IMPLEMENTATION AND EVALUATION OF THE
DYNAMIC DISTRIBUTED REAL TIME INDUSTRIAL PROTOCOL
(D?RIP)

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ADEM KAYA

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2013

Approval of the thesis:

IMPLEMENTATION AND EVALUATION OF THE
DYNAMIC DISTRIBUTED REAL TIME INDUSTRIAL PROTOCOL
(D?RIP)

submitted byADEM KAYA in partial fulfillment of the requirements for tlieegree of
Master of Science in Electrical and Electronics Enigeering Department, Middle East
Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School Batural and Applied Sciences

Prof. Dr. Gonul Turhan Sayan
Head of DepartmenElectrical and Electronics Engineering

Assoc. Prof. DrSenan Ece Schmidt
SupervisorElectrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Klaus Werner Schmidt
Co-SupervisorMechatronics Engineering Dept., Cankaya University

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. DrSenan Ece Schmidt
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cluneyt Bazlamacgci
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Halit @uztliziin
Computer Engineering Dept., METU

Yusuf Bora Kartal (M.Sc.)
Engineer, ASELSAN

Date: 02.09.2013

| hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and attal conduct. | also declare that,
as required by these rules and conduct, | have fylicited and referenced all material
and results that are not original to this work.

Name, Last Name : Adem KAYA

Signature

ABSTRACT

IMPLEMENTATION AND EVALUATION OF THE
DYNAMIC DISTRIBUTED REAL TIME INDUSTRIAL PROTOCOL

(D2RIP)
Kaya, Adem
M. S., Department of Electrical and Electronics iBegring
Supervisor : Assoc. Prof. Byenan Ece Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Sami

September 2013, 81 pages

The contemporary large-scale and complex industdahtrol systems such as
manufacturing systems, power plants or chemicatgeees are realized as distributed
systems. Since different controller nodes are Wbgsuphysically distributed, their
coordination and information exchange is commoeblized via industrial communication
networks (ICNs). In the last decade, there is agoory research effort in both academic
and industrial fields to employ Ethernet for indigt communications due to its wide
acceptance and use in home and office network$oddth the conventional Ethernet
technology is low-cost and very high-speed its md@ainistic behavior does not support
real-time traffic.

In this thesis we present the design, implememtatind evaluation of the novel ICN
protocol D2RIP (Dynamic Distributed Real-time Intlisd Communication Protocol) that
was proposed in previous work. D?RIP is a fullytiigited protocol over shared-medium
Ethernet with COTS (Commercial Off-The-Shelf) haeadev and provides real-time
message delivery guarantees, supports non-realitiafic. As a distinctive feature in
comparison to other ICNs over Ethernet that onlypsut static allocation of real-time and
non-real-time bandwidth, D2RIP allows for dynamitoeation of the network capacity
among the participating nodes by exploiting knowkedabout the deterministic system
behavior of industrial systems.

Keywords: Real-time Ethernet, Industrial Communarat Protocols, Shared Medium,
Dynamic Bandwidth Allocation

Oz

DINAMIK DAGITILMI $ GERCEK-ZAMANLI ENDUSTRYEL PROTOKOLUN
(D2GEP)
GERCEKLESTIRILMESI VE DEGERLENDIRILMESI

Kaya, Adem
Yuksek Lisans, Elektrik Elektronik MihendigliBolumu
Tez YoOneticisi : Dog. D&enan Ece Schmidt

Ortak Tez Yoneticisi : Dog. Dr. Klaus Werner Schtnid

Eyliil 2013, 81 sayfa

Gunumuiz otomasyon sistemlerinde kontrol uygulamaglak ¢ok sayisal cihaz Uzerinde
dagitilmis gomuli sistemler olarak gerceftieilmektedir. Bu cihazlarin koordinasyonu ve
haberlemesi endustriyel habegl@me &lari Gizerinden yapilmaktadir. Giniimiuzde ev ve ofis
aglarinda ¢ok yaygin olarak kullanilan fakat gercaknanli haberkgneyi desteklemeyen
standart Ethernet teknolojisinin, endistriyel héyere alarinda kullaniimasi énemli bir
arastirma konusudur.

Bu tezde, iki katmanli gergcek zamanli endustriyabdrlgame mimarisinin, D?RIP
(Dynamic Distributed Real-time Industrial Commurtica Protocol) (Dinamik Dgitik
Gercek Zamanh Endustriyeiletisim Protokoli (D2GEP)) tasarimi, uygulamasi ve
geligtiriimesi anlatilacaktir. D2GEP mimarisi tamimiyl@aylgimli ortam Ethernet
haberlemesi Uzerine kurulmuolup, gercek zamanl mesaj iletiminigtadig! gibi gercek
olmayan mesaj trgfini de desteklemektedir. Bu mimaridg &aynaklar anlik gercek
zamanl haberkne ihtiyaclarina gére dinamik bir bicimdegiiimlere d&itiimakta ve artan
ag kapasitesi gercek zamanli olmayan trafik icin &oilmaktadir.

Anahtar Kelimeler: Gercek Zamanh Ethernet, Endyskr Haberleme Protokold,
Paylaimli Ortam, Dinamik Bant Gegli gi Ayrimi

Vi

To My Parents

Vii

ACKNOWLEDGMENTS

| would like to express my sincere gratitude to sapervisor Assoc. Prof. Dgenan Ece
Schmidt and my co-supervisor Assoc. Prof. Dr. Klsdisrner Schmidt for their guidance,
advice, criticism, encouragement and insight thhoug the completion of the thesis.
Besides, | like to thank them providing me the apyaity to work on such an important
issue.

| would also like to thank TUBAK for their financial support during my graduate
education.

| would like to special reference for my employ&SELSAN for encouraging me to
complete my studies in the university.

Finally, I am grateful to my parents for their domibus support and encouragements.

viii

TABLE OF CONTENTS

AB ST RACT .. tette ettt ettt mmmr et e e e st et e e e ettt e e e e ant it e e e e e te et e e nanr e e e arrreeeaanraeeeeans Vv
(@ YA TSSOSO Vi
ACKNOWLEDGMENTS ...ttt mmeee st e e e e e et e e e e e e e e s e nmnnnneeeeeas viii
TABLE OF CONTENTSottt ettt eeeee ettt e e st e e e s et e e e snnneeannsneeeeans iX
LIST OF TABLESottt e ettt e e e e e e e et e e e e e e e e eannnneaeaeeeeeennsnenes Xi
LIST OF FIGUREScuttiiiiiiii et ieeeeet ettt e e e e e e s st e e e e e e e e s s sssssaneeaessnnnnsnseeneaeens Xii
LIST OF ABBREVIATIONS AND ACRONYMS ...ttt Xiii
CHAPTERS
1 INTRODUCTION ..ottt e eitieee e ettt e e st e e s et e e e s nns e e anseeeeeannnnes 1
2 ETHERNET-BASED INDUSTRIAL COMMUNICATION: REQUIEMENTS
AND RELATED WORKutiiiii ettt ee e et e e s ntae e et e e e e eneaansnneeas 5
2.1 REQUIFEIMENTS ..ottt rennrneeeeees 6
2.1.1 Real-time Delivery of Data.......... o eeeeiiiiiiiiiiieee e 6
2.1.2 Synchronization SUPPOIT mmmeeeeeeennnennnnnnnnnnnnnaan e e eeanas 6
2.1.3 Non-real-time Traffic SUPPOIt.......ccocoeiiieiiiiiii e, 7
2.1.4 ComPatiDIlityueeieeeiee s cmmmm s 7
2.1.5 Configurability and Extendibilitycc.cccuuueiiiie, 7
2.1.6 Dynamic Allocation of RT bandwidth..........ccccoooiiiiiiiiiin, 7
2.2 Real-time Ethernet Implementationsccceeeevvviviiiiiiiiieiieeeeeeeeeeeeeeieens 8
2.2.1 Switched Ethernet............ooo o 8
2.2.2 Shared Medium (IEEE 802.3) with an Addisibkledium Access Layer 9
2.2.3 SYNChroNiZationcccccovieiiiiie e 10
2.3 Comparison and DISCUSSIONceeeeiiiiiiiiiiiiieiieiiieeiieeeeeeeeeeeeeeennennneenne 11
3 D2RIP PROTOCOL STACK ..ciiiiiiiiiiiititiimmme e s esiieeeee e e e e e e s e snnsnraeeeaaeesneennees 13
3.1 ProtOCOI OVEIVIEWuuviiiiiieiiiiiiiiiieeeeme e e e e sttt e e e e e e et eeennnes 13
3.2 Distributed Synchronization ProtocCol........ccccceuviiiiiiiiiiiiiiiiiiiiiiiiiiiees 14
3.3 Coordination Layer Data StruCtUre...........ccccceevvvmeemnnnniiiiceineeeeneeneee A 1
3.4 Interface Layer Data StrUCLUIE.............commmmeeeeeeeeeee e 16
3.5 Sequential Protocol Operation in each Time SIot............cccccvviviviviiiinnnnn. 18

3.6 Performance Parameters Of DZRIPoovu.ccemmeee ettt e 21

3.7 Application EXample ..., 23
4 D?RIP IMPLEMENTATION ...cooiuiiiieiiiiiie s mmmeiee e e e e e e siee e s staee e e e e e 27
4.1 Implementation ENVIFONMENTuuuuiiieeeeeeeieeeeeeeeeeeeveevvieeseeeneeenneennnes 217.
4.1.1 Real-Time Operating SYSIEM..........uuurruuiimiiiiiiieeeeeseeee e 27
4.1.2 Choosing an Operating SYSEM.......cccccceuiiiiiiieeeeieiiieeeee e 7.2
4.1.3 Choosing a Disk for Installationcceee.ccoooeeiiiiieee, 28
4.1.4 InStallation Of LINUXc.cuveeeeesmmmmeeeeeeeeesssiiiieeeee e e e e s ssiiiseeeeeeenaes 29
4.1.5 Configuration and Installation of Real-Tikernel...............cccccccoonne 30
4.1.6 Tweaking the Linux Operating SYSteM ..ccceeeeoiiiiiiiiiiiieieeeeeeeeiiee 31
4.2 Synchronization with IEEE 1588tcemmmmeiiiiiiiieiiiie e 34
4.2.1 TimeKeeping BaSICS.........ccoeee ettt 34
4.2.2 CloCK SOUICE iN LINUX ...ceeeeieiieesmmmmmr e eeeeeeeeeeeeeeeeeeeeeeeeeeseensneesneennnes 34
4.2.3 Precision Time Protocol (PTP)coeeiiieiiieeeiee e 35
4.2.4 Requirements of the Hardware Time Stamping...........ccccvvvvvvvvvnnnnns 39
4.3 D?RIP 10 plug-in for IBFAUDES...........cctieieee e 40
4.4 Time Slots, Encapsulation and Data Structure...................ccoooeeieeeeineeen. 43
4.5 Fragmentation and Reassembly of NRT FrameS....c...........ccooeeeeeeeeeeee. 45
4.6 Initialization 0f D2RIPoooiiiiiiieeieeee e 48
4.7 Coordination Layer Implementation...........cccceieeiiiiiiiiiiiiiiiiiiiiiiiiieieeeininnnes 48
4.8 Interface Layer Implementationccccoeeviiiiiiieieeeeiieeeevs 51
4.9 Changes in DZRIP ProtoCOL...............oooi et 56
5 EXPERIMENTAL EVALUATION OF D2RIPcccvviieeiee e 65
5.1 EXperimental SEUP.....cccoieeiiiei it 65
5.2 Performance AnalysisS Of RTOSuuummmmmmeeeereerrnnnrinniinnnnnnn.... 67
5.3 Timing ANalysiS Of D2RIPooiiiiiiiiiii e 68
5.4 Performance Experiments and ReSUILSccccceeeiiiiviiiiiiiiiiiiiiies 70

5.4.1 Experiment 1: Detailed investigation for &dffic service of D2RIP 71

5.4.2 Experiment 2: Varying RT Traffic Input............cc.coooeei 72

5.4.3 Experiment 3: Support for nNRT Traffic inRDPcovvviiiiiiiinnnnnen. 73

6 CONCLUSIONS AND FUTURE WORKSooiiiieeeiiiie e 75
REFERENGCES ...ttt e e e e e e 77

TABLES

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20

LIST OF TABLES

Comparison of the Industrial Ethernet@uols ... 11
Performance Parameters of D2RIP ... 21
Actions of the Workcell Example... oo 24
Communication Requests for the WorkcrdrBple.................oooeeeiee. 25.
USB-Disk Drawbacks and SOIUtIONSccc.cvviiiiiiiiiiiiiiieeeeeiiie e 29
Changes iN HardWare.............uceeeeeei e 56
Changes in Operating System and Ketnelu.............ccccooeeee, 58
Changes in Ethernet Driver and Synchatinia Application............................. 59
Changes in Interface Layer (L) ...cccceereueeemiiiiiiieiseeeeeee s 60
Changes in Coordination Layer (CL) ceemeeeevvvveerrrrriiiiiiiiiiiiiiiiinnnennnenneennnnes. 62
Changes in Simfaudes PlUg-IN ... oo eeeeieeiieeieeeeeeeeeeeeeee e, 63
Changes in Non Real-Time Application..c.........cccooeeeeiiiiee, 64
Changes in Real-Time Simulator Appligatio..............eevvvvviviiiiiiniiiinninninnnd 64
IEEE 1588 Accuracy RESUILS.ccooriiiiiiiiiiiiiiiiiiiii e 69
Timings of Actions Taken in an RT SIOL........cccvvvviiiiiiiiiie e 69
End-to-end Delays of RT Messages of thekééll Example ..., 71
Delivery-time Measurements with AdditibRa Trafficcccceevvveerieennnn. 72
NRT Traffic with 40 Byte Message Length. ..o 73
NRT Traffic with 576 Byte Message Length...........cooooiiiiiii el 74
NRT Traffic with 1500 Byte Message Length..........cccccoooiiiiiiiiiiinninnnneee, 74

Xi

FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

LIST OF FIGURES

The Architecture of the D2RIPeeeeeiiiiie 14
Message Transmission of the D2RIP.c........coooiiiiie, 19
Sequential Actions for the RT Messags$mission in a Time Slot................ 20
Sequential Actions for the nRT Message3mission in a Time Slot............... 20
Workcell: Robot, Conveyor and a PainD&yice.................cccccevvvvveevieenee 23
Timing Diagram for the PLC Communicatadrthe Example Workcell........... 24
ATAT =T [0 T 1 I 1 = 28
Linux Kernel Configurationueeiiiiiiiiiceee e 31
IEEE 1588 Synchronizationccccceevviiiiiiiiiiiieceeeeeeeeeeevevvvveeeeee e 36
Possible Timestamp LOCAtIONS ... ceeeeeeinnniiiiiiiiie e 37
Synchronizing the System Clock to th® ETockccc 38
D2RIP 10 Plug-in FIOWChAIT ...t 42
High Precision Sleep with Partially Ple@d Busywaitccccvvvvvvvennnns 43.
RT Encapsulation in D2RIP ... 44
NRT Encapsulation in D2RIP ... 45
NRT Fragment Encapsulation in D2RIP.............ooooviiiiiiiiiiiiiiiiieeeee, 45
Fragmentation FIOWCNAIT. ..., 46
Reassembly Flowchart.............ooooiiiii e 47
CL Thread FIOWCHAITuuiiiiiiiiiiiieiiiiiie e 50
IL Module FIOWCNAI..........ueiiiiiiiiiiiiiiiiiii et 53
TransmisSioN FIOWCNAITcommmeeeieieiiiiiiiiiiei e 54
Reception FIOWCNAIT......... . e 55
EXPEIIMENT SEE-UP ..vvvvvviiieett e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesreeeeaeaaaaaaeaeaeeeess 66
Experiment Set-up With WAGQO'S.....cccceeiiiiiiiiiiiiiiiiiiiiiiiiiinniinnieeeesenneee 66
Architecture of the Controller Node &ne Plantcccccceeeeiiiiiiiicen. 67

Xii

LIST OF ABBREVIATIONS AND ACRONYMS

AL
API
BEB
C
CIM
CcIP
CcL
CoTS
CRC
CSMA/CD
CSME
D?RIP
DT
DP
EPA
EPL
ET
FTP
HPET
HTTP
ICN

IOCTL
IRQ
MAC
Ml
NIC
NTP
nRT
oS

Application Layer

Application Programming Interface

Binary Exponential Back Off

Conveyor

Computer Integrated Manufacturing

Common Industrial Protocol

Coordination Layer

Commercial Off-The-Shelf

Cyclic Redundancy Check

Carrier Sense Multiple Access with CothisiDetection

Communication Schedule Management Entity

Dynamic Distributed Real-time Industrial Qmomication Protocol

Deadline Time

Dependability Plane

Ethernet for Plant Automation
Ethernet Powerlink

Eligibility Time

File Transfer Protocol

High Precision Event Timer
Hyper-Text Transfer Protocol
Industrial Communication Networks
Interface Layer

Input/Output Control

Interrupt Request

Medium Access Control
Medium Independent Interface
Network Interface Card
Network Time Protocol
Non-Real-Time

Operating System

Xiii

PC
PD
PI
PHC
PLC
PPS
PTP

RT
RTC
RTOS
SM
TCNet
TSC
TDMA
VTPE

Personal Computer

Painting Device
Proportional-Integral

PTP Hardware Clock
Programmable Logic Controller
Pulse Per Second
Precision-Time Protocol
Robot

Real-Time

Real Time Clock

Real-Time Operating System
Shared Medium

Time Critical Control Network
Time Stamp Counter
Time Division Multiple Access

The Virtual Token Passing

Xiv

CHAPTER 1

INTRODUCTION

The devices and components of contemporary automatid manufacturing systems are
computer controlled to realize complicated taskfiese tasks are implemented as
distributed applications where the participatingzides are required to coordinate their
operation. To this end, Industrial Communicationtideks (ICNs) are employed to

transport the messages that are generated by riadugbplications. Due to the specific

features of the industrial applications, ICNs havéulfill various requirements [1] [2].

First and foremost, thigmely deliveryof messages has to be guaranteed. In particekr, r
time (RT) messages that are eitperiodic (e.g., from position control) agporadic(e.qg.,
from limit switches) have to be delivered with shddlays. In addition to RT messages,
non-real-time (NRT) messages related to time-unatitiecisions of the controllers [3] and
data communications for diagnosis or maintenanggs[4hould also be delivered. Second,
it has to be respected that the equipment and #meangements such as cabling in the
industrial environment are often designed to beduseer a number of years. Hence,
efficient use of resources important for the ICN to enable the adoptiorpogsible new
applications and the extension of the system witheplacing the network infrastructure.
Third, the support of RT communication as well ag time stamping of diagnostic
messages requires accurate synchronization amatgbdied system components [1].
Finally, the compatibility with COTS Ethernet haralw is highly desirable.

A number of different ICN standards are developeer the years. Initially these standards
were proprietary and specific to the applicationiolhlacked compatibility among each
other. This both hindered integrating different nsk@rds to construct large-scale
heterogeneous systems and the continuous develogheach proprietary standard [6].
The widely accepted solution to these problemsnigleying Ethernetwhich is the de-facto
standard for home and office networks [7]. Ethelma low-cost hardware and provides a
raw bandwidth of 10/100/1000Mbps. However, the medaccess of conventional shared
medium Ethernet (IEEE 802.3) is nondeterministiciolvhdoes not comply with the
operation requirements of industrial applicatiok&ence, it is an important research
problem to employ Ethernet as an ICN.

The main motivation for Ethernet-based ICN is itslevadoption and low cost hardware.
Hence, altering the Ethernet operation and thewenel to achieve the desired determinism
IS not a viable solution [1]. Another approaclhiraffic shapingwith the aim of improving
the average message delivery times. However, noostat applications require hard worst-
case real-time guarantees instead of probabilgiinds. The conventional Ethernet is a

shared medium protocol with a probabilistic codlisiresolution mechanisngwitched
Ethernet eliminates the collisions by point to point comnuation [8]. However, in
addition to the requirement of re-cabling and ilisix switches, the messages that are
transmitted at the same time are queued in buféed certain buffer management
capabilities are required to achieve real-time v} [1]. Few protocols support on-
demand resource allocation to some degree by takation or master slave arrangements

[9].

In this thesis, we review the design, implementaiad evaluation of the novel Ethernet-
based ICN protocol D?2RIP — Dynamic Distributed Riak Industrial Communication
Protocol. D2RIP is developed to be fully distritditgith dynamic bandwidth allocation and
operates on conventional shared-medium Ethernbt@@TS (Commercial Off-The-Shelf)
Ethernet hardware. Both RT traffic and nRT trafiire supported. Regarding the protocol
design, D?RIP is a two-layer protocol stack on tdshared-medium Ethernet. Its lower
Interface Layer(IL) implements a time-slotted medium access basedaccurate time
synchronization. In this work, the IEEE 1588 premisclock synchronization protocol for
networked measurement and control systems [1Qed for this purpose. In order to avoid
collisions, it is further required to allocate eaahe slot to a uniqgue node. This task is
achieved by our upp&oordination Laye(CL). The CL of D2RIP dynamically determines
the node that is allowed to transmit in each curséot by a distributed computation on all
nodes. Hereby, information from the control applaa is used in order to dynamically
adjust the supplied bandwidth depending on thees@ communication requirements.

Although the formulation of D2RIP in the framewaok timed input/output automata [11]
in D2RIP’s earlier work [12] ensures collision freansmission on shared-medium Ethernet
and the requirements of ICN as discussed abovemiains to evaluate the performance of
D2RIP in a practical application. In this respédlag contributions of this thesis can be listed
as follows:

= Determining appropriate data structures for thel@mentation of D2RIP according
to the general formal framework in [12]. Here weuliblike to note that D2RIP is
one realization and it is possible to develop pwesiother protocol stacks
according to the framework.

= Implementing the two layer D2RIP stack on COTS Eibehardware and an open
source real-time operating system. We provide thglementation details
including the time-slotted operation, giving seleetmedium access to RT and
nRT traffic. Our description includes a methodffagmentation and reassembly of
long nRT packets.

= We present solutions for the challenges we encoetht& achieving precise real-
time response on a platform that is not custom giesi. Our DZ2RIP
implementation is entirely portable and works onsP& well as embedded
industrial controller devices such as programméigée controllers (PLCS).

= A comprehensive experimental evaluation of D2RIFe €xperiments are run on an
entirely realistic hardware setup with four coreplnodes and a simulated
manufacturing cell. Our findings show that D2RIPppgorts an effective RT
bandwidth of 16.1 Mbit/s which is similar to comphble protocols. However,
D2RIP uses this effective bandwidth more efficigmtlie to the dynamic bandwidth
allocation. In addition, we obtain the average lotk synchronization accuracies
in the order of 1.5 pus and max support deliveryesirbelow 5 ms. Regarding nRT
traffic, we observe that short packets are notieffitly supported by D2RIP due to
the time-slotted medium access.

Earlier implementations of D2RIP were implemented aresented in [13] [14] [15]. This
thesis benefits from the experiences gained duhiege studies and re-implements D2RIP.

The remainder of this thesis is organized as falowe present an overview of Ethernet
based ICN protocols together with the requiremeffindions and related previous work in

Chapter 2. We then introduce the D2RIP stack wihdata structure that is derived from
the framework by [12] in Chapter 3. Our represeaoteaincludes quantitative metrics for the

protocol evaluation and a practical control appi@maexample in order to demonstrate the
performance of D2RIP according to the defined mstriChapter 4 gives essential
implementation details of our D?RIP implementateomd shows the differences between
current D2RIP’s work with the previous implementati A comprehensive experimental

evaluation of D2RIP in a real hardware set-up Wittontroller nodes and a plant simulator
is performed in Chapter 5. Finally our conclusiarsd directions for future work are

discussed in Chapter 6.

CHAPTER 2

ETHERNET-BASED INDUSTRIAL
COMMUNICATION: REQUIREMENTS AND
RELATED WORK

Computer Integrated ManufacturingCIM) systems implement control systems as a
distributed computer application running on a numbé intelligent nodes (sensors,
actuators, programmable logic controllers — PL@dustrial PCs, etc.) which are equipped
with microprocessors and exchange information evendustrial communication network

Different types of communications such device levelcommunicationssystem level
communications odiagnostic/higher levetommunications take place in CIM systems [3].
Device level communication involves sensors andiaots that are attached at the
hardware level of a CIM. Sensors periodically gatersampled data and usually require
data transmission before a certain deadline. Silpjladevice level controllers send
computed control commands to the actuators whiléllihg real-time constraints. In
addition, system level controllers exchange datargmeach other to coordinate device
level components. This communication is also reaét and often event-triggered.
Furthermore, diagnostic data and relevant systemagement information is carried over
the industrial communication network mostly as meal-time traffic. The amount of
communicated data can be large and interface ter atbtworks such as other plants or
even the Internet for remote applications can baired at this level.

The most commonly used technology to achievearatl industrial communication
architecture across all system levels is Etherrfethwconstitutes the dominating network
technology in home and office environments becadises high-speed, simplicity and low
cost. The first Ethernet standard was issued a& I8#.3 in 1985 [6] to run on shared
medium where simultaneous transmissions resultalisions and loss of data. The
network nodes encapsulate their data payloadsheritt frames and listen to the channel
before starting the transmission to decrease thmbau of collisions (Carrier Sense
Multiple Access with Collision Detection (CSMA/CD)However, collisions are still
possible because of the propagation delay on thengh between the start of a frame and
the time it is sensed by other nodes. In such césedost frames are retransmitted after a
time interval of random length. Although this ogi@ma is very suitable for home and office
applications, where stringent timing constrains aot essential, it does not allow for the
deterministic timing required in industrial applicas [6]. Hence, the literature provides a
significant number of studies that are concerneth wiuipping standard Ethernet with
real-time features so as to enable its deploynwerihflustrial communications [16] [1] [7].

In this chapter, we give a brief overview of théogk that are most related to the industrial
Ethernet protocol presented in this thesis. To #msl, Section 2.1 points out basic
requirements for industrial communication and Secf.2 describes several realizations of
industrial Ethernet protocols. A discussion of #dsting literature in relation to our
proposed protocol is given in Section 2.3.

2.1 Requirements

The most important requirements and performancecatmts for real-time industrial
Ethernet comprise theeal-time (RT) delivery of data support of precise time
synchronizationsupport of non-real-timénRT) traffic compatibility to standard hardware
andconfigurability and extendibilityd].

2.1.1Real-time Delivery of Data

Thedelivery timeof a message is defined the difference between the time the message is
generated at the application layer of the sendedenand the time it is received at the
application layer of the receiver nod&he timing requirements of the device level and
supervisory control level communications as desdihbove are application dependent.
Applications that involve human operators suchrasgss automation and building control
requires delivery times in the order of 100 ms.cBss control applications such as tooling
machine control systems with PLCs require delivimes below 10 ms. Motion control
applications such as synchronizing several axes @wetwork require a delivery time less
than 1 ms.

2.1.2Synchronization Support

The RT response from an industrial network requaesynchronization mechanism to
establish a common notion of time among the disté nodes of the networlime
synchronization accuracy is the maximum deviatietwben any two node clocks and non-
time-based synchronization accuracy is the maxinitien of the cyclic behavior of any
two nodes[1l]. The time synchronization accuracy affects theard times of the sent
messages and hence the delivery time. Supportlagga number of nodes or demanding
applications such as motion control requires sutresiecond accuracy. While some
industrial network implementations rely on theirrogynchronization mechanisms, others
adopt standardized protocols. We provide an overvaé the synchronization in RT
industrial communication networks in Section 2.2.3.

2.1.3Non-real-time Traffic Support

The remote management of control processes orrfestover web is a desired feature for
industrial communication. To this end, it should pessible to carry the high-level
management and diagnostics traffic as standard H¥@itraffic or FTP file transfer using
TCP/UDP/IP protocols. It is important to note tkath nRT traffic has to be transmitted
over the industrial communication network withooy goerformance degradation of the RT
traffic.

2.1.4Compatibility

One of the most attractive features of Etherneitsslow cost hardware and software
interface. Hence, it is important to maintain cotilplty to enable real-time Ethernet

implementations with COTS (Commercial Off-The-Shetfomponents. Furthermore,

compliance with the existing TCP/IP stack is reedifor enabling the use of popular
protocols such as Hyper-Text Transfer Protocol (RY®r File Transfer Protocol (FTP).

Such protocols are employed in remote managemeeatt Iowernet and for using Web

servers in device engineering (HTTP) or for updgfikeld devices via file upload (FTP).

Compatibility is also important for supporting stiand synchronization protocols such as
IEEE 1588 [10].

2.1.5Configurability and Extendibility

The standards and devices in the Industrial dormaenmore difficult to change over time
compared to home and office networks. Continuouskiard compatibility is required
when new devices are added to the existing sydtiemce, once a protocol is deployed, it
is expected to run for a number of years. ConsdtyyenRT industrial Ethernet protocol
should allow for adding new devices and new appéoa.

2.1.6Dynamic Allocation of RT bandwidth

As a recent development, the literature consideas the communication requirements of
CIM can dynamically change, depending on the opweyaiondition of the application [12].
For example, the paradigm of self-triggered cortt@] allows pre-computing time instants
for device level controllers when communicationmaguired. It is also observed that only
distributed controllers of currently active systeomponents on the system level need to
exchange information for their coordination [18P[1Hence, bandwidth only needs to be
allocated to currently active system componentsis€quently, it is desired that industrial
Ethernet protocols allow for dynamically adaptihg RT bandwidth allocation depending
on the instantaneous bandwidth requirements.

2.2 Real-time Ethernet Implementations

The main motivation of approaches for providing Ripport on Ethernet is avoiding or
significantly reducing collisions. Existing apprba&s can be grouped into four main classes
[20] [6]. The first class ishe modification of the standard Ethernet interfdeedware and
software which includes protocols such as SERCOS Il [222]] ProfiNet [23] and
EtherCAT [24] [25]. While these protocols achienigh performance for a number of the
metrics above they do not satisfy the compatibilgguirement which was the main drive
behind employing Ethernet in the industrial netvogkrather than proprietary protocols in
the first place. The second class of protocols Wwimclude MOD-BUS/TCP [26pperate

in the limits of the TCP/IP staakver standard Ethernet to achieve compatibilityaffie
shaping to achieve low delays on Ethernet is sugdeR7]. However, such protocols
introduce nondeterministic delays in the commuidecat The third class iswitched
Ethernetwhich abandons the shared medium altogether andotirth class idding a
new software layer on top of standard Ethermétich controls the transmission of the
traffic on the shared medium. Both of these apgreacaim for collision avoidance to
archive RT guarantees with standard Ethernet haedwa

2.2.1Switched Ethernet

The IEEE 802.3x standard replaces shared mediumrmemncation by full-duplex switched

Ethernet with flow control. This configuration rdtsuin the elimination of collisions and

[8] argue by means of an example that the respomseontrol applications does not
significantly deviate from point to point communricem under the delays of (high-speed)
switched Ethernet.

Ethernet/IP [28] [29] is realized on the standa@PTUDP/IP protocol suite over full-
duplex switched Ethernet. Ethernet/IP implemeres@bmmon Industrial Protocol (CIP) at
its upper layers. This protocol makes use of tiiai bridged LAN (VLAN) tags for the
prioritization of Ethernet frames with RT data owther frames. However, the queuing of
the frames in the switches still introduces noredatinistic delays. The operation
correctness heavily relies on the accuracy of thécé synchronization.

A number of issues must be considered regardingcBed Ethernet. First of all; although
collisions are eliminated, the medium access cdioteproblem is now transferred to the
queues in switches [6] [1]. Resolving this contemtiaccording to the RT constraints
requires scheduling and prioritization capabilitiesthe network devices [30] [31] as
defined in the Ethernet standards IEEE 802.1p &fEI802.1Q. Despite scheduling, it is
only possible to derive conservative worst-case d®tlinds [32] [33]. Furthermore, the
precision of synchronization protocols that enatfie timing of the communication
decrease when switches are introduced in the nket&br

Switched Ethernet implies a star topology whichremis multiple devices to a central
switch. Over the course of development of indulstnietworks, the proprietary fieldbus

8

standards were designed for bus or ring topologieseduce the cabling cost. Hence,
implementing a switched Ethernet network requinesralividual cable connecting each
sensor/actuator/controller to a switch leading fallare-cabling of the industrial plant [1]
[34]. Tree topology instead of star topology is aternative. However, tree topology
results in cascaded switches between end nodeshandueuing delay becomes more
prominent [35]. It is interesting to note that tleason for the hardware modifications of a
number of Industrial Ethernet protocols is impletive; a daisy chain to connect the
devices over a bus or aring [1].

The focus of our work is standard Ethernet basetbpols that are designed to operate on
shared medium Ethernet without requiring any sveitschecause of the listed limitations of

switched Ethernet and requirements for RT guararded compatibility. Next, we present

a number of protocols that are designed to operader these conditions.

2.2.2Shared Medium (IEEE 802.3) with an Additional Medium Access Layer

A number of protocols are proposed to avoid caltisiand the subsequent random frame
retransmissions of Ethernet's CSMA/CD by implemegtan additional layer on top of
Ethernet. This layer forwards the messages fromaRI nRT applications to the Ethernet
MAC layer in a controlled way such that collisioage avoided and certain RT delivery
guarantees are achieved. The literature providéerelit controlled medium access
techniques for the realization of this additionaydr such as Time Division Multiple
Access (TDMA), master-slave operation or token ipgsi20] [6].

Ethernet for Plant Automation (EPA) [36] [37] emypso TDMA which provides
deterministic access to the medium via allocatimg tslots to the nodes by the added layer
that is called Communication Schedule Managemetitye(CSME). However, only the
unique owner of each given time slot can transmitthat slot. Hence, the allocated
bandwidth is wasted if a node does not need tastnénduring its slot time or does not
transmit at all. Such bandwidth waste becomes migir@ficant if the time slot duration is
long. Furthermore, redundant slot allocations aexessary for possible message
retransmissions in case of error.

On demand guaranteed message transmission ingtestatio allocation can be achieved
with master-slave communications. In this accesthod a selected master node polls the
slave nodes for possible message transmissionpdllieg time decreases the efficiency of
the access and this time is wasted if a polledesiaade does not have any frame to
transmit. Hence, master-slave organization is gpate particularly for small numbers of
nodes with regular traffic patterns. Master-slavammunication comes with several
disadvantages. Master-slave access is a centradizdutecture requiring relatively high
processing capabilities in the master node andmgakia single point of failure. Moreover,
if the processing capabilities of slave nodes avg the communication might be slowed
down although the available bandwidth is high. Nbakess, the literature proposes
different master-slave industrial Ethernet protecdtthernet Powerlink (EPL) [38] [35]

[39] implements an additional layer over standattieEhet that provides master-slave
medium access. It has a computed efficiency of 266whereby it is observed that the
nRT traffic on EPL experiences long latencies.

FTT-Ethernet [9] is a further master-slave protosbich runs with a repeating fixed size
elementary cycle (EC). Each EC starts with a triggessage that is broadcast by the
master node. This message both serves for syneatam of the nodes and announces the
transmission schedule for the periodic messagews fal slave nodes. Following the
periodic message transmissions, the master node fi@ slaves for possible event-
triggered transmissions. The implementation of Eifiernet is carried out on the SHaRK
real-time kernel. Experimental results show 36% Btih utilization for time-triggered and
event-triggered traffic respectively. Although FEfhernet enables dynamic bandwidth
allocation by changing the transmission schedulalifferent ECs, the master node is
required to have full information about the comnuation requirements of the slave nodes.

Token passing is another method for providing omated access to nodes on a shared
medium. A token is a special control message #attesents the right to send a frame on
the network. During the operation of the protoouily a single node holds the token at any
time. The token is forwarded to the next node dfierframe transmission or a constant idle
time if the token holding node does not have aayn# to send. One important metric that
defines the performance of the token-based pragasdhe token rotation time.

A large number of nodes and hence a long tokeioatéime slows down the operation of
the protocol. Furthermore, losing the token messaggilts in the disruption of the
operation. Time Critical Control Network (TCNet)OWis a token-passing based protocol
that is implemented on standard Ethernet. The nRffid is supported with low priority
transmission and synchronization is achieved vagecial message carried in the token
message. The Virtual Token Passing (VTPE) Prot[84l prioritizes RT traffic over nRT
traffic by disabling the binary exponential back @8EB) algorithm of Ethernet and setting
the back off interval of RT traffic producer nodes0. The arbitration among stations that
transmit RT traffic is carried out with token-pasgi The VTPE protocol is implemented by
using Ethernet Controllers that support disablifigthee BEB. It is stated that VTPE
protocol is able to support the transfer of RT ficain fully loaded Ethernet networks,
where the saturation level for the shared Etheneé¢tvorks is above 40% when dealing
with small sized messages. The medium access @elagorted to be 5.77ms.

2.2.3Synchronization

The most significant objective of industrial comriaation networks is guaranteeing
bounded response times for temporally constraimedfic which requires temporal
consistency among the participating nodes. The mimily accepted time synchronization
protocol for Ethernet-based Industrial CommunigatiRrotocols is IEEE 1588 [10] [41]
which has a distributed implementation that cammdessly run on Ethernet. IEEE 1588
operates according to the precision-time proto€dIR), where a number of message

10

exchanges take place between a selected masteranddslave nodes periodically. The
slave nodes compute their clock offsets from theterenode according to these messages
and synchronize their clocks with the master nod¢EE 1588 is adopted as the
synchronization protocol by EPA and EPL while ingia$ communication protocols such
as EtherCAT [24] and SERCOS Il (IEC 61491) [21¢lude their own synchronization
mechanisms to meet the high precision synchrooizagquirements.

2.3 Comparison and Discussion

Table 1 summarizes the properties and performareteian of the described protocols.
EPA, EPL and TCNet are industrial standards antl bas two different profile definitions.

We provide the different metric values for bothtleése profiles for each protocol in the
Table 1. In addition, FTT-Ethernet and VTPE areluded in this table. Note that the
properties for our protocol D?RIP are obtainedhi@ $cope of this thesis.

The meanings of the parameters in Table 1 are:

A/l: Academic/Industrial proposal

DD: Delivery time

Ber: The effective RT throughput

B.rr: Maximal available nRT bandwidth
Sync: Synchronization method

Table 1 Comparison of the Industrial Ethernet Rrol®

Protocol| A/l | Medium Access| DD Nodes B¢ (Mbit/s B.rr | Sync./Accuracy
(ms)
EPA . 5, o. | IEEE 1588, 10
[36] [1] I TDMA/static 01 32,64 12.28 85% us, 1 s
EPL Master 0.4 19.6%
[35[3(]3][1] I Slave/static | 5.5 4,150 15.2,32 4.4% IEEE 1588/1 s
TCNet Token 2/20 58.4/51.2/7.2,| -, or| ASynchronous
[4o1[1] | ' | Passing/static | 200| 2% 13 | 45.6/40.8/a.8 | 0% 20% -
FTT-E Master Not o Synch
[9] A Slave/dynamic L specified 36 11% message/ 1ms
VTPE Token N Not Asynchronous
[34] A Passing/static 58 256 =40 specified -
D2RIP | A | TDMA/dynamic | <5 | dynamic 16.1 > 5006 | IEEE ti%/l's

11

In view of the requirements stated in Section @dsired properties of industrial Ethernet
protocols are

1) Support of RT and nRT traffic

2) Usage of unused RT bandwidth by nRT traffic

3) Dynamic allocation of RT bandwidth depending on oamication requirements
4) Synchronization mechanism that complies with indalsstandards

5) Distributed implementation on shared-medium Ethiennth COTS hardware

12

CHAPTER 3

D2RIP PROTOCOL STACK

The D?RIP family as proposed in previous work [i2h purely distributed protocol that
enables communication on shared-medium Etherrletysalfor dynamically changing the
bandwidth allocation to different network nodes asdpports both RT and nRT
communication. That is, this protocol family is faularly useful for control applications
that incorporate information about their instantaree communication requirements. We
next give an overview of this protocol family inciien 3.1 and then describe the relevant
information about the protocol architecture for puotocol implementation in Section 3.3
to 3.5. Performance parameters are derived in @e@i6 and Section 3.7 gives an
application example.

3.1 Protocol Overview

The protocol stack proposed in [12] is depictedrigure 1. It is designed to operate on a
broadcast network such akared-medium Etherneind comprises two protocol layers an
Interface Layer(IL) and aCoordination Layer(CL). Here, the IL is used in order to
implement time-slotted medium access for both Rd aRT traffic to the broadcast
network. The CL performs the essential task of:

i. Deciding for each slot whether it is allocated b & nRT traffic.
i. Determining which node is permitted to transmit@ssage in case of RT slots.

Hereby, it is foreseen that multiple applicationstsas distributed RT control applications
can be connected to the CL, whereas all messagaes fRT applications (such as
diagnostics or high-level messages) are directhdleal by the IL. As a notable difference
to existing protocols, the framework in [12] alloviar dynamically changing the slot
allocation during run-time based on applicationci#fie data. Unique allocation of nRT
slots is provided by the IL in this framework. Irder to establish a common time base for
the time-slotted operation, the framework furtheclides the use of a synchronization
protocol. Together, the proposed framework ensoodission avoidance on the broadcast
network by allocating each time slot to a uniquéerander the assumption that all nodes
that operate on a given network segment implenienptoposed protocol stack.

13

RT APPLICATIONS
SYNCH nRT
USER SPACE APPLICATION | APPLICATIONS
CL
IL
KERNEL
SPACE
ETHERNET DRIVER
SHARED
MEDIA ETHERNET (BROADCAST)

Figure 1 The Architecture of the D2RIP

In the following, we describe the specific propestiof the industrial Ethernet protocol
D2RIP that is implemented in this thesis. D?RIPstiintes a member of the protocol stack
in Figure 1 with specific choices for the CL, ILdathe synchronization protocol as is
detailed in Section 3.2 to 3.5. Note that a forgesdcription of D?RIP can be found in [12].
The description in this section focuses on the @spef D2RIP that are relevant for the
practical implementation in Chapter 4.

3.2 Distributed Synchronization Protocol

The protocol framework as outlined in Section 3léves the usage of a synchronization

protocol outside the defined protocol layers. Thektof this module is the precise

synchronization of the nodes’ clocks which is etiakfor the time-slotted medium access.
D2RIP uses IEEE 1588 [10] as the synchronizati@tqaol, whereby all messages that are
sent according to IEEE 1588 are sent as nRT messhigaice, IEEE 1588 constitutes an
independent protocol as required by the proto@h&work and could later be replaced by
another synchronization mechanism if necessary.

3.3 Coordination Layer Data Structure

Considering that D2RIP is designed to be entirastributed, the CL operation of each
individual network node is identical. Hence, we sider the CL of a generic node
denoted as GL in the sequel. The task of Cis to forward RT messages from the
application layer (AL) to the IL and vice versaciite about the type of each time slot (RT
or nRT) and uniquely determine the ownership oheRT time slot. To this end, the Ok
equipped with the following data structures andapaaters:

14

= RT message transmit buffer Tt is considered that messages can be obtained
from different RT applications. Hence, iTis realized as a vector of message
buffers, whereby each buffer can hold the curreessage for one RT application,
denoted ashannel

= Communication requests req: each req is realized fmr tuple 16, c, eT, dT),
wherebyb, c, eT anddT are integer valuesb(c, eT , dT) states that nodb
potentially has an available message for chaowdlereT time slots. Moreover, if
present, such message must be transmitted witHintime slots. That is,
considering a time slot duration d$lot if a request is issued at timdt becomes
eligible (which indicates that it is valid for pressing) at tim&T =t + eT x dSlot
Moreover, such request expire at tiD& =t + dT x dSlot(which means that the
deadline for message transmission is violated) celei anddT are relative values
whereET andDT areabsolutetimes.

It has to be noted that theigibility time (eT) parameter is particularly important in
practical applications. For example, if programrealdigic controllers (PLC) with cyclic
operation are used, new data will only be availadter the completion of each cycle.
Hence, a communication request for such a contrelleuld not be eligible before cycle
completion [18] [19]. AccordingleT anddT are parameters that are specific to each upper
layer control application.

= Messages: each such message consists of datkata and a set gdbmmunication
requestsn.regs. Whilem.data contains control application specific infotima and
is hence transparent to the protocol operataregs contains the communication
requests that are relevant for the protocol opmmatit is assumed that these
requests are provided by each RT application agugprdo the respective
communication requirements. It is important to ribig requests that are generated
by an RT application on nodecan allocate RT bandwidth for nodes that are
different fromi (see also the application example in Section 3.7).

= Priority queue PQ it holds requests in the form of tuplels, ¢, ET, DT) as
described before. Requests are inserted intoup@n message reception. To this
end, PQis sorted such that RQop always holds the reque$t €, ET, DT) with
the smallest deadline that is at the same timébddigin each time slot, the highest-
priority request is removed from P@nd the unique node that belongs to this
request is allowed to send a message for charinghis time slot.

= Decision variables RTGLmyCL, myCH: in each time slot, RTGlis true if there
is an eligible requestb(¢, ET, DT) in PQ.Top. Moreover, myCLis true if
myCH = ¢ andb =, that is, the slot is reserved for chanoealf nodei. In that
case, myCl.is false and myCHe= 0 for all nodesg #i. If RTCL, is false, the current
slot is an nRT slot.

15

Using the data structures and parameters as irteddabove, Glperforms the following
actions.

= Messages from RT applications AP2CL: available mgssm are obtained from
the RT applications that are connected te. Each message is placed in the correct
buffer of Tx.

= Decision variable update CLUPDATE: the values &f tlecision variables RTGL
myCL; and myCHlare determined for the current time slot. To dnd, PQTop is
checked. If PQTop = p, ¢, ET, DT) exists, RTCLis set true and myGls set true
if myCH; = ¢ andb =i. Otherwise, myCLis false and myCH= 0. If PQ.Top is
empty, RTCl.is false, myClLis false and myCH= 0.

= RT message passing to IL CL2ILRT: If RTCis true, myClL is true and
myCH, = ¢ in the current time slot, nodeis allowed to transmit a message for
channel. If the buffer Txfor channek is empty, no message was provided by the
application, yet. In that casereq = (, ¢, €T, dT) is set in order to request a further
time slot for transmission of the application megséor channet of nodei. The
data field of the messagm.data remains empty. Otherwise, the application
message in the buffer Tts forwarded to IL. If RTCLis false, it is indicated to IL
that the current slot is a nRT slot without passing message.

= RT message reception from IL IL2CLRT: If an RT neags is received in the
current time slot from IL, PQop is removed from PQ

= RT message forwarding to the RT applications CL2Ehe message data.data
received from the IL is not empty, thenis a valid application message from some
node. In that case, the message data is forwaodbe RT applications.

The message transmission is depicted in Figure @.again emphasize that the same
computations are performed by the CL of each nddea result, it is ensured that the
evaluation of each CL parameter is the same foh eazle in each time slot [12]. In
particular, each node maintains the same priontyug and hence determines consistent
values for the decision variables RT,CimyCL, and myCkt whenever RTCLis true for
some node in a certain time slot, it is true for all otheodes in the same time slot. In
addition, if myCL is true for nodd, it is false for all other nodes. Hence, alway® on
unique node is allowed to transmit per RT slot tinglinformation is available to all nodes.
Likewise, all nodes know if a time slot is desigrths NRT slot.

3.4Interface Layer Data Structure

In analogy to the CL, the IL operation of each umnlial network node is identical. Hence,
we consider the IL of a generic nogeadenoted as ll-in the sequel. The task of;lls to
provide time-slotted access to the underlying bcaat network depending on the

16

information provided by the connected;CLhat is, if CL. decides that the current time slot
is designated for nRT traffic, then the ILs of atiddes apply a consistent transmission
schedule in order to determine a unigue sender.nodmse of an RT slot, the IL forwards

the message from the CL of the unique node thatsotue time slot to the broadcast
network. The IL operation is realized by help ot tfollowing data structures and

parameters.

= RT message transmission buffer TXRIT stores the current RT message to be
transmitted to the broadcast network.

= nRT message transmission queue TxnRETis realized as a FIFO queue that
contains messages from nRT applications that afgetéransmitted in available
NRT slots. TxnRiTop shows the first message in the queue.

= Received nRT message RxnRiT stores the nRT message that is received fram t
broadcast network.

= Received RT message RxRT stores the RT message that is received fran th
broadcast network.

= RT decision variables RTjland mylL: if the current slot is an RT slot, RTlls
true. If additionally, the slot is allocated to madmylL; is true. Otherwise RTIL
and mylL are false.

= nRT decision variables gntyg and nRTSet IL; maintains a counter grthat is
incremented in each nRT slot and that is resetaftdy cy¢ nRT time slots. That
is, cnf counts the number of nRT slots modulo ;cythe variable nRTSeis
realized as a set, whereby each member of thegetsents the number of an nRT
slot where nodeis allowed to transmit. In order to make sure tath nRT slot is
allocated to a unique node, it is required that 8&TN nRTSet = @ for any
different nodes and;.

Using the data structures and parameters as dethme, the IL performs the following
actions.

= RT message passing from CL CL2ILRT: the decisionades RTIL and mylL
are set to the respective values RT@&hd myCl;. of the CL. If RTCL and myClL
are both true, an RT messagds passed from the CL and is stored in the buffer
TXRT,.

= Message passing to the shared medium IL2SM: if Rahd mylL are both true,
the RT message in TxRIE transmitted to the shared medium. OtherwisBTilL;
is false, it is checked if the current count valug belongs to nRTSgtln the
positive case, the first nNRT message in the FIFQugUrxnRTis transmitted to the
broadcast network.

17

= Message reception from the shared medium SM2lla fhessagen is received
from the broadcast network, RTlis checked. If RTILis true (RT message), m is
stored in RxRT Otherwise,m is stored in RxnRTand the counter c¢nis
incremented.

= RT message forwarding to the CL IL2CLRT: if RTIk true (RT slot) and RxRT
Is not empty (RT message received), the messdgeniarded to the CL.

= nRT message passing from nRT applications AP2ILNiR& :application layer can
pass nRT messages to the IL. Each such messageraesl $n the FIFO queue
TxnRT,. Note that as shown in Figure 2, such nRT messdgestly go to IL
without any interface to CL.

= nRT message forwarding to nRT applications IL2APNRL initiates the
forwarding of the nRT message to the respectivdicgipns from the RxnRT
buffer.

The message transmission is depicted in Figura analogy to the CL, the computations
performed by the IL of each node are identical. <idering that consistent data are
provided by the CL, this ensures that all IL partereare consistent in each time slot [12]
and a unique node is identified for transmissiobath RT and nRT messages. Moreover,
considering that all messages are transmitted lomadcast network, the IL of each node
receives the same message in each time slot.

3.5Sequential Protocol Operation in each Time Slot

In order to clarify the protocol operation, we nexint out the sequential actions that are
taken by the different layers in each time sloti@gicted in Figure 3 and Figure 4, whereby
(a) represents the case of a node that owns tihentdime slot and (b) represents the case
of a node that does not own the current time digure 3 shows the RT message

transmission case and Figure 4 shows the nRT messagsmission case.

We first consider with the assumption that the amsred node is supposed to transmit an
RT or nRT message. At the beginning of the sla, ¢hrrent messages of connected RT
applications are polled (if available). Next, thdi@an CLUPDATE is performed in order to
determine the type (RT or nRT) and the owner ofdlbe In case of an RT message that is
transmitted by the specified node (Figure 3a),nmlessage is forwarded to the IL with the
action CL2ILRT including the slot ownership infortiza. In case of an nRT message that
is transmitted by the node (Figure 4a), CL2ILRTidades that the current slot is an nRT
slot. That is, the ownership of the slot by the endsl determined by looking at ¢r@ind
NRTSet After that, IL2SM transmits the RT or nRT messagethe broadcast network.
After the reception of the message by all nodekidicg the sender node the message is
passed to the IL and either forwarded to the nRilieation with IL2APNRT (nRT slot) or

to the CL with IL2CLRT (RT slot). All relevant pareeters such as P@re updated and the

18

message is forwarded to the connected RT appliwatigth CL2APRT. Finally, note that
the nRT application is permitted to add an nRT mgsdo the FIFO queue TxnRat any
time.

RT APPLICATIONS nRT APPLICATIONS
| A A
CL2APRT
~——AP2CLRT
CL l
CLUPDATE | | TxRT | | RxRT AP2ILNRT
A
IL2APNRT
—CL2ILRT
IL2CLRT
IL \ 4
\ 4
TXRT | | RxRT TxnRT RxnRT
A A
L_SM2IL N—SM2IL—
IL2SM A—IL2SM-

SM Message

Figure 2 Message Transmission of the D?RIP

Second, we describe Figure 3b and Figure 4b weéhasumption that the considered node
does not own the current time slot. Then, differieain the previous case, CLUPDATE
either finds that the current slot is an nRT sIotan RT slot that is not owned by the
considered node (myGls false). This information is transferred to thevia CL2ILRT. If

the current slot is an RT slot, mylk false and the node does not transmit a mesHabe.
current slot is an nRT slot, it holds that;ades not belong to nRTSeAgain, no message
is transmitted. However, the considered node weitleive an nRT or RT message from
another node that owns the current time slot w2k, After this reception, the same
actions as in the first case are taken.

19

dN-HYVM 1O
&
4

| .. RT Slot

dSLOT- >

APRT

dN-HYVM 1O

| RT Slot

b) | dSLOT: »

Figure 3 Sequential Actions for the RT Message Jimassion in a Time Slot

v

HCLUPDATE—P&C CL

'S
dN-IIVM 1O
&
2

\ nRT Slot

dSLOT

A
v

APNRT

&8

b*CLUPDATE‘PG(('z
2](
&

dN-IIVM 1O

"

°
2]
=

s&f@\\/’

nRT Slot

b)

dSLOT

A

\i

Figure 4 Sequential Actions for the nRT Messagadmrassion in a Time Slot

We finally note that the same actions are perforineglach time slot, whereby always at
most one node has the right to transmit and alérotiodes listen to and process the
messages transmitted on the broadcast networknAmportant feature of the proposed
protocol, all RT messages are received by the Ceach node such that the CL data are

20

always consistent among all nodes. Moreover, theratipn of the IL of each node
maintains consistent information about the owng@rshinRT slots.

3.6 Performance Parameters of D2RIP

Based on the protocol operation as described inptheious sections, we now evaluate
several performance metrics as discussed in Se2tiorTo this end, we introduce network
specific, protocol specific and application specgarameters as summarized in Table 2.

Table 2 Performance Parameters of D2RIP

Network Specific Parameters
B | Bandwidth of the underlying broadcast network
Protocol Specific Parameters
dSlot | Duration of each time slot
L | Length of an RT message in bit
Application Specific Parameters
Bam | Sum of all required RT bandwidth allocations fdmaddes (static allocation)
Bmax | Maximum required RT bandwidth allocation
Bmin | Minimum required RT bandwidth allocation
Bet | Effective total bandwidth
€T« | Eligibility time of requesteq
dT.o | Deadline time of requeseq
Qreq | Maximum number of requests in the priority queugetber with requeseq

Bsum represents the sum of all worst-case RT bandwittthsare required in all network
nodes. This bandwidth has to be allocated in in@stommunication protocols that rely
on static medium access. In addition, Table 2 introducegpdrameters B, and By, that
are specific to D2RIP. They capture the fact titais usually not the case that all nodes
have to communicate with their worst-case bandwédlibcation at any time. That is,&
represents the maximum amount of allocated RT batidwhat can be required at any
time instant. On the other hand,;Bis the minimum amount of allocated RT bandwidth at
any time instant. Hence, the RT bandwidth allocatior D2RIP dynamically changes
between Bi, and B, during system operation, whereby,Bis usually considerably
smaller than B,, In addition, it can be assumed that the eligipiimes and deadlines of
all requests are known from the application desknce, their maximum and minimum
values can be easily determined. Finally, the appin analysis usually allows computing
a bound Qg on the number of requests that can be in frorat méquest req in the priority
queue. An example for such evaluation is givendati®n 3.7.

21

It is now possible to evaluate the performance ic®in analogy to Table 2. Note that
numerical values for the different performance mstrare given in the experimental
evaluation in Chapter 5. The effective bandwidth & D2RIP is given by

B L (3.1)

eff = Zsiot

Furthermore, the previous work [19] establishesekation between the application
parameters and the time slot size. It must hold tha

ATreq— €Treq

dSlot < (3.2)

Qreq+ 1
In turn, the worst-case delivery timeyassociated to request req can be computed as
Wyeq = dSlot X (Qreq + 1) + €Treq (3.3)

and it can be concluded that the minimum deadlmefy request req that is supported by
D2RIP is given by

dTreq = Wreq (3.4)

Considering (3.1) and (3.4) it is clearly desiredriakedSlotas small as possible in the
practical protocol implementation. We further ewdd the advantage of D2RIP in
comparison with industrial Ethernet protocols wafatic bandwidth allocation. The RT
bandwidth gain Gr can be quantified by the ratio

Bsum
GRT == (35)

We further consider that network nodes are transmitting RT messages, whéheavorst-
case RT bandwidth requirement per node is giveBJy for i = 1,..n. Then, the overall
required RT bandwidth in case of a static slotcatmn is

Bsum = ?:1 ch,i (3-6)

Hence, for a static bandwidth allocation,,B< By is required even if the required RT
bandwidth changes instantaneously. This is diffefen protocols such as D2RIP that
support dynamic bandwidth allocation. In additidghe available nRT bandwidth &
changes between

Beff - Bmax < BnRT < Beff - Bmin (3-7)

22

From this equation, it can be seen that all theotiffe bandwidth could be allocated to nRT
traffic if desired.

3.7 Application Example

We illustrate the operation of D?RIP by an applmatexample that is adapted from [12].
We consider the workcell in Figure 5 that compri8esomponents — a robot (R) that can
move a robot arm, a conveyor (C) that can transpatiucts in two directions, and a
painting device (PD), that paints parts using ahiree spray gun. We assume that each
component is controlled by an individual programtaedbgic controller (PLC), and there is
one cell PLC that coordinates the operation of diiferent components. We denote the
respective PLCs as PLC-R, PLC-C, PLC-PD and PLC-S.

CtoPD

Rout ctopd

rout RtoC PDtoR PDop

rtoc pdtor ;
— PDfin
PD
d C D
R
PLC-R PLC-C PLC-PD
PLOS | Network | |

Figure 5 Workcell: Robot, Conveyor and a Paintireyide

The desired operation of the workcell is to movedpicts to PD starting from R and via C.
Products at PD are painted and leave the workweti R after completion. Communication
among the PLCs is required in order to coordinhte dperation of the different system
components. We use event-based communication bettheecoordinator PLC-S and the
component PLCs. The events and their related Pt&€Clisted in Table 3 and an example of
event-based communication is illustrated in Figiwréor example, RtoC/rtoC represent the
start/completion of a product transport from R to o€ CtoPD/ctopd indicate the

start/completion of product transport from C to Abe occurrence of RtoC/rtoC requires
communication between PLC-S and PLC-R, whereasotoairrence of CtoPD/ctopd is

communicated between PLC-S and PLC-C. Note that eperation is represented by a
“start” and a “completion” event. The start evamiicates start of operation of the related

23

component PLC that performs local control until tipeeration is finished. That is, the finish
event is sporadically generated by the componeft PL

In analogy to previous work [18] [19] [12], we asseia three-step communication for each
event that is carried out as follows:

1) The coordinator PLC-§ueriesthe related component PLC to check if it is able t
execute the event. Such query is indicated by atmue mark in front of the
respective event.

2) The queried component PLC responds witto#ficationsto PLC-S whenever it is
ready to execute the event. A notification is itk by an exclamation mark in
front of the respective event.

3) PLC-S receives all notifications for the eventssues a singleommandto all
PLCs that are related to the event to executewbrtesynchronously.

Table 3 Actions of the Workcell Example

Event Description Related PLCs
RtoC initiate product transport from R to C PLC-R, PLC-S
rtoc complete product transport from R to C PLC-R, PLC-S
CtoPD initiate product transport from C to PD PLC-C, PLC-S
ctopd complete product transport from C to PD PLC-C, PLC-S
PDop PD starts operation PLC-PD, PLC-S
PDfin PD finishes operation PLC-PD, PLC-S
PDtoR initiate transport from PD to R PLC-C, PLC-S
pdtor complete transport from PD to R PLC-C, PLC-S
Rout initiate product output from R PLC-R, PLC-S
rout complete product output from R PLC-R, PLC-S
?RIOC !RlcoC RtloC '?ClcoR !CI:oR C1-10R ?CthPD !CtloPD
PLC-SPLC-R PLC-SPLC-S PLC-RPLC-SPLC-S PLC-C time

Figure 6 Timing Diagram for the PLC Communicatidriree Example Workcell

It can be seen from the workcell example that,caith there are four nodes on the
network, only one of them is expected to transinétrg time instant. For example, initially,
PLC-S will query PLC-R for possible product trandpavhereby all other PLCs (PLC-R,

24

PLC-C and PLC-PD) are not required to communicateer that, only PLC-R is supposed
to respond to the query and again only PLC-S igpased to send a command afterwards.
Hence, it is possible to dynamically allocate baitlwonly to the PLC that is expected to
send a message. Note that such task cannot be pligtoed using the existing industrial
Ethernet protocols as described in Section 2.2 mxoe the master-slave protocol FTT-
Ethernet. We next explain how our proposed prot@#IP can be used to realize the
communication for the workcell example. To this ewe list the request to be transmitted
together with the respective questions, notificadiand commands of the different PLCs in
Table 4. Here, we consider that only one RT apptinais connected to D2RIP on each
PLC. Hence, there is only one channel for eachcgeWe further assume that the deadline
for each message transmission is 5 ms, whereadidfitality time is given by 4 ms.

Table 4 Communication Requests for the Workcellnipia

Question Request | Notification Request Command Request
?RtoC | (PLC-S,1,4,5) 'RtoC (PLC-R,1,4,5) RtoC (PLS-S,1,4,5)
?rtoc | (PLC-S,1,4,5) Irtoc (PLC-R,1,4,5) rtoc (PLC-S,1,4,5)

?CtoPD | (PLC-S,1,4,5) !CtoPD (PLC-C,1,45)| CtoPD | (PLC-S,1,4,5)
?ctopd | (PLC-S,1,4,5) !ctopd (PLC-C,1,4,5) ctopd (PLC-S,1,4,5)
?PDop | (PLC-S,1,4,5) 'PDop (PLC-PD,1,4,5) PDop (PLC-S,1,4,5)
?PDfin | (PLC-S,1,4,5) 'PDfin (PLC-PD,1,4,5) PDfin (PLC-S,1,4,5)
?PDtoR | (PLC-S,1,4,5) !'PDtoR (PLC-C,1,45)| PDtoR | (PLC-S,1,4,5)
?pdtor | (PLC-S,1,4,5) Ipdtor (PLC-C,1,4,5) pdtor (PLC-S,1,4,5)
?Rout | (PLC-S,1,4,5) Rout (PLC-R,1,4,5) Rout (PLC-S,1,4,5)

?rout | (PLC-S,1,4,5) Irout (PLC-R,1,4,5) rout (PLC-S,1,4,5)

It is now possible to evaluate the application #jmeperformance metrics as introduced in
Section 3.6 for the workcell example. It is readilyserved that at most one communication
request is in the priority queue at any time instince only one PLC is supposed to
transmit at any time and each PLC only has onergahlence, Q.x= 1. Considering that
each deadline idT = 5 ms and each eligibility time &T = 4 ms, it is possible to evaluate
the maximum time slot size and overall worst-caskvery time w,.x according to (3.2)
and (3.3):

dSlot <

w = 0.5ms (3.8)

Wiax = 2 X dSlot + 4 ms (3.9)

25

Furthermore, it is possible to compute the valugs &d B,., for the workcell example. In
order to meet all deadlines, a static allocatioquies reserving one time slot per PLC
every 5 ms. We have 4 controllers in our exampinde, we obtain

Bsum

According to the operation of D2RIP, the maximumoamt of bandwidth for the RT
messages is obtained if a message is sent immigdidien its associated request becomes
eligible. Hence,

dSlot
Bmax = 2 X Beff (311)

4ms

Note that the performance evaluation of the D2RiBlementation in Chapter 5 is based on
this workcell example.

26

CHAPTER 4

D2RIP IMPLEMENTATION

This chapter gives an overview of our D?RIP impletagon. Section 4.1 describes the
implementation environment and our time synchrdigpasolution is presented in Section

4.2. Section 4.3 explains the control applicatioteiface for the D2RIP and Section 4.4
explains our data encapsulation. The protocol detar D?RIP are explained in Section

4.5, 4.6, 4.7 and 4.8. In Section 4.9, we expla&RIP changes according to the previous
implementation. As a general comment, we note @aliahe functions that implement the

D2RIP stack include error checks for unexpectedtsip

4.1 Implementation Environment

Operating system (OS) choice and performance isareicial for the D2RIP. It should give
high performance and reliability when D2RIP runsipbrThus in this section, we describe
how OS is selected, installed, configured and cuited.

4.1.1Real-Time Operating System

A real-time operating system (RTOS) is speciallgigeed to run applications or tasks with
high precise timing. This OS is essential in meaisent and automation systems where
timing is costly or a task delay could cause aesystailure. To call an OS as a RTOS, it
must have &nown maximum latendpr each of the critical operations that it rud][
The D2RIP stack is designed to provide guaranteeatded delays for RT application data.
To this end, it is necessary to implement it onT®DB which provides the necessary task
prioritization mechanisms.

4.1.2Choosing an Operating System

Linux OS has an advantage over other operatin@systor D?RIP because open source
[43]. That means that everyone can inspect or #ieOS source code and driver codes as
their fit. In D2RIP, Ethernet driver should be mizetil to collect non real-time packets and
to prioritize the real-time packets over the noaltane-packets.

There are currently over six hundred Linux disttibos and three hundred of those are in
active development, including Debian, Fedora, op3tS Arch Linux etcUbuntuis the

27

most popular and most well-supported distributieailable todaylLubuntuOS which is
based on the Ubuntu release focusesspeedand energy-efficiencyand hasvery low
hardware requirementg44]. D?RIP is intended to run on both PCs and esded
controller devices such as Programmable Logic @tats (PLCs) with small built-in
RAM and limited processor capabilities. Hence, Wwese Lubuntu as a fast and lightweight
OS with very low hardware requirements. The latession of Lubuntu OS that currently
available is12.10[44].

4.1.3Choosing a Disk for Installation

We developed the D2RIP in an entirely portable itashio be distributed on a single USB
flash disk including the RTOS. It should be easd#y up in all industrial control systems
and start to operate without installing any specifDS. In addition, the D2RIP
implementation should be as hardware-independepbssible. There is a wide variety of
Programmable Logic Controllers (PLCs) that runedéht operating system on different
hardware. For exampl&/ago-1/0O-IPCin Figure 7 that is generally used in the condud

it is a target hardware platform to implement D2RtFhas no built-in hard disk and neither
PCI nor PCI-E slots. The only way to boot up OS/Ne&go-I1/O-IPCis usb flash disk. On
the one hand, flash disks have many advantages loaet-disk drives:less power
consumptionno moving partsminimal access timesmall-size and low cashigh degree
portability andcompatibility.

Figure 7 Wago-I/O-IPC

On the other hand, installing OS on the usb diskgsrsome drawbacks. However, these
drawbacks can be easily solved with the help afralver of OS settings, listed in Table 5.

28

Table 5 USB-Disk Drawbacks and Solutions

Limitations Solutions

No need the large disk space to run D2RIP

Limited disk capacity (only 2 gb disk space will be used)

Decrease disk writing activities (write data

Limited write speed to RAM instead of writing to disk)

4.1.41nstallation of Linux

Before starting the installation process, the appate filesystem should be formatted to
usb flash diskext4filesystem is probably the best choice for ouruxrOS. Firstly, flash
disk master boot record (MBR) section and partittable should be zeroed to avoid
problems with different system MBR or previous fi@mning.

sudo dd if=/dev/zero of=/dev/sdb bs=2048 count|

Ll
=

Next usb flash disk is partitioned by using fisk command.

sudo fdisk /dev/sd

At the fdisk prompt, a new patrtition should be created andphitition should be set as a
active and primary partition. We created one partjtwhich will host the Linux OS. Now
usb flash disk is formatted as ext4filesystem with the label Lubuntu with this code:

sudo mkfs.ext4 -O ~has_journal -L Lubuntu /dev/sgbl

The filesystem of the usb flash disk is ready siah Lubuntu OS. The Lubuntu OS can be
installed with the Lubuntu installation CD. Theseno need to install Linux OS into usb
flash drive every time. Once the OS is installbéntthe image of the OS can be taken from
the usb flash drive and restored to the others fledh drives in Linux with these
commands:

dd if=/dev/sdb of=~/disk.img
dd if=disk.img of=/dev/sdc

In Windows OS, there is a tool named “USB Image|Ttwt can create images of USB
flash drives and restore images of USB flash drj4&%

29

4.1.5Configuration and Installation of Real-Time Kernel

Many Linux distributions come with the standard dwinkernel that is not suitable for
RTOS because they are designed to perform dailysusesks. Therefore, we should patch
the Linux kernel with RT-Preempt kernel to obtaifi@®@S. The latest stable mainline kernel
for which the real-time patches are being develope8.6.2 though currently3.8.2 is
available [46]. Before starting the patch-procdsst the required software packages
should be installed:

sudo apt-get install kernel-package fakeroot beaifgential libncurses5-dey

Then user should get the main 3.Be2nel and RT patch, decompress mainline kerres fil
and patch the mainline kernel with RT patch:

mkdir -p ~/tmp/lubuntu-rt

cd ~/tmp/ lubuntu-rt

waget http://www.kernel.org/pub/linux/kernel/v3 xilik-3.6.2.tar.bz2

wget http://www.kernel.org/pub/linux/kernel/projefet/3.6.2/patch-3.6.2-rt4.patch.bz
tar xjvf linux-3.6.2.tar.bz2

cd linux-3.6.2

patch -pl1 < <(bunzip2 -c ../ patch-3.6.2-rt4.patet?)

N

We note that, before building a RT patched kerseleral changes should be made to the
kernel configuration file similar to the implemetita in [47]. Configuration of the RT
kernel settings can be done with the code:

make menuconfig

The configuration screen of the Linux kernel is whoin Figure 8. The list of the
configuration settings is:

Enable “Tickless System (Dynamics Ticks)”

Enable “High Resolution Timer Support”

Set “Preemption Model” to “Fully Preemptible Ker¢T)”
Set “Timer frequency” to “1000Hz"

Disable “Suspend to RAM and standby”

Enable “Timestamping in PHY devices”

Enable “PTP Hardware Clock (PHC)”

Enable “PTP clock support”

Disable “Show timing information on printks”

Set "I/O scheduler” to “Deadline”

30

Processor type and features
Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted
letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [¥]
built-in [] excluded <M> module < > module capable

~{-)

Generic x86 support

PentiumPro memory ordering errata workaround
Supported processor vendors ---=

HFET Timer Support

Enable DMI scanning

Maximum number of CPUs

SMT (Hyperthreading) scheduler support
Multi-core scheduler support

Fine granularity task level IR0 time accounting

Preemption Model (Fully Preemptible Kernel (RT)) ---

] Reroute for broken boot IRQs

#] Machine Check / overheating reporting
2}

< Exit > < Help >

Figure 8 Linux Kernel Configuration

The RT kernel can be built with this command:

sed -rie 's/echo "\+"#echo "\+"/' scripts/setloealrsion
make-kpkg clean

CONCURRENCY_LEVEL=$(getconf _NPROCESSORS_ONLNbDé&dkaake-kpkg -
-initrd --revision=0 kernel_image kernel_headers

Finally the RT kernel can be installed to Lubuntu:

sudo dpkg -i ../linux-{headers,image}-3.6.2-rt4_@ieb

4.1.6Tweaking the Linux Operating System

Linux OS is highly customizable according to D2Ri&eds. All settings and configuration
files of the OS can be easily edited and saved g@eemtly. Linux, by default, is tweaked
for hard drives, which has a negative impact onpgbdormance and longevity of flash-
based Linux installs. The flash disk read speemad enough, but the write speed is not so
good. Thus, the purpose of the tweaks is to mirenti’e amount of unnecessary writes to
the usb flash disk. Linux writes to a file's metadarhenever the file is accessed. This is
important for some applications such as mail servbut for D2RIP it will be fine to
disable.

31

In /etc/fstab:

UUID=98181808-ec88-4dcd-a94ofd79862bd59 / ext:
noatime,discard,data=ordered,errors=remount-ro Q@

Linux can be configured that all logs get writterRAM memory rather than the flash disk.
It is not important to keep log files after a systeoot.

In “/etc/fstab

tmpfs /tmp tmpfs defaults,noatime,mode=1777 00
tmpfs /vartmp tmpfs defaults,noatime,mode=1777(0 0
tmpfs /var/log tmpfs defaults,noatime,mode=0755 0 0O
tmpfs /var/log/apt tmpfs defaults,noatime 0 O

Linux swaps out less used RAM pages into disk wthersystem needs more memory than
is physically available. However, swapping procafsgrades system performance.
Compared to RAM, disks are very slow. Turning dfé tswappiness will minimize the
amount of unnecessary writes to the usb disk.

In /etc/sysctl.conf:
vm.swappiness =0
vm.dirty_writeback_centisecs = 360000
vm.dirty _expire_centisecs = 360000
vm.dirty _background_ratio = 1

Also Bash shell logs to the usb disk every commiduad user type. This situation can be
disabled with these settings:

In “/root/.bashrc”

export HISTSIZE=0
export HISTFILESIZE=0
unset HISTSIZE

Moreover, all unnecessary visual effects are clésedcrease overall system performance,
such that translucent windows, shadow effects, atiims etc. Linux boot-up duration also
can be improved by turning off the redundant sewiwith the tool namesdysv-rc-conf
The remaining services are: Halt, Killprocs, Netking, Reboot, Sendsigs, Single,
Umountfs, Umountroot and Urandom.

D2RIP needs to work only with the network interfagdbus many modules that come with
Linux installation are unnecessary. These modukesd scontinuously interrupts that

degrade the performance of the RT kernel. Thergeformecessary devices and device
drivers (e.g. sound card, bluetooth, serial poifi,adaptor ..) were disabled.

32

Several BIOS settings were modified such as disghiitegrated sound card, power saving
features (C2 State: Disable CPU C State: Disabid) @dle State: High Performance),
processor frequency scaling, dynamic fan contrd #rermal monitoring, event log etc.
These functions use dedicated honmaskable interthpt cannot be disabled by the OS.
When such interrupts are active during real-timerapon, they can cause unacceptable
jitter and latency. The unused system modules @ablkbd, floopy, bnep, bluetooth,
parport, coretemp etc.

To ensure high performancBAPI (Rx polling mode) property of the network interface
card was activated. WitNAPI configuration, interrupts for receiving are deseh and
overall network performance is improved. Accordiogel1000e module documents [48],
the Ethernet driver can limit the amount of inteteuper second that the adapter generates
for incoming packets. D2RIP needs to have low lagefior incoming packets. Therefore,
InterruptThrottleRatewas set to 0 to turn off any interrupt moderationd may improve
small packet latency. Another tunable setting fihrelfnet module is about the generation of
transmit interrupts. Setting upxIntDelay to O disables the property and starts the
transmission of the packet immediately.

insmod e1000e.ko InterruptThrottleRate=0,0 TxIndyeD,0

Moreover, the Ethernet (IEEE 802.3) cannot provideeal-time response for packet
transmission. CSMA/CD algorithm can detect collsip so it schedules packet
retransmission. This property should be disabledaiond packet transmission time. The
re-transmission option of the Ethernet is disall@ the setting in the Ethernet driver:

E1000_COLLISION_THRESHOLD =D

Linux has the ability to assign certain interrufQs) to specific processors or groups of
processors. This is known &MP affinity(proper interrupt handling), and it allows the user
control how the OS will respond to various hardwewvents. In order to use this property,
system should have more than one processor. O@rimgnts computers have one Intel
processor with four cores. Firstly, the EthernéR€) should be figured out by reading

“/proc/interrupts” file to set the packet transiaitd receive IRQ.

CPUO CPU1 CPU2 CPU3
72: 87298 0 0 0 PCI-MSl-edge ethO-rxt0
73: 93707 0 0 0 PCI-MSl-edge ethO-tx{0

To dedicate four CPU cores for transmit and recHR@:

echo 00000f > /proc/irg/72/smp_affinity # ethO-rx}0
echo 00000f > /proc/irq/73/smp_affinity # ethO-txrO

33

4.2 Synchronization with IEEE 1588

One of the main objectives of the industrial comioation networks is guaranteeing
bounded response times for temporally constraimedfic which requires temporal
consistency among the participating nodes. The mimily accepted time synchronization
protocol for Ethernet-based Industrial Communigati®rotocols is IEEE 1588 [10] [41]
which has a distributed implementation that camdessly run on Ethernet. The time
slotted operation of D?RIP requires synchronizatomng nodes. To this end, we employ
the widely used IEEE 1588 protocol. This sectiovegidetails about timekeeping in OS
and explains the synchronization protocol in detail

4.2.1Timekeeping Basics

Today’'s computer operating systems measure theicliraf time in two ways: withick
counting andtickless timekeepinff9]. Tick counting measurement is based on petiodi
interrupts, calledicks at a known rate. With the help of these ticke, @5 can count how
much time has passed. On the other hand, in tekiesekeeping method, OS only reads
the clock when needs to learn what time is. Tickle®ekeeping has an obvious advantage
over timekeeping with ticks due to the low CPU wesagmanage timekeeping. In addition,
computers or embedded systems should have spleaifievare (such as oscillators) to keep
track of time. Several clock devices can be foondhe same computer:

= PIT (programmable interval timer)

= RTC (real time clock)

= ACPI (advanced programmable interrupt controller)
= TSC (the time stamp counter)

= HPET (the high precision event timer)

TSC and HPET clock sources are much preferred eedhrent computer systems because
of the accuracy and speed to read clock-time. T®€ iE a 64-bit cycle counter and can be
found on the newer version of Pentium CPUs. The TS®y far, the finest grained and
most convenient timer device to access. Howevehad several drawbacks such as
changing of CPU clock speed due to power managentfPET is the newest clock
technology and it was developed by Intel. GenerdlET timer cannot be found in old
PC systems and should be activated in bios setitingewer computer systems. The HPET
timer has much higher resolution than the othedsiiais probably the best clock source for
D2RIP.

4.2.2Clock Source in Linux

From the kernel versioB.6.18 an abstraction layer calledocksourcewas added to the
timekeeping subsystem in Linux. Thus, Linux OSwaliahe user to choice kernel clock-
source. We chose HPET timer with this command:

34

echo 'hpet' >/sys/devices/system/clocksource/abackeO/current_clocksource

D

Also the maximum frequency of the HPET timer canseg¢ in Linux to increase the
accuracy with this command:

echo 2048 >/proc/sys/dev/hpet/max-user-fieq

Most Linux distributions read the initial wall-clbctime from the computer’'s battery-
backed real-time clock when they boot up and gaengtwork time server (like NTP) to
obtain a more accurate time value through the pceélowever, obtaining the time
accurately over the long term is challenging beedhe clock oscillators in computers tend
to drift due to temperature changes [50]. Therefdor long-term clock accuracy,
synchronization software should be run in every goter and periodically resynchronize
the wall clock time to an external clock. To pretveanflicting changes in the time, one
synchronization application should be run at a tima given computer systems. Therefore,
default NTPd synchronization service in Linux slibbke disabled before using any other
synchronization application:

sudo /etc/init.d/ntp stoy

4.2.3Precision Time Protocol (PTP)

IEEE-1588 standard defines a Precise Time Prot@€oP) which is the best protocol to

synchronize system using standard LAN communicationPTP, a nhumber of message
exchanges take place between a selected masteranddine slave nodes periodically as
shown in Figure 9. The slave nodes compute theickcbffsets from the master node
according to these messages and synchronize tlmkscwith the master node. The
maximum offset magnitude can be up to sub-micrasgceith hardware time-stamping.

Thus, PTP seemed to be the logical decision focheymizing network based devices, such
as D2RIP controllers.

The synchronization principle of the PTP consi$tsvo steps:

1) Step 1 -Offset Measurement
2) Step 2 —Delay Measurement

35

Master Clock Slave Clock

154 o agCMETERED 1
S | seeming 0N 1., 1O=o0ffset

4

_ el {

1,
S Syne a8
a6 U + |1 | D = Delay

:F ;"‘.‘_l: 50
o] qu__”p”” ““T t,
sot 1+

-+ -84

()
I

s2 1 2
F-I-:P : 1.,‘-1.1“ "ﬁT ty
T N +358
st +
U g
Ty ”(-li'. 62
ot 4
e u-i.'_l
621 1
Figure 9 IEEE 1588 Synchronization
By step 1, t; — t1 = Tpeiay + Toffset (4.1)
Bystep 2, t, — t3 = TDelay - TOffset 4.2)
) 1
By using step 1 & 2, Tpejqy = > [(t, —t1) + (ty — t3)] (4.3)
. 1
By using step 1& 2, Toffser = 3 [(t; — t1) — (t4 — £3)] (4.4)
Tnew =Toig + TOffset (4-5)

Equation 4.5 gives updated clock value for slavieoAwe note that transmit and receive
propagation delay in the network are assumed syricakt

The accuracy mainly depends on the precision ofithe stamps. The possible timestamp
locations are shown in Figure 10. Time stampingsoshould reflect transmit and receive
times as precise as possible. In the hardwaretedstynchronization, time stamps are
taken at the Medium Independent Interface (MIl). @@ other side, pure software
solutions take time stamps in the Network Interfa€ard (NIC) driver by using
skb_tx_timestangp function. Transmission time stamping at the eirilevel is the best
software solution but requires a modified netwariket.

36

Clock

Timestamping in the application layer
PTP - Worst performance

uDP
P
Driverg
MAC

Timestamping at driver level
- Best place for software solution

“MII T -.-'-'.-. Timestamping with hardware asistance

/ - Most accurate timestamps

Phy <

Y |

I'X RX

Figure 10 Possible Timestamp Locations

Clock synchronization without specific hardware ipquent leads to larger errors and
consequently, low accuracy. Moreover, system loadl iatensive disk 1/O result in the
huge delay in system time with software synchrdioma Therefore, software clock
synchronization is not suitable method to obtaghhime precision when dealing with RT
communications. Hardware time stamping is the amly to reach high accuracy. Only
some Ethernet adaptor manufactures support hardwaeestamping on their devices. For
example, such devices are the Intel 82576, 825248& 82599 gigabit Ethernet
controllers.

The accuracy of the PTP protocol also depends enlatency jitter of the network
topology. Hubs and point to point connections pilevihe best solution. However, switches
cause high delay and jitter due to the storinghefincoming packets. The problem can be
solved with the usage of IEEE 1588 Boundary clankswitches. We only use 100 Mbit/s
hub connections for D?RIP and there is nearly nlaydg@tter expected between master
clock and slave clocks because of no internal auzedélay.

The significant problem is how Linux kernel clodkosild be synchronized with external
PTP hardware clock. PTP hardware clock cannot bassa main clock source in Linux OS
due to its negative aspects. The idea of usingffe hardware clock to the Linux kernel as
a main clock source was considered but ultimakggcted, as discussed in [51]. Therefore,
Linux system clock should be synchronized with RIdgek with acceptable accuracy. The
best ideathe two-level PTP methpt somewhat similar to using a PPS (Pulse Peorgic
to synchronize the Linux system clock to the PTdtk| illustrated in Figure 11 [52]. For
this method, at least two applications should be on the system. The first application
synchronizes the PTP slave hardware clock to the Riaster hardware clock over the
Ethernet by sending synchronization packets, aeag#écond application adjusts the system
time (Wall clock time) to the PTP slave hardwareckl by using proportional-integral (PI)
controller [52].

37

@ Linux System Time
PTP Master
Time
PTP Application

PPS

NIC Driver

- @ PTP HW Clock

PTP Slave Node

Figure 11 Synchronizing the System Clock to the Eldtk

Another problem is how the PTP clock is used irukiand hardware time stamping can be
reached. The Linux network stack already suppoatsiware time stamping since Linux
version 2.6.30. A PTP clock driver registers itseith the class driver in Linux OS. This
class driver handles all of the connection withuker space. The PTP class driver creates a
character device named generdiiev/ptpO User space applications can access directly
PTP clock driver by using standardized input/outpartrol (ioctl) methods such as open,
read etc. Obtaining timestamps on an open sockgifres a two main step. Firstly, the
Ethernet driver must be configured for hardwareetistamping using the ioctl method
SIOCSHWTSTAMM51]. Secondly, the synchronization applicatioesjuest the socket
option named&O_TIMESTAMPINGSO_TIMESTAMPINGocket option is for packet time
stamping for PTP. It allows enabling receive onsrait packet timestamps, and also allows
a software fallback if hardware time stamping stdug¢ unavailable [51]. Once the socket
is properly initialized, theecvmsg()call will return a control message containing the
timestamp along with the packet data. For outgpiackets, the packet will be looped back
to the socket’s error queue, where the packet esappwith the timestamp control message
added [51].

Our IEEE 1588 protocol implementation is carriedt doy an existing software
implementation of IEEE 1588 [53] in addition to thever and NIC support for IEEE
1588. This software is fully compliant with the IEEL588-2008 standard and supports
hardware time stamping and PTP Hardware Clock (Pid@chieve high precision. It uses
the SO_TIMESTAMPINGocket option that is standard in Linux. This wafte carries out
the following:

= Sending IEEE 1588 packets to exchange the delapfset information
= Among nodes for synchronization

= Adjusting the PHC

= Synchronizing the system clock (REALTIME_CLOCK) aRrHC

38

4.2.4Requirements of the Hardware Time Stamping

There are 3 requirements to use hardware time gtgmpstrict sense:

1)

2)

3)

A suitable NIC adaptor that supports hardware staeping:

We use the Intel Gigabit CT Desktop Adapter [54]ewery D2RIP controller
because of its availability at low cost. It usesel82574L Ethernet controller
which fully supports hardware time stamping. Thedce installed in the PCI
express slot on the mainboard and there is nodutthrdware requirement. It uses
the e1000e driver module with version 2.3.2 thas \pablished in March 2013
[55].

Starting with version 3.5 of the Linux kernel, tlime stamping capabilities of a
network card can be queried using tREHTOOL _GET_TS_INFQoctl. Using
standard Ethernet tool namethtool[56], we can query the capabilities of our NIC
card:

ethtool -T ethO

Linux kernel that supports PTP Hardware Clock (PH@)system:

Two features are required to support hardware tit@anmping (PTP)network
packet time stampingndclock control Linux Kernel versions 2.6.30 and above
possess th8O_TIMESTAMPIN@®ption that enables a driver module in the kernel
space to send the timestamp values to the IEEE 4&®&are that runs in the user
space. Hence, this option fulfills the network padkme stamping requirement.
The clock control requirement is fulfilled with tRHC support that is available on
kernel versions 3.0 and above. It provides an APUEer space management of the
hardware clock in the kernel space. Furthermomaicesettings are required in the
Linux kernel which is listed in Section 4.1. Thenef, we use Linux kernel version
3.6.2

Some settings should be reconfigured in Linux Ketoeactivate hardware time
stamping:

= Enable “Timestamping in PHY devices”
= Enable “PTP Hardware Clock (PHC)”
= Enable “PTP clock support”

Ethernet driver that supports hardware time staghpind PTP clock driver:
Ethernet driver should support hardware time stam@ind PTP hardware clock
driver. Intel Gigabit CT Desktop Adapter use$000emodule as driver. The
hardware timestamp support fet000emodule came with driver versich2.14
We usee1000adriver versior2.4.14in Linux OS.

39

By default, hardware time stamping is not enablea1000edriver. User should
recompile the source code of the driver to actita¢eproperty with this command:

make CFLAGS_EXTRA=-DE1000E_PTP

The defaulie1000edriver should be removed from the Linux operasygtem and
loaded the re-compiled driver with these commands:

rmmod e1000e
insmod e1000e.ko

4.3D2RIP 10 plug-in for ibFAUDES

The operation of the workcell and the distributemhtoollers is simulated using the
simulator plug-in that is part of the libFAUDES diste event systems software library
developed at the University of Erlangen-Nurembé&ig.[The D2RIP IO plug-in provides a
libFAUDES interface to the D?RIP, to be used eog.the synchronization of events among
multiple instances of simfaudes for the decentedligupervision of discrete event systems.
This plug-in provides data-types to support theowmnattic execution of discrete event
systems. It serves as a basis for applicationgp#rdorm a hardware-in-the-loop simulation
of a controller interacting with a physical plaat, perform an stochastic performance
analysis. In order to obtain realistic behaviorour application example as explained in
section 3.7, we use stochastic execution attribfdeshe eventstpR stpC and fPD as
specified by the below configuration file:

<SimEventAttributes>
"stpR"
<Stochastic>
+Trigger+ +Gauss+
<Parameter>
10 20 15 20
</Parameter>
</Stochastic>
</SimEventAttributes>

The D2RIP 10 plug-in can be configured with a XMiefaccording the communication
requests related to the controller’s input and ougvents:

40

<Event name="mvC?" iotype="output">
<Eventld value="1"/>
<ChannelToTransmit value="1"/>
<ParameterRecord>
<DestinationNode value="2"/>
<DestinationChannel value="1"/>
<EligibilityTime value="4" />
<DeadlineTime value="5"/>
</ParameterRecord>
</Event>

<Event name="mvC!" iotype="input">
<Eventld value="2"/>
</Event>

The libFAUDES source code should be downloadedcanapiled with the D2RIP 10 plug-
in source code to build D2RIP 10 plug-in. In libFBES’s Makefile, “timed”, “simulator”
and “iodevice” plug-ins should be enabled and od&vice” Makefie, “iop_simplenet” and
“iop_d3ripURT” plug-ins should be enabled by remmgyito comment symbol to build
D2RIP 10 plug-in properly. Now, libFAUDES sourcearncbe re-configured and compiled
with the commands:

make dist-clean|
make configure
make

The flowchart of the D2RIP 10 plug-in is shown iig&re 12.

41

D?RIP 10 PLUG-IN

ERROR FALS

READ OUTPUT EVENTS'
PARAMETERS
Get destination node number

Get eligibility time
Get deadline time

Get destination channel number

Is there a new
parameter
record?,

READ OUTPUT EVENTS
i» Get output event ID
= Get channel number

FALSE:

ould message
queues be
opened?

TRUE

| Open D2RIP XML file to read |

s there a new
input event?

FALSE

FALSE
1

GET RT DATAS & INSERT
INTO RT MESSAGE

Insert all input and output
events into event array list
and create event index

v

GET RT REQUESTS &
INSERT INTO RT MESSAGE
Insert channel number

= Insert event number
= Inset all events

\ 4

Send RT ;

= Insert request number
= Insert all requests

Wait until an
output event is
ready or to
receive RT
message from CL

Output event is ready

RUEP|

READ INPUT EVENTS
= Getinput event ID

Read events from the
RT message

RT packet is received

v

/ Update event

message to CL

index

Figure 12 D2RIP 10 Plug-in Flowchart

42

4.4 Time Slots, Encapsulation and Data Structure

The duration of the time slaiSlotis an important parameter that affects the RTaesg of
D2RIP as demonstrated in the example in SectionThé control application progresses
with the time slots as shown in Figure 6. Hence, thte of completing tasks in the
application increases @$lotdecreases. This result is quantified in (3.2) Se@ié which
states that to meet the message deadlines thestohduration should be smaller than a
bound. In other wordgiSlotdetermines the deadlines that can be guarante@3RNP for

a given application. To this end, we selected tl& add its configurations as listed in
Section 4.1 to shortesSlotas much as possible provided that it is long ehdagarry the
longest RT message. Furthermore, as stated ino8e2ti.2 a high precision IEEE 1588
time synchronization with hardware support is addpto minimize the time slot guard
times. Every controller in D?RIP should wait urthe beginning of a new slot when they
have finished the previous slot earlier. It is verycial to sleep precisely and wake up at
the same time when a new slot begins. Therefogh precise sleep with accuracy in
microseconds is very important for the slot dumaticctandard Unix functions like
nanosleep()and clock_nanosleep(are incapable for high precision. Therefore, tineet
required to sleep should be divided into partshasva in Figure 13.

START
toffset = 50usec

(tnextslot — toffset) > tnow

Sleep until tsleep
according to
CLOCK_REALTIME

FALSE

Figure 13 High Precision Sleep with Partially Slegd Busywait

The fixed time slot durationSlot as introduced in Chapter 3 requires a bound on the
maximum length frames that are sent by IL on theresth medium. We denote this bound
Framen.x and select its current value as 504 Bytes inclydi# Bytes of Ethernet Header

43

and 4 Bytes of CRC. We use tkeher Type numbering field in the Ethernet frame to
indicate the type of data carried in the Etherramg. The value of this field Gx1100for
RT and0x2200for the fragments of an nRT packet that exceetleétame,.. Any other

Et her Type value indicates a short nRT packet that was ragnfiented. The payload of
this fixed Ethernet frame can be either a CL_PACKBTan nRT_PACKET which is a
short nRT application packet from standard uppgeri@rotocols or an nRT_FRAGMENT
that is constructed from a long nRT packet. Théseet encapsulation possibilities are
depicted in Figure 14, Figure 15 and Figure 16.

The IL_PACKET as depicted in Figure 14 has an ILORET HEADER that consists of
a 16 Byte time value that is used for timestamporimition for RT packet. Also
CL_PACKET payload consists of an 8 Byte timestanfprimation. These time values are
valid only for testing purpose. Therefore, thesgéebyare not taken into account when
calculations are performed.

The CL_PACKET as depicted in Figure 14 has a CL_RBT HEADER that consists of
an 8 Byte time value that is used for the protagitinlization, a 4 Byte slot number and a 2
Byte Packet length field that carries the lengtthefentire CL_PACKET.

CL_PACKET payload is RT_APP_MESSAGE and can be gnifptthere is no such
message to send from node in the current time slot. The length of the
RT_APP_MESSAGE is limited tBramen., — ((14+4) + (8+4+2)) Bytes. The data that is
generated by the control application consists ahroanication requests as described in
Section 3.3 that are provided for the dynamic badtwallocation and further control
application related data. The RT_APP_MESSAGE begiits a 1 Byte field NoR that
shows the number of communication requests thagenein this message. As described in
Section 3.3 each request consists db,ac(eT, dT) tuple, whereby 1 Byte is reserved for
each tuple entry. In this context, we assume tf&lot (and consequently Framg) is
selected such that no fragmentation is requiredHerlongest possible CL payload. This
assumption is not a restriction of generality, sitlee length of each RT message is known
because of the deterministic application model. &@mple, the workcell as described in
Section 3.7 only requires sending one communicatiaguest and 3 Bytes of control
application data in RT messages. Hence, a paylb@dgtes is sufficient.

Control Application Data:

Transmission Requests Notifications, Commands

Time

Ti Ti Time Slot size NoR Dev ch eT dT NoE | EVENT (AP2cL)
ime ime
CL2IL) | Number 1Byte | 1Byte | 1Byte | 1Byte | 1 Byte 1Byte | 1Byte
Ethernet |) ocv) | (smaiy) | GE2H) 2Bytes | Y Y y Y y Y 8Bytes | CRc
Header 8Bytes | 4 Bytes
14Bytes | SBYtes | 8Bytes RT_APP_MESSAGE 4 Bytes
CL_PACKET_HEADER CL_PACKET_PAYLOAD
IL_FRAME_HEADER IL_FRAME_PAYLOAD
ETHERNET_FRAME

Figure 14 RT Encapsulation in D2RIP

44

Ethernet TCP/UDP/IP Headers NRT Data from application/ IEEE 1588 Data CRC

Header
14 Bytes 4 Bytes

NRT_PACKET
ETHERNET_FRAME

Figure 15 nRT Encapsulation in D2RIP

Ethernet | NodeN | PacN PacL FraN FraS FraL
Header 1Byte | 1Byte | 2Bytes | 1Byte | 1Byte | 2 Bytes
14 Bytes

NRT Fragmented Data CRC
4 Bytes

FRAGMENT_HEADER FRAGMENT_PAYLOAD
ETHERNET_FRAME

Figure 16 nRT Fragment Encapsulation in D2RIP

4.5 Fragmentation and Reassembly of nRT Frames

The nRT packets that can be carried in an Ethéraete with a size less th&imame, are
carried as ordinary Ethernet payloads. The cormedipg encapsulation is shown in Figure
15.

The nRT packets that are too long to be transmitteal single time slot are processed by
two kernel threads;ragmentationandReassemblyA header structure that is appended to
the nRT packets carries relevant information ferdperation of these threads similar to the
header fields in IP packets that are relevant fagrfrentation. The header structure is
composed of: sending node (NodeN), a unique padketification (PacN), packet length
before fragmentation (PacL), total humber of fragtee(FraN), the fragment sequence
(FraS) in the packet before fragmentation and thgnient length (FralL) as seen in Figure
16. The nRT packets in D2RIP are fragmented onbedyy the sender node if necessary.

In addition, we implemented a second transmit fioncfor the e1000e driver module that
we callel000_xmit_frame_modified@hich intercepts the packets coming from the upper
layer and wakes up theéragmentation threadvhen a long nRT_PACKET arrives. This
thread first prepares and initializes the headdrn ddructure as defined above, then
fragments the data in nRT_PACKET, sets the fieldhe fragmentation header and then
encapsulates the resulting packet in an Ethermeh&mwith a maximum size &rame; .

The Reassembly threakkeeps an array of buffereassembly_pkt_array[sHdr.nodelD].skb
and it wakes up when a fragmented nRT packet isived. It copies the received
fragments while FraN>1 and FraS<FraN in the re$petuuffer in this array corresponding
to the sending node. When FraO = FraN, then tbeived packet is forwarded to the user
space withnetif_receive_skb(hetif_receive_skb(s the main Ethernet receive function in

45

Linux. If the reassembled packet length does ndtimBacL, the Reassembly discards the
packet. The flowcharts of the fragmentation andsembly module are shown in Figure 17
and Figure 18.

FRAGMENTATION MODULE

INITIALIZATION
= [nitiate the header struct of the fragmented frame (SUBFRM_HDR sHdr)
= Insert the controller node id (sHdr.nodelD = NODE_ID)
= Start the fragmentation thread

Sleep until a long nRT packet
START comes from nRT application to
transmit

PREPARATION OF FRAGMENTATION

Increase packet number (packetiD++)

Get packet length (packetTotalLength)

Calculate the number of fragments (nFrags)

Prepare the fragmented frame's header
(sHdr.packetID, sHdr.frameNum, sHdr.packetLength)
= Initiate frame counter (fragNo=0)

N

fragNo < nFrags?

TRUE
A 4

ADD FRAME HEADER INTO SKB

Increase frame counter (fragNo++)

Create a new skb buffer for frame

Insert mac addresses into frame header (dest. and source mac)
Insert protocol into sub-frame header (IL_PROTOCOL_NRT)

fragLen = Remaining frame data
length

)

fragLen = Max frame payload length |=-TRUE fragNo != nFrags?

l

ADD FRAME PAYLOAD INTO SKB
= Insert size of the frame payload into frame header (fragLen)
= Push the frame data on the queue into SKB payload

!

SEND THE FRAME TO THE ETHERNET /
DRVER MODIFIED TRANSMIT FUNCTION /
€1000_xmit_frame_modified() /

Figure 17 Fragmentation Flowchart

46

REASSEMBLY MODULE

INITIALIZATION
= |nitiate frame array for each controller node

(reassembly_pkt_array[TOTAL_NODE_NUM])
= |nitiate the header struct (SUBFRM_HDR sHdr)
= Start the defragmentation thread
packetRXC. = false

A 4

START Sleep until a fragmented frame
comes from SM

PREPARATION OF DEFRAGMENTATION
GET THE FIRST FRAME

= packetRXC. = true
= Get the frame packetID, fragLen,

packetTotalLength into

defrag_pkt_array[sHdr.nodelD] buffer
= Copy frame data into

reassembly_pkt_array[sHdr.nodelD].skb

» Get the frame header information into sHdr
ERROR

FALSE, packetRXC.? TRUE

sHdr.fragNo == 1?

TRUE FALSE

GET THE CONTINUED FRAME
= Continue to copy frame data into
reassembly_pkt_array[sHdr.nodelD].skb
= Calculate the total received frame size
(totalLength)

Is framelD true
&&
packetRXC.?

& TRUE

FALSE

ERROR
= packetRXC. = false
= Drop the frame

totalLength == packetTotalLength

TRUE
v

ERAME RECEIVED
= packetRXC.= false
= Update the protocol and cheksum for the recieved frame

= Send frame to user space with netif_receive_skb()

Figure 18 Reassembly Flowchart

47

4 .6 Initialization of D2RIP

At system start-up, D2RIP needs to establish sigitalynchronization accuracy before
simultaneously entering the time-slotted operatidre IL of D2RIP distinguishes the cases
of initialization and a running stack. Our IL impientation keeps a boolean variable
D2RIP_Init where a true value for this variableigades that the stack is running. Here we
would like to note that one of the controller aassa master node temporarily to send the
first message. When IL receives a CL_PACKET witht Blumber = 1, D2RIP_Init is set to
true and the modification on the Ethernet Driveadsivated. If IL receives a 1 Byte CL
Payload data where CLP = OxFF then D?RIP_lInit setrdofalse and the modification on
the Ethernet Driver is deactivated. The CL threddemss until the IEEE 1588
synchronization is established and wakes up aftartin time following the reception of
the first synchronization message.

4.7 Coordination Layer Implementation

The coordination layer is implemented as a threathé user space according to the data
structure for CL that is presented in Section B@. all nodes, the thread that runs in CL
wakes up periodically at the beginning of each tsiw. In each time slot, the processes
related to the transmission and reception of anme$sage by all of the nodes on the shared
medium take place. In our DZ2RIP implementation ttming reference is the
CLOCK_REALTIME because of system clock and hendggdgers the wake up of the CL
thread.

When the CL thread wakes up in nddé first executes AP2CL as described in Section
3.3. If the application has a message to send, ttnerreceived RT_APP_MESSAGE is
inserted in Tx Next, CL updates the decision variables RTCmyCL and myCH
according to the first eligible request in the gtioqueue of requests P@s described in
Section 3.3. Then,

= if myCL,; = false then the RT_APP_MESSAGE is empty and r@itifies IL; by
sending 1 Byte of information with these decisianiables.

» if RTCL; = true and myCL= true then nodé is expected to send the first RT
message that is stored in;Thuffer for myCH. It is possible that the control
application is waiting for some event to happen &etice no RT message is
produced and Tixis empty. In this case the RTCE true and myCL= true
variables are sent to IL without a message via CRZ1. If Tx; is non-empty, then
the RT_APP_MESSAGE is dequeued and sent toifl_.the character device. The
transmission of the message then takes place shtdred medium as described in
Section 4.8.

48

When I receives a frame from the shared medium in an RT, & forwards the
encapsulated CL_PACKET to ¢las described in Section 4.8. If there is an
RT_APP_MESSAGE in the received packet, then thestrission requests are extracted
and inserted in the priority queue of requests PQ

Here we would like to note that as described ini8e@.5, the requests are inserted in the
priority queue when a CL_PACKET is received. Hertées required that the sender node
also receives the message to have the consisteatatthe CL. While the broadcast on a
true shared medium ensures that, if the nodes@ameected by a physical layer hub, the
message is repeated on all ports except for thethpatrit is received from. To this end, we
add the configurable ECHO_SENDER option which lothssent CL_PACKETSs back to
CL; if the implementation medium contains any netwidekices that disrupt the broadcast
including the sender.

The RT control applications send their RT messagéise CL by calling AP2CLdat, par,

ch); along with the channel information and the contnelssage. It contains 1 Byte channel
information, so that CL puts the received contr@ssage into the corresponding transmit
buffer (i.e.: Tx{ch]). Note that the CL data structure presented inti®&e 3.3 puts the
message to the transmit buffer without extractimgdommunication requests.

Both the control application and CL implementatiare in the user space and they
exchange messages via 2 message queues MQUEUE_ARRIVMQUEUE_CL2AP. The
reads by CL conducted on MQUEUE_AP2CL are non-blagkwvhere CL goes on its
operation if there is no application data readythie queue to keepSlot as short as
possible. The control application requires the dlaga arrives from CL as soon as possible
hence, the application reads MQUEUE_CL2AP queuthénblocking mode, waiting for
the CL data to arrive to go on its operation.

In Section 3.3, we defined, RQop as the pointer to the request ¢, ET, DT) with the
smallest absolute deadline that is at the same eiigible. This request determines if the
current time slot is RT or nRT and the ownershighef RT slots. The priority queue is
updated with the arrival of each new CL_PACKET.

We implement the P(such that it stores all of the eligible requestat tare ordered
according to their deadline, hence ;HQp holds the eligible request with the smallest
deadline. A second priority queue HE)stores the requests that are not eligible. Héarca
given absolute time €T > t holds for all requests in RR. PQE.Top is the request with
the smallesET. A requests that is received at time t in a CL_RAC, is not eligible at
timet aseT > 0 and henc&T > t. Consequently, each new request first inserdeQ.E.
At the beginning of each slot timeCL first checks if the request at PRTop ha€ET <.

If so, that request is dequeued and inserted inae€ording to itDT and PQE. Top is
updated. Then CL decides about the time slot bkipget the request at RQop position.
PQ is updated once every slot when new requests eareived in a CL_PACKET by
inserting them in P(E and dequeuing RQop. Both priority queues R@nd PQE are
implemented as binary heaps.

49

The flowchart of the CL thread is shown in Figuge 1

CL THREAD

Sleep until a RT frame
comes from IL

Read the start time
from the SYNC
packet and sleep
until the start time

TRU Is it SYNC packet?

FALSE, ERROR

processAP2CL()

= Insert RT message into RT packet
Get RT message 5 T
T P B4 &zl ecliion Update packet length info in RT
available? packet header

FALSE J

v

processCLUPDATE()
= Create anewRT
- ((.;.?eTt CSIE)Ot type packet
= Update slotnumber,
= Getslot owner and time info in RT
(mycL) packet header
= Send RT packet to IL
TRUE
FALSE = Get RT packet
‘ = Update slotnumber
and time info in RT
Send 1 byte Send 1 byte packet header
NRT slot-type RT slot-type = Send RT packet to IL
info to IL info to IL

processCL2AP()

= Send received RT message to AP Get slotnumber, time info and V;?;:Qiita
= Insert new RT request into packet length info from the comes from
Priority queue received RT packet I

A 4

’ Upﬂaet:epnonty f packet length info i
. .nirease equal with recieved RT
ize?
slotnumber packet size?
y FALSE

Sleep untilthe
next slot

ERROR

Figure 19 CL Thread Flowchart

50

4.8 Interface Layer Implementation

The Interface Layer is responsible for selectiielynsmitting the RT and nRT packets in
the current time slot according to the informatreseived from CL. We indicate the IL
instance that runs on nodas IL as in Section 3.4. Note that there can be mulgphernet
interfaces on a node as we describe in our expatimeChapter 5. Hence, we denote the
interface that runs D2RIP as ethO. Currently, we the e1000e Ethernet driver module for
ethO.

The IL implementation consists of 3 kernel spaceuhes; Fragmentation, Reassembly and
IL module. The IL module implements the actions CIET and IL2SM as described in
Section 3.4. Furthermore the controlled transmisd RT and nRT packets requires
modification on the Ethernet driver e1000e. Fragiatton and Reassembly are kernel
modules implemented as threads which sleep when dne not executed. When these
modules are loaded together with the modified e&Gfidver, only Ethernet frames with a
maximum size of Framg, are transmitted on the shared medium.

The action CL2ILRT passes the decision parametd€LR myCL from CL to IL;
together with a possible RT_APP_MESSAGE as dedtrilve Section 3.4. If
RT_APP_MESSAGE is not empty, then nadeas RT data to transmit and for the current
slot RTIL = true and myllL= true. If RT_APP_MESSAGE is empty then only 1 &wf
RTCL;, myCL is passed to IL. If RTIL= true then consequently mylk= false. If
RTIL; = false then mylL= nRTslotOwner() wheraRTslotOwner(yeturns the ownership
of the nRT slot according to the cyclically repegtslot assignment as described in Section
3.4.

The TxnRT buffer in the IL data structure (as described in Sacsid) is implemented in
the form of two FIFO bffers: TxnRTH and TxnRT. The IEEE 1588 packets are
transmitted as nRT packets as described in Ch3pieo this end, TxnRTHstores the high
priority IEEE 1588 synchronization messages andRIxnstores the remaining nRT
messages. All fragmented and short nRT packetsnaerted into the respective FIFO
qgueue upon the function call AP2ILNRT. When nodeas the right to transmit an nRT
packet, it is first checked if there is a synchration frame in TXnRTH If TXnRTH, is
empty, node transmits a possibly fragmented nRT packet if TknR non-empty.

IL; transmits the RT or nRT frames according to thermation that is received from CL
The CL_PACKETSs that are received from;Gind the nRT PACKETSs that are in TXnRT
and TxnRTH are encapsulated and sent to the standard trangomttion
e1000_xmit_frame@mplementing the action IL2SM described in SecBoh

We implement SM2IL as described in Section 3.4different cases. Consider that a frame
is received on the ethO interface. FirstEifher Type of the frame indicates that it is a
NRT_PACKET fragment, then it is forwarded to theaBsembly thread. After the
reassembly is complete, the frame is passed onetager space withetif_receive_skb()

51

which hands off the socket buffer to the upper lay&econd, if the frame is a short
NRT_PACKET then it is directly passed to the staddareceive function
e€1000_receive_frame(Yhird, if theEt her Type of the frame indicates that it is a CL
PACKET, then it is passed to IL2ZCLRT which thenwards the packet to the CL
implementation in the user space.

The flowchart of the IL thread is shown in Figui@&hd the flowcharts of the transmission
algorithm and reception algorithm are shown in Fegel and Figure 22.

52

CL
Send 1 byte slot-info
or RT packet

IL MODULE

CL2IL()

RTIL =info
mylL = nRTslotOwner(RTIL) [)
FALSE v
D2RIP_Init = false |
Reset nRT slot counter
Does packet size .GEt RT payloadand
equal to the size in TRUEp |nser;_:_rllfci I:Ll;rame ~
the RT packet ~
header? DL SR
FALSE
ERROR
IL2SM()
v
Send high pri. nRT frame to B
ethernet module ILE
FALSE

Send RT frame

to ethernet m

module

Send low pri. nRT frame to
ethernet module

@FALSE

TRUE

IL2CL()
ERROR TRUE: TRUE D2RIP_Init?

FALSE

FALSE

Loopback RT payload back
to CL

| D2RIP_Init = true <,TRU Slotnumber == 1?

FALSE ERROR

Figure 20 IL Module Flowchart

53

nRT APPLICATION
Send nRT packet to
UDP/TCP Socket

(RT APPLICATION >
Send RT Message to CL

A 4

CL
Insert RT Message into
RT Packet and send to IL

FRAGMENTATION MODULE

Fragmented nRT frames |«

E1000E MODULE

—

ILMODULE

e1000_xmit_frame_modified()
Is frame Is frame length Is
going to the smaller or equal fragmentation »=TRUEZ RT Frame from CL [y
than Framemax?
TRUE
R)
-
nRT frames from
RUE’ P nRTTxQHighPri FIFO =\
queue
q Is it 1588
~——FALSE D2RIP_Init? >TRUE " acket?
nRT frames from
FALSE > NRTTxQLowPri FIFO =\
queue
e1000_xmit_frame()
Send frame to SM /4 J

\ 4

(Transmit frame ’

Figure 21 Transmission Flowchart

54

(Receive frame)

E1000E MODULE

SM2IL()
A 4
Is frame Is Frame
i TRU IE
cotrl:lelnegt;g%m rotocol RT?, TRU =
Defragmentation
Thread
FALSE
TRUE
Is frame TRU o’ Is -
FALSE protocol nRT? GRS
nitialized?
FALSE
TRUE
FALSE
FALSE D2RIP_Init
/ &&
TRU ERROR
IL2CL()
ERROR TRUE TRUE D2RIP_Init?
ALSE FALSE
(r. { =
Fr:‘;"ethTCL | D2RIP_Init = true
FALSE
ERROR
A
CL
v Send RT packet to RT
application
RT Applicati
Get nRT packet from UDP/ *
TCP Socket RT Application
Get RT message from CL

Figure 22 Reception Flowchart

55

4.9 Changes in D?RIP Protocol

An earlier version of D2RIP was implemented andsprged in [14] [13] [15]. Making use
of the experiences gained during these studiethisnthesis, the protocol implementation
was almost redone. Furthermore, the experimentaluation was performed with an
extended set-up. Many hardware and software chaagesmade to increase D2RIP
performance according to previous version as showrable 6 to Table 13. In this section,
we compare the current version of D?RIP versiorhwiite previous version to show the
benefits of the changes.

Table 6 Changes in Hardware

Previous Version Current Version Benefits

With the hardware time-stamping
feature, 82574L Ethernet controller
achieves very accurate synchronization
between controllers. With the use of lan
synchronization application that
supports hardware time-stamping and
82574L Ethernet controller, time offset
between the controllers is decreased
the order of 1.5 us. In the previous
PCIl-Express Etherne implementation of D2RIP, the
card which has a synchronization between nodes could
82574L Ethernet be done with only software time-
controller is plugged | stamping. The offset between
for each controller. | controllers could increase up to 220 ps.

Each controller used
integrated Ethernet
controller on the
motherboard.

82574L Ethernet controller has built-in
intelligent interrupt management and
efficient packet prioritization. Thus, |t
is capable of sending and receiving
frames in lower duration. In addition,
the interrupt latencies are improved|in
multiprocessor systems with MSI-X
support.

10 Mbit/s Hub was 100 Mbit/s Hub is Packet transmission speed is increased
used for Ethernet used for Ethernet 10x times. Therefore, the transmission
communication. communication. delay is decreased 10x times.

56

Previous Version

Control applications
communicated over
serial interface (RS-
232) with each other.

3 computers (one
workcell and two
controllers) were usec
in D2RIP example.

D2RIP had been
worked only on PCs.

Linux OS was
installed on hard-disk
drive.

Table 6 (continued)

Current Version

By adding Ethernet

Switch which
supports 10/100

Mbit/s speed, control

applications

communicate over

Ethernet.

The total number of

computers is

increased to fivéone

workcell and fou
controllers).

D2RIP has been

worked on industrial

PC (WAGO) too

r

By rearranging the

OS, Linux OS is

Benefits

Serial communication is forcing the
system to a particular communication
speeds. The communication speed of
real-time events message is increased
to 100Mbit/s.

There was no possibility of sending
broadcast messages using the serial
channel interface. D?RIP just had the
opportunity to point-to-point
communication. With the Ethernet
interface, broadcast massage sending
capability has been added to the
D2RIP.

The help of Ethernet infrastructure,
more nodes can be added in D2RIP
according to serial interface.

By using more than two controllers,
D2RIP has been started to
communicate in the form of broadcast.

It has been shown that, the new
implementation of D2RIP works not
only on PCs but also on industrial PCs.

D2RIP becomes portable and can |be

installed on usb flash used with devices that have usb-port.

disk.

57

Table 7 Changes in Operating System and Kernel

Previous Version

D2RIP was used on
Ubuntu OS version
10.10.

Real-time kernel
version 2.6.33.7.2-rt3(
was used.

D2RIP was working
on the Linux
distribution with
default settings.

Limited numbers of
settings were change
in the Linux kernel.

Many of the settings
in the bios were left ta
the default setting.

Current Version

D2RIP is used on

Lubuntu OS version

12.10.

Real-time kernel

version 3.6.11.1-rt32

is used.

D2RIP works on the

Linux distribution
which have been

performed

performance tuning.

Many performance
settings are made in

the Linux kernel.

Bios settings for the
CPU and the power

are changed.

58

Benefits

The Linux OS has been changed.
Lubuntu OS uses LXDE interface.
LXDE interface much faster and
lighter than many interfaces in Linux.

To use hardware time-stamping
property with 82574L Ethernet
controller properly, the kernel version
of Linux OS should be higher than 3.6.

Not only do kernel update brings
performance increase, but also brings
some new functions. With the new
version of real-time kernel, real-time
performance of Linux OS is increased.

A variety of performance settings are

made on Linux OS to increase

performance and reduce the number of
interrupt source.

Ethernet card’ and HPET clock’
interrupt priority are raised.

By changing many settings in the
Linux kernel, IEEE-1588 property is
activated and real-time performance is
improved.

Unused devices (audio device, sefial
and parallel interfaces, etc.) and CPU
frequency scaling & power-save mode
settings are disabled to reduce interrupt
source.

Table 8 Changes in Ethernet Driver and Synchroioiza&pplication

Previous Version

Ethernet driver
version was 1.3.10a
for e1000e module.

A lot of code changes

were made on the
standard Ethernet
driver.

Ethernet driver was
loaded with no
parameter.

Synchronization
application supported
only software time-
stamping.

There was no
application to
synchronize Linux
system clock with
PTP hardware clock.

There was no
modified Ethernet
driver for WAGO
devices.

Current Version

Ethernet driver
version was 2.3.2 for
€1000e module.

The amount of the
code that should be
inserted into Etherne
driver is reduced.

Ethernet driver is
loaded with some
parameters.

Synchronization
application supports
software and
hardware-time-
stamping.

An new application
is used to
synchronize Linux
system clock with
PTP hardware clock.

€100 Ethernet driver
is modified
according to D?RIP
needs for WAGO
devices.

59

Benefits

By upgrading Ethernet driver,
hardware-time-stamping property |is
supported on the driver level.

Many of the D2RIP related codes are
moved into IL module. Therefore, the
preparation of the other Ethernet
drivers for D2RIP is facilitated

according to previous D?RIP

implementation.

The packet transmission and reception
settings of the Ethernet driver are
regulated according to D?RIP needs.

With the help of hardware time-
stamping, there is no need to have
guard period in D?RIP. So slot
duration is decreased dramatically.

Linux system clock synchronizes itself
with PTP hardware clock.

WAGO devices can be used as| a
controller in D2RIP.

Previous Version

Slot type was divided
statically for RT
packets and nRT
packets.

There was a thread
that holds the slot time
in IL module. It
decided the slot type.

There were a lot of
unused code snippets
and memory
allocation in IL
module. Furthermore,
memory allocation
was made
dynamically.

Table 9 Changes in Interface Layer (IL)

Current Version

Slot type was dividec
dynamically for RT
packets and nRT
packets.

The thread in IL
module is removed.
All decision code
flow is moved into
CL application.

Unused code
shippets and
unnecessary memor:
allocations are
removed. Memory
allocations are made
statically at the
beginning of the
system.

60

Benefits

Slot type is decided dynamically
according to D2RIP needs. RT slots
become available on the system, if RT
communication is needed. Thus, the
capacity utilization of the system is
improved drastically.

NRT slot’s right is decided between
nodes according to the Round-Robin
algorithm.

Many decision-making algorithms are

removed from the kernel space and re-
organized in the CL. Thus, D2RIP

portability is increased and the

integration of the new layer which |s

developed in the future for D2RIP |is

facilitated.

There is no need to use REQRT action
in the protocol. Thus, the time required
for this process has been decreased
from the slot duration.

Threads in the kernel space degrade
overall system performance and
stability. With this change, overall

system performance is increased and
usage of system resource is decreased.

Code readability is increased and real-
time performance of the IL module fis

increased. With the statically memaory
allocation, there is no memory

contention.

Table 9 (continued)

Previous Version Current Version Benefits

There is no need to wake up
Fragmenter module | Fragmenter module | fragmenter module for all non-real-
was waked up with | is waked up only time packets. Therefore, fragmen:er

small and larger nRT | with larger nRT module uses system resources when

packets. packets. the larger nRT packet comes from
user-space.

The sendStartData The initiation of the D2RIP is

module initiated the | D?RIP starts with improved. Thus there is no need to use

system simultaneousl; SIGUSR1 signal. a module to start system and D?R|P’

in all controllers. resource needs are decreased.

Packet reception anc
No header informatior transmission time ar¢ Performance information is calculated
was added in IL. added into packet | from the time-stamping info.

header in IL.

IL is re-designed according to multiple

: IL is designed , .
IL was designed : controllers communication.
. . according to
according to point-to- Therefore, D?RIP can support mdre
broadcast

point communication. nodes and send broadcast messages to

communication.
all nodes.

61

Previous Version

There were two
threads in CL
application.

There was a lot of
unused code snippets
and memory
allocation in CL
application.
Furthermore, memory
allocation was made
dynamically.

Slot-type was pre-
determined in D2RIP.

Standard sleep
functions were used ir
waiting events.

No header informatior
was added in CL.

D2RIP hadn’t got any
logging capacity.

Table 10 Changes in Coordination Layer (CL)

Current Version

The number of t

thread is dropped to

one.

Unused code
shippets and

unnecessary memor)

allocations are

he

removed. Memory

allocations are made

statically at the
beginning of the
system.

Slot-type decision is

made dynamica
with using two
priority queues.

More accurate

methods are used to

sleep precisely.

New header

information is added
into packet header ir

CL.

C libraries are addeo
into D?RIP to log anc

measure
performance.

Iy

62

Benefits

This is the only thread that has highast
priority in the Linux OS.

Code readability is increased and real-
time performance of the CL
application is increased.

Dynamic memory access leads |to
contention and undetermined delays in
OS. With the statically memory
allocation, there is no memoly
contention.

Utilization of the shared medium is
increased significantly.

Waking up at the desired time is a big
challenge in Linux. Therefore, the new
spinlock algorithm is developed io
achieve accurate sleep-time in D?RIP.

Slot drift and packet size are controlled
with the help of CL header
information.

The time information of the frames can
be easily accessible when D?RIP |is
running.

Previous Version

The RT packets
contained null data.

CL was designed
according to point-to-
point communication.

To start up the D2RIP
protocol, a lot of pre-
settings should be
made in OS.

Previous Version

XML files were
prepared according to
2 controllers’
example.

No header informatior
was added in
Simfaudes plug-in.

Table 10 (continued)

Current Version Benefits

Unused data is removed from the RT
packets. Therefore, communication
duration between IL and CL s

CL application sends
only the required RT

data to IL. :

drooped dramatically.
CL is designed CL is re-designed according to
according to multiple controllers’ communication.
broadcast Therefore, D?RIP can support mare
communication. controllers.

A bash script is

written to start D2RIP can be started up without the
system need of user interaction.
automatically.

Table 11 Changes in Simfaudes Plug-In

Current Version Benefits

XML files were

prepared according | It is shown that D2RIP works with the
to 4 controllers’ multiple controllers.

example.

New header

information is added . L
. . Performance information is calculated
into real-time) L
: from the time-stamping info.
massage in

Simfaudes plug-in.

63

Table 12 Changes in Non Real-Time Application

Previous Version Current Version Benefits

Table 13 Changes in Real-Time Simulator Application

Previous Version Current Version Benefits

64

CHAPTER 5

EXPERIMENTAL EVALUATION OF D2RIP

This chapter presents our experimental evaluati@?RIP based on the work-cell example
in Section 3.7. We first describe the experimesg&lp in Section 5.1. Then, we measure
the OS performance in Section 5.2, we perform augpn timing analysis of all protocol
components in Section 5.3 and assess the perfoeman®?RIP for both RT and nRT
traffic support in different experimental scenaiip$ection 5.4.

5.1 Experimental Setup

We realized the example control application in Bect3.7 where the communication
among the controller devices is carried out withr owlustrial communication protocol
D2RIP. To this end, we developed the experimentpsets shown in Figure 23 which
consists of the workcell and four distributed coltérs each realized with a separate
computer. The software and hardware architectureach controller node is shown in
Figure 25. The controller nodes read sensor sighiedstly from and write actuator signals
directly to the workcell on a separate dedicatew lthat is realized on a separate
conventional shared-medium Ethernet network (etAttordingly the simulator on each
controller node runs the respective control alpomitwhich determines the relevant
gueries/notifications and commands as describeéfeation 3.7. The simulator then hands
out these controller events to the libfaudes D2RIPplug-in module. This is a software
module that assembles the control application ngessand the communication requests as
defined in Section 3.3. The software module looggxsapplication-dependent preconfigured
requests for each communication event.

Here we would like to note that, in addition to thet-up mentioned above, we ran the
example control application in Section 3.7 on Wago-I/O-IPCas shown in Figure 24
Experiment Set-up with WAGO’s. We demonstrated ¢berect operation of D2RIP on
Wago devices. However, The Ethernet controller faf Wago-I/O-IPC supports only
software time stamping in IEEE 1588. Therefore, dyxechronization accuracy between the
nodes varies too much and we need to add guarddgeat the beginning of the every slot
to compensate the offset. Consequently, we needdduble the slot duration according to
first experiment set-up in Figure 23. In this ibewe analyze only the D2RIP experiments
results achieved on the first experiment set-upiguire 23.

65

ETHO By I ETHO
ETHO : ETHO
10/100 Mbps HUB

e
' ooy
' e
(g

O W ‘i | W
DEV S DEVR WORKCELL DEV C DEV PD
PC PC PC PC PC ETH1
192.168.1.3 (eth0) 192.168.1.4 (eth0) 10.1.1.2 (eth1) 192.168.1.5 (eth0) 192.168.1.6 (eth0)
10.1.1.4 (eth1) ETH1 ETH1 10.1.1.5(eth1) gTyq 10.1.1.6 (eth1)
<]
.
%@mﬁ
10/100 Mbps SWITCH
Figure 23 Experiment Set-up
=ETHO N ETHO
' Xy ETHO
ETHO 10/100 Mbps HUB

&N
&

N

DEV'S DEVR ; '
WAGo A WOF;KCCELL DlE)\é c DE;/CPD ETH1
192.168.1.3 (eth0) 1912611618'1'?e(teht1';°) 10.1.1.2 (eth1) 192.168.1.5 (etho) | 192.168.1.6 (etho)
11 ETH1 10.1.1.5(eth1) prpyq 10.1.1.6 (eth1)
ETH1 <]

o2
I,
(D
[,
(2
(o)

10/100 Mbps SWITCH

Figure 24 Experiment Set-up with WAGO'’s

The computers that realize the controller nodesrand?2RIP have
1) PC: QuadCore Intel(R) Core(TM) i3 CPU 550@3.20GHZByte RAM, onboard
Ethernet controller and IEEE 1588 enabled Etheadeptor
2) WAGO: Intel Celeron 600MHz, 256MByte RAM, two onlvda Ethernet
controllers
The computer that simulates the workcell has a
PC: QuadCore Intel(R) Core(TM) i3 CPU 550@3.20GHZ7#Byte RAM, onboard
Ethernet controller

66

LIB FAUDES SIMULATOR

Controller Communication
Model

Events
(sensol

T

Controller events

r/actuator signals)

p

Libfaudes
i/o device
lugin module

A

D2RIP APPLICATION
INTERFACE

Libfaudes d3rip_io_plugin
module

T
Controller messages (with reque:
¥

sts)

y
Ethernet Interface

Coordination Layer

Interface Layer

Ethernet Interface Card
(with hardware IEEE 1588

LIB FAUDES SOFTWARE

Automata model for the
operation of the plant

 libfaudes
i/o device
plugin module

PLANT

Ethernet Interface Card

Card (Standard) timestamping) (Standard)
ETH1 ETHO ETH1
PLANT: Sensor/actuator D2RIP communication to other CONTROLLERS_f
signals controllers over shared Ethernet Sensor/Actuator Signals

Controller Node

PLANT

Figure 25 Architecture of the Controller Node ahe Plant

5.2 Performance Analysis of RTOS

In this section, we show our modified RTOS perfanoce and the amount of system
resources needed by D?RIP. Tiestat command in Linux generates the CPU utilization
report. The first CPU utilization report was takehen the OS booted and the second
report was taken after the D?RIP was executed.ait be seen that D?RIP uses only

98.15 — 89.41 = 8.74% of the CPU resources in teftisne-averaged percentages.

1.05 0.00

avg-cpu: %user %nice %system %iowait %steadlds
0.42 0.38 0.00 98.1%

1.24 0.00

avg-cpu: %user %nice %system %iowait %steatdlds
8.231.12

0.00 8941

The maximum memory usage of the D?RIP can be itegdxy thecop command in Linux.
The first memory utilization report was taken whbe OS booted and the second report
was taken after the D?RIP was executed. The mentiffigrence is 327924 — 321524 = 6.4

MByte after D2RIP was executed.

67

KiB Mem: 3359452 total, 321524 used, 3037928,f 20428 buffers

KiB Mem: 3359452 total, 327924 used, 3031528,f 21680 buffers

We next determine the RT capabilities of our RT@$clictest[58] tool that is a high
resolution test program is used to measure thetwase latency of the RTOS. It takes a
time snapshot just prior to waiting for a specifioe interval (t1), then takes another time
shapshot after the timer ends (t2), then compatiegtheoretical wakeup time with the
actual wakeup time (t2 - (t1 + sleep_time)). Thatue is the latency for that timer wakeup.

The first test result was taken when OS bootedhit test, we created three threads that
have different SCHED_FIFO real-time priorities. Twerst-case latency of the thread that
has max priority (99) is 60 us. The worst-casenieyeof the second thread that has priority
98 is 103 ps. The worst-case latency of the las@aththat has min priority (1) is 156 ms.
As it seen in the first test, SCHED_FIFO real-tipreorities determine the thread’s latency
significantly. The second test result is taken raftee D2RIP was executed. We run
Cyclictesttool with the max priority (99) to find the worsase latency for D2RIP protocol.
143 us is the worst-case latency for our RTOS. Woisst-case value is unacceptably large
according to our slot duration 250 ps. Therefore, developed a partially sleeping
algorithm that was explained in Section 4.4 to dase the worst-case latency to values that
are less than 30 ps.

P:99 11100 C: 742087 Min:5 Act: 8 Avg:2 1Max: 60
P:98 11100 C: 742853 Min: 3 Act: 16 Avg: 2Rlax: 103
P:1 11100 C: 277245 Min: 4 Act: 14 Avg: 498ax: 156530

P:99 11100 C: 114176 Min: 1 Act: 10 Avgit3 Max: 143

5.3 Timing Analysis of D?RIP

In this section, we present our timing measuremiats the hardware setup in the Section
5.1. For each measurement, we obtain a certain euoftsamples (a number of 5 million
slots) and we list the mean, maximum and minimunthef measured values. In addition,
we report the 99 % confidence interval. In otherdsothe average values that we present
are sample averages and they stay arourd% tieighborhood of the true mean value with
a probability of 99%, whereb¥ is denoted as the confidence interval [59].

We note that all timings of D2RIP rely on the peeciclock synchronization among the
nodes that is achieved by IEEE 1588 as describ&a&dtions 2.2.3 and 4.2. Hence, we first
consider our clock synchronization measurementistasl in Table 14. Here, thaccuracy

is the difference among the master and slave cldgks

68

We run our synchronization application with hardsvéime stamping feature in our first
setup showed in Figure 23. It can be seen thatsmll values of accuracy in the order of
pUs are achieved. This is in compliance with residtsiEEE 1588 synchronization with
hardware time stamping in the literature [60]. Nex® run the synchronization application
with software time stamping feature in our secoetlis showed in Figure 2¥ago-1/O-
IPCssupport only software time stamping in IEEE 1588s keen that the synchronization
performance with software timestamping is not asmising as the previous experiment.
The obtained results indicate that, in principlmet slotted access to the shared medium
can be implemented with a precision in the ordgrotising hardware time stamping.

Table 14 IEEE 1588 Accuracy Results

Mean | %+ Confidence Interval | Max. | Min.
ps (99% confidence) us Ks

Hardware Accuracy (us)| 1.4 %3.71 4.2 0
Software Accuracy (us) | 105.3 %5.93 204,3 | 9.4

We next evaluate the further delay componentsabatribute to the execution of each time
slot according to Figure 2. In addition to eachhaf listed actions, we note that the periodic
wake-ups of the CL thread that is triggered by CKOREALTIME introduce additional
delays (see Section 4.4). Hence this wake-up tsnalso listed since it constitutes an
important component of the time elapsed for théoast executed in a time slot. The
evaluation is done for 5 million slots from all resdof the hardware setup described in
Section 5.1. The time slot size in the experimemhosen as 250 pus and massage length is
chosen as 504 Bytes. Each eligibility timeeiE= 4 ms for all events. Therefore, all the
actions executed in 16 times slot and we take vheages over 312500 samples. According
to the result in Table 15, it remains 60 ps togmaih message on 100 Mbit/s Ethernet and
delays for Hub.

Table 15 Timings of Actions Taken in an RT Slot

Mean | %= Confidence Interval | Max. | Min.

[V (99% confidence) us us

CL thread wake-up 0.7 %0.21 30.5 | 0.7
AP2CL 3.2 %3.23 121 | 2.3
CLUPDATE 1.3 %0.45 105 | 0.7
IL2SM 12.2 %0.38 278 | 9.8

SM2IL 21.4 %0.38 48.0 9.8

IL2CL 9.2 %1.22 46.1 | 1.0

CL2AP 6.1 %4.07 16.7 | 4.9
Completion time in slot| 94.1 %1.82 231.1| 69.2

69

It is readily observed that, on average, the ldrgetays are introduced by the actions
IL2SM and SM2IL which require data exchange betwten kernel space and Ethernet
line. In total, all actions to be completed in ediche slot add up to an average execution
delay of 54.1 us. Adding the message transmissitaydf 40 us for 504 Byte messages,
the average completion time for each slot is 94 hgtis shown in the Table 15. However,
it turns out that large maximum delays are obserfigedthe CL thread wake-up and
message transmission between the user space aral &pace. Since the execution of each
time slot has to be correct, these maximum delaye o be taken into account. As is
shown in Table 15, a maximum completion time fochealot of 231.1 us is found in our
experiments. Considering that the slot time wassehaas 250 ps, all time slots execute
correctly.

The measurements in Table 15 allow computing thecefe RT bandwidth that can be
obtained for D2RIP according to (3.1) in Sectiof. Xonsidering the message length of
L = 504 Bytes and the slot sizedflot= 250 ps, we obtain

__ 504 x8Byte __ .
Beff = Tus =16.1 Mblt/S (51)

It can be seen in Table 1 that the effective RTdbadth that is achieved for D2RIP is
similar to comparable protocols such as EPA, EPTaret with the difference that D2RIP
enables dynamic allocation of RT bandwidth. The BRihdwidth gain can be calculated
according to (3.5) in Section 3.6 by using (5.1§3r10) and (3.11) in Section 3.7.

=32-32 (5.2)

Considering the RT bandwidth gain GRT= 3.2, the RT bandwidth that is comparable to
static protocols for our application example is

BessBgr = 16.1 Mbit/s x 3.2 = 51.52 Mbit/s (5.3)

5.4 Performance Experiments and Results

We next demonstrate the operation and the perfarenari our D2RIP stack with the
example case study. To this end, we perform thxperaments that are targeted to show the
delivery times, nRT properties and dynamic RT atmmn properties of D2RIP. To this end,
experiment 1, provides detailed delay measuremimtshe RT traffic of the workcell
example. In experiment 2, we add another RT appicato dynamically increase and
decrease the RT traffic. Finally, in experimening, investigate the throughput and delay
values for nRT traffic under different scenarios.

70

5.4.1Experiment 1: Detailed investigation for RT traffic service of D2RIP

In this experiment, the control application thatlescribed in Section 3.7 is run on D2RIP
for a slot time of 250 ps and an RT message leoig894 Bytes. We first verified that alll
controller events were communicated successfulty tae workcell operation proceeds as
specified. Next, we considered the end-to-end detdiynessage transmissions between the
different software layers IL, CL and AL. To thiscerwe measured the respective delays for
all message transmissions of our RT control apidinavith a number of 5 million slots as
listed in Table 16.

Table 16 End-to-end Delays of RT Messages of thekdétl Example

Mean | %=+ Confidence Interval | Max. | Min.

us (99% confidence) VE VS

IL to IL 80.2 %6 108 | 72

CLtoCL | 90.1 %5.60 142 | 56
AL to AL | 3473.1 %1.96 4423 221

The measurements show that the end-to-end deldayedre the ILs and CLs of different
nodes are bounded by a maximum value of 108 pd48dus, respectively. Such value is
expected according to the accumulated delay conmisneetween the actions IL2SM-
SM2IL and CLUPDATE-IL2CL according to Table 15. particular, these end-to-end
delays remain within the slot time of 250 s whicl prerequisite for the correct time slot
execution. The end-to-end delay between the apijgicéayers (AL to AL) constitutes the
delivery time of RT messages [1]. Its minimal vati€21 us represents the case where the
application generates a message right at the mowtesre the transmitting node obtains a
transmission slot. In this case, the ready mesisag@led by the CL and reaches the AL of
the receiver nodes within this transmission slaic@dingly, the minimum delivery time is
smaller than the slot time of 250 ps. On the ottend, the maximum delivery time
represents the case where an application messggeeésated in a transmission slot of the
transmitter node but after the message should beee polled by the CL. In that case, this
node has to wait until its next request becomegbddi, which takes one slot time plus the
eligibility time of 4 ms. Then, the message will bansmitted within the subsequent
transmission slot which is bounded by 250 us. Tggetwe expect a maximum delay of
4.5 ms which complies with the measurement. No& the same result is given by the
worst-case delivery time according to (3.3) in ®ect3.6 considering the maximum
number of requests in the priority queue was deterthas 1:

Wreq = dSlot X (Qreq + 1) + eTreq = 250us X 2 + 4ms = 4.5ms (5.4)

71

5.4.2Experiment 2: Varying RT Traffic Input

In this experiment, we considered the RT traffiattlis generated when running the
workcell example setup, whereby only one node cawehan eligible communication
request at a time. In this experiment we generdtitianal RT background traffic that is
generated on channel 2 of the controller nodes BL&1Rd PLC-R. This RT traffic is
designed such that channel 2 of PLC-S transmitsages to PLC-R with a deadline of 5
ms and an eligibility time of 2 ms and puts a rexjder message transmission of channel 2
of PLC-R with deadline 2 ms and eligibility timenis. Whenever channel 2 of PLC-R
transmits, it puts back a request for PLC-S withdliee 5 ms and eligibility time 2 ms.
Accordingly, the maximum number of requests in phierity queue is now (@ = 2 and
the worst-case delivery times for RT messages atalo

w; = 250us X 3 + 4ms = 4.75ms (5.5)
wy = 250us X 3 4+ 2ms = 2.75ms (5.6)
w3 = 250us X 3 + 1ms = 1.75ms (5.7)

Here,w; denotes the worst-case delivery time for RT messaf the workcell examples,
denotes the worst-case delivery time of the RT ag=s from channel 2 of PLC-S (slow
mode) andw; denotes the worst-case delivery time of RT messdigen channel 2 of
PLC-R (fast mode). The following Table 17 shows theasurement results from our
experimental setup. Again, a number of 5 millianiskre evaluated.

Table 17 Delivery-time Measurements with AdditioRal Traffic

Mean | %=+ Confidence Interval | Max. | Min.

Ks (99% confidence) VES VES

AL to AL (workcell) | 3542.1 %2 4745 | 211

AL to AL (slow mode) | 1800 %1.9 2534 | 230
AL to AL (fast mode) | 800 %2.3 1620 | 225

It is readily observed that the measured worst-abdvery times are bounded by the
previously computed values. Hence, it is confirrtieat each message on D?RIP will meet
its specified deadline if the relevant parameteishsas time slot and eligibility time are

chosen properly. Furthermore, this experiment weddisl the case of multiple nodes
competing simultaneously for medium access. Out albcation scheme based on
communication requests successfully gives mediwasxcto the node with the most urgent
eligible request such that no deadlines are vidlate

72

5.4.3Experiment 3: Support for nRT Traffic in D2RIP

We finally investigate the support of nRT traffig ID2RIP. According to the previous
sections, it is first possible to determine the mmaxn amount of bandwidth required for
the RT messages generated by the workcell example

dSlot __ 250ps
4ms eff T 4ms

X 16.1 Mbit = 1 Mbit/s (5.8)

Brax =

Hence, an nRT bandwidth of

Burr = Besf — Bmax = 16.1 Mbit/s — 1 Mbit/s = 15.1 Mbit/s (5.9)

is left for nRT traffic, whereby it has to be cahesied that long messages are fragmented in
order to comply with the maximum message size @f Btes. Next, we investigate the
delivery times of nRT packets between applicatayets under different nRT traffic loads,
keeping the RT traffic the same as in ExperimeM&.collected measurements under four
average nRT traffic patterns where a message isrged every 500 us, 1 ms, 10 ms and
100 ms, respectively by each node. Using theséctnaétterns, we consider the case of
short messages (40 Bytes), medium size messagésB{f&s) and long messages (1500
Bytes). Our measurement results are shown in THhldable 19 and Table 20. Note that
the last column shows the consumed bandwidth by tBffic for the respective traffic
pattern.

Table 18 nRT Traffic with 40 Byte Message Length

Transmission | Mean | %=+ Confidence Interval | Max. | Min. | Bandwidth
Period us (99% confidence) us us Mbit/s
500 ps — — — | —— 2.56

1ms 1530.1 %0.83 5940 | 90 1.28
10 ms 636.2 %2.03 3295 57 0.128
100 ms 620.1 %6.92 3124 | 64 0.01228

73

Table 19 nRT Traffic with 576 Byte Message Length

Transmission | Mean | %=+ Confidence Interval | Max. | Min. | Bandwidth
Period VES] (99% confidence) Ks Ks Mbit/s
2ms — — _ | — 9.2
25ms 2135 %0.47 10235| 1756 7.4
5ms 1728.4 %0.59 5354 | 1081 3.7
10 ms 1683.2 %0.82 4320 | 1082 1.85
100 ms 1696.3 %2.65 3853 | 1079 0.185

Our first observation from these measurements & the supported nRT bandwidth
depends on the traffic pattern. In particular, €ab8 shows that very small nRT packets
lead to a low possible nRT bandwidth. This is expesince a supported packet length of
504 Bytes is chosen for the conducted experimesnckl, only a very small fraction of the
time slot is used by short nRT packets. Secondcamelude that a nRT bandwidth that is
close to the computed maximum of 15.1 Mbit/s carablgieved for long packets even if
fragmentation is needed. Realistic nNRT messageaigltimes are obtained for packet sizes
of 576 Bytes and 1500 Bytes at nRT bandwidths #fVihit/s and 9.6 Mbit/s, respectively.
Here we would like to note that synchronizationkeds are dropped the nRT bandwidth
because of high priority.

Table 20 nRT Traffic with 1500 Byte Message Length

Transmission | Mean | %=+ Confidence Interval | Max. | Min. | Bandwidth
Period us (99% confidence) VES VES] Mbit/s
2.5ms — —_— _ | — 19.2

5ms 3842.3 %0.28 6698 | 3101 9.6
10 ms 3844.3 %0.38 6541 | 3079 4.8
100 ms 3827.5 %1.26 6118 3087 0.48

74

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

The subject of this thesis is the implementatiorthef novel industrial Ethernet protocol
D2RIP with real-time (RT) and non-real-time (nRTaffic support. D2RIP is a fully
distributed communication protocol with time-slattemedium access, whereby the
ownership of each time slot is decided instantaslgaoased on application specific data.
That is, different from other industrial Ethernedfocols, D2RIP is particularly efficient for
applications, whose bandwidth requirements chaggardically.

Regarding the implementation of D2RIP, we firstidefappropriate data structures for the
protocol implementation such that D?RIP can runagmof COTS Ethernet hardware. Then,
we realize time-slotted medium access with the bélgrecise clock synchronization using
the IEEE 1588 synchronization protocol. Our obtdiriene slot size on 100 Mbit/s
Ethernet is 250 ps. Based on a distributed computan each network node, each time
slot is dynamically allocated to a unique node ttaat send RT messages up to a size of
504 Byte or nRT messages. We provide a packet #atation thread in order to fit long
NRT packets into the available time slots. The quoltimplementation is accompanied by
detailed measurements on an experimental hardweixg swith a realistic industrial
application example adapted from a manufacturirsiesy example in [61] and [62]. As the
main results, D2RIP supports an effective RT badttiwof 16.1 Mbit/s which is similar to
comparable protocols. However, D?RIP uses thiscgffe bandwidth more efficiently due
to the dynamic bandwidth allocation. In additiorwwve obtain clock synchronization
accuracies in the order of 1.5 ps and support @glitimes below 5 ms. Regarding nRT
traffic, we observe that short packets are natiefitly supported by D?RIP due to the
time-slotted medium access.

One of the our contribution is implementing the tlager D2RIP stack on COTS Ethernet
hardware using the open source OS Linux with RTefp kernel. We chose Lubuntu that
is a lightweight variant of Ubuntu as our OS beeaitsis a fast and lightweight OS.
Lubuntu OS is intended to have low-resource systequirements and is designed
primarily for mobile devices and embedded contrsll&tandard Linux kernel in Lubuntu
OS is not suitable for real-time operation becaiisdoesn’t support hard real-time
scheduling. Therefore we patched standard Linuxeédewith RT-Preempt kernel to add
hard real-time capabilities to a Lubuntu OS tolfate the development of D?RIP.

The RT bandwidth utilization of D2RIP is improvetadchatically according to the previous

implement of D?RIP. In the previous implementatitme slot size was 3 ms and a node
could send messages up to a size of 150 Byte. Eanger D2RIP supports an effective RT

75

bandwidth of 0.4 Mbit/s. As a result, the efficignof Ethernet bandwidth usage is
increasedlOx timesaccording to earlier implementation.

The implementation of D2RIP is based on error-itemmunication. D2RIP assumes that
no faults occur during its operation. In case of R&iCket loss, the operation of D2RIP will
get stuck. Therefore, a new layer plane that we thal Dependability PlangDP) with
interfaces to the application layer, Interface Lay@oordination Layer and the shared
medium broadcast network is currently under develam as a part of a Ph.D. thesis work
[63]. There is a study on dependability plane thatizes a new distributed rollback method
with synchronized check pointing strategy. DP isremted to our layers CL and IL. A
dependability header is piggybacked on messagetoaaldcopies of the state variables are
stored with synchronized check pointing strategy.akceptance test is occurred at the end
of each transmission slot. A rollback messageaissmitted in the first transmission slot of
a node that is certain about a fault or failureuonce. There are some conditions to make
DP work successfully. There should be at least @adn the network and they should
obtain a transmission slot regularly. Moreoveryeéhghould be no faults at the beginning of
the network operation and no fault should be hapgdrefore the previous fault situation is
resolved.

The preliminary version of DP is implemented anggnated to the D2RIP implementation
in this thesis [64].

Although D?RIP is implemented for shared-mediumedgtiet, its operation is suitable for

wireless protocols such as Wireless Hart (IEEE BOR.which is a possible direction for
future work.

76

REFERENCES

[1] M. Felser, Real-time Ethernet for automation agians,in: R. Zurawski (Ed.
Embedded Systems Handbook, Second Edition: NetwoHmbeddedded Systet
CRC Press, Inc., Boca Raton, FL, USA, 2009, ppl1224-20, 2nd edition.

[2] T. Sauter and A. Treytl, Communication systems msnéegral part of distributed
automation systems, in: H. Kiihnle (Ed.), DistrilslManufacturing, Springer Londc
2010, pp. 93-111.

[3]1J. Moyne and D. Tilbury, The emergence of induktcantrol networks fc
manufacturing control, diagnostics, and safety dBtaceedings of theEEE 95 (1
(2007) 29-47.

[4] P. Neumann, Communication in industrial automatiomhat is going on?, Contr
Engineering Practice 15 (2007) 1332-1347.

[5] L. Seno, F. Tramarin, and S. Vitturi, Performande irdustrial communicatic
systems: Real applitan contexts, Industrial Electronics Magazine, EE& (2) (2012
27-37.

[6] J..D. Decotignie, The many faces of industrial Ethéfipast and present], Industi
Electronics Magazine, IEEE 3 (1) (2009) 8-19.

[7] P. Gaj, J. Jasperneite, and M. Felseom@uter communication within industr
distributed environment —a survey, Industrial Informatics, IEEE Transactiams ¢
(1) (2013) 182-189.

[8] K. C. Lee and S. Lee, Performance evaluation otched Ethernet for realtim
Computer Standards and Interfaces 24 (5) (20023423

[9] P. Pedreiras, P. Gai, L. Almeida, and G. ButtaBIl-Ethernet: a flexible redime
communication protocol that supports dynamic Qo$iagament on Ethernbasel
systems, Industrial Informatics, IEEE Transactiondl (3) (2005) 162-172.

[10] IEEE 1588 standard, http://ieee1588.nist.gov/,Vested on August 2013.

[11] D. E. Kaynar, N. Lynch, R. Segala, and F. Vaandrabee theory of timed 1/O, Tec
Rep. MIT-LCS-TR-917, MIT Laboratory for Computer i&uce, Cambridge, M/
(2003).

77

[12] K. Schmidt and E. Schmidt, Distributed réiahe protocols for industrial conti
systems: Framework and examples, Parallel and iRistd Systems, IEE
Transactions on 23 (10) (2012) 1856—-1866.

[13] Ahmet Korhan Gozcu, Implementation and evaluatiba eynchronous timslottec
medium access protocol for networked industrial edaded systems, M.S. The
Defense date: September 2011.

[14] Ulag Turan, Implementing and evaluating the Coordimatibayer and time-
synchronizationof a new protocol for industrial communication netks, M.S
Thesis, Defense date: September 2011.

[15] A. K. GOzci, U. Turan, E. G. Schmidt, and K. Schim®lU Paper: Dinamik Datik
Gergcek Zamanli Endustriyeliletisim Protokolu (D2GEP) Gergelgirimi-The
implementation of Dynamic Distributed Real time uisttial communication Protoc
(D2RIP), IEEE 20. Sinydkleme velletisim Uygulamalari Kurultayi, 2012.

[16] S. Vitturi, On the use of Ethernet at low level fattory communication systen
Computer Standards and Interfaces 23 (4) (20013267

[17] D. Nesic, A. Teel, and D. Carnevale, Explicit cortgtion of the sampling period
emulation of controllers for nonlinear samplata systems, Automatic Control, IE
Transactions on 54 (3) (2009) 619-624.

[18] K. Schmidt, E. Schmidt, and J. Zaddach, A shanedium communicatic
architecture for distributed discrete event systen@ontrol & Automatior
Mediterranean Conference on (2007) 1856—-1866.

[19] K. Schmidt, E. Schmidt, and J. Zaddach, Sgferation of distributed discrete ev
controllers: A networked implementation with réiahe guarantees, in: IFAC Wol
Congress, 2008, pp. 4126—4131.

[20] J.-D. Decotignie, Ethernet-based réale and industrial communications, Proceed
of the IEEE 93 (6) (2005) 1102-1117.

[21] E. Schemm, Sercos to link with Ethernet for itsdtgeneration, Computing & Cont
Engineering Journal 15 (2) (2004) 30-33.

[22] Real-time Ethernet: SERCOS Ill: Proposal for a miplavailable spedication for
real-time Ethernet, Doc. IEC 65C/358/NP (2004).

[23] Real-time Ethernet: Profinet 10: Proposal for a jmljphvailable specification for real-
time Ethernet, Doc. IEC 65C/359/NP (2004).

78

[24] D. Jansen and H. Buttner, Real-time Ethernet tlief&XAT solution,Computing &
Control Engineering Journal 15 (1) (2004) 16-21.

[25] Realiime Ethernet: Ethernet control automation techgwlBtherCAT: Proposal for
publicly available specification for real-time Ethet, Doc. IEC 65C/355/NP (2004).

[26] Schneider automation -modbus messaging on TCP/IP implementation g
http://www.modbus.org/, last visited on August 2013

[27] S.-K. Kweon and K. Shin, Statistical reake communication over Ethernet, Par
and Distributed Systems, IEEE Transactions on 142(303) 322—-335.

[28] Ethernet/IP library, http://www.odva.org/, lastitésl on August 2013.

[29] Realtime Ethernet: Ethernet/IP with time synchronizati®’roposal for a public
available specification for real-time Ethernet, D&C 65C/361/NP (2004).

[30] L. Liu and G. Frey, Simulation approach for evalugtresponse times in network
automation systems, Emerging Technologies & Faddotpmation, IEEE Conferen
on (2007) 1061-1068.

[31] J.-L. Scharbarg and C. Fraboul, Simulation for @dad delays distribution on
switched Ethernet, Emerging Technologies & Factayomation, IEEE Conferen
on (2007) 1092-1099.

[32] X. Fan, M. Jonsson, and J. Jonsson, Guaranteedimsatommunication in packet-
switched networks with FCFS queuing, Comput. Né&i8v(3) (2009) 400-417.

[33] K. Schmidt and E. Schmidt, A longest-path problem évaluating the worstase
packet delay of switched Ethernet, in: Industrimhiedded Systems, Internatic
Symposium on, 2010, pp. 205-208.

[34] R. Moraes et al., Enforcing the timing behaviorreél-time stations in legacy bus-
based industrial Ethernet networks, Computer Stalsdand Interfaces 33 (3) (20.
249-261.

[35] G. Cena, L. Seno, A. Valenzano, and S. Vitturi,féterance analysis of Etheri
powelink networks for distributed control and autonoati systems, Compui

Standards and Interfaces 31 (3) (2009) 566-572.

[36] Realtime Ethernet: EPA (Ethernet for plant automatioRjoposal for a public
available specification for real-time Ethernet, DiaasC 65C/357/NP (2004).

[37] Z. Wei, X. Aidong, and S. Yan, Theory and implenagioin of realtime testing i
EPA, in: Mechatronics and Automation, Inter. Coefere on, 2010, pp. 778-782.

79

[38] Real-time Ethernet: EPL (Ethernet powerlink): Prsgdofor a publicly availabl
specification for real-time Ethernet, Doc. IEC 6585&/NP (2004).

[39] S. Vitturi, L. Peretti, L. Seno, M. Zigliotto, an@. Zunino, Reatime Etherne
networks for motion control, Computer Standards bmdrfaces 33 (5) (2011) 465—
476.

[40] Real-time Ethernet: TCnet (Tim@rtical Control Network): Proposal for a publi
available specification for real-time Ethernet, D&C 65C/353/NP (2004).

[41] J. C. Eidson, Measurement, Control, and Commuioicdtising IEEE 1588, Spring:
2006.

[42] Real-Time Linux, http://en.wikipedia.org/wiki/RTLirx/, last visited on August 2013.

[43] Open Source, http://wikipedia.org/wiki/Free_and_rom®urce_software/, last visit
on August 2013.

[44] Lubuntu, http://lubuntu.net/, last visited on Aug@613.
[45] Usb Image Tool, http://www.alexpage.de/usb-imagstttast visited on August 2013.
[46] The Linux Kernel Archives, http://www.kernel.orggst visited on August 2013.

[47] K. Erwinski, M. Paprocki, L. Grzesiak, K. Karwowskind A.Wawrzak, Applicatiol
of Ethernet Powerlink for communication in a LInW&TAlI open CNC syster
Industrial Electronics, IEEE Transactions on 60(£)13) 628—636.

[48] Intel €1000e Driver ReadV
http://downloadmirror.intel.com/22603/eng/README, thast visited on August 2013.

[49] Time keeping in Virtual Machine
http://www.vmware.com/files/pdf/techpaper/Timekeapin-VirtualMachines.pdf,
last visited on August 2013.

[50] D. W. Allan, Precision oscillators: Dependencerefijiency on temperature, hutity
and pressure, in Proceedings of the 1992 IEEE ErexyuControl Symposium, 19¢
report of Working Group 3 of the IEEE SCC27 Comaswtt

[51] R. Cochran and C. Marinescu, Design and implemientatf a ptp clock infrastructu
for the linux kernel, ifPrecision Clock Synchronization for Measurementt@dmanc
Communication (ISPCS), 2010 International IEEE Sgsmwpm on, Sep. 2Dct. 1
2010, pp. 116 —-121.

80

[52] R. Cochran, C. Marinescu, and C. Riesch, Synchirmithe Linux System Time tc
PTP Hardware Clock.

[53] The Linux PTP project, http://linuxptp.sourcefory/, last visited on August 2013.

[54] Intel 82574] Gigabit Ethernet Controller, http:Kamtel.com/products/32209/Intel-
82574L-Gigabit-Ethernet-Controller/, last visited August 2013.

[55] Intel 82574l Gigabit Ethernet Controller drivertght/sourceforge.net/projects/e10(
last visited on August 2013.

[56] Ethtool, https://www.kernel.org/pub/software/netiwethtool/, last visited on Augt
2013.

[57] libFAUDES, http://www.rt.eei.unerlangen.de/FGdes/faudes/, last visited on At
2013.

[58] Cyclictest, https://rt.wiki.kernel.org/index.php/€ligtest/, last visited on August 2013.
[59] Semih Bilgen, Confidence of Simulation Results,tluez Note, METU.

[60] P. Loschmidt, R. Exel, A. Nagy, and G. Gaderer, ltsnof synchronization accure
using hardware support in IEEE 1588, Precision Kldgynchronization fc
Measurement, Control and Communication, IEEE Iratomal Symposium on, 20(
pp. 12-16.

[61] M.H. de Queiroz, J.E.R. Cury, and W.M. Wonham, MultitagkSupervisory Contr
of DiscreteEvent Systems, J. Discrete Event Dynamic Systemseory an
Applications, vol. 15, pp. 375-395.

[62] K. Schmidt, M. de Queiroz, and J. Cury, Hierarcharad Decentraed Multitasking
Control of Discrete Event Systems, Proc. IEEE 4Btinf. Decision and Control, [
5936-5941, Dec. 2007.

[63] Y.B. Kartal, Dependable Framework Design for Dimited RealFime Networl
Protocols Running On Shared Medium: Desi§imulation and Verification, Ph
Thesis, METU Sept. 2013, Under Preparation.

[64] O. B. Sezer, Implementation and Evaluation of thep&nhdability Plane for tl

Dynamic Distributed Dependable Real Time Industiiedtocol (D3RIP), M.S. Thes
Defense date: September 2013.

81

