figure 3-6 can be used for all the polynomials
which have 16-bits length. There are two main parts in each stage of this circuit which are
the combinational logic part and a register part. We can say the programmable part is the
combinational part. If we make an abstraction on the programmable part, the
combinational part of the circuit can be assumed as a configurable block. So, the CRC
calculator consists of configurable blocks and registers.

30

The configurable blocks are assumed as LUT blocks considering the target platform of
this study is FPGA, because the combinational logic operations are implemented by using
programmable LUTs on FPGAs. The design transforms into a LUT-based entity. A high-
level view of this 2-bits parallel calculator is shown in Figure 3-7.

16,

cre_o

data i [0] — T T T
data_i[l] C—=—"_]—1 l —1 e —t l I

Configurable h-Conﬁgur:lble " Configurable D Configurable
LUT LUT LUT LUT
. D_00 D_01 D 14y D_I5Y
clk i

Figure 3-7 Parallel Reconfigurable CRC Circuit with Configurable LUTs

In Figure 3-7, the modified version of the previous 2-bits parallel and dynamically
reconfigurable CRC circuit is shown. Polynomial selection is made by configuring the
Configurable LUT blocks in proposed architecture. This generalized CRC calculator
architecture in Figure 3-7 can be implemented with LUT resources on an FPGA. If these
LUT blocks of the FPGA are dynamically reconfigurable, the architecture allows run-time
switching the CRC polynomial for different CRC standards. To that end, this thesis
proposes a generalized 2-bit parallel architecture for all CRC polynomials of a given
length. A structural view of this architecture which is named CCAM is depicted in Figure
3-8.

31

=N

«——conf enable i

«——conf clk i
«——conf data i

Reconfiguration Interface

initialize ik &
clk_i——» G >_: _',.“_.crc_g
1 £
data_i-2»/{] T iy - | =
1 | s = T .
Dynamically - {Dynamically i— ... HDynamically " t+—Dynamically B
> P s e >
Reconfig. Reconfig. Reconfig. Reconfig.
LUT D_00 Lur | Dol LUT |D14y LUT D13y
enablej—%—» L ‘ ‘ ‘
reset_i—»
ﬁnalixorii—lfl»

e L . 16
lmllalivalueix—l'«l»

final_xor_register
initial_value_register

Figure 3-8 Architecture of CRC Calculator Module (CCAM)

CCAM implements CRC calculation where data i and crc o are the input and output
of the CCAM, respectively. To change the polynomial of the CCAM, dynamically

reconfigurable LUTs’ contents can be replaced through the reconfiguration interface of
the CCAM.

Before a new CRC computation start, the initialization process have to be executed unless
it has not already be done for intended CRC standard. The initialization process starts by
driving the initial value of CRC to the initial value i inputand the value, which is
used in final XOR operation, to the final xor i input. These values are customized
by the CRC standards. Then, the initialize i inputis driven to high for registering
these values. The reconfiguration takes place in this initialization process. The
dynamically reconfigurable LUTSs are updated through the reconfiguration interface of the
CCAM. This interface has three inputs which are the config clk i, the
config enable i andthe config data i. The configuration data input ports of
all the reconfigurable LUTs are combined with the purpose of simplifying the
configuration interface and decreasing the resource utilization. So, the LUTSs are
configured in a serial way starting from the first LUT which calculates the least significant

bit value of CRC. The mentioned inputs and outputs of the CCAM are described in Table
3-2.

32

The computation takes place by driving the 2-bits data to the data i input when the
enable i inputis at high. The enable i input has to be held in high through one
clock cycle for each 2-bits of the data sequence which we want to calculate the CRC for.
The CRC computation of a given data sequence is completed by processing the last 2-bits
of it and driving the enable i input to low. The CRC of the given data sequence is
produced through the crc_ o output.

After a computation, a reset operation has to be executed for subsequent computations. If
we want to resume calculating the CRC, the reset operation is not executed. The
computation continues with the last value in CRC register in such a case. Otherwise, a
reset operation is a must for a new computation. The reset operation can be executed by
driving the reset i input of CCAM to high for one clock cycle. After the reset, the
initial value which was stored in last initialization process is written to the CRC register.
So, the CCAM can be utilized for a new computation.

33

Table 3-2 Inputs and Outputs of CCAM

Port Width | Type Function

conf clk i 1 input | Clock input for dynamic reconfiguration

Enable/disable control input for
reconfigurable LUTSs. Each bit
enables/disables the corresponding LUTs
starting from the LSB.

conf enable i 16 input

conf data i 1 input | Data input for dynamic reconfiguration

1 : For registering the initial and final XOR

initialize i 1 input | values,
0 : Otherwise
clk i 1 input | System clock signal
data i 2 input | Data input of CRC calculation
] 1 : For data ready notification,
enable i 1 Input .
- 0 : Otherwise
. 1 : For reset request,
reset i 1 input .
- 0 : Otherwise

final xor i 16 input CRC result is XOR operated with this

value
initial value i| 16 input | Initial value of the CRC register
crc o 16 | output | Calculated CRC value

3.1.2 CRC Configurator Module (CCOM)

The proposed CRC calculator CCAM can be configured through the reconfiguration
interface. Any microcontroller or microprocessor which has a compatible interface can
configure the CCAM. However, a hardware-based module which can configure the CCAM
was developed in this study.

34

This module which is named as CCOM-CRC COnfigurator Module determines the table
contents of CCAM for a given CRC standard and updates the tables with these values. The
table contents are determined due to the utilized dynamically reconfigurable block of the
target platform for a given CRC polynomial.

config clk i L,

Salaial i—lf)» CCOM State Machine

1

initialize_i—L \ |
AEEENCP-N=y"
clk i—»

« Counter

i3 @ '@ LUT
ROM ;g_. @ 3 Counter

116
Port_Enable
Register

e

Reconfiguration Interface

L —l—wonﬁg_donc_o

116

conf cnable o

conf clk o
conf data_o

r

<

r

<

4

Figure 3-9 CCOM-CRC Configurator Module

The general structure of the CCOM is shown in Figure 3-9. It has a simple state machine
which organizes the configuration process. There is a reconfiguration interface that
provides to communicate with the CCAM. There are also some counters which are utilized
for counting the sent bits of a table’s content and counting the updated tables. Lastly,
CCOM has a ROM which the LUT configuration values stored in it.

35

The configuration process is started by the rising edge of initialize i input. Then,
reconfigurable LUTSs’ contents are replaced with pre-calculated values for different CRC
polynomial computations over the conf data i input of CCAM. The configuration
data transmission takes place in synchronization with the conf clk o clock signal.
Each LUT is controlled by the corresponding conf enable o signal. At the end of the
configuration, config done o output of the CCOM goes to logic high. In Table 3-3,
the inputs and outputs of the CCOM are described.

Table 3-3 CCOM Inputs and Outputs

Port Width | Type Function
config clk i 1 input | Clock input for dynamic reconfiguration
: . . Polynomial input for reconfiguring the
polynomial 1 16 nput calculator with driven polynomial value
) 1 : For reconfiguration start request
initialize 1 1 Input .
- 0 : Otherwise
clk i 1 input | System clock signal
1 : Configuration is completed,
config done o 1 output .
- - 0 : Otherwise
conf clk o 1 output | Clock output for dynamic reconfiguration
Enable/disable control output for
reconfigurable LUTSs. Each bit
conf_enable o 16 output enables/disables the corresponding LUTS
starting from the LSB.
conf data o 1 output | Data output for dynamic reconfiguration

36

3.2 FPGA Implementation of DAROC Architecture

DAROC architecture can be implemented on any hardware platform which has
dynamically reconfigurable LUTs. Xilinx Spartan-6 series FPGAs are appropriate for
DAROC implementation. The first reason is that Xilinx Spartan-6 series FPGAs have a
dynamically reconfigurable component which is named CFGLUT5. CFGLUTS is a 5-
input Look-Up Table. The second reason for implementing DAROC on Xilinx Spartan-6
is that the Spartan-6 is relatively a cost effective selection when considered the target
systems.

The details of CFGLUT5 component and the DAROC implementation on FPGA by
utilizing this component are described in following subsections.

3.2.1 CFGLUT5

The logic / Boolean functions are generally implemented by function generators on
FPGAs. These function generators are implemented by look-up tables in Spartan-6 FPGAs
[11].

CFGLUTS is an element of Xilinx Spartan-6 FPGAs which is runtime, dynamically
reconfigurable, 5-input look-up table. During the circuit operation, the logical function of
this 5-input look-up table can be changed [12]. A general view of this element is shown in
Figure 3-10.

37

14—

CDI —»]

CE —=»

CLK —}

CFGLUTS

INIT = 00000000

S-Input Reconfigurable LUT

—» (6

L Ls O5

L L s CDO

Figure 3-10 Reconfigurable CFGLUTS5 Element

The inputs which are utilized in logical function are 10, I1, 12, I3 and I4. The outputs
of the logical function are driven through 06 and 05 ports of CFGLUTS5. The inputs and
the outputs of the CFGLUTS5 are described in Table 3-4.

38

Table 3-4 CFGLUTS5 Inputs and Outputs

Port Width | Type Function
06 1 output | Output of 5-input look-up table
05 1 output | Output of 4-input look-up table

10, 11, 12, I3,

14 1 input | Look-up table inputs

Cascaded reconfiguration data output
CDO 1 output | (For reconfiguring multiple
CFGLUT5s in a chain)

CDI 1 input | Serial reconfiguration data input

CLK 1 input | Clock signal for reconfiguration

Clock enable signal for CLK (Active

CE 1 input high)

There are two outputs of the logical function which is implemented on CFGLUTS5. 06 is
the output of the function that has 5 inputs. On the other hand, 05 can be used as an output
of 4-input function that is a subset of 5-input function. CFGLUTS5 has an attribute which is
named as INIT. The value loaded into INIT determines the logical function of the
CFGLUTS instance. The truth table of this reconfigurable element based on the current
INIT value is shown in Table 3-5.

Reconfiguration of CFGLUTS5 is executed by using three configuration ports of it, which
are CDI, CE and CLK. The method of reconfiguration is loading the values of intended
logical function into the INIT attribute. The reconfiguration process starts with shifting the
MSB (INIT [31]) of data into the LUT. The data is transmitted through the CDI input
synchronously with the reconfiguration clock signal CLK. Clock enable signal should be
held at high during the reconfiguration. The logical function of the CFGLUTS5 is updated
as new INIT value which is shifted into it. This process can be occurred any time during
circuit operation.

39

Table 3-5 CFGLUTS5 Truth Table

Inputs Outputs

14 13 |12 | 11 | 10 06 05

1 1 1 1

[

INIT [31] | INIT [15]

[3XY
[XY
[XY
[E=Y
o

INIT [30] | INIT [14]

N
o
o
o
[N

INIT [17] | INIT[1]

[
o
o
o
o

INIT [16] | INIT [0]

o
=
=
[E=Y
=

INIT [15] | INIT [15]

o
=
=
=
o

INIT [14] | INIT [14]

ol o oo | 1| INIT[| INIT[]

o
o
o
(@)
o

INIT[0] | INIT[0]

A CFGLUTS instance can be implemented by using the VHDL (Very High Speed
Integrated Circuits Hardware Description Language) or the Verilog HDL (Hardware
Description Language) instantiation template of it. In Figure 3-11, a CFGLUT5
instantiation in Verilog HDL is shown.

40

CFGLUT S

#1
INIT(] fF It specifies the initial LUT content
) CFGLUIS inst 2 S f Instance name
{
LCDO() /¥ Reconfiguration cascade output (not used)
O5() . Sf 4-input function LUT output (not used)
.06 (crec_w[2]), 4 B-inmput function LUT output
.CDI {conf data i}, // Reconfiguration data input
.CE (conf enable i[2]},// Reconfiguration enakble input
.CLE{conf clk i), Reconfiguration clock input
I0({crc r[1]), Logic data input (L3B)
Il{crc_xr[14]}, Logic data input
I2(crc_r[l3]), Logic data input
I3 (daca_i[C0]), Logic data input
.I4(daca i[1]) Logic data input (MSE)

Figure 3-11 CFGLUTS5 Instance in Verilog HDL

3.2.2 DAROC CFGLUT5-Based FPGA Implementation

Due to the run-time reconfiguration property of CFGLUTS5 element, Xilinx Spartan-6
series FPGAs are appropriate for the implementation of DAROC. The combinational logic
blocks of the DAROC can be implemented by utilizing this reconfigurable element.

To start with the simple CRC structure, a serial implementation of DAROC for 16-bits
CRC polynomials is shown in Figure 3-12. In this structure, the CRC of a data sequence is
computed in such a way that one bit is processed at one clock cycle. So, the data is driven
serially through the data_i input during the CRC computation.

To reconfigure the DAROC for a new polynomial that has 16-bits length, the initialization
operations are executed. The initialization starts by driving the new values to the input
ports which are the polynomial i,the final xor iandthe initial value i.
Then, the initialize i inputis driven to high. CCOM starts to update the contents of
CCAM’s CFGLUTS blocks through the reconfiguration interface. After the completion of
reconfiguration, the config done o output goes to high for “configuration is done”
notification.

41

confi g_Clkﬁi——l—» (\l;‘fdﬁl(;r;g%l(;a\tgr L L L confi g done o
16 A

polynomial i+

Reconfiguration
Interface

initialize i

A4

Reconfiguration
16 Interface

final xor i

initial value i{-%] T 1 16|
- - cre o
| — 1 i :
—» CFGLUT5 CFGLUTS | [TP CFGLUTS [TP
D 00 [D 01 M D_15
lk - 4 AA AL v
& 14—
data_i{} d
enable_i-_l_. CRC Calculator Module
reset_i{- (CCAM)

Figure 3-12 Serial Implementation of DAROC on Xilinx Spartan-6

CCAM implementation, which is shown in Figure 3-12, is the minimal CRC calculator for
16-bits polynomial CRC standards in terms of resource utilization. The proposed design is
implemented on Xilinx Spartan-6 XC6SLX45T platform. Number of slice register
utilization is 32 out of 54576. It utilizes 37 out of 27288 slice LUTs.

The parallelization method of DAROC which is proposed before is implemented to
increase the CRC computation throughput as much as possible. It is straightforward to
increase the parallelization level. However, the motivation of this study is to design a
dynamically reconfigurable CRC calculator for small scale systems. Therefore, the
minimal resource utilization is one of the most important goals of this study. Considering
the tradeoff between the throughput and the resource utilization, the optimum
parallelization level can be determined by the requirements of target systems.

It can be noticed that the maximum input utilization of CFLUTS5 is three in serial DAROC
implementation which is shown in Figure 3-12. These inputs are the data_ 1 signal, the
output of the former CRC register and the output of the last CRC register (CRC [15] in the
16-bits design). Considering the input number of CFGLUTS5 element, 2 out of 5 input
ports are not used. In such a case, the maximum operation capacity of the element is not
used in implemented logical function. Consequently, a more efficient design can be
investigated in terms of resource utilization.

42

The previously proposed unrolling method is used to parallelize the CRC computation. By
the simplicity of this unrolling method, it can be realized that each step, which increases
the parallelization level by one bit, adds extra two inputs. These inputs are added to all
LUT blocks which are corresponded to CRC bits. The reason for adding these extra inputs
is handling all possible CRC polynomials for computation.

The CFGLUTS5 elements have two unused input ports in the previous implementation. If
the design is updated from serial form to 2 bit parallel form, the 5-input reconfigurable
look-up tables would be utilized in an efficient way. Because, all the input ports of
CFGLUTS5s would be used in the logical functions. In other words, there is no missing
input port of a CFGLUTS5 and there is no redundant field in the look-up table.

The number of required CFGLUTS5 per 1-bit of CCAM changes by parallelization level in
the way that is given in Figure 3-13.

N
Cd

N

Number of Required
CFGLUTS per 1-bit of CCAM
&~ =)

N
7

1 2 3 4 5 6 7 8 9 10 11 12 13

Parallelization Level

Figure 3-13 CFGLUTS5 Utilization with increasing Parallelization Level

43

A structural view of 2-bits parallel DAROC implementation on Xilinx Spartan-6
XC6SLX45T is shown in Figure 3-14. The proposed architecture is implemented by
utilizing CFGLUTS5 elements in place of the Dynamically Reconfigurable LUTs which are
shown in Figure 3-8.

CRC Configurator Module
(CCOM)

—t»config_done o

i_.

config_clk i

N

polynomial i+

Reconfiguration
Interface

initialize,_i v‘—I
A

final_xor_i-4—+
initial _value i~

cre_o
1

data_i42o Lot : 4 A ;
b

1 d i d
clk_i+ [crGLUTS E: CFGLUTS CFGLUTS CFGLUTS | PD
D_00 D01 D14y DI5Y

[2

A A A A A

enablcii——-]‘*
reset i 1L

CRC Calculator Module
(CCAM)

Figure 3-14 2-Bits Parallel Implementation of DAROC on Xilinx Spartan-6

The resource utilization of this 2-bit parallel implementation is as low as the serial
implementation of DAROC although the throughput is doubled. It is achieved by utilizing
the unit logical function generators of the Spartan-6 in an efficient way. There are no more
elements than the serial implementation. Also, the throughput is doubled properly due to
the fact that the critical path is not changed.

44

DAROC:1

CCAM
| A |
conf_enable i(15.0) cre_o6{15:0) cre_o(15:0)
data_i(1:0) data_i(1:0)
final_xor_i(15.0) final_xor i{15.0)
initial_value_i(15:0} initial_value_i{15:0)
clk_i clk_i
conf_clk_i
conf_data_i
enable_i enable_i
initialize_i inftialize_i
reset i | reset_i
| Y |
CCAM_Module
CCOM
| 4 b
polynomial _i(15.0} polynomial (150} conf_enable_o(15:0)
clk_i config_done_o config_done_o
config_clk_i__| config_clk_i | conf clk o
initialize_i conf_data_o
A 4
CCOM_Module
DAROC

Figure 3-15 DAROC Top Level RTL Schematic

DAROC was designed and implemented in Verilog HDL. Xilinx ISE 14.4 design

environment was used for all parts of the design flow including “the synthesis”, “the

mapping” and “the place and route”. DAROC top level RTL schematic which is generated

in Xilinx ISE 14.4 platform is shown in Figure 3-15.

45

46

CHAPTER 4

PERFORMANCE EVALUATION

The proposed architecture is tested and verified in simulations. During the simulations, the
functional analysis of DAROC is performed. Also, timing simulations are executed for
performance measurement. After the simulations, the HardWare - In - the - Loop (HWIL)
tests are performed for precise evaluations. In this chapter, performance evaluations of
DAROC are presented.

4.1 Simulations

Simulations were executed for functional tests of the proposed architecture. Xilinx ISE
Design Suite 14.4 has a Hardware Description Language simulator for behavioral and
timing simulations [16].

Before the simulations, the test benches have been designed for testing the DAROC with
full coverage. These test benches have been written in Verilog HDL. Then the behavioral
and timing simulations were performed. In Figure 4-1, a simple simulation for CRC
calculation is shown.

47

» W data_i[1:0]
1 enable_i o
. -
1 initialize_i o
p W final_xor_i[15:0]
» W initial_value_i[15:0]
» B polynomial_i[15:0]
1 config_clk_i

1]—p- config_done_o

» W test_data[71:0]

[ErE

Figure 4-1 Simulation for CRC Computation of DAROC

In this simulation, the basic flow of CRC computation is shown. First of all, a reset
operation has to be executed to start a new computation by driving the reset 1 input. It
is simulated by driving the reset i input from low to high at the time of 100 ns in
simulation shown in Figure 4-1. Then, reset is completed by driving the input from high to
low. The computation of CRC can be started anymore.

CRC computation is started by driving the enable i input from low to high. Starting
point of the computation is approximately at 120ns of the simulation which is shown in
Figure 4-1. During a period of time, a data sequence is driven from the data i input. At
the end, the enable i input goes to low which means the computation is halted. If the
data sequence is completed at this point, the CRC result can be read from the crc o
output. In this simulation, the calculated CRC is “0x98FC” at the halt point.

48

4.2 Test Setup

The test setup of DAROC implementation consists of a computer which the Xilinx ISE
Design Suite 14.4 Evaluation Platform is installed on it, interface cables for FPGA
configuration and serial communication between the FPGA and the computer, a Spartan-6
evaluation board and a two channel oscilloscope. This setup is shown in Figure 4-2.

Figure 4-2 Test Setup

Xilinx Spartan-6 FPGA SP605 Evaluation Kit is used for hardware implementation tests.
There is a Xilinx Spartan-6 XC6SLX45T FPGA on the board. Four FPGA configuration
options are available. During the tests, 8 MB Quad SPI flash memory is used for FPGA
configuration. 27 MHz on board user clock is used as the system clock signal of DAROC.

49

The Silicon Labs CP2103GM USB to UART Bridge component is available for serial
communication on SP605 board [15]. By using a terminal program on PC, the test
messages are transmitted to and received from FPGA over this UART interface. There are
three types of test message. First one is used for configuration of CRC standard. The
second is the message that resets the CRC computation. Lastly, there is a data sequence
message to make the CCAM calculate the CRC of it. In Table 4-1, the details of these
message commands are shown.

Table 4-1 Command List of Test Setup

Command Length Function Message
Name (byte) Reply

Used for reconfiguration of CRC | “ACK”
calculator at runtime.

Message Format:

CONFIGURE | 0x01 | 7 Command ID (1 - byte),
Polynomial (2 - byte),
Initial Value (2 - byte),
Final XOR Value (2 — byte).

Used for resetting the CRC | “ACK”
calculator for new calculations.
After reset, the stored initial value
RESET 0x02 1 is written to CRC register.

Message Format:

Command ID (1 — byte).

CRC computation of given data | The calculated
byte is occurred by this command. | 2 byte CRC
The computation continues with | value is
the last value in CRC registers for | returned.

COMPUTE 0x03 2 new COMPUTE commands.

Message Format:

Command ID (1 — byte),

Data byte (1 — byte).

50

For the purpose of performing the DAROC tests an environment designed on FPGA that
covers the DAROC. The design has an instance of DAROC and a UART that is used for
command transmission. Also, a central state machine is designed for fetching and
executing the commands. The block diagram of the test design which is implemented on
FPGA is shown in Figure 4-3.

v

X 1
1 UART

X 0«

s T T

Test State
Machine

CCOM !

DUT : DAROC

CCAM

Figure 4-3 Block Diagram of DAROC Test System

o1

4.3 Evaluation Results

DAROC implementation is simulated in ISIM platform. The simulation results are
verified by the HWIL tests executed on Xilinx Spartan-6 FPGA SP605 Evaluation Kit.
The results are presented in Table 4-2.

Table 4-2 DAROC Implementation Results

DAROC
Implementation
Spartan-6
Platform XCBSLX45T
S|I-C(.3 LL_JTs 37
Utilization
Parallelization
2
Level
Clock
Frequency 353
(MHz)
Throughput
(Mbps) 705
Throughput
(Mbps) / Slice 19.1
LUTs
Reconfiguration | 512 clock cycle
Time 1450 ns

52

Resource utilization details of DAROC on Xilinx Spartan-6 XC6SLX45T are shown in
Table 4-3.

Table 4-3 DAROC Device Utilization Summary on Xilinx XC6SLX45T

Slice Logic Utilization Used | Available Utilization
Number of Slice Registers 70 54,576 1%
Number used as Flip Flops 70
Number used as Latches 0
Number used as Latch-thrus 0
Number used as AND/OR logics 0
Number of Slice LUTs 87 27,288 1%
Number used as logic 67 27,288 1%
Number using O6 output only 47
Number using O5 output only 0
Number using O5 and O6 20
Number used as ROM 0
Number used as Memory 16 6,408 1%
Number used as Dual Port RAM 0
Number used as Single Port RAM 0
Number used as Shift Register 16
Number using O6 output only 16
Number using O5 output only 0
Number using O5 and O6 0
Number used exclusively as route-thrus | 4
Number with same-slice register load | 4
Number with same-slice carry load 0

53

Table 4-3 (continued)

Slice Logic Utilization Used | Available | Utilization
Number with other load 0
Number of occupied Slices 46 6,822 1%
Number of MUXCY's used 0 13,644 0%
Number of LUT Flip Flop pairs used 96
Number with an unused Flip Flop 42 96 43%
Number with an unused LUT 9 96 9%
Number of fully used LUT-FF pairs 45 96 46%
Number of unique control sets 22
Number of slice register sites lost to | 122 | 54,576 1%
control set restrictions
Number of bonded 10Bs 72 296 24%
IOB Flip Flops 16
Number of RAMB16BWERs 0 116 0%
Number of RAMB8BWERS 0 232 0%
Number of BUFIO2/BUFIO2_2CLKs 0 32 0%
Number of BUFIO2FB/BUFIO2FB_2CLKs | 0 32 0%
Number of BUFG/BUFGMUXs 2 16 12%
Number used as BUFGs 2
Number used as BUFGMUX 0
Number of DCM/DCM_CLKGENSs 0 8 0%
Number of ILOGIC2/ISERDES2s 16 376 4%
Number used as ILOGIC2s 16
Number used as ISERDES2s 0
Number of IODELAY?2/ IODRP2/ | 0 376 0%
IODRP2_MCBs
Number of OLOGIC2/OSERDES?2s 0 376 0%
Number of BSCANs 0 4 0%
Number of BUFHSs 0 256 0%

54

Table 4-3 (continued)

Slice Logic Utilization Used | Available Utilization
Number of BUFPLLs 0 8 0%
Number of BUFPLL_MCBs 0 4 0%
Number of DSP48A1s 0 58 0%
Number of GTPA1_DUALs 0 2 0%
Number of ICAPs 0 1 0%
Number of MCBs 0 2 0%
Number of PCIE_Als 0 1 0%
Number of PCILOGICSEs 0 2 0%
Number of PLL_ADVs 0 4 0%
Number of PMVs 0 1 0%
Number of STARTUPs 0 1 0%
Number of SUSPEND_SYNCs 0 1 0%
Average Fan-out of Non-Clock Nets 2.78
Module level utilization is presented in Table 4-4.
Table 4-4 Module Level Resource Utilization
Module Slices Slice Reg LUTSs LUTRAM
Name
CCAM 29 32 37 16
CCOM 17 38 50 0

55

4.4 Discussion

While the parallelization level is 2, resource utilization is as low as in serial
implementation. This area optimization is succeeded by considering the input size of
configurable logic unit in Spartan-6’s. The aim is achieving the maximum throughput by
minimum resource utilization. So, while the minimum resource requirement is obvious
according to the serial implementation, an optimized design is achieved by increasing the
throughput using this resource limitation.

The propagation delay through a LUT does not change due to the implemented function in
it [11]. Therefore, there is not an increment in critical path delay while the parallelization
level goes from 1 to 2.

In addition, DAROC is more advantageous than the other table-based design proposed in
[6] in terms of reconfiguration port size. DAROC has serial reconfiguration ports for CRC
LUTs. On the contrary, the proposed table-based design requires wider reconfiguration
ports for memory interfaces. Therefore, the resource utilization is reduced also by
serializing the reconfiguration interface.

DAROC has a considerably high Throughput/Slice LUTs value in comparison to the
proposed table-based design.

Although the throughput is lower than the mentioned run-time reconfigurable studies, the
performance of DAROC is remarkably sufficient for targeted systems. In Table 4-5, some
communication protocols which have CRC polynomials in 16-bits length are listed. Also,
the line rates of these interfaces are presented.

56

Table 4-5 Communication Protocols That Uses 16-bits CRC

Communication Protocol Line Rate
DECT 32 kbps
ANSI X3.28 14.4 kbps
MODBUS 19.2 kbps
USB 1.0 12 Mbps
USB 2.0 480 Mbps

16-bits CRC has a wide range of utilization in communication systems in addition to the
listed protocols. It is used in various serial communication applications which have RS-
232, RS-422 or RS-485 interfaces. DAROC can be implemented in these applications that
require 16-bits CRC for reducing the resource utilization.

57

58

CHAPTER 5

CONCLUSIONS

In this thesis we presented an area minimized and dynamically reconfigurable hardware
CRC calculator for 16-bits CRC standards.

We add multiplexers to the standard serial implementation of calculator to achieve the
capability of switching between the CRC standards. Then, the combinational parts of the
calculator which consist of multiplexers and XOR gates are implemented by
reconfigurable logic blocks for dynamically changing the CRC polynomial during run
time. We parallelize the serial architecture to 2 bits to fully utilize the available
reconfigurable LUT resources. So, the throughput is doubled while the resource utilization
remains the same. In addition, the resource utilization is reduced by using a serial
reconfiguration interface with respect to the other table-based architectures.

The proposed architecture is implemented on Xilinx Spartan-6 XC6SLX45T platform.
The design is simulated by using ISIM - Xilinx ISE Design Suite 14.4 Simulator. We
execute the HWIL tests on Xilinx SP605 Evaluation Kit. The results show that it works
properly. We achieved 705 Mbps throughput with 32 out of 54576 slice register and 37
out of 27288 slice LUTs utilization on Xilinx Spartan-6 XC6SLX45T for 16-bits CRC.

In this thesis, a 2-bits parallel CRC calculator is implemented for 16-bits CRC
polynomials. In the future, the proposed architecture might be extended for wider CRC
polynomials. A flexible structure might be designed in terms of polynomial length. In
addition, the reconfiguration interface of the calculator might be reduced by cascading the
LUTSs.

One of the most important metrics for a dynamically reconfigurable CRC calculator is the
reconfiguration time in the systems that have multiple communication interfaces.
Therefore, decreasing the reconfiguration time of a CRC calculator is suggested as a
further study.

59

60

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

Walma, M., "Pipelined Cyclic Redundancy Check (CRC) Calculation," Computer
Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th
International Conference on , pp.365,370, 13-16 Aug. 2007

Akagic, A.; Amano, H., "Performance evaluation of multiple lookup tables
algorithms for generating CRC on an FPGA," Access Spaces (ISAS), 2011 1st
International Symposium on , pp.164,169, 17-19 June 2011

Shukla, S.; Bergmann, N.W., "Single bit error correction implementation in CRC-
16 on FPGA," Field-Programmable Technology, 2004. Proceedings. 2004 IEEE
International Conference on , pp.319,322, 6-8 Dec. 2004

Toal, C.; McLaughlin, K.; Sezer, S.; Xin Yang, "Design and Implementation of a
Field Programmable CRC Circuit Architecture,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on , vol.17, no.8, pp.1142,1147, Aug. 2009

Grymel, M.; Furber, S.B., "A Novel Programmable Parallel CRC Circuit," Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.19, no.10,
pp.1898,1902, Oct. 2011

Akagic, A.; Amano, H., "Performance analysis of fully-adaptable CRC accelerators
on an FPGA," Field Programmable Logic and Applications (FPL), 2012 22nd
International Conference on , pp.575,578, 29-31 Aug. 2012

Ramabadran, T.V.; Gaitonde, S.S., "A tutorial on CRC computations," Micro, IEEE
, vol.8, no.4, pp.62,75, Aug. 1988

Campobello, G.; Patane, G.; Russo, M., "Parallel CRC realization," Computers,
IEEE Transactions on , vol.52, no.10, pp.1312,1319, Oct. 2003

Albertengo, G.; Sisto, R., "Parallel CRC generation,” Micro, IEEE , vol.10, no.5,
pp.63,71, Oct. 1990

Yan Sun; Min Sik Kim, "A Table-Based Algorithm for Pipelined CRC
Calculation,"” Communications (ICC), 2010 IEEE International Conference on ,
pp.1,5, 23-27 May 2010
http://www.Xxilinx.com/support/documentation/user_guides/ug384.pdf (last visited
on 18.08.2013)
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.p
df (last visited on 18.08.2013)

Joglekar, A.; Kounavis, M.E.; Berry. F.L., “A Scalable and High Performance
Software iSCSI Implementation,” File and Storage Technologies (FAST’05) ,
Proceedings of 4th USENIX Conference on , Vol.4. USENIX Dec, 2005

61

[14] Peterson, W.W.; Brown, D.T., "Cyclic Codes for Error Detection,” Proceedings of
the IRE , vol.49, no.1, pp.228,235, Jan. 1961

[15] http://mvww.xilinx.com/support/documentation/boards_and_kits/ug526.pdf (last
visited on 19.08.2013)

[16] http://mvww . xilinx.com/support/documentation/sw_manuals/xilinx14_1/plugin_ism.
pdf (last visited on 19.08.2013)

62

