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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

FINANCIAL MATHEMATICS

AUGUST 2013





Approval of the thesis:

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND
FEYNMAN-KAC FORMULA IN THE PRESENCE OF JUMP

PROCESSES
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ABSTRACT

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND
FEYNMAN-KAC FORMULA IN THE PRESENCE OF JUMP PROCESSES

İncegül Yücetürk, Cansu

M.S., Department of Financial Mathematics

Supervisor : Assist. Prof. Dr. Yeliz Yolcu Okur

Co-Supervisor : Assoc. Prof. Dr. Azize Hayfavi

August 2013, 85 pages

Backward Stochastic Differential Equations (BSDEs) appear as a new class of
stochastic differential equations, with a given value at the terminal time T . The
application area of the BSDEs is conceptually wide which is known only for forty
years. In financial mathematics, El Karoui, Peng and Quenez have a fundamen-
tal and significant article called “Backward Stochastic Differential Equations in
Finance” (1997) which is taken as a groundwork for this thesis. In this thesis
we follow the following steps: Firstly, the principal theorems of BSDEs driven by
Brownian motion are proved. Later, an application to partial differential equa-
tions (PDEs) is presented i.e. generalization of Feynman-Kac formula. More-
over, the studies of Situ in 1997 and his book entitled with “Theory of Stochastic
Differential Equations with Jumps and Applications” provide us a framework to
prove explicitly the main theorems of BSDEs in the presence of jumps. After-
ward, Feynman-Kac formula for general Lévy processes is proven. Lastly, the
results are concluded by some applications in financial mathematics.

Keywords : backward stochastic differential equations, Feynman-Kac formula,
option pricing, hedging portfolios, jump processes
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ÖZ

SIÇRAMA SÜREÇLERİNİN VARLIĞINDA GERİYE DOĞRU STOKASTİK
DİFERANSİYEL DENKLEMLER VE FEYNMAN-KAC FORMÜLÜ

İncegül Yücetürk, Cansu

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Yeliz Yolcu Okur

Ortak Tez Yöneticisi : Doç. Dr. Azize Hayfavi

Ağustos 2013, 85 sayfa

Geriye Doğru Stokastik Diferansiyel Denklemler (GSDDler) bitiş zamanındaki
değeri verilen yeni bir stokastik diferansiyel denklem sınıfı olarak ortaya çıkmıştır.
GSDDlerin son kırk yıldır bilinmelerine rağmen uygulama alanı gittikçe genişle-
mektedir. Bu teze temel oluşturan El Karoui, Peng ve Quenez’e ait “Backward
Stochastic Differential Equations in Finance” (1997) isimli makale finansal ma-
tematikte son derece önemli bir yer tutmaktadır. Tezin işleniş şekli aşağıdaki
aşamalardan oluşmaktadır: Öncelikle, Brown hareketi ile oluşturulan GSDDler
için temel teoremler ispatlanmıştır. Daha sonra, kısmi diferansiyel denklemlere
(KDDlere) uygulama olan Feynman-Kac formülü incelenmiştir. Ayrıca, sıçra-
maların varlığında GSDDlerin ana teoremlerini açık şekilde ispatlamamız için
Situ’nun 1997 yılındaki çalışmaları ve “Theory of Stochastic Differential Equa-
tions with Jumps and Applications” başlıklı kitabı bize yol göstermiştir. Sonra-
sında, genel Lévy süreçleri için Feynman-Kac formülü ispatlanmıştır. Son olarak,
finansal matematikte bazı uygulamalar yapılmıştır.

Anahtar Kelimeler : geriye doğru stokastik diferansiyel denklemler, Feynman-Kac
formülü, opsiyon fiyatlama, korunma portföyleri, sıçrama süreçleri
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CHAPTER 1

INTRODUCTION

Backward stochastic differential equations (BSDEs) are one of the interesting re-
search areas with increasing activity because of their connections with theoretical
economics, nonlinear partial differential equation (PDE) theory, stochastic opti-
mization problems and particularly, mathematical finance. The theory of finding
the replicating portfolio and pricing contingent claims is typically considered in
terms of a linear BSDE in mathematical finance. This thesis organized as a
careful and explicit study about existence and uniqueness of BSDEs, compari-
son of solutions, their application in finance and connection to PDE with basic
Brownian motion case and more advanced case with jumps. So as to provide a
comprehensible thesis about BSDEs, the order of a brief literature review, the
difference between forward stochastic differential equations (SDEs or FSDEs) and
backward stochastic differential equations (BSDEs), the stream of the thesis is
given in the introduction.

BSDEs were firstly defined and expressed linearly by Bismut [4] in 1973. They
become more popular after the general concept of BSDEs were considered by
Pardoux and Peng [23] in 1990. They proved the existence and uniqueness of
adapted processes as a pair (Y, Z), such that

dYt = −f(t, Yt, Zt)dt+ Zt
∗dWt, YT = ξ (1.1)

for given uniformly Lipschitz adapted stochastic process f : [0, T ]×Rd×Rn×d 7→
Rd (called generator or driver), d-dimensional Brownian motion W and square
integrable terminal condition ξ. The contributions of Pardoux and Peng to de-
velopment of BSDEs are really rich and valued such as introducing comparison
theorem (Peng [25], 1992) and generalization of Feynman-Kac formula (Pardoux
and Peng [24], 1992). In 1997, El Karoui and Quenez [10] studied on crucial appli-
cations in the theory of mathematical finance with BSDEs taking parts in hedging
and non-linear pricing theory. In the same year, El Karoui, Peng and Quenez [9]
advanced their studies and wrote their worthy article which constructs the basis
of this thesis. BSDEs driven by a Brownian motion and a Poisson point process is
studied by Situ [26] in 1997 and his book Theory of Stochastic Differential Equa-
tions with Jumps and Applications [27] includes a chapter about BSDEs which is
also closely followed to study about BSDEs with jumps in this thesis.

Recently, it is more interesting and sophisticated to work with BSDEs instead of
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SDEs. A standard SDE is given as

dYt = −f(t, Yt, Zt)dt+ Zt
∗dWt, Y0 = ξ

which can be solved under growth, Lipschitz conditions and bounded expectation
of the terminal value’s square (E[ξ2] < +∞). Furthermore, this SDE has an
adapted unique solution by the help of SDE theory [17]. However, unlike standard
forward differential equations when the terminal value of the contingent claim is
known, adaptedness problem for the solution arises. In other words, solving a
SDE backwards becomes more complicated since the given terminal value YT = ξ
leads ξ to be FT -measurable. Then significantly, Yt’s will become FT -measurable.
The equivalent integral form of equation (1.1)

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Zs
∗dWs, (1.2)

shows that Zs is FT -measurable (Zs ∈ FT , s ∈ [t, T ]) then the integral with

respect to Brownian motion (
∫ T

t
Zs
∗dWs) would have no meaning in normal SDE

theory even with bounded and Lipschitz f and Z. Luckily, by the help of the
financial experiences, the most famous backward problems of finding the repli-
cating portfolio or the price of a contingent claim indicate the existence of a pair
of random processes (Yt, Zt) satisfying the equation (1.1) where Yt, Zt could be
considered as a wealth process and a hedging portfolio respectively. This distinct
is the main motivation to work with BSDEs and their applications.

One of our major target is to have more realistic market assumptions since it
would be more valuable. Working with multidimensional model and allowing
jumps are the tools of this thesis so as to have more realistic and incomplete
markets. Additionally, for practical reasons it is good to have multidimensional
models in financial applications. In order to address broad research scholars, this
thesis is divided into two parts mainly from theoretical aspects. The ones being
interested in BSDEs in finance and their connection to PDEs in Brownian case
could utilize the chapters 2,3. The other ones being attracted by BSDEs in the
presence of jumps could utilize the last chapters 4,5.

The organization of this thesis can be described as follows:

After a general explanatory introduction about BSDE, in Chapter 1; the theory of
BSDE including existence and uniqueness of a solution, comparison of solutions,
are stated and clearly proved in Chapter 2. Also in Chapter 2, pricing and hedging
contingent claims as an application of BSDEs in finance are explained.

In Chapter 3, forward-backward stochastic differential equations (FBSDEs) are
introduced and by the help of FBSDEs the generalization of Feynman-Kac theo-
rem is driven in the Brownian case.

The financial experiences show that the diffusion models are not strong enough
to capture the empirical properties of asset returns, represent the main features
of option prices and provide suitable tools for hedging and risk management.

2



Although the mathematical calculations become hard to derive, working with
jump processes gives more practical results.

In Chapter 4, the structure of BSDEs with jumps are introduced, the existence
and uniqueness theorem is proven and the comparison theorem is stated. In addi-
tion, the model in finance, pricing and hedging contingent claims are considered.

As a difference from the most of researches done by using orthonormalized com-
pensated power-jump processes (called Teugels martingales), in Chapter 5 the
generalized Feynman-Kac formula is proven by the help of FBSDEs for the gen-
eral Lévy processes. Finally, the thesis is concluded by a brief summary of all
work done and potential future studies.

3
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CHAPTER 2

BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS

Both from the theory and application sides, the backward stochastic differential
equations (BSDEs) are widely studied after they were introduced by Bismut [4] in
1973. As of imposing research area, many scientists contribute to evolve BDSEs in
many fields during forty years as of today. One of the substantial resources of this
thesis is the article of El Karoui, Peng and Quenez [9] which enlarges the earlier
studies in finance. In this chapter, a detailed study of the theory and arguments
will be done by closely following this article. Firstly, the space and dynamics
of a BSDE are defined. Later, by some priori estimates the spread between the
solutions of two BSDEs is going to be stated, from which the results of existence
and uniqueness will be derived. In particular, the classical one-dimensional linear
BSDEs in finance is studied and the comparison theorem is stated. Lastly, a
BSDE model in finance is discussed.

For ease of use we fix the notation as follows

• For x ∈ Rd, |x| denotes its Euclidean norm.

• For x ∈ Rd, 〈x, y〉 denotes the inner product.

• An n× d matrix will be considered as an element y ∈ Rn×d.

• For y ∈ Rn×d, the Euclidean norm is given by |y| =
√
trace(yy∗).

• For y, z ∈ Rn×d, the inner product is given by 〈y, z〉 = trace(yz∗).

• For the rest of the paper “∗” is used to denote transpose matrix.

Given a probability space (Ω,F ,P) and an Rn-valued Brownian motion W , we
consider

• {(Ft); t ∈ [0, T ]}, the filtration generated by the Brownian motion W and
argumented and P the σ-field of predictable sets of Ω× [0, T ].

• F = σ{Wt : t ≥ 0}, is the sigma algebra generated by the Brownian motion.

5



• L2
T (R

d), the space of all FT -measurable random variables X : Ω 7→ Rd

satisfying ‖X‖2 = E(|X|2) < +∞.

• H2
T (R

d), the space of all predictable processes φ : Ω× [0, T ] 7→ Rd such that

‖φ‖2 = E
∫ T

0
|φt|2dt < +∞.

• H1
T (R

d), the space of all predictable processes ϕ : Ω× [0, T ] 7→ Rd such that

E

√∫ T

0
|ϕt|2dt < +∞.

• For β > 0 and φ ∈ H2
T (R

d), ‖φ‖2β denotes E
∫ T

0
eβt|φt|2dt. H2

T,β(R
d) denotes

the space H2
T (R

d) endowed with the norm ‖·‖β.

For notational simplicity we may use L2
T (R

d) = L
2,d
T , H2

T (R
d) = H

2,d
T , H1

T (R
d) =

H
1,d
T and H2

T,β(R
d) = H

2,d
T,β.

2.1 Existence and Uniqueness of Backward Stochastic Differential
Equations

Before introducing the dynamics of a BSDE, it is important to emphasize that the
existence and uniqueness firstly proven by Pardoux and Peng [23]. However, El
Karoui, Peng found a shorter proof by using the difference between the solutions
of two BSDEs [10] which is also clearly stated in this work.

Let (Ω,F ,P) be a complete probability space and consider the BSDE

− dYt = f(t, Yt, Zt)dt− Z∗t dWt, YT = ξ, (2.1)

or, equivalently,

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z∗sdWs, (2.2)

where

• the terminal value ξ > 0 is an FT -measurable random variable, which maps
Ω onto Rd,

• the generator f maps Ω×R+×Rd×Rn×d onto Rd and it is P⊗Bd
⊗Bn×d-

measurable. Note that, Bd denotes Borel-measurable sets in Rd, likewise
Bn×d denotes Borel-measurable sets in Rn×d.

Definition 2.1. The pair (Y, Z) is said to be a solution if it satisfies the equation
(2.1) where {Yt : t ∈ [0, T ]} is a continuous Rd-valued adapted process and

{Zt; t ∈ [0, T ]} is an Rn×d-valued predictable process in H
2,n×d
T .
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Definition 2.2. A function f is uniformly Lipschitz if there exists constant C > 0
such that

|f(ω, t, y1, z1)− f(ω, t, y2, z2)| ≤ C(|y1− y2|+ |z1− z2|) ∀(y1, z1), ∀(y2, z2) ∈ R2.

Definition 2.3. The pair (f, ξ) are called standard parameters of the BSDE if

ξ ∈ L
2,d
T , f(·, 0, 0) ∈ H

2,d
T and f is uniformly Lipschitz.

In the following proposition, some useful inequalities obtained in order to use in
the proof of existence and uniqueness theorem.

Proposition 2.1. Let (f 1, ξ1), (f 2, ξ2) be two standard parameters of the BSDE
and (Y 1, Z1), (Y 2, Z2) be two square-integrable solutions. Let C be a Lipschitz
constant for f 1 and put δYt = Y 1

t −Y 2
t , δZt = Z1

t −Z2
t and δ2ft = f 1(t, Y 2

t , Z
2
t )−

f 2(t, Y 2
t , Z

2
t ). For any (λ, µ, β) such that µ > 0, λ2 > C and β ≥ C(2 + λ2) + µ2,

it follows that

‖δY ‖2β ≤ T

[
eβTE(|δYT |2) +

1

µ2
‖δ2f‖2β

]
, (2.3)

‖δZ‖2β ≤ λ2

λ2 − C

[
eβTE(|δYT |2) +

1

µ2
‖δ2f‖2β

]
. (2.4)

Proof. Let (Y, Z) ∈ H
2,d
T ×H

2,n×d
T be a solution of our BSDE which is

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z∗sdWs,

by using triangle inequality and taking the supremum we get,

|Yt| ≤ |ξ|+
∣∣∣∣
∫ T

t

f(s, Ys, Zs)ds

∣∣∣∣+
∣∣∣∣
∫ T

t

Z∗sdWs

∣∣∣∣,

sup
t∈[0,T ]

|Yt| ≤ |ξ|+
∫ T

0

|f(s, Ys, Zs)|ds+ sup
t∈[0,T ]

∣∣∣∣
∫ T

t

Z∗sdWs

∣∣∣∣.

We need all of the components to belong L
2,1
T in order to have bounded |Yt|.

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ T

t

Z∗sdWs

∣∣∣∣
2]
= E

[
sup

t∈[0,T ]

∣∣∣∣
∫ T

0

Z∗sdWs −
∫ t

0

Z∗sdWs

∣∣∣∣
2]
,

≤ E

[
sup

t∈[0,T ]

2

(∣∣∣∣
∫ T

0

Z∗sdWs

∣∣∣∣
2

+

∣∣∣∣
∫ t

0

Z∗sdWs

∣∣∣∣
2)]

,

= 2E

[∣∣∣∣
∫ T

0

Z∗sdWs

∣∣∣∣
2]
+ 2E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

Z∗sdWs

∣∣∣∣
2]
,

= E

[ ∫ T

0

|Zs|2ds
]
+ 2E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

Z∗sdWs

∣∣∣∣
2]
. (2.5)
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by Itô isometry. It follows by Burkholder-Davis-Gundy inequalities (see Appen-
dices, Lemma A.1) and quadratic variation of the Brownian motion,

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ T

t

Z∗sdWs

∣∣∣∣
2]
≤ 2E

[ ∫ T

0

|Zs|2ds
]
+ 2d1E

[ ∫ T

0

|Zs|2ds
]
≤ ∞.

Hence, supt∈[0,T ] |
∫ T

t
Z∗sdWs|2 ∈ L

2,1
T . Moreover, (f, ξ) are standard parameters

given, |ξ| +
∫ T

0
|f(s, Ys, Zs)|ds belongs to L

2,1
T . Then sups≤T |Ys| ∈ L

2,1
T and we

have shown the boundedness.

Remember that the Itô formula applied to f(t, xt) is as follows:

f(T, xT ) = f(t, xt) +

∫ T

t

∂f

∂s
(s, xs)ds+

∫ T

t

∂f

∂xs
(s, xs)dxs

+
1

2

∫ T

t

∂2f

∂x2s
(s, xs)d〈x, x〉(s). (2.6)

We will apply Itô formula (2.6) from t to T to the semimartingale eβt|δYt|2, by
taking

f(t, x) = eβt|x|2,
then

∂f

∂t
(t, x) = βeβtx2,

∂f

∂x
(t, x) = 2eβtx,

∂2f

∂x2
(t, x) = 2eβt.

Let us rewrite the given conditions which will be used in the following calculations,

δYt = Y 1
t − Y 2

t ,

δZt = Z1
t − Z2

t ,

−dY 1
t = f 1(t, Y 1

t , Z
1
t )dt− (Z1

t )
∗dWt,

−dY 2
t = f 2(t, Y 2

t , Z
2
t )dt− (Z2

t )
∗dWt.

After replacing x with |δYt| in the Itô formula (2.6), we get

eβT |δYT |2 = eβt|δYt|2 +
∫ T

t

βeβs|δYs|2ds+
∫ T

t

2eβs|δYs|d|δYs|

+
1

2

∫ T

t

2eβsd〈|δY |, |δY |〉(s),

with the following quadratic variation;

d〈|δY |, |δY |〉(t) = |δZt|2dt.
which implies to

eβt|δYt|2 + β

∫ T

t

eβs|δYs|2ds+
∫ T

t

eβs|δZs|2ds

8



= eβT |δYT |2 − 2

∫ T

t

eβs|δYs|d|Y 1
s − Y 2

s |,

= eβT |δYT |2 − 2

∫ T

t

eβs|δYs||dY 1
s − dY 2

s |,

= eβT |δYT |2 − 2

∫ T

t

eβs|δYs|
∣∣∣∣
(
f 2(s, Y 1

s , Z
1
s )− f 1(s, Y 2

s , Z
2
s )
)
ds

+
(
(Z1

s )
∗ − (Z2

s )
∗
)
dWs

∣∣∣∣,

= eβT |δYT |2 + 2

∫ T

t

eβs|δYs|
∣∣∣∣
(
f 1(s, Y 1

s , Z
1
s )− f 2(s, Y 2

s , Z
2
s )
)
ds

−
(
(Z1

s )
∗ − (Z2

s )
∗
)
dWs

∣∣∣∣,

= eβT |δYT |2 + 2

∫ T

t

eβs〈δYs, f 1(s, Y 1
s , Z

1
s )− f 2(s, Y 2

s , Z
2
s )〉ds

− 2

∫ T

t

eβs〈δYs,
(
(Z1

s )
∗ − (Z2

s )
∗
)
dWs〉,

= eβT |δYT |2 + 2

∫ T

t

eβs〈δYs, f 1(s, Y 1
s , Z

1
s )− f 2(s, Y 2

s , Z
2
s )〉ds

− 2

∫ T

t

eβs〈δYs, δZ∗sdWs〉. (2.7)

We will use the Lipschitz condition below and the difference of the generator
functions for the second solution
∣∣f 1(ω, t, y1, z1)− f 1(ω, t, y2, z2)

∣∣ ≤ C
(
|y1 − y2|+ |z1 − z2|

)
∀(y1, z1), ∀(y2, z2),

δ2ft = f 1(t, Y 2
t , Z

2
t )− f 2(t, Y 2

t , Z
2
t ),

for the calculations of
∣∣f 1(s, Y 1

s , Z
1
s )−f 2(s, Y 2

s , Z
2
s )
∣∣ to get two necessary inequal-

ities; primarily,
∣∣f 1(s, Y 1

s , Z
1
s )− f 2(s, Y 2

s , Z
2
s )
∣∣ =

∣∣f 1(s, Y 1
s , Z

1
s )− f 2(s, Y 2

s , Z
2
s )± f 1(s, Y 2

s , Z
2
s )
∣∣,

=
∣∣f 1(s, Y 1

s , Z
1
s ) + δ2fs − f 1(s, Y 2

s , Z
2
s )
∣∣,

≤
∣∣f 1(s, Y 1

s , Z
1
s )− f 1(s, Y 2

s , Z
2
s )|+

∣∣δ2fs|,
≤ C

(
|δYs|+ |δZs|

)
+ |δ2fs|.

Besides let us show now, 2y(Cz + t) ≤ Cz2/λ2 + t2/µ2 + y2(µ2 + Cλ2) where
µ > 0, λ2 > C.

0 ≤
(
z

λ
− yλ

)2

=
z2

λ2
+ y2λ2 − 2zy,

C2zy ≤
(
z2

λ2
+ y2λ2

)
C = C

z2

λ2
+ Cy2λ2, (2.8)
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additionally,

0 ≤
(
t

µ
− yµ

)2

=
t2

µ2
+ y2µ2 − 2ty,

2ty ≤ t2

µ2
+ y2µ2. (2.9)

By adding side by side the equations (2.8) and (2.9), we get

2y(Cz + t) ≤ C
z2

λ2
+
t2

µ2
+ y2(µ2 + Cλ2). (2.10)

This inequality will imply the following, by taking expectation in equation (2.7);

also sups≤T |Ys| ∈ L
2,1
T leads to eβsδZsδYs ∈ H

1,n
T and

∫ T

t
eβs〈δYs, δZ∗sdWs〉 is

P-integrable with zero expectation, then

E[eβt|δYt|2] + βE

[ ∫ T

t

eβs|δYs|2ds
]
+ E

[ ∫ T

t

eβs|δZs|2ds
]
,

≤ E[eβT |δYt|2] + 2E

[ ∫ T

t

eβs〈δYs, C
(
|δYs|+ |δZs|

)
+ |δ2fs|〉ds

]
,

= E[eβT |δYt|2] + E

[ ∫ T

t

eβs〈2δYs, C
(
|δYs|+ |δZs|

)
+ |δ2fs|〉ds

]
.

Here by using 〈2δYs, C(|δYs|+ |δZs|) + |δ2fs|〉 part, we get

〈2δYs, C
(
|δYs|+ |δZs|

)
+ |δ2fs|〉 ≤ 2C〈δYs, |δYs|〉+2C〈δYs, |δZs|〉+2〈δYs, |δ2fs|〉

= 2C|δYs|2 + 2|δYs|
(
C|δZs|+ |δ2fs|

)
.

After defining y := |δYs|, C := C, z := |δZs| and t := |δ2fs| in equation (2.10),
we turn back expectations

E[eβt|δYt|2] + βE

[ ∫ T

t

eβs|δYs|2ds
]
+ E

[ ∫ T

t

eβs|δZs|2ds
]
,

≤ E[eβT |δYT |2] + E

[ ∫ T

t

eβs
(
2C|δYs|2 + C

|δZs|2
λ2

+ |δYs|2(µ2 + λ2C)

+
|δ2fs|2
µ2

)
ds

]
,

= E[eβT |δYT |2] + E

[ ∫ T

t

eβs
(
|δYs|2

(
C(2 + λ2) + µ2

)
+ C

|δZs|2
λ2

+
|δ2fs|2
µ2

)
ds

]
. (2.11)
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By using C(2 + λ2) + µ2 ≤ β and C
λ2 ≤ 1, we continue with

≤ E[eβT |δYT |2] + E

[ ∫ T

t

eβs
(
|δYs|2β + |δZs|2 +

|δ2fs|2
µ2

)
ds

]
,

= E[eβT |δYT |2] + β E

[ ∫ T

t

eβs|δYs|2ds
]
+ E

[ ∫ T

t

eβs|δZs|2ds
]

+
1

µ2
E

[ ∫ T

t

eβs|δ2fs|2ds
]
.

(2.12)

After doing cancellations, we have

E[eβt|δYt|2] = E[eβT |δYT |2] +
1

µ2
E

[ ∫ T

t

eβs|δ2fs|2ds
]
.

Finally, we obtain the upper-bound of the β-norm of the process δY by integra-
tion,

‖δY ‖2β ≤ T

[
eβTE[|δYT |2] +

1

µ2
‖δ2f‖2β

]
.

Now, by using inequality (2.11) we will find the bound for the norm of the process
δZ,

E[eβt|δYt|2] + β E

[ ∫ T

t

eβs|δYs|2ds
]
+ E

[ ∫ T

t

eβs|δZs|2ds
]
,

≤ E[eβT |δYT |2] + β E

[ ∫ T

t

eβs|δYs|2ds
]
+
C

λ2
E

[ ∫ T

t

eβs|δZs|2ds
]

+
1

µ2
E

[ ∫ T

t

eβs|δ2fs|2ds
]
.

The second terms cancel each other and it implies to
(
1− C

λ2

)
E

[ ∫ T

t

eβs|δZs|2ds
]
≤ −E[eβt|δYt|2] + E[eβT |δYT |2]

+
1

µ2
E

[ ∫ T

t

eβs|δ2fs|2ds
]
,

≤ +E[eβT |δYT |2] +
1

µ2
E

[ ∫ T

t

eβs|δ2fs|2ds
]
.

(2.13)

in other way,

E

[ ∫ T

t

eβs|δZs|2ds
]
≤

(
λ2

λ2 − C

) {
E[eβT |δYT |2] +

1

µ2
E

[ ∫ T

t

eβs|δ2fs|2ds
]}

.
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Similarly, by integration, β-norm of the process δZ is bounded:

‖δZ‖2β ≤
(

λ2

λ2 − C

) [
eβTE[|δYT |2] +

1

µ2
‖δ2f‖2β

]
.

Remark 2.1. • An upper-bound for the β-norm of δY can be found after
replace T by inf(T, [β − C(2 + λ2)− µ2]−1).

• By classical results it can be proven similarly that

E[sup
t≤T

|δYt|2] ≤ KE

[
|δYT |2 +

∫ T

0

|δ2ft|2dt
]
,

for a positive constant K only depending on T . [9]

Now all the tools are ready to prove the existence and uniqueness theorem. The
following theorem is stated by Pardoux-Peng [23] but here the paper of El Karoui,
Peng, Quenez [9] is followed and the theorem is explicitly proven by using a
contraction map.

Theorem 2.2. Let (f, ξ) be standard parameters, then there exists a unique pair

(Y, Z) ∈ H
2,d
T ×H

2,n×d
T solving (2.1).

Proof. Let (f, ξ) be the standard parameters. Hence, f(·, 0, 0) ∈ H
2,d
T , ξ ∈ L

2,d
T

and f is uniformly Lipschitz. Also let M be

Mt := ξ +

∫ T

0

f(s, ys, zs)ds−
∫ T

t

Z∗sdWs.

The solution (Y, Z) is defined by considering the continuous square-integrable

martingale E
[
ξ +

∫ T

0
f(s, ys, zs)ds|Ft

]
.

Mt = E[MT |Ft] = E

[
ξ +

∫ T

0

f(s, ys, zs)ds−
∫ T

T

Z∗sdWs|Ft

]

= E

[
ξ +

∫ T

0

f(s, ys, zs)ds|Ft

]
.

By the martingale representation theorem (MRT, see Appendices, Theorem A.4)

of the Brownian motion [17] there exists a unique integrable process Z ∈ H
2,n×d
T

such that

Mt =M0 +

∫ t

0

Z∗sdWs.
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We introduce the adapted and continuous process Y by

Yt :=Mt −
∫ t

0

f(s, ys, zs)ds.

When we put Mt in the above equation, Y is also given as

Yt = M0 +

∫ t

0

Z∗sdWs −
∫ t

0

f(s, ys, zs)ds,

= ξ +

∫ T

0

f(s, ys, zs)ds−
∫ T

0

Z∗sdWs +

∫ t

0

Z∗sdWs −
∫ t

0

f(s, ys, zs)ds,

= ξ +

∫ T

t

f(s, ys, zs)ds−
∫ T

t

Z∗sdWs.

Yt = E[Yt|Ft], since Yt ∈ Ft,

= E

[
ξ +

∫ T

t

f(s, ys, zs)ds|Ft

]
− E

[ ∫ T

t

Z∗sdWs|Ft

]
,

= E

[
ξ +

∫ T

t

f(s, ys, zs)ds|Ft

]
−

∫ t

t

Z∗sdWs,

= E

[
ξ +

∫ T

t

f(s, ys, zs)ds|Ft

]
.

Thus, the square-integrability of Y follows from the above assumptions.

Assume that (y1, z1), (y2, z2) are two elements of H2,d
T,β ×H

2,n×d
t,β and let (Y 1, Z1)

and (Y 2, Z2) be the associated solutions;

Y 1
t = ξ +

∫ T

t

f(s, Y 1
s , Z

1
s )ds−

∫ T

t

Z1
s
∗
dWs,

Y 2
t = ξ +

∫ T

t

f(s, Y 2
s , Z

2
s )ds−

∫ T

t

Z2
s
∗
dWs,

δYt = Y 1
t − Y 2

t =

∫ T

t

(
f(s, Y 1

s , Z
1
s )− f(s, Y 2

s , Z
2
s )
)
ds−

∫ T

t

(Z1
s
∗ − Z2

s
∗
)dWs.

It is obvious that δYT = 0 which implies E[|δYT |] = 0. We will use E[|δYT |] = 0
and apply the equation (2.3) of Proposition 2.1 with C = 0 and µ2 = β, then

‖δY ‖2β ≤ T

[
eβTE[|δYT |2] +

1

µ2
‖δ2f‖2β

]
,

= T

[
0 +

1

β
‖δ2f‖2β

]
,

=
T

β
‖f(t, y1t , z1t )− f(t, y2t , z

2
t )‖

2

β ,

=
T

β
E

[ ∫ T

0

eβs|f(s, y1s , z1s)− f(s, y2s , z
2
s)|2ds

]
.
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By Proposition 2.1 equation (2.4) its obtained that

‖δZ‖2β ≤ λ2

λ2 − C

[
eβTE[|δYT |2] +

1

µ2
‖δ2f‖2β

]
,

=
λ2

λ2 − 0

[
0 +

1

β
‖δ2f‖2β

]
,

=
1

β
‖f(t, y1t , z1t )− f(t, y2t , z

2
t )‖

2

β,

=
1

β
E

[ ∫ T

0

eβs|f(s, y1s , z1s)− f(s, y2s , z
2
s)|2ds

]
.

Before adding ‖δY ‖2β and ‖δZ‖
2
β, let us remind that f is Lipschitz with constant

c ∣∣f(t, y1t , z1t )− f(t, y2t , z
2
t )
∣∣ ≤ c

(
|δy|+ |δz|

)
.

By taking squares and applying (a+ b)2 ≤ 2(a2 + b2) here and we obtain

∣∣f(t, y1t , z1t )− f(t, y2t , z
2
t )
∣∣2 ≤ c2

(
|δy|+ |δz|

)2 ≤ 2c2
(
|δy|2 + |δz|2

)
.

Now we add ‖δY ‖2β, ‖δZ‖
2
β and take C = c2, then

‖δY ‖2β + ‖δZ‖
2
β ≤ T + 1

β
E

[ ∫ T

0

eβs
∣∣f(s, y1s , z1s)− f(s, y2s , z

2
s)
∣∣2ds

]
,

≤ T + 1

β
E

[ ∫ T

0

eβs2C
(
|δy|2 + |δz|2

)
ds

]
,

≤ 2(T + 1)C

β
E

[ ∫ T

0

eβs|δy|2ds+
∫ T

0

eβs|δz|2ds
]
.

‖δY ‖2β + ‖δZ‖
2
β ≤ 2(T + 1)C

β

[
‖δy‖2β + ‖δz‖

2
β

]
. (2.14)

The Banach fixed-point theorem (see Appendices, Theorem A.5) is used for the

mapping Φ. Note that, this mapping Φ is from H
2,d
T,β×H

2,n×d
T,β onto H

2,d
T,β×H

2,n×d
T,β ,

which maps the processes (y, z) onto the solution (Y, Z) of the BSDE, Φ : (y, z) 7→
(Y, Z) with generator f(t, yt, zt); i.e.,

Yt = ξ +

∫ T

t

f(s, ys, zs)ds−
∫ T

t

Z∗sdWs.

The mapping Φ is a contraction from H
2,d
T,β × H

2,n×d
T,β onto itself, if we choose

β > 2(1 + T )C and there exists a fixed point, which is the unique continuous
solution of the BSDE.
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When the contraction condition is satisfied, the related iterative sequence of Y
converges almost surely to the solution of the BSDE with the following corollary.

Corollary 2.3. Let β be constant such that 2(T + 1)C < β. Let (Y k, Zk) be the
sequence defined recursively by (Y0 = 0, Z0 = 0) and

− dY k+1
t = f(t, Y k

t , Z
k
t )dt− (Zk+1

t )∗dWt, Y k+1
T = ξ. (2.15)

Then the sequence (Y k, Zk) converges to (Y, Z), dP ⊗ dt a.s. when k → +∞ in

H
2,d
t,β ×H

2,n×d
T,β .

Proof. Assume (Y k, Zk) be the sequence defined recursively as in (2.15). Then
by (2.14),

‖Y k+1 − Y k‖2β + ‖Zk+1 − Zk‖2β = ‖δY k‖2β + ‖δZk‖2β,

≤
(
2(T + 1)C

β

)
[
‖δY k−1‖2β + ‖δZk−1‖2β

]
,

≤
(
2(T + 1)C

β

)2 [
‖δY k−2‖2β + ‖δZk−2‖2β

]
,

≤ . . . ,

≤
(
2(T + 1)C

β

)k [
‖δY 0‖2β + ‖δZ0‖2β

]
,

≤
(
2(T + 1)C

β

)k [
‖Y 1 − Y 0‖2β + ‖Z1 − Z0‖2β

]
.

‖Y k+1 − Y k‖2β + ‖Zk+1 − Zk‖2β ≤ ǫk K.

where ǫ := (2(T+1)C
β

) < 1 and K := ‖Y 1 − Y 0‖2β + ‖Z1 − Z0‖2β. Then while

k →∞ the geometric series converges
∑

k

‖Y k+1 − Y k‖2β +
∑

k

‖Zk+1 − Zk‖2β < +∞.

Remark 2.2. It is possible to consider the norm ‖sups∈[0,T ] |Y k
s − Ys| ‖2 instead of

‖Y ‖β as it is remarked in [9]; consequently the sups∈[0,T ] |Y k
s − Ys| converges P

a.s. to 0 which provides to work with different norms.

2.1.1 Linear Backward Stochastic Differential Equation

A BSDE is called linear backward stochastic differential equation (LBSDE), if it
is generated by linear functions and defined as follows;

−dYt = [ϕt + Ytβt + Z∗t γt]dt− Z∗t dWt, YT = ξ.
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Later we will use a LBSDE to specify the integrability properties of the solution
of the standard pricing problem in Theorem 2.8.

Proposition 2.4. Assume that (β, γ) is a bounded (R,Rn)-valued predictable
process, ϕ is an element of H2,1

T and ξ is an element of L2,1
T . Also assume that, Γt

s

is the adjoint process defined for s ≥ t by the forward linear stochastic differential
equation,

dΓt
s = Γt

s

[
βsds+ γ∗sdWs

]
, Γt

t = 1. (2.16)

Then the LBSDE

− dYt = [ϕt + Ytβt + Z∗t γt]dt− Z∗t dWt, YT = ξ, (2.17)

has unique solution (Y, Z) in H
2,1
T,β ×H

2,n
T,β and Yt is given by the closed formula

Yt = E

[
ξΓt

T +

∫ T

t

Γt
sϕsds|Ft

]
P a.s., (2.18)

in particular, if ξ and ϕ are nonnegative, the process Y is nonnegative. If, in
addition, Y0 = 0, then Yt = 0 a.s. for any t, ξ = 0 a.s. and ϕt = 0 dP⊗ dt a.s.

Proof. Our first aim is to show (f, ξ) are the standard parameters. ξ ∈ L
2,n
T is

given and f is uniformly Lipschitz by the below inequality,
∣∣f(w, t, y1, z1)− f(w, t, y2, z2)

∣∣ = |ϕt + βty1 + z∗1γt − ϕt − βty2 − z∗2γt|,
=

∣∣βt(y1 − y2) + (z1 − z2)
∗γt

∣∣,
≤ C

(
|y1 − y2|+

∣∣(z1 − z2)
∗
∣∣
)
,

where |βt| < K1, |γt| < K2 and C = max{K1, K2}.

The (f, ξ) pair are standard parameters as β and γ are given as bounded processes
and the linear generator f(t, y, z) = ϕt + βty + γ∗t z is uniformly Lipschitz. By
Theorem 2.2 there exists a unique solution (Y, Z) of the linear BSDE associated
with (f, ξ) and the solution is square-integrable. By standard calculations, the
solution of SDE (2.16) is found. We apply Itô formula (2.6) with f(x) = log x,

log Γt
s = log Γt

t +

∫ s

t

1

Γt
s

dΓt
s −

1

2

∫ s

t

( 1

Γt
s

)2

d〈Γt
s,Γ

t
s〉,

= log 1 +

∫ s

t

1

Γt
s

Γt
s[βsds+ γ∗sdWs]−

1

2

∫ s

t

|γ∗s |2ds,

=

∫ s

t

βsds+

∫ s

t

γ∗sdWs −
1

2

∫ s

t

|γ∗s |2ds,

then the solution will be

Γt
s = exp

{∫ s

t

βsds+

∫ s

t

γ∗sdWs −
1

2

∫ s

t

|θ∗s |2ds
}
.
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When we consider the starting time from 0, we get

Γt := Γ0
t = exp

{∫ t

0

βsds+

∫ t

0

γ∗sdWs −
1

2

∫ t

0

|γ∗s |2ds
}
.

It follows from Novikov’s condition (see Appendices, Theorem A.7) that for any
square-integrable contingent claim E(Γ2

T ) < +∞, E(ΓT ξ) < +∞.

d(ΓtYt) = YtdΓt + ΓtdYt + d[Γ, Y ](t),

= YtΓt

[
βtdt+ γ∗t dWt

]
+ Γt

[
− ϕtdt− βtYtdt− Z∗t γtdt+ Z∗t dWt

]
,

+ ΓtZ
∗
t γtdt,

= ΓtYtβtdt+ ΓtYtγ
∗
t dWt − Γtϕtdt− ΓtYtβtdt− ΓtZ

∗
t γtdt+ ΓtZ

∗
t dWt,

+ ΓtZ
∗
t γtdt,

= ΓtYtγ
∗
t dWt − Γtϕtdt+ ΓtZ

∗
t dWt,

= Γt(Z
∗
t − Ytγ

∗
t )dWt − Γtϕtdt.

Then is is seen that sups≤T |Ys| and sups≤T |Γs| belong to L
2,1
T and sups≤T |Ys| ×

sups≤T |Γs| belongs to L
1,1
T . Hence, ΓtYt +

∫ t

0
Γsϕsds is uniformly integrable mar-

tingale and equal to the conditional expectation of its terminal value.

ΓtYt +

∫ t

0

Γsϕsds = E

[
ΓT ξ +

∫ T

0

Γsϕsds | Ft

]
.

If we consider Y0 = 0,

Γ0Y0 +

∫ 0

0

Γsϕsds = E

[
ΓT ξ +

∫ T

0

Γsϕsds | F0

]

0 = E

[
ΓT ξ +

∫ T

0

Γsϕsds

]
,

(2.19)

then the nonnegative variable ΓT ξ +
∫ T

0
Γsϕsds has 0 expectation. Therefore

ξ = 0, P a.s., ϕt = 0, dP ⊗ dt a.s. and Y = 0 a.s. Particularly, if ξ and ϕ are
nonnegative, Yt is nonnegative.

2.2 Comparison Theorem

The interplay between the solutions could affect the decisions and choices. Also,
this differences should reflect the real world as expected by which the comparison
theorem becomes important. For the forward SDEs the same diffusion functions
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is needed so as to confront the solutions [13]. However, the conditions are more
relaxed for the BSDEs. For one-dimensional BSDEs, comparison of solutions are
first acquired by [25]. In this section, we will state a corollary from our main
article [9] which provides us a sufficient condition for the nonnegative solution of
BSDE. Later, we will state the comparison theorem again from our main article
and give a precise, detailed proof.

Corollary 2.5. If f(t, 0, 0) ≥ 0 dP ⊗ dt a.s. and ξ ≥ 0 a.s., then Y ≥ 0 P a.s.
Moreover, if Yt = 0 on a set A ∈ Ft, then Ys = 0, f(s, 0, 0) = 0 on [t, T ] × A,
ξ = 0 a.s. on A and dP⊗ ds a.s.

Theorem 2.6. (Comparison Theorem). If (f 1, ξ1) and (f 2, ξ2) are two standard
parameters of BSDEs with the square-integrable solutions (Y 1, Z1) and (Y 2, Z2)
respectively, in addition

• ξ1 ≥ ξ2 P a.s.

• δ2ft = f 1(t, Y 2
t , Z

2
t )− f 2(t, Y 2

t , Z
2
t ) ≥ 0, dP⊗ dt a.s.

then we have Y 1
t ≥ Y 2

t almost surely for any time t.

Besides if it is given that, Y 1
0 = Y 2

0 , then ξ1 = ξ2, f 1(t, Y 2
t , Z

2
t ) = f 2(t, Y 2

t , Z
2
t ),

dP⊗ dt a.s. and Y 1 = Y 2 a.s. More generally if Y 1
t = Y 2

t on a set A ∈ Ft, then
Y 1
s = Y 2

s a.s. on [t, T ] × A, ξ1 = ξ2 a.s. on A and f 1(s, Y 2
s , Z

2
s ) = f 2(s, Y 2

s , Z
2
s )

on A× [t, T ] dP⊗ ds a.s.

Proof. Here we have two BSDEs,

−dYt = f 1(t, Yt, Zt)dt− Z∗t dWt; YT = ξ1,

−dYt = f 2(t, Yt, Zt)dt− Z∗t dWt; YT = ξ2,

so that the solutions (Y 1, Z1), (Y 2, Z2) will satisfy these equations;

−dY 1
t = f 1(t, Y 1

t , Z
1
t )dt− (Z1

t )
∗dWt; Y 1

T = ξ1,

−dY 2
t = f 2(t, Y 2

t , Z
2
t )dt− (Z2

t )
∗dWt; Y 2

T = ξ2.

Define δY = Y 1 − Y 2, δZ = Z1 − Z2, subtract −dY 2
t from −dY 1

t ;

− dY 1
t + dY 2

t = f 1(t, Y 1
t , Z

1
t )dt− (Z1

t )
∗dWt − f 2(t, Y 2

t , Z
2
t )dt+ (Z2

t )
∗dWt,

−d(Y 1
t − Y 2

t ) = f 1(t, Y 1
t , Z

1
t )dt− (Z1

t )
∗dWt

− f 2(t, Y 2
t , Z

2
t )dt+ (Z2

t )
∗dWt ± f 1(t, Y 2

t , Z
2
t )dt,

−d(δYt) = f 1(t, Y 1
t , Z

1
t )dt− f 1(t, Y 2

t , Z
2
t )dt− f 2(t, Y 2

t , Z
2
t )dt

+ δ2ftdt− (δZt)
∗dWt ± f 1(t, Y 2

t , Z
1
t )dt,

and δYT = Y 1
T − Y 2

T = ξ1 − ξ2. We define

∆yf
1(t) :=

{
(f 1(t, Y 1

t , Z
1
t )− f 1(t, Y 2

t , Z
1
t ))/(Y

1
t − Y 2

t ) if Y 1
t − Y 2

t 6= 0,
0 if otherwise.
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Also,

∆zf
1,i(t) :=

{
(f 1(t, Y 2

t , Z̃
i−1
t )− f 1(t, Y 2

t , Z̃
i
t))/(Z

1,i
t − Z2,i

t ) if Z1,i
t − Z2,i

t 6= 0,
0 if otherwise.

where Z̃i is the vector such that the associated components of Z2 are the first i
components and the associated components of Z1 are the last n− i components
i.e.,

Z̃i
t = (Z2,1

t , . . . , Z2,i
t , Z1,i+1

t , . . . , Z1,n
t ).

The processes ∆yf
1 and ∆zf

1,i are bounded since by assumption the generator
f 1 is uniformly Lipschitz with respect to (y, z). We turn back and see that our
equation becomes,

− d(δYt) = ∆yf
1(t)δYtdt+∆zf

1(t)∗δZtdt+ δ2ftdt− (δZt)
∗dWt. (2.20)

By proposition 2.4, the LBSDE (2.20) has unique solution (δY, δZ) such that

δYt = E

[
(ξ1 − ξ2)Γt

T +

∫ T

t

Γt
sδ2fsds|Ft

]
, (2.21)

where Γt
s is the adjoint process defined for s ≥ t by the forward linear stochastic

differential equation

dΓt
s = Γt

s

[
∆yf

1(s)ds+∆zf
1(s)

∗
dWs

]
, Γt

t = 1.

The given condition ξ1 ≥ ξ2, δ2f ≥ 0 with Γt
s then δYt ≥ 0 a.s. for any time t.

Also, if 1
t = Y 2

t on a set A ∈ Ft, then ξ
1 = ξ2, δ2fs = 0, dP⊗ ds on A× [t, T ] and

f 1(s, Y 1
s , Z

1
s ) = f 2(s, Y 2

s , Z
2
s ) a.s. on A× [t, T ] which completes the proof.

The comparison theorem explains naturally the option pricing facts in a financial
market. It tells that a bigger contingent claim ξ1 makes the option price Y

1
t bigger

at the present time.

2.3 The Model in Finance

In this section, we will deal with pricing and hedging problems in a complete
market by using the previous results. Our aim is to find a unique solution of a
LBSDE which is the fair price in the market.

It is natural to gain some interest when an individual lends money by buying a
riskless asset. Thus, let the riskless asset price for continuous-time model be

dP 0
t = P 0

t rtdt, (2.22)
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where rt is the short rate. For instance, this riskless asset can be assumed as a
bond. Furthermore, we assume there are number of n risky securities (for example
stocks) for continuous-time where i = 1, 2, ..., n has the following

dP i
t = P i

t

[
bitdt+

n∑

j=1

σi,j
t dW

j
t

]
, (2.23)

rememberW = (W 1,W 2, ...,W n)∗ is a standard Brownian motion on Rn, defined
on a probability space (Ω,F ,P). P is said to be the probability measure. Right-
continuous filtration (Ft ; 0 ≤ t ≤ T ) which is usually generated by the Brownian
motion W , gives the information structure and “∗” means transpose.

Example 2.1. If the number of risky assets is taken as n = 2, then there exist
n+ 1 = 3 assets. Then the dynamics of the assets have the following form:

dP 0
t = P 0

t rtdt,

dP 1
t = P 1

t [b1tdt+ σ1,1
t dW 1

t + σ1,2
t dW 2

t ],

dP 2
t = P 2

t [b2tdt+ σ2,1
t dW 1

t + σ2,2
t dW 2

t ],

where the coefficients satisfy some regularity conditions.

2.3.1 Hypothesis (A)

• The interest (short) rate r is a predictable and bounded process. Moreover,
it is typically nonnegative due to the fact that the pay-off is nonnegative.

• The stock appreciation rate (drift term) b = (b1, b2, ..., bn)∗ is a column
vector of predictable and bounded processes.

• The volatility σ = (σi,j) is a n × n matrix of predictable and bounded
processes. σt has full rank a.s. for all t ∈ [0, T ] and the inverse matrix σ−1
is also bounded process.

• There exists θ vector called a risk premium such that it is predictable and
bounded process and

bt − rt1 = σtθt, dP⊗ dt a.s.,

where 1 denotes the vector with all components being 1.

By the assumptions for rt, bt, σt and the number of risky assets being equal to the
number of source of randomness, we get the necessary condition for a continuous
market to be complete.

It is assumed that the market prices are not affect by purchases of the small
investors. In addition, the decisions can only be based on the current information
(Ft). Here π

i
t is the amount of the wealth Vt to invest in the i-th risky asset where

i = 1, 2, ...n at the time t ∈ [0, T ]. π0
t = Vt−

∑n
i=1 π

i
t defines the amount of wealth

of the enterpriser to invest in the riskless asset.
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Definition 2.4. A strategy (V, π) is called self-financing if the wealth process
Vt =

∑n
i=0 π

i
t satisfies the following equality

Vt = V0 +

∫ t

0

n∑

i=0

πi
t

dP i
t

P i
t

. (2.24)

Proposition 2.7. A strategy is self-financing if the wealth process satisfies the
linear stochastic differential equation (LSDE)

dVt = rtVtdt+ π∗t (bt − rt1)dt+ π∗t σtdWt,

= rtVtdt+ π∗t σt[dWt + θtdt].

Here see that Wt +
∫ t

0
θsds is a Brownian motion under risk neutral probability

measure Q. (See Appendices, Theorem A.6)

Proof. Get
dP i

t

P i
t

from (2.22) and (2.23) then replace in (2.24) and differenciate.

Vt = V0 +

∫ t

0

π0
srsds+

∫ t

0

n∑

i=1

πi
s

[
bisds+

n∑

j=1

σi,j
s dW

j
s

]
,

dVt = π0
t rtdt+

n∑

i=1

πi
t

[
bitdt+

n∑

j=1

σi,j
t dW

j
t

]
,

=

[
Vt −

n∑

i=1

πi
t

]
rtdt+

n∑

i=1

πi
t

[
bitdt+

n∑

j=1

σi,j
t dW

j
t

]
,

=

[
rtVt −

n∑

i=1

πi
trt +

n∑

i=1

πi
tb

i
t

]
dt+

n∑

i=1

n∑

j=1

πi
tσ

i,j
t dW

j
t ,

= rtVtdt+
n∑

i=1

πi
t(b

i
t − rt)dt+

n∑

i=1

n∑

j=1

πi
tσ

i,j
t dW

j
t .

In matrix notation and we use the last assumption of 2.3.1 Hypothesis (A)

dVt = rtVtdt+ π∗t (b
i
t − rt1)dt+ π∗t σtdWt,

= rtVtdt+ π∗t σtθtdt+ π∗t σtdWt,

= rtVtdt+ π∗t σt

[
dWt + θtdt

]
.

In order to understand the ideas better let us give a simple example.
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Example 2.2. Let us assume there are two number of risky assets (i.e. n = 2),

dP 0
t

P 0
t

= rtdt,

dP 1
t

P 1
t

= [b1tdt+ σ1,1
t dW 1

t + σ1,2
t dW 2

t ],

dP 2
t

P 2
t

= [b2tdt+ σ2,1
t dW 1

t + σ2,2
t dW 2

t ].

Then the self-financing strategy satisfies

Vt = V0 +

∫ t

0

π0
s

dP 0
s

P 0
s

+

∫ t

0

π1
s

dP 1
s

P 1
s

+

∫ t

0

π2
s

dP 2
s

P 2
s

,

by replacing
dP i

t

P i
t

for i=0,1,2; we get

Vt =V0 +

∫ t

0

π0
srsds+

∫ t

0

π1
s [b

1
sds+ σ1,1

s dW 1
s + σ1,2

s dW 2
s ]

+ π2
s [b

2
sds+ σ2,1

s dW 1
s + σ2,2

s dW 2
s ].

After several derivations, it is obtained

dVt = π0
t rtdt+ π1

t [b
1
tdt+ σ1,1

t dW 1
t + σ1,2

t dW 2
t ] + π2

t [b
2
tdt+ σ2,1

t dW 1
t + σ2,2

t dW 2
t ],

= π0
t rtdt+

2∑

i=1

πi
t[b

i
tdt+

2∑

j=1

σi,j
t dW

j
t ],

If we replace π0
t = Vt −

∑2
i=1 π

i
t,

dVt = (Vt −
2∑

i=1

πi
t)rtdt+

2∑

i=1

πi
t[b

i
tdt+

2∑

j=1

σi,j
t dW

j
t ],

= (rtVt −
2∑

i=1

πi
trt +

2∑

i=1

πi
tb

i
t)dt+

2∑

i=1

2∑

j=1

πi
tσ

i,j
t dW

j
t ,

= rtVtdt+
2∑

i=1

πi
t(b

i
t − rt)dt+

2∑

i=1

2∑

j=1

πi
tσ

i,j
t dW

j
t .

The above term can also be written as follows:

dVt = rtVtdt+
[
π1
t π2

t

] [b1t − rt
b2t − rt

]
dt+

[
π1
t π2

t

] [σ1,1
t σ1,2

t

σ2,1
t σ2,2

t

] [
dW 1

t

dW 2
t

]
,

which is

dVt = rtVtdt+ π∗t (bt − rt1)dt+ π∗t σtdWt,

= rtVtdt+ π∗t σtθtdt+ π∗t σtdWt,

= rtVtdt+ π∗t σt[dWt + θtdt].
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The model (called Merton model) can be generalized by adding ct (the positive
rate of consumption at time t), then the LSDE becomes

dVt = rtVtdt− ctdt+ π∗t σt[dWt + θtdt].

The cumulative amount of consumption between 0 and t as Ct is introduced as

Ct =

∫ t

0

csds.

See [9] for further details.

Definition 2.5. A strategy (V, π) is called trading strategy if the wealth process
Vt =

∑n
i=0 π

i
t and portfolio process πt = (π1

t , π
2
y , ..., π

n
t )
∗ satisfies the following

dVt = rtVtdt+ π∗t σt[dWt + θtdt],

∫ T

0

|σ∗t πt|2dt < +∞,P a.s. (2.25)

Definition 2.6. A strategy is said to be feasible if the constraint of nonnegative
wealth holds:

Vt ≥ 0 t ∈ [0, T ], P a.s.

Definition 2.7. A strategy (V, π, C) is called superstrategy if it satisfies

dVt = rtVtdt− dCt + π∗t σt[dWt + θtdt],

∫ T

0

|σ∗t πt|2dt < +∞,P a.s., (2.26)

here V is the wealth process(or the market value), π is the portfolio process, Ct

is the cumulative consumption process and Ct is an increasing, right-continuous,
adapted process with C0 = 0

Definition 2.8. A superstrategy is called feasible if the constraint of nonnegative
wealth holds:

Vt ≥ 0 t ∈ [0, T ], P a.s.

2.4 Pricing and Hedging Positive Contingent Claims in Diffusion Mod-
els

According to the arbitrage-free pricing principle of a positive contingent claim,
if the price of the claim is started as initial endowment and it is invested in
the number of n + 1 assets, then the value of the portfolio must be just enough
to guarantee ξ at time T , where ξ ,the FT -measurable random variable, is the
contingent claim settled at time T .

Now, some definitions preserving the presentation of [13] is given so as to obtain
a closed formula for the fair price.

Definition 2.9. Let ξ ≥ 0 be a positive contingent claim,
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1. A feasible self-financing strategy (V, π) (resp. (V, π, C)) such that VT = ξ
is called a hedging strategy against ξ (resp. a superhedging strategy).

2. If the class of hedging strategies (resp. superhedging strategies) H(ξ) (resp.
H′(ξ)) against ξ is nonempty, then ξ is called hedgeable (resp. superhedge-
able).

3. The fair price X0 (resp. upper price X ′
0) at time 0 of hedgeable (resp.

superhedgeable) claim ξ is the smallest initial endowment needed to hedge
ξ; i.e.,

X0 = inf{x ≥ 0; ∃(V, π) ∈ H(ξ) such that V0 = x},
X ′

0 = inf{x ≥ 0; ∃(V, π, C) ∈ H′(ξ) such that V0 = x}.

If 2.3.1 Hypothesis (A) is satisfied, for any square-integrable claim ξ ≥ 0, then
the space H(ξ) becomes nonempty and the market is called as complete. It means
that every contingent claim in the complete financial market can be hedged [9].
Moreover, the fair price is the market value of a hedging strategy in H(ξ) [13], as
proved in the following theorem.

Theorem 2.8. Assume 2.3.1 Hypothesis (A) holds and ξ ≥ 0 be a square-
integrable contingent claim. Then there exists a hedging strategy (X, π) against ξ
such that

dXt = rtXtdt+ π∗t σtθtdt+ π∗t σtdWt, XT = ξ, (2.27)

and the fair price and the upper price of the claim is the market value X.

Moreover, if we assume that (H t
s; s ≥ t) is the deflator started at time t defined

as following:
dH t

s = −H t
s[rsds+ θ∗sdWs], H t

t = 1. (2.28)

Then
Xt = E[H t

T ξ|Ft], a.s. (2.29)

Proof. Let us find the solution of the SDE (2.28) of deflator H by applying Itô
formula (2.6) to f(x) = log(x) where s ≥ t, then

logH t
s = logH t

t +

∫ s

t

1

H t
s

dH t
s −

1

2

∫ s

t

( 1

H t
s

)2

d〈H t
s, H

t
s〉,

= log 1−
∫ s

t

1

H t
s

H t
s[rsds+ θ∗sdWs]−

1

2

∫ s

t

|θ∗s |2ds,

= −(
∫ s

t

rsds+

∫ s

t

θ∗sdWs +
1

2

∫ s

t

|θ∗s |2ds),

then the solution is started at time t

H t
s = exp

{
−

∫ s

t

rsds−
∫ s

t

θ∗sdWs −
1

2

∫ s

t

|θ∗s |2ds
}
.
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Here, we can show the solution started at time 0 as follows

Ht := H0
t = exp

{
−

∫ t

0

rsds−
∫ t

0

θ∗sdWs −
1

2

∫ t

0

|θ∗s |2ds
}
.

Since r and θ are bounded processes, it follows Novikov’s condition (see Appen-
dices, Theorem A.7) that E(H2

T ) < +∞ and E(HT ξ) < +∞ for any square-
integrable contingent claim.

d(HtXt) =XtdHt +HtdXt + d〈H,X〉t
=−XtHt[rtdt+ θ∗t dWt] +Ht(rtXtdt+ π∗t σtθtdt+ π∗t σtdWt)

−Htπ
∗
t σtθtdt

=−HtXtrtdt−HtXtθ
∗
t dWt +HtXtrtdt+Htπ

∗
t σtθtdt

+Htπ
∗
t σtdWt −Htπ

∗
t σtθtdt

=−HtXtθ
∗
t dWt +Htπ

∗
t σtdWt

=Ht(π
∗
t σt −Xtθ

∗
t )dWt.

We realize that there is no drift term in the above equality which proves it is a
martingale. After defining the continuous adapted process X from;

HtXt = E[HT ξ|Ft]

Then we define Ut as
Ut := Ht(π

∗
t σt −Xtθ

∗
t ).

Which implies that
H−1

t Ut = π∗t σt −Xtθ
∗
t ,

H−1
t Ut +Xtθ

∗
t = π∗t σt,

(H−1
t Ut +Xtθ

∗
t )σ

−1
t = π∗t ,

πt = (σ∗t )
−1(H−1

t Ut +Xtθt).

By martingale representation theorem for the Brownian motion [17] HtXt can be
represented as a stochastic integral such that

HtXt = E(HT ξ) +

∫ t

0

U∗s dWs,

∫ T

0

|Ut|2dt < +∞ a.s.

We can find (X, π) satisfying the linear BSDE (2.27) by Itô’s lemma. Since the

processes X and H are continuous, θ is bounded, we can show
∫ T

0
|σ∗t πt|2dt < +∞

a.s. So (X, π) is a hedging strategy against ξ with X0 = E(HT ξ).

Lastly, X0 (resp. Xt) is the upper price (resp. the smallest superhedging strat-
egy). Let (X,ϕ,C) be a superhedging strategy against ξ. Again using Itô’s
lemma for the product of the RCLL semimartingale V and the continuous semi-
martingale H and using (2.26), we have that (HtVt)t∈[0,T ] is a positive local su-
permartingale with decomposition dHtVt = −HtdCt + (UV

t )
∗dWt, where U

V
t =

Ht[−Vtθt + (σ∗t )ϕt]. Thus, (HtVt)t∈[0,T ] is a positive supermartingale by Fatou’s
lemma [14] and

HtVt ≥ E[HTVT |Ft] = HtXt, V0 ≥ E(HT ξ) = X0. (2.30)
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Remark 2.3. The fair price of the claim ξ has the property in equation (2.29).
The fair price can be calculated as the expectation of the discounted asset pricess
such that

Xt = EQ[e
−

∫ T

t
rsdsξ|F ],

under the risk neutral probability measure Q where the Radon-Nikodym deriva-
tive with respect to P on FT is given by

dQ

dP
= exp

{
−

∫ T

0

θ∗sdWs −
1

2

∫ T

0

|θs|2ds
}
.

We realize that Q is well defined as a probability measure since, by assumption, θ
is bounded. Moreover, Q is a martingale measure; that is, the discounted wealth
processes are Q-local martingales.
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CHAPTER 3

BACKWARD STOCHASTIC DIFFERENTIAL
EQUATION APPLICATION TO PDE

In this chapter, crucial connection between backward stochastic differential equa-
tions (BSDEs) and classical partial differential equations (PDEs) for the contin-
uous case are concerned from [8] and [9] which are closely followed. As first a
coupled forward-backward system is consider. Later, a lucid proof is given for
the solution of BSDE included in the forward-backward stochastic differential
equation (FBSDE) is Markovian (in the sense that depending only on the solu-
tion of the forward stochastic differential equation (SDE) part of the system).
Additionally, the generalization of Feynman-Kac formula is proven. Lastly, the
chapter is concluded by a proposition remarking that Delta hedging will be the
strategy in order to replicate the claims in the Brownian case.

3.1 Forward-Backward Stochastic Differential Equations

In this section, the BSDEs whose parameters (f, ξ) with Markovian standard
parameters are considered. Initially, a new system of equations including SDE
and BSDE is defined.

3.1.1 The Model for FBSDEs

Given a probability space (Ω,F ,Q) and Rn-valued Brownian motion W , for any
(t, x) ∈ [0, T ]× Rp, we have the stochastic price process on [0, T ]:

dPs = b(s, Ps)ds+ σ(s, Ps)dWs, t ≤ s ≤ T

Ps = x, 0 ≤ s ≤ t. (3.1)

The solution of the SDE (3.1) will be denoted {P t,x
s , 0 ≤ s ≤ T}. Then we

consider the BSDE coming from the state of the forward equation,

− dYs = f(s, P t,x
s , Ys, Zs)ds− Z∗sdWs

YT = ψ(P t,x
T ). (3.2)
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The solution of the BSDE (3.2) will be denoted {(Y t,x
s , Zt,x

s ), ≤ s ≤ T}. The
dynamics (3.1) and (3.2) form the system called forward-backward stochastic
differential equation (FBSDE) and the solution is denoted by {(P t,x

s , Y t,x
s , Zt,x

s ),
0 ≤ s ≤ T}.

Let T > 0, b(·, ·) : [0, T ] × Rp 7→ Rp, f(·, ·, ·, ·) : [0, T ] × Rp × Rd × Rn×d 7→ Rd,
σ(·, ·) : [0, T ]×Rp 7→ Rp×n and ψ(·) : Rp 7→ Rd be measurable functions satisfying
the following Lipschitz conditions on the coefficients: there exists constant C > 0
such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C(1 + |x− y|),
|f(t, x, y1, z1)− f(t, x, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|).

(3.3)

Lastly, in order to have unique solutions for the equations (3.1) and (3.2) assume
that, there exists constant C satisfying the growth condition, which is

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|),
|f(t, x, y, z)|+ |ψ(x)| ≤ C(1 + |x|p)

(3.4)

for any real p ≥ 1/2. Here, the existence and uniqueness of FBSDEs is not proven
since it follows from existence and uniqueness of SDEs and BSDE’s. However, it
could be found in [1].

3.1.2 Markov Properties of FBSDEs

A.A. Markov derived Markov property for discrete time in 1906. Intuitively, the
random variables are said to Markovian when their future values after some time t
do not influence by the history of the process before that time t. This property is
crucial for the pricing of options. To illustrate, when an asset price is Markovian
and this asset is also the underlying asset of the option, then the option price is
only dependent to the price of underlying asset at time t.

Definition 3.1. When the terminal condition is only depending on the state of
the forward diffusion and the driver of BSDE is only depending on the uncertainty
through the state of Markov process (more specially through the state of diffusion
process) then the parameters of the BSDE is said to be Markovian.

Here with the above assumptions, we will show that the solution of FBSDE at
time s, (P t,x

s , Y t,x
s , Zt,x

s ), is Markovian (i.e. all these processes only depend on s
and P t,x

s ).

Lemma 3.1. Let φ is a continuous bounded Rd-valued function and Bd
e be the

filtration on Rd generated by the functions

E

[ ∫ T

t

φ(s, P t,x
s )ds

]
.
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Then for any f , ψ in Bd
e such that

E

[ ∫ T

0

|f(s, P t,x
s )|2ds

]
< +∞, E

[
|ψ(P t,x

T )|2
]
< +∞

the process Y t,x
s = E[ψ(P t,x

T +
∫ T

s
f(r, P t,x

r )dr|Fs] admits a continuous version

given by Y t,x
s = m(s, P t,x

s ), where m(t, x) = E[ψ(P t,x
T ) +

∫ T

t
f(r, P t,x

r )dr] is Bd
e -

measurable. Moreover,
∫ s

t
f(r, P t,x

r )dr+Y t,x
s is an additive square-integrable mar-

tingale which yield the following representation

∫ s

t

f(r, P t,x
r )dr + Y t,x

s =

∫ s

t

δ(r, P t,x
r )∗σ(r, P t,x

r )dWr, t ≤ s ≤ T, Q a.s.,

where δ(t, x) ∈ B([0, T ])⊗ Be(R
p×d).

Proof. The proof can be done by the similar way in the proof of existence unique-
ness theorem 2.2. Introduce m as the following,

m(t, P t,x
s ) = ψ(P t,x

T ) +

∫ T

t

f(r, P t,x
r )dr −

∫ T

s

(Zt,x
r )∗dWr, (3.5)

where Zt,x
r = σ(r, P t,x

r )∗δ(r, P t,x
r ), δ(t, x) ∈ B([0, T ]) ⊗ Be(R

p×d) and σ(t, x) ∈
B([0, T ])⊗ Be(R

p×n).

The solution (Y, Z) is defined by considering the continuous version m of the

square-integrable martingale E[ψ(P t,x
T ) +

∫ T

t
f(r, P t,x

r )dr|Fs]. So as to find it we
use m(t, P t,x

s ) in (3.5),

m(t, P t,x
s ) = E

[
m(T, P t,x

T )|Fs

]
,

= E

[
ψ(P t,x

T ) +

∫ T

t

f(r, P t,x
r )dr −

∫ T

T

(Zt,x
r )∗dWr|Fs

]
,

= E

[
ψ(P t,x

T ) +

∫ T

t

f(r, P t,x
r )dr|Fs

]
.

By the martingale representation theorem (Appendices, Theorem A.4), there ex-

ists a unique integrable process Z ∈ H
2,n×d
T such that

m(t, P t,x
s ) = m(t, P t,x

t ) +

∫ s

t

(Zt,x
r )∗dWr.

Here, the adapted and continuous process Y is introduced by

Y t,x
s = m(t, P t,x

s )−
∫ s

t

f(r, P t,x
r )dr. (3.6)
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When we apply martingale representation theorem in the above equation (3.6),
then insert m(t, P t,x

t ) according to equation (3.5), Y is also given as

Y t,x
s = m(t, P t,x

t ) +

∫ s

t

(Zt,x
r )∗dWr −

∫ s

t

f(r, P t,x
r )dr,

= ψ(P t,x
T ) +

∫ T

t

f(r, P t,x
r )dr −

∫ T

t

(Zt,x
r )∗dWr +

∫ s

t

(Zt,x
r )∗dWr

−
∫ s

t

f(r, P t,x
r )dr,

= ψ(P t,x
T ) +

∫ T

s

f(r, P t,x
r )dr −

∫ T

s

(Zt,x
r )∗dWr

Y t,x
s = E[Y t,x

s |Fs], since Y t,x
s ∈ Fs,

= E

[
ψ(P t,x

T ) +

∫ T

s

f(r, P t,x
r )dr|Fs

]
− E

[ ∫ T

s

(Zt,x
r )∗dWr|Fs

]
,

= E

[
ψ(P t,x

T ) +

∫ T

s

f(r, P t,x
r )dr|Fs

]
−

∫ s

s

(Zt,x
r )∗dWr,

= E

[
ψ(P t,x

T ) +

∫ T

s

f(r, P t,x
r )dr|Fs

]
. (3.7)

From the above assumptions m(t, x) = E[ψ(P t,x
T ) +

∫ T

t
f(r, P t,x

r )dr] is Be-measu-

rable,
∫ s

t
f(r, P t,x

r )dr+Y t,x
s is an additive square-integrable martingale which can

be represented as
∫ s

t

f(r, P t,x
r )dr + Y t,x

s =

∫ s

t

δ(r, P t,x
r )∗σ(r, P t,x

r )dWr, t ≤ s ≤ T, Q a.s.

Theorem 3.2. For the deterministic functions m(t, x) ∈ B([0, T ])⊗ Be(R
d) and

δ(t, x) ∈ B([0, T ])⊗Be(R
p×d), such that the solution (Y t,x, Zt,x) is of BSDE (3.2)

is

Y t,x
s = m(s, P t,x

s ), Zt,x
s = σ∗(s, P t,x

s )δ(s, P t,x
s ), t ≤ s ≤ T, dQ⊗ ds a.s.

Moreover, for s ≥ t the solution (Y t,χ
s , Zt,χ

s ) is (m(s, P t,χ
s ), σ∗(s, P t,χ

s )δ(s, P t,χ
s ))

dQ⊗ ds a.s. for any Ft-measurable random variable χ ∈ L2(Rp).

Proof. Let (Y (t,x),k, Z(t,x),k) be the sequence defined recursively by (Y (t,x),0 =
0, Z(t,x),0 = 0) and

−dY k+1
s = f(s, P t,x

s , Y k
s , Z

k
s )ds− (Zk+1

s )∗dWs, Y k+1
T = ψ(P t,x

T ).

Then the sequence (Y (t,x),k, Z(t,x),k) converges to (Y t,x, Zt,x), dQ ⊗ ds a.s. Here,
(Y t,x, Zt,x) is the unique square-integrable solution of the BSDE by Theorem 2.2
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and Corollary 2.3. Here, remark that sups∈[t,T ] |Y (t,x),k
s − Y

(t,x)
s | converges Q a.s.

to zero. By Lemma 3.1, it is concluded by recursion that there exists mk, δk ∈ Be

such that

Y (t,x),k
s = mk(s, P

t,x
s ), Z(t,x),k

s = σ(s, P t,x
s )∗δk(s, P

t,x
s ).

We replace

lim sup
k→+∞

mi
k(s, x) = mi(s, x), lim sup

k→+∞
δi,jk (s, x) = δi,j(s, x),

where m = (mi)1≤i≤d and δ = (δi,j)1≤i≤p,1≤j≤d. Notice that from the a.s. con-
vergence of the sequence (Y (t,x),k, Z(t,x),k) to (Y t,x, Zt,x), it follows that Q a.s.,
∀s ∈ [t, T ],

mi(s, P t,x
s ) = (lim sup

k→+∞
mi

k)(s, P
t,x
s ) = lim sup

k
(mi

k(s, P
t,x
s )) = lim

k→+∞
Y i,(t,x),k
s

= Y i,(t,x),k
s ,

δi,j(s, P t,x
s ) = (lim sup

k→+∞
δi,jk )(s, P

t,x
s ) = lim sup

k
(δi,jk (s, P

t,x
s )) = lim

k→+∞
Zi,j,(t,x),k

s

= Zi,j,(t,x),k
s .

Consequently, m(s, P t,x
s ) = Y t,x

s ; δ(s, P t,x
s ) = Zt,x

s dQ⊗ ds a.s.

3.2 Feynman-Kac Formula

For Markovian standard parameters, the solutions of the FBSDEs give us a gen-
eralization of the Feynman-Kac formula for nonlinear PDEs as stated by Peng
[25]. By Feynman-Kac formula one can find classical solution for some PDEs.
Here a detailed proof of the generalized Feynman-Kac formula from [8] and our
main article [9].

Theorem 3.3. Let v be a C1,2 function defined on [0, T ] × Rd. If ∀(t, x) ∈
[0, T ]× Rd, v satisfies

v(T, x) = ψ(x), ∀x ∈ Rd,

∂tv(t, x) + Lv(t, x) + f(t, x, v(t, x), σ(t, x)∗∂xv(t, x)) = 0, (3.8)

where ∂xv(t, x) is the gradient of v and L(t,x) is the infinitesimal generator such
that

L(t,x) =
∑

i,j

aij(t, x)∂
2
xixj

+
∑

i

bi(t, x)∂xi
, aij =

1

2
[σσ∗]ij,

also there exists a constant C such that, for each (s, x),

|v(s, x)|+ |σ(s, x)∗∂xv(s, x)| ≤ C(1 + |x|),
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then (Y t,x
s , Zt,x

s ) = (v(s, P t,x
s ), σ(s, P t,x

s )∗∂xv(s, P
t,x
s )), t ≤ s ≤ T is the unique

solution of BSDE (3.2) with standard parameters (f, ψ).

Conversely, if the discounted asset prices are given as martingales and (Y t,x
s , Zt,x

s )
= (v(s, P t,x

s ), σ(s, P t,x
s )∗∂xv(s, P

t,x
s )), t ≤ s ≤ T is the unique solution of BSDE

(3.2) with standard parameters (f, ψ) then the associated PDE can be found as
the equation (3.8).

Proof. Assume that Ps is d-dimensional price process and ∂tv(s, P
t,x
s ) is the partial

derivative with respect to time variable, ∂xv(s, P
t,x
s ) is the gradient of v and

∂2xv(s, P
t,x
s ) is (d× d) Hessian matrix of v with respect to Ps. Then we apply Itô

formula (2.6) to v(s, P t,x
s ),

dv(s, P t,x
s ) = ∂tv(s, P

t,x
s )ds+ [∂xv(s, P

t,x
s )]∗dP t,x

s +
1

2
[dP t,x

s ]∗∂2xv(s, P
t,x
s )dP t,x

s ,

= ∂tv(s, P
t,x
s )ds+ [∂xv(s, P

t,x
s )]∗[b(s, P t,x

s )ds+ σ(s, P t,x
s )dWs]

+
1

2
[dP t,x

s ]∗∂2xv(s, P
t,x
s )dP t,x

s ,

= ∂tv(s, P
t,x
s )ds+ [∂xv(s, P

t,x
s )]∗b(s, P t,x

s )ds+ [∂xv(s, P
t,x
s )]∗σ(s, P t,x

s )dWs

+
1

2
[dP t,x

s ]∗∂2xv(s, P
t,x
s )dP t,x

s ,

= ∂tv(s, P
t,x
s )ds+ [∂xv(s, P

t,x
s )]∗b(s, P t,x

s )ds+ [∂xv(s, P
t,x
s )]∗σ(s, P t,x

s )dWs

+
1

2

p∑

i=1

p∑

j=1

[
dP t,x

js

∂2v(s, P t,x
s )

∂xi∂xj

]
dP t,x

is ,

notify that Wi and Wj are independent ( Wi ⊥ Wj when i 6= j,

= ∂tv(s, P
t,x
s )ds+ [∂xv(s, P

t,x
s )]∗b(s, P t,x

s )ds+ [∂xv(s, P
t,x
s )]∗σ(s, P t,x

s )dWs

+
1

2

p∑

i=1

p∑

j=1

[(σσ∗)ij(s, P
t,x
s )]

∂2v(s, P t,x
s )

∂xi∂xj
ds,

= ∂tv(s, P
t,x
s )ds+ [∂xv(s, P

t,x
s )]∗b(s, P t,x

s )ds+ [∂xv(s, P
t,x
s )]∗σ(s, P t,x

s )dWs

+

p∑

i,j=1

1

2
[(σσ∗)ij(s, P

t,x
s )]

∂2v(s, P t,x
s )

∂xi∂xj
ds,

=
[
∂tv(s, P

t,x
s ) + L(t,x)v(s, P

t,x
s )

]
ds+ [∂xv(s, P

t,x
s )]∗σ(s, P t,x

s )dWs. (3.9)

We introduce the following

r(s, P t,x
s )v(s, P t,x

s ) := ∂tv(s, P
t,x
s ) + L(t,x)v(s, P

t,x
s ),

dMs := [∂xv(s, P
t,x
s )]∗σ(s, P t,x

s )dWs,

Ls := e
∫ T

s
r(m,P t,x

m )dmv(s, P t,x
s ).
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The equation (3.9) gives us Ornstein-Uhlenbeck (OU) Process,

dv(s, P t,x
s ) = r(s, P t,x

s )v(s, P t,x
s )ds+ dMs.

Then the OU process is solved by the help of Ls,

dLs = −r(s, P t,x
s )e

∫ T

s
r(m,P t,x

m )dmv(s, P t,x
s )ds

+ e
∫ T

s
r(m,P t,x

m )dm
[
r(s, P t,x

s )v(s, P t,x
s )ds+ dMs

]
,

= e
∫ T

s
r(m,P t,x

m )dmdMs.∫ T

s

dYs =

∫ T

s

e
∫ T

s
r(m,P t,x

m )dmdMs

LT = Ls +

∫ T

s

e
∫ T

s
r(m,P t,x

m )dmdMs

ψ(P t,x
T ) = Ls +

∫ T

s

e
∫ T

s
r(m,P t,x

m )dmdMs

and Ls is a martingale such that ,

ψ(P t,x
T ) = e

∫ T

s
r(m,P t,x

m )dmv(s, P t,x
s ) +

∫ T

s

e
∫ T

s
r(m,P t,x

m )dmdMs

E

[
e−

∫ T

s
r(m,P t,x

m )dmψ(P t,x
T )|P t,x

s = x
]
= v(s, P t,x

s )

and it is the solution of boundary value problem. Also, equation (3.9) is a BSDE
with the following

− dv(s, P t,x
s ) = f(s, P t,x

s , v(s, P t,x
s ), [σ(s, P t,x

s )]∗∂xv(s, P
t,x
s ))ds (3.10)

−[∂xv(s, P t,x
s )]∗σ(s, P t,x

s )dWs,

with v(T, P t,x
T ) = ψ(P t,x

T ).

Thus, (Ys, Zs) = (v(s, P t,x
s ), [σ(s, P t,x

s )]∗∂xv(s, P
t,x
s )), s ∈ [0, T ] is equal to unique

solution of BSDE (3.2).

On the contrary, let the discounted asset prices be martingales then the associ-
ated PDE which leads to an analogue between BSDE and PDE. Moreover, as-
sume that the unique solution of BSDE (3.2) is given as (Y t,x

s , Zt,x
s ) = (v(s, P t,x

s ),
σ(s, P t,x

s )∗∂xv(s, P
t,x
s )), t ≤ s ≤ T . Without loss of generality we consider the

time between [0, t] instead of [t, s]. We have the following derivative for the dis-
counted asset prices,

d(e−
∫ t

0
rsdsv(t, Pt)) =− rte

−
∫ t

0
rsdsv(t, Pt)dt+ e−

∫ t

0
rsdsd(v(t, Pt))

=e−
∫ t

0
rsds

[
− rtv(t, Pt)

− f(t, Pt, v(s, Pt), σ(s, Pt)
∗∂xv(s, Pt)

]
dt

+ e−
∫ t

0
rsds[∂xv(s, Pt)]

∗σ(s, Pt)dWt

(3.11)
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which leads dt term to be zero, hence

− rtv(t, Pt) = f(t, Pt, v(s, Pt), σ(s, Pt)
∗∂xv(s, Pt). (3.12)

Additionally, we define

f(t, x) = e−
∫ t

0
rsdsv(t, x),

∂f

∂t
(t, x) = −rte−

∫ t

0
rsdsv(t, x) + e−

∫ t

0
rsds

∂v

∂t
(t, x),

∂f

∂x
(t, x) = e−

∫ t

0
rsds

∂v

∂x
(t, x),

∂2f

∂x2
(t, x) = e−

∫ t

0
rsds

∂2v

∂x2
(t, x).

Now Itô formula (2.6) is applied to f(t, Pt) = e−
∫ t

0
rsdsv(t, Pt),

e−
∫ t

0
rsdsv(t, Pt) =e

0v(0, P0) +

∫ t

0

[
− rse

−
∫ s

0
ruduv(s, Ps) + e−

∫ s

0
rudu

∂v

∂t
(s, Ps)

]
ds

+

∫ t

0

e−
∫ s

0
rudu

[
∂v

∂x
(s, Ps)

]∗[
b(s, Ps)ds+ σ(s, Ps)dWs

]

+
1

2

∫ t

0

e−
∫ s

0
rudu[σ(s, Ps)]

∗ ∂
2v

∂x2
(s, Ps)σ(s, Ps)ds

=v(0, P0) +

∫ t

0

e−
∫ s

0
rudu

[
− rsv(s, Ps) + ∂tv(s, Ps)

+ [∂xv(s, Ps)]
∗b(s, Ps) +

1

2
[σ(s, Ps)]

∗∂2xv(s, Ps)σ(s, Ps)
]
ds

+

∫ t

0

e−
∫ s

0
rudu[∂vx(s, Ps)]

∗σ(s, Ps)dWs.

Since it is martingale the dt term should be equal to zero then the inside of the
integral should be equal to zero which leads to

−rsv(s, Ps)+∂tv(s, Ps)+ [∂xv(s, Ps)]
∗b(s, Ps)+

1

2
[σ(s, Ps)]

∗∂2xv(s, Ps)σ(s, Ps) = 0.

By using equation (3.12) ∀x ∈ Rd the given PDE has the boundary value v(T, x) =
ψ(x) and the equation

∂tv(t, x) + Lv(t, x) + f(t, x, v(t, x), σ(t, x)∗∂xv(t, x)) = 0.

Proposition 3.4. For the BSDE given in equation (3.10) with the unique solu-
tion (Y t,x

s , Zt,x
s ) = (v(s, P t,x

s ), σ(s, P t,x
s )∗∂xv(s, P

t,x
s )), t ≤ s ≤ T , the replicating

portfolio gives the delta hedging.

Proof. We remark that the market value process for self financing trading strategy
(v, π) satisfies

dvs = rsvsds+ π∗sσ(s, Ps)
[
dWs + θsds

]
,

∫ T

0

|σ∗sπs|2ds < +∞ Q a.s.,
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−dvs = [−rsvs − π∗sσ(s, Ps)θs]ds− π∗sσ(s, Ps)dWs,

f(s, Ps, vs, Zs) = −rsvs − π∗sσ(s, Ps)θs,

Zs = [π∗sσ(s, Ps)]
∗ = σ(s, Ps)

∗πs,

(vs, Zs) is the solution of BSDE, where vs is wealth process and Zs is hedging
strategy, bs − rs1 = σ(s, Ps)θs,

Zs = σ(s, Ps)
∗πs = σ(s, Ps)

∗∂vs
∂x

where we get πs = ∂xvs the Delta Hedging.

Throughout the second and third chapters the continuous models in the BSDE
theory is worked with. The existence and uniqueness of BSDEs is verified and
a closed formula for pricing and hedging contingent claims for LBSDEs is given.
Moreover, FBSDE system is considered and the general Feynman-Kac formula is
proven.
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CHAPTER 4

BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS IN THE PRESENCE OF JUMPS

The Brownian case for the backward stochastic differential equations (BSDEs) is
the foundation and focus of many researches. However, the weaknesses of diffusion
models makes the models less realistic. So as to make our study deeper, we will
place jumps in our model for the next chapters. In this chapter, mainly [27]
is followed, the existence and uniqueness theorem is proven by using previously
stated lemmas. Furthermore, the comparison theorem is stated without proof.
Pricing-hedging contingent claims are applied theoretically to finance at the end
of this section.

4.1 Motivation

The diffusion models, in other words the models using Brownian motion has
some weaknesses to preserve the empirical properties of assets prices, represent
the main features of option prices modeling and provide realistic tools for hedging
and risk management. The below table compares the diffusion and jump models
[7].

Facts to be modeled Diffusion models Jump models
Discontinuous sudden
moves in prices

Continuous large
volatilities

Discontinuous sudden
moves in prices

The asset returns has
high volatility

Nonlinear volatility is
needed

Realistic volatility

Options are risky Risks can be reduced to
risk-free return

Options are risky

Some risks can not be
hedged

Perfect hedges Perfect hedges do not
exist

Markets are incomplete Markets are complete Markets are incomplete

In spite of more advanced calculations, the practical benefits make us study the
BSDE in the presence of jumps.
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The more general model of BSDEs in Rn with jumps can be defined as

− dY (t) = f
(
t, Y (t), Z(t), γ(t, z)

)
dt− Z(t)∗dW (t)−

∫

Rm

γ(t, z)M̃(dt, dz);

Y (T ) = ξ,

where ξ ≥ 0 and which has an additional compensated Poisson random measure

M̃ on Rm such that M̃(dt, dz) =M(dt, dz)−ν(dz)dt where ν(·) is a σ-finite count-
ing measure,M(dt, dz) is the Poisson counting measure on a complete probability
space (Ω,F ,P). Here we recall and modify some notations.

• For x ∈ Rn, |x| denotes its Euclidean norm.
• For x ∈ Rn, 〈x, y〉 denotes the inner product.
• An d× n matrix will be considered as an element y ∈ Rd×n.

• For y ∈ Rd×n, the Euclidean norm is given by |y| =
√
trace(yy∗).

• For y, z ∈ Rd×n, the inner product is given by 〈y, z〉 = trace(yz∗).

• “∗” is used to denote transpose matrix.

• “c” is used to denote continuous part of the given process.

Given a probability space (Ω,F ,P) and an Rd-valued Brownian motion W and
Rm-valued Poisson Process N , we consider

• {(Ft); t ∈ [0, T ]}, the filtration generated by W and N .

• L2
T (R

n), the space of all FT -measurable random variables X : Ω 7→ Rn

satisfying ‖X‖2 = E(|X|2) < +∞.

• H2
T (R

n×d), the space of all predictable processes φ : Ω× [0, T ] 7→ Rn×d such

that E
∫ T

0
|φ(t)|2dt < +∞.

• F2
T (R

n×m), the space of all predictable processes ϕ : Ω×[0, T ]×Rm 7→ Rn×m

such that E
∫ T

0

∫
Rm |ϕ(t, z)|2ν(dz)dt < +∞.

For simplicity we may use L2
T (R

n) = L
2,n
T , H2

T (R
n×d) = H

2,n×d
T , F2

T (R
n×m) =

F
2,n×m
T .

4.2 Existence and Uniqueness of Backward Stochastic Differential
Equations

In this thesis, the general form of Lévy processes is used instead of Lévy-Itô
decomposition (i.e. separating small and big jumps) or Lévy-Khinchin represen-
tation since square-integrable Lévy processes are studied (i.e. E[|ν(t)|2] < ∞).
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Compensated Poisson measure M̃ is introduced by subtracting from M its inten-
sity measure:

M̃(dt, dz) =M(dt, dz)− ν(dz)dt.

The Lévy-Itô representation theorem states that there exists a1 and σ ∈ R such
that

ν(t) = a1t+ σW (t) +

∫ t

0

∫

|z|<1

zM̃(ds, dz) +

∫ t

0

∫

|z|≥1

zM(ds, dz)

= a1t+ σW (t) +

∫ t

0

∫

|z|<1

zM̃(ds, dz) +

∫ t

0

∫

|z|≥1

z
(
M̃(ds, dz) + ν(dz)dt

)

= a1t+ σW (t) +

∫ t

0

∫

R

zM̃(ds, dz) + t

∫

|z|≥1

zν(dz)

= at + σW (t) +

∫ t

0

∫

R

zM̃(ds, dz) (4.1)

where a = a1+
∫
|z|≥1

zν(dz) and at time t = 0, no jump occurs. Then it becomes

natural to define the stochastic differential equations of the form

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t) +

∫

R

γ(t,X(t), z)M̃(dt, dz)

for R-valued deterministic functions µ, σ and γ satisfying certain growth con-
ditions [22]. From this view, the BSDE can be generalized to the following
differential or integral form.

− dY (t) = f
(
t, Y (t), Z(t), γ(t, z)

)
dt− Z(t)∗dW (t)−

∫

Rm

γ(t, z)M̃(dt, dz);

Y (T ) = ξ, (4.2)

or an equivalent formulation is

Y (t) = ξ +

∫ T

t

f
(
s, Y (s), Z(s), γ(s, z)

)
ds−

∫ T

t

Z(s)∗dW (s)

−
∫ T

t

∫

Rm

γ(s, z)M̃(ds, dz), (4.3)

where

• The terminal value is an FT -measurable random variable, ξ : Ω 7→ Rn.

• The generator (driver) f maps Ω×R+×Rn×Rd×n×Rn×m onto Rn and is
P⊗Bn

⊗Bd×n
⊗Bn×m-measurable and Bn denotes Borel-measurable sets

in Rn, Bd×n denotes Borel-measurable sets in Rd×n likewise Bn×m denotes
Borel-measurable sets in Rn×m.

• W = (W 1,W 2, ...,W d)∗ is a standard Brownian motion on Rd.
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• M̃ = (M̃1, M̃2, ..., M̃m)∗ is a Poisson martingale measure on Rm such that

M̃(dt, dz) =M(dt, dz)− ν(dz)dt where ν(·) is a σ-finite counting measure,
M(dt, dz) is the Poisson counting measure.

Definition 4.1. A triple (Y, Z, γ) is said to be the solution of BDSE (4.2) if

(Y (t), Z(t), γ(t, z)) ∈ H
2,n
T ×H

2,d×n
T × F

2,n×m
T .

The existence and uniqueness of a solution of the BSDE’s with jumps is proven
by the following lemmas and theorem from [27]. Gronwall lemma will be useful
to show our solution has bounded elements.

Lemma 4.1. Let f(t) be a non-negative random variable such that f(t) ≤ αg(t)+∫ T

t
β(s)f(s)ds ∀t ≥ 0 where α > 0 is a constant and β(s) ≥ 0 then

f(t) ≤ αg(t) + α

∫ T

t

exp
{∫ s

t

β(r)dr
}
β(s)g(s)ds.

Proof. For all t ≥ 0, let us define u(t) :=
∫ T

t
β(s)f(s)ds then u(t) ≥ 0 since

β(s), f(s) ≥ 0 and h(t) := f(t) − αg(t) − u(t) ≤ 0. By adding and subtracting∫ T

0
β(s)f(s)ds to u(t) the differential is found as

du(t) = −β(t)f(t)
= −β(t)

(
h(t) + αg(t) + u(t)

)

= −β(t)
(
h(t) + αg(t)

)
− β(t)u(t),

with u(T) = 0. The the solution of the differential equation is

u(t) =

∫ T

t

exp
{∫ s

t

β(r)dr
}
β(s)

(
h(s) + αg(s)

)
ds.

Hence one finds that

u(t) ≤
∫ T

t

exp
{∫ s

t

β(r)dr
}
β(s)αg(s)ds.

(The best general reference here for the solution of the differential equation is
[6]).

Lemma 4.2. Let (Y (t), Z(t), γ(t, z)) be a solution of the BSDE (4.2), E|ξ|2 <∞,

〈Y, f
(
t, Y, Z, γ

)
〉 ≤ c1(t)

(
1+ |Y |+ |Y |2

)
+ c2(t)|Y |

(
|Z∗|+

(∫

Rm

|γ(z)|2ν(dz)
) 1

2

)
,

(4.4)
where c1(t), c2(t) ≥ 0 are deterministic such that

∫ T

0

c1(t)dt+

∫ T

0

(
c2(t)

)2
dt ≤ ∞.
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Then

E

[
sup

t∈[0,T ]

|Y (t)|2 +
∫ T

0

(
|Z(t)∗|2 +

∫

Rm

|γ(t, z)|2ν(dz)
)
dt

]
≤ k0 <∞,

with a constant k0 only depending on deterministic constants c1, c2 and E|ξ|2.

Proof. Let Y (t) be given by the equation (4.3). When the multidimensional Itô
Formula (see Appendices, Theorem A.10) is applied to |Y (t)|2,

|Y (T )|2 = |Y (t)|2 −
∫ T

t

〈2|Y (s)|, f(s, Y (s), Z(s), γ(s, z))〉ds

+

∫ T

t

〈2|Y (s)|, Z(s)∗dW (s)〉+ 1

2

∫ T

t

2|Z(s)∗|2ds

+

∫ T

t

∫

Rm

{
|Y (s) + γ(s, z)|2 − |Y (s)|2 − 〈2|Y (s)|, γ(s, z)〉

}
ν(dz)ds

+

∫ T

t

∫

Rm

{
|Y (s−) + γ(s, z)|2 − |Y (s−)|2|

}
M̃(ds, dz).

Here M̃(dt, dz) =M(dt, dz)− ν(dz)dt is replaced and by necessary calculations

|Y (T )|2 = |Y (t)|2 −
∫ T

t

〈2|Y (s)|, f(s, Y (s), Z(s), γ(s, z))〉ds

+

∫ T

t

〈2|Y (s)|, Z(s)∗dW (s)〉+
∫ T

t

|Z(s)∗|2ds

+

∫ T

t

∫

Rm

|γ(s, z)|2M(ds, dz) +

∫ T

t

∫

Rm

〈2|Y (s−)|, γ(s, z)M̃(ds, dz)〉.

After changing places of variables accordingly, we have

|Y (t)|2 +
∫ T

t

|Z(s)∗|2ds+
∫ T

t

∫

Rm

|γ(s, z)|2M(ds, dz)

=|Y (T )|2 + 2

∫ T

t

〈|Y (s)|, f(s, Y (s), Z(s), γ(s, z))〉ds

−2
∫ T

t

〈|Y (s)|, Z(s)∗dW (s)〉 − 2

∫ T

t

∫

Rm

〈|Y (s−)|, γ(s, z)M̃(ds, dz)〉. (4.5)

Since

E

[ ∫ T

t

|Y (s)Z(s)∗|2ds
]1/2

≤ E

[ ∫ T

0

|Y (t)Z(t)∗|2dt
]1/2

≤ 2E sup
t∈[0,T ]

|Y (t)|2 + 2E

∫ T

0

|Z(t)∗|2dt <∞,
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∫ T

t
〈|Y (s)|, Z(s)∗dW (s)〉 and

∫ T

t

∫
Rm〈|Y (s−)|, γ(s, z)M̃(ds, dz)〉 are martingales.

We take expectation of equation (4.5)

E

[
|Y (t)|2 +

∫ T

t

|Z(s)∗|2ds+
∫ T

t

∫

Rm

|γ(s, z)|2M(ds, dz)

]

=E
[
|Y (T )|2

]
+ E

[
2

∫ T

t

〈|Y (s)|, f(s, Y (s), Z(s), γ(s, z))〉ds
]
.

The equation (4.4) gives us

E

[
|Y (t)|2 +

∫ T

t

|Z(s)∗|2ds+
∫ T

t

∫

Rm

|γ(s, z)|2M(ds, dz)

]

≤E
[
|Y (T )|2

]
+ 2

∫ T

t

c1(s)ds+ E

[
2

∫ T

t

c1(s)|Y (s)|ds
]

+E

[
2

∫ T

t

c1(s)|Y (s)|2ds
]

+E

[
2

∫ T

t

c2(s)|Y (s)||Z(s)∗|ds
]

+E

[
2

∫ T

t

c2(s)|Y (s)|
(∫

Rm

|γ(s, z)|2ν(dz)
) 1

2

ds

]
.

Here the following three inequalities are used and they can be found in Appen-
dices, Lemma A.3

2

∫ T

t

c1(s)|Y (s)|ds ≤
∫ T

t

c1(s)|Y (s)|2ds+
∫ T

t

c1(s)ds,

2

∫ T

t

c2(s)|Y (s)||Z(s)∗|ds ≤ 2

∫ T

t

(
c2(s)

)2|Y (s)|2ds+ 1

2

∫ T

t

|Z(s)∗|2ds,

2

∫ T

t

c2(s)|Y (s)|
(∫

Rm

|γ(s, z)|2ν(dz)
) 1

2

ds ≤ 2

∫ T

t

(
c2(s)

)2|Y (s)|2ds

+
1

2

∫ T

t

∫

Rm

|γ(s, z)|2ν(dz)ds.
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By using these equations

E

[
|Y (t)|2 +

∫ T

t

|Z(s)∗|2ds+
∫ T

t

∫

Rm

|γ(s, z)|2M(ds, dz)

]

≤E
[
|Y (T )|2

]
+ 2

∫ T

t

c1(s)ds+ E

[ ∫ T

t

c1(s)|Y (s)|2ds+
∫ T

t

c1(s)ds

]

+E

[
2

∫ T

t

c1(s)|Y (s)|2ds
]

+E

[
2

∫ T

t

(
c2(s)

)2|Y (s)|2ds+ 1

2

∫ T

t

|Z(s)∗|2ds
]

+E

[
2

∫ T

t

(
c2(s)

)2|Y (s)|2ds+ 1

2

∫ T

t

∫

Rm

|γ(s, z)|2ν(dz)ds
]
,

which implies that

E

[
|Y (t)|2 +

∫ T

t

|Z(s)∗|2ds+
∫ T

t

∫

Rm

|γ(s, z)|2M(ds, dz)

]

=E
[
|Y (T )|2

]
+ 3

∫ T

t

c1(s)ds

+E

[
3

∫ T

t

c1(s)|Y (s)|2ds
]
+ E

[
4

∫ T

t

(
c2(s)

)2|Y (s)|2ds
]

+E

[
1

2

∫ T

t

|Z(s)∗|2ds
]
+ E

[
1

2

∫ T

t

∫

Rm

|γ(s, z)|2ν(dz)ds
]
.

Consequently,

E

[
|Y (t)|2 + 1

2

∫ T

t

|Z(s)∗|2ds+ 1

2

∫ T

t

∫

Rm

|γ(s, z)|2M(ds, dz)

]

≤E
[
|Y (T )|2

]
+ 3

∫ T

t

c1(s)ds+ E

[ ∫ T

t

(
3c1(s) + 4

(
c2(s)

)2)|Y (s)|2ds
]
.

Let a constant α = E
[
|Y (T )|2

]
+ 3

∫ T

t
c1(s)ds > 0, then

E

[
|Y (t)|2 + 1

2

∫ T

t

|Z(s)∗|2ds+ 1

2

∫ T

t

∫

Rm

|γ(s, z)|2M(ds, dz)

]

≤α +
∫ T

t

(
3c1(s) + 4

(
c2(s)

)2)
E
[
|Y (s)|2

]
ds.

We apply Gronwall’s inequality with β(s) := 3c1(s)+4
(
c2(s)

)2 ≥ 0, g(t) = 1 and
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conclude

E

[
|Y (t)|2 + 1

2

∫ T

t

|Z(s)∗|2ds+ 1

2

∫ T

t

∫

Rm

|γ(s, z)|2M(ds, dz)

]

≤α + α

∫ T

t

exp
{∫ s

t

β(r)dr
}
β(s)ds = k0 <∞.

Moreover,
sup
t≥0

E
[
|Y (t)|2

]
≤ k0 <∞.

Before moving to the theorem of existence and uniqueness, the existence and
uniqueness for a special case of BSDE is proven. Thus, the variables in the
generating function f are narrowed to a simple form such that

Y (t) = ξ +

∫ T

t

f(w, s)ds−
∫ T

t

Z(s)∗dW (s)−
∫ T

t

∫

Rm

γ(s, z)M̃(ds, dz); t ≥ 0.

(4.6)

Then, the following theorem can be obtained.

Theorem 4.3. If ξ is FT -measurable and Rn valued, f(w, t) is Ft-adapted and
Rn-valued such that

E|ξ|2 <∞, E

[ ∫ T

0

|f(w, s)|ds
]2
<∞,

then the equation (4.6) has a unique solution.

Proof. Let Y (t) = E

[
ξ+

∫ T

t
f(s)ds|Ft

]
. Note that, it exists and it is well defined

since

E

[
|ξ +

∫ T

t

f(s)ds|2
∣∣Ft

]
<∞ ∀t ≥ 0.

We realize that

Y (0) = E

[
ξ +

∫ T

0

f(s)ds|F0

]
= E

[
ξ +

∫ T

0

f(s)ds
]
.

In addition, for all t ≥ 0
E[Y (t)|Ft] = Y (t).

We define L(t) := E

[
ξ +

∫ T

0
f(s)ds|Ft

]
which is square-integrable martingale

which can be seen by taking conditional expectation and using tower property,
for s ≤ t

E[L(t)|Fs] = E

[
E
[
ξ +

∫ T

0

f(s)ds|Ft

]∣∣Fs

]
= E

[
ξ +

∫ T

0

f(s)ds|Fs

]
= L(s).
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Also, by dividing integral into two parts L(t) can be written in terms of Y (t);

L(t) = E

[
ξ +

∫ T

0

f(s)ds|Ft

]
= E

[
ξ +

∫ t

0

f(s)ds+

∫ T

t

f(s)ds|Ft

]

= Y (t) +

∫ t

0

f(s)ds. (4.7)

It is obvious that L(0) = Y (0) and

L(T ) = Y (T ) +

∫ T

0

f(s)ds = ξ +

∫ T

0

f(s)ds. (4.8)

By martingale representation theorem (see Appendices, Theorem A.4)

L(t) = L(0) +

∫ t

0

Z(s)∗dW (s) +

∫ t

0

∫

Rm

γ(s, z)M̃(ds, dz)

= Y (0) +

∫ t

0

Z(s)∗dW (s) +

∫ t

0

∫

Rm

γ(s, z)M̃(ds, dz), t ≥ 0. (4.9)

Now we have

L(T ) = Y (0) +

∫ T

0

Z(s)∗dW (s) +

∫ T

0

∫

Rm

γ(s, z)M̃(ds, dz). (4.10)

Taking into account (4.8) and (4.10), it is found

ξ +

∫ T

0

f(s)ds = Y (0) +

∫ T

0

Z(s)∗dW (s) +

∫ T

0

∫

Rm

γ(s, z)M̃(ds, dz).

By dividing integrals into two parts from 0 to t and t to T ,

ξ +

∫ t

0

f(s)ds+

∫ T

t

f(s)ds = Y (0) +

∫ t

0

Z(s)∗dW (s) +

∫ T

t

Z(s)∗dW (s)

+

∫ t

0

∫

Rm

γ(s, z)M̃(ds, dz) +

∫ T

t

∫

Rm

γ(s, z)M̃(ds, dz).

The integrals form t to T are taken on the right hand side of the equation,

ξ +

∫ T

t

f(s)ds−
∫ T

t

Z(s)∗dW (s)−
∫ T

t

∫

Rm

γ(s, z)M̃(ds, dz)

=Y (0) +

∫ t

0

Z(s)∗dW (s) +

∫ t

0

∫

Rm

γ(s, z)M̃(ds, dz)−
∫ t

0

f(s)ds.
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By equations (4.7) and (4.9) it follows

ξ +

∫ T

t

f(s)ds−
∫ T

t

Z(s)∗dW (s)−
∫ T

t

∫

Rm

γ(s, z)M̃(ds, dz)

= L(t)−
∫ t

0

f(s)ds = Y (t).

Thus, (Y (t), Z(t), γ(t, z)) satisfies the BSDE (4.6). By using the fact that (a +
b+ c)2 ≤ 3(a2 + b2 + c2) and (a+ b)2 ≤ 2(a2 + b2);

[Y (t)]2 ≤3
[
ξ2 +

(∫ T

t

f(s)ds
)2

+
(∫ T

t

Z(s)∗dW (s)

+

∫ T

t

∫

Rm

γ(s, z)M̃(ds, dz)
)2]

≤3
[
ξ2 +

∫ T

t

(
f(s)

)2
ds+

(∫ T

t

Z(s)∗dW (s)

+

∫ T

t

∫

Rm

γ(s, z)M̃(ds, dz)
)2]

≤3ξ2 + 3

∫ T

t

(
f(s)

)2
ds+ 3 · 2

(∫ T

t

Z(s)∗dW (s)
)2

+ 3 · 2
(∫ T

t

∫

Rm

γ(s, z)M̃(ds, dz)
)2

≤3ξ2 + 3

∫ T

0

(
f(s)

)2
ds+ 6

∫ T

0

|Z(s)∗|2ds

+ 6

∫ T

0

∫

Rm

|γ(s, z)|2ν(dz)ds. (4.11)

After taking expectation,

E
[
sup

t∈[0,T ]

|Y (t)|2
]
≤E

[
3ξ2 + 3

∫ T

0

(
f(s)

)2
ds

+ 6

∫ T

0

|Z(s)∗|2ds+ 6

∫ T

0

∫

Rm

|γ(s, z)|2ν(dz)ds
]
≤ ∞.

Let (Y 1(t), Z1(t), γ1(t, z)) and (Y 1(t), Z1(t), γ1(t, z)) be two solutions such that

Y 1(t) = ξ +

∫ T

t

f(w, s)ds−
∫ T

t

Z1(s)∗dW (s)−
∫ T

t

∫

Rm

γ1(s, z)M̃(ds, dz),

Y 2(t) = ξ +

∫ T

t

f(w, s)ds−
∫ T

t

Z2(s)∗dW (s)−
∫ T

t

∫

Rm

γ2(s, z)M̃(ds, dz).
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We need the difference between solutions for the uniqueness which is defined as,

∆Y (t) := Y 1(t)− Y 2(t),

∆Z(t) := Z1(t)− Z2(t),

∆γ(t, z) := γ1(t, z)− γ2(t, z).

Therefore,

∆Y (t) = −
∫ T

t

∆Z(s)∗dW (s)−
∫ T

t

∫

Rm

∆γ(s, z)M̃(ds, dz),

by multidimensional Itô formula (see Appendices, Theorem A.10),

|∆Y (T )|2 = 0 = |∆Y (t)|2 +
∫ T

t

〈2|∆Y (s)|,∆Z(s)∗dW (s)〉+ 1

2

∫ T

t

2|∆Z(s)∗|2ds

+

∫ T

t

∫

Rm

{∣∣∆Y (s−) + ∆γ(s, z)
∣∣2 − |∆Y (s−)|2 − 2|∆γ(s, z)||∆Y (s−)|

}
ν(dz)ds

+

∫ T

t

∫

Rm

{∣∣∆Y (s−) + ∆γ(s, z)
∣∣2 − |∆Y (s−)|2

}
M̃(ds, dz).

Hence,

|∆Y (t)|2 +
∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

∣∣∆γ(s, z)
∣∣2ν(dz)ds

=− 2

∫ T

t

〈|∆Y (s)|,∆Z(s)∗dW (s)〉

−
∫ T

t

∫

Rm

{∣∣∆γ(s, z)
∣∣2 + 2|∆Y (s−)||∆γ(s, z)|

}
M̃(ds, dz).

Note that the uniqueness follows as

0 ≤ E

[
|∆Y (t)2|+

∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]
≤ 0,

with ∆Y (t) = 0, ∆Z(t) = 0 and ∆γ(t, z) = 0.

Now the theorem of the existence and uniqueness of a solution of BSDE with
Lipschitzian coefficients can be stated. [27] is utilized for the sketch for the proof
and it is given a detailed comprehensible proof by using the contraction principle.

Theorem 4.4. We suppose that f(t, Y, Z, γ) : [0, T ]×Rn×Rd×n×F2(Rn×m) 7→ Rn

is a Ft-adapted and measurable process such that P a.s. and there exists c1(t),
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c2(t) non-negative deterministic functions such that
∫ T

0
c1(t)dt+

∫ T

0

(
c2(t)

)2
dt <

+∞ such that

|f(t, Y 1, Z1, γ1)− f(t, Y 2, Z2, γ2)| ≤c1(t)|Y 1 − Y 2|+ c2(t)
[
|(Z1 − Z2)∗|

+
(∫

Rm

|γ1 − γ2|2ν(dz)
)1/2]

, (4.12)

|f(t, Y, Z, γ)| ≤ c1(t)(1 + |Y |) + c2(t)
[
1 + |Z∗|+

(∫

Rm

|γ|2ν(dz)
)1/2]

, (4.13)

E|ξ|2 < +∞, ξ ∈ FT , (4.14)

then for any t ≥ 0 the BSDE (4.3) admits a unique solution in [0, T ].

Proof. Let us briefly describe the proof. Firstly, the Banach space B̃ is introduced.
A solution of BSDE (4.3) belonging to that Banach space is used in order to find
a fixed point for a contraction mapping at the end. Later, a simpler form BSDE
by fixing some variables is considered since we can comment on the existence
and uniqueness of its solution. Next, the difference between BSDEs is taken
into account for the simpler case produced. By the help of the assumptions an
inequality being suitable to apply Gronwall lemma is obtained. Then, the norm
of difference of fixed variables are bounded the difference of variables which can
be the solution of BSDE (4.3). Finally, a function Φ is introduced which maps

the fixed variables onto the solution then Φ turns out a contraction from B̃ to B̃.
As a result, this mapping has a fixed point being the unique solution of BSDE
(4.3).

For all t ≥ 0, (Y (t), Z(t), γ(t, z)) ∈ B̃ = H
2,n
T ×H

2,d×n
T × F

2,n×m
T , let

‖(Y (t), Z(t), γ(t, z))‖2S = sup
t∈[0,T ]

e−ζA(t)E

[
|Y (t)|2 +

∫ T

t

|Z(s)∗|2ds

+

∫ T

t

∫

Rm

|γ(s, z)|2ν(dz)ds
]
,

where ζ ≥ 0 is a constant and A(t) =
∫ T

t

(
c1(s) + 2(c2(s))

2
)
ds.

New norm space is introduced as

H = {(Y (t), Z(t), γ(t, z)) ∈ B̃ : ‖(Y (t), Z(t), γ(t, z))‖S <∞},

which is a Banach space.

Let the adapted process Y be

Y (t) = E

[
ξ +

∫ T

t

f(s, Y (s), Z(s), γ(s, z))ds|Ft

]
.
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Moreover, we define the square-integrable martingale

L(t) := E

[
ξ +

∫ T

0

f(s, Y (s), Z(s), γ(s, z))ds|Ft

]
.

Then, L(t) can be written in terms of Y (t):

L(t) = Y (t) +

∫ t

0

f(s, Y (s), Z(s), γ(s, z))ds. (4.15)

By martingale representation theorem (see Appendices, Theorem A.4)

L(t) = L(0) +

∫ t

0

Z(s)∗dW (s) +

∫ t

0

∫

Rm

γ(s, z)M̃(ds, dz)

= Y (0) +

∫ t

0

Z(s)∗dW (s) +

∫ t

0

∫

Rm

γ(s, z)M̃(ds, dz), t ≥ 0.(4.16)

At time T , we consider the equations (4.15),(4.16) and get

ξ +

∫ T

0

f(s, Y (s), Z(s), γ(s, z))ds = Y (0) +

∫ T

0

Z(s)∗dW (s)

+

∫ T

0

∫

Rm

γ(s, z)M̃(ds, dz).

After dividing integrals, doing necessay rearrangements and replacing the equa-
tions (4.15),(4.16); we see (Y (t), Z(t), γ(t, z)) satisfies the given BSDE

Y (t) = ξ +

∫ T

t

f
(
s, Y (s), Z(s), γ(s, z)

)
ds−

∫ T

t

Z(s)∗dW (s)

−
∫ T

t

∫

Rm

γ(s, z)M̃(ds, dz), (4.17)

Now, for every t, any fixed (Y
1
(t), Z

1
(t), γ1(t, z)), Y

2
(t), Z

2
(t), γ2(t, z)) ∈ H

placed in the generator function f , by Theorem 4.3 there exists unique solu-
tions (Y 1(t), Z1(t), γ1(t, z)) and (Y 2(t), Z2(t), γ2(t, z)) of the following simpler
form BSDE for i = 1, 2 and t ≥ 0;

Y i(t) =ξ +

∫ T

t

f(s, Y
i
(s), Z

i
(s), γi(s, z))ds−

∫ T

t

Zi(s)∗dW (s)

−
∫ T

t

∫

Rm

γi(s, z)M̃(ds, dz).

As defined before, we recall;

∆Y (t) = Y 1(t)− Y 2(t),

∆Z(t) = Z1(t)− Z2(t),

∆γ(t, z) = γ1(t, z)− γ2(t, z).
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Likewise,

∆Y (t) = Y
1
(t)− Y

2
(t),

∆Z(t) = Z
1
(t)− Z

2
(t),

∆γ(t, z) = γ1(t, z)− γ2(t, z).

Then the associated BDSEs are the following,

Y 1(t) =ξ +

∫ T

t

f(s, Y
1
(s), Z

1
(s), γ1(s, z))ds−

∫ T

t

Z1(s)∗dW (s)

−
∫ T

t

∫

Rm

γ1(s, z)M̃(ds, dz),

Y 2(t) =ξ +

∫ T

t

f(s, Y
2
(s), Z

2
(s), γ2(s, z))ds−

∫ T

t

Z2(s)∗dW (s)

−
∫ T

t

∫

Rm

γ2(s, z)M̃(ds, dz),

∆Y (t) =Y 1(t)− Y 2(t)

=

∫ T

t

(
f(s, Y

1
(s), Z

1
(s), γ1(s, z))− f(s, Y

2
(s), Z

2
(s), γ2(s, z))

)
ds

−
∫ T

t

∆Z(s)∗dW (s)−
∫ T

t

∫

Rm

∆γ(s, z)M̃(ds, dz).

Here, Itô formula (see Appendices, Theorem A.10) is applied to f(x) = |x|2,

|∆Y (T )|2 = |∆Y (t)|2

−
∫ T

t

〈2|∆Y (s)|, f(s, Y 1
(s), Z

1
(s), γ1(s, z))− f(s, Y

2
(s), Z

2
(s), γ2(s, z))〉ds

+

∫ T

t

〈2|∆Y (s)|,∆Z(s)∗dW (s)〉+ 1

2

∫ T

t

2|∆Z(s)∗|2ds

+

∫ T

t

∫

Rm

{
|∆Y (s−) + ∆γ(s, z)|2 − |∆Y (s−)|2

− 2|∆Y (s−)||∆γ(s, z)|
}
ν(dz)ds

+

∫ T

t

∫

Rm

{
|∆Y (s−) + ∆γ(s, z)|2 − |∆Y (s−)|2

}
M̃(ds, dz).
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It can be rewriten as

|∆Y (t)|2 +
∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds

=

∫ T

t

〈2|∆Y (s)|, f(s, Y 1
(s), Z

1
(s), γ1(s, z))− f(s, Y

2
(s), Z

2
(s), γ2(s, z))〉ds

−
∫ T

t

〈2|∆Y (s)|,∆Z(s)∗dW (s)〉

−
∫ T

t

∫

Rm

{
|∆γ(s, z)|2 + 2|∆Y (s−)||∆γ(s, z)|

}
M̃(ds, dz).

By considering martingale terms, the expectation is taken

E

[
|∆Y (t)|2 +

∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

= 2E
[ ∫ T

t

〈|∆Y (s)|, f(s, Y 1
(s), Z

1
(s), γ1(s, z))− f(s, Y

2
(s), Z

2
(s), γ2(s, z))〉ds

]
.

Here, the following inequality is used by the Lipschitz assumption (4.12)

|f(t, Y 1
(t), Z

1
(t), γ1(t, z))− f(t, Y

2
(t), Z

2
(t), γ2(t, z))|

≤ c1(t)|∆Y (t)|+ c2(t)
[
|∆Z(t)∗|+

(∫

Rm

|∆γ(t, z)|2ν(dt)
)1/2]

.

Hence,

E

[
|∆Y (t)|2 +

∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

≤ 2E

[∫ T

t

〈|∆Y (s)|, c1(s)|∆Y (s)|

+ c2(s)
[
|∆Z(s)∗|+

(∫

Rm

|∆γ(s, z)|2ν(dz)
)1/2]

〉ds
]
.

Now, we use the following inequalities stated in Appendices, Lemma A.3,

2c1(s)|∆Y (s)||∆Y (s)| ≤ 2|∆Y (s)|2 + 1

2
|∆Y (s)|2,

2

∫ T

t

c2(s)|∆Y (s)||∆Z(s)∗|ds ≤ 2

∫ T

t

(c2(s))
2|∆Y (s)|2ds+ 1

2

∫ T

t

|∆Z(s)∗|2ds,

2

∫ T

t

c2(s)|∆Y (s)|
(∫

Rm

|∆γ(s, z)|2ν(dz)
) 1

2

ds ≤ 2

∫ T

t

(c2(s))
2|∆Y (s)|2ds

+
1

2

∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds.
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These inequalities implies that

E

[
|∆Y (t)|2 +

∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

≤2E
[ ∫ T

t

c1(s)|∆Y (s)|2ds
]
+
1

2
E

[ ∫ T

t

c1(s)|∆Y (s)|2ds
]

+ 2E
[ ∫ T

t

(
c2(s)

)2|∆Y (s)|2ds
]
+
1

2
E

[ ∫ T

t

|∆Z(s)∗|2ds
]

+ 2E
[ ∫ T

t

(
c2(s)

)2|∆Y (s)|2ds
]
+
1

2
E

[ ∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

=
1

2
E

[ ∫ T

t

c1(s)|∆Y (s)|2ds+
∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

+ 2E
[ ∫ T

t

(
c1(s) + 2(c2(s))

2
)
|∆Y (s)|2ds

]
.

Here we can use Gronwall’s inequality by Lemma 4.1 with f(t) = E

[
|∆Y (t)|2+

∫ T

t
|∆Z(s)∗|2ds +

∫ T

t

∫
Rm |∆γ(s, z)|2ν(dz)ds

]
, the constant α = 1/2 and g(t) =

E

[ ∫ T

t
c1(s)|∆Y (s)|2ds+

∫ T

t
|∆Z(s)∗|2ds+

∫ T

t

∫
Rm |∆γ(s, z)|2ν(dz)ds

]
and β(t) =

2
(
c1(t) + 2(c2(t))

2
)
then

E

[
|∆Y (t)|2 +

∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

≤1
2
E

[ ∫ T

t

c1(s)|∆Y (s)|2ds+
∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

+
1

2

∫ T

t

e
∫ s

t
2
(
c1(r)+2(c2(r))2

)
dr2

(
c1(s) + 2(c2(s))

2
)
E

[ ∫ T

s

c1(r)|∆Y (r)|2dr

+

∫ T

s

|∆Z(r)∗|2dr +
∫ T

s

∫

Rm

|∆γ(r, z)|2ν(dz)dr
]
ds.

As we define before A(t) :=
∫ T

t
{c1(s) + 2(c2(s))

2}ds and we take θ = 2, which
implies

E

[
|∆Y (t)|2 +

∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

≤ θ−1E
[ ∫ T

t

c1(s)|∆Y (s)|2ds+
∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

+

∫ T

t

eθ(A(t)−A(s))
(
c1(s) + 2(c2(s))

2
)
E

[ ∫ T

s

c1(r)|∆Y (r)|2dr

+

∫ T

s

|∆Z(r)∗|2dr +
∫ T

s

∫

Rm

|∆γ(r, z)|2ν(dz)dr
]
ds. (4.18)
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Our aim is to reach the norms defined at the beginning of the proof. For this
reason, we multiply the inequality (4.18) by exp{−ζA(t)} where ζ ≥ 0 and A(t)
is decreasing,

e−ζA(t)E

[
|∆Y (t)|2 +

∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

≤ θ−1e−ζA(t)E

[ ∫ T

t

c1(s)|∆Y (s)|2ds+
∫ T

t

|∆Z(s)∗|2ds

+

∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

+ e−ζA(t)

∫ T

t

eθ(A(t)−A(s))
(
c1(s) + 2(c2(s))

2
)
E

[ ∫ T

s

c1(r)|∆Y (r)|2dr

+

∫ T

s

|∆Z(r)∗|2dr +
∫ T

s

∫

Rm

|∆γ(r, z)|2ν(dz)dr
]
ds. (4.19)

As a last step to get the norms we need the followings,

e−ζA(t)E
[ ∫ T

t

c1(s)|∆Y (s)|2ds
]
≤ sup

t∈[0,T ]

e−ζA(t)E
[
|∆Y (t)|2

] ∫ T

0

c1(s)ds

= sup
t∈[0,T ]

e−ζA(t)E
[
|∆Y (t)|2

]
k̃0, (4.20)

where k̃0 =
∫ T

0
c1(s)ds.

e−ζA(t)

∫ T

t

eθ(A(t)−A(s))
(
c1(s) + 2(c2(s))

2
)
E
[ ∫ T

s

c1(r)|∆Y (r)|2dr
]
ds

≤ sup
t∈[0,T ]

e−ζA(t)E
[
|∆Y (t)|2

]
k̃0

∫ T

t

e(θ+ζ)(A(t)−A(s))
(
c1(s) + 2(c2(s))

2
)
ds

= sup
t∈[0,T ]

e−ζA(t)E
[
|∆Y (t)|2

]
k̃0k̃1, (4.21)

where k̃1 =
∫ T

t
e(θ+ζ)(A(t)−A(s))

(
c1(s) + 2(c2(s))

2
)
ds.

e−ζA(t)

∫ T

t

eθ(A(t)−A(s))
(
c1(s) + 2(c2(s))

2
)
E
[ ∫ T

s

|∆Z(r)∗|2dr
]
ds

≤ sup
t∈[0,T ]

e−ζA(t)E
[ ∫ T

t

|∆Z(s)∗|2ds
] ∫ T

t

e(θ+ζ)(A(t)−A(s))
(
c1(s) + 2(c2(s))

2
)
ds

= sup
t∈[0,T ]

e−ζA(t)E
[ ∫ T

t

|∆Z(s)∗|2ds
]
k̃1, (4.22)
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e−ζA(t)

∫ T

t

eθ(A(t)−A(s))
(
c1(s) + 2(c2(s))

2
)
E
[ ∫ T

s

∫

Rm

|∆γ(r, z)|2ν(dz)dr
]
ds

≤ sup
t∈[0,T ]

e−ζA(t)E
[ ∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
] ∫ T

t

e(θ+ζ)(A(t)−A(s))
(
c1(s)

+ 2(c2(s))
2
)
ds

= sup
t∈[0,T ]

e−ζA(t)E
[ ∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]
k̃1. (4.23)

We take supremum of equation (4.19) after implying the inequalities (4.20),
(4.21), (4.22) and (4.23);

sup
t∈[0,T ]

e−ζA(t)E

[
|∆Y (t)|2 +

∫ T

t

|∆Z(s)∗|2ds+
∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

≤ θ−1 sup
t∈[0,T ]

e−ζA(t)E

[
|∆Y (t)|2k̃0 +

∫ T

t

|∆Z(s)∗|2ds

+

∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
]

+ sup
t∈[0,T ]

e−ζA(t)E

[
|∆Y (t)|2k̃0k̃1 +

( ∫ T

t

|∆Z(s)∗|2ds
)
k̃1

+
( ∫ T

t

∫

Rm

|∆γ(s, z)|2ν(dz)ds
)
k̃1

]
.

Hence,

‖(∆Y (t),∆Z(t),∆γ(t, z))‖2S
≤ (θ−1k̃0 + k̃0k̃1)

∥∥(∆Y (t),∆Z(t),∆γ(t, z))
∥∥2

S
. (4.24)

The Banach fixed-point theorem (in Appendices, Theorem A.5) is used for the

mapping Φ. Note that, this mapping Φ is from H
2,n
T × H

2,d×n
T × F

2,n×m
T onto

H
2,n
T × H

2,d×n
T × F

2,n×m
T , which maps the stochastic processes (Y , Z, γ) onto the

solution (Y, Z, γ) of the BSDE i.e. Φ : (Y , Z, γ) 7→ (Y, Z, γ) with generator f ;
i.e.,

Y (t) =ξ +

∫ T

t

f
(
s, Y (s), Z(s), γ(s, z)

)
ds−

∫ T

t

Z(s)∗dW (s)

−
∫ T

t

∫

Rm

γ(s, z)M̃(ds, dz).

Choosing ζ accordingly we see this mapping Φ is a contraction fromH
2,n
T ×H2,d×n

T ×
F
2,n×m
T onto itself and that there exists a fixed point, which is the unique solution

of the BSDE.
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4.3 Comparison Theorem with Jumps

The comparison theorem states the natural fact that the bigger contingent claim
leads to bigger option price at present time. In this section, we only state the
comparison theorem and refer the reader to [27] for a deeper discussion.

Theorem 4.5. Let ξ1 and ξ2 ∈ FT and let (Y 1, Z1, γ1) and (Y 2, Z2, γ2) be the
associated solutions of the BSDEs with jumps. We suppose that

• ξ1 ≥ ξ2 P a.s.

• f 1(t, ω, Y 2, Z2, γ2)− f 2(t, ω, Y 2, Z2, γ2) ≥ 0 dP⊗ dt, a.s.

• |f 2(t, ω, Y 1, Z1, γ1)− f 2(t, ω, Y 2, Z2, γ2)| ≤ k0(|Y 1 − Y 2|+ |(Z1 − Z2)∗|) +∫
Rm |C(t, ω, z)||γ1(t, z) − γ2(t, z)|ν(dz), where k0 ≥ 0 is constant and let
C(t, ω, z) to satisfy the condition

|Cjt(ω, z)| ≤ 1,

for j = 1, 2, ...m and C(t, z) ∈ F
2,1×m
T .

Then for any time t ∈ [0, T ] we have Y 1 ≥ Y 2, P a.s..

The proof can be found in [27].

4.4 The Model in Finance

In this section, we apply the theory explained in this chapter to finance. Firstly,
we build the model for a complete market. Later, we deal with pricing problems
in order to find a fair price being the unique solution of the relevant BSDE.

We have the riskless asset price

dP 0(t) = P 0(t)r(t)dt, (4.25)

where r(t) is the short rate. We can assume this riskless asset as a bond. In ad-
dition, n risky assets for discontinuous time where i = 1, 2, ..., n has the following

dP i(t) = P i(t−)[bi(t)dt+
d∑

j

σij(t)dW j
t +

m∑

j=1

ρij(t)dÑ j(t)]

P i(0) = P i(0), i = 1, 2, ..., n (4.26)

where W = (W 1,W 2, ...,W d)∗ is a d-dimensional standard Brownian motion on

Rd and Ñ = (Ñ1, Ñ2, ..., Ñm)∗ is anm-dimensional centralized Poisson process on
Rm, defined on a probability space (Ω,F ,P). P is said to be probability measure.
Right-continuous filtration (Ft; 0 ≤ t ≤ T ) gives the information structure such

that quadratic variation of W and Ñ is zero.
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4.4.1 Hypothesis (B)

2.3.1 Hypothesis (A) in Chapter 2 is partially valid such that

• The interest (short) rate r is a predictable and bounded process. Moreover,
it is usually non-negative due to the fact that the pay-off is non-negative.

• The stock appreciation rate (drift term) b = (b1, b2, ..., bn)∗ is a column
vector of predictable and bounded processes.

• The volatility σ = (σi,j) is a n × d matrix of predictable and bounded
processes. σt does not need to have full rank a.s. for all t ∈ [0, T ].

• There exist u and θ constructing risk premium such that they are pre-
dictable and bounded processes and

b(t)− r(t)1 = σ(t)u(t) +

∫

Rm

ρ(t)θ(t, z)ν(dz), dP⊗ dt a.s.,

where 1 denotes the vector with all components being 1.

Additionally, we have the following assumptions

• The jump size process ρ = (ρik) ∈ Rd×m is a matrix of predictable and
bounded processes.

• Ñ(t) = M̃((0, T ],Rm) = M((0, T ],Rm) − tν(Rm) where M̃((0, T ],Rm) is
the counting measure generated bym-dimensional centralized Poisson point
process and for simplicity we take ν(Rm) = 1. Poisson point process has
the following properties.

1. Independent increment property that is, if 0 < t1 < t2 < ... < tn then

all increments Ñ(ti)− Ñ(ti−1) are independent for i = 1, 2, ..., n.

2. Stationary increment property that is, the distribution of Ñ(t + h)−
Ñ(t) does not depend on t.

3. It is impossible to occur two or more jumps at the same time that is,

P{Ñ(t+ h)− Ñ(t) ≥ 2} = 0 a.s.

4. E[Ñ i = t], for i = 1, 2, ...m.

Under these assumptions the market is dynamically complete if the number of
risky assets equals to number of source of randomness i.e. n = d + m. The
completeness is motivated by [5]. In this section, the case of constraints on the
portfolio is not dealt with. Let us start with the recall of the following definition:

Definition 4.2. A strategy (V, π) is called self-financing if the wealth process
V (t) =

∑n
i=0 π

i(t) satisfies the following equality

V (t) = V (0) +

∫ t

0

n∑

i=0

πi(t)
dP i(t)

P i(t)
, (4.27)
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where πi(t) is the amount of the wealth V (t) to invest in the i-th risky asset
where i = 1, 2, ...n at the time t ∈ [0, T ]. π0(t) = V (t) −∑n

i=1 π
i(t) defines the

amount of wealth of the enterpriser to invest in the riskless asset.

Proposition 4.6. A strategy is self-financing if the wealth process satisfies the
linear stochastic differential equation (LSDE)

dV (t) = r(t)V (t)dt+ π(t)∗(b(t)− r(t)1)dt+ π(t)∗σ(t)dW (t) + π(t)∗ρ(t)dÑ(t).
(4.28)

Proof. Get dP 0(t)
P 0(t)

from (4.25) and dP i(t)
P i(t)

from (4.26) then replace in self-financing

wealth process (4.28) and differentiate, which is done for n=2 in the following
example.

Here see that dÑ(t) = dM̃((0, T ],Rm) = dM((0, T ],Rm)− dt ν(Rm) is a martin-

gale with the intensity function E[dM((0, T ],Rm)] = dt ν(Rm) = dt, M̃(dt, dz) +
θ(t, z)ν(dz)dt is a Poisson measure and dW (t) + u(t)dt is a Brownian motion
under risk neutral probability measure Q.

Example 4.1. Take the number of risky assets is as n = 2,

dP 0(t)

P 0(t)
= r(t)dt,

dP 1(t)

P 1(t−)
= [b1(t)dt+ σ1(t)dW (t) + ρ1(t)dÑ(t)],

dP 2(t)

P 2(t−)
= [b2(t)dt+ σ2(t)dW (t) + ρ2(t)dÑ(t)].

The self-financing strategy satisfies

V (t) = V (0) +

∫ t

0

π0(s)
dP 0(s)

P 0(s)
+

∫ t

0

π1(s)
dP 1(s)

P 1(s)
+

∫ t

0

π2(s)
dP 2(s)

P 2(s)
,

by replacing dP i(t)
P i(t)

for i=0,1,2 we get

V (t) =V (0) +

∫ t

0

π0(s)r(s)dt+

∫ t

0

π1(s)[b1(s)ds+ σ1(s)dW (s) + ρ1(s)dÑ(s)]

+

∫ t

0

π2(s)[b2(s)ds+ σ2(s)dW (s) + ρ2(s)dÑ(s)].

The derivation yields,

dV (t) = π0(t)r(t)dt+ π1(t)[b1(t)dt+ σ1(t)dW (t) + ρ1(t)dÑ(t)]

+ π2(t)[b2(t)dt+ σ2(t)dW (t) + ρ2(t)dÑ(t)]

= π0(t)r(t)dt+
2∑

i=1

πi(t)[bi(t)dt+ σi(t)dW (t) + ρi(t)dÑ(t)],
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by replacing π0(t) = V (t)−∑2
i=1 π

i(t),

dV (t) = (V (t)−
2∑

i=1

πi(t))r(t)dt+
2∑

i=1

πi(t)[bi(t)dt+ σi(t)dW (t) + ρi(t)dÑ(t)]

= (r(t)V (t)−
2∑

i=1

πi(t)r(t) +
2∑

i=1

πi(t)bi(t))dt+
2∑

i=1

πi(t)[σi(t)dW (t)

+ ρi(t)dÑ(t)]

= r(t)V (t)dt+
2∑

i=1

πi(t)(bi(t)− r(t))dt+
2∑

i=1

πi(t)[bi(t)dt+ σi(t)dW (t)

+ ρi(t)dÑ(t)].

In matrix notation,

dV (t) = r(t)V (t)dt+
[
π1(t) π2(t)

] [b1(t)− r(t)
b2(t)− r(t)

]
dt

+
[
π1
t π2

t

] [σ1(t)
σ2(t)

]
dW (t) +

[
π1
t π2

t

] [ρ1(t)
ρ2(t)

]
dÑ(t),

which is

dV (t) =r(t)V (t)dt+ π(t)∗(b(t)− r(t)1)dt+ π(t)∗σ(t)dW (t) + π(t)∗ρ(t)d̃(t)

=r(t)V (t)dt+ π(t)∗σ(t)
[
dW (t) + u(t)

]
dt

+ π(t)∗ρ(t)
[
dÑ(t) +

∫

Rm

θ(t, z)ν(dz)dt
]
.

Definition 4.3. A strategy (V, π) is called trading strategy if the wealth process
Vt =

∑n
i=0 π

i
t and portfolio process πt = (π1

t , π
2
y , ..., π

n
t )
∗ satisfies the following

dV (t) =r(t)V (t)dt+ π(t)∗σ(t)
[
dW (t) + u(t)

]
dt

+ π(t)∗ρ(t)
[
dÑ(t) +

∫

Rm

θ(t, z)ν(dz)dt
]
.

where
∫ T

0
|σ(t)∗π(t)|2dt < +∞,

∫ T

0
|σ(t)∗ρ(t)|2dt < +∞, P a.s.

Definition 4.4. A strategy is said to be feasible if the wealth process is nonneg-
ative

V (t) ≥ 0 t ∈ [0, T ], P a.s.

4.4.2 Pricing and Hedging for the Models with Jumps

The practical financial experience shows us the solution of BSDEs help to hedging
and option pricing. Let us introduce a fair price as first.
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Definition 4.5. Let ξ ≥ 0 be a positive contingent claim,

1. A feasible self-financing strategy (V, π) is said to be a hedging strategy
against ξ if V (T ) = ξ.

2. ξ is said to be hedgeable if the class of hedging strategies H(ξ) is nonempty.

3. X0 being the smallest initial endowment needed to hedge ξ is said to be the
fair price at time 0 of hedgeable claim ξ if,

X0 = inf{x ≥ 0; ∃(V, π) ∈ H(ξ) such that V0 = x},

If 4.4.1 Hypothesis (B) is assumed, then for the square-integrable claim ξ ≥ 0,
H(ξ) has an element making it nonempty and the market is said to be complete
market. It means that every contingent claim in the complete financial market
can be hedged [9]. Moreover, the fair price is the market value of a hedging
strategy in H(ξ) [13] which is proved in the following theorem.

Theorem 4.7. We suppose that 4.4.1 Hypothesis (B) is satisfied and ξ ≥ 0 is a
square-integrable contingent claim. Then there exists a hedging strategy against
(X, π) against ξ such that

dX(t) =r(t)X(t)dt+ π(t)∗σ(t)(b(t)− r(t)1)dt+ π(t)∗σ(t)dW (t)

+

∫

Rm

π(t)∗ρ(t, z)M̃(dt, dz),

XT = ξ, (4.29)

and the market value X is the fair price of the claim.

Moreover, if we assume that (H t(s); s ≥ t) is the deflator started at time t; that
is,

dH t(s) = −H t(s−)[r(s)ds+ u(s)∗dW (s) +

∫

Rm

θ(s, z)M̃(dt, dz)], H t(t) = 1.

(4.30)

Then

X(t) = E[H t(T )ξ|Ft], a.s. (4.31)

Proof. Let us find the solution of the SDE (4.30) of deflator H by applying Itô
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formula to f(x) = log(x) where s ≥ t, then

logH t(s) = logH t(t) +

∫ s

t

1

H t(s)
H t(s)c − 1

2

∫ s

t

( 1

H t(s)

)2

d〈H t(s)c, H tsc〉,

+

∫ s

t

∫

Rm

[
log

(
H t(s)−H t(s)θ(s, z)

)
− log(H t(s))

+
1

H t(s)
H t(s)θ(s, z)

]
ν(dz)ds

+

∫ s

t

∫

Rm

[
log

(
H t(s−)−H t(s−)θ(s, z)

)
− log(H t(s−))

]
M̃(ds, dz)

= log 1 +

∫ s

t

1

H t
s

[
−H t(s)[r(s)ds+ u(s)∗dW (s)]

]
− 1

2

∫ s

t

|u(s)∗|2ds,

+

∫ s

t

∫

Rm

[
log

(
H t(s)(1− θ(s, z))

H t(s)

)
+ θ(s, z)

]
ν(dz)ds

+

∫ s

t

∫

Rm

log

(
H t(s−)(1− θ(s, z))

H t(s−)

)
M̃(ds, dz)

=−
(∫ s

t

r(s)ds+

∫ s

t

u(s)∗dW (s) +
1

2

∫ s

t

|u(s)∗|2ds

−
∫ s

t

∫

Rm

[log(1− θ(s, z)) + θ(s, z)]ν(dz)ds

−
∫ s

t

∫

Rm

log(1− θ(s, z))M̃(ds, dz)
)
,

then the solution is started at time t

H t(s) = exp
{
−

∫ s

t

r(s)ds−
∫ s

t

u(s)∗dW (s)− 1

2

∫ s

t

|u(s)∗|2ds

+

∫ s

t

∫

Rm

[log(1− θ(s, z)) + θ(s, z)]ν(dz)ds

+

∫ s

t

∫

Rm

log(1− θ(s, z))M̃(ds, dz)
}
.

Here, the solution started at time 0 can be shown as follows

H(t) := H0(t) = exp
{
−

∫ t

0

r(s)ds−
∫ t

0

u(s)∗dW (s)− 1

2

∫ t

0

|u(s)∗|2ds

+

∫ t

0

∫

Rm

[log(1− θ(s, z)) + θ(s, z)]ν(dz)ds

+

∫ t

0

∫

Rm

log(1− θ(s, z))M̃(ds, dz)
}
.

Since r, u and θ are bounded processes, it follows Novikov’s condition (see Ap-
pendices, Theorem A.9) that E[(H(T ))2] < +∞ and E[H(T )ξ] < +∞ for any
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square-integrable contingent claim.

d(H(t)X(t)) =X(t−)dH(t) +H(t−)dX(t) + d〈X,H〉(t)

=−X(t−)H(t−)[r(t)dt+ u(t)∗dWt +

∫

Rm

θ(s, z)M̃(dt, dz)]

+H(t−)[r(t)X(t)dt+ π(t)∗(b(t)− r(t)1)dt+ π(t)∗σ(t)dW (t)

+

∫

Rm

π(t)∗ρ(t, z)M̃(dt, dz)]

−H(t)π(t)∗σ(t)u(t)dt+

∫

Rm

−H(t)π(t)∗ρ(t, z)θ(t, z)ν(dz)dt

−
∫

Rm

H(t−)π(t)∗ρ(t, z)θ(t, z)M̃(dt, dz)

=−H(t)X(t)u(t)∗dW (t)−H(t−)X(t−)

∫

Rm

θ(t, z)M̃(dt, dz)

+H(t)π(t)∗σ(t)dW (t) +

∫

Rm

π(t)∗ρ(t)M̃(dt, dz)

−
∫

Rm

H(t−)π(t)∗ρ(t, z)θ(t, z)M̃(dt, dz)

+H(t)π(t)
(
b(t)− r(t)1− σ(t)u(t)−

∫

Rm

ρ(t)θ(t, z)ν(dz)
)
dt.

The given process u(t) and θ(t, z) ≤ 1 in the Theorem A.9 (see Appendices)
should satisfy that

b(t)− r(t)1 = σ(t)u(t) +

∫

Rm

ρ(t)θ(t, z)ν(dz).

Then the Theorem A.9 can be applied with well defined Z(t) and the equivalent
measure on FT such that

dQ

dP
= Z(T ),

with the Poisson measure M̃Q(dt, dz) = M̃(dt, dz)+ θ(t, z)ν(dz)dt and the Brow-
nian motion dWQ(t) = dW (t) + u(t)dt under probability measure Q [22]. Hence,

d(H(t)X(t)) =−H(t)X(t)u(t)∗dW (t)−H(t−)X(t−)

∫

Rm

θ(t, z)M̃(dt, dz)

+H(t)π(t)∗σ(t)dW (t) +

∫

Rm

π(t)∗ρ(t)M̃(dt, dz)

−
∫

Rm

H(t−)π(t)∗ρ(t, z)θ(t, z)M̃(dt, dz)

We realize that there is no drift term in the above equality which proves it is a
martingale. After defining the continuous adapted process X from;

H(t)X(t) = E[H(T )ξ|Ft]
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(X, π) satisfying the linear BSDE (4.29) can be found by Itô’s lemma. Since
the processes X and H are continuous, u and θ are bounded, it can be shown

that
∫ T

0
|σ∗t πt|2dt < +∞ a.s. So (X, π) is a hedging strategy against ξ with

X0 = E(HT ξ).

This theorem is a result of existence and uniqueness of BSDE’s and self-financing
markets. Moreover, the existence of such X(t) helps to price the contingent claim
at time t.

Remark 4.1. The fair price of the claim ξ has the property in equation (4.31).
The fair price is calculated as the expectation of the discounted asset prices such
that

X(t) = EQ[e
−

∫ T

t
r(s)dsξ|F ],

under the risk neutral probability measure Q where the Radon-Nikodym deriva-
tive with respect to P on FT is given by

dQ

dP
= exp

{
−

∫ T

0

u(t)∗dW (t)− 1

2

∫ T

0

|u(t)∗|2dt

−
∫ T

0

∫

Rm

[log(1− θ(t, z)) + θ(t, z)]ν(dz)dt

−
∫ T

0

∫

Rm

log(1− θ(t, z))M̃(dt, dz)
}
. (4.32)

We realize that Q is well defined as a probability measure. Moreover, Q is a mar-
tingale measure; that is, the discounted wealth processes are Q-local martingales.
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CHAPTER 5

BSDE APPLICATION TO PDIE

In this chapter, the forward-backward stochastic differential equations (FBSDEs)
is considered. Later, the generalization of Feynman-Kac formula with jumps is
presented. For a system of FBSDE in low dimensions we can get at least a
numerical solution (to control problems) with partial differential integral equa-
tion (PDIE) techniques. However, when the dimension increases, the numerical
schemes for PDIE becomes more inefficient (from the computational point of
view). The analogue of Feynman-Kac formula provides more accurate framework
for numerical applications by using probabilistic approach in the simulations.
There are many articles concerned with BSDEs and Feynman-Kac formula (for
instance [19], [3] and [11]) but they complete the market by using orthonormal-
ized compensated power-jump processes (called Teugels martingales). The main
difference of this thesis is proving a generalized Feynman-Kac formula which is
constructed in the unified frame of this thesis.

5.1 Forward-Backward Stochastic Differential Equations with Jumps

5.1.1 The Model for FBSDE

Let (Ω,F ,Q) be a probability space with Rd-valued Brownian motion W and

Rm-valued compensated Poisson measure M̃ . For any given (t, x) ∈ [0, T ] × Rp,
the forward stochastic price process on [0, T ] is;

dP (s) = b(s, P (s))ds+ σ(s, P (s))dW (s) +

∫

Rm

ρ(s, P (s−), z)M̃(ds, dz),

t ≤ s ≤ T

P (s) = x, 0 ≤ s ≤ t. (5.1)
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The solution of SDE (5.1) will be denoted {P t,x(s), 0 ≤ s ≤ T}. Then the
associated BSDE is

− dY (s) = f(s, P t,x(s), Y (s), Z(s), γ(s, z))ds− Z(s)∗dW (s)

−
∫

Rm

γ(s, z)M̃(ds, dz), t ≤ s ≤ T

Y (T ) = ψ(P t,x(T )). (5.2)

The solution of the BSDE (5.2) is denoted
{
(Y t,x(s), Zt,x(s), γt,x(s)), 0 ≤ s ≤ T

}
.

The combined equations (5.1) and (5.2) helps to construct FBSDEs with jumps.
The solution of that system is shown as

{
(P t,x(s), Y t,x(s), Zt,x(s), γt,x(s)), 0 ≤

s ≤ T
}
.

The existence and uniqueness of FBSDE is a result of the existence and uniqueness
of underlying SDE and BSDE. Thus, we have the following assumptions:

1. Let T > 0, b(·, ·) : [0, T ] × Rp 7→ Rp, σ(·, ·) : [0, T ] × Rp 7→ Rp×d, ρ(·, ·, ·) :
[0, T ]×Rp×Rm 7→ Rp×m be Ft-adapted and jointly measurable, furthermore
ρ is Ft-predictable such that Q a.s.

- |b(t,X)| ≤ c0(t)(1 + |x|),
- |σ(t,X)|2 +

∫
Rm |ρ(t,X, z)|2ν(dz) ≤ c0(t)(1 + |x|2),

- |b(t,X)− b(t, Y )| ≤ c0(t)|X − Y |,
- |σ(t,X)− σ(t, Y )|2+

∫
Rm |ρ(t,X, z)− ρ(t, Y, z)|2ν(dz) ≤ c0(t)|X − Y |2

where there exists a non-negative deterministic function c0(t) ≥ 0 such

that
∫ T

0
c0(t)dt < +∞ and E|x|2 <∞.

2. Let T > 0, f(·, ·, ·, ·, ·) : [0, T ]×Rp×Rn×Rd×n×F
2,n×m
T 7→ Rn, ψ(·) : Rp 7→

Rd be Ft-adapted and measurable such that Q a.s.

- |f(t, Y 1, Z1, γ1)−f(t, Y 2, Z2, γ2)| ≤ c1(t)|Y 1−Y 2|+c2(t)
[
|(Z1−Z2)∗|+

( ∫
Rm |γ1 − γ2|2ν(dz)

)1/2
]
,

- |f(t, Y, Z, γ|) ≤ c1(t)|Y 1 − Y 2|+ c2(t)

[
1 + |Z∗|+

( ∫ m

R
|γ|2ν(dz)

)1/2
]

where there exist two deterministic functions c1(t), c2(t) ≥ 0 such that∫ T

0
c1(t)dt+

∫ T

0
(c2(t))

2dt < +∞.

In order to be in the safe side all the existence and uniqueness assumptions is
considered for both SDE and BSDE. The assumptions may be weakened in the
further studies but the result is more important for now. Moreover, the researches
are interested in weakening the assumptions can found more in [27].
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5.2 Feynman-Kac Formula with Jumps

In this section the relationship between these FBSDEs with jumps and PDIEs is
studied by generalized Feynman-Kac Formula.

Theorem 5.1. Let v be a C1,2 function defined on [0, T ] × Rn. If ∀(t, x) ∈
[0, T ]× Rn, v satisfies

v(T, x) = ψ(x), ∀x ∈ Rn,

∂tv(t, x) + Lv(t, x) +
∫

Rm

{
v(t, x+ ρ(t, x, z))− v(t, x)

− [∂xv(t, x)]
∗ρ(t, x, z)

}
ν(dz)

+ f(t, x, v(t, x), σ(t, x)∗∂xv(t, x), [∂xv(t, x)]
∗ρ(t, x, z)) = 0, (5.3)

where ∂xv(t, x) is the gradient of v and L(t,x) is the infinitesimal generator such
that

L(t,x) =
∑

i,j

aij(t, x)∂
2
xixj

+
∑

i

bi(t, x)∂xi
, aij =

1

2
[σσ∗]ij,

also there exists non-negative and non-random c0, c1 and c2 satisfying the above
existence and uniqueness assumptions (1. and 2.) of FBSDE for each (s, x), then
(Y t,x(s), Zt,x(s), γt,x(s, z)) is the unique solution of BSDE (5.2) where t ≤ s ≤ T
and

Y t,x(s) = v(s, P t,x(s)), Zt,x(s) = σ(s, P t,x(s))∗∂xv(s, P
t,x(s))

γt,x(s, z) =
[
∂xv(s, P

t,x(s−))
]∗
ρ(s, P t,x(s−), z) (5.4)

Q a.s.

Conversely, if the unique solution of FBSDE is (Y t,x(s), Zt,x(s), γt,x(s, z)) =(
v(s, P t,x(s)), σ(s, P t,x(s))∗∂xv(s, P

t,x(s)),
[
∂xv(s, P

t,x(s−))
]∗
ρ(s, P t,x(s−), z)

)

where t ≤ s ≤ T , in addition if the discounted asset prices are given as martin-
gales then the associated PDIE can be found as the equation (5.3).

Proof. Assume that P (s) is n-dimensional price process, ∂tv(s, P
t,x(s)) is the

partial derivative with respect to time variable, ∂xv(s, P
t,x(s)) is the gradient of

v and ∂2xv(s, P
t,x(s)) is (d × d) Hessian matrix of v with respect to P (s). Then
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apply Itô formula (Appendices, Theorem A.10) to v(s, P t,x(s)),

dv(s, P t,x(s)) = ∂tv(s, P
t,x(s))ds+ [∂xv(s, P

t,x(s))]∗dP t,x(s)c

+
1

2
[dP t,x(s)c]∗∂2xv(s, P

t,x(s))dP t,x(s)c

+

∫

Rm

{
v(s, P t,x(s) + ρ(s, P t,x(s), z))− v(s, P t,x(s))

−
[
∂xv(s, P

t,x(s))
]∗
ρ(s, P t,x(s), z)

}
ν(dz)ds

+

∫

Rm

{
v(s, P t,x(s−) + ρ(s, P t,x(s−), z))− v(s, P t,x(s−))

}
M̃(ds, dz).

It follows that

dv(s, P t,x(s)) = ∂tv(s, P
t,x(s))ds+ [∂xv(s, P

t,x(s))]∗
[
b(s, P t,x(s))ds

+ σ(s, P t,x(s))dW (s)
]

+
1

2

[
b(s, P t,x(s))ds+ σ(s, P t,x(s))dW (s)

]∗
∂2xv(s, P

t,x(s))
[
b(s, P t,x(s))ds

+ σ(s, P t,x(s))dW (s)
]

+

∫

Rm

{
v(s, P t,x(s) + ρ(s, P t,x(s), z))− v(s, P t,x(s))

−
[
∂xv(s, P

t,x(s))
]∗
ρ(s, P t,x(s), z)

}
ν(dz)ds

+

∫

Rm

{
v(s, P t,x(s−) + ρ(s, P t,x(s−), z))− v(s, P t,x(s−))

}
M̃(ds, dz),

then

dv(s, P t,x(s)) = ∂tv(s, P
t,x(s))ds+ [∂xv(s, P

t,x(s))]∗b(s, P t,x(s))ds

+ [∂xv(s, P
t,x(s))]∗σ(s, P t,x(s))dW (s)

+
1

2

[
b(s, P t,x(s))ds+ σ(s, P t,x(s))dW (s)

]∗
∂2xv(s, P

t,x(s))
[
b(s, P t,x(s))ds

+ σ(s, P t,x(s))dW (s)

+

∫

Rm

{
v(s, P t,x(s) + ρ(s, P t,x(s), z))− v(s, P t,x(s))

−
[
∂xv(s, P

t,x(s))
]∗
ρ(s, P t,x(s), z)

}
ν(dz)ds

+

∫

Rm

{
v(s, P t,x(s−) + ρ(s, P t,x(s−), z))− v(s, P t,x(s−))

}
M̃(ds, dz).
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Note Wi ⊥ Wj when i 6= j,

dv(s, P t,x(s)) = ∂tv(s, P
t,x(s))ds+ [∂xv(s, P

t,x(s))]∗b(s, P t,x(s))ds

+ [∂xv(s, P
t,x(s))]∗σ(s, P t,x(s))dW (s)

+
1

2

d∑

i=1

d∑

j=1

[(σσ∗)ij(s, P
t,x(s))]

∂2v(s, P t,x(s))

∂xi∂xj
ds

+

∫

Rm

{
v(s, P t,x(s) + ρ(s, P t,x(s), z))− v(s, P t,x(s))

−
[
∂xv(s, P

t,x(s))
]∗
ρ(s, P t,x(s), z)

}
ν(dz)ds,

+

∫

Rm

{
v(s, P t,x(s−) + ρ(s, P t,x(s−), z))− v(s, P t,x(s−))

}
M̃(ds, dz),

by the necessary arrangements,

dv(s, P t,x(s)) = ∂tv(s, P
t,x(s))ds+ [∂xv(s, P

t,x(s))]∗b(s, P t,x(s))ds

+ [∂xv(s, P
t,x(s))]∗σ(s, P t,x(s))dW (s)

+
d∑

i,j=1

1

2
[(σσ∗)ij(s, P

t,x(s))]
∂2v(s, P t,x(s))

∂xi∂xj
ds

+

∫

Rm

{
v(s, P t,x(s) + ρ(s, P t,x(s), z))− v(s, P t,x(s))

−
[
∂xv(s, P

t,x(s))
]∗
ρ(s, P t,x(s), z)

}
ν(dz)ds,

+

∫

Rm

{
v(s, P t,x(s−) + ρ(s, P t,x(s−), z))− v(s, P t,x(s−))

}
M̃(ds, dz)

which is

dv(s, P t,x(s)) =

[
∂tv(s, P

t,x(s)) + L(t, x)v(s, P
t,x(s))

+

∫

Rm

{
v(s, P t,x(s) + ρ(s, P t,x(s), z))− v(s, P t,x(s))

−
[
∂xv(s, P

t,x(s))
]∗
ρ(s, P t,x(s), z)

}
ν(dz)

]
ds

+ [∂xv(s, P
t,x(s))]∗σ(s, P t,x(s))dW (s)

+

∫

Rm

{
v(s, P t,x(s−) + ρ(s, P t,x(s−), z))− v(s, P t,x(s−))

}
M̃(ds, dz). (5.5)

The followings are defined:

r(s, P t,x(s))v(s, P t,x(s)) := ∂tv(s, P
t,x(s)) + L(t, x)v(s, P

t,x(s))

+

∫

Rm

{
v(s, P t,x(s) + ρ(s, P t,x(s), z))− v(s, P t,x(s))

−
[
∂xv(s, P

t,x(s))
]∗
ρ(s, P t,x(s), z)

}
ν(dz),
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dL(s) :=[∂xv(s, P
t,x(s))]∗σ(s, P t,x(s))dW (s) +

∫

Rm

{
v(s, P t,x(s−)

+ ρ(s, P t,x(s−), z))− v(s, P t,x(s−)),
}
M̃(ds, dz)

K(s) := e
∫ T

s
r(m,P t,x(m))dmv(s, P t,x(s)).

The equation (5.5) gives that

dv(s, P t,x(s)) = r(s, P t,x(s))v(s, P t,x(s))ds+ dL(s).

Similar to Brownian case K(s) can be found as the following,

K(s) = K(T )−
∫ T

s

e
∫ T

s
r(m,P t,x(m))dmdL(u)

L(s) is a martingale and K(T ) = ψ(P t,x(T )), then it becomes

e−
∫ T

s
r(m,P t,x(m))dmK(s)

= e−
∫ T

s
r(m,P t,x(m))dmψ(P t,x(T ))− e−

∫ T

s
r(m,P t,x(m))dm

∫ T

s

e
∫ T

s
r(m,P t,x(m))dmdL(u)

After taking expectation we get,

E
[
e−

∫ T

s
r(m,P t,x(m))dmψ(P t,x(T )) | P t,x(s) = x

]
= v(s, P t,x(s))

is the solution of boundary value problem. Also, we have the following BSDE by
the given PDIE (5.3).

−dv(s, P t,x(s)) = f
(
s, P t,x(s), v(s, P t,x(s)), σ(s, P t,x(s))∗∂xv(s, P

t,x(s)),
[
∂xv(s, P

t,x(s))
]∗
ρ(s, P t,x(s), z)

)
ds

−
[
∂xv(s, P

t,x(s))
]∗
σ(s, P t,x(s))dW (s)

−
∫

Rm

[
∂xv(s, P

t,x(s−))
]∗
ρ(s, P t,x(s−), z)M̃(ds, dz), (5.6)

with v(T, P t,x(T )) = ψ(P t,x(T )). Thus,

(v(s, P t,x(s)), σ(s, P t,x(s))∗∂xv(s, P
t,x(s)),

[
∂xv(s, P

t,x(s−))
]∗
ρ(s, P t,x(s−), z))

is equal to unique solution of BSDE, where s ∈ [0, T ].

Reversely, if it is supposed that the discounted asset prices are martingales and the
unique solution of BSDE (5.2) is given as the equations (5.4) then the discounted
asset prices have the following derivative,

d(e−
∫ t

0
r(s)dsv(t, P (t))) = −r(t)e−

∫ t

0
r(s)dsv(t, P (t))dt+ e−

∫ t

0
r(s)dsd(v(t, P (t)))

=e−
∫ t

0
r(s)ds

[
− r(t)v(t, P (t))

− f
(
t, P (t), v(t, P (t)), σ(t, P (t))∗∂xv(t, P (t)), [∂xv(t, P (t))]

∗ρ(t, P (t), z)
)]
dt

+ e−
∫ t

0
r(s)ds[∂xv(t, P (t))]

∗σ(t, P (t))dW (t)

+ e−
∫ t

0
r(s)ds

∫

Rm

[∂xv(t, P (t))]
∗ρ(t, P (t), z)M̃(dt, dz) (5.7)
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which leads dt term to be zero, hence

−r(t)v(t, P (t))
= f

(
t, P (t), v(t, P (t)), σ(t, P (t))∗∂xv(t, P (t)), [∂xv(t, P (t))]

∗ρ(t, P (t), z)
)
.

(5.8)

Additionally, we define

f(t, x) = e−
∫ t

0
r(s)dsv(t, x),

∂f

∂t
(t, x) = −r(t)e−

∫ t

0
r(s)dsv(t, x) + e−

∫ t

0
r(s)ds∂v

∂t
(t, x),

∂f

∂x
(t, x) = e−

∫ t

0
r(s)ds ∂v

∂x
(t, x),

∂2f

∂x2
(t, x) = e−

∫ t

0
r(s)ds ∂

2v

∂x2
(t, x).

Now Itô formula (see Appendices, Theorem A.10) is applied to f(t, P (t)) =

e−
∫ t

0
r(s)dsv(t, P (t)),

d[e−
∫ t

0
r(s)dsv(t, P (t))] = −r(t)e−

∫ t

0
r(s)dsv(t, P (t))dt+ e−

∫ t

0
r(s)ds∂v

∂t
(t, P (t))dt

+ e−
∫ t

0
r(s)ds

[
∂v

∂x
(t, P (t))

]∗
dP (t)c +

1

2
e−

∫ t

0
r(s)ds[dP (t)c]∗

∂2v

∂x2
(t, P (t))dP (t)c

+

∫

Rm

e−
∫ t

0
r(s)ds

[
v(t, P (t) + ρ(t, P (t), z))− v(t, P (t))

−
[
∂v

∂x
(t, P (t))

]∗
ρ(t, P (t), z)

]
ν(dz)dt

+

∫

Rm

e−
∫ t

0
r(s)ds

[
v(t, P (t−) + ρ(t, P (t−), z))− v(t, P (t−))

]
M̃(dt, dz),

which is

d[e−
∫ t

0
r(s)dsv(t, P (t))] = −r(t)e−

∫ t

0
r(s)dsv(t, P (t))dt+ e−

∫ t

0
r(s)ds∂v

∂t
(t, P (t))dt

+ e−
∫ t

0
r(s)ds

[
∂v

∂x
(t, P (t))

]∗[
b(t, P (t))dt+ σ(t, P (t))dW (t)

]

+
1

2
e−

∫ t

0
r(s)ds

d∑

i=1

d∑

j=1

[(σσ∗)ij(t, P (t))]
∂2v(t, P (t))

∂xi∂xj
dt

+

∫

Rm

e−
∫ t

0
r(s)ds

[
v(t, P (t) + ρ(t, P (t), z))− v(t, P (t))

−
[
∂v

∂x
(t, P (t))

]∗
ρ(t, P (t), z)

]
ν(dz)dt

+

∫

Rm

e−
∫ t

0
r(s)ds

[
v(t, P (t−) + ρ(t, P (t−), z))− v(t, P (t−))

]
M̃(dt, dz),
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Hence,

d[e−
∫ t

0
r(s)dsv(t, P (t))] = e−

∫ t

0
r(s)ds

{
− r(t)v(t, P (t)) +

∂v

∂t
(t, P (t))

+

[
∂v

∂x
(t, P (t))

]∗
b(t, P (t)) +

1

2

d∑

i,j=1

[(σσ∗)ij(t, P (t))]
∂2v(t, P (t))

∂xi∂xj

+

∫

Rm

[
v(t, P (t) + ρ(t, P (t), z))− v(t, P (t))

−
[
∂v

∂x
(t, P (t))

]∗
ρ(t, P (t), z)

]
ν(dz)

}
dt

+ e−
∫ t

0
r(s)ds

[
∂v

∂x
(t, P (t))

]∗
σ(t, P (t))dW (t)

+ e−
∫ t

0
r(s)ds

∫

Rm

[
v(t, P (t−) + ρ(t, P (t−), z))− v(t, P (t−))

]
M̃(dt, dz).

Since the discounted asset prices are martingales, the dt term should be equal to
zero. Therefore,

− r(t)v(t, P (t)) + ∂tv(t, P (t)) + Lv(t, P (t))

+

∫

Rm

[
v(t, P (t) + ρ(t, P (t), z))− v(t, P (t))−

[
∂xv(t, P (t))

]∗
ρ(t, P (t), z)

]
ν(dz)

= 0. (5.9)

By using equation (5.8) the PDIE with the boundary value v(T, x) = ψ(x),
∀x ∈ Rn is found:

∂tv(t, x) + Lv(t, x) +
∫

Rm

{
v(t, x+ ρ(t, x, z))− v(t, x)

− [∂xv(t, x)]
∗ρ(t, x, z)

}
ν(dz)

+ f(t, x, v(t, x), σ(t, x)∗∂xv(t, x), [∂xv(t, x)]
∗ρ(t, x, z)) = 0. (5.10)

Feynman-Kac formula and the related PDIE have an importance in finance: they
provide an analogue of famous Black-Sholes partial differential equation and is
used for the purpose of option pricing in a multidimensional Lévy market.

Example 5.1. For the sake of simplicity, suppose that there is one riskless asset
with the return r(t) and one risky asset having 1-dimensional compensated Pois-
son process with intensity λ as source of randomness with the following dynamics:

dP 0(t) = P 0(t)r(t)dt

dP 1(t) = P 1(t−)[b(t)dt+ ρ(t)dÑ(t)],
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where ρ(t)dÑ(t) =
∫
R
ρ(t, z)M̃(dt, dz) and M̃ is the compensated Poisson random

measure.

The portfolio is defined by the wealth process v(t, P (t)) and number of assets
η(t). Previously, the portfolio is considered by the wealth process v(t, P (t)) and
amount of money invested π(t) but there is one-to-one correspondence between

η(t) and π(t) by definition i.e. ηi(t) := πi(t)
P i(t)

for i = 0, 1. Moreover, the wealth

process can be written as

v(t, P (t)) = η0(t)P 0(t) + η0(t)P 1(t). (5.11)

The equation (5.11) is differentiated,

dv(t, P (t)) = η0(t)dP 0(t) + η1(t)dP 1(t)

= η0(t)P 0(t)r(t)dt+ η1(t)P 1(t−)[b(t)dt+ ρ(t)dÑ(t)],

= [v(t, P (t))− η1(t)P 1(t)]r(t)dt+ η1(t)P 1(t)b(t)dt

+ η1(t)P 1(t−)ρ(t)dÑ(t)

=
[
v(t, P (t))r(t) + η1(t)P 1(t)

(
b(t)− r(t)

)]
dt+ η1(t)P 1(t−)ρ(t)dÑ(t).

We assume dÑQ(t) = dÑ(t) + λθ(t)dt is compensated Poisson process under the
risk neutral probability measure Q with intensity λ where the Radon-Nikodym
derivative with respect to P on FT is given by

dQ

dP
= exp

{
−

∫ T

0

λ[log(1− θ(t)) + θ(t)]dt−
∫ T

0

log(1− θ(t))Ñ(dt)
}
.

Under risk neutral probability measure Q, the price process becomes

dP 1(t) = P 1(t)b(t)dt+ P 1(t−)ρ(t)dÑ(t)

= P 1(t)b(t)dt+ P 1(t−)ρ(t)
[
dÑQ(t)− λθ(t)dt

]

= P 1(t)
[
b(t)− λρ(t)θ(t)

]
dt+ P 1(t−)ρ(t)dÑQ(t),

= P 1(t)r(t)dt+ P 1(t−)ρ(t)dÑQ(t), (5.12)

and wealth process becomes

dv(t, P (t)) =
[
v(t, P (t))r(t) + η1(t)P 1(t)

(
b(t)− r(t)

)]
dt+ η1(t)P 1(t−)ρ(t)dÑ(t)

=
[
v(t, P (t))r(t) + η1(t)P 1(t)

(
b(t)− r(t)

)]
dt

+ η1(t)P 1(t−)ρ(t)
[
dÑQ(t)− λθ(t)dt

]

=
[
v(t, P (t))r(t) + η1(t)P 1(t)

(
b(t)− r(t)− λθ(t)ρ(t)

)]
dt

+ η1(t)P 1(t−)ρ(t)dÑQ(t)

=v(t, P (t))r(t)dt+ η1(t)P 1(t−)ρ(t)dÑQ(t) (5.13)

71



where b(t)− λρ(t)θ(t) = r(t).

Then associated with the equation (5.12) the FBSDE becomes,

−dv(t, P 1(t)) = f(t, P 1(t), v(t, P 1(t)), η1(t)P 1(t)ρ(t))dt− η1(t)P 1(t−)ρ(t)dÑQ(t)),

v(T, P 1(T )) = ψ(P 1(T )) (5.14)

where f(t, P 1(t), v(t, P 1(t)), η1(t)P 1(t)ρ(t)) = −v(t, P 1(t))r(t).

Under risk neutral probability measure Q, the discounted asset price is martin-
gale. Hence, to find the related PDIE it is introduced that

g(t, x) =e−
∫ t

0
r(s)dsv(t, x),

∂g

∂t
(t, x) = −r(t)e−

∫ t

0
r(s)dsv(t, x) + e−

∫ t

0
r(s)ds∂v

∂t
(t, x),

∂g

∂x
(t, x) = e−

∫ t

0
r(s)ds ∂v

∂x
(t, x),

∂2g

∂x2
(t, x) = e−

∫ t

0
r(s)ds ∂

2v

∂x2
(t, x).

Here Itô formula (Appendices Theorem A.10) is applied to the function g(t, P 1(t))

= e−
∫ t

0
r(s)dsv(t, P 1(t)),

e−
∫ t

0
r(s)dsv(t, P 1(t)) = e0v(0, P 1(0)) +

∫ t

0

[
− r(s)e−

∫ s

0
r(u)duv(s, P 1(s))

+ e−
∫ s

0
r(u)du∂v

∂t
(s, P 1(s))

]
ds+

∫ t

0

e−
∫ s

0
r(u)du ∂v

∂x
(s, P 1(s))

(
P 1(s)b(s)ds

)

+

∫ t

0

∫

R

e−
∫ s

0
r(u)du

[
v(s, P 1(s) + ρ(s, z))− v(s, P 1(s))

− ρ(s, z)
∂v

∂x
(s, P 1(s))

]
ν(dz)ds

+

∫ t

0

∫

R

e−
∫ s

0
r(u)du

[
v(s, P 1(s−) + ρ(s, z))− v(s, P 1(s−))

]
M̃Q(ds, dz),

leading to

e−
∫ t

0
r(s)dsv(t, P 1(t)) = v(0, P 1(0)) +

∫ t

0

e−
∫ s

0
r(u)du

[
− r(s)v(s, P 1(s))

+ ∂tv(s, P
1(s)) + ∂xv(s, P

1(s))P 1(s)b(s, P 1(s))

+

∫

R

[
v(s, P 1(s) + ρ(s, z))− v(s, P 1(s))− ρ(s, z)∂xv(s, P

1(s))
]
ν(dz)

]
ds

+

∫ t

0

e−
∫ s

0
r(u)du

[
v(s, P 1(s−) + ρ(s))− v(s, P 1(s−))

]
ÑQ(ds)

Since it is martingale the dt term should be equal to zero then the inside of the
integral should be equal to zero which leads to

− r(s)v(s, P 1(s)) + ∂tv(s, P
1(s)) + [∂xv(s, P

1(s))]P 1(s)b(s, P 1(s))

+

∫

R

[
v(s, P 1(s) + ρ(s, z))− v(s, P 1(s))− ρ(s, z)∂xv(s, P

1(s))
]
ν(dz) = 0.
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Finally, the related PDIE is found as

f(t, P 1(t), v(t, P 1(t)), η1(t)P 1(t)ρ(t)) + ∂tv(s, P
1(s))

+ [∂xv(s, P
1(s))]P 1(s)b(s, P 1(s))

+

∫

R

[
v(s, P 1(s) + ρ(s, z))− v(s, P 1(s))− ρ(s, z)∂xv(s, P

1(s))
]
ν(dz) = 0,

v(T, P 1(T )) = ψ(P 1(T )). (5.15)

By Feynman-Kac formula, the solutions of the PDIE (5.15) and FBSDE system
(5.12), (5.14) coincide.

Example 5.2. The boundary value problem in the domain [0, T ]×R2 given with
the following PDIE,

∂F (t, x)

∂t
+ rx

∂F (t, x)

∂x
+
1

2
σ2x2

∂2F (t, x)

∂x2
+

∫

R

{
F (t, x+ ρ(z)x)

− F (t, x)−
[
∂F (t, x)

∂x

]∗
ρ(z)x

}
ν(dz) = rF (t, x)

F (T, x) =
√
x,

where r, σ are constants and ρ : R 7→ R is an Ft-predictable under risk neutral
probability measure Q. Simply, by the Feynman-Kac Theorem 5.1 the forward-
backward stochastic representation can be found as

dP (t) = rP (t)dt+ σP (t)dW (t) +

∫

R

ρ(z)P (t−)M̃(dt, dz)

P (0) = m

for any given m ∈ R2. In addition,

−dY (t) = f(t, Y (t))dt− Z(t)∗dW (t)−
∫

R

γ(t, z)M̃(dt, dz)

Y (T ) =
√
P (T ),

where f(t, Y (t)) = −rY (t) and the solution is

Y (t) = F (t, P (t)), Z(t) = [σP (t)]∗∂xF (t, P (t))

γ(t, z) =
[
∂xF (t, P (t

−))
]∗
ρ(z)P (t−).

By Remark 4.1 the solution can be found as,

Y (t) = EQ

[
e−r(T−t)

√
P (T )|F

]
.
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CHAPTER 6

CONCLUSION

It is a pleasure and imposing experiment to study on the BSDEs. In this thesis,
the BSDE theory, its relation with financial and PDE theory are considered from
the academic rules and ethics framework. It provides me interest to investigate
additionally demonstrates the connections of interdisciplinary areas. The work
done is the comprehension of BSDE theory and its application to financial math-
ematics and PDE theory. The paper “Backward Stochastic Differential Equations
in Finance” of El Karoui, Peng, and Quenez [9] is closely followed for the theory
without jumps. Moreover, the notation of the model including jumps is intro-
duced by following the book “Theory of Stochastic Differential Equations with
Jumps and Applications” of Situ [27]. The FBSDE system with jumps is used
to generalize Feynman-Kac formula for the models in the incomplete markets.
Especially, Feynman-Kac formula is considered for complete markets by the help
of Teugel martingales in the other references. This thesis encourages me to study
about Malliavan calculus in order to see its usage for BSDEs for future studies.

As a summary, initially the story of BSDEs is stated and they are introduced.
Next, the fundamental definitions and theorems for the Brownian case are stud-
ied. The existence and uniqueness of the solution of a BSDE from [9] which is
necessarily done for BSDE theory together with H. Sevda Nalbant [18] is restated
and explicitly proven. Later, the special case of BSDE with linear generator (LB-
SDE) is examined and it is give an elaborate proof with a closed formula for the
solution. Moreover, by the comparison theorem the fact that bigger contingent
claim makes the option price bigger is proven. As an application, the BSDEs in
finance and Feynman-Kac formula are practiced. By the Feynman-Kac formula a
duality is provided for BSDE and PDE. In order to broaden our study, the jumps
are enabled in our model and the theory from the beginning is study over which
is also intentionally done for the more advanced reader. The individuals are in-
terested in the BSDEs in the presence of jump processes can benefit from the last
chapters of the thesis. As a source, [27] is closely followed. The existence and
uniqueness, comparison, theorems are considered. Significantly, the generaliza-
tion of Feynman-Kac formula in the presence of jumps is given for the incomplete
markets in our unified notation, which is usually done with completion for Lévy
processes.
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APPENDIX A

SOME USEFUL INEQUALITIES, DEFINITIONS AND
THEOREMS

A.1 Some Useful Inequalities

Lemma A.1. (The Burkholder-Davis-Gundy Inequality) Let M be a continu-
ous martingale and 〈M〉T is its quadratic variation process. Define Mt

max =
max0≤s≤t |Ms| then for any m > 0, there exist universal positive constants cm, dm
depending only on m, such that

cmE
[
〈M〉mτ

]
≤ E

[
(Mmax

τ )2
]
≤ dmE

[
〈M〉mτ

]

holds for any stopping time τ .

(Reference [13])

Lemma A.2. (Doob’s Martingale Inequality) Let M be a positive submartingale
then for any p > 1,

E
[
sup
0≤s≤t

M(s)p
]
≤ qpE[M(t)p]

holds 1
p
+ 1

q
= 1 .

(Reference [2])

Lemma A.3. Let a(t), b(t), c(t) > 0 for any t, then we have the following in-
equalities;

2

∫ T

t

a(s)b(s)ds ≤
∫ T

t

a(s)b(s)2ds+

∫ T

t

a(s)ds,

0 ≤
∫ T

t

a(s)[b(s)− 1]2ds.

2

∫ T

t

a(s)b(s)c(s)ds ≤ 2

∫ T

t

a(s)2b(s)2ds+
1

2

∫ T

t

c(s)2ds,

0 ≤
∫ T

t

(√
2a(s)b(s)−

√
2

2
c(s)

)2

ds.
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A.2 Martingale Representation Theorem (MRT)

Theorem A.4. Suppose Mt is a square integrable martingale, with respect to
the filtration Ft for all t ≥ 0. Then there exists adapted process Zt such that

E[
∫ T

0
Z2

sds] <∞ for t ≥ 0 and

Mt =M0 +

∫ t

0

ZsdWs a.s.

(Reference [17])

A.3 Banach Fixed Point Theorem

Theorem A.5. Let H be a Banach space with S-norm, where H 6= ∅ and f :
H 7→ H be a contraction on H (i.e. there is a real number c such that c ∈ (0, 1)
and for any x, y ∈ H; ‖f(x)− f(y)‖S ≤ c ‖x− y‖S). Then f has only one fixed
point.

(Reference [15])

A.4 Girsanov Theorem

Theorem A.6. Let θt be an adapted process satisfying EP
[
e

1

2

∫ T

0
θ2t dt

]
< ∞ (Ap-

pendices, Theorem A.5 Novikov’s condition), Wt be d-dimensional Brownian mo-
tion under probability measure P and Yt be an Rd-valued Itô process such that

dYt = θtdt+ dWt, 0 ≤ t ≤ T.

Define

Zt := e[−
∫ t

0
θ∗sdWs−

1

2

∫ t

0
θ2sds].

Then the process Yt = Wt +
∫ t

0
θsds is a Brownian motion under the probability

Q defined by dQ = Z(T )dP.

(Reference [20])

A.5 Novikov’s Condition

Theorem A.7. Let X be a d-dimensional vector of measurable, adapted processes
on a probability space (ω,F ,P), with d-dimensional Brownian motion W , which
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satisfies

P

[ ∫ T

0

(X i
t)

2dt <∞
]
= 1, 1 ≤ i ≤ d, 0 ≤ T <∞.

If E
[
e

1

2

∫ T

0
X2

t dt
]
<∞, then Zt(X) defined as follows is a martingale;

Zt(X) := e[−
∫ t

0
X∗

s dWs−
1

2

∫ t

0
X2

sds].

(Reference [13])

A.6 Poisson and Lévy Processes: definitions and properties

Definition A.1. The process (N(t), t ≥ 0) defined by

N(t) =
∑

n≥1

1t≥Tn

is called a Poisson process with intensity λ, if (τi)i≥1 is a sequence of independent
exponential random variables with parameter λ and Tn =

∑n
i=1 τi.

Proposition A.8. Let N(t), t ≥ 0 be a Poisson process then it has the following
properties:

1. For any t > 0, N(t) is almost surely finite.

2. For any ω, the sample path t 7→ N(w, t) is piecewise constant and increases
by jump size 1.

3. The sample paths t 7→ N(t) are right continuous with left limit (i.e. cadlag).

4. For any t > 0, N(t−) = N(t) with probability 1.

5. N(t) is continuous in probability:

N(s)
P→ N(t) as s→ t, ∀t > 0.

6. For any t > 0, N(t) follows a Poisson distribution with parameter λt:

P(N(t) = n) = e−λt
(λt)n

n!
, ∀n ∈ N.

7. The characteristic function of N(t) is given by

E[eiuN(t)] = exp{λt(eiu − 1)}, ∀u ∈ R.

8. N(t) has independent increments (i.e. N(tn) − N(tn−1), ..., N(t2) − N(t1),
N(t1) are independent random variables, for any t1 < ... < tn).
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9. The increments of N are stationary (i.e. N(t)−N(s) has the same distri-
bution as N(t− s), for any t > s).

10. N(t) has the Markov property:

E[f(N(t))|N(u), u ≤ s] = E[f(N(t))|N(s)], ∀t > s.

Definition A.2. Let (Ω,F ,P) be a probability space, E ⊂ Rm and µ a given
(positive) Radon measure on (E, ξ). An integer valued random measure M is
called a Poisson random measure on E with intensity measure µ:

M : Ω× ξ 7→ N

such that

1. For ω ∈ Ω, M(ω; t, ·) is an integer-valued Radon measure on E.
2. For each measurable set A ∈ E, M(·; t, A) = M(t, A) is a Poisson random

variable with parameter µ(A).

3. The variablesM(t, A1), ...,M(t, An) are independent for disjoint measurable
sets A1, ..., An ∈ ξ.

Definition A.3. A right continuous with left limit (i.e. cadlag) stochastic process
Y (t), t ≥ 0 on (Ω,F ,P) with values in Rm such that Y (0) = 0 is called a Lévy
process if it has the following properties:

1. Independent increments: for every sequence of times t0, ..., tn the random
variables Y (tn)− Y (tn−1), ..., Y (t1)− Y (t0), Y (t0) are independent.

2. Stationary increments: the law of Y (t+ h)− Y (t) does not depend on t.

3. Stochastic continuity: ∀ǫ > 0, limh→0 P(|Y (t+ h)− Y (t)| ≥ ǫ) = 0.

Definition A.4. Let Y (t), t ≥ 0 be a Lévy process on Rm. The measure ν on
Rm defined by:

ν(A) = E[#{t ∈ [0, 1] : ∆Y (t) 6= 0, ∆Y (t) ∈ A}], A ∈ B(Rm)

is called the Lévy measure of Y : ν(A) is the expected number of jumps per unit
time whose size belongs to A.

(References [7], [16] )

A.7 Girsanov Theorem for Lévy Processes

Theorem A.9. Let θ(t, z) ≤ 1, z ∈ Rm and u(t) be an adapted processes where
t ∈ [0, T ] such that

∫ T

0

∫

Rm

{
| log(1 + θ(t, z)|+ (θ(t, z))2

}
ν(dz)dt <∞,
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∫ t

0

(
u(s)

)2
ds <∞.

Let the following exists for all t ∈ [0, T ]:

Zt := exp
{
−

∫ t

0

u(s)dWs −
1

2

∫ t

0

(u(s))2ds

+

∫ t

0

∫

Rm

[log(1− θ(s, z)) + θ(s, z)]ν(dz)ds+

∫ t

0

∫

Rm

log(1− θ(s, z))M̃(ds, dz)
}
.

Define Q as an equivalent measure of P such that

dQ = Z(T )dP.

Additionally, suppose that Z(t) satisfies the Novikov condition [12]. Then the

process M̃Q(dt, dz) = M̃(dt, dz) + θ(t, z)ν(dz)dt is a Poisson measure and the
process dWQ(t) = dW (t)+u(t)dt is a Brownian motion under probability measure
Q.

(Reference [22])

A.8 Itô Formula for Multidimensional Case with Jumps

Theorem A.10. Let X(t) ∈ Rd be an Itô-Lévy process of the form

dX(t) = b(w, t)dt+ σ(w, t)dW (t) +

∫

Rm

γ(w, t, z)M̃(dt, dz) (A.1)

where b : Ω× [0, T ] 7→ Rd, σ : Ω× [0, T ] 7→ Rd×n, γ : Ω× [0, T ]× Rm 7→ Rd×m

are adapted processes such that the integral exists. Here W (t) is an n-dimensional
Brownian motion and

M̃(dt, dz)∗ =
(
M̃1(dt, dz1), ..., M̃m(dt, dzm)

)

=

(
M1(dt, dz1)− E

[
M̃1(dt, dz1)

]
ν1(dz1), ...,

Mm(dt, dzm)− E

[
M̃m(dt, dzm)

]
νm(dzm)

)

where {Mj}’s are independent Poisson random measures with Lévy measures νj
coming from m independent (one-dimensional) Lévy processes η1, η2, ..., ηm. Note
that the k-th column γ(k) of d×m matrix γ = [γij] depend on z only through the
k-th coordinate zk i.e.

γ(k) = γ(k)(w, t, zk), z∗ = (z1, ..., zm),
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z ∈ Rm. The components of equation (A.1) has the following form

dXi(t) = bi(w, t)dt+
n∑

j=1

σij(w, t)dWj(t)

+
m∑

j=1

∫

R

γij(w, t, z)M̃j(dt, dzj), 1 ≤ i ≤ d.

To find Itô formula, take f : [0, T ] × Rd 7→ R such that f ∈ C1,2. Define Y (t) =
f(t,X(t)), then Y (t) is again an Itô-Lévy process and

dY (t) =
∂f

∂t
dt+

d∑

i=1

∂f

∂xi

(
bidt+ σidW (t)

)
+
1

2

d∑

i=1

d∑

j=1

(σσ∗)ij
∂2f

∂xi∂xj
dt

+
m∑

k=1

∫

R

{
f(t,X(t) + γ(k)(t, zk))− f(t,X(t))

−
d∑

i=1

γ
(k)
i (t, zk)

∂f

∂xi
(t,X(t))

}
νk(dzk)dt

+
m∑

k=1

∫

R

{
f(t,X(t−) + γ(k)(t, zk))− f(t,X(t−))

}
M̃k(dt, dzk),

(A.2)

where γ(k) ∈ Rm is column k of the d×m matrix γ and γ
(k)
i = γik is the coordinate

i of γ(k).

(Reference [21])

A.9 Quadratic covariation of Itô-Lévy Processes

Proposition A.11. Assume that

dXi(t) = bi(t, ω)dt+ σi(t, ω)dW (t) +

∫

R

ρi(t, z)Ñ(dt, dz); i = 1, 2

are two Itô-Lévy processes. Then by the Itô formula (Appendices Theorem A.10)
we have

d(X1(t)X2(t)) = X1(t
−)dX2(t) +X2(t

−)dX1(t) + σ1(t)σ2(t)dt

+

∫

R

ρ1(t, z)ρ2(t, z)N(dt, dz).
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Thus, in this case the quadratic covariation is

[X1,X2](t) =

∫ t

0

σ1(s)σ2(s)ds+

∫ t

0

∫

R

ρ1(s, z)ρ2(s, z)N(ds, dz)

=

∫ t

0

[
σ1(s)σ2(s) +

∫

R

ρ1(s, z)ρ2(s, z)ν(dz)
]
ds

+

∫ t

0

∫

R

ρ1(s, z)ρ2(s, z)Ñ(ds, dz). (A.3)

(Reference [21])
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