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ABSTRACT 

 

 

DETECTION OF OBSESSIVE COMPULSIVE DISORDER USING RESTING-STATE 

FUNCTIONAL CONNECTIVITY DATA 

 

 

Khaneh Shenas, Sona 

M.Sc., Department of Biomedical Engineering 

Supervisor: Prof. Dr. Uğur Halıcı 

Co-Supervisor: Prof. Dr. Metehan Çiçek 

 

 

September 2013, 79 Pages 

 

 

Obsessive Compulsive Disorder (OCD) is a serious psychiatric disease that might be affiliated 

with abnormal resting-state functional connectivity (rs-FC) in default mode network (DMN) of 

brain.  The aim of this study is to discriminate patients with OCD from healthy individuals by 

employing pattern recognition methods on rs-FC data obtained through regions of interest 

(ROIs) such as Posterior Cingulate Cortex (PCC), Left Inferior Posterior Lobe (LIPL) and Right 

Inferior Posterior Lobe (RIPL). For this purpose, two different approaches were implemented as 

feature extraction step of pattern recognition. In the first approach the rs-FC fMRI data were 

subsampled and then the dimensionality of the subsampled data was reduced using the Principal 

Component Analysis (PCA), Kernel Principal Component Analysis (KPCA) and Linear 

Discriminant Analysis (LDA) alternatives. In the second approach, feature vectors having 

already low dimensions were obtained by measuring cosine similarity, dot product similarity 

and correlation similarity to the separate means of the rs-FC data of subjects in OCD and 

healthy groups. Afterwards the healthy and OCD groups were classified using Support Vector 

Machine (SVM) and Gaussian Mixture Models (GMMs). In order to obtain more reliable 

performance results, Double LOO-CV method that we proposed as a version of Leave-One-Out 

Cross Validation (LOO-CV) was used and the best performance (73%) was obtained by using 

cosine similarity for feature extraction and GMMs for classification.  

 

Keywords: Functional MRI, Resting-state functional connectivity, Principal Component 

Analysis (PCA), Kernel Principal Component Analysis (KPCA), Linear Discriminant Analysis 

(LDA), Support Vector Machine (SVM), Gaussian mixture Model (GMM), double leave-one-

out cross-validation (D-LOO-CV) 
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ÖZ 

 

 

OBSESĠF KOMPULSĠF BOZUKLUĞUN DĠNLENME-DURUMU FONKSĠYONEL 

BAĞLANTI VERĠLERĠ KULLANILARAK SAPTANMASI 

 

 

Khaneh Shenas, Sona 

Yüksek Lisans, Biyomedikal Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

Ortak Tez Yöneticisi: Prof. Dr. Metehan Çiçek 

 

 

Eylül 2013, 79 Sayfa 

 

 

Obsesif Kompulsif Bozukluk (OKB), beyindeki Olagan Mod Ağındaki  (DMN, Default Mode 

Network) anormal dinlenme-durumu Fonksiyonel Bağlantıları (rs-FC) ile ilişkilendirilen ciddi 

bir piskiyatrik hastalıktır. Bu çalışmada, OKB olan hastaları sağlıklı kişilerden ayırtedebilmek 

üzere fMRI uzerinde Posterior Singulat Cortex (PCC Posterior Cingulate Cortex), Sol Inferior 

Posterior Lob (LIPL, Left Inferior Posterior Lobe) ve Sağ Inferior Posterior Lob (RIPL, Right 

Inferior Posterior Lobe) olarak adlandırılan ilgi bölgelerinden  elde edilen rs-FC verisi üzerinde 

örüntü tanıma yöntemlerinin kullanılması amaçlanmıştır.  Bu amaçla örüntü tanımanın öznitelik 

çıkarma adımında iki değişik yaklaşım ele alınmıştır.  Ġlk yaklaşımda rs-FC fMRI verisi üzerine 

altörnekleme yapıldıktan sonra Temel Bileşenler Analizi (PCA, Principal Component Analysis), 

Kernel Temel Bileşenler Analizi (KPCA) ya da Lineer Ayıraç Analizi  (LDA, Linear 

Discriminant Analysis) yapılarak veri boyutu düşürülmüştür. Ġkinci yaklaşımda ise, yeni gelen 

örnek ile  hasta ve sağlıklı gruptaki kişilerin rs-FC verilerinin ayrı ayrı ortalamaları üzerinde 

üzerinde kosinüs benzerliği, iç çarpım benzerliği ya da  korelasyon benzerliği ölçütleri 

kullanılarak doğrudan düşük boyutlu öznitelik vektörleri elde edilmiştir.  Daha sonra Destek 

Vektör Makinası (Support Vector Machine) ya da Gausyan Karışım Modelleri (GMMs, 

Gaussian Mixture Models) kullanılarak sağlıklı ve OKB gruplar sınıflandırılmıştır.  Başarı 

ölçümünde, daha güvenilir sonuçlar elde etmek üzere, bir örnek dışarıda bırakan çapraz 

geçerleme (LOO-CV, Leave One Out Cross Validation) yönteminin bir versiyonu olarak 

önerdiğimiz çiftli LOO-CV kullanılmış ve  en iyi başarı (%73), öznitelik çıkarma için  kosinüs 

benzerliği ve sınıflama için  GMMs kullanılarak elde edilmiştir. 

 

Anahtar Kelimeler: Fonksiyonel MRI, Dinlenme-durumu fonksiyonel bağlantısı, Principal 

Component Analizi (PCA),Kernel Principal Component Analizi (KPCA), Linear Diskriminant 

Analizi (LDA), Support Vector Makinesi (SVM), Gaussian Mixture Modeli (GMM) 
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CHAPTER1 

 

 

INTRODUCTION 

 

 

 

1.1 Motivation of the Study 

 

In medical science, it was always a question of whether patients can be diagnosed by means of 

biomedical engineering methods. Over the years, neuroscientists attempted to find methods to 

distinguish between patients with mental problems (Alzheimer, Schizophrenia, attention deficit 

disorder, obsessive compulsive disorder) and healthy people. The functional magnetic 

resonance imaging (FMRI) of the brain has received much attention in recent years and widely 

used in experiments to investigate the regions of the brain that have functional abnormalities of 

neural activity [1]. Studies have shown that the connectivity analysis between regions of the 

brain in which there are functional abnormalities may provide functional and structural 

relationship between remote regions of the brain. Up to now, neuroscientists have introduced 

three models for brain connectivity analysis: 

 

1) Structural (anatomical) connectivity: refers to axonal connections of neurons through 

synapses. 

2) Functional connectivity: refers to correlations between active regions of the brain and 

evaluate the effect of the certain brain regions on each other and other brain voxels. 

3) Effective connectivity: considers the connectivity between brain regions in detail by 

providing causal models of influence that brain regions apply on each other. 

On the other hand, brain researchers have concluded that connectivity analysis on the resting –

state of the brain is much successful than task-related state since the brain is in its optimal state 

while resting [2]. So, the resting-state connectivity analysis of the brain can be introduced as 

suitable pattern to diagnose patient brain. Some machine learning techniques have been used to 

classify diseases and health states using connectivity patterns obtained.  

In this study we focused on discriminating between a special case of mental disorder called 

Obsessive Compulsive Disorder (OCD) and healthy cases using their resting-state functional 

connectivity (rsFC) data. OCD is a psychiatric disorder which is characterized by obsessions 

and triggered by compulsions and like the other mental disorders suggested to affect the 

functional correlations between different regions of the brain [3]. The differentiation between 

OCD and other mental disorders is difficult using MRI or other conventional imaging methods 

since they can only distinguish the structural disorders of the brain and cannot detect the 

functional abnormalities in early stages of the disease [4]. Therefore the functional MRI 

technique is used to analysis the functional associations or dissociations between brain regions 

in OCD. 



2 
 

The pattern recognition approach was considered to extract features from rsFC data using 

feature extraction methods such as dimensionality reduction (PCA, KPCA and LDA) and 

similarity measures (correlation, dot product and cosine similarity). Afterwards the known 

classifiers SVM and GMM are implemented to differentiate two categories. The SVM method 

defines a separating boundary called hyper surface to classify two groups. Whereas the GMM 

method, recently used in brain studies, models the data as Gaussian mixtures using methods 

such as EM to find the mixture parameters and then classifies the groups according to their 

probability density distributions.   

 

 

1.2 Contribution of the Study 

 

The functional MRI data of the 12 healthy and 12 OCD individuals while the brain was in 

resting-state is used in this study and a set of alternative pattern recognition methods for 

preprocessing, feature extraction and classification steps were considered in order to 

discriminate healthy and OCD data. The Block Scheme for the proposed approach is shown in 

Figure 1.1 representing preprocessing, feature extraction and classification phases and their 

alternatives. Firstly the preprocessing steps were applied to the data to remove the noise and 

correct the faults happen during the data acquisition and match the coordinate of all brain maps. 

In the next step ROIs where functional abnormalities have been established in OCD brains are 

determined. After finding ROIs, the functional connectivity between these regions or between 

ROIs and all voxels of the brain is computed using functional connectivity toolbox (CONN). 

The FC data derived from resting-state activity of the brain is used to identify healthy from 

OCD groups. The pattern recognition approach is applied to discriminate between OCD and 

healthy individuals. The pattern recognition steps are as follows. For the first step two different 

approaches as feature extraction step of pattern recognition were proposed, in the first approach 

the dimensionality of the data was reduced using the dimensionality reduction methods as PCA, 

KPCA and LDA. In the second approach new features were extracted for classification using 

similarity measures as cosine, correlation and dot product similarity measures already having 

low dimensions. The second step of the pattern recognition relates to applying classification 

methods as SVM and GMM to the data. Before classification, the training and test sets were 

provided using special case of leave-one-out cross-validation (LOO-CV) called double LOO-

CV (D-LOO-CV) approach. The SVM classifier was then learnt with training set and an ideal 

linear or nonlinear separating hyper surface was defined. Performance of the classifier was 

tested using test data and finally the accuracy rate of classification was calculated. The GMM  

first models the training data with mixture of Gaussians and guess initial parameters for mixture 

model then using iterative algorithm called Expectation-Maximization (EM) optimize the 

parameters the model was tested using the test data with optimized parameters and again the 

performance accuracy of the model was evaluated.  

 

Previous studies have analyzed OCD using rs-FC obtained from fMRI data but no pattern 

recognition methods have been used to classify OCD and healthy individuals. The novelty of 

this study is doing classification by using rs-FC data as features for pattern recognition methods. 

Also similarity measure method is a novel approach that extracted new feature vectors from rs-
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FC data which were useful to separate the healthy and OCD individuals from each other. 

Therefore, using the rs-FC data might help to develop the diagnostic analysis of OCD and other 

mental disease in future. Another uniqueness of this research was applying GMM as a 

classification method to rs-FC data of OCD which has not been tried on fMRI data of any 

mental disorder in order to detect it.  

 

 

 

Figure 1.1: Alternative pattern recognition steps considered in this study 
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1.3 Thesis Outline 

 

The second chapter of this study gives brief background information about functional MRI, 

resting-state functional connectivity, methods used for discriminative analysis of fMRI data and 

previous studies conducted for these methods are described. In chapter three, the process of data 

acquisition, ROI analysis, the toolbox used to calculate the functional connectivity and 

preprocessing steps such as enhancement and registration are explained then the feature 

extraction, dimensionality reduction and classification methods implemented on the fMRI data 

are described in detail. The fourth chapter relates to the results and discussions. Here methods 

applied are compared with each other and the one that results in the best performance is 

determined. Finally, the study is concluded in the fifth chapter.  
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CHAPTER 2 

 

 

THEORETICAL BACKGROUND 

 

 

 

2.1 Functional Magnetic Resonance Imaging 

 

Functional magnetic resonance imaging (fMRI) is a magnetic resonance imaging tool to assess 

neural activity of the brain and analyze its functions by measuring the signals caused by 

metabolic changes related to functionally active parts of brain. This technique relies on the fact 

that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in 

use, blood flow to that region also increases [1], [5] which appears as lighter areas in the Figure 

2.1. fMRI is a safe technique and has no radiation hazard for patient in contrast with other 

imaging techniques like CT,PET [1]. Neuroscientists use this diagnostic method to consider the 

performance of healthy, patient or injured brain, following progression of disease (such as 

Alzheimer, Attention defecate, Schizophrenia), studying subjects before and after treatment, 

drug therapy and the other clinical applications of fMRI.  Further, using fMRI helps to monitor 

the brain tumors and their growth and the activity [5]. 

 

 

 

Figure 2.1: Functional MRI 
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2.1.1 Blood Flow and Neural Activity 

 

Studies suggest that when a region of the brain becomes active the blood flow to that region 

increase to provide the oxygen and glucose needed for neural activity of cells of the active area 

and conversely, when the brain performs no task the blood flow and accordingly the oxygen 

level decreases [6]. This dynamically regulation of the blood flow is called Hemodynamic 

response. The fMRI measures the signals produced from oxygen level change which is known 

as blood-oxygen-level-dependent (BOLD) signal. 

 

 

 

Figure 2.2: Hemodynamic responses [3] 

 

 

2.2 Functional Connectivity 

 

Temporal and spatial correlations between “spontaneous low-frequency BOLD signal 

fluctuations “of remote regions of the brain are defined as functional connectivity [5]. There are 

many definitions for functional connectivity in literature but the most known one is the 

definition by Friston and Büchel [7], “functional connectivity as the correlations between 

spatially remote neurophysiological events”, and by  Aertsen and Preissl [8] “functional 

connectivity as groups of neurons that act together in a coherent fashion”. 

 

Functional connectivity gives information about correlations between brain regions but cannot 

interpret how they are correlated. Functional connectivity analysis can be performed on regions 

of interest which are regions in the brain consists of one or several voxels, or on the level of the 

individual voxels. As ROIs give results about brain regions directly, they are popular than other 

connectivity analysis methods [9]. 

 

 

2.2.1 Resting-State Functional Connectivity 

 

Recently many fMRI studies have been concentrated on measuring the signals extracted from 

resting state of the brain. Subjects lie in the scanner under resting conditions (eyes closed with 

no-task perform) and the correlation analysis is done on brain regions. The correlation results 

can give the view about the functional activity of the neural systems. 



7 
 

The reasons why resting-state fMRI is preferred to task-related state are as follows [1, 4]:  

 

1) Cerebral Energetics: The brain in resting condition consumes more metabolic energy of the 

body (about 20%) compered to task-related state (about 5%) so exhibit high activity during 

resting state. 

 

2) Signal to Noise: Resting state of the brain has large signal to noise ratio than the task-based 

state. 

 

3) Ease of use for patient populations who are not able to exactly perform tasks asked them in 

the fMRI scanner. 

 

4) Resting-state fMRI measures functional connectivity more precisely in brain regions in 

contrast with task-based studies. 

 

The two most common method for resting state functional connectivity (rsFC) data analysis is 

seed-driven rsFC in which the Pearson’s correlation coefficients  between the BOLD signal time 

course of the seed region and the BOLD signal time course of all other voxels are computed 

[10]. Let the bold signal of a region of interest is      and the bold signal of a voxel of the brain 

is   . Then the Pearson’s correlation coefficient is calculated as: 
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where      represents the covariance of the             vectors. The            , are the 

standard deviations of          vectors, respectively.     ̅̅ ̅̅ ̅̅  , is the mean of all voxel values 

inside the ROI and   ̅̅ ̅ is the mean of all voxels of the brain. Notice that √∑       ̅̅ ̅    = 

       ̅̅ ̅  since only a single voxel value is considered. 

 

The 3D functional connectivity image for kth subject derived from Pearson’s correlation 

coefficient between each ROI and all brain voxels will be represented as      notation through 

this study. 

 

 

 

Figure 2.3: Funcional connectivity using Pearson's correlation coeffitient 
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2.3 Obsessive Compulsive Disorder 

 

The Obsessive Compulsive Disorder (OCD) is a psychiatric brain abnormality that is 

characterized by the presence of repetitive invasive impulses or thoughts called obsessions that 

cause recurrent behaviors which are called compulsions [3, 11]. The OCD usually occurs in 

early adulthood or late adolescence [11] and rare in children such that 1- 4% of children and 

adolescents catch OCD [12], also it may become worse and chronic if it left untreated. 

 

The first neuroimaging studies on OCD were done by Baxter and associates [13]. They used 

positron emission tomography (PET) to investigate resting cerebral glucose metabolism in 

patients with OCD [14]. Recently, biological markers such as fMRI signals that have diagnostic 

information for OCD have become popular [3, 4]. Since functional MRI produce better spatial 

resolution than radio imaging techniques (PET) therefore smaller brain regions are identified 

[15]. Also fMRI unlike other medical imaging techniques does not have any ionizing radiation 

hazard thereby it is a safe imaging tool which can be used widely in clinical applications. 

Reviewing literature several functional connectivity studies has been done in OCD. Jang et al. 

[16] investigated the functional connectivity between fronto-subcortical regions of OCD brain 

during resting state. Koçak et al. [2] considered the resting state functional connectivity 

differences between healthy and OCD individuals. Harrison et al. [4] investigated the abnormal 

functional connectivity in regions of  OCD brain using resting state fMRI and also suggested 

that rs fMRI gives more precise measurement of FC of brain regions. 

 

 

2.4 Default Mode Network and Region of Interest 

 

The regions of the brain that are functionally active during resting-condition (no mental task is 

performed)  are called default mode network (DMN) [17]. There are many reports based on that 

the DMN region of the brain in patients with obsessive compulsive disorder may have 

suppression problems. Koçak et al. [18] hypothesized in his paper that there is some 

abnormalities in right posterior partial region of OCD brain. His findings represented that there 

is more brain functional activity in post cingulate corpus (PCC) and superior frontal gyrus 

(SFG) in OCD group in contrast with healthy group during the resting-state condition and 

interestingly where both of these regions belong to DMN region. Also a decreased brain 

functional activity is recorded in right inferior posterior lobe (RIPL) of patients with OCD 

which belongs to the DMN again. According to this paper there may be significant functional 

activity changes in RIPL, SFG and PCC brain regions of OCD group. Jang and Kim [16] 

suggested that an abnormal rsFC in DMN may cause the obsessions in patients with OCD and 

fronto-subcortical regions belong to DMN such as PCC exhibit lower functional connectivity in 

OCD. According to Koçak left inferior posterior lobe which is part of DMN shows different 

functional activity in patients with OCD compared to healthy group in control condition. As 

reported by Hon, Epstein [19] and Suchan, Botko [20] ,the IPL and PCC ROIs have key roles in 

imagination control and imaginative control of visual information. For this reason, the LIPL, 

RIPL and PCC are the regions that existence of  some differences in OCD is proved so these 
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regions of interest (ROIs) is thought to assist us to  discriminate between the OCD and healthy 

brains [2].  

 

 

Figure 3.1: Default Mode Network consisting PCC, IPL and SFG [64] 

 

 

2.5 Pattern Recognition 

 

In machine learning, pattern recognition is defined as automatic detection of patterns of the 

input data and uses these patterns to classify or describe the data [21]. In literature many pattern 

recognition methods has been developed and applied to various fields such as computer vision, 

signal and image processing, medicine, psychology and finance. Recently pattern recognition 

has received much attention in brain connectivity researches where the correlations between 

different regions of brain have been identified as patterns. Craddock et al., [22] used pattern 

recognition to predict the disease state from rsFC. Shen et al., [23] used rsFC data to detect 

schizophrenia disease by pattern recognition methods. 
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Most of pattern recognition methods consist of following parts: 

 

 

 

Figure 2.4: Pattern recognition components 

 

 

2.5.1 Preprocessing 

 

Preprocessing is a required step in pattern recognition for improvement of data quality. The 

preprocessing steps applied on fMRI data are explained in chapter 3 in detail. 

 

 

2.5.2 Feature Extraction 

 

In pattern recognition, the selection of proper feature extraction method is the key factor of 

obtaining high classification performance [24]. Here the question is which feature extraction 

method is appropriate for resting-state functional connectivity (rsFC) discriminative analysis?  

In fMRI studies, some feature extraction methods such as dimensionality reduction methods 

(PCA and LDA) are frequently used to reduce the dimensionality of the data. Since the 

dimensionality of rsFC data is much more than the number of samples, these methods is applied 

to data to reduce its dimensionality. For instance, Tang et al. [25] used PCA dimensionality 

reduction method to identify schizophrenia patients using rsFC data. Another feature extraction 

methods that used for fMRI data analysis are similarity measurement methods that Shinkareva 

et al., [26] used cosine similarity measurement to compute the similarity scores between 

connectivity matrices to classify them.  

 

In this study instead of using fMRI images directly, the images computed by functional 

connectivity are used. Since the size of the fMRI images and so the size of the functional 

connectivity images are very high, they need to be subsampled before using as feature vectors. 

Furthermore, due to difficulties arising from high dimensionality, dimension reduction methods 



11 
 

such as PCA, LDA are used. In addition to obtaining of feature vectors in this way, also the 

similarities of connectivity image of individual subjects to the means of connectivity images of 

healthy and patient subjects are used as features.  

 

In the following, first the distance (similarity) measures used are explained and then the 

dimensionality reduction algorithms are presented.  

 

 

2.5.2.1 Similarity Measures 

      

A. Dot Product Measurement 

The simplest similarity measure of two vectors is dot product which finds the Euclidean 

distance between these vectors.  

Assume two d-dimensional vectors    , the dot product of them is defined as [27]: 

 

              ∑     
 
                                                                                (2.2) 

 

In literature dot product is a method to find the measure of similarity between vectors. For 

instance, Yang et al. [28] used dot product to compute the similarity between multivariate time 

series. Garret and Kovacevic [29] used inner product measurement method  to measure the 

similarity between different brain patterns . 

 

Conventionally, the classification is done directly by choosing the highest similarity, however in 

this thesis it is used in feature extraction of feature vectors as explained in chapter 4. 

 

 

B. Cosine Similarity Measurement 

There are several ways to measure the similarity between vectors, The common method 

frequently used for similarity measurement in data  mining and information retrieval  [30] is the 

cosine similarity. The cosine similarity measure is the cosine of the angle between the vectors as 

shown in Figure 2.5 and computed using the Euclidean dot product of vectors and their 

magnitude. Experimental results demonstrated that the feature selection algorithms that select 

the significant features needed for classification are complex and expensive to implement. 

Instead cosine similarity method occupy small storage space, lower the computation cost, make 

process faster and give improved performance with negligible error rate thanks to produce small 

features [31]. Assume two d-dimensional vectors    , the cosine similarity of them is defined 

as: 
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Figure 2.5: The cosine measure between a sample and mean of two classes of clusters is 

represented by   ,   values 

 

Baharudin and Muflikhah [32] used Cosine similarity in document clustering to measure the 

similarity between two different document vectors and resulted in dimension reduction of the 

document matrix. Movellan evaluated the performance of the face recognition problem 

calculating cosine similarity between coefficient vectors of test and train sets in k-nn algorithm. 

Borge-Holthoefer [33] in 2011 used this approach in a medical study for patients suffer 

Alzheimer’s disease. Shinkareva and Gudkov [26] also used cosine similarity to classify brain 

functional connectivity matrices. In their paper the cosine similarity between vectors of train 

and test connectivity matrices is computed and two pairs with best similarity score are selected. 

Mitchell and Shinkareva [34] applied this technique to consider human brain activity when 

predicted and actual images are introduced. In this paper the cosine similarity between vectors 

of voxel values of two predicted and observed images is calculated. According to ranked 

similarity scores, two pairs of predicted and actual images that brain can match them are 

selected. 

 

In this thesis the cosine similarity is used as the feature extraction method which will be 

explained in chapters 3 and 4. 

 

 

C. Correlation Measurement 

Correlation similarity measure is another similarity measure method closely similar to the dot 

product similarity with a difference that in this method the mean value of the data vector is 

subtracted from itself. Suppose         are input vectors then  ̅  ̅ are mean values of vectors 

in     respectively such that [27]: 

 

 ̅  
 

 
∑   

 
                                                                                                 (2.4) 

 

 ̅  
 

 
∑   

 
                                                                                                            (2.5) 

 

          ∑      ̅      ̅  
                                                                        (2.6) 
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2.5.2.2 Dimensionality Reduction  

 

A. Principal Component Analysis (PCA)  

In classification problems, reducing dimensionality of the data is an essential part before data 

analysis [35]. PCA is a powerful orthogonal linear transformation technique in which the 

coordinate system of high dimensional data transforms to new coordinate system  called 

principal components (PCs) such that the largest variance (which has the maximum 

information) by a chosen projection of the data comes to lie on the first coordinate (called the 

first principal component), the second largest variance lie on the second coordinate and 

importantly the second PC is uncorrelated with the first PC and they are orthogonal since the 

covariance matrix is symmetric [36]. Further principal components exhibit decreasing variance 

and are uncorrelated with all other principal components [37], [38]. 

 

Reversibility property of PCA (the original data can be reconstructed from principal 

components) makes it a useful method for data reduction, noise rejection, visualization and data 

comparison among other things. PCA approach has been extensively applied to diverse fields 

such as image processing, face recognition [39], [40], Computer vision, machine learning [41], 

[42], [43], data compression, image de-noising [44] and [45] Eigen-image analysis [46]. Lately, 

neuroscientists have been started to use PCA-based techniques in analysis of functional 

connectivity, since they are “data-driven methods” which means that the biological aspects of 

structure such as regions involved in structural connectivity have no significance [47].   

 

PCA Algorithm: 

Assume a sample set of {       } where each sample is a d-dimensional vector. 

 

Step1: 

The d-dimensional mean of the sample set is obtained as [48]: 

 

  
 

 
∑   

 
                                                                                                        (2.7) 

 

Step 2: 

The     covariance matrix   is calculated for the sample set such that: 

 

   ∑               
                                                                               (2.8) 

 

Step 3: 

The eigenvectors   and their corresponding eigenvalues   of covariance matrix   are computed 

and arranged in decreasing order of eigenvalues as shown in Figure 2.6 .So that the first 

eigenvector    that consists of the maximum variance is called first principal component, the 

second eigenvectors show the second largest variance and so on. The eigenvalue equation is 

defined as: 

                                                                                                                      (2.9) 
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Figure 2.6: Eigenvalues in decreasing order 
 

 

Step 4:  

The   largest eigenvectors {       }  of covariance matrix correspond to the largest 

eigenvalues {       } are chosen. So there will be   principal components. 

If there is only one significant eigenvector the data is linearly and orthogonally projected onto a 

line (one-dimensional space) in the direction of the largest eigenvector    known as principal 

axes as shown in Figure 2.7, but in the case of the   significant eigenvectors, the data is 

projected onto the  -dimensional space known as principal subspace. 

 

 

 

Figure 2.7: Orthogonal projection of the d-dimensional sample    onto a line in direction of the 

   [7] 

 

 

Step 5: 

The matrix   of size      where     is formed with   largest eigenvectors in columns. 
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Step 6: 

The dimensionality of any sample      is reduced to     by formula        where 

     , is the  -dimensional vector. 

 

In summary, the dimensionality of feature space is reduced by considering only the significant 

eigenvectors or equivalently directions through which the variance matrix is largest [21, 48].  

      

 

B.  Kernel Principal Component Analysis (KPCA)  

Kernel Principal Component Analysis (KPCA)  has been introduced recently as a nonlinear 

expansion of PCA for handling nonlinear problems [35]. The KPCA principle is based on 

nonlinearly mapping the input space into a feature space by means of nonlinear transformations 

as kernel functions (e.g. dot product, Gaussian kernels, Radial Basis functions) and then 

efficiently computes the principal components in high-dimensional feature space [49]. Since 

KPCA uses alternative kernels in its algorithm, it is able to handle a wide category of 

nonlinearities. 

In fMRI-based studies, this approach has been used as a dimensionality reduction method for 

instance to diagnosis the mental disorders as in paper by Sidhu [50]. He used KPCA to 

distinguish between the individuals with Attention-Deficit Hyperactivity Disorder and healthy 

ones. 

 

 

Kernel PCA Algorithm: 

As in PCA method we assume a set of   samples {       } where each sample is a d-

dimensional vector and the sample mean is subtracted from each of the sample vectors. 

 

Step 1: 

Each d-dimensional sample vector    is projected into       point in M-dimensional feature 

space by nonlinear transformation      . 

          

The kernel function is defined as:  

 

 (     )        
                                                                                       (2.10) 

 

       are sample vectors. There are different types of kernels for example the Gaussian kernel 

function is in the form of: 

 

 (     )      ( 
‖      ‖

 

   
)                                                                           (2. 11) 
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Step 2: 

This time the conventional PCA is applied in the feature space to compute the covariance 

matrix. Subsequently, the eigenvectors of covariance matrix and their corresponding 

eigenvalues and principal components are computed using the kernel function [21]. 

 

 

 

Figure 2.8: Kernel PCA [7] 

 

 

The Figure 2.8 shows the nonlinear transformation of sample vectors onto feature space. The 

blue vector    represents the first principal component extracted after the PCA is performed in 

feature space. Since the nonlinear PCs cannot be shown in data space by a vector, the 

corresponding linear projections onto PCs is shown in feature space as green lines. 

 

 

C. Linear Discriminant Analysis (LDA)  

Linear Discriminant Analysis (LDA) is one of the most popular dimensionality reduction 

algorithms [48, 51] first developed by Robert Fisher [52] in 1936 for ”taxonomic classification” 

[53]. The purpose of using this method is determining project directions on which data points 

that belong to the same class become close to each other while the data points belonging to 

different classes become far from each other. In other words it seeks an optimal linear subspace 

required for discrimination [54]. The optimal way to compute projection axes can be applying 

an eigen-decomposition on the scatter matrices of the given training data [55]. It finds the 

projection directions in a way that the between-class variance    is maximized relative to the 

within-class variance   . Subsequently; the dimension of the data is reduced by projecting the 

data to these directions, which are called discriminant variables. Discriminant variables applied 

as inputs to different classification methods, like k -nearest neighborhood (k-NN), and support 

vector machines (SVM) [56].  

LDA has been widely applied to pattern recognition [36] problems such as text processing [57], 

face recognition [53, 58]. Baker and Nayar have developed a two class linear discriminant 

pattern rejection theory [59]. Cui, Swets, and Weng [60] applied LDA for recognizing hand 

motions. 
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LDA algorithm (2-Class): 

Assume a set of n sample vectors {          } where each sample is a d-dimensional vector. 

If we consider a two-class problem, a subset of    sample vectors are labeled as first class    

and a subset of     sample vectors are labeled as second class    [48].  

 

Step1: 

The mean vectors of two classes are computed. 

 

   
 

  
∑       

                  
 

  
∑       

                                                     (2. 12) 

 

Step2: 

The scatter matrices of two classes are computed. 

 

   ∑             
 

     
                 ∑             

 
     

     (2. 13) 

 

Step3: 

The within-class scatter matrix and the between class scatter matrix is defined as: 

 

                                                                                                            (2.14) 

                 
                                                                           (2. 15) 

 

Step4: 

So the Fisher criterion function (Rayleigh Quotient) is defined as: 

 

      
     

      
                                                                                                (2.16) 

                                                                                                                                                

Where the vector   represents the direction of the line onto which the samples are projected. 

 

Step5: 

In order to obtain an optimal separation between two classes the      function should be 

maximum and the vector   that can optimize the criterion function should satisfy     

      , where   is a constant value. 

If the     is non-singular the eigenvalue problem is defined as: 

 

   
                                                                                                      (2.17) 

where     represents the direction of distance between mean of the samples         so the 

eigenvalue problem can be rewritten as a linear function: 

 

     
                                                                                             (2.18) 
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By this way the vector w that maximizes the criterion function is calculated. The equation 2.17 

maps d-dimensional input space onto one-dimensional space. 

 

Step6: 

Finally the dimensionality of any sample      is reduced by formula        where    

 , is the    -dimensional vector. 

 

 

 

Figure 2.9: Projection of samples onto lines with different directions in LDA.   

 (a) The worst direction of w. (b) The best direction of w. 

 

 

Figure 2.9 shows the projection of two classes of samples onto lines with different direction   . 

The right-hand figure (b) represents the best discrimination between classes. 

 

 

Generalized LDA (C-class): 

LDA consists of c-1 discriminating functions. Duly the d-dimensional input space embeds onto 

(c-1) dimensional space where d  . Also the vector   is converted to transform matrix W 

whose columns are eigenvectors, in this case criterion function will have the form: 

 

      
     

      
                                                                                                  (2.19) 

 

In this way, the eigenvalues    will be found as roots of the polynomial for eigenvectors   : 

 

                                                                                                             (2.20) 

 

                                                                                                            (2.21) 

 

                                                                                                         (2.22) 
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Since there are only (c-1) independent matrices in between-class scatter matrix    , there will be 

(c-1) nonzero eigenvalues. 

 

 

Regularized LDA: 

A critical condition to stabilize LDA solution is that the within-class scatter matrix should be 

nonsingular [54]. But this condition does not hold in the case of HDLSS data, in which 

dimensions of feature vectors are larger than the sample size    , which occur frequently in 

real-world problems such as gene expression analysis, face recognition and medical imaging. 

For HDLSS data, scatter matrices are singular so LDA is not applicable [56]. 

 

Some supplementary preprocessing methods have been introduced for this problem. The most 

preferred one is to apply dimensionality reduction in two steps. For instance, first step includes 

known methods as PCA or SVD. Swets and Weng[56], Belhumeur [53] and Torkkola [57] have 

implemented PCA or SVD before LDA for face recognition and document classification, 

respectively. Another way [55] to deal with the singularity of scatter matrix is to apply 

regularization, by adding some constant values to the diagonal elements of    as      , for 

some    , so scatter matrix become nonsingular. This approach is called Regularized 

Discriminant Analysis (RDA) [61, 62]. 

 

 

2.5.3 Classification  

 

The second step of pattern recognition is the classification step where the feature vectors 

obtained from fMRI data from models of previous step is used as the input. Each classification 

method consists of two phases. A classifier is trained using training set in first phase and then 

the performance of the classifier is evaluated by testing the new input data called test data in the 

second phase. In following sections types of classifiers will be described. 

 

 

2.5.3.1 Support Vector Machine  

 

Support Vector Machine is a statistical pattern recognition classifier based on Vapnik statistical 

learning theory [63]. The SVM algorithm separates classes by proposing a decision hyper 

surface. The minimum distance from the separating boundary to the closest training samples is 

called margin. Support vectors are the training feature vectors located on the margin, and since 

classifying of these vectors is very difficult theoretically, they can determine the position of the 

hyper surface.  

 

What makes SVM an exclusive method is its capability in selecting most important training 

samples for classification and using kernel functions with nonlinear boundaries for fine scaling 

high dimensions [64]. 
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The SVM method has been used in many classification studies. Specially, in recent years it is 

widely applied in fMRI data analysis [65] to discriminate mental patients from healthy control 

subjects using the structural and functional differences of their brain [66-69]. SVM seeks 

statistical patterns of labeled fMRI training data sets helpful for identifying between brain 

regions, and select discriminating features [70] then map these patterns to a subject's cognitive 

states. Fan and Shen [67] used a classifier based on SVM to discriminate schizophrenia patients 

from healthy controls. Newly, resting-state functional connectivity data of the brain is used as 

classification components. Zhu [71] used rs-FC to distinguish the hyperactivity disorder and 

attention-deficit patients from normal controls.  

 

In high dimensional low sample size (HDSS) data such as fMRI data, using a kernel classifier is 

preferred instead of a linear classifier [23, 66, 72]. 

 

 

Linear SVM Algorithm: 

Assume a linearly separable training data set of n samples {       } where each sample is a d-

dimensional vector with corresponding target classes {       }  where    {      } [48]. 

 

Step 1: 

A linear model of a 2-class classification problem is defined as [21, 48]: 

 

                                                                                                       (2. 23) 

Where   denotes the input vector,      is a fixed transformation vector,   is the weight vector, 

  is a scalar parameter. The sign of      determines to which class the test data is belong. 

 

Step 2: 

Find   and    parameters for linear model such that: 

 

{
                            

                            
                                                              (2.24) 

 

Step 3: 

Since there are many solutions for   and    parameters, the svm uses margin to find the 

parameters that create minimum generalization error. By definition “the margin is the smallest 

distance between decision boundary and any of the sample vectors” which is calculated by 
    

‖ ‖
. 

The Figure 2.10 shows the perpendicular distance between decision boundaries defined by 

       and sample point  . In the other hand, only the solutions that lead the correct 

classification (         ) are considered, so the margin is rewritten as:   

 

        

‖ ‖
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Figure 2.10: Linear SVM geometry 

 

 

The Figure 2.10 shows the geometry of linear svm for two-class regions      . The vector   is 

perpendicular to the hyper surface shown with bold line and the shift of the hyper surface from 

the origin is handled by    parameter. The orthogonal distance between the hyper surface and 

any sample point   is called margin.  

 

 

 

Figure 2.11: Linear SVM 

 

 

The Figure 2.11 shows the margin and support vectors. The position of the particular hyper 

surface is decided by support vectors. 
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Step 4: 

In order to find a particular hyper surface, the margin is maximized by optimizing   and    

parameters.so considering equation 2.22 and margin definition the maximum margin is 

calculated: 

 

         ,
 

‖ ‖
   {            }-      k=1,…,n                               (2.25) 

 

Solving the equation 2.24 gives the solution for maximum margin. Since the maximum margin 

equation is complicated to solve, it is simplified by assuming that the data points next to the 

hyper surface (support vectors) satisfy               , in this condition all data points 

will satisfy the               , so the maximum margin will have the form: 

 

                         {
 

‖ ‖
}             ‖ ‖                        (2.26) 

 

It seems that the parameter b does not contribute in optimization of the margin but it is 

determined inevitably during optimization since “changes to ‖ ‖ be compensated by changes 

to b”. 

 

Step 5:  

After the parameters w and b are maximized, decision is made such that if samples satisfy 

          for all   to they are classified correctly. 

 

 

Nonlinear SVM Algorithm: 

Most of the time it is much more complex than the linear svm can be used. In such 

cases the nonlinear svm is preferred to implement in which the      transformation 

vector of equation                is nonlinear. 

 

 

2.5.3.2 Gaussian mixture Model 

 

In pattern recognition phase the GMM is a well-known classification algorithm based on 

clustering [73] that has been frequently applied to various fields like speech detection, 

instrument classification, image segmentation [74]. This technique specially has been used in 

medical diagnosis applications like neurological disorders as Alzheimer’s or schizophrenic 

disease [75]. Some studies reported that GMMs have been applied to brain imaging applications 

and fMRI data analysis for modeling the fMRI images or characterize activation paradigms 

from fMRI data to discover voxels related to BOLD activation regions [73]. Also using GMMs, 

the grey matter distributions of the brain are approximated so the brain image can be modeled 

[76]. In addition, Gaussian mixtures are used as a framework to analyze the resting-state 

activation regions of the brain.  
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Figure 2.12: Gaussian Mixture Model 

 

 

The Gaussian mixture model which is often used for data clustering is composed of the 

weighted combination of the Gaussian components to model the distribution of patterns. By 

assuming that the Gaussian density components and their weights are known also the parameter 

vector    {       } and the label of classes are unknown therefore the probability density 

function for samples is defined as [48]: 

 

        ∑              
 
                                                                             (2.27) 

 

   {          }                                                                                    (2.28) 

 

Where       : Gaussian mixture model or mixture density 

           :  Gaussian components 

  : Weight of Gaussian components  

 

 , is a set of parameter vectors of mixture model includes    , covariance matrix of components 

that can be full rank or diagonal,   , mean vector of components and     weight of Gaussian 

components  .   represents the total number of components. If the parameter vector   is 

known, the GMM can be decomposed into its components so the classes can be discriminated 

using a classifier. So, the aim is to estimate the   using the samples. First of all the likelihood of 

the data set    {          } of   samples is defined as: 

 

        ∏         
                                                                         (2.29) 
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The maximum likelihood estimate of the value   is a parameter called  ̂ that maximizes 

likelihood. In the same time  ̂, maximizes the logarithm of the        , such that: 

 

                                                                                                 (2.30) 

 

 ̂                                                                                             (2.31) 

 

Expectation maximization is an iterative algorithm that finds the  ̂ parameter by iteratively 

estimation of log-likelihood. In the each iteration of the EM algorithm, there are two steps, the 

expectation step or the E-step and the maximization step or the M-step. The EM algorithm can 

be described as following steps: 

 

Step 1: Input data    {          } 

Step 2: Initialize model parameter    and convergence criterion T 

Step 3 (E-step): Compute expectation value of the log-likelihood      of the data for    

 ( |  )   [           ]                                                                      (2.31) 

Here  ( |  ) is the function of    with    assumed fix. 

Step 4 (M-step): Estimate      such that maximizes the log-likelihood 

Steps 3 and 4 iterate until  (    |  )    (  |    )    then the parameter      which is 

called   ̂ is found such that maximizes the log-likelihood function. 

 

 

2.6 Leave-One-Out Cross-Validation (LOO-CV) 

 

Cross validation is a method to estimate the generalization performance of a classifier. This 

method divide data samples into two sets: first, the training set that trains the classifier. Second, 

test set that estimate the generalization error. The generalization of cross validation is k-fold 

cross validation where samples are randomly split into k equal parts. The classifier is trained k 

times so that within each iteration, k-1 parts are used to train the classifier and the remaining 

part is left out as test set to test the validation of the classifier and find the generalization error. 

Then the mean of k errors obtained from k iterations gives us performance estimation of the 

classifier.  

 

The special case of k-fold cross validation where the k equals the number of samples is called 

Leave-one-out cross-validation (LOO-CV), so that this method trains the classifier k times in 

each iteration, all the samples except one are used as training set and the excluded one is used as 

test set to calculate generalization error. Reviewing literature , The LOO-CV technique is used 

frequently in disease detection and other classification problems for instance, Shen et al. [23] 

used this method to evaluate the performance of the classifier in discriminative analysis of 

schizophrenia disease. Zhu et al. [77] also implemented this approach to detect attention deficit/ 

hyperactivity disorders of brain at resting state. 
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CHAPTER 3 

 

 

MATERIALS AND METHODS 

 

 

 

This chapter consists of three main sections. In the first section the fMRI data collection and 

preprocessing steps which consist of image enhancement and registration, ROI analysis, 

functional connectivity analysis are discussed. In the second section the feature extraction 

methods including dimensionality reduction and similarity measurement methods are discussed. 

In the last section the classification methods as SVM and GMM used to discriminate between 

classes are discussed in detail.  

 

 

3.1 FMRI Data Collection and Analysis 

 

3.1.1 Data Collection 

 

The fMRI data was collected by Prof. Dr. Metehan Çiçek's neuroimaging and brain research 

team with 1.5 Tesla Siemens Magnetom Symphony Maestro Class MRI system (Siemens, 

Erlangen Germany)” at Integra Imaging Center, Ankara [18]. 

 

T1-weighted functional scans with high resolution were obtained applying echo-planar 

sequence in axial plane. The functional imaging parameters are as follows: time to repeat (TR) 

= 4940 ms, time to echo (TE) = 36 ms, slice number = 36, slice thickness = 5 mm, matrix size= 

     , field of view (FOV) = 224, flip angle (FA)=    .To keep equilibrium of signal, the 

first four images of all functional sequences were removed [78]  

 

 

3.1.2 Participants  

 

The total number of 24 right-handed volunteers with minimum age of 18 years took part in 

resting-state fMRI data collection. 12 (six male and six female) of participants were healthy 

individuals similar in terms of sex and education level (control group) and the other12 (six male 

and six female) participants had Obsessive Compulsive Disorder (OCD) last of 6 months to7 

years. Eight OCD patients had cleaning obsession, three of them had checking obsession and 

one was with damaging obsession. Neither neural system nor psychiatric disorder was detected 

in control group attendants and no psychiatric disorder was recognized in patients other than 

OCD [2, 18].  
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3.1.3 Experimental Process During Data Acquisition  

 

Participants were placed in the MRI scanner. The original experiment included four functional 

sequences and in each run participants were given a figure for seconds and requested to perform 

imagination (imagine the figure), suppression (omit the figure) and erasing (erase the figure in 

mind) tasks and between these tasks they rest with closed eyes and think freely which is called 

free imagination . At the end of the experiment, 300 fMRI images were obtained that only 60 of 

them contained free imagination images [18]. Resting-state functional connectivity (rsFC) 

analysis performed on the resting (free imagination) data 

 

3.2 Preprocessing 

 

3.2.1 Image Enhancement and Registration 

 

fMRI data was preprocessed using “SPM8  software  (Welcome  Department  of Cognitive  

Neurology,  London,  UK)”  in  a  MATLAB  context (Math works, Sherborn,  Mass.,  USA). 

The applied preprocessing steps  [2] consists of: 

 

1. Slice timing 

2. Realignment 

3. Co-registration 

4. Normalization 

5. Smoothing 

 

Each step will be explained in detail in the following.  

 

Step 1. Slice-timing Correction 

This step corrects the delays or advances that happen in the acquisition timing order of different 

slices by fitting all slices to a standard slice so that activity of each point will be the same for all 

slices in time. 

 

 

  

Figure 3.2: Slice timing. According to acquisition times in the right-hand the slices are acquired 

in 1, 3,5,7,2,4,6,8 order [2] 
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Step 2. Motion Correction 

The subject’s head movement during the fMRI scans causes the position and coordinate of the 

brain change in functional images. The realignment method reduce the misalignment among 

functional images by realigning the FMRI time series to a standard coordinate so that all 

functional images will have the identical coordinate as shown in Figure 3.2. By result the source 

of the signal in all voxel time-series will be same. 

 

 

                

Figure 3.3: Realignment [66] 

 

 

Step 3. Co-registration 

In this step, the functional images of low-spatial resolution are aligned with structural fMRI 

images of high resolution. 

 

 

Step 4. Normalization 

The brain image of individuals differs from each other in terms of size and shape. However, 

there should be a reference for brain images to be able to compare them in aspect of functional 

activity. So, all brain images (functional and structural images) must be mapped onto a template 

brain image as shown in Figure 3.3 in other words spatially normalized to template image 

whose reference is Talairach and Tournoux [79] so that these normalized images can be 

compared with each other. 

 

 

 

Figure 3.4: Normalization: (a) High resolution co-registered image, (b) Template image, (c) 

Resulted normalized image 
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Step 5. Smoothing  

This method increases signal-to-noise ratio by reducing the noise. The functional image 

convolves with a Gaussian kernel in order to remove the noise. The result is a blurred image as 

shown in Figure 3.4. 

In this study the 9-mm full-width half-maximum (FWHM) Gaussian kernel is used for 

smoothing. 

 

 

 

Figure 3.5: Smoothing 

 

 

3.2.2 ROI Analysis 

 

As explained in section 2.4 parts of DMN of the brain such as PCC, LIPL, RIPL regions in 

which presence of functional abnormalities is proved in OCD are considered as ROIs. The 

functional correlations or disassociations between mentioned ROIs and other voxels of the brain 

are calculated as explained in following section. 

 

 

3.2.3 Functional Connectivity Analysis of FMRI data 

 

Resting-state functional MRI  analysis  was conducted with  CONN  software [10, 80] which is 

a toolbox for functional connectivity estimation. Using CONN toolbox, we can analyze 

different types of the resting-state functional connectivity such as within ROIs (LIPL, RIPL and 

PCC) called ROI to ROI or between ROIs and other brain voxels (ROI or seed region to voxel). 

 

The CONN toolbox needs some basic information to analyze the functional connectivity (FC) 

of the resting-state fMRI data including: 

 

1. Functional data 

2. Structural data 

3. ROI definitions: Region of Interest (ROI) is a selected portion of voxels of an 

(functional) image recognized for specific task.  

 

The input data of CONN is the preprocessed 3D fMRI data of size           and the 

output data is supposed to be 3D FC data of the same size that represents the functional 

connectivity between PCC or LIPL or RIPL ROIs and all brain voxels as correlation coefficient 

values calculated by Pearson’s correlation coefficient formula.  
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The successive steps are followed for functional connectivity analysis of preprocessed fMRI 

data using CONN toolbox as given below: 

 

Step 1: Setup  

During this step the sequential parts are defined: 

 Basic: the experiment information including participant and data acquisition 

information. 

 Functional : functional images are entered 

 Structural: structural/anatomical images are entered 

 ROIs: The required regions of interest are imported.  

 Condition: the experimental condition (imagination, suppuration, erasing, resting) and 

its related durations and onsets are defined. 

 Covariates: variables that can affect the experiment such as movement parameters, 

behavioral measures.  

 Options: choose which analysis type you want to do( ROI_ROI, voxel-voxel, seed-

voxel)  

 

 

 

Figure 3.6: The first step of rsFC analysis using CONN toolbox [73] 

 

 

Step 2: Band Pass Filtering 

The functional data is filtered by using a band-pass filter to remove very low frequency (0.004 

Hz < f < 0.08 Hz) distracts such as BOLD oscillations and motion parameters that affect voxels 

and ROIs.  

 

 

Step 3: First Level Analysis (Functional Connectivity Analysis) 

The sources of interest (seeds) are defined and selected afterwards a selected type of 

connectivity analysis (ROI-ROI or voxel-voxel or seed-voxel) is applied to all subjects using 

the selected sources. Eventually, at the end of the first level analysis correlation coefficients are 

computed by Pearson’s correlation coefficient method and the connectivity (correlation) map 
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with corresponding coefficients is constructed for each subject and ROI in resting-state 

condition.  

 

 

 

Figure 3.7: First level analysis and Functional connectivity results [73] 

 

 

At the end of functional connectivity analysis the FC images provided for PCC, LIPL and RIPL 

ROIs are obtained as inputs for successive processes described in the following.  

 

 

3.3 Determination of Training and Test Sets by Double- Leave One Out-Cross Validation 

(D-LOO-CV) 

 

Two nested loops were created for LOO-CV process that we called D-LOO-CV where in the 

first (outer) LOO loop one healthy sample was excluded and in second (inner) LOO loop one 

patient sample was excluded. The main goal of such approach is to produce training and test 

sets with more samples since there are small numbers of samples obtained by single LOO in 

contrast with large number of features which may not be enough to train the classifier in 

classification phase.  

 

Using only LOO-CV approach, there will be 22 train samples (11 healthy and 11 patient) for 

train the classifier and 2 test samples for each LOO iteration. In order to raise the number of 

training samples we generate the train and test sets as different combinations of healthy and 

patient samples called D-LOO-CV algorithm given in Figure 3.8. Using D-LOO-CV resulted in 

          test samples and             healthy and 132 patient train samples.  
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FOR each healthy sample,   

           FOR each patient sample,   

Define         , as the D-LOO feature vector for subject k where    ,     

are left out for test.  

           Determine training and test set such that:        

         {                              } 

                {                  } 

Where both the train and test set are matrices of size    , where m is the 

number of   subjects and n is the number of features.   

END FOR 

END FOR 

Figure 3.8: Double Leave-One-Out algorithm for healthy subjects 

 

 

The same algorithm is true for determining patient test set except that the order of loops should 

be changed and the patient test set would be: 

 

                {                  }                                                   (3.1) 

 

If we assume healthy samples   {             } and patient samples   {      

      } then the test and train sets are selected as follows by using D-LOO_CV:  

 

Table 3.1: Applying D-LOO-CV to generate train set and healthy test set 

 

Table 3.1 shows the D-LOO-CV in which only one healthy test sample and 11 healthy train and 

11 patient samples are selected. After 12 iterations, there will be 12 healthy test samples and 

132 healthy and 132 patient samples in training set in total. So by using D-LOO-CV instead 

LOO-CV we could increase the number of test samples from 1 to 12 and train samples from 22 

to 264. Note that patient samples are useless while generating healthy test samples and they are 

only removed from train set to balance the number of healthy and patient samples in training 

set. 

 

D-LOO-CV   

 

Iteration  

 

Test set for healthy subject    

 

Healthy and patient subjects in Train set 

1             {     }  {    } 

. 

. 

. 

. 

. 

. 

. 

. 

. 

12              {     }  {     } 
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The patient test samples were obtained using the D-LOO-CV as shown in Table 3.2. 

 

Table 3.2: Applying D-LOO-CV to generate train set and patient test set 

 

 

3.4 Feature Extraction Methods  

 

As demonstrated in Figure 1.1 two approaches were considered in this study to extract the 

significant features; the first approach was subsampling followed by dimensionality reduction 

of the 3D FC data using PCA, KPA, LDA methods which will be discussed in section 3.4.1. 

The second approach for feature extraction is get use of similarity measurement methods 

correlation, dot product and cosine similarity which will be described in detail in section 3.4.2. 

 

 

3.4.1 Dimensionality Reduction Methods 

 

As mentioned before, the dimensionality reduction methods reduce the dimensionality of the 

data using linear or nonlinear techniques and find out feature vectors that help classifier to 

separate the data optimally. In present study, we investigated dimensional reduction methods 

explained in chapter 2 previously. In high dimensional low sample size data like fMRI data 

where the number of the subjects are smaller than the number of the features, the dimension 

reduction methods may not give the desired results due to problems such as singularity, 

insufficient retention space and cost of computation. One way to overcome this problem is 

reducing the number of features in two steps. In first step, subsample the 3D FC data and then 

use the dimensional reduction methods. The other way to settle high-dimensionality problem is 

to employ feature extraction methods such as similarity measure (cosine similarity, dot product 

similarity, correlation) techniques. 

 

It is important to note that we are only interested in previously discussed LIPL, RIPL and PCC 

ROIs since it is claimed in previous studies [2, 18] that there is functional connectivity 

differences between OCD and healthy groups. According to the third step of fMRI data analysis 

(first-level analysis) the resulted high-dimensional data is the functional correlation coefficient 

values between ROIs and other voxels of the brain. So, there is three high-dimensional FC data 

(PCC to voxel, LIPL to voxel, RIPL to voxel) to be reduced in dimensionality. 

D-LOO-CV   
 

Iteration 

 

Test set for patient subject    

 

Healthy and patient subjects in Train set 

1             {     }  {    } 

. 

. 

. 

. 

. 

. 

. 

. 

. 

12              {      }  {    } 
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3.4.1.1 Steps of Dimensionality Reduction Method 

 

In this section the general steps followed in each dimensionality reduction method that were 

used in this study are listed with brief explanations and definitions about each step. 

The feature vectors from 3D FC data are extracted through four steps: 

 

1. Input 3D FC data 

2. Subsample the FC data 

3. Determine training and test sets using two nested loops called double-LOO-CV. 

4.  Extract features using dimensionality reduction method (PCA, KPCA, LDA) 

 

These steps will be described in detail in which the following notations are used: 

 

         represents the number of subjects 

  {           } represents healthy samples. 

  {           } represents the patient samples. 

  { }  { } represents all samples  

     represents the data vector of subject   which can also called FC image. 

 

Step 1. Input the 3D FC data 

Here the FC data      derived from first-level analysis of CONN program was used as input 

data for feature extraction.  

 

Step 2. Subsample the FC data 

Here each      vector was filtered with a 3D Gaussian and then the filtered      subsampled 

with sample size      such that: 

                  

 

Step 3. Determine Training and Test Sets Using Double-LOO 

This step was explained completely in section 3.2. 

 

Step 4. Extract Features Using Dimensionality Reduction Method  

In this step feature vectors are extracted by either reducing the dimensionality of train and test 

sets using PCA, KPCA and LDA methods or similarity measurement methods. The resulted 

low-dimensional outputs will be used as inputs for train the classifier and test its performance in 

classification phase. 

 

In following sections the subsampling and dimensionality reduction approaches applied to 

resting-state functional connectivity data, prior to classification of the data, will be described. 
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3.4.1.2 Principal Component Analysis (PCA) 

 

The PCA method as introduced in previous chapter, is a feature reduction method that 

orthogonally projects the subsampled data (here original data) from high-dimensional input 

space into a low-dimensional new space with new coordinates called principal components 

(PCs) so the projected data will have less number of features compared with original data.  

 

The PRINCOMP command from statistics toolbox of the matlab was used to apply PCA 

method on subsampled FC data. The eigenvalues and eigenvectors were obtained. Afterwards 

eigenvalues are ranked in decreasing order and the eigenvectors corresponding to first M 

eigenvalues whose sum constitutes 90 percent of the total sum of all eigenvalues were chosen. 

The subsampled data was projected to the selected eigenvectors resulting in principal 

components. The feature vectors made of PCs are then used as inputs for classification.  

 

 
 

1. Input 3D FC  data 

2. FOR each ROI 

3.           Subsample the FC data 

4. Determine training and test sets using D-LOO-CV algorithm and 2 of 24 subjects 

were excluded.           

5.           Extract features using PCA method: 

a.  Obtain the eigenvalues and corresponding eigenvectors for the training set. 

22 eigenvalues and eigenvectors were obtained in this step. 

b.  Calculate the percentage of partial sum of eigenvalues to the sum of all the 

eigenvalues (∑ ). 

 

∑  ∑   

  

   

            

 

∑    
   

∑ 
  

 

c.  Choose first M eigenvectors such that the percentage calculated in step 5.b 

is about 90% and constitute matrix A whose columns are chosen 

eigenvectors. 

∑   
   

∑ 
        

 

d.  Obtain feature vectors with reduced dimension as: 
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e. The resulting training and test sets with low dimensional will be used in 

classification to train the classifier and test the performance. 

END FOR 

 

Figure 3.9: The feature extraction algorithm for each OI using PCA method 

 

 

3.4.1.3 Kernel Principal Component Analysis (KPCA) 

 

As stated in Chapter 2 the KPCA is a nonlinear expansion of PCA to settle nonlinear problems. 

Nonlinear mapping of the high-dimensional original data into low-dimensional feature space is 

performed using nonlinear kernel functions. In this thesis study, The KPCA algorithm presented 

in the paper by Bernhard and Solma [81] were used. Since the KPCA is an extended version of 

the PCA, all the steps followed for the PCA also were identically applied to KPCA with only 

difference that the original data is mapped to feature space using nonlinear kernels such as 

Gaussian kernels, polynomials, etc. Again before applying KPCA, data is subsampled in a same 

way due to the same reason discussed in the previous section. 

 

Gaussian kernel function is used in this study for nonlinear mapping in KPCA. 

 

                             
                                                                                                             (3.2) 

 

where t is the parameter of Gaussian related to its width and its default value equals 1, c is the 

center and        is Euclidian Distance of x to c. 

Then the vectors constructed in train and test sets are projected by eigenvector matrix into low- 

dimensional feature space.  

 

 

3.4.1.4 Linear Discriminant Analysis (LDA) 

 

PCA approach and its extensions find components that are helpful for data characterization 

although these components may not give further information useful for classifying the data. So, 

PCA finds components needed for data representation. However, LDA looks for important 

directions or components for data classification. When a data is projected from a d-dimensional 

space into a one dimension space, despite the data is compact and well-separate, it becomes 

extremely overlapped and confounded combination which is very difficult to discriminate. To 

resolve this problem, the line should be oriented around the space until the best direction is 

found for maximum separation and this is what a linear discriminant method does.  
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The process of dimensionality reduction using LDA is same as PCA method except that in LDA 

method the eigenvalues and eigenvectors are obtained then by solving the eigenvalue problem, 

 

     
                                                                                                  (3.3) 

 

The direction of vector   for the projection of the data was determined in this way and finally 

the subsampled train and test sets were projected by eigenvector matrix onto one- dimensional 

feature space in determined direction.  

 

 

3.4.2 Similarity Measurements 

 

3.4.2.1 Cosine Similarity Measure 

 

As declared earlier, the cosine similarity measure is the         measure of the angle between 

the two vectors of d-dimensions [82] which was defined in equation 2.3. In present research, the 

cosine similarity is preferred as a feature extraction method to measure the distance between 

each sample and the mean cluster of the other samples. Methodologically, this approach 

computes the cosine value of the angle between the two vectors formed from the functional 

connectivity matrices of each subject sample and means of healthy and patient subjects in the 

training sets.  

 

In cosine similarity measurement procedure the feature vectors in training and test sets were 

determined using the D-LOO-CV algorithm. Hence the double leave one out feature vector is 

defined as: 

 

         [
  
  

]  [
                           

                           
]                                     (3.4)             

 

where       represent the first and second components of feature vector. The             is 

the mean of all the healthy subjects excluding healthy test (        th subjects and 

the             is the mean of all the patient subjects excluding patient test     and  th 

subjects such that:   
 

             

∑        
     

      
      ,                    

∑         
     

      
                             (3.5) 

 

Here        is the number of healthy subjects excluding healthy test subject (h) and kth subject 

where    ,     and    . Also        is the number of patient subjects excluding patient 

test subject (p) and kth subject where    ,     and    . 

 

Note that the            and            were used instead of            and           

to settle bias problem caused by kth subject which is included in           and          . 
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Considering equation (3.4), the cosine similarity can be interpreted as a feature reduction 

method since it has reduced the high dimensional data to a simple two dimensional vector 

which is much easier to interpret. 

 

The simple algorithm of implementation of cosine similarity method to 3D FC data is shown in 

Figure 3.10. 

 

 

1. Input 3D FC data   

2. FOR each ROI 

3. Determine training and test sets using D-LOO-CV explained in Figure 3.8 in 

which the  feature vector is set as: 

         *
                              

     (                     )
+ 

4.            The resulting two dimensional feature vectors in training and test sets will be 

used will be used in classification algorithm. 

5.  END FOR 

 

Figure 3.10: The cosine similarity algorithm for a healthy subject 

 

 

3.4.2.2 Dot product Similarity measure 

 

As mentioned in Chapter 2 the dot (inner or scalar) product is the simple form of the similarity 

measure between two vectors. In present work, the dot product similarity considers the 

similarity between a data vector of a subject       , and the mean vector of the healthy and 

patient subjects. This method was applied as a feature reduction method and reduced the 

number of features to two features. The first feature is the dot product of an arbitrary subject   

and the mean of healthy subjects and the second feature is the dot product of the arbitrary 

subject     and the mean of patient subjects. 

 

          [
   
  

]   [
                           

                           
 ]                                  (3.6) 

 

The dot product algorithm is same as cosine algorithm which was shown in Figure 3.10 and 

only the          was changed using dot product similarity measure. 
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3.4.2.3 Correlation Similarity Measure 

 

As the two previous methods, correlation similarity was applied to FC data in order to extract 

correlation features between a sample and the mean of other samples. The only difference 

between dot product and correlation is that in correlation method the mean value was subtracted 

from the sample and the mean of other samples, so that correlation feature vectors were 

produced such that: 

 

          [
   
  

]   [
    ((         ̅̅ ̅̅ ̅̅ )                              

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )

    ((         ̅̅ ̅̅ ̅̅ )      (                       
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))

]   (3.7) 

 

    ̅̅ ̅̅ ̅̅   
 

 
∑   

 
                                                                                                     (3.8) 

 

           
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                         * 

 

      
  ∑        

     
+         (3.9) 

 

           
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       (           )      *

 

      
  ∑        

     
+          (3.10) 

 

,                                    

3.5 Classification Analysis 

 

Using either dimensionality reduction methods or similarity measurements we could obtain 

low-dimensional feature vectors containing significant information necessary for classification. 

In order to discriminate between healthy and patient subjects, we used classification algorithms 

such as Support Vector Machine (SVM) and Gaussian Mixture Model (GMM) described in 

detail at further sections. For similarity measurements, it is also possible to decide on the class 

of subjects by a simple comparison of similarities as explained in the following   

 

 

3.5.1 Decision by Comparison of Similarities 

 

Let            [
   
  

] be feature vector for a test sample k generated either by cosine, dot 

product or correlation similarity measurements. The class of the test sample k can be decided 

simply by comparison of     and    such that: 

 

{

          
    

         
     

                                                                                                       (3.11) 
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3.5.2 Support Vector Machine 

 

As mentioned in previous sections, the purpose of using SVM is to find a decision hyper surface 

that separates two classes as well as possible. Linear SVM classifier was not suitable for 

separation of the classes in the fMRI data so the nonlinear form of the SVM was preferred to 

discriminate patients from healthy subjects. The frequently used kernel functions in svm 

classification are linear kernel, Gaussian radial basis function and polynomial kernel function.  

 

Linear:      (     )     
    

Radial Basis Function (RFB):           ‖     ‖
 
             

Polynomial:    (     )       
                 

where           are kernel parameters. 

 

According to [83], The RBF kernel function was preferred to linear and polynomial kernel 

functions to use as a kernel function in the SVM method since the linear kernel is the special 

case of the RBF kernel so its performance is same as the RBF kernel and the polynomial kernel 

function cause higher computational complexity than RBF kernel also for large orders of the 

polynomial kernel, infinite kernel values may happen [84]. Since various kernel functions with 

different parameters cause different classification results so the selection of right kernel and 

parameter adjustment are essential steps to find the appropriate kernel function with maximum 

separation results. In this study, the RBF kernel with parameter     was found to be the most 

appropriate value.  

 

Also the margin could be adjusted by selection of  appropriate penalty parameter called   

where    , so that the SVM classifier could make maximum separation [84, 85]. 

 

SVM classification algorithm was applied to low-dimensional features extracted by PCA, 

KPCA and LDA from subsampled FC data and also two features were extracted by cosine 

similarity, dot product similarity and correlation measures. As discussed before, The SVM 

algorithm consists of two phases; first phase is training the SVM classifier using train set and 

second phase is testing the classifier using new data set (test set). Train and test sets were 

generated by D-LOO-CV approach that consists of two nested loops. The separating hyper 

surface and support vectors were acquired then the new data was tested and the accuracy rate of 

the classifier was calculated as percentage. Finally, the performance of the SVM classifier was 

estimated by taking the average of percentages for healthy and patient test subjects separately. 
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3.5.3 Gaussian Mixture Model 

 

As stated previously, the GMM is a probability density function that is composed of the 

weighted summation of the (Gaussian) density components and the EM algorithm is commonly 

use to estimate the parameters of Gaussian components. 

 

In this thesis, the distribution of healthy and patient samples taking part in the training set were 

modeled separately by a Gaussian mixture with a preset number of mixture components but 

unknown parameter values. The iterative algorithm EM was applied in order to find the 

optimum parameter   ̂   for each component of the Gaussian mixture model. In order to classify 

a new sample in the test set as healthy or patient, the value of the probability density function 

(PDF) at this sample point should be calculated using parameters obtained from both healthy 

and patient samples in training data. 

 

If the    which is the value of the pdf of healthy subjects at the test sample is greater than the 

   which is the value of the pdf of the patient subjects at the test sample and it is classified as 

healthy otherwise the test sample is classified as patient.The process can be summarized as 

follows: 

 

1. Input the training and test data 

2. Fit Gaussian mixture models separately on healthy and patient samples of training data 

set. 

3. Expectation-Maximization algorithm to find the optimum parameters  ̂ and coefficients 

 ̂ for healthy GMM        and patient GMM       . 

4. Calculate probabilities of the test data     for being healthy and being patient using the 

parameters and coefficients of the healthy and patient GMMs such that: 

 

  ( | ̂  ̂)   ∑                     
                                                              (3.12) 

 

  ( | ̂  ̂)   ∑                     
                                                                (3.13) 

 

where   is the number of Gaussian components in the mixture,      is the weight of 

component   in      and      is the weight of component   in     . 

5. The class of the test sample s is decided as:   

 

             {

          ( | ̂  ̂)      ( | ̂  ̂)

    
         

   

                                          (3.14) 
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CHAPTER 4 

 

 

EXPERIMENTAL RESULTS 

 

 

 

This chapter consists of three main sections. In the first section, the results related to the 

functional connectivity (FC) between three regions of interest (PCC, RIPL, LIPL) and other 

voxels of the brain are presented. The second section has discussed and compared the results of 

feature extraction methods that are used to reduce the dimensionality of FC data. In the third 

section the classification results obtained using the features defined in Chapter3 are considered. 

 

 

4.1 ROI-Voxel Functional Connectivity 

 

The resting-state functional connectivity was estimated using CONN toolbox in which the 

functional correlation coefficients were calculated by Pearson’s correlation method. Figures 4.1-

3 exhibit the resting-state functional connectivity between chosen ROIs among PCC, LIPL and 

RIPL and all brain voxels. The brighter voxel means the higher connectivity value for that 

voxel. 

 

 

 

Figure 4.1: (a) rsFC between PCC ROI and all brain voxels of a healthy sample. (b) rsFC 

between PCC ROI and all brain voxels  a patient sample. 
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Figure 4.2: (a) rsFC between LIPL ROI and all brain voxels of a healthy sample. (b) rsFC 

between LIPLROI and all brain voxels of a patient sample. 

 

 

 

Figure 4.3: (a) rsFC between RIPL ROI and all brain voxels of a healthy sample. (b) rsFC 

between RIPL ROI and all brain voxels of a patient sample. 

 

 

As can be seen in the figures 4.1-3 there are ROI to voxel functional connectivity differences 

between healthy and patient brains at the same coordinates shown with yellow crossed lines. 

Also bright regions in above figures demonstrate that there is high ROI to voxel functional 

connectivity and the correlation coefficient value is positive. As the darker regions mean the 

ROI to voxel functional connectivity decrease and the correlation coefficient value become 

lower to negative values. 
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4.2 Feature Extraction Results 

 

As mentioned in previous chapters, the pattern recognition problem for rsFC data consists of 

two steps and the first step is related to feature extraction. First the feature extraction results 

using similarity measurements methods will be discussed and then dimensionality reduction 

methods (PCA, KPCA and LDA) that have been applied to rsFC data will be presented.  

 

The Table 4.1 shows the marks used to represent healthy and patient samples in training and test 

sets in resulted figures.  

  

Table 4.1: The markes used to represent healthy and patient samples in training and test sets 

 Healthy Patient 

Training Set   Green + Red 

Test Set   Blue + Yellow 

 

As shown in the Table 4.1, the crossed green and blue points represent healthy samples in the 

training and test sets respectively and the plus red and yellow ponits represent the patient 

traning and  test sets respectively. 

 

 

4.2.1 Similarity Measurement Results  

 

The flow chart given in the Figure 4.6 summarizes the generation of the training and test sets by 

D-LOO-CV for each ROI which was given in detail in chapter 3.  

 

 

4.2.1.1 Cosine Similarity Measure Results 

 

The Figure 4.5 shows the distribution of feature vectors obtained by cosine similarity measures 

in a two-dimensional feature space. The x-axis and y-axis represent in Figure 4.5 are the first 

and second feature vector components respectively. The healthy and patient samples in train 

sets and the healthy samples in test set were produced by D-LOO-CV method. As explained 

previously in section 3.2 there are 132 healthy samples and 132 patient samples in the training 

set, and 12 samples in the test set.  Each sample has (x, y) values in 2D coordinate system where 

x-axis corresponds to first feature component that is   and y-axis corresponds to second feature 

component that is   . If we want to calculate size of the test and train sets for whole leave-one 

out healthy subject iterations then they should be repeated 12 times so the healthy test set will 

be a 144 by 2 (12  12  2) matrix and the healthy and patient training sets will be matrices of 

size 1584 by 2(132  12 2).  

 

Figure 4.4 presents the similarity measure procedure for cosine similarity using D-LOO-CV.  
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Figure 4.4: Cosine similarity measure flowchart 
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While Figures 4.5 and 4.6 show the distribution of feature vectors obtained by cosine similarity 

measures using D-LOO-CV for a single healthy subject       and a single patient subject 

      respectively, it is shown for the collection of all healthy subjects            and 

patient subjects            in Figure 4.7. 

 

 

 

Figure 4.5: Distribution of feature vectors obtained by cosine similarity measures using D-

LOO-CV for a healthy subject (h=1) in (a) ROI PCC, (b) ROI LIPL and (c) ROI RIPL. 
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Figure 4.6: Distribution of feature vectors obtained by cosine similarity measures using D-

LOO-CV for a patient subject (p=1) in (a) ROI PCC, (b) ROI LIPL and (c) ROI RIPL. 
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Figure 4.7: Distribution of feature vectors obtained by cosine similarity measures using D-

LOO-CV for all healthy and patient subjects in (a) ROI PCC, (b) ROI LIPL and (c) ROI RIPL. 
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4.2.1.2 Dot Product Similarity Measure Results 

 

While Figures 4.8 and 4.9 show the distribution of feature vectors obtained by dot product 

similarity measures using D-LOO-CV for a single healthy subject (h=1) and a single patient 

subject (p=1) respectively, It is shown for the collection of all healthy subjects (h=1,…, 12) and 

patient subjects (p=1,…,12) in Figure 4.10.  

 

 

 

Figure 4. 8: Distribution of feature vectors obtained by dot product similarity measures using D-

LOO-CV for a healthy subject (h=1) in (a) ROI PCC, (b) ROI LIPL and (c) ROI RIPL. 
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Figure 4.9: Distribution of feature vectors obtained by dot product similarity measures using D-

LOO-CV for a patient subject (p=1) in (a) ROI PCC, (b) ROI LIPL and (c) ROI RIPL. 
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Figure 4.10: Distribution of feature vectors obtained by dot product similarity measures using 

D-LOO-CV for all healthy and patient subjects in (a) ROI PCC, (b) ROI LIPL and (c) ROI 

RIPL 
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4.2.1.3 Correlation Measure Results 

 

While Figures 4.11 and 4.12 show the distribution of feature vectors obtained by correlation 

similarity measures using D-LOO-CV for a single healthy subject (h=1) and a single patient 

subject (p=1) respectively, It is shown for the collection of all healthy subjects (h=1,…, 12) and 

patient subjects (p=1,…,12) in Figure 4.13.  

 

 

 

Figure 4.11: Distribution of feature vectors obtained by correlation similarity measures using D-

LOO-CV for a healthy subject (h=1) in (a) ROI PCC, (b) ROI LIPL and (c) ROI RIPL. 
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Figure 4.12: Distribution of feature vectors obtained by correlation similarity measures using D-

LOO-CV for a patient subject (p=1) in (a) ROI PCC, (b) ROI LIPL and (c) ROI RIPL. 
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Figure 4.13: Distribution of feature vectors obtained by correlation similarity measures using D-

LOO-CV for all healthy and patient subjects in (a) ROI PCC, (b) ROI LIPL and (c) ROI RIPL.   
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4.3 Results obtained by comparison of similarity measures 

 

As a very simple classification method the first and second feature vector components obtained 

by similarity measures for subjects in test sets are directly compared. For this purpose the class 

of the test samples are decided considering the equation (3.11) given in section 3.3.1. As an 

example the results obtained for cosine similarity is shown in Table 4.2.  

 

Table 4.2: The classes decided considering values of first and second feature vector components 

obtained by cosine similarity measure for healthy test samples in PCC ROI 

 
 

According to Table 4.2, among 12 healthy samples 10 are classified correctly resulting in 

(
  

  
)            accuracy. Note that Table 4.2 shows comparison performance for the first 

healthy subject       where Healthy subject and patient subjects            are excluded 

using D-LOO-CV.  

 

Classification performance accuracy obtained by simple comparison of similarly measures for 

healthy and patient test samples in PCC, LIPL and RIPL ROIs and for all similarity measure 

methods were computed and the results are summarized in Table 4.3.  

 

Table 4.3: Classification accuracy results based on comparing similarity measurement values of 

healthy and patient test sets 

 
 

This table presents the mean of the classification accuracy rate obtained by double leave-one-

outing 12 healthy and 12 OCD test samples for PCC, LIPL and RIPL ROIs and cosine, dot 

product and correlation similarities. It is concluded from this table that even without using any 

machine learning method to classify two groups, only by comparing the similarity measurement 

values are encouraging: The patients can be identified correctly by 87% considering the RIPL 

ROI and the accuracy rate of healthy test samples was 70% considering PCC ROI. But if the 
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average of both healthy and patient accuracy rates are considered it is concluded that the 

maximum average rate that can be obtained without using any classification method is 53.5% 

which is related to PCC ROI while using dot product and correlation methods. 

 

 

4.4 SVM Classification Results 

 

4.4.1 Parameter Selection for SVM Classification 

 

As mentioned in materials section, the classification analysis was performed on 24 participants 

(12 healthy and 12 OCD). First, 22 samples (11 healthy and 11 OCD) called training set were 

used to train the classifier. Then the leave-one-out cross validation was performed 12 times for 

healthy test sample and 12 times for patient test sample to evaluate the prediction accuracy of 

the classifier. 

 

The SVM classifier was used to discriminate between healthy and patient groups and as 

mentioned in chapter 3 the RBF kernel function was preferred to implement to train the SVM 

classifier. 

 

First of all, the RBF kernel parameter     and margin parameter (m) should be selected such 

that the best prediction accuracy of test data was obtained.  

 

Table 4.4: Classification accuracy of SVM with RBF kernel for different parameter values of 

RBF 

 

 

The Table 4.4 shows the average percentage of the classification accuracy for leave-one-out 

healthy and patient individuals using correlation method to extract the features considering the 

LIIPL region. It is concluded from the Table 4.4 that the parameters       and        get 

the best prediction for test healthy and patient samples. 
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4.4.2 SVM Classification Results Using Feature Extraction by Similarity Measure 

 

Table 4.5: Summary of the SVM classification results of D-LOO-CV healthy and patient test 

sets 

 
 

Table 4.5 presents mean of SVM classification accuracy of D-LOO-CV of healthy and patient 

test samples as percentage in D-LOO healthy and patient columns respectively. Also the 

average of healthy and patient results is presented in average column of the Table. The columns 

labeled by all ROIs as mentioned earlier relate to classification performance using feature 

vectors of all ROIs together.  

 

As can be seen in Table 4.5, the best SVM classification accuracy result of D-LOO-CV of 

healthy test samples was obtained using feature vectors produced by correlation measurement 

and dot product measures in PCC ROI which is 75%. 

 

The columns under label of all ROIs in Table 4.3 are correspond to classification performance 

of healthy and patient test subjects when all feature vectors (6) extracted from three ROIs are 

considered together for classification such that: 

 

[
                       

            
] 

 

The Figure 4.14 shows the distribution of samples for the best D-LOO-CV of healthy test using 

correlation similarity measures in LIPL ROI and also the hyper surface obtained by SVM.  

 

 

Figure 4.14: The best SVM classification accuracy result (100%) for a healthy test. (Left) 

distribution of samples. (Right) hyper surface separating classes for correlation similarity 

measurement in LIPL ROI. 
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The Figure 4.14 shows the best (100%) svm classification accuracy of D-LOO-CV of a healthy 

test (h=9) when the correlation similarity measure method was used for LIPL ROI. Support 

vectors (in circles) and decision hyper surface resulted from training the SVM classifier using 

training features extracted from correlation measurement considering LIPL ROI are represented 

in Figure 4.14. The hyper surface separates two classes well and cause the healthy test set, 

shown as blue crossed points in left-hand scheme, belongs to correct (healthy) class +1 which is 

shown as green crossed points. 

 

The worst SVM classification accuracy results (0%) of D-LOO-CV of a healthy (h=8) test were 

obtained using the cosine similarity method in ROI PCC as shown in Figure 4.15. 

 

 

 

Figure 4.15: The worst SVM classification accuracy result (0%) for a healthy test. (Left) 

distribution of samples. (Right) hyper surface separating classes for cosine similarity 

measurement in PCC ROI. 

 

 

The Figure 4.15 presents the worst hyper surface obtained for separating feature vectors 

extracted from cosine similarity measurement considering PCC ROI. This hyper surface (shown 

in Figure4.15 right) has caused the healthy test set (shown as blue crossed points in Figure 4.15 

left) belong to incorrect (patient) class    (shown as red plus points in Figure 4.15 left).  

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

The same analysis of D-LOO-CV of a patient test samples has done and the results have been 

inserted in D-LOO patient parts of Table 4.5. In this case, maximum value of the mean of SVM 

classification accuracy (70%) was achieved by measuring the cosine similarity in RIPL ROI as 

shown in Table 4.5. 

 

 

 

Figure 4.16: The best SVM classification accuracy result (100%). (Left) distribution of samples. 

(Right) hyper surface separating classes for cosine similarity measurement in ROI RIPL. 

 

 

The Figure 4.16 shows the best (100%) SVM classification accuracy of D-LOO-CV of a patient 

test (p=9) when the cosine similarity method was used for RIPL ROI. 

 

Conversely, The Figure 4.17 shows the worst classification performance of D-LOO-CV of a 

patient test sample (p=6) using correlation method for PCC RIO. 

 

 

 

Figure 4.17: The worst SVM classification accuracy result (100%). (Left) distribution of 

samples. (Right) hyper surface separating classes using correlation similarity measure in PCC 

ROI. 
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Considering Table 4.5, the best average of SVM classification accuracy of both D-LOO-CV 

healthy and patient test samples (69%) was obtained using correlation method for LIPL ROI, 

which was 75% for healthy subjects and 63% for patient subjects. Distribution of samples and 

the hyper surface obtained by SVM for both healthy and patient test samples is shown in Figure 

4.18.  

 

 

 

 

Figure 4.18: The best SVM classification results of D-LOO-CV for (a) healthy and (b) patient 

test sample 

 

 

The Figure 4.18 shows the best SVM classification performance of D-LOO-CV of both healthy 

(h=9, 100%) and patient (p=9, 100%) test samples using correlation method in LIPL ROI. 
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Conversely, the worst average of SVM classification performance of both healthy and patient 

test samples (55.5%) was obtained when the features were extracted using the cosine similarity 

measure in the PCC ROI as shown in Figure 4.19.  

 

 

 
                                                              

 

Figure 4.19: The worst SVM classification accuracy results of D-LOO-CV for (a) healthy and 

(b) patient test samples using cosine similarity measure in PCC ROI. 

 

 

The Figure 4.19 shows the worst classification performance accuracy of both D–LOO-CV for 

healthy (h=8, 8%) and patient (p=6, 8%) test samples using cosine similarity in PCC ROI. 
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Taking mean of the SVM result averages mentioned in Table 4.5 for each similarity measure 

method in three ROIs, shows that the dot product similarity measure gives the best average 

classification results for PCC, LIPL and RIPL ROIs as shown in Table 4.6.  

 

Table 4.6: Mean of the SVM result averages for each similarity measure method in all ROIs 

Similarity  

Measures 

PCC ROI 

average 

LIPL ROI 

average 

RIPL ROI 

average 

all ROIs 

average 

Mean 

 

Cosine 

 
 

55.5% 
 

68.5% 
 

64% 
 

59% 61.75% 

Dot product 66.5% 65% 68% 66% 66.35% 

Correlation 57% 69% 64.5% 65% 63.87% 

  

The Table 4.6 shows that in average the best SVM results are obtained using dot product 

similarity measure in PCC, LIPL and RIPL ROIs. The Figure 4.20 represents the distribution of 

the samples and resulting hyper surface by using the cosine, dot product and correlation 

similarity methods for LIPL ROI, respectively 
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Figure 4.20: The SVM classification results obtained by using dot product similarity method in 

(1) PCC ROI, (2) LIPL ROI and (3) RIPL ROI. (a), (b) parts relate to D-LOO-CV healthy and 

patient test samples respectively 
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Taking mean of the SVM result averages mentioned in Table 4.5 for all similarity measure 

methods in each ROI, shows that similarity measure methods give the best average 

classification result for the LIPL ROI as shown in Table 4.7.  

 

Table 4.7: Mean of the SVM results averages for all similarity measure methods in each ROI 

Similarity  

Measures 

PCC ROI 

average 

LIPL ROI 

average 

RIPL ROI 

average 

all ROIs 

average 

Cosine 55.5% 68.5% 64% 59% 

Dot product 66.5% 65% 68% 66% 

Correlation 57% 69% 64.5% 65% 

Mean 60% 67.5% 65.5% 63% 

 

The Table 4.7 presents that in average all similarity measure methods has obtained best results 

in LIPL ROI. The Figure 4.21 represents the distribution of the samples and resulting hyper 

surface by using the cosine, dot product and correlation similarity methods for LIPL ROI, 

respectively. 
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Figure 4.21: The SVM classification results obtained by using (1) cosine (2) dot product (3) 

correlation similarity methods for LIPL ROI. (a), (b) parts relate to D-LOO healthy and patient 

test samples respectively 
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4.4.3 SVM Classification Results Using Dimensionality Reduction Methods 

 

As stated before, since the data had large dimensionality and was complicated too much to 

classify two categories only using a classification method, it was decided to reduce the 

dimensionality of the data using linear and nonlinear methods as PCA, LDA and KPCA after 

subsampling of the data. The SVM classification results obtained after the dimensionality 

reduction of functional connectivity data was presented in Table 4.8 for double Leave-one-out 

healthy and patient test sets separately. Also the average of healthy and patient results is 

presented in the Table. 

 

Table 4.8: Summary of the SVM classification results for D-LOO-CV of healthy and patient 

test sets

 

 

It can concluded from Table 4.8 that using the PCA method for dimensionality reduction of the 

rsFC data considering PCC ROI resulted in maximum classification accuracy rate for healthy 

test samples (71%). The worst classification result of healthy test set was obtained for LIPL 

ROI (11%).  

 

Table 4.8 also shows that the best SVM classification performance for patient test samples 

(75%) was obtained using PCA method in RIPL ROI. The worst SVM classification result for 

patient test samples (34%) was obtained using LDA method in LIPL ROI. 

 

When the average of SVM classification performance of healthy and patient test samples are 

considered, using the LDA method in RIPL ROI cause the best average of SVM classification 

results (66.5%). The worst average of SVM classification results relates to LIPL ROI when 

using the kernel PCA method (41.5%). 
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Taking mean of the SVM result averages mentioned in Table 4.8 for each dimensionality 

reduction method in three ROIs, shows that the LDA method gives the best average 

classification results for PCC, LIPL and RIPL ROIs as shown in Table 4.9.  

 

Table 4.9: Mean of the SVM results averages for all ROI in each similarity measure method 
Dimensionality  

Reduction  

Methods 

PCC ROI 

average 

LIPL ROI 

average 

RIPL ROI 

Average 

all ROIs 

average 

 

Mean 

PCA 55.5% 44.5% 62.5% 52% 53.6% 

KPCA 56.5% 41.5% 55% 51% 51% 

LDA 56% 42% 66.5% 54.5% 54.75% 

 

Taking mean of the SVM result averages mentioned in Table 4.8 for all dimensionality 

reduction methods in each ROI, shows that all dimensionality reduction methods give the best 

average classification result for the RIPL ROI as shown in Table 4.10.  

 

Table 4.10: Mean of the SVM results averages for all dimensionality reduction methods in each 

ROI 

Dimensionality  

Reduction  

Methods 

PCC ROI 

average 

LIPL ROI 

average 

RIPL ROI 

average 

all ROIs 

average 

PCA 55.5% 44.5% 62.5% 52% 

KPCA 56.5% 41.5% 55% 51% 

LDA 56% 42% 66.5% 54.5% 

Mean 56% 42.6% 61.3% 52.5% 

 

 

4.5 GMM results 

 

The Table 4.11 presents the accuracy result by 50 EM iterations for healthy and patient subjects 

and also their average for features extracted by similarity measures on chosen ROIs. The GMM 

classification was performed with different mixture components (                ) among 

which     got the best results. The Table 4.11 presents the GMM results for    . 

 

Table 4.11: Summary of the GMM results trained by EM algorithm for D-LOO-CV healthy and 

patient test samples 
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It is concluded from Table 4.11 that the best results obtained using cosine similarity method for 

LIPL ROI for all of healthy, patient and average cases (76%, 71% and 73.5% respectively). The 

worst result relates to again using cosine similarity for PCC ROI. 

 

The Figure 4.22 presents the healthy and patient training sets obtained by cosine similarity 

measure in LIPL ROI and modeled separately by a Gaussian mixture with one mixture 

component. 

 

 

 
Figure 4.22: Fit GMM on (a) healthy and (b) patient training sets using one mixture component 

(k=1) 

 

The Figure 4.23 presents the healthy and patient training sets obtained by cosine similarity 

measure in LIPL ROI and modeled separately by a Gaussian mixture with two mixture 

components. 

 

 

 
Figure 4.23: Fit GMM on (a) healthy and (b) patient training sets using two mixture components 

(k=2) 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

5.1 Summary 

 

The main purpose of this thesis is the use of the resting-state functional connectivity for 

discriminative analysis of obsessive compulsive disorder. On the resting-state fMRI data of 12 

healthy and 12 patient with OCD. the functional connectivity between three regions of brain 

(PCC, LIPL, RIPL) and all brain voxels were computed by Pearson’s correlation coefficient 

available in the CONN program, a Matlab toolbox. In order to make a decision between healthy 

and OCD groups, we considered the functional connectivity as a pattern recognition problem 

which consists of feature extraction and classification components. Several methods were 

proposed for each component such that for feature extraction two approaches were examined. In 

the first approach the FC data was subsampled and then dimensionality reduction methods were 

applied to reduce the dimensionality. In the second approach the similarity measurement 

methods were applied on FC data. The feature vectors extracted from the first component were 

used as inputs for classification part. Using Double leave-one-out cross-validation method the 

training and test sets were generated from feature vectors. In order to discriminate between 

OCD and healthy groups the classification methods as support vector machine and Gaussian 

mixture models were examined. Finally OCD groups were detected according to the 

classification results. 

 

 

5.2 Discussions 

 

Through this study four different approaches considered for feature extraction and classification 

methods to get the best classification results.  

Firstly, the similarity measurement methods as correlation, dot product and cosine similarity 

were used to extract the feature vectors and their classification accuracy was evaluated only by 

comparing the values of two produced feature vectors. Best was obtained by cosine similarity 

on PCC ROI (average accuracy 53.5%). 

As a second approach, the SVM classifier is used to discriminate healthy and OCD classes 

through feature vectors obtained by similarity measures. It is observed using the SVM method 

improved the classification performance with respect to deciding by simple comparison of 

similarity values. Using the correlation method on the LIPL ROI got the best average SVM 

classification result (69%) among all similarity measurement methods and all ROIs.  
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Thirdly, the subsampling followed by dimensionality reduction methods as PCA, KPCA and 

LDA were used to extract feature vectors for SVM classification. Best average accuracy 

(66.5%) was obtained by LDA on RIPL ROI. Notice that this result is not better than second 

approach given above although the approach is more complicated and time consuming. 

As the last approach, the combination of similarity measurement as feature extraction method 

and the GMM as a classifier was used to detect OCD groups. In this case, the cosine similarity 

method got the best average classification performance (73.5%) of both healthy and patient test 

samples on LIPL ROI.  

In total consideration of four approaches, it is observed that the last approach with cosine 

similarity followed by GMM on LIPL ROI resulted in the best average classification accuracy 

rate (73.5%). It is also best for healthy and patient performances.  

So the most appropriate method to discriminate OCD from healthy brain is to apply cosine 

similarity method to extract the features and use GMM as the classifier.  

Also comparing the results obtained by simple comparison of similarity measurement values 

(first approach) with results of using a classifier (second, third and fourth approaches) 

demonstrates that using SVM or GMM classification methods can enhance detection of the 

OCD. Another result derived from this research is that the similarity measurement methods 

were more accomplished than dimensionality reduction methods to extract the proper features 

from rsFC data.  

This study concludes that first, the functional connectivity differences in LIPL and RIPL 

(especially LIPL) ROIs of OCD brain were most helpful to detect this disease. Second, This 

thesis supports the research has done by Koçak et al. [2] that suggests there are functional 

abnormalities in right fronto-parietal networks of the OCD brain including  IPL and PCC 

regions. Also it is important that this study encourages employing pattern recognition 

algorithms on rs-FC data for detection of OCD, although it is not observable directly in MRI. 

 

 

5.3 Future work 

 

As the use of machine learning methods for detection of mental disease has not long history, 

many methods may exist to detect them. In this study the resting-state functional connectivity 

between three ROIs and all brain voxels were considered while the rs-FC among ROIs or 

among voxels can be also studied as input data. Moreover, other feature extraction methods 

rather than similarity measurements or PCA, KPCA and LDA methods can be used to extract 

features for better discrimination of the OCD from healthy group. For example independent 

component analysis (ICA), locally linear embedding (LLE) and Adaptive Boosting (AdaBoost) 

methods may result in better performance. Also other classification methods can be examined to 

evaluate whether they perform better classification results may enhance the OCD detection. 

Further, the classification of OCD can be done according to the obsession type of the patients. 

This research can be generalized for detection of other psychological and mental disorders. 
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Also, pattern recognition methods can be applied to task-related state of the brain of OCD. 

Analyze the rs-FC of OCD brain by inciting the OCD disease putting patient in triggering 

conditions is another work can be focused on in future. 
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