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ABSTRACT 

DESIGN AND IMPLEMENTATION OF A HEAD TRACKING CONTROLLED PAN AND 

TILT VISION SYSTEM 

 

Ölmez, Hasan  

M.Sc., Department of Mechanical Engineering 

Supervisor : Assoc. Prof. Dr. İlhan Konukseven  

Co-Supervisor : Asst. Prof. Dr. Buğra Koku 

 

August 2013, 89 pages 

 

Head tracking applications are getting widely used in robotics implementations such as in 

military industry for surveillance applications of remote controlled unmanned vehicles, in 

medical applications for heart and vessel surgeries, in entertainment and game applications for 

virtual reality. It can be used for helping the operator of teleoperated unmanned vehicle with 

improving his performance by decreasing workload and managing stress. Head tracking is a 

challenging application due to real time tracking and synchronization problem. Considering this 

challenging, in this thesis head tracking controlled pan, tilt and roll vision system is 

accomplished. Head tracking is achieved with an orientation sensor which has 3-axis 

accelerometer, angular rate sensor, and compass sensor modules. With these modules the sensor 

can measure orientation in all three dimensions. This sensor is fixed on a polystyrene helmet 

which enables operator to fix the sensor on his head. With the motion of the operator’s head, the 

position change is tracked. This tracked data is used to control pan-tilt-roll mechanism that a 3D 

video camera fixed on it. From this video camera a captured video is transferred to a head 

mounted display on 2D-3D and/or on a 6 LED monitors display system on 2D. At the end of the 

thesis, for validating the system two different experiments are made, one of them for the 

differences between 2D and 3D vision on HMD and the other is for testing 6 LED monitors 

display and HMD with 2D vision. These tests are done for looking the performance of operators 

on different displays (HMD and 6 LED monitors) and on vision types (2D-3D).  

 

Keywords: Orientation sensor, head tracking, servo motor, pan-tilt-roll mechanism, 3D vision, 

video camera, head mounted display, LED monitor, vision system  
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ÖZ 

KAFA TAKİBİ SİSTEMİ İLE KONTROL EDİLEBİLEN PAN-TILT KAMERA SİSTEMİNIN 

MODELLENMESİ 

 

 

Ölmez, Hasan 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez yöneticisi : Assoc. Prof. Dr. İlhan Konukseven  

Ortak tez yöneticisi   : Asst. Prof. Dr. Buğra Koku 

 

Ağustos 2013, 89 sayfa 

 

Kafa takip sistemleri günümüzde robotik uygulamalarda ve özellikle sanal gerçeklik 

uygulamalarında son zamanlarda sıkça kullanılmaya başlayan bir sistemdir. Askeri alanlardan 

oyun, eğlence uygulamalarına kadar pek çok alanda yaygınlaşmaya ve ihtiyaca göre farklı 

gereksinim ve tasarımlarla son kullanıcıya sunulmaktadır. Askeri alanlarda uzaktan kontrol 

edilebilen insansız araçlarda, tıpta kalp ve damar ameliyatlarında sıkça kullanılmaktadır. 

Uzaktan kontrol edilebilen insansız araçlarda kullanıcının kullanım performansını artırabilmek 

için kafa takip sistemleri sıkça kullanılmaktadır. Kafa takibi gerçek zamanlı pozisyon kontrolü 

ve eşzamanlı hareket sağlayamama problemleri sebebi ile zor bir çalışma alanıdır. Bu tez 

kapsamında bu problemlerde göz önüne alınarak oryantasyon sensörlü kafa takibi sistemi ile 

operatörün kafa hareketlerini takip edebilecek servo motor kontrollü pan-tilt-roll mekanizmasına 

sabitlenmiş, 3 boyutlu çekim yapabilen video kameradan kişisel üç boyut görüntüleyiciye 

ve/veya 6 adet LED monitörden oluşan görüntüleme sistemine görüntü aktarımı anlatılmaktadır. 

Çalışmanın sonunda yapılan testlerle görüntüleme sisteminde 2 boyutlu ve 3 boyutlu görüntünün 

kullanıcı üzerinde etkileri incelenmiş ve monitöre 3 boyutlu görüntü aktarımda kullanıcının daha 

rahat hareket edebildiği görülmüştür. Bir diğer testte ise 2 boyutlu görüntünün aktarımı ile 

kullanıcın kişisel görüntüleyici kullanımı ve 6 ekranlı görüntüleme sistemi kullanımı arasındaki 

performans farklılığına bakılmıştır. Bu testte de kullanıcın 6 monitörlü sistemi kullanmasının 

performası üzerinde biraz daha olumlu etki yaptığı görülmüştür.  

 

Anahtar Kelimeler: Oryantasyon sensörü, kafa takibi, servo motor, pan-tilt-roll mekanizması, 3 

boyutlu görüntü, video kamera, kişisel üç boyut görüntüleyicisi, LED monitor, görüntüleme 

sistemi.  
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CHAPTER 1 

 

INTRODUCTION 

Robotics technology which has many application areas is one of the most growing fields. This 

technology is using in national security, entertainment, search and rescue, earth and space 

exploration, tactics operations, production, health care and personal assistance.  

1.1 Robotics Technology 

With the middle of the 20
th
 century, robotics technology has become one of the most active 

areas of research and began to be used in manufacturing in early 70s.  With the 70’s robotics 

started to be used in production and assembly lines. The main use of robotics technology in 

manufacturing was to replace the repetitive work done by human to decrease accidental risks 

and the costs with an increase in the production quality. At 2012, over the one million robots are 

used in industrial applications.  

For the past decades, mobile robotics, which involves different scientific disciplines such as 

computer science, mechanical engineering, electrical engineering, cognitive science, materials 

science, has been an active research area due to the need of autonomous mobile activities. 

Different than industrial robots or industrial manipulators, mobile robots have the capability of 

moving autonomously. This capability makes them popular in various different real life 

applications. While some of these applications are easy to solve, some others consist hazardous 

environments and require precise perception, judgment and actuation. They are usually expected 

to accomplish these tasks by navigating dynamically in those environments consisting humans, 

other robots, objects and obstacles.  

The examples of these applications can be given as car driving, autonomous flight, cleaning, 

space exploration, delivery, mine sweeping, aiding and rehabilitation. In each application space, 

the requirements are different and hence, each application has different problems and requires a 

variety of solutions to these problems. Although the scientific community extensively 

researched on the field, suggested a bunch of solutions to the different problems related with the 

area, and even some commercial applications are available, the research field is still intensely 

active and attractive for the researchers. 

1.2 Human-Robot Interaction (HRI) 

Mobile robot applications range from fully human-controlled to autonomous agents. In fully 

teleoperated systems, human has the full control over the perception and movement of the agent. 

Human perceives and interprets the sensory information and decides on motor commands. Role 
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of the robot is confined to do whatever the operator asks. In fully autonomous systems, human 

does not intervene to the progress of the robot. Even the need to operate is decided by the robot 

itself. Although the peak point is defined as fully autonomous robots, human role always will be 

persistent in mobile robotic applications. In this aspect a new topic arises: Human-Robot 

Interaction (HRI). HRI study field emerged from the need to understand the interaction between 

robotic systems and humans.  

There should be a communication channel between human and robotic agent to be able to 

interact. Type of this interaction is defined by the distance between peers. Depending on the 

distance, human-robot interaction is separated into two categories [1]: 

• Remote interaction: Defined as the interaction type when the human and the robot are 

separated in terms of space and/or time. 

• Proximate interaction: If two peers are in their line of sight, this type of interaction is defined 

as proximate interaction. 

Proximate interaction requires the robot and human being in the same location or even in same 

room. Interaction between personal robotic assistants and humans require proximate interaction 

including physical, social or emotive aspects.  

Remote interaction included in mobile robotics. If remote interaction with the robot requires 

mobility, this category is divided into two sub categories [2]. Interaction with a mobile robot to 

change its location is referred as “teleoperation”. On the other side, if the mission is to change a 

location of a remote object, this interaction is named as “telemanipulation”. 

1.3 Virtual Reality (VR)  

The definition of virtual reality comes, naturally, from the definitions for both ‘virtual’ and 

‘reality’. The definition of ‘virtual’ is near and reality is what we experience as human beings. 

So the term ‘virtual reality’ basically means ‘near-reality’. This could, of course, mean anything 

but it usually refers to a specific type of reality emulation. 

Virtual reality is the term used to describe a three-dimensional, computer generated environment 

which can be explored and interacted by a person. That person becomes part of this virtual 

world or is immersed within this environment and whilst there, is able to manipulate objects or 

perform a series of actions. 

By using 3D imagery with a head mounted device (HMD) and high quality surrounding sound 

equipments, these games creates more involvement in the virtual world and consequently shut 

down the cues of real world. This is what called virtual reality, which has applications far 

beyond gaming.  
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On the spectrum between virtual reality, which creates immersive, computer-generated 

environments, and the real world, augmented reality [3] is closer to the real world. Augmented 

reality adds graphics, sounds, haptic feedback and smell to the natural world as it exists. Both 

video games and cell phones are driving the development of augmented reality. Everyone from 

tourists, to soldiers, to someone looking for the closest subway stop can now benefit from the 

ability to place computer-generated graphics in their field of vision. 

 

A simple example of ‘Counter Strike’ game can give a thought as to how virtual reality works. 

The software program for the game is the major element which runs with the help of the 

computer system and the interfaced input output devices. Every Character and environment 

within the game behaves closely to reality as per the code written for them. The code facilitates 

characters and environment to interact with the other characters controlled by the input devices. 

The code is interpreted by the processor which handles the input – output devices accordingly. 

This is the simplest example of how VR works. The working of more immersive virtual reality 

environment is quite similar to working of the game besides the fact that a number of advanced 

input and output devices along with a high performance processor are added to increase the 

immersion. The processor executes the processes quickly according to the input given by the 

user and output is presented to the user in a way that user feels itself a part of the environment 

and its objects.  

1.4 Scope of the Thesis 

In this thesis, the primary objective is to design a pan-tilt vision system with a head tracking 

control. With this system a 3D vision is transferred to a monitor from the camera. Since the pan-

tilt mechanism is controlled via head motion, the operator can easily manage the camera where 

he wants to see.  

For this purpose, a pan-tilt-roll mechanism was completed. A 3D video camera is fixed on it. 

Video camera’s zoom option can be controlled remotely which gives a huge advantage to 

operator.  

Transferred 3D vision is monitoring via 3D eye glass (Head mounted display, HMD) or via a 3D 

monitor system that includes six 3D monitors.  

Pan-tilt mechanism is controlled via head tracking. For tracking, an orientation sensor is used 

which fixed on a wearable plastic helmet. Since the helmet is wearable, operator can fix the 

orientation sensor on his head. With operator’s head motion, the position change of his head is 

calculated and the pan tilt system moves according to this change.   

http://science.howstuffworks.com/engineering/civil/subway.htm
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1.5 Motivation of the Thesis 

Our Tübitak supported Unmanned Ground Vehicle project, Keçi
1
, is planning to control via 

teleoperation. For this teleoperation process, operator should need a remote control system. 

Operator should control the Keçi from the base and if it is needed he should take control of the 

vehicle. For this purpose a vision system is needed. With making this system 3D, the operator 

should feel like that he is being in the environment where Keçi is located.   

After finishing the project mentioned here, the stereo vision system will be transferred on Keçi. 

So this thesis is one of the basics for our Tübitak supported project.  

1.6 Outline of the Thesis 

This study is divided mainly two sections according to the content. First section is about 

development of the pan tilt mechanism that is made ready for vision system. In the second part 

head tracking is described. 

First chapter is the introduction to the topic. Second chapter includes literature survey performed 

on these two sub-topics. Development of the pan tilt mechanism and head tracking is 

represented in Chapter 3. In Chapter 4 programming is mentioned. In Chapter 5, the developed 

head tracking pan-tilt system is validated via experiments. Finally last section is dedicated to 

conclusions and possible future research on the topic that is studied. 

 

 

 

 

 

 

 

 

 

 

                                                      
1
 Tübitak Project number 111M580.  
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CHAPTER 2 

 

LITERATURE SURVEY 

2.1 Introduction 

In this chapter a survey on recent research and applications on similar head controlled pan-tilt 

vision systems are presented. The chapter is divided into two parts. In the first section related 

work in the literature on pan-tilt mechanism design and manufacture is mentioned. Components, 

design criterion, sub-systems and application areas are discussed. In the second part of this 

chapter, head tracking and vision systems are discussed. This part focused mostly on methods on 

head tracking and on camera systems that are used for teleoperation.  

 

2.2 Literature on Pan-Tilt Mechanism  

Pan-tilt systems are used for very wide applications but mostly used for standing a camera. 

These mechanisms are used in industries, surveillance, medical applications, military, 

agriculture areas, entertainment applications etc.  

Some camera firms such as SONY, Canon and Panasonic produce a commercial pan-tilt camera 

seen on Figure 2.1. These cameras are widely used in security applications and also in industrial 

applications.  

 

 

 

 

Figure 2.1- Pan-tilt cameras of SONY [4] and Panasonic [5] 
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These cameras capture video in 2D. Their prices are very high, from $4000 to $15000 (USA 

prices). Despite these disadvantages, most academicians use these cameras in their surveys. In a 

study held by Lang et al. [6] Sony EVID31 pan-tilt color camera is mounted on top of their 

search robot called BIRON (Figure 2.2). This camera is for acquiring images of the upper body 

part of humans interacting with the robot. In their research they work on a robot platform which 

can communicate with people. During interaction the robot gives its attention to the person of 

interest. The researchers use a multi model person tracking technique for this interaction. They 

use Sony EVID31 pan-tilt camera for face recognition, two microphones for sound source 

localization, and a laser range finder for leg detection and called this system as a multi model 

person tracking. A pan-tilt color camera is used for a tracking of a person of interest. 

 

 

 

 

Figure 2.2- BIRON has a Sony EVID31 pan-tilt color camera on the top. [7] 

 

 

In other research [8], Kogut and his friends use Canon VCC4-R pan-tilt zoom camera for 

controlling their unmanned ground vehicle (UGV) remotely. They called their project as “The 

Distributed Interactive Video Array (DIVA)”. The aim of this study is to develop a wireless 
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network communicated video system. With this system an operator could easily command UGV 

remotely. They design man-portable network system with self-calibrating pan-tilt smart cameras 

for providing usable capabilities to robotic and manned forces.  

Another research with using a commercial pan-tilt camera is about Neuroscience [9]. Fry and his 

friends try to track flying insects with using Sony LSX PT1 pan-tilt camera. They use 2 of this 

camera for making 3D vision. In their research, they use pan-tilt camera for two different 

experiments. First they use honey bees for measuring the position and precise body direction 

while approaching a food source. In the second experiment the flight trajectories of a 

phonotactic parasitoid fly homing in on its cricket host were recorded in 3D. Pan-tilt cameras are 

used for following the flying insects’ path.  

Sinha and Pollefeys use Canon VB-C10 and Sony SNC-RZ30 in their research [10]. In their 

study, they discuss the problem of recovering the calibration of a network of pan-tilt-zoom 

cameras. They develop a method for calibrating two different PTZ cameras so that cameras can 

capture the same video at the same time.  

Pan-tilt mechanism cameras can be used in medical applications. Hu et al. [11] develop an 

insertable surgical pan tilt imaging device. Since this device is a surgical device, they develop 

very small pan-tilt mechanism provided by two very small DC servo motors with a modular 

camera. They use this camera system in laparoscopic surgery and the video is transferred to a 

monitor. The operator makes the operation via looking this monitor. This small device enables 

to make some surgeries without opening the skin. Hu and his friends develop a remote control 

for this camera system so that an operator can easily intervene the operation.  

Some researchers develop their own pan tilt systems. Troung and his friends design a 

mechanism for a stereo vision system [12]. They called this system as CeDAR (Cable Drive 

Active vision Robot). CeDAR is designed for speed and accuracy through its novel use of cables 

in zero backlash transmissions and a parallel mechanical architecture.   

Pan-tilt mechanism can be used in UAVs. Jakobsen and Johnson use pan/tilt/roll mechanism 

called gamble in their UAV research [13]. In their research they use Georgia Tech’s UAV, the 

GTMax. They develop architecture for controlling the pan/tilt/roll camera system of the GTMax. 

The camera is fixed on a large gimbal. All of three axes driven by a modified servo motor and 

the position is checked via optical encoders. They use PID controller for position control of the 

servo motors.  

Another study on UAV is made by Lee et al. [14]. Their research presents a mission-centric 

approach to controlling the optical axis of a video camera mounted on a camera positioner and 

fixed to a quadrotor remotely operated vehicle. They control pan/tilt and roll axes of camera 

fixed gimbal system. They design a camera system and develop architecture for controlling this 

system.   
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2.3 Literature on Head Tracking System 

In literature, there are lots of techniques for tracking head motion. One of the most common 

techniques is wearable tracking systems. Foxlin and Harrington study on a system that is based 

on the very simple idea of combining a head orientation tracker with a head-worn tracking 

device that tracks a hand-mounted 3D beacon relative to the head [15]. They fix an orientation 

sensor to HMD (Head Mounted Display). They wear a hand-mounted wireless acoustic emitter 

beacon for tracking the head motion. For demonstration, they use a portable VR (virtual reality) 

system and a wearable computer user interface.  

Another study for wearable head tracking sensor is done by Joffrion [16]. He uses a low cost 

MEMS IMU and a low cost single frequency GPS receiver so that the system costs low. The 

system was flight tested on board a Raytheon C-12C aircraft. The accuracy of the system was 

measured by comparing its output to truth data from a high-accuracy post-processed navigation 

grade INS/DGPS solution. Results showed that roll and pitch error were accurate to within 1-2 

degrees, but that heading error was dependent upon the flight trajectory. 

Foxlin and Naimark [17] are the other researchers who studied on wearable head tracking 

sensor. They use InertiaCube2 IMU (inertial measurement unit) and fix it on a cap as seen from 

Figure 2.3. This IMU contains 3 gyros, 3 accelerometers, and 3 magnetometers in a 1 cubic inch 

package. The operator wears this head-mounted sensor assembly to his head and fixes the belt-

mounted electronics unit that houses the CPU board and image processor board to his belt.  

 

 

 

  
Figure 2.3- Head mounted senor [17] 

Another study for the visualization subsystem is made with a laptop with 3D graphics 

acceleration feeds 3D graphics to an optical-see-through stereo HMD (Figure 2.4) [18]. The 

laptop handles also interaction with a PDA (via bluetooth) and tracking of interaction devices 
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(using the head-mounted webcam). The tracking subsystem is included a dedicated single board 

computer which receives input from a camera mounted on top of the helmet (Figure 2.4) from a 

6 DoF inertial tracker mounted on the rear of the helmet. It calculates the head pose in real-time 

and communicates pose information via local LAN to the host (the visualization subsystem). 

Using the CMOS camera with USB II and an inertial tracker with serial interface, the tracking 

subsystem is quite compact and can be applied standalone for many kinds of mobile tracking 

applications. 

 

 

 

 

Figure 2.4- Wearable outdoor tracking systems [18]. 

 

 

Foxlin [19] examined the use of use of inertial sensors for head tracking. His system was based 

on three orthogonal solid-state rate gyros, a two-axis fluid inclinometer and a two-axis fluxgate 

compass. Orientation was determined by integrating angular rates from the gyros starting from a 

known initial orientation. Drift compensation was accomplished by using the inclinometer and 
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compass as a “noisy and sloshy but drift-free" measurement of orientation. Estimates of 

orientation were then generated using a Kalman filter and both sources of orientation. Foxlin 

implemented an adaptive algorithm by increasing the estimate of inclinometer measurement 

noise during periods of slosh. On the other hand, the estimate of measurement noise was 

decreased at a specified length of time since the last nonzero gyro reading or last change in the 

inclinometer reading. In this way, the Kalman filter took advantage of the inclinometer and 

compass measurements when they were the most accurate (with no head motion). This 

technique would not be advantageous in an aviation environment, because several phases of 

flight, including takeoff and coordinated turns, are exposed to sustained constant linear 

acceleration. 

Foxlin et al. [20] design an inertial system for tracking head mounted displays (HMD)s. They 

use InertiaCube for inertial measurement. The InertiaCube simultaneously measures 9 physical 

properties, namely angular rates, linear accelerations, and magnetic field components along all 3 

axes. They use SoniDisc for remote-triggered acoustic pulse transmitter. The SoniDisc is a 

battery powered wireless transponder which receives infrared (IR) signals and transmits 

ultrasonic pulses in response. They design two different tracking systems: 3 DOF system and 6 

DOF system. 3 DOF orientation tracking system is efficient for games, visualizations, and 

vehicle simulators. 6 DOF tracking system is achieved by adding an ultrasonic range 

measurement system on 3 DOF system.  

Foxlin [21] make another head tracking research which the operator’s platform does not stable at 

this time. He studies on tracking head relative to a moving vehicle or simulator platform using 

differential inertial sensors. In this research an inertial measurement unit (IMU) is fixed on a 

HMD while another IMU (called as reference) is fixed on a platform. This reference IMU’s 

position relative to ground is known. He derives the kinematic equations and obtain simulation 

results but concludes that the conclusions can be applied to hybrid inertial trackers involving 

optical, magnetic, or RF drift correction as well.  

Head tracking can be achieved via other techniques such as with intensity gradient and color 

histogram, with face detection, with eye tracking etc. Xu and Li [22] and Birchfield [23] study 

on head tracking with camera. At these two researches a method of using particle filter with 

intensity gradient and color histogram is used for tracking head. Xu and Li model the head’s 

projection onto the image plane first in their research. Head modeled as an ellipse whose 

position and size are continually updated by a local search combining the output of a module 

concentrating on the intensity gradient around the ellipse’s perimeter with that of another 

module focusing on the color histogram of the ellipse’s interior. Since these two modules have 

roughly orthogonal failure modes, they serve to complement one another. The result is a robust, 

real-time system that is able to track a person’s head with enough accuracy to automatically 

control the camera’s pan, tilt, and zoom in order to keep the person centered in the field of view 

at a desired size. Extensive experimentation shows the algorithm’s robustness with respect to 

full 360-degree out-of-plane rotation, up to 90-degree tilting, severe but brief occlusion, 

arbitrary camera movement, and multiple moving people in the background. 
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Wang and Brandstein [24] study on a hybrid system based on both voice recognition and face 

detection for real time head tracking. They use microphone array for detecting the position of 

speaking person and a stereo camera for face detection. After detecting voice and face, with 

computer controlled stereo camera they track the face real time regardless of operators motion. 

The aim of this research is directly video conferences. They use Canon VC-C1 PTZ camera so 

that they can achieve pan and tilt motion during the tracking.  

Hennessey et al. [25] study on an eye tracking system. They track eye-gaze with a single high 

resolution camera. The camera does not have any moving system so it is a disadvantage for this 

research when the operator quits the camera’s sensor. They achieve free head motion with using 

3D models and multiple glints. Over a field of view of 14x12x20 cm, and various configurations 

such as camera resolutions and frame rates they achieve accuracies under 1° of visual angle.  

To sum up, from the literature survey it can be seen that there are various ways of developing 

pan-tilt mechanisms and tracking head motion. For pan-tilt vision systems researchers generally 

use commercial products such as pan tilt zoom video cameras. This method is the easiest way to 

achieve pan tilt vision system. For head tracking, the most common way is to use an IMU for 

head orientation. The research proposed in this study deals with own designed pan tilt vision 

system and head tracking with orientation sensor.  
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CHAPTER 3 

 

DEVELOPMENT OF A HEAD TRACKING PAN-TILT MECHANISM 

3.1 Introduction 

In this chapter the design of pan-tilt mechanism and head tracking is mentioned. Used 

equipment is introduced. First a pan-tilt-roll mechanism is mentioned. This part is divided into 

two subtopics: Mechanical system and vision system. In each sub system requirements, 

equipment and their properties and technical information is mentioned. After finishing pan-tilt-

roll mechanism, head tracking system is mentioned. The sensors, processors are mentioned. 

Detailed software is mentioned in next chapter.  

3.2 Pan-Tilt-Roll Mechanism 

Pan-tilt-roll mechanism is composed of two sub systems; mechanical system and the vision 

system.  

3.2.1 Mechanical System  

This system includes pan tilt and roll systems which consists of pan-tilt mechanism, roll 

mechanism, and motors.  

3.2.1.1 Pan Tilt and Roll Mechanism 

For tracking head motion, pan tilt and roll mechanisms are needed since neck motion can be 

achieved by combination of these axes. Instead of designing a new mechanism, providing one of 

the commercial mechanical pan tilt roll system is suitable. So two disassembled Servo City’s 

pan tilt mechanisms are obtained and after combining one of these pan tilt mechanism, the 

other’s tilt mechanism is used as a roll mechanism.  The mechanism can be seen on Figure 3.1.  

Mechanism consists of two independent axes; pan and tilt. For each axis a standard servo motor 

is needed. Housings of motor are made with ball bearings which protect motors’ shafts. Two 

axes are tightened via ball bearing supported pan mount. Pan motor’s shaft passes through this 

mount and tightens to tilt mechanism. Servo City comments to use standard analog servo motors 

such as Hitec HS-485HB or HS-645MG or Futuba BLS151 Analog servo motors. After making 

some experiments with Hitec HS-485HB, it is seen that this motors do not satisfy our 

requirements since these recommended motors are analog and have low torque values. As a 

result digital and high torque Hitec HS-5955TG and Savöx SC-1256 servos are used in this 

mechanism. Details of the motors are mentioned later.  
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Figure 3.1- Servo City’s pan-tilt mechanism [26] 

 

 

 

After combining pan-tilt system, roll axis is added to this system (Figure 3.2). This axis is 

achieved by adding a tilt mechanism to pan tilt system with tightened to pan mechanism. Roll 

axis also has ball bearing housing.  

On top of the tilt mechanism, the plate designed as a mounting plate so it has holes on it. With 

using this property, 3D stereo camera is fixed on this plate easily.  
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Figure 3.2 - Pan Tilt Roll Mechanism  

 

 

 

3.2.1.2 Servo Motors  

For roll and pan axis, two Hitec HS-5955TG is used and for tilt axis one Savöx SC-1256 digital 

servo motor is used.  

Up to just a few years ago, the only RC servo motors available were analog, but now digital 

servo motors are available. There is no physical or main component difference between a digital 

servo motor and analog servo motor. The servo motor case, motor, gears, and even the feedback 

potentiometer all have the same functions and operations in both types. The difference between 

the two is in how the signal from the receiver is processed and how this information is used to 

send power to the servo motor. 

An analog servo motor controls the speed of the motor by applying on and off voltage signals or 

pulses to the motor. This voltage is constant especially 4.8 to 6.0 volts. This on off frequency is 

standardized to 50 cycles a second. The longer each on pulse is, the faster the motor turns and 
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the more torque it produces. Most of the motors’ speed is controlled with this way. At rest, no 

current is going to the motor. If a small transmitter command is given or some external pressure 

is applied to the servo horn forcing it off neutral, a short duration voltage pulse will be sent to 

the motor. The larger the stick movement or potentiometer movement, the longer this on pulse 

will be in order to move the servo quickly to the desired position.  

During small amounts of stick movement or when external forces are applied forcing the servo 

off its neutral or holding position; only a short duration voltage pulse is applied to the servo 

motor every 20 milliseconds. With large stick movements, a long voltage pulse is applied every 

20 milliseconds to the servo motor. A short power pulse every 20 milliseconds doesn’t get the 

motor turning that quickly or allow it enough time to produce much torque. This is the problem 

with all analog servos; they don’t react fast or produce much torque when given small 

movement commands or when external forces are trying to push them off their holding position. 

This area of slow sluggish response and torque is called dead band. 

A digital servo has all the same parts as an analog servo, even the three wire plug that plugs into 

the receiver is the same. The difference is in how the pulsed signals are sent to the servo motor. 

A small microprocessor inside the servo analyzes the receiver signals and processes these into 

high frequency voltage pulses to the servo motor. Instead of 50 pulses per second, the motor will 

now receive up to 300 pulses per second. The pulses will be shorter in length of course, but with 

so many voltage pulses occurring, the motor will speed up much quicker and provide constant 

torque. Digital servos have a shrill sound when very light force loads placed on them. This 

sound is the short high frequency voltage pulses acting on the motor.  

The result is a servo that has a much smaller deadband, faster response, quicker and smoother 

acceleration, and better holding power. Digital servos have advantages of increase in speed, 

torque, and holding power does come with a small disadvantage; power consumption. 

To sum up; the analog servo motor is slow to respond and provides little torque during small, 

fast command inputs. So, digital servo motors are much better than analog servo motors. 

A standard 3-pole wire wound servo motor uses a steel core with wires wound around the core, 

this core is then surrounded by permanent magnets. The core and all that wire weighs a fair bit. 

However in a Coreless design, the heavy steel core is eliminated by using a wire mesh that spins 

around the outside of the magnets. This design is much lighter hence it has a smaller inertia 

which results quicker acceleration and deceleration. The result is smoother operation, more 

available torque, and faster response time. 

So according to information given above, the used servo motors are chosen as a Coreless Digital 

Servo Motor.  



17 

 

Hitec HS-5955TG is an ultra-torque titanium gear coreless digital servo motor (Figure 3.3). It 

has a 24 kg.cm torque in 6.0 V DC. It is only 61.5 g with the size 39.9x20.1x38.1 mm 

(LxWxH). It has a 20 ms pulse cycle with 900-2100 µs duty cycle.  

 

 

 

 

Figure 3.3- Hitec HS-5955TG ultra-torque titanium gear coreless digital servo motor [27] 

 

 

 

The other motor is Savöx SC-1256 which is also an ultra-torque titanium gear coreless digital 

servo motor (Figure 3.4). It has a 20 kg.cm torque in 6.0 V DC. It is a bit lighter than Hitec, 52.4 

g. Its size is 40.3x20.2x36 mm (LxWxH). It has a 20 ms pulse cycle with 800-2200 µs duty 

cycle. It can be controlled via pulse with modulation.  
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Figure 3.4- Savöx SC-1256 ultra-torque titanium gear coreless digital servo motor [28] 

 

 

 

Since Hitec servo motor has larger torque value than Savöx, the Savöx is used as a pan motor 

while Hitec motors are used as a tilt and roll motors.  

 

3.2.2 Vision System  

In this thesis 3D vision is transferred to the operator’s monitor so that the operator can feel that 

he is in the environment where the video system is being. 3D vision system is the one of the 

basics of this project.  

3.2.2.1 3D Camera 

Since 3D vision system has a huge importance for this project, in the design period several 

alternatives are considered. In the first design, two small 2D cameras with adjustable position 

according to operator’s eye position are considered. Cams can be positioned for every operator, 

according to their pupil’s position. With these 2 small cams, 2 visions are transferred in real 

time. With processing these two visions a 3D vision is generated and is transferred to operator’s 

monitor. However, transferring these 2 videos synchronously cause problems despite the small 

cams are the same.  

After failed first design, Sony 3D camera “HDR-TD30V” is considered (Figure 3.5). It is a 3D 

handycam that enable to transfer 3D vision in real time. After making tests with HDR, it is seen 

that the specifications of camera is fairly enough for this project. So HDR is used as a visual 

system 3D camera.  
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Figure 3.5-Sony HDR-TD30V [29] 

 

 

 

Sony HDR-TD30V has two Full HD sensors as seen from the Figure 3.5. It can capture videos 

1920x1080 resolution on both sensors. Each sensor independently capture 1920x1080 resolution 

video which results as more clear high definition (HD) 3D videos. Unlike Sony HDR most 3D 

cameras achieve the 3D affect by splitting a 1920x1080 signal in to two 960x540 sensors in 

order to squeeze them onto one sensor, results limiting resolution on the final output. 

Some other important features of the HDR-TD30V are listed as below: 

 Size (LxHxW) : 63.5 x 71.5 x 131 mm, 

 Weight : 460 g (without battery), 

 HDMI output, 

 USB output (as a mass storage),  

 Optical Zoom : 10x, 

 Digital Zoom : 120x (2D only), 

 Lens Stabilization : Optical Steady Shot image stabilization with active mode (Wide 

3D), 

 Focal Length (35mm equivalent) : 33.4mm-400.8mm (16:9 Movie Mode, 3D), 

 Minimum Focus Distance : Approximately 30cm (Wide 3D), 

 Focal Distance : f = 3.2-32mm(3D), 

 Built in GPS, 

 Remote control. 

3D video is transferred via HDMI output. Video can be transferred in real time while the camera 

records. It has 10x optical zoom and it can be controlled remotely like play and stop. With using 

remote control property, the operator can remotely control zoom, stop and play.  
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3.2.2.2 Decoding Remote Control of 3D Camera 

For controlling the camera’s zoom, stop and play properties remotely, remote codes of the 

camera is needed. For this purpose a set-up is made with two controller board, Arduino MEGA 

R3 and Arduino UNO R3. One controller is for receiving infrared codes from the remote 

controller and the other is for testing; transferring the codes to the camera. (Figure 3.6)  

Receiver board is connected to the computer so that the remote codes can be seen from the serial 

monitor. 38 kHz SFH 506 is used for receiving codes from the remote control (Figure 3.7). With 

pushing the buttons of the remote control, a remote code of this pushing button is received and 

seen on the monitor. After applying this method to all buttons of remote control, all of the 

infrared codes are obtained.  The receiving code of Arduino MEGA R3 is given in Listing 1.  

 

 

 

 

Figure 3.6-Obtaining remote codes of HDR-TD30V 
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Figure 3.7- Infrared receiver board 

 

#include <IRremote.h> 
int RECV_PIN = 11 
IRrecv irrecv(RECV_PIN) 
decode_results results 
void setup 
  Serial.begin(9600) 
  irrecv.enableIRIn 
  void dump(decode_results *results)  
  int count = results->rawlen 
  if (results->decode_type == SONY) 
    Serial.print("Decoded SONY: ") 
  else if  
    Serial.print("Decoded UNKNOWN: ") 
  Serial.print(results->value, HEX) 

  Serial.print(" (") 
  Serial.print(results->bits, DEC) 
  Serial.println(" bits)") 
  Serial.print("Raw (") 
  Serial.print(count, DEC) 
  Serial.print("): ") 
  for (int i = 0; i < count; i++)  
    if ((i % 2) == 1)  
      Serial.print(results->rawbuf[i]*USECPERTICK, DEC) 
    else 
      Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC) 
        Serial.print(" ") 
    Serial.println("") 
void loop() 
  if (irrecv.decode(&results)) 
    Serial.println(results.value, HEX) 
    dump(&results) 
    irrecv.resume() 

Listing 1- Receiving remote codes of HDR-TD30V 
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After receiving the remote codes of HDR-TD30V, it is checked whether the codes are working 

or not. For this purpose a transmitter board with infrared led is connected to Arduino UNO R3 

(Figure 3.8). The most useful parameters’ codes, start/stop, zoom in, zoom out, are tested. 

 

 

Figure 3.8- Infrared transmitter board 

 

 

For activating the remote code, code should send 3 times via infrared led. The example 

transmitting code of Arduino UNO R3 for zoom in is given in Listing 2. 

 

#include <IRremote.h> 
IRsend irsend 
unsigned int zoomIn[31] = {2400, 550, 650, 550, 1200, 550, 650, 550, 1200, 550, 1250, 
550, 600, 550, 650, 550, 1200, 600, 600, 550, 650, 550, 1200, 550, 1250, 550, 600, 550, 
1250, 550, 1200} 
void setup()  
void loop()  
    irsend.sendRaw(zoomIn,31,38) 
    delay(50) 
    irsend.sendRaw(zoomIn,31,38) 
    delay(50) 
    irsend.sendRaw(zoomIn,31,38) 
    delay(2000) 

Listing 2- Transmitting remote codes of HDR-TD30V 
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Although remote codes of all buttons are decoded, zoom in (T), zoom out (W) and start/stop 

codes are used in this project. These codes are listed in Table-1. 

A joystick system shown in Figure 3.9 is adapted to system and operator can easily control the 

zoom property of HDR-TD30V by pushing the joystick forward and backward. With adding 

BC547 - NPN BJT transistor to this remote control board, the range of infrared control is 

increased. 

 

 

 

Table 1- Some of the important remote codes 

 

 

Name of the Button Remote Code of Button Raw Data (Hex) 

Start/ Stop CBC0 

32118 2400 -550 650 -550 600 -600 600 -

550 650 -550 1200 -550 1200 -600 600 -

550 650 -550 1200 -550 650 -550 1200 -

550 1250 -550 1200 -550 1250 -550 600 -

550 650 -550 600 -600 600 -550 650 -550 

600 

Zoom in (T) 2C9B 

-17046 2450 -500 650 -550 1250 -500 650 

-550 1250 -550 1200 -550 650 -550 600 -

550 1250 -550 650 -500 650 -550 1250 -

500 1250 -550 650 -500 1250 -550 1250 

Zoom out (W) 6C9B 

-23238 2400 -600 1200 -500 1250 -600 

600 -550 1200 -550 1250 -550 600 -600 

600 -550 1250 -550 600 -550 650 -550 

1200 -600 1200 -500 650 -600 1200 -550 

1200 
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Figure 3.1-Joystick for controlling zoom in and out of HDR-TD30V 

 

 

 

3.2.2.3 3D monitor 

After transferring 3D vision from the Sony HDR-TD30V, the operator needs a 3D display. For 

this purpose two display systems are available; a wearable 3D viewer SONY HMZ-T2 (Figure 

3.10), and a display system with combining six 24 inch ASUS VG248QE led monitors (Figure 

3.11). 

Sony HMZ-T2 is a wearable 3D viewer. It has a processor unit and HMZ-T2 should be 

connected to this unit. The processor unit converts 2D vision to 3D and also converts 3D visions 

to proper format for showing on the HMZ-T2.  

Its weight is 330 grams. It has twin OLED screens with 1280x720 resolutions. Its size is 

210x196x110 mm. It has a 3.5 cable length from the unit processor. Its power consumption is 

15W. It has a highly adjustable headband and forehead support for a secure and gentle fit.  

Operator should use this wearable display for virtual reality. Since he sees on the displays where 

the camera captures the video, he feels like he is on the camera’s environment. The video is 

transferred to HMZ-T2 via its processor unit.  

The other alternative for 3D display system is combining six of 24 inch ASUS VG248QE led 

monitors (Figure 3.11). When the operator wants to see the video in detailed and large scale he 

should use this system.  
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Figure 3.2-SONY HMZ-T2 [30] 

 

 

 

 

Figure 3.3-Six monitor display system  

     

 

 

For this system six ASUS VG248QE led monitors are combined. Six 24 inch LED monitor desk 

mount stand is ordered from the manufacturer. Three of these monitors are fixed on the upper 

side and the rest is on the lower side of the stand so that 2x3 24 inch LED monitor display 

system is prepared.   
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Captured video is distributed via a graphics card ASUS HD7970 DIRECTCU II (Figure 3.12) to 

this six display system. This graphics card enables to show a captured video at six displays, 2 of 

them is via DVI input and 4 of them is via HDMI input. It is an AMD Radeon card and it has a 3 

GB RAM. The monitors can be connected to this card via DVI and Display Port. It has 5600 

MHz memory speed with a core speed 1000MHz. Its memory is GDDR 5 type with a 384 bits 

interface. It supports DX11.1.   

 

 

 

Figure 3.4- ASUS HD7970 DIRECTCU II [31] 

 

 

A video capture card (Figure 3.13) is used for transferring video from the HDR-TD30V to 

computer which ASUS HD7970 is fixed. This card is suitable for HDMI input and for High 

Definition videos.  
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Figure 3.5-Avertv HD High Definition Video Capture Card [32] 

 

 

 

3.3 Head Tracking Design 

Head tracking system consists of one orientation sensor fixed plastic helmet and one controller 

board Arduino MEGA. Orientation sensor is mounted at a polystyrene helmet so that operator 

can easily put the sensor on his head. (Figure 3.14)  
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Figure 3.6- Polystyrene helmet for fixing orientation sensor 

 

 

 

3.3.1 Orientation Sensor  

An orientation sensor is used for determining the position of operator’s head. For this purpose, 

“UM6 Orientation Sensor” is used (Figure 3.15). The UM6 is designed by CH Robotics. It is a 

miniature sensor and has a protect case with the sizes 28.2x27.2mm and a height of 11.5mm.   

  The UM6 has 3-axis accelerometer, angular rate sensor, and compass sensor modules. UM6 

measures orientation in all three dimensions at 500 Hz using a combination of rate gyros, 

accelerometers, and magnetic sensors. By combining data from all three types of sensors, the 

UM6 produces orientation measurements that are resistant to vibration and immune to long-term 

angular drift. 

The UM6 provides orientation measurements using Euler Angles (yaw, pitch, and roll) and 

quaternions. In addition to orientation, the UM6 reports raw and processed sensor data from the 

accelerometers, rate gyros, and magnetic sensors. The UM6 also has the capability to interface 

with external GPS modules to provide position, velocity, course, and speed information. 
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The sensor included an onboard 32-bit ARM processor which fused the data from the individual 

sensor modules using an Extended Kalman Filter algorithm and provided the processed data 

using serial transmission at a rate of up to 1 KHz. With the automatic gyro bias calibration and 

the cross-axis misalignment correction, the sensor could be easily calibrated using free open 

source software to correct for sensor biases, allowing for very accurate orientation data. 

 

 

 

 

Figure 3.7- The UM6 Orientation Sensor [33] 

 

 

 

From the tests, it is seen that the UM6 has accuracy better than 2
o 

for pitch and roll angle and 

better than 5
o 
for yaw angle. It can measure +/- 2000 °/s rotation rates and +/- 2g acceleration. It 

needs 5V input voltage for working.  

UM6 supports angle estimation using Euler Angles or quaternions, in this project as mentioned 

later Euler Angles outputs are used. In Euler Angle mode, for yaw angle the UM6 restricts 
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magnetometer updates. As a result in environments where the external magnetic field varies 

significantly it is important to keep accurate pitch and roll angle estimates.  

The UM6 has own serial interface software to simplify configuration and testing, and can be 

connected to PC via serial connection. For making serial connection easily, a serial connection 

board, also developed by CH Robotics, is obtained (Figure 3.16). On a serial connection board, 

there is a socket for fixing the UM6, a voltage jack and a serial connection jack.   

By using CHR Serial Interface software, sensor settings can be changed, real time data logging 

can be achieved and sensor calibration can be done (Figure 3.17).  

 

 

 

 

Figure 3.8-UM6 serial connection board 

 

 

 

The UM6 can provide orientation information using both Euler Angles and Quaternions. 

Compared to quaternions, Euler Angles are simple and intuitive and they lend themselves well 

to simple analysis and control. On the other hand, Euler Angles are limited by a phenomenon 

called "Gimbal Lock". In this thesis Euler Angles are used instead of Quaternions since in 

applications where the sensor will never operate near pitch angles of +/- 90 degrees, Euler 

Angles are still a good choice.   
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Figure 3.9- CHR Serial Interface software 

 

 

 

 

3.3.1.1 Euler Angles  

Euler angles provide a way to represent the 3D orientation of an object using a combination of 

three rotations about different axes [34]. Multiple coordinate frames are used to describe the 

orientation of the sensor, including the "inertial frame," the "head-1 frame," the "head-2 frame," 

and the "body frame." The inertial frame axes are Earth-fixed, and the body frame axes are 

aligned with the sensor. The head-1 and head-2 are intermediary frames used for convenience 

when illustrating the sequence of operations that take us from the inertial frame to the body 

frame of the sensor [35]. 

The "inertial frame" is an Earth-fixed set of axes that is used as an unmoving reference. 

Common aeronautical inertial frame are used where the x-axis points north, the y-axis points 

east, and the z-axis points down (Figure 3.18). It is called as a North-East-Down (NED) 

reference frame. Since the z-axis points down, altitude above ground is actually a negative 

quantity. 
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Figure 3.10- Inertial Frame: Roll-Pitch-Yaw Angles 

 

 

 

The sequence of rotations used to represent a given orientation is first yaw, then pitch, and 

finally roll. The "pitch" angle represents positive rotation about the y-axis, "roll" represents 

positive rotation about the x-axis, and "yaw" represents positive rotation about the z-axis. 

Yaw angle represents rotation about the inertial-frame z-axis by an angle Ψ (Figure 3.18). The 

yaw rotation produces a new coordinate frame where the z-axis is aligned with the inertial frame 

and the x and y axes are rotated by the yaw angle Ψ. This new coordinate frame is called as the 

head-1 frame. The orientation of the head-1 frame after yaw rotation is shown in Figure 3.19. 

The head-1 frame axes are colored red, while the inertial frame axes are gray. 
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Figure 3.11- The Head-1 Frame 

 

 

 

Rotation of a vector from the Inertial Frame to the Head-1 Frame can be performed by 

multiplying the vector by the rotation matrix. 

1

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

v

IR

 

  

 
 

 
 
  

 

Pitch represents rotation about the head-1 Y-axis by an angle θ as shown in Figure 3.20. For 

clarity, the inertial-frame axes are not shown. The head-1 frame axes are shown in gray, and the 

head-2 axes are shown in red. Assume that pitch isn’t rotation about the inertial-frame Y-axis. 
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Figure 3.12-The Head-2 Frame 

 

 

 

The rotation matrix for moving from the head-1 frame to the head-2 frame is given by 

2

cos( ) 0 sin( )

( ) 0 1 0

sin( ) 0 cos( )

v

IR

 



 

 
 


 
  

 

The rotation matrix for moving from the inertial frame to the head-2 frame consists simply of 

the yaw matrix multiplied by the pitch matrix: 

2 2 1

1( , ) ( ) ( ).v v v

I v IR R R     

The body frame is the coordinate system that is aligned with the body of the sensor. On an 

aircraft, the body frame x-axis typically points out the nose, the y-axis points out the right side 

of the fuselage, and the z-axis points out the bottom of the fuselage. 
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The body frame is obtained by performing a rotation by the angle  around the head-2 frame x-

axis as shown in Figure 3.21. For clarity, the body frame and head-1 frame axes are not shown. 

The head-2 frame axes are shown in gray, while the body-frame axes are shown in red. 

 

 

 

 

Figure 3.1-The Body Frame 

 

 

 



36 

 

The rotation matrix for moving from the head-2 frame to the body frame is given by 

2

1 0 0

( ) 0 cos( ) sin( )

0 sin( ) cos( )

B

vR   

 

 
 


 
  

 

The complete rotation matrix for moving from the inertial frame to the body frame is given by 

2 1

2 1( , , ) ( ) ( ) ( ).B B v v

I v v IR R R R       

The rotation matrix for moving the opposite direction - from the body frame to the inertial frame 

- is given by 

1 2

2 1( , , ) ( ) ( )( ) .I v B v

B I v vR R R R          

3.3.1.2 Transformation of Euler Angles to Camera System  

Axes of rotation of head in pan tilt roll motions can be assumed to intersect at one origin at the 

neck of a human [36]. Therefore angle of motion transformation is not required at head. 

Since head motion axes intersect at neck, operator’s eye and head fixed UM6 rotate at the same 

rigid body and same rotation axis. As a result the angle change of eye and head fixed orientation 

sensor is same which means no transformation is required. 

The rotation axes of pan tilt roll mechanism of 3D camera are shown in Figure 3.22. Roll axis 

and pan axis of the mechanism intersect at one point as shown from the figure. With taking this 

point as an origin of the pan-tilt roll motion, tilt axis should be transformed to origin for distance 

change of camera.  

The difference between pan-tilt roll camera mechanism and head neck motion is the translation 

in the tilt motion.The translation distance (d) is 9.5 cm which is shown on Figure 3.23. This 

transformation distance (dT) can be calculated with; 

2 sin( )
2

Td d


  
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Figure 3.2- The rotation axes of pan tilt roll mechanism 

 

 

              

Figure 3.3- Transformation Distances of pan tilt roll mechanism 
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For 30
0 
rotation this transformation distance can be calculated as 4.9 cm for this setup. 

As can be seen from the Figure 3.23, the rotation axes are decoupled which makes the 

transformation of rotation angles redundant. Since there exists no translation in tilt motion, 

rotation angles should be same to keep axes parallel to each other. The position change of 

camera causes change of field of view. However, due to presence of Sony’s HMD field of view 

is already smaller compared to field of the necked eye. Therefore this small change of field of 

view is discarded in this study. Because of these reasons Euler angles obtained from orientation 

sensor can be directly used as servo rotations angles in the mechanism. 

 

The average value of neck eye distance is 14.7 cm for a man [37]. In the pan tilt roll mechanism 

the distance of camera’s lens to origin is 15 cm as can be seen from Figure 3.23. Therefore 

motion of camera and the motion of operator’s head are nearly same. 

3.3.1.3 Gimbal Lock  

Gimbal lock occurs when the orientation of the sensor cannot be uniquely represented using 

Euler Angles. The exact orientation at which gimbal lock occurs depends on the order of 

rotations used. On UM6, the order of operations results in gimbal lock when the pitch angle is 

90 degrees. 

Intuitively, the cause of gimbal lock is that when the pitch angle is 90 degrees, yaw and roll 

cause the sensor to move in exactly the same fashion.  

3.3.1.4 Kalman Filter 

The Kalman filter was developed by Rudolf E. Kalman. Its purpose is to use measurements 

observed over time, containing noise and other inaccuracies, and produce values that tend to be 

closer to the true values of the measurements and their associated calculated values. The Kalman 

filter has many applications in technology, and is an essential part of space and military 

technology development. The Kalman filter produces estimates of the true values of 

measurements and their associated calculated values by predicting a value, estimating the 

uncertainty of the predicted value, and computing a weighted average of the predicted value and 

the measured value. The most weight is given to the value with the least uncertainty. The 

estimates produced by the method tend to be closer to the true values than the original 

measurements because the weighted average has a better estimated uncertainty than either of the 

values that went into the weighted average. For the linear system, linear Kalman filter is used 

and for the non-linear system, extended Kalman filter (EKF) can be applied [38]. Figure 3.22 

shows each algorithm. 

Zk, the measurement is the input of the Kalman filter algorithm. And it uses A, H, Q, R from the 

system model. Then xk becomes final output. Linear Kalman filter algorithm and extended 
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kalman filter algorithm are almost same. But as the system model cannot be derived from the 

nonlinear system, linearization of system model is needed for EKF algorithm. f(xk), h(xk) are the 

nonlinear function from the nonlinear system. Jacobian can be used for the linearization. 

ˆ ˆ

,

k k
x x

f h
A H

x x

 
 
 

 

Accelerometer and gyroscope are hard to use separately to measure the position angle. Position 

angle that derived from the accelerometer has noise, while the gyroscope shows the drift. 

Though accelerometer gives noisy output, its measuring error is conservative. On the other side, 

gyroscope gives relatively noise immuned output for short time duration, though its error will be 

diverged for long time period. With these characteristics, we can see that two sensors are in 

complementary relationship. If gyro drift can be corrected by accelerometer, the output angle 

can have reliability. Likewise, by combination of two complementary sensors, improved output 

can be calculated. This is the concept of the Kalman fusion. 

 

 

 

Figure 3.4- Kalman and Extended Kalman Filter [38] 
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To get the reliable position angle (Euler angle) with accelerometer and gyroscope, Kalman 

fusion is needed. Figure 3.23 shows the concept of Kalman fusion in IMU. 

 

 

 

Figure 3.5-Kalman fusion in IMU [38] 

 

 

To perform the Kalman fusion, system model, A, H, R, and Q should be decided. Interested 

variables are , ,and   . So, the state variable can be set as like follows: 
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Where w is the noise. From this relationship, the system model becomes;  

sin tan cos tan

cos sin ( )

sin cos cos cos

p q r

q r w f x w

q r

   
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 
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Since the system model is nonlinear, it should be linearized by using Jacobian matrix.  
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So, from the above the system matrix A can be derived. The measured system can be modeled 

with the noise v as;  

1 0 0

0 1 0
z v

Hx v







 
   

   
   

 

 

   

In this case, the system model is linear. So, simply system matrix H can be obtained. Finally, the 

system matrices A and H are derived. With this system model, Kalman filter algorithm can be 

applied. CH Robotics implements this algorithm to inside the UM6.  

3.3.2 Controller Board 

Arduino MEGA R3 is used as a controller board (Figure 3.24). It is an open-source development 

platform that based on a simple input output (i/o) board. It implements the Processing/Wiring 

language. It is used for receiving position data of operator’s head from the UM6 and sending 

this data to motor drivers. Arduino MEGA R3 is used for this purpose since it is easy to 

programming.  
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Figure 3.6-Controller Board:Arduino MEGA R3 [39] 

 

 

It works with 7-12 V. It uses ATmega2560 microcontroller. It has 54 digital inout/output pins, 

14 of them is for PWM, 16 analog outputs and 4 UARTs. It can connect to computer via USB 

meanwhile it can power up via USB. On the board there is an adapter jack. It can also be 

powered up via this jack. It has 256k flash memory and 16 MHz clock speed. 

It can be programmed on own software or programs like Visual Studio. 

In Figure 3.25, the connection layout of Arduino Mega is seen. As can be seen one, Arduino’s 

one analog input is used (A0) for joystick (Figure 3.9), communication pins RX1 and TX1 is 

used for transferring data from UM6, four digital outputs are used, number 2 is for tilt motor, 

number 4 is for pan motor, number 6 is for roll motor, and number 9 is for remote control board, 

and one digital input pin, number 5, is used for joystick’s push specification. With pushing 

joystick, pan tilt roll mechanism is return to its starting position, so that operator could initialize 

servo motors positions after wearing the UM6 fixed plastic hat or when needed. Arduino, motors 

and UM6 all are powered from 20 A limited 5-12 V voltage regulator. Grounds of all electronic 

components are mating.  
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Figure 3.1-Connections of Arduino Mega R3 
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3.4 Conclusion  

In this chapter development of a head tracking pan-tilt mechanism is presented. First pan tilt 

system is mentioned. At the earlier steps of design the system is considered as a pan tilt system 

but after seeing the requirement of roll action, roll mechanism is added to system. For virtual 

reality 3D vision system is needed. At the earlier stages, with combining two small 2D cameras 

3D vision is tried to establish. However with the synchronism problem of transferring these two 

visions, establishing 3D vision via two small 2D cameras is failed. As a result Sony 3D stereo 

handycam HDR-TD30VE is obtained and adapted to vision system.  

HDR-TD30VE is a 3D camera with two lenses. It has image stabilization property which gives a 

huge advantage for stabilize vision. Some properties of this camera can control via remote 

control and with decoding the remote codes zoom in and out properties controlled remotely.  

For monitoring 3D vision, 2 monitor systems are used; Sony’s HMD, HMZ-T2, and combined 6 

ASUS 3D LED monitors system are used.    

For head tracking system CH Robotics’ miniature orientation sensor UM6 is used. Sensor is 

fixed on a plastic helmet for wearing on head and the outputs of Euler angles are used for 

position change of head. The outputs are interpreted on Arduino Mega R3 and the position 

changes are transferred to digital coreless RC servo motors. So head tracking is achieved.  

In the next chapter, the developed algorithm is introduced.  
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CHAPTER 4 

 

ALGORITHM STRUCTURE 

4.1 Introduction 

In this section calibration of orientation sensor and developed algorithm on Arduino Mega R3 is 

mentioned. This chapter is divided into four parts; calibration of UM6, head tracking algorithm, 

pan-tilt-roll algorithm and remote control algorithm. Calibration of UM6 is done via CHR Serial 

Interface software. Algorithm of Arduino is developed on Microsoft Visual Studio 2012.  

4.2 Flowchart  

Before developing software, a flowchart is drawn which can be seen in Figure 4.1. In this 

flowchart the steps of how the software works can be seen.  

 

 

Figure 4.1-Algorithm Flowchart 
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4.3 Calibrating Orientation Sensor 

The UM6 is calibrated on factory; however CH Robotics suggests calibrating the sensor on 

working platform again. There are a lot of ways to calibrate the UM6, but most of them aren't 

necessary to get reasonable performance from the sensor. The most important requirements are 

to calibrate the magnetometer and zero the rate gyros. 

4.3.1 Magnetometer Calibration  

Despite the sensor comes pre-calibrated, CH Robotics suggests after integrating UM6 on its 

assembly platform where it works, progressing magnetometer calibration make the sensor works 

fine. Calibration can be performed on CHR Serial Interface software. Before starting calibration, 

from the configuration tool, raw magnetometer data should turn on (Figure 4.2). After turning 

on the magnetometer data on, from mag calibration window the calibration can be started by 

clicking “Start Data Collection” button.    

The software increments the "Collected Data Points" indicator as raw data arrives. While 

collecting the data, for obtaining fine results the sensor should be rotated through a wide variety 

of yaw, pitch, and roll angles. During the calibration, the sensor should be far from any magnetic 

field distortions such as computer monitor, ferrous metals etc.  

With collecting 300 data points, “Compute Calibration” button enables to click for computing 

the calibration matrix (Figure 4.2). Finally with clicking “Write to RAM” button, calibration 

coefficients are sent to the UM6’s RAM. Making magnetometer calibration once is enough and 

no need to make this progress again.  
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Figure 4.2-Configuration Tool and Magnetometer Calibration 

 

 

4.3.2 Zero the Rate Gyros 

Unlike magnetometer calibration, rate gyro biases should be zeroed every time the sensor starts 

up and periodically while running. The rate gyros are very sensitive to temperature variation, 

and to keep costs low they are not calibrated in the factory. This means that for best results, they 

should be zeroed periodically. In figure 4.3 and 4.4 data graph of rate gyros before zeroing and 

after zeroing is seen. As can be seen rate gyros are not zero after starting the UM6 so that it 

should be zeroed. The Arduino code for zeroing rate gyros is given in Listing 3. As suggested, 

the data is zeroed when the sensor starts and periodically during progressing when sensor is 

stationary.   
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Figure 4.1-Rate Gyro Output Before Zeroing  

 

 

Figure 4.2-Rate Gyro Output After Zeroing 
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UM6 and Arduino Mega communicate via UART communication with 115200 baud rate, none 

parity and stop bits of 1. 

UM6 supports UART communication for two modes: Broadcast and Listen mode. In Broadcast 

Mode, any combination of raw or processed sensor data, orientation estimates, and estimator 

covariance can be transmitted automatically. UM6 does not wait for any request. However in 

Listen mode, first a request must be sent, then UM6 sends desirable data. In this project Listen 

mode is used instead of Broadcasting mode.  

UM6’s UART serial communication structure is given in Table 2.  

 

 

Table 2- UART Serial Packet Structure 

's' 'n' 'p' packet type (PT) 

Address 

Data Bytes 

(D0...DN-

1) 

Checksum 1 Checksum 0 

 

 

When communication is performed over the UART, data transmitted and received by the UM6 

is formatted into packets containing: 

1. The three character start sequence 's', 'n', 'p' to indicate the start of a new packet (i.e. start new 

packet) 

2. A "packet type" (PT) byte describing the function and length of the packet 

3. An address byte indicating the address of the register or command 

4. A sequence of data bytes, the length of which is specified in the PT byte 

5. A two-byte checksum for error-detection 

 

The PT byte specifies whether the packet is a read or a write operation, whether it is a batch 

operation, and the length of the batch operation (when required). The PT byte is also used by the 

UM6 to respond to commands. The specific meaning of each bit in the PT byte is given in Table 

3. 
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Table 3- Packet Type (PT) Bit Descriptions 

Bit(s) Description 

7 Has Data: If the packet contains data, this bit is set (1). If not, this bit is cleared (0). 

6 
Is Batch: If the packet is a batch operation, this bit is set (1). If not, this bit is cleared 

(0) 

5-2 
Batch Length (BL): Four bits specifying the length of the batch operation. Unused if 

bit 7 is cleared. The maximum batch length is therefore 2
4
 = 16 

1 Reserved 

0 
Command Failed (CF): Used by the UM6 to report when a command has failed. 

Unused for packet sent to the UM6. 

 

 

 

For zeroing the gyro rate, the address byte is given as 0xAC. So with the view of this 

information, the sent data should be;  int RegZeroGyro [7] = {0x73, 0x6E, 0x70, 0x00, 0xAC, 

0x01, 0xFD}. The code sending this data to UM6 is given in Listing 3.  

 

 

 

int RegZeroGyro [7] = {0x73, 0x6E, 0x70, 0x00, 0xAC, 0x01, 0xFD}; 
void setup() 
{  
    Serial2.begin(115200);  
    zeroGyro(); 
} 
void zeroGyro() 
{ 
     int i = 0; 

     while(i <= 6) 
            { 
             Serial2.write(RegZeroGyro[i]); 
    i++; 
  } 
 delay(200); 
 Serial2.flush(); 
} 

Listing 3- Arduino code for zeroing rate gyro bias 
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At the end of the code, “Serial2.flush” is used for waiting the transmission of outgoing serial 

data to complete.  

4.3.3 Calibrating EKF Variables  

UM6 orientation sensor has own internal Extended Kalman Filter (EKF) for eliminating noises 

and irrelevant data. This Kalman Filter has variances that can be calibrated from CH Robotics 

software interface. These variances are; mag, accelerometer and process variances. From factory 

UM6 comes pre-calibrated with initial values of 2, 2 and 0.5 with the order of mag, 

accelerometer and process variances. With these values the sensor has a drift especially on yaw 

angle as can be seen from Figure 4.5. Sensor is in stationary condition after 11
th
 second however 

as can be seen from Figure 4.5 it has a drift after that second.   

 

 

 

 

Figure 4.3-Yaw angle drifts with initial EKF variances values. 
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For eliminating this drift the values of variances are changed. First, lower values are tried, 0.5, 

0.5 and 0.1 with the order of mag, accelerometer and process variances. With these values the 

sensor first overshoots and then continues to drift as can be seen from Figure 4.6. After 168
th 

second, the sensor remains stable, however as can be seen first it overshoots, then starts to drift. 

So, lower EKF variances values are not a good choice for UM6.   

After unsuccessful attempt with lower values of EKF variances, the values are increased. They 

are given as 10, 50 and 500. With these values the yaw angle starts to oscillate on stationary 

condition of orientation sensor. So, higher values of EKF variances are not good too for 

orientation sensor.   

After trying some other values, it is seen that choosing values of 2, 5 and 175 for mag, 

accelerometer and process variances are good for UM6 orientation sensor. With these values 

sensor has no drift, no overshoot and no oscillation as can be seen from Figure 4.8. So, the 

calibration of orientation sensor is achieved with the values of mag variance 2, accelerometer 

variance 5 and process variance 175.  

 

 

 

Figure 4.1-Yaw angle first overshoots then drifts with lower EKF variances values. 
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Figure 4.2- Yaw angle oscillates with lower EKF variances values 

 

 

 

Figure 4.1-Yaw angle with calibrated EKF variances values. 
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4.4 Head Tracking Algorithm  

After calibrating the UM6, as described in section 3.3.1.2 position data of head mounted UM6 is 

transferred to Arduino Mega R3, and with using this information, pan tilt roll servo motors are 

controlled. The sequence of rotations used to give the orientation of the UM6 is first yaw, then 

roll, then pitch. 

At the beginning of the code, as mentioned in section 4.2.2, the request data should be 

transferred to UM6 since UM6 is in Listen mode. UM6 is send roll and pitch angles in the same 

register whereas send yaw angle alone. The address code for requesting roll and pitch angles is 

0x62 where 0x63 is for yaw angle. In Listing 4 the initial values for variables and request data 

can be seen.  

 

 

int RegPHITHT [7] = {0x73, 0x6E, 0x70, 0x00, 0x62, 0x01, 0xB3}; // pitch-roll 
int RegPSI [7] = {0x73, 0x6E, 0x70, 0x00, 0x63, 0x01, 0xB4};  //yaw  

boolean PR_OK = false; 
boolean YW_OK = false;  //initial values  
boolean start = true;   //for getting servos to initial position, by pressing joystick 

int bufPR = 0; 
int bufYW = 2; 

 
Listing 4- Reaching Registers of Um6 

 

 

For transferring position data from UM6, first a request must be send. After this, UM6 sends the 

Euler angle estimates, roll and pitch at the same time, yaw with another request. To obtain the 

actual angle estimate in degrees (for all roll pitch and yaw), the register data should be 

multiplied by the scale factor as;  

_ *0.0109863angleestimate register data . 

This conversion can be seen on Listing 5. In Table 4 and Table 5, the register data send from 

UM6 can be seen. At Listing 5, the Arduino code can be seen.  
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Table 4-Euler Angle Roll/Pitch Register Definition 

B3 B2 B1 B0 

Roll angle ( ) Pitch angle ( ) 

 

Table 5-Euler Angle Yaw Register Definition 

B3 B2 B1 B0 

Yaw angle ( ) Reserved 

 

void setup() 

{ 
    Serial2.begin(115200); 
    getEulerAngle();  
 } 
void getEulerAngle() 
{ 
    if ( bufPR == 0)   
         sendPitchRoll();  
    if ( bufYW == 0)   
         sendYaw();      
    if (Serial2.available() > 0) 
    {  
        data[data_count] = Serial2.read(); 
        data_count++; 
    } 
 
    if (data_count == 11) 
    { 
        data_count = 0; 
        if (bufPR >= 5 && PR_OK == false) 
            calcPitchRoll(); 
        if (bufYW >= 5 && YW_OK == false) 
 calcYaw();  
     } 
 
    if(YW_OK == true && PR_OK == true) 
    { 
        if(Yaw < 0) 
 Yaw = Yaw+360;  
         if(start == true) 
             { 
    start = false; 
 } 
         Serial.print("ROLL UM:"); 
         Serial.print(Roll); 
         Serial.print("   ,   "); 
         Serial.print("YAW UM:"); 
         Serial.print(Yaw); 
         Serial.print("   ,   "); 
         Serial.print("Pitch UM:"); 
         Serial.println(Pitch); 
         PR_OK = false; 
         YW_OK = false; 
         bufPR = 0; 
         bufYW = 2; 

   }  
} 
 
void sendPitchRoll() 
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{  
    while ( bufPR <= 6 ) 
    { 
         Serial2.write(RegPHITHT[bufPR]); 
         bufPR++; 
    } 
} 
 
void sendYaw() 
{ 
     while ( bufYW <= 6 ) 
    { 

        Serial2.write(RegPSI[bufYW]); 
        bufYW++; 
    } 
} 
 
void calcPitchRoll() 
{  
     Roll = (data[5]*255+data[6])*0.0109863; 
     Pitch = (data[7]*255+data[8])*0.0109863; 
     PR_OK = true; 
     bufYW = 0; 
} 
void calcYaw() 
{  
     Yaw = (data[5]*255+data[6])*0.0109863; 
     YW_OK = true; 
} 

Listing 5- Getiing Euler Angles from UM6 

 

 

Listing 5 is the code of head tracking system. As can be seen from above, first two requests are 

send (roll-pitch and yaw) to UM6 for Euler Angle estimations. Then the register data is 

converted to actual angle estimation by multiplying scale factor at “calcPitchRol” and 

“calcYaw” functions. With Serial.Print command actual angle estimations are written to serial 

board for checking data. Finally this converted data is used for pan-tilt-roll mechanism (Listing 

7).  

4.5 Pan-Tilt-Roll Algorithm  

After calculating real angle estimations of Euler Angles, this committed data is send to relevant 

servo motor for positioning. Servo.h library [40] is used for controlling servo motors. Some 

important parameters from this library are given in Listing 6.  
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class Servo 
{ 
public: 
  Servo(); 
  uint8_t attach(int pin);           
  uint8_t attach(int pin, int min, int max);  
  void detach(); 
  void write(int value); 
  void writeMicroseconds(int value);  
  int read();                         
  int readMicroseconds();            
  bool attached();                   

private: 
   uint8_t servoIndex;                
   int8_t min;                        
   int8_t max;                        
} 
Servo::Servo() 
{ 
  if( ServoCount < MAX_SERVOS)  
    { 
     this->servoIndex = ServoCount++;                     
     servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); 
    } 
  else 
    this->servoIndex = INVALID_SERVO ;  
} 
uint8_t Servo::attach(int pin) 
{ 
  return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); 
} 
uint8_t Servo::attach(int pin, int min, int max) 
{ 
  if(this->servoIndex < MAX_SERVOS )  
    { 
    pinMode( pin, OUTPUT) ;                                    
    servos[this->servoIndex].Pin.nbr = pin;   
    this->min  = (MIN_PULSE_WIDTH - min)/4; 
    this->max  = (MAX_PULSE_WIDTH - max)/4;  
    timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); 
    if(isTimerActive(timer) == false) 
      initISR(timer);     
    servos[this->servoIndex].Pin.isActive = true;   
    }  
  return this->servoIndex ; 
} 
void Servo::detach()   
{ 
  servos[this->servoIndex].Pin.isActive = false;   
  timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); 
  if(isTimerActive(timer) == false)  
     { 
      finISR(timer); 
     } 
} 
void Servo::write(int value) 
{   

  if(value < MIN_PULSE_WIDTH) 
  {   
    if(value < 0) value = 0; 
    if(value > 180) value = 180; 
    value = map(value, 0, 180, SERVO_MIN(),  SERVO_MAX());       
  } 
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  this->writeMicroseconds(value); 
} 
void Servo::writeMicroseconds(int value) 
{ 
  // calculate and store the values for the given channel 
  byte channel = this->servoIndex; 
  if( (channel < MAX_SERVOS) )   // ensure channel is valid 
  {   
    if( value < SERVO_MIN() )          // ensure pulse width is valid 
      value = SERVO_MIN(); 
    else if( value > SERVO_MAX() ) 
      value = SERVO_MAX();    

    value = value - TRIM_DURATION; 
    value = usToTicks(value);  // convert to ticks after compensating for interrupt overhead 
    uint8_t oldSREG = SREG; 
    cli(); 
    servos[channel].ticks = value;   
    SREG = oldSREG;    
  }  
} 
int Servo::read() // return the value as degrees 
{ 
  return  map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);      
} 
 
int Servo::readMicroseconds() 
{ 
  unsigned int pulsewidth; 
  if( this->servoIndex != INVALID_SERVO ) 
    pulsewidth = ticksToUs(servos[this->servoIndex].ticks)  + TRIM_DURATION ;    
  else  
    pulsewidth  = 0; 
  return pulsewidth;    
} 
 
bool Servo::attached() 
{ 
  return servos[this->servoIndex].Pin.isActive ; 
} 

Listing 6-Enable to drive servo motors 
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In Listing 8 the code of position controlling for servo motors is given. First the initial conditions 

for variables are given (Listing 7). 

 

int Pitch =0; 
int Yaw = 0; 
int Roll = 0; 
int Pitch_trim = 0;  
int Roll_trim = 0; 
int Yaw_trim = 0; 
int calPitch = 0; 
int calYaw = 0; 
int calRoll = 0; 
byte data [15]; 
int data_count = 0; 
Servo PitchServo; 
Servo YawServo; 
Servo RollServo; 

Listing 7- Initial conditions for variables 

 

With pressing the joystick, servo motors go to their initial position. Without this action servo 

motors do not start so at the start operator must press the joystick. Servo motors are connected to 

Arduino Mega’s 2
nd

,
 
4

th
, and 6

th
 pins. Pitch and roll angles start from 0

0
 and end at 180

0
. 

However, yaw angle is between 0
0
-360

0
. Pitch angle increases opposite of head motion so that it 

is needed to reverse this angle by using “map” function. Position control code for servo motors 

can be seen in Listing 8.  
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void setup() 
{  
 pinMode(JoyBtnPin,INPUT); 
 digitalWrite(JoyBtnPin,HIGH); 
 PitchServo.attach(2); 
 YawServo.attach(6); 
 RollServo.attach(4); 
 PitchServo.write(90);  
 YawServo.write(90); 
 RollServo.write(90); 
          Serial.begin(57600);  
          while (digitalRead(JoyBtnPin) == true);  

} 
void loop() 
{ 
 getEulerAngle();  
 ReadJoystick(); 
} 
void ReadJoystick() 
{ 
 if(digitalRead(JoyBtnPin) == 0) 
  start = true; 
} 
void CalibrateServo() 
{ 
 calPitch = Pitch - 90 ; 
 calYaw = Yaw - 90 ; 
 calRoll = Roll - 90 ; 
 ActServo(); 
 delay(500);  
} 
void ActServo() 
{ 
 Pitch = Pitch-calPitch; 
 Pitch = map ( Pitch,0,180,180,0); 
 Yaw = Yaw - calYaw; 
 if ( Yaw > 360 ) 
  Yaw = Yaw - 360; 
 PitchServo.write(Pitch+Pitch_trim); 
 YawServo.write(Yaw+Yaw_trim); 
 RollServo.write(Roll-calRoll+Roll_trim);} 

Listing 8-Pan-Tilt-Roll algorithm  

 

 

4.6 Remote Control Algorithm  

For remotely controlling the camera’s zoom in and out property, as mentioned earlier, remote 

codes are decoded via infrared receiver. These decoded codes are sent via infrared led to 

camera. The code is simple but the trick is that for Sony handycams the remote code should be 

sent three times. Infrared led is connected to the remote control board (Figure 3.6) and this board 

is fixed near to camera as the range of infrared communication is short despite inserting a 

transistor to remote control board for increasing the range. Zoom in and zoom out properties are 

controlled with the joystick (Figure 3.9), with pushing the joystick forward camera zoom out 

and with pushing backward, camera zoom in. Arduino code can be seen in Listing 9.  
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void IRsend::sendRaw(unsigned int buf[], int len, int hz) 
{ 
  enableIROut(hz); 
  for (int i = 0; i < len; i++) { 
    if (i & 1) { 
      space(buf[i]); 
    }  
    else { 
      mark(buf[i]); 
    } 
  } 
  space(0); 

} 
IRsend irsend; 
unsigned int zoomIn[31] = {2400, 550, 650, 550, 1200, 550, 650, 550, 1200, 550, 1250, 550, 600, 
550, 650, 550, 1200, 600, 600, 550, 650, 550, 1200, 550, 1250, 550, 600, 550, 1250, 550, 1200}; 
unsigned int zoomOut[31] = {2400 ,600, 1200, 500, 1250, 600, 600, 550, 1200, 550, 1250, 550, 
600, 600, 600, 550, 1250, 550, 600, 550, 650, 550, 1200, 600, 1200, 500, 650, 600, 1200, 550, 
1200}; 
void loop() 
{  
 ReadJoystick();  
} 
 
void ReadJoystick() 
{ 
 Serial.print(analogRead(A0)); 
 int move = analogRead(A0);  
 if(move < 256 ){ 
  irsend.sendRaw(zoomIn,31,38); 
        delay(10); 
        irsend.sendRaw(zoomIn,31,38); 
        delay(10); 
        irsend.sendRaw(zoomIn,31,38); 
        delay(10); 
 } 
 if(move > 750 ){ 
   
  irsend.sendRaw(zoomOut,31,38); 
        delay(10); 
        irsend.sendRaw(zoomOut,31,38); 
        delay(10); 
        irsend.sendRaw(zoomOut,31,38); 
        delay(10); 
 } 

Listing 9-Arduino Code of Remote Control 

 

 

Joystick’s analog output is cabled to Arduino Mega’s A0 analog pin. If the value of A0 is 

smaller than 256, this means joystick is pushed backward and zoom in is made on the other 

when A0 is bigger than 750 joystick pushed forward, means zoom out. While the joystick is in 

the middle position, analog value is 512. Number smaller than 512 means joystick is pushed 

backward, number bigger than 512 means joystick is pushed forward. The remote codes are send 

via Arduino’s number 9 digital pin to remote control board. 
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4.7 Low-Pass Filter Algorithm  

For filtering noises and Euler angle drafts on Arduino side, a simple low-pass filter is added to 

Arduino code. This code works after receiving 40 EKF Euler data. In this code, collected data 

are organized in the order of biggest to smallest. 6 maximum (15% of total) and 6 minimum 

(15% of total) data are ignored.  The rest are used for taking average value. The calculated data 

is send as a new position to servo motors.  

 

 

int digitalSmooth(int rawIn, int *sensSmoothArray) 
{      
 int j, k, temp, top, bottom; 
 long total; 
 static int i; 
 static int sorted[filterSamples]; 
 boolean done; 
 i = (i + 1) % filterSamples;    
 sensSmoothArray[i] = rawIn;       
 for (j=0; j<filterSamples; j++) 
              {     
            sorted[j] = sensSmoothArray[j]; 
     } 
 done = 0;                
 while(done != 1) 
              {        
  done = 1; 
  for (j = 0; j < (filterSamples - 1); j++) 
                        { 
      if (sorted[j] > sorted[j + 1]) 
                                    {      
    temp = sorted[j + 1]; 
    sorted [j+1] =  sorted[j] ; 

    sorted [j] = temp; 
    done = 0; 
        } 
  } 
 } 
 
 bottom = max(((filterSamples * 15)  / 100), 1);  
 top = min((((filterSamples * 85) / 100) + 1  ), (filterSamples - 1)); 
 k = 0; 
 total = 0; 
 for ( j = bottom; j< top; j++) 
                   { 
  total += sorted[j]; 
  k++;  
          } 
 return total / k; 
} 

Listing 10- Arduino Code of Low-Pass Filter 
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4.8 Conclusion 

In this section, developed Arduino code for pan-tilt-roll system and for head tracking system is 

considered with orientation sensor UM6’s calibration. It is important to calibrate UM6 properly 

for collecting fine position data of fixed head. There are different ways to calibrate UM6 but the 

most important ones are magnetometer calibration and zeroing the rate gyros. Magnetometer 

calibration is done once after fixing UM6 to working platform. This calibration is done via CH 

Robotics Software Interface after UM6 collects minimum 300 data points. After collecting these 

points, the interface creates a coefficient matrix and writes this matrix to UM6’s RAM. Zeroing 

the rate gyros should be done each time while UM6 is powered on. This calibration can be done 

with external code as can be seen in Listing 3.  

After fine calibration of UM6, head tracking is achieved. UM6 is used in Listen mode which 

means that the sensor send data after requesting. Euler angle estimations are requested and 

respond data is converted to actual Euler angle estimations after multiplying coming data with 

coefficients. Position of sensor fixed head is transferred in real time so that even movement of 

the head new position is known instantaneously.  

With this known new positions, position control of servo motors are easily maintained. Three 

servo motors are controlled via Arduino Mega, and the code can be seen in Listing 8. Finally in 

this section the remote control of zoom in and zoom out properties of 3D camera is mentioned. 

For Sony cameras one should send the remote code three times for remote control function. The 

Arduino code is given in Listing 9.  
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CHAPTER 5 

 

VALIDATION OF PAN TILT ROLL VISION SYSTEM  

5.1 Introduction 

After successful development and implementation of pan-tilt-roll vision system, it is needed to 

be validated with human participants. For this purpose two experiments were made. In first 

experiment Sony HMZ-T2 was used for showing the effects of 3D vision on controlling a 

remote control hobby car. In second experiment the differences between HMD and 6 LED 

monitor system was tested with 2D vision. For the experiments, a set of participants was 

selected, a test scenario was constituted and the tests were performed. Results were logged and 

evaluated after on and they are described in Results section. 

For the experiments, a set of participants was selected. Remote control car setup was prepared 

and dependent variables were measured via surveys [41] handed out before and after 

experiment. 

5.2 Participants 

There are thirteen participants selected for the experiments. Participants are either research 

assistances in Mechanical Engineering Department of METU, or graduate students from the 

same university and Hacettepe University. Participants are males and their ages range from 24 to 

29 with average value of 27.15 (SD = 1.33). 10 of 13 participants reported that they drive a car 

daily, 3 monthly. Five participants mentioned that they are “experts”, 6 as “excellent” with 

computer usage while remaining mentioned as being “good”. 9 participants reported playing 

video games, especially racing or driving ones. 

5.3 Experiment Setup  

As mentioned above, two experimental setups were set up. In the first setup differences between 

2D and 3D virtual reality was tested whereas in the second the monitor systems were tested.  

In each setup a remote control hobby car was used. A test area was set up with three obstacles 

(Figure 5.1) into the mechatronic laboratory D-107. Participants tried to control the car remotely 

by using vision system to perform their goals. Their goal was controlling hobby with making 

slalom among the obstacles which had 1.5 meters in between without crashing any of them and 

getting car back to start position (Figure 5.2). Pan-tilt-roll camera system was fixed back side of 

the setup that enables camera to capture all set up system.  Participants sit a wheelchair located 

at left side of the camera for a HMD experiment. Camera’s HDMI output was connected to 

input of SONY HMZ-T2’s processor unit. Before participants started their experiment they 
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made a calibration of HMZ-T2 for their eyes. For the 6 LED monitor experiment they sit 

towards the monitors. HDMI output of the camera was connected to video capture card AverTV 

HD.  

 

 

  

Figure 5.1-Setup test area 
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Figure 5.2-Experiment setup  

 

 

5.4 Procedure 

Before the experiment, participants are allowed to drive the remote control hobby car in the test 

route with or without line of sight to lessen learning effects. After this learning phase, 

demographic survey (see Appendix B) is handed out to the participant. Once the demographic 

survey is collected, test phase begins. First test is with HMD for the differences of 2D and 3D 

vision system. Participants sit a wheelchair located at left side of the camera with HMD and 

orientation sensor fixed hat on their head (Figure 5.3). Since they wear HMD they have no line 

of sight with the car. The remote control car is positioned according to the experiment setup 

given in Figure 5.2. It is told to the user that he is required to control the hobby car from starting 

point and with making slalom among to obstacles and turn back to the starting point without 

colliding with obstacles and wasting excessive time. After the confirmation of the participant, 

percipient make the calibration of HMD according to his eyes then press joystick to get servos 

their initial positions. After these calibrations the user is informed that he can start to mission. 

He guides the car using HMD in 2D at first. When the goal completed, task completion time and 

number of objects collided are recorded. After completion of this first phase, second phase with 

3D vision is started. For this case calibration of HMD is made again. Same path is taken and 

again same variables are measured and recorded as in previous phase. After the end of the 

experiment, the participant is given a sheet of survey which is the NASA Task Load Index 

survey (see Appendix C) to measure the workload.  
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Figure 5.1-One participant in HMD test 

 

 

After finishing first experiment, second experiment is made. In this experiment monitor systems, 

HMD and 6 LED monitors are compared. In this system the vision is 2D. Again the participants 

wear HMD and orientation sensor fixed helmet and complete the goal like first experiment. 

Same path is taken and again same variables are measured and recorded as in previous 

experiment. After completing this phase, participants sit towards the 6 LED monitor system with 

wearing orientation sensor helmet on their head. At this time they try to accomplish the goal 

with looking from this monitor system as seen from Figure 5.4. Again same path, same collected 

variables as in first phase. And also after this experiment too, the participant is given a sheet of 

survey which is the NASA Task Load Index survey. 
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Figure 5.1- One participant in 6 LED monitor system test 
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Figure 5.2-Monitor View From & LED Monitor System 

 

 

NASA Task Load Index survey test procedure is applied to each participant and the resulting 

dependent variables are recorded after two experiments respectively. As dependent variables, 

task errors (number of boxes that collided), operator efficiency (time to complete task) and 

perceived workload (according to NASA-TLX scores) are selected. 

5.5 Results  

Once the tests are completed, results are collected and statistical data is generated from these 

results. Results section is divided into three as Task Completion Time, Number of Task Errors 

and Perceived Workload. 

5.5.1 Task Completion Time 

The primary measure is the task completion time. Time is measured from the start of the 

movement of the hobby car up to coming back to start point. If a time the test takes is longer 

than 60 seconds, the test is interrupted and the value is taken as 60. However none of the 

participants completed the mission beyond 60 seconds. 
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With 2D vision on HMD it took from 20.20 to 37.80 seconds to participants to complete the 

course. The mean task completion time was 28.47 seconds with a standard deviation of 4.83. 

Making same experiment with 3D vision on HMD time to complete the task is reduced to a 

mean value of 26.08 seconds and a standard deviation of 5.16. The minimum task time with for 

3D vision was 16.70 seconds while the maximum was 34.60 (Table 6). 

 

 

Table 6- Results of Task Completion Time For HMD experiment 

Task Type Mean (sec) St. Dev. Minimum (sec) Maximum (sec) 

HMD with 2D 28.47 4.83 20.20 37.80 

HMD with 3D  26.08 5.16 16.70 34.60 

 

 

For the second experiment, 2D vision on HMD is made again. At this time the mean is 28.68 

seconds where 19.80 seconds minimum, 37.50 seconds maximum with 4.98 standard deviation. 

On the other side, with making same experiment 6 LED monitor system 2D vision, the mean is 

27.28 seconds, the minimum is 18.50 seconds, maximum is 37.10 seconds and 5.27 is the 

standard deviation.   

 

 

Table 7- Results of Task Completion Time For Monitor System Experiment 

Task Type Mean (sec) St. Dev. Minimum (sec) Maximum (sec) 

HMD with 2D 28.68 4.98 19.80 37.50 

6 LED Monitor 

System 2D   

27.28 5.27 18.50 37.10 

 

 

5.5.2 Number of Task Errors 

The second measure of the operator performance is the number of task errors. Task error is 

defined as colliding with an obstacle on the course in this experiment.  
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On the first experiment with 2D vision on HMD, the participants collided with total of 10 

obstacles on the path. Mean value is 0.77 with a standard deviation of 0.67. On the other side, 

with 3D vision, 5 collisions is occurred which results in a mean of 0.38 and standard deviation 

of 0.47 (Table 8).  

 

Table 8- Results of Number of Task Errors For HMD experiment 

Task Type Mean (#) St. Dev. Total 

HMD with 2D 0.77 0.67 10 

HMD with 3D 0.38 0.47 5 

 

 

For the second experiment, with 2D vision on HMD mean is 0.62 with 8 collisions. The 

standard deviation is 0.60. On the other side, with 2D vision on 6 LED monitor system, 7 

collisions occurs which means 0.54 mean with 0.61 standard deviation.  

 

 

Table 9- Results of Number of Task Errors For Monitor System Experiment 

Task Type Mean (#) St. Dev. Total 

HMD with 2D 0.62 0.60 8 

6 LED Monitor 

System 2D   

0.54 0.61 7 

 

 

5.5.3 Perceived Workload 

Perceived workload of the operators is the final dependent variable to be measured. To measure 

the workload properly, Task Load Index of NASA (Appendix C) is used in both types of task. 

At first experiment it is seen that mental demand is more in the case of 2D. However physical 

demand is nearly same probably because head tracking system is same in both phases. 

Participants feel more frustrated when 2D vision on screens. Time pressure is less with 2D 

vision and the participants feel that they are more successful with the 3D vision support in 

accordance with the previous results in task completion time and task errors (Table 10).  
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Table 10- Results of NASA Task Load Index For HMD experiment 

Task Type Mental 

Demand 

Physical 

Demand 

Temporal 

Demand 

Level of 

Effort 

Level of 

Frustration 

Perform. 

HMD with 

2D 

6.46 4.00 3.46 5.77 7.31 7.23 

HMD with 

3D 

5.77 3.85 5.08 4.23 6.69 8.92 

 

 

On the second experiment, for testing monitor systems, mental demand and physical demand is 

nearly same for 6 LED monitor system and HMD with 2D vision. 6 LED monitor system has a 

better performance index and participants feel less frustrated with monitor system (Table 11).   

 

 

Table 11- Results of NASA Task Load Index For Monitor System Experiment 

Task Type Mental 

Demand 

Physical 

Demand 

Temporal 

Demand 

Level of 

Effort 

Level of 

Frustration 

Perform. 

HMD with 

2D 

6.23 3.92 3.54 5.92 7.54 7.00 

6 LED 

Monitor 

System 2D   

4.92 3.54 3.38 5.54 7.23 7.69 

 

 

5.6 Conclusion  

In this chapter, with the experiments, effects of 3D vision and big monitor system are tested. 

Sony HMZ-T2 HMD and 6 LED monitor system is used in this experiments.  

Experiment results mentioned in previous sections show that the task completion time is 

shortened and task errors are lessened with introduction of the 3D vision. In addition to this for 

2D vision, participants are more easily adapted 6 LED monitor system than HMD. Results of 

perceived task load indicate that, 3D vision and big screens can be beneficial in terms of 

operator workload. Also these results validate that with the developed system participants do not 

have any motion sickness. 
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CHAPTER 6 

 

CONCLUSION & FUTURE WORK 

6.1 Conclusion 

In this thesis pan tilt roll vision system is developed and validation of vision systems is tested 

with two different experiments. System consists of 3 digital coreless servo motors for pan tilt 

roll mechanism, Sony HDR-TD30 3D handycam, UM6 orientation sensor fixed wearable plastic 

helmet, and for monitoring Sony HMZ-T2 HMD and 6 LED monitor display system.  

After introduction part a literature survey is conducted on the similar projects in the literature. 

This part is divided into two parts; pan-tilt roll system and head tracking parts. In each parts, 

mechanical concerns, hardware, software the aim of project’s, where to use are considered.  

In the third part, the equipment that is used in this project is considered. Technical details, 

specifications, choosing reasons are considered. In the next section the developed algorithm is 

mentioned.  

For validating the system works, two different experiments are done with 13 participants. 2 

different monitor systems are prepared in this thesis. In one experiment the differences between 

2D and 3D vision is tested with controlling remote control hobby car. First the participants drive 

the car without looking any monitor for minimizing the learning effect. It is seen that for 

participants it is easier to adapted 3D vision on HMD. In other experiment HMD and 6 monitors 

display system is tested. In this test participants are more adaptive to 6 monitors system. But 

from the results it is seen that 3D HMD is the best for vision system.   

6.2 Future Work 

In this study as mentioned before Digital coreless RC servo motors are used. As the most 

important future work these motors are replaced with high quality zero backlash encoder motors, 

such as Faulhaber or Maxon. With changing these motors more stable system can be obtained.  

This system is thought to use in our Tübitak supported project, Keçi. So in future, the system is 

adapted to Keçi for improving operator’s performance.  

Also due to lack of 3D active glasses, 3D performance comparison of HMD and monitor system 

is not achieved. After bringing glasses, this test will be completed.   
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APPENDIX A 

DEMOGRAPHIC SURVEY 

 

 

Participant #: Age: Gender: Male / Female Date: 

1. How often do you 

Drive a car? 

Daily Weekly Monthly 

Once every few months Rarely Never 

Use a joystick/steering wheel? 

Daily Weekly Monthly 

Once every few months Rarely Never 

Play computer/video games? 

Daily Weekly Monthly 

Once every few months Rarely Never 

2. Which type(s) of computer/video games do you most often play if you play at least once 

every few months? 

3. Which of the following best describes your expertise with computer? (Check one) 

_____ Novice 

_____ Good with one type of software package (such as word processing or slides) 

_____ Good with several software packages 

_____ Can program in one language and use several software packages 

_____ Can program in several languages and use several software packages 

4. Are you in your usual state of health physically? YES NO 

    If NO, please briefly explain: 

5. How many hours of sleep did you get last night? ______ hours 

6. Do you have normal color vision? YES NO 

7. Do you have prior military service? YES NO If Yes, how long __________  
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APPENDIX B 

NASA-TLX QUESTIONNAIRE 

Please rate your overall impression of demands imposed on you during the exercise. 

1. Mental Demand: How much mental and perceptual activity was required (e.g., thinking, 

looking, searching, etc.)? Was the task easy or demanding, simple or complex, exacting or 

forgiving? 

LOW |---|---|---|---|---|---|---|---|---| HIGH 

1  2  3  4  5  6  7  8  9  10 

 

2. Physical Demand: How much physical activity was required (e.g., pushing, pulling, turning, 

controlling, activating, etc.)? Was the task easy or demanding, slow or brisk, slack or strenuous, 

restful or laborious? 

LOW |---|---|---|---|---|---|---|---|---| HIGH 

1  2  3  4  5  6  7  8  9  10 

 

3. Temporal Demand: How much time pressure did you feel due to the rate or pace at which the 

task or task elements occurred? Was the pace slow and leisurely or rapid and frantic? 

LOW |---|---|---|---|---|---|---|---|---| HIGH 

1  2  3  4  5  6  7  8  9  10 

 

4. Level of Effort: How hard did you have to work (mentally and physically) to accomplish your 

level of performance? 

LOW |---|---|---|---|---|---|---|---|---| HIGH 

1  2  3  4  5  6  7  8  9  10 

 

5. Level of Frustration: How insecure, discouraged, irritated, stressed and annoyed versus 

secure, gratified, content, relaxed and complacent did you feel during the task? 

LOW |---|---|---|---|---|---|---|---|---| HIGH 

1  2  3  4  5  6  7  8  9  10 

 

6. Performance: How successful do you think you were in accomplishing the goals of the task 

set by the experimenter (or yourself)? How satisfied were you with your performance in 

accomplishing these goals? 

LOW |---|---|---|---|---|---|---|---|---| HIGH 

1  2  3  4  5  6  7  8  9  10 
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APPENDIX C 

LIBRARY REFERENCE 

 

#ifndef Servo_h 
#define Servo_h 
#include <inttypes.h> 
/*  
 * Defines for 16 bit timers used with  Servo library  
 * 
 * If _useTimerX is defined then TimerX is a 16 bit timer on the curent board 
 * timer16_Sequence_t enumerates the sequence that the timers should be 
allocated 
 * _Nbr_16timers indicates how many 16 bit timers are available. 
 * 
 */ 
// Say which 16 bit timers can be used and in what order 
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) 
#define _useTimer5 
#define _useTimer1  
#define _useTimer3 
#define _useTimer4  
typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } 
timer16_Sequence_t ; 
#elif defined(__AVR_ATmega32U4__)   
#define _useTimer3 
#define _useTimer1  
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ; 
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__) 
#define _useTimer3 
#define _useTimer1 
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ; 
#elif defined(__AVR_ATmega128__) 
||defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__) 
#define _useTimer3 
#define _useTimer1 
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ; 
#else  // everything else 
#define _useTimer1 
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;                   
#endif 
#define Servo_VERSION           2      // software version of this library 
#define MIN_PULSE_WIDTH       544     // the shortest pulse sent to a servo   
#define MAX_PULSE_WIDTH      2400     // the longest pulse sent to a servo  
#define DEFAULT_PULSE_WIDTH  1500     // default pulse width when servo is 
attached 
#define REFRESH_INTERVAL    20000     // minumim time to refresh servos in 
microseconds  
#define SERVOS_PER_TIMER       12     // the maximum number of servos 
controlled by one timer  
#define MAX_SERVOS   (_Nbr_16timers  * SERVOS_PER_TIMER) 
#define INVALID_SERVO         255     // flag indicating an invalid servo 
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index 
typedef struct  { 
  uint8_t nbr        :6 ;             // a pin number from 0 to 63 
  uint8_t isActive   :1 ;             // true if this channel is enabled, pin 
not pulsed if false  
} ServoPin_t   ;   
typedef struct { 
  ServoPin_t Pin; 
  unsigned int ticks; 
} servo_t; 
class Servo 
{ 
public: 
  Servo(); 
  uint8_t attach(int pin);           // attach the given pin to the next free 
channel, sets pinMode, returns channel number or 0 if failure 
  uint8_t attach(int pin, int min, int max); // as above but also sets min and 
max values for writes.  
  void detach(); 
  void write(int value);             // if value is < 200 its treated as an 
angle, otherwise as pulse width in microseconds  
  void writeMicroseconds(int value); // Write pulse width in microseconds  
  int read();                        // returns current pulse width as an 
angle between 0 and 180 degrees 
  int readMicroseconds();            // returns current pulse width in 
microseconds for this servo (was read_us() in first release) 
  bool attached();                   // return true if this servo is attached, 
otherwise false  
private: 
   uint8_t servoIndex;               // index into the channel data for this 
servo 
   int8_t min;                       // minimum is this value times 4 added to 
MIN_PULSE_WIDTH     
   int8_t max;                       // maximum is this value times 4 added to 
MAX_PULSE_WIDTH    
}; 
#endif 

 

   /****************** ******************************/ 

#include <avr/interrupt.h> 
#include <WProgram.h>  
#include "Servo.h" 
#define usToTicks(_us)    (( clockCyclesPerMicrosecond()* _us) / 8)     // 
converts microseconds to tick (assumes prescale of 8)  // 12 Aug 2009 
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ 
clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds 
#define TRIM_DURATION       2                               // compensation 
ticks to trim adjust for digitalWrite delays // 12 August 2009 
//#define NBR_TIMERS        (MAX_SERVOS / SERVOS_PER_TIMER) 
static servo_t servos[MAX_SERVOS];                          // static array of 
servo structures 
static volatile int8_t Channel[_Nbr_16timers ];             // counter for the 
servo being pulsed for each timer (or -1 if refresh interval) 
uint8_t ServoCount = 0;                                     // the total 
number of attached servos 
// convenience macros 
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#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / 
SERVOS_PER_TIMER)) // returns the timer controlling this servo 
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % 
SERVOS_PER_TIMER)       // returns the index of the servo on this timer 
#define SERVO_INDEX(_timer,_channel)  ((_timer*SERVOS_PER_TIMER) + 
_channel)     // macro to access servo index by timer and channel 
#define 
SERVO(_timer,_channel)  (servos[SERVO_INDEX(_timer,_channel)])            // 
macro to access servo class by timer and channel 
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4)  // minimum value in uS 
for this servo 
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4)  // maximum value in uS 
for this servo  
/************ static functions common to all instances 
***********************/ 
static inline void handle_interrupts(timer16_Sequence_t timer, volatile 
uint16_t *TCNTn, volatile uint16_t* OCRnA) 
{ 
  if( Channel[timer] < 0 ) 
    *TCNTn = 0; // channel set to -1 indicated that refresh interval completed 
so reset the timer  
  else{ 
    if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && 
SERVO(timer,Channel[timer]).Pin.isActive == true )   
      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this 
channel low if activated    
  } 
  Channel[timer]++;    // increment to the next channel 
  if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < 
SERVOS_PER_TIMER) { 
    *OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks; 
    if(SERVO(timer,Channel[timer]).Pin.isActive == true)     // check if 
activated 
      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an 
active channel so pulse it high    
  }   
  else {  
    // finished all channels so wait for the refresh period to expire before 
starting over  
    if( (unsigned)*TCNTn <  (usToTicks(REFRESH_INTERVAL) + 4) )  // allow a 
few ticks to ensure the next OCR1A not missed 
      *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);   
    else  
      *OCRnA = *TCNTn + 4;  // at least REFRESH_INTERVAL has elapsed 
    Channel[timer] = -1; // this will get incremented at the end of the 
refresh period to start again at the first channel 
  } 
} 
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if 
compiling for the Wiring platform 
// Interrupt handlers for Arduino  
#if defined(_useTimer1) 
SIGNAL (TIMER1_COMPA_vect)  
{  
  handle_interrupts(_timer1, &TCNT1, &OCR1A);  
} 
#endif 
#if defined(_useTimer3) 
SIGNAL (TIMER3_COMPA_vect)  
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{  
  handle_interrupts(_timer3, &TCNT3, &OCR3A);  
} 
#endif 
#if defined(_useTimer4) 
SIGNAL (TIMER4_COMPA_vect)  
{ 
  handle_interrupts(_timer4, &TCNT4, &OCR4A);  
} 
#endif 
#if defined(_useTimer5) 
SIGNAL (TIMER5_COMPA_vect)  
{ 
  handle_interrupts(_timer5, &TCNT5, &OCR5A);  
} 
#endif 
#elif defined WIRING 
// Interrupt handlers for Wiring  
#if defined(_useTimer1) 
void Timer1Service()  
{  
  handle_interrupts(_timer1, &TCNT1, &OCR1A);  
} 
#endif 
#if defined(_useTimer3) 
void Timer3Service()  
{  
  handle_interrupts(_timer3, &TCNT3, &OCR3A);  
} 
#endif 
#endif 
static void initISR(timer16_Sequence_t timer) 
{   
#if defined (_useTimer1) 
  if(timer == _timer1) { 
    TCCR1A = 0;             // normal counting mode  
    TCCR1B = _BV(CS11);     // set prescaler of 8  
    TCNT1 = 0;              // clear the timer count  
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__) 
    TIFR |= _BV(OCF1A);      // clear any pending interrupts;  
    TIMSK |=  _BV(OCIE1A) ;  // enable the output compare interrupt   
#else 
    // here if not ATmega8 or ATmega128 
    TIFR1 |= _BV(OCF1A);     // clear any pending interrupts;  
    TIMSK1 |=  _BV(OCIE1A) ; // enable the output compare interrupt  
#endif     
#if defined(WIRING)        
    timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);  
#endif   
  }  
#endif   
#if defined (_useTimer3) 
  if(timer == _timer3) { 
    TCCR3A = 0;             // normal counting mode  
    TCCR3B = _BV(CS31);     // set prescaler of 8   
    TCNT3 = 0;              // clear the timer count  
#if defined(__AVR_ATmega128__) 
    TIFR |= _BV(OCF3A);     // clear any pending interrupts;    
        ETIMSK |= _BV(OCIE3A);  // enable the output compare interrupt      
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#else   
    TIFR3 = _BV(OCF3A);     // clear any pending interrupts;  
    TIMSK3 =  _BV(OCIE3A) ; // enable the output compare interrupt       
#endif 
#if defined(WIRING)     
    timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service);  // for Wiring platform 
only      
#endif   
  } 
#endif 
#if defined (_useTimer4) 
  if(timer == _timer4) { 
    TCCR4A = 0;             // normal counting mode  
    TCCR4B = _BV(CS41);     // set prescaler of 8   
    TCNT4 = 0;              // clear the timer count  
    TIFR4 = _BV(OCF4A);     // clear any pending interrupts;  
    TIMSK4 =  _BV(OCIE4A) ; // enable the output compare interrupt 
  }     
#endif 
#if defined (_useTimer5) 
  if(timer == _timer5) { 
    TCCR5A = 0;             // normal counting mode  
    TCCR5B = _BV(CS51);     // set prescaler of 8   
    TCNT5 = 0;              // clear the timer count  
    TIFR5 = _BV(OCF5A);     // clear any pending interrupts;  
    TIMSK5 =  _BV(OCIE5A) ; // enable the output compare interrupt       
  } 
#endif 
}  
static void finISR(timer16_Sequence_t timer) 
{ 
    //disable use of the given timer 
#if defined WIRING   // Wiring 
  if(timer == _timer1) { 
    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__) 
    TIMSK1 &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt 
    #else  
    TIMSK &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt    
    #endif 
    timerDetach(TIMER1OUTCOMPAREA_INT);  
  } 
  else if(timer == _timer3) {      
    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__) 
    TIMSK3 &= ~_BV(OCIE3A);    // disable the timer3 output compare A 
interrupt 
    #else 
    ETIMSK &= ~_BV(OCIE3A);    // disable the timer3 output compare A 
interrupt 
    #endif 
    timerDetach(TIMER3OUTCOMPAREA_INT); 
  } 
#else 
    //For arduino - in future: call here to a currently undefined function to 
reset the timer 
#endif 
} 
static boolean isTimerActive(timer16_Sequence_t timer) 
{ 
  // returns true if any servo is active on this timer 
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  for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) { 
    if(SERVO(timer,channel).Pin.isActive == true) 
      return true; 
  } 
  return false; 
} 
/****************** end of static functions ******************************/ 
Servo::Servo() 
{ 
  if( ServoCount < MAX_SERVOS) { 
    this->servoIndex = ServoCount++;                    // assign a servo 
index to this instance 
        servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH);   // 
store default values  - 12 Aug 2009 
  } 
  else 
    this->servoIndex = INVALID_SERVO ;  // too many servos  
} 
uint8_t Servo::attach(int pin) 
{ 
  return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); 
} 
uint8_t Servo::attach(int pin, int min, int max) 
{ 
  if(this->servoIndex < MAX_SERVOS ) { 
    pinMode( pin, OUTPUT) ;                                   // set servo pin 
to output 
    servos[this->servoIndex].Pin.nbr = pin;   
    // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128  
    this->min  = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS 
    this->max  = (MAX_PULSE_WIDTH - max)/4;  
    // initialize the timer if it has not already been initialized  
    timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); 
    if(isTimerActive(timer) == false) 
      initISR(timer);     
    servos[this->servoIndex].Pin.isActive = true;  // this must be set after 
the check for isTimerActive 
  }  
  return this->servoIndex ; 
} 
void Servo::detach()   
{ 
  servos[this->servoIndex].Pin.isActive = false;   
  timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); 
  if(isTimerActive(timer) == false) { 
    finISR(timer); 
  } 
} 
void Servo::write(int value) 
{   
  if(value < MIN_PULSE_WIDTH) 
  {  // treat values less than 544 as angles in degrees (valid values in 
microseconds are handled as microseconds) 
    if(value < 0) value = 0; 
    if(value > 180) value = 180; 
    value = map(value, 0, 180, SERVO_MIN(),  SERVO_MAX());       
  } 
  this->writeMicroseconds(value); 
} 
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void Servo::writeMicroseconds(int value) 
{ 
  // calculate and store the values for the given channel 
  byte channel = this->servoIndex; 
  if( (channel >= 0) && (channel < MAX_SERVOS) )   // ensure channel is valid 
  {   
    if( value < SERVO_MIN() )          // ensure pulse width is valid 
      value = SERVO_MIN(); 
    else if( value > SERVO_MAX() ) 
      value = SERVO_MAX();    
     
        value = value - TRIM_DURATION; 
    value = usToTicks(value);  // convert to ticks after compensating for 
interrupt overhead - 12 Aug 2009 
    uint8_t oldSREG = SREG; 
    cli(); 
    servos[channel].ticks = value;   
    SREG = oldSREG;    
  }  
} 
int Servo::read() // return the value as degrees 
{ 
  return  map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 
180);      
} 
int Servo::readMicroseconds() 
{ 
  unsigned int pulsewidth; 
  if( this->servoIndex != INVALID_SERVO ) 
    pulsewidth = ticksToUs(servos[this->servoIndex].ticks)  + TRIM_DURATION 
;   // 12 aug 2009 
  else  
    pulsewidth  = 0; 
  return pulsewidth;    
} 
bool Servo::attached() 
{ 
  return servos[this->servoIndex].Pin.isActive ; 
} 

 


