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ABSTRACT 

 

DESIGN AND IMPLEMENTATION OF A DEVICE TO CONTROL A 

ROBOTIC ARM BY EMGSIGNAL  

 

Kandemir, Görkem 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: B. Murat Eyüboğlu 

 

September 2013, 71 Pages 

 

In this study, an electromyogram (EMG)based human machine interface system is designed 

and implemented. System acquires EMG signals and processes them to generate commands 

to control a robotic arm. Different signal processing methodologies are investigated, 

realized, and compared. 

The thesis study includes design and implementation of an 8 channels electromyogram data 

acquisition system which is used to record raw EMG signals from operator’s muscles. The 

system transfers raw EMG data to control software via USB. Control software processes 

the raw EMG data accordingly and generates control commands which are used to control 

the robotic arm. 

The robotic arm “AL5D” and its actuator driver which are used in thesis are not designed in 

the scope of this study. They are commercial products which are purchased from 

Lynxmotion Company. There are five servo motors placed on the robotic arm to realize 

movements. Communication with the robotic arm is achieved via USB so that the system 

may be interfaced with any PC. 

In the near-real time implemented system, the operator is expected to contract his/her 

predefined muscles. Each muscle is used to control a specific servo on the robotic arm. 

After operator is trained to run the designed HMI (Human Machine Interface) system, he is 

able to drive the robotic arm with full functionality. 

Different time domain and frequency domain signal processing algorithms are investigated 

in this study.However, only time domain algorithms are implemented in the designed near-

real time HMI system. On the other hand, frequency domain algorithms are studied in post-

processing environment. Time domain algorithms are based on different time domain 

features of the raw EMG signal.All time domain features aresuccessfully processed to drive 

the corresponding servo on the robotic armwith 100% accuracy. 

Keywords: EMG, Human Machine Interface System, Robotic Arm 
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ÖZ 

 

EMG SİNYALİ İLE ROBOT KOL KULLANIMI SAĞLAYAN CİHAZ 

TASARIMI VE ÜRETİMİ 

 

Kandemir, Görkem 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: B. Murat Eyüboğlu 

 

Eylül 2013, 71 Sayfa 

 

Bu çalışmada, elektromiyogram (EMG) tabanlı insan makine arayüzü (İMA) sisteminin 

tasarımı gerçekleştirilmiştir. Sistem EMG sinyallerini toplayıp işleyerek robot kolun 

kontrolü için gerekli komutları üretir. Çalışma kapsamında farklı sinyal işleme 

algoritmaları tasarlanmış ve karşılaştırılmıştır. 

Bu tez kapsamında 8 kanallı bir EMG veri toplama sisteminin tasarımı ve üretimi 

yapılmıştır. Sistem kullanıcının kaslarından EMG sinyallerini toplar ve evrensel seri yol 

(USB) aracılığı ile ana yazılıma iletir. Ana yazılım ham EMG verilerini işleyerek robot kol 

için kontrol sinyalleri üretir. 

Kullanılan “AL5D” robot kolu ve sürücüleri bu çalışma kapsamında tasarlanmamıştır. 

Lynxmotion firmasının profesyonel ürünleri olarak satın alınmışlardır. Robot kol üzerine 

yerleştirilmiş 5 adet servo motor bulunmaktadır. Robot kolun arayüz kontrol dokümanında 

tanımlanan komut formatları ana yazılım içinde gerçeklenmiştir. Robot kol ile haberleşme 

evrensel seri yol (USB) ile yapıldığından herhangi bir bilgisayar ile kullanılması 

mümkündür. 

Yarı-gerçek zamanlı olarak çalışan İMA'da (İnsan Makine Arayüzü) operator önceden 

tanımlanmış olan kaslarını kasması gerekmektedir. Her kas, robot kol üzerindeki farklı bir 

servo motoru sürebilmek için kullanılır. Bir kullanıcı yeterince eğitildikten sonra, robot 

kolu tüm işlevselliği ile kullanabilmektedir. 

Bu çalışma kapsamında çeşitli zaman ve frekans bölgesi sinyal işleme algoritmaları 

tasarlanmıştır. Yarı-gerçek zamanlı İMA'da sadece zaman bölgesi algoritmaları 

uygulanmıştır.Bu çalışmada, frekans bölgesi algoritmaları sonradan-işleme metodu ile 

uygulanmıştır. Zaman bölgesi algoritmaları ham EMG sinyalinin farklı zaman bölgesi 

özelliklerine dayanmaktadır. Bu zaman bölgesi algoritmaları ile servo motorlar %100 başarı 

oranı ile sürülebilmiştir. 

Anahtar Kelimeler: EMG, İnsan Makine Arayüz Sistemleri, Robot Kol 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Limbs of human beings are the most important actuation mechanisms which turn ideas into 

practice. We all need our arms or legs to realize our ideas and ease our lives. Limbs are the 

secret heroes of human civilization because most of our physical interaction with our 

environment is achieved by means of our arms. The loss of a limb whether through 

congenital amputation, disease or injury is a traumatic experience for any individual. Not 

only physical limitations are placed on amputees’ lifestyle but also psychological effects of 

amputation limit social interaction.Even though healthy people think that they will never 

lose their limbs, some diseases and accidents may end up with an amputation. There are 

several diseases caused by circulatory disorders andthey result with loss of a limb; such as 

diabetic or gangrene. On the other hand, accidents such as traffic, labor accidents, electric 

shock hazards, and terror attacks, use of guns, explosives, etc. may harm limbs seriously 

and limb function may be lost. 

As technology advances, engineers become able to develop solutions to help amputees 

facilitate their lives. Human Machine Interface (HMI) technology may be used to help 

amputees interact with their environment or control devices[1], [2], [3]. A specific case of 

this broad concept is that control of a prostheticdevice that functions similar to lost limbs 

by using only Electromyogram (EMG) signals. In this kind of HMI systems, electrical 

activity of the muscles are acquired by a biopotential amplifier then processed and 

classified to generate simple commands to control the prosthetic device. Therefore, this 

technology allows patients, who lost one of their limbs, to control their prostheses by means 

of their remainingmuscles.This specific type of HMI system is called EMG driven HMI 

system, and the device controlled by EMG signals is generally a prostheticarm[4], [5], [6].  

After developments in processing capabilities and dimensions of adequate electronics and 

electromechanics, lost limb functions are attempted to be replaced by powered prosthetic 

devices. However, main tradeoff in EMG Driven Systems is between functionality of the 

prosthetic device and its practicality. Therefore, researchers focused on either to develop 

new signal processing techniques for better estimation and classification algorithms or to 

design prosthetic devices with improved functionality. 

1.1 Scope of the Thesis 

This thesis study is composed of design and implementation of an EMG driven HMI 

system. Necessary hardware to acquire EMG data and required software which implements 
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designed algorithms are realized. A commercially available robotic arm AL5D produced by 

Lynxmotion Company is adopted to mimic a prosthetic arm to demonstrate the operation of 

the developed system.After the acquired raw EMG data is processed, generated control 

commands are convertedto a form which is compatible with the control commands of the 

robotic arm AL5D. The processing techniques described and implemented in this thesis 

could be also applied to control other devices. 

In this application, it is aimed to make an operator able to perform basic movements with 

robotic arm by using EMG signals generated in his/her muscles. Overall system works in 

an open loop manner and some training is required to improve control performance of an 

operator. In addition, operator should practice to learn response of the device to his/her 

muscle contractions. Although the system is technically designed as open loop, control loop 

is closed with visual feedback by the operator. Operator who runsthe system with a specific 

purpose, visually checks whether position of the robotic arm is as desired or not.  

Muscle activity of operator is sensed by EMG data acquisition system and different signal 

processing algorithms are developed and implemented in this study.  

1.2 Organization of the Thesis 

This thesis is composed of two introductory chapters which describe HMI system 

architecture available in literature and HMI application realized in scope of this study. 

General definition and description of HMI systems and someinformation about 

physiological background of EMG driven systems are shared in Chapter 2. A brief 

description of HMI system realized in this study is also given in Chapter 2. 

Technical properties of surface EMG signal are provided in Chapter 3. In addition, signal 

processing techniques implemented in this thesis are described and mathematical 

backgrounds of these algorithms are provided in this chapter. 

In Chapter 4, the EMG data acquisition unit, which is designed in scope of this study, is 

described briefly. Details of analog circuit, digital circuit (including embedded software) 

and integration of hardware with main control software are shared in this chapter. 

Chapter 5 provides results of proposed algorithms on two different data sets. In addition, 

performance analysis of each algorithm is made in this chapter. A detailed comparison 

between designed methodologies is also made in this chapter. 

Finally, Chapter 6 summarizes all the work done in this thesis. Observations and experience 

gained during this work is shared. Future work planned on the thesis topic and possible 

improvements for a more robust design are provided in this chapter. 
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CHAPTER 2 

 

 

HUMAN MACHINE INTERFACES 

 

 

 

Human Machine Interface (HMI) systems are described in [7] as a discipline which aims to 

make humans control or communicate with computers or other devices by using bio-

signals. Another method of controlling or communicating with a device is named as Brain 

Computer Interfacing (BCI)[7], [8], [9]. BCI architectures use bio-signals generated due to 

brain activity in order to control a device or a computer. Both HMI and BCI, collects and 

extracts information from bio-signals and interprets them to form control commands for a 

specific application. BCI Systems, as described in [8] uses only brain activity. Therefore, 

main difference between an HMI and a BCI system is that HMI systems use bio-signals 

generated in body rather than brain. 

Disabled people may experience serious difficulty while using assistive prosthetic devices, 

or robots which has traditional user interfaces. HMI systems which are controlled by 

myoelectrical signals provide an opportunity for disabled people to use devices which 

facilitate their life [7], [10], [11]. 

In this chapter, information on general system architecture of HMI Systems and physiology 

of myoelectric signals are summarized. Detailed description of proposed HMI system and 

information about its usage is also provided in this chapter. 

2.1 General Description of Human Machine Interface Systems 

Architectures of Human Machine Interface systems are composed of four main parts as 

described in [6], [7], [12], [13], [14]. These four main stages are data acquisition, feature 

extraction, classification, and controller stages. 
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Figure 1: Architecture of a HMI System. Bio-signals are acquired from body by 

means of a signal acquisition unit, processed to form some feature vectors, and 

classified to generate control commands in a specific HMI System. (Body visual is 

taken from [15]) 

 

In signal acquisition stage, myoelectric signal is acquired from body and it is filtered in 

order to reduce artifacts and make signal band limited. Analog EMG signal is fed to an A/D 

converter and it is digitized for further processing by a computer. As a result, the digital 

signal, which contains information about electrical activity of the muscle, is fed to Feature 

Extraction Block. 

In feature extraction stage, signal features, some of which are shared in [10], [6], [16], [11], 

[17], are extracted from the raw EMG signal and used to form feature vectors. These 

features of EMG signal may be classified in three groups as, time domain features, 

frequency domain features, and time-frequency domain features. Time-Frequency domain 

features are not studied in this thesis. Details of time and frequency domain features are 

provided in Chapter 3. Outcome of this stage is a feature vector which contains valuable 

information about contraction state of the sensed muscle. However, some redundant 

information may be included in this feature vector and some dimension reduction 

techniques may be applied to feature vector. The reduction techniques reduce the 

complexity of classification algorithm, as well. 

Core of the HMI system is implemented in the classification stage in which the feature 

vector is classified to perform a predefined action. Different classification algorithms are 

available in literature [5], [7], [16], [18], [19], [20], [21], [22], [23], and performance of the 

HMI system depends on the accuracy of this stage. As categories are obtained more 

accurately, performance of the overall system is improved. Outcome of the classification 

stage is a decision on action to be performed.  

In the controller stage, control commands generated and sent to the device which is desired 

to be controlled. This stage may alter as controlled device varies and different feedback 
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mechanisms may be implemented. In general, HMI systems close the control loop visually. 

In other words, user has an audio/visual feedback and he/she drives the overall system 

accordingly. However, some of the HMI applications may need additional sensors like 

Inertial Measurement Units (IMU), to close the control loop [9], [24], [25], [26], [27]. 

2.2 Physiological Background about EMG Driven HMI Systems 

As the name of the system implies, input of the EMG Driven HMI systems is myoelectric 

signal. In this part, physiological background of this signal is provided in detail and its 

measurement techniques are shared. 

As defined in[16], bio-signal is a collective electrical signal acquired from any organ. These 

signals contain valuable information about physical variable of interest. On the other hand, 

EMG is a bio-signal which contains information about the electrical activity of muscles 

during contraction. 

 

Neurophysiologic structure of the human body is responsible from EMG generation. 

Nervous system is both main controller and communication system[16], [28]. It controls 

muscle contraction and relaxation continuously and effects generated EMG signal.It is 

composed of three main parts: the brain, the spinal cord, and the peripheral nerves. Neurons 

are basic units of nervous system and their shape and size may vary with their place and 

mission in the nervous system. They are special cells which are responsible of conducting 

impulses from one point to anotherin the body. 

 

Muscles are the main source of EMG signal. Muscle tissues are composed of bundles of 

muscle cells which are capable of contraction and relaxation. They make humans mobile 

and able to interact with environment. Even speaking becomes possible with existences and 

functionalities of these special cells. There are four main missions of muscle tissue: 

production of force, moving substance within the body (especially blood circulation), 

providing stabilization to the body, and heat generation. Muscles in the body may be 

grouped in three: skeletal muscles, smooth muscles, and cardiac muscles. The EMG signals 

in HMI applications are acquired from the skeletal muscles. These kinds of muscles are 

attached to skeleton and they provide support to the body and responsible from its 

movements. Contractions of skeletal muscles are voluntary. These contractions are initiated 

by the impulses arriving at neuromuscular junctions through neurons which are called 

“Motor Neurons”. Smooth muscles are placed in the organs and they are not under 

conscious control. Finally, “Cardiac Muscle” is the muscle tissue which forms heart and it 

pumps blood through vessels around the body. Bio-signal which contains information about 

electrical activity of the heart is Electrocardiography (ECG) signal. 

 

Motor units are constituted by the set of muscle fibers which are activated by one motor 

neuron [29]. When neuronal action potentials arrive at neuromuscular junction; muscle 

fibers contract and produce force and torque. In addition to contraction, action potentials 

are fired by this stimulation and they spread along the fibers. “Motor Unit Action 

Potentials”(MUAPs) are summation of these action potentials traveling through muscle 

fibers in a single motor unit[7]. Impulse trains create “Motor Unit Action Potential 
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Trains”(MUAPTs) in muscle tissues[7], [21], [30]. Since theMUAPTs are independent 

from the stimulation train, they can be treated as stochastic processes.  

 

 

Figure 2: EMG Signal Generation Process[7] 

 

Surface EMG signal is superposition of these MUAPTs. As a result, during processing of 

EMG signal, it may also be treated as a stochastic process. EMG generation process is 

provided in Figure 2. 

 

Figure 3: Ag-AgCl Surface EMG Electrodes 

 

There are two ways of obtaining EMG signal from a muscle tissue: Invasive EMG 

Measurement Techniques and Non-Invasive EMG Measurement Techniques. Non-Invasive 
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EMG measurement is realized by surface EMG electrodes which are placed on skin surface 

on a muscle tissue.Obtained EMG signal is spatial and temporal summation of MUAPTs 

which are generated in muscle under the skin and amplitude of surface EMG signal is 

around 1-5 mV. There is no invasive work done in this study and Ag-AgCl surface 

electrodes used in this thesis are shown in Figure 3. In invasive EMG data acquisition, 

Micro Needle Electrodes, which are produced by Micro Electro-Mechanic production 

techniques, are used. These needles are placed on muscle fibers to obtain individual action 

potentials on muscle fibers. Micro Needle Electrodes are shown in Figure 4. 

 

 

Figure 4: Micro Needle EMG Electrodes[31] 

 

Although invasive EMG sensing is more painful compared to non-invasive sensing, it has 

more spatial resolution and gives more information about individual action potentials of 

each muscle fiber. There are works in literature about decomposition of surface EMG 

signal to its MUAPTs in order to decrease dependency on invasive EMG sensing [16]. 

An example of raw EMG signal,which is recorded from biceps brachii muscle with a 

surface Ag-AgCl electrode and proposed data acquisition unit, is given in Figure 5. 
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Figure 5: Raw EMG Signal Collected From Biceps Brachii with Proposed Data 

Acquisition Unit 

 

2.3 Description of Proposed HMI System 

As mentioned in the previous parts, although HMI systems have similar architectures, they 

may have some properties which are specific to the application. Detailed information about 

proposed HMI system in this thesis is shared in this section. 

In accordance with the architecture provided in part 2.1, designed HMI system is composed 

of four main parts: data acquisition, feature extraction, classification, and controller.  

Data acquisition unit is designed and implemented in this study, and its details are provided 

in chapter 4. It is composed of 8 isolated channels, and raw analog data is digitized at 1 

KHz with a 10 bit A/D converter. As digital raw data is composed, it is transferred to 

computer via USB (Universal Serial Bus).  

There are two different groups of work done in this thesis for feature extraction from raw 

EMG signal. First group is composed of near-real time implemented algorithms, and these 

algorithms are mainly designed to extract time domain features. The other group is the 

offline implemented algorithms which are designed to extract frequency domain features. 
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Figure 6: Muscles Used to Extract EMG Features in Operators’ Arm[32] 

 

Four different muscles per arm are used to extract EMG features and generate control 

commands for the robotic arm. These muscles are shown in Figure 6. Table 1provides 

information about matching between muscles and EMG data acquisition unit 

channels.Figure 7shows electrode placements on an operator's arms. 

Table 1: Matching Between Muscles and Data Acquisition Unit Ch. Number 

ARM MUSCLE 
DATA ACQUISITION CH. 

NUMBER 

Right Arm Triceps Brachii (Long Head) CH#8 

Right Arm Biceps Brachii CH#7 

Right Arm Flexor Carpi Ulnaris CH#3 

Right Arm Flexor Carpi Radialis CH#5 

Left Arm Triceps Brachii (Long Head) CH#2 

Left Arm Biceps Brachii CH#4 

Left Arm Flexor Carpi Ulnaris CH#6 

Left Arm Flexor Carpi Radialis CH#1 
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Figure 7: Electrode Placements on an Operator's Arms 

 

Once the EMG acquisition channels are connected to appropriate arm muscles and control 

software is started on a computer to which acquisition device is connected, operator 

becomes able to drive the robotic arm. The operator is required to generate EMG signal at 

muscle tissue corresponding to servo that is desired to beactivated.  

Raw EMG signals are processed for feature extraction and control commandsare generated 

for the robotic arm. In near-real time implemented algorithms, the formed feature vector is 

a one dimensional vector. Therefore, classification block shrinks to a simple threshold 

comparator. Another methodology for classification is to enlarge feature vector dimension 

and to detect different gestures. In this methodology, more individual classes may be 

distinguished with less independent data acquisition channels. HMI systems of this kind are 

called Gesture Detecting HMI systems. However, gesture detecting HMI systems, which 

control machines with less EMG data acquisition channels, have some drawbackswhen 

operated by disabled people. Since, amputees do not have a limb to perform predefined 

gestures; they may not be able to use gesture detecting HMI systems. On the other 

hand,amputees easily may run proposed HMI system with generating EMG signal at 

different muscle tissues without concerning gestures.Details of feature extraction block and 

classification block algorithms are shared in chapter 3. 
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CHAPTER 3 

 

 

EMG SIGNAL PROCESSING TECHNIQUES 

 

 

 

As described in chapter 2, the most important subsections of an HMI System are feature 

extraction and classification blocks. Signal processing algorithms which compose these 

blocks in the proposed HMI System are explained in this chapter. The chapter begins with a 

short description of raw EMG signal in terms of mathematical and statistical properties. It 

continues with description of how these properties are used as features and used for robotic 

arm driving purposes. 

3.1 EMG Signal Description and Properties 

Physiological background about generation of EMG signal in muscle tissue is shared in 

chapter 2. In this part, informative properties of EMG signal are shared. Methods to form 

feature extraction and classification blocks of the proposed HMI system are shared in the 

following part. 

The EMG signal is a non-deterministic signal, which means that EMG signal cannot be 

represented by a differential equation[33], [16]. Stochastic nature of EMG signal prevents 

designer to use deterministic signal processing techniques in feature extraction block. 

Therefore, EMG signal should be processed by using statistical signal processing 

techniques. Properties of EMG signal may be grouped in three: time domain features, 

frequency domain features, and time-frequency domain features. All properties which may 

be found in related literature are shared in this part, except the time-frequency domain 

features, because they are not realized in scope of this thesis. 

As mentioned in chapter2, raw EMG data, which is acquired from surface electrodes, are 

superposition of MUAPTs. In addition, high frequency components of these MUAPT 

signals are suppressed in tissue between muscle fibers and skin surface[7]. 95% of EMG 

frequency spectrum is up to 400 Hz. In proposed data acquisition unit, raw EMG signal is 

preprocessed in order to make it band limited. The acquired signal is first high pass filtered 

with cut-off frequency of 3 Hz and then low pass filtered with cut-off frequency of 500 Hz. 

Finally, in accordance with “Nyquist Sampling Theorem”, sampling frequency of proposed 

acquisition system is chosen as 1 KHz. 
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Firing of MUAPs’ is random; therefore amplitude of EMG signal is also random. There is 

no mathematical definition which models acquired surface EMG signal. In such a 

condition, theory of stochastic processes is needed to be applied. There are some researches 

on statistical properties of raw EMG signal in literature to investigate that if the signal is 

Gaussian distributed or stationary[33]. Bilodeauet al. described that amplitude distribution 

of raw EMG signal has not normal distribution and may be assumed as stationary for a 

short period of time. In addition to these properties of EMG signal, study in[34]shows that 

not only amplitude of EMG signal is increased with increase of produced force or torque, 

but also mean frequency of the signal increases. Therefore, there are some frequency 

domain features which may be used in an HMI system. 

In a real HMI applications, raw digital EMG signal flows with sampling frequency. In order 

to process raw signal, it is needed to be segmented. In literature, [18],[35], [36]describes 

two methods for segmentation of raw data in preprocessing: disjoint and overlapped 

segmentations. In disjoint segmentation, raw data is divided into non-overlapped segments 

of predefined length and these segments are used for feature extraction. On the other hand, 

in overlapped segmentation, new segment is created by sliding a window forward over 

current segment with a predefined increment. Sliding increment is also important in these 

applications. If it is longer than the segment length, some raw data remain unprocessed. In 

addition, if sliding increment is shorter than the processing time, queue of unprocessed data 

increase tremendously. As a result, sliding increment should be chosen between segment 

length and processing time. In the proposed HMI system, disjoint segmentation is used for 

segmentation and segment length is chosen as 50 samples which mean 50 ms at 1 KHz 

sampling rate. In addition to segmentation, at preprocessing level, mean of acquired raw 

signal is pulled down to zero. After, zero-mean segments are formed; they are processed for 

feature extraction.  

In[10], [11], [7],[6], [13] both time domain and frequency domain signal features of EMG 

signals are investigated. These features are described in the following parts in detail.  

3.1.1 TimeDomain Features of EMG Signal 

In proposed HMI system; the EMG signal is amplified and digitized in time domain. As the 

name implies, time domain features of EMG signal are features that can be observed while 

signal is not transformed to another domain. Since there is no need for transformation, these 

features are obtained with less effort. In addition, algorithms extracting time domain 

features are easily embedded in real time (or near real time), standalone HMI systems. 

All time domain features found in literature are shared in this part. In addition, their 

mathematical definitions are provided and they are extracted from a real test data. 

1. Integrated EMG (IEMG): This feature is calculated by summing absolute 

value of samples of each segment of raw EMG signal, 
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(1) 

where   is     sample of segment  .  is the number of samples in each segment. 

IEMG may be defined as discrete time integral of full-wave rectified raw EMG 

signal. 

2. Mean Absolute Value (MAV): This feature is the mean value of absolute 

values of samples which form each data segment. In other words, raw signal is first 

full-wave rectified and then segmentation is done. Mean of each segment is the MAV 

of that segment. It is calculated as follows; 
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(2) 

where   is the     sample of segment   and   is length of a segment. There are some 

variants of MAV in literature. As it is seen from equations (1) and (2), relation 

between IEMG and MAV is only scaling. Shapes of these features represented in 

Figure 9 and Figure 10 are the same; however a constant multiplier is needed to 

convert one to the other. In[37], and[19],two different weighting windows are 

applied in MAV calculation. Formulation of one of modifiedMAV calculation is as 

follows; 
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where, 
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In second modified MAV calculation, weighting window is improved and smoothed. 

Other proposed   in [37], and[19]is as follows; 
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3. Mean Absolute Value Slope (MAVS): This feature is simply discrete time 

derivative of feature MAV. It can be calculated as; 

                  
 

(4) 

4. Root Mean Square (RMS): It is defined as[11],[37], [19], 
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(5) 

5. Simple Square Integral (SSI): This feature simply uses energy of the raw 

EMG signal and it is used as a feature[37]. It may be expressed as; 
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(6) 

6. Variance of EMG (VAR): Variance is related to power of raw EMG 

signal[37]. Study in [38] uses instantaneous power of EMG signal in an HMI 

application.Since signal is zero mean in general, calculation of variance can be 

expressed as; 
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7. Waveform Length (WL): Resultant feature is a measure of raw EMG 

amplitude, frequency and duration of EMG. Its calculation is given in [6], [11], [37] 

as follows; 
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(8) 

In WL calculation, magnitude of difference between two consecutive samples is 

concerned and integrated. The magnitude of WL increases as force or torque 

generated by muscle being sensed increases. Therefore, EMG signal may be detected 

and well classified with this feature. 

8. Zero Crossing (ZC): Itis number of times that amplitude of EMG signal 

crosses y-axis in a segment. In order to avoid from background noise, a threshold may 

be introduced instead of y-axis. In other words, instead of counting crossing of     

axis, crossing of      may be counted. There are three conditions that two 

consecutive samples    and     should satisfy to increase the count of zero crosses. 

These conditions are provided inTable 2. When one of the first two conditions and the 

third condition in Table 2 are satisfied, number of zero crossings is increased by one. 

   is the threshold which is used for noise avoiding purpose. Number of zero crossings 

is approximate estimation of frequency domain features[37]. Although nature of the 

EMG signal implies that the number of zero crossings increases when it starts, this 

time domain feature is not sufficiently robust against background noise. Since, number 

of zero crossing give approximate estimation about median frequency of raw signal, 
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there will be no significant change in number of zero crosses in case of 50/60 Hz 

noise. When EMG spectrum is concerned, 50/60 Hz is in frequency band which covers 

powerful frequency components of the signal. In order to decrease effect of 

background noise, threshold should be introduced as described before.In addition, 

acquisition system performance may significantly limit applicability of this algorithm. 

Table 2: Conditions on Two Consecutive Samples that Increase Zero-Crossing 

Number 

Conditions on  and     

     and        

     and        

|       |    
 

9. Slope Sign Change (SSC): This feature is very similar to ZC and it gives 

approximate estimation about frequency domain features of raw EMG signal. It can 

be formulated as; 

     ∑[ [(       )  (       )]]

   

   

 

 

 

(9) 

where, 

 ( )   {
                
               

 

 

Since SSC and ZC are focused on similar time domain features, effect of 50/60 Hz 

noise is similar for two algorithms, as well. However, some improvement on noise 

robustness may be achieved by simply choosing proper thresholds for both of the 

feature extraction methods. 

10. Willison Amplitude (WA): This feature is a measure of difference 

between two consecutive samples. Number of case that this difference is larger than a 

defined threshold is counted in each segment.WA is directly related to firings of 

motor unit action potentials[11]. Its formulation is as follows; 
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where, 
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When compared with WL, WA and WL are so similar and only difference between 

them is that WA does not focus on amount of the increment/decrement between two 

consecutive samples. It simply compares absolute difference of two consecutive 
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samples with a predefined threshold and counts differences above the limit. 

Therefore, WA does not have direct information about amplitude of raw EMG signal 

whereas WL has. 

Suitable thresholds for ZC, SSC, and WA depend on gain of the data acquisition 

system, after a short training, an appropriate threshold may be found. 

11. Histogram of EMG (HEMG): During extraction of this feature, 

distribution of samples in each segment is calculated for a raw EMG data. 

Distribution of signal may be used as a feature and used in classification. As number 

of samples in higher amplitude bins exceeds a predefined threshold, EMG signal 

detection and classification of this feature may be done.However information 

extracted from histogram of a signal is not enough for many cases. Therefore, 

histogram is not investigated in this study. 

Figure 9-Figure 18 give described time domain features which are calculated from raw data 

that is given in Figure 8.  

 

 

Figure 8: Raw EMG Data Used to Calculate Time / Frequency Domain Features 
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Figure 9: Integrated EMG Feature Generated with Window Length of 50 ms 

 

Figure 10: Mean Absolute Value Feature Generated with Window Length of 50 ms 
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Figure 11: Mean Absolute Value Slope Feature Generated with Window Length of 50 

ms 

 

Figure 12: Root Mean Square Feature Generated with Window Length of 50 ms 
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Figure 13: Slope Sign Change Feature Generated with Window Length of 50 ms 

 

Figure 14: Simple Square Integral Feature Generated with Window Length of 50 ms 
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Figure 15: Zero Counts Feature Generated with Window Length of 50 ms 

 

Figure 16: Variance Feature Generated with Window Length of 50 ms 
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Figure 17: Willison Amplitude Feature Generated with Window Length of 50 ms 

 

Figure 18: Waveform Length Feature Generated with Window Length of 50 ms 
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It is obviously seen that these time domain features may be used for EMG detection. In the 

proposed HMI system, simple threshold crossings may create “events” which is fed to 

classification stage. These events trigger the implemented controller. As mentioned before, 

time domain features directly affected form background noise which is due to both 

instrumentation and electrical environment in which experiment is realized. ZC and SSC 

features are most noise sensitive time domain features.  

3.1.2 Frequency Domain Features 

Another way of extracting useful features of raw EMG signal is to transfer it to frequency 

domain. As its power spectral density (PSD) or amplitude spectrum is calculated, some 

valuable information may be extracted for HMI purposes. 

Frequency domain features are more robust to background noise than time domain features; 

however they are hard to be extracted from raw EMG signal. Study in [34] shows that some 

frequency properties of EMG signal varies with mechanical power or torque generated at 

muscle of interest varies. Therefore, these frequency parameters of the signal may be used 

in processing for feature extraction. Five frequency domain properties of EMG signal are 

investigatedin this part; Auto-Regressive Model Parameters, Frequency Median, Frequency 

Mean, Modified Frequency Median and ModifiedFrequency Mean. Descriptions of these 

features and details of study on extraction of frequency domain features are shared inthis 

part. 

Most of the frequency domain features depend on calculation of power spectral density 

(PSD). In other words, power spectral density is used to distinguish EMG signals from each 

other and from the background noise. Figure 19 shows power spectral density of 

background noise of signal acquisition instrument designed in this study. Figure 20provides 

PSD of raw EMG signal which is given in Figure 8. When EMG signal is available, change 

in PSD of acquired signal may be seen asFigure 19 and Figure 20 compared. 
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Figure 19: Power Spectral Density of Instrumentation Noise of Proposed Data 

Acquisition Unit 

 

Figure 20: Power Spectral Density of Raw EMG Signal Given in Figure 8 
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Figure 19 shows that there is a dominating noise at 50/60 Hertz (50 Hertz in our case 

because line power in Turkey is distributed at 50 Hertz) in signal recorded while electrodes 

are attached to a muscle and the muscle is in idle state. In addition to main component 

around 50 Hertz, its harmonics are also seen on the background noise. As it is obviously 

seen, when EMG signal occurs, its main frequency lobe between 8 Hertz and 150 Hertz 

dominates calculated PSD. 

Feature extraction blocks, which are based on frequency domain features, focuses on 

changes in PSD of raw EMG signal. It is observed that the ratio of frequency components 

of EMG signal and background noise at 50 Hz is 30. As a result, all frequency components 

of raw EMG signal are well differentiated from background noise. 

Frequency domain features investigated in this thesis are shared below. 

1. Auto-Regressive Model Parameters (AR Parameters): Thisfeature is 

based on Auto-Regressive Modeling technique which relates past samples to 

recentfuture sample. 
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(11) 

where  ’s are model parameters,    is residual white noise and   is order of 

modeling. Details of AR modeling algorithm are provided in part 3.1.3. 

2. Frequency Median: Median frequency is frequency which splits PSD into 

two equally powered parts. In other words, median frequency divides PSD into two 

parts that powers at two frequency bands are equal. Its definition is given in[7],[37], 

[11] as: 
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where M is length of PSD and     is corresponding PSD value. 

3. Frequency Mean: Its definition is given as average frequency in[7], [37], 

[11]. For better understanding, it is dominating frequency component or mean of all 

frequency components. It may be computed as: 
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(13) 

where   is frequency of spectrum in     frequency bin.In addition, unit of the ratio is 

Hertz. 



 

25 
 

 

4. Modified FrequencyMedian: Definition of Frequency Median shows that 

it is calculated by using PSD of EMG signal. In Modified Frequency Median 

calculation amplitude spectrum is used.It may be calculated as: 

∑   
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(14) 

where  ’s are corresponding values of amplitude spectrum. 

5. Modified Frequency Mean: Similar to Modified Frequency Median, 

difference between Frequency Mean and Modified Frequency Mean calculations is 

that amplitude spectrum is used instead of PSD. Therefore, it may be calculated as: 

 

     
∑     
 
   

∑   
 
   

 

 

 

(15) 

where   is amplitude spectrum component,    is related frequency component, and   

is length of amplitude spectrum. 

 

Figure 21: Single Sided Amplitude Spectrum of Raw EMG Signal 
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Single sided amplitude spectrum of raw EMG signal represented in Figure 8 is given in 

Figure 21. Frequency domain features, calculated by using PSD given in Figure 20 and 

amplitude spectrum given in Figure 21, are provided in Table 3. 

Table 3: Frequency Features of Signal in Figure 8 and Instrumentation Noise 

Frequency Domain 

Feature 
Idle State EMG Signal Available 

Frequency Median 152.343750 (Hz) 54.260254 (Hz) 

Frequency Mean 188.490483 (Hz) 62.832368 (Hz) 

Modified Frequency 

Median 
250.976562 (Hz) 71.960449 (Hz) 

Modified Frequency Mean 247.798424 (Hz) 111.359112 (Hz) 

 

As it is seen from Table 3, mean frequency and modified mean frequency varies in a larger 

scale and they are so suitable for classification algorithms. At absence of EMG signals, 

there are 50/60 Hz noise and its harmonics only. Therefore, mean frequency features of idle 

state are close to middle of whole frequency spectrum. When EMG signal shows up, these 

mean frequency features shifts to dominating frequency component of bio-signal. 

On the other hand, when median frequencies are examined, these features are hard to 

change. It splits frequency spectrum to two equally powered parts.EMG signal seen in 

Figure 8 does not belong to an impulsive contraction. Therefore, frequency median for this 

signalisin low frequency band. As contraction becomes more impulsive, median frequency 

is expected to increase. The EMG signal shown in Figure 8 is record of biceps brachii 

muscle activity while 10 kg of weight is being ascended for five seconds, hold for 

fiveseconds, and descended for five seconds. As a result, both slow nature of force 

production and fatigueeffect creates a low dominating frequency. In an impulsive 

contraction case, median frequency and modified median frequency features may be 

calculated far from 50 Hz. 

AR parameters are main frequency domain feature studied in this thesis. Calculation of 

these parameters is more complex.Some manipulations should be done to create necessary 

conditions for their calculation. Details of work done on AR modeling and AR parameter 

calculation are shared in part 3.1.3. 

3.1.3 Auto-Regressive Signal Modeling 

As mentioned in previous part, AR model parameters may be used as a signal feature. Once 

these parameters are obtained from segmented raw data, they are compared with AR 

parameters of a well-known movement. Therefore, gestures may be identified with AR 

parameters of raw EMG signals. 

AR modeling is basically a random process modeling. In order to calculate AR model of a 

random process, an all-pole filter should be designed. When this filter is excited with white 

noise, output of the filter should be the random process which is desired to be modeled. 
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Figure 22: AR Modeling Structure 

 

Transfer function, ( ) of this filter is in all pole structure and may be represented as 

follows: 

 ( )  
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(16) 

where,  ’s are the AR model parameters. 

Yule-Walker equations explain relation between the AR parameters and auto-correlation 

sequence of the random process of interest. If equation (16) is transferred into time domain, 

we have equation (17) and (18). 
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After equation (18)is derived,    [ ]  term may be accepted as error term and Least 

Squares methods may be used to solve   ’s[11], [39], [17].In order to solve these AR 

model parameters, Least Squares method is applied to minimize squares of   ’s. 

Equation (18) describes how to estimate future samples by using the past samples.In 

addition, it should be noted that the number of past samples used for estimation is order of 

the filter  ( ). Therefore, order of AR modeling is an important decision to make for 

designer. In order to decide the filter order, auto-correlation sequence of random process 

should be investigated. Auto-correlation sequence of a random process is composed of 

correlation of random variableswhich form time indices of the random process. Equation 

(19)is mathematical definition of auto-correlation sequence of a random process  [ ]. 
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Figure 23: Monte Carlo Analysis of Correlation Coefficients of Raw EMG Signal 

 

Figure 24: Zoomed Version of Figure 23 
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A Monte Carlo analysis of 50 runs is realized on correlation coefficients of different 

realizations of EMG generation process. Result of this analysis is shared inFigure 23 and 

Figure 24. As it is clearly seen, past samples may be thought as uncorrelated except 5 

recentsamples, because correlation coefficients of  [ ]  and  [   ]  are very small 

for    . As a result, in this study last 5 samples are used to estimate future samples. In 

other words, order of AR modeling realized in this thesis is 5. 

 [ ]  ∑   [   ]

 

   

    

 

 

(20) 

Equation (20) represents time domain equation that is solved in AR modeling.   is the error 

term between  [ ] andestimate of  [ ]and it is expected to be white noise. In order to 

find   ’s which minimizes   ’s, least squares method is used[39].Study in[39], [40]shows 

that Recursive Least Squares algorithm (RLS) has the best performance between various 

least squares identification algorithms.Equations for RLS given in [41]are shared in 

equations (21)to(25). 

System description is given as; 
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where;    is a row projection vector, and    is estimator gain matrix. Then equations of 

RLS estimation are as follows; 
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where;    is  {    
 }. 

In order to apply Recursive Least Square algorithm for AR parameter estimation, equation 

(20)should be transformed into matrix form which is given in equation (26). 

             
 

(26) 

where; row vector    {  [   ]  [   ]  [   ]  [   ]  [   ] }, andcolumn 

vector ofAR parameters    {                   }. 

As we have equation (26), we can use recursive algorithm described in equations (21)-(25) 

to model raw EMG signal. 

There are two remaining topics that should be mentioned in AR modeling; characteristics 

of residuals, and question of stationarity. 
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In discussion of stationarity, simplest way to evaluate stationarity of a signal is to examine 

physical phenomenon generating the signal. In surface EMG signal, instantaneous blood 

and oxygen supply to muscle is random; therefore surface EMG signal is not accepted as a 

stationary signal. However, the myoelectric activity of a muscle may be processed as it is 

stationary for short time periods (15~25 milliseconds)[39], [7]. 

Residuals are defined as the difference between original data and the estimated synthetic 

data. If fitting of AR model is adequate, residuals should be white noise as it is seen from 

Equations (16)-(18). 

 

 

Figure 25: Estimated Surface EMG Data and Original Surface EMG Data 

 

EMG signal acquired from biceps brachii during two different levels of contraction is 

shared in Figure 25. As it is seen, estimated signal fits the original one and residual of 

estimated EMG data is given in Figure 26.  
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Figure 26: Residual between Estimated and Original Data in Figure 25 

 

In order to clarify whether residuals are white noise or not, their auto-correlation sequences 

are calculated as defined in equation (19). By definition of white noise, it has zero mean 

and its auto-correlation sequence is in the form given in equation (27).Residual shared in 

Figure 26 has mean of -0.00625 which is practically zero. 

 {      }    
  (     ) 

 

(27) 

Equation (27) implies that each sample in a white noise is uncorrelated. In other words, 

autocorrelation sequence of a white noise is zero if time lag parameter is different than 

zero. However, due to correlated noise contaminations, autocorrelation sequences of 

residuals of a data set, that is given in Figure 27, is not exactly zero for time lags bigger 

than zero. 
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Figure 27: Correlation Coefficients of Residual given in Figure 26 

 

Most powerful correlated noise coupled onto residual is 50/60 Hz noise. Local peaks 

separated at 20 ms time lags are due to 50 Hz noise on residual. In other words, estimation 

error on 50 Hz noise is observed on the autocorrelation coefficient sequence of residual. 

Except these local peaks, residuals may be accepted as a white noise, and AR parameters fit 

enough to model raw EMG signal. 

3.2 Generating Control Commands by Using EMG Signal Features 

As described in chapter 2, classification block follows the feature extraction block. In 

classification algorithm, time domain or frequency domain features are classified and one 

of the predefined categories are achieved. In addition to classification, action to be taken 

when the category is achieved is fed to controller block. In this part, methodology of 

classification is provided. 

First description of Support Vector Machines (SVM) algorithm is described and then 

information on how SVM classification is applied to time domain and frequency domain 

features is provided. 

Finally, methodology that produces control commands from output of classification 

algorithm is described. 
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3.2.1 Application of Support Vector Machines Classification Method 

In Support Vector Machines (SVM) classification algorithm, a feature vector of dimension 

“n” is classified by using knowledge of a set of feature vectors and their category. In other 

words, a present feature vector is compared with other feature vectors of different classes 

and a classification is realized. 

Visualization of two dimensional feature vectorsand separating hyperplanesmay be seen in 

Figure 28. 

 

 

Figure 28: Visualization of Two Dimensional, Two Classes Classification 

 

There are infinitely many hyperplanes separating these two classes. However, one optimum 

hyperplane may be found separating with maximum margin. In other words SVM 

algorithm tries to maximize distance between separating hyperplane and nearest sample of 

each class. 

Once this hyperplane is found, each feature vector is compared with this hyperplane and 

decided its category. For instance, in the case shared in Figure 28, if feature vector being 

examined falls into space that is reserved for ‘*’ class, it is categorized as ‘*’. 

If the interested feature vector is two dimensional, hyperplane shrinks to a line. In addition, 

if interested feature vector is one dimensional, separating hyperplane becomes a point. In 

other words, the feature is simply compared with a threshold and if threshold is exceeded, 

an event is created. 
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In this study, time domain features are used to recognize whether sensed muscle is 

contracted A one dimensional time domain feature vector is calculated for each segment 

and compared with a predefined threshold. If the threshold is exceeded, the muscle is 

recognized as contracted. This threshold is obtained after a short training. In proposed HMI 

system, as interested time domain features of a segment exceed the thresholds, decision on 

which servo should be driven is simply made. In addition, this recognition methodology is 

implemented in near real time system due its simplicity. 

Most of the works on frequency domain features are focused on AR model parameters. 

They are used as feature vectors and different arm movements are recognized by using 

SVM.Two movements are performed with 4 Kg and 10 Kg holding. As mentioned before, 

raw signal is segmented by disjoint segmentation method and AR model parameters are 

calculated for each segment. Therefore, AR parameters for each segment are used for 

recognition. AR parameters for two different data sets are shared in Figure 29 and Figure 

30. 

 

 

Figure 29: First AR Parameter of a Raw Data from 4 Kg Data Set 
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Figure 30: First AR Parameter of a Raw Data from 10 Kg Data Set 

 

As seen from Figure 29 and Figure 30, the first AR parameters of two different data setsare 

distinctive enough for recognition of the arm movements. AR parameters are calculated and 

theyare processed forrecognition in post processing signal processing environment. 

Details of results about both time domain features and AR modeling parameters are shared 

in chapter 5. 

3.2.2 Generating Control Commands for Robotic Arm 

The final goal of proposed HMI system is to drive the robotic arm AL5D. To control the 

robotic arm, only time domain features are used and embedded inthe realized nearly real 

time system. During normal system operation, data flow is segmented and a time domain 

feature is extracted for each segment. As these features create events, controller block is 

triggered and robotic arm is moved accordingly. 

As it is mentioned before, robotic arm and its servo controller is purchased as commercial 

products. As a result, communication between robotic arm and main software is done via 

controller that is supplied with it.In addition, command message format, which is defined in 

Interface Control Document (ICD) of AL5D controller, is used in main software of 

proposed HMI system. 

 

Electronic controller of AL5D expects two inputs in its commands. Information about 

position inputs and time required to perform the command for each individual servo should 

be sent to controller. Position limits of each individual servo are coded in main software to 
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form a mechanical limit for reaching capability of overall system.Therefore, generated 

position orders for robotic arm are limited between these servo limits. In order to generate a 

new servo position command, current positions of each servo is memorized and instead of 

calculating its new position, a position increment is calculated. Once the increment and old 

position of the servo is known a new position order for that servo is computed and sent to 

controller unit. 

For each segment of which feature is extracted and threshold is exceeded, position 

increments for related servos are kept constant. In other words, if raw EMG signal in a 

segment has feature to trigger position increment, a constant position increment is summed 

with old position of related servo and sent as a new position order. Constant position 

increment helps operator to learn responses of system while the operator is training. 
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CHAPTER 4 

 

 

DESIGN OF EMG DATA ACQUISITION SYSTEM 

 

 

 

Beside signal processing techniques in both feature extraction and classification blocks, 

mechanisms in measuring the muscle activity have also considerably important effect on 

overall system performance. Quality of EMG signal acquisition and recording device 

directly influences performance of HMI system algorithms. In this chapter, design of a 

prototype EMG data acquisition system is provided. EMG data acquisition system is 

composed of three main parts; non-invasive EMG sensing devices, analog and digital 

hardware, and main software controller. Design and implementation of these three main 

subsystems of EMG data acquisition system is explained in this chapter briefly. 

4.1 EMG Design Requirements and System Specifications 

 The most important requirement that any biomedical device should satisfy is 

electrical safety. In order to prevent operator from permanent harm, isolation from power 

network must be implemented properly.In order to achieve isolation from power line, 

isolated transformer and an isolated DC-DC converter is used in power supply circuit 

designed for analog circuitry. 

 As it mentioned in chapter 2, amplitude of raw EMG signal is around 1-5 mV. 

Therefore, the data acquisition system is required to be able sense and record these signals. 

In other words, gain of analog amplifier should be arranged properly.In proposed prototype 

design of EMG data acquisition device, gain of the amplifier is chosen as 500. Therefore, 

amplified signal is kept in A/D voltage interval (0-5 V). 

 Due to the fact that signal amplitudes are very low, environmental electrical noise 

affects signal quality easily. Therefore, EMG system should remove these noise 

components from the EMG signal.In proposed EMG system, in order to prevent noise 

imposed by power line common mode rejection ratio of the system is pulled up to 100 dB 

at 50 Hz. 

 

 Resolution of analog to digital conversion should be considered during design, and 

quantization error during conversion should be kept as small as possible. On the other hand, 

data transfer speed between digital hardware and computer should be considered, as well. 

In addition to resolution, sampling rate at A/D conversion is also important.In order to 

make raw EMG signal band limited, analog filters are designed and implemented in analog 
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amplifier circuitry. Components of raw EMG signal out of frequency band 3-500 Hz are 

suppressed. In accordance with Nyquist sampling theorem, sampling rate is chosen as 1 

KHz to prevent aliasing in frequency domain. In addition to these, A/D conversion is 

realized with a 10 bits analog to digital converter (ADC). 

 Number of channels should be enough to perform desired action with the device 

that is desired to be controlled.Since the proposed HMI system is used in a research and 

development study, number of channels of proposed EMG system is designed to be enough 

for each kind of system architecture. As a result, 8 channels are implemented in EMG data 

acquisition system. 

 EMG system is responsible to feed all digital data coming from each channel to the 

main controller software without any loss.Digital circuit designed in this study transfers 

obtained digital data to main controller software via Universal Serial Bus (USB). During 

this transfer, a specific message structure is used to ensure no data loss occurs. 

4.2 Analog Hardware 

Analog hardware is composed of two main parts; power circuit and analog signal 

processing circuit. Power circuit is responsible to generate clean power signal which is 

supplied to analog circuit. Analog signal processing circuit is composed of amplifiers and 

active filters. It simply amplifies the raw EMG signal and filters it. Details of these circuits 

are explained in this part. Circuit schematics of these parts may be found in APPENDIX A. 

4.2.1 Power Circuit 

Power circuit mentioned in this part is the circuit which is responsible of supplying required 

electrical power to analog circuit. It has no connection to digital circuit in which the A/D 

conversion is done. 

Output of the power circuit is ± 12 Volts DC at 9 Watts of power. ± 12 Volts is fed to 

operational amplifiers and instrumentation amplifiers in the analog circuit, therefore noise 

level of these output voltages should be kept very small under a proper load. Another 

requirement that this powering circuit should satisfy is that this circuit must be isolated 

from power line in order to prevent electrical damage to operator. 

Power circuit is designed to operate under line voltage of 220 Volts at 50 Hz. In first stage 

of this circuit, an isolating transformer is used which reduces 220 Volts to 24 Volts and 

capable of supplying 9 Watts of power. This transformer produces a voltage source isolated 

from power line. Once 24 Volts sinusoidal power signal is obtained, it is full-wave rectified 

with a bridge rectifier and converted to a DC signal with a capacitor bank. As a result, 33 

Volts DC power signal is obtained finally. 

In the second stage of this power circuit, an isolating DC-DC converter is used in order to 

improve isolation and generate the necessary regulated output. Output at the DC-DC 

converter is ready to be fed to analog circuit as a power supply. Power circuit can be seen in 

Figure 31. 
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Figure 31: Power Circuit Schematics 

 

4.2.2 Analog Signal Processing Unit 

Analog signal processing circuit is designed to amplify signal which is obtained from 

surface EMG electrodes. In addition, active filters in analog circuit suppress the unrelated 

frequency components of the acquired signal. This circuitry is composed of three main 

parts; pre-amplification stage, low-pass filter, and high-pass filter.Circuit schematics of 

analog hardware may be found at APPENDIX A. 

4.2.2.1 Pre-Amplification Stage 

Pre-amplification stage is composed of an instrumentation amplifier (IA). This stage is 

expected to amplify small signals which are sensed at EMG electrodes. IAs have high 

common mode rejection ratio (CMRR) [42]which provides less noise contaminated signal 

at the output. These kinds of amplifiers are composed of two stages. In the first stage, a 

buffering is applied and common mode signal is reduced. Buffering in first stage is an 

important advantage for EMG applications, because it causes input impedance of amplifier 

to be very high. High input impedance prevents loading effect (Therefore, no current is 

drawn from signal source) at signal side that is desired to be amplified. In other words, 

since the EMG signal at skin surface is weak, buffering in the input stage transfers this 

weak signal to second stage. In the second stage of IA, there is a difference amplifier which 

amplifies the difference between two input signals. 
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IA topology consists of at least three operational amplifiers (op-amps) and matching of 

parameters of these op-amps has a considerable effect on performance. Therefore 

commercial integrated IAs in single package are available in the market. Since op-amps in 

these products are implemented on same wafer, their performances are much better than 

IAs implemented with individual op-amps. A commercial product AD620 of Analog 

Devices Comp. is used in this study. AD620 makes user able to set amplification gain with 

an external resistor, and no auxiliary elements are needed for operation. 

4.2.2.2 Active Filters 

The second stage of analog circuitry is composed of active filters. As mentioned before, 

these filters are used to make signal band limited and amplify the pass band frequency 

components of the raw signal. When gain at pre-amplification stage and active filters are 

considered, analog circuitry has an overall gain of 55 dB. 

In proposed HMI application, 3~500 Hz frequency band is used in algorithms. Active filters 

are designed to amplify frequency components between 3~500 Hz. Active filters block is 

composed of high pass and low pass second order Butterworth filters. Butterworth filter is 

chosen due to its flat pass band characteristics. The magnitude and phase responses of these 

filters are shared in Figure 32 - Figure 35. 

 

 

 

Figure 32: Magnitude Response of High Pass Filter in dB 
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Figure 33: Phase Response of High Pass Filter in Degrees 

 

 

 

Figure 34: Magnitude Response of Low Pass Filter in dB 
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Figure 35: Phase Response of Low Pass Filter in Degrees 

4.3 Digital Hardware 

In order to process a raw signal with developed signal processing techniques, it should be 

discretized. In other words, the analog signal should be converted to a digital signal. Signal 

processing algorithms are complex and time consuming.Therefore, using a PC to perform 

signal processing is preferred. As a result,digital hardware is composed of two main parts; 

A/D converter and digital data transferringmicrocontroller. 

Both of two main parts are realized using a microcontroller. The raw analog data is 

digitized by using internal A/D converter and sent to a PC. Transfer of digital data to PC 

may be done in any communication way that both microcontroller and PC support. Almost 

all of today’s computers have Universal Serial Bus (USB) communication hardware due to 

its effectiveness at data transfer. Micro controller used in this study has also internal USB 

communication hardware and digital data is transferred to PC via USB. 

PIC 18F4550 of Microchip Corp. is used as microcontroller in this study. PIC 18F4550 

needs minimum number of auxiliary elements to operate and it has an internal A/D 

converter and an USB communication adapter. Since 8 A/D converters are needed in this 

study, the A/D converter in microcontroller is used in a time multiplexed methodology. 

Designed embedded software drives the A/D converter and digitizes the raw analog data. 

Then, buffered digital data belonging to independent channels are put into a message form. 

Finally, this message is sent to PC via formed USB communication channel. 

Circuit schematics of digital hardware may be found at APPENDIX A. Data sheet of used 

microcontroller is also shared in [43]. 
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4.4 Experiment Controller and EMG Interface Design 

Monitoring of subsystems and raw EMG data is realized with main controller software. 

Raw EMG data recording is also done with this controller software. Main controller 

software acquires digital data sent by digital hardware and records raw EMG data. In 

addition to these, it processes raw signals and generates control commands. Then, these 

control commands are sent to robotic arm via another independent USB port. Therefore, 

hardware of robotic arm and EMG data acquisition system is fully isolated. They are 

integrated via main controller software. In this part, details of main controller software and 

its interface with other subsystems are explained. 

Flow chart of main software is given in Figure 36.  

 

 

Figure 36: Flowchart of Main Controller Software 

 

The main software is composed of three threads. User interface is controlled with an 

independent thread. As a result, user is capable of changing system state without any 

interruption. Data acquisition is realized with an independent thread, as well. Fresh raw 

data is recorded and transferred to signal processing thread. Lastly, signal processing thread 

processes raw EMG data and generates control commands for robotic arm. As final 

products, these control commands are sent to robotic arm controller. Since, main software 

is developed in a multi-thread architecture; it has small time delay during acquiring digital 

data, processing it, and sending commands to robotic arm. Three different threads are 

started in proper timing order and ended in accordance with state of the software. Main 

controller software is controlled with a user-friendly graphical user interface allowing the 

EMG operator to manage the EMG sessions easily. 
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Since this software runs under Windows operational software (OS) and Windows is not a 

real time OS, controller software may not be accepted as real time software.  

Controller software is developed in Borland Developer Studio software development 

environment which provides a useful framework for computer applications based on object 

oriented programming (OOP).  
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CHAPTER 5 

 

 

EXPERIMENTAL RESULTS 

 

 

 

As stated in the previous chapters, algorithms on feature extraction stage and classification 

stage have important effect on the overall system performance. Several tests are carried out 

with these algorithms and performance results are obtained. These results and comparisons 

of these algorithms are presented in this chapter. 

Firstly, results of time domain algorithms are shared. Effect of different time domain 

features on system accuracy is provided with results obtained from real test data. 

Secondly, accuracy of frequency domain based algorithmsare shared. As a measure of their 

accuracy, recognition performance of the frequency domain features are used. Success rates 

ofrecognitions are directly related to distinctiveness of frequency domain features and they 

are good indicators about overall system performance.  

Finally, accuracies of time domain and frequency domain feature based algorithms are 

compared. Different parameters which affect overall system performance are used in the 

evaluation of these algorithms. 

5.1 Results of Time Domain Algorithms 

As stated in Chapter 3, there are several time domain features that can be extracted from 

raw EMG data. In this part, these features are investigated in detail and accuracies of these 

algorithms are provided. 

As mentioned in chapter 4, main controller software records raw EMG data for post 

processing purposes. One of these records is used as test data and presented results are 

obtained from this real EMG data. Results of different algorithms on this test data are 

provided.  

 

Before sharing the test results of the time domain algorithms, success criteria should be 

well defined. The raw EMG data is shared with the time intervals that user desires to 

activate related servo motor. The time intervals, in which the operator is assumed that he is 

trying to activate a servo motor, are determined perceptually. Although perceptual 

determination method is erroneous, in proposed HMI system, this induced error has 

significantly small effect. In addition, time intervals, that time domain features exceed a 
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certain threshold, are also given. As a result, success criteria applied to algorithms is that 

the amount of match of these time intervals. In other words, algorithms are evaluated 

according to how successful they distinguish whether operator desires to activate servo or 

not. Figure 37 shows the time intervals in which the operator desires to activate a servo 

motor.  

 

 

Figure 37: Raw EMG Data Used to Test Algorithms 

 

Definition of Integrated EMG (IEMG) feature is shared in Chapter 3. Calculated IEMG 

from a sample test data is also shared in Chapter 3. 
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Figure 38: Calculated IEMG and IEMG Activated Time Intervals 

 

As it is seen from Figure 38, IEMG activated time intervals 85% match with the time 

intervals in which operator desires to run the servo. Therefore, performance of IEMG 

feature is 85% with a suitable threshold. In other words, when IEMG feature extracted from 

raw EMG signal in order to form a one dimensional feature vector, comparing IEMG value 

with a pre-defined threshold has 85% success rate. 
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Figure 39: Calculated MAV and MAV Activated Time Intervals 

 

When definitions of Mean Absolute Value (MAV) and IEMG given in chapter 3 are 

compared, they are separated only by a normalization factor. Therefore, MAV feature has 

also 85% success rate with a suitable threshold. In addition, since Mean Absolute Value 

Slope (MAVS) is simply time derivative of MAV, it has very close success rate with MAV. 
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Figure 40: Calculated MAVS and MAVS Activated Time Intervals 

 

Root Mean Square (RMS) feature calculated from raw EMG signal is also an important 

indicator whether operator wants to run related servo or not. 
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Figure 41: Calculated RMS and RMS Activated Time Intervals 

 

As seen from Figure 41, RMS feature also activates servo with 92% accuracy. Simple 

Square integral (SSI) and Variance (VAR), which are closely related with RMS,activate 

servos on robotic arm with success rate of 88% and 85% respectively. 

 

Figure 42: Calculated SSI and SSI Activated Time Intervals 
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Figure 43: Calculated VAR and VAR Activated Time Intervals 

 

Waveform Length (WL), Zero Crossing (ZC), Slope Sign Change (SSC), and Willison 

Amplitude (WA)are the time domain features which are closely related to frequency 

domain features. Actually, their amplitude is directly related to dominating frequency 

component of raw EMG signal. By applying a proper threshold, these features may easily 

trigger the related servo.Figure 44, Figure 45, and Figure 46provides activation time 

intervals of WL, ZC, SSC features. They have success rates of 92%, 97%, 85% 

respectively. WA has also a high success rate of 91%. 
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Figure 44: Calculated WL and WL Activated Time Intervals 

 

Figure 45: Calculated ZC and ZC Activated Time Intervals 
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Figure 46: Calculated SSC and SSC Activated Time Intervals 

 

 

Figure 47: Calculated WA and WA Activated Time Intervals 

 

As shown in Figure 38-Figure 47, time domain features have very high success rates, and 

they are easy to implement. The most important point that should be identified in this study 
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is that time domain features are not used to distinguish certain arm movements. They are 

used to sense contraction levels of muscle tissues. Corresponding servos on the robotic arm 

are driven in accordance with these contraction levels.Operators are educated about how to 

use this HMI system.By contracting certain muscles, corresponding servos on robotic arm 

are activated. As a result, time domain features are used to sensecontraction of muscle 

tissues with very high success rates.This is the main reason why time domain algorithms 

are implemented in nearly real time system. 

5.2 Results of Frequency Domain Algorithms 

As stated in Chapter 3, frequency median, frequency mean, and Auto-Regressive 

Parameters (AR Parameters) are used as frequency domain features and these featuresare 

not implemented in near-real time system. Frequency domain features are investigated by 

post-processing techniques. 

Since frequency domain based algorithms are time consuming, and they are not 

implemented in the HMI system designed in this work, they are used to distinguish 

different arm movements. As a test scenario, electrical activity of biceps brachii is recorded 

for right arm while it is lifting two different weights, 4 Kg and 10 Kg.Recorded EMG data 

are post processedto extract some frequency domain features. These frequency domain 

features are used to distinguish these different arm movements. Therefore, the success 

criteriafor frequency domain algorithmsare the success rate of this recognition. 

As it is mentioned in chapter 3, first AR parameter is used for recognition. These 

parameters are shared in Figure 48 and Figure 49. 

 

 

Figure 48: First AR Parameters of 4 Kg Data Set for Each Segment 
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Figure 49: First AR Parameters of 10 Kg Data Set for Each Segment 

 

It is observed that these AR parameters are distinctive enough for recognition. 40 

repetitions of same movement is realized and recorded for both 4 Kg and 10 Kg lifting. 

During application of SVM algorithm, 50% of data log is used for training and rest is 

classified. This test is repeated for 1000 times and mean of error rate of recognition is 

28.53%, with standard deviation of 1.12%. 

 

Additional frequency domain features;such as frequency mean and frequency median; are 

also described in Chapter 3. These features are also extracted from the raw EMG data 

which aregiven in Figure 37.As mentioned in Chapter 3, frequency domain features are 

calculated by using power spectral density.On the other hand, modified frequencydomain 

features are calculated from the amplitude spectrum. Therefore, they are closely related and 

their performances are very close. 

Frequency mean and median features are extracted with post processing and they are used 

to distinguish different arm movements. In these tests, 4 Kg and 10 Kg lifting EMG records 

are used. Similar to AR parameters, 50% of test data is used for training. 
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Figure 50: Frequency Mean Recognition Error Rates 

 

Error rates for 1000 trials of recognition tests, which are realized with frequency mean 

feature, are shared in Figure 50. Frequency mean is very distinctive feature, therefore 

recognition error rates has a mean of 0.02% with standard deviation of 0.002%. Frequency 

mean parameters which are used in these tests are shared in Figure 51 and Figure 52. 

 

 

Figure 51: Frequency Mean Features of 4 Kg Data Set 
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Figure 52: Frequency Mean Features of 10 Kg Data Set 

 

As mentioned before, modified frequency mean feature is as distinctive as frequency mean 

feature.  

When Figure 51andFigure 52 are compared, it may be observed that frequency mean 

feature of 10 Kg data set is smaller than 4 Kg data set. Power of EMG data at 4 Kg data set 

is less than EMG data at 10 Kg data set. Therefore, frequency mean of 4 Kg data is more 

close to frequency mean feature which is calculated when muscle is in idle state. This result 

is shared in Chapter 3, as well. On the other hand, EMG data at 10 Kg set is more powerful 

when compared to 4 Kg set. Therefore, its frequency mean is more close to natural EMG 

mean frequency. 

As frequency median feature is fed to the SVM algorithm, success rate of recognition 

significantly decreases. Frequency median feature has 53% success rate at 1000 trials. 

Therefore, frequency median should not be used in gesture detection. By definition, 

frequency median is the frequency which splits power spectral density into two equally 

powered parts. Since spectrum of background noise and raw EMG signal overlaps, 

frequency mean feature does not change significantly from gesture to gesture. Modified 

frequency median is very closely related with frequency median feature. As a result, it has 

also very low success rates at recognition. 

5.3 Comparison of Time and Frequency Domain Algorithms 

As it is understood from previous parts, time domain features and frequency domain 

features are not used with the same objective. Therefore, their comparison,based on their 

performances in this study, may only be used to identify their advantages and drawbacks. 
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Time domain features are extracted with fast algorithms and they are more distinctive. In 

addition, some of the time domain features have indicative information about frequency 

domain features. Therefore, time domain features can also be used for a movement 

recognition purpose. The reason of why time domain features are not used for movement 

recognition in this study is that success rate of recognition with time domain features 

decreases as movement variety increases. In this HMI application, lower recognition 

success rates may cause overall system to be useless. Therefore, in this study, time domain 

features are used to sense contraction levels of muscle tissues with high success rates. 

However, most important drawback of time domain features is that they are very sensitive 

to background and instrumentation noise. Therefore, data acquisition system performance 

has a direct effect on time domain algorithms. 

Although frequency domain features are extracted with time consuming algorithms, they 

are distinctive in movement recognition applications. In addition, frequency domain based 

algorithms are more robust to background and instrumentation noise. Therefore, these 

algorithms decrease effect of data acquisition system on overall system performance. When 

results of frequency domain features are investigated, it is observed that high gesture 

detection rates are obtained. However, these rates are obtained with post processing. 

Extraction of frequency domain features in real-time flowing data is more complex and 

time consuming. This effort may be accepted in cases that number of independent data 

sources is limited and number of classes is high. 

As a result, there is a tradeoff between computation complexity and number individual 

classes and independent data channels. The designer should carefully decide feature type 

and number of channels. 
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 

In this thesis, an implementation of EMG driven HMI system is performed. Data 

acquisition unit and algorithms are designed in scope of this study.Proposed HMI 

system aims to drive the robotic arm by using EMG signals obtained from the operator. 

Several performance tests are realized and reliable system performance is obtained. 

Designed HMI system is able to drive the robotic arm with a specific purpose.General 

view of the robotic arm which is used in this study is shown inFigure 53. 

 

 

Figure 53: The Robotic Arm AL5D 

 

Both time domain and frequency domain features are examined. There are two different 

work completed with feature extraction studies. First a near-real time HMI system is 
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designed by using contraction state of specific muscle tissue.Then, performances of 

features on gesture detection are evaluated. Results of these works are shared inTable 4. 

Table 4: Results of Time/Frequency Domain Feature Extraction Algorithms 

Time/Frequency Domain Feature Success Rate 

Integrated EMG 85% 

Mean Absolute Value 85% 

Mean Absolute Value Slope 82% 

Root-Mean-Square 92% 

Simple Square Integral 88% 

Variance 85% 

Waveform Length 92% 

Zero-Count 97% 

Slope Sign Change 85% 

Willison Amplitude 91% 

Auto-Regressive Modeling 
72%  

Frequency Mean 
99.98% 

Frequency Median 
53% 

 

6.1 General Observations and Discussions 

Several design criteria are satisfied and tests are performed. Some observations are 

made after overall system design and tests are completed. 

First observation is that the relation between independent data channels and number of 

individual classes should be well managed. As the number of independent data channels 

decreases and more classes are desired to be identified, the only way is to detect gestures 

of operator. In addition, correlation between “independent” EMG data for different 

gestures increases. Therefore, extracted features lose their indicative properties. In cases 

where class number is high, contraction state driving methods which are implemented in 

this study may be used. It should not be forgotten that contraction state driving methods 

requires more data channels. 
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Second, the designer should be aware of the fact that EMG signal is not stationary. 

Therefore, while extracting frequency features from raw data, segmentation length 

should be chosen carefully. Especially, in AR parameter calculation, as described in 

chapter 3, residuals are good indicators of estimation success. These residuals are 

expected to be white noise. It is important to improve modeling quality to have a better 

recognition performance. 

Third, the whole system should be tested with more people from different age groups, 

and gender. Proposed HMI system is tested with only two people and some additional 

tests are required to be performed. 

Lastly, hardware and software design are also important for overall system performance. 

The most important parameter which effects user satisfaction is that time delay between 

user’s acts and movements of robotic arm. In the proposed HMI system, main control 

software runs on non-real-time operational software. Therefore, there is a delay of 

300~500 ms during normal operational conditions. Software embedded in digital 

hardware is designed to minimize time elapsed from A/D conversion to complete 

transfer of digital data to PC. 

6.2 Future Work 

The thesis can be further improved with future studies on the following topics: 

 Designed signal processing, recognition, and control command generating 

algorithms are implemented by asoftware which runs on Windows. A main board should be 

designed for this HMI application.Designed algorithms would run on this main board. 

Therefore, delay between muscle contractions and robotic arm movements may be 

shortened.In addition, computational time may be shortened significantly. 

 The developed near-real time HMI system is only applicable for time domain 

features. Frequency domain signal processing algorithms are implemented in post-

processing analysis environment. In this study, success rates in offline recognition 

experiments are used as performance criteria. These frequency domain algorithms should 

be implemented in a real time HMI system.  

 The HMI system implemented in this thesis drives only a robotic arm. As 

mentioned in chapter 2, it is also possible to control different devices by using EMG signal. 

Some different devices, which need less distinct classes for driving purposes, may be 

controlled with the proposed HMI system. Designed hardware may also be updated 

accordingly, as well. 

 Another point in this study which should be improved is the designed analog and 

digital hardware. All printed circuit boards are produced by hand and circuit elements are 

soldered by hand. A better performance may be achieved by developed production 

techniques. Dimensions of circuits may be reduced by using small elements, as well. 
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 In this study, it is shown that the information extracted from raw EMG signal may 

be used for HMI applications. In future studies, some torque and force estimation 

algorithms may be studied in order to drive some paralyzed muscle tissues for functional 

purposes. As it is mentioned before, during the evaluation of time domain features, start of 

muscle contraction is determined perceptually. Some mechanical force measurement 

instrumentation may be introduced as a ground truth to determine muscle contractions. 

 

 

Figure 54: An Operator Running Proposed HMI System 
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APPENDIX A 

 

 

EMG HARDWARE SCHEMATICS 

 

 

 

The circuit diagram of the designed high-pass and low-pass circuitsare shown in Figure 55 

and Figure 56. Cut-off frequencies are 3 Hz for high-pass filter and 500 Hz for low-pass 

filter. 

 

 

Figure 55: Second Order Butterworth High Pass Filter 
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Figure 56: Second Order Butterworth Low-Pass Filter 

 

These active filters are cascaded in order to have band-pass filter. High-pass filter has a 

pass band gain of 25. On the other hand, low-pass filter has unity pass band gain. Overall 

analog circuit including pre-amplification stage is shown in Figure 57. Circuit in Figure 

57is implemented for each individual channel. 
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Figure 57: Overall Analog Amplification Circuit for Each Channel 

 

EMG signal is naturally a zero-mean signal.Therefore, before A/D conversion, a DC offset 

is required to be added to amplified raw EMG signal. Summing amplifier shown in Figure 

58is used for DC offset addition. 
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Figure 58: Summing Amplifier for DC Offset Addition 

Schematic of digital hardware is provided in Figure 59. 

 

 

Figure 59: Schematic of The Digital Circuit 
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Common Mode Rejection Ratio of analog amplifier circuit with respect to frequency is 

provided in Figure 60. 

 

 

Figure 60: CMRR of Designed EMG Amplifier vs Frequency 


