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ABSTRACT

SPARSE SENSOR ARRAY DESIGN VIA CONSTRAINED OPTIMIZATION

GÖK, Gökhan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. T. Engin Tuncer

September 2013, 66 pages

In direction finding applications, sparse array design is an important problem. Sparse
arrays are desired when the number of receivers are limited or when sensor size is large
compared to half wavelength. When the sparse array design with inter element spacing
greater than half wavelength is considered, ambiguity should be avoided as much as
possible. The design should generate array patterns without grating lobes.

In this thesis, a similarity measure related to ambiguity probability is used to design
sparse arrays. This measure is also related to the DOA estimation accuracy and reso-
lution. The design problem setting is cast in a form suitable for linear binary program-
ming. The design criteria includes worst-case ambiguity probability, DOA accuracy,
sensor dimensions and maximum array aperture. The proposed approach is used to
design one and two dimensional sparse arrays. It is shown that the proposed approach
is effective and presents certain advantages compared to the alternative methods.

Keywords: Sparse Arrays, Ambiguity Problem, Binary Programming
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ÖZ

KISITLANMIŞ EN İYİLEME İLE SEYREK DİZİ TASARIMI

GÖK, Gökhan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. T. Engin Tuncer

Eylül 2013 , 66 sayfa

Yön Bulma uygulamalarında seyrek dizi tasarımı önemli bir problemdir. Almaç sa-
yıları yetersiz olduğunda veya sezici boyutları yarım dalga boyundan büyük olduğu
durumlarda seyrek dizilere ihtiyaç duyulmaktadır. Elemanlar arası uzaklığın yarım
dalga boyundan büyük olduğu durumlarda belirsizliklerden mümkün olduğunca kaçı-
nılmalıdır. Tasarlanan diziler yüksek yan lobları olmayan örüntüler oluşturmalıdır.

Bu tezde, seyrek diziler oluşturmak için belirsizlik olasılığı ile direk olarak ilgili olan bir
benzerlik ölçütü kullanılmıştır. Bu benzerlik ölçütü geliş açısı kestirim doğruluğu ve çö-
zünürlüğü ile de bağlantılıdır. Tasarım problemi doğrusal ikili değer programı biçimine
getirilmiştir. Tasarım kriterleri, en kötü belirsizlik olasılığı, yön kestirim doğruluğu,
sezici boyutları ve en büyük dizi boyutunu içermektedir. Önerilen yöntem kullanılarak
bir ve iki boyutlu seyrek diziler tasarlanmıştır.Önerilen yaklaşımın etkili bir yöntem
olduğu ve alternatif yöntemlere göre bazı avantajları olduğu gösterilmiştir.

Anahtar Kelimeler: Sparse Array, Belirsizlik Problemi,binary problemi
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CHAPTER 1

INTRODUCTION

Direction Finding(DF) or Direction of Arrival(DOA) estimation can be stated as de-

termining the incoming angle of a signal that is radiated by a distant emitter and

it has numerous applications in variety of fields such as sonar, radar, communica-

tions, navigation or electronic warfare(EW). Signals coming from multiple sensors are

received using multiple receivers and then processed in order to determine the angle-of-

arrival(AOA) of incoming signals. There is a large DOA literature that explains how

the processing should be done for best estimation performance in terms of different

performance criterion like resolution or estimation variance. Array geometry has also

a large impact on DOA estimation performance. Cramer-Rao bound(CRB) is directly

determined by how the sensors are placed in the space[1][2].

Direction finding systems usually employ sensor arrays with unequal sensor spacings

for various reasons. One of the main reason of using unequal sensor spacing in array

designs is to have better estimation accuracy and resolution compared to equispaced

counterparts with the same number of elements. It is well known that increasing

the maximum aperture of a sensor array result in a better estimation accuracy and

resolution. But in [3, 4], it is shown that for sensor spacing larger than λ
2 , ambiguities

might occur. In [5][6], ambiguity defined as producing large direction of arrival errors

when two or more steering vectors are similar for widely spaced angles. In other

words for different direction of arrivals, array might have same response at its output

and these direction of arrivals cannot be distinguished from each other. Such arrays

are said to be ambiguous. Difference between observation spaces of ambiguous and

unambiguous array is conceptually illustrated in Fig. 1.1.

1



���������	�

��	���
������	�����
�����

�����
�����������	�

��	���
������	�����

Figure 1.1: Observation Spaces of Ambiguous and Unambiguous Arrays

Accuracy is not the only reason for using arrays with large spacings. Sometimes

sensors are so large that they cannot be positioned close to each other. For closely

spaced sensors, performance might degrade due to the mutual couplings. Especially

for wide-band systems, sensor sizes might be greater than one or even two wavelengths

in the largest frequency of operation. So it is important to identify feasible sensor

positions to have unambiguous array response for large array elements.

1.1 Scope and Contributions of the Thesis

In this thesis, we propose a new method for properly selecting sensor locations for

ambiguity resolution. To do this, we first investigate the ambiguity phenomenon and

find the relation between sensor array geometry, ambiguity probability and estimation

performance. After that array design problem is modelled as a Binary Linear Pro-

gram(BLP) and ambiguity constraints along with the accuracy requirements are used

as the constraints of the problem. Although BLPs are known to be non-convex and

NP hard, there are very powerful methods like branch-and-bound algorithm that finds

the optimal solution by solving linear relaxations of the original problem. Details of

these algorithms are not discussed in here as it is not in the scope of this thesis.

Contributions of the array design method proposed in this thesis are stated below.

• Sensor arrays with large baselines and worst case ambiguity probability limited

2



by a desired value can be designed with proposed approach. Design approach

tries to find a sensor array geometry with minimum number of sensor that satisfy

both worst case ambiguity probability and required DF accuracy. In most practi-

cal problems, number of receivers are limited and DOA estimation requirements

are tight. In order to satisfy the accuracy requirements, sparse arrays with large

baselines are needed.

• Especially for wide band sensor arrays, sensor sizes are large. In the proposed

approach sensor dimensions are directly incorporated in the design procedure.

They are modelled as linear constraints and added to the optimization problem.

• Maximum aperture of the array is also set as a design parameter. Especially for

moving platforms, there is not always a large enough space for placement. These

kind of requirements are handled by the proposed approach inherently.

• The proposed method is first proposed for linear array design and then it is shown

that it can be used for arbitrary array geometries in 3D space. Most alternative

approaches are limited to 1D space only.

To show the efficiency of the approach, in Chapter 5, we present some examples for

both linear array for 1D DOA estimation and planar array for 2D DOA estimation.

Results are supported with DOA accuracy simulations.

3
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CHAPTER 2

BACKGROUND INFORMATION

2.1 Signal Model

The emphasis in this chapter will be on introducing the signal model for the output

of the receiving sensor array. By using the given signal model, direction of arrival

estimation problem is turned into a parameter estimation problem using the noisy

snapshots of the sensor array. During the derivations two important assumptions

will be made. First one is the narrowband assumption and it gives us the ability to

write the output of each sensor as phase shifted copies of the emitter signal. Second

assumption is the far field assumption and it simply lets us to write the propagation

delay between sensors as a function of direction of arrival of the signal. For readability,

we will begin by considering the single source case. Once the model for single source

is established, general model for multiple source signals will be obtained just by using

the superposition principle.

Now consider the scenario given in Fig. 2.1 with M sensors. φ is the azimuth angle

measured from x-axis on xy plane and θ is the elevation angle measured from positive

z-axis.

Let sp(t) denote the passband signal that would be received at the origin of the coor-

dinate system given by

sp(t) , <{s(t)ej2πfct} (2.1)

where s(t) denotes the complex envelope and fc is the carrier frequency.

5
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Figure 2.1: M Element Sensor Array and the Coordinate System

Signal received by the ith sensor is given by

spi(t) = sp(t− τi) = <{s(t− τi)ej2πfcte−j2πfcτi} (2.2)

where τi is the time delay needed for the wave to travel from origin to sensor i.(i =

1, 2 . . .M). Let B denote the bandwidth of the emitter signal s(t). If B � 1
τi

for all

sensors then s(t−τi) ≈ s(t). This assumption is known as the narrowband assumption.

Using this assumption, output of the sensor i is given by

spi(t) = sp(t− τi) = <{s(t)ej2πfcte−j2πfcτi} (2.3)

After demodulating the passband signals, the baseband signal measured from each

sensor is given by

yi(t) = s(t)e−j2πfcτi + v(t) (2.4)

where v(t) denotes the additive noise term.

Notice that the signal received by each sensor is phase shifted by the delay amount τi.

Using the far field assumption(planar wave assumption), delay term τi can be written

6



as a function of direction of arrival {φ, θ} and sensor position (xi, yi, zi).

τi =
rTi u

c
(2.5)

where

ri , [xi yi zi]
T (2.6)

u , [cosφsinθ sinφsinθ cosθ]T (2.7)

and c is the propagation velocity of the impinging waveform(for example, the speed

of light in the case of electromagnetic waves). In Fig. 2.2, planar wave assumption is

illustrated for a linear array positioned on x-axis.

�

�

������

�	




Figure 2.2: Planar Wave Assumption for Linear Array

Substituting the Eq. 2.5 into Eq. 2.4, we get

yi(t) = s(t)e−j2π
rTi u

λ + v(t) (2.8)

where λ denotes the signal wavelength which is the distance travelled by the waveform

in one period.

λ =
c

fc
(2.9)

For signal source case, signal received by the array can be written in vector form as

7



below.

y(t) ,


y1(t)

y2(t)
...

yM (t)

 = a(φ, θ)s(t) + v(t) (2.10)

The vector a(φ, θ) in Eq. 2.10 is referred as the array manifold vector and incorpo-

rates all of the spatial characteristics of the array. Array manifold vector can be given

by

a(φ, θ) ,



e−j2π
rT1 u

λ

e−j2π
rT2 u

λ

...

e−j2π
rTMu

λ


(2.11)

Results until now can readily be extended for multiple source signals case in a straight-

forward manner using the superposition principle. Signal model for n sources is given

by

y(t) = [a(φ1, θ1) . . .a(φn, θn)]


s1(t)
...

sn(t)

+ n(t) = As(t) + v(t) (2.12)

where

A , [a(φ1, θ1) a(φ2, θ2) . . .a(φn, θn)] (2.13)

s(t) , [s1(t) s2(t) . . . sn(t)]T (2.14)

Until now, we assume that signal received from the array is a continuous signal. But

usually, sampled version yi(t) is used by a digital processing equipment for direction

of arrival estimation. Block scheme of a simplified hardware structure is given in Fig.

2.3.

We can rewrite the sampled form of the sensor array output as

y(k) = As(k) + v(k) k = 1, 2 . . .K (2.15)

where K is the number of snapshots obtained from the sensor array.

8
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Figure 2.3: A simplified block diagram of a receiver

2.2 A Special Case:Uniform Linear Array

Consider m identical sensors uniformly spaced on the x-axis with the spacing d. Such

array is shown in Fig. 2.4 and referred as the Uniform Linear Array(ULA). Let di

denote the ith sensor position on x-axis which is given by

di = (i− 1) d i = 1, 2, . . .m (2.16)

Assuming that the target is on the same plane(θ = 90) with the linear array, array

manifold vector for ULA is given by

a(φ) = [1, e−j2πkcosφ, . . . , e−j2π(m−1)kcosφ] (2.17)

where k is the sensor spacing in wavelengths given by

k ,
d

λ
(2.18)

One important observation about the linear arrays is that same array manifold vector

is obtained for any two source symmetrical to the array line hence these sources can

not be distinguished from one another.

Let spatial frequency defined as ws , 2πkcos(φ). Substituting the ws into the Eq.

2.17, we get

a(φ) = [1, e−jws , . . . , e−j(m−1)ws ] (2.19)

9
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Figure 2.4: Uniform Linear Array of m sensors with sensor spacing d

Note that the manifold vector given in Eq. 2.19 is essentially the samples of a complex

sinusoidal signal with frequency ws. So DOA estimation is simply analogous to the

frequency estimation problem. In frequency estimation problem, temporal frequency

of the signal is estimated using the samples of the signal whereas in direction finding

spatial frequency ws is estimated using the samples obtained from the sensors.

Analogous to the temporal frequency estimation, Shannon sampling theorem can be

extended to the spatial frequency estimation for uniform linear array case. In order

to avoid aliasing effects, following condition must be satisfied so that array manifold

vector a(φ) is unique for different direction of arrivals.

|ws| ≤ π ⇐⇒ d ≤ λ

2
(2.20)

Condition given in Eq. 2.20 simply states that for ULA, samples in space should be

dense enough so that spatial the frequency can be uniquely be determined.

ULA can be thought as the uniform sampling of the wavefield. In this thesis, what we

would like to achieve is to find a way to sample the wavefield in a non-uniform matter

and still uniquely determine the DOA with no ambiguity. By doing so, we hope to

offer a solution to some practical problems. For example, we might be able to get a

superior performance compared to the ULA with same number of elements.

10



CHAPTER 3

AMBIGUITY PROBABILITY AND LINEAR

DEPENDENCE OF STEERING VECTORS

In this chapter, we will primarily focus on the ambiguity issue of sensor arrays. In sec-

tion 3.1, probability of ambiguity is defined and a function relating the array geometry

with ambiguity response is given. Obtained results are also supported with simulation

results for clarity and validation. In section 3.2, the function related to ambiguity is

deeply investigated in order to have a better understanding and provide a basis for the

next sections. Further effort has been made in section 3.3, in order to prove that the

ambiguity related function is not solely related to ambiguity response but also to the

overall array performance.

3.1 Ambiguity Probability

Consider a scenario where one signal impinging on an array of M sensors. Assume that

φ1 and φ2 are two different DOA estimate candidates. Using the snapshots {y(k)}Kk=1,

angle of arrival of the signal will be estimated. For both AOA candidates we can write

the hypothesis as

H1 :y(k) = a(φ1)s(k) + v(k) k = 1, 2, . . . ,K (3.1)

H2 :y(k) = a(φ2)s(k) + v(k) k = 1, 2, . . . ,K (3.2)

where we assume that s(k) is a zero mean Gaussian process with σ2s , E{s(k)s∗(k)}

and noise vector denoted by v(k) is both spatially and temporally white Gaussian

process with covariance E{v(k)v(k)H} = σ2IN .
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Covariance matrices of both hypothesis can be written as

Ri = σ2sa(φi)a(φi)
H + σ2IN i = 1, 2 (3.3)

In Appendix A, it is proved that minimum probability of making the wrong deci-

sion between φ1 and φ2 is achieved by the likelihood test given in Eq. 3.4. Similar

derivations are given in [5].

ε = tr{(R−11 −R−12 )R̃} ≶ 0

=
1

K

K∑
k=1

yH(R−11 −R−12 )y ≶ 0
(3.4)

where R̃ , 1
K

K∑
k=1

yyH denotes the sample covariance matrix.

ε given in Eq. 3.4 is just a sum of K random variables and according to central limit

theorem its distribution converges to normal distribution for large enough snapshots.

For both hypothesis, decision regions and distribution of ε are shown in Fig. 3.1.

�
������� �������

�� ��

Figure 3.1: Decision Regions and Distributions for Two Hypothesis

Assuming that φ2 is the true AOA, probability of choosing the wrong AOA angle φ1

is given by(see Appendix A for proof),

Pa = Prob{ε > 0|H2}

= Φ

(√
K

1 + 2
p(1−β2)

)
(3.5)
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where

β(φ1, φ2) ,
|a(φ1)

Ha(φ2)|
M

(3.6)

p ,
(Mσ2

s
σ2 )2

1 + Mσ2
s

σ2

=
(M · SNR)2

1 +M · SNR
(3.7)

Φ(x) ,
1

2π

∞∫
x

exp−
t2

2 dt (3.8)

Φ(x) given in Eq. 3.8 is known as complementary error function.

Considering the Eq. 3.5 following comments can be made on the probability of ambi-

guity.

• Probability of ambiguity is a increasing function of β and it is the only variable

related to array geometry.

• Ambiguity probability decreases as SNR and number of snapshots increases.

• It is not meaningful to give the error probability of a sensor array without men-

tioning the other parameters. Signal power, noise power and number of snapshots

must be given in order to determine the error probability.

• Note that, derivations until now does not include any assumption about the re-

lation between φ1 and φ2. As a definition, ambiguities are only defined between

widely separated angles. But probability values are also valid for closely sepa-

rated angles and it directly affects the estimation accuracy of the array. This

property will be further investigated in the upcoming sections.

• Every sensor array will start producing significant number of large DOA errors

after some threshold for low SNR and/or insufficient number of snapshots. De-

pending on the β value, threshold values of SNR and number of snapshots will

change.

In order to validate the results, Monte Carlo experiments are done for hypothesis

testing using a minimum redundant linear array positioned on x-axis with element

positions d = [0, λ2 , 2λ, 3λ]. During the simulations true direction of arrival value, Φ2, is

used to generate noisy snapshots while the false DOA φ1 is kept constant. For different

13



angle combinations {φ1, φ2}, value of the function β(φ1, φ2) changes depending on the

array geometry. Simulation parameters are given in Table 3.1. Corresponding values

β(φ1, φ2) are calculated using Eq. 3.6 for the parameters given in Table 3.1.

Table3.1: Monte Carlo Simulation Parameters for Ambiguity Probability

Parameters Description Value

φ1(deg) False DOA in Hypothesis Testing 90

φ2(deg) True DOA used for Measurement Generation [91,120]

SNR(dB) - -10 and -20

# of Snapshots - 100

# of Experiments Experiments for every φ1, φ2 combinations 1e4

In Fig. 3.2, probability of choosing the wrong direction of arrival is plotted. Both

Monte Carlo simulation results and the values calculated using complementary error

function is given. Results confirms that error probability function given in Eq. 3.5 is

valid.

In Fig. 3.3, probability of choosing wrong direction of arrival and β(90, φ2) is plotted

for all φ2 values. It can be seen that, regardless of the true direction of arrival, φ2,

same probability of wrong decision obtained when β value is constant.
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3.2 Significance of Beta Function and Linear Dependence of Steering

Vectors

In previous section, it is proved that probability of choosing the wrong angle of arrival

is directly related to a function β(φ1, φ2) given in Eq. 3.6. In this section, this

function will be further investigated in order to understand its relation with ambiguity,

estimation accuracy and resolution of the sensor array.

Let J(φ1, φ2) be defined as

J(φ1, φ2) , a(φ1)
Ha(φ2) (3.9)

Note that J(φ1, φ2) is essentially the inner product of two vectors, formally J(φ1, φ2) :

CM × CM → R.

The Cauchy-Schwarz inequality states that for all vectors x and y of an inner product

space it is true that

|〈x, y〉| ≤ 〈x, x〉〈y, y〉 (3.10)

So following inequality holds for J(φ1, φ2).

|a(φ1)
Ha(φ2)| ≤ ‖a(φ1)‖‖a(φ2)‖ (3.11)

Moreover, strict equality holds when a(φ1) and a(φ2) are linearly dependent or formally

a(φ1) = αa(φ2) where α ∈ C.

Steering vector of a M element linear sensor array is given by

a(φ) = [ej2πk1cos(φ), ej2πk2cos(φ), · · · , ej2πkM cos(φ)] (3.12)

where ki represents ith sensor position in wavelengths. Norm of the steering vector

can be calculated as

‖a(φ)‖ =

√√√√ M∑
i=1

|ej2πkicos(φ)|2 =
√
M (3.13)

Substituting Eq. 3.13 into Eq. 3.11 we get,

|a(φ1)
Ha(φ2)| ≤M (3.14)
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Using the result in Eq. 3.14 and property of absolute value operator, we can write the

following inequality for β(φ1, φ2).

0 ≤ β(φ1, φ2) ≤ 1 (3.15)

Depending on the values of β, we can make the following comments on the linear

dependence of steering vectors.

• β value increases as linear dependence of steering vectors increases. When β = 1,

steering vectors become linearly dependent.

• β becomes 0 when steering vectors are orthogonal.
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In Fig. 3.4, β(φ1, φ2) is illustrated for a 4 element minimum redundant array. Diagonal

terms in the plot are the {φ1, φ2} pairs that are close and as expected they are linearly

dependent. As |φ1 − φ2| increases, β(φ1, φ2) becomes smaller and steering vectors

become linearly independent. One can also observe that there is no largely separated

angles with large β(φ1, φ2). So this array will have satisfactory ambiguity response.

However, this observation is not true for Fig. 3.5. There are linearly dependent steering

vectors with widely separated angles and this array will produce large DOA errors with

high probability even at high SNR with large number of snapshots.

3.2.1 Relation Between Beta Function and Data Independent Beamformer

People working in array processing area might feel quite familiar when they first see the

Eq. 3.6 because β(φ1, φ2) might be thought as a magnitude response of a conventional

data independent beamformer for steering angle φ1 and emitter DOA φ2.

In order to show the relation between β(φ1, φ2) and DOA accuracy, we first introduce

deterministic maximum likelihood(ML) DOA estimator. For single source case, data

independent beamformer is the ML estimator for direction of arrival. Although this is

a well know result, proof is given in Appendix B for completeness.

φ̂ = argmax
φD

{
1

K

K∑
k=1

|yf (k)|2
}

= argmax
φD

{
1

K

K∑
k=1

|a(φD)H√
M

y(k)|2
} (3.16)

where yF , 1√
M
a(φD)Hy(t) denotes the signal at the output of the beamformer for

direction φD and direction in which the output power of the beamformer is maximized

will be selected as the estimated AOA. For ML estimation, as it can be seen in Eq. 3.16,

beamformer weights are chosen to be the normalized steering vectors of the related

direction which is also known as the data independent beamformer.

Beam pattern of a such beamformer when array is steered to direction φD is given by

B(φ) = |wHa(φ)|2

=
|a(φD)Ha(φ)|2

M

(3.17)

Now comparing the Eq. 3.6 and Eq. 3.17, we see that they are essentially the same

thing. By identifying this similarity, we can look at the ambiguity problem from
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another point of view. Ambiguity problem can be seen as determining the geometry

of a sensor array such that when array steered to each direction in its operation range,

side lobes of the beam pattern should be suppressed enough so that leakage from

other angles is prevented. In Fig. 3.4 and Fig. 3.5, β(φ1, φ2) function is given for two

different arrays. Each cuts of these graphs are actually the beam pattern for different

steering angles. In Fig. 3.6, beam pattern for boresight steering is given. For the

ambiguous array we see that side lobes are as high as the main lobe, so when steered

to some angle, emitter signal coming from some other direction will just leak in and

DOA estimator given in Eq. 3.16 will not be able to distinguish the true angle of

arrival.
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Figure 3.6: Comparison of Beam Patterns between Ambiguous and Unambiguous
Linear Arrays

Noticing the similarity between data independent beamformer and β(φ1, φ2) does not

only give us another point of view but also gives us an opportunity to relate β(φ1, φ2)

with DOA estimation accuracy and resolution limit of the sensor array. In section 3.3,

relation between beam pattern and array performance is studied in detail.
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3.3 Array Resolution and Estimation Accuracy

Until now, we mainly focused on large direction of arrival errors and proved that

they can be characterized using the function β(φ1, φ2). But during the derivations

of ambiguity probability, no assumption about the relationship between φ1 and φ2 is

made. So these probabilities are also valid for closely separated angles. Intuitively,

one can think that β(φ1, φ2) for closely separated angles should determine the DOA

estimation accuracy and the resolution of array. In this section, it will be proved

that this idea is correct and just by looking the figures given in 3.4 and 3.5, one can

comment on both the resolution and accuracy of the related sensor array.

First we need to clearly express the distinction between resolution and accuracy. Esti-

mation accuracy is not sufficient to characterise the performance of a DF system when

multiple signals are present and in such cases, resolution of the array should also be

considered. In [1, 7], resolution is defined as the ability of a system to distinguish

between tightly spaced emitters. In [1, 8, 9], it is stated that resolution is closely

related to determination of the number of distinct components in the composite signal

received by the array whereas accuracy is related to detection or decision. In order to

estimate the DOA of emitters, it is first necessary to determine the number of differ-

ent DOAs included in the composite signal which is related to resolution. Algorithms

like MUSIC[10] or MLE[11] assume that number of sources is known and accepts this

information as an input.

Usually, accuracy of a direction finding system is expressed in terms of mean-square

error(MSE) which is given by

MSE{φ̂} , E{|φ̂− φ|2} (3.18)

where φ̂ denotes the estimated DOA and φ denotes the true DOA.

Cramer-Rao bound(CRB)[12] is also an important tool for assessing the accuracy of

parameter estimation methods, as it provides a lower bound on the accuracy of any

unbiased estimator.

MSE{φ̂} = V AR{φ̂} ≥ CRB (3.19)
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In [1], CRB for direction finding problem is given as

CRB(φ) ≈ 1

2KSNR |ȧ(φ)|2
(3.20)

where K is the number of snapshots and ȧ(φ) denotes the derivative of the array

manifold with respect to DOA angle φ. We see that CRB is inversely proportional to

the factor ȧ(φ). This relation tells us that if the steering vectors are changing fast,

DF system will have the ability to estimate the DOA more accurately.

Beamwidth of the array is another parameter of the array which depends on the rate

of change of steering vectors. So we can relate the CRB with beamwidth of the array

as well. In [13], relation between CRB and 3dB beamwidth of the array is given by.

CRB ∝ BW 2 (3.21)

where BW denotes the beamwidth of the sensor array. Similar relations between

beamwidth and CRB is also given [14, 15].

Resolution limit ∆r is usually defined as the minimum angular separation between two

sources required in order to satisfy a correct detection probability. As for the CRB

case, numerous efforts[16, 17, 18, 19] have been made to define the resolution limit, ∆r

in terms of known array parameters. In [20, 21], authors stated that resolution limit

is proportional to

∆r ∝
BW

SNR
1
4

(3.22)

In Eq. 3.22, relation is given for the single snapshot case. But it is always possible to

calculate the overall SNR for K snapshots and the equation will be still valid.

In literature, there are studies about the relationship between beamwidth and reso-

lution limit. For example, in [16] authors showed that resolution limit is inversely

proportional to square root of SNR rather than the fourth root. These relations are

heavily dependent on how resolution limit is defined and signal parameters used during

the derivations. But in [1], it is stated that the resolution limit given in Eq. 3.22 is

achievable in most practical problems.

In order to have better understanding of the relation between beamwidth, resolution

and accuracy, some simulations are made. During the simulations 4 element and

8 element uniform linear arrays(ULA) with spacing λ/2 are compared in terms of
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beamwidth, accuracy and resolution. In Fig. 3.7, direction finding accuracy of both

arrays are given. During the simulations, MUSIC[10] is used as the DOA estimator.

Note that accuracy of estimation is given in root mean square(RMS) sense in Fig. 3.7.

Using the relation given in Eq. 3.19, relation between root mean square error(RMSE)

can be found as

RMSE ∝ BW (3.23)
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Figure 3.7: DF Accuracy and Beam Width Comparison of Two Different ULAs

Simulation result given in Fig. 3.7 is obtained when elements of the array positioned

on the x-axis. So when φ = 90 degree, narrowest beamwidth is obtained for both

arrays. As a result, best DOA accuracy is obtained for boresight angle.

Detailed analysis and simulations for resolution limit will not be given here as definition

of resolution limit depends on different parameters and assumptions which is outside

the scope of this thesis. Instead, in order to show that smaller beamwidth provides

better resolution, we compared the MUSIC spectrum of a scenario with two closely

separated emitters in Fig. 3.8. It can be seen that, 8 element array able to resolve two

emitters whereas 4 element fails to produce two separate peaks in its spectrum.
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3.4 Approximation of Beta Function

In previous sections, β(φ1, φ2) given in Eq. 3.6 is shown to be directly related to ambi-

guity probability and array performance. Now we are going to give an approximation

for this function which is valid for large values of β(φ1, φ2).

In Eq. 3.9, function J(φ1, φ2) defined as J(φ1, φ2) , a(φ1)
Ha(φ2). Substituting Eq.

3.9 into Eq. 3.6 we get,

β(φ1, φ2) =
|J(φ1, φ2)|

M
(3.24)

Substituting Eq. 3.12 into |J(φ1, φ2)|, we get

|J(φ1, φ2)| =
∣∣a(φ1)

Ha(φ2)
∣∣

=

∣∣∣∣∣
M∑
i=1

ej2πkiγ

∣∣∣∣∣
=

( M∑
i=1

cos(2πkiγ)

)2

+

(
M∑
i=1

sin(2πkiγ)

)2
 1

2

(3.25)

where γ is defined as γ , cos(φ2) − cos(φ1) and we use the fact that |J(φ1, φ2)|2 =

<{J(φ1, φ2)}2 + ={J(φ1, φ2)}2.

Now let us redefine steering vectors by placing the first element on the origin of the

coordinate system.

a(φ) = [1, ej2πk2cos(φ), · · · , ej2πkM cos(φ)] (3.26)
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where ki is the sensor position of ith sensor with respect to the first element normalized

with the wavelength.

By writing the steering vectors as in Eq. 3.26, we actually restrain the phase rotation

of each element. In order words, we use the first element as a reference and phase

difference of each element must now be constant with respect to the first element of

the array. And also phase of the first element must be 0 for all angles as k0 = 0.

Considering the Eq. 3.25 and Eq. 3.26 together, one can see that |J(φ1, φ2)| will be

large and ambiguity probability will be significant whenever the phases of steering vec-

tors a(φ1) and a(φ2) are the same, formally when mod(2πkiγ)(2π) � 1, i = 1, 2, . . .M .

In other words, writing the steering vectors with respect to first element, steering vec-

tors become linearly dependent whenever they are the same.

Under the conditions above, <{J(φ1, φ2)} will be dominant in Eq. 3.25 and approxi-

mation of J(φ1, φ2) is given by

J̃(φ1, φ2) ,
M∑
i=1

cos(2πkiγ)

= <{a(φ1)
Ha(φ2)}

(3.27)

Substituting Eq. 3.27 into Eq. 3.6, we get the approximation for the β function as

β̃(φ1, φ2) ,

M∑
i=1

cos(2πkiγ)

M
=
<{a(φ1)

Ha(φ2)}
M

(3.28)

This approximation is quite useful for our purposes because we are mostly interested

with the region in which β(φ1, φ2) takes large values due to the fact that both ambi-

guity probability and array performance is defined by this region as shown in previous

sections. In Fig. 3.9, both β(φ1, φ2) and β̃(φ1, φ2) are given for an ambiguous array.

It can be seen that, for large values of β, both functions are almost the same.

Approximation in Eq. 3.28 is also used in [5, 6] in order to relate the Euclidean distance

with ambiguity related function β(φ1, φ2). When we write steering vectors as in Eq.

3.26, Euclidean distance between and two steering vector is also directly related to the
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Figure 3.9: Real and absolute value of β(90, φ2) for sensor array with element positions
d = [0, 2λ, 6λ]

probability ambiguity. Euclidean distance between two steering vectors is given by

‖a(φ1)− a(φ2)‖2 =[a(φ1)− a(φ2)]
H [a(φ1)− a(φ2)]

=aH(φ1)a(φ1) + aH(φ2)a(φ2)

−(aH(φ1)a(φ2) + aH(φ2)a(φ1))

(3.29)

where

aH(φ1)a(φ1) = aH(φ2)a(φ2) = M (3.30)

aH(φ1)a(φ2) = (aH(φ2)a(φ1))
∗ (3.31)

aH(φ1)a(φ2) + aH(φ2)a(φ1) = 2<{aH(φ1)a(φ2)} (3.32)

Substituting Eq. 3.30,3.32 into 3.29 we get,

‖a(φ1)− a(φ2)‖2 = 2 (M −<{aH(φ1)a(φ2)}) (3.33)

Comparing Eq. 3.28 and Eq. 3.33, one can observe that they have quite similar

characteristics except Euclidean distance is small when steering vectors are linearly

dependent whereas β(φ1, φ2) is large. In Fig. 3.10, comparison between Euclidean

distance and <{β(φ1, φ2)} is given.
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CHAPTER 4

SPARSE ARRAY DESIGN USING BINARY

PROGRAMMING

4.1 Linear Unambiguous Array Design

Consider the scenario given in Fig.4.1 where linear array of m sensors are placed on

the x-axis with spacing ∆L and maximum aperture L.

�����

��
Figure 4.1: Linear Sensor Grid of m elements with aperture size L

Assume that, using the elements of this array, azimuth angle of arrival will be esti-

mated. Let Φ denote the interval of azimuth angles that the array is going to operate.

Φ , [φmin, φmax] (4.1)

Assuming that the first element is positioned at the origin of the coordinate system,
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array manifold is given by

a(φ) = [1, ej2πk2cos(φ), ej2πk3cos(φ), · · · , ej2πkmcos(φ)] (4.2)

where ki is the sensor position of ith sensor on x-axis normalized with the wavelength.

Note that in Eq. 4.2, term corresponding the first element is always the same and last

(m-1) term characterizes the manifold vector as given below.

g(φ) , [ej2πk2cos(φ), ej2πk3cos(φ), · · · , ej2πkmcos(φ)] (4.3)

What we would like to achieve is to determine which sensor spacings ki to use in order

to have unambiguous array response. In order to do that, we introduce sensor gains

that are either 0(off) or 1(on) in Eq. 4.3, i.e,

g(φ) = [x2e
j2πk2cos(φ), x3e

j2πk3cos(φ), · · · , xmej2πkmcos(φ)] (4.4)

where xi denotes the ith sensor gain. Let the sensor gain vector be defined as

x , [x2 x3 · · · xm]T (4.5)

Note that first element phase and gain are not included in both Eq. 4.4 and Eq. 4.5.

In order to make our previous assumptions still valid, we assume that x1 = 1 and

sensor on the origin does always exist.

By adding the sensor gains into Eq. 3.26, we transform the unambiguous array problem

from determining the sensor spacings ki into determining the sensor gain vector x.

We define the sparse unambiguous array design problem as

(P1)

minimize
x

‖x‖0

subject to β(φ1, φ2) ≤ β̄, {φ1, φ2} ∈ Υ

xi ∈ {0, 1}

(4.6)

where Υ is the set {φ1, φ2} couples that are widely separated, formally

Υ , {(φ1, φ2) | φ1 ∈ Φ, φ2 ∈ Φ, |φ1 − φ2| ≥ σ} (4.7)
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and β(φ1, φ2) is the ambiguity related function approximately given by

β(φ1, φ2) ≈
J̃(φ1, φ2)

M
(4.8)

where

M =
√

aH(φ1)a(φ1)aH(φ2)a(φ2) (4.9)

J̃(φ1, φ2) , <{a(φ1)
Ha(φ2)} (4.10)

Note that M and m are distinct variables and m shows the number of sensor in the

starting sensor grid array while M represents the number of sensors used in the designed

array.

Optimization problem (P1) given in Eq. 4.6 can be simplified by making some obser-

vations and some algebraic manipulations.

We start by first looking into the objective function of (P1). As a objective function,

`0 norm is used because it counts the number of non-zero elements in a vector and it is

a measure of sparsity. But notice that every element in sensor gain vector x is either 0

or 1. For such a vector `0 norm is equivalent to `1 norm. Using this result, equivalent

problem (P2) can be written as

(P2)

minimize
x

‖x‖1

subject to β̃(φ1, φ2) ≤ β̄, {φ1, φ2} ∈ Υ

xi ∈ {0, 1}

(4.11)

Now we start looking into the constraint function β̃(φ1, φ2) ≤ β̄. Substituting steering
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vectors with sensor gains into Eq. 4.9 and Eq. 4.10 assuming x1 = 1, we get

J̃(φ1, φ2) = <{aH(φ1)a(φ2)}

=
m∑
i=1

<{x2i e2πki(cosφ2−cosφ1)}

= 1 +
m∑
i=2

x2i cos (2πki(cosφ2 − cosφ1))

= 1 + <{gH(φ1)g(φ2}

(4.12)

M =

m∑
i=1

x2i

= 1 +
m∑
i=2

x2i

(4.13)

So ambiguity related function given in Eq. 4.8 becomes

β̃(φ1, φ2) =

1 +
m∑
i=2

x2i cos (2πki(cosφ2 − cosφ1))

1 +
m∑
i=2

x2i

(4.14)

Let the sensor power vector be defined as

p , [x22 x
2
3 · · · x2m]T (4.15)

Note that sensor gain vector given in Eq. 4.5 and sensor power vector given in Eq.

4.15 are essentially the same when sensor gains xi have binary values due to the fact

that x2i = xi. So x2i values in Eq. 4.14 can be interchanged with xi.

β̃(φ1, φ2) =

1 +
m∑
i=2

xi cos (2πki(cosφ2 − cosφ1))

1 +
m∑
i=2

xi

≤ β̄ (4.16)

When we look into the Eq. 4.16, we see that it is a fraction of two linear functions

of optimization parameters xi’s. In this form, optimization problem (P2) given in

Eq. 4.11 is not solvable. In order to put it in a solvable form, instead of adding the

ambiguity constraints as a fraction of two linear functions, we add numerator and
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denominator of Eq. 4.16 as two independent linear constraints as given below.

T (φ1, φ2) , <{g(φ1)
Hg(φ2)} =

m∑
i=2

xi cos (2πki(cosφ2 − cosφ1)) ≤ T̄ (4.17)

Q ,
m∑
i=2

xi ≥ Q̄ (4.18)

where

β̄ ,
T̄ + 1

Q̄+ 1
(4.19)

If the constraints given in Eq. 4.17 and Eq. 4.18 are both satisfied, constraint in

Eq. 4.16 will eventually be satisfied. But note that, Q function given Eq. 4.18 is

the same as the objective function of the optimization problem (P2). By introducing

the ambiguity constraint as two independent linear constraints, we limit the minimum

number of sensors to be used. Depending on the structure of the problem, new problem

(P3) might only be able to find a sub optimal solution of the problem (P2). Yet we

can still find very sparse arrays by choosing the minimum number of sensors small.

So we can redefine the optimization problem as

(P3)

minimize
x

‖x‖1

subject to T (φ1, φ2) ≤ T̄ , {φ1, φ2} ∈ Υ

m∑
i=2

xi ≥ Q̄

xi ∈ {0, 1}

(4.20)

Note that, both objective function and constraints of (P3) are linear function of opti-

mization parameters xi. In the literature, this problem is known as the Binary Linear

Program(BLP). BLP programs have applications in various areas including produc-

tion planning, scheduling, cellular networks etc. These kind of optimization problems

are known to be non-convex NP hard problems due to the integrality constraints and

there is no known method for solving them in polynomial time. But, there are very

powerful methods like linear programming based branch-and-bound algorithms that

solve linear relaxations of integer programs by removing all the integrality constraints

first then adding integrality constraint for each variable one by one. There is a large
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literature on BLPs but details of these algorithms are not in the scope of this thesis

and will not be given here.

In the following two sections, we will first explain how to handle {φ1, φ2} pairs in set

Υ. Then the modelling of sensor physical dimensions will discussed.

4.1.1 Determination of Azimuth Angles for Ambiguity Constraints

In previous section we showed that ambiguity constraints can be modelled as

T (φ1, φ2) ,
m∑
i=2

xi cos (2πki(cosφ2 − cosφ1)) ≤ T̄ {φ1, φ2} ∈ Υ (4.21)

where Υ , {(φ1, φ2) | φ1 ∈ Φ;φ2 ∈ Φ; |φ1 − φ2| ≥ σ}. Note that azimuth angle pairs

closer than σ are discarded in the set Υ. As explained in chapter 3, errors for closely

spaced angles are not considered as ambiguity. The parameter σ defines the smallest

angle error that is considered as ambiguity and it also act as a parameter for adjusting

the beamwidth of the beamformer. But still other constraints for beamwidth can also

be added if desired.

Let γ be defined as

γ , cos(φ2)− cos(φ1) (4.22)

In Fig. 4.3, values of γ is given for all azimuth angles in the interval Φ = [0, 180]. Note

that gamma just a continuous function of variable γ and it just maps the points in the

set Υ into some limited interval Γ , [γmin, γmax]. In Fig. 4.2, relation between γ and

{φ1, φ2} is illustrated.

Substituting Eq. 4.22 into Eq. 4.21, we get

T (γ) ,
m∑
i=2

xi cos (2πkiγ) ≤ T̄ γ ∈ Γ (4.23)

Note that in Eq. 4.23, γ is inside an even function cos (2πkiγ). So it is sufficient to

consider either positive or negative values of γ. In Fig. 4.2, this corresponds to either

one of the blue regions.

As we can not place constraints for infinite number of points in set Γ, we need to take

sufficient number of samples between minimum and maximum values in set Γ. Con-
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Figure 4.2: γ Mapping

sidering the even structure of function T (γ), we calculate the minimum and maximum

of values of gamma as follows,

γmin = min(|γ(φ1, φ2)|) {φ1, φ2} ∈ Υ (4.24)

γmax = max(|γ(φ1, φ2)|) {φ1, φ2} ∈ Υ (4.25)

Notice that, γ(φ1, φ2) is a continuous function of φ1, φ2. So we can take sufficient

number of samples between [γmin, γmax] which is given by

γ[z] , γmin +
(γmax − γmin)z

Z − 1
z = 1, 2, . . . Z (4.26)

where Z denotes the number γ samples and z denotes the sample index..

By using the samples of γ, we can write the Eq. 4.23 in matrix form as below.

A1 =


cos2πk2γ1 cos2πk3γ1 · · · cos2πkmγ1

cos2πk2γ2 cos2πk3γ2 · · · cos2πkmγ2
...

...
...

...

cos2πk2γZ cos2πk3γZ · · · cos2πkmγZ

 (4.27)

A1x =


T (γ1)

T (γ2)
...

T (γZ)

 (4.28)
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Figure 4.3: γ Values for Φ = [0, 180],σ = 0

As a result, we calculate the Z x (m-1) ambiguity constraint matrix where Z is the

number ambiguity constraints and m is the number of sensors in the grid including

the sensor on the origin.

Procedure for constructing the ambiguity constraint matrix is summarized in Algo-

rithm 1.

Algorithm 1 Constructing Ambiguity Constraint Matrix
1: Construct the set Υ consisting of {φ1, φ2} pairs using σ parameter and Φ given in

Eq. 4.1

2: Compute γ(φ1, φ2), ∀{φ1, φ2} ∈ Υ

3: γmin ← min (|γ(φ1, φ2|)

4: γmax ← max (|γ(φ1, φ2|)

5: Calculate γz , γmin + (γmax−γmin)z
Z−1 z = 1, 2, . . . Z {Z is typically between 200

and 1000}

6: Compute A1 given in Eq. 4.27 using sensor positions and γz values calculated in

previous step.

34



4.1.2 Sensor Dimension Constraints

Especially for wideband sensors, sensor sizes might become very large compared to

the wavelength in the maximum operating frequency. So ambiguities are very likely

even if the sensors are placed with the minimum distance allowed by their sizes. But

instead of placing them very close to each other, we can simply find sensor spacings

that satisfy physical dimension constraints along with ambiguity constraints given

in the previous section. One might think that instead of adding constraints to the

optimization problem, minimum sensor spacing can be adjusted by increasing the

sensor distances in the sensor grid. But this would decrease the number of different

sensor spacings we could get and make it harder to satisfy the ambiguity constraints.

Integer constraints on sensor gains allow us to add physical dimensions of each sensor

in the sensor grid as linear constraints to the original optimization problem. To do,

this we define a vector for each sensor that has elements 1 for the positions occupied by

the related sensor and 0 for the other positions in the sensor grid. We call this vector

as the position mask of the related sensor. An example is illustrated in the Fig.4.4.

For the given scenario, Sensor 1 and Sensor 2 cannot be used at the same time.

0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x(λ)

S
en

so
r 

M
as

k 
V

al
ue

s

 

 
Sensor 1
Sensor 1 Position Mask
Sensor 2
Sensor 2 Position Mask
Sensor 3
Sensor 3 Position Mask

Figure 4.4: Sensor Dimension Constraints
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Let vi represent the (m-1)x1 position mask of the ith sensor in the grid excluding the

sensor at the origin. Then we can write the sensor dimension constraint as follows.

v2x2 + v3x3 + · · ·+ vmxm ≤ 1 (4.29)

or in matrix form

A2


x2

x3
...

xm

 ≤ 1 (4.30)

where inequality shows element wise inequality and

A2 , [v2 v3 · · · vm] (4.31)

It should not be forgotten that there is a sensor at the origin of the coordinate system

all time. So this particular situation should be handled separately. One solution is to

remove all the sensors in grid that blocks the sensor at the origin before starting the

optimization.

For each sensor, position mask vector should be calculated for every sensor position

in the grid. So it is a (m-1)x(m-1) matrix where m is the number of sensors in the

grid including the sensor at the origin. Procedure for constructing sensor dimension

constraint matrix is given in Algorithm 2.

Algorithm 2 Constructing Sensor Dimension Constraint Matrix
1: ki← Positions of Sensors

2: m← Number of Sensor in the grid {m variable in here does not include the sensor

on the origin}

3: for SensorIndex = 1 to m do

4: for PositionIndex = 1 to m do

5: if Sensor at ki(SensorIndex) occupies position ki(PositionIndex) then

6: A2(PositionIndex, SensorIndex)← 1

7: else

8: A2(PositionIndex, SensorIndex)← 0

9: end if

10: end for

11: end for
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4.1.3 Linear Array Design Procedure

In sections 4.1.1 and 4.1.2, we explained how the constraint matrices should be com-

puted for both ambiguity constraints and sensor dimension constraints. Now we are

going to summarize the procedure of designing sensor arrays with worst case ambigu-

ity probability that is lower than a given desired value and minimum sensor spacing

compatible with the given sensor size. With the definitions made in sections 4.1.1 and

4.1.2, we can rewrite the optimization problem as

(P4)

minimize
x

‖x‖1

subject to A1x ≤ T̃

A2x ≤ 1

m∑
i=2

xi ≥ Q̃

xi ∈ {0, 1} i = 2, 3 . . .m

(4.32)

where A1 holds for ambiguity constraints given in section 4.1.1 and A2 holds for sensor

dimension constraint given in section 4.1.2.

Algorithm 3 Linear Unambiguous Array Design with Sensor Dimension Constraints
1: Form a linear grid of m sensors with maximum aperture size L as given in Fig. 4.1 and

calculate their sensor positions

2: Define the angular sector of operation Φ given in Eq. 4.1

3: Choose the σ parameter considering the required array accuracy and resolution.{See Chap-

ter 3 for further information}

4: Calculate the value β̄ for the desired worst case ambiguity probability for a given SNR

and number snapshots using the values of error function given Eq. 3.5

5: Determine minimum number of sensors(M) to be used.

6: Q̄←M − 1

7: T̄ ← (Mβ̄ − 1)

8: Calculate the ambiguity constraint matrix A1 as given in Algorithm 1

9: Calculate the sensor dimension constraint matrix A2 as given in Algorithm 2

10: Solve the optimization problem (P4) given in Eq. 4.32

11: Determine the positions of sensors with non zero sensor gains as the sensor positions of

the sparse array.
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4.2 Multi Dimensional Array Geometries for 2D DOA Estimation

In the previous parts, we define an optimization problem for designing unambiguous

linear arrays. Same method can readily be extended for arbitrary sensor grids in 3D

space for 2D DOA estimation.

Let Φ and Θ denote the interval of operational azimuth and elevation angles of the

sensor array.

Φ , [φmin, φmax] (4.33)

Θ , [θmin, θmax] (4.34)

Let Ψ denote the set of possible direction of arrivals, i.e,

Ψ , {(φ,θ) |φ ∈ Φ, θ ∈ Θ} (4.35)

Consider a grid of sensors with arbitrary sensor locations. Steering vector with sensor

gains for DOA ψ ∈ Ψ is given by

g(ψ) = [x2e
j2πrT2 u(ψ), x3e

j2πrT3 u(ψ), · · · , xmej2πr
T
mu(ψ)] (4.36)

where ri is the position vector containing x,y,z positions of the related sensors nor-

malized with the wavelength and u(ψ) is the directional cosine vector for the direction

ψ , {φ, θ} ∈ Ψ.

ri , [kxi kyi kzi ]
T (4.37)

u(ψ) , [cosφsinθ sinφsinθ cosθ]T (4.38)

Note that the set Ψ defines all the possible angle of arrivals in the operational range of

the sensor array. So ambiguity constraints must be satisfied for all DOA combinations

in the set Ψ, i.e,

T (ψ1, ψ2) , <{g(u(ψ1))
Hg(u(ψ1))} =

m∑
i=2

x2i cos (2πrTi ∆u) ≤ T̄ (4.39)

Q ,
m∑
i=2

xi ≥ Q̄ (4.40)

where ψ1 ∈ Ψ, ψ2 ∈ Ψ and ∆u defined as

∆u(ψ1, ψ2) , u(ψ1)− u(ψ2) =


cosφ1sinθ1 − cosφ2sinθ2

sinφ1sinθ1 − sinφ2sinθ2

cosθ1 − cosθ2

 (4.41)
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Let Υ denote the set consisting of (ψ1, ψ2) combinations where ψ1 ∈ Ψ, ψ2 ∈ Ψ. So

for every (ψ1, ψ2) ∈ Υ, we should add the ambiguity constraint using the Eq. 4.39. As

we cannot add infinite number of constraints, we should define a method for selecting

finite number of constraints just like we did in linear case where we define the variable

γ given in Eq. 4.22. Only difference is, for linear array case we only have a variable γ

for different direction of arrival combinations (φ1, φ2) whereas for 3D arrays, we have

a 3× 1 vector ∆u ∈ R3 given in Eq. 4.41.

In order to cast in a form similar to linear array case, we make the following definitions.

γ1 , cosφ1sinθ1 − cosφ2sinθ2 (4.42)

γ2 , sinφ1sinθ1 − sinφ2sinθ2 (4.43)

γ3 , cosθ1 − cosθ2 (4.44)

So ∆u given in Eq. 4.41 becomes

∆u(ψ1, ψ2) =


γ1

γ2

γ3

 (4.45)

Note that values of γ1, γ2, γ3 are induced by the set Υ. Depending on the operational

angles of the array, intervals of γi will change. We can use a method similar to linear

array case for defining all the ∆u that are to be used when calculating the ambiguity

constraint matrix. The intervals of γi can be calculated for the array operational range

as follows.

Γ1 ,[γ1min , γ1max ] (4.46)

Γ2 ,[γ2min , γ2max ] (4.47)

Γ3 ,[γ3min , γ3max ] (4.48)

In order to have better understanding, we can use an example to show how to choose

the ambiguity constraints. We assume that we have a grid of sensors on x-z plane for

2D DOA estimation. As it can be easily seen from the Eq. 4.39, for sensors on x-z

plane, we should only consider the values of γ1 and γ3. Let the azimuth operational
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Figure 4.5: Values of γ1 and γ3 for Φ = [30, 150] and Θ = [30, 150]

range be Φ = [30, 150] and elevation operational range be Θ = [30, 150]. In Fig. 4.5,

values of γ1 and γ3 is illustrated. By taking sufficient samples in the intervals Γ1 and

Γ3, we can form the ambiguity constraint points as given below.

γ1[z] , γ1min +
(γ1max − γ1min)z

Z1 − 1
z = 1, 2, . . . Z1 (4.49)

γ3[z] , γ3min +
(γ3max − γ3min)z

Z3 − 1
z = 1, 2, . . . Z3 (4.50)

where Zi denotes the number of γi samples.

Note that the minimum value of γ1 is dependent on the value of γ3 in Fig. 4.5.

By choosing the ambiguity points as in Eq. 4.49 and Eq. 4.50 we place uniformly

distributed constraints inside the region defined by the red lines in Fig. 4.5. By doing

so we place constraints to some points that we actually do not have to. Eliminating

these points is not necessary and optimization problem can still be solved. But by

eliminating them we can have less number of constraints which decreases the solution

time of the problem and also increases the probability of finding a feasible solution.

After forming the constraint points, we still need to eliminate the closely spaced direc-
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tion of arrivals as we did for linear array case. Note that the norm of the ∆u given in

Eq. 4.45 becomes 0 as the direction of arrivals ψ1, ψ2 gets close to each other. So by

eliminating the ∆u vectors with small norm we can eliminate the constraints belonging

to closely separated direction of arrivals.

‖∆u‖2 = γ21 + γ22 + γ23 ≤ ε (4.51)

where ε is related to the desired beamwidth of the beamformer. By increasing the

ε value, we actually decrease the number of constraint we place and increase the

beamwidth of the beamformer. As ε decreases, we place constraint for smaller angle

separations and narrow the beamwidth of the beamformer hence increase the accuracy

of the sensor array.

DOA accuracy of both elevation and azimuth angle estimates can be controlled inde-

pendently by weighting the γi terms in Eq. 4.51 as below.

aγ21 + bγ22 + cγ23 ≤ ε (4.52)

In Fig. 4.6, we demonstrate the elimination of closely separated angles for the planar

array on x-z plane with the constraints given in Fig 4.5.

It should be noted that there might be different approaches for eliminating the con-

straints for closely separated angles and we just give a one way of doing it. Depending

on the application and requirements of the array, different approaches can be derived.

We can write the ambiguity constraints in matrix form just similar to the linear case

as below. Ambiguity constraint matrix is given by

A1 =


cos(2πrT2 ∆u1) cos(2πrT3 ∆u1) · · · cos(2πrTm∆u1)

cos(2πrT2 ∆u2) cos(2πrT3 ∆u2) · · · cos(2πrTm∆u2)
...

...
...

...

cos(2πrT2 ∆uZT ) cos(2πrT3 ∆uZT ) · · · cos(2πrTm∆uZT )

 (4.53)

A1x =


T (∆u1)

T (∆u2)
...

T (∆uZT )

 (4.54)
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Figure 4.6: Elimination of closely spaced angles, a = 2, b = 6, ε = 0.5

where ZT is the total number of ambiguity constraints in R3.

Sensor dimension constraints are also be extended for 3D arrays. The method given

in section 4.1.2 is directly applicable for 3D arrays.

A brief summary for designing sensor arrays for 2D DOA estimation is summarized in

Algorithm 4.
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Algorithm 4 3D Unambiguous Array Design for 2D DOA Estimation
1: Form a multidimensional sensor array in 3D space

2: Define the azimuth angular sector of operation Φ given in Eq. 4.33 and elevation

angular sector of operation Θ given in Eq. 4.34.

3: Choose the parameters a, b, c and ε parameters considering the required array

accuracy and resolution.

4: Calculate the value β̄ for the desired worst case ambiguity probability for a given

SNR and number snapshots using the values of error function given Eq. 3.5

5: Determine minimum number of sensors(M) to be used.

6: Q̄←M − 1

7: T̄ ← (Mβ̄ − 1)

8: Calculate the ambiguity constraint matrix A1 as given in Eq. 4.53.

9: Calculate the sensor dimension constraint matrix A2 as given in Algorithm 2

10: Solve the optimization problem (P4) given in Eq. 4.32

11: Determine the positions of sensors with non zero sensor gains as the sensor posi-

tions of the sparse array.

4.3 Finding the Sparsest Array by Iteratively Launching the Opti-

mization Problem

As it is stated before, by adding the constraint given in Eq. 4.18, minimum number of

sensors to be used is lower bounded by the value Q̄+ 1. So depending on the value of

the Q̄, we might only be able to find a sparse array that is not the sparsest possible.

To overcome this situation, we can launch the optimization problem given in Eq. 4.32

to find the sparsest array. Starting with Q̄ = 1, we first try to find a sensor array

with two sensors that satisfy all the constraints. In every iteration we increase the

minimum number of sensors until the solver finds a feasible solution. While doing

this, we must also update the variable T̄ to satisfy the same worst case ambiguity

probability. Iterations are stopped when a feasible solution is found.
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In Algorithm 5, we summarize the method for sparsest array design.

Algorithm 5 Sparsest Sensor Array Design by Iteratively Launching Binary Linear

Program
1: //Initialize

2: Form a linear grid of m sensors with maximum aperture size L as given in Fig. 4.1

and calculate their sensor positions

3: Define the angular sector of operation Φ given in Eq. 4.1

4: Choose the σ parameter considering the required array accuracy and resolu-

tion.{See Chapter 3 for further information}

5: Calculate the value β̄ for the desired worst case ambiguity probability for a given

SNR and number snapshots using the values of error function given Eq. 3.5

6: Calculate the ambiguity constraint matrix A1 as given in Algorithm 1

7: Calculate the sensor dimension constraint matrix A2 as given in Algorithm 2

8: Q̄← 1

9: repeat

10: Q̄← Q̄+ 1

11: T̄ ← (Mβ̄ − 1)

12: Solve the optimization problem given in Eq. 4.32.

13: until (A Feasible Solution is Found)
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CHAPTER 5

SIMULATIONS AND RESULTS

In this chapter, we provide some examples in order to demonstrate the ability of

designing linear and planar arrays using the method we proposed in previous sections.

In order to solve the optimization problem given in Eq. 4.32, CVX[22] and one of the

commercial solvers, Gurobi[23], are used together in Matlab environment. In order

to show the effects of parameters used during the design procedure, different arrays

are designed. All sensor positions are given in units of wavelength so sensor positions

should be scaled with maximum frequency of operation.

5.1 Linear Array Design Examples

5.1.1 Experiment 1

First, we design two different linear arrays with different design criterions. Parameters

used for each design are given in Table 5.1.

Table5.1: Design Parameters for Linear Arrays

Parameters Array 1 Array 2
Φ(degrees) [30, 150] [30, 150]
σ(degrees) 2 7

MaximumAperture(λ) 20 10
GridSpacing(λ) 0.01 0.01

m(# of Sensors in the Grid) 2001 1001
M(Minimum # of Sensors to be Used) 4 4

T̄ 2.5 2.5
Worst-Case B(φ1, φ2) 0.875 0.875

Worst-Case Pa for 0 dB SNR, 100 Snapshots 5.737e-7 5.737e-7
Sensor Size(λ) 1.8 1.5

# of Ambiguity Constraints 200 200
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(a) β(φ1, φ2) for Array 1 (b) β(φ1, φ2), for Array 1, Top View

Figure 5.1: β(φ1, φ2) for Array 1

(a) β(φ1, φ2) for Array 2 (b) β(φ1, φ2), for Array 2, Top View

Figure 5.2: β(φ1, φ2) for Array 2

In Fig. 5.1 and 5.2, ambiguity related function β(φ1, φ2) for both arrays is given.

Comparing the β functions of both arrays we see that beamwidth of the Array 1 is

narrower than beamwidth of the Array 2. This was the expected result considering

the σ parameters of both arrays given in Table 5.1. By choosing a lower value for σ

for Array 1, we actually desired a better accuracy and resolution. As a result, we get

a larger aperture for Array 1 and ambiguity conditions are still satisfied.

Monte Carlo simulations are done for both arrays in order to see the array estima-

tion performance for single source case. During the simulations, measurements are

generated uniformly spaced angles in the operational range Φ of the arrays given in

Table 5.1. In Table 5.3, array positions for both arrays are also given. During the

accuracy experiments, Spectral MUSIC algorithm is used as the DOA estimator and
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Figure 5.3: RMSE for Array 1

it is assumed that number of sources is known. All experiment parameters are given

in Table 5.2.

In Fig. 5.3, estimation performance of both arrays are shown. It can be seen that,

RMSE of DOA estimation increases when the target moves away from the boresight

angle. This is an expected result due to the characteristics of the linear array. As

the target moves away from the boresight, effective aperture of the arrays decreases.

This can also be observed just by checking the Fig. 5.1 and Fig. 5.2. Note that,

as the steering angle of the beamformer moves away from the boresight, beamwidth

increases.

Table5.2: Monte Carlo Experiment Parameters

Parameters Value
SNR(dB) 20
Snapshots 100

AOA Angle Resolution for Measurement(deg) 0.1
Spectral Music Search Angle Resolution(deg) 0.1

# of Monte Carlo Runs 1000
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Table5.3: Sensor Positions of Array 1 and Array 2

Array 1 Array 2
x(λ) x(λ)
0 0

-4.36 -4.95
-3.88 -1.59
9.77 3.73

5.1.2 Experiment 2

In this part, we give two linear array examples to see the effect of sensor dimension

sizes. Two linear arrays with the parameters given in Table 5.4 are designed.

Table5.4: Design Parameters for Linear Arrays

Parameters Array 1 Array 2

Φ(degrees) [30, 150] [30, 150]

σ(degrees) 20 20

MaximumAperture(λ) 10 10

GridSpacing(λ) 0.01 0.01

m(# of Sensors in the Grid) 1001 1001

M(Minimum # of Sensors to be Used) 5 5

T̄ 3 3

Worst-Case B(φ1, φ2) 0.8 0.8

Worst-Case Pa for 0 dB SNR, 100 Snapshots 6.421e-10 6.421e-10

Sensor Size(λ) 1.5 1.8

# of Ambiguity Constraints 1000 1000

In Table 5.5, we give the element positions for both arrays. It can be seen that both

arrays have 5 elements and optimum solution of the problem is found. For Array 1,

we have the minimum sensor spacing 1.57λ whereas for Array 2, minimum spacing is

1.81λ. It seems that sensor dimension constraints are satisfied for both arrays.

In Fig. 5.4, ambiguity related function β(φ1, φ2) is given for both sensor arrays.
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Table5.5: Sensor Positions of Array 1 and Array 2

Array 1 Array 2
x(λ) x(λ)
0 0

-4.55 -4.96
-2.98 -3.15
2.61 2.44
4.8 4.61
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Figure 5.4: β(φ1, φ2) for Array 1

5.1.3 Experiment 3

In experiment 3, we design a linear with 180 degree azimuth coverage. Array design

parameters are given in Table 5.6. In Table 5.7, sensor positions of the array are given.

Note that 6 element sensor array has almost 20λ baseline. Uniform Linear Array with

six elements would have 3λ baseline in order to have unambiguous response. By using

our method, we have almost 6 times large aperture resulting in a narrower beamwidth

and superior performance.

In Fig. 5.5, ambiguity related function is given for the sensor positions given in the

Table 5.7.
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Table5.6: Design Parameters for Linear Arrays

Parameters Array 1
Φ(degrees) [0, 180]
σ(degrees) 20

MaximumAperture(λ) 20
GridSpacing(λ) 0.01

m(# of Sensors in the Grid) 2001
M(Minimum # of Sensors to be Used) 6

T̄ 3.8
Worst-Case B(φ1, φ2) 0.8

Worst-Case Pa for 0 dB SNR, 100 Snapshots 6.421e-10
Sensor Size(λ) 1.5

# of Ambiguity Constraints 1000

Table5.7: Sensor Positions of the Array with 180 Azimuth Coverage

x1(λ) x2(λ) x3(λ) x4(λ) x5(λ) x6(λ)

0 -9.93 -7.36 -1.85 6.52 9.58

Figure 5.5: Ambiguity Related Function of the Sensor Array
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5.1.4 Experiment 4

In experiment 4, we illustrate the ability of designing sensor arrays with minimum

number of elements using the iterative approach proposed in Section 4.3. Design

specifications that should be satisfied by the sensor array are given in Table 5.8.

Table5.8: Design Parameters for Linear Array with Minimum Number of Elements

Parameters Array 1
Φ(degrees) [0, 180]
σ(degrees) 20

MaximumAperture(λ) 10
GridSpacing(λ) 0.01

m(# of Sensors in the Grid) 1001
Worst-Case B(φ1, φ2) 0.8

Worst-Case Pa for 0 dB SNR, 100 Snapshots 6.421e-10
Sensor Size(λ) 1.8

# of Ambiguity Constraints 1000

Using the parameters given in Table 5.8, iterative optimization problem is solved as

given in Algorithm 5 and solution with 5 sensors is found. In Fig. 5.6, ambiguity

related function is given for the designed sensor array. Sensor positions for the array

are given in Table 5.9.

Figure 5.6: Ambiguity Related Function of the Sensor Array
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Table5.9: Sensor Positions for Linear Array with Minimum Number of Elements

x1(λ) x2(λ) x3(λ) x4(λ) x5(λ)

0 -4.5 -2.4 3.02 4.83

5.2 Planar Array Designs for 2D Direction Finding

In this part we demonstrate the ability of designing planar arrays for 2D direction

finding. Design parameters used during design process for two different arrays are

given in Table 5.10. It is assumed that arrays are on the xz plane. Main difference

between the both arrays is the elevation coverage. Array 2 has a larger coverage for

elevation direction finding.

During the computing of the sensor dimension constraint matrix, it is assumed that

sensors are rectangles with the dimensions given in the Table 5.10.

Table5.10: Design Parameters for Planar Arrays

Parameters Array 1 Array 2

Ψ [30, 150] [30, 150]

Θ [60, 120] [30, 150]

Maximum Aperture in x Dimension(λ) 5 5

Maximum Aperture in z Dimension(λ) 5 5

Grid Spacing in x Dimension(λ) 0.1 0.1

Grid Spacing in z Dimension(λ) 0.25 0.25

m(# of Sensors in the Grid) 1071 1071

M(Minimum # of Sensors to be Used) 5 5

T̄ 3.2 3.2

Sensor Size in x Dimension(λ) 1.5 1.5

Sensor Size in z Dimension(λ) 1 1

# of Ambiguity Constraints 40000 40000

In Table 5.11, sensor positions of both arrays are given in units of wavelength whereas

in Fig.5.7, sensor positions for each array are illustrated. It can be seen that both

arrays have 5 elements and solutions with minimum number of sensors in Table 5.10

are found.
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Table5.11: Sensor Positions of 2D Arrays

Array 1 Array 2
x(λ) y(λ) z(λ) x(λ) y(λ) z(λ)
0 0 0 0 0 0

-1.6 0 0.25 -1.5 0 -0.25
-1 0 2 -1.1 0 1.25
-0.7 0 -2.5 0.1 0 -1.5
1.5 0 -2 1.5 0 1.25
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Figure 5.7: Element Positions for Array 1 and Array 2

Monte Carlo experiments are made in order to see the DF accuracy of both arrays.

Experiment parameters are given in Table 5.12. Target AOA is changed uniformly in

the sets Φ and Θ given in Table 5.10 for both arrays.

Table5.12: Monte Carlo Experiment Parameters for Planar Arrays

Parameters Value
SNR(dB) 20
Snapshots 100

Azimuth AOA Angle Resolution for Measurement(deg) 2
Elevation AOA Angle Resolution for Measurement(deg) 2
Spectral Music Search Angle Resolution(deg)(Azimuth) 1
Spectral Music Search Angle Resolution(deg)(Elevation) 1

# of Monte Carlo Runs 1000
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Figure 5.8: Azimuth DOA Estimation Accuracy for Both Arrays
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Figure 5.9: Elevation DOA Estimation Accuracy for Both Arrays

In Fig. 5.8 and 5.9, estimation accuracy for azimuth and elevation are given. Similar

to linear array results, these arrays perform best for targets at their boresight.
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CHAPTER 6

CONCLUSIONS

In this thesis, a new approach is proposed for designing sparse sensor arrays that are

to be used in direction finding applications. For sparse arrays, ambiguity problem

should be considered during the design process of the array geometry. To achieve

this purpose, we first investigated the relation with the array geometry and ambiguity

problem. It is known that the probability of choosing the wrong DOA is related to the

function of steering vectors and SNR. Further studies reveal that ambiguity related

function does not only determine the ambiguity response of the array but also affects

the estimation accuracy and resolution of the sensor array. Therefore ambiguity related

function constituted a basis for our design approach.

In this work, sensor array design problem with unambiguous response is modelled as

a binary linear program. Binary linear programs are known to be non convex and NP

hard due to the integer constraints and there is no known method for solving them in

polynomial time. But there are very powerful methods and algorithms that could find

the optimum solution of these kinds of problems in a very efficient manner given that

a feasible solution exist. Simulations show that sensors arrays could be designed with

the proposed approach in a very fast manner.

In order to form the optimization problem, we first introduced binary sensor gains into

the steering vectors and this helps us to transform the problem from determining the

sensor positions to finding the sparse sensor gain vector. Then worst case ambiguity

probability is added as linear constraints to the optimization problem by using an

approximation of the ambiguity related function. Using the same approximation of the

ambiguity related function, we also placed constraints for the required DOA accuracy
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and resolution.

Practical design constraints have been studied as well. In most practical applications,

sensors are large compared to the wavelength and it is not always possible to place

them as desired. Also there are different placement requirements especially for moving

platforms. Constraints related to the sensor sizes are modelled as a linear function

of sensor gains and used as the constraints of the optimization problem. Also by

forming the starting sensor positions properly, arbitrary shaped arrays can be designed

including 3D and conformal arrays.

Our approach has numerous advantages compared to the methods in the array design

literature. None of the methods in the literature offers the same degree of flexibility

provided by our approach. First of all, our design approach is applicable for sensor

arrays in 3D dimension for both azimuth and elevation DOA estimation. Using the

proposed method, one can directly control the sparsity, ambiguity response, accuracy

and sensor sizes of the sensor array. All of these requirements are handled inherently

by the optimization problem defined in Eq.4.32. And also by casting the problem in

a known optimization problem form, our approach finds the solution as a result of

systematic search not brute force. For example, in [5], authors propose a method for

finding the array with lowest ambiguity probability in a given set of possible candidates.

To do this, they use a tight lower bound for their similarity measure and calculate this

lower bound for every array candidate. Although calculated bound makes it easy to

search for the best array, the problem becomes a very hard problem when number of

arrays is large. Also there is no guarantee that the found array geometry will satisfy

the desired ambiguity response or not.

Main disadvantage of the given approach is that optimization problem given in Eq.4.32

has a constraint that lower bounds the minimum number of sensors in the solution.

So every time we launch the optimization problem, it will find the array with at least

given minimum number of elements which might not be the optimal sparse array for

the given ambiguity and other constraints. As we would like to find the sparsest array,

it is not desired to limit the minimum number of sensors to be used. But results given

in chapter 5 show that found arrays are indeed very sparse. Another disadvantage is

that, there is no known method to understand if the optimization problem given in
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Eq.4.32 is feasible for the given set of constraints.

In chapter 5, we provided some results for different scenarios. Results support that

proposed approach can find sensor positions for the given design parameters in an

efficient manner. It is shown that, by choosing the correct design parameters of the

optimization problem given in Eq.4.32, one can design different shaped arrays that

satisfy worst case ambiguity probability and required DOA accuracy. For example,

when we choose a narrower beamwidth, proposed method tends to place the sensors

so that array has a baseline large enough to satisfy the required accuracy.

As a future work, determination of ambiguity constraint points could be further in-

vestigated. By simplifying the method used for determining the ambiguity constraint

points for 2D DOA estimation, we might be able to reduce the number of ambiguity

constraints. Especially for 3D case, this would help us to design larger sensor arrays.

Moreover, different constraints for DOA accuracy could be implemented. For example,

constant beamwidth constrain for all steering angles of the beamformer could be used

for omnidirectional(i.e, constant with respect to AOA) accuracy.
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APPENDIX A

PROBABILITY OF AMBIGUITY

Derivations in this part given in [5].

Consider one signal impinging on array of M sensors. Assume that there are two DOA

estimation candidates φ1 and φ2. Based on the observations {y(k)}Kk=1, we have to

decide whether φ1 or φ2 is the correct DOA.We define the two hypothesis as below.

H1 :y(k) = a(φ1)s(k) + v(k) k = 1, 2, . . . ,K (A.1)

H2 :y(k) = a(φ2)s(k) + v(k) k = 1, 2, . . . ,K (A.2)

The source signal is denoted by s(k) and noise vector is denoted by v(k). We as-

sume that both noise and source signal are uncorrelated zero-mean Gaussian pro-

cesses. Let signal variance denoted by σ2s , E{s(k)s∗k}. Noise covariance is given by

E{n(k)n(k)H} = σ2IN .

Let M1 and M2 denote Mx1 mean vectors when H1 and H2 is true respectively..

M i = E{y(k)} i = 1, 2

= 0NxN

(A.3)

Let R1 and R2 denote NxN covariance matrices when H1 and H2 is true respectively.

Ri = σ2sa(φi)a(φi)
H + σ2IN i = 1, 2 (A.4)

The probability density function for a multivariate Gaussian when H1 is true given by

f({y(k)}|R1) = [(2π)N/2 det (R1)
1
2 ]−K . exp (−1

2

K∑
k=1

(y −M1)
HR1(y −M1)) (A.5)

Substituting (A.3) into (A.5), we get

f({y(k)}|R1) = [(2π)N/2 det (R1)
1
2 ]−K . exp (−1

2

K∑
k=1

yHR1y) (A.6)
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Note that xHR1x is just a 1x1 scalar. So its trace is equal to itself.

yHR1y = tr{yHR1y}

= tr{yyHR1}
(A.7)

where the cyclic property of trace operator tr{ABC} = tr{CAB} is used. So (A.6)

becomes

f({y(k)}|R1) = [(2π)N/2 det (R1)
1
2 ]−K . exp (−1

2
tr{

K∑
k=1

(yyH)R1}) (A.8)

Sample covariance matrix is defined as

R̃ ,
1

K

K∑
k=1

yyH (A.9)

Substituting (A.9) into (A.8),

H1 :f({y(k)}|R1) = [(2π)N/2 det (R1)
1
2 ]−K . exp (−1

2
Ktr{R−11 R̃})

H2 :f({y(k)}|R2) = [(2π)N/2 det (R2)
1
2 ]−K . exp (−1

2
Ktr{R−12 R̃})

(A.10)

Assuming that a priori probabilities of H1 and H2 are equal, minimum probability of

error in choosing between H1 and H2 is obtained by the likelihood ratio test.

ε ,
f({y(k)}|R1)

f({y(k)}|R1)
≶ 1 (A.11)

Substituting the density functions of H1 and H2 into (A.11) then taking the ln of both

sides we get an equivalent test as below.

ε = tr{(R−11 −R−12 )R̃} ≶ 0

=
1

K

K∑
k=1

yH(R−11 −R−12 )y ≶ 0
(A.12)

It can be seen that summation terms in (A.12) are just some random numbers. Accord-

ing to central limit theorem, left hand side of (A.12) will have a normal distribution

for large enough snapshots.

Mean values ε for both hypothesis are given by

µ1 = E{ε|H1}

= tr{IN −R−12 R1}
(A.13)

µ2 = E{ε|H2}

= tr{R−11 R2 − IN}
(A.14)
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and the variances of ε are given by

δ21 = E{(ε− µ1)2|H1}

=
1

K
tr{(IN −R−11 R2)

2}
(A.15)

δ22 = E{(ε− µ2)2|H2}

=
1

K
tr{(R−11 R2 − IN )2}

(A.16)

After some algebraic operations mean and variances of ε can be simplified as

µ2 = p[1− β2]

δ22 =
1

K
([µ2 + 1]2 − 1)

(A.17)

where

p ,
(Mσ2

s
σ2 )2

1 + Mσ2
s

σ2

(A.18)

β ,
|a(φ1)

Ha(φ2)|
M

(A.19)

Probability of choosing H1 when H2 is true is given by

Pa = Prob{ε > 0|H2}

= Φ(
µ2
δ2

)
(A.20)

where complementary error function Φ(x) is given by

Φ(x) ,
1

2π

∞∫
x

exp−
t2

2 dt (A.21)

So the ambiguity probability is given by

Pa = Φ

(√
K

1 + 2
p(1−β2)

)
(A.22)
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APPENDIX B

ML ESTIMATION FOR SINGLE SOURCE CASE

Consider a scenario where single source signal impinging on an array of M sensors from

the direction φs. Sensor array output is given by

y(k) = a(φs)s(k) + v(k) k = 1, 2, . . . ,K (B.1)

where s(k) is assumed to be a deterministic signal and v(k) is both spatially and

temporally white Gaussian noise with variance σ2n.

The basic idea behind the beamformer technique is to steer the array in one direction at

a time and measure the output power of the beamformer. When the steered direction

coincides with the DOA, signal coming from each sensor will add up coherently and

maximum output power will be observed. Output signal of the beamformer is given

by

yF (k) , wHy(k) (B.2)

where w denotes the weights of the beamformer. For data independent beamformer,

weights are chosen as the steering vector normalized with the number of elements.

w =
a(φ)√
M

(B.3)

Total average output power of the beamformer for steering direction φ is given by

P (φ) ,
1

K

K∑
k=1

|yf (k)|2 =
1

K

K∑
k=1

1

M
|a(φ)Hy(k)|2

=
a(φ)HR̃a(φ)

M

(B.4)

where R̃ , 1
K

K∑
k=1

yyH denotes the sample covariance matrix.
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Now we will show that data independent beamformer and the ML estimation for single

source case is essentially the same thing. To do so, we start by writing likelihood

function of the observations given in Eq.B.1.

fy(y) =

K∏
k=1

(πσ2n)−Mexp

[
−||y(k)− a(φ)s(k)||2

σ2n

]
(B.5)

Negative log likelihood function is given by

`DML = M log(πσ2n) +
1

σ2n

K∑
k=1

||y(k)− a(φ)s(k)||2 (B.6)

When we look into the Eq.B.6, we see that the ML estimate of the DOA can be given

by

φ̂ = argmin
φ

K∑
k=1

{
||y(k)− a(φ)s(k)||2

}
(B.7)

After some algebraic operations and using the properties of the tr{} operator, ML

estimate can be written as

φ̂ = argmin
φ

tr
{

Π⊥AR̃
}

(B.8)

where R̃ is the sample covariance matrix and Π⊥A is the orthogonal projector on to

the noise subspace given by

Π⊥A , I − a(φ)[aH(φ)a(φ)]−1aH(φ)

= I − a(φ)aH(φ)

M

(B.9)

Substituting the Eq.B.9 into the Eq.B.8 we get,

φ̂ = argmax
φ

tr
{
a(φ)aH(φ)R̃

}
(B.10)

By using the cyclic property of trace operator (tr{ABC} = tr{BCA}) we can write

the Eq.B.10 as

φ̂ = argmax
φ

tr
{
aH(φ)R̃a(φ)

}
(B.11)

Note that the function inside trace operator in Eq.B.11 is a scalar and it is the output

power of the beamformer given in Eq.B.2. So for single source case, ML estimation is

equivalent to the data independent beamformer.
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