
 
 

IMPLEMENTATION AND EVALUATION OF THE 
DYNAMIC DISTRIBUTED REAL TIME INDUSTRIAL PROTOCOL 

(D²RIP) 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 
 

ADEM KAYA 
 
 
 
 
 
 
 
 
 
 

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE  
IN 

ELECTRICAL AND ELECTRONICS ENGINEERING 
 
 
 
 
 
 
 
 
 
 

SEPTEMBER 2013 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Approval of the thesis: 
 
 

IMPLEMENTATION AND EVALUATION OF THE 
DYNAMIC DISTRIBUTED REAL TIME INDUSTRIAL PROTOCOL 

(D²RIP) 
 

 
submitted by ADEM KAYA in partial fulfillment of the requirements for the degree of 
Master of Science in Electrical and Electronics Engineering Department, Middle East 
Technical University by, 
 
Prof. Dr. Canan Özgen 
Dean, Graduate School of Natural and Applied Sciences 
 
Prof. Dr. Gönül Turhan Sayan 
Head of Department, Electrical and Electronics Engineering 

 
Assoc. Prof. Dr. Şenan Ece Schmidt 
Supervisor, Electrical and Electronics Engineering Dept., METU 
 
Assoc. Prof. Dr. Klaus Werner Schmidt 
Co-Supervisor, Mechatronics Engineering Dept., Çankaya University 
 
 
 
Examining Committee Members: 
 
Prof. Dr. Semih Bilgen 
Electrical and Electronics Engineering Dept., METU 
 
Assoc. Prof. Dr. Şenan Ece Schmidt  
Electrical and Electronics Engineering Dept., METU 
 
Assoc. Prof. Dr. Cüneyt Bazlamaçcı  
Electrical and Electronics Engineering Dept., METU 
 
Assoc. Prof. Dr. Halit Oğuztüzün  
Computer Engineering Dept., METU 
 
Yusuf Bora Kartal (M.Sc.)  
Engineer, ASELSAN 
 
 
       Date:             02.09.2013     



 

iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare that, 
as required by these rules and conduct, I have fully cited and referenced all material 
and results that are not original to this work. 
 
 
 
 
 

Name, Last Name : Adem KAYA 
 
 
 

Signature     : 
 
 
 
 
 



v 

ABSTRACT 

IMPLEMENTATION AND EVALUATION OF THE 
DYNAMIC DISTRIBUTED REAL TIME INDUSTRIAL PROTOCOL 

(D²RIP) 
 
 

Kaya, Adem 
M. S., Department of Electrical and Electronics Engineering  
Supervisor       : Assoc. Prof. Dr. Şenan Ece Schmidt 
Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt 

 
September 2013, 81 pages 

 
 
The contemporary large-scale and complex industrial control systems such as 
manufacturing systems, power plants or chemical processes are realized as distributed 
systems. Since different controller nodes are usually physically distributed, their 
coordination and information exchange is commonly realized via industrial communication 
networks (ICNs). In the last decade, there is an ongoing research effort in both academic 
and industrial fields to employ Ethernet for industrial communications due to its wide 
acceptance and use in home and office networks. Although the conventional Ethernet 
technology is low-cost and very high-speed its nondeterministic behavior does not support 
real-time traffic. 
 
In this thesis we present the design, implementation and evaluation of the novel ICN 
protocol D²RIP (Dynamic Distributed Real-time Industrial Communication Protocol) that 
was proposed in previous work. D²RIP is a fully distributed protocol over shared-medium 
Ethernet with COTS (Commercial Off-The-Shelf) hardware and provides real-time 
message delivery guarantees, supports non-real-time traffic. As a distinctive feature in 
comparison to other ICNs over Ethernet that only support static allocation of real-time and 
non-real-time bandwidth, D²RIP allows for dynamic allocation of the network capacity 
among the participating nodes by exploiting knowledge about the deterministic system 
behavior of industrial systems. 
 
 
 
Keywords: Real-time Ethernet, Industrial Communication Protocols, Shared Medium, 
Dynamic Bandwidth Allocation   



vi 

ÖZ 

DİNAM İK DAĞITILMI Ş GERÇEK-ZAMANLI ENDÜSTRİYEL PROTOKOLÜN 
(D²GEP) 

 GERÇEKLEŞTİRİLMESİ VE DEĞERLENDİRİLMESİ  
 
 

Kaya, Adem 
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 
Tez Yöneticisi           : Doç. Dr. Şenan Ece Schmidt 
Ortak Tez Yöneticisi : Doç. Dr. Klaus Werner Schmidt 

 
Eylül 2013, 81 sayfa 

 
 
Günümüz otomasyon sistemlerinde kontrol uygulamaları pek çok sayısal cihaz üzerinde 
dağıtılmış gömülü sistemler olarak gerçekleştirilmektedir. Bu cihazların koordinasyonu ve 
haberleşmesi endüstriyel haberleşme ağları üzerinden yapılmaktadır. Günümüzde ev ve ofis 
ağlarında çok yaygın olarak kullanılan fakat gerçek zamanlı haberleşmeyi desteklemeyen 
standart Ethernet teknolojisinin, endüstriyel haberleşme ağlarında kullanılması önemli bir 
araştırma konusudur. 
 
Bu tezde, iki katmanlı gerçek zamanlı endüstriyel haberleşme mimarisinin, D²RIP 
(Dynamic Distributed Real-time Industrial Communication Protocol) (Dinamik Dağıtık 
Gerçek Zamanlı Endüstriyel İletişim Protokolü (D²GEP)) tasarımı, uygulaması ve 
geliştirilmesi anlatılacaktır. D²GEP mimarisi tamimiyle paylaşımlı ortam Ethernet 
haberleşmesi üzerine kurulmuş olup, gerçek zamanlı mesaj iletimini sağladığı gibi gerçek 
olmayan mesaj trafiğini de desteklemektedir. Bu mimaride ağ kaynakları anlık gerçek 
zamanlı haberleşme ihtiyaçlarına göre dinamik bir biçimde düğümlere dağıtılmakta ve artan 
ağ kapasitesi gerçek zamanlı olmayan trafik için kullanılmaktadır. 
 
 
 
Anahtar Kelimeler: Gerçek Zamanlı Ethernet, Endüstriyel Haberleşme Protokolü, 
Paylaşımlı Ortam, Dinamik Bant Genişliği Ayrımı 
 
 



vii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

To My Parents 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



viii 

ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Şenan Ece 
Schmidt and my co-supervisor Assoc. Prof. Dr. Klaus Werner Schmidt for their guidance, 
advice, criticism, encouragement and insight throughout the completion of the thesis. 
Besides, I like to thank them providing me the opportunity to work on such an important 
issue. 
 
I would also like to thank TÜBİTAK for their financial support during my graduate 
education. 
 
I would like to special reference for my employer, ASELSAN for encouraging me to 
complete my studies in the university. 
 
Finally, I am grateful to my parents for their continuous support and encouragements. 

 

  



ix 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................... v 

ÖZ ......................................................................................................................................... vi 

ACKNOWLEDGMENTS .................................................................................................. viii 

TABLE OF CONTENTS ...................................................................................................... ix 

LIST OF TABLES ................................................................................................................ xi 

LIST OF FIGURES ............................................................................................................. xii 

LIST OF ABBREVIATIONS AND ACRONYMS ............................................................ xiii 

CHAPTERS 

1   INTRODUCTION ....................................................................................................... 1 

2   ETHERNET-BASED INDUSTRIAL COMMUNICATION: REQUIREMENTS 
AND RELATED WORK ................................................................................................. 5 

2.1   Requirements ..................................................................................................... 6 

2.1.1   Real-time Delivery of Data ........................................................................ 6 

2.1.2   Synchronization Support ........................................................................... 6 

2.1.3   Non-real-time Traffic Support ................................................................... 7 

2.1.4   Compatibility ............................................................................................. 7 

2.1.5   Configurability and Extendibility .............................................................. 7 

2.1.6   Dynamic Allocation of RT bandwidth ....................................................... 7 

2.2   Real-time Ethernet Implementations ................................................................. 8 

2.2.1   Switched Ethernet ...................................................................................... 8 

2.2.2   Shared Medium (IEEE 802.3) with an Additional Medium Access Layer 9 

2.2.3   Synchronization ....................................................................................... 10 

2.3   Comparison and Discussion ............................................................................ 11 

3   D²RIP PROTOCOL STACK ..................................................................................... 13 

3.1   Protocol Overview ........................................................................................... 13 

3.2   Distributed Synchronization Protocol .............................................................. 14 

3.3   Coordination Layer Data Structure .................................................................. 14 

3.4   Interface Layer Data Structure ......................................................................... 16 

3.5   Sequential Protocol Operation in each Time Slot ............................................ 18 



x 

3.6   Performance Parameters of D²RIP .................................................................. 21 

3.7   Application Example ....................................................................................... 23 

4   D²RIP IMPLEMENTATION .................................................................................... 27 

4.1   Implementation Environment .......................................................................... 27 

4.1.1   Real-Time Operating System................................................................... 27 

4.1.2   Choosing an Operating System................................................................ 27 

4.1.3   Choosing a Disk for Installation .............................................................. 28 

4.1.4   Installation of Linux ................................................................................ 29 

4.1.5   Configuration and Installation of Real-Time Kernel ............................... 30 

4.1.6   Tweaking the Linux Operating System ................................................... 31 

4.2   Synchronization with IEEE 1588 .................................................................... 34 

4.2.1   Timekeeping Basics ................................................................................. 34 

4.2.2   Clock Source in Linux ............................................................................. 34 

4.2.3   Precision Time Protocol (PTP) ................................................................ 35 

4.2.4   Requirements of the Hardware Time Stamping ....................................... 39 

4.3   D²RIP IO plug-in for libFAUDES ................................................................... 40 

4.4   Time Slots, Encapsulation and Data Structure ................................................ 43 

4.5   Fragmentation and Reassembly of nRT Frames .............................................. 45 

4.6   Initialization of D²RIP ..................................................................................... 48 

4.7   Coordination Layer Implementation ................................................................ 48 

4.8   Interface Layer Implementation ...................................................................... 51 

4.9   Changes in D²RIP Protocol.............................................................................. 56 

5   EXPERIMENTAL EVALUATION OF D²RIP ........................................................ 65 

5.1   Experimental Setup .......................................................................................... 65 

5.2   Performance Analysis of RTOS ...................................................................... 67 

5.3   Timing Analysis of D²RIP ............................................................................... 68 

5.4   Performance Experiments and Results ............................................................ 70 

5.4.1   Experiment 1: Detailed investigation for RT traffic service of D²RIP .... 71 

5.4.2   Experiment 2: Varying RT Traffic Input ................................................. 72 

5.4.3   Experiment 3: Support for nRT Traffic in D²RIP .................................... 73 

6   CONCLUSIONS AND FUTURE WORKS .............................................................. 75 

REFERENCES .................................................................................................................... 77 

 

 



xi 

LIST OF TABLES 

TABLES 

 

Table 1   Comparison of the Industrial Ethernet Protocols .................................................. 11 

Table 2   Performance Parameters of D²RIP ........................................................................ 21 

Table 3   Actions of the Workcell Example ......................................................................... 24 

Table 4   Communication Requests for the Workcell Example ........................................... 25 

Table 5   USB-Disk Drawbacks and Solutions .................................................................... 29 

Table 6   Changes in Hardware ............................................................................................ 56 

Table 7   Changes in Operating System and Kernel ............................................................ 58 

Table 8   Changes in Ethernet Driver and Synchronization Application ............................. 59 

Table 9   Changes in Interface Layer (IL) ............................................................................ 60 

Table 10  Changes in Coordination Layer (CL) .................................................................. 62 

Table 11  Changes in Simfaudes Plug-In ............................................................................. 63 

Table 12  Changes in Non Real-Time Application .............................................................. 64 

Table 13  Changes in Real-Time Simulator Application ..................................................... 64 

Table 14  IEEE 1588 Accuracy Results. .............................................................................. 69 

Table 15  Timings of Actions Taken in an RT Slot ............................................................. 69 

Table 16  End-to-end Delays of RT Messages of the Workcell Example ........................... 71 

Table 17  Delivery-time Measurements with Additional RT Traffic .................................. 72 

Table 18  nRT Traffic with 40 Byte Message Length ......................................................... 73 

Table 19  nRT Traffic with 576 Byte Message Length ....................................................... 74 

Table 20  nRT Traffic with 1500 Byte Message Length ..................................................... 74 

 

 

 

 

 



xii 

LIST OF FIGURES 

FIGURES 

 

Figure 1   The Architecture of the D²RIP ............................................................................ 14 

Figure 2   Message Transmission of the D²RIP ................................................................... 19 

Figure 3   Sequential Actions for the RT Message Transmission in a Time Slot ................ 20 

Figure 4   Sequential Actions for the nRT Message Transmission in a Time Slot .............. 20 

Figure 5   Workcell: Robot, Conveyor and a Painting Device ............................................. 23 

Figure 6   Timing Diagram for the PLC Communication of the Example Workcell ........... 24 

Figure 7   Wago-I/O-IPC ..................................................................................................... 28 

Figure 8   Linux Kernel Configuration ................................................................................ 31 

Figure 9   IEEE 1588 Synchronization ................................................................................ 36 

Figure 10  Possible Timestamp Locations ........................................................................... 37 

Figure 11  Synchronizing the System Clock to the PTP Clock ........................................... 38 

Figure 12  D²RIP IO Plug-in Flowchart ............................................................................... 42 

Figure 13  High Precision Sleep with Partially Sleep and Busywait ................................... 43 

Figure 14  RT Encapsulation in D²RIP ................................................................................ 44 

Figure 15  nRT Encapsulation in D²RIP .............................................................................. 45 

Figure 16  nRT Fragment Encapsulation in D²RIP .............................................................. 45 

Figure 17  Fragmentation Flowchart .................................................................................... 46 

Figure 18  Reassembly Flowchart ........................................................................................ 47 

Figure 19  CL Thread Flowchart ......................................................................................... 50 

Figure 20  IL Module Flowchart .......................................................................................... 53 

Figure 21  Transmission Flowchart ..................................................................................... 54 

Figure 22  Reception Flowchart ........................................................................................... 55 

Figure 23  Experiment Set-up .............................................................................................. 66 

Figure 24  Experiment Set-up with WAGO’s ...................................................................... 66 

Figure 25  Architecture of the Controller Node and the Plant ............................................. 67 

 

 



xiii 

LIST OF ABBREVIATIONS AND ACRONYMS 

AL  Application Layer 

API  Application Programming Interface 

BEB  Binary Exponential Back Off 

C  Conveyor 

CIM  Computer Integrated Manufacturing 

CIP  Common Industrial Protocol 

CL  Coordination Layer 

COTS  Commercial Off-The-Shelf 

CRC  Cyclic Redundancy Check 

CSMA/CD  Carrier Sense Multiple Access with Collision Detection 

CSME  Communication Schedule Management Entity 

D²RIP  Dynamic Distributed Real-time Industrial Communication Protocol 

DT  Deadline Time 

DP  Dependability Plane 

EPA  Ethernet for Plant Automation 

EPL  Ethernet Powerlink 

ET  Eligibility Time 

FTP  File Transfer Protocol 

HPET  High Precision Event Timer 

HTTP  Hyper-Text Transfer Protocol 

ICN  Industrial Communication Networks 

IL  Interface Layer 

IOCTL  Input/Output Control 

IRQ  Interrupt Request 

MAC  Medium Access Control 

MII  Medium Independent Interface 

NIC  Network Interface Card 

NTP  Network Time Protocol 

nRT  Non-Real-Time 

OS  Operating System 



xiv 

PC  Personal Computer 

PD  Painting Device 

PI  Proportional-Integral 

PHC  PTP Hardware Clock 

PLC  Programmable Logic Controller 

PPS  Pulse Per Second 

PTP  Precision-Time Protocol 

R  Robot 

RT  Real-Time 

RTC  Real Time Clock 

RTOS  Real-Time Operating System 

SM  Shared Medium 

TCNet  Time Critical Control Network 

TSC  Time Stamp Counter 

TDMA  Time Division Multiple Access 

VTPE  The Virtual Token Passing



1 

CHAPTER 1  
 

INTRODUCTION 

The devices and components of contemporary automation and manufacturing systems are 
computer controlled to realize complicated tasks. These tasks are implemented as 
distributed applications where the participating devices are required to coordinate their 
operation. To this end, Industrial Communication Networks (ICNs) are employed to 
transport the messages that are generated by industrial applications. Due to the specific 
features of the industrial applications, ICNs have to fulfill various requirements [1] [2]. 
 
First and foremost, the timely delivery of messages has to be guaranteed. In particular, real-
time (RT) messages that are either periodic (e.g., from position control) or sporadic (e.g., 
from limit switches) have to be delivered with small delays. In addition to RT messages, 
non-real-time (nRT) messages related to time-uncritical decisions of the controllers [3] and 
data communications for diagnosis or maintenance [4] [5] should also be delivered. Second, 
it has to be respected that the equipment and their arrangements such as cabling in the 
industrial environment are often designed to be used over a number of years. Hence, 
efficient use of resources is important for the ICN to enable the adoption of possible new 
applications and the extension of the system without replacing the network infrastructure. 
Third, the support of RT communication as well as the time stamping of diagnostic 
messages requires accurate synchronization among distributed system components [1]. 
Finally, the compatibility with COTS Ethernet hardware is highly desirable. 
 
A number of different ICN standards are developed over the years. Initially these standards 
were proprietary and specific to the application which lacked compatibility among each 
other. This both hindered integrating different standards to construct large-scale 
heterogeneous systems and the continuous development of each proprietary standard [6]. 
The widely accepted solution to these problems is employing Ethernet which is the de-facto 
standard for home and office networks [7]. Ethernet has low-cost hardware and provides a 
raw bandwidth of 10/100/1000Mbps. However, the medium access of conventional shared 
medium Ethernet (IEEE 802.3) is nondeterministic which does not comply with the 
operation requirements of industrial applications. Hence, it is an important research 
problem to employ Ethernet as an ICN. 
 
The main motivation for Ethernet-based ICN is its wide adoption and low cost hardware. 
Hence, altering the Ethernet operation and the hardware to achieve the desired determinism 
is not a viable solution [1].  Another approach is traffic shaping with the aim of improving 
the average message delivery times. However, most control applications require hard worst-
case real-time guarantees instead of probabilistic bounds. The conventional Ethernet is a 



2 

shared medium protocol with a probabilistic collision resolution mechanism. Switched 
Ethernet eliminates the collisions by point to point communication [8]. However, in 
addition to the requirement of re-cabling and installing switches, the messages that are 
transmitted at the same time are queued in buffers and certain buffer management 
capabilities are required to achieve real-time delivery [1]. Few protocols support on-
demand resource allocation to some degree by token rotation or master slave arrangements 
[9]. 
 
In this thesis, we review the design, implementation and evaluation of the novel Ethernet-
based ICN protocol D²RIP – Dynamic Distributed Real-time Industrial Communication 
Protocol. D²RIP is developed to be fully distributed with dynamic bandwidth allocation and 
operates on conventional shared-medium Ethernet with COTS (Commercial Off-The-Shelf) 
Ethernet hardware. Both RT traffic and nRT traffic are supported. Regarding the protocol 
design, D²RIP is a two-layer protocol stack on top of shared-medium Ethernet. Its lower 
Interface Layer (IL) implements a time-slotted medium access based on accurate time 
synchronization. In this work, the IEEE 1588 precision clock synchronization protocol for 
networked measurement and control systems [10] is used for this purpose. In order to avoid 
collisions, it is further required to allocate each time slot to a unique node. This task is 
achieved by our upper Coordination Layer (CL). The CL of D²RIP dynamically determines 
the node that is allowed to transmit in each current slot by a distributed computation on all 
nodes. Hereby, information from the control application is used in order to dynamically 
adjust the supplied bandwidth depending on the respective communication requirements. 
 
Although the formulation of D²RIP in the framework of timed input/output automata [11] 
in D²RIP’s earlier work [12] ensures collision free transmission on shared-medium Ethernet 
and the requirements of ICN as discussed above, it remains to evaluate the performance of 
D²RIP in a practical application. In this respect, the contributions of this thesis can be listed 
as follows: 
 

� Determining appropriate data structures for the implementation of D²RIP according 
to the general formal framework in [12]. Here we would like to note that D²RIP is 
one realization and it is possible to develop possible other protocol stacks 
according to the framework. 

 
� Implementing the two layer D²RIP stack on COTS Ethernet hardware and an open 

source real-time operating system. We provide the implementation details 
including the time-slotted operation, giving selective medium access to RT and 
nRT traffic. Our description includes a method for fragmentation and reassembly of 
long nRT packets. 

 
� We present solutions for the challenges we encountered in achieving precise real-

time response on a platform that is not custom designed. Our D²RIP 
implementation is entirely portable and works on PCs as well as embedded 
industrial controller devices such as programmable logic controllers (PLCs). 



3 

� A comprehensive experimental evaluation of D²RIP. The experiments are run on an 
entirely realistic hardware setup with four controller nodes and a simulated 
manufacturing cell. Our findings show that D²RIP supports an effective RT 
bandwidth of 16.1 Mbit/s which is similar to comparable protocols. However, 
D²RIP uses this effective bandwidth more efficiently due to the dynamic bandwidth 
allocation. In addition, we obtain the average of clock synchronization accuracies 
in the order of 1.5 µs and max support delivery times below 5 ms. Regarding nRT 
traffic, we observe that short packets are not efficiently supported by D²RIP due to 
the time-slotted medium access. 
 

Earlier implementations of D²RIP were implemented and presented in [13] [14] [15]. This 
thesis benefits from the experiences gained during these studies and re-implements D²RIP.  

 
The remainder of this thesis is organized as follows. We present an overview of Ethernet 
based ICN protocols together with the requirement definitions and related previous work in 
Chapter 2. We then introduce the D²RIP stack with its data structure that is derived from 
the framework by [12] in Chapter 3. Our representation includes quantitative metrics for the 
protocol evaluation and a practical control application example in order to demonstrate the 
performance of D²RIP according to the defined metrics. Chapter 4 gives essential 
implementation details of our D²RIP implementation and shows the differences between 
current D²RIP’s work with the previous implementation. A comprehensive experimental 
evaluation of D²RIP in a real hardware set-up with 4 controller nodes and a plant simulator 
is performed in Chapter 5. Finally our conclusions and directions for future work are 
discussed in Chapter 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 

 
 
 
 
 



5 

CHAPTER 2  
 

ETHERNET-BASED INDUSTRIAL 
COMMUNICATION: REQUIREMENTS AND 

RELATED WORK 

Computer Integrated Manufacturing (CIM) systems implement control systems as a 
distributed computer application running on a number of intelligent nodes (sensors, 
actuators, programmable logic controllers – PLCs, industrial PCs, etc.) which are equipped 
with microprocessors and exchange information over an industrial communication network. 
 
Different types of communications such as device level communications, system level 
communications or diagnostic/higher level communications take place in CIM systems [3]. 
Device level communication involves sensors and actuators that are attached at the 
hardware level of a CIM. Sensors periodically generate sampled data and usually require 
data transmission before a certain deadline. Similarly, device level controllers send 
computed control commands to the actuators while fulfilling real-time constraints. In 
addition, system level controllers exchange data among each other to coordinate device 
level components. This communication is also real-time and often event-triggered. 
Furthermore, diagnostic data and relevant system management information is carried over 
the industrial communication network mostly as non-real-time traffic. The amount of 
communicated data can be large and interface to other networks such as other plants or 
even the Internet for remote applications can be required at this level. 
 
The most commonly  used technology  to achieve an overall industrial  communication 
architecture across all system levels is Ethernet which constitutes the dominating network 
technology in home and office environments because of its high-speed, simplicity  and low 
cost. The first Ethernet standard was issued as IEEE 802.3 in 1985 [6] to run on shared 
medium where simultaneous transmissions result in collisions and loss of data. The 
network nodes encapsulate their data payloads in Ethernet frames and listen to the channel 
before starting the transmission to decrease the number of collisions (Carrier Sense 
Multiple Access with Collision Detection (CSMA/CD)). However, collisions are still 
possible because of the propagation delay on the channel between the start of a frame and 
the time it is sensed by other nodes. In such cases, the lost frames are retransmitted after a 
time interval of random length. Although this operation is very suitable for home and office 
applications, where stringent timing constraints are not essential, it does not allow for the 
deterministic timing required in industrial applications [6]. Hence, the literature provides a 
significant number of studies that are concerned with equipping standard Ethernet with 
real-time features so as to enable its deployment for industrial communications [16] [1] [7]. 



6 

In this chapter, we give a brief overview of the efforts that are most related to the industrial 
Ethernet protocol presented in this thesis. To this end, Section 2.1 points out basic 
requirements for industrial communication and Section 2.2 describes several realizations of 
industrial Ethernet protocols. A discussion of the existing literature in relation to our 
proposed protocol is given in Section 2.3. 
 

2.1 Requirements 

The most important requirements and performance indicators for real-time industrial 
Ethernet comprise the real-time (RT) delivery of data, support of precise time 
synchronization, support of non-real-time (nRT) traffic, compatibility to standard hardware 
and configurability and extendibility [1]. 
 

2.1.1 Real-time Delivery of Data 

The delivery time of a message is defined as the difference between the time the message is 
generated at the application layer of the sender node and the time it is received at the 
application layer of the receiver node. The timing requirements of the device level and 
supervisory control level communications as described above are application dependent. 
Applications that involve human operators such as process automation and building  control 
requires delivery times in the order of 100 ms. Process control applications such as tooling 
machine control systems with PLCs require delivery times below 10 ms. Motion control 
applications such as synchronizing several axes over a network require a delivery time less 
than 1 ms. 
 

2.1.2 Synchronization Support 

The RT response from an industrial network requires a synchronization mechanism to 
establish a common notion of time among the distributed nodes of the network. Time 
synchronization accuracy is the maximum deviation between any two node clocks and non-
time-based synchronization accuracy is the maximum jitter of the cyclic behavior of any 
two nodes [1]. The time synchronization accuracy affects the guard times of the sent 
messages and hence the delivery time. Supporting a large number of nodes or demanding 
applications such as motion control requires sub-microsecond accuracy. While some 
industrial network implementations rely on their own synchronization mechanisms, others 
adopt standardized protocols. We provide an overview of the synchronization in RT 
industrial communication networks in Section 2.2.3. 
 



7 

2.1.3 Non-real-time Traffic Support 

The remote management of control processes or factories over web is a desired feature for 
industrial communication. To this end, it should be possible to carry the high-level 
management and diagnostics traffic as standard HTTP web traffic or FTP file transfer using 
TCP/UDP/IP protocols. It is important to note that such nRT traffic has to be transmitted 
over the industrial communication network without any performance degradation of the RT 
traffic. 
 

2.1.4 Compatibility 

One of the most attractive features of Ethernet is its low cost hardware and software 
interface. Hence, it is important to maintain compatibility to enable real-time Ethernet 
implementations with COTS (Commercial Off-The-Shelf) components. Furthermore, 
compliance with the existing TCP/IP stack is required for enabling the use of popular 
protocols such as Hyper-Text Transfer Protocol (HTTP) or File Transfer Protocol (FTP). 
Such protocols are employed in remote management over Internet and for using Web 
servers in device engineering (HTTP) or for updating field devices via file upload (FTP). 
Compatibility is also important for supporting standard synchronization protocols such as 
IEEE 1588 [10]. 
 

2.1.5 Configurability and Extendibility 

The standards and devices in the Industrial domain are more difficult to change over time 
compared to home and office networks. Continuous backward compatibility is required 
when new devices are added to the existing system. Hence, once a protocol is deployed, it 
is expected to run for a number of years. Consequently, a RT industrial Ethernet protocol 
should allow for adding new devices and new applications. 
 

2.1.6 Dynamic Allocation of RT bandwidth 

As a recent development, the literature considers that the communication requirements of 
CIM can dynamically change, depending on the operating condition of the application [12]. 
For example, the paradigm of self-triggered control [17] allows pre-computing time instants 
for device level controllers when communication is required. It is also observed that only 
distributed controllers of currently active system components on the system level need to 
exchange information for their coordination [18] [19]. Hence, bandwidth only needs to be 
allocated to currently active system components. Consequently, it is desired that industrial 
Ethernet protocols allow for dynamically adapting the RT bandwidth allocation depending 
on the instantaneous bandwidth requirements. 
 



8 

2.2 Real-time Ethernet Implementations 

The main motivation of approaches for providing RT support on Ethernet is avoiding or 
significantly reducing collisions. Existing approaches can be grouped into four main classes 
[20] [6]. The first class is the modification of the standard Ethernet interface hardware and 
software which includes protocols such as SERCOS III [21] [22], ProfiNet [23] and 
EtherCAT  [24] [25]. While these protocols achieve high performance for a number of the 
metrics above they do not satisfy the compatibility requirement which was the main drive 
behind employing Ethernet in the industrial networking rather than proprietary protocols in 
the first place. The second class of protocols which include MOD-BUS/TCP [26] operate 
in the limits of the TCP/IP stack over standard Ethernet to achieve compatibility. Traffic 
shaping to achieve low delays on Ethernet is suggested [27]. However, such protocols 
introduce nondeterministic delays in the communication. The third class is switched 
Ethernet which abandons the shared medium altogether and the fourth class is adding a 
new software layer on top of standard Ethernet which controls the transmission of the 
traffic on the shared medium. Both of these approaches aim for collision avoidance to 
archive RT guarantees with standard Ethernet hardware. 
 

2.2.1 Switched Ethernet 

The IEEE 802.3x standard replaces shared medium communication by full-duplex switched 
Ethernet with flow control. This configuration results in the elimination of collisions and 
[8] argue by means of an example that the response of control applications does not 
significantly deviate from point to point communication under the delays of (high-speed) 
switched Ethernet. 
 
Ethernet/IP [28] [29] is realized on the standard TCP/UDP/IP protocol suite over full-
duplex switched Ethernet. Ethernet/IP implements the Common Industrial Protocol (CIP) at 
its upper layers. This protocol makes use of the virtual bridged LAN (VLAN) tags for the 
prioritization of Ethernet frames with RT data over other frames. However, the queuing of 
the frames in the switches still introduces non-deterministic delays. The operation 
correctness heavily relies on the accuracy of the device synchronization. 
 
A number of issues must be considered regarding Switched Ethernet. First of all; although 
collisions are eliminated, the medium access contention problem is now transferred to the 
queues in switches [6] [1]. Resolving this contention according to the RT constraints 
requires scheduling and prioritization capabilities in the network devices [30] [31] as 
defined in the Ethernet standards IEEE 802.1p and IEEE 802.1Q. Despite scheduling, it is 
only possible to derive conservative worst-case RT bounds [32] [33]. Furthermore, the 
precision of synchronization protocols that enable the timing of the communication 
decrease when switches are introduced in the network [6]. 

 
Switched Ethernet implies a star topology which connects multiple devices to a central 
switch. Over the course of development of industrial networks, the proprietary fieldbus 



9 

standards were designed for bus or ring topologies to reduce the cabling cost. Hence, 
implementing a switched Ethernet network requires an individual cable connecting each 
sensor/actuator/controller to a switch leading to a full re-cabling of the industrial plant [1] 
[34]. Tree topology instead of star topology is an alternative. However, tree topology 
results in cascaded switches between end nodes and the queuing delay becomes more 
prominent [35]. It is interesting to note that the reason for the hardware modifications of a 
number of Industrial Ethernet protocols is implementing a daisy chain to connect the 
devices over a bus or a ring [1]. 
 
The focus of our work is standard Ethernet based protocols that are designed to operate on 
shared medium Ethernet without requiring any switches because of the listed limitations of 
switched Ethernet and requirements for RT guarantees and compatibility.  Next, we present 
a number of protocols that are designed to operate under these conditions. 
 

2.2.2 Shared Medium (IEEE 802.3) with an Additional Medium Access Layer 

A number of protocols are proposed to avoid collisions and the subsequent random frame 
retransmissions of Ethernet’s CSMA/CD by implementing an additional layer on top of 
Ethernet. This layer forwards the messages from RT and nRT applications to the Ethernet 
MAC layer in a controlled way such that collisions are avoided and certain RT delivery 
guarantees are achieved. The literature provides different controlled medium access 
techniques for the realization of this additional layer such as Time Division Multiple 
Access (TDMA), master-slave operation or token passing [20] [6]. 
 
Ethernet for Plant Automation (EPA) [36] [37] employs TDMA which provides 
deterministic access to the medium via allocating time slots to the nodes by the added layer 
that is called Communication Schedule Management Entity (CSME). However, only the 
unique owner of each given time slot can transmit in that slot. Hence, the allocated 
bandwidth is wasted if a node does not need to transmit during its slot time or does not 
transmit at all. Such bandwidth waste becomes more significant if the time slot duration is 
long. Furthermore, redundant slot allocations are necessary for possible message 
retransmissions in case of error. 
 
On demand guaranteed message transmission instead of static allocation can be achieved 
with master-slave communications.  In this access method a selected master node polls the 
slave nodes for possible message transmission. The polling time decreases the efficiency of 
the access and this time is wasted if a polled slave node does not have any frame to 
transmit. Hence, master-slave organization is appropriate particularly for small numbers of 
nodes with regular traffic patterns. Master-slave communication comes with several 
disadvantages. Master-slave access is a centralized architecture requiring relatively high 
processing capabilities in the master node and making it a single point of failure. Moreover, 
if the processing capabilities of slave nodes are low, the communication might be slowed 
down although the available bandwidth is high. Nonetheless, the literature proposes 
different master-slave industrial Ethernet protocols. Ethernet Powerlink (EPL) [38] [35] 



10 

[39] implements an additional layer over standard Ethernet that provides master-slave 
medium access. It has a computed efficiency of 25% [6], whereby it is observed that the 
nRT traffic on EPL experiences long latencies. 
 
FTT-Ethernet [9] is a further master-slave protocol which runs with a repeating fixed size 
elementary cycle (EC). Each EC starts with a trigger message that is broadcast by the 
master node. This message both serves for synchronization of the nodes and announces the 
transmission schedule for the periodic messages from all slave nodes. Following the 
periodic message transmissions, the master node polls the slaves for possible event-
triggered transmissions. The implementation of FTT-Ethernet is carried out on the SHaRK 
real-time kernel. Experimental results show 36% and 11% utilization for time-triggered and 
event-triggered traffic respectively. Although FTT-Ethernet enables dynamic bandwidth 
allocation by changing the transmission schedule in different ECs, the master node is 
required to have full information about the communication requirements of the slave nodes. 
 
Token passing is another method for providing on demand access to nodes on a shared 
medium. A token is a special control message that represents the right to send a frame on 
the network. During the operation of the protocol, only a single node holds the token at any 
time. The token is forwarded to the next node after the frame transmission or a constant idle 
time if the token holding node does not have any frame to send. One important metric that 
defines the performance of the token-based protocols is the token rotation time. 
 
A large number of nodes and hence a long token rotation time slows down the operation of 
the protocol. Furthermore, losing the token message results in the disruption of the 
operation. Time Critical Control Network (TCNet) [40] is a token-passing based protocol 
that is implemented on standard Ethernet. The nRT traffic is supported with low priority 
transmission and synchronization is achieved via the special message carried in the token 
message. The Virtual Token Passing (VTPE) Protocol [34] prioritizes RT traffic over nRT 
traffic by disabling the binary exponential back off (BEB) algorithm of Ethernet and setting 
the back off interval of RT traffic producer nodes to 0. The arbitration among stations that 
transmit RT traffic is carried out with token-passing. The VTPE protocol is implemented by 
using Ethernet Controllers that support disabling of the BEB. It is stated that VTPE 
protocol is able to support the transfer of RT traffic in fully loaded Ethernet networks, 
where the saturation level for the shared Ethernet networks is above 40% when dealing 
with small sized messages. The medium access delay is reported to be 5.77ms. 
 

2.2.3 Synchronization 

The most significant objective of industrial communication networks is guaranteeing 
bounded response times for temporally constrained traffic which requires temporal 
consistency among the participating nodes. The most widely accepted time synchronization 
protocol for Ethernet-based Industrial Communication Protocols is IEEE 1588 [10] [41] 
which has a distributed implementation that can seamlessly run on Ethernet. IEEE 1588 
operates according to the precision-time protocol (PTP), where a number of message 



11 

exchanges take place between a selected master node and slave nodes periodically. The 
slave nodes compute their clock offsets from the master node according to these messages 
and synchronize their clocks with the master node. IEEE 1588 is adopted as the 
synchronization protocol by EPA and EPL while industrial communication protocols such 
as EtherCAT [24] and SERCOS III (IEC 61491) [21] include their own synchronization 
mechanisms to meet the high precision synchronization requirements. 
 

2.3 Comparison and Discussion 

Table 1 summarizes the properties and performance metrics of the described protocols. 
EPA, EPL and TCNet are industrial standards and each has two different profile definitions. 
We provide the different metric values for both of these profiles for each protocol in the 
Table 1. In addition, FTT-Ethernet and VTPE are included in this table. Note that the 
properties for our protocol D²RIP are obtained in the scope of this thesis.  
 
The meanings of the parameters in Table 1 are: 
 
A/I: Academic/Industrial proposal 
DD: Delivery time 
Beff: The effective RT throughput 
BnRT: Maximal available nRT bandwidth 
Sync: Synchronization method 
 
 

Table 1 Comparison of the Industrial Ethernet Protocols 
 

Protocol A/I  Medium Access 
DD 
(ms) 

Nodes Beff (Mbit/s) BnRT Sync./Accuracy 

EPA 
[36] [1] 

I TDMA/static 
5, 
0.1 

32, 64 12.28 85% 
IEEE 1588, 10 

µs, 1 µs 
EPL 

[38] [1] 
[6] 

I 
Master 

Slave/static 
0.4, 
5.5 

4, 150 15.2, 32 
19.6%, 
4.4% 

IEEE 1588/1 s 

TCNet 
[40] [1] 

I 
Token 

Passing/static 
2/20
/200 

24, 13 
58.4/51.2/7.2, 
45.6/40.8/4.8 

0%, 20% 
Asynchronous/

- 
FTT-E 

[9] 
A 

Master 
Slave/dynamic 

1 
Not 

specified 
36 11% 

Synch 
message/≈ 1ms 

VTPE 
[34] 

A 
Token 

Passing/static 
5.8 256 ≈ 40 

Not 
specified 

Asynchronous/
- 

D²RIP A TDMA/dynamic  < 5 dynamic 16.1 > 50% 
IEEE 1588/1.5 

µs 

 

 

 



12 

In view of the requirements stated in Section 2.1, desired properties of industrial Ethernet 
protocols are 
 

1) Support of RT and nRT traffic 
2) Usage of unused RT bandwidth by nRT traffic 
3) Dynamic allocation of RT bandwidth depending on communication requirements 
4) Synchronization mechanism that complies with industrial standards 
5) Distributed implementation on shared-medium Ethernet with COTS hardware 

 
 
 
 
 



13 

CHAPTER 3  
 

D²RIP PROTOCOL STACK 

The D²RIP family as proposed in previous work [12] is a purely distributed protocol that 
enables communication on shared-medium Ethernet, allows for dynamically changing the 
bandwidth allocation to different network nodes and supports both RT and nRT 
communication. That is, this protocol family is particularly useful for control applications 
that incorporate information about their instantaneous communication requirements. We 
next give an overview of this protocol family in Section 3.1 and then describe the relevant 
information about the protocol architecture for our protocol implementation in Section 3.3 
to 3.5. Performance parameters are derived in Section 3.6 and Section 3.7 gives an 
application example. 
 

3.1 Protocol Overview 

The protocol stack proposed in [12] is depicted in Figure 1. It is designed to operate on a 
broadcast network such as shared-medium Ethernet and comprises two protocol layers an 
Interface Layer (IL) and a Coordination Layer (CL). Here, the IL is used in order to 
implement time-slotted medium access for both RT and nRT traffic to the broadcast 
network. The CL performs the essential task of: 
 

i. Deciding for each slot whether it is allocated to RT or nRT traffic. 
ii. Determining which node is permitted to transmit a message in case of RT slots. 

 
Hereby, it is foreseen that multiple applications such as distributed RT control applications 
can be connected to the CL, whereas all messages from nRT applications (such as 
diagnostics or high-level messages) are directly handled by the IL. As a notable difference 
to existing protocols, the framework in [12] allows for dynamically changing the slot 
allocation during run-time based on application specific data. Unique allocation of nRT 
slots is provided by the IL in this framework. In order to establish a common time base for 
the time-slotted operation, the framework further includes the use of a synchronization 
protocol. Together, the proposed framework ensures collision avoidance on the broadcast 
network by allocating each time slot to a unique node under the assumption that all nodes 
that operate on a given network segment implement the proposed protocol stack. 
 

 



14 

IL

ETHERNET (BROADCAST)

CL

RT APPLICATIONS

SYNCH 
APPLICATION

USER SPACE

KERNEL 
SPACE

SHARED 
MEDIA

nRT 
APPLICATIONS

ETHERNET DRIVER

 
 

Figure 1 The Architecture of the D²RIP 
 
 

In the following, we describe the specific properties of the industrial Ethernet protocol 
D²RIP that is implemented in this thesis. D²RIP constitutes a member of the protocol stack 
in Figure 1 with specific choices for the CL, IL and the synchronization protocol as is 
detailed in Section 3.2 to 3.5. Note that a formal description of D²RIP can be found in [12]. 
The description in this section focuses on the aspects of D²RIP that are relevant for the 
practical implementation in Chapter 4.  
 

3.2 Distributed Synchronization Protocol 

The protocol framework as outlined in Section 3.1 allows the usage of a synchronization 
protocol outside the defined protocol layers. The task of this module is the precise 
synchronization of the nodes’ clocks which is essential for the time-slotted medium access. 
D²RIP uses IEEE 1588 [10] as the synchronization protocol, whereby all messages that are 
sent according to IEEE 1588 are sent as nRT messages. Hence, IEEE 1588 constitutes an 
independent protocol as required by the protocol framework and could later be replaced by 
another synchronization mechanism if necessary. 
 

3.3 Coordination Layer Data Structure 

Considering that D²RIP is designed to be entirely distributed, the CL operation of each 
individual network node is identical. Hence, we consider the CL of a generic node i, 
denoted as CLi, in the sequel. The task of CLi is to forward RT messages from the 
application layer (AL) to the IL and vice versa, decide about the type of each time slot (RT 
or nRT) and uniquely determine the ownership of each RT time slot. To this end, the CLi is 
equipped with the following data structures and parameters: 



15 

� RT message transmit buffer Txi: it is considered that messages can be obtained 
from different RT applications. Hence, Txi is realized as a vector of message 
buffers, whereby each buffer can hold the current message for one RT application, 
denoted as channel. 
 

� Communication requests req: each req is realized as a four tuple (b, c, eT, dT), 
whereby b, c, eT and dT are integer values. (b, c, eT , dT) states that node b 
potentially has an available message for channel c after eT time slots. Moreover, if 
present, such message must be transmitted within dT time slots. That is, 
considering a time slot duration of dSlot, if a request is issued at time t, it becomes 
eligible (which indicates that it is valid for processing) at time ET = t + eT × dSlot. 
Moreover, such request expire at time DT = t + dT × dSlot (which means that the 
deadline for message transmission is violated). Hence eT and dT are relative values 
where ET and DT are absolute times.  
 

It has to be noted that the eligibility time (eT) parameter is particularly important in 
practical applications. For example, if programmable logic controllers (PLC) with cyclic 
operation are used, new data will only be available after the completion of each cycle. 
Hence, a communication request for such a controller should not be eligible before cycle 
completion [18] [19]. Accordingly eT and dT are parameters that are specific to each upper 
layer control application. 

 
� Messages m: each such message consists of data m.data and a set of communication 

requests m.reqs. While m.data contains control application specific information and 
is hence transparent to the protocol operation, m.reqs contains the communication 
requests that are relevant for the protocol operation. It is assumed that these 
requests are provided by each RT application according to the respective 
communication requirements. It is important to note that requests that are generated 
by an RT application on node i can allocate RT bandwidth for nodes that are 
different from i (see also the application example in Section 3.7). 
 

� Priority queue PQi: it holds requests in the form of tuples (b, c, ET, DT) as 
described before. Requests are inserted into PQi upon message reception. To this 
end, PQi is sorted such that PQi.Top always holds the request (b, c, ET, DT) with 
the smallest deadline that is at the same time eligible. In each time slot, the highest-
priority request is removed from PQi and the unique node b that belongs to this 
request is allowed to send a message for channel c in this time slot. 
 

� Decision variables RTCLi, myCLi, myCHi: in each time slot, RTCLi is true if there 
is an eligible request (b, c, ET, DT) in PQi.Top. Moreover, myCLi is true if    
myCHi = c and b = i, that is, the slot is reserved for channel c of node i. In that 
case, myCLj is false and myCHj = 0 for all nodes j ≠ i. If RTCLi is false, the current 
slot is an nRT slot. 
 



16 

Using the data structures and parameters as introduced above, CLi performs the following 
actions. 
 

� Messages from RT applications AP2CL: available messages m are obtained from 
the RT applications that are connected to CLi. Each message is placed in the correct 
buffer of Txi. 
 

� Decision variable update CLUPDATE: the values of the decision variables RTCLi, 
myCLi and myCHi are determined for the current time slot. To this end, PQi.Top is 
checked. If PQi.Top = (b, c, ET, DT) exists, RTCLi is set true and myCLi is set true 
if myCHi = c and b = i. Otherwise, myCLi is false and myCHi = 0. If PQi.Top is 
empty, RTCLi is false, myCLi is false and myCHi = 0. 
 

� RT message passing to IL CL2ILRT: If RTCLi is true, myCLi is true and         
myCHi = c in the current time slot, node i is allowed to transmit a message for 
channel c. If the buffer Txi for channel c is empty, no message was provided by the 
application, yet. In that case, m.req = (i, c, eT, dT) is set in order to request a further 
time slot for transmission of the application message for channel c of node i. The 
data field of the message m.data remains empty. Otherwise, the application 
message in the buffer Txi is forwarded to IL. If RTCLi is false, it is indicated to IL 
that the current slot is a nRT slot without passing any message. 

 
� RT message reception from IL IL2CLRT: If an RT message is received in the 

current time slot from IL, PQi.Top is removed from PQi. 
 

� RT message forwarding to the RT applications CL2AP: If the message data m.data 
received from the IL is not empty, then m is a valid application message from some 
node. In that case, the message data is forwarded to the RT applications. 

 
The message transmission is depicted in Figure 2. We again emphasize that the same 
computations are performed by the CL of each node. As a result, it is ensured that the 
evaluation of each CL parameter is the same for each node in each time slot [12]. In 
particular, each node maintains the same priority queue and hence determines consistent 
values for the decision variables RTCLi, myCLi and myCHi: whenever RTCLi is true for 
some node i in a certain time slot, it is true for all other nodes in the same time slot. In 
addition, if myCLi is true for node i, it is false for all other nodes. Hence, always one 
unique node is allowed to transmit per RT slot and this information is available to all nodes. 
Likewise, all nodes know if a time slot is designated as nRT slot. 
 

3.4 Interface Layer Data Structure 

In analogy to the CL, the IL operation of each individual network node is identical.  Hence, 
we consider the IL of a generic node i, denoted as ILi, in the sequel. The task of ILi is to 
provide time-slotted access to the underlying broadcast network depending on the 



17 

information provided by the connected CLi. That is, if CLi decides that the current time slot 
is designated for nRT traffic, then the ILs of all nodes apply a consistent transmission 
schedule in order to determine a unique sender node. In case of an RT slot, the IL forwards 
the message from the CL of the unique node that owns the time slot to the broadcast 
network. The IL operation is realized by help of the following data structures and 
parameters. 
 

� RT message transmission buffer TxRTi: it stores the current RT message to be 
transmitted to the broadcast network. 
 

� nRT message transmission queue TxnRTi: it is realized as a FIFO queue that 
contains messages from nRT applications that are to be transmitted in available 
nRT slots. TxnRTi.Top shows the first message in the queue. 

 
� Received nRT message RxnRTi: it stores the nRT message that is received from the 

broadcast network. 
 

� Received RT message RxRTi: it stores the RT message that is received from the 
broadcast network. 

 
� RT decision variables RTILi and myILi: if the current slot is an RT slot, RTILi is 

true. If additionally, the slot is allocated to node i myILi is true. Otherwise RTILi 
and myILi are false. 

 
� nRT decision variables cnti, cyci and nRTSeti: IL i maintains a counter cnti that is 

incremented in each nRT slot and that is reset to 0 after cyci nRT time slots. That 
is, cnti counts the number of nRT slots modulo cyci. The variable nRTSeti is 
realized as a set, whereby each member of the set represents the number of an nRT 
slot where node i is allowed to transmit. In order to make sure that each nRT slot is 
allocated to a unique node, it is required that nRTSeti ∩ nRTSetj = ∅ for any 
different nodes i and j. 

 
Using the data structures and parameters as defined above, the IL performs the following 
actions. 
 

� RT message passing from CL CL2ILRT: the decision variables RTILi and myILi 
are set to the respective values RTCLi and myCLi of the CL. If RTCLi and myCLi 
are both true, an RT message m is passed from the CL and is stored in the buffer 
TxRTi. 
 

� Message passing to the shared medium IL2SM: if RTILi and myILi are both true, 
the RT message in TxRTi is transmitted to the shared medium. Otherwise, if RTILi 
is false, it is checked if the current count value cnti belongs to nRTSeti. In the 
positive case, the first nRT message in the FIFO queue TxnRTi is transmitted to the 
broadcast network. 



18 

� Message reception from the shared medium SM2IL: if a message m is received 
from the broadcast network, RTILi is checked. If RTILi is true (RT message), m is 
stored in RxRTi. Otherwise, m is stored in RxnRTi and the counter cnti is 
incremented. 

 
� RT message forwarding to the CL IL2CLRT: if RTILi is true (RT slot) and RxRTi 

is not empty (RT message received), the message is forwarded to the CL. 
 

� nRT message passing from nRT applications AP2ILNRT: the application layer can 
pass nRT messages to the IL. Each such message is stored in the FIFO queue 
TxnRTi. Note that as shown in Figure 2, such nRT messages directly go to IL 
without any interface to CL. 

 
� nRT message forwarding to nRT applications IL2APNRT: IL initiates the 

forwarding of the nRT message to the respective applications from the RxnRTi 
buffer. 

 
The message transmission is depicted in Figure 2. In analogy to the CL, the computations 
performed by the IL of each node are identical. Considering that consistent data are 
provided by the CL, this ensures that all IL parameters are consistent in each time slot [12] 
and a unique node is identified for transmission of both RT and nRT messages. Moreover, 
considering that all messages are transmitted on a broadcast network, the IL of each node 
receives the same message in each time slot. 
 

3.5 Sequential Protocol Operation in each Time Slot 

In order to clarify the protocol operation, we next point out the sequential actions that are 
taken by the different layers in each time slot as depicted in Figure 3 and Figure 4, whereby 
(a) represents the case of a node that owns the current time slot and (b) represents the case 
of a node that does not own the current time slot. Figure 3 shows the RT message 
transmission case and Figure 4 shows the nRT message transmission case.  
 
We first consider with the assumption that the considered node is supposed to transmit an 
RT or nRT message. At the beginning of the slot, the current messages of connected RT 
applications are polled (if available). Next, the action CLUPDATE is performed in order to 
determine the type (RT or nRT) and the owner of the slot. In case of an RT message that is 
transmitted by the specified node (Figure 3a), the message is forwarded to the IL with the 
action CL2ILRT including the slot ownership information. In case of an nRT message that 
is transmitted by the node (Figure 4a), CL2ILRT indicates that the current slot is an nRT 
slot. That is, the ownership of the slot by the node is determined by looking at cnti and 
nRTSeti. After that, IL2SM transmits the RT or nRT message on the broadcast network. 
After the reception of the message by all nodes including the sender node the message is 
passed to the IL and either forwarded to the nRT application with IL2APNRT (nRT slot) or 
to the CL with IL2CLRT (RT slot). All relevant parameters such as PQi are updated and the 



19 

message is forwarded to the connected RT applications with CL2APRT. Finally, note that 
the nRT application is permitted to add an nRT message to the FIFO queue TxnRTi at any 
time. 
 
 

 
 
 

Figure 2 Message Transmission of the D²RIP 
 
 
Second, we describe Figure 3b and Figure 4b with the assumption that the considered node 
does not own the current time slot. Then, different from the previous case, CLUPDATE 
either finds that the current slot is an nRT slot or an RT slot that is not owned by the 
considered node (myCLi is false). This information is transferred to the IL via CL2ILRT. If 
the current slot is an RT slot, myILi is false and the node does not transmit a message. If the 
current slot is an nRT slot, it holds that cnti does not belong to nRTSeti. Again, no message 
is transmitted. However, the considered node will receive an nRT or RT message from 
another node that owns the current time slot with SM2IL. After this reception, the same 
actions as in the first case are taken. 
 



20 

 
 

Figure 3 Sequential Actions for the RT Message Transmission in a Time Slot  
 
 

TIME

APNRT

CL

IL

nRT Slot...

CLUPDATE

IL2SM

...

dSLOT

CL2ILRT

a)

APNRT

CL

IL

nRT Slot...

CLUPDATE

SM2IL

...

dSLOT

IL
2APNRT

CL2ILRT

SM

b)  
 

Figure 4 Sequential Actions for the nRT Message Transmission in a Time Slot  
 
 

We finally note that the same actions are performed in each time slot, whereby always at 
most one node has the right to transmit and all other nodes listen to and process the 
messages transmitted on the broadcast network. As an important feature of the proposed 
protocol, all RT messages are received by the CL of each node such that the CL data are 



21 

always consistent among all nodes. Moreover, the operation of the IL of each node 
maintains consistent information about the ownership of nRT slots. 
 

3.6 Performance Parameters of D²RIP 

Based on the protocol operation as described in the previous sections, we now evaluate 
several performance metrics as discussed in Section 2.1. To this end, we introduce network 
specific, protocol specific and application specific parameters as summarized in Table 2. 

 
 

Table 2 Performance Parameters of D²RIP 
 

Network Specific Parameters 
B Bandwidth of the underlying broadcast network 

Protocol Specific Parameters 
dSlot Duration of each time slot 

L Length of an RT message in bit 

Application Specific Parameters 
Bsum Sum of all required RT bandwidth allocations for all nodes (static allocation) 

Bmax Maximum required RT bandwidth allocation 

Bmin Minimum required RT bandwidth allocation 

Beff Effective total bandwidth 

eTreq Eligibility time of request req 

dTreq Deadline time of request req 

Qreq Maximum number of requests in the priority queue together with request req 

 
 
Bsum represents the sum of all worst-case RT bandwidths that are required in all network 
nodes. This bandwidth has to be allocated in industrial communication protocols that rely 
on static medium access. In addition, Table 2 introduces the parameters Bmax and Bmin that 
are specific to D²RIP. They capture the fact that, it is usually not the case that all nodes 
have to communicate with their worst-case bandwidth allocation at any time. That is, Bmax 
represents the maximum amount of allocated RT bandwidth that can be required at any 
time instant. On the other hand, Bmin is the minimum amount of allocated RT bandwidth at 
any time instant. Hence, the RT bandwidth allocation for D²RIP dynamically changes 
between Bmin and Bmax during system operation, whereby Bmax is usually considerably 
smaller than Bsum. In addition, it can be assumed that the eligibility times and deadlines of 
all requests are known from the application design. Hence, their maximum and minimum 
values can be easily determined. Finally, the application analysis usually allows computing 
a bound Qreq on the number of requests that can be in front of a request req in the priority 
queue. An example for such evaluation is given in Section 3.7. 
 



22 

It is now possible to evaluate the performance metrics in analogy to Table 2. Note that 
numerical values for the different performance metrics are given in the experimental 
evaluation in Chapter 5. The effective bandwidth Beff of D²RIP is given by 
 

�
���	�	 �

�	
��
       (3.1) 

 
Furthermore, the previous work [19] establishes a relation between the application 
parameters and the time slot size. It must hold that 
	


���� ≤ 	
������	�����
�����	�

		 	 	 	 	 (3.2)	

 
In turn, the worst-case delivery time wreq associated to request req can be computed as 

 
���� = 
����	 × 	!"��� + 1% + &'���            (3.3) 

 
and it can be concluded that the minimum deadline for any request req that is supported by 
D²RIP is given by 


'��� ≥	)���		 	 	 	 				(3.4)	

 
Considering (3.1) and (3.4) it is clearly desired to make dSlot as small as possible in the 
practical protocol implementation. We further evaluate the advantage of D²RIP in 
comparison with industrial Ethernet protocols with static bandwidth allocation. The RT 
bandwidth gain GRT can be quantified by the ratio 

 

/0� =	
1234
1456

         (3.5) 

 

We further consider that n network nodes are transmitting RT messages, whereas the worst-
case RT bandwidth requirement per node is given by Bwc,i for i = 1,..,n. Then, the overall 
required RT bandwidth in case of a static slot allocation is 
 

�789 = ∑ �);,=
>
==1      (3.6) 

 
Hence, for a static bandwidth allocation, Bsum ≤ Beff is required even if the required RT 
bandwidth changes instantaneously. This is different for protocols such as D²RIP that 
support dynamic bandwidth allocation. In addition, the available nRT bandwidth BnRT 
changes between 
 

���� −	�9@A ≤ �B0� ≤ ���� − �9CB		 	 	 (3.7)	



23 

From this equation, it can be seen that all the effective bandwidth could be allocated to nRT 
traffic if desired. 
 

3.7 Application Example 

We illustrate the operation of D²RIP by an application example that is adapted from [12]. 
We consider the workcell in Figure 5 that comprises 3 components – a robot (R) that can 
move a robot arm, a conveyor (C) that can transport products in two directions, and a 
painting device (PD), that paints parts using a machine spray gun. We assume that each 
component is controlled by an individual programmable logic controller (PLC), and there is 
one cell PLC that coordinates the operation of the different components. We denote the 
respective PLCs as PLC-R, PLC-C, PLC-PD and PLC-S. 

 
 

 
 

Figure 5 Workcell: Robot, Conveyor and a Painting Device 
 
 

The desired operation of the workcell is to move products to PD starting from R and via C. 
Products at PD are painted and leave the workcell from R after completion. Communication 
among the PLCs is required in order to coordinate the operation of the different system 
components. We use event-based communication between the coordinator PLC-S and the 
component PLCs. The events and their related PLCs are listed in Table 3 and an example of 
event-based communication is illustrated in Figure 6. For example, RtoC/rtoC represent the 
start/completion of a product transport from R to C or CtoPD/ctopd indicate the 
start/completion of product transport from C to PD. The occurrence of RtoC/rtoC requires 
communication between PLC-S and PLC-R, whereas the occurrence of CtoPD/ctopd is 
communicated between PLC-S and PLC-C. Note that each operation is represented by a 
“start” and a “completion” event. The start event indicates start of operation of the related 



24 

component PLC that performs local control until the operation is finished. That is, the finish 
event is sporadically generated by the component PLC. 
 
In analogy to previous work [18] [19] [12], we assume a three-step communication for each 
event that is carried out as follows: 
 

1) The coordinator PLC-S queries the related component PLC to check if it is able to 
execute the event. Such query is indicated by a question mark in front of the 
respective event. 

2) The queried component PLC responds with a notifications to PLC-S whenever it is 
ready to execute the event. A notification is indicated by an exclamation mark in 
front of the respective event. 

3) PLC-S receives all notifications for the event it issues a single command to all 
PLCs that are related to the event to execute the event synchronously. 
 
 

Table 3 Actions of the Workcell Example 
 

Event Description Related PLCs 
RtoC initiate product transport from R to C PLC-R, PLC-S 

rtoc complete product transport from R to C PLC-R, PLC-S 

CtoPD initiate product transport from C to PD PLC-C, PLC-S 

ctopd complete product transport from C to PD PLC-C, PLC-S 

PDop PD starts operation PLC-PD, PLC-S 

PDfin PD finishes operation PLC-PD, PLC-S 

PDtoR initiate transport from PD to R PLC-C, PLC-S 

pdtor complete transport from PD to R PLC-C, PLC-S 

Rout initiate product output from R PLC-R, PLC-S 

rout  complete product output from R PLC-R, PLC-S 

 

 

 

 
Figure 6 Timing Diagram for the PLC Communication of the Example Workcell 

 
 

It can be seen from the workcell example that, although there are four nodes on the 
network, only one of them is expected to transmit at any time instant. For example, initially, 
PLC-S will query PLC-R for possible product transport, whereby all other PLCs (PLC-R, 



25 

PLC-C and PLC-PD) are not required to communicate. After that, only PLC-R is supposed 
to respond to the query and again only PLC-S is supposed to send a command afterwards. 
Hence, it is possible to dynamically allocate bandwidth only to the PLC that is expected to 
send a message. Note that such task cannot be accomplished using the existing industrial 
Ethernet protocols as described in Section 2.2 except for the master-slave protocol FTT-
Ethernet. We next explain how our proposed protocol D²RIP can be used to realize the 
communication for the workcell example. To this end, we list the request to be transmitted 
together with the respective questions, notifications and commands of the different PLCs in 
Table 4. Here, we consider that only one RT application is connected to D²RIP on each 
PLC. Hence, there is only one channel for each device. We further assume that the deadline 
for each message transmission is 5 ms, whereas the eligibility time is given by 4 ms. 
 
 

Table 4 Communication Requests for the Workcell Example 
 

Question Request Notification Request Command Request 
?RtoC (PLC-S,1,4,5) !RtoC (PLC-R,1,4,5) RtoC (PLS-S,1,4,5) 

?rtoc (PLC-S,1,4,5) !rtoc (PLC-R,1,4,5) rtoc (PLC-S,1,4,5) 

?CtoPD (PLC-S,1,4,5) !CtoPD (PLC-C,1,4,5) CtoPD (PLC-S,1,4,5) 

?ctopd (PLC-S,1,4,5) !ctopd (PLC-C,1,4,5) ctopd (PLC-S,1,4,5) 

?PDop (PLC-S,1,4,5) !PDop (PLC-PD,1,4,5) PDop (PLC-S,1,4,5) 

?PDfin (PLC-S,1,4,5) !PDfin (PLC-PD,1,4,5) PDfin (PLC-S,1,4,5) 

?PDtoR (PLC-S,1,4,5) !PDtoR (PLC-C,1,4,5) PDtoR (PLC-S,1,4,5) 

?pdtor (PLC-S,1,4,5) !pdtor  (PLC-C,1,4,5) pdtor (PLC-S,1,4,5) 

?Rout (PLC-S,1,4,5) !Rout (PLC-R,1,4,5) Rout (PLC-S,1,4,5) 

?rout (PLC-S,1,4,5) !rout  (PLC-R,1,4,5) rout  (PLC-S,1,4,5) 

 
 
It is now possible to evaluate the application specific performance metrics as introduced in 
Section 3.6 for the workcell example. It is readily observed that at most one communication 
request is in the priority queue at any time instant since only one PLC is supposed to 
transmit at any time and each PLC only has one channel. Hence, Qmax = 1. Considering that 
each deadline is dT = 5 ms and each eligibility time is eT = 4 ms, it is possible to evaluate 
the maximum time slot size and overall worst-case delivery time wmax according to (3.2) 
and (3.3): 
 


����	 ≤ 	 E	97�F	97
G

= 0.5JK    (3.8) 

 

)9@A = 2	 × 
���� + 4	JK                                 (3.9) 

 



26 

Furthermore, it is possible to compute the values Bsum and Bmax for the workcell example. In 
order to meet all deadlines, a static allocation requires reserving one time slot per PLC 
every 5 ms. We have 4 controllers in our example. Hence, we obtain 
 

�789 = 4 ×
�MNOP

E	97
×	����                       (3.10) 

 
According to the operation of D²RIP, the maximum amount of bandwidth for the RT 
messages is obtained if a message is sent immediately when its associated request becomes 
eligible. Hence, 
 

�9@A =	
�MNOP

F	97
× ����           (3.11) 

 
Note that the performance evaluation of the D²RIP implementation in Chapter 5 is based on 
this workcell example. 
 



27 

CHAPTER 4  
 

D²RIP IMPLEMENTATION 

This chapter gives an overview of our D²RIP implementation. Section 4.1 describes the 
implementation environment and our time synchronization solution is presented in Section 
4.2. Section 4.3 explains the control application interface for the D²RIP and Section 4.4 
explains our data encapsulation. The protocol details for D²RIP are explained in Section 
4.5, 4.6, 4.7 and 4.8. In Section 4.9, we explain D²RIP changes according to the previous 
implementation. As a general comment, we note that all the functions that implement the 
D²RIP stack include error checks for unexpected inputs. 
 

4.1 Implementation Environment 

Operating system (OS) choice and performance is very crucial for the D²RIP. It should give 
high performance and reliability when D²RIP runs on it. Thus in this section, we describe 
how OS is selected, installed, configured and customized. 
 

4.1.1 Real-Time Operating System 

A real-time operating system (RTOS) is specially designed to run applications or tasks with 
high precise timing. This OS is essential in measurement and automation systems where 
timing is costly or a task delay could cause a system failure. To call an OS as a RTOS, it 
must have a known maximum latency for each of the critical operations that it runs [42]. 
The D²RIP stack is designed to provide guaranteed bounded delays for RT application data. 
To this end, it is necessary to implement it on a RTOS which provides the necessary task 
prioritization mechanisms.  
 

4.1.2 Choosing an Operating System 

Linux OS has an advantage over other operating systems for D²RIP because of open source 
[43]. That means that everyone can inspect or alter the OS source code and driver codes as 
their fit. In D²RIP, Ethernet driver should be modified to collect non real-time packets and 
to prioritize the real-time packets over the non-real time-packets. 
 
There are currently over six hundred Linux distributions and three hundred of those are in 
active development, including Debian, Fedora, openSUSE, Arch Linux etc. Ubuntu is the 



28 

most popular and most well-supported distribution available today. Lubuntu OS which is 
based on the Ubuntu release focuses on speed and energy-efficiency and has very low 
hardware requirements [44]. D²RIP is intended to run on both PCs and embedded 
controller devices such as Programmable Logic Controllers (PLCs) with small built-in 
RAM and limited processor capabilities. Hence, we chose Lubuntu as a fast and lightweight 
OS with very low hardware requirements. The latest version of Lubuntu OS that currently 
available is 12.10 [44]. 
 

4.1.3 Choosing a Disk for Installation 

We developed the D²RIP in an entirely portable fashion to be distributed on a single USB 
flash disk including the RTOS. It should be easily set up in all industrial control systems 
and start to operate without installing any specific OS. In addition, the D²RIP 
implementation should be as hardware-independent as possible. There is a wide variety of 
Programmable Logic Controllers (PLCs) that run different operating system on different 
hardware. For example, Wago-I/O-IPC in Figure 7 that is generally used in the control and 
it is a target hardware platform to implement D²RIP. It has no built-in hard disk and neither 
PCI nor  PCI-E slots. The only way to boot up OS on Wago-I/O-IPC is usb flash disk. On 
the one hand, flash disks have many advantages over hard-disk drives: less power 
consumption, no moving parts, minimal access time, small-size and low cost, high degree 
portability and compatibility. 
 
 

 
 

Figure 7 Wago-I/O-IPC 
 
 

On the other hand, installing OS on the usb disk brings some drawbacks. However, these 
drawbacks can be easily solved with the help of a number of OS settings, listed in Table 5. 
 



29 

Table 5 USB-Disk Drawbacks and Solutions 

 
Limitations      Solutions 

Limited disk capacity 
No need the large disk space to run D²RIP 
(only 2 gb disk space will be used) 

Limited write speed 
Decrease disk writing activities (write data 
to RAM instead of writing to disk) 

 

4.1.4 Installation of Linux 

Before starting the installation process, the appropriate filesystem should be formatted to 
usb flash disk. ext4 filesystem is probably the best choice for our Linux OS. Firstly, flash 
disk master boot record (MBR) section and partition table should be zeroed to avoid 
problems with different system MBR or previous partitioning. 
 

 
 
Next usb flash disk is partitioned by using the fdisk command. 
 

 
 
At the fdisk prompt, a new partition should be created and this partition should be set as a 
active and primary partition. We created one partition, which will host the Linux OS. Now 
usb flash disk is formatted as an ext4 filesystem with the label Lubuntu with this code: 
 

 
 
The filesystem of the usb flash disk is ready to install Lubuntu OS. The Lubuntu OS can be 
installed with the Lubuntu installation CD. There is no need to install Linux OS into usb 
flash drive every time. Once the OS is installed, then the image of the OS can be taken from 
the usb flash drive and restored to the others usb flash drives in Linux with these 
commands: 
 

 
 
In Windows OS, there is a tool named “USB Image Tool” that can create images of USB 
flash drives and restore images of USB flash drives [45]. 

dd if=/dev/sdb of=~/disk.img 
dd if=disk.img of=/dev/sdc 

sudo mkfs.ext4 -O ^has_journal -L Lubuntu /dev/sdb1 

sudo fdisk /dev/sdb 

sudo dd if=/dev/zero of=/dev/sdb bs=2048 count=1 



30 

4.1.5 Configuration and Installation of Real-Time Kernel 

Many Linux distributions come with the standard Linux kernel that is not suitable for 
RTOS because they are designed to perform daily user’s tasks. Therefore, we should patch 
the Linux kernel with RT-Preempt kernel to obtain RTOS. The latest stable mainline kernel 
for which the real-time patches are being developed is 3.6.2, though currently 3.8.2 is 
available [46]. Before starting the patch-process, first the required software packages 
should be installed: 
 

 
 
Then user should get the main 3.6.2 kernel and RT patch, decompress mainline kernel files 
and patch the mainline kernel with RT patch: 
 

 
 
We note that, before building a RT patched kernel, several changes should be made to the 
kernel configuration file similar to the implementation in [47]. Configuration of the RT 
kernel settings can be done with the code: 
 

 
 
The configuration screen of the Linux kernel is shown in Figure 8. The list of the 
configuration settings is: 
 

� Enable “Tickless System (Dynamics Ticks)” 
� Enable “High Resolution Timer Support” 
� Set “Preemption Model” to “Fully Preemptible Kernel(RT)”  
� Set “Timer frequency” to “1000Hz”  
� Disable “Suspend to RAM and standby” 
� Enable “Timestamping in PHY devices” 
� Enable “PTP Hardware Clock (PHC)” 
� Enable “PTP clock support” 
� Disable “Show timing information on printks” 
� Set ”I/O scheduler”  to “Deadline”  

make menuconfig 

mkdir -p ~/tmp/lubuntu-rt 
cd ~/tmp/ lubuntu-rt 
wget http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.6.2.tar.bz2 
wget http://www.kernel.org/pub/linux/kernel/projects/rt/3.6.2/patch-3.6.2-rt4.patch.bz2 
tar xjvf linux-3.6.2.tar.bz2 
cd linux-3.6.2 
patch -p1 < <(bunzip2 -c ../ patch-3.6.2-rt4.patch.bz2) 

sudo apt-get install kernel-package fakeroot build-essential libncurses5-dev 



31 

 
 

Figure 8 Linux Kernel Configuration  
 
 

The RT kernel can be built with this command: 
 

 
 
Finally the RT kernel can be installed to Lubuntu: 
 

 
 

4.1.6 Tweaking the Linux Operating System 

Linux OS is highly customizable according to D²RIP needs. All settings and configuration 
files of the OS can be easily edited and saved permanently. Linux, by default, is tweaked 
for hard drives, which has a negative impact on the performance and longevity of flash-
based Linux installs. The flash disk read speed is good enough, but the write speed is not so 
good. Thus, the purpose of the tweaks is to minimize the amount of unnecessary writes to 
the usb flash disk. Linux writes to a file's metadata whenever the file is accessed. This is 
important for some applications such as mail servers, but for D²RIP it will be fine to 
disable. 
 

sudo dpkg -i ../linux-{headers,image}-3.6.2-rt4_0_*.deb 

sed -rie 's/echo "\+"/#echo "\+"/' scripts/setlocalversion 
make-kpkg clean 
CONCURRENCY_LEVEL=$(getconf _NPROCESSORS_ONLN) fakeroot make-kpkg -
-initrd --revision=0 kernel_image kernel_headers 



32 

 
 
Linux can be configured that all logs get written to RAM memory rather than the flash disk. 
It is not important to keep log files after a system boot. 
 

 
 
Linux swaps out less used RAM pages into disk when the system needs more memory than 
is physically available. However, swapping process degrades system performance. 
Compared to RAM, disks are very slow. Turning off the swappiness will minimize the 
amount of unnecessary writes to the usb disk. 
 

 
 
Also Bash shell logs to the usb disk every command that user type. This situation can be 
disabled with these settings: 
 

 
 
Moreover, all unnecessary visual effects are closed to increase overall system performance, 
such that translucent windows, shadow effects, animations etc. Linux boot-up duration also 
can be improved by turning off the redundant services with the tool named sysv-rc-conf. 
The remaining services are: Halt, Killprocs, Networking, Reboot, Sendsigs, Single, 
Umountfs, Umountroot and Urandom. 
 
D²RIP needs to work only with the network interface. Thus many modules that come with 
Linux installation are unnecessary. These modules send continuously interrupts that 
degrade the performance of the RT kernel. Therefore, unnecessary devices and device 
drivers (e.g. sound card, bluetooth, serial port, wifi adaptor ..) were disabled. 
 

In “/root/.bashrc” 
export HISTSIZE=0 
export HISTFILESIZE=0 
unset HISTSIZE 

In /etc/sysctl.conf: 
vm.swappiness = 0 
vm.dirty_writeback_centisecs = 360000 
vm.dirty_expire_centisecs = 360000 
vm.dirty_background_ratio = 1 

In “/etc/fstab”: 
tmpfs /tmp tmpfs defaults,noatime,mode=1777 0 0 
tmpfs /var/tmp tmpfs defaults,noatime,mode=1777 0 0 
tmpfs /var/log tmpfs defaults,noatime,mode=0755 0 0  
tmpfs /var/log/apt tmpfs defaults,noatime 0 0 

In /etc/fstab: 
UUID=98181808-ec88-4dcd-a94d-bfd79862bd59    /     ext4    
noatime,discard,data=ordered,errors=remount-ro    0    1 



33 

Several BIOS settings were modified such as disabling integrated sound card, power saving 
features (C2 State: Disable CPU C State: Disable, CPU Idle State: High Performance), 
processor frequency scaling, dynamic fan control and thermal monitoring, event log etc. 
These functions use dedicated nonmaskable interrupts that cannot be disabled by the OS. 
When such interrupts are active during real-time operation, they can cause unacceptable 
jitter and latency. The unused system modules are disabled, floopy, bnep, bluetooth, 
parport, coretemp etc. 
 
To ensure high performance, NAPI (Rx polling mode) property of the network interface 
card was activated. With NAPI configuration, interrupts for receiving are decreased and 
overall network performance is improved. According to e1000e module documents [48], 
the Ethernet driver can limit the amount of interrupts per second that the adapter generates 
for incoming packets. D²RIP needs to have low latency for incoming packets. Therefore, 
InterruptThrottleRate was set to 0 to turn off any interrupt moderation and may improve 
small packet latency. Another tunable setting for Ethernet module is about the generation of 
transmit interrupts. Setting up TxIntDelay to 0 disables the property and starts the 
transmission of the packet immediately.  

 
 

 
 
Moreover, the Ethernet (IEEE 802.3) cannot provide a real-time response for packet 
transmission. CSMA/CD algorithm can detect collisions, so it schedules packet 
retransmission. This property should be disabled to bound packet transmission time.  The 
re-transmission option of the Ethernet is disabled with the setting in the Ethernet driver: 
 

 
 
Linux has the ability to assign certain interrupts (IRQs) to specific processors or groups of 
processors. This is known as SMP affinity (proper interrupt handling), and it allows the user 
control how the OS will respond to various hardware events. In order to use this property, 
system should have more than one processor. Our experiments computers have one Intel 
processor with four cores. Firstly, the Ethernet’s IRQ should be figured out by reading 
“/proc/interrupts” file to set the packet transmit and receive IRQ. 
 

 
 
To dedicate four CPU cores for transmit and receive IRQ: 

 
 

 

      CPU0       CPU1           CPU2       CPU3 
72:        87298                0             0               0      PCI-MSI-edge      eth0-rx-0 
73:        93707                0             0               0      PCI-MSI-edge      eth0-tx-0 

E1000_COLLISION_THRESHOLD = 0 

echo 00000f > /proc/irq/72/smp_affinity # eth0-rx-0 
echo 00000f > /proc/irq/73/smp_affinity # eth0-tx-0 

insmod e1000e.ko InterruptThrottleRate=0,0 TxIntDelay=0,0 



34 

4.2 Synchronization with IEEE 1588 

One of the main objectives of the industrial communication networks is guaranteeing 
bounded response times for temporally constrained traffic which requires temporal 
consistency among the participating nodes. The most widely accepted time synchronization 
protocol for Ethernet-based Industrial Communication Protocols is IEEE 1588 [10] [41] 
which has a distributed implementation that can seamlessly run on Ethernet. The time 
slotted operation of D²RIP requires synchronization among nodes. To this end, we employ 
the widely used IEEE 1588 protocol. This section gives details about timekeeping in OS 
and explains the synchronization protocol in detail. 
 

4.2.1 Timekeeping Basics 

Today’s computer operating systems measure the duration of time in two ways: with tick 
counting and tickless timekeeping [49]. Tick counting measurement is based on periodic 
interrupts, called ticks, at a known rate. With the help of these ticks, the OS can count how 
much time has passed. On the other hand, in tickless timekeeping method, OS only reads 
the clock when needs to learn what time is. Tickless timekeeping has an obvious advantage 
over timekeeping with ticks due to the low CPU usage to manage timekeeping. In addition, 
computers or embedded systems should have specific hardware (such as oscillators) to keep 
track of time.  Several clock devices can be found on the same computer:  
 

� PIT (programmable interval timer) 
� RTC (real time clock) 
� ACPI (advanced programmable interrupt controller) 
� TSC (the time stamp counter) 
� HPET (the high precision event timer) 

 
TSC and HPET clock sources are much preferred on the current computer systems because 
of the accuracy and speed to read clock-time. The TSC is a 64-bit cycle counter and can be 
found on the newer version of Pentium CPUs. The TSC is, by far, the finest grained and 
most convenient timer device to access. However, it has several drawbacks such as 
changing of CPU clock speed due to power management. HPET is the newest clock 
technology and it was developed by Intel. Generally, HPET timer cannot be found in old 
PC systems and should be activated in bios settings in newer computer systems. The HPET 
timer has much higher resolution than the others and it is probably the best clock source for 
D²RIP. 
 

4.2.2 Clock Source in Linux 

From the kernel version 2.6.18, an abstraction layer called clocksource was added to the 
timekeeping subsystem in Linux. Thus, Linux OS allows the user to choice kernel clock-
source. We chose HPET timer with this command: 



35 

 
 
Also the maximum frequency of the HPET timer can be set in Linux to increase the 
accuracy with this command: 
 

 
 
Most Linux distributions read the initial wall-clock time from the computer’s battery-
backed real-time clock when they boot up and query a network time server (like NTP) to 
obtain a more accurate time value through the process. However, obtaining the time 
accurately over the long term is challenging because the clock oscillators in computers tend 
to drift due to temperature changes [50]. Therefore, for long-term clock accuracy, 
synchronization software should be run in every computer and periodically resynchronize 
the wall clock time to an external clock. To prevent conflicting changes in the time, one 
synchronization application should be run at a time in a given computer systems. Therefore, 
default NTPd synchronization service in Linux should be disabled before using any other 
synchronization application: 
 

 
 

4.2.3 Precision Time Protocol (PTP) 

IEEE-1588 standard defines a Precise Time Protocol (PTP) which is the best protocol to 
synchronize system using standard LAN communication. In PTP, a number of message 
exchanges take place between a selected master node and the slave nodes periodically as 
shown in Figure 9. The slave nodes compute their clock offsets from the master node 
according to these messages and synchronize their clocks with the master node. The 
maximum offset magnitude can be up to sub-microsecond with hardware time-stamping. 
Thus, PTP seemed to be the logical decision for synchronizing network based devices, such 
as D²RIP controllers.  
 
The synchronization principle of the PTP consists of two steps: 
 

1) Step 1 –Offset Measurement 
2) Step 2 –Delay Measurement 

 

sudo /etc/init.d/ntp stop 

echo 2048 >/proc/sys/dev/hpet/max-user-freq 

echo 'hpet' >/sys/devices/system/clocksource/clocksource0/current_clocksource 



36 

 
 

 Figure 9 IEEE 1588 Synchronization 
 
 

�Q	K�&R	1, �G −	�� =	'S�N@T +	'U��7�P         (4.1) 

�Q	K�&R	2, �F −	�V =	'S�N@T −	'U��7�P            (4.2) 

�Q	WK=>X	K�&R	1	&	2, 'S�N@T =	
�
G
		[(�G − ��) + (�F − �V)]         (4.3) 

�Q	WK=>X	K�&R	1	&	2, 'U��7�P =	
�
G
		[(�G − ��) − (�F − �V)]         (4.4) 

'B�\	�	'ON� +	'U��7�P         (4.5) 

 
Equation 4.5 gives updated clock value for slave. Also, we note that transmit and receive 
propagation delay in the network are assumed symmetrical. 
 
The accuracy mainly depends on the precision of the time stamps. The possible timestamp 
locations are shown in Figure 10. Time stamping points should reflect transmit and receive 
times as precise as possible. In the hardware assisted synchronization, time stamps are 
taken at the Medium Independent Interface (MII). On the other side, pure software 
solutions take time stamps in the Network Interface Card (NIC) driver by using 
skb_tx_timestamp() function. Transmission time stamping at the driver level is the best 
software solution but requires a modified network driver.  
 



37 

 
 

Figure 10 Possible Timestamp Locations 
 
 

Clock synchronization without specific hardware equipment leads to larger errors and 
consequently, low accuracy. Moreover, system load and intensive disk I/O result in the 
huge delay in system time with software synchronization. Therefore, software clock 
synchronization is not suitable method to obtain high time precision when dealing with RT 
communications. Hardware time stamping is the only way to reach high accuracy. Only 
some Ethernet adaptor manufactures support hardware time stamping on their devices. For 
example, such devices are the Intel 82576, 82574, 82583, 82599 gigabit Ethernet 
controllers. 
 
The accuracy of the PTP protocol also depends on the latency jitter of the network 
topology. Hubs and point to point connections provide the best solution. However, switches 
cause high delay and jitter due to the storing of the incoming packets. The problem can be 
solved with the usage of IEEE 1588 Boundary clocks in switches. We only use 100 Mbit/s 
hub connections for D²RIP and there is nearly no delay jitter expected between master 
clock and slave clocks because of no internal queuing delay. 
 
The significant problem is how Linux kernel clock should be synchronized with external 
PTP hardware clock. PTP hardware clock cannot be set as a main clock source in Linux OS 
due to its negative aspects. The idea of using the PTP hardware clock to the Linux kernel as 
a main clock source was considered but ultimately rejected, as discussed in [51]. Therefore, 
Linux system clock should be synchronized with PTP clock with acceptable accuracy. The 
best idea, the two-level PTP method, is somewhat similar to using a PPS (Pulse Per Second) 
to synchronize the Linux system clock to the PTP clock, illustrated in Figure 11 [52]. For 
this method, at least two applications should be run on the system. The first  application 
synchronizes the PTP slave hardware clock to the PTP master hardware clock over the 
Ethernet by sending synchronization packets, and the second application adjusts the system 
time (Wall clock time) to the PTP slave hardware clock by using proportional-integral (PI) 
controller [52].  



38 

  
 

Figure 11 Synchronizing the System Clock to the PTP Clock 
 

 
Another problem is how the PTP clock is used in Linux and hardware time stamping can be 
reached.  The Linux network stack already supports hardware time stamping since Linux 
version 2.6.30. A PTP clock driver registers itself with the class driver in Linux OS. This 
class driver handles all of the connection with the user space. The PTP class driver creates a 
character device named generally /dev/ptp0. User space applications can access directly 
PTP clock driver by using standardized input/output control (ioctl) methods such as open, 
read etc. Obtaining timestamps on an open socket requires a two main step. Firstly, the 
Ethernet driver must be configured for hardware time stamping using the ioctl method 
SIOCSHWTSTAMP [51]. Secondly, the synchronization applications request the socket 
option named SO_TIMESTAMPING. SO_TIMESTAMPING socket option is for packet time 
stamping for PTP. It allows enabling receive or transmit packet timestamps, and also allows 
a software fallback if hardware time stamping should be unavailable [51]. Once the socket 
is properly initialized, the recvmsg() call will return a control message containing the 
timestamp along with the packet data. For outgoing packets, the packet will be looped back 
to the socket’s error queue, where the packet reappears with the timestamp control message 
added [51]. 
 
Our IEEE 1588 protocol implementation is carried out by an existing software 
implementation of IEEE 1588 [53] in addition to the driver and NIC support for IEEE 
1588. This software is fully compliant with the IEEE 1588-2008 standard and supports 
hardware time stamping and PTP Hardware Clock (PHC) to achieve high precision. It uses 
the SO_TIMESTAMPING socket option that is standard in Linux. This software carries out 
the following: 
 

� Sending IEEE 1588 packets to exchange the delay and offset information 
� Among nodes for synchronization 
� Adjusting the PHC 
� Synchronizing the system clock (REALTIME_CLOCK) and PHC 



39 

4.2.4 Requirements of the Hardware Time Stamping 

There are 3 requirements to use hardware time stamping in strict sense: 
 

1) A suitable NIC adaptor that supports hardware time stamping: 
We use the Intel Gigabit CT Desktop Adapter [54] in every D²RIP controller 
because of its availability at low cost. It uses Intel 82574L Ethernet controller 
which fully supports hardware time stamping. The card is installed in the PCI 
express slot on the mainboard and there is no further hardware requirement. It uses 
the e1000e driver module with version 2.3.2 that was published in March 2013 
[55]. 
 
Starting with version 3.5 of the Linux kernel, the time stamping capabilities of a 
network card can be queried using the ETHTOOL_GET_TS_INFO ioctl. Using 
standard Ethernet tool named ethtool [56], we can query the capabilities of our NIC 
card: 
 

 
 

 
2) Linux kernel that supports PTP Hardware Clock (PHC) subsystem: 

Two features are required to support hardware time stamping (PTP): network 
packet time stamping and clock control. Linux Kernel versions 2.6.30 and above 
possess the SO_TIMESTAMPING option that enables a driver module in the kernel 
space to send the timestamp values to the IEEE 1588 software that runs in the user 
space. Hence, this option fulfills the network packet time stamping requirement. 
The clock control requirement is fulfilled with the PHC support that is available on 
kernel versions 3.0 and above. It provides an API for user space management of the 
hardware clock in the kernel space. Furthermore, certain settings are required in the 
Linux kernel which is listed in Section 4.1. Therefore, we use Linux kernel version 
3.6.2.  
 
Some settings should be reconfigured in Linux kernel to activate hardware time 
stamping: 
 

� Enable “Timestamping in PHY devices” 
� Enable “PTP Hardware Clock (PHC)” 
� Enable “PTP clock support” 

 
3) Ethernet driver that supports hardware time stamping and PTP clock driver: 

Ethernet driver should support hardware time stamping and PTP hardware clock 
driver. Intel Gigabit CT Desktop Adapter uses e1000e module as driver. The 
hardware timestamp support for e1000e module came with driver version 2.2.14. 
We use e1000e driver version 2.4.14 in Linux OS.  

ethtool -T eth0 



40 

By default, hardware time stamping is not enabled by e1000e driver. User should 
recompile the source code of the driver to activate the property with this command: 
 
 
 
 
The default e1000e driver should be removed from the Linux operating system and 
loaded the re-compiled driver with these commands: 
 
 
 
 
 

4.3 D²RIP IO plug-in for libFAUDES 

The operation of the workcell and the distributed controllers is simulated using the 
simulator plug-in that is part of the libFAUDES discrete event systems software library 
developed at the University of Erlangen-Nuremberg [57]. The D²RIP IO plug-in provides a 
libFAUDES interface to the D²RIP, to be used e.g. for the synchronization of events among 
multiple instances of simfaudes for the decentralized supervision of discrete event systems. 
This plug-in provides data-types to support the automatic execution of discrete event 
systems. It serves as a basis for applications that perform a hardware-in-the-loop simulation 
of a controller interacting with a physical plant, or perform an stochastic performance 
analysis. In order to obtain realistic behavior in our application example as explained in 
section 3.7, we use stochastic execution attributes for the events stpR, stpC and fPD as 
specified by the below configuration file: 
 
 
 

 
 
 
 
 
 
 
 
 
The D²RIP IO plug-in can be configured with a XML file according the communication 
requests related to the controller’s input and output events:  

 

 

make CFLAGS_EXTRA=-DE1000E_PTP 

rmmod e1000e 
insmod e1000e.ko  

<SimEventAttributes> 
"stpR"       
<Stochastic> 

+Trigger+      +Gauss+        
 <Parameter> 
  10   20  15  20              
 </Parameter> 
</Stochastic> 

</SimEventAttributes> 



41 

 

 

 

 

 
The libFAUDES source code should be downloaded and compiled with the D²RIP IO plug-
in source code to build D²RIP IO plug-in. In libFAUDES’s Makefile, “timed”, “simulator” 
and “iodevice” plug-ins should be enabled and in “iodevice” Makefie, “iop_simplenet” and 
“iop_d3ripURT” plug-ins should be enabled by removing to comment symbol to build 
D²RIP IO plug-in properly. Now, libFAUDES sources can be re-configured and compiled 
with the commands: 
 

 

 
The flowchart of the D²RIP IO plug-in is shown in Figure 12. 

 

make dist-clean 
make configure 
make 

<Event name="mvC?" iotype="output"> 
 <EventId value="1"/> 
 <ChannelToTransmit value="1"/> 
 <ParameterRecord> 
  <DestinationNode value="2"/> 
  <DestinationChannel value="1"/> 
  <EligibilityTime value="4" /> 
  <DeadlineTime value="5"/> 
 </ParameterRecord> 
</Event> 

<Event name="mvC!" iotype="input">  
 <EventId value="2"/>  
</Event> 



42 

 

 
Figure 12 D²RIP IO Plug-in Flowchart 

 
 

 



43 

4.4 Time Slots, Encapsulation and Data Structure 

The duration of the time slot dSlot is an important parameter that affects the RT response of 
D²RIP as demonstrated in the example in Section 3.7. The control application progresses 
with the time slots as shown in Figure 6. Hence, the rate of completing tasks in the 
application increases as dSlot decreases. This result is quantified in (3.2) Section 3.6 which 
states that to meet the message deadlines the time slot duration should be smaller than a 
bound. In other words, dSlot determines the deadlines that can be guaranteed by D²RIP for 
a given application. To this end, we selected the OS and its configurations as listed in 
Section 4.1 to shorten dSlot as much as possible provided that it is long enough to carry the 
longest RT message. Furthermore, as stated in Section 2.1.2 a high precision IEEE 1588 
time synchronization with hardware support is adopted to minimize the time slot guard 
times. Every controller in D²RIP should wait until the beginning of a new slot when they 
have finished the previous slot earlier. It is very crucial to sleep precisely and wake up at 
the same time when a new slot begins. Therefore, high precise sleep with accuracy in 
microseconds is very important for the slot duration. Standard Unix functions like 
nanosleep() and clock_nanosleep() are incapable for high precision. Therefore, the time 
required to sleep should be divided into parts as shown in Figure 13.  

 

(tnextslot – toffset) > tnow

tsleep = tnow + 5usec

Get tnow

TRUE

tnextslot > tnow

Get tnow

TRUE

FALSE

END

FALSE

START

Get tnow

toffset = 50usec

Sleep until tsleep 
according to 

CLOCK_REALTIME

 
 

Figure 13 High Precision Sleep with Partially Sleep and Busywait 
 

 
The fixed time slot duration dSlot as introduced in Chapter 3 requires a bound on the 
maximum length frames that are sent by IL on the shared medium. We denote this bound 
Framemax and select its current value as 504 Bytes including 14 Bytes of Ethernet Header 



44 

and 4 Bytes of CRC. We use the EtherType numbering field in the Ethernet frame to 
indicate the type of data carried in the Ethernet frame. The value of this field is 0x1100 for 
RT and 0x2200 for the fragments of an nRT packet that exceeded the Framemax. Any other 
EtherType value indicates a short nRT packet that was not fragmented. The payload of 
this fixed Ethernet frame can be either a CL_PACKET, or an nRT_PACKET which is a 
short nRT application packet from standard upper layer protocols or an nRT_FRAGMENT 
that is constructed from a long nRT packet. These three encapsulation possibilities are 
depicted in Figure 14, Figure 15 and Figure 16. 
 
The IL_PACKET as depicted in Figure 14 has an IL_PACKET_HEADER that consists of 
a 16 Byte time value that is used for timestamp information for RT packet. Also 
CL_PACKET payload consists of an 8 Byte timestamp information. These time values are 
valid only for testing purpose. Therefore, these bytes are not taken into account when 
calculations are performed.  
 
The CL_PACKET as depicted in Figure 14 has a CL_PACKET_HEADER that consists of 
an 8 Byte time value that is used for the protocol initialization, a 4 Byte slot number and a 2 
Byte Packet length field that carries the length of the entire CL_PACKET.  
 
CL_PACKET payload is RT_APP_MESSAGE and can be empty if there is no such 
message to send from node i in the current time slot. The length of the 
RT_APP_MESSAGE is limited to Framemax − ((14+4) + (8+4+2)) Bytes. The data that is 
generated by the control application consists of communication requests as described in 
Section 3.3 that are provided for the dynamic bandwidth allocation and further control 
application related data. The RT_APP_MESSAGE begins with a 1 Byte field NoR that 
shows the number of communication requests that are sent in this message. As described in 
Section 3.3 each request consists of a (b, c, eT, dT) tuple, whereby 1 Byte is reserved for 
each tuple entry. In this context, we assume that dSlot (and consequently Framemax) is 
selected such that no fragmentation is required for the longest possible CL payload. This 
assumption is not a restriction of generality, since the length of each RT message is known 
because of the deterministic application model. For example, the workcell as described in 
Section 3.7 only requires sending one communication request and 3 Bytes of control 
application data in RT messages. Hence, a payload of 8 Bytes is sufficient. 
 
 

Time

(SM2IL)

8 Bytes

Dev

1 Byte

ch

1 Byte

eT

1 Byte

dT

1 Byte
...

NoE

1 Byte

EVENT

1 Byte
...

NoR

1 Byte

Time

(AP2CL)

8 Bytes

RT_APP_MESSAGE

Time

(CL2IL)

8 Bytes

Slot 

Number 

4 Bytes

Size

2 Bytes

CL_PACKET_PAYLOADCL_PACKET_HEADER

Time

(IL2SM)

8 Bytes

IL_FRAME_HEADER IL_FRAME_PAYLOAD

Ethernet 

Header

14 Bytes

ETHERNET_FRAME

CRC

4 Bytes

Transmission Requests
Control Application Data: 

Notifications, Commands

 
 

Figure 14 RT Encapsulation in D²RIP 

 



45 

NRT_PACKET

Ethernet 

Header

14 Bytes

ETHERNET_FRAME

CRC

4 Bytes

NRT Data from application/ IEEE 1588 DataTCP/UDP/IP Headers

 
 

Figure 15 nRT Encapsulation in D²RIP 
 
 

FRAGMENT_HEADER FRAGMENT_PAYLOAD

Ethernet 

Header

14 Bytes

ETHERNET_FRAME

CRC

4 Bytes

NodeN

1 Byte

PacN

1 Byte

PacL

2 Bytes

FraN

1 Byte

FraS

1 Byte

FraL

2 Bytes
NRT Fragmented Data

 
 

Figure 16 nRT Fragment Encapsulation in D²RIP 
 

4.5 Fragmentation and Reassembly of nRT Frames 

The nRT packets that can be carried in an Ethernet frame with a size less than Framemax are 
carried as ordinary Ethernet payloads. The corresponding encapsulation is shown in Figure 
15. 
 
The nRT packets that are too long to be transmitted in a single time slot are processed by 
two kernel threads, Fragmentation and Reassembly. A header structure that is appended to 
the nRT packets carries relevant information for the operation of these threads similar to the 
header fields in IP packets that are relevant for fragmentation. The header structure is 
composed of: sending node (NodeN), a unique packet identification (PacN), packet length 
before fragmentation (PacL), total number of fragments (FraN), the fragment sequence 
(FraS) in the packet before fragmentation and the fragment length (FraL) as seen in Figure 
16. The nRT packets in D²RIP are fragmented only once by the sender node if necessary. 
 
In addition, we implemented a second transmit function for the e1000e driver module that 
we call e1000_xmit_frame_modified() which intercepts the packets coming from the upper 
layer and wakes up the Fragmentation thread when a long nRT_PACKET arrives. This 
thread first prepares and initializes the header data structure as defined above, then 
fragments the data in nRT_PACKET, sets the fields of the fragmentation header and then 
encapsulates the resulting packet in an Ethernet Frame with a maximum size of Framemax.  
 
The Reassembly thread keeps an array of buffers reassembly_pkt_array[sHdr.nodeID].skb 
and it wakes up when a fragmented nRT packet is received. It copies the received 
fragments while FraN>1 and FraS<FraN in the respective buffer in this array corresponding 
to the sending  node. When FraO = FraN, then the received packet is forwarded to the user 
space with netif_receive_skb(). netif_receive_skb() is the main Ethernet receive function in 



46 

Linux. If the reassembled packet length does not match PacL, the Reassembly discards the 
packet. The flowcharts of the fragmentation and reassembly module are shown in Figure 17 
and Figure 18. 

 
 

 
 

Figure 17 Fragmentation Flowchart 



47 

 
Figure 18 Reassembly Flowchart 

 



48 

4.6 Initialization of D²RIP 

At system start-up, D²RIP needs to establish suitable synchronization accuracy before 
simultaneously entering the time-slotted operation. The IL of D²RIP distinguishes the cases 
of initialization and a running stack. Our IL implementation keeps a boolean variable 
D²RIP_Init where a true value for this variable indicates that the stack is running. Here we 
would like to note that one of the controller acts as a master node temporarily to send the 
first message. When IL receives a CL_PACKET with Slot Number = 1, D²RIP_Init is set to 
true and the modification on the Ethernet Driver is activated. If IL receives a 1 Byte CL 
Payload data where CLP = 0xFF then D²RIP_Init is reset to false and the modification on 
the Ethernet Driver is deactivated. The CL thread sleeps until the IEEE 1588 
synchronization is established and wakes up after a certain time following the reception of 
the first synchronization message. 
 

4.7 Coordination Layer Implementation 

The coordination layer is implemented as a thread in the user space according to the data 
structure for CL that is presented in Section 3.3. For all nodes i, the thread that runs in CLi 
wakes up periodically at the beginning of each time slot. In each time slot, the processes 
related to the transmission and reception of an RT message by all of the nodes on the shared 
medium take place. In our D²RIP implementation the timing reference is the 
CLOCK_REALTIME because of system clock and hence it triggers the wake up of the CL 
thread. 

When the CL thread wakes up in node i, it first executes AP2CL as described in Section 
3.3. If the application has a message to send, then the received RT_APP_MESSAGE is 
inserted in Txi. Next, CLi updates the decision variables RTCLi, myCLi and myCHi 
according to the first eligible request in the priority queue of requests PQi as described in 
Section 3.3. Then, 
 

� if myCLi = false then the RT_APP_MESSAGE is empty and CLi notifies ILi by 
sending 1 Byte of information with these decision variables. 
 

� if RTCLi = true and myCLi = true then node i is expected to send the first RT 
message that is stored in Txi buffer for myCHi. It is possible that the control 
application is waiting for some event to happen and hence no RT message is 
produced and Txi is empty. In this case the RTCLi = true and myCLi = true 
variables are sent to IL without a message via CL2ILRT. If Txi is non-empty, then 
the RT_APP_MESSAGE is dequeued and sent to ILi via the character device. The 
transmission of the message then takes place on the shared medium as described in 
Section 4.8. 

 



49 

When ILi receives a frame from the shared medium in an RT slot, it forwards the 
encapsulated CL_PACKET to CLi as described in Section 4.8. If there is an 
RT_APP_MESSAGE in the received packet, then the transmission requests are extracted 
and inserted in the priority queue of requests PQi. 
 
Here we would like to note that as described in Section 3.5, the requests are inserted in the 
priority queue when a CL_PACKET is received. Hence, it is required that the sender node 
also receives the message to have the consistent state of the CL. While the broadcast on a 
true shared medium ensures that, if the nodes are connected by a physical layer hub, the 
message is repeated on all ports except for the port that it is received from. To this end, we 
add the configurable ECHO_SENDER option which loops the sent CL_PACKETs back to 
CLi if the implementation medium contains any network devices that disrupt the broadcast 
including the sender. 
 
The RT control applications send their RT messages to the CL by calling AP2CL (dat, par, 
ch)i along with the channel information and the control message. It contains 1 Byte channel 
information, so that CL puts the received control message into the corresponding transmit 
buffer (i.e.: Txi[ch]). Note that the CL data structure presented in Section 3.3 puts the 
message to the transmit buffer without extracting the communication requests. 
 
Both the control application and CL implementation are in the user space and they 
exchange messages via 2 message queues MQUEUE_AP2CL and MQUEUE_CL2AP. The 
reads by CL conducted on MQUEUE_AP2CL are non-blocking where CL goes on its 
operation if there is no application data ready in the queue to keep dSlot as short as 
possible. The control application requires the data that arrives from CL as soon as possible 
hence, the application reads MQUEUE_CL2AP queue in the blocking mode, waiting for 
the CL data to arrive to go on its operation. 
 
In Section 3.3, we defined, PQi.Top as the pointer to the request (b, c, ET, DT) with the 
smallest absolute deadline that is at the same time eligible. This request determines if the 
current time slot is RT or nRT and the ownership of the RT slots. The priority queue is 
updated with the arrival of each new CL_PACKET. 
 
We implement the PQi such that it stores all of the eligible requests that are ordered 
according to their deadline, hence PQi.Top holds the eligible request with the smallest 
deadline. A second priority queue PQi.E stores the requests that are not eligible. Hence for a 
given absolute time t, ET > t holds for all requests in PQi.E. PQi.E.Top is the request with 
the smallest ET. A requests that is received at time t in a CL_PACKET, is not eligible at 
time t as eT > 0 and hence ET > t. Consequently, each new request first inserted in PQi.E. 
At the beginning of each slot time t, CL first checks if the request at PQi.E.Top has ET ≤ t. 
If so, that request is dequeued and inserted in PQi according to its DT and PQi.E. Top is 
updated. Then CL decides about the time slot by peeking at the request at PQi.Top position. 
PQi is updated once every slot when new requests are received in a CL_PACKET by 
inserting them in PQi.E and dequeuing PQi.Top. Both priority queues PQi and PQi.E are 
implemented as binary heaps. 



50 

The flowchart of the CL thread is shown in Figure 19. 
 
 

CL THREAD

processCLUPDATE()

processCL2AP()

processAP2CL()

Sleep until a RT frame 
comes from IL

Is it SYNC packet?

Read the start time 
from the SYNC 

packet and sleep 

until the start time

� Get slot type 
(RTCL) 

� Get slot owner
(myCL)

RTCL?

Sleep until the 

next slot

myCL?

Send 1 byte 

nRT slot-type 
info to IL

Send 1 byte 
RT slot-type 

info to IL

FALSE

Is RT packet 

available ?

� Get RT packet 
� Update slotnumber 

and time info in RT 
packet header 

� Send RT packet to IL

� Create a new RT 
packet

� Update slotnumber, 
and time info in RT 
packet header 

� Send RT packet to IL

FALSE

TRUE TRUE

TRUE

FALSE

Wait until a 
RT packet 

comes from 
IL

Get slotnumber, time info and 

packet length info from the 
received RT packet

If packet length info is 
equal with recieved RT 

packet size?

� Send received RT message to AP 

� Insert new RT request into 
Priority queue

TRUE ERRORFALSE

ERROR

FALSE

Has RT packet RT 

message? TRUE

TRUE

Is RT message 

available?

� Insert RT message into RT packet

� Update packet length info in RT 
packet header 

TRUE

FALSE

FALSE

Get RT message 

from RT application

� Update Priority 
queue

� Increase 
slotnumber

 
 

Figure 19 CL Thread Flowchart 
 



51 

4.8 Interface Layer Implementation 

The Interface Layer is responsible for selectively transmitting the RT and nRT packets in 
the current time slot according to the information received from CL. We indicate the IL 
instance that runs on node i as ILi as in Section 3.4. Note that there can be multiple Ethernet 
interfaces on a node as we describe in our experiment in Chapter 5. Hence, we denote the 
interface that runs D²RIP as eth0. Currently, we use the e1000e Ethernet driver module for 
eth0. 
 
The IL implementation consists of 3 kernel space modules; Fragmentation, Reassembly and 
IL module. The IL module implements the actions CL2ILRT and IL2SM as described in 
Section 3.4. Furthermore the controlled transmission of RT and nRT packets requires 
modification on the Ethernet driver e1000e. Fragmentation and Reassembly are kernel 
modules implemented as threads which sleep when they are not executed. When these 
modules are loaded together with the modified e1000e driver, only Ethernet frames with a 
maximum size of Framemax are transmitted on the shared medium. 
 
The action CL2ILRT passes the decision parameters RTCLi, myCLi from CLi to ILi 
together with a possible RT_APP_MESSAGE as described in Section 3.4. If 
RT_APP_MESSAGE is not empty, then node i has RT data to transmit and for the current 
slot RTILi = true and myILi = true. If RT_APP_MESSAGE is empty then only 1 Byte of 
RTCLi, myCLi is passed to IL. If RTILi = true then consequently myILi = false. If       
RTIL i = false then myILi = nRTslotOwner() where nRTslotOwner() returns the ownership 
of the nRT slot according to the cyclically repeating slot assignment as described in Section 
3.4. 
 
The TxnRTi buffer in the IL data structure (as described in Section 3.4) is implemented in 
the form of two FIFO buffers: TxnRTHi and TxnRTi. The IEEE 1588 packets are 
transmitted as nRT packets as described in Chapter 3. To this end, TxnRTHi stores the high 
priority IEEE 1588 synchronization messages and TxnRTi stores the remaining nRT 
messages. All fragmented and short nRT packets are inserted into the respective FIFO 
queue upon the function call AP2ILNRT. When node i has the right to transmit an nRT 
packet, it is first checked if there is a synchronization frame in TxnRTHi. If TxnRTHi is 
empty, node i transmits a possibly fragmented nRT packet if TxnRTi is non-empty. 
 
IL i transmits the RT or nRT frames according to the information that is received from CLi. 
The CL_PACKETs that are received from CLi and the nRT PACKETs that are in TxnRTi 
and TxnRTHi are encapsulated and sent to the standard transmit function 
e1000_xmit_frame() implementing the action IL2SM described in Section 3.4. 
 
We implement SM2IL as described in Section 3.4 for different cases. Consider that a frame 
is received on the eth0 interface. First, if EtherType of the frame indicates that it is a 
nRT_PACKET fragment, then it is forwarded to the Reassembly thread. After the 
reassembly is complete, the frame is passed on to the user space with netif_receive_skb() 



52 

which hands off the socket buffer to the upper layers. Second, if the frame is a short 
nRT_PACKET then it is directly passed to the standard receive function 
e1000_receive_frame(). Third, if the EtherType of the frame indicates that it is a CL 
PACKET, then it is passed to IL2CLRT which then forwards the packet to the CL 
implementation in the user space. 
 
The flowchart of the IL thread is shown in Figure 20 and the flowcharts of the transmission 
algorithm and reception algorithm are shown in Figure 21 and Figure 22. 
 
 



53 

 
 

Figure 20 IL Module Flowchart 

 



54 

 
 

Figure 21 Transmission Flowchart 



55 

 
 

Figure 22 Reception Flowchart 



56 

4.9 Changes in D²RIP Protocol 

An earlier version of D²RIP was implemented and presented in [14] [13] [15]. Making use 
of the experiences gained during these studies, in this thesis, the protocol implementation 
was almost redone. Furthermore, the experimental evaluation was performed with an 
extended set-up. Many hardware and software changes are made to increase D²RIP 
performance according to previous version as shown in Table 6 to Table 13. In this section, 
we compare the current version of D²RIP version with the previous version to show the 
benefits of the changes. 
 
 

Table 6 Changes in Hardware 
 

Previous Version Current Version Benefits 

Each controller used 
integrated Ethernet 
controller on the 
motherboard. 

PCI-Express Ethernet 
card which has a 
82574L Ethernet 
controller is plugged 
for each controller. 

With the hardware time-stamping 
feature, 82574L Ethernet controller 
achieves very accurate synchronization 
between controllers. With the use of an 
synchronization application that 
supports hardware time-stamping and 
82574L Ethernet controller, time offset 
between the controllers is decreased 
the order of 1.5 µs. In the previous 
implementation of D²RIP, the 
synchronization between nodes could 
be done with only software time-
stamping. The offset between 
controllers could increase up to 220 µs.  

82574L Ethernet controller has built-in 
intelligent interrupt management and 
efficient packet prioritization. Thus, it 
is capable of sending and receiving 
frames in lower duration. In addition, 
the interrupt latencies are improved in 
multiprocessor systems with MSI-X 
support.  

10 Mbit/s Hub was 
used for Ethernet 
communication. 

100 Mbit/s Hub is 
used for Ethernet 
communication. 

Packet transmission speed is increased 
10x times. Therefore, the transmission 
delay is decreased 10x times. 

 



57 

Table 6 (continued) 
 

Previous Version Current Version Benefits 

Control applications 
communicated over 
serial interface (RS-
232) with each other. 

By adding Ethernet 
Switch which 
supports 10/100 
Mbit/s speed, control 
applications 
communicate over 
Ethernet. 

Serial communication is forcing the 
system to a particular communication 
speeds. The communication speed of 
real-time events message is increased 
to 100Mbit/s. 

There was no possibility of sending 
broadcast messages using the serial 
channel interface. D²RIP just had the 
opportunity to point-to-point 
communication. With the Ethernet 
interface, broadcast massage sending 
capability has been added to the 
D²RIP. 

The help of Ethernet infrastructure, 
more nodes can be added in D²RIP 
according to serial interface.  

3 computers (one 
workcell and two 
controllers) were used 
in D²RIP example. 

The total number of 
computers is 
increased to five (one 
workcell and four 
controllers). 

By using more than two controllers, 
D²RIP has been started to 
communicate in the form of broadcast. 

D²RIP had been 
worked only on PCs.  

D²RIP has been 
worked on industrial 
PC (WAGO) too. 

It has been shown that, the new 
implementation of D²RIP works not 
only on PCs but also on industrial PCs. 

Linux OS was 
installed on hard-disk 
drive.  

By rearranging the 
OS, Linux OS is 
installed on usb flash 
disk. 

D²RIP becomes portable and can be 
used with devices that have usb-port. 

 
 
 
 
 



58 

Table 7 Changes in Operating System and Kernel 
 

Previous Version Current Version Benefits 

D²RIP was used on 
Ubuntu OS version 
10.10. 

D²RIP is used on 
Lubuntu OS version 
12.10. 

The Linux OS has been changed. 
Lubuntu OS uses LXDE interface. 
LXDE interface much faster and 
lighter than many interfaces in Linux.  

Real-time kernel 
version 2.6.33.7.2-rt30 
was used. 

Real-time kernel 
version 3.6.11.1-rt32 
is used. 

To use hardware time-stamping 
property with 82574L Ethernet 
controller properly, the kernel version 
of Linux OS should be higher than 3.6.  

Not only do kernel update brings 
performance increase, but also brings 
some new functions. With the new 
version of real-time kernel, real-time 
performance of Linux OS is increased. 

D²RIP was working 
on the Linux 
distribution with 
default settings. 

D²RIP works on the 
Linux distribution 
which have been 
performed 
performance tuning. 

A variety of performance settings are 
made on Linux OS to increase 
performance and reduce the number of 
interrupt source. 

Ethernet card’ and HPET clock’ 
interrupt priority are raised. 

Limited numbers of 
settings were changed 
in the Linux kernel. 

Many performance 
settings are made in 
the Linux kernel. 

By changing many settings in the 
Linux kernel, IEEE-1588 property is 
activated and real-time performance is 
improved. 

Many of the settings 
in the bios were left to 
the default setting. 

Bios settings for the 
CPU and the power 
are changed. 

Unused devices (audio device, serial 
and parallel interfaces, etc.) and CPU 
frequency scaling & power-save mode 
settings are disabled to reduce interrupt 
source. 

 
 
 
 



59 

Table 8 Changes in Ethernet Driver and Synchronization Application 
 

Previous Version Current Version Benefits 

Ethernet driver 
version was 1.3.10a 
for e1000e module. 

Ethernet driver 
version was 2.3.2 for 
e1000e module. 

By upgrading Ethernet driver, 
hardware-time-stamping property is 
supported on the driver level. 

A lot of code changes 
were made on the 
standard Ethernet 
driver. 

The amount of the 
code that should be 
inserted into Ethernet 
driver is reduced. 

Many of the D²RIP related codes are 
moved into IL module. Therefore, the 
preparation of the other Ethernet 
drivers for D²RIP is facilitated 
according to previous D²RIP 
implementation. 

Ethernet driver was 
loaded with no 
parameter. 

Ethernet driver is 
loaded with some 
parameters. 

The packet transmission and reception 
settings of the Ethernet driver are 
regulated according to D²RIP needs. 

Synchronization 
application supported 
only software time-
stamping. 

Synchronization 
application supports 
software and 
hardware-time-
stamping. 

With the help of hardware time-
stamping, there is no need to have 
guard period in D²RIP. So slot 
duration is decreased dramatically. 

There was no 
application to 
synchronize Linux 
system clock with 
PTP hardware clock. 

An new application 
is used to 
synchronize Linux 
system clock with 
PTP hardware clock. 

Linux system clock synchronizes itself 
with PTP hardware clock. 

There was no 
modified Ethernet 
driver for WAGO 
devices.  

e100 Ethernet driver 
is modified 
according to D²RIP 
needs for WAGO 
devices. 

WAGO devices can be used as a 
controller in D²RIP. 

 
 
 
 
 



60 

Table 9 Changes in Interface Layer (IL) 
 

Previous Version Current Version Benefits 

Slot type was divided 
statically for RT 
packets and nRT 
packets.  

Slot type was divided 
dynamically for RT 
packets and nRT 
packets. 

Slot type is decided dynamically 
according to D²RIP needs. RT slots 
become available on the system, if RT 
communication is needed. Thus, the 
capacity utilization of the system is 
improved drastically. 

nRT slot’s right is decided between 
nodes according to the Round-Robin 
algorithm. 

There was a thread 
that holds the slot time 
in IL module. It 
decided the slot type. 

The thread in IL 
module is removed. 
All decision code 
flow is moved into 
CL application. 

Many decision-making algorithms are 
removed from the kernel space and re-
organized in the CL. Thus, D²RIP 
portability is increased and the 
integration of the new layer which is 
developed in the future for D²RIP is 
facilitated. 

There is no need to use REQRT action 
in the protocol. Thus, the time required 
for this process has been decreased 
from the slot duration. 

Threads in the kernel space degrade 
overall system performance and 
stability. With this change, overall 
system performance is increased and 
usage of system resource is decreased. 

There were a lot of 
unused code snippets 
and memory 
allocation in IL 
module. Furthermore, 
memory allocation 
was made 
dynamically. 

Unused code 
snippets and 
unnecessary memory 
allocations are 
removed. Memory 
allocations are made 
statically at the 
beginning of the 
system. 

Code readability is increased and real-
time performance of the IL module is 
increased. With the statically memory 
allocation, there is no memory 
contention. 



61 

Table 9 (continued) 
 

Previous Version Current Version Benefits 

Fragmenter module 
was waked up with 
small and larger nRT 
packets. 

Fragmenter module 
is waked up only 
with larger nRT 
packets. 

There is no need to wake up 
fragmenter module for all non-real-
time packets. Therefore, fragmenter 
module uses system resources when 
the larger nRT packet comes from 
user-space. 

The sendStartData 
module initiated the 
system simultaneously 
in all controllers. 

D²RIP starts with 
SIGUSR1 signal. 

The initiation of the D²RIP is 
improved. Thus there is no need to use 
a module to start system and D²RIP’ 
resource needs are decreased. 

No header information 
was added in IL.   

Packet reception and 
transmission time are 
added into packet 
header in IL. 

Performance information is calculated 
from the time-stamping info.  

IL was designed 
according to point-to-
point communication.    

IL is designed 
according to 
broadcast 
communication.    

IL is re-designed according to multiple 
controllers’ communication. 
Therefore, D²RIP can support more 
nodes and send broadcast messages to 
all nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



62 

Table 10 Changes in Coordination Layer (CL) 
 

Previous Version Current Version Benefits 

There were two 
threads in CL 
application. 

The number of the 
thread is dropped to 
one. 

This is the only thread that has highest 
priority in the Linux OS.  

There was a lot of 
unused code snippets 
and memory 
allocation in CL 
application. 
Furthermore, memory 
allocation was made 
dynamically. 

Unused code 
snippets and 
unnecessary memory 
allocations are 
removed. Memory 
allocations are made 
statically at the 
beginning of the 
system. 

Code readability is increased and real-
time performance of the CL 
application is increased.  

Dynamic memory access leads to 
contention and undetermined delays in 
OS. With the statically memory 
allocation, there is no memory 
contention. 

Slot-type was pre-
determined in D²RIP.   

Slot-type decision is 
made dynamically 
with using two 
priority queues. 

Utilization of the shared medium is 
increased significantly. 

Standard sleep 
functions were used in 
waiting events. 

More accurate 
methods are used to 
sleep precisely. 

Waking up at the desired time is a big 
challenge in Linux. Therefore, the new 
spinlock algorithm is developed to 
achieve accurate sleep-time in D²RIP.     

No header information 
was added in CL.   

New header 
information is added 
into packet header in 
CL.   

Slot drift and packet size are controlled 
with the help of CL header 
information. 

D²RIP hadn’t got any 
logging capacity.  

C libraries are added 
into D²RIP to log and 
measure 
performance. 

The time information of the frames can 
be easily accessible when D²RIP is 
running. 

 
 
 
 



63 

Table 10 (continued) 
 

Previous Version Current Version Benefits 

The RT packets 
contained null data. 

CL application sends 
only the required RT 
data to IL. 

Unused data is removed from the RT 
packets. Therefore, communication 
duration between IL and CL is 
drooped dramatically.  

CL was designed 
according to point-to-
point communication.      

CL is designed 
according to 
broadcast 
communication.    

CL is re-designed according to 
multiple controllers’ communication. 
Therefore, D²RIP can support more 
controllers. 

To start up the D²RIP 
protocol, a lot of pre-
settings should be 
made in OS. 

A bash script is 
written to start 
system 
automatically.  

D²RIP can be started up without the 
need of user interaction. 

 
 
 

Table 11 Changes in Simfaudes Plug-In 
 

Previous Version Current Version Benefits 

XML files were 
prepared according to 
2 controllers’ 
example.  

XML files were 
prepared according 
to 4 controllers’ 
example. 

It is shown that D²RIP works with the 
multiple controllers.   

No header information 
was added in 
Simfaudes plug-in. 

New header 
information is added 
into real-time 
massage in 
Simfaudes plug-in. 

Performance information is calculated 
from the time-stamping info. 

 

 

 



64 

Table 12 Changes in Non Real-Time Application 
 

Previous Version Current Version Benefits 

There was no nRT 
traffic application. 

An nRT traffic 
application is 
developed to 
measure the delay of 
nRT packets. 

nRT traffics and performance can be 
measured by using this nRT 
application. 

 
 
 

Table 13 Changes in Real-Time Simulator Application 
 

Previous Version Current Version Benefits 

There was no RT 
simulator application. 

An RT simulator 
application is 
developed to 
generate more RT 
traffic. 

To increase RT packet traffic, an 
application is written. Therefore, the 
limits of D²RIP can be measured 
easily. 

 

 

 

 

 

 

 

 

 

 

 

 



65 

CHAPTER 5  
 

EXPERIMENTAL EVALUATION OF D²RIP 

This chapter presents our experimental evaluation of D²RIP based on the work-cell example 
in Section 3.7. We first describe the experimental setup in Section 5.1. Then, we measure 
the OS performance in Section 5.2, we perform a through timing analysis of all protocol 
components in Section 5.3 and assess the performance of D²RIP for both RT and nRT 
traffic support in different experimental scenarios in Section 5.4. 
 

5.1 Experimental Setup 

We realized the example control application in Section 3.7 where the communication 
among the controller devices is carried out with our industrial communication protocol 
D²RIP. To this end, we developed the experiment setup as shown in Figure 23 which 
consists of the workcell and four distributed controllers each realized with a separate 
computer. The software and hardware architecture of each controller node is shown in 
Figure 25. The controller nodes read sensor signals directly from and write actuator signals 
directly to the workcell on a separate dedicated line that is realized on a separate 
conventional shared-medium Ethernet network (eth1). Accordingly the simulator on each 
controller node runs the respective control algorithm which determines the relevant 
queries/notifications and commands as described in Section 3.7. The simulator then hands 
out these controller events to the libfaudes D²RIP IO plug-in module. This is a software 
module that assembles the control application messages and the communication requests as 
defined in Section 3.3. The software module looks up application-dependent preconfigured 
requests for each communication event.  

 
Here we would like to note that, in addition to the set-up mentioned above, we ran the 
example control application in Section 3.7 on the Wago-I/O-IPC as shown in Figure 24 
Experiment Set-up with WAGO’s. We demonstrated the correct operation of D²RIP on 
Wago devices. However, The Ethernet controller of the Wago-I/O-IPC supports only 
software time stamping in IEEE 1588. Therefore, the synchronization accuracy between the 
nodes varies too much and we need to add guard periods at the beginning of the every slot 
to compensate the offset. Consequently, we needed to double the slot duration according to 
first experiment set-up in Figure 23.  In this thesis, we analyze only the D²RIP experiments 
results achieved on the first experiment set-up in Figure 23.  



66 

ETH0

ETH0 ETH0

ETH0

ETH1 ETH1 ETH1

ETH1

10/100 Mbps SWITCH

10/100 Mbps HUB

DEV S
PC

192.168.1.3 (eth0)

DEV R
PC

192.168.1.4 (eth0)
10.1.1.4 (eth1)

WORKCELL
PC

10.1.1.2 (eth1)

DEV C
PC

192.168.1.5 (eth0)
10.1.1.5 (eth1)

DEV PD
PC

192.168.1.6 (eth0)
10.1.1.6 (eth1)

 

 

Figure 23 Experiment Set-up 
 

 

 
Figure 24 Experiment Set-up with WAGO’s 

 
 

The computers that realize the controller nodes and run D²RIP have  
1) PC: QuadCore Intel(R) Core(TM) i3 CPU 550@3.20GHz, 4 GByte RAM, onboard 

Ethernet controller and IEEE 1588 enabled Ethernet adaptor  
2) WAGO: Intel Celeron 600MHz, 256MByte RAM, two onboard Ethernet 

controllers  
The computer that simulates the workcell has a  

PC: QuadCore Intel(R) Core(TM) i3 CPU 550@3.20GHz, 4 GByte RAM, onboard 
Ethernet controller 



67 

 
 

Figure 25 Architecture of the Controller Node and the Plant 

 

5.2 Performance Analysis of RTOS 

In this section, we show our modified RTOS performance and the amount of system 
resources needed by D²RIP. The iostat command in Linux generates the CPU utilization 
report. The first CPU utilization report was taken when the OS booted and the second 
report was taken after the D²RIP was executed. It can be seen that D²RIP uses only      
98.15 – 89.41 = 8.74% of the CPU resources in terms of time-averaged percentages. 
 
 
 
 
 
 
 
 
 
 
 
The maximum memory usage of the D²RIP can be inspected by the top command in Linux. 
The first memory utilization report was taken when the OS booted and the second report 
was taken after the D²RIP was executed. The memory difference is 327924 – 321524 = 6.4 
MByte after D²RIP was executed. 
 

avg-cpu:  %user   %nice %system %iowait  %steal   %idle 

                   1.05      0.00        0.42        0.38     0.00    98.15 

avg-cpu:  %user   %nice %system %iowait  %steal   %idle 

                   1.24      0.00        8.23       1.12      0.00    89.41 



68 

 
 
 
 
 
 
We next determine the RT capabilities of our RTOS. Cyclictest [58] tool that is a high 
resolution test program is used to measure the worst-case latency of the RTOS. It takes a 
time snapshot just prior to waiting for a specific time interval (t1), then takes another time 
snapshot after the timer ends (t2), then comparing the theoretical wakeup time with the 
actual wakeup time (t2 - (t1 + sleep_time)). This value is the latency for that timer wakeup.  
 
The first test result was taken when OS booted. In this test, we created three threads that 
have different SCHED_FIFO real-time priorities. The worst-case latency of the thread that 
has max priority (99) is 60 µs. The worst-case latency of the second thread that has priority 
98 is 103 µs. The worst-case latency of the last thread that has min priority (1) is 156 ms. 
As it seen in the first test, SCHED_FIFO real-time priorities determine the thread’s latency 
significantly. The second test result is taken after the D²RIP was executed. We run 
Cyclictest tool with the max priority (99) to find the worst-case latency for D²RIP protocol. 
143 µs is the worst-case latency for our RTOS. This worst-case value is unacceptably large 
according to our slot duration 250 µs. Therefore, we developed a partially sleeping 
algorithm that was explained in Section 4.4 to decrease the worst-case latency to values that 
are less than 30 µs. 
 

 
 
 

 

 

5.3 Timing Analysis of D²RIP 

In this section, we present our timing measurements from the hardware setup in the Section 
5.1. For each measurement, we obtain a certain number of samples (a number of 5 million 
slots) and we list the mean, maximum and minimum of the measured values. In addition, 
we report the 99 % confidence interval. In other words, the average values that we present 
are sample averages and they stay around a ±∆ % neighborhood of the true mean value with 
a probability of 99%, whereby ∆ is denoted as the confidence interval [59]. 
 
We note that all timings of D²RIP rely on the precise clock synchronization among the 
nodes that is achieved by IEEE 1588 as described in Sections 2.2.3 and 4.2. Hence, we first 
consider our clock synchronization measurements as listed in Table 14. Here, the accuracy 
is the difference among the master and slave clocks [1]. 

KiB Mem:   3359452 total,   321524 used,  3037928 free,    20428 buffers 

KiB Mem:   3359452 total,   327924 used,  3031528 free,    21680 buffers 

P:99  I:100  C: 742087  Min: 5  Act:   8   Avg:   12   Max:           60 
P:98  I:100  C: 742853  Min: 3  Act: 16   Avg:   22   Max:         103 
P: 1   I:100  C: 277245  Min: 4  Act: 14   Avg: 496   Max:  156530 
 

P:99  I:100  C: 114176  Min: 1  Act:   10   Avg:   13   Max:      143 



69 

We run our synchronization application with hardware time stamping feature in our first 
setup showed in Figure 23. It can be seen that very small values of accuracy in the order of 
µs are achieved. This is in compliance with results for IEEE 1588 synchronization with 
hardware time stamping in the literature [60]. Next, we run the synchronization application 
with software time stamping feature in our second setup showed in Figure 24. Wago-I/O-
IPCs support only software time stamping in IEEE 1588. It is seen that the synchronization 
performance with software timestamping is not as promising as the previous experiment. 
The obtained results indicate that, in principle, time slotted access to the shared medium 
can be implemented with a precision in the order of µs using hardware time stamping. 
 
 

Table 14 IEEE 1588 Accuracy Results 
 

 
Mean  

µs 
%± Confidence Interval 

(99% confidence) 
Max.  

µs 
Min.  
µs 

Hardware Accuracy (µs) 1.4 %3.71 4.2 0 

Software Accuracy (µs) 105.3 %5.93 204,3 9.4 

 
 

We next evaluate the further delay components that contribute to the execution of each time 
slot according to Figure 2. In addition to each of the listed actions, we note that the periodic 
wake-ups of the CL thread that is triggered by CLOCK_REALTIME introduce additional 
delays (see Section 4.4). Hence this wake-up time is also listed since it constitutes an 
important component of the time elapsed for the actions executed in a time slot. The 
evaluation is done for 5 million slots from all nodes of the hardware setup described in 
Section 5.1. The time slot size in the experiment is chosen as 250 µs and massage length is 
chosen as 504 Bytes. Each eligibility time is eT = 4 ms for all events. Therefore, all the 
actions executed in 16 times slot and we take the averages over 312500 samples. According 
to the result in Table 15, it remains 60 µs to transmit message on 100 Mbit/s Ethernet and 
delays for Hub.  
 

Table 15 Timings of Actions Taken in an RT Slot 
 

  Mean  
µs  

%± Confidence Interval 
(99% confidence)  

Max.  
µs  

Min.  
µs  

CL thread wake-up 0.7 %0.21 30.5 0.7 

AP2CL 3.2 %3.23 12.1 2.3 

CLUPDATE 1.3 %0.45 10.5 0.7 

IL2SM 12.2 %0.38 27.8 9.8 

SM2IL 21.4 %0.38 48.0 9.8 

IL2CL 9.2 %1.22 46.1 1.0 

CL2AP 6.1 %4.07 16.7 4.9 

Completion time in slot 94.1 %1.82 231.1 69.2 



70 

It is readily observed that, on average, the largest delays are introduced by the actions 
IL2SM and SM2IL which require data exchange between the kernel space and Ethernet 
line. In total, all actions to be completed in each time slot add up to an average execution 
delay of 54.1 µs. Adding the message transmission delay of 40 µs for 504 Byte messages, 
the average completion time for each slot is 94.1 µs as is shown in the Table 15. However, 
it turns out that large maximum delays are observed for the CL thread wake-up and 
message transmission between the user space and kernel space. Since the execution of each 
time slot has to be correct, these maximum delays have to be taken into account. As is 
shown in Table 15, a maximum completion time for each slot of 231.1 µs is found in our 
experiments. Considering that the slot time was chosen as 250 µs, all time slots execute 
correctly. 
 
The measurements in Table 15 allow computing the effective RT bandwidth that can be 
obtained for D²RIP according to (3.1) in Section 3.6. Considering the message length of        
L = 504 Bytes and the slot size of dSlot = 250 µs, we obtain 
 

���� =
E^F	×	_	1TP�

GE^	`a
= 16.1	cd=�/K                 (5.1) 

 
It can be seen in Table 1 that the effective RT bandwidth that is achieved for D²RIP is 
similar to comparable protocols such as EPA, EPL or Tcnet with the difference that D²RIP 
enables dynamic allocation of RT bandwidth. The RT bandwidth gain can be calculated 
according to (3.5) in Section 3.6 by using (5.1) in (3.10) and (3.11) in Section 3.7. 
 

/0� =
1234
1456

= V.G
�

 = 3.2                  (5.2) 

 
Considering the RT bandwidth gain of GRT = 3.2, the RT bandwidth that is comparable to 
static protocols for our application example is 
 

�����0� = 16.1	cd=�/K × 3.2 = 51.52	cd=�/K	               (5.3) 

 

5.4 Performance Experiments and Results 

We next demonstrate the operation and the performance of our D²RIP stack with the 
example case study. To this end, we perform three experiments that are targeted to show the 
delivery times, nRT properties and dynamic RT allocation properties of D²RIP. To this end, 
experiment 1, provides detailed delay measurements for the RT traffic of the workcell 
example. In experiment 2, we add another RT application to dynamically increase and 
decrease the RT traffic. Finally, in experiment 3, we investigate the throughput and delay 
values for nRT traffic under different scenarios. 
 



71 

5.4.1 Experiment 1: Detailed investigation for RT traffic service of D²RIP 

In this experiment, the control application that is described in Section 3.7 is run on D²RIP 
for a slot time of 250 µs and an RT message length of 504 Bytes. We first verified that all 
controller events were communicated successfully and the workcell operation proceeds as 
specified. Next, we considered the end-to-end delays of message transmissions between the 
different software layers IL, CL and AL. To this end, we measured the respective delays for 
all message transmissions of our RT control application with a number of 5 million slots as 
listed in Table 16. 
 
 

Table 16 End-to-end Delays of RT Messages of the Workcell Example 
 

 
Mean  

µs 
%± Confidence Interval 

(99% confidence) 
Max.  

µs 
Min.  
µs 

IL to IL 80.2 %6 108 72 

CL to CL  90.1 %5.60 142 56 

AL to AL  3473.1 %1.96 4423 221 

 
 
The measurements show that the end-to-end delays between the ILs and CLs of different 
nodes are bounded by a maximum value of 108 µs and 142 µs, respectively. Such value is 
expected according to the accumulated delay components between the actions IL2SM-
SM2IL and CLUPDATE–IL2CL according to Table 15. In particular, these end-to-end 
delays remain within the slot time of 250 µs which is a prerequisite for the correct time slot 
execution. The end-to-end delay between the application layers (AL to AL) constitutes the 
delivery time of RT messages [1]. Its minimal value of 221 µs represents the case where the 
application generates a message right at the moment where the transmitting node obtains a 
transmission slot. In this case, the ready message is polled by the CL and reaches the AL of 
the receiver nodes within this transmission slot. Accordingly, the minimum delivery time is 
smaller than the slot time of 250 µs. On the other hand, the maximum delivery time 
represents the case where an application message is generated in a transmission slot of the 
transmitter node but after the message should have been polled by the CL. In that case, this 
node has to wait until its next request becomes eligible, which takes one slot time plus the 
eligibility time of 4 ms. Then, the message will be transmitted within the subsequent 
transmission slot which is bounded by 250 µs. Together, we expect a maximum delay of 
4.5 ms which complies with the measurement. Note that the same result is given by the 
worst-case delivery time according to (3.3) in Section 3.6 considering the maximum 
number of requests in the priority queue was determined as 1: 
 

)��� = 
���� × !"��� + 1% + &'��� = 250μs × 2 + 4ms = 4.5ms     (5.4) 

 



72 

5.4.2 Experiment 2: Varying RT Traffic Input 

In this experiment, we considered the RT traffic that is generated when running the 
workcell example setup, whereby only one node can have an eligible communication 
request at a time. In this experiment we generate additional RT background traffic that is 
generated on channel 2 of the controller nodes PLC-S and PLC-R. This RT traffic is 
designed such that channel 2 of PLC-S transmits messages to PLC-R with a deadline of 5 
ms and an eligibility time of 2 ms and puts a request for message transmission of channel 2 
of PLC-R with deadline 2 ms and eligibility time 1 ms. Whenever  channel  2 of PLC-R 
transmits, it puts back a request for PLC-S with deadline 5 ms and eligibility time 2 ms. 
Accordingly,  the maximum number of requests in the priority queue is now Qreq = 2 and 
the worst-case delivery times for RT messages evaluate to 
 

)� = 250μs × 3 + 4ms = 4.75JK      (5.5) 

)G = 250μs × 3 + 2ms = 2.75JK      (5.6) 

)V = 250μs × 3 + 1ms = 1.75JK      (5.7) 

 

Here, w1 denotes the worst-case delivery time for RT messages of the workcell example, w2 
denotes the worst-case delivery time of the RT messages from channel 2 of PLC-S (slow 
mode) and w3 denotes the worst-case delivery time of RT messages from channel 2 of  
PLC-R (fast mode). The following Table 17 shows the measurement results from our 
experimental setup. Again, a number of 5 million slots are evaluated. 
 
 

Table 17 Delivery-time Measurements with Additional RT Traffic 
 

 
Mean  

µs 
%± Confidence Interval 

(99% confidence) 
Max.  

µs 
Min.  
µs 

AL to AL (workcell) 3542.1 %2 4745 211 

AL to AL (slow mode) 1800 %1.9 2534 230 

AL to AL (fast mode) 800 %2.3 1620 225 

 
 
It is readily observed that the measured worst-case delivery times are bounded by the 
previously computed values. Hence, it is confirmed that each message on D²RIP will meet 
its specified deadline if the relevant parameters such as time slot and eligibility time are 
chosen properly. Furthermore, this experiment validates the case of multiple nodes 
competing simultaneously for medium access. Our slot allocation scheme based on 
communication requests successfully gives medium access to the node with the most urgent 
eligible request such that no deadlines are violated. 
 



73 

5.4.3 Experiment 3: Support for nRT Traffic in D²RIP 

We finally investigate the support of nRT traffic by D²RIP. According to the previous 
sections, it is first possible to determine the maximum amount of bandwidth required for 
the RT messages generated by the workcell example 
 

�9@A =
�MNOP
F	97

× ���� =
GE^`7
F	97

× 16.1	cd=� = 1	cd=�/K             (5.8) 

 
Hence, an nRT bandwidth of 
 

�B0� = ���� − �9@A = 16.1	cd=�/K − 1	cd=�/K = 15.1	cd=�/K    (5.9) 

 
is left for nRT traffic, whereby it has to be considered that long messages are fragmented in 
order to comply with the maximum message size of 504 Bytes. Next, we investigate the 
delivery times of nRT packets between application layers under different nRT traffic loads, 
keeping the RT traffic the same as in Experiment 1. We collected measurements under four 
average nRT traffic patterns where a message is generated every 500 µs, 1 ms, 10 ms and 
100 ms, respectively by each node. Using these traffic patterns, we consider the case of 
short messages (40 Bytes), medium size messages (576 Bytes) and long messages (1500 
Bytes). Our measurement results are shown in Table 18, Table 19 and Table 20. Note that 
the last column shows the consumed bandwidth by nRT traffic for the respective traffic 
pattern. 
 
 

Table 18 nRT Traffic with 40 Byte Message Length 
 

Transmission 
Period 

Mean  
µs 

%± Confidence Interval 
(99% confidence) 

Max.  
µs 

Min.  
µs 

Bandwidth 
Mbit/s 

500 µs ―― ―― ―― ―― 2.56 

1 ms 1530.1 %0.83 5940 90 1.28 

10 ms 636.2 %2.03 3295 57 0.128 

100 ms 620.1 %6.92 3124 64 0.01228 

 
 
 
 
 
 
 
 
 
 
 



74 

Table 19 nRT Traffic with 576 Byte Message Length 
 

Transmission 
Period 

Mean  
µs 

%± Confidence Interval 
(99% confidence) 

Max.  
µs 

Min.  
µs 

Bandwidth 
Mbit/s 

2 ms ―― ―― ―― ―― 9.2 

2.5 ms 2135 %0.47 10235 1756 7.4 

5 ms 1728.4 %0.59 5354 1081 3.7 

10 ms 1683.2 %0.82 4320 1082 1.85 

100 ms 1696.3 %2.65 3853 1079 0.185 

 
 
Our first observation from these measurements is that the supported nRT bandwidth 
depends on the traffic pattern. In particular, Table 18 shows that very small nRT packets 
lead to a low possible nRT bandwidth. This is expected since a supported packet length of 
504 Bytes is chosen for the conducted experiment. Hence, only a very small fraction of the 
time slot is used by short nRT packets. Second, we conclude that a nRT bandwidth that is 
close to the computed maximum of 15.1 Mbit/s can be achieved for long packets even if 
fragmentation is needed. Realistic nRT message delivery times are obtained for packet sizes 
of 576 Bytes and 1500 Bytes at nRT bandwidths of 7.4 Mbit/s and 9.6 Mbit/s, respectively. 
Here we would like to note that synchronization packets are dropped the nRT bandwidth 
because of high priority.   
 
 

Table 20 nRT Traffic with 1500 Byte Message Length 
 

Transmission 
Period 

Mean  
µs 

%± Confidence Interval 
(99% confidence) 

Max.  
µs 

Min.  
µs 

Bandwidth 
Mbit/s 

2.5 ms ―― ―― ―― ―― 19.2 

5 ms 3842.3 %0.28 6698 3101 9.6 

10 ms 3844.3 %0.38 6541 3079 4.8 

100 ms 3827.5 %1.26 6118 3087 0.48 

 
 
 
 
 
 
 
 
 

 



75 

CHAPTER 6  
 

CONCLUSIONS AND FUTURE WORKS 

The subject of this thesis is the implementation of the novel industrial Ethernet protocol 
D²RIP with real-time (RT) and non-real-time (nRT) traffic support. D²RIP is a fully 
distributed communication protocol with time-slotted medium access, whereby the 
ownership of each time slot is decided instantaneously based on application specific data. 
That is, different from other industrial Ethernet protocols, D²RIP is particularly efficient for 
applications, whose bandwidth requirements change dynamically. 
 
Regarding the implementation of D²RIP, we first define appropriate data structures for the 
protocol implementation such that D²RIP can run on top of COTS Ethernet hardware. Then, 
we realize time-slotted medium access with the help of precise clock synchronization using 
the IEEE 1588 synchronization protocol. Our obtained time slot size on 100 Mbit/s 
Ethernet is 250 µs. Based on a distributed computation on each network node, each time 
slot is dynamically allocated to a unique node that can send RT messages up to a size of 
504 Byte or nRT messages. We provide a packet fragmentation thread in order to fit long 
nRT packets into the available time slots. The protocol implementation is accompanied by 
detailed measurements on an experimental hardware setup with a realistic industrial 
application example adapted from a manufacturing system example in [61] and [62]. As the 
main results, D²RIP supports an effective RT bandwidth of 16.1 Mbit/s which is similar to 
comparable protocols. However, D²RIP uses this effective bandwidth more efficiently due 
to the dynamic bandwidth allocation. In addition,  we obtain clock synchronization 
accuracies in the order of 1.5 µs and support delivery times below 5 ms. Regarding  nRT 
traffic,  we observe that short packets are not efficiently supported by D²RIP due to the 
time-slotted medium access. 
 
One of the our contribution is implementing the two layer D²RIP stack on COTS Ethernet 
hardware using the open source OS Linux with RT-Preempt kernel. We chose Lubuntu that 
is a lightweight variant of Ubuntu as our OS because it is a fast and lightweight OS. 
Lubuntu OS is intended to have low-resource system requirements and is designed 
primarily for mobile devices and embedded controllers. Standard Linux kernel in Lubuntu 
OS is not suitable for real-time operation because it doesn’t support hard real-time 
scheduling. Therefore we patched standard Linux kernel with RT-Preempt kernel to add 
hard real-time capabilities to a Lubuntu OS to facilitate the development of D²RIP. 
 
The RT bandwidth utilization of D²RIP is improved dramatically according to the previous 
implement of D²RIP. In the previous implementation, time slot size was 3 ms and a node 
could send messages up to a size of 150 Byte. Thus, earlier D²RIP supports an effective RT 



76 

bandwidth of 0.4 Mbit/s. As a result, the efficiency of Ethernet bandwidth usage is 
increased 40x times according to earlier implementation.  
 
The implementation of D²RIP is based on error-free communication. D²RIP assumes that 
no faults occur during its operation. In case of RT packet loss, the operation of D²RIP will 
get stuck. Therefore, a new layer plane that we call the Dependability Plane (DP) with 
interfaces to the application layer, Interface Layer, Coordination Layer and the shared 
medium broadcast network is currently under development as a part of a Ph.D. thesis work 
[63]. There is a study on dependability plane that realizes a new distributed rollback method 
with synchronized check pointing strategy. DP is connected to our layers CL and IL. A 
dependability header is piggybacked on messages and local copies of the state variables are 
stored with synchronized check pointing strategy. An acceptance test is occurred at the end 
of each transmission slot. A rollback message is transmitted in the first transmission slot of 
a node that is certain about a fault or failure occurrence. There are some conditions to make 
DP work successfully. There should be at least 3 nodes in the network and they should 
obtain a transmission slot regularly. Moreover, there should be no faults at the beginning of 
the network operation and no fault should be happened before the previous fault situation is 
resolved. 
 
The preliminary version of DP is implemented and integrated to the D²RIP implementation 
in this thesis [64]. 
 
Although D²RIP is implemented for shared-medium Ethernet, its operation is suitable for 
wireless protocols such as Wireless Hart (IEEE 802.11), which is a possible direction for 
future work.  
 
 
 
 
 
 



77 

REFERENCES 

[1] M. Felser, Real-time Ethernet for automation applications, in: R. Zurawski (Ed.), 
Embedded Systems Handbook, Second Edition: Networked Embeddedded Systems, 
CRC Press, Inc., Boca Raton, FL, USA, 2009, pp. 21–1–21–20, 2nd edition. 

[2] T. Sauter and A. Treytl, Communication systems as an integral part of distributed 
automation systems, in: H. Kühnle (Ed.), Distributed Manufacturing, Springer London, 
2010, pp. 93–111. 

[3] J. Moyne and D. Tilbury, The emergence of industrial control networks for 
manufacturing control, diagnostics, and safety data, Proceedings of the IEEE 95 (1) 
(2007) 29–47. 

[4] P. Neumann, Communication in industrial automation - what is going on?, Control 
Engineering Practice 15 (2007) 1332–1347. 

[5] L. Seno, F. Tramarin, and S. Vitturi, Performance of industrial communication 
systems: Real application contexts, Industrial Electronics Magazine, IEEE 6 (2) (2012) 
27–37. 

[6] J.-D. Decotignie, The many faces of industrial Ethernet [past and present], Industrial 
Electronics Magazine, IEEE 3 (1) (2009) 8–19. 

[7] P. Gaj, J. Jasperneite, and M. Felser, Computer communication within industrial 
distributed environment — a survey, Industrial Informatics, IEEE Transactions on 9 
(1) (2013) 182–189. 

[8] K. C. Lee and S. Lee, Performance evaluation of switched Ethernet for realtime, 
Computer Standards and Interfaces 24 (5) (2002) 411–423. 

[9] P. Pedreiras, P. Gai, L. Almeida, and G. Buttazzo, FTT-Ethernet: a flexible real-time 
communication protocol that supports dynamic QoS management on Ethernet-based 
systems, Industrial Informatics, IEEE Transactions on 1 (3) (2005) 162–172. 

[10] IEEE 1588 standard, http://ieee1588.nist.gov/, last visited on August 2013. 

[11] D. E. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The theory of timed I/O, Tech. 
Rep. MIT-LCS-TR-917, MIT Laboratory for Computer Science, Cambridge, MA 
(2003). 



78 

[12] K. Schmidt and E. Schmidt, Distributed real-time protocols for industrial control 
systems: Framework and examples, Parallel and Distributed Systems, IEEE 
Transactions on 23 (10) (2012) 1856–1866. 

[13] Ahmet Korhan Gözcü, Implementation and evaluation of a eynchronous time-slotted 
medium access protocol for networked industrial embedded systems, M.S. Thesis, 
Defense date: September 2011. 

[14] Ulaş Turan, Implementing and evaluating the Coordination Layer and time-
synchronization of a new protocol for industrial communication networks, M.S. 
Thesis, Defense date: September 2011. 

[15] A. K. Gözcü, U. Turan, E. G. Schmidt, and K. Schmidt, SIU Paper: Dinamik Dağitik 
Gerçek Zamanli Endüstriyel İletişim Protokolu (D2GEP) Gerçekleştirimi-The 
implementation of Dynamic Distributed Real time Industrial communication Protocol 
(D2RIP), IEEE 20. Sinyal İşleme ve İletişim Uygulamaları Kurultayı, 2012. 

[16] S. Vitturi, On the use of Ethernet at low level of factory communication systems, 
Computer Standards and Interfaces 23 (4) (2001) 267–277. 

[17] D. Nesic, A. Teel, and D. Carnevale, Explicit computation of the sampling period in 
emulation of controllers for nonlinear sampled-data systems, Automatic Control, IEEE 
Transactions on 54 (3) (2009) 619–624. 

[18] K. Schmidt, E. Schmidt, and J. Zaddach, A shared-medium communication 
architecture for distributed discrete event systems, Control & Automation, 
Mediterranean Conference on (2007) 1856–1866. 

[19] K. Schmidt, E. Schmidt, and J. Zaddach, Safe operation of distributed discrete event 
controllers: A networked implementation with real-time guarantees, in: IFAC World 
Congress, 2008, pp. 4126–4131. 

[20] J.-D. Decotignie, Ethernet-based real-time and industrial communications, Proceedings 
of the IEEE 93 (6) (2005) 1102–1117. 

[21] E. Schemm, Sercos to link with Ethernet for its third generation, Computing & Control 
Engineering Journal 15 (2) (2004) 30–33. 

[22] Real-time Ethernet: SERCOS III: Proposal for a publicly available specification for 
real-time Ethernet, Doc. IEC 65C/358/NP (2004). 

[23] Real-time Ethernet: Profinet IO: Proposal for a publicly available specification for real-
time Ethernet, Doc. IEC 65C/359/NP (2004). 

 



79 

[24] D. Jansen and H. Buttner, Real-time Ethernet the EtherCAT solution, Computing & 
Control Engineering Journal 15 (1) (2004) 16–21. 

[25] Real-time Ethernet: Ethernet control automation technology EtherCAT: Proposal for a 
publicly available specification for real-time Ethernet, Doc. IEC 65C/355/NP (2004). 

[26] Schneider automation – modbus messaging on TCP/IP implementation guide, 
http://www.modbus.org/, last visited on August 2013. 

[27] S.-K. Kweon and K. Shin, Statistical real-time communication over Ethernet, Parallel 
and Distributed Systems, IEEE Transactions on 14 (3) (2003) 322–335. 

[28] Ethernet/IP library, http://www.odva.org/, last visited on August 2013. 

[29] Real-time Ethernet: Ethernet/IP with time synchronization: Proposal for a publicly 
available specification for real-time Ethernet, Doc. IEC 65C/361/NP (2004). 

[30] L. Liu and G. Frey, Simulation approach for evaluating response times in networked 
automation systems, Emerging Technologies & Factory Automation, IEEE Conference 
on (2007) 1061–1068. 

[31] J.-L. Scharbarg and C. Fraboul, Simulation for end-to-end delays distribution on a 
switched Ethernet, Emerging Technologies & Factory Automation, IEEE Conference 
on (2007) 1092–1099. 

[32] X. Fan, M. Jonsson, and J. Jonsson, Guaranteed real-time communication in packet-
switched networks with FCFS queuing, Comput. Netw. 53 (3) (2009) 400–417. 

[33] K. Schmidt and E. Schmidt, A longest-path problem for evaluating the worst-case 
packet delay of switched Ethernet, in: Industrial Embedded Systems, International 
Symposium on, 2010, pp. 205–208. 

[34] R. Moraes et al., Enforcing the timing behavior of real-time stations in legacy bus-
based industrial Ethernet networks, Computer Standards and Interfaces 33 (3) (2011) 
249–261. 

[35] G. Cena, L. Seno, A. Valenzano, and S. Vitturi, Performance analysis of Ethernet 
powerlink networks for distributed control and automation systems, Computer 
Standards and Interfaces 31 (3) (2009) 566–572. 

[36] Real-time Ethernet: EPA (Ethernet for plant automation): Proposal for a publicly 
available specification for real-time Ethernet, Doc. IEC 65C/357/NP (2004). 

[37] Z. Wei, X. Aidong, and S. Yan, Theory and implementation of real-time testing in 
EPA, in: Mechatronics and Automation, Inter. Conference on, 2010, pp. 778–782. 



80 

[38] Real-time Ethernet: EPL (Ethernet powerlink): Proposal for a publicly available 
specification for real-time Ethernet, Doc. IEC 65C/356a/NP (2004). 

[39] S. Vitturi, L. Peretti, L. Seno, M. Zigliotto, and C. Zunino, Real-time Ethernet 
networks for motion control, Computer Standards and Interfaces 33 (5) (2011) 465–
476. 

[40] Real-time Ethernet: TCnet (Time-Critical Control Network): Proposal for a publicly 
available specification for real-time Ethernet, Doc. IEC 65C/353/NP (2004). 

[41] J. C. Eidson, Measurement, Control, and Communication Using IEEE 1588, Springer, 
2006. 

[42] Real-Time Linux, http://en.wikipedia.org/wiki/RTLinux/, last visited on August 2013. 

[43] Open Source, http://wikipedia.org/wiki/Free_and_open_source_software/, last visited 
on August 2013. 

[44] Lubuntu, http://lubuntu.net/, last visited on August 2013. 

[45] Usb Image Tool, http://www.alexpage.de/usb-image-tool/, last visited on August 2013. 

[46] The Linux Kernel Archives, http://www.kernel.org/, last visited on August 2013. 

[47] K. Erwinski, M. Paprocki, L. Grzesiak, K. Karwowski, and A. Wawrzak, Application 
of Ethernet Powerlink for communication in a Linux RTAI open CNC system, 
Industrial Electronics, IEEE Transactions on 60 (2) (2013) 628–636. 

[48] Intel e1000e Driver ReadMe, 
http://downloadmirror.intel.com/22603/eng/README.txt, last visited on August 2013. 

[49] Time keeping in Virtual Machines, 
http://www.vmware.com/files/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf, 
last visited on August 2013. 

[50] D. W. Allan, Precision oscillators: Dependence of frequency on temperature, humidity 
and pressure, in Proceedings of the 1992 IEEE Frequency Control Symposium, 1992, 
report of Working Group 3 of the IEEE SCC27 Committee. 

[51] R. Cochran and C. Marinescu, Design and implementation of a ptp clock infrastructure 
for the linux kernel, in Precision Clock Synchronization for Measurement Control and 
Communication (ISPCS), 2010 International IEEE Symposium on, Sep. 27–Oct. 1, 
2010, pp. 116 –121. 

 



81 

[52] R. Cochran, C. Marinescu, and C. Riesch, Synchronizing the Linux System Time to a 
PTP Hardware Clock. 

[53] The Linux PTP project, http://linuxptp.sourceforge.net/, last visited on August 2013. 

[54] Intel 82574l Gigabit Ethernet Controller, http://ark.intel.com/products/32209/Intel-
82574L-Gigabit-Ethernet-Controller/, last visited on August 2013. 

[55] Intel 82574l Gigabit Ethernet Controller driver, http://sourceforge.net/projects/e1000/, 
last visited on August 2013. 

[56] Ethtool, https://www.kernel.org/pub/software/network/ethtool/, last visited on August 
2013. 

[57] libFAUDES, http://www.rt.eei.uni-erlangen.de/FGdes/faudes/, last visited on August 
2013. 

[58] Cyclictest, https://rt.wiki.kernel.org/index.php/Cyclictest/, last visited on August 2013. 

[59] Semih Bilgen, Confidence of Simulation Results, Lecture Note, METU. 

[60] P. Loschmidt, R. Exel, A. Nagy, and G. Gaderer, Limits of synchronization accuracy 
using hardware support in IEEE 1588, Precision Clock Synchronization for 
Measurement, Control and Communication, IEEE International Symposium on, 2008, 
pp. 12–16. 

[61] M.H. de Queiroz, J.E.R. Cury, and W.M. Wonham, Multitasking Supervisory Control 
of Discrete-Event Systems, J. Discrete Event Dynamic Systems: Theory and 
Applications, vol. 15, pp. 375-395. 

[62] K. Schmidt, M. de Queiroz, and J. Cury, Hierarchical and Decentralized Multitasking 
Control of Discrete Event Systems, Proc. IEEE 46th Conf. Decision and Control, pp. 
5936-5941, Dec. 2007. 

[63] Y.B. Kartal, Dependable Framework Design for Distributed Real-Time Network 
Protocols Running On Shared Medium: Design, Simulation and Verification, Phd. 
Thesis, METU Sept. 2013, Under Preparation. 

[64] Ö. B. Sezer, Implementation and Evaluation of the Dependability Plane for the 
Dynamic Distributed Dependable Real Time Industrial Protocol (D³RIP), M.S. Thesis, 
Defense date: September 2013. 

 


