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ABSTRACT 

TRACKING BY CLASSIFICATION 

 

Marpuç, Tuğhan 

 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. A. Aydın Alatan 

 

September 2013, 83 pages 

 

Novel online classifiers are examined and their applications on 2D visual tracking are 
analyzed in this study. Recently, an emerging class of methods, namely tracking by 
classification or tracking by detection, achieved quite promising results on challenging 
tracking data sets. These techniques train a classifier in an online manner during tracking 
to separate the object from its background. These methods only take input location of the 
object and a random feature pool; then, a classifier bootstraps itself by using the current 
tracker state and extracted positive and negative samples. In this thesis, several of these 
online classifiers are analyzed and a novel tracking system is proposed. A novel feature 
selection method is introduced to increase the discriminative power of the classifier and a 
Monte Carlo experiment is setup to observe the performance of the proposed technique. 
As a final step, a Hidden Markov Model (HMM) is utilized to filter the features that 
improve the performance during tracking. Moreover, a state of the proposed HMM is 
allocated to handle occlusions. The proposed tracker is tested on publicly available 
challenging video sequences and superior tracking results are achieved in real-time. 
 
Keywords: tracking by classification, tracking by detection, discriminative methods, 
hidden Markov models, occlusion handling. 
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ÖZ 

SINIFLANDIRMA ĐLE TAKĐP 

 

Marpuç, Tuğhan 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan 

 

Eylül 2013, 83 sayfa 

 

Bu tezde, yeni çevrimiçi sınıflandırma yöntemleri ve bu yöntemlerin 2B görüntülerde 
takip uygulamaları analiz edildi. Son zamanlarda, sınıflandırma ile takip ya da tespit ile 
takip, olarak adlandırılan bir grup yöntem zorlu videolarda başarılı sonuçlar elde etti. Bu 
yöntemler takip sırasında hedefi arkaplandan ayırmak için çevrimiçi bir sınıflandırıcıyı 
eğitirler. Takibe hedefin ilk pozisyonu ve bir grup rastgele seçilmiş öznitelikle başlarlar. 
Daha sonra, takip algoritmasının son durumu ve mevcut kareden çıkarılan pozitif ve 
negatif örnekler kullanılarak, sınıflandırıcı kendi kendisini eğitir. Bu tezde, çevrim içi 
sınıflandırıcılardan birkaçı analiz edildi ve yeni bir hedef takip sistemi önerildi. 
Sınıflandırıcının marjını artırmak için bir öznitelik seçme yöntemi sunuldu ve bu yöntemin 
çalışıp çalışmadığı bir Monte Carlo testi ile gösterildi. Daha sonra, takip sırasında seçilen 
özniteliklerin başarısı saklı Markov modeli ile süzüldü. Saklı markov modelinin bir 
durumu örtüşmeleri çözmek için kullanıldı. Önerilen takip algoritması herkesin 
ulaşabileceği zorlu videolarda test edildi ve gerçek zamanda diğer algoritmalara üstünlük 
sağlayan bir başarım elde edildi. 
 
Anahtar Kelimeler: sınıflandırma ile takip, tespit ile takip, ayrımcı yöntemler, saklı 
Markov modelleri, örtüşme çözme. 

 



vii 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my family 

  



viii 

ACKNOWLEDGEMENTS 

I would like to express my sincerest thanks to my supervisor Prof. Dr. A. Aydın Alatan for 
his guidance, support and valuable contributions throughout the preparation of this thesis. 
 
I would like to thank Prof. Dr. Mübeccel Demirekler; I have learned so much from her. 
 
I would like to acknowledge the support of ASELSAN Inc. for the realization of this thesis. 
 
I would like to thank my colleagues Yoldaş Ataseven, Kutalmış Gökalp Đnce, Aykut Koç, 
Burak Oğuz Özkalaycı and Cevahir Çığla for their contributions throughout the preparation 
of this thesis. 
 
The last but not the least, I express my sincerest thanks to my family and friends who have 
given me encourage and support. 

  



ix 

TABLE OF CONTENTS 

ABSTRACT .......................................................................................................................... V 

ÖZ ......................................................................................................................................... VI 

ACKNOWLEDGEMENTS ............................................................................................ VIII 

TABLE OF CONTENTS ................................................................................................... IX 

LIST OF TABLES .............................................................................................................. XI 

LIST OF FIGURES .......................................................................................................... XII 

CHAPTERS 

1 INTRODUCTION ........................................................................................................... 1 

2 LITERATURE REVIEW ............................................................................................... 3 

2.1 GENERATIVE METHODS ................................................................................................ 3 

2.2 DISCRIMINATIVE METHODS .......................................................................................... 5 

2.2.1 Online AdaBoost ................................................................................................... 8 

2.2.1.1 Offline Boosting............................................................................................. 8 

2.2.1.2 Offline Boosting For Feature Selection ......................................................... 9 

2.2.1.3 Online Boosting ............................................................................................. 9 

2.2.1.4 Online Boosting For Feature Selection ........................................................ 12 

2.2.1.5 Tracking with Online AdaBoost .................................................................. 15 

2.2.2 Compressive Tracker ........................................................................................... 16 

2.2.2.1 Preliminaries on Compressive Tracking ...................................................... 17 

2.2.2.1.1 Random Projection ............................................................................... 17 

2.2.2.1.2 Random Measurement Matrix .............................................................. 17 

2.2.2.2 Tracking in Compressed Domain ................................................................ 18 

2.2.2.2.1 Compressive Features ........................................................................... 18 

2.2.2.2.2 Classifier Construction and Update ...................................................... 19 

3 PROPOSED TRACKING ALGORITHM .................................................................. 21 

3.1 PRELIMINARIES ........................................................................................................... 21 

3.2 PROPOSED ALGORITHM .............................................................................................. 21 

3.2.1 Feature Selection from Global Feature Pool ....................................................... 22 

3.2.2 Does Feature Selection Increase Discriminative Power? .................................... 24 

3.2.3 Feature Assessment with HMMs ........................................................................ 25 

3.2.4 Utilization of a Backup Feature Pool .................................................................. 27 

3.2.5 Classifier Construction and Tracking .................................................................. 29 



x 

3.2.6 Discussion ............................................................................................................ 32 

3.2.7 Implementation Details ........................................................................................ 33 

3.2.7.1 Weak Classifiers ........................................................................................... 33 

3.2.7.2 Image Features ............................................................................................. 34 

4 EXPERIMENTAL RESULTS ...................................................................................... 37 

4.1 EVALUATION METHODOLOGY .................................................................................... 39 

4.2 TRACKING OBJECT LOCATION .................................................................................... 39 

4.3 TRACKING OBJECT SCALE AND LOCATION ................................................................. 51 

4.4 COMPUTATION COST OF ALGORITHMS ....................................................................... 53 

5 CONCLUSION .............................................................................................................. 55 

5.1 SUMMARY ................................................................................................................... 55 

5.2 CONCLUSION ............................................................................................................... 56 

5.3 FUTURE WORKS .......................................................................................................... 57 

REFERENCES .................................................................................................................... 59 

APPENDICES 

A    HIDDEN MARKOV MODELS ................................................................................ 65 

 

  



xi 

LIST OF TABLES 

TABLES 
Table 2.1: Online Boosting Algorithm: hweak is the set of N weak classifier trained so far, (x, 

y) is labeled training sample, and � is the learning algorithm for weak classifiers. ........ 10 
Table 2.2: Online AdaBoost for feature selection: h

weak is the set of NxM weak classifier 
trained so far, (x, y) is labeled training sample, and � is the learning algorithm for weak 
classifiers. ........................................................................................................................ 13 

Table 2.3: Compressive Tracking algorithm. � determines the radius of search region,  � 
determines the region where positive examples are sampled and (�, �) determines the 
region for negative samples. ............................................................................................ 20 

Table 3.1: Feature selection method from global feature pool ℱ......................................... 23 
Table 3.2: Pseudo code of proposed algorithm. ................................................................... 30 
Table 4.1: Mean center location error. Bold green font shows the best and italic red font 

shows the second best performance. Only best of the KLT algorithms is used in ordering.
 ......................................................................................................................................... 37 

Table 4.2: Standard deviation of center location error. Bold green font shows the best and 
italic red font shows the second best performance……………………………………..38 

Table 4.3: Error at one standard deviation (µ+σ). Bold green font shows the best and italic 
red font shows the second best performance. .................................................................. 39 

Table 4.4: An overview of video sequences used in experiments ....................................... 40 



xii 

 

LIST OF FIGURES 

FIGURES 
Figure 2.1: Basic steps of tracking with a classifier. ............................................................ 16 

Figure 2.2: Graphical representation of dimension reduction from high-dimensional vector 
x to low-dimensional vector v. Each white rectangle corresponds to a rectangular filter 
convolving the intensity at a fixed position of training sample image. 
�� is the entries of 
sparse matrix R based on being positive, negative or zero. .............................................. 18 

Figure 3.1: Monte Carlo output of two trackers: dotted line is the result of a tracker having 
fixed feature pool, straight line is the result of a tracker with feature replacement applied 
at each frame. ................................................................................................................... 25 

Figure 3.2: State transitions of the proposed HMM. ............................................................ 27 

Figure 3.3: Change in state distribution of HMM with a given set of observation. ............. 27 

Figure 3.4: State distribution of classifier and backup pools. .............................................. 28 

Figure 3.5: Haar-like2 features used in the tracker where grey rectangles have positive and 
white rectangles have negative coefficients. .................................................................... 34 

Figure 3.6: First and third rows show the result of the tracker where (red) rectangles mark 
the tracked object and (yellow) numbers are the numbers of current frame. Second and 
fourth rows show the amount of features used (in percentage: 0 denotes %0 and 1 is 
equal to %100). ................................................................................................................ 35 

Figure 3.7: First and third rows show the result of the tracker where (red) rectangles mark 
the tracked object and (yellow) numbers are the numbers of current frame. Second and 
fourth rows show the amount of features used (in percentage: 0 denotes %0 and 1 is 
equal to %100). ................................................................................................................ 36 

Figure 4.1: Mean and standard deviation of center location error versus frame number plots.
 .......................................................................................................................................... 41 

Figure 4.2: Mean and standard deviation of center location error versus frame number plots.
 .......................................................................................................................................... 42 

Figure 4.3: Mean and standard deviation of center location error versus frame number plots.
 .......................................................................................................................................... 43 

Figure 4.4: Mean and standard deviation of center location error versus frame number plots.
 .......................................................................................................................................... 44 

Figure 4.5: Mean and standard deviation of center location error versus frame number plots.
 .......................................................................................................................................... 45 

Figure 4.6: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) Cola Can (b) Coupon Book ............................... 46 



xiii 

 

Figure 4.7: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) David (b) Girl .................................................... 47 

Figure 4.8: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) Occluded Face (b) Occluded Face 2 .................. 48 

Figure 4.9: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) Snack Bar (b) Surfer .......................................... 49 

Figure 4.10: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) Sylvester (b) Tea Box ........................................ 50 

Figure 4.11: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) Tiger 1 (b) Tiger 2 ............................................. 51 

Figure 4.12: Screen shots of tracking scale parameter results. (a) Snack Bar (b) David (c) 
Girl (d) Tea Box ............................................................................................................... 52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

 

 

 

 

 



1 

 

 

 

CHAPTER 1  
 
 

 INTRODUCTION 

Visual tracking is an important step for various applications, such as video surveillance [70], 
autonomous driving [26] or human-computer interaction [69]. The challenges of a visual 
tracking algorithm depend on several factors. One of these factors could be the variations in 
the scene, such as illumination changes, deformations, in-plane and out-of-plane rotations, 
scale changes, motion blur and partial occlusions bring misalignment. Being robust to all 
these variations is a great challenge. Another factor could be the background clutter. If the 
object and background is very similar, it is difficult to find features which are able to 
discriminate the object from background. Moreover, contrast of the object is another 
challenge for feature selection. Temporal noise of the camera could be another problem for 
features especially related to derivatives such as corners and edges. The above challenges are 
all related to appearance. For position tracking, maneuver capabilities of the object might 
also bring extra difficulties, i.e. tracking an object having high acceleration abilities is 
another great challenge.  
 
A typical tracking system consists of three steps:  
1) a motion model, which opens a related gate to trajectory of the object,  
2) a search algorithm, which operates in the gate opened by motion model and -thanks to the 
motion model-, object is searched around the most possible location according to trajectory 
of this object,  
3) an appearance model, which is used to find a match in the search gate.  
 
The focus of this thesis is about the third step of them. For simplicity, a random walk model 
is used for motion model, i.e. the position found by search algorithm is accepted as it is and a 
fixed size gate is opened around last known position. Brute-force search is applied as a 
search algorithm i.e. every point in search gate is evaluated.  
 
The main contribution of the thesis is on the adaptation of the appearance model. Although 
some tracking methods [26][27] employ non-adaptive appearance models, appearance 
adaptation is important to handle variations in the scene mentioned above [31][38][47][52]. 
However, one key problem of the trackers having adaptive appearance model is drifting 
caused by misalignments and partial occlusions. Since appearance model is updated with 
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the image patch pointed by tracker itself, errors are integrated ending up with drifting. 
Another challenge is the selection of the update time and the rate. If model is updated, when 
an occlusion take place, it might be difficult to point the object at consecutive frames and 
tuning of update rate is important to give feasible reaction to changes. 
 
In this thesis, tracking is considered as a classification problem to discriminate the object 
from background. No prior knowledge about the object is used other than its location in the 
first frame. Then, a classifier is constructed with positive and negative examples extracted 
from this first frame. Given a new video frame, the classifier is used to test the image patches 
in the search gate and a confidence map is constructed with a brute-force search. The peak of 
this confidence map is marked as the new position of the object. 
 
In many prior works [37][38][47][52], features of the classifier are selected randomly. 
However, in this thesis, the features are selected in a more discriminative way without 
compromising against the randomness. Then, this initial classifier is updated during tracking 
incrementally. The goal of the thesis is making these updates in a robust manner to alleviate 
drifting while adapting to changes in the object and the background. In order to achieve this, 
the discriminative abilities of features are assessed with an HMM and indiscriminative 
features are replaced with discriminative ones which are again assessed by an HMM in a 
backup pool. This backup pool is trained to update the classifier in terms of feature 
replacement. Moreover, this pool handles the ambiguity of success of new features, i.e. any 
feature has not proven to be discriminative is not included in the classifier.  
 
Other than some changes in the scene, partial occlusions might also cause drifting. If the 
occluded part of an object is learned, the classifier might get confused in the successive 
frames ending up with inevitable drift. One state of the HMM is reserved to handle such 
partial occlusions. The features decided to be occluded are not trained, so that the misaligned 
parts of training samples are not learned. Therefore, the drift caused by the occluded samples 
is prevented. 
 
The remainder of the thesis is organized as follows: In Chapter 2, the relevant literature is 
reviewed and the methods from the literature that are used during experiments are detailed; 
in Chapter 3, the proposed tracking algorithm is introduced and explained in detail; in 
Chapter 4, quantitative results of proposed tracking algorithm is presented on a number of 
challenging video sequences. The thesis is concluded in Chapter 5. 
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CHAPTER 2  
 
 

LITERATURE REVIEW 

In this chapter, fundamental as well as state-of-the-art visual tracking methods are reviewed. 
Although concern of the thesis is tracking methods based on classification, which is also 
referred as tracking by detection or discriminative methods, some other methods are also 
reviewed briefly. First, visual tracking methods are categorized. Then, methods are explained 
at related category; the methods used during experiments are further explained at sub 
sections.  
 
Generally, tracking algorithms are classified into two groups: Generative methods and 
Discriminative methods. Hybrid methods that are the combination of these two groups is 
also possible. 

2.1 Generative Methods 

Generative methods typically learn a model to represent a target, while discarding 
information coming from background. Then, in the next frame try to find an image region 
which minimizes the predefined cost function. 
 
The simplest target tracking model might be a rectangular region [1]. In consecutive frames, 
this window is tracked by one of the matching methods, such as cross correlation, sum of 
squared differences (SSD), mean squared error (MSE). Scharstein and Szeliski reviewed 
these and  some other methods in [2]. The motivation for using such a simple model is based 
on the assumption that gray levels of pixels change slowly from frame to frame. In order to 
compensate distortions in the window, such as the change of view point, one might introduce 
deformation models [3][4]. Since there is not a restriction on intensities or gradients in the 
window, any point can be tracked by a window. However, some points in the window might 
be more stable than the others, i.e.  their gray levels change more slowly. Moreover, tracking 
stable and repetitive points might be more robust comparing to tracking all points in the 
window. This observation brings to the idea of tracking image features. 
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Features can be defined as corners, edges, contours, blobs or any specially defined region. 
Matching process is similar to the window tracking. However, in this case, special regions 
are used instead of the whole window, and these regions are assumed to be more resistant to 
matching problems. One of the most popular feature tracking method is that tracking good 
features to track (GFT) points [5] by Kanade-Lukas tracker (KLT) [6]. KLT is known as an 
optic flow method and such methods are based on constant intensity constraint [1]. By using 
the first order expansion of this constancy, one can obtain the link between optic flow and 
the spatio-temporal gradients of an image. When this constancy constraint is disobeyed or 
feature points are lost, due to rotation and occlusion, number of mismatched feature points 
increases. For detecting the errors automatically, one can use forward-backward error check, 
namely template inverse matching [7]. Further elimination of outliers and estimation of 
geometric transform is also possible [8][9][10].  
 
Other than the optic flow methods, descriptor based feature matching methods are also 
widely used [11][12][13][14][15]. Actually, any feature descriptor for visual representation 
can be turned into a tracker [16]. While some trackers exploit one descriptor for tracking 
[17][18], some of them combine several descriptors for more robustness. These descriptors 
aim to be invariant to scale, rotation or color changes. However, their main drawback is due 
to the fact that they are independent of the data, i.e. they are predefined and fixed. These 
fixed descriptions might give the same response to both target and other objects in the scene, 
i.e. both descriptions may fall into same space in certain conditions [19]. Adaptive 
representations are introduced to solve this problem [20][21][22][23]. 
 
Exploiting data for representation might be a good solution to handle target variability. 
Jepson et al. [20] offer an appearance model involving a mixture of image structure and the 
appearance model is updated by an online EM-algorithm to adapt changes while observing 
the stability of image structure. They weight stable properties more heavily for motion 
estimation, and unstable properties are less weighted [20].  As different approaches, Zhou et 
al. [21] incorporate adaptive appearance models in a particle filter for robust visual tracking, 
whereas Lee and Kriegman [22] train a generic representation of the appearances of a class 
of objects (e.g., human faces) off-line; then, during tracking an appearance model of this 
class (e.g., a particular person) is incrementally learned on-line. Ross et al. [23] offer a 
tracking method which incrementally learns a low-dimensional subspace representation of 
image with a sample mean update, and a forgetting factor for the older observations.  
 
Recently, sparse representations are also used to model an object by a sparse linear 
combination of target and trivial templates [24]. This algorithm is noted as having high 
computational complexity, and Li et al. [25] offer to solve the optimization problem of this 
tracker by using the orthogonal matching pursuit algorithm. The aforementioned algorithms 
extract descriptions special to the tracked object. This idea is quite powerful comparing to 
predefined descriptions in terms of handling different kind of targets. However, background 
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is still out of concern, i.e. background is not modeled. Appearance model used in tracking 
might be easily confused at cluttered background. Therefore, a different approach should be 
exploiting the information coming from background and these methods are called 
discriminative methods which are discussed next. 

2.2 Discriminative Methods  

Discriminative algorithms approach tracking as a binary classification problem, in which a 
classifier is trained to separate a target from its background. Typically, the target and its 
background are described by a set of features. Then, in the next frames, a confidence map is 
constructed with the trained classifier, and the point having maximum confidence value is 
marked as target. If the algorithm is an online one, target and background are sampled to 
update classifier. 
 
Avidan [26] introduces Support Vector Tracking (SVT) which manipulates Support Vector 
Machine (SVM) classifier into an optic-flow-based tracker. Instead of minimizing a cost 
function of intensity difference, as in optic-flow methods, SVT maximizes SVM 
classification score in consecutive frames. For handling large motions, pyramidal support 
vectors are trained, and the target is searched from coarse to fine approach, which is similar 
to optic-flow methods approach. As an application, a vehicle tracking system is built. At 
offline stage, SVM classifier is trained, and support vectors are obtained. Background 
information is exploited in SVT; however, discrimination between vehicles is not achieved. 
In other words, if two vehicles get closer or occlude each other, the decision of SVT is left 
up to noise. Another offline algorithm is proposed by Lepetit et al [27]. The object is 
assumed to be planar, and only first frame is used for training classifier. To extend the 
training set, affine space is sampled, and these transformations are applied to object image, 
so that new images are synthesized. At the offline stage, they use randomized trees [28] to 
classify feature points extracted from extended training set. At runtime, the patches centered 
around feature points preprocessed, and dropped down the trees. Outlier matches are 
eliminated, and pose of the object is obtained by RANSAC [8]. The basic problem with this 
algorithm is that only the first frame, and synthesized versions of it are used for training. If 
target rotates around itself this tracker is likely stop tracking. Offline training step of these 
methods makes them less attractive for real time applications. Other than predefined 
variations in object appearance are not welcomed and also it is not possible to sample all 
possible backgrounds. Therefore, online learning algorithms are more powerful to give 
response to variations in object and background appearances. 
 
On the other hand, Nguyen et al. [29] use a set of linear discriminant functions to 
discriminate object from background. Gabor filters [30] are used for texture analysis and an 
incremental update procedure is applied. Finally, object matching is achieved by 
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maximization of sum of the discriminant functions. As a different approach, in [31] an 
ensemble of weak classifiers is introduced for tracking. The weak classifiers are combined 
into a strong classifier by using AdaBoost [32]. In successive frames, pixels are labeled 
either belonging to background or the object using strong classifier.  After constructing 
confidence map, peak of the map is obtained by using mean shift [33]. During tracking, new 
weak classifiers are trained, and added to ensemble while old ones excluded. In this tracker 
each pixel is labeled separately, so spatial information is not taken into account which is 
likely to make tracking more difficult than it should be. All the pixels are treated as feature 
points, i.e., a feature point selection is not applied, so that a more stable tracking may be 
achieved. Moreover, the same description is used for all the pixels. 
 
As in generative tracking methods, selecting features for appearance model considering 
current target or background likely to improve tracking performance in discriminative 
tracking methods as well.  Especially in cluttered backgrounds, selecting features, which are 
separating target from background better, decreases mistakes of trackers. Another advantage 
of online feature selection is being more robust to occlusions. Recently, trackers with feature 
selection mechanisms are proposed. Collins et al. [34] offer a method to select color features 
that best discriminates the object from current background. The ranking mechanism is based 
on two-class variance ratio and log-likelihood ratio test. The authors assume that the features 
best discriminate between object and background are also the best features for tracking. 
However, selection of the best discriminative features does not guarantee being robust to 
variations of object, such as illumination change, rotation, occlusion. Wang et al. [35] 
propose an online feature selection method from a large Haar feature space [36]. A two step 
discriminative feature selection method is proposed to initialize appearance model. In 
initialization step background is used; however, at run time only object likelihood is used for 
tracking. A feature replacing method is applied at certain times during tracking to handle 
background information. However, changing features suddenly at certain times might also 
change tracker response abruptly. Moreover, instead of using object similarity for tracking, a 
Bayesian approach might be used to take advantage of background information more. 
Grabner et al. [37][38] proposed an online AdaBoost (OAB) feature selection method. For 
the online AdaBoost, the authors use the ideas and experimental comparisons of Oza et al. 
[39][40][41]. The techniques of Oza are slightly different than Avidan's work in [31], since 
Avidan trains a new weak classifier at each frame, and adds it to ensemble. However, Oza 
estimates the importance (difficulty) of a sample by propagating it through a set of weak 
classifiers, and updates existing weak classifiers. Grabner et al. further improve this online 
version of AdaBoost with a feature selection method which is called selector. Further details 
of AdaBoost and OAB are discussed in Section 2.2.1. 
 
Feature point tracking methods also approach tracking as a classification problem. Recently, 
trackers with online classifiers introduced. An extension to [27] is presented by Özuysal et 
al. [42] in which randomized trees are trained at each frame and a trained classifier is used 
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for feature point matching. Moreover, this algorithm also learns both geometry and 
appearance of the target. Another approach is proposed by Meltzer et al. [43] which suggest 
using Kernel PCA (KPCA) to extract information from short baseline tracking to develop 
more powerful descriptors for wide baseline matching. Appearance variations of each feature 
point are learned by KPCA. However, in order to use wide baseline tracker, the samples are 
required to learn descriptions of feature points. Moreover, these samples are collected by a 
short baseline tracker, such as KLT, where short displacements are assumed. Grabner et al. 
[44] applied online AdaBoost to Harris corners [45]. For each feature point, a classifier is 
trained, for which negative samples are selected from the neighboring feature points. For 
measuring the stability of feature points, a simple mechanism is applied by exploiting 
temporal information. RANSAC is performed as a final step for both estimation of 
homography and verification of correct updates. Since for each feature point, an online 
AdaBoost algorithm is performed, this method has high computational complexity. 
 
Despite its advantages, online learning faces a critical problem: Each update of the tracker 
may introduce an error, and integration of errors might end up with tracking failure (drifting 

problem) [16]. In order to cope with this problem, Grabner et al. [46] propose semi-
supervised boosting method, in which labeled samples come from the first frame, and the 
rest of the training samples left unlabeled. The update process is formulated in a semi-
supervised fashion as combined decision of a given prior, for which only labeled samples are 
used for training, and an online classifier. Although this method seems to be a good solution 
for drifting problem, it is highly dependent to appearance of target and background at first 
frame. Moreover, it is hard to find the exact location of the object at the first frame. 
Therefore, Babenko et al. [47] propose a tracking method based on online Multiple Instance 
Learning (MIL), in which instead of labeled samples, labeled bag of samples are used. 
Consequently, uncertainties related to the locations of the positive updates are resolved. 
They inspired from work of Viola et al. [48] and Oza [39]. Motivated from semi-supervised 
[46] and MIL [47] methods, Zeisl et al. [49] offered an online learning algorithm which 
combines both of these methods into a coherent framework. Kalal et al. [50] offer an online 
learning method which is called P-N learning. Learning process is guided by constraints 
between positive (P) and negative (N) samples, so that labeling of unlabeled data are 
restricted. However, if object totally leaves the scene or occluded, learning continues and 
incorrect samples are used for learning. P-N learning is further used by track-learn-detect 
(TLD) framework [51] in which modules correct each other to decrease errors. 
 
Recently, Zhang et al. [52] offer Compressive Tracking (CT) where tracking is implicitly 
moved to a compressed domain.  Appearance model of the target is based on the features 
extracted from the multi-image feature scale with data-independent basis. This model 
performs non-adaptive random projections, i.e. features are extracted once at the beginning 
of tracking and not changed during tracking. A quite sparse matrix is used to extract features 
for both object and background. Tracking is considered as a binary classification problem, 
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for which naive Bayesian classifier with online update in the compressed domain is used. 
More details about CT are given in Section 2.2.2. 

2.2.1 Online AdaBoost 

In this section, first, offline boosting and its utilization for feature selection is briefly 
reviewed for completeness. Then, online boosting and a feature selection mechanism are 
presented. Finally, a tracking method using online boosting with feature selection is 
introduced. 

2.2.1.1 Offline Boosting 

Boosting simply transforms a weak classifier into a strong one. This is achieved by 
combining, with a weighted voting, N hypotheses, each of which is obtained by training 
classifier by different subsets. Let’s define some related terms: 
 
Weak classifier: A weak classifier is only expected to perform slightly better than flipping a 

coin, i.e. for a binary decision success rate should be slightly larger than 50%. The 
hypothesis ℎ���� is obtained by training a weak classifier, such as naive Bayesian, least 
square regression. 

Strong classifier: Given a set of N weak classifiers, a weighted linear combination of these 
weak classifiers is calculated by strong classifier. The value ����(. ) can be considered as 
confidence measure.  

 ℎ������(�) = �� �(����(�)) (2.1) 

����(�) = ! "� ∙ ℎ�����(�)$
�%&  (2.2) 

  
In the method proposed by Freund and Schapire [32], each training sample has a weight 
which determines the probability of being selected for a training set of an individual 
component weak classifier. If a training sample is correctly classified by a component 
classifier, its chance of being used again by the subsequent component classifier is reduced. 
Therefore, the algorithm focuses on informative samples which are difficult to classify. The 
basic algorithm works as follows: Given a set of labeled training samples ' = (〈�&, *&〉, … , 〈�- , *-〉 | �0 ∈ ℝ3, *0 ∈ (−1, +1}} and an initial weight distribution 8(�0) = &-. 
Based on ' and 8(�) weak classifier ℎ����� is trained which has an error 9�. Weak classifier 
gets a weight "� = &: ∙ ln (&=�>�> ) to contribute to final strong classifier according to its error. 8(�) 

is updated so that misclassified samples probability are increased and weights of others are 
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decreased. This procedure is repeated, and at each iteration a new weak classifier is added to 
the ensemble, until a certain stopping condition is met (e.g. a given number of weak 
classifier is trained or a given error rate is reached). 

 
Bounds on the training and generalization error of AdaBoost are proved by Freund and 
Schapire [32]. In the binary classification case, training errors decreases exponentially with 
iteration number N. Schapire et al. [53] show theoretically and experimentally that boosting 
especially maximizes the margin of training samples. 

2.2.1.2 Offline Boosting For Feature Selection 

Tieu and Viola [54] introduce a boosting methods to select features. Given a feature pool ℱ 
including all possible features that are interested, due to computational reasons a subset ℱ�?@ = (�&, … , ��} ⊆ ℱ of it is used. Then, considering each feature as a weak classifier, 
boosting selects from feature pool ℱ�?@. 
 
Training is similar to AdaBoost except one step. At the training of a weak classifier, each 
feature in the pool ℱ�?@ is used separately and k different classifiers are trained. Then, the 
classifier having minimum error is assigned to ℎ����� . The weight "� is calculated according 
to the error of ℎ�����. The final hypothesis is the weighted linear combination of weak 
classifiers having possibly different features. Therefore, the features are selected according 
to their discriminative power on the current data set. 

2.2.1.3 Online Boosting 

Offline boosting seems to require all the training set at the same time for every weak 
classifier to be trained. In particular, weak classifiers are trained and errors of them are 
calculated on entire weighted training set. Then, this error is used to update weight of all 
samples. 
 
However, in the online version, the entire training set is not available at the same time. 
Therefore, the aforementioned work should be performed as training samples become 
available. When offline boosting trains the first weak classifier, every training sample is 

assigned a weight &-, so online boosting assigns each sample a Poisson parameter B = 1. For 

subsequent weak classifier, online boosting updates Poisson parameter similar to the way 
that offline boosting updates weights: increasing its value, if the sample is misclassified and 
decreasing, if the sample is correctly classified. By this way, the importance (difficulty) of a 
sample can be calculated by propagating it through a set of weak classifiers. The interchange 
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of the roles should be noted; in the offline case, all samples are used to update a weak 
classifier, but in online case one sample is used to update all weak classifiers.  
 
The pseudo code of online boosting is given in Table 2.1. Its inputs are, since it is an online 
algorithm, a new labeled training sample (�, *), a set of weak classifiers ℎ���� = (ℎ&���� , … , ℎ$����} and associated parameters BC��� = (B&C��� , … , B$C���} and B����� =(B&����� , … , B$�����} (these are the sums of the weights of the correctly and misclassified 

samples, respectively, for each weak classifier), also online weak classifier learning 
algorithm � is needed. The output of the algorithm is weighted linear combination of 
updated weak classifiers ℎ���� . The algorithm starts by assigning a weight  B = 1 to the new training sample (�, *), then the algorithm goes into a loop to update weak 
classifiers and weight of the sample B. The first step in the loop is to set k according to D������(B) distribution and weak classifier ℎE����  is trained k times with new sample(x, y). 
Then, ℎE���� is checked whether it correctly classifies new sample or not. If it does, B�C��� is 
updated, which is sum of the weight of the samples that ℎE���� correctly classifies. Then, 
weighted fraction of the total samples that ℎE���� has misclassified, H�, is calculated similar to 
offline boosting. Next step is to update weight of the sample B by multiplying by the same 
factor &:(&=I>) that is performed in offline AdaBoost. However, if ℎE����  misclassifies sample x, 

then B������ is incremented by amount of B, where B������ is sum of the weight of the samples 
that ℎE���� misclassified. Then, H� is calculated and B is updated by multiplying it by the same 
factor &:I> that is done in offline AdaBoost for misclassified samples. The last step in the loop 

is calculation of voting weights "�. These steps are repeated for all weak classifiers. Finally, 
ensemble of weak classifiers is returned as in offline AdaBoost. 
 
Oza [39] proves, if online and offline boosting are given the same training set, then weak 
classifiers (Naive Bayes classifiers) trained by online boosting converges to one trained by 
offline boosting as number of weak classifiers N→∞. For further details, the thesis of Oza 
should be examined [39]. 

 
Table 2.1: Online Boosting Algorithm: hweak is the set of N weak classifier trained so far, (x, 
y) is labeled training sample, and � is the learning algorithm for weak classifiers. 

 
 
 
 
 
 
 
 
 
 

B = 1 

Initial Conditions: For all � ∈ (1, … , J}, B�C��� = 0, B������ = 0 

Require: training sample (�, *), y ∈ (−1,1} 

Require: set of weak classifiers ℎ�����, � ∈ (1, … , J} 

Require: weak classifier update algorithm � 

 

// initialize importance weight  
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Table 2.1 (cont’d) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ℎ������(�) = �� � L! "� ∙ ℎ�����(�)$
�%& M 

// for all weak classifiers 

for � = 1,2, … J 

 // set k according to D������(BO) 

 k = D������(BO) 

  

 // update weak classifier k times 

 for � = 1,2, … , Q 

  ℎ����� = �(ℎ�����, (�, *)) 

 end for 

 

 // estimate errors and update importance weights 

 if * = ℎ�����(�) 

  B�C��� ← B�C��� + B 

  H�      ← S>TUV>WS>XVUUYS>TUV>W 

  B       ← B Z &:(&=I>)[ 

 else 

  B������ ← B������ + B 

  H�         ← S>TUV>WS>XVUUYS>TUV>W 

  B          ← B Z &:I>[ 

 end if 

  

 // calculate voting weights of weak classifiers 

 "� = &: ln Z&=I>I> [ 

end for 

 

// return strong classifier 
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2.2.1.4 Online Boosting For Feature Selection 

For feature selection, the method proposed by Grabner et al. [37] is examined. Inspired from 
the work of Oza [39], Grabner et al. proposed feature selection for online boosting. For 
feature selection, the concept of selector is introduced. 
 
Selector: Given a set of M weak classifiers ℎ���� = (ℎ&���� , … , ℎ\����}, selector selects one of 

them: 
 ℎ��](x) = ℎ3����(x), (2.3) 

 
where m is selected according to optimization criterion, which is the estimated error H0 of 

each weak classifier ℎ�̂��� ∈ ℎ���� such that _ = `
 _��0(H0). 
 
As in the offline case, the features are considered as weak classifiers and each selector has its 
own feature pool of size M, ℱ�?@ = (�& , … , �\} ⊆ ℱ where  ℱ is the global feature pool. The 

algorithm is similar to online boosting; however, instead of weak classifiers, selectors are 
boosted and selectors select best feature in its own pool ℱ�?@. Finally, the strong classifier is 
constructed from weak classifiers selected by selectors. 
 
The pseudo code of algorithm is given in Table 2.2. Its inputs are a new training sample (x, 

y), a set of N selectors ℎ&��] , … , ℎ$��], each having a set of M weak classifiers ℱ� =ℎE,&���� , … , ℎ�,\����, and associated parameters BC��� = (B&,&C��� , … , B$,\C���} and B����� = (B&,&����� , … , B$,\�����} (these are the sums of the weights of the correctly and 

misclassified samples, respectively, for each weak classifier), also online weak classifier 
learning algorithm � is required. The output of the algorithm is the strong classifier which is 
ensemble of selected weak classifiers. When a new sample (x, y) arrives, the importance 
weight is initialized = 1 . Then, the selector having M weak classifiers is updated. The weak 
classifiers are updated with online learning algorithm � using importance weight B of current 

sample (B is used either as a learning rate or algorithm � is called Q = D������(B) times as 

proposed by Oza). Selector chooses the weak classifier having smallest error `
 _��3(H�,3), 

where, H�,3 is the error of m-th weak classifier ℎ�,3���� , in the n-th selector. H�,3 is calculated 

using weights of correctly B�,3C���  and misclassified B�,3����� samples that are observed so far. 

After selection of the weak classifier, the rest is similar to online boosting. Voting weights "� and sample importance B is updated and passed to next selector. The weak classifier 
having largest error in the selector pool ℱ� is replaced with a random weak classifier from 

global feature pool ℱ to improve diversity and adapt to changes in the environment. These 
steps are repeated for all selectors. 
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Table 2.2: Online AdaBoost for feature selection: h
weak is the set of NxM weak classifier 

trained so far, (x, y) is labeled training sample, and � is the learning algorithm for weak 
classifiers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B = 1 

Initial Conditions: For all � ∈ (1, … , J} `�a _ ∈ (1, … , b}, B�,3C��� =0, B�,3����� = 0 

Require: training sample (�, *), y ∈ (−1,1} 

Require: set of weak classifiers ℎ�,3����, � ∈ (1, … , J}, _ ∈(1, … , b} 

Require: weak classifier update algorithm � 

 

// initialize importance weight  

// for all selectors 

for � = 1,2, … J 

 // for all weak classifiers 

 for _ = 1,2, … b 

  // update each weak classifier 

  ℎ�,3���� = �(ℎ�,3����, (�, *), B) 

 

  // estimate errors 

  if * = ℎ�,3����(�) 

   B�,3C��� ← B�,3C��� + B 

  else 

   B�,3����� ← B�,3����� + B 

  end if 

  H�,3      ← S>,cTUV>WS>,cXVUUYS>,cTUV>W 

 end for 

 

 // choose weak classifier with lowest error 

 _Y = `
 _��3(H�,3) 
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Table 2.2 (cont’d) 

 H� = H�,3d; ℎ���] = ℎ�,3d���� 

 if H� = 0 �
 H� > &: 

  exit 

 end if 

 

 // calculate voting weights of weak classifiers 

 "� = &: ln Z&=I>I> [ 

 

 // update importance weights 

 if * = ℎ���](�) 

  B ← B Z &:(&=I>)[ 

 else 

  B ← B Z &:I>[ 

 end if 

 

 // replace worst weak classifier with a new one 

 _= = `
 _`�3(H�,3) 

 B�,3fC��� = 1; B�,3f����� = 1 

 get new ℎ�,3f���� 

end for 

 

// return strong classifier 

ℎ������(�) = �� � L! "� ∙ ℎ���](�)$
�%& M 
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2.2.1.5 Tracking with Online AdaBoost 

In order to use AdaBoost in tracking as an application, the first thing to do is to define 
features of weak classifiers ℎg����. Grabner et al. [37][38] offer to use Haar-like features 

proposed by Viola and Jones [36], orientation histograms [11] and local binary patterns 
(LBP) [55]. These features are utilized, since calculation of them is fast due to integral 
images and integral histograms [56]. 
 
Definition of online learning algorithm � for weak classifiers is also required. Let �g(�) be 

response of feature j which is used by weak classifier ℎg����. Responses of features are 

modeled as Gauss distributions for both positive J(hY, iY) and negative J(h=, i=)  samples. 
For estimating the distributions either a Kalman filtering approach [57] or an alfa blending 
technique is utilized. Actually, any pdf estimation method can be integrated. When 
distributions of positive and negative samples are  available, the decisions can be made by 
using probability of being positive D(1|�g(�)) and negative D(−1|�g(�)). 

 
For the Haar-like features either a simple threshold 
 ℎg����(�) = 8g ∙ �� �j�g(�) − kgl, (2.4) kg = |hY − h=|/2, 8g = �� �(hY − h=), (2.5) 

 
or a Bayesian decision can be used, based on the estimated Gaussian probability density 

function  (�|h, i): 
 ℎg����(�) = �� � ZDj1n�g(�)l  − Dj−1n�g(�)l[, (2.6) ≈ �� � Z j�g(�)nhY, iYl −  j�g(�)nh=, i=l[. (2.7) 

 
For histogram based features (orientation histograms and LBP) a nearest neighbor decision is 
made in which the distance is measured by a distance function D. The distance is measured 
between feature response to cluster centers of positive pj and negative nj samples: 
 ℎg����(�) = �� � Zpj�g(�), 8gl  − pj�g(�), �gl[. (2.8) 

 
Basic steps of a classifier based tracker are given at Figure 2.1. At the first frame, the 
position of the target is assumed to be given. An important task is to sample the object for 
positive samples and background for negative samples. Grabner et al. [37][38] offer to take 
current target position to be positive sample and four corners of search region to be negative 
samples. These samples are used to initialize classifier at the first frame. In the consecutive 
frames, each patch in the search region is tested by a classifier and confidence value is 



 

 

 

recorded to a confidence map. Then, this confidence map is analyzed and the point having 
maximum confidence value is marked as target position. 
positive sample and negative samples are taken from neighbor patches. Classifier is updated 
and process continues. 

2.2.2 Compressive Tracker 

In this section, tracking in the compressed domain is presented. 
work of Zhang et al. [52] is followed. It is called 
model is constructed from the features selected by an information
reduction from a multi-scale image feature space based on compressive sensing theor
[58][59]. It is also a discriminative method
target and background and target is separated from backgro
Before giving tracking algorithm, preliminary background information is given for 
compressive sensing. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: 

Search region 

Target window 
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ap. Then, this confidence map is analyzed and the point having 
maximum confidence value is marked as target position. The new target position is taken as 
positive sample and negative samples are taken from neighbor patches. Classifier is updated 

 

In this section, tracking in the compressed domain is presented. For this purpose, m
is followed. It is called compressive tracking, since the appearance 

features selected by an information-preserving dimensionality 
scale image feature space based on compressive sensing theor
criminative method, since these features are used to sample both 

target and background and target is separated from background via a naive Bayes classifier
Before giving tracking algorithm, preliminary background information is given for 

 Basic steps of tracking with a classifier. 

Classifier is tested  

in search region 

Positive sample 

Negative samples 

update classifier with 

positive and negative samples 

Analyse confidence map

ap. Then, this confidence map is analyzed and the point having 
ew target position is taken as 

positive sample and negative samples are taken from neighbor patches. Classifier is updated 

For this purpose, mainly the 
since the appearance 

preserving dimensionality 
scale image feature space based on compressive sensing theory 

since these features are used to sample both 
und via a naive Bayes classifier. 

Before giving tracking algorithm, preliminary background information is given for 

Analyse confidence map 
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2.2.2.1 Preliminaries on Compressive Tracking 

Some background information, which is used in tracking algorithm, is summarized in this 
section. 

2.2.2.1.1 Random Projection 

A random matrix q ∈ ℝ�r3 projects high-dimensional image space � ∈ ℝ3 to a low-
dimensional space s ∈ ℝ� 
 s = q�, (2.9) 
 
where � ≪ _. Ideally, R is expected to approximately preserve the distance between all 
pairs in x, i.e. preserve all the information that x has. According to the Johnson-
Lindenstrauss lemma [60], distances between pairs in x are preserved with high probability, 
if random matrix R is selected suitably. It is also proven that the random matrix satisfying the 
Johnson-Lindenstrauss lemma satisfies the restricted isometry property in compressive 
sensing. Therefore, if random matrix R in (2.9) satisfies Johnson-Lindenstrauss lemma, then 
x can be reconstructed with high probability from v with a minimum error.  

2.2.2.1.2 Random Measurement Matrix 

Random Gaussian matrix, q ∈ ℝ�r3, whose entries are 
0g~J(0,1) is recently used 

[62][25][63], since it satisfies the restricted isometry property. Due to memory and 
computational issues Zhang et al. [52] offer to use a very sparse random measurement matrix 
where entries are defined as 
 


0g = √� ∗
xyz
y{ 1 |�}ℎ 8
�~`~���}* 12�0     |�}ℎ 8
�~`~���}* 1 − 1�−1 |�}ℎ 8
�~`~���}* 12� .

� (2.10) 

 
Achlioptas [60] proved that Johnson-Lindenstrauss lemma can be satisfied when s = 2 or 3 
and Li et al. [64] showed that this matrix is asymtotically normal when � = �(_)(� ∈ ℝ3). 

Zhang et al. [52] use � = _/4 which makes each row (c) of R at most 4. Therefore, 
computational complexity becomes O(cn) and also to reduce memory requirement only 
nonzero entries are stored. 



 

 

 

2.2.2.2 Tracking in Compressed Domain

Tracking algorithm is given in this section. Basic step
2.1. Position of the target is assumed to be 
taken around target position as positive samples and negative samples are 
the current target position. In the next frame, target is searched with classifier around last 
known position and the point having maximum classification score is selected.
continues at subsequent frames. 

2.2.2.2.1 Compressive Features

Each training sample � ∈ ℝ��� is represented with multi

defined as 
 �0,g(*, �) = �
 
where i and j are the height and width of 
of filters are concatenated to have multi

where _ = (��):. The random sparse matrix 

to s ∈ ℝ�. Only rectangular filters in 
(2.12) is a matrix representation of dimension reduction and 
illustration. 
 

���
���√� 0 −√�0 0 −√� −⋮ ⋮ ⋮0 0 √� −������������ℝ>�c

 

Figure 2.2: Graphical representation of dimension reduction from high
to low-dimensional vector v. Each white rectangle corresponds t
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in Compressed Domain 

Tracking algorithm is given in this section. Basic steps are similar to the method
Position of the target is assumed to be available in the first frame. Several samples are 

taken around target position as positive samples and negative samples are selected 
t target position. In the next frame, target is searched with classifier around last 

known position and the point having maximum classification score is selected. The process 
 

Compressive Features 

s represented with multi-scale rectangular filters (
�1, 1 � * � �, 1 � � � �0, �}ℎ9
|��9 �, 

are the height and width of the training sample, respectively. Then, responses 
of filters are concatenated to have multi-scaled image feature vector � = (�&, … ,

The random sparse matrix R in (2.9) with � = _/4 is used to project 

Only rectangular filters in s are calculated with integral image method 
is a matrix representation of dimension reduction and Figure 2.2 gives a

0 0 ⋯ 0−√� 0 ⋯ 0⋮ ⋮ ⋱ ⋮−√� 0 ⋯ 0����������c ���
��� � � �&�:⋮�3

� = �s&s:⋮s�
� 

 

Graphical representation of dimension reduction from high-dimensional vector 
Each white rectangle corresponds to a rectangular filter 

�g s0 = ! 
0g�gg  

method in Figure 
first frame. Several samples are 

selected far from 
t target position. In the next frame, target is searched with classifier around last 

The process 

(�&,&, … , ��,�} 
(2.11) 

Then, responses �3)�  ∈ ℝ3  

used to project � on 

are calculated with integral image method [36]. 
gives a visual 

(2.12) 

dimensional vector x 
a rectangular filter 
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convolving the intensity at a fixed position of training sample image. 
0g is the entries of 

sparse matrix R based on being positive, negative or zero. 

2.2.2.2.2 Classifier Construction and Update 

For each sample � ∈ ℝ3, s = (s&, … , s�)� ∈ ℝ� is low-dimensional representation of it and 
classifier is constructed in this low-dimensional space. Assuming elements in vector s are 
independently distributed, a naive Bayes classifier is introduced with log likelihood ratio 
test: 
 

�(s) = �� � ∏ 8(s0|* = 1)8(* = 1)�0%&∏ 8(s0|* = −1)8(* = −1)�0%& � = ! �� � 8(s0|* = 1)8(s0|* = −1)��
0%& , (2.13) 

 
for which priors are assumed to be equal each other, 8(* = 1) = 8(* = −1), and * ∈(−1,1} is the sample label. 
 
Diaconis and Freedman [65] show that random projections of high-dimensional random 
vectors almost always Gaussian. Therefore, the conditional distributions 8(s0|* = 1) and 8(s0|* = −1) are assumed to be Gaussian: 
 8(s0|* = 1) ∼ J(h0Y, i0Y),   8(s0|* = −1) ∼ J(h0=, i0=). (2.14) 

 

Each Gaussian model is updated with sample mean hY = &� ∑ s0(�)�g%&  and standard deviation 

iY = �&� ∑ (s0(�) − hY):�g%& : h0Y ← "h0Y + (1 − ")hY, (2.15) i0Y ← �"(i0Y): + (1 − ")(iY): + "(1 − ")(h0Y − hY):, (2.16) 

 
where " ∈ (0,1} is the learning parameter. Equations (2.15) and (2.16) can be easily derived 

by maximum likelihood estimation. Since two distributions J(h0Y, i0Y) and J(hY, iY) are 
merged, third element in (2.16) is the spread of the mean term. Main steps of algorithm are 
given at Table 2.3. 
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Table 2.3: Compressive Tracking algorithm. � determines the radius of search region,  � 
determines the region where positive examples are sampled and (�, �) determines the region 
for negative samples. 

Require: new video frame 

Require: previous target location, ��=& 

Require: random measurement matrix, R 

 

// Initialize tracker with (2.9) s = q� 

 

for each new frame 

Sample a set of image patches, p  = (�| ∥ �(�) − ��=& ∥< �|} and extract features 

Use classifier H in (2.13) to each feature vector s(�) and find the new target position �� with maximal classifier response. 

Sample two sets of image patches p£ = (�| ∥ �(�) − �� ∥< �|} (positive samples) and p¤,¥ = (�|� <∥ �(�) − �� ∥< �|} (negative samples) where � < � < � 

Extract the features for these two sets of samples and update the classifier parameters 

according to (2.15) and (2.16) 

end for 
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CHAPTER 3  
 
 

PROPOSED TRACKING ALGORITHM 

3.1 Preliminaries 

Some preliminary work about hidden Markov models (HMMs), which is used in proposed 
algorithm, is presented briefly in the Appendix A. 

3.2 Proposed Algorithm 

In this section, the proposed tracking algorithm is introduced. The basic algorithm flow is 
similar to Figure 2.1 and compressive tracking (CT) algorithm (Table 2.3). In addition to CT, 
feature selection and assessment methods are proposed for appearance adaptation. 
Appearance model of the proposed algorithm is constructed with a set of Haar-like features 
which is discussed in 3.2.7.2. Considering these features as weak classifiers, a strong 
classifier is constructed as an ensemble of these weak classifiers to separate the object from 
background. Using this strong classifier, a confidence map is constructed in search area. 
Target location is updated with the peak of the confidence map. Positive samples are selected 
to be close to target location and negative samples are selected from far. Finally the classifier 
is updated with positive and negative samples. This flow is repeated in consecutive frames. 
 
Remainder of this section is organized as follows. First, feature selection method from a 
global feature pool is discussed in terms of discriminative power of the features. Then, 
features are assessed in terms of their tracking capability. They are filtered with HMMs, 
whether being successful, occluded or unsuccessful. Then, the classifier and the tracking 
algorithm are presented. Finally, some discussions and implementation details are given. 
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3.2.1 Feature Selection from Global Feature Pool 

Algorithms mainly choose their features randomly from global feature pool ℱ to construct a 
classifier [37][47][52] for which ℱ includes all the possible features of interest. For example, 
in [37] Haar-like features are randomly selected in terms of type, position, height and width. 
Randomness is powerful comparing to predefined rules which are likely to fail in certain 
conditions. However, when dimension of ℱ is quite high (as in [52], it is in the order of 106 
to 1010), dimension reduction considering discrimination power might assist to the classifier. 
Therefore, a feature selection method is offered to select more discriminative features, while 
not sacrificing randomness completely. 
 
For replacing a feature ℎ����� from classifiers pool ℎ����, a subset ℱ�?@ = (�&, … , �¦} ⊆ ℱ is 
constructed randomly, instead of selection of just one random feature. Then, classification 
capability of each feature in ℱ�?@ is calculated with Fisher Linear Discriminant (FLD) [68]: 
 

8� = §��Y − ��=§:
¨(��Y) + ¨(��=), (3.1) 

 

where ��Yand ��= are responses of feature �� to the positive and negative samples, 

respectively. �� is the mean feature value of feature �� and ¨(��) stands for class scatter. 

Assuming scatter ¨(��) value of feature �� can be calculated during tracking, since there is 
not enough sample in one frame, it might be taken equal for all features. Therefore, (3.1) 
reduces to: 
 8�~ §��Y − ��=§:

, (3.2) 

 
and it can be further normalized to be a distribution: 
 8� ← 8�/ ! 8�¦

�%& . (3.3) 

 
The feature having maximum classification ability might be selected. However, in order to 
promote randomness, the features in ℱ�?@, selection is performed randomly according to the 
distribution calculated at (3.3). The pseudo code of feature selection from global feature 
space is presented at  
Table 3.1. 
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Table 3.1: Feature selection method from global feature pool ℱ. 

Require: rand function to generate random number from uniform 

distribution 

Require: (�Y, �=), positive and negative samples  

 

function �� = �9�9�}©9`}ª
9(ℱ, �Y, �= ) 

for  Q = 1,2, … « 

 get a new feature �� from global feature pool  ℱ randomly 

 

 // calculate classification ability of �� 

 8�~ §��Y − ��=§:
 

end for 

// normalize 8� to have a distribution 

8�?3 = ! 8�¦
�%&  

for 1,2, … « 

 8� ← 8�/8�?3 

end for 

 

// cumulative distribution of 8� �& = 8& 

for Q = 2,3, … « 

 �� = ��=& + 8� 

end for 

// generate a random number from uniform distribution between (0,1) 
 = 
`�a(0,1) 
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Table 3.1 (cont’d) 

// generate random number according to distribution p using r 

for  Q = 1,2, … « 

 if 
 < �� 

  � = Q 

  break 

 end if 

end for 

 

// output 
9}ª
� �� 

end function 

 

3.2.2 Does Feature Selection Increase Discriminative Power? 

The method proposed above claims to select discriminative features. If discriminative 
features are utilized, obviously the confidence of a classifier increases. In order to show 
whether this selection method works or not, a Monte Carlo experiment is setup (since the 
method and classifier initialization includes randomness). At each Monte Carlo step, a 
classifier having random feature pool is constructed. Then, using the same feature pool two 
separate trackers are initialized (compressive tracker given in Section 2.2.2 is used). In the 
first tracker, no feature replacement is applied and in the second tracker, at each frame, a 
random feature from classifiers pool is replaced by a feature selected with given method. The 
classifier is trained by the ground truth data in order not to be effected from trackers outputs. 
Target is tracked and confidence values of classifiers are recorded. 
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Figure 3.1: Monte Carlo output of two trackers: dotted line is the result of a tracker having 
fixed feature pool, straight line is the result of a tracker with feature replacement applied at 
each frame. 
 
The Monte Carlo test is repeated 100 times and the mean values of the confidences 
with/without feature replacement at each frame are plotted in Figure 3.1. In certain frames, 
the confidence values get very close. At frame 79 confidence value of the tracker with 
feature replacement is even lower than the one without replacemnet. These decrements 
mainly occurs when the object or environment changes. When mean value of confidence for 
all frames calculated, 21.49 is reached for no replacement tracker and 30.03 is reached for 
tracker with replacement. With this ~50% increment in the confidence, one can conclude that 
proposed feature selection method is able to select discriminative features. 

3.2.3 Feature Assessment with HMMs 

A feature selection method is proposed In Section 3.2.1 to select discriminative features. 
However, during tracking appearance of the object and the background might change due to 
rotation, illumination and occlusions, etc. Therefore, these features should be checked 
whether they are still able to discriminate object from background during tracking. 
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A review of HMMs is already given Appendix A, so in this section only the feature 
assessment method is presented. For the assessment of discriminative ability of the features, 
a 3-state Markov model is introduced. The elements of HMM are given in the order that is 
stated in Appendix A. 
 
1. Assume that at a given time t (frame), features can be observed in the following states: 

 
   State 1 (S1): discriminative, 
   State 2 (S2): occluded, 
   State 3 (S3): indiscriminative. 

  
Therefore, the number of states K is equal to three. 

2. The number of observation symbols, M, is two, since the object can be correctly 
classified or not by the feature interested. Therefore, observation symbols are 
determined according to classifier output of the individual feature ­ = ( & = 0,  : =1}. 

3. State transition probabilities are selected heuristically as 
 

® = ¯`0g° = ±0.98 0.02 00.01 0.98 0.010 0 1 ´. 

 
According to matrix A, once a feature goes to state S3, it stuck in there. However, in the 
final algorithm flow, these unsuccessful (indiscriminative) features are replaced and 
started from some other states. These parameters are determined empirically.  

4. µ = ¯~g(Q)°, the observation symbol probability distribution in state j is defined as 

 ~g(Q) = Dj �`} }n¶� = g̈l,      1 � � � 3,     1 � Q � 2, ~&(1) = D( & = 0|¶� = ¨&) =0.37, ~:(1) = D( & = 0|¶� = ¨:) =0.80, ~¸(1) = D( & = 0|¶� = ¨¸) =0.85, 

~&(2) = D( : = 1|¶� = ¨&) =0.63, ~:(2) = D( : = 1|¶� = ¨:) =0.20, ~¸(2) = D( : = 1|¶� = ¨¸) =0.15, 
 
and these parameters are determined empirically. 

5. When classifier is first initialized the state distribution is set to » = ¯»g° = ¼1 0 0½, 
in other words, all features are assumed to be discriminative at the beginning. During 

tracking, when features are replaced, state distribution is initialized as » = ¯»g° =
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¼0.5 0.5 0½, since new features are expected to prove that they are discriminative 
before contributing to classifier. 

 
 

 
 
 
 

Figure 3.2: State transitions of the proposed HMM. 
 
For examining how these parameters work, a set of observation is selected. State distribution 

is initialized as » = ¯»g° = ¼1 0 0½ and HMM is updated with observations selected. 

State distribution changes as in Figure 3.3 with HMM updates. 

 
Figure 3.3: Change in state distribution of HMM with a given set of observation. 

3.2.4 Utilization of a Backup Feature Pool 

During tracking, the feature pool for classifiers ℎ���� is aimed to be constructed with 
discriminative features, i.e. features in state S1 of HMM given in Section 3.2.3. However, the 

a33 
a11 

a12 

a23 

a22 
a21 

S1 
S2 S3 
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features in other states (S2, S3) require a pool to be stored which is denoted as a backup pool ℎ@?. When features in ℎ����  are occluded or become indiscriminative, i.e. move to the states 
S2 or S3, they are replaced with the discriminative features in ℎ@?, i.e. features in state S1. 
Moreover, features in state S3 are replaced with features selected from global features pool ℱ 
with the method given in Section 3.2.1. Therefore, these new features are not included in 
classifier pool ℎ����  until they are proven to be discriminative. Moreover, they are trained 
until they are accepted by the classifier, so that the features, which are not trained, are not 
included in ℎ���� . 
 
State distribution and utilization of backup pool can be observed in Figure 3.4. In each pool, 
state distributions are integrated over features and shown as bar across the related state. 
When an occlusion takes place, probability of being in the state S2 increases and so length of 
related bar increases in backup pool. Since occluded features in classifier pool are replaced 
with discriminative features in backup pool, only the length of bar across S2 increases under 
backup pool. 
 

 

 
Figure 3.4: State distribution of classifier and backup pools. 
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3.2.5 Classifier Construction and Tracking 

So far, a feature selection and assessment methods are introduced. Then, a backup pool idea, 
which incorporates these methods into a framework, is presented. In this section, classifier 
construction and steps of tracking algorithm are presented. 
 
Considering each feature, ��, as a weak classifier, ℎ����� , strong classifier, ℎ������, is 
constructed as an ensemble of these weak classifiers. Since features success is already 
calculated with the proposed HMM, probability of being successful (discriminative), i.e. 
probability of being at state S1, can be used as a weighting to the weak classifiers: 
 |� = »�(1), (3.4) 
 
and then, strong classifiers is the weighted ensemble of weak classifiers: 
 

ℎ������ = ! |�
$

�%& ℎ�����(�), (3.5) 

 
where � is the input image to be classified. 
 
The main steps of the tracking algorithm are listed at Table 3.2Error! Reference source not 
found.. At the first frame position �� of the target is given. Using first position of the target 
two sets of image patches p£ (positive samples) and p¤,¥ (negative samples) are sampled. 
With these data sets features are selected for both classifier pool ℎ����  and back up pool ℎ@? 
using the method given in  
Table 3.1. Then, weak classifiers are initialized with selected features. Tracking loop starts 
with sampling new frame around last target position ��=&. Then, classifier in (3.5) is used to 
find the new position �� of target which maximizes the classifier response and p]¾ is the 
image patch at new target location. Since new position of target is available, new positive p£ 
and negative p¤,¥ samples can be extracted around ��. As an observation (*�,� , *�,3), each 

weak classifier is tested at new target patch p]¾. Then, HMMs are updated for each weak 
classifier, so that new state distributions (»�, »3) are calculated. According to (»�, »3), 
unsuccessful features in  ℎ���� are replaced with successful back up features in ℎ@?. Note 
that, if all the features in ℎ����  are successful, than features are not replaced, i.e. all the weak 
classifiers are preserved. Moreover, the worst feature in ℎ@? is replaced with a new selected 
feature using the method given in  
Table 3.1. Finally, parameters of weak classifiers are updated online. Note that, only weak 
classifiers in state 1 are updated, i.e. occluded features are not updated, since they are 
misaligned. Also, the features in state 3 are not updated, since they are not allowed to join 
strong classifier. 



30 

 

 

 

 
For adapting scale changes of the target object, a scale step parameter B is introduced.  It is 
aimed to search the object in three scales, namely current scale BC and two neighboring 
scales BC ∓ B . Image is resized with these three scales and the object is searched with the 
same classifier. Then, three locations and confidence values are determined in respective 
scales. Scale and position of the object is updated with the ones with the maximum 
confidence. Finally, classifier is updated with image patches at selected scale. 

 
Table 3.2: Pseudo code of proposed algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�� =  �9�9�}©9`}ª
9jℱ , p£ , p¤,¥l,   � ∈ (1,2, … , J} �3 =  �9�9�}©9`}ª
9jℱ, p£ , p¤,¥  l,   _ ∈ (1,2, … , b} 

ℎ����� = ���}j��, p£, p¤,¥l,   � ∈ (1,2, … , J} ℎ3@? = ���}(�3, p£ , p¤,¥),   _ ∈ (1,2, … , b} 

Require: new video frame 

Require: first target location, �� 

Require:  �9�9�}©9`}ª
9 function, feature selection method given at 
3.2.1 ( 

Table 3.1) 
Require: ���} function, which initialize classifier (see 3.2.7.1) 

 

// Initialization of tracker 

Sample two sets of image patches p£ = (�| ∥ �(�) − �� ∥< �|} 

(positive samples) and p¤,¥ = (�|� <∥ �(�) − ��=& ∥< �|} 

(negative samples) where � < � < � 

 

// Select features for ℎ���� and ℎ@? 

 

// Initialize classifiers  with positive p£ and negative p¤,¥ samples 

 

// Tracking loop 

for each new frame at time t 

Sample a set of image patches, p  = (�| ∥ �(�) − ��=& ∥< �|} and 

extract features 
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Table 3.2 (cont’d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*�,3 = ℎ3@?(p]¾),   _ ∈ (1,2, … , b} 

»3 ← »3®p(*�,3)»3®p(*�,3)1 ,   _ ∈ (1,2, … , b} 

� = `
 _`�g(»�(�)) 

Use classifier ℎ������ in (3.5) and find the new target position �� with 

maximal classifier response. Image patch at new target location is p]¾ = (�|�(�) = ��} 

Sample two sets of image patches p£ = (�| ∥ �(�) − �� ∥< �|} 

(positive samples) and p¤,¥ = (�|� <∥ �(�) − �� ∥< �|} (negative 

samples) where � < � < � 

 

// Check the decisions (observation) *�,� = ℎ�����(p]¾),   � ∈ (1,2, … , J}, 

 

// Update HMM according to observation *�,� and *�,3 »� ← À>ÁÂ(Ã¾,>)À>ÁÂ(Ã¾,>)& ,   � ∈ (1,2, … , J}, 

 

// Replace features between ℎ���� and ℎ@? 

for  � = 1,2, … , J 

 // Find the state of the classifier ℎ����� 

 

 // Replace the classifier if it is not in state 1 

 if � ≠ 1 

  Find a classifier in ℎ@? at state 1: ℎr@? 

  if ℎr@? exist 

   ℎ����� = ℎr@? 

  else 

   break 

  end if 
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Table 3.2 (cont’d) 

 end if 

end for 

 

// replace the worst feature in back up pool ℎ@? _= = `
 _`�3(»3(3)) // index of worst feature in ℎ@? �3f =  �9�9�}©9`}ª
9(ℱ, p£ , p¤,¥  )  ℎ3f@? = ���}(�3f , p£, p¤,¥) »3f = ¼0.5 0.5 0½ 
 

Extract the features for samples in sets p£ and p¤,¥ and update the 

classifier parameters for weak classifiers at state 1 (see 3.2.7.1). 

end for 

 

 

3.2.6 Discussion 

It is important to point out that since output of the tracker is taken as a positive training 
sample, tracker is open to drift, due to the possible misalignments. However, weak classifiers 
have an occlusion state, which decreases drifting, since occluded (misaligned) weak 
classifiers are excluded. Moreover, weak classifiers, which are decided to be occluded are 
not trained, until an opposite decision is stated. Therefore, further drift is prevented.  
 
Targets might be occluded or appearance of target and background may change in a very 
short time so that an aggressive feature replacement is required. In order to meet this 
requirement, a backup pool is trained, so that robust feature replacements are handled. 
Another advantage of using a backup pool is that new (untrained) features selected from 
global feature pool are included into this backup pool. Therefore, untrained features, which 
are also not proven to be successful yet, are not included in classifier. This approach brings 
robustness to ambiguity of success of new features. Moreover, new features are selected in a 
way that discriminative powers of features are consider without compromising randomness. 
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3.2.7 Implementation Details 

3.2.7.1 Weak Classifiers 

It should be noted that in the last step of the proposed algorithm, an online update is required 
for weak classifiers. As a weak classifier, a Haar-like feature �� and four parameters (h�Y, i�Y, h�=, i�=), which are estimated online, is utilized. Each weak classifier returns the 
following log likelihood ratio: 
 ℎ�����(�) = �� � 8(��(�)|* = 1)8(* = 1)8(��(�)|* = −1)8(* = −1)� = �� � 8(��(�)|* = 1)8(��(�)|* = −1)�, (3.6) 

 
where priors are assumed to be equal, 8(* = 1) = 8(* = −1), * ∈ (−1,1} which is the label of 
sample and 8(��(�)|* = 1)~J(��(�)|h, iY) and similarly for * = −1. Since there are multiple 
positive and negative samples in new data sets p£ and p¤,¥ , respectively (see Table 3.2 for 
extraction of data sets), the first mean and standard deviation of feature responses on these 
data sets are calculated. If there are K training sample in p£ = (�&Y, �:Y, … , �¦Y}, then the 
sample mean and standard deviation are calculated as 
 

h�& = 1« ! ��(��Y)¦
�%& , (3.7) 

i�& = Å1« !(��(��Y) − h�& ):¦
�%& . (3.8) 

 
Then, the classifier parameters are updated as 
 h�Y ← "h�& + (1 − ")h�Y, (3.9) i�Y ← �"i�& + (1 − ")i�Y + "(1 − ")(h�Y − h�& ):, (3.10) 

 
where 0 < " < 1 is a learning parameter. The updates of (h�=, i�=) with data set p¤,¥ are 
similar.  
 
When a new feature is selected at the beginning of the tracking or during tracking for 
replacement, an initialization is strictly required. For parameters (h�Y, h�=), the feature 
responses (h�& , h�=&) on selected frame is used. However, the initialization of parameters 
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(i�Y, i�=) is more difficult, since they expect more than one sample for an accurate estimation. 
Therefore, a high value is used for initialization of these parameters to be safe. 

3.2.7.2 Image Features 

Two kinds of Haar-like features are used for appearance model. The first one is already 
introduced In Section 2.2.2.2.1 (denoted as  Haar-like1). And the second one is the well-
known Haar-like features introduced by Viola and Jones [36] (denoted as Haar-like2). Five 
kinds of Haar-like2 features are used that are given in Figure 3.5. 
 
 
 
 
 
 
 
 
 
Figure 3.5: Haar-like2 features used in the tracker where grey rectangles have positive and 
white rectangles have negative coefficients. 
 
Indeed, Haar-like1 features enclose Haar-like2 features, i.e. with an appropriate selection of 
measurement matrix R, it is possible to obtain the same Haar-like2 features from Haar-like1 
features. However, Haar-like2 features are more structured and local compared to Haar-like1 
features. Moreover, in the tracker, Haar-like2 features are restricted to be at most half of the 
size of the target image patch. This result brings robustness to the occlusions, even half of 
the target is occluded. On the other hand, Haar-like1 features support more opportunities, 
since they are distributed to whole target image patch. Therefore, since both features have 
superior aspects to each other, they are both included in the tracker. 
 
During the experiments, it is observed that both features overwhelm each other in certain 
conditions. At occlusion moments or if the target is structured, such as face, writing etc., 
Haar-like2 features are more successful, i.e. they are selected more. Moreover, in rotation 
moments or if the target has a random color distribution (not structured) Haar-like1 features 
are more successful. 
 
In Figure 3.6 and Figure 3.7, change in the distribution of number of feature types during 
tracking is plotted. In Figure 3.6, face of the women is occluded so many times and even 
more than half of the face is occluded. Since Haar-like2 features are more local than the 
Haar-like1 features mainly Haar-like2 features are used during tracking. In Figure 3.7, a toy 
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tiger is moved with rotations, occlusions and deformations (see frame 284). Algorithm 
mainly favors Haar-like1 features; however, at occlusion moments number of Haar-like2 
features increases as expected. 
 

   
(a) Frame 13 (b) Frame 32 (c) Frame 103 

   
(d) Frame 462 (e) Frame 550 (f) Frame 828 

   
Figure 3.6: First and third rows show the result of the tracker where (red) rectangles mark 
the tracked object and (yellow) numbers are the numbers of current frame. Second and fourth 
rows show the amount of features used (in percentage: 0 denotes %0 and 1 is equal to 
%100). 
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(a) Frame 15 (b) Frame 73 (c) Frame 110 

   

   
(d) Frame 238 (e) Frame 284 (f) Frame 345 

   
Figure 3.7: First and third rows show the result of the tracker where (red) rectangles mark 
the tracked object and (yellow) numbers are the numbers of current frame. Second and fourth 
rows show the amount of features used (in percentage: 0 denotes %0 and 1 is equal to 
%100). 
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CHAPTER 4  
 
 

EXPERIMENTAL RESULTS 

The proposed tracking algorithm is tested on several publicly available video sequences. For 
comparison, a tracker based on online AdaBoost (OAB) given in [38] and Compressive 
Tracker (CT) described in [52] are used. Codes of these trackers are provided by the 
respective authors. For both trackers, default parameters provided by the authors are used for 
all the experiments.  
 
For proposed tracking algorithm the parameters are set as follows: The classifier has N=50 
weak classifiers and back up pool has M=100 weak classifiers. 45 positive samples and 50 
negative samples are used for training and search radius is set to 20. Learning rate α of weak 
classifiers is 0.15 and the features have minimum 2 and maximum 4 rectangles. Parameters 
of HMMS are given in the related section. All the parameters are held fixed throughout the 
whole experiments. 
 
Table 4.1: Mean center location error. Bold green font shows the best and italic red font 
shows the second best performance. Only best of the KLT algorithms is used in ordering. 

Video Clip CT KLT (1) KLT (all) WT OAB Proposed 
Cola Can 18.27 - - - 17.03 15.24 

Coupon Book 20.72 3.33 2.60 - 45.51 17.58 

David 16.29 4.64 2.83 - 32.70 10.63 

Girl 33.55 - - - 17.88 21.58 

Occluded Face 25.80 - 38.91 - 37.75 13.53 
Occluded Face 2 16.56 4.48 5.00 - 22.41 8.88 

Snack Bar 9.39 - 26.88 - 29.91 7.78 
Surfer 28.44 - 5.25 5.10 10.18 26.35 

Sylvester 18.98 19.02 16.60 - 18.11 20.05 

Tea Box 11.57 12.96 20.89 - 21.56 9.05 
Tiger 1 18.70 - 25.47 - 49.19 29.04 

Tiger 2 20.04 - 25.12 - 32.39 17.58 
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The trackers above can be count in discriminative methods. In addition to these trackers KLT 
[6] algorithm running on GFT [5] points is used. For the elimination of the errors a forward-
backward check [7] is applied where a forward optic flow between frame t and t+1 is 
calculated and then, from this new position a backward optic flow is calculated between 
frame t+1 and t. If the initial and the last position are not equal to each other, corresponding 
GFT point is eliminated. Then, assuming an affine transformation in consecutive frames, 
outliers are eliminated by MLESAC [9] algorithm. Track is quit if there is only one GFT 
point is left. Implementation of MATLAB toolbox is used for these algorithms. For GFT 
points two strategies are followed. In the first one, only GFT points extracted at first frame 
are used for tracking (it is called KLT(1)). And, in the second one GFT points are extracted 
at all frames (it is called KLT(all)). 
 
A window tracking (WT) method based on normalized cross correlation is also implemented 
[71]. Gray level image patch of target is used as appearance model. Target is searched brute-
force and the point having maximum correlation coefficient is marked as the new position of 
the target and template is updated at each frame. If correlation coefficient is less than 0.85, 
track is quit. 
 
In Section 4.1 evaluation methods are presented; whereas in Section 4.2 results of tracking 
only object location is presented; tracking object scale is discussed in 4.3; in Section 4.4 
computation costs of the algorithms are given. 
 
Table 4.2: Standard deviation of center location error. Bold green font shows the best and 
italic red font shows the second best performance. 

 

Video Clip CT [52] OAB [38] Proposed 
Cola Can 8.33 15.79 11.18 

Coupon Book 17.49 30.33 9.17 
David 11.65 25.36 4.81 

Girl 9.02 8.77 11.27 

Occluded Face 12.58 24.06 7.49 
Occluded Face 2 8.17 14.25 4.17 

Snack Bar 3.69 24.56 8.89 

Surfer 13.69 7.88 14.78 

Sylvester 14.40 13.57 14.12 

Tea Box 5.12 19.80 4.42 
Tiger 1 13.91 20.89 21.64 

Tiger 2 16.33 21.32 14.88 
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4.1 Evaluation Methodology 

For a fair comparison, some quantitative methods are used. Typically, center location error 
versus frame number plots are used. However, interpretation of these plots is difficult; hence, 
mean errors over all frames are tabulated. Since these values are summary of the tracker 
performance, some representative screen shots are also presented to analyze the difficulty of 
video sequences.The compared trackers include randomness in their appearance models, so 
multiple trials are performed for any video. The errors in each of these runs are then 
averaged. In order to examine the effect of randomness, standard deviations of the errors are 
also calculated, which shows the repeatability of the tracker, i.e. if a tracker's errors have 
high standard deviation, then this situation indicates that tracker might not yield similar 
responses at all times. For having reliable error mean and standard deviations, each tracker is 
executed 100 times over a video sequence. However, KLT does not include randomness; 
hence it is computed a single case. 

4.2 Tracking Object Location 

Experiments are performed on 12 publicly available video sequences and an overview of 
these video sequences is given in Table 4.4. Ground truths of object centers are available for 
every five frames. Instead of interpolating target locations for other frames, the errors are 
calculated for the frames having ground truth data. 
 
Table 4.3: Error at one standard deviation (µ+σ). Bold green font shows the best and italic 
red font shows the second best performance. 

 

Video Clip CT [52] OAB [38] Proposed 

Cola Can 26.60 32.82 26.42 
Coupon Book 38.20 75.84 26.75 

David 27.95 58.06 15.44 

Girl 42.58 26.65 32.85 

Occluded Face 38.37 61.82 21.01 

Occluded Face 2 24.73 36.66 13.05 
Snack Bar 13.08 54.46 16.66 

Surfer 42.13 18.06 41.12 

Sylvester 33.37 31.68 34.17 

Tea Box 17.08 41.37 13.47 

Tiger 1 32.61 70.07 50.68 

Tiger 2 36.38 53.70 32.46 
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Mean values and standard deviations of the errors are plotted in Figure 4.1, Figure 4.2, 
Figure 4.3, Figure 4.4, Figure 4.5 and average results are given in Table 4.1 and Table 4.2 
respectively. To combine mean and standard deviations, error at one standard deviation is 
given in Table 4.3. Screen shots of video clips are shown in Figure 4.6, Figure 4.7, Figure 
4.8, Figure 4.9, Figure 4.10 and Figure 4.11. Note that, one trail of the multiple runs is 
shown for the sake of clarity.  
 
The "cola can" video includes out-of-plane rotations, occlusions and severe illumination 
changes. Moreover, contrast of the object is very low which makes it difficult to find stable 
features. Both KLT versions and WT lost target at some point and both CT and proposed 
technique perform well on this video. 
 
"Coupon book" video introduces a different challenge from the other video sequences. 
Appearance of the coupon book is changed after about 50 frames by folding it from bottom; 
then a fake target is introduced which is another coupon book and it is not folded. Trackers 
which rely on long term memories likely to fail on this video. OAB is mainly confused by 
the fake target. KLT (all) achieves best performance and considering discriminative trackers 
at one standard deviation, proposed technique outperforms the other trackers by a large 
margin. 
 

Table 4.4: An overview of video sequences used in experiments 

Video Clip Description 

Cola Can occlusion, low contrast, illumination change, rotation 

Coupon Book deformation, fake target 

David Illumination and scale changes, rotation, deformation, occlusion 

Girl scale change, rotation, occlusion 

Occluded Face occlusion 

Occluded Face 2 occlusion, rotation 

Snack Bar scale change, rotation, clutter 

Surfer rotation, clutter 

Sylvester illumination change, rotation 

Tea Box scale change, rotation 

Tiger 1 illumination change, rotation, occlusion 

Tiger 2 illumination change, rotation, occlusion 

 
"David" video is an indoor video where a person walks under spot lights introducing 
illumination change. Moreover his facial expressions bring deformation and also out-of-
plane rotations and occlusions are included. KLT has the best performance on this video and 
considering error at one standard deviation proposed technique outperforms the other 
algorithms by again a large margin.  
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Figure 4.1: Mean and standard deviation of center location error versus frame number plots. 
 
"Girl" video has many changes together. A girl rotates around herself causes severe out of 
plane rotation. In-plane rotation, scale changes and occlusion is also included. OAB is the 
best performing algorithm on this video and proposed technique is the second with a close 
score while KLT fails when out-of-plane rotations take place. 
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Figure 4.2: Mean and standard deviation of center location error versus frame number plots. 
 
"Occluded face" video includes many occlusion moments such that face of the girl is 
occluded from left, right and bottom many times. Even more than half occlusions take place. 
Due to the occlusion state of HMMs, proposed technique achieves the best performance on 
this clip with a large margin. 
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Figure 4.3: Mean and standard deviation of center location error versus frame number plots. 
 
"Occluded face 2" video is somehow different than "Occluded face" video, since it has 
occlusions together with in-plane rotations. Moreover, subject puts a hat on his head and 
leaves there which is a permanent occlusion. KLT achieves the best performance on this 
video sequences and proposed technique is the second. Considering the errors at one 
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standard deviation proposed technique outperforms the other discriminative algorithms by a 
large margin. 
 

 

 

 
Figure 4.4: Mean and standard deviation of center location error versus frame number plots. 
 
"Snack bar" video has scale, blur, occlusion and severe in-plane rotation (object is rotated 
180 degrees) changes together. Moreover, background is confusing since it is similar to 
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object. In this video CT is the best performing algorithm and proposed technique follows it 
with a small margin. 
 

 

 

 
Figure 4.5: Mean and standard deviation of center location error versus frame number plots. 
 



46 

 

 

 

"Surfer" video is an outdoor video. This video has in-plane and out-of-plane rotations. At the 
begging of the video both CT and proposed technique drift and this decreases their 
performance for the rest of the video. Both KLT and WT perform well on this video. 
 

   

   
(a) 

   

   
(b) 

 
Figure 4.6: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) Cola Can (b) Coupon Book 
 
"Sylvester" video sequences include scale, illumination and severe in-plane and out-of-plane 
rotations. All the algorithms perform quite close to each other. 
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(b) 

 
Figure 4.7: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) David (b) Girl 
 
"Tea box" sequences include scale and out-of-plane rotations (even a full rotation). At 
moment of full rotation KLT lost the target. Proposed technique achieves the best 
performance while CT also performs well on this video. 
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(b) 

 
Figure 4.8: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) Occluded Face (b) Occluded Face 2 
 
"Tiger 1" and "tiger 2" videos include many challenges together. They contain frequent 
occlusions and fast motion which causes motion blur. Moreover, mouth of the toy tiger is 
opened and a light came out which brings deformation and sometimes blown out highlights. 
The toy also undergoes many pose changes which create out-of-plane rotations. KLT 
experience difficulties to find matches due to motion blur and out-of-plane rotations. Both 
proposed technique and CT perform well on these videos. 
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(b) 

 
Figure 4.9: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) Snack Bar (b) Surfer 
 
To sum up, considering only mean error proposed technique gets first place 5 times and 
second place 4 times out of 12 videos. When errors at one standard deviation considered 
proposed technique achieves the best performance 7 times and takes the second place 4 times 
out of 12 video sequences. 
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Figure 4.10: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) Sylvester (b) Tea Box 
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Figure 4.11: Screen shots of four tracking results, indicating moments of changes such as 
illumination, scale, in/out-of-plane rotations, occlusion, blur and deformations. Best 
performing KLT version is plotted. (a) Tiger 1 (b) Tiger 2 

4.3 Tracking Object Scale and Location 

For testing scale adaptive version of algorithm, videos having scale changes are utilized. 
However, tracking another parameter brings one more degree of freedom, so algorithm is 
open to make more mistakes. Moreover, searching the object in different scales increases 
search time.  



52 
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(b) 

   
(c) 

   
(d) 

Figure 4.12: Screen shots of tracking scale parameter results. (a) Snack Bar (b) David (c) 
Girl (d) Tea Box 
 
During the experiments, it is observed that algorithm can resolve scale changes; however, in 
out-of-plane rotations, it confuses and tries to solve rotation in scale domain and fails. Since 
algorithm fails in such cases quantitative results are not presented. In Figure 4.12, several 
output snapshots are given highlighting the success and failure cases. 
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4.4 Computation Cost of Algorithms 

All the tests are executed on the same computer having a 64-bit operating system, AMD 
Phenom(tm) II X4 955 processor operating at 3.2 GHz, 4 GB of RAM operating at 1.333 
GHz. Proposed technique and compressive tracker (CT) run at 22 frames per second (fps) 
and their codes are a mixture of Matlab and C. Online AdaBoost (OAB) has a pure C code 
and operates at 16 fps. Timing of KLT algorithm depends on the number of feature points 
tracked. KLT(1), which works on the feature points extracted at first frame only, runs around 
25 fps and KLT (all), which extracts features at all frames operates around 18 fps. Both KLT 
algorithms are implemented on MATLAB. 
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CHAPTER 5  
 
 

 CONCLUSION 

5.1 Summary 

In this thesis, tracking by classification methods are analyzed and a novel discriminative 
tracking algorithm that has an adaptive appearance model is proposed. 
 
A wide literature review is examined for which not only the tracking methods based on 
classifiers, but also the generative methods are reviewed. Online AdaBoost (OAB) and 
compressive tracking (CT) methods are detailed in subsections. Moreover, a feature selection 
method for OAB is introduced; finally, a tracking algorithm based on OAB is presented. For 
compressive tracking some preliminary information, on random projection and random 
measurement matrices, are given.  
 
Based on CT, a novel tracking algorithm is proposed. For this purpose, some preliminaries 
about Hidden Markov Models (HMMs) are presented for better understanding of the 
proposed tracking. Then, construction and adaptation of appearance model are discussed and 
a feature selection method from single frame is presented to select features from a global 
feature pool (a pool which includes all possible features interested). This selection method is 
tested with a Monte Carlo experiment to examine whether it increases the discriminative 
ability of a classifier. These selected features are also assessed by an HMM in terms of being 
discriminative, occluded or indiscriminative. For aggressive replacement of features (when 
needed) which are occluded or decided to be not discriminative anymore, a novel backup 
pool idea is introduced.  
 
A rich set of comparative experiments are conducted. In these experiments, three other state-
of-the-art algorithms are utilized for comparison. Evaluation method of such tracking 
algorithms is briefly discussed. Using these evaluation methods, four algorithms are tested 
based on the ground truth of 12 publicly available challenging video sequences. Graphical 
results as well as snapshots of these video sequences highlighting the moments of occlusions 
and visual changes are presented. 
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5.2 Conclusion 

In this thesis, a novel way of updating an adaptive appearance model of a tracker is 
introduced. An ensemble of weak classifiers is used as an appearance model. These weak 
classifiers are assessed with a 3-state Hidden Markov Model (HMM). Then, appearance 
model is updated according to the decided state of the weak classifiers. Proposed algorithm 
is tested on a challenging video set and quantitative performances are measured. These 
results indicate that proposed method, on the average, achieves superior tracking results 
compared to state of the art competing algorithms.  
 
If no prior knowledge about the object and background is used, the first frame seems to be 
critical for a good start. Since feature pool of the classifier is initialized with features 
selected from global feature pool (a pool which includes all the possible features that are of 
interest), a feature selection method is proposed from global pool. Performance of the 
method is observed with a Monte Carlo experiment. Empirical results show that the 
proposed method improves the confidence of the classifier. Moreover, this method is used 
during tracking when a feature is needed from global feature pool. 
 
Feature replacement is quite important for adaptive appearance models and might increase 
the confidence of classifier; however timing of such replacement is observed to be crucial. If 
a number of feature is replaced when an occlusion takes place, tracker possibly gets 
confused. For handling this, a backup pool is trained and only the successful features in the 
backup pool are used for replacement. Therefore, a robust feature replacement at occlusion 
moments is achieved. Moreover, proposed HMM handles the occlusion cases such that 
features decided to be occluded are excluded from classifier pool and placed to backup pool 
and parameters of these weak classifiers are not updated anymore until they go to the 
discriminative state. Therefore, algorithm is robust to occlusions and has superior 
performance in videos including occlusions, especially in occluded face videos. 
 
One of the most challenging tuning parameter is the learning rate and forgetting factor. 
These parameters are important for both parameter update of weak classifiers and feature 
assessment strategy. If both offline AdaBoost and OAB algorithms are fed with the same 
training set, OAB aims to have the same results as offline AdaBoost. Therefore, it counts the 
errors of weak classifiers and never forgets such errors. This case can be the longest memory 
for an online classifier. In some cases, such a long memory introduces tracking failures. For 
example, in the “Coupon Book” sequence, when a new coupon is shown after folding the 
original one, OAB selects the new one since it resembles much to the first appearance of the 
original coupon. However, in “Girl” video, this long memory brings the first place in 
performance to OAB, since in “Girl” video, subject turns around herself twice and OAB 
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remembers her face better than the other algorithms. In “Tiger” sequences, however, all the 
algorithms experience difficulties to model such fast visual changes. 
 
KLT algorithm is also included in experiments, since it is a mature algorithm and reader 
might understand the difficulties of videos looking at the results of KLT. Although, these 
new classifier based tracking methods achieves promising results, it can be concluded from 
the comparative results that the pointing accuracy of the algorithms are depending the 
performance of KLT.  
 
Applied scale adaptation method is useful, if there is a scale change without out-of-plane 
rotations. However, if out-of-plane rotation takes place, algorithm tries to solve it in scale 
domain and fails. 
 
The generative algorithms used in the experiments (KLT, WT) have high localization ability 
but they might quit tracking easily since they have highly restricted constraints. On the other 
hand, the discriminative algorithms used in the experiments (OAB, CT) are more robust 
compared to discriminative ones since they do not quit tracking easily but their performance 
is lower in terms of pointing accuracy. It can be concluded that the proposed algorithm is 
both robust and has high pointing accuracy. Moreover, the proposed algorithm is able to 
adapt to various visual changes, especially occlusions. However, if fast or abrupt visual 
changes take place, the proposed algorithm experiences difficulties to give response to these 
variations since it has a memory. 

5.3 Future Works 

Adaptive appearance models are useful to handle occlusion and appearance changes. 
However, if the object is occluded for a long period or if the object leaves the scene for a 
while, any tracker having adaptive appearance model inevitably learns misaligned samples. 
In order to deal with this problem, an interesting work is presented in [46] where a 
combination of pretrained and an adaptively trained tracker are exploited. A future work 
would be to combine these ideas and the work in this thesis. In addition to pretrained tracker, 
non-adaptive versions of the proposed adaptive tracker would also be used. 
 
There is a tradeoff between adaptation and memory of the tracking algorithm. A tracker 
having long time memory is likely to fail, when the object undergoes fast appearance 
changes. On the other hand, a short term tracker may lose the object totally once the object is 
occluded or leaves the scene for a while. An interesting feature work would be to combine a 
short term tracker and the long term tracker presented in this thesis. 
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APPENDIX A  
 
 

HIDDEN MARKOV MODELS 

In this section a review of hidden Markov models (HMMs) is presented. Firstly, a brief 
theory of discrete Markov chains is reviewed and the concept of hidden states is presented 
with a well-known balls-in-urn example. Then, elements of HMMs and formulation are 
given. Most of the definitions follow the work in [66][67], and the reader should refer to 
these references for further information. 

A.1 Discrete Markov Processes 

Consider a system having K discrete states, S1,S2,...,SK, as seen in Figure A.1 (where K=3 as 
an example). System may be described as being in one of a given K states at any time, and at 
regularly spaced discrete times system undergoes a change of state (staying at the same state 
is also possible) according to given state transition probabilities aij. A full probabilistic 
description for the system given in Figure A.1, basically requires current state (at time t) and 
all the previous states. However, for discrete first order Markov chains, only current and 
previous state can describe the system, i.e.: 

 Dj¶� = g̈n¶�=& = 0̈, ¶�=: = ]̈ , … l = Dj¶� = g̈n¶�=& = 0̈l, (A.1) 

 
where t is time and qt is the state at time t. Since the processes considered are time 
independent, state transition probabilities aij can be defined as 
 `0g = Dj¶� = g̈n¶�=& = 0̈l,    1 � �, � � «, (A.2) 

 
where, these transition probabilities have the properties: 
 `0g ≥ 0, (A.3) ∑ `0g¦g%& = 1, (A.4) 

 
since standard stochastic constraints are applied. 
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Figure A.1: A Markov chain with three states (S1, S2, S3) and given transitions. 

 
The above stochastic model can be denoted as an observable Markov model, since the output 
of the system is the set of states at each discrete time instance, where each state corresponds 
to an observable event. Let’s give an example for better understanding, consider a simple 3-
state Markov model example for weather (For more examples, the reader should refer to 
[67]). Assume that at a given time of day, weather can be observed in the following states: 
 
   State 1: rain or (snow), 
   State 2: cloudy, 
   State 3: sunny. 
 
Weather of day t is assigned to one of the states above and the state transition matrix A is 
given as: 
 

® = ¯`0g° = ±0.4 0.4 0.30.2 0.6 0.20.1 0.1 0.8´. 

 
Given the model and the first day (t=1) is sunny i.e. in state 3, following question can be 
asked: What is the probability for the following 7 days will be "sun, sun,  rain, rain, sun, 

cloudy, sun" i.e. sequence is � = (¨¸, ¨¸, ¨¸, ¨&, ¨&, ¨¸, ¨:, ¨¸} including first day. This 
probability can be calculated as 
 D(�|b�a9�) = D(¨¸, ¨¸, ¨¸, ¨&, ¨&, ¨¸, ¨:, ¨¸|b�a9�) 

 
= D(¨¸) ∙ D(¨¸|¨¸) ∙ D(¨¸|¨¸) ∙ D(¨&|¨¸) ∙ D(¨&|¨&) ∙    D(¨¸|¨&) ∙ D(¨:|¨¸) ∙ D(¨¸|¨:)  

a33 

a13 
a31 

a11 

a12 

a32 

a23 

a22 a21 

S1 
S2 

S3 
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 = »¸ ∙ `¸¸ ∙ `¸¸ ∙ `¸& ∙ `&& ∙ `&¸ ∙ `¸: ∙ `:¸ 
 = 1 ∙ (0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2) 
 = 1.536 � 10=Ç, 

 
where initial state probability is denoted as: 
 »g = Dj¶& = g̈l,     1 � � � «. (A.5) 

A.1.2 Extension to Hidden Markov Models 

Up to now, only observable Markov models are considered. However, this model can be 
restrictive to some application of interest. In this section, the concept of Markov models is 
extended to include the case where observation is probabilistic function of the state, i.e. state 
is not directly observable, it is hidden. To understand the hidden concept, consider following 
urn and ball model. 

 
The urn and ball model: Consider an urn and ball model of Figure A.2 that there are K 
different glass urns in a room. Within each urn, there are a large number of colored balls and 
assume there are M distinct colors of balls. A process for obtaining observation is as follows. 
A genie in the room, and according to some random process, he (or she) chooses an initial 
urn. A ball is chosen random from this urn, and its color is recorded as the observation. The 
ball is replaced to urn which it was selected. A new urn is selected according to the random 
selection process associated to current urn, and ball selection process continues. This process 
generates a set of observation of colors, which is further modeled as the observable output of 
HMM. 
 
To be clear, in this urn and ball model, each urn corresponds to a state, and color of balls 
(observation) is probabilistic function of the state (urn). Since observation does not show the 
current state directly, state is hidden and the choice of urn is dictated by the state transition 
matrix of HMM. For more examples, the reader should refer to [67]. 
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Figure A.2: A K-state urn and ball model to illustrate general case of a discrete HMM. 

A.1.2 Elements of an HMM 

The example above gives a good idea of what is an HMM and how can be used in simple 
scenarios. In this section, elements of an HMM are defined. 

 
An HMM is characterized by the following elements: 
 
1. K, the number of states in model. Although states are hidden there is still some 
physical significance related to the states. In the urn and ball model, states are attached to the 
urns. States are denoted as ¨ = ( &̈, ¨:, … , ¨¦} and current state at time t is qt. 
2. M, the number of observations symbols. In the urn and ball model, observations are 
the colors of selected balls. Observation symbols are denoted as ­ = ( &,  :, …  \}. 

3. ® = ¯`0g°, the state transition probability distribution where `0g is given in (A.2). 

The special case, where any state can reach any other state in a single step (`0g > 0, ∀ �, �), 

is called ergodic model. 

4. µ = ¯~g(Q)°, the observation symbol probability distribution in state j where 

 ~g(Q) = Dj �`} }n¶� = g̈l,      1 � � � «,     1 � Q � b. (A.6) 

  

5. » = ¯»g°, the initial state distribution where »g is given in (A.5). 

 
For convenience, compact notation in (A.7) is used to indicate complete parameter set of the 
model: 

 

Urn 1 Urn 2 Urn K 

... 

P(red)   = b1(1) 

P(blue) = b1(2) 

. 

. 

. 
P(gray) = b1(M) 

P(red)   = b2(1) 

P(blue) = b2(2) 

. 

. 

. 
P(gray) = b2(M) 

P(red)   = bK(1) 

P(blue) = bK(2) 

. 

. 

. 
P(gray) = bK(M) 
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B = (®, µ, »). (A.7) 
 

Given the parameter set B and the current observation *�, state distribution can be calculated 
by: 
 » ← »®p(*�)»®p(*�)1, (A.8) 

 

where p(*�) is a « � « diagonal matrix whose jth entry is ~g(Q) = Dj �`} }n¶� = g̈l 

( � = *�) and 1 is a column vector of size K 1 = (1, … ,1)�. For derivation reader should 

refer to [66]. 


