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ABSTRACT

A MULTI-PERIOD STOCHASTIC PORTFOLIO OPTIMIZATION
AND HEDGING MODEL
APPLIED FOR THE AVIATION SECTOR
IN THE EU ETS

Kalayci, Erkan
Ph.D., Department of Financial Mathematics
Supervisor . Assist. Prof. Dr. Esma Gaygisiz
Co-Supervisor  : Prof. Dr. Gerhard-Wilhelm Weber

August 2013, 104 pages

In this thesis, we set up and solved a multi-period stochastic portfolio optimization and
hedging model with futures from an airline company's point of view, by taking into account
all the specific EU ETS (EU Emission Trading Scheme) regulatory and board-defined
trading and risk constraints. That is, in order to hedge the natural physical short position in
CO, emission allowances, we developed an optimal hedging strategy consisting of futures
contracts. We thereby successively and comprehensively derived all the mathematical
formulations for the system of equations with regard to the specific composition of the
profit function and all the underlying real-world constraints in the model. In order to span
the space of all possible states, in addition to the modeling of constraints, we also run
Monte-Carlo (MC) simulations of correlated geometric Brownian motions (GBM) for
traded EUA (EU Emission Allowance) and CER (Certified Emission Reduction) futures
prices of different CO, delivery time periods. Based on the constructed scenario-trees of

EUA and CER futures prices and space of feasible states, the optimal buy-hold-sell



decision (i.e., futures trading strategy) were determined and the corresponding earnings
calculated. Based on the distribution of the revenues, the Value-at-Risk (VaR) measure for
the 95% and 99% confidence level was calculated, in order to measure the risk exposure of

the portfolio manager.

Our contribution to existing academic literature is multiple. As the first ever case, we will
apply the multi-stage stochastic programming technique to the aviation sector, which is a
brand new included sector within the EU ETS. The methodology and mathematical
formulation for the optimization problem including the MC simulated multi-correlated
GBMs of EUA and CER financial futures of different CO, delivery time periods and the
resulting system of equations have been self-developed. That is, the consideration of all the
actually valid EU ETS regulatory and real-world oriented, managerial, trading constraints
in the airline sector, makes our model to a real-life application, which in the constellation
and idea, set up in this thesis, has not been applied in academic research before. Hence, the
developed methodology in thesis could be widely used implemented, adapted and extended

to other academic problems and practical applications.

The thesis ends with a conclusion and outlook to future studies.

Keywords: Multi-stage stochastic portfolio optimization, correlated geometric Brownian

motion, Monte-Carlo simulation, futures prices, value-at-risk



0z

EU ETS HAVACILIK SEKTORU ICIN UYGULAMALI COKLU SURECLI
STOKASTIK PORTFOY OPTIMiZASYON VE KORUMA MODELI

Kalayc1, Erkan
Doktora, Finansal Matematik Boliimii
Tez Yoneticisi  : Yrd. Doc. Dr. Esma Gaygisiz
Ortak Tez Yoneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Agustos 2013, 104 sayfa

Bu tezde, biitiin spesifik EU ETS (AB Emisyon Ticaret Semasi) diizenlemeleri ve kurul
taniml ticaret ve risk kisitlamalar1 hesaba katilarak bir hava yolu sirketinin bakis ag¢isindan
vadeli islem kontratlar1 kullanarak ¢oklu surecli stokastik portfdy optimizasyon ve koruma
modeli kuracak ve ¢éziimleyecegiz. Buna gore, CO, emisyon haklarindaki dogal fiziksel
kisa posizyonlar1 korumak i¢in vadeli islem kontratlari iceren en uygun koruma stratejisini
gelistirecegiz. Boylece modelde, kar fonksiyonu ve tum temel gercek dinya
kisitlamalarinin spesifik bilesimine istinaden basarili ve kapsamli bir sekilde denklem
sistemine yonelik tiim matematiksel formiilasyonlar1 elde edecegiz. Olast tiim durumlarin
uzayint kurabilmek ig¢in, kisitlamalarin modellemesine ek olarak, farkli CO, teslim
periyodlarinda igslem yapilan EUA (AB Emisyon Hakki) ve CER (Sertifikalandirilmig
Emisyon Azaltim) i¢in iligkili geometrik Brownian hareketlerinin (GBM) Monte-Carlo
(MC) simiilasyonlarini ¢alistiracagiz. Vadeli EUA ve CER fiyatlar1 ve olasi tiim durumlarin
uzayina gore kurgulanmig senaryo agacina dayali olarak, en uygun satin alma, tutma ve
satma kararlar1 (6rnegin, vadeli islem stratejisi) belirlenecek ve buna karsilik gelen

kazanimlar hesaplanacaktir. Portfoy yoneticisinin maruz kaldig: riski dlgebilmek i¢in gelir

Vi



dagilimma dayali olarak, %95 ve %99 giiven diizeyi i¢in riske-maruz-deger (VaR)

hesaplanacaktir.

Akademik literatiire ¢oklu katkida bulunacagz. Ilk olarak, EU ETS igine dahil edilen
yepyeni bir sektér olan havaciliga ¢oklu siiregli stokastik programlama teknigini
uygulayacagiz. MC simiilasyonu yapilmis ¢oklu-iligkili, farklt CO, teslim periyodlarinda
islem yapilan EUA ve CER finansal vadeli islem kontratlarin GBM’lerinin iginde
bulundugu optimizasyon problemi ve ortaya ¢ikan denklem sistemi i¢in metodoloji ve
matematik formiilasyonu kendimiz gelistirirecegiz. Buna gore, gergekten gegerli EU ETS
diizenlemeleri ve havayolu sektoriindeki gercek diinya amagli, yonetsel ticari kisitlamalarin
g6z oOnlnde bulundurulmasi bu tezde olusturulan modelimizi daha o6nce akademik
arastirmalarda uygulanmamis gergek bir hayat uygulamasi yapiyor. Sonug olarak, bu tezde
gelistirilen metodoloji yaygin olarak diger akademik konular ve pratik uygulamalarda

kullanilabilir, uyarlanabilir ve genisletilebilir.

Tez bir sonug ve gelecekti caligmalara gortintim.ile bitecektir.

Anahtar Kelimeler: Coklu stirecli stokastik portfoy optimizasyon, iliskili geometrik
Brownian hareketi (GBM), Monte-Carlo simulasyonu, vadeli fiyatlar, riske-maruz-deger
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CHAPTER 1

INTRODUCTION

At 1 January 2012, the global airline sector, being responsible for 2% of the global CO,
emissions [57] and 3% of the EU’s total greenhouse gas emissions [16], was included into
the European Union Emission Trading Scheme (EU ETS), being forced by law to
compensate all the CO, emissions resulting from their flights to and from Europe [13]. The
legal practice until now has prescribed that, from 1 January 2005, all large-scale energy-
and industrial-intensive EU installations and sectors such as power and heat, refineries,
metals, minerals or pulp and paper has to be mandatorily included in the EU ETS [12].
With this new legal enforcement [13] in the airline sector, for the first time also non-EU
companies are obliged to control their CO, emissions. According to this directive, apart
from 1 January 2012, airline companies are obliged to cap their CO, emissions to 97% of
their average 2004-2006 emission levels (baseline), and from 2013, to 95% of their average
2004-2006 emission levels (baseline), respectively. The EU ETS allocation plan for the
airline sector prescribes that approximately 85% of the EU Emission Allowances (EUAs)
are distributed for free to airline companies with respect to their average 2004-2006
baseline. Therefore, this regulatory feature results in an obligation for airline companies to
purchase the remaining 15% of CO, emission allowances from the market to mandatorily
offset their yearly CO, emissions and hold the regulatory cap. This means that an airline
company initially faces a natural short position in CO, emission allowances, thereby
suffering from an increase in CO, prices and gaining from their decrease, respectively. To
fulfill their yearly regulatory obligation (i.e., CO, compliance period), airline companies
are allowed to surrender EUAs, and up to a regulatory-defined limit, Certified Emission
Reductions (CERs). If airline companies fail to fully compensate their occurred CO,

emissions at the end of each CO, compliance year, they are forced to pay a penalty fee in



the amount of 100 EUR for each missing ton of CO, to the EU administering authority.
Another important feature of the EU ETS is the banking and borrowing possibility of EUAs

between CO, compliance periods.

Empirical evidence shows a doubling of CO, emissions between 2005 and 2020 [19],
forcing airline companies to buy an increasing amount of emission allowances [37]. Until
2050, the CO, emissions from the aviation industry are even estimated to grow by a further
300-700% according to 2005 levels [57]. Hence, despite its most recent inclusion in the EU
ETS, the aviation sector is expected to face a large growth in CO, emissions, illustrating its

current and future importance in the EU ETS.

This new regulatory obligation has the crucial implication that, in addition to the well-
known existing cost factor kerosene, the new cost factor CO, has occurred, which has also
to be considered in the business practices and operations of airline companies from now on.
Today, in academic research [2, 7, 41, 49, 53, 60, 53] the concept of risk management and
hedging of kerosene, as the major cost factor for airlines, is well understood and mainly
operationally implemented. However, this empirical evidence does not yet hold for the new
cost factor CO,. In contrast to kerosene, where optimal hedging strategies through financial
derivatives such as options, forwards/futures and swaps are implemented, the CO, emission
allowances are mainly bought in spot markets for current prices, though being fully
exposed to their market price and volume risk. The airline companies fully pass on the
actual purchasing (spot) price of CO, emission allowances to their current ticket prices,
resulting in an overall increase in their ticket prices. Thus, in order to increase their
competitiveness in the airline market, airline companies could design and execute optimal
hedging strategies through financial derivatives (e.g., futures strategies) to hedge the price
and volume risk. In this way, the additional cost for CO, allowances and, therefore, the

additional increase in ticket prices could be minimized.

There exists a well-researched academic field with regard to the Kyofo Protocol and
emission sector with regard to game theory and mechanical design [21, 35, 40, 55].
However, all these works deal with equilibrium price models for emissions trading. That is,
they consider agents being able to influence the emission price and analyze, simulate and
optimize the emissions market from a macro perspective where prices are outcomes from

different strategies of emission market participants. In our case, we consider the case for a



single airline company, within the airline sector which is a specific sector in the EU ETS,
and assume that the prices are given from the airline company’s point of view and the
company cannot influence the whole EU ETS by its strategy. Moreover, no cooperation
with another company is allowed. Therefore, as compared to the widely academically
applied game-theoretical approach for emissions trading, the objective and information of

our work are of a much different nature.

In this thesis, we apply a multi-period stochastic portfolio optimization model for the
derivation of an optimal hedging strategy for CO, emission allowances from an airline
company's point of view. That is, rather than the optimization of the whole emission market
and system, we focus on a constrained revenue maximization of one single airline company
by taking into account realistic, airline sector-specific and given financial market

restrictions.

Our model specifically focuses on the aviation sector due to its brand new status and
increasing importance within the EU ETS, implying a large stimulation potential for
academic and applied research in this area as well as its adoption potential by other sectors

to be included in the EU ETS in future.

In academic research, multi-period stochastic portfolio optimization technique finds a broad
application for the energy sector such as the determination of optimal running (i.e.,
dispatch) strategies of hydro power plants [1, 14, 18, 22, 25, 43] or the valuation and
optimization of natural gas storage and value chains [23, 44, 57, 58, 65, 66]. With regard to
the emissions sector, until now, the multi-period stochastic portfolio optimization models
have been either applied for the derivation of optimal SO, compliance planning issues in
the US, where mainly technical power plant / engineering constraints have been considered
[6, 30, 38, 59] or for the combined heat and power (CHP) sector, which, in addition to the

airline sector, is another sector included in the EU ETS [50, 54].

However, these academic works consider technical and physical rather than financial
features, or they are set up for short-term planning issues. But, for the management of its
cash flow streams from assets, a company should also consider the medium term
perspective. Today, likewise other commodities, also CO, emission allowances can be
traded at liquid energy exchanges such as ICE, Bluenext, Nordpool, etc., or over-the-

counter (i.e., brokers) such as Spectron, GFI, ICAP, etc., in the form of day-ahead spot or



for longer trading horizons in the form of derivatives. Therefore, optimal medium-term

hedging strategies should be developed, which is also true for the CO, sector.

Additionally, previous academic works do not take into account the existence of different
types of CO, emission allowances such as EUA or CER, nor do they address the potential
of trading CO, emissions allowances as optimal (EUA, CER) portfolios. Furthermore, they
do not consider any stochasticity of emissions allowances prices and any cross correlations

between each other.

Therefore, our contribution to existing academic literature is multiple. As the first ever
case, we apply the multi-stage stochastic programming technique to the aviation sector,
which is a brand new included sector within the EU ETS. The methodology and
mathematical formulation for the optimization problem and the resulting system of
equations are self-developed according to the actually valid EU ETS regulation for the
aviation sector and in line with real-world oriented managerial trading constraints, which in
the constellation and idea, set up in this thesis, has not been applied in academic research
before. This makes our model to a real-life application, which could easily be adapted and
extended to other future sectors to be included in the EU ETS such as the shipping sector.
Furthermore, more than only incorporating physical and technical (“engineering”) features
and focusing on short-term planning issues, we particularly address financial pricing
features and focus on mid-term planning issues. That is, unlike the common feature of
hedging and optimizing an open position in a physical asset against short-term oriented spot
prices, we use mid-term oriented futures prices of different CO, delivery time periods, in
order to take into account flexibility. Therefore, by the use of existing exchange-traded
emission allowance types EUA and CER futures, we result in two main contributions to
academic research with regard to emission allowance prices. First, we use not only one
unspecified type of emission allowance, but two types of real-world emission allowance
prices, namely EUAs and CERs. Secondly, EUA and CER futures for various CO, delivery
periods are considered, implying an increase in the number of correlated emission

allowances.

We note that the stochastic model input parameters EUA and CER are modeled by the
stochastic price process geometric Brownian motion (GBM), whereas the stochastic model

input parameter CO, emissions are modeled by given deterministic scenarios due to the fact



that otherwise more specific fundamental airline data, such as type and the corresponding
capacity of owned airplanes, current and future flight plans to and from the specific EU
locations, sold flight tickets of the airplanes, weight of the transported luggage etc. would
be required. This would necessitate a much more comprehensive, fundamental analysis,
airplane engineering and detailed modeling of technical airplane parameters, and thus
explode the scope of this thesis. Hence, in our model, the CO, emissions prices EUA and
CER are considered as endogenous variables, whereas CO, emissions represent exogenous

variables.

As a result, this model will contribute to the change in paradigm, by combining the
“financial” with the “physical (engineering)” world, rather than considering them
separately, and be applied to a completely new area within the emissions sector,
incorporating a huge research potential. The developed methodology in this thesis could be
widely used, adapted and extended to other academic problems with regard to hedging of
physical assets against other financial derivatives than futures such as options or swaps.
Moreover, it could be practically applied to other future sectors to be included in the EU
ETS such as the shipping sector, or other sectors within the cap-and trade carbon market

regimes such as the US RGGI.

This thesis is organized as follows: In Chapter 2, the functioning of EU ETS and the
inclusion of the aviation sector to the EU ETS will be highlighted. In Chapter 3, we will
explain the idea of the natural short position in CO, emission allowances and the design of
an optimal hedging strategy with EUA and CER futures. Chapter 4 incorporates the
mathematical derivation and formulation of the geometric Brownian motion (GBM) of
correlated EUA and CER futures prices and MC simulation of them, as basis for the
construction of the EUA and CER futures price scenario tree. Chapter 5 gives general
mathematical foundations with regard to the multi-stage stochastic programming technique.
In Chapter 6, the multi-stage stochastic programming technique will be concretely applied
to an airline company in the EU ETS, where the decision (i.e., futures trading) algorithm
will be methodologically developed and the optimization problem including the whole the
system of equations successively derived. Chapter 7 contains the time-series properties of
the applied GBM model and the input parameters in our model. In Chapter 8, the MC
simulation for the GBMs of the correlated EUA and CER futures prices will be conducted

and the optimization model according to the methodological and mathematical procedure,



described in Chapter 6, solved and the resulting output including the trading strategy,
earnings and value-at-risk measure for each scenario presented. The thesis will be
terminated with Chapter 9, where conclusions and outlook for further research in this area

will be made.



CHAPTER 2

THE EUROPEAN UNION EMISSION TRADING SCHEME
(EU ETS) AND THE AVIATION SECTOR

2.1  Functioning of the European Union Emission Trading Scheme
(EU ETS)

The Kyoto Protocol, agreed in 1997, as an immense and pioneering regulatory framework
to combat climate change by reducing global greenhouse gas emissions (GHG)', initiated
the launch of the global carbon market which consists of the regulated and the voluntary
carbon market. Whereas the first implies to the mandatory obligation of companies being
under CO, compliance to reduce their GHG to a pre-defined regulatory limit (i.e., cap), the
latter one refers to the voluntary commitment of companies to reduce their GHG, seeking to
manage their emission exposure for non-regulatory purposes such as for corporate social

and climate responsibility issues.

With a global market value of 147.5 bn. US$ and share of 84.0 % [15, 63], the European
Union Emission Trading Scheme (EU ETS), established in 2005 as the first international
emission trading scheme, has worldwide become by far the most important, liquid and
well-functioning cap-and-trade system to reduce industrial GHG. At the launch at 1 January
2005, the EU ETS covered all large-scale energy- and industrial-intensive EU installations

and sectors such as power and heat, refineries, metals, minerals or pulp and paper.

At 1 January 2012, the airline sector has been included in the EU ETS as the most recent
(infant) sector. As per January 2013, more than 11,000 installations with a net heat capacity
above 20 MW were mandatorily included in the EU ETS [16]. The EU ETS covers 31

! Carbon dioxide (CO,), Methane (CH,), Nitrous oxide (N,0), Hydrofluorocarbons (HFCs),
Perfluorocarbons (PFCs) and Sulphur hexafluoride (SF).



countries, which refers to all 27 EU member countries, including Norway, Croatia, Iceland
and Liechtenstein; they all are fully responsible for about 45% of the total GHG within the
EU [17, 61].

The EU ETS consists of three trading phases. Phase I, which was a three-year pilot phase,
lasted from 1 January 2005 to 31 December 2007, which acted as a market establishing
period. Phase II, as the first “real” commitment phase, lasted from 1 January 2008 to 31
December 2012, where the market matured and liquidity increased. The actual phase III, as
the longer trading and commitment period, is running from 1 January 2013 to 31 December
2020, where EU ETS market participants as well as financial institutions are performing

CO, trading strategies, taking risk positions providing liquidity.

The EU ETS imposes a mandatory “cap” or limit on the total amount of the specified GHG
that are allowed to be emitted by power facilities, factories and other installations,
mandatorily included in the cap-and-trade system. By this means, a shortage in CO,
emission allowances in the market is achieved to launch their trading. Within this
regulatory cap, up to a certain amount of CO, emission allowances, called EU Allowances
(EUAs?), are distributed for free to companies, dependent on the national target levels of
the each country and National Allocation Plans (NAP), respectively. This implies the
allocation of CO, emission allowances on a national basis according to the national
promises of the EU burden sharing. The remaining and missing difference between the cap
and the free distributed CO, emission allowances are to be bought from the market. Thus,
the EU ETS ensures the cost-effective selling and buying of CO, emission allowances
between companies up to the predefined regulatory cap. Hence, the regulatory limit on the

total number of CO, emission allowances available put a real price on CO, emissions.

To fulfill the yearly regulatory CO, emission cap requirement (i.e., CO, compliance), at the
end of each year, companies have to surrender enough EUAs to cover all their occurred and
verified emissions. Otherwise, they are fined with a penalty of 100 EUR for each missing
ton of CO,, simultaneously being obligated to buy the missing emission allowances from
the market at the then existing market price. Up to 1.5% of their yearly occurred CO,
emissions, the companies are allowed to meet their yearly regulatory compliance with

Certified Emission Reductions (CERs), generated through CDM projects in developing

% A European Union Allowance (EUA) is an assigned amount unit for the EU ETS. An EUA is a
tradable unit of 1 tCO,e.



countries.’

The market prices for CERs are fundamentally less than the market prices for EUAs. The
economic explanation for this fundamental price-relationship is quite simple: EUAs are
existing CO, emission allowances in the EU where abatement costs (production and
technology-switching costs) are relatively higher than CERs, which are generated through
emission reduction projects in developing countries and where production costs are
significantly lower. Hence, the EUA price has to be fundamentally be higher than the CER
prices. Or, in other words, if the market price for EUAs would be lower than the market
price for CERs, there would be no economic incentive for EU countries to invest in

emission reduction projects in developing countries.

The EU ETS cap-and-trade system with regard to trading of EUAs and CERs are illustrated
in Figure 2.1. Here, we see that a company has to purchase the missing amount of CO,
emission allowances, which in that case, is the difference between verified CO, emissions
at the end of each CO, compliance year and the EUAs distributed for free to the company
by the regulatory authority. This short position can be closed by trading of EUAs and
CERs. Hence, the short position strongly depends on the verified total CO, emissions per
year. If these increase, the short position increase, implying the purchase of more EUAs

and CERs from the market, and vice versa.
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Figure 2.1. EU ETS cap-and-trade system with regard to EUA and CER trading.

3 Certified Emissions Reductions (CERs) are generated through CDM (Clean Development
Mechanism) which is a flexible Kyoto mechanism for project-based emission reduction activities in
developing countries. Certificates will be generated through the CDM from projects financed by
companies of industrial countries that lead to certifiable emissions reductions that would otherwise
not occur. A CER is a standardized tradable unit in 1 t/COse.



If a company achieves to reduce its CO, emissions, it can either up to the regulatory-
defined 2.5% amount of its excess EUAs or CERs keep (i.e., transfer) in its CO, account
for the subsequent year(s) to meet its future CO, compliance requirements, called banking’
(i.e., going long), or sell them to the market or to another company, which is short in CO,
emission allowances. If a company’s CO, emissions exceed the regulatory cap, it can either
use (i.e., transfer) up to the regulatory-defined 2.5% amount of the free distributed EUAs
from the subsequent year for CO, compliance into the current year, called borrowing’ (i.e.,
going short), or buy it from the market and from a company which is long in CO, emission
allowances. Hence, the trading as well as banking or borrowing possibility of EUAs or
CERs ensures the flexibility that emissions are cut where the emission abatement costs are
at least to do so and to provide the companies in EU ETS compliance to balance their CO,
accounts over some years. The principle of banking and borrowing of EUAs and CERs

between CO, compliance periods is depicted in Figure 2.2.

Barowing
Banking .
b ol
g = Cap
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Long / Short i
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Figure 2.2. Banking and borrowing principle between CO, compliance periods.

According to EU ETS regulations, the number of allowances is reduced over time such that
total emissions will fall, implying that in 2020, the emissions are estimated to be 21% lower
than in 2005. From 2013, a progressive increase of auctioning of EUAs will occur, thereby
improving its effectiveness in phase III (2013-2020). In 2013, installations included in the
EU ETS have to buy 20% of their EUAs from the market, increasing to 70% in 2020.

* Banking is the possibility of transferring EUAs and CERs from one year to the following year.
> Borrowing is the possibility of using EUAs and CERs from the following year in the current year.
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2.2 Inclusion of the Aviation Sector in the EU ETS

At 1 January 2012, the global airline sector was included into the EU ETS, being
responsible for 2% of the global GHG and 3% of the EU’s total GHG. Table 2.1 illustrates
the percentage shares of classified sectors on the total CO, emissions within the EU ETS

[16].

Sectors Percentage Share (%)
Energy industries 31.9
Transport (excl. aviation) 21.3

Industry (energy and process related) 20.0
Household and solvents 12.4
Agriculture 8.6

Aviation 3.0

Waste 2.6

Solvents 0.2

Total 100.0

Table 2.1. Percentage shares of sectors on the total CO, emissions within the EU ETS.

At first glance, aviation sector’s percentage share of 3% seems relatively low, as compared
to energy industries, transport activities (excl. aviation) or industry. However, all these
represent the sum of individual sectors together, i.e., energy industries involves power and
heat production from various fossil fuel types such as gas or coal etc. or industry
incorporates cement, lime, glass, pulp and paper industries etc., such that the aviation sector
as one single sector within the classified sectors gains significant weight. Moreover, the
extensive expansion plans and growth expectation of airline companies, and the resulting
estimated growth of CO, emissions by 300-700% until 2050, as compared to 2005 levels,
clearly shows the aviation sector’s substantially increasing importance within EU ETS [57].

The global aviation sector is therefore considered as one of the fastest growing polluters.

Nevertheless, the actual small percentage share of the airline companies in total CO,
emissions indicates that these companies are price takers rather than price setters. We take

this fact into account in the modeling of behaviors of these companies in the carbon market.

According to Directive 2008/101/EC, all airline companies are forced by law to
compensate all the CO, emissions resulting from their flights to and from Europe.

Therefore, as compared to the legal practice until now, where only large-scale energy- and

11



industrial-intensive EU installations were mandatorily included in the EU ETS, with this
new legal enforcement in the airline sector, for the first time also non-EU companies are
obliged to control their CO, emissions, which made the airline sector as a global sector with

regard to the carbon market (i.e., EU ETS).

According to this directive, airline companies, in 2012, are obliged to cap their CO,
emissions to 97% of their average 2004-2006 emission levels (baseline), and from 2013, to
95% of their 2004-2006 average emission levels (baseline), respectively. The EU ETS
allocation plan for the airline sector prescribes that approximately 85% of the EUAs are
distributed for free to airline companies with respect to their average 2004-2006 baseline,
therefore resulting in an obligation for airline companies to purchase the remaining 15% of
CO, emission allowances from the market to fully compensate their CO, emissions and
hold the regulatory cap, respectively. If the yearly CO, emissions exceed the regulatory
cap, airline companies have to purchase more than 15% of CO, allowances from the

markets. Figure 2.3 shows the systematics of the EU ETS with regard to the aviation sector.
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Figure 2.3. EU ETS and the aviation sector.

Here, the regulatory authority takes excess CO, emissions in the amount of 3% out of the
system creating a shortage, such that the cap sets the new index of 100. From these, each
year 85% are distributed for free to the airline companies and the remaining 15% has to be

purchased by the airline company from the market. Thus, the airline company faces a
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natural short position in CO, emission allowances, which can even increase if the yearly
occurred CO, emissions are higher than planned, such that in addition to these 15 % more

CO, allowances have to be bought from the market (see Section 3.1).
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CHAPTER 3

NATURAL SHORT POSITION AND HEDGING

3.1 Natural Short Position in CO, Emission Allowances

As in the case for kerosene, as the major cost factor for an airline company, an airline's
initial physical position with regard to CO, is a natural short position, indicating that the
15% of the missing amount of CO, emission allowances has to be purchased from the

market to mandatorily offset the remaining CO, emissions in their yearly CO, account.

Hence, by implementing pure spot trading strategies, an airline company would suffer from
an increase in prices of CO, emission allowances and gain from their decrease,
respectively. However, due to the various growth targets, expansion strategies and plans of
the global airlines, the natural short position of the airlines is even expected to be further
broadened. This implies that, in addition to market price risk, the airline companies are also
fully exposed to volume risk of CO, emission allowances. Lufthansa reports, that for the
year 2012, it has to purchase more than 40% of its CO, exposure from the market [37],
which is much more than the regulatory set of 15%. Furthermore, due to the mature
technological status of the airline sector, the aircrafts delivered to the global airlines until
2020 are not expected to have a fundamental impact on the improvement of fuel efficiency
[5, 24, 42, 43, 52]. Empirical evidence shows a doubling of CO, emissions between 2005
and 2020, forcing airline companies to buy an increasing amount of CO, emission
allowances [19]. Until 2050, the CO, emissions from the aviation industry are even
estimated to grow by a further 300-700%, as compared to 2005 levels [57], implying a
substantial widening of the natural short position in CO, allowances and thus increase of

the amount of CO, allowances to be purchased from the market by an airline company.

14



Indeed, World Bank reports that global carbon trading transactions are 2% spot, 10%
options and 88% futures transactions, showing the leading position of financial derivatives

for hedging of long-term position in CO, emission allowances [64].

However, in contrast to kerosene, where optimal hedging strategies through financial
derivatives such as options, forwards/futures and swaps are well-known and implemented
in practice, airline companies mainly buy CO, emission allowances in spot markets for
current prices, though being fully exposed to their market price and volume risk. As a
consequence, the airline companies fully pass on the actual purchasing (spot) price of CO,
emission allowances to their current ticket prices, resulting in an overall increase in their
ticket prices, which may have a negative impact on their competitiveness in the global
airline market. Thus, in order to increase their competitiveness and decrease their fully
exposure to spot prices of CO, emission allowances, airline companies could design and
execute optimal hedging strategies through financial derivatives (e.g., futures strategies) to
hedge the price and volume risk. In this way, the additional cost for CO, emission

allowances and, therefore, the additional increase in ticket prices could be minimized.

Figure 3.1 illustrates the physical natural short position in CO, emission allowances from
an airline company’s point of view, thereby suffering from a price increase and gaining
from a price decrease. By taking an offsetting long position in EUA and CER futures, the

company can hedge itself against price increases.

Profit
Physical natural short
position in CO,
emission allowances

Going Long swith
financial EUJA and CER
futures

Price

Figure 3.1. Physical natural short position in CO, emission allowances and offsetting long
position with EUA and CER futures contracts.
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The following Section 3.2 illustrates how an airline company can design and set up an
optimal hedging strategy in practice for the closing of its natural short position in CO,

emission allowances with EUA and CER futures.

3.2 Design of an Optimal Hedging Strategy with EUA and CER Futures

To avoid the variability in the price for CO, emission allowances, we in the following
design and set an optimal hedging (i.e., reduction) strategy and hedging (i.e., reduction)
optimization of the natural short position in CO, emission allowances consisting of EUA
and CER futures of various delivery periods to be purchased from the market, over a
trading period of n-years (i.e., compliance periods). That is, the physical short position of
the airline company is hedged with financial EUA and CER futures, traded at liquid carbon
exchanges (see Chapter 1). The traded futures thereby ensure an airline company to apply
in tranches a net purchasing strategy in CO, emission allowances at a specified future time
at a price agreed upon today, therefore serving as cash flow hedge. A net purchasing
strategy in this sense means that, despite of the implementation of optimal buy-sell
strategies, in total, more buying than selling strategies result in the amount of offsetting the
natural short position in CO, emission allowances. The set up and execution of a net
purchasing strategy is therefore dependent on optimal buy-sell decisions of the portfolio

manager.

The management of an airline company defines the trading rules for the portfolio manager
such as the hedging strategy and the upper purchasing and lower selling limits. To
guarantee its portfolio manager a certain degree of hedging flexibility and optimization of
his hedging position, the board also allows short selling, dependent on the portfolio
manager’s view(s) of decreasing (and according to his expectations favorable) market
situations. Hence, within those trading rules, the portfolio manager has to apply an optimal
trading strategy for the closing of the short position in CO, emission allowances, which we

call in the following reduction tactics.

Figure 3.2 illustrates the systematics of the reference strategy, hedging strategy and

hedging optimization from an airline company's point of view.
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Figure 3.2. Reference strategy, hedging strategy and hedging optimization of the natural
short position in CO, emission allowances (EUAs, CERs).

We denote £ =0,1,...,n—1, as the index for the k+1th CO, compliance period, where, at
the end of each 7,,,, as the last discrete time of the corresponding terminating CO,
compliance period k+1, the missing amount of CO, emission allowances in the CO,
account of the portfolio manager has to be mandatorily surrendered to the regulatory
authority, and such that 7,,, =1},...,T . Thus, the whole hedging period covers a total
trading time horizon of ¢ =71,(=0),L2...,7,...,T,,,,...,T,, which will be explained and
specified in more detail in Subsection 6.4.1. The hedging system is defined in the following

three parts.

Reference strategy

A reference strategy is a board-defined, passive and neutral strategy for the reduction of the
short position in CO, emission allowances, which serves as a benchmark for the evaluation
of the active trading strategies of the portfolio manager. Hence, it indicates the market
index. Here, the reference strategy is represented as a linear increasing line, which means
that for each trading time period ¢ an equal amount of the natural short position in CO,
emission allowances is closed. However, dependent on the executive board’s decision, it

could also be represented as piece-wise linear.
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Hedging (i.e., reduction) strategy

A hedging strategy is an active strategy, conducted by an airline company's advisory
committee, independent from the board, and which is based on market expectations for the
reduction of the short position in CO, emission allowances. The hedging strategy,
incorporates of a defined percentage amounts of CO, emission allowances to be closed by
the portfolio manager through hedging (i.e., reduction) optimization over the periods
t=L..,T . 1t also contains binding upper purchasing limits u,,and binding lower selling
limits Vi for i = 1,2, which denotes the index for EUAs and CER, respectively. Thus, the
upper and lower trading limits sets limits the possibilities of the reduction of the short
position in CO, allowances (i.e., corridor). The trading limits are periodically determined

by the advisory committee, and could be the same for all periods, i.e., u,, =u,, =...=u,,

n

and v,, =v,, =...=v,, ,or vary for each period 7, respectively. Here, the upper and lower
trading limits are presented as corrugated, dashed lines, and the reduction strategy is

represented as a piece-wise increasing line.

Hedging (i.e., reduction) optimization

The hedging (i.e., reduction) optimization, which we can also shortly denote reduction
tactics refer to the trading actions taken by the portfolio manager for the implementation of
the board-defined reduction strategy within the binding limits in operative business (trading
business unit). The portfolio manager defines, conducts and is the only responsible for the
reduction tactics, which consist of optimal futures-spot trading strategies over the whole
trading period ? =1,...,7:,, based on his market expectations. That is, within the defined
trading rules, the portfolio manager is allowed to implement any futures trading action
which optimizes his value of the portfolio over the whole trading period ¢ =1,...,7 . Here,
the reduction tactics is illustrated as a wavy, bold line, beginning in a short (i.e., negative)
position in CO, emission allowances and ending in a just offsetting position at the last point
in time of the trading period 7). We remark that in this illustrative Figure 5, the increase of
the wavy, bold line means that the short is being closed by purchasing of CO, emission
allowances, and the its decrease refers to their sales, implying an re-increase of the short

position.
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CHAPTER 4

GEOMETRIC BROWNIAN MOTION OF CORRELATED
EUA AND CER FUTURES PRICES

Due to our multi-period hedging optimization problem of the short position in CO,
emission allowances, i.e., the consideration of n-CO, compliance periods, we will use
futures instead of spot prices. Thereby, we will use EUA and CER futures contracts of

various delivery periods.

Empirical evidence [4, 11, 29] shows that unlike electricity or gas prices, EUA and CER
prices do neither exhibit a mean-reversion (i.e. long-term trend path) nor any seasonal
patterns nor any jumps. For that purpose, we model the stochasticity of the EUA and CER
futures prices by correlated geometric Brownian motion (GBM) processes, rather than
applying the traditional Ornstein-Uhlenbeck (O-U) mean-reversion process, as applied for
energy prices [8, 20, 56, 32]. In Chapter 7, we will empirically justify the use of the GBM

in our model.

Figure 4.1 and 4.2 illustrate the historical yearly EUA and CER futures prices for various
CO; delivery periods for the period 23/03/2009-16/11/2012, traded at the Intercontinental
Exchange (ICE), London. There is a relatively strong correlation between EUA and CER
futures prices, whereas the futures prices for CERs are fundamentally less than the market
prices for EUAs (see Section 2.1). Therefore, developments in these two markets are
influencing each other significantly. For the first sub period from 3 March 2009 to 11 May
2011 both the EUA and CER market faced a slightly increasing growth with partially
volatile periods. For the second period from 12 May 2011 to 16 November 2012, however,

there exists another picture. Due to the worldwide actual discussions and uncertainty about
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the further continuation of the Kyoto Protocol or its adoption of another form in 2015, the
market for EUA and CER futures has been decreasing since 12 May 2011. Especially, due
to the unsatisfactory outcomes of the climate change conferences® in Cancun in November
2010 and in Durban in November 2011, pessimistic expectations regarding both markets
have been resulting. For the whole period, both markets have been exhibiting neither any

seasonal patterns nor jumps.

Due to the occurrence of both increasing and decreasing carbon market situations, in
Chapter 7, we will build two scenarios, an optimistic and a pessimistic market scenario, for
the modeling of correlated EUA and CER price futures prices through GBM, and solve our

optimization model, based on these.

FUA Futures Prive

Figure 4.2. Historical CER futures prices 03/03/2009—16/11/2012 (ICE data).

¢ Conference of Parties (COP)
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In the next sections, we will first give theoretical foundations for multi-correlated GBM for
spot prices and determine the explicit solutions for the Stochastic Differential Equations
(SDE's). Based on them, we will derive the explicit solutions for n-correlated futures prices,
which have not found enough emphasis in academic finance literature until now. However,
instead of using spot prices for MC simulation and facing the problem of modeling risk
premia, for mid-term planning and hedging issues, taking directly observable futures prices
(including risk premia) from a liquid exchange seems to be more purposeful. In the last part
of this chapter, we will explain and set up the MC simulation method, used in the next

chapters.

4.1 Multi-Correlated Brownian Motions: Theoretical Foundations

Since we will use a mid-term hedging optimization horizon, the evolution of the underlying
EUA and CER futures prices, which incorporate strong correlations with each other, will be
modeled and developed in the following. The model thereby used will be the geometric

Brownian motion (GBM) process of correlated EUA and CER futures prices.

The GBM dynamics of n-correlated asset prices is given by the following stochastic

differential equations (SDEs) [8, 20, 46, 56]:

as;,
—=pdt+o,dW, 4.1)

Jit?

Jt

where (Wt)t> , are n-dimensional correlated Brownian motion, with correlation matrix

p= (ij) s with 1< p, <1, §, represent spot prices for assets j=1,...,n, at time
1<j,k<n ’

t20, the parameters 4, € R and o, >0 are the drift and the volatility of asset j,

respectively, both being constants. Thus, the returns of S, , are correlated with p.

The correlation structure of S, will be analyzed in the following and prepared for Monte-

Carlo simulation.

For that purpose, let us firstly give a general definition for an n-dimensional Brownian

motion.
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Definition 4.1.1. n-Dimensional Brownian Motion: A standard Brownian motion (or a
standard Wiener process) in R", or a standard n-dimensional Brownian motion, is a

stochastic process (Zt)po whose value at time t is simply a vector of n independent

Brownian motions t, such that

Each Z,, represents the value of one-dimensional Brownian motion at time #2=0.

Additionally, the various elements Z, ,Z, , ( Jj # k) are independent for all times ¢, £ >0.

Now, for simplicity let us consider the case of two independent Brownian motions (), and

0, , with 1< p <1 as constant. We define for 0<7<7 a new process

Z[ :le,z + Vl_p2 2.° (4'2)

We will see later how equation (4.2) is derived and how its relation to our formulation
above is. Equation (4.2) says, that at each time step ¢, Z, is a linear combination of

independent normals (Qu, 0, ) . Thus, Z, is normally distributed.

We have to show that Z, is a Brownian motion such that E[Zt] =0, Var[Zt] =t, Z, ~ N(0,?),
Z,—Z ~ N(0,t—5). We know that E[Q”] =0 and E[QN] =0. Thus, the expected value
of Z, is

E[Zt]: E|:pQ1t + Vl_p2Q2,1:|
:pEI:Ql,z:I+ \ll_szI:Qz,r]

=p-0+4/1-p* -0

=0.

The variance of Z, is

Var(|Z,]= Var[le’t +4/1-p? 2,;}
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=Var [pQu] + Var[\/l - p’ 2’,]

Since both random variables pQ, and J1-p° ,, are independent, we know that
Var[QM] =? and Val’[QN] ={. Therefore,

Var[Z,]= szar[Ql,t]Jf(\/ 1-p* )2 Var[ 0, ]
=pit+(1-p°)t

= .

As a next step, we consider the increment

Zt+s _Zt = |:IOQ1,I+S + \ll_p2 2,t+s:|_|:10Ql,t + \/1_102 2,t:|
=p[0 =0 ]+ V1= [0, - 0., ]

The expressions Q. —0Q,, and O,  —0,, are the independent random increment of
Brownian motions Q, and Q,, respectively, over the time interval s. Since both random
increments are independent, through multiplication by a constant, the variance of the sum

gets the sum of the variance

Var[Z,..~2,)=Var{p[ Q... -0 ]+ 1= p7 [0, - 0. ]}

—Var {p [0, 0., ]} +Var {\/1 -p* [0, — 0, ]}
= szar[QU -0, —QL,]+(\/1 -p’ )2 Var |:Q2,t -0, _Qz,t:l

- Va0, )+ (- )2 var[0,,]

Since Var [Qu] =sand Var[QZJ =5,

VarlZ,,~2]=ps+(1-p)s
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Consequently, the variance does not depend on the starting time ¢ of the increment s, and is
equal to the length of the interval. Therefore, Z, follows a Brownian motion. The variance

of the random increment Q, . -0, , is

Var Q,..~Q, |=Var[ Q.. [+Var[ 0, ]-2C0v] Q,...0, ]
=(t+s)+t—2min(t+s,t)
=(t+s)+1t—2t

=s.
The Brownian motions () and Zare correlated at time 7. According to It6's product rule,
d(0,2,)=0,d7,+2,4d0, +dQ,dz,

=0,,dZ,+Z2,dQ,, + pt.
By integrating, we get
t t
Ql,tZt = IO Ql,udZu + JO ZudQI,u + pt (43)

By taking the expectation of expression (4.3), we come up with the covariance between

Q,,and Z,, such that
t t
E |:Q1,tZt:| = E [IO Ql,udZu :| + E|:J-0 ZudQl,u :| + pt
We know, that the expectation of an It6 integral is zero, i.e.,
EUQ dz }:o and EU’ZdQ }:0
0 1u u o u 1u .

Hence, the covariance between Q, , and Z, becomes

EI:Ql,tZt:I = pL,
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for —1< p<1.Let the covariance FE [QUZt] denote as COV[QWZ;] then correlation
between O, and Z, is defined as

COVI:QM,ZJ

\/Var[Ql,t]ﬂ/Var[Zt].

Corr[QM,Zt] =

Since
E[dQ,dZ, |=Cov|0,,.Z, |=pt,Var[ O, |=t and Var[Q]=t,

we obtain

Corr[QU,Zt] = P!

NN

Consequently, at all times ¢ the Brownian motions Q,, and Z, have correlation p,

Now, let us generalize our two-asset case to n correlated asset prices, which are based on n
correlated Brownian motions. Their main components are correlated normal random
variables, beginning with a vector of n uncorrelated standard normal variables for each
t>0,,ie., Zt = (Zl’[,...,Zn’[).Through these, we create normal random variables which
are correlated by pre-defined constant correlation coefficient by linear combinations of

Z,,. We denote the weights as « ;. Then
X, =2, +. .+, 2, +.+, 2,

X, =a,Z, ,+.+a,Z, +.+a,Z,

XW = amZu +...+ anka’t +..ta,Z

n,t?

such that

n
X, = Zm Ayl s
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or, written in matrix notation,

X, =AZ, 4.4)
where
[, a, a,, | ' Z,, | X, ]
A= a; ajk C‘Y.j.,, , Z; = Zj,t > Xz = Xj,t
0y e oay a2 X

We know that the random variables X', and X, , are correlated with p, . Then, for one

single element, we have
EI:Xj,th,t:I =Py 4.5

Putting all the corresponding expected values together into a matrix, results in the

correlation matrix p such that

XXy e XXy e XX,
_XW.XU Xn’,'Xk,t X,,,,.X,,,,_
E[x,X,] .. E[X,X.,] . E[X,X,]]
=|E[x,,x,,] .. E[X_,.;Xk,t] E[X,-.JX”,,]
E[XXI} E[XXk] E[XX]
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L Py, pln,l_

=P - L ol

_pnl,t pnk,t 1

We can also write the matrix

X X, . X, X, . XX,
X, X, o X, X o XX,
X, X, . X, X, . XX,

as the matrix product of X, and its transpose X,, i.e., X ,X,~. By using equation (4.4),

we get
X, X[ =(42,)(42,) =(42,)(z;47)=4(z,27)4".

Based on that, the expected value is

t

E[ XX |=E[A(22])4" |=4E[2,2] 4.

The matrix £ [ZthT] is the correlation matrix of standard normal variables Z,. Since all of

these are uncorrelated, this results in the identity matrix 7, implying
E[ XX |=AE[I|4" = 44",
Therefore, according equation (4.5), we have
p=AA4".

The correlation matrix p:( pjk) is symmetric, ie., o, =p0; e[—l,l], and positive

1<j,k<n
definite, i.e.,
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n n
ZH 2 PyaX X, 20,

for all X, z(XU,...,XM) , implying that all eigenvalues of p are positive.

t>0

Consequently, o can be decomposed into the product of a lower-triangular matrix 4 and its

transpose 47, which is called the Cholesky decomposition, i.e.,

Lo Puy o P
P=|Pus 1 o P
_pnl,t pnk,t 1 B
1 0 0 0 O o, Oy a,
& o, 0 0 0 0 a, aj; a,
=los o, a0 0 1x]0 0 a X
_anl anZ ann ann ] _0 0 0 ann _

If we use the elements of 4, we get the correlated random variables x  as

X,=1Z,=2

Xz,: = azlzl,z +ayl

Lt>
2,t°

X3,z = a3lzl,t + anzz,: + a33zz,m

X, =2 +.+a,Z, +.+a,zZ,,.
In academic literature, there are many numerical algorithms for conducting the Cholesky
decomposition [9, 27, 33, 36, 45, 48]. We conducted it with the formula provided in
MATLAB. For the two-asset case n=2, we have

A= AT = : AAT{ }
L x/l—pz} {0 l—pz} p 1
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Therefore,

X

1t

=7

Lt>

X, =pZ,,+ l_pzzZ,t’

which just equals equation (4.1).

Since in financial mathematics W, is used for Brownian motion notation, we define and
use from now on
X, =W,

it N

Now, denoting Z, :(Zl’t,...,Z

.\ ,) as the standard n-dimensional Brownian motion and

, which is the Cholesky

1<j,k<n

by use of the lower-triangular matrix A = (ajk)
decomposition of p, a vector consisting of correlated Brownian motions

W = (W w )z>o can be defined, such that

t Leoeo " s
W,=A%Z,,
or, with regard to individual elements in the system,
W=

a2, (4.6)

k=1
Now, turning back to equation (4.1), by rearranging we get,

dS,, =uS, dt+c S, dW,, (4.7)

By inserting the elements of equation (4.6) in equation (4.7) we get

S, =usS, di+o,S > a,Z,, (4.8)

resulting in the following system of SDE's,
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ds,, = u,S, dt +o,S,, (alleL, o+ alndzn,,),

: 4.9)
dSn,t = ILlnSn tdt + O-nSn t (anle t..+ a dZn t)
In order to solve for S, > We can rewrite equation (4.7) in integral form
S, =St S, ds+o,[ S, aw,,, (4.10)

We can solve equation (4.10) by the well-known It6 formula

o o 22 1O
7(8.,)= WSy g di+0,S;, = —dW, +0]S] — s dt.

Jt Jit

By use f(Sj,t) =logS,,, we get

Jit?

2
dlogS,, = u.S, idt+a‘SA idW o’S? ;E?Sf dt.

JTst Jt . ,t t
JJ asj,t JJ aSj,t J / Js o
2
By determining . = SL and % =——-, weresult in

Jst Jst Jit Jit

1 1 1 1
b, =, 5, [, v
Jit Jit

1
=pdi+odW,, —Eajz.dt

1

Thus, we get

log§,, —logs$,, = I(: dlogs§,,
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1
= (,uj —Eaf.jHajo,t.
Hence, we get the explicit solution of the SDE's
1
S, =8, 0exp| | 4 _50" t+o W, | (4.11)

By inserting our system in equation (4.9) into equation (4.11), we result in the following

systems of equations

1
S, =8,exp ((ﬂl _EO'JH' 0, (allzl,t +..+a,Z,, )]’

1
S, =S, exp((,un - EO-" ) t+o, (ale’t +.t+a,Z,, )j
Finally, in general form, we can write

1 "
Sj,[ = Sj’0 exp((uj -0, Ejt+0'j( klaijk,,)j. (4.12)

4.2 Multi-Correlated Brownian Motions of Futures Prices

As explained several times before, in our model, due to mid-term planning and
hedging issues of the natural physical short position in CO, allowances, we will use

futures contracts and therefore, futures prices instead of spot prices.

Futures contracts allow the exchange of future unconditional obligations on terms
which are defined in advance. Thus, they enable market participants to make
planned transactions prematurely to smooth cash flows and thus to generate added

value. Hence, futures are considered as instruments that are purely used to obtain an
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optimal risk allocation in the market. In addition to that, futures contracts meet the
other two functions of financial markets: information processing and investment

motive.

In academic research as well as in practice, carbon meets all the properties that are
typical for commodities: It is a consumer good, which is standardized in terms of
quality, place of delivery and delivery period. That is why, carbon is clearly
considered as a commodity [31, 62]. It is important to note that in the case of
commodities, since a delivery period is usually defined, at which physical delivery
takes place, they are associated with embedded option(s). We refer on that issue in

more detail in Section 6.1.

The well-known fundamental, non-arbitrage relation between spot and futures

prices used for the pricing of commodities is
F;,T =S5, exp((rT tur =Y, r _qt,T)(T_t))7 (4.13)

where F, ;. is the futures prices of a commodity at time ¢ =1,...,T for delivery in
period (i.e., maturity) T, S, is the spot price at ¢, 7, is the risk-free for period 7, u,
is the storage cost for 7, y,, is the convenience yield for holding the asset through
the period ¢ and 7, and ¢, , is the accrued dividend yield of the asset through the
period ¢ and 7. The expression in the bracket at the right hand-side of equation
(4.13) represents the risk premium of an investor of holding an asset through the

period ¢ until the maturity 7.

There are traded futures of various delivery periods at liquid exchanges such as ICE
(London), European Energy Exchange (Leipzig) or Nordpool (Scandinavia), such
that for our further purpose, we do not have to care about the determination and
consideration of any risk premiums since these are directly incorporated in the
futures prices. Thus, we can directly make use of the liquidly traded futures prices

F

t,T*

Therefore, the explicit solution for the SDE's in equation (4.12) can be reformulated

to
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1 n
Firy =Fior) eXp ((ﬂj 59 jt +9; (Zm Lo )] (4.14)

In case of n-delivery periods of futures prices (i.e., maturities), we can set 7' =1 such that

equation (4.14) becomes
1 n
Fyway =Fon,) eXp| | 4 —50 )1t ( k=l a./ka,a,Tn)) (4.15)

In order, to set up explicit solutions for correlated GBM's of futures prices for different

maturities between any observed time ¢ and maturity 7,, we can adjust equation (4.15) to

1 n
Ff,(zw,m:F/,U,T,I)GXP((”/_EG/ At +°'_/( k=1a./ka,<z+Az,Tn>) ’

(4.16)

where At is the discrete time step.

4.3 Monte-Carlo Simulation

According to equation (4.6), by substituting W/t =&,,, we get

n
€10 = Qg CiLiar
Thus, after having created correlated normal random variables &, by the calculated «
from the given correlation matrix p and the standard n-dimensional Brownian motion Z , ,
(see Section 4.1), it is now possible to compute the correlated Brownian motions for any

given time step Af through multiplication of each correlated random variable ¢, by \/E

Knowing this, to perform MC simulation of correlated EUA and CER futures prices for any
¢ to maturity 7] (i.e., delivery period), we can construct equation (4.16) as a system of

SDE's with a more notation convenient form as
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F

1
L(+ALT,) = E,(t,Tn) exp((ﬂl — 0, Ej At + O N Atj:

jAt + Ujgj,(t,m\/mj’ (4.17)

N | =

F sy = Fier) eXP([/’j -0

1
F;l,(HAt,T,,) = F;t,(t,T”) eXp ((ﬂn -0, Ej At + O,&n )V Atj:

Vt=1,...,n.

where Fl,(t . Az,rn)s""Fn (t+ar,7,) re the corresponding futures prices to be obtained by MC
simulation, A is the discrete time step, and &y r),--»&, ) are standard normal

variables, i.e., g €Iy En ) ~N(0,1).

Thus, we can state £ = (gl,(t,T WAL ... &, 1 )\/At) ~ N(O,Z)with

2
o, 010,P - 010 Py - 0100,
2
G,01P 0, e 000 Pop e 020,05,
X = "

0,00 . C0Py - O,0,0,

2

0,0,P, e 0,0, P e o,

being is the variance-covariance matrix between the n-futures prices. We note that for
J =k, the terms o0, p,, becomes 0,0,p, =0,0, 04 :o‘jz, =0, which is the variance of
futures price j or k, respectively. For all j # k,the term 0,0, p,, denotes the covariance

between futures prices j and £.

Hence, in order to generate one sample value of FI(HNT),...,Fn(HAtT) we have to
generate one sample value of E = (gwj)\/At,...,gn’(t’T)\/At). Thus, by taking the
Cholesky lower triangular matrix A4, derived and explained in more detail in Section 4.1,

and the generated random vector of independent unit normals Z ~ N (0,1 ), where [ is the

unit matrix, we obtain a correlated random vector £ = AZ .
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For our further purpose, by use of the standard MC method, we will generate a finite

FS

number of s scenarios for ( F
n‘(t+At,Tn)

: )with s =1,...,n, each considered with
L(t+A1,T,)° """

equal probability p* =n".
The concrete procedure for MC simulation, which will be performed in Chapter 8, looks as

follows:

Step 1: Collection of historical EUA and CER futures price data of relevant delivery

periods (i.e., maturities).

Step 2: Estimation of the relevant GBM parameters ( ,uj,O‘j) and determination of the

variance-covariance matrix Y, from historical EUA and CER futures price data.
Step 3: Determination of the discretization size A, starting time point ¢ and maturity 7.
Step 4: Generation of uniformly distributed random numbers between 0 and 1.

Step 5: Generation of correlated random vectors E = (51 wr)NAL, .. &, (tT)\/At) by

using the variance-covariance matrix 2, .

Step 6: Determination of the scenario size n and generation of s =1,...,n scenarios for
(Fs(t+At ; ),,,,,FS ),based on the use of the MC simulation parameters (,uj,O‘j,Z)

1 n,(t+A1,T,)

and E = (81,(“%) VAL, ... €, r VAL )

Step 7: Determination of the weights p° = n and weighting each scenario s by p’.

We note that the MC simulation in Chapter 8 will be done for concrete, liquidly traded
EUA and CER futures contracts of specific delivery periods, which will defined in Chapter

7, such that our general theoretical framework, derived above, will be applied to a concrete

optimization problem.
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CHAPTER 5

MULTI-STAGE STOCHASTIC PROGRAMMING

There is a huge academic literature on multi-stage stochastic programming. We will only
highlight the main issues and set up, which will be relevant for our purposes in next

chapters.

The basic idea of a multi-stage stochastic programming model is that an agent makes
optimal decisions for 7-stages, given the uncertainty of events (i.e., random event). Let an
agent make a decision in the first stage. After that decision a random event appears
influencing the outcome of the first-stage decision. The agent can then make a recourse
decision in the second stage which offsets any unfavorable outcomes that might have been
resulted from the decision of the first-stage. Therefore, the optimal decision policy results
in making the best decision in stage ¢ — 1, taken into account both the possible realizations
of random outcomes and the best recourse decision in stage ¢ for each random outcome.
This procedure is then sequentially repeated for 7-stages. All the possible random events

are assigned with weights, called probability measure over the events.

In the following, we will only concentrate on the linear case of multi-stage stochastic
programming, where the objective function is linear and set of feasible solutions are
expressed by linear the constraints. For the generic formulation and all the other forms,
cases and more detailed discussions of multi-stage stochastic programming, we refer to [3,

10, 34, 51].
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5.1  Linear Multi-Stage Stochastic Programming

In multi-stage stochastic programming, we deal with optimized decision-making for several
periods, given the uncertainty of events, which can be described by random vectors. Let us

firstly give a definition for a random vector.

Definition 5.1.1. Random Vector: Let us consider a finite space of T-stages (i.e., finite
time horizon), t=1,...,T, then a random vector fz{é,...,é}}, & e R (with d, as a
positive integer), is an underlying process of discrete-time stochastic data, defined on the
filtered probability space (Q, F ,P), and whose realizations are of d-dimensional data

vectors.

The set of all possible realizations of & for #=1,...,7 is defined as the state space
Q=0 x---xC with Q, ¢ R%. Thus, Q limits the range of all possible outcomes of a
random experiment. The o-algebras incorporate the available & for the decision maker at

time ¢, such that

FcFc.cFc.cF ((t=1..7),
denoting that the set of information is increasing with time . Hence, o-algebras incorporate

a sum of & and subset of Q Each & is associated with an occurrence probability

P:& —[0,1].

The discrete-time stochastic data & have to be modeled and generated through a stochastic
process. Now, according to each & optimal decisions should be undertaken by the decision
maker. These could be represented by a vector of stochastic decision process, which we can

define as follows.

Definition 5.1.2. Vector of Stochastic Decision Process: A vector of stochastic decision

process x=[xl,...,xT] is an Frmeasurable function of &.

This means, that x contains for all # =1,...,T the sequence of stochastic decisions X,,

which are assumed to be measurable with respect to the filtration
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Fo=c{&,nE)  (t=1..T).

A sequence of possible decisions X, is commonly called a policy which responds
conditionally to the random events & of the state space Q. Therefore, a policy can be
considered as a contingency plan and only incorporates the embedded flexibility in the

system, which is a crucial feature in option pricing (see Section 6.1).

We assume that the probability distribution P of & is known and independent of x. That is,
using the notation in [28], for # =1,...,T, we can define the probability distribution of the

random vector &.

Definition 5.1.3. Probability Distribution of the Random Vector &: 4 Probability
distribution of the random vector & can be defined as P=P& Yand its tth marginal
probability distribution by P such that

Pt(Bt)sz_l(Elx---xT B xEMx---xET), B eB(Et),

=1 t

Where =, € R stands for the support of & and B(Et) is the o-field of its Borel subsets.
Specifically, E, € R stands for E, z{fl}

We note that & is deterministic, such that for =1, X, this defines the (deterministic, non-
recursive) decision in the first stage. For all #>1, X,, which incorporates the corrective or
recursive decisions in the following stages. Therefore, all the decisions and realizations can

be represented as the sequence

X581, %, (xlaél)7‘527x2(xla§1:§2)5"'7xr (xl’él""’é:T—l)7

meaning that the process of decisions incorporates nonanticipativity. Or, in other words,
any decision x, taken at time ¢ depends only from the past information of the random values

Cf; and not from their future realizations, i.e.,

x, =x,(x_.¢,P) (t=1.,T).
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Let us define §[t] =(§1,...,§t) to indicate the history of the stochastic data process up to time

t. Then, the general multi-stage stochastic programming model can be formulated as [51]:

gm?r E[fl () + 1, (x1 (5[2]):52)+---+fr (xr (f[r])7§r)]> (5.1
subjectto  x, € X,

5 (&) X (v (80)40) =200,
with

F(0.E) =, X, = A =h,20),

X (x_.&)={x:Bx_ +4x =b,x, >0} (t=2,..,T).

127

The data vector & = (cl,Al,bl) is known at the first stage and thus is deterministic. We can

define

& =(c,4,B,b)eR" (1=2,..,T),

127t

which implies that all or some elements of & can be random. We note that in formulation
(5.1) x,,...,x; are functions of the data process, and thus are suitable functional spaces,
while x, € R" is a deterministic vector. For the whole sequence of policies (i.e.,
measurable mappings) x, ‘R x..xR% — R™. Likewise for the functions f; we have
£, :R™ — R, which is deterministic, and f, : R x R" — R, which are continuous. Since
for our purposes, the discrete-time stochastic data process &,...,&, has a finite number of
realizations, formulation (5.1) will result in a finite dimensional optimization problem. That
is, all & have a finite distribution and Q is the set of all possible combinations of
realizations of &, which we call scenarios. Thus, we can replace & by &', such that
& ={§f§;} for s =1,...,n. Therefore, with each scenario s=1,....n of & we can

associate an occurrence probability

p'=P(&).p 20,3 p'=1.
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Based on the notations and terminology above and by the use of scenarios s, the general
linear multi-stage stochastic programming model with recourse and with a finite number of

scenarios can be formulated as [51]

. s K T _s s\T _.s s\T _.s
| min Zs=1p [cl x; +(c5) x5 +...+(cp) xT], (5.2)
subject to
S J—
Ax, = b,
S .S s S _ s
Bix] + 4)x; = b,
2.8 S8 _ s
Bix; + A; x; = b,
s .S s s _ s
BTfol + ATfl‘xT - bT’

where the latter constraint denotes the non-anticipativity condition, mentioned above,
implying that the decisions made at ¢ >1 are equal for the whole set of scenarios that have
the same history until stage #>1. Accordingly to above, we replaced X, by x;,such that

x ={x1 ;} for s =1,...,n. This model set up guarantees that all elements of the stochastic

decision vector x* may depend on all elements of the stochastic data vector &'.
Consequently, each element of X, may only depend on the stochastic data known & until

stage t.

5.2  Constructing a Scenario-Tree

Let us denote from now on the first stage as ¢ = 0, where & is deterministic, i.e., the initial
state is given, and the decision X, is known. The random vector including scenarios
s =1,...,T can then be defined as & :{ fo,és,...,f;}, and stochastic decision vector as
X = { xo,xf,...,x;}.Thus, all realizations of & in #>0 incorporate recursive decisions X,
in the subsequent stages. Possible realizations of &’ for >0 can be represented by a

scenario tree, which consists of nodes constructed in levels referring to decision stages

t =1,...,T. Thus, a scenario can be defined as a generated (i.e., random) path from the root
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node at stage =0 to a node at the last stage T, incorporating a history of the stochastic data
process &'. At level £=0 the value of & is known, such that in the next level #=1 the root
node is then connected with @ possible realizations of ff, called @ nodes, with
0 =1,...,n and 6 € O,, where O, is the set of all nodes at level ¢=1,...,T. This procedure
is then repeated until the association of the generated nodes in the level 7—1 with the ones
in level 7. The connection from one node to the next node is called arc, where the
stochastic decisions x"are made. A conditional probability 7, can then be related with

each node @ at the tth level such that
7o :p{é |§z71|---|§2}> 7y >0, 2960, my=1 (t=1..T),

Therefore, the arcs in the scenario tree illustrate the finite probability distribution of &’. As

t and s increases, the number of arcs and consequently, the scenario-tree increases.

For simplified illustration issues, let us only concentrate on the objective function of
general linear multi-stage stochastic program

min f(x*;&

xeX f( ,5 ),
where x* ={xi‘,...,x;}and & ={§IS,...,§;} for t =1,...,T and s =1,...,n. That is, in order to

generate all the decision possibilities x; with regard to scenarios s, all the possible s

realizations of the random variables &£’ must be modeled.

Therefore, to construct a scenario-tree we set an initial value ¢ for é‘o, 1.e., fo =c and

then, for all scenarios s=1,...,n, generate paths with &, taken as a root.

Thereby, for our stochastic optimization model, we use the Monte Carlo simulation
technique, which requires historical data, number of stages ¢=1,...,7. and scenarios
s=1,...,n. Concretely, we apply the GBM method of correlated futures prices of EUA and

CER (i.e., random variables), explained in detail in Sections 4.2 and 4.3.

For more theoretical background and discussion with regard to the construction and

handling of scenario trees, we refer to [28, 34, 51].
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CHAPTER 6

APPLICATION TO AN AIRLINE COMPANY IN THE EU ETS

6.1  Optimized Decision-Making: Option Pricing

Classic option pricing refers to the valuation of financial contracts with option rights. Due
to their abstract nature, this can be of any forms, whereas a market for standardized (plain-

vanilla) and exotic products has been established.

We have seen in Section 6.2, that commodities incorporate implicit flexibilities (i.e.,
embedded option(s)). That is, through the proper disposition of assets, added value can be
generated. Difficulty in valuation arises from the consideration of dependencies

(contingencies).

Options, as derivatives (derivative transactions), require a special valuation methodology.
This is based on the principle of arbitrage - the so-called risk-neutral valuation method
(Black-Scholes-Merton approach). Traditional approaches are based on a stochastic
influencing variable (state variable), the price. By the conditional payoff function of a
contingent, the typical non-linear payout structure results. Hence, the option theoretical
difficulties of multiple exercise before maturity (American style) and path dependence

(Asian style) arise.

The resulting analytical problems (non-time additivity) can be solved, by adding a further

dimension in the state space [26, 47]. This eliminates the dependence of previous decisions.

Option pricing methods imply the solution to a stochastic dynamic optimization problem.

This means that, in the option pricing model, the value-maximizing decision is made for
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each state. Through the expansion of the action possibilities by a new action, the number of
action possibilities per state increases significantly. Along the time axis, the correct action
must be determined for each state. The introduction of restrictions (constraints) of various
kinds, results in a reduction of the state space, i.e., certain states may (must) not be reached.

This is a central assumption of option pricing theory.

6.2  Modeling of the State Space

As explained in Chapter 2, the main risk factors (i.e., random parameters) for an airline
company within the EU ETS are the uncertain EUA futures and CER prices as well as its

yearly CO, emissions from flights from and to EU countries.

Hence, according to our notation in Chapter 5, our stochastic data process can be

s

represented as of &' = { Diis PsssC

}, for each stage (i.e., trading time horizon) ¢ =1,...,T
and scenario s =1,...,n, where p;, denote the stochastic futures prices for EUA, pi,
denote the stochastic futures prices for CER, and ¢; stands for the periodic stochastic CO,
emissions. We note that in our model ¢ will be represented as stochastic constraints

parameter, explained later.

Thus, our modeling procedure consists of the set up of the optimization model including the
constraints, the scenario generation of &, setting of the state space €2 and solving of the

model through the CPLEX, which is available in MATLAB.

The scenarios for & and constraints are needed to specify all the possible and feasible

stochastic decisions
S N S S S
x; =[(xl’t,xz’t),...,(xLT,xz’T)] (t=1,..T;s5s=1,...,n),

to be taken within a two-dimensional state space, where xj, denote the stochastic purchase,
holding or selling decision of EUA futures contract and x;, denote the stochastic purchase,
holding or selling decision of a CER futures contract, respectively. That is, along the time
axis ¢ for each state ( pj,, p),combinations) and s, the value-maximizing decision must be
made out of the decision matrix ' which consists of nine possible combinations of trading

decisions, x’, <0 denoting selling decision, x’, >0 purchasing decision and x;, =0 holding
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decision of the portfolio manager such hat

s s s s s s
x,>0,x,>0 x,>0,x,=0 x,>0,x,<0

s s _ s s _ s _ s _ s

D;=4x,=0,x,,>0 x,=0,x;,=0 x,=0,x;,<0¢.

s s s s _ s s
x,<0,x,>0 x,<0,x,=0 x,<0,x,<0

For simplifying notation, for further purpose, let us denote, for i =1,2, x;, <0 (i.e., selling

decision) and x, >0 (i.e., purchase decision) as Xii,t and )Cii,,, respectively, such that

Oij” stmax_ Vt=1..T,Vs=1,..n,
OSxf” stmx_ Vt=1..T,Vs=1,..n,
where Xx° denotes the maximum selling and xsmax the maximum purchasing amount

max it

of i=1,2, respectively.

Actually, the decision matrix )} contains a strip of call and put options, with EUA and
CER futures as underlying, giving the portfolio manager the right of purchasing and selling
EUA and CER futures at each point in time ¢, based on his market expectations and the

modeled state space Q. The concrete decision algorithm is described in Section 6.3.

In fact, the state space €2 consists of a product and a market state. The product state refers
to internal factors of the product that influence the income, e.g., regulatory, managerial and
trading constraints including the periodic stochastic emissions ¢, whereas the market state
refers to external factors, the product’s underlying, that influence the income. In our case,
these are the correlated EUA and CER futures prices for different delivery periods. The
regulatory, managerial and trading constraints, which will be explained in more details in
the Section 6.4, results in a diminishment of the state space, such that certain states may
(must) not be attained. In general, the evolution of the product state is affected by the
evolution of the market state, but vice-versa is not true. Therefore, the market state's
evolution can be described independently of any product state. For our purpose, we assume
the future realizations of different product states as independent, whereas future realizations
of the market variables EUA and CER futures prices are considered correlated (see Chapter

4).
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Figure 6.1 illustratively shows the two-dimensional state space consisting of the stochastic
random variables EUA futures and CER futures prices and constraints including stochastic
¢, whereas on the horizontal axis time horizon (i.e., stage) ¢ is shown. The two-

dimensional state space has the form of a plan or grid, respectively.

Fulures Price EUA.

Time ¢

% - see
N

Figure 6.1. Illustrative example of the two-dimensional state space.

All the stages 7 =1,...,T contain @ nodes, 8 =1,...,n, €0, representing the possible
states within the space, where at each stage ¢ the stochastic decision ( X, x;’t) can be made.
At stage ¢ =0, based on the initial prices for EUA and CER futures, s scenarios are created
through MC simulation for #=1 to ¢ = 7. In Figure 8, some illustrative simulation paths are
depicted for EUA and CER prices between the stages =0 and z=1.1llustratively, the states
in gray are associated with non-feasible decisions and the states in dark gray represent
feasible, but not valuable (i.e., loss) decisions. Therefore, only states in light gray are

feasible and valuable decisions for our model.
The general methodology for the multi-stage stochastic optimization model is as follows:
Step 1: Modeling the state space (see part above).

Step 2: Determination of the optimal decision (i.e., trading strategy) and earnings on the
basis of the uncertain EUA and CER futures prices and in compliance with the constraints.
This is done by backward induction such that starting from the last stage (=T moving
backward to stage t =T —1 until t =0, likewise the option pricing theory, valuation is done

for each state. This procedure can be called as the value perspective.
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Step 3: Given the valuation for each state, the uncertainty of the earnings is determined by
the MC simulation. This is conducted by forward induction and be called as the risk

perspective.

Based on Step 3, the well-known risk measure Value-at-Risk (VaR), which is commonly
implemented in academic finance research as well as in practice, can be determined. VaR
tells a portfolio manager how much money he is likely to loose over a specific holding
period at a given confidence interval . We can mathematically define VaR of a portfolio

X as follows:

Definition 6.2.1. Value-at-Risk (VaR): Given a confidence level o € (0,1), the VaR at
level a of a portfolio X with distribution P, is defined as the specified negative deviation
(i.e., loss) j, jeR, from the expected value or return of X, such that the probability that a

given loss J is greater than the critical loss value or return j is at least «, i.e.,

VaR,(J):=inf{jeR[P[J > j|2 a}.

Therefore, for our purpose, the VaR, , of a portfolio X at a specified confidence level &
can be calculated as the expected $-value of the portfolio X minus the product of $-standard

deviation O of portfolio X and the given confidence level « and, i.e.,

VaR, , =$u, —($oa),

where the term in brackets denotes the maximal at loss j at & confidence level according

to Definition of 6.2.1.

We will use the widely used 95% and 99% a-confidence interval, which have z-values of
1.645 and 2.33, respectively. The $-standard deviation 0, of portfolio X can directly be
derived after determination of the distribution of revenues for each single trading strategy
and their corresponding final expected value through MC simulation. Hence, in addition to
the optimal trading strategies and expected values, we will determine how much the
portfolio manager at least will gain with 95% and 99% probability, respectively. VaR of the

various trading strategies will be calculated in Chapter 8.
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6.3  Decision Algorithm for a Portfolio Manager

The value of the CO; trading strategy V" at ¢ =1,...,T and for s =1,...,n is a function of
the state variables pj,, p;,and ¢, where p;, and p, denote stochastic futures prices for

EUA and CER, respectively, and c; are the stochastic periodic CO, emissions, i.e.,

v =f(t.ppinc)

The decision mechanism is based on the valuation methodology of American options. We
remark that the Asian property “path dependence” is already incorporated by the extension

of the state space. The concrete decision algorithm is as follows:

Step 1: At a given CO, emission level ¢, for scenario s =1,...,n the option value is

calculated by numeric integration.

Step 2: The C; stochastically change the constraints when switching to the next stage
t=1,...,T.Based on that, the transition probabilities between the states are derived. The
(n+1)x(n+1) transition matrix M for each t=1,..,T and s=1,..,n can be

represented as

pSO pl pZ pn—l pZn
P Po P Pno Psp
Mts — pg._z p—l l?.O . pl?—:‘ﬁ pZ.n—2 ,
Penit P<pia P<nz -+ Do P
pé—n pS—n+l pS—n+2 e p—] pZO

where, for each scenario s =1,...,n, the entry m; stands for the probability to migrate to
state j given the state is equal to k, with j,k =1,...,n, within the period from t from t+1, as

a result of changing stochastic periodic CO, emissions c; .

Step 3: Let us denote F_'M ,and F . as price thresholds for sales and purchases of EUA

and CERs futures for each t, respectively, with F . F . eR. Hence, the decision

+,i,t0 7+t
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algorithm for a portfolio manager in order to maximize net income can be described by

max{ pi,—F.,;00x,, in the case of a Call option,

O}x
(6.1)

max {F - plt“t;O} X, in the case of a Put option,

+,i,t

Vi=12,VvVt=1,...,.T,Vs=1,...,n.

In expression (6.1), the first expression refers to a Call option and the second expression to
a Put option, which means that at each point in time t, the portfolio manager has the right
of purchasing or selling EUA and CER futures. Thus, summarized, the illustrated trading
strategy allows both selling and purchasing of EUA and CER futures against a (board)-
defined price thresholds FH ,and F. "

For our further purpose, we assume that the (board)-defined price thresholds are equal for

the call and put option, i.e.,

i,t2

(i=12t=1..T),

Thus, according to expression (6.1), we can formulate for each time ¢,

where 7 is the constant risk-free rate. If at time ¢ for each scenario s, p, >F,,then the call

option is exercised, and the put option is not exercised, such that we result in

Call,,— Put,, =" [(pit ~F, ) xi,t} (6.2)

(i=1,2¢t=1..T;s=1,..,n),
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If at time ¢ for each scenario s, p/, <F

+it?

then the put option is exercised, and the call option

is not exercised, which implies

Callz‘,t - Puti,t =—e " |:(F_:t - p:t )xi,t:| =e"" [(p;t o F_;,t ) ‘xi,t:| (6.3)

(i=12¢t=1,..,T;s=1,...,n),

which is equal to expression (6.2). Since we consider a portfolio view of EUAs and CERs

over a time horizon ¢ =1,...,n, , we can just build the sum of these, resulting in
2 T _ (T 2 T s
Zl_:l thl (Calll.,t - Putl.,t) =e [Zl_:l thl (P,-,t F, )xl.’t J (6.4)

We will make use the right hand side of expression (6.4) in Subsection 6.4.4, when deriving
the portfolio manager's optimal trading budget for the for each CO, compliance period and

the profit function in our optimization model.

6.4  Formulation of the Optimization Model

In the following, we will successively develop and set up our linear multi-stage stochastic
portfolio optimization model for the closing of the natural short position in CO, emission

allowances with EUA and CER futures.
6.4.1 The CO, Trading Period

The total trading period in our model consists of n —1 CO, compliance periods, where
k =0,1,...,n—1 stands for the (k+1)th CO, compliance period. The last discrete point in
time of the corresponding terminating (k+1)th CO, compliance period is denoted by 7,
such that 7,,, =17},...,T . Additionally, the board defines a percentage amount of the short
position in CO, certificates, which should be mandatorily closed by the airline’s portfolio
manager until a defined discrete point in time 7,,, within the CO, compliance period
k+1,where 7, =7,,...,7,. Therefore, the total trading time horizon (i.e., stages) is ¢, that

can be represented as 1 =7,(=0),1,2....,7.,....T,... T, 150 I T T .We note that

ST k+12 0 Yoot
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for k=0, T, =T, =0, and 7, does not exist. For all k>0, 7,,,,7,,, € N. Hence, for
1, <7, <T,,, for each k=0,1,...,n—1. Figure 6.2 illustrates the systematics of the

trading time horizon ¢ which the portfolio manager faces.

: —
t=T,=0 1=1 t=1 t=T,t=T,+1 t=1, =T, b=T t=T,+1 i=1, t
|

| L
f Y f

0, compliance period CO, compliance period 0, zompliance petiod
=1 k=2 . k=n

Figure 6.2. Systematics of the CO, compliance and trading periods.

6.4.2 CO; Trading Strategy

Now, let us consider a portfolio manager of an airline company who has to determine over

a given trading time horizon ¢, his optimal total hedge portfolio

PIEY I I
i=1 =T} +1 Yigs

where x; , for i=1,2 is the amount of EUAs and CERs, respectively, traded in each 7.

Let X, be the yearly fix amount of EUAs distributed for free to the airline company by
the regulatory authority, valid for the whole CO, compliance period n. Let also denote C,d
the total amount of stochastic CO, emissions in ¢ for the emissions scenarios d =1,...,n,
which are set as deterministic (estimated) scenarios by the airline company for each ¢. Then

we have

SN
:Z =T;+1 2’

(6.5)

A+1
k+l (=T, +1 t H

Vk=0,1,.,n-1,Vd=1,...,n



where CZ +1 1s the total amount of stochastic CO, emissions for each emissions scenario
d =1,...,n, in the corresponding terminating CO, compliance period k+1. We remark that,
unlike Section 6.3, from now on, we use index d for the denotation of the CO, emissions
scenarios in order to separate their notation and number from those of EUA and CER

futures prices scenarios (see Section 6.3).

Thus, according to definition (6.5), the optimal CO, trading strategy of the portfolio

manager for the (k+1)th CO, compliance period can be defined as

2 i d  —
ZHZ,_IXH =C —Xx,,
Zz 12: i T _x1,2’

(6.6)

Y;H-l _ —
Zz 12; R T k+1 X k41
Vk = 051’---5’/1 _1, Vd = 1,...,]’1,

where the right hand side of equation (6.6) stands for the natural short position in CO,
emission allowances for each emissions scenario d to be closed by the portfolio manager in

each k+1.Let us define the natural short position in CO, emission allowances for each

emissions scenario d and for each k +1 as AY ++1 such that
d._d =
Al =C X1
d._pd =
A5 =C; X, 55

6.7)
d  d =
Ay =Cy X k1o

Vk=0,1,.,n-1,Vd =1,...,n

Then, according to equation (6.6), the sum of all CO, compliance periods k=0,1,...,n—1

the total CO, trading strategy for each emissions scenario d be stated as

PN DID NRE IR (CTIEIN B Yo (68)

(d=1,...,n).
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6.4.3 Regulatory, Managerial and Trading Constraints

Banking and borrowing possibility of CO, allowances

According to EU ETS regulation, an airline company is allowed to bank or borrow a
percentage amount of b of the yearly fix amount of EUAs distributed for free X, , ,, between
CO, compliance periods. Whereas banking is the possibility of transferring of X, from
one year to the following year, i.e., from k+1 to k +2, borrowing is the possibility of
using EUAs from the following year in the current year, i.e., from k+2 to k+1. Thus, let
us denote the portfolio manager’s possibility of borrowing with and banking of X,
between CO, compliance periods, with a regulatory-defined constant rate of b, be[—l, 1],

whereas b > 0 represents borrowing and b < 0 banking, respectively.

Figure 6.3 shows the idea of closing of the natural short position in CO, emission
allowances including the banking (going long) and borrowing (going short) possibilities

between CO, compliance periods.

/\'l‘Y to be closed A tobe clesed /\ir o be closed
H
by by by
I T L
Zz:z;, H Xt Zp:[; 1 it Zl:l; 11 Xy
/A_\_ ’A\
d_— d = d d - d
C _31,1=A1 Cg_xu=A2 Cu_xu:A.
qu o Z?{ F Cd N c.f Ca' — Zl; cd
1= 2 L 2-‘¢=a7+1 t BT Larnat

| k A

[ Y ) [ 1
&=0 ¢ €. c c, <y, e [ cr
| 1 1 I 1 1 i I 1 1 I
[ T ] [ T T i I 1 | |
=1 t=g t=U =1+ t=1y =1, t=T, t=T 4 L =1, +=T,

{ h ] L J

Y T ¥

0, compliance periad €O, compliance period (70, compliance period
k=1 =2 k=
banking banking banking
{goinglong)or (going long) or {going long) or
borrowing bortowing borrowing
(geing short) (going shorl) (guing shor)

Figure 6.3. Idea of closing of the natural short position in CO, emission allowances.
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For each CO, compliance period k+1,the regulatory CO, emission cap RC,,, can be

represented as

RC = Zz 1ZT11 SZRENE
RC2 = Zi:thiTlH Xt +f1,2’

(6.9)

_RC _ 2 T}H +
k+1 — i=1 =T, +1 lt xl k+1°

Vk=0,1,.,n-1,Vd=1,...,n,

due to the fact that the cap has been determined by the regulatory authority in such a way
that the airline companies should face a yearly physical short position in CO, emission
allowances, disciplining them to control their CO, emissions by compensating the missing

amount of CO, emissions by
Tk+l
Zz 12[ T, +1 ll (k:(),l,...,l’l—l),

By rearranging the system in (6.6), we get

(6.10)

2 T;wl d
Zizl Zt =T+ X+ xl k+1 Ck+1’

Vk=0,1,.,n-1,Vd=1,...,n

Therefore, by including the possibility of banking and borrowing for each k+1, our

equilibrium amount of CO, emissions for each emissions scenario d becomes
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— — d

z, 12: 1 lt+x1’1+bxl,1 _Cl >
z Z +X , +bx,, =C”
i=1 =Ty +1 lt 1,2 1,2 29

2 Tk+l d
Zizlzt 74170t + X1 X 4y = G

Vk=0,1,.,n-1,Vd=1,...,n

and subsumed

Zz 12, 1 tt +(1+b)x1k+1 Cd

zl 1Zz 741 lt+(1+b)x1k+l_c2’ 6.11)

2 TA+1 d
Zi:l Zt T +1 i ot + (l + b)xl k+1 Ck+19

Vk=0,1,.,n-1,Vd=1,.,n

Depending on the portfolio manager’s strategy, for each emissions scenario d the banking

decision of the portfolio manager with b < 0 can be described as

d —
Zz 12; 1 tt+x11 CI 2 bxl,l <O’

o X, +x12>C2, bx,, <0,
z 12: T+ 0t (6.12)

2 T}cﬂ d —
ZH Zt 7,41 i +%,0 > Gy b3, <0,

Vk=0,1,.,n-1,Vd=1,...n

and the borrowing decision of the portfolio manager with » > 0 can be stated as

— d —
zzlz =1 !t+xl.l<C17 bx1~]>0,

d pa—
Zz IZt 7,41 ”‘+x12 <G, bxm >0, (6.13)

2 ];wl d —
25:1 Zt 7,417 +X 0 <Gy DXy, >0,

Vk=0,1,.,n-1,Vd=1,...,n
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We remark that for =0 the systems of equations in (6.11) just equal the systems of

equations in (6.10).

In the special case, where

X0 >Ch,  (k=0,L.,n-1d=1..,n).

Then, we have

Z, 12; =1 ”+bx1’1 <0,
Z, 1zt T,+1 ”+bx12 <0,

(6.14)

2 Tk+l
Zilet T, +1 lt +bxl k+1 <0

Vk=0,1,.,n-1,Vd=1,..,n,

which illustrates the situation that in the CO, compliance period & +1 the amount of CO,
emissions is less than the CO, emission allowances distributed for free, which implies a
long position in CO, emission allowances and both sales of EUAs and CERs in k£ +1 or

banking of b-amount of free distributed EUAs tok + 2..

There is an important regulatory requirement that over the sum of all CO, compliance
periods, the total amount of banked and borrowed free distributed EUAs ¥, ,,, should be

equal to zero, such that
n-1
D bR = (6.15)

and therefore, implying that whole system should be in equilibrium over the sum of all

trading and CO, compliance periods for each emissions scenario d,
n-1 2 Tin n— I
Zk:O[Zi:IZt T +1 lt+(l+b)x1k+1J Z k+1 (6'16)
(d=1,..,n).
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EU ETS regulatory limit for CERs

The EU ETS imposes a regulatory trading (i.e., CO, compliance) limit for CERs. Let the

d
k+1

regulatory CER limit of total amount the short position A}, be m, m [0, 1] , which can

be used for compliance by the airline company for each & +1.Hence, the regulatory CER

limit constraint can be represented as

5 d  —
Z,:1 Xy, < m(Cl _'xl,l)’

I d =
Z,:Tlﬂxz,r < m(C2 —xl,z),

(6.17)
Ths d —
Z;Tlﬂl X,, Sm (Ck+1 T Xk )a
Vk=0,1,.,n-1,Vd=1,...n.
Accordingly, the remaining amount of AZH has to be closed by EUAs such that
T —
DX, < (l—m)(Cld —xu),
) d =
Zz:T]HXLI S(l_m)((’g _xl’z)’ (6.18)

Ten d —
Z[:Tk-ﬂ xl,t < (1 - I’I’l) (Ck+1 =X k1 ) 5

Vk=0,1,..,n-1,Vd =1,..,n.

Upper and lower trading limits

Although, the portfolio manager has to implement purchasing strategies to close the natural

short position in CO, emission allowances Af to ensure him a certain trading flexibility,

+17?
we assume that short selling of emission allowances is allowed. Therefore, the board of the
airline company defines for each ¢+=1,..7,, i=1,2 and k=0,1,..,n—1 both the binding

upper purchasing limits

EH]
U, 6[0’1]9 thTk-H U = U,



and the binding lower selling limits

T;ﬁl
v, €[0.1], Zz:TkﬂviJ =L,

respectively, where U and L are defined scalars, with U, L € R. That is, the portfolio
manager is allowed to increase his long (short) position in CO, emission allowances to a

factor of U (L) for each CO, compliance period & +1.

Therefore, the upper trading limits for EUAs and CERs can be represented as

d p—
Xy, Sy, |:m (C/m R )] ,

(6.19)
Xy, Su,, |:(1 _m)(clil _fl,lwl )],

Vi=1,.,T,, Vk=01,.,n-1, Vd =1,...n.

and their lower trading limits as

d J—
X, 2V, [m (Ck+1 =Xk )} )

(6.20)
2o, [(1-m)(CE )

vt=1,..,T,6 Vk=0,1,..,n-1,Vd =1,...,n.

Risk constraint

The board also predetermines a percentage amount of the natural open position in CO,
emissions, and therefore in CO, allowances, that has to be closed until a specific point in
time. In this way, the volume and liquidity risk, and therefore the exposure, can be reduced
and the portfolio manager disciplined (i.e., controlled). Let us denote, for each i =1,2, a
percentage ¢, . . ¢, € [0, 1] , of the total amount of the short position A, ;, that has to be
closed until a board-defined point in time 7,,, where 7, <7, <7, for each

k=0,1,...n—1.
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This implies for CERs that

", <q, [m(G-%,)]
z:zm 5, <0, [m(C-5,)

(6.21)
k+] d —_
Ztl le+1 2 S, |: (Ck+1 Xk )}

vt=1,..,T,Vk=0,l,.,n-1,Vd =1,..,n

and accordingly for EUAs

Z; X, <4, [(1—7")(6'," —X, ):|,
2 S [a-m)(ci-5..)), 622)

Z,TMTIH X S 911“[(1 m)( kel )_Cl,k+l):|7

Ve=1,...T,Vk=0,1..n-1,Vd=1,..,n

n’

6.4.4 Derivation of the Profit Function

Now, we have to derive the total profit function for the portfolio manager's CO, trading

strategy. By rearranging the system of equations (6.10), we get

Sk, +A+b)E, ~C =0,
ZletTl 1t+(1+b)x12 d:(),

(6.23)
kel d
Z, IZt 7,417 +(1+b)x,,, —C,, =0,

Vi=1,..,T,, Vk=01,..n-1,vd =1,..n,
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which states that for each £ =0,1,...,n—1 the difference between the amount of traded
CO, emission allowances (including banking and borrowing possibility) and the airline's
verified CO, emissions should equal to zero. However, if the at the end of the (k+1)th CO,
compliance period, i.e., at the point in time 7, , the verified CO, emissions exceed the
amount of existing CO, emission allowances to be delivered to the regulatory authority

such that

Z; Y x, 14T, ~C <0,

2 b — d
Zi—l Zt:T1 +1 Yig (I+ b)xl’z B C2 <0, (6.24)

2 Tk+1 — d
2 D+ U+ =y <0,

Vi=1,...T,, Vk=0...n-LVd =1,...,n,

i.e., still a short position in CO, emission allowances exists, then the airline has to pay a
penalty fee g to the authority in the amount of the missing CO, emission allowances. The
penalty paid is then deducted as an additionally occurred cost from the profit of the
portfolio manager. Let us define [a] = maX{O,—a}, for each aeR, then we can

formulate the penalty term as

2 Tin — -
_g [Zi:lztﬂ){ﬂ xi,t +(1+b)xl,k+l _lel+]:| (625)

(k=0,1,..,n-1;,d =1,...,n).

In equation (6.41), this term will be introduced as a penalty term in the profit function of

the portfolio manager.

In order to span a two-dimensional state space of EUA and CER futures prices (i.e.,
forward scenario-tree), described in detail in Section 5.2, through the use of the MC
simulation method, we will generate price s scenarios for EUA and CER futures prices for

each stage 7 =1,...,T , denoted by p;,, with s =1,...,n. The price scenarios p;, will be
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weighted by their occurrence probabilities z° with 7° e[O,l] and ijlyz‘* =1. Therefore,

the revenues can be described as

Zl‘zzl Zil ﬂ-spis,t'xi,t (6.26)

(k=0,1,....,n-1;5s=1,...,n).

The board also determines the maximum trading budget B, € N* to be spent by the
portfolio manager for the net purchase of EUAs and CERs in order to compensate the short

position A, for each CO, compliance period k+1. This trading budget B

s OCCUIS as a

cost parameter in the profit function. Or, in other words, the portfolio manager has to

generate income that exceeds B, ., in order to result in successful trading strategies such

that for each % +1

2 I s S
Zi:l Zz:]” pi,txi,t > Blb

2 ) s s
S X, >
.Z a2 P > B (6.27)

2 Tk+l S S
Zizlz;:nﬂﬂ. pi,txi,t > Bk+1’

vVt=L..T, Vk=01,..,n—1, Vd =1,...,n.

Or, by rearranging

2 Ti S S
Zi:l Zz:l” P, —B >0,

2 7‘2 S N
Zi:l Zt:ﬂﬂﬂ- P = By >0, (6.28)

2 Tk+l S S
Zi:1 Zl:]}ﬁ-l 7T Piiiy _Bk+1 > O’

Vt=1,.,T, Vk=0,,...n1, Vd =1,...n.
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The board usually determines the trading budget B, ,,, based on his market expectation
about his expected futures prices and the corresponding amount of CO, allowances which
is expected to be bought from the market in order to close the natural short position in CO,
allowances (see Section 3.1). Thus, the board indirectly sets a threshold price £, against
which EUAs and CERs could be bought or sold in the market to optimize the value of the
portfolio (see Section 6.3). However, B,,, varies for each CO, emissions scenario
d =1,...,n, such that, from now on,

=B

k+1°

B

k+1

Therefore, for each k+1th CO, compliance period B,il could be defined as the weighted
product of the expected average yearly EUA and CER futures prices times the
corresponding expected amount of EUAs and CERs for each CO, emissions scenario

d =1,...,n, to be bought from the market by the portfolio manager, i.e.,
Blil =Flia (1 - m)(clil =X 4 ) +F,,m (Cli-l =X ka1 ) (6.29)
(t=1...T; k=0,1,...,n-1;d =1,...,n).
where F]‘,t and }_71", are the threshold futures prices for EUAs and CERs, respectively, m is

the import limit of CERs, C/,, are CO, emissions scenarios and X, are free distributed

EUAs for each k+1th CO, compliance period.

Now, we remember the right hand side of expression from (6.4) as

e [Z; Z?:l (pf,, a F;’t)xi”:|

which, adjusted for ¢ =1,...,T, and written out for ; =1,2, gets

e |:Z,T; (pf,z - FI,; )'xl,t + 221 (pj,, B FZJ ) xz’f} (6.30)
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Building the sum for all £+1 CO, compliance periods, results in

=1 (Tjy —(T; +1)) Ty "
e Tia= |:Zt TA+1(p 1k+1)X1,+Z T+1( Pry— 2k+1)x2[:| (6.31)

(k=0,1,..,n-1;s=1,...,n).

We can write out and rearrange expression (6.31) as

(T —(T;, +1)) ZTkH Z el ZTkH = ZI}HI =
e ' =T, +1 lt'xlt + (= T+1p2t 2.t =T, +1 Fi,txl,k+l + (=T, +1 F‘Z,k+1x2,t

(k=0,1,..,n—-1;s =1,...,n). (6.32)

Concentrating only on the second rounded bracket in (6.32) and adjusting for the regulatory

import limit of CERs denoted by m, we have

Tia - e+l
Zt =T+ 1Ek+1 (1 m xlt+z, =T, +1 2k+lmx2t (633)

(k=0,1,...n—1).

Since we know that for each £+1 CO, compliance period, the total amount CO, emissions

has to be compensated by the yearly total amount of EUAs and CERs, we can define

S (=m)x, + D = (1-m) G, +mC (6.34)

(=T, tT+1

(k=0,1,..,n-1;d =1,...,n).

By using the right hand side of definition (6.34) and deducting the free distributed EUAs

X, ;41> We can adjust definition (6.34) to
(l_m)(clil _')—Cl,k+l)+m(clf+l )?l,k-v-l) (6.35)

(k=0,1,...,n—1;d =1,...,n).
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Thus, combining expression (6.35) and (6.33), results in

Fia (1 - m) (C/il =X 4 ) + Fz,kum (C:n =X 4 ) (6.36)

(k=0,1,..,n-1;d =1,...,n),
which is just the left hand side expression in (6.29), such that, as result,
Blil = FI,IHI (1 - m) (le+1 - )_Cl,k+1 ) + F;,k+lm(clf+l - )_Cl,kH ) (637)
(k=0,1,..,n-1;d =1,...,n).

Thus, the budget B:n implicitly contains the futures prices threshold values I?l"[ and Fz,m

the CER import limit m, the CO, emission scenarios C,il and the free distributed EUAs
X, .1+ Since these are all know scalars, BZH can easily be calculated and directly used in the

formulation of our optimization model.

Accordingly, we can sum the two terms in the first rounded bracket in expression (6.32) to

DI IS (6.38)

(k=0,1,..,n-1;5=1,...,n),
which serves as the revenue term in our profit function, which according to (iii) gets
2 T s s
D 2 TP (6.39)
(k=0,1,....,n—-1;s=1,...,n).

Then, according to expression (6.32), the profit of a trading strategy for each k+1 CO,

compliance period, can be state as

—r (T —(T; +1)) 2 Ty s s d
e [Zi:IZz:Tkﬂﬂ- DiiXi _Bk+1:| (6.40)

(k=0,1,....,n—-1;s=1,...,n).
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We remember that we defined above, that for £k =0, 7, =7, =0, and 7;does not exist, and
for each k>0, T, <7,,,<T.,,, 7,.,,1;,, €N. We remember that for the penalty term in

expression (6.25), we defined [a] = max {O,—a} , for each g e R.

Then the total profit function z, including the penalty term, in our optimization model for

the sum of all CO, compliance periods can be stated as

_ - (T —(T;, +1)) Ts
Z_Zk o[ e [lezzrl+1ﬂplt Xis BkH}
2 7}# d -
_g[z:ﬁth 71"+1 tt+(1+b)xlk+1 Ckﬂ} }

(6.41)

where the expression in the sub bracket of the function z stands for the paid penalty by the

airline company, if the expression is negative.

Now, let us denote the EUA and CER futures prices from equation (4.17) in Section 4.3 for

each scenario s as F*

AT, ) then according to the notations above, F* has the same

i,(t+ALT,)

meaning as p;,,that is, the MC simulated EUA and CER futures prices over the trading
time horizon ¢t =7,(=0),1,2..,7,,...,T, ,,...,T,. Then, we can just set

iy S5 A

S S
F (o) = Pigs

and thus

F.,. =F

i(t.T,) e

then expression (6.40) gets

z= Zn 1[ e (Tkﬂ))zl 12?; 1 S( (,u o; ;]At-i_o-igi,t\/z]xi,t
2 T}H B
_Bk+l_g|:z IZI T+l X, +A+0)x ., — de+1} :la

(6.42)

where is Af discrete time-step used in the MC simulation.
6.4.5 Optimization Model
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Given the formulations above, we can formulate our multi-period stochastic portfolio
optimization model as the following profit maximization problem with regard to derived

corresponding constraints:

maximize

(CE 2

n=l (T (T +1)) Ten _ l [
Z= Zk 0[ o Zz 12: rn’ ( (/ui g, 2]At+o-igi,t At]xi,t
k+1 d -
k+l |:Zl IZt T, +1 ” +(1+b)xl k+1 Ck+1:| :I’

(6.42)

subject to
EU ETS regulatory limit for CERs:

Zil X, S m(Cld —3_51,1):

Z (Em(C-5,), 617)

2 e <m(Cly =T ),

Vk=0,1,...,n—-1,vd=1,...,n,
L <(t-m)(Cf -x,),
Y e <(1=m)(CF -3,). 618

T;wl d v
ZI T+1xlt = (1 m)(ck+1 _xl,k‘fl)’

Vk=0,1,..,n-1,Vd=1,...,n,

Regulatory banking and borrowing constraints:
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Zz IZI =1 lt+(l+b)x1k+1 ’

d
Zz IZt T+ i +(1+b)xlk+1 G 6.11)

k+1 d
Z, lzt T+l 1t+(1+b)xlk+l Cens
Vk=0,1,...n—1,Vd=1,..,n,

Z"I[Z,,Z?T‘M %, (40T, [ = Xt (6.16)
Z DX = (6.15)

Upper (i.e,. purchasing) trading constraints:

d —
X, Sy, |:m (Ck+1 T X ke ):| >

(6.19)
Xy, Su,, [(1 - m)(Clil - fl,kﬂ ):| >

Vt=1,..,T,Vk=01,..n—1,vd=1,.n,

Lower (i.e., selling) trading constraints:

d p—
=X, 2V, |:m (Ck+1 X ka1 ):| >

(6.20)
—X,, 2V, [(1 - m)(C,i] = Hien ):| ’

Vi=1...T,Vk=0,1,..n—1,Yd =1,...n,

Risk constraints:

al

d —
o172 < a9, |:m(C1 _‘xl,l)]’
Tz d —
Z,:TIH X,, < q,,, [m(cz X )]a

(6.21)
Z,k; 0% S, [ (Cli-l _)?1,1{+1):|>

Vk=0,l,..,n-1,Vd=1,..,n,
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Z; X S 4 [(l—m)(cld _fl,l):|9
.ZZT‘“ %, <q,. [ (-m)(C-,)], 62

Ths d -
Zt:T,[H X, <4, |:(1 - m)(Ck+1 T Xkl )} >

Vk=0,1,.,n-1,Vd =1,...,n.

Therefore, our optimization problem consists of a two-dimensional modeled state space for
the stages #=1,...,7, consisting of the stochastic variables F’, (EUA futures price) and
F;, (CER futures price), with s=L...,n, and the stochastic variable ctd (CO, emissions),
for s=1,..,n, representing possible states for each stage r. We remember that p;, is
influenced by random processes, whereas c,d occurs as stochastic constraint scalars,
modeled through deterministic scenarios d =1,...,n. by the airline company.

Hence, the optimization results will result in optimal futures hedging strategies, with the

remaining part of the CO, short position to be closed by spot contracts.

The structure of the optimization model is illustrated in Figure 6.4. The model input
parameters include market parameters for MC simulation such as expected return,
volatilities, variance-covariance matrix and EUA and CER initial futures prices of various
specified delivery periods (see Section 4.3). Furthermore, optimization parameters (scalars)
such as regulatory usage limits, upper / lower trading limits, banking / borrowing limits,
amount of free allowances, penalty fee and trading budget will be used, whereas the
amount of yearly CO, emissions will be modeled by deterministic scenarios. The model

algorithm consists as follows:

Step 1: MC simulation of possible s=1,...,n paths for correlated EUA and CER futures
prices (see Section 4.3). As a consequence, the scenarios become tree-structured with
nodes 0 from a finite set O, i.e., forward scenario-tree. Each node 0 therefore denotes a
decision point (i.e., state), corresponding to the realization of p;, up to 0, represented by
the trading time ste t=1,...,]:1. Or, in other words, each state 0 represents a combination

(“couple”) of simulated EUA and CER futures prices at the trading time instant t.

Step 2: Set up of the multi-stage stochastic optimization model (see above).
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Step 3: Solve the stochastic program on the scenario tree via LP technique (CPLEX solver

in MATLAB).

The model outputs will include the value and distribution of earnings, the optimal trading

strategies and the risk measure VaR to determine the risk exposure of the portfolio

manager.

Model Input Model Algorithm » Model Output
Stmulation Paramaeters M Simulation #f correlated GHNL . .
-Expevied returas (EVA and CER Fatures) Distribution of Earnings
- Yilatilities
- Cosmriance matrix

Optimizationhlodel ..nﬂnﬂﬂﬂ[uﬂ ﬂﬂll]ul].u A
Oplimization Parameters .

Opiimot rodi

{Bcalars) Ohbjective Function strotegy M
- Regulatory usage Limits Cost minimaztion {i.e peofi e
- Upper/ lower rading limite maximization)
- Banking / borrosving limiks Earmings
- Amount of fren allowanges Constraints
- Amount of emissions Upper/ lowee trading limits —
{duberuvinistic scenarios) Reoubatnry usnge [imits Vit
- Penalty fee Banking / bormwing contraiaty
- Trading budgel between CO, complimoee pericds ——

Risk constraint

Figure 6.4. Structure of the optimization model.
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CHAPTER 7

TIME-SERIES PROPERTIES AND M ODEL INPUT
PARAMETERS

In our analysis, we use EUA and CER futures prices, traded at the Intercontinental
Exchange (ICE) in London, which today, by far, is the most liquid electronic platform for
CO, emissions trading, representing more than 80% of the exchange-traded volume of

EUAs and CERs in the European carbon market [39].

7.1  Time-Series Properties

In the introduction part of Chapter 4, we mentioned that carbon prices follow a GBM
process, whose fundamental assumption is the normal distribution. We will apply the well-
known Jarque-Bera (JB) test for normality in returns of EUA and CER futures prices for
various CO, compliance periods. Here, the null hypothesis is tested, that the skewness of
the distribution together with its excess kurtosis (i.e., kurtosis minus 3) are both zero, and
therefore follows a normal distribution, against the alternative hypothesis of non-normal

distribution.

For all EUA and CER retruns, the p-values of the received JB test statistics are both larger
than 0.01 and 0.05, such that all probability levels the null hypothesis of a normal
distribution in returns can clearly not be rejected. The corresponding EViews values can be

found in Appendix B.1.

The GBM process is nothing else than a random walk plus drift model. We will justify its

application in our model, by the use of the Dickey-Fuller test for testing the unit root
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property in the EUA and CER futures prices, and therefore, their non-stationarity. This
implies that they are perennially subject of random shocks and thus depend on their drift
and volatilities. Hence, we will test the null hypothesis of EUA and CER futures prices
having a root unit and therefore following random walk plus drift model (i.e. non-
stationary), against the alternative hypothesis of not incorporating a unit root (i.e.
stationary), such that the EUA and CER futures prices will converge at a long-term mean.

In that case, the use of the Ornstein-Uhlenbeck (O-U) process would be appropriate.

Now, starting with a price model y, with a constant drift

b2 =C+Clyt71 +6‘t,

where ¢ denotes the constant drift term and &, denotes the error term, by differentiating

both sides by y, | we get,

Ay, =c+by,  +¢,

where

b=a-1.

Consequently, our hypothesis testing becomes

H,:b=0,
H, :b<0.

For all EUA and CER futures prices, the absolute value of the Augmented-Dickey-Fuller
(ADF) unit root test statistics are less than the 1%, 5% and 10% critical values. Hence, the
null hypothesis cannot be rejected, justifying the use of the random walk plus drift model,
and therefore the GBM model, as the underlying price process in our model. Appendix B.2
contains the resulting EViews outputs for the ADF tests, verifying the non-rejection of the
null hypothesis. Additionally, these results have been cross checked by also applying other

unit root tests such as Philipps-Perron, Ng-Perron or Elliott-Rothenberg-Stock-Point
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Optimal tests. All their outcomes support the ADF test results, and thus verify the use of

the GBM model as our underlying price model..

7.2 Model Input Parameters

7.2.1 Input Parameters for MC Simulation

Our optimization model is assumed to have a three-year CO, compliance period for the
years 2013, 2014, and 2015, i.e., k=1,2,3. We consider monthly trading steps r=1,2,...,36,
i.e., the discrete time-step Arused in the MC simulation is 1, resulting in a total trading time
horizon of 36 months results. Hence, the last trading period within each CO, compliance

periodis 7, =12, T, =24 and T, =36.

For all of those CO, compliance periods there are yearly EUA and CER traded futures
contracts available, implying Dec'13, Dec'l14 and Dec'l5 futures contracts for both CO,
emission allowance types. Therefore, we can subdivide the traded amount of EUA futures
and CER futures, which we denoted as x;, in Subsection 6.4.5, specifically into EUA and
CER Dec'13, Dec'l4 and Dec'l5 futures contracts with the following notation of the

variables:

EUA Dec'13 futures contracts:  x,,,  Vt=1,..,12,
- EUA Dec'l14 futures contracts: X,  Vi=13,..,24,
- EUA Dec'l5 futures contracts: X3 Vvt =25,...,36,
- CER Dec'l3 futures contracts: X, V=112,
- CER Dec'14 futures contracts: X,  Vi=13,..,24,
— CER Dec'l5 futures contracts: X5 Vt=25,...,36,

Accordingly, we can do the same for the prices of the traded amount of EUA futures and
CER futures, which we denoted as F;’, in Subsection 6.4.5, such that the following new

variables for the MC simulated correlated futures prices for » =10.000 scenarios result:

- EUA Dec'l3 futures prices: Ff‘i,ta Vi=1,..,12, Vs =1,...,250,
- EUA Dec'l14 futures prices:  F;,, Vt=13,..,24, Vs=1,..,250,
- EUA Dec'lS futures prices:  fj;,, Vt=25,..,36, Vs =1,...,250,
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- CER Dec'13 futures prices:  F),

1e°

Vt=1,..12, Vs =1,...,250,
Vt=13,..,24, Vs =1,...,250,
Vvt =25,...,36, Vs =1,...,250,

- CER Dec'l4 futures prices: F}

0.1

- CER Dec'l5 futures prices:  F,

23,12

We assume that the MC scenarios for

F.S‘

22,10

F,
2.0 ) 421,.36

,,,,,

E L F

13,627 21,2

F= {Fs

1,09

F s

12,62

with s=1,...,250, are uniformly distributed, i.c.,

The market parameters for the modeling of the market state space (i.e., MC simulation) are

correspondingly denoted as follows:

- Average return / volatility EUA Dec'l3 futures prices: 4, / oy,
- Average return / volatility EUA Dec'l4 futures prices: 4, / 0y,
- Average return / volatility EUA Dec'l5 futures prices: 44 / 05,
- Average return / volatility CER Dec'l3 futures prices:  f4, / 0,
- Average return / volatility CER Dec'l4 futures prices: [, / 0,
- Average return / volatility CER Dec'l5 futures prices:  f4, / O,

The existence of 6 different futures prices data which are all cross-correlated with each

other, thereby implying a ¢ x 6 variance-covariance matrix

2
Oy 01101 112 01013 113 011021P1121 011022 011023P13
2
G1101:P1.12 O, 01,013012135 012021P1201 O1200Pixn  01203P1003
2
s = 0110131113 0120131213 O3 01305101321 O1302P132n 013030133
- 2
011051P1121 012021P1221  013021P1301 05 05102P212  021023P2123
2

01100 12 C120nPuxn O1301Pi2n 02101Pnn 05 05,0939 23

2

01503P123 013053P1323 02103P1323 020230273 O3

0110 23P11,23
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According to the specified CO, trading and compliance periods and adjusted notation of the
all the variables above, the detailed formulation of the optimization model in Subsection

6.4.5 could be written out (see Appendix A).

Two market scenarios, consisting of the optimistic and pessimistic scenario, have been
defined. The optimistic market scenario incorporates the historical expected returns,
volatilities, correlations and the resulting variance-covariance matrix of Dec’09, Dec’10
and Dec’11 EUA and CER futures for the period 03/03/2009-28/05/2009, a 60-trading day
period where the market was rapidly increasing with a relative high level of volatility. The
pessimistic market scenario contains the historical expected returns, volatilities, correlations
and the variance-covariance matrix of Dec’13, Dec’14 and Dec’15 EUA and CER futures
for the period 22/02/2010-19/05/2010, a 60-trading day period where the market was
rapidly decreasing with a medium level of volatility. Hence, the underlying historical
market data of the delivered Dec’09, Dec’10 and Dec’11 EUA and CER futures contracts
as well as those for Dec’13, Dec’14 and Dec’15 EUA and CER futures contracts will be
used as market input parameters for MC simulation of correlated Dec’13, Dec’14 and

Dec’15 EUA and CER futures prices.

Through the log returns of the historical ICE ECX data for the corresponding time period of
the optimistic and pessimistic scenario, the average historical returns, volatilities,
correlations and the variance-covariance matrix as input for MC simulation of Dec’13,
Dec’14 and Dec’15 EUA and CER futures prices have been determined. Those values as

well as the initial values for EUA and CER prices are shown in Tables 7.1-7.9.

As it can be seen from Tables 7.1-7.9, the main characteristic difference between the
optimistic and pessimistic scenario are that, in the one hand, the expected returns of the
optimistic scenario, in absolute terms, are smaller than those of the pessimistic scenario,
and in the other hand, the volatilities of the optimistic scenario are relatively higher than
those of the pessimistic scenario. All the EUA futures prices among themselves as well as
with CER futures prices exhibit a high correlation. Nevertheless, the variance-covariance
matrix is positive definite and therefore, is appropriate for conducting the Cholesky

decomposition.
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Initial Values (EUR/tCO,) Dec'13 Dec'14 Dec'15
EUA price 7.52 7.91 8.47
CER price 0.51 0.61 0.69

Table 7.1. Initial values for EUA and CER futures prices for both the optimistic and
pessimistic scenarios.

Returns Dec'13 Dec'14 Dec'15
EUA price 0.12002 0.11909 0.11763
CER price 0.08846 0.09479 0.08449

Table 7.2. Optimistic scenario: Monthly historical returns of EUA and CER prices.

Volatilities Dec'13 Dec'14 Dec'15
EUA price 0.15338 0.15625 0.15685
CER price 0.14811 0.18284 0.15717

Table 7.3. Optimistic scenario: Monthly historical volatilities of EUA and CER prices.

Correlations EUA EUA EUA CER CER CER
Dec'13 Dec'14 Dec'15 Dec'13 Dec'14 Dec'15
EUA Dec'13 1 0.96240 0.93721 0.88269 0.72905 0.67272
EUA Dec'14 0.96240 1 0.94731 0.89447 0.76678 0.68829
EUA Dec'15 0.93721 0.94731 1 0.87826 0.70615 0.67974
CER Dec'13 0.88269 0.89447 0.87826 1 0.84407 0.77595
CER Dec'14 0.72905 0.76678 0.70615 0.84407 1 0.84180
CER Dec'15 0.67272 0.68829 0.67974 0.77595 0.84180 1
Table 7.4. Optimistic scenario: Correlations of EUA and CER prices.
Covariance EUA EUA EUA CER CER CER
Dec'13 Dec'14 Dec'15 Dec'13 Dec'14 Dec'15
EUA Dec'13 0.023525 0.023065 0.022547 0.020052 0.020445 0.016217
EUA Dec'14 0.023065 0.024415 0.023265 0.020701 0.021906 0.016904
EUA Dec'15 0.022547 0.023265 0.024602 0.020403 0.020251 0.016757
CER Dec'13 0.020052 0.020701 0.020403 0.021937 0.022858 0.018063
CER Dec'14 0.020445 0.021906 0.020251 0.022858 0.033430 0.024191
CER Dec'15 0.016217 0.016904 0.016757 0.018063 0.024191 0.024703
Table 7.5. Optimistic scenario: Variance-covariance matrix.
Returns Dec'13 Dec'14 Dec'15
EUA price -0.16058 -0.16454 -0.16421
CER price -0.17643 -0.18260 -0.17948

Table 7.6. Pessimistic scenario: Monthly historical returns of EUA and CER prices.
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Volatilities Dec'13 Dec'14 Dec'15
EUA price 0.09305 0.09696 0.09556
CER price 0.09901 0.10629 0.10632

Table 7.7. Pessimistic scenario: Monthly historical volatilities of EUA and CER prices.

Correlations EUA EUA EUA CER CER CER
Dec'13 Dec'14 Dec'15 Dec'13 Dec'14 Dec'15
EUA Dec'13 1 0.97623 0.94138 0.85855 0.84396 0.79106
EUA Dec'14 0.97623 1 0.85855 0.90275 0.85094 0.78401
EUA Dec'15 0.94138 0.85855 1 0.88199 0.80699 0.77599
CER Dec'13 0.89644 0.90275 0.88199 1 0.85660 0.77984
CER Dec'14 0.84396 0.85094 0.80699 0.85660 1 0.82439
CER Dec'15 0.79106 0.77599 0.77599 0.77984 0.82439 1
Table 7.8. Pessimistic scenario: Correlations of EUA and CER prices.
Covariance EUA EUA EUA CER CER CER
Dec'13 Dec'14 Dec'15 Dec'13 Dec'14 Dec'15
EUA Dec'13 | 0.008659 0.008898 0.008637 0.008259 0.009133 0.008562
EUA Dec'14 | 0.008898 0.009400 0.010923 0.008666 0.009594 0.008842
EUA Dec'l5 | 0.008637 0.010923 0.009131 0.008345 0.008967 0.008625
CER Dec'13 | 0.008259 0.008666 0.008345 0.009804 0.010093 0.009212
CER Dec'14 | 0.009133 0.009594 0.008967 0.010093 0.013523 0.011287
CER Dec'15 | 0.008562 0.008842 0.008625 0.009212 0.011287 0.013530
Table 7.9. Pessimistic scenario: Variance-covariance matrix.
7.2.2 Optimization Parameters (Scalars)

We assume that the amount of free distributed EUAs by the EU ETS regulatory authority is
constant for each CO, compliance period & as 800,000, i.e., X,, =X, =X, ; = 800,000.
Let the penalty fee g =100 EUR for each missing ton of CO,. We intentionally use the
actually valid regulatory EUA banking and borrowing constraints 5 = 0.025 for the free
distributed EUAs x,,, for each (k+1)th CO, compliance and the CER import limit

constraint m = 0.01 to reveal the true regulatory situation in the EU ETS.

The board-defined upper and lower trading limits for EUAs and CERS are assumed to be

constant for all ¢=1,..,36 as u,, =u, =0.15 and v,, =v,, =-0.15, respectively.

For three-year CO, compliance period the airline company estimates yearly CO, emissions
C," ,Cj ,C;’ for d=1,2,3 deterministic scenarios which are provided in Table 10. The board

also provides the portfolio manager with a total trading budget for the three-year CO,
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compliance period Zi_o B

¢ dependent of scenarios d for the yearly CO, emissions

k+1°

Cf ,C;’ ,Cf . According to equation (6.27), taking the given scalars above, we result in the

total budget values for Zi:o B/, in Table 7.6.
Scenario d Cld Czd Czd Zﬁ) BZH
1 900.000 1.000.000 1.200.000 7.5 Mio. EUR
2 1.000.000 1.200.000 1.400.000 10.0 Mio. EUR
3 1.100.000 1.300.000 1.400.000 12.5 Mio. EUR

Table 7.10. Deterministic scenarios for CO, emissions and the resulting trading budget.

The board also predetermines the percentage amount of the natural open position in CO,
emissions for EUAs as ¢, , ,q, . ,q,, and for CERs as ¢, ,q, . .q,, to be closed up to
time 7, and 7,to limit the risk exposure of the open position of the portfolio manager.
Various risk levels for the open position and board-defined point in time 7,,7,,7; are
defined in Table 7.11. Here, 7, =6, 7, =18 and 7, =27 denotes that, until the half of each
CO; compliance period, a percentage amount of the open position in EUAs and CERs,
respectively, should have been closed by the portfolio manager. The indices 7, =9,

7, =21 and 7, =33 denote the end of the third quarter of each CO, compliance period.

%-amount to be T 7, 75

closed 7,=6 7,=9 7, =18 7, =21 7,=30 7,=33
I I 0.5 0.5 0.5 0.5 0.5 0.5
Qe Ge, i, 0.75 0.75 0.75 0.75 0.75 0.75
Does Doy Do, 0.5 0.5 0.5 0.5 0.5 0.5
O A 0.75 0.75 0.75 0.75 0.75 0.75

Table 7.11. Various risk levels for the open position and board-defined points in time.

For our optimization model, we make following assumptions with regard to the EU ETS

market:

— No transaction costs are considered.

- No liquidity constraints are considered. That is, all transactions are carried out

without being able to influence the market price.

- No margins (and margin calls) are considered.
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CHAPTER 8

OPTIMIZATION RESULTS

Figures 8.1-8.12 illustrate n = 250 MC simulated correlated price paths for EUA Dec'13,
Dec'14 and Dec'l5 futures as well as for CER Dec'13, Dec'14 and Dec'l5 futures, for the

optimistic and pessimistic market scenarios.

Price (EUR/tCQO2)
Price (EUR/tCO2)
= :. =

1 Trrdinz Periods R o Trading Perleds ;
Figure 8.1. Optimistic scenario: MC Figure 8.2. Optimistic scenario: MC
simulated price paths for EUA Dec'13 simulated price paths for CER Dec'13

Price (EUR/ACO2)

Trading Period ¢

Figure 8.3. Optimistic scenario: MC Figure 8.4. Optimistic scenario: MC
simulated price paths for EUA Dec'14 simulated price paths for CER Dec'14
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Figure 8.9. Pessimistic scenario: MC Figure 8.10. Pessimistic: MC simulated
simulated price paths for EUA Dec'14 price paths for CER Dec'14 futures.
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Figure 8.11. Pessimistic scenario: MC Figure 8.12. Pessimistic scenario: MC
simulated price paths for EUA Dec'l5 simulated price paths for CER Dec'15

The graphs for MC simulation of the optimistic and pessimistic scenario clearly reveal that,
due to the existence of the relative higher volatilities, the scenario tree of the optimistic
scenarios is more stretched, whereas the scenario tree of the pessimistic scenario, in

absolute terms, has a relative larger slope due to the, in absolute terms, higher expected

returns.

We modeled and solved our optimization problem through the CPLEX solver in MATLAB,
based on each received MC simulated EUA and CER Dec'13, Dec'14 and Dec'l5 futures

price, and obtained a feasible solution.

Figures 8.13-8.16 show the resulting MC simulated trading strategies for EUAs and CER
futures for the optimistic and pessimistic market scenario for a trading budget of 10 Mio.

EUR, 7, =9, 7, =21, 7, =33, and ¢,,¢, =0.5.

ol ol Ji
: hu‘ "‘ ik" I iw et
Figure 8.13. Optimistic scenario: Figure 8.14. Optimistic scenario:
MC simulated optimal trading MC simulated optimal trading
strategies for EUA futures. strategies for CER futures.
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Figure 8.15. Pessimistic scenario: Figure 8.16. Pessimistic scenario:
MC simulated optimal trading MC simulated optimal trading
strategies for EUA futures. strategies for CER futures.

All figures clearly depict the increasing amount of EUA and CER futures traded in each
subsequent CO, compliance period due to the increasing amount of the short position for
each subsequent CO, compliance period. At the end of each CO, compliance period, the
traded amount of CO, emission allowances equals the amount of verified CO, emissions of
the airline company, such that the portfolio manager does not pay any penalty fee to the
regulatory authority. In order to close the physical short position in CO, emission
allowances, the portfolio manager primarily executes buy strategies of EUA and CER
futures. However, these differ for the optimistic and pessimistic market scenario. Whereas
in the optimistic scenario, where the prices are increasing, the portfolio manager mainly
buys EUA and CER futures in the first half of a CO, compliance year, in the pessimistic
market scenario, where the prices are decreasing, he mainly buys those in the second half of
a CO, compliance year. In the optimistic scenario, shorting of EUA futures is more likely
happening in the third each quarter, whereas in the pessimistic scenario, it is more likely
happening in the each first quarter. To optimize his total hedge portfolio in CO, emission
allowances, the portfolio manager relatively intensively implements buy-selling strategies
for CER futures. Since the maximum difference in the price level is between 7 and T3, in
the optimistic market scenario, the portfolio manager borrows banks (i.e., goes long) the
maximum possible 2.5%-amount of free allowances from 7; to the next period 75, and
borrows (i.e., goes short) the maximum possible 2.5%-amount of the free distributed EUAs

from 73 to the previous period 75, and vice versa for the pessimistic market scenario.

Table 8.1 and Table 8.2 lists the expected values (i.e., revenues) z and their corresponding
VaR values at the 95% and 99% confidence level, for the optimistic and pessimistic

scenario, respectively, according to the given CO, emission scenarios d and the
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corresponding total trading budgets Z;O B!, provided in Table 7.10, and the various risk
levels of the open position in CO, emission allowances and board-defined points in time,

provided in Table 7.11.

Budget | 7 | 7, | T3 | 99, oy G G z VaR.ys,, VaRy,
6 | 18 | 30 | 0.50 900,000 1,000,000 | 1,200,000 | 322,724 165,878 101,238

7.5 6 | 18130 | 0.75 900,000 1,000,000 | 1,200,000 | 269,149 132,716 76,489
Mio. € | 9 | 21 | 33 | 0.50 900,000 1,000,000 | 1,200,000 334,639 156,850 83,579
9 |21 ]33] 0.75 900,000 1,000,000 | 1,200,000 | 307,871 182,900 131,397

6 | 18 | 30 | 0.50 | 1,000,000 | 1,200,000 | 1,400,000 | 550,573 | 371,959 | 298348

10.0 6 | 18 | 30 | 0.75 | 1,000,000 | 1,200,000 | 1,400,000 | 455,142 270,024 193,733
Mio.€ | 9 | 21 | 33 | 0.50 | 1,000,000 | 1,200,000 | 1,400,000 | 605,740 353,672 249,789
9 [ 21 ]33] 0.75 | 1,000,000 | 1,200,000 | 1,400,000 503,589 342,037 275,459
6 | 18 | 30 | 0.50 | 1,100,000 | 1,300,000 | 1,500,000 | 763,237 537,682 444,726
125 [ 6 | 18 [ 30| 0.75 | 1,100,000 | 1,300,000 | 1,500,000 | 635,230 | 394,677 | 295,540
Mio.€ | 9 | 21 | 33| 0.50 | 1,100,000 | 1,300,000 | 1,500,000 794,794 496,086 372,982
9 [ 21 |33] 0.75 | 1,100,000 | 1,300,000 | 1,500,000 730,794 526,340 442,080

Table 8.1. Optimistic scenario: Expected revenues and VaR values.

Budget | 7, | 4, | & | 9%, G G G z VaR,s, VaR,yy,
6 | 18 | 30 | 0.50 900,000 1,000,000 | 1,200,000 | 255,698 170,962 136,041
7.5 6 | 18 |30 | 0.75 900,000 1,000,000 | 1,200,000 | 238,979 149,887 113,170
Mio. € | 9 | 21 [ 33| 0.50 | 900,000 | 1,000,000 | 1,200,000 | 267,189 | 196,385 | 167,205
9 [ 21 |33 ] 075 900,000 1,000,000 | 1,200,000 | 247,557 162,283 127,140
6 | 18 | 30 | 0.50 | 1,000,000 | 1,200,000 | 1,400,000 | 402,757 | 283,148 233,854
10.0 6 |18 |30 | 0.75 | 1,000,000 | 1,200,000 | 1,400,000 | 395,803 292,649 250,137
Mio.€ | 9 | 21 | 33 | 0.50 | 1,000,000 | 1,200,000 | 1,400,000 | 427,129 | 358,261 329,880
9 | 21 | 33| 0.75 | 1,000,000 | 1,200,000 | 1,400,000 | 396,216 | 276,580 227,276
6 | 18 130 | 0.50 | 1,100,000 | 1,300,000 | 1,500,000 | 601,153 454,555 394,138
12.5 6 | 18130 ] 0.75 | 1,100,000 | 1,300,000 | 1,500,000 | 579,687 419,247 353,126
Mio.€ | 9 | 21 | 33| 0.50 | 1,100,000 | 1,300,000 | 1,500,000 | 662,089 562,459 521,400
9 |21 |33] 075 | 1,100,000 | 1,300,000 | 1,500,000 | 598,598 454,944 395,742

Table 8.2. Pessimistic scenario: Expected revenues and VaR values.

We see that, for both the optimistic and pessimistic market scenario, the revenues are
higher, either, if all else equal, the lower g,q, =0.5, or, if all else equal, the higher
7,,7,,7;. Hence, the highest revenues for the portfolio manager results throughout all CO,
emissions scenarios and trading budgets for 7,=9 17,=21, 7, =33 and ¢,,q, =0.5.
Accordingly, for all scenarios the corresponding VaR values are highest for 7, =9 7, =21,
7, =33 and ¢,,q, =0.5. This result was to expect since, on the one hand, it reveals the
situation where the portfolio manager faces the lowest board-defined amount of CO,
emission allowances to be mandatorily traded from the market up to a board-defined in

time, and on the other hand, that this board-defined point in time is the end of the third

81




quarter and, thus near the end, of each CO, compliance period. Or, in other words, this
combination of 7,,7,,7, and ¢,,q, guarantees the portfolio manager the highest trading
flexibility or highest possible risk position, respectively. Consequently, throughout all CO,
emissions scenarios and trading budgets for 7, =9, 7, =21 and 7, =33, the lower ¢,,q,
are, the higher are the resulting revenues for the portfolio manager, and vice versa. Thus,
from the board's point of view it does significantly matter if it limits the risk position of the
portfolio manager to the end of the third quarter of each CO, compliance year or to the half

of each CO, compliance year.

Due to the existence of higher volatilities in the optimistic market scenario, the underlying
VaR values at the 95% and 99% confidence level are relatively higher than those for the
pessimistic market scenario. For the same trading budget, the revenues are relatively higher
for the optimistic market scenario than for the pessimistic market scenario. This is very
likely due to the relatively higher volatilities in the optimistic scenario, implying a higher
gain potential. That is, the portfolio manager can make use of the relatively higher

difference between low and high prices.

Figures 8.17-8.18 illustratively shows, both for the optimistic and pessimistic market
scenario, the distribution and the expected revenues of the EUA and CER trading strategies
of the portfolio manager for a total trading budget of 10.0 Mio. EUR, 7, =9, 7, =21,
7, =33 and ¢;,q, =0.5.

FREQUENCY

REVENUES x 10°

Figure 8.17. Optimistic scenario: Distribution and expected revenues of EUA and CER
trading strategies, trading budget of 10.0 Mio. EUR, 7, =9, 7, =21, 7, =33, ¢,,¢4, =0.5.
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Figure 8.18. Pessimistic scenario: Distribution and expected revenues of EUA and CER
trading strategies, trading budget of 10.0 Mio. EUR, 7, =9, , =21, 7, =33, ¢,,¢, =0.5.

From both figures we can see that the distribution of revenues seem to incorporate a
relatively low kurtosis with a more rounded peak and shorter, thinner tails. Moreover,
neither any positive or negative skewness in the distribution can be detected. These
attributes imply a bell-shaped distribution (red line). Hence, the distribution of the revenues
can be considered as approximating a normal distribution, which justifies the application of
the VaR measure. This feature has been tested by applying JB test in EViews for the
existence of a normal distribution in the revenues. All p-values of the received JB test
statistics are larger than 0.05 (and 0.01). Hence, for the optimistic market scenario as well
as for the pessimistic scenario, the null hypothesis of normal distribution can clearly not be

rejected. The corresponding EViews values can be found in Appendix B.3.

The revenues in the optimistic market scenario in Figure 8.17 range between 110,862 and
1,071,004 EUR for the whole trading period of three years. The corresponding values for
the pessimistic market scenario in Figure 8.18 are 294,036 and 570,487 EUR.
Consequently, depending on each budget-risk position combination of the portfolio
manager, by implementing common futures buy-hold-sell strategies of EUA and CERs, he
additionally generates revenues between 110,862 and 1,071,004 EUR in the optimistic
market scenario and, between 294,036 and 570,487 EUR for the airline company in the
pessimistic scenario, respectively, instead of only buying all the missing amount of CO,
emission allowances in the spot. Or, in other words, the operative use of the portfolio

manager was beneficial for the airline company.
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CHAPTER 9

CONCLUSION AND OUTLOOK

In this thesis, we set up and solved a multi-period stochastic portfolio optimization model
from an airline company's point of view, by considering all the existing EU ETS (EU
Emission Trading Scheme) regulatory and board-defined trading and risk constraints. In
order to hedge the natural physical short position in CO, emission allowances, we

developed an optimal hedging strategy consisting of futures contracts.

After the comprehensive mathematical derivation of the whole system of equations
consisting of the profit function and constraints, in order to model the whole space of
feasible states, we run Monte-Carlo (MC) simulations of correlated geometric Brownian
motions (GBMs) for traded EUA (EU Emission Allowance) and CER (Certified Emission
Reduction) futures prices of different CO, delivery time periods (i.e., maturities). We
modeled two market scenarios, an optimistic and a pessimistic market scenario, based on
which the corresponding a forward-scenario trees were constructed. We thereby justified
the use of the GBM as the appropriate price process in our model, by empirically showing
that the returns are normally distributed and contains a unit root, implying their non-
stationary. Based on the generated scenario-trees, we determined optimal buy-hold-sell
decisions (i.e., futures trading strategy) and calculated the corresponding earnings. This
procedure was conducted by backward induction, where according to the American option
pricing methodology, starting from the last stage moving backward to the previous stage,
valuation was conducted for each stage (i.e., value perspective). The Asian property “path
dependence” thereby was already taken into account by the extension of the whole state
space. Thereafter, given the valuation for each state, the uncertainty (i.e., distribution) of

the revenues was determined by the MC simulation, which was conducted by forward
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induction (i.e., risk perspective). Based on the distribution of the revenues, the Value-at-
Risk (VaR) measure for the 95% and 99% confidence level was then determined, in order

to measure the risk exposure of the portfolio manager.

Concretely, in order to include the existence of various CO, emission allowance types, the
existence of their futures prices and their stochasticity, we run n = 250 Monte-Carlo
simulations for the optimistic and pessimistic market scenario, by considering all cross
correlations (i.e., correlated GBM) and solved our linear multi-stage stochastic program
based on the constructed forward-scenario tree, generated by simulated correlated price
paths for EUA and CER futures. Therefore, our model algorithm was composed of a MC
simulation of correlated GBM (EUA and CER futures) part and an optimization model part.
We thereby used simulation (expected returns, volatilities, covariance matrix, initial futures
prices) as well as optimization parameters (upper / lower trading limits, banking /
borrowing limits, amount of free allowances, risk constraints, amount of stochastic CO,
emissions, penalty fee, budget) as model input parameters. As model output, we received
optimal futures trading strategies, distribution of revenues and their corresponding VaR.
The normal distribution of the revenues has been empirically shown, and therefore, the

justified application of the VaR values as suitable risk measure.

We solved our model with the CPLEX solver, which is available in MATLAB. For each
EUA and CER futures price scenario, we found an optimal feasible solution, satisfying all
the required constraints. Thus, our portfolio manager never ends paying penalties, and can
therefore optimize his revenues from trading strategies. Due to the maximum difference in
the price level between the first and third CO, compliance period, the portfolio manager, in
the optimistic market scenario, banks free distributed EUAs in the first and borrows the
corresponding amount in the third CO, compliance period, and vice versa for the
pessimistic market scenario. The portfolio manager mainly uses EUA buy strategies to
close his initial short position in CO, emission allowances, which significantly differ for the
optimistic and pessimistic market scenario. However, to optimize his portfolio, the
portfolio manager very actively buys and sells CERs. The higher the flexibility for the
portfolio manager, that is, the closer the point in time to the end of each CO, compliance
period, up to which he has to mandatorily close the board-defined percentage amount of his
natural short position, and the lower this board-defined percentage amount, the higher the

revenues he generates, and vice versa. As a result, since all scenarios and constellations
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implied positive revenues for the portfolio manager, the airline company benefited from the
use of a portfolio manager implementing active futures trading strategies instead of

applying simple spot buying strategies at the end of each CO, compliance period.

With this thesis, our contribution to the existing academic literature thereby was of various
nature. Until now, the multi-period stochastic portfolio optimization technique has found a
broad application for the energy sector (i.e., hydro power and gas value chain optimization)
and for optimal SO, compliance issues in the US. As the first ever case, we specifically
applied this technique to the airline sector, which is a brand new included sector within the
European Union Emission Trading Scheme (EU ETS). Furthermore, more than mainly
incorporating physical and technical (“engineering”) features and focusing on short-term
planning issues within the optimization model, especially we also addressed financial
features and focused on mid-term planning issues. That is, by taking into account actually
traded futures prices for CO, emission allowances for longer trading horizons (i.e., different
CO; delivery periods) and the derivation of optimal trading strategies, based on futures
rather than spot contracts, we particularly highlighted an airline company's need to plan and
manage its cash flow streams from a medium term's perspective. In contribution to the
existing academic literature, we thereby specifically referred to the two actually existing
CO, emission allowances types, EUA (EU Emission Allowance) and CER (Certified
Emission Reduction), and their traded futures prices for various CO, delivery time periods.
Based on them, we run Monte-Carlo simulations, by considering all cross correlations
between the EUA and CER futures prices, which is a further contributing feature to
previous academic works, which mainly used one single, unspecified type of a CO,
emission allowance for an undefined trading period. That is, unlike our separation of the
total trading period to real-world oriented sub trading periods (i.e., CO, compliance
periods), where specific exchange-traded futures of different maturities are available and
various EU ETS regulatory, managerial and trading constraints have to be taken into
account, the academic literature mainly focused on the assumption of unspecified CO,

emission allowances and not detailed trading periods.

As a result, our model contributes both to the change in paradigm, by integrating the
“financial” with the “physical” world, rather than considering them separately, and to the

application of the multi-period stochastic portfolio optimization technique to a completely
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new area within the emissions sector, specifically within European Emission Trading

Scheme (EU ETS).

This thesis may serve as stimulation for further research in this area, not only due its
actuality and real-world orientation, but especially due to its openness and academic
generalization and development potential. Firstly, the emissions trading horizon can be
expanded to more CO, compliance years, depending on the board's decision and/or
increasing future liquidity of the exchange-traded EUA and CER futures. In addition to
that, other board-defined constraints such as upper and lower trading constraints could be
stressed and varied for each trading period ¢. Furthermore, since implied volatilities of
vanilla options are available for both EUAs and CERs and due to their sufficient and more
and more increasing liquidity, the market data can be used for the calibration of the MC
input parameters. Also GARCH models could be set up to model the volatility as an
important model input parameter. A crucial assumption in the thesis was the amount of CO,
emissions for CO, compliance, given as deterministic scenarios. These could also be
modeled by a suitable CO, emission production function or on the basis of fundamental
airline data, such as type and the corresponding capacity of owned airplanes, current and
future flight plans to and from the specific EU locations, sold flight tickets of the airplanes,
weight of the transported luggage etc. However, this procedure would require a much more
comprehensive, fundamental analysis and detailed modeling of technical airplane
parameters. Additionally, the time-series properties of the underlying price model could be
changed such that stochastic drift and volatility parameters could be incorporated. For
constructing a forward-scenario tree, EUA and CER futures price scenarios could also be
generated through other scenario generation techniques such as ARMA, VAR, property

matching methods, bootstrapping or Markov Chains.

As a consequence, the self-developed system of real-world oriented equations in this thesis,
could be easily developed, adapted and extended to either other future sectors to be
included in the EU ETS such as the shipping sector, or other sectors within the cap-and
trade carbon market regimes such as the US RGGI. Based on the methodology derived in
this thesis, the hedging procedure of physical assets could be further developed and

implemented against other financial derivatives than futures such as options or swaps.
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APPENDIX A

Detailed formulation of the optimization model in Subsection 6.4.5

maximize
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EU ETS regulatory limit for CERs:
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37 %, <-m)(C' -5, (d=123),

>y, S(=m)(C =X, (d=12.3)
> s SU=m)(C) -5, (d=123),
> x,, <m(C-%,) (d=12,3),

;2213"22r<m<€ xlz) (d=12,3),
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Regulatory banking and borrowing constraint:
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Upper trading limits:
X, <y, [ (1-m)(GF-5,) ], (t=1..12d=12,3),
X, St [ (1-m) (€1 -F,) ], (t=13,..,.24;d =1,2,3),
Xy, S, [ (1=-m)(CF -5, |, (t=25,..,36,d =1,2,3),
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X, <ty [m(GF-5,)], (t=1,..12d=12,3),
X, Sty [ m(CF -5, ], (t=13,..,24,d =1,2,3),
X, St [ m(CF-%,) ], (t=25,..,36,d =1,2,3),

Lower trading limits:

—x,, 2, | (1-m)(C —)—cu)] (t=1,..12d=123),
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Risk constraints:
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DKy S, [ A=m)(CL -5, )], (d=123),
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APPENDIX B

Statistical Tests and EViews Outputs

B.1  Jarque-Bera Test for Normality of Returns of EUA and CER Futures Prices

Ho: Normal distribution, skewness and excess kurtosis (i.e., kurtosis minus 3) are jointly zero

Hi: No normal distribution

Returns EUA Dec'11 futures Returns CER Dec'11 futures
Sample: 1 686 Sample: 1 686
R_EUA DEC11 R_CER_DEC11

Mean -0.000026 Mean -0.000146
Median -0.000694 Median 0.000000
Maximum 0.046762 Maximum 0.045876
Minimum -0.046762 Minimum -0.045294
Std. Dev. 0.016500 Std. Dev. 0.016910
Skewness 0.099686 Skewness 0.000740
Kurtosis 3.081921 Kurtosis 3.060593
Jarque-Bera 1.327997 Jarque-Bera 0.105312
Probability 0.514789 Probability 0.948706
Sum -0.018248 Sum -0.100355
Sum Sq. Dev. 0.186490 Sum Sq. Dev. 0.196448
Observations 686 Observations 686
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Returns CER Dec'14 futures Returns CER Dec'14 futures

Sample: 1 466 Sample: 1 466
R_EUA_DEC14 R_CER_DEC14

Mean -0.001224 Mean -0.001470
Median -0.001259 Median -0.000773
Maximum 0.044452 Maximum 0.045810

Minimum -0.044901 Minimum -0.045359
Std. Dev. 0.019603 Std. Dev. 0.020325
Skewness 0.045591 Skewness 0.104044
Kurtosis 2.536536 Kurtosis 2.616543
Jarque-Bera 3.960247 Jarque-Bera 3.013718
Probability 0.138052 Probability 0.221605
Sum -0.521635 Sum -0.558638
Sum Sq. Dev. 0.163313 Sum Sq. Dev. 0.156564
Observations 466 Observations 466

B.2 ADF Unit Root Tests

Ho: Unit root (i.e. non-stationary), prices follow a random walk plus drift model

H;: No unit root (stationary), prices converge to a long-term mean unequal to zero

EUA Dec'13 futures

Null Hypothesis: EUA_DEC13 has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=17)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -0.954451 0.7703
Test critical values: 1% level -3.444219

5% level -2.867549

10% level -2.570034
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(EUA_DEC13)
Method: Least Squares
Date: 08/14/13 Time: 18:22
Sample (adjusted): 3 466
Included observations: 464 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
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EUA_DEC13(-1) -0.002798 0.002931 -0.954451 0.3404
D(EUA_DEC13(-1)) 0.199849 0.045721 4.371040 0.0000
C 0.015514 0.033545 0.462486 0.6440
R-squared 0.041232 Mean dependent var -0.017845
Adjusted R-squared 0.037072 S.D. dependent var 0.250537
S.E. of regression 0.245849 Akaike info criterion 0.038244
Sum squared resid 27.86357 Schwarz criterion 0.065010
Log likelihood -5.872514 Hannan-Quinn criter. 0.048780
F-statistic 9.912682 Durbin-Watson stat 1.992059
Prob(F-statistic) 0.000061
EUA Dec'14 futures
Null Hypothesis: EUA_DEC14 has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=17)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -0.894503 0.7897
Test critical values: 1% level -3.444219
5% level -2.867549
10% level -2.570034
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(EUA_DEC14)
Method: Least Squares
Date: 08/14/13 Time: 18:23
Sample (adjusted): 3 466
Included observations: 464 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
EUA_DEC14(-1) -0.002679 0.002995 -0.894503 0.3715
D(EUA_DEC14(-1)) 0.166127 0.046022 3.609723 0.0003
C 0.014494 0.036644 0.395540 0.6926
R-squared 0.028791 Mean dependent var -0.019224
Adjusted R-squared 0.024577 S.D. dependent var 0.274139
S.E. of regression 0.270749 Akaike info criterion 0.231199
Sum squared resid 33.79372 Schwarz criterion 0.257965
Log likelihood -50.63809 Hannan-Quinn criter. 0.241735
F-statistic 6.833049 Durbin-Watson stat 2.004736
Prob(F-statistic) 0.001190

EUA Dec'15 futures

Null Hypothesis: EUA_DEC15 has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=17)
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t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -0.879275 0.7945
Test critical values: 1% level -3.444219
5% level -2.867549
10% level -2.570034
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(EUA_DEC15)
Method: Least Squares
Date: 08/14/13 Time: 18:25
Sample (adjusted): 3 466
Included observations: 464 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
EUA_DEC15(-1) -0.002841 0.003232 -0.879275 0.3797
D(EUA_DEC15(-1)) 0.113788 0.046398 2.452427 0.0146
C 0.016597 0.041900 0.396106 0.6922
R-squared 0.014246 Mean dependent var -0.020129
Adjusted R-squared 0.009970 S.D. dependent var 0.307817
S.E. of regression 0.306279 Akaike info criterion 0.477805
Sum squared resid 43.24501 Schwarz criterion 0.504572
Log likelihood -107.8509 Hannan-Quinn criter. 0.488342
F-statistic 3.331204 Durbin-Watson stat 1.998596
Prob(F-statistic) 0.036613
CER Dec'13 futures
Null Hypothesis: CER_DEC13 has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=17)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -0.220890 0.9330
Test critical values: 1% level -3.444219
5% level -2.867549
10% level -2.570034
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(CER_DEC13)
Method: Least Squares
Date: 08/14/13 Time: 18:05
Sample (adjusted): 3 466
Included observations: 464 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
CER_DEC13(-1) -0.000458 0.002073 -0.220890 0.8253
D(CER_DEC13(-1)) 0.188949 0.045802 4.125295 0.0000
C -0.014778 0.015864 -0.931537 0.3521
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R-squared 0.035602 Mean dependent var -0.021940

Adjusted R-squared 0.031418 S.D. dependent var 0.174851
S.E. of regression 0.172082 Akaike info criterion -0.675242
Sum squared resid 13.65130 Schwarz criterion -0.648475
Log likelihood 159.6561 Hannan-Quinn criter. -0.664705
F-statistic 8.509199 Durbin-Watson stat 1.989933
Prob(F-statistic) 0.000235

CER Dec'14 futures

Null Hypothesis: CER_DEC14 has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=17)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic 0.036950 0.9604
Test critical values: 1% level -3.444189
5% level -2.867536
10% level -2.570027
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(CER_DEC14)
Method: Least Squares
Date: 08/14/13 Time: 18:26
Sample (adjusted): 2 466
Included observations: 465 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
CER_DEC14(-1) 8.04E-05 0.002176 0.036950 0.9705
C -0.023940 0.018224 -1.313681 0.1896
R-squared 0.000003 Mean dependent var -0.023355
Adjusted R-squared -0.002157 S.D. dependent var 0.194290
S.E. of regression 0.194499 Akaike info criterion -0.432483
Sum squared resid 17.51531 Schwarz criterion -0.414667
Log likelihood 102.5522 Hannan-Quinn criter. -0.425470
F-statistic 0.001365 Durbin-Watson stat 1.847737
Prob(F-statistic) 0.970540
CER Dec'15 futures
Null Hypothesis: CER_DEC15 has a unit root
Exogenous: Constant
Lag Length: O (Automatic - based on SIC, maxlag=17)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic 0.022281 0.9592
Test critical values: 1% level -3.444189
5% level -2.867536
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10% level -2.570027

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(CER_DEC15)
Method: Least Squares

Date: 08/14/13 Time: 18:18

Sample (adjusted): 2 466

Included observations: 465 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

CER_DEC15(-1) 5.24E-05 0.002352 0.022281 0.9822

C -0.024179 0.020224 -1.195544 0.2325

R-squared 0.000001 Mean dependent var -0.023785

Adjusted R-squared -0.002159 S.D. dependent var 0.211934

S.E. of regression 0.212162 Akaike info criterion -0.258640

Sum squared resid 20.84092 Schwarz criterion -0.240825

Log likelihood 62.13380 Hannan-Quinn criter. -0.251628

F-statistic 0.000496 Durbin-Watson stat 1.989906
Prob(F-statistic) 0.982234

B.3  Jarque-Bera Test for Testing Normal Distribution of Revenues

Distribution of Revenues for the Distribution of Revenues for the
Optimistic Market Scenario Pessimistic Market Scenario
Sample: 1 250 Sample: 1 250
REVENUES REVENUES

Mean 602019.8 Mean 435152.7
Median 601228.2 Median 432654.5
Maximum 1071004. Maximum 570487.2
Minimum 110862.3 Minimum 294036.0
Std. Dev. 156494.9 Std. Dev. 47212.71
Skewness 0.095077 Skewness 0.093690
Kurtosis 3.194482 Kurtosis 2.914110
Jarque-Bera 0.767562 Jarque-Bera 0.442584
Probability 0.681280 Probability 0.801483
Sum 1.50E+08 Sum 1.09E+08
Sum Sq. Dev. 6.07E+12 Sum Sq. Dev. 5.55E+11
Observations 250 Observations 250
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