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ABSTRACT

DETRITAL ZIRCON AGES AND PROVENANCE OF THE TRIASSIC (?)
CARPHOLITE-BEARING METACONGLOMERATES IN THE SOUTHERN
MENDERES MASSIF

Deveci, Zehra
M.Sc., Department of Geological Engineering
Supervisor: Prof. Dr. Erdin Bozkurt

September 2013, 156 pages

The recent documentation of HP relics (carphiolite-bearing metaconglomerates) from
the Kurudere area (Selimiye-Milas, Mugla) was one of the most important discoveries
in the southern Menderes Massif. The metaconglomerates form the lowest most
lithologies of the so-called marble unit and lie structurally above the schists with a
proposed thrust fault. The metaconglomerates occur at two distinct horizons, each of
which shows opposing sense of shearing in an overturned anticlinal structure. U-Pb—
Hf zircon analyses of detrital zircons (450 grains) were performed by using Laser
ablation induced couple mass spectrometry method (LA-ICPMS). The youngest grain
is Asselian (earliest Permian) in age (298+5 Ma, conc. 104%) while a Mezoarchean
zircon grain (3020+£16 Ma; conc. 101%) forms the oldest. The youngest zircon grain is
therefore consistent with previous contention that the metaconglomerate is late
Triassic in age. The dominance of Ordovician to Cryogenian (Neoproterozoic) zircons
and lack of Mesoproterozoic (1.1-1.7 Ga) zircons suggest Pan-African terranes (the
northern Gondwana provenance) as the main source area. ¢Hf values of 144 zircon
grains indicate both reworking of an old crust and a juvenile crustal source. The
detrital zircon populations and eHf values are very distinct from those reported in the
southern Menderes metasediments and show pronounced similarities with that of
Cycladic rocks. It is therefore concluded that the Kurudere HP metaconglomerates and
possibly the overlying marbles in the southern Menderes Massif may belong to the
Cycladic blueschist units. The occurrence of north-vergent overturned fold and
associated kinematics suggest tectonic emplacement of the Cycladic unit above the
Menderes sequence sometime after Eocene but before late Oligocene.

Key Words: southern Menderes Massif, Cyclades, metaconglomerate, detrital zircon,
U-Pb-Hf isotopes, laser ablation induced couple mass spectrometry method (LA-
ICPMS).
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GUNEY MENDERES MASIFI’NDEKI TRiYAS YASLI (?) KARFOLITLI
METACAKILTASLARININ KIRINTILI ZIRKON YASLARI VE KOKENI

Deveci, Zehra
Yiiksek Lisans, Jeoloji Miihendisligi Boliimii
Tez Danigsmani: Prof. Dr. Erdin Bozkurt

Eyliil 2013, 156 Sayfa

Kurudere  koyii  (Selimiye-Milas, Mugla) yakin civarinda yiizeyleyen
metasedimanlarda (karfolitli metagakiltasi) YB metamorfizmas: kalintilarinin
tanimlanmis olmasi giiney Menderes Masifi’'nde son zamanlarda yapilan en 6nemli
kesiflerden birisidir. Metagakiltasi, ‘mermer ortisii’ olarak tanimlanan birimin en alt
seviyesini olustururken yapisal olarak, muhtemelen bindirme fayi, sist birimlerini
tizerler. Bolgede metagakiltasi iki farkli seviye ile temsil edilirken, kuzeye devrik yatik
kivrim iginde herbir diizey zit yonlere hareket veren yapisal elemanlarla stislenmistir;
bu durumda metacakiltas diizeyleri kivrimin kanatlarini temsil ederler. Kirintili
zirkonlardan (450 adet) U-Pb-Hf zirkon analizleri, Lazer Asindirmali-Endiiktif
Eslesmis Plazma Kiitle Spektrometre (LA-ICPMS) yontemi ile yapilmistir. En geng
tanenin Aseliyen (Erken Permiyen) (298+5 Ma, uym. 104%), en yasli tanenin ise
Mezoarkeen (3020+16 Ma; uym. 101%) yasta oldugu belirlenmistir. En geng tanenin
yas1, daha 6nce birim igin 6ngiiriilen ge¢ Triyas yasini desteklemektedir. Ordovisiyen—
Orta Neoproterozoik yas araligindaki zirkon tanelerinin baskinligi ve Mezoproterozoik
(1.1-1.7 Ga) zamandaki bosluk, ana kaynak olarak Pan-Afrikan kokene isaret
etmektedir. Yiizkirkdort adet zirkondan oOlgiilen eHf degerleri, tanelerin hem ilksel
hem de taginmus kabuksal kaynaga ait oldugunu gostermektedir. Metagakiltast
biriminin kirintili zirkon popiilasyonu ve eHf degerleri literatiirde ifade edilen ve
giiney Menderes metasedimanlarina ait degerlerden farklidir ve Kiklatlarla benzerlik
gostermektedir. Buna dayanarak, giiney Menderes Masifi'ndeki Kurudere YB
metagakiltaglarinin ve tizerindeki mermer serinin Kiklatlara ait olabilecegi sonucuna
varilmigtir. Kuzeye devrik kivrimin varligi ve ilgili kinematik belirtegleri, Kiklatlara
ait kaya topluluklarinin Eosen—Geg¢ Oligosen zaman diliminde Menderes serisinin
iizerine tektonik olarak yerlesmesi olarak yorumlanabilir.

Anahtar Kelimeler: giiney Menderes Masifi, Kiklatlar, metacakiltaslari, kirmntili
zirkon, U-Pb_Hf izotoplari, Lazer Asindirmali-Endiiktif Eglesmis Plazma Kiitle
Spektrometre (LA-ICPMS) yontemi
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CHAPTER 1

INTRODUCTION

1.1 DEFINITION OF PROBLEM: DETRITAL ZIRCON DATING

Detrital minerals in sedimentary rocks have been the subject of quantitative methods
for last century with the rising of analytical opportunities. Notedly, zircon has kept its
popularity for a long time because of its resistance at the Earth’s surface; it is therefore
prominently preferred to interpret the provenance, age and history of a sedimentary
deposits. Detrital zircon analysis uses age of the zircon to determine provenance of,
and develop a geological history of, sedimentary units and their source areas. ldeally,
the analyzed sample would completely represent a full story of geological history
because zircons may include evidence for all possible provenances and their
relationships to each other (cf. Fedo et al., 2003).

Although detrital zircon geochronology is an important tool to date the minimum age
of sediments and to test their provenance, such a study, in modern terms, was not
carried out the in Menderes Massif yet. Most of the existing geochronologic works in
the southern Menderes Massif is concentrated on the age of metagranitic rocks and
cooling history of the massif (Table 1.1). There are three attempts of detrital zircon
gecohronology on the metasediments of the southern Menderes Massif: (1) Candan et
al. (2011a) dated, using the *’Pb/*®Pb single-zircon evaporation technique, eleven
detrital zircon grains from muscovite schists, which yielded scattered ages between
642 Ma and 3239 Ma, with a major cluster at ca. 640-670 Ma. The age of these
sediments are considered to constrain between 642 and 550 Ma (Ediacaran); (2) Later,
Koralay et al. (2012) also dated eleven detrital zircon grains from garnet schists;
207ph/*®pp single-zircon evaporation ages range from 2482+6 to 610+5 Ma. They
constrain the age of sedimentation between 600 Ma and 550 Ma ((Ediacaran). More
recently, Zlatkin et al. (2013) date two samples, using LA-ICP-MS, from the cover
sediments immediately above the core orthogneisses in Kaletepe area. The first sample
is from Gokgay conglomerates; 47 concordant zircon grains yielded ages between
58449 and 3043+27 Ma. The other sample comes from quartzitic unit above; the age
of 90 detrital zircon grains range from 533+14 Ma to 2927+11 Ma. These authors also
accepted previous contentions and suggested Ediacaran ages for the lowest
representatives of the cover schists. Variable ¢Hf (t) values from the two samples are



interpreted to suggest : (i) significant crustal reworking of 620—-720 Ma zircon juvenile
magmatic zircons, (ii) Pan-African remobilization and mixing of Neoproterozoic-aged
detrital zircons.

As is seen from above two works, there are only for samples dated by using detrital
zircon geochronology from the whole southern Menderes Massif. In addition to all,
except the Zlatkin et al. (2013) paper, the other two employed only eleven grains from
two samples each. Whereas to obtain a reasonable and statistically sound age
population from a sediments several ten’s of grains should be dated (around 100
zircon grains) and this is impossible by using evaporation technique because it is
really very expensive technique; no one can effort to pay for it and most of the zircon
grains have metamorphic rims which is given mix age with evaporation technique.
LA-ICP-MS U-Pb technique is a new, relatively cheap, widely accepted and used
method in dating detrital zircons from (meta)sediments.

The above-mentioned published detrital zircon ages are only from the lowest
representatives of the cover schists and there are no other similar work on the whole
schist unit and the overlying marble cover. The whole southern Menderes
metasediments are several hundreds’ of metres thick and about 150 detrital zircon
grains mean nothing in describing and discussing age and provenance of the
metasediments. There is an urgent need for a detrital zircon geochronology employing
several tens’ of samples along several measured sections. Off a particular relevance to
present research, it is aimed at taking advantage of LA-ICP-MS U-Pb method in
dating detrital zircons from HP metaconglomerates of the southern Menderes Massif.
This is crucial because the origin of these kyanite+magnesiocarpholite-bearing
metaconglomerates is highly debated (see next sections) and bears in the better
understanding of evolution of the Southern Menderes Massif.

Table 1.1 Age data from the southern Menderes Massif (courtesy of Erdin Bozkurt).
Lithology Age (Ma) Method References

490 +£90 — 529 Rb-Sr whole rock Satir and Friedrichsen,

1986
Reischmann et al.,
2555 - 1740 el
546.4+0.8 and
546.0+1.6 Hetzel and

(mean 546:+1.2) Reischmann, 1996

orthogneisses 521+£8.0-572+ | “"Pb-2Ph single

. ? Loos and
7.0 zircon evaporation Reischmann. 1999
(mean c. 550) ’
547.2+1.0 Gessner et al., 2001b
530.94£5.3 Koralay et al., 2007
552.1£2.4 — 1
545642 7 Doraet al., 2005

! from Koralay et al., 2012



549426

541+14 — 566+9

U-Pb SIMS zircon

Gessner et al., 2004

43.4+1.3 and Ar-Ar muscovite Hetzel and
37.9+0.4 Reischmann, 1996
32.1+0.5 Ar-Ar white mica Gessner et al., 2001a
27.88+£1.52 and zircon fission track
24.69+0.90
24.68x2.19 - Ring et al., 2003
15.12+1.09 e
apatite fission track
(concentrate

around 22-21)

57149 — 4374282

Metasediments

mean 501+18
fnean 42+5 an; Th—Pb monazite Catlos ;ISSEC emen,
one grain
33.1+0.7°
40.0+1.8 and OAr->Ar Hetzel and
34.5+1.4 muscovite Reischmann, 1996

209442 — 526+7

207ph-2%ph single
zircon evaporation

Loos and
Reischmann, 1999

metasediments and
orthogneisses

502+10 and 471+8

Rb-Sr whole rock

3545 (63-48
muscovite
and 50-27 biotite)

quartz vein in
orthogneiss

62—43 (muscovite)

Rb-Sr mica

Satir and Friedrichsen,
1986

Bozkurt and Satir,
2000

Pourteau, 2011;
Pourteau et al., 2013

- 49.2+3.3 —
r?]zggz (;/i(:rlgrll?s 35.0+£2.5 Ar-Ar white mica
(average 45.2+2.0)
prophyritic 553.6+8.7
metagranite
muscovite schists (mféiiﬁgr at 207pp-2%ph single
of core series . zircon evaporation
ca. 640-670)
granitic pebbles from 552.3+3.1 and
a metaconglomerate 550.4+2.6
prophyritic
metagranite >49.055.4 LA-ICP-MS U-Pb
granitic pebble from a 549.643.7 zircon

metaconglomerate

Candan et al., 2011a

biotite orthogneiss

55446 — 551£5
(mean 552+2)

leucocratic tourmaline
orthogneiss

544-547 (mean
546+3)

207pp2%pp single
zircon evaporation

552.4+6.8

ICPMS U-Pb
zircon

Koralay et al., 2012

2 ages from inclusions in garnet
% ages from matrix foliation




garnet-mica schist

2482+6 — 476+7
(61045 to 876+5)

2455+5 — 6017

muscovite-quartz
schist

195346 — 554+8

2569+10 — 554426

194245 — 537+£13

2608+5 — 480+5

207pp-2%ph single
zircon evaporation

Orthogneisses

2480+72% and
539+13°

1289+107*and
495430 Ma5

U-Pb zircon

Iredale et al., 2013

metaconglomerate

45.9+2.0 Ma

Ar-Ar white mica

Pourteau et al., 2013

! lower intercept

1.2 PURPOSE AND SCOPE

The Menderes Massif is bounded by three major tectonic units, some which contains
evidence for relict blueschist facies metamorphism; Lycian Nappes in the south (e.g.,
Collins and Robertson, 1997,1998, 1999; Rimmelé et al., 2003a; Ring and Layer,
2003; Jolivet et al., 2004; Ring et al., 2007; Whitney et al., 2008), the izmir-Ankara-
Erzincan Neotethyan suture zone in the north (e.g., Sengdr and Yilmaz, 1981 and
several other reference thereafter) and Cycladic core complex in the west (with the
contact of Eocene eclogite and blueschist metamorphic rocks) (e.g., Diirr et al., 1978;
Okrusch and Brocker, 1990; Okay, 2001; Ring and Layer, 2003; Ring et al., 2007;
Whitney et al., 2008). In the southern submassif, blueschist facies relics include
kyanite and carpholite presence in the metasedimentary rocks. Rimmelé et al. (2003b)
was first to report HP relics in the massif and proposed that the HP-LT rocks are part
of the metasedimentary sequence of the massif (part of the so-called marble cover)
structurally below the HP—LT Lycian Nappes but above the high-grade gneissic core
of the massif (see also Rimmelé et al., 2003b). This model proposes that the age of the
carphiolite-bearing metaconglomerates are late Triassic and that they display
conformable relatioships with: (i) underlying Permian—Triassic phyllite-schist-
quartzite alternation and marble intercalations and (ii) overlying Liassic—Maastrichtian
marbles (partly dolomitic and partly Rudist-bearing) with metabauxite deposits. On
the other hand, Ring et al. (1999) and Régnier et al. (2003, 2007) correlated the HP—
LT rocks with the Cycladic blueschist unit and proposed that Cycladic unit of the
southern Menderes Massif is bounded by thrust faults with the underlying Menderes
cover units (along the Cycladic-Menderes thrust) and the overlying Lycian Nappes.
This model was latter favoured by Whitney et al. (2008) (Figure 1.1); they have
suggested, based on the differences in P-T-deformation history of the so-called cover

* upper intercept



schists and cover marbles of the southern Menderes Massif, that the HP—LT rocks are
not part of the Menderes Massif cover sequence but are tectonically related to the
Cycladic blueschist unit (see section 1.6 for more details on the metaconglomerates of
the southern Menderes Massif).

kinematic hinge

Lycian Southern A
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Figure 1.1 Gneissic core and overlying schist and Lycian Nappes, dash line indicates
Cyclades-Menderes Thrust, K- Kurudere Village (Whitney et al., 2008; kinematic
hinge is from Iredale, 2005 in Whitney et al., 2008).

As is seen from the above discussion, the origin of the HP rocks in the southern
Menderes Massif is still debated and it is not clear if they belong to Cyclades or form
a part of the southern submassif’s metasedimentary sequence (Figure 1.2). The
answers to above guestions have far more implications for the better understanding of
not only the Menderes Massif but whole Aegean. The present work therefore aims to
employ LA-ICP-MS U-Pb method on detrital zircons separated from the kyanite-
magnesiocarpholite metaconglomerates of the Southern Menderes Massif to better
understand their protolith, age, provenance, metamorphic assemblages and structural
features; their relationship(s) to the rest of the Southern Menderes Massif, which does
not record clear evidence for a HP-LT metamorphism, will also be discussed.

This research forms a part of a TUBITAK project that aims to study the
metasediments of the Lycian Nappes, Menderes Massif, Afyon Zone and Tavsanl
Zone. It lasted for about two-and-half-years and involves field geological mapping,
structural analysis and laboratory work of the carpholite-bearing metaconglomerates in
Kurudere area (Selimiye-Milas) in the southern Menderes Massif. The U-Pb-Hf
detrital zircon analyses of metaconglomerates by using LA-ICP-MS method form the
centre of the research. The detrital zircons of the southern Menderes Massif, except for
a number of recent papers, have not previously been considered. More importantly
detrital zircon ages and population seem to be the only method to test existing
controversies over the age and provenance and in turn the origin of the
metaconglomerates of the Southern Menderes Massif.
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Figure 1.2. Tectonic map of the Aegean and Anatolian region showing the locations of
Menderes and Cycladic massifs (from Jolivet et al., 2012). Black lines— main active
structures; thick violet or blue lines— main sutures zones; thin blue lines— main thrusts
in the Hellenides; NCDS— North Cycladic Detachment, SD— Simav Detachment;
AIW-Almyropotamos window; BD- Bey Daglari; CB-— Cycladic Basement;
CBBT-Cycladic Basement basal thrust; CBS— Cycladic Blueschists; CHSZ— Central
Hellenic Shear Zone; CR— Corinth Rift; CRMC- Central Rhodope Metamorphic
Complex; GT- Gavrovo-Tripolitza Nappe; KD- Kazdag dome; KeD- Kerdylion
Detachment; KKD—- Kesebir—-Kardamos dome; KT— Kephalonia Transform Fault;
LN- Lycian Nappes; LNBT— Lycian Nappes Basal Thrust; MCC— Metamorphic Core
Complex; MG— Menderes Grabens; NAT— North Aegean Trough; NCDS— North
Cycladic Detachment System; NSZ— Nestos Shear Zone; OIW- Olympos Window;
OsW- Ossa Window; OSZ— Oren Shear Zone; Pel. — Peloponnese; OU— Oren Unit;
PQN- Phyllite—Quartzite Nappe; SiD— Simav Detachment; SRCC- South Rhodope
Core Complex; StD— Strymon Detachment; WCDS— West Cycladic Detachment
System; ZD- Zaroukla Detachment.

1.3 LOCATION OF THE STUDY AREA

The study area is located within the southern Menderes Massif in western Turkey, NE
of Kurudere village, SE of Bafa Lake and SW of town of Selimiye (Milas). The
metaconglomerates crop out at four hills, namely Karaburun, Cileklik and Lomburt



hills. The total amount of area 32 km? it is included on 1/25000-scaled Turkish
topographic map sheets of Mugla N19-al (Figures 1.3-1.5).
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o

Figure 1.3 Simplified geological map of the Menderes Massif and
subdivision into the submassifs (modified from Candan et al., 2000).



BAFA LAKE

s

|:| alluvium

- marbles of *marble cover®
l:l metaconglomerate lenses
- marbles of “schist cover’
-I micaschist with calcschist intercalations

- chlorite schist

_ D muscovite-quartz schist - granitic gneiss = attitude of foliation
garnet-bearing chlorite schist - migmatite
i i 0 20
- garnet schist - augen gneiss
- l:‘ biotite-quartz schist - fine-grained gneiss km

I I T I 1 I I 1 1

Figure 1.4 Geological map of the Bafa Lake-Selimiye area in the southern
Menderes Massif (from Basarir 1970). Courtesy of Erdin Bozkurt.
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Figure 1.5 Location map showing topographic features of the study area.

1.4 METHODS OF STUDY

This research lasted for about two-and-half-years and involved both (i) field studies
and (ii) laboratory studies.

The field studies include: (i) mapping of rock units and structural features such as
folds, foliation and lineation at a scale of 1/5000, (ii) sampling for petrographic and
age determination studies, (iii) measurement of attitude for foliation and lineation, (iv)
detailed kinematic analysis to determine the sense of motion during deformation.
Different rock units were, based on their physical appearance and mineral content,
distinguished and mapped. To analyse and determine characteristic mineral
assemblages and also to perform detrital zircon age determinations, each unit was
sampled. All observations, detailed descriptions and coordinates were recorded in the
field notebook during the excursion.

Laboratory studies were performed in Geochronology and Radiogenic Isotope
Laboratory, Institute of Geoscience, Goethe Univesity of Frankfurt. Laboratory studies
include (1) sample preparation: (i) crashing with jaw and roller crashers, (ii) Wilfley



table, (iii) heavy liquid, (iv) hand magnet and magnetic separation, (v) hand-picking
under binocular microscopy, (vi) enclosing in epoxy resin, (vii) polishing, (viii) taking
Cathodoluminescence (CL) images (a detailed explanation will be given in Appendix);
(2) measurement of U-Pb isotope system contents of detrital zircons by using laser
ablation induced couple mass spectrometry (LA-ICPMS). The analyses were
performed with ThermoScientific Element 2 sector field ICP-MS coupled to a
Resolution M-50 excimer laser system; (3) processing and interpreting the data by
using an in-house MS Excel spreadsheet program (Gerdes and Zen, 2006, 2009;
Millonig et al., 2012). The processed data was plotted on concordia diagram(s) by
Isoplot 3.71 (Gerdes, 2012); (4) comparison of new age data and population with
existing data from the Menderes Massif, Cyclades, North Africa, and from other
relevant tectonic units; (5) attesting existing models over the age and origin of
metaconglomerates and proposing a sound model.

1.5 GEOLOGICAL OVERVI EW OF SOUTHERN MENDERES MASSIF

Menderes Massif (Parejas, 1940) forms a regional, crustal-scale, elliptical core
complex, with its long axis trending in NE—SW direction, in the heart of southwestern
Turkey extensional provenance; the massif covers an area of more than 40.000 km?.
The Massif is a crustal-scale Tertiary metamorphic core complex (e.g., Bozkurt and
Park, 1994; Lips et al., 2001; Ring and Collins, 2005) in extensional provenance of
southwest Turkey. It acquired massif character during an Alpine orogeny that
accompanied the latest Palaeogene collision between the Sakarya Continent and
Anatolide-Tauride platform (e.g., Sengér and Yilmaz, 1981; Sengor et al., 1984) and
consequent closure of the northern Neotethyan ocean. This was associated with
Tertiary nappe translation, crustal thickening and consequent burial and regional high-
temperature—medium pressure metamorphism, main Menderes metamorphism
(MMM) (e.g., Sengor et al., 1984; Bozkurt, 1996, 2007; Bozkurt and Park, 1999;
Bozkurt and Satir, 2000; Whitney and Bozkurt, 2002; Régnier et al., 2003, 2007;
Rimmelé et al., 2003b; Dora, 2011 and references therein). The massif therefore
contains evidence for a complex poly-tectono-metamorphic-magmatic history that
involves HP—LT metamorphism prior to MMM (e.g., Candan, 1995, 1996; Candan et
al., 1997, 2001, 2011b, c; Oberhinsli et al., 1997; Rimmelé et al., 2003a, b, 2006;
Jolivet et al., 2004; Régnier et al., 2007; Whitney et al., 2008; Oberhénsli et al., 2010;
Dora, 2011). The arrival of the massif is attributed to progressive exhumation in the
footwall of several detachment faults and/or extensional shear zones during the post-
orogenic Neogene N-S extensional history of the Menderes Massif (e.g., Bozkurt and
Park, 1994, 1997a, b; Seyitoglu and Scott, 1991, 1992a, b, 1994, 1996; Cohen et al.,
1995; Emre and Sozbilir, 1995; Emre, 1996; Hetzel et al., 1995a, b, 1998, 2013;
Hetzel and Reischmann, 1996; Rojay et al.,, 1998; Glodny and Hetzel, 2007
Seyitoglu, 1997; Sarica, 2000; Bozkurt 2001; Gessner et al., 2001a, b, ¢, 2004, 2013;
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Gokten et al., 2001; Isik and Tekeli, 2001; Lips et al., 2001; Sozbilir, 2001, 2002;
Hasozbek, 2003; Isik et al., 2003, 2004; Rimmelé et al., 2003a; Bozkurt, 2004, 2007;
Bozkurt and Sozbilir, 2004, 2006; Isik, 2004; Seyitoglu et al., 2004; Catlos and
Cemen, 2005; Purvis and Robertson, 2005a, b; Purvis et al., 2005; Ring and Collins,
2005; Bacceletto and Steiner, 2005; Thomson and Ring, 2006; Cift¢i and Bozkurt,
2008, 2009a, b, 2010; Ozgeng and ilbeyli, 2008; Catlos et al., 2010; Erkiil, 2010;
Ersoy et al., 2010a, b, 2011; Karaoglu et al., 2010; Oner et al. 2010; van Hinsbergen,
2010; van Hinsbergen et al., 2010a, b, ¢; Emre et al., 2011; Has6zbek et al., 2011,
2012; Sozbilir et al., 2011; Altunkaynak et al., 2012; Catlos et al., 2012; Tatar-Erkiil,
2012; Tatar-Erkiil and Erkiil, 2012; Cift¢i 2013; Giirboga et al., 2013; Iredale et al.,
2013; (")zkaymak et al., 2013; Stimer et al., 2013).

The Massif is divided into three submassifs and E-W-trending Gediz Graben in the
north and Biiyiik Menderes Graben in the south form the boundaries of the northern
(Gordes), central (Odemis-Kiraz) and southern (Cine) submassifs, respectively (e.g.,
Dora et al. 1995; Whitney and Bozkurt, 2002; Bozkurt, 2007; Candan et al., 2011a)
(Figure 1.3). It is generally accepted that the Menderes Massif is composed of a
‘gneiss core’ and a structurally overlying ‘Palacozoic—Cenozoic cover series’ (Figures
1.3 and 1.4). The core rocks dominantly consist of augen gneisses (Sengor et al.,
1984; Satir and Friedrichsen, 1986; Candan, 1995,1996; Candan et al., 1998, 2000;
Oberhansli et al., 1997, 1998). The cover rocks are made up dominantly of schists and
marbles. The intensity of metamorphism increases towards the core (Bozkurt and
Oberhiénsli, 2001). As the study area is located within the southern Menderes Massif,
the other two submassifs are not discussed in the following paragraphs.

The southern submassif is considered as the part of the massif where a complete
record of its stratigraphy is well exposed. The submassif is traditionally considered to
comprise two distinct lithologic associations: (1) metagranites/orthogneisses; it is
known as the Precambrian (?) ‘core’ augen gneisses; (2) and structurally overlying
high- to low-grade Palaeozoic—Middle Palaesocene metasedimentary sequence (e.g.,
Schuiling, 1962; Sengdr and Yilmaz, 1981; Sengér et al., 1984; Ashworth and
Evirgen, 1985; Bozkurt, 1996; Candan et al., 2001, 2011a, b, c; Gessner et al., 2001a;
Whitney and Bozkurt, 2002; Erdogan and Giingor, 2004; Whitney et al., 2008; Dora et
al., 2011; Erdogan et al., 2011; Koralay et al., 2011, 2012); the cover rocks are further
divided into two units, so-called ‘schist cover’ and ‘marble cover’. Metamorphic grade
increases from the metasedimentary rocks towards the gneissic core (Figure 1.6)
(Whitney and Bozkurt, 2002).

The contact between core and cover rocks has been the subject of intense discussion
over the last three decades and several controversial intepretations are made; all
models now agree that this contact is a regional top-SSW ductile shear zone but no
consensus are made over its nature and name. Thus, several different terms are used to
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name this shear zone as top-S extensional shear zone Cine shear zone (Lips et al.,
2001), top-S thrust fault, Selimiye shear zone (Ring et al., 1999, 2003; Gessner et al.,
2001a, 2004; Régnier et al., 2003, 2007; Koralay et al., 2012), top-N extensional
Kayabiikii shear zone (Seyitoglu et al., 2004) or top-S extensional southern Menderes
shear zone (e.g., Bozkurt and Park, 1994; Hetzel and Reischmann, 1996; Bozkurt and
Satir, 2000; Lips et al., 2001; Whitney and Bozkurt, 2002; Rimmelé et al., 2003b;
Bozkurt, 2004, 2007; Seyitoglu et al., 2004; Iredale et al., 2013). There are also claims
that the shear zone is a inverted structure which operated first as a top-N contractional
structure, then it was reactivated as a top-S extensional shear zone (Bozkurt 2004,
2007; Bozkurt et al., 2006).

The shear zone records a metamorphic break of about 2 kbar (equal to a missing
metamorphic section of 7 km) and emplaces lower-grade metamorphic rocks over
higher-grade metamorphic rocks. The orthogneisses form the footwall and the schists
lie in the hanging wall. Similarly, the age of the protolith of the ortogneisses is also
controversial and claims are Precambrian and/or Tertiary. One of the other
characteristic feature of the southern Menderes Massif is described by presence of
several stock-like and/or dyke/sill like bodies of tourmaline-rich two-mica
leucogranites orthogneisses and lowermost parts of the schist cover (Bozkurt et al.
2006).

The schist envelope comprises several different lithologies, they include, from
structurally lowest to highest, micatquartztgarnet schists (widely known as
paragneisses), quartz+muscovitetbiotitetgarnet schist (quartzite / meta-quartz
arenite), pelitic schists (garnet+mica and mica+quartztgarnet=chloritoid schists) with
carbonate lenses and bands, and a calcerous sequence dominated by marble with mica-
schist / phyllite intercalations. The literature suggests that P—T conditions during their
metamorphism reached up to ca 8 kbar and ca. 550°C at the structurally lowermost
parts and <6 kbar and 430°C at the structurally upper parts (Whitney and Bozkurt,
2002). The age of the schists are considered to range from Precambrian to Permian
(even early—middle Triassic) (Figure 1.7).

The marble cover comprises metaconglomerates with quartz and dolomite pebbles,
massive marbles with local metapelite lenses and metabasites, marble with
metabauxite lenses, dolomitic marble and Late Cretaceous Rudist-bearing marbles; the
sequence ends with reddish-pinkish thin bedded pelagic cherty marbles with local
pelitic interlayers and a metaolistostromal unit (Caglayan et al., 1980; Konak et al.,
1987; Dora et al., 2001; Ozer et al., 2001; Régnier et al., 2003).
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The age of the schist and marble envelope depends on regional correlations and
inferences from early studies (except for the Rudist-bearing marbles). There is no
single analytic data that bears on the protolith age of the schists and marbles.

The metasedimentary sequence in the southern submassif display a well-developed,
regional, penetrative south-dipping foliation invariably associated with an
approximately N—S-trending mineral stretching lineation; the dip of the foliation is
about 30—40° but steeper dips up to 80° is also possible. The foliation, particularly
towards the lower contact of the Lycian Nappes, is deformed by ~E~W-trending
asymmetric and overturned folds with axes paralleling the Lycian front (e.g., Caglayan
et al., 1980; Bozkurt and Park, 1999; Whitney and Bozkurt, 2002). The regional
foliation in the metasediments posses everywhere top-N kinematics and are attributed
to a top—N thrust faulting during early Alpine contractional deformation and coeval
main Menderes metamorphism. In and around the southern Menderes shear zone
regional top-N fabrics are overprinted by exhumation-related top-to-the-S sense of
shear. This presence of top-N and overprinting top-S fabrics forms the most
overwhelming evidence to support the inverted nature of the southern Menderes shear
zone (SMSZ) (Bozkurt et al., 2006; Whitney et al., 2002; Bozkurt 2004, 2007).

Contact between the cover schists and overlying cover marbles is also controversial.
One school argues for a conformable boundary where schists and marbles form part of
the same sequence (Caglayan et al., 1980; Konak et al., 1987; Dora et al., 2001; Ozer
et al.,, 2001; Rimmelé et al., 2003b; Jolivet et al., 2004) whereas others claim for a
thrust fault (Cyclades-Menderes thrust) relationship (Gessner et al., 2001a; Ring et al.,
1999, 2003; Régnier et al., 2003, 2007; Whitney et al., 2008). The latter model
proposes that marbles belong to Cycladic Massif in the Aegean. Gessner et al. (2001c)
considered that Cyclades-Menderes thrust is coeval with Selimiye shear zone and runs
subparallel to each other. Detailed studies make the structure world-widely important,
because juxtaposition of different metamorphic grade rocks is not related to Tertiary
extensional deformation but also with nappe stacking (Régnier et al., 2003). In
contrast, there is overwhelming evidence that top-to-the-S shear sense is caused by
crustal extension (e.g., Bozkurt and Park, 1994; Hetzel and Reischmann, 1996;
Bozkurt et al., 1997a, b, 1999; Lips et al., 2001; Whitney and Bozkurt, 2002; Bozkurt
2004, 2007; Seyitoglu et al., 2004; Catlos and Cemen, 2005; Iredale et al., 2013).
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The southern submassif is also interpreted as overturned limb of a large recumbent
synform; orthogneiss in the core and younger schists in the rims (Okay, 2001).
Whitney and Bozkurt (2002) disputed this model and argued that in an overturned
synform the older lithologies should occur in the limbs and younger units in the core.
There is also an incompatible relationship with the kinematics as well; the details are
explained in Whitney and Bozkurt (2002).

The commonly accepted model in the Menderes Massif suggests that the massif
character was acquired during a HT—-L/MP main Menderes metamorphism (MMM),
which was the result of burial beneath the southerly moving Lycian Nappes; but this
model is incompatible with the dominant top-N fabrics both in the core and cover
rocks of the massif. The top-to-the-S fabrics exist and they commonly occur within the
southern Menderes shear zone or in other parts of the massif where top-to-the-N
thrusts were reactivated as top-to-the-S normal faults. The age of top-N fabrics in this
regard are also debated and claims range from Precambrian to Eocene (e.g., Bozkurt
and Park, 1994; Ring et al., 1999; Gessner et al., 2001a; Oberhinsli et al., 2001;
Whitney and Bozkurt, 2002; Catlos and Cemen, 2005).

The main Menderes metamorphism (MMM) is accepted as the main phase of
metamorphism. There are several attempts to date the cooling ages in the southern
Menderes Massif: (1) 63-48 Ma muscovite and 50-27 Ma biotite Rb-Sr mica ages
(mean 35+5 Ma; Satir and Friedrichsen 1986); (2) 43.4+1.3, 40.0£1.8 Ma, 37.9+0.4
Ma and 34.5£1.4 Ma “Ar/*Ar muscovite ages (Hetzel and Reischmann, 1996); (3)
OAr/*Ar muscovite age of 324+0.5 Ma from augen gneisses (Gessner et al., 2001a); (4)
47.146.3 Ma and 42.8+3.6 Ma (average 42+5 Ma) ages from monazite inclusions in
garnets (Catlos and Cemen 2005). The evidence is therefore consistent with a Eocene
age for the MMM (see Table 1.1 for details of geochronologic campaign in the
southern Menderes Massif).

The other model about rock units of the Menderes Massif argues that the submassif
consists of a stack of nappes (Menderes nappes) and there is no stratigraphic
relationship between the so-called core and cover rocks (Ring et al., 1999; Gessner et
al., 2001c, Régnier et al., 2003, 2007). The so-called core rocks are regarded as the
structurally lower nappe (Cine nappe), the schist cover, the Selimiye nappe and the
marble cover, the Dilek nappe. In this model, marbles of the Dilek nappe are
correlated with Cycladic HP marbles and the contact between the underlying Selimiye
and overlying Dilek nappes is interpreted as a thrust fault, namely the Cyclades-
Menderes thrust.
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Figure 1.7 Simplified stratigraphic section of the southern Menderes Massif (from
Rimmelé et al., 2003a).

1.6 PREVIOUS STUDIES: THE KURUDERE HP-LT ROCKS

There are several other controversial issues about the southern Menderes Massif and
its complex poly-tectono-metamorphic-magmatic history but most lies outside the
scope of this research. That is why previous section is mainly concentrated on some of
the most crucial issues that are related to the main scope of this research.
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To shed lights on some of the above-mentioned -controversial issues, the
metaconglomerates exposed near Kurudere (Selimiye-Milas) area are investigated.
These rocks formed the subject of a number of studies and below a summary from
relevant papers will briefly be presented.

Besides Lycian Nappes and eastern Mediterranean area, the blueschist facies rocks in
whole southern Menderes Massif are scarce and are mostly represented by relic
paraganesis (magnesiocarpholite-kyanite and chloritoid assemblages) in the
metaconglomerates (Oberhénsli et al., 2001; Rimmelé et al., 2003a; Jolivet et al.,
2004; Whitney et al., 2008; Pourteau et al., 2013). Three localities in the southern
Menderes Massif are Nebiler village (near Kavaklidere), near Oren (Mugla, Gékova
Gulf) and Kurudere village (Selimiye-Milas). Meteconglomerates in the Kurudere
village (Figures 1.4 and 1.8) forms the mostly studied key unit where HP-LT
metamorphic relics were first observed and reported by Rimmelé et al. (2003a).

Metaconglomerates in the Kurudere area occur at the base of the cover marbles and is
characterized by quartz pebbles within micaceous matrix; the relative abundance of
micas and quartz in the matrix is variable from one location to another. There are two
important studies on the Kurudere metaconglomerates by Rimmelé et al. (2003a) and
Whitney et al. (2008).

Rimmelé et al. (2003a) reported magnesiocarpholite-kyanite-chlorite-quartz
assemblages within quartz veins. Relic hair-like fibres of magnesiocarpholite is
characteristic and locally occur with kyanite which occurs as a long and rough prisms
running parallel to the magnesiocarpholite micrometer-scale fibres; the authors argued
that carphiolite in this particular locality is very similar to those occurences in the
eastern part of Samos (cf. Okrusch et al., 1984). Pyrophyllite is reported as secondary
retrograde mineral. Phengite is rarely observed in the samples from Kurudere and their
crystals show close parallelism with the kyanite crystals. A regional foliation is well-
developed and is oriented in NE—SW direction and dips to the SE. Several small-scale
intrafolial folds are common structural elements and many are apparent when they
deform quartz veins with HP relics.

17



"(e€00T T 10 91owwury wouy) sabejquiasse
dH 10 uonNQuIsIp pue uoiedI0| ayl BUuIMOYS JISSBIAl S3I8pUSIA UIBYIN0S ay) Jo dew [ed160j089) g'T ainbiq

JreIoWO[SUOdRIdW SuLIBq-AIUR[|Y - dstozoul]) [] (100 “I8 10 19ZQ) 10Ye) 3 SS1UBOYIO I mm (JuaUIASEq UBILLY-UE])
Aeoo[ 1sIpny| anpaderdy _U g SHIYES wJd00u
QJBIAWO[TUOIBIAW FULILIG-ILIOY)) - AIUBKY - PIOILIO[YD) * : T i ) S G, T
9)RIWO[TUOIBIAA I .
ydiowopnasd ayjoydie) Av . ”Mmoaum_ MH__M:WMN azyrenb jstyos-anpAyd [ | w
A 189U JO suas v:m <o (astyos-anyiAyd auy urgim =
$95e|quIasse ANI0pNS - PIOILIO[YY) - Ajoydiedoisaude |y v uoneaul aAnEuasaIday suone[eaIUL) dqiew adaon
eIWOo[FuodeId =
STR[qUIASSE ALIO[L) - AIURAY - Aljoydieooisause ‘ S (orques u_oNOmuE_oE :E:ﬂ I B
(L861 “UIdS[BA PUB LG “'[B 19 YRUO Id}je parjipow) o suone[eaIAUI) B.:oQEvE u_onmmv._\,_ A m SHNIES JMAAOD.
O auodserq / @ 001 wnpunio)) :syusodop xneqedN © SORTHOZOS D w w n

9[qJew YSIppal d15e[o @
swonsoisijoers N F30]|°  AISSYIN STITANIN

XAVILY

udpIngoqerey|
L
SAIUBD[OA puB
SJUAWIPAS JUITOIN A\\l\\
‘asse[ow auAd031O I z T ETTIEG,
v [_]

wniA

l' .A‘
/o] ] O OO
T g AU RARY * = &

\Q@@fﬁ/z:

- d19pnuan
V‘V l/fU P!

NP
Aoxipey|-

18



The discovery of carphiolite in cover series of the southern submassif is interpreted to
suggest that the MM underwent HP-metamorphism during Alpine history. P-T
conditions are determined with phase equilibria as 10-12 kbar and 440 °C during
Eocene which can be correlated with Eocene (40+0.4 Ma; Oberhansli et al., 1998)
blueschists described in the Mesozoic marble sequence of the Dilek Peninsula (min.
10 kbar/max. 470 °C; Candan et al., 1997). Rimmelé et al. (2003a) speculated a
responsible mechanism for this HP metamorphism as burial contemporaneous with
Alpine subduction and nappe stacking. More recently, Pourteau et al. (2013)
determined 45.9+2.0 Ma phengite (white mica) Ar-Ar age from these rocks.

Rimmelé et al. (2003a) argued for four stages for tectono-metamorphic evolution of
submassif; (1) southward movement of Lycian Nappes and burial of Menderes and
Cyclades massifs’ sedimentary units; (2) the main Menderes Metamorphism related
top-to-the-N shearing and north-verging thrusting, folding and consequent HP
metamorphism. Top-to-the-N shearing triggered backthrusting of the Lycian Nappes
and exhumation of the Lycian HP rocks; (3) final exhumation during Oligo—Miocene
N-S extension in the footwall of km-scale low-angle detachment faults (Figure 1.9).
This model was later supported by Jolivet et al. (2004). Rimmelé et al. (2003a) also
argued that metasedimentary rocks in the Kurudere area form a part of Menderes
‘cover’ rocks but HP metamorphism was correlated with Dilek Peninsula (Cyclades)

metasedimentary rocks.
S N

MENDERES-TAURUS BLOCK SAKARYA CONTINENT

HP (LycianThrust Sheets)
PIT = 8 kbar | <420°C

E BEY DAGLARI PLATFORM

HP (Dilek [40 Ma,Ar-Ar])
PIT = min.10 kbar | <470 °C

HP (Samos)
PIT = 8-10 kbar | 420-470°C

HP (Menderes metasediments,
PIT = 12 kbar | >440 °C

Figure 1.9 View of the accretionary complex during the Eocene showing the structural
position of the main HP units in Western Anatolia (from Rimmelé et al., 2003a).

Whitney et al. (2008) studied petrology of carphiolite-bearing HP-rocks, estimated
P—T conditions and discussed their tectonic signifance; they have also addressed the
question if these HP rocks belong to the southern Menderes Massif or they form a part
of Cyclades. They have reported structural and petrological features of the Kurudere
village HP-metasedimentary sequence in detail. They prepared a geological map of the
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area (Figure 1.10) and defined four different lithologies: (1) quartz metaconglomerate
that contains mm- to cm-scale quartz grains and aggregates. In the matrix, mm-scale
phengite was observed with kyanite and chlorite. White mica is rimmed by chlorite.
Kyanite is around 7 cm long in quartz veins and mm-scale in the matrix. Aligned
quartz grains and kyanite define a well-developed mineral lineation; (2) strongly
foliated Kkyanite schist interlayered with quartz-rich; the foliation is defined by fine-
grained chlorite and white mica. Bigger chlorite minerals crosscut the foliation.
Kyanite is up to 4 mm long; (3) concordant quartz veins within the schist; veins are
commonly folded and boudinaged. Some are monomineralic but others contain
kyanite crystals, up to 6 cm long, and magnesiocarpholite; (4) carbonate conglomerate
in northern margin of the area; they do not contain neither HP index minerals nor
quartz veins. Whitney et al. (2008) did not find chloritoid in this area and they suggest
that it is conformable with 10—12 kbar and 440 °C conditions. They are more
concerned with kyanite in the schists to determine metamorphism conditions.
Pseudosection calculations for kyanite schists provide evidence for the stability of
garnet and chloritoid but neither has been observed in the unit. On the other hand, the
conditions are also stable for carpholite which occurs in quartz veins in the schist.

The orientation of the Karaburun rigde is subparallel to strike of foliation. Foliation
dips are variable. Lineation is defined by preferred parallel alignment of quartz augen.
Quartz veins are general subparallel to the strike of foliation, folded and boudinaged
but in places crosscutting relationships with the foliation is also evident. Quartz grains
display foam-texture, curved grain boundaries and well-developed triple junctions.
Kyanite and phengite grains were also deformed. Whitney et al. (2008) also
documented (1) the occurrence of kyanite not only in the veins, but also in quartz-rich
rocks, (2) the presence of carbonate metaconglomerate in the northern margin of the
ridge, (3) absence of HP index mineral in carbonate metaconglomerates, and (4)
abundance of phengite in quartz-rich rocks and schist. They have also argued that
there is no textural evidence for the reaction magnesiocarpholite=
kyanite+chlorite+quartz+H,0, and for the breakdown of carpholite. Additionally, top-
to-the-N sense of shear in kyanite- and phengite-bearing quartz-rich unit was
interpreted as syn-kinematic with respect to the HP metamorphism whereas top-to-the-
S sense of shear is observed in north of Kurudere village and are attributed to
subsequent extensional deformation. The evidence is further used to suggest that the
Kurudere HP rocks have a different P—T history than the so-called schist cover of the
southern submassif. But it was difficult to evaluate the metamorphic history because
the southern Menderes schists do not record any clues for the presence of a HP
metamorphism. This piece of information highlights the importance of Kurudere HP
rocks in the better understanding of the the evolution of the southern submassif.
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In the literature, as mentioned above, two conflicting models are proposed to discuss
the origin and tectonic significance of HP metaconglomerates in the Kurudere area.
One of the model argues that the HP—LT rocks are part of the metasedimentary cover
to the Menderes Massif (Rimmelé et al., 2003a; Jolivet et al., 2008) while others
claims that the metaconglomerates and overlying marbles are representatives of
Cycladic blueschist unit (Ring et al., 1999; Gessner et al., 2001c; Whitney et al., 2008)
in the southern Menderes Massif. The latter model also argues that these HP—LT rocks
are lithologically very similar to those in the Cyclades; the presence of quartzite
conglomerate with interlayered kyanite—chloritoid schists supports this contention
(Gessner et al., 2001c). If the southern submassif HP rocks are part of the Cycladic
blueschist unit, then the age of metamorphism should be middle Eocene (“Ar/*Ar
phengite ages from Cyclades= 55-45 Ma; e.g., Wijbrans et al., 1990) and must have
taken before the main Menderes metamorphism. The most recent 45.9+2.0 Ma Ar-Ar
mica age (Pourteau et al., 2013) from Kurudere metaconglomerates casts doubts on
this model. This further brings an important question about the spatial and temporal
relationship between HP-LT metamorphism and main Menderes metamorphism
(MMM).

The kinematic evolution of the southern Menderes Massif is controversial.
Relationship between deformation and metamorphism, the age of the penetrative
fabrics in the augen gneisses (Neoproterozoic vs Alpine), the boundary relationships
between the so-called core and cover rocks (regional Pan-African angular
unconformity, thrust fault or extensional shear zone), the age of augen gneisses and
other granitic rocks (Precambrian vs Tertiary), age of metasediments, origin of
marbles and associated metaconglomerates form the subject of main controversies and
focus of intense research over the last two decades (e.g., Bozkurt and Park, 1994; Ring
et al., 1999; Bozkurt 2004, 2007; Whitney et.al., 2008; Candan et al., 2011a, b, c,
2012; Koralay et al., 2011, 2012; Gessner et al., 2013 and several other papers). Some
studies argue that the main metamorphism is Alpine and associated with top-to-N
fabrics that are locally crosscut by top-to-S greenschist facies extensional shear zones
(e.g., Bozkurt and Park, 1997, 1999; Bozkurt, 2007; Seyitoglu et al., 2004), whereas
others attribute the primary fabric to pre-Alpine tectonic events (Neoproterozoic Pan-
African orogeny) overprinted by Alpine top-to-S shear zones (Gessner et al., 2001a,
2004; Régnier et al., 2003). Both top-to-N and top-to-S fabrics occur in the southern
Menderes Massif. Others argue that pervasive top-to-N fabrics are result of Alpine
contractional deformation during Eocene which made it ‘massif’. Alpine contractional
deformation phase is characterized by penetrative regional foliation and N—S-trending
mineral lineation (Bozkurt et al., 2001). The top-to-S fabrics might occur during
retrograde metamorphic evolution at greenschist facies conditions.

The carpholite-bearing metaconglomerates seem to play an important role in
understanding the tectono-metamorphic history of the southern Menderes Massif.
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Despite of its importance the briefly described models are not supported by
overwhelming evidence. For example, the late Triassic age is based on regional
correlations but no further evidence is provided. Also, the provenance of the
metaconglomerates if they belong to the southern Menderes sequence or form a part of
Cycladic unit is based on the presence or absence of HP relics in these rocks. There is
therefore an urgent need to shed light in some of these existing controversies over the
tectonic significance of the metaconglomerates.
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CHAPTER 2

DESCRIPTION OF UNITS

2.1 INTRODUCTION

Kurudere HP metamorphic rocks, mainly represented by metaconglomerates, occur at
the base of the Mesozoic—Early Tertiary marble cover immediately above the
Palaeozoic schists (the schist cover) in the southern Menderes Massif (Selimiye,
Milas). The marble-dominated HP rocks are located structurally below the HP—LT
Lycian Nappes and above the regional metamorphosed (Barrovian type) Palaeozoic
schists of the southern Menderes Massif (Figures 1.3, 1.4, and 1.6—1.8). In the nappe
model, they form the lowest unit of Cycladic HP unit (Dilek nappe) and lies
structurally above the Selimiye nappe (Ring et al., 1999; Gessner et al., 2001c;
Régnier et al., 2003, 2007).

As is summarized in Chapter 1, the metaconglomerates at the base of marbles have
previously been studied by Rimmelé et al. (2003a) and Whitney et al. (2008). The
previous studies have mainly concentrated on the petrology of these rocks and on
estimating P—T conditions of their metamorphism. In the present study, we aimed at
mapping different lithologic associations (Figure 2.1) and concentrate on the fabric
elements that may bear on the regional structure of these rocks. Of course, we have
also carried out detailed petrographic analyses of constituent rocks and compared our
observations with already published data. Mineralogical investigations are done by
using thin sections and backscattered images using scanning electron microscope.

2.2 ROCKUNITS

Two different rock units are mapped in the study area: (1) metaconglomerates and (2)
metapelites. In addition to all, quartz veins also form important elements of the study
area.

25



"$)201 dlydiowrelsw dH alapninyy Jo dew [ea160j089) T°Z ainbi

S||IYy JO Sweu 'H uninqeiey

Kemybiy // 2 o ,
S ¢6e R ‘ = , -

weass “So. RONGTURTRRNEREEE 00 [ --=5
(Buiyyoans el %
pue zuenb) uoneaul| jesauiw /

ajljedejaw ui

abeAes|o uolelnuaid Jo aul sbuly
a)ljedelsw pue
ajelswo|buooejaw Jo uolel|o} /Nm

<5

uoijeoo| ajdwes 3
1£€

syo0. oijedejsw pasahensiul .

$3001 oljljedelsw .

ajesswo|buooe)sl
wniAn|e D
slgap )xneq .

26



221 METACONGLOMERATES

Metaconglomerates in the southern Menderes occur at the base of the marble cover
and crops out as isolated exposures at several locations in the area between Bafa Lake
in the west and Nebiler (Kavaklidere) in the east along a belt that runs four about 150
km (Rimmelé et al., 2003a). They are typical deformed and metamorposed
conglomerates, containing mainly quartz pebbles of variable sizes. Metaconglomerates
are the dominant lithology in the Kurudere area; light greyish white and yellow
colours are characteristic. It is a grain-supported rock, characterized mainly by white
quartz pebbles within a mica-rich matrix; there are also mm- to cm-scale black
quartz/quartzite pebbles (Figure 2.3). The original bedding (Sy) is readily recognizable
and is commonly separated by thin metapelites. The foliation (S;) is penetrative and is
parallel and/or subparallel to the original bedding plane. Thickness of individual beds
may reach up to ~1.5-2 metres. Because of its resistance to weathering,
metaconglomerates stand out and form thin ridges in the study area (Figure 2.2); their
physical appearance is therefore used as a criteria to recognize them from a distance.
In some levels, the removal of the quartz pebbles from the matrix leaves behind
cavities/holes, thus forming a characteristic appearance of the rock (Figure 2.3).

Figure 2.2 A view from thin ridges formed by metaconglomerates.

Relatively small pebbles are deformed, flattened, elongated in the plane of foliations
(Figure 2.4 a—d); in many cases the long axes of elongated pebbles are aligned parallel
to the mineral stretching lineation in the rock. Whereas larger pebbles resist
deformation and they commonly occur as asymmetric grains with a typical o-
geometry, giving the rock an augen structure (Figures 2.3 and 2.4 ¢, f). The penetrative
foliation dips to the south and is defined by the parallel alignment of micas, quartz
grains and flattened quartz pebbles. The lineation is also penetrative and is mostly
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defined by the parallel and preferred alignment of micas, stretched quartz grains and
elongated quartz pebbles; the general trend of lineation is N—S and plunge is toward
south. The deformed and elongated pebbles define a well-developed discrete object

lineation and indicate the intensity of the ductile deformation that accompanied their
metamorphism.

Figure 2.3 A view from the metaconglomerates. Please note abundance of holes
left behinde by the weatering and removel of quarz pebbles.
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Figure 2.4 Views from the metaconglomerates. (a) There is grain size variation within
the same bed where pebble-rich and pebble-poor domains seem to alternate. (b) The
lateral passages between pebbly and sandy levels are also common. (c, d) In almost
everywhere larger quartz pebbles are deformed, flatenned and elongated in the plane
of foliation. In such cases, foliation is pronounced and penetrative. (e, f) In other
cases, large quartz pebbles resist deformation and appear as large porphyroclasts
within a fine grained matrix foliation, thus giving the rock an augen structure. Note in
(f) how relatively smaller pebbles are flatenned and elongated and define the matrix
foliation. Also, matrix foliation abust against the large quartz pebble.
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Figure 2.5 A view from the metaconglomerate. Note the difference in the degree and
intensity of deformation between relatively larger and smaller quartz pebbles. Also
note that one of the larger pebbles defines o-geometry, which is consistent with a top-
to-the-left sense of shearing. Foliation is penetrative and well developed; elongated
and flattened quartz pebbles in the foliation plane are evident.

The matrix is comprised of quartz, white mica, chlorite and kyanite. Quartz grains
display undulose extinction. Mica minerals are preferably parallel aligned and define
the main foliation in the rock (Figure 2.6). Quartz in the matrix tends to form equant
grains whereas those larger grains occur as augen and commonly show subgrain
formation with characteristic patchy and/or undulose extinction. In many cases, the
larger grains are actual clasts but there are also examples of disaggregated quartz veins
as well. The dominal structure, defined by the concentration of quartz and mica and as
well as the grain size variation in quartz, is a very characteristic feature of matrix
lithologies (Figure 2.6). Smaller quartz grains commonly are elongated and define a
ribbon structure; individual quartz grains are aligned parallel to each other and define
the main foliation in the rock. Larger grains show characteristic undulose extinction
and perfect triple junctions (Figure 2.6). Relatively thin white mica (phengite)
domains are also characteristic and occur in-between quartz-rich domains (Figure 2.6).
The white-mica domains are also characteristic and observable at outcrop-scale and
commonly define the main foliation in the rock.

The chlorite is also common and occurs together with phengite; it forms thin rims
around the white mica grains. Twinned and deformed large kyanite also occurs as
main constituent of this rock (Figures 2.7 and 2.8). This observation is consistent with
that of Whitney et al. (2008) and is in conflict with that of Rimmele et al. (2003), who
suggested that kyanite occurs only in the quartz veins. Accessory minerals are
magnetite, zircon, rutile, epidote and apatite (Figure 2.9). Rutile, replacing magnetite,
is also observed in some of the thin sections.
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Figure 2.6 Photomicrograph from matrix of the metaconglomerate. Note domainal
structure of the rock, defined by quartz- and mica-rich domains. There are also textural
differences in the quartz domains. Fine-grained equant quartz grains (to the left) define
a ribbon structure where long axis of elongate quartz grains define a foliation
paralleling that of white mica foliation. Larger quartz grains are characteristic with
their patchy and undulose extinction and define well-developed triple junctions (TJ)
among the grains; this indicates the role of recovery process. Otherwise, quartz grains
tend to show regular and straight boundaries with local embayments. Mica-rich
domain (Mca) defines a penetrative foliation and also forms the boundary between
quartz-rich domains.
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Figure 2.7 Photomicrographs from the metaconglomerate. (a—d) Microscopic (crossed
polars) view of kyanite (Ky) and quartz (Qtz). Note that kyanite in (a) tends to show
parallelism with the foliation in the rock. Quartz grains in both microphotograph are
larger crystals and show undulatory extinction. Note also triple-grain boundary among
grains in lower left corner of (d). (b, c) BSE images of kyanite and quartz.
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Figure 2.8 Photomicrograph (crossed polars) of a coarse kyanite (Ky) together with
guartz (Qtz) and phengite (Ph) in matrix of the metaconglomerate.

Element

oK
TiK
Fe K
Totals

Weight%

48.55
50.85
0.60
100.00

Atomic%

73.81
25.75
0.18

100um Eloctron image 1

Figure 2.9 Rutile, as an accessory mineral, was determined by using SEM Jeol JSM-
6490 electron microscopy and INCA software.
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Because of high-grade deformation, it is hard to say if there exist graded bedding in
the metaconglomerates. The pebble size may be used as an evidence but in most cases
pebbles are flattened and elongated in the plane of foliation making it almost
impossible to see if there was a grain size gradation within a single bed. For this
reason, we have no evidence to test if the sequence or a part of sequence is upright or
not. It is clear that there is both a lateral and wvertical gradation between
metaconglomerates and metapelites; the presence of pebbles in the metapelites can be
used as a circumstantial evidence to support this contention. In some cases when one
follows a metaconglomerate unit laterally, it appears that thickness of individual beds
are variable along strike, suggesting channel conglomerate occurrences within
sandstones and/or metapelites. In other cases, individual metaconglomerate beds pinch
out laterally (Figure 2.10).

Figure 2.10 Field view illustrating lateral passages between metaconglomerate and
metapelites.

The metaconglomerates occur in two distinct horizons and the metapelites lie in-
between (Figure 2.1). The field observations confirm that they are very similar to one
another but there is no stratigraphic evidence to test if these two levels are actually the
same conglomerate horizon within the metasedimentary sequence or they represent
two distinct horizons. This is very important because if the same metaconglomarate
repeats in the succession, it may well be related with an overturned fold structure.
Because lithological means are not strong enough to test this alternative, the structural
elements — particularly their kinematics— are preferred; this will be presented and
discussed in Chapter 4.

2.2.2 METAPELITIC ROCKS

In the study area, metapelitic rocks occur as grey to reddish coloured, mica-rich, fine-

34



grained unit that contains phengite lenses and boundinaged quartz veins. Penetrative
foliation dips south and is invariably associated with mineral stretching lineation.
Extensive folding at smaller scales and crenulation cleavage formation can be given as
most characteristic features of the pelitic rocks. They are equivalent to kyanite schists
of Whitney et al. (2008).

Quartz, white mica (phengite), chlorite, kyanite form main constituents whereas
magnetite, rutile, tourmaline are accessory minerals. Preferred parallel alignment of
micas defines the penetrative foliation in the rock; in most cases elongated quartz
grains with their long axes accompany micas in defining the foliation. Large quartz
grains show characteristic undulose extinction and in same samples show straight
grain boundaries with triple junctions. Micas, both phengite and chlorite, form the
most dominant components of the rock.

Chlorite occurs commonly as fine-grained crystals and defines the penetrative and
strong foliation in the rock while coarser grains overgrow and/or cross-cut the main
matrix foliation, defined by fine-grained phengite and chlorite; the coarser chlorite
grains give the rock a spotted texture which can readily be recognizable in the field
(Figure 2.11). In Cileklik Hill (Figure 2.1), cm-scale chlorite grains are characheristic
in the metapelites but in the northern side of the study area (Lomburt Hill and
Karaburun Hill), chlorite occur as fine-grained crystals, which can only be observed
microscopically (Figure 2.11). Large chlorite occurs as late syn- to post-tectonic large
megacrystals overprinting the main matrix foliation of the rock (Figure 2.12). The
inclusions pass through large porphyroclasts and parallels the matrix foliation. The
chlorite megacryts also have random orientation, thus confirming their relative post-
tectonic nature. In all examples, chlorite appears to be the product of retrogression and
may well be related to the exhumation of HP rocks but this lies outside scope of
present research and requires detailed fabric analyses together with detailed analytical
work. Kyanite is also characteristic and occurs as larger crystals. Fibrous and/or
prismatic crystals of magnesocarphiolite are also observed (Figure 2.13).
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Figure 2.11 (a) Field view from coarse (cm-scale) chlorite grains in metapelites. Note
how they overgrow the main foliation in the rock and gives the rock a characteristic
appearance, spotted texture. (b) The coarse chlorite occurs as high relief, strongly
pleochrioc (from pale light blue to dark blue) mineral under microscope (plane light
view). (c) Parallelly and lamelly extincted from light green, light blue to dark purple
chlorite in crossed polars microscopic view is characteristic.

Figure 2.12 Photomicrographs (plane light) of post-tectonic chlorite (Chl)
porphroblasts overprinting older matrix foliation (f). Note random orientation of large
porphryoblasts in (a) with respect to the main foliation. Note also how inclusions in
the porphroblasts are parallel to, and pass into, the matrix foliation.
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Figure 2.13 Microscopic view of carpholite (Car) crystals in infolded metapelite.

Metapelitic rocks are not homogeneous; in some locations (e.g., in the area between
Cileklik Hill and Lomburt Hill; Figure 2.1) they are finer-grained, contains small
quartz pebbles (Figures 2.14a and 2.15) and are interlayered with quartzite (Figure
2.14b). Where they are interlayered with quartzite, small-scale folds are common. The
quartz veins are also abundant (Figure 2.14c) and they are commonly boundinaged; in
some cases the quartz veins are disrupted into smaller pieces, which appear as pebbles
in the metapelites. Crenulation cleavage is best determined in this level of the
metapelites. In all cases, their structural attitudes (strike and dip of foliation, trend of
lineation) of the metapelites remain constant throughout the mapped. The most and
common structure of the metapelitic rocks is the presence of crenulation cleavage. A
detailed information will be given in Chapter 4.
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Figure 2.14 Views of metapelites exposed in the area between Cileklik Hill and
Lomburt Hill (see Figure 2.1 for location): (a) quartz pebbles in the metapelite; (b)
boudinaged quartz veins within fine-grained metapelitic unit; (c) folded in reddish
metapelitic unit.

Figure 2.15 A view from a large flattened quartz pebble in the metapelites. Note that
the pebble is large enough to appear as a thin layer within pelites.
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2.2.3 QUARTZ VEINS

Folded, boudinaged, cm- to m-scale quartz veins (magnesiocarpholite-kyanite-
chlorite-quartz) are common features of the metapelites; they display sharp but
concordant relationships with the main foliation of the metapelites (Figures 2.16 and
2.17). They are important because these veins are interpreted as synmetamorphic
(Candan et al., 2011a) elements in the Kurudere area.

Figure 2.16 A close-up view of a quartz vein is within the metapelitic rocks. Pen is
about 13-cm long.

Figure 2.17 Views from deformed and folded quartz veins. Note S-shape geometry of
the vein (a) and thickening in the hinge zone (b) of folds.
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Figure 2.18. Views from the quartz veins in the Kurudere area: (a, b) monominerallic
milky quartz veins within the metaconglomerate unit; (c) kyanite-quartz vein; note
blue kyanite blades with random orientation; (d) a quartz vein characterized by dense
magnesiocarpholite fibers; (e) a deformed/folded milky quartz vein.
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Some of the quartz veins are monomineralic and contains coarse quartz grains (Figure
2.18a, b), but some others contain large blue kyanite blades and magnesiocarpholite
fibers (Figure 2.18 c, d). One of the quartz veins at Karaburun Ridge contains cm-
scale kyanite within folded and occur within black metapelitic unit (Figure 2.20). The
orientation of kyanite blades with respect to the general trend of the quartz veins is
variable; there is no preferred orientation. The large kyanite crystals provide evidence
for crystal-scale deformation where they are bent or even folded. White mica,
phengite, is common around large kyanite crystals.

Magnesiocarpholite [(Fe, Mn, Mg)Al, (Si.Og)(OH)] occurs as thin fibrolites within the
quartz veins and has been used as the evidence of HP metamorphism in this section of
the southern Menderes Massif (cf. Rimmelé et al., 2003b; Whitney et al., 2008). They
occur as green coloured elongate, fibreous or thin prismatic crystals (Figures 2.18d
and 2.19); carphiolite is also observed as inclusions within quartz crystals. The
chlorite is also commonly found within these rocks. Magnesiocarpholite is also used
in estimating P-T conditions of HP metamorphism in Kurudere area (see Chapter 1
for details). Magnite and rutile form accessory minerals in the quartz veins.

Figure 2.19 A field view from fibrous magnesiocarpholite (Car) in a quartz vein (Qtz).

41



Figure 2.20 A view from kyanite-bearing quartz vein in folded black metapelitic
unit. Coordinates: 35555015E/ 4139481N. Pencil is about 13-cm long.

42



CHAPTER 3

U-Pb GEOCHRONOLOGY AND Hf ISOTOPE DATA

3.1 INTRODUCTION

Dating the rocks and their metamorphism/deformation forms the most important and
may be the most difficult stage during a geological research. This has been achieved
by using several different methods; some of these techniques have to be used
collectively to acquire a full and a more sound geological history. U-Pb and Pb-Pb
ages (on zircon, monazite, titanite, allanite and xenotime) by conventional,
evaporation, SHRIMP or ICP-MS laser ablation methods are commonly used in dating
the crystallization age of magmatic rocks. In some cases, similar ages are used to date
metamorphism and associated deformation. Cooling and exhumation history of lower-
middle crustal rocks, both magmatic and metamorphic rocks, are dated by radiometric
(Ar-Ar, Rb-Sr and K-Ar mica and amphibole ages) and/or by thermochronologic
(apatite and zircon fission track ages; and apatite U-Th/He thermochronometry)
methods. In this way, the tectonic versus erosional denutation mechanisms are tested
and alternative exhumation models are proposed. In high pressure rocks, mica ages are
commonly used to date the age of metamorphism and associated deformation as well;
this basically depends on the temperature conditions of metamorphism. Stratigraphic
and/or palaeontological (if fossils are present) means are used in dating the
(meta)sedimentary rocks. Dating of detrital zircons are recently used as one of the
most prestigious method in dating the (meta)sedimentary rocks; the zircon population
is also used to test alternative provenance(s) for sedimentary influx. This, in turn, is
used in palaeogeographic reconstructions.

As is described in the Introduction Chapter, the age of the HP rocks in Kurudere area
is based on regional correlations and there is no analytical data to support this
contention. Also, the origin of the HP rocks is highly debated: i.e., (i) if they belong to
the Menderes sequence or (ii) they form a part of Cycladic HP sequence and are
tectonically transported into their present configuration. To shed light to the existing
guestions and controversies, a U-Pb geochronology and Hf isotope analyses are
carried out on samples from the HP rocks of the Kurudere area. The HP
metaconglomerates were possibly sourced from different sedimentary provenance(s)
and that they may contain detrital zircon peculiar to a specific provenance/source. U-
Pb isotope system is measured to determine the age of detrital zircons and in turn the
sedimentation age of metaconglomerates; the age of youngest zircon puts a lower limit
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to sedimentation age. Whereas Hf isotope is measured to have idea about provenance
of the metaconglomerates. Laser ablation induced couple mass spectrometry method
(LA-ICPMS) is used for measuring because of its sensitive ion counter system. It is
relatively a cheap and quick method and one can measure several zircon grains in a
day.

In this chapter, procedure(s) for sampling, process of mineral separation and analytical
methods, based on laboratory experience and available literature, are described. The
reasons of why detrital zircons and laser ablation induced couple mass spectrometry
method (LA-ICPMS) are also explained.

3.2 MATERIAL

Sampling is the first and important step in radiometric dating. After determining
which mineral to date and method for deciphering the geological problem, samples are
taken from freshest part of relevant lithology; the location, stratigraphic position and
field characteristics of each sample are noted. The sample location is chosen according
to stratigraphic/structural position/importance and lithological characteristics.

Four samples were taken from the metaconglomerates in Karaburun and Cileklik hills
(Figure 2.1, Table 3.1). Fine-grained metapelites were not sampled because they

hardly contain enough number of detrital zircons.

Table 3.1. List of samples from Kurudere metaconglomerates.

sample lithology Location coordinates _measured
number isotope system

Karaburun 35554906°E

331 Hill 4139463°N
Karaburun | 355550376°E
332 ) -
metaconglomerate Hill 4139445°oN |  U-Pband Hf
isotope systems
333 . . . 35554290°E
333B Cileklik Hill | 4139561oN

3.3 MINERAL SEPARATION
In geochronological studies, specific minerals should be separated. There are different

methods. During this study, zircon grains are separated. Mineral separation and
subsequent analyses were done in Geochronology and Radiogenic Isotope Laboratory,
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Institute of Geoscience, Goethe University of Frankfurt. The order and variety of
separation process is variable according to capacity of laboratories. In Frankfurt, there
are six different steps for zircon separation from field up to mass spectrometer stage;
they are:

crushing,

wilfley table,

heavy liquid,

magnetic separator,

hand picking,

epoxy, polishing and cathodoluminescence

ook wh Pk

These steps are briefly explained in Appendix A.

3.4 METHOD

The basic principles of absolute dating are radioactivity and halflife. Mass
spectrometry (MS) is widely used to: (i) generate ions from compounds by any
suitable method, (ii) separate these ions by their mass-to-charge ratio (m/z) and (iii)
detect them qualitatively and quantitatively by their respective m/z and abundance.
The analyses may be ionized thermally, by electric fields or by impacting energetic
electrons, ions or photons. The ions can be single ionized atoms, clusters, molecules or
their fragments or associates. lon separation is effected by static or dynamic electric or
magnetic fields (Gross, H.J., 2010). The above-given definition has been useful with
additions since 1963.

There are many different combinations of machines and they vary according to aim of
study. The mechanism of a mass spectrometer is outlined in Figure 3.1. It is possible
to measure different element’s ratio by using different configurations of mass
spectrometers. To determine the relevant method, lithology of the samples, minerals to
date, isotope system and amount of elements in the minerals must be considered.

L_|
: ion mass —=| data
sgmple : detector
inlet : sourc’le analyzer «| system
atmosphere/
vacuum l high vacuum |

Figure 3.1 Simplified scheme of a mass spectrometer (from Gross, H.J., 2010).
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In this study, detrital zircons are analysed. Laser ablation induced couple mass
spectrometry method (LA-ICPMS) is chosen as the most relevant method because the
machine can measure low amount of U-Pb concentration (for younger events) with
sensitive ion detector. Drilling the mineral with laser beam just takes 53 seconds per
spot and the error range is less than other methods. But corrections and software are
complex and data process needs long-lasting experience.

3.4.1 FEATURES OF ZIRCON AND ISOTOPIC SYSTEMS

Zircon (ZrSiQ,) is zirconium orthosilicate and common accessory mineral of
sedimentary, igneous and metamorphic rocks. Zircon keeps substantial chemical and
isotopic information in its structure which is caused to use it in a wide range of
geochemical investigations, including studies on the evolution of Earth’s crust and
mantle and age determination (Finch and Hanchar, 2003 and references therein). The
mean abundance of HfO, in zircon is 2.0 wt%, and it consists of trace amounts of P, U
and Th and rare-earth elements (REE) (e.g., Hoskin and Schaltegger, 2003; Zlatkin,
2011). In zircon, uranium (U) is more compatible than lead (Pb). So amount of non-
radiogenic Pb is less in zircon that makes data process easier.

Not only chemical composition, but also closure temperatures are effective factors to
choose mineral for measuring. Closure temperature is the temperature value when a
mineral starts to be a crystal; mineral becomes a close system while mass is still an
open system. Each mineral has different closure temperatures. The closure
temperature of U-Pb isotopic system in zircon is more than 850° C (Davis et al.,
2003); this means it forms at the beginning of magma process or recrystallized under
high-grade metamorphism. Also thermal events may affect the zircons by overgrowing
rims around inherited cores or may disturb their structure which can be seen on their
zoned texture. Disturbed zonation might be a clue for resetting isotopic clock or lead
loss. So, CL images are taken to examine internal structures and to determine the
proper spots for measuring.

Another advantage of zircon is its durability. Zircon may be reprocessed through the
rock cycle and still keeps durability. Zircon is a major mineral in the Earth’s oldest
known dated rocks. If the system has zircon once, it stays in there. This feature of the
mineral makes detrital zircons more important and valuable for provenance analysis.
A mixed sedimentary population of zircons will resist to metamorphism even the
metamorphic grade is so high. During metamorphism, if suitable temperature is
reached and fluids are present, zircons may have overgrowths as rims around older
cores. On the other hand, durability of zircon is challenged and may be misleading
because multiple sedimentary events and/or low-grade metamorphic events might be
ignored and/or missed out because no overgrowths may develop.
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Detrital zircons are reliable sources for U-Pb and Hf isotopes measurements. Because
of the high compatibility of Hf in zircon, the Lu-Hf system is considered as more
resistant than U-Pb system and the mineral’s initial “"°Hf/*"’"Hf ratio is usually
preserved even when the U-Pb system was reset (cf. Kinny and Maas, 2003 and
references therein).

3.4.1.1 U-Pb SYSTEMS

This method establishes the time of origin of a rock by means radioactive halflife of
uranium (U)/thorium (Th) to lead (Pb). Uranium (U) is radioactive (parent) element
and has two radioactive isotopes: U?*® and U?*. Lead (Pb) is radiogenic (daughter)
element and end product of Uranium. It has 4 isotopes: Pb?®, Pb*®, Pb®" and Pb*®®
(Dickin, 2005).
Common lead (Pb?™) is any lead from a rock or mineral that is contained in the
mineral when it forms; it is not a product of radioactivity of uranium or thorium.
Common lead is used for correction in data processing and it forms an important
parameter to obtain more reliable results. U-Pb system has long halflife, and this gives
a chance to date the oldest rocks.

U?® —>Pb* + 8He* + 68 Half-life of U**® = 4.47 Ga
UZ —>pPb® + 7He* +4p  Half-life of U** = 0.704 Ga
Th?? —>Pb”® + 6He* + 4p  Half-life of Th*? = 14.05 Ga (Neptune F., 2004)

Pb***is non-radiogenic isotope.

Pb?* is daughter isotope of U%®,

Pb 2% is daughter isotope of U ***.

Pb?® is daughter isotope of Th**? (Dickin, 2005).

Uranium (U) and thorium (Th) elements are incompatible in the mantle, but they are
compatible in the crust. During crystallisation of magma, U and Th are concentrated in
the liquid phase and attend to the silica-rich magma. Therefore felsic compositions are
more enriched in U and Th than mafic compositions and crustal rocks have more U
and Th concentration than mantle rocks (Geyh and Schleicher, 1990; Dickin, 2005). It
signs that granitic rocks have perfect materials for U-Pb dating.

3.4.1.2 Hf ISOTOPE

Lutetium is the heaviest rare earth element (REE) and has two isotopes; Lu'” and

radioactive Lu'®. The latter decays to Hf'"® with p-emission or Y'’® with electron
capture which is so rare (Dickin, 2005).
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Lut—> Hf'® + B  Half-life of Lu'" = 37.8 Ga (Dickin, 2005)

Lutetium-hafnium (Lu-Hf) isotopic system is used as a clue for the crustal events (e.g.,
Patchett et al., 1981; Kinny and Maas, 2003; Zlatkin, 2011). Mother isotope Lu'"
radioactively decays to daugther isotope Hf'"® with B-decay. The half-life of the
reaction is 37.8 Ga.

Lu/Hf model age is used for determining formation age of mineral (Geyh and
Schleicher, 1990). The Lu/Hf ratios may provide to date metamorphic events. Not
only garnet but also zircon, monazite, apatite contain Hf isotope in their lattice which
is very resistant to Hf mobility and contamination (Dickin, 2005).

Hf'"®/Hf'"" ratio, standartized to CHUR and multiplied by 10000 and called as ¢Hf
value and is measured to determine the source of grain. Hf enters the residual magma
faster than Lu during magma process. Differentiation during formation of the Earth’s
crust led to lower Lu/Hf ratio in crust while higher ratio in the mantle. During the
time, as a result of radioactivity of Lu, amount of Hf increases in the mantle whereas
low initial Hf isotope ratio in crustal rocks (Dickin, 2005). So pozitive eHf value
remarks juvenile crustal source, negative eHf value indicates reworked crustal source
(e.g., Patchett et al., 1981; Dickin, 2005; Zlatkin, 2011).

If zircon crystallizes from juvenile crustal source, U-Pb and Lu-Hf ages will be close
to each other. But if there is a reworking process, isotopic clock will reset for U-Pb but
Hf isotope system will be resistant. Both ages will be discordant to each other. That’s
why U-Pb age is needed for interpretation of eHf value for provenance analysis (€.g.,
Dickin, 2005; Zlatkin, 2011 and reference therein).

3.4.1.3 U-Pb-Hf COMBINATION FOR ZIRCON

The combination of U-Pb-Hf isotopic systems provides more reliable provenance data
for detrital zircons. For each zircon U-Pb age is calculated and different aged grains
are analysed for Hf isotope at the almost same spot place with U-Pb data. Isotopic
study of single-grain of detrital zircon is commonly used in determining different
detrital populations derived from various sources. U-Pb system allows calculation of
crystallization ages; ¢Hf value is an indicator of crustal provenance. Plotting the two
datum in the same graph means recognition of crustal forming events and reworking
events as well as the provenance of the grains. It is also possible to comment if a
magma mixed or not (cf. Zlatkin, 2011).
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3.4.2 INTERPRETATION OF CL IMAGES

Zircons from the same sample may have various types of zonations and crystal shapes.
Idiomorphic and xenomorphic grains with oscillatory, sectored and convolute zoning
are possible (Figure 3.2).

Figure 3.2 CL images showing different zone structure of zircons which may occur in
the same sample (Sample 331): (1) disrupted zoned texture, convolute zonation in an
idiomorphic crystal; (2, 3) relatively U-less core and U-rich rim with oscillatory
zoning; (4, 5) sector zoned inherited core with U-rich oscillatory zoned rim; (6) sector
zonation of a grain; (7) perfect, bright oscillatory zoning; (8) xenomorphic grain with
metamorphic rim; (9) disturbed oscillatory zoning in idiomorphic crystal; (10)
idiomorphic crystal with oscillatory zonation; (11) U-poor core and U-rich rim in
xenomorphic crystal; (12) composite zircon —inherited core and magmatic growth;
(13, 14) partly preserved zonation and recrystallization; (15) xenomorphic grain with
inherited core and rim without zonation (featureless) (from samples 331, 332, 333,
333B).
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3.43 ANALYTICAL PROCESS

U-Pb isotope ratio to determine the age of the rock units for detrital zircons was
measured with laser ablation induced couple mass spectrometer (LA-ICPMS) in
Geochronology and Radiogenic Isotope Laboratory, Institute of Geoscience, Goethe
University of Frankfurt. The analyses were performed with ThermoScientific Element
2 ICP-MS coupled to a Resolution M-50 excimer laser system. The laser is transported
onto the grains from the laser beam with a flow of the noble gas (argon or/and helium)
and mass spectrometer is calibrated to measuring of appropriate isotope masses. Laser
spot-sizes were between 33-50 micrometer, depending on the U content and size of
the zircon grains (Gerdes and Zen, 2006; Zen et al., 2007). After per 30 spots,
standarts GJ-1 (606 Ma), Felix (500 Ma), Plesovice (350 Ma) and 91500 (1050 Ma)
were measured to check the calibration of the machine and determine constant values
for data processing (Slama et al., 2007). The spots should be decided before starting
analyses. If there exist, cores and rims of the zircons should be analysed separately;
perfectly zoned and crack-free parts of the zoned structure to be selected for analysis
(Figure 3.3).

Figure 3.3 CL images and ablated spots for measuring U-Pb and Hf isotope ratio. Red
circles shows location of spots.
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Hf'®/Hf"" and Lu'"*/Hf'"" ratios were measurement in ThermoScientific Neptune
multi-collector ICP-MS, coupled to RESOlution laser system with 50 micrometer
spot-size, following the method described by Gerdes and Zeh (2006) and Zeh et al.
(2007). Hf isotope should be measured almost at the same spot location with U-Pb
measurement. GJ-1 was measured as standard for Hf isotope.

The raw data is processed by using an in-house MS Excel spreadsheet program
(Gerdes and Zen, 2006, 2009; Millonig et al., 2012). The processed data is plotted on
concordia diagrams by Isoplot 3.71 (Ludwig, 1990).

3.5 RESULTS

CL images of detrital zircons from picked samples and U-Pb detrital zircon ages from
HP metaconglomerates are given in Figures 3.6, 3.9, 3.12, 3.15 and Table B.1 in
Appendix A. The results are plotted on concordia diagrams (Figures 3.4, 3.7, 3.10 and
3.13) and probability/density diagrams (Figures 3.5, 3.8, 3.11, 3.14 and 3.16) using
Isoplot (Ludwig, 2003). All data are processed with 2 sigma uncertainties. Only
90-110% concordant data points are plotted. The percentage of Neoproterozoic,
Paleoproterozoic and Mezoproterozoic ages are shown with piecharts on
probability/density diagrams based on the geologic time scale 2012.

The youngest concordant grain’s age is 298+5 Ma, (conc. 104%), Asselian, lowest
Permian age (Figures 3.13; Table B.1 in Appendix A). Zircon grain is idiomorphic,
oscillatory zoned. U-rich (dark colored) and U-less (light colored) light beams are
clearly seen (Figure 3.13, Table B.1).

The oldest grain is Mezoarchean in age (3020+16 Ma; conc. 101%) (Figure 3.13;
Table B.1). The grain is composite zircon and inherited core was measured. Relatively
core has more U concentration than rim but both of them are in light color (Figure
3.13).

The large number of grains belongs to Cambrian (541.0+1.0 to 485.4+1.9 million
years), Ordovician (485.4+1.9 to 443.4+1.5 million years) and Cryogenian (850-635
million years; Neoproterozoic) ages. There is no or a few zircon grains in 1.1-1.7 Ga
time interval and it is remarkable in almost all dated samples (Figure 3.16; Table B.1).
Less number or absence of 1.1-1.7 Ga (Mezoproterozoic) old grains marks northern
Gondwana provenance (cf. Gebauer, 1993) and is common signature of detrital
zircons from the Menderes and the Cycladic massifs.

In probability/density plots peaks occur in Late Cambrian and Early Ordovician time

interval (Figures 3.5, 3.8, 3.11, 3.14 and 3.16). There are sharp decrease in number of
detrital zircons in Early Cambrian (541+0.3 to 509+1.7 mya), Tonian (1000 to 850

51



mya; early Neoproterozoic) and beginning of Mezoproterozoic (1,600 to 1,000 mya);
this is also used as typical profile for Northern Gondwana Terranes (cf. Gebauer,
1993). The density of grains in Paleoproterozoic (2,500 to 1,600 mya) and Archean
(before 2,500 mya) is not as much as pre-Mezoproterozoic ages but amount of
Statherian (1,800 to 1,600 mya) and Orosirian (2,050 to 1,800 mya) age grains are
observed. Late Plaeoproterozoic ages are rare but the population of NeoArchean
(2,800 to 2,500 mya) ages increases. All samples belong to the same lithology, so all
data is combined and plotted in single probability/density diagram (Figure 3.16).
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Figure 3.5 Probability/density plot of detrital zircons from sample 331.
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Figure 3.6 CL images of analyzed detrital zircons in sample 331.
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Figure 3.10 U-Pb concordia diagram of detrital zircon ages from sample 333.
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Figure 3.11 Probability/density plots of detrital zircons from sample 333.

57




Figure 3.12 CL images of analysed detrital zircons belong to sample 333.
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Figure 3.14 Probability/density plot of detrital zircons from sample 333B.
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Figure 3.15 CL images of analysed detrital zircons picked from sample 333B.
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For measuring ¢Hf value, zircon grains with concordant ages were chosen. Younger
(<1000 Ma) and older (>1000 Ma) grains and all grains were plotted in the diagram
together with their U-Pb ages (Figures 3.17, 3.18 and 3.19; Table B.2) (DM= Depleted
Mantle, Tpm= model age).
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Figure 3.17 U-Pb-Hf plot of detrital zircons younger than 1000 Ma.
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Figure 3.19 U-Pb-Hf plot of all concordant zircon grains.

62



Hundred and fourtyfour grains, which are younger than Mezoproterozoic, were
measured for eHf values. 77% of relatively younger grains (< 1000 Ma) have negative
(-) eHf values; this indicates a reworked crustal source. 23% of younger grains belong
to juvenile crustal sources. Most of the reworked sourced-grains’ T py age is around
1.0 Ga. There is almost no depleted mantle sourced grains in younger sequence
(Figure 3.19). There are three Cambrian grains with Tpy ages older than 2.7 Ga and
have the highest eHf negative values.

eHf values of forty older grains (>1000 Ma) were measured. 62.5% of these grains
have negative ¢Hf values and less number of the grains belong to juvenile crustal
source. Tpy ages are between 1.0 and 2.7 Ga and there are two Siderian grains with
Towmages older than 2.7 Ga; they belong to a reworked crustal source.

The importance of eHf values and U-Pb ages will be discussed briefly in Chapter 5.

63



64



CHAPTER 4

STRUCTURAL GEOLOGY

41 INTRODUCTION

In this chapter, detailed information about macro- and micro-scale geological
structures observed and investigated during both field and laboratory studies will be
given. The kinematics of fabric elements will also be presented and their tectonic
significance discussed.

4.2 STRUCTURAL FEATURES

The most common structures in Kurudere area are foliation, lineation, crenulation
cleavage and mesofolds. In the following sections these structures will be described
briefly.

421 FOLIATION AND LINEATION

‘Foliation’ is used here as a general term to define penetrative planar structures which
formed as a result of homogeneous deformation in a body of rock. In the study area,
the metasedimentary units are characterized by a well-developed, penetrative, south-
dipping foliation; it is the most obvious structure both at macroscopic scale in the field
and at microscopic scale (Figures 4.1, 4.2 and 4.3a).
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Figure 4.1. (a, b) Field appearances of foliation in the metaconglomerates. Note that it
is pronounced and penetrative in the fine-grained parts and is defined by the preferred
parallel alignment of micas and quartz grains. Larger quartz pebbles are either
flattened in the plane of foliation or stand out as resistant porphyroclasts, giving the
rock an augen structure (f— foliation). (c) Where deformation is intense, many quartz
pebbles are flattened and elongated; together with micas and fine quartz grains;
flattened grains define the main foliation in the rock. (d) Field view of the foliation in
the metapelitic rocks. Pencil is about 13-cm long.
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Figure 4.2 S-dipping foliation at microscopic scale where it is defined by the preferred
parallel alignment of mica minerals and long axis of quartz ribbons. Note the dominal
structure defined by alternating quartz- and mica-rich domains. Note also texture and
size of quartz grains in quartz-domains as well.

Foliation is defined by parallel alignment of micas, long axis of quartz ribbons and
long axis of flattened and elongated quartz pebbles. Microscopically, 001 surfaces of
mica flakes show preferred parallel alignment that defines the main foliation in the
rock. The dominal structure defined by mica- and quartz-rich domains give the rock a
gneiso-structure and indicates both the intensity of deformation and high-degree of
metamorphism. Foliation in the metapelites is relatively more pronounced and defined
mostly by parallel allignment of micas together with quartz; if quartz pebbles are
present, they also show parallelism with its axes (Figure 4.3a). Deformation of the
foliation by small-scale wrinkles are common (Figure 4.3b). Foliation parallel quartz
veins are mostly deformed and boundinaged within the plane of foliation (Figure 4.3)

The general strike of the foliation is constant throughout the study area;
northwest—southeast (Figures 2.1 and 4.4a) striking foliation dips to the south. The
amounts vary between 32° and 78°.

The other penetrative structure is the mineral stretching lineation; it is well-defined by
the preferably aligned mica and quartz grains and the long axes of flattened and
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elongated quartz pebbles in the metaconglomerate. The general trend of moderately
(40°) south-plunging lineation is approximately N—S (Figure 4.4b).

Figure 4.3 Views from metapelites in the area between Cileklik Hill and Lomburt Hill
(see Figure 2.1 for location): (a) quartz pebbles (indicated by blue circles) in
metapelites, (b) small-scale fold in a reddish metapelitic unit, (¢) boudinaged quartz
veins in fine-grained metapelitic unit. Note how quartz veins are disrupted and isolated
within the metapelites in (c). Pencil is about 13-cm long.
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Figure 4.4 Stereonet pole plots of (a) south-dipping foliation and (b) almost N-S-
trending mineral stretching lineation in the Kurudere area (Rockworks16).
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422 CRENULATION CLEAVAGE

Crenulation cleavage (tectonic secondary cleavage) is the another common structure in
the study area (Figure 4.4a). It is more pronounced and penetrative in the metapelitic
rocks than metaconglomerates. It commonly occurs a discrete asymmetric crenulation
cleavage.

Crenulation cleavage appears as harmonic wrinkles deforming a pre-existing foliation.
The new foliation cuts across the old foliation and is defined either by both limbs of
symmetric crenulations or by long limb of asymmetric crenulations. Old foliation is
preserved in microlithons as the hinge of symmetric crenulations and/or as the short
limbs of asymmetric crenulations. Width of microlithons depends on wavelength of
the crenulations. Crenulation cleavage is observed both in macroscopic and
microscopic scales (Figure 4.5) as asymmetric discrete crenulation cleavage with
rounded hinges. These structures indicate localization of shearing whereas the
development of shear bands that cut across a pre-existing foliation and define new
cleavage domains. Because there are observable displacements along crenulation
cleavages, some are termed as shear cleavage as well (Figure 4.6). The general trend
of the hinge lines of crenulation cleavages is 140-190 and average plunge is 35°
southeastward (Figure 4.7a).

The crenulation cleavages suggest either a change in the direction of principle stress or
an axial surface fabric formation related to the development of a larger scale fold(s)
(cf. Dupee, 2005; Twiss and Moores, 2007). Symmetric zonal crenulation may form as
a response to shortening parallel to a pre-existing foliation. The old foliation is rotated
toward low angles to the axial surfaces of the new crenulations, which form the new
foliation. Solution of new material from the limbs may create the new foliation. Such
symmetric crenulations, which may have rounded or sharp hinges commonly occur in
the core of a lower-order fold, where the crenulation foliation is subparallel to the
axial surface of the fold. In this model, the direction of maximum shortening is normal
to the crenulation foliation (Figure 4.8).

Asymmetric crenulation can form by shortening at a low angle to the initial foliation.
The axial surface of kink develop at a high angle to the original foliation and are
parallel to a new crenulation foliation defined by the short limbs of the crenulations in
which the old foliation rotates into subparallel with the new foliation. There is no net
shearing of the body parallel to the new foliation, and the axis of maximum shortening
is normal to the new foliation. An asymmetric crenulation can develop from a
symmetric one by preferential solution of components from one set of limbs (Figure
4.9).
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Figure 4.5 (a) Field view and (b) photomicrograph of crenulation cleavage in
metapelites. S;— older foliation, S,— crenulation cleavage.

scale displacement along discrete cleavages.
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Figure 4.7 Stereonet pole plots of (a) hinge line of crenulation in metapelites, and (b)
hinge line of folds (fold axis) in the metaconglomerates (Rockworks16).
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Figure 4.8 Mechanism of a symmetrical crenulation foliation S, by buckling S;. (a)
Initial foliation S; parallel to the direction of maximum shortening. (b) Shortening
generates symmetrical crenulation by buckling or (c) chevron style of crenulation
(from Twiss and Moores, 2007).
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Figure 4.9 Production of asymmetrical crenulation foliation S, by buckling of S;. a)
Initial foliation S; is at a low angle to the direction of maximum shortening. b)
Asymmetric crenulation is occured by buckling of S;. S; has rotated to a low angle
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with the crenulation axial surface and defines the short limb of the crenulation. Hinges
may be sharp or rounded (Twiss and Moores, 2007).

423 FOLDS

Folds form the most prominent structural elements of the HP rocks in the Kurudere
area. They deform the main foliation and occur as asymmetric and/or overturned
mesoscale structures. Their geometry and kinematics vary between northern and
southern parts of the study area; typical S- and Z-geometries are possible. The
structure is more pronounced where there is a contrasting rheology: quartz veins and
flattened/elongated quartz pebbles or thin sandstone horizons in the coarse
metaconglomerates make the folds to appear more clearly. For this reason these
structures are commonly observed in metaconglomerates (Figures 4.10 and 4.11).

Folds are also obvious where dark, black-greyish fine-grained (sandstone or sandy
mudstone) intercalations are present within the metaconglomerates. The thinly bedded
mica-rich layers are commonly strongly folded. Unfortunately many of the observed
examples of such folds are not in their position; most are obvious on loose blocks of
the metaconglomerates and this makes it almost impossible to measure the attitudes of
these structures. Where developed, the folds occur as small-scale undulations with
well developed hinge lines (Figure 4.11a, b). The asymmetry and shape of mesofolds
are used to determine sense of shearing during their formation (see next section). The
general trend of the hinge lines is in NW-SE direction where average plunge is about
26° southeastward (Figure 4.7Db).

Figure 4.10 Folded thin, fine-grained dark metapelitic unit within the
metaconglonerates, Karaburun Ridge.
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Figure 4.11 General views from mesoscales folds in the metaconglomerates. (a, b)
Folds are obvious where metaconglomerates contain think dark layers of more sandy
levels; in such cases the geometry of the wrinkles and the hinge lines of the folds are
obvious for inspection; (c) an overturned intrafolial fold with its axes almost parallel
to the folaition; (d) where quartz veins are present, folds become more pronounced; (e,
f) Z- and S-geometries are common; in these photographs they indicate top-to-the-
north and top-to-the-south sense of shear respectively; (g, h) flattened quartz pebbles
in folded structures.

4.3 KINEMATIC INDICATORS

The kinematics of deformation of the metaconglomerates formed one of the most
important stage of this research. It was not considered as one of the aims of the thesis
study at the begining of the research. Field observations, particularly occurrence of
metaconglomerates at two distinct horizons and the possibility that they may represent
the same stratigraphic level in the metasedimentary sequence, made it crucial to
explore further if the two horizons display same sense of shear or not. If the two
metaconglomerate horizons represent the same stratigraphic level, and if each horizon
show opposite kinematics; this may indicate an overturned fold. Otherwise they either
represent different metaconglomerate levels or there is a fault somewhere in-between.
These differences made it crucial to explore futher about the sense of shear in each
metaconglomerate horizon. Below, a brief summary is given.

The main foliation in the metasedimentary rocks show kinematic indicators that bears
on the sense of motion during their metamorphism and associated deformation.
Characteristic kinematic indicators include stair-stepping geometry of quartz pebbles
and coarse mineral grains/porphyroclasts, orientation of hinge line of folds and
fractures in megacrystals, the assymetry and shape of mesofolds and C-S fabrics. The
resistant quartz grains and pebbles isolated within the matrix foliation forms the most
overwhelming evidence about the movement direction in the field. Oriented thin
sections are investigated to confirm field observations and to realize the movement of
direction at microscopic scale.

Kinematic indicators in Karaburun and Lomburt hills (see Figure 2.1 for location) are
consistent with a top-to-the-south direction of movement at both macroscopic and
microscopic scale (Figure 4.12) while those in the south, top-to-the-north shearing
(Figure 4.13). The opposite sense of shearing in two distinct horizons of the
metaconglomerate is an important observation. In the following lines and figures,
evidence that supports sense of shearing will briefly be presented.

The geometry and shape of folds are also used as a kinematic indicator, and in all
cases they are in-line with other kinematic indicators. Z- and S-geomeries are common
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(Figure 4.11e, f). The folds in the northern metaconglomerate horizon are consistent
with top-to-the-south sense of movement, whereas those in the north, top-to-the-south
shearing, thus confirming other kinematic indicators.
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Figure 4.12 Views of kinematic indicators from northern side of study area: (a, €)
Mesofolds in the metaconglomerates; the folds are obvious where metapelites
intercalations occur. (b) Microscopic view of quartz grain oriented oblique to the main
foliation in the rock. The long axis of quartz grain defines the S-foliation whereas the
matrix foliation, C surfaces; (c) Mesoscale en-échelon folds in the metaconglomerate;
(d) Poorly-developed o-geometry defined by a large quartz porphyroclasts and
dynamically recrystallized mantle around it. Note that the quartz is dynamically
recrystallized into smaller subgrains. The undulose extinction of new grains is evident.
Note also thin blade of white mica defining the S-foliation in the rock. The stair-
stepping geometry defined by larger grain and deformed mantle is evident. The C-S
fabric development in (b) and (d) forms overhelming evidence for movement sense.
The asymmetry and shape of the folds are considered to suggest sense of shear. All of
these meso- and micro-structures are consistent in indicating a top-to-the-south sense
of shear. Thin sections are cut parallel to the mineral strecthing lineation and
perpendicular to the main foliation in the sample.

79



80



Figure 4.13 Top-to-the-north kinematic indicators in Cileklik hill in the south of the
study area. (a—d) o-type quartz porphyroclasts and pebbles embedded within a fine-
grained matrix of quartz, white mica and chlorite. Note how matrix foliation wraps
around porphyroclasts and deformed pebbles. In all, the stair-stepping geometry of
recrystallized and/or elongated tails is pronounced. (e) Microscopic view of a quartz
pebble. The quartz grain is dynamically recrystallized into subgrains, each of which
show characteristic undulose extinction. The boundaries of subgrains are
irregular/serrated and indicates that grain-boundary migration is an important
deformation mechanism subsequent to subgrain formation. Deformation band
formation and kinking are also characteristic. The long axis of the porphyroclast
defines the S-foliation whereas matrix foliation of white mica and fine-grained quartz

represent the C-foliation.
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CHAPTER 5

DISCUSSION

Measurements of U-Pb and Hf systems in detrital zircons of the metaconglomerates in
Kurudere HP quartz-metaconglomerate are first reliable geochonological data from
the southern Menderes Massif. The existing questions relates to (i) the age of the unit
and (ii) the origin of the metaconglemarates; that is if they belong to the Cyclades or
form part of the marble cover succession in the Menderes Massif, will all be addressed
below.

5.1 AGE OF THE METACONGLOMERATES

The youngest concordant detrital zircon age(s) will form a lower limit to the
sedimentation age of the rock samples; that is the protolith age must be younger than
the youngest zircon. The ca. 298 Ma (Asselian, earliest Permian) is the youngest
zircon in the metaconglomerates. This indicates that the age of sedimentation could be
any age younger than earliest Permian, thus supporting the proposed late Triassic age.
At this stage because there is no further evidence, a late Triassic age by Rimmele et al.
(2003b) is accepted.

52 ORIGIN OF THE METACONGLOMERATE

The origin of metaconglomerates is more difficult to interpret. Because there are two
schools suggesting differing terranes for the origin of the metaconglomerates, the
Cycladic and Menderes massifs must be considered equally. Here the
source/provenance of sediments to the metaconglomerates needs to be tested. To do
that the available literature will briefly be summarized to see if detrital zircon
populations in the Cycladic and Menderes metasediments have clear and pronounced
differences.

521 CYCLADIC MASSIF

Crustal deformation in Aegean backarc has occured progressively during slab retreat.
Extension started with exhumation of Rhodope Massif in the Eocene and migrated
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southwards through Cyclades and Menderes Massif in the Oligocene and early
Miocene.

Cyclades was described as an extensional core complex (Lister et al., 1984) because it
shows very similar structures, both in time and space, as cordilleran-type core
complexes: (i) a ductile shear zone with mylonitic rocks, (ii) elongated domes with
long axes parallel to the stretching lineation, (iii) syn-tectonic granitic magmatism,
(iv) progressive deformation during decreasing temperature conditions through first by
mylonitization then progressively by more brittle deformation to cataclasis in the
immediate footwall of low-angle faults and (v) structurally overlying
unmetamorphosed rocks.

The Cyclades is located in the back-arc of the southward retreating Aegean subduction
zone in the central Aegean Sea (cf. Bolhar et al.,, 2010 and references therein).
Stratigraphically, Cycladic blueschist unit contains (i) Variscan orthogneissic
basement with Hercynian ages (e.g., Keay, 1998; Engel and Reischmann, 1998; Ring
et al., 1999; Tomaschek and Ballhaus, 1999; Tomaschek et al., 2001, 2008; Philippon
et al., 2012 and references therein), (ii) the sedimentary cover with depositional age
between Early Carboniferous to Eocene (e.g., Diirr et al., 1978; Dubois and Bignot,
1979; Pohl, 1999; Philippon et al., 2012), (iii) an ophiolitic mélange ( e.g., Ring et al.,
1999). The Variscan basement and sedimentary cover series were intruded by Triassic
granitoids (e.g., Reischmann, 1997; Ring et al., 1998, 1999; Philippon et al., 2012).

In Eocene time, this sequence experienced a high pressure-low temperature (HP—LT)
metamorphism during the closure of Neotethys; later overprinting high temperature-
low pressure (HT-LP) Barrovian-type metamorphism during Oligo-Miocene time was
related to exhumation (e.g., Ring et al., 1999; Keay and Lister, 2002; Jolivet et al.,
2012). Dilek/Selguk nappes in Dilek Peninsula have the same metamorphic evolution
with Cyclades and are considered as the continuation of the Cycladic HP rocks in the
Menderes Massif (Ring et al., 1999 other references).

Keay et al. (2001, 2002) reported results of an extensive geochronological work in the
pre-Carboniferous metasediments of the Cyclades. Several peaks were identified
during Precambrian time: 2900-2850, 2500-2450, 2050-2000, 1900-1800 and 1700—
1650 Ma. Less amount of Mezoproterozoic age is noteworthy. Peaks are also
distinguishable for 1000-950 Ma (Tonian) and 900-800 Ma (Cryogenian-snowball
Earth) intervals. For Paleozoic time, bimodal distribution in 650-550 Ma and 400-450
Ma intervals are significant for the Cyclades (Figure 5.1).
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Figure 5.1 Published detrital zircon ages from the Cyclades Massif (Keay et al., 2001;
Keay and Lister, 2002).
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5.2.2 SOUTHERN MENDERES MASSIF

The geology of the Menderes Massif is described in Chapter 1. Here a brief summary
will be presented. The southern Menderes has a typical tri-partitate lithologic
associations: (i) a metagranitic rocks that forms the so-called ‘core’ of the massif; it is
mainly represented by orthogneisses (traditionally known as augen gneisses) of largely
Precambrian age and subordinate metasediments and gabbroic rocks; (ii) so-called
‘cover schists”: they are composed of variable mica-quartz schists with or without
garnet, psammitic rocks and intercalated marbles. The age of the sequence is largely
considered as early Paleozoic—Ediacaran; and (iii) so-called marble cover of
dominantly marbles with metabauxite occurrence at several different levels. Dolomites
and rudist-bearing exposures are also described (see section 1.5 for further details).

The boundaries between core and cover schists and cover schist-marble formed the
subject of controversies over the last three decades and several different intepretations
are made (see also section 1.1-1.5).

The massif posses a regional foliation with mostly top-to-the-north motion; it is
attributed to so-called main Menderes metamorphism. It is a prograde metamorphism
that reached amphibolite facies conditions at the structurally lowest levels and
gradually decreases upward to low greenschist facies conditions. It occurred in the
Eocene time (Bozkurt 1996; Hetzel et al., 1998; Bozkurt and Park, 1999; Whitney and
Bozkurt 2002; Régnier et al., 2003, 2007 and the references therein). The age of the
main Menderes Massif is considered as Eocene (~35 Ma; “°’Ar/**Ar mica cooling ages;
see Table 1.1 for details and references).
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There is also evidence for a top-to-the-south low-greenschist facies overprint
associated with the deformation along, and exhumation in footwall of, the southern
Menderes shear zone. Similar top-to-the-south fabrics are observed at different
structural levels within the southern Menderes and they are attributed to reactivation
of top-north thrust faults (e.g., Bozkurt and Park, 1997, 1999; Rimmelé et al., 2003;
Bozkurt, 2004, 2007; Bozkurt et al., 2006; Whitney et al., 2008). The age of shear
zone deformation and top-to-the-south fabrics are not dated geochronologically; an
inferrence of Oligocene—early Miocene is based on regional correlations. The southern
Menderes Massif was therefore interpreted as an incipient core complex of extensional
type (Bozkurt and Park 1994 and several papers thereafter).

To summarize, there is no reported evidence of HP metamorphism from the schists of
the southern Menderes Massif but the marble cover does. The metaconglomerates in
the Kurudere area form the lowest part of the marble cover; the age of metamorphism
is recently reported as 45.242.0 Ma (“°Ar/*Ar phengite age; Pourteau et al., 2013).
This age correlates well with the age data from Cycladic blueschists. The absence of
evidence for HP metamorphism in cover schists and core augen gneisses further
suggests that marble cover of the southern Menderes Massif have different tectono-
metamorphic history compared to the rest of massif and that the core and schist cover
of the massif have occupied tectonic setting different than that of marble cover or the
two essamblages occurred and experienced different histories at different structural
levels.

The most recent data about the detrital zircon geochronology from the Menderes
Massif has already been given in section 1.1 and it will not be repeated here. These
ages are from the lowestmost lithologies of the schist cover and are represented by
four samples and about 150 zircon grains; it is therefore not clear to us if the available
detrital zircon ages are statistically useful for comparison or not. There is also no data
from the so-called marble cover rocks.

5.2.3 COMPARISON OF CYCLADES AND SOUTHERN MENDERES
MASSIF

Similarities and differences between Cyclades and Menderes Massif are important
parameters to understand the geological evolution of Western Anatolia. Both massifs
are considered to be linked each other and form a part of Median Crystalline Belt
(Dilrr et al., 1978) which is one of the world’s typical blueschist belts (Candan et al.,
1997). On the other hand, Ring et al. (1999) argued that both massifs do not correlate:
Cyclades and Menderes Massif have entirely different age of basement, architecture,
pre-Alpine and Alpine deformation history. Cyclades has Variscan basement that
close to the Eurasian margin in the Triassic whereas Menderes Massif has Pan-African
basement and was not affected by the Variscan orogeny. Two massifs were
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amalgamated before the deposition of Mesozoic cover (Jolivet et al., 2012). Puzzling
the other data and the occurence of Triassic intrusions in both massifs indicates that
they have mostly same Precambrian evolution, different Paleozoic history and similar
Mesozoic cover processes (cf. Keay and Lister, 2002; Jolivet et al., 2012). Because
the Menderes Massif have thicker crust it provides to preserve pre-extensional
structures better than Cyclades; the total amount of extension in the Menderes is
therefore less than in Cyclades (Jolivet and Brunn, 2008; Jolivet et al., 2012).

When examined closely, there are several differences and similarities to be accounted.
The first one relates to the basement/core of the both massifs. While Cyclades are
characterized by Variscan orthogneissic basement with Hercynian ages, the core of the
southern Menderes is widely made up of Precambrian orthogneisses with subordinate
schists and gabbros (they show relict HP metamorphism). The absence of Variscan
granites and Hercynian ages in the southern Menderes is characteristic and this is used
as a key point to distinguish between the two.

It is obvious that the core and cover schists of the southern Menderes Massif and
marble cover have different metamorphic histories. If the two rock associations have
formed a part of the Menderes succession, Palaeozoic schists and Precambrian
orthogneisses must have experienced Eocene HP metamorphism or there should not
be evidence of HP metamorphism in the marbles and metaconglomerates. This piece
of evidence has been the main criteria of those suggesting a Cycladic origin for the
marbles of the southern Menderes Massif (Ring et al., 1999; Gessner et al. 2004;
Whitney et al. 2008). The new ca. 45 Ma phengite age (Pourteau et al., 2013) confirms
this ascertain.

5.3 PROVENANCE OF KURUDERE METACONGLOMERATES

Discovery of Fe-Mg-carpholite in the marble cover sequence of the Menderes Massif
indicates a HP metamorphism (Rimmelé et al., 2003b; Whitney et al., 2008). Absence
of HP relics in the core and cover schists of the Menderes Massif made the researchers
to explore more about the origin and provenance of the HP rocks in the southern
Menderes Massif. The HP assemblages suggest that these rocks were buried to, at
least, 35 km in a cold gradient (up to 12 kbar, 450-500°C) (cf. Whitney et al., 2008;
Jolivet et al., 2012). On the other hand, core and cover schists were subjected to
temperatures in excess of about 500°C at relatively low pressures (68 kbar; Whitney
and Bozkurt, 2002) during the Eocene. This further means that the two rock
associations behaved as two distinct terranes during the Eocene and do not belong to
each other. The Ar-Ar phengite age of 45.2+2.0 Ma (Pourteau et al., 2013) from the
Kurudere metaconglomerates further suggests that Kurudere HP rocks share
synchronous metamorphism and evolution with the Cycladic blueschist unit. It is off
course necessary to question the fact that single age data may not be enough to make a
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firm conclusion but the meaning of the available data needs to be stated and discussed
in any case.

The number and type of metamorphic events in both massifs are also different. As
mentioned above Cyclades has two metamorphic events: HP in the Eocene and
overprinting Barrovian-type greenschist facies metamorphism during the Oligo—
Miocene time (e.g., Oberhansli et al., 1998; Jolivet et al., 2012; Keay and Lister, 2002;
Pourteau et al., 2013 and several other references therein). Except the Kurudere HP
metamorphic unit, there are no HP relics in southern Menderes Massif schists. The
main Menderes metamorphism is a regional Barrovian-type event and occurred during
the Eocene. The available age data therefore suggest that HP metamorphism in the
Cyclades and regional Barrovian metamorphism in the Menderes Massif must have
occurred almost at the same time and that both massifs occupied different tectonic
settings and/or occurred at differing structural levels during the Eocene. This further
indicates that the presence and/or absence of Eocene HP metamorphism can be used
as an evidence to distinguish between the Cyclades and Menderes Massif.

The similarities between the Kurudere HP metaconglomerates and the Cycladic
blueschist unit are not arise from the age of metamorphism but also from the newly
documented U-Pb ages and probability-density plots of detrital zircons.

The comparison between basements of two massifs has been complex before
Palaeozoic time. Both massifs and Kurudere HP units have almost the same profile in
Mezoproterozoic ages (e.g., Keay et al., 2001; Keay and Lister, 2002; Zlatkin et al.,
2013); lack and/or less amount of ages between 1200-1700 Ma interval indicates
northern margin of Gondwana as a provenance (cf. Gebauer, 1993; Keay and Lister,
2002).

In Cryogenian (850to 635 Ma; Neoproterozoic) is cited as the beginning of
sedimentation of protolith of the ‘gneiss core’ in the southern Menderes Massif
(Sengor and Satir, 1984); the sediments therefore lack of 900-700 Ma zircons (Kroner
and Sengdr, 1990). Recently published data from the Southern Menderes Massif
clearly displayed decreasing trend between 900-700 Ma (Zlatkin et al., 2013) and
support this idea. While Menderes Massif was derived from north Africa, primitive
magmatic rocks produced in Cyclades during the development of an active continental
margin (Reischmann et al., 1991; Keay and Lister, 2002), this range of detrital zircon
ages (900-700 Ma) are common in the Kurudere metaconglomerates (Figures 3.16
and 5.2).

There is also bimodal distribution of zircon ages in 650-550 Ma interval from both the
Cyclades and the Menderes Massif. Thus statistically wave-like (bimodal) distribution
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of 550-650 Ma detrital zircons from the Kurudere HP rocks are very similar to that of
Cyclades and the Menderes and symbolize Pan-African orogeny (Figures 5.1-5.3).
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Figure 5.2 Published probability-density plots of detrital zircon from Southern
Menderes Massif schists (from Zlatkin et al., 2013).
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Figure 5.3 Bimodal distribution of detrital zircon ages between 550 and 650 Ma that
symbolize two distinct stages of during Pan-African Orogeny.

Sengdr et al. (1984) argued that late Ordovician—early Devonian (453.0+0.7 to
393.3+2.5 Ma, Gradstein and Ogg, 2004) in the Menderes Massif corresponds to a
tectonically quite period with limited number of magmatic activity. Thus, there is a
very low probability for the sediments derived from the Menderes to contain 450—400
Ma zircons in contrast to Cyclades (Keay and Lister, 2002). The presence of many
Ordovician and Silurian detrital zircon ages (Figure 3.16) from the Kurudere HP
metaconglomerates supports a more Cycladic origin.

The youngest zircon grain (298+5 Ma) in Kurudere HP units, as mentioned above, is
Asselian (299.0+0.8 to 294.6+0.8 mya) and has oscillatory zoning typical for
magmatic activity. It is proposed that this grain may belong to a 280-330 Ma,
magmatic activity as recorded by Meinhold et al. (2008).

eHf values are noteworthy to determine differences between the Menderes Massif and
the Kurudere HP metaconglomerates. In the southern Menderes Massif, generally,
grains younger than 1000 Ma have (+) eHf values, sourced from a juvenile crust, and
Towm ages are around 1.0 Ga. For older grains (> 1000 Ma) eHf values are scattered
(Zlatkin et al., 2013; Figure 5.4). But younger grains (<1000 Ma) for the Kurudere
rocks have (-) eHf values, suggesting reworked crustal source; Tpy range extends

90



from 0.71 up to 3.57 Ga. For older grains (>1000 Ma) the values are scattered as
expected (Figures 3.19-3.21). The eHf values of the Kurudere metaconglomerates are
therefore not consistent with southern Menderes data. The discrepancy between gHf
values from the southern Menderes schists and Kurudere metaconglomerates is
pronounced and is therefore used to favour a Cycladic origin for the
metaconglomerates. During Neotethyan magmatic activity, Early—Middle Ordovician
age zircons were reworked in the Cyclades. In Kurudere HP units, high population of
(-) eHf values may indicate this process (cf. Meinhold et al., 2008).
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Figure 5.4. eHf values southern Menderes Massif (Zlatkin et al., 2013).

54 INTERPRETATION OF STRUCTURAL DATA

The metaconglomerates form the most important lithologic association in the
Kurudere area and occur at two distinct horizons. Their lithologic chracteristics
suggest that they may represent the same conglomerate horizon but repeat owing to
large-scale structure(s) in the region. The senses of kinematics in two horizons are
opposite to each other. The meso- and micro-scale structures, as illustrated in the
previous section, are consistent with top-to-the-south shearing in the north and top-to-
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the-north shearing in the south. When plotted in a schematic cross-section (Figure
4.14), the distribution of metaconglomerates and kinematic indicators suggest a north-
vergent recumbent anticline just below the marbles. Similar structures are mapped,
using distribution and repetation of metabauxites in the marbles, within the
structurally overlying marble sequence (Caglayan et al., 1980; Bozkurt and Park,
1999).

It must be remembered that any viable structural model should demonstrate the facing
direction of metaconglomerate beds in the Kurudere area. Because of intense
deformation there is no primary structures preserved in the metaconglomerates. It is
therefore not possible to determine and comment on which way the beds are facing.
The overturned anticline model is based on the assumption that flexure-slip was the
mechanism of folding.
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CHAPTER 6

CONCLUSIONS

The main results and conclusions reached during this research can be summarized
as follows:

1. Of the ~450 concordant detrital zircon ages from four samples of the
Kurudere HP quartz metaconglomerates, the youngest grain is Asselian
(earliest Permian) in age (298+5 Ma, conc. 104%) and the oldest grain is
Mezoarchean in age (3020+16 Ma; conc. 101%). The youngest grain
supports previous contentions that the metaconglomerate is late Triassic in
age. But care must be taken, because it may be slightly older or may well
be early Jurassic as well.

2. The metaconglomerates occur as two distinct horizons in the Kurudere
area and they show opposing sense of shearing. Considering that the
flexural slip was the mechanism of folding, the kinematics indicates the
presence of an overturned anticline. But care must also be taken here
because any viable model should be supported by the facing direction,
which was not possible to determine.

3. The pattern in probability/density plots of detrital zircon ages, particularly
(i) the dominance of Ordovician to Cryogenian (Neoproterozoic) zircons
and (ii) lack of zircons in Mesoproterozoic ages (1.1-1.7 Ga), are
consistent with a northern Gondwana provenance for the source of
protolith to the metaconglomerates.

4. Majority of detrital zircon grains (out of 144 grains) have negative (-) eHf
values and indicates a reworked crustal source; the rest are possibly from
a juvenile crustal sources.

5. Presence of many Ordovician and Silurian detrital zircon grains, as well as
eHf values —very distinct from those reported in the southern Menderes
metasediments— are similar to those reported from the Cycladic rocks.

6. The Kurudere HP rocks and possibly the overlying marble series in the
southern Menderes Massif may therefore belong to the Cycladic
blueschist units, thus supporting previous contentions (Ring et al., 1999;
Gessner et al., 2001c, 2004; Régnier et al., 2003, 2007; Whitney et al.,
2008). The occurrence of north-vergent overturned fold and associated
kinematics are consistent with a top-north emplacement of the Cycladic
unit above the Menderes sequence and this might have taken place
sometime after Eocene but before late Oligocene.
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APPENDICES

APPENDIX A

PROCESS OF MINERAL SEPARATION

Separating zircon grains in whole massive rock is based on physical separation
tecniques. Steps of tecniques may get differ in different laboratories. In Frankfurt, six
steps were applied for zircon separation from field up to mass spectrometer stage; they
are:

crushing,

wilfley table,

heavy liquid,

magnetic separator,

hand picking,

epoxy, polishing and cathodoluminescence imaging.

o Ol WN P

CRUSHING

Crushing was done in Sample Preparation Laboratory, Department of Geological
Engineering, Dokuz Eylil University (Figure A.1). Firstly, weathered parts are
removed by help of a hammer and the rest massive parts are broken into smaller
pieces in a jaw crusher. Gap between jaws should be adjusted for each sample
according to its hardness. The ideal size of the grains is around 2-3 cm in diameter.
The jaw crushed must be cleaned carefully after each sample because contamination is
not tolerated. Then, the processed samples are put into a roller crusher gets to get finer
grains. To measure U-Pb system in zircons with LA-ICP-MS, sample must be crushed
down to 0.25 pum.

Some of the laboratories use sieve during roller crushing. Different range sieves are
used to separate finer grains. Coarser grains are processed in roller crusher to get finer
pieces. But in Dokuz Eyliil University and Goethe University sieving is not used
because it is considered as a time consuming process.
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Figure A.1 A view of a roller crushed in the crushing laboratory of the Department of
Geological Engineering in Dokuz Eyliil University.

WILFLEY TABLE

Wilfley table stage was also performed in Sample Preparation Laboratory, Department
of Geological Enginnering, Dokuz Eyliil University. The table is also known as
shaking table, concentrating table and gravity shaker.

About 0.25 um-size fragments are put into a wilfley table to separate light minerals
(like mica and quartz) from heavy minerals. Powder of a sample is put on the sample
container, the grains are separated as the table shakes according to their density. For a
better separation, velocity of sample flow, intensity of water flow, frequency of
shaking and slope of table must be well adjusted manually according to the of the
sample (Figure A.2). Heavy and light minerals accumulate in different decks (decks 1
and 2 and decks 3 and 4, respectively; see Figure A.2).
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Figure A. 1 Wilfley table with water and manually adjusted. Light and heavy minerals
separation is seen.

When separation of grains is complete for a sample, heavy concentrates in two of the
decks (decks 1 and 2) are transferred to different containers and put into an oven to get
dry. Light parts are generally thrown but we kept them in case we may need them for
other purposes. After complete drying of samples, two containers are taken out. One
of them is packed and saved for future use; the second is used in the next step, heavy
liquid. Generally, after wilfley table, magnetic separator is performed. But in Gdethe
University/Frankfurt, heavy liquid is performed to save time because the duration of
magnetic separator depends on the amount of sample.

HEAVY LIQUID
In the third stage, a heavy liguid —bromoform (CHBr; , d= 2.88 g/cm®) — is used

(Figure A.3). During this step, perfect separation between relatively heavier and
heaviest minerals is performed.
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N <

Bromoform + sample

Figure A.2 The heavy liquid bromoform and sample are mixed in a glass; then wait
for sometime until the heavier and heaviest minerals are separated according to their
relative density with respect to the density of the liquid. Then the mixture is run
through separating funnel.

The heavier part is packed and heaviest part is put in a fume hood and waited for
sometime until it loses bromoform. Then, the heaviest portion is dried and prepared
for magnetic separation.

MAGNETIC SEPARATION

Magnetic separator is used to separate minerals based on their magnetic properties;
trademark Frantz Isodynamic Magnetic Separator is used in this process (Figure A.4).
The magnetic separator contains two large electromagnets and the mineral separates
pass on a metal way in-between electromagnets. The intensity of the magnetic field
and/or slope of the metal way are specifically adjusted for target mineral. Zircon is
non-magnetic under 1.6 A. For zircon separation 0.4 A, 0.8A, 1.2 A, 1.6 A intensities
are used and after magnetic separation, the powder above 1.6 A is taken for hand
picking.
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Figure A.3 View of a magnetic separator in Geochronology and Radiogenic Isotope
Laboratory, Institute of Geoscience, Goethe University of Frankfurt.

HAND PICKING

The non-magnetic part (> 1.6 A) of the mineral separate from magnetic separator is
studied under binocular microscope (Figure A.5) and zircons are hand picked. Zircon
is high relief, prismatic, bright and generally transparent mineral. It is not so difficult
to distinguish it from other minerals, except apatite and experience is needed for a
easy pick up of zircons.

Figure A. 4 View of a binocular microscope.

EPOXY, POLISHING AND CATHODOLUMINESCENCE IMAGES
After picking enough number of zircon grains (this about 100-110 grains for

sediments and 55 grains for magmatic rocks), they are mounted in a epoxy tablet and
then polished to expose their inner zonation with Ar gas (Figure A.6).
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Figure A5 View of mounted and polished zircon grains ready for
cathodoluminescence imaging.

Cathodoluminescence (CL) images of zircons are taken to see zoned structure clearly
(Figure A.7); spot locations are selected on CL images. The CL images are obtained in
a JEOL-JSM-6490 scanning electron microscope in Geochronology and Radiogenic
Isotope Laboratory, Institute of Geoscience, Goethe University of Frankfurt.

Figure A.6 Cathodoluminescence images of detrital zircons from Kurudere
metaconglomerates (sample 331).

After taking CL images and determining spot locations, zircons are ready U-Pb for
analyses. In this study, laser ablation induced couple mass spectrometry method (LA-
ICPMS) is performed.
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APPENDIX B

LIST OF U-Pb AND Hf DATA

In the tables below, processed, concordant and discordant U-Pb and eHf data are
presented with sample numbers, spot numbers, ratio of measured isotopes and
concordant and discordant data. For U-Pb systems, basically Pb isotopes, U isotopes
and Th®? were measured. Additionally, Hg”®* were measured because of having the
same atomic number with common lead (Pb”*) and to determine the precise age of the
minerals.

To calculate eHf value, Tpy ages, Lu/Hf ration and Hf/Hf ratio were measured.
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