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ABSTRACT 

 

 

 

 

CLASSIFICATION OF ELECTRICITY CUSTOMERS BASED ON REAL 

CONSUMPTION VALUES USING DATA MINING AND MACHINE LEARNING 

TECHNIQUES AND ITS CORRESPONDING APPLICATIONS 

 

 

 

İşyapar, Muhammet Tuğberk 

 

M.Sc., Department of Computer Engineering 

Supervisor: Prof. Dr. Ferda Nur Alpaslan 

 

 

September 2013, 170 pages 

 

Classifying electricity customers based on real power consumptions has been 

particularly important in the last decade following the liberalization of the electricity 

markets in numerous countries and ubiquitous use of Automatic Meter Reading devices 

that collect consumption data at hourly intervals. Collection of vast amounts of 

consumption data has made it possible to identify customer classes by clustering. 

Classification of customer load profiles provides the basis of several applications offering 

solutions to encountered problems in the area. Dedicated tariff design, load forecasting 

and fraud detection are among deployable applications. Evaluated scalability of the 

methods reveals an implicit estimation about the size of local regions to which the 

framework can be applied within reasonable time. Forming further relations among local 

regions holding consumption data may be useful in developing national energy policies. 

This study covers a comprehensive scope of the recent work in the problem domain and 

puts forward foundations of corresponding applications by processing real consumption 

data of customers of an electricity distribution company in Turkey. 
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ÖZ 

 

 

 

 

ELEKTRİK ABONELERİNİN GERÇEK TÜKETİM VERİLERİNİN VERİ 

MADENCİLİĞİ VE MAKİNE ÖĞRENMESİ TEKNİKLERİ KULLANILARAK 

SINIFLANDIRILMASI VE İLGİLİ UYGULAMALARI 

 

 

 

İşyapar, Muhammet Tuğberk 

 

Yüksek Lisans., Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ferda Nur Alpaslan 

 

 

Eylül 2013, 170 sayfa 

 

Elektrik abonelerinin gerçek tüketim verileri kullanılarak sınıflandırılması, son on 

yılda elektrik pazarının birçok ülkede özelleştirilmesi ve saatlik tüketim verisi 

toplayabilen Akıllı Sayaçların yaygın kullanımıyla birlikte özellikle önemli hale 

gelmiştir. Yüksek miktarda toplanan tüketim verisi kümelendirme yöntemleri ile abone 

sınıflarının belirlenmesini mümkün kılmıştır. Abone gruplarını temsil eden yük 

profillerinin sınıflandırılması, alanda karşılaşılan problemlere çözüm üretecek 

uygulamaların temelini oluşturur. Özel tarife tasarımı, yük tahmini ve kaçak elektrik 

kullanımının tespiti geliştirilebilecek uygulamalar arasındadır. Kullanılan yöntemlerin 

ölçeklenebilirlik değerlendirmesi, sistemin makul sürede uyarlanabileceği yerel 

bölgelerde tutulacak veri miktarı hakkında dolaylı bir tahmin yürütme imkanı sunar. 

Yerel bölgeler arasında kurulacak ileri ilişkiler ulusal enerji politikaları geliştirmede 

faydalı olabilir. Bu çalışma, problem alanındaki güncel çalışmaları kapsamlı bir biçimde 

inceler ve Türkiye’de faaliyet gösteren bir enerji dağıtım şirketinin abonelerine ait verileri 

işleyerek ilgili uygulamaların dayanaklarını ortaya koyar. 

 

Anahtar Kelimeler: Yük Profilleri, Kümelendirme Algoritmaları, Sınıflandırma, 

Değerlendirme, Ölçeklenebilirlik. 

  



 

 vii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my uncle who lived as an honest worker, a loving father, and a caring person. 

 

To all we lost in the June Days. 

 



 

 viii 

ACKNOWLEDGEMENT 

 

 

 

I wish to express my gratitude to my supervisor Prof. Dr. Ferda Nur Alpaslan for her 

advice, guidance, and insight throughout the research. 

 

I would like to thank INNOVA IT Solutions Inc for their interest in this study, and all 

opportunities they have provided at their company and Boğaziçi Electricity Distribution 

Company for supplying the consumption data. 

 

I want to thank Karaca for being, as I do not know any better way to thank a person. His 

sensibility and understanding have helped me greatly in the formation of this thesis. 

 

I am keen on showing my appreciation to Yiğit for his valuable helps regarding the 

format of the thesis. I would like to thank my friends Hande and Esra, whose presence 

has called forth my best throughout all these years. 

 

I would like to show my gratitude to my -extended- family, as nobody else could be 

happier having read this acknowledgment. 

 

Last but not the least, I want to thank my three cat-mates; Kara Bela Dominique, Prenses 

Pantufya and Aşkiti Pancar. They have been through all stages of this study and now I 

cannot help admitting how much I love them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ix 

TABLE OF CONTENTS 

 

 

 

ABSTRACT ........................................................................................................................ v 

ÖZ ...................................................................................................................................... vi 

ACKNOWLEDGEMENT ............................................................................................... viii 

TABLE OF CONTENTS ................................................................................................... ix 

LIST OF FIGURES .......................................................................................................... xii 

LIST OF TABLES .......................................................................................................... xvii 

LIST OF NOTATIONS ................................................................................................. xviii 

CHAPTERS 

1. INTRODUCTION .......................................................................................................... 1 

1.1 Background and Motivation ..................................................................................... 1 

1.2 Overview and Scope of the Study ............................................................................ 2 

1.3 Contributions ............................................................................................................ 5 

1.4 Structure of the Thesis .............................................................................................. 5 

2. RELATED WORK ......................................................................................................... 7 

2.1 Introduction .............................................................................................................. 7 

2.2 Load Profile Clustering and Classification ............................................................... 8 

2.3 Evaluation of Algorithms ....................................................................................... 11 

2.4 Applications ............................................................................................................ 12 

3. DATA PREPARATION ............................................................................................... 13 

3.1 Introduction ............................................................................................................ 13 

3.2 Characteristics of Used Data Sets ........................................................................... 13 

3.3 Data Preparation Tasks ........................................................................................... 14 

3.3.1 Identifying Weekdays, Weekends and Holidays ......................................... 15 

3.3.2 Missing Values ............................................................................................ 15 

3.3.3 Outlier Detection and Smoothing ................................................................ 16 

3.3.4 Forming Monthly Load Diagrams .............................................................. 16 

3.3.5 Presence Check Across Monthly Load Diagrams ....................................... 17 

3.3.6 Forming Seasonal Load Diagrams .............................................................. 18 

3.3.7 Normalization .............................................................................................. 19 

3.4 Load Shape Indices ................................................................................................. 19 

3.5 Visualization of Seasonal Load Diagrams .............................................................. 20 

3.6 Summary ................................................................................................................. 22 

4. CLUSTERING ALGORITHMS................................................................................... 23 



 

 x 

4.1 Introduction ............................................................................................................. 23 

4.2 Problem Definition and Distance Frameworks ....................................................... 23 

4.3 Description of Algorithms ...................................................................................... 25 

4.3.1   K-Means Clustering .................................................................................. 26 

4.3.2   K-Means++ Clustering .............................................................................. 27 

4.3.3   K-Medians Clustering ............................................................................... 28 

4.3.4   WFA-K-Means Clustering ........................................................................ 29 

4.3.5   Hopfield-K-Means Clustering ................................................................... 29 

4.3.6   K-Medoids Clustering ............................................................................... 32 

4.3.7   Similarity-Based K-Means Clustering ...................................................... 33 

4.3.8   ISODATA Clustering ................................................................................ 34 

4.3.9   Fuzzy-K-Means Clustering ....................................................................... 38 

4.3.10 Follow-The-Leader Clustering .................................................................. 40 

4.3.11 Hierarchical Clustering .............................................................................. 43 

4.3.12 Self-Organizing Map Clustering ............................................................... 47 

4.4 Summary ................................................................................................................. 50 

5. EVALUATION OF CLUSTERING ALGORITHMS .................................................. 53 

5.1 Introduction ............................................................................................................. 53 

5.2 Evaluation Metrics .................................................................................................. 53 

5.3 Evaluation Methodology ......................................................................................... 56 

5.4 Evaluation Results .................................................................................................. 58 

5.4.1   K-Means Clustering Evaluation ................................................................ 58 

5.4.2   K-Means++ Clustering Evaluation ............................................................ 61 

5.4.3   K-Medians Clustering Evaluation ............................................................. 65 

5.4.4   WFA-K-Means Clustering Evaluation ...................................................... 67 

5.4.5   Hopfield-K-Means Clustering Evaluation ................................................. 70 

5.4.6   K-Medoids Clustering Evaluation ............................................................. 74 

5.4.7   Similarity-Based K-Means Clustering Evaluation .................................... 77 

5.4.8   ISODATA Clustering Evaluation .............................................................. 81 

5.4.9   Fuzzy K-Means Clustering Evaluation ..................................................... 83 

5.4.10 Follow-The-Leader Clustering Evaluation ................................................ 87 

5.4.11 Hierarchical Clustering Evaluation ........................................................... 90 

5.4.11.1 Single Linkage Clustering Evaluation ....................................... 90 

5.4.11.2 Complete Linkage Clustering Evaluation .................................. 92 

5.4.11.3 WPGMA Linkage Clustering Evaluation .................................. 94 

5.4.11.4 UPGMA Linkage Clustering Evaluation ................................... 96 



 

 xi 

5.4.11.5 Ward’s Linkage Clustering Evaluation ..................................... 99 

5.4.11.6 Flexible Linkage Clustering Evaluation .................................. 101 

5.4.12. SOM Clustering Evaluation ................................................................... 105 

5.4.12.1 Sequentially Trained SOM Clustering Evaluation .................. 105 

5.4.12.2 Batch Trained SOM Clustering Evaluation ............................. 107 

5.5 Discussion on Evaluation of Clustering Algorithms ............................................ 110 

5.5.1 Comparison of K-Means Clustering Family ............................................. 110 

5.5.2 Comparisons of Hierarchical Clustering Family ....................................... 112 

5.5.3 Comparisons of All Clustering Algorithm Families ................................. 115 

5.6 Summary ............................................................................................................... 116 

6. RUNNING TIME EVALUATION OF CLUSTERING ALGORITHMS ................. 119 

6.1 Introduction .......................................................................................................... 119 

6.2 Synthetic Data Generation .................................................................................... 119 

6.3 Running Times of Algorithms on Real Consumption Data .................................. 120 

6.4 Running Times of Algorithms on Synthetic Data ................................................ 125 

6.5 Fundamental Approaches to Decrease Running Times ........................................ 129 

6.5.1 Utilizing Parallel Versions of Algorithms ................................................. 129 

6.5.2 Designing Hybrid Algorithms ................................................................... 131 

6.5.3 Decreasing Data Size or Dimensionality .................................................. 136 

6.6 Summary ............................................................................................................... 137 

7. CLASSIFICATION OF LOAD PROFILES AND RELATED APPLICATIONS .... 139 

7.1 Introduction .......................................................................................................... 139 

7.2 Customer Recognition .......................................................................................... 139 

7.3 Basic Class-Based Dynamic Tariff Design .......................................................... 151 

7.4 Other Applications ................................................................................................ 158 

7.5 Summary ............................................................................................................... 160 

8. DISCUSSION AND CONCLUSION ......................................................................... 161 

REFERENCES .............................................................................................................. 165 

 

  



 

 xii 

LIST OF FIGURES 

 

 

 

FIGURES 

 

Figure 1.1 Components of load profile classification. ........................................................ 3 

Figure 1.2 A modular representation of components of customer management. ................ 3 

Figure 2.1 Analysis techniques heavily used in load profiles classification domain (Verdú 

et al., 2006) .......................................................................................................................... 9 

Figure 3.1 Normalized load diagrams of winter weekdays and weekends as clustered by 

Follow-the-Leader algorithm. ........................................................................................... 21 

Figure 3.2 Normalized load diagrams of summer weekdays and weekends as clustered by 

Follow-the-Leader algorithm. ........................................................................................... 21 

Figure 5.1 Evaluation of K-means for winter weekdays data. .......................................... 58 

Figure 5.2 Clustering of winter weekdays data by K-means in Euclidean framework. .... 59 

Figure 5.3 Evaluation of K-means for summer weekdays data......................................... 59 

Figure 5.4 Clustering of summer weekdays data by K-means in Euclidean framework. . 60 

Figure 5.5 Evaluation of K-means++ for winter weekdays data. ...................................... 61 

Figure 5.6 Clustering of winter weekdays data by K-means++ in Euclidean framework 62 

Figure 5.7 Clustering of winter weekdays by K-means++ in hybrid Pearson framework.62 

Figure 5.8 Evaluation of K-means++ for summer weekdays data. ................................... 63 

Figure 5.9 Clustering of summer weekdays by K-means++ in hybrid Pearson framework.

 ........................................................................................................................................... 64 

Figure 5.10 Evaluation of K-medians for winter weekdays data. ..................................... 65 

Figure 5.11 Clustering of winter weekdays by K-medians in hybrid Pearson framework.

 ........................................................................................................................................... 66 

Figure 5.12 Evaluation of K-medians for summer weekdays data. .................................. 66 

Figure 5.13 Clustering of summer weekdays data by K-medians in Euclidean framework.

 ........................................................................................................................................... 67 

Figure 5.14 Evaluation of WFA-K-means for winter weekdays data. .............................. 68 



 

 xiii 

Figure 5.15 Clustering of winter weekdays data by WFA-K-means in hybrid Pearson 

framework. ........................................................................................................................ 68 

Figure 5.16 Evaluation of WFA-K-means for summer weekdays data. ........................... 69 

Figure 5.17 Clustering of summer weekdays by WFA-K-means in Euclidean framework.

 .......................................................................................................................................... 70 

Figure 5.18 Evaluation of Hopfield-K-means for winter weekdays data. ........................ 70 

Figure 5.19 Clustering of winter weekdays data by Hopfield-K-means in Euclidean 

framework. ........................................................................................................................ 71 

Figure 5.20 Evaluation of Hopfield-K-means for summer weekdays data. ...................... 72 

Figure 5.21 Clustering of summer weekdays data by Hopfield-K-means in hybrid Pearson 

framework. ........................................................................................................................ 73 

Figure 5.22 Evaluation of K-medoids for winter weekdays data. ..................................... 74 

Figure 5.23 Clustering of winter weekdays by K-medoids in hybrid Pearson framework.

 .......................................................................................................................................... 75 

Figure 5.24 Evaluation of K-medoids for summer weekdays data. .................................. 76 

Figure 5.25 Clustering of summer weekdays data by K-medoids in hybrid Pearson 

framework. ........................................................................................................................ 76 

Figure 5.26 Evaluation of similarity-based K-means for winter weekdays data. ............. 77 

Figure 5.27 Clustering of winter weekdays data by similarity-based K-means in 

Euclidean framework. ....................................................................................................... 78 

Figure 5.28 Evaluation of similarity-based K-means on summer weekdays data. ........... 79 

Figure 5.29 Clustering of summer weekdays data by similarity-based K-means in 

Euclidean framework. ....................................................................................................... 80 

Figure 5.30 Evaluation of ISODATA clustering on winter weekdays data. ..................... 81 

Figure 5.31 Clustering of winter weekdays data by ISODATA in Euclidean framework.81 

Figure 5.32 Evaluation of ISODATA on summer weekdays data. ................................... 82 

Figure 5.33 Clustering of summer weekdays data by ISODATA in Euclidean framework.

 .......................................................................................................................................... 83 

Figure 5.34 Evaluation of Fuzzy K-means on winter weekdays data. .............................. 84 

Figure 5.35 Clustering of winter weekdays data by Fuzzy K-means in squared Euclidean 

framework. ........................................................................................................................ 84 



 

 xiv 

Figure 5.36 Evaluation of Fuzzy K-means on summer weekdays data. ........................... 85 

Figure 5.37 Clustering of summer weekdays data by Fuzzy K-means in hybrid Pearson 

framework. ........................................................................................................................ 86 

Figure 5.38 Evaluation of Follow-the-Leader clustering on winter weekdays data. ......... 87 

Figure 5.39 Clustering of winter weekdays data by Follow-the–Leader method in 

Euclidean framework. ....................................................................................................... 88 

Figure 5.40 Evaluation of Follow-the-Leader clustering on summer weekdays data. ...... 89 

Figure 5.41 Clustering of summer weekdays data by Follow-the-Leader algorithm in 

hybrid Pearson framework. ............................................................................................... 89 

Figure 5.42 Evaluation of Hierarchical clustering with single linkage on winter weekdays 

data. ................................................................................................................................... 90 

Figure 5.43 Clustering of winter weekdays data by Hierarchical clustering with single 

linkage in weighted Euclidean framework. ....................................................................... 91 

Figure 5.44 Evaluation of Hierarchical clustering with complete linkage on winter 

weekdays data. .................................................................................................................. 92 

Figure 5.45 Clustering of winter weekdays data by Hierarchical clustering with complete 

linkage in weighted Euclidean framework. ....................................................................... 93 

Figure 5.46 Evaluation of Hierarchical clustering with WPGMA linkage on winter 

weekdays data. .................................................................................................................. 94 

Figure 5.47 Clustering of winter weekdays data by Hierarchical clustering with WPGMA 

linkage in hybrid Pearson framework. .............................................................................. 95 

Figure 5.48 Evaluation of Hierarchical clustering with UPGMA linkage on winter 

weekdays data. .................................................................................................................. 96 

Figure 5.49 Clustering of winter weekdays data by Hierarchical clustering with UPGMA 

linkage in Euclidean framework. ...................................................................................... 97 

Figure 5.50 Evaluation of Hierarchical clustering with UPGMA linkage on summer 

weekdays data. .................................................................................................................. 98 

Figure 5.51 Clustering of summer weekdays data by Hierarchical clustering with 

UPGMA linkage in Euclidean framework. ....................................................................... 98 

Figure 5.52 Evaluation of Hierarchical clustering with Ward’s linkage on winter 

weekdays data. .................................................................................................................. 99 

Figure 5.53 Clustering of winter weekdays data by Hierarchical clustering with Ward’s 

linkage in hybrid Pearson framework. ............................................................................ 100 



 

 xv 

Figure 5.54 Evaluation of Hierarchical clustering with flexible linkage on winter 

weekdays data. ................................................................................................................ 102 

Figure 5.55 Clustering of winter weekdays data by Hierarchical clustering with flexible 

linkage in hybrid Pearson framework. ............................................................................ 102 

Figure 5.56 Evaluation of Hierarchical clustering with flexible linkage on summer 

weekdays data. ................................................................................................................ 103 

Figure 5.57 Clustering of summer weekdays data by Hierarchical clustering with flexible 

linkage in hybrid Pearson framework. ............................................................................ 104 

Figure 5.58 Evaluation of SOM (Seq. 6 15) clustering on winter weekdays data. ......... 105 

Figure 5.59 Clustering of winter weekdays by SOM (Seq. 6 15) in Euclidean framework.

 ........................................................................................................................................ 106 

Figure 5.60 Final SOM (Seq 6 15) of winter weekdays data set grouped into 10 clusters in 

Euclidean framework, Map 1. ......................................................................................... 107 

Figure 5.61 Evaluation of SOM (Batch 6 15) clustering on winter weekdays data. ....... 107 

Figure 5.62 Clustering of winter weekdays data by SOM (Batch 6 15) in Euclidean 

framework. ...................................................................................................................... 108 

Figure 5.63 Final SOM (Batch 6 15) of winter weekdays data set grouped into 6 clusters 

in Euclidean framework, Map 2. ..................................................................................... 109 

Figure 5.64 Evaluation of K-means family algorithms on winter weekdays data in 

Euclidean distance framework. ....................................................................................... 110 

Figure 5.65 Evaluation of K-means family algorithms on winter weekdays data in hybrid 

Pearson distance framework. .......................................................................................... 112 

Figure 5.66 Evaluation of Hierarchical clustering with distinct linkage criteria clustering 

winter weekdays data in Euclidean distance framework. ............................................... 113 

Figure 5.67 Evaluation of Hierarchical clustering with distinct linkage criteria clustering 

winter weekdays data in hybrid Pearson distance framework. ....................................... 114 

Figure 5.68 Evaluation of all families of clustering algorithms on winter weekdays data in 

Euclidean distance framework. ....................................................................................... 115 

Figure 5.69 Evaluation of all families of clustering algorithms on summer weekdays data 

in Euclidean distance framework. ................................................................................... 116 

Figure 6.1 All points of the first, second, and the third synthetic data sets partitioned into 

10 clusters. ...................................................................................................................... 120 

Figure 6.2 Clustering of the second synthetic data set by Hierarchical–K-means++ 

algorithm in Euclidean distance framework. .................................................................. 132 



 

 xvi 

Figure 6.3 Clustering of the second synthetic data set by Hierarchical–Follow-the-Leader 

algorithm in Euclidean distance framework. ................................................................... 133 

Figure 7.1 Clustering of winter weekdays data by Follow-the-Leader algorithm in 

Euclidean framework. ..................................................................................................... 140 

Figure 7.2 Decision tree for classifying winter weekdays consumption using clustering of                                                                   

Follow-the-Leader algorithm with load shape indices. ................................................... 141 

Figure 7.3 Decision tree for classifying winter weekdays consumption using clustering of 

Follow-the-Leader algorithm with actual features. ......................................................... 144 

Figure 7.4 ROC curve for Cluster1 residing in Table 7.2. .............................................. 147 

Figure 7.5 Process flows of tariff design and appropriate tariff proposal to new customers.

 ......................................................................................................................................... 151 

Figure 7.6 Tariffs proposed to customers for electricity consumption in winter weekdays 

and generated by Follow-the-Leader clustering. ............................................................. 152 

Figure 7.7 Tariffs aiming at reducing peak load and stabilizing consumption based on 

Follow-the-Leader clustering of winter weekdays data. ................................................. 156 

Figure 7.8 Process flow of load forecasting. ................................................................... 158 

Figure 7.9 Process flow of fraud detection...................................................................... 159 

 

  

file:///G:/thesis.docx%23_Toc365850219
file:///G:/thesis.docx%23_Toc365850219
file:///G:/thesis.docx%23_Toc365850220
file:///G:/thesis.docx%23_Toc365850220


 

 xvii 

LIST OF TABLES 

 

 

 

TABLES 

 

Table 3.1 Number of customers whose data available at months of 2012. ....................... 13 

Table 3.2 Number of customers whose data first appears in indicated months. ............... 18 

Table 3.3 Load shape indices. ........................................................................................... 20 

Table 5.1 Quantization and topographic errors comparison for the two maps. .............. 109 

Table 6.1 Running times and number of iterations of all algorithms running on winter and 

summer weekdays data sets to generate 10 clusters........................................................ 121 

Table 6.2 Running times of clustering of winter weekdays data in Euclidean framework 

with increasing number of clusters. ................................................................................ 124 

Table 6.3 Running times of algorithms on synthetic data sets in Euclidean framework, 

generating 10 clusters ..................................................................................................... 126 

Table 6.4 Running time comparison of sequential and concurrent versions of K-means 

partitioning synthetic data sets into 10 clusters in Euclidean framework. ...................... 130 

Table 6.5 Evaluation of 10 clusters generated by Hierarchical and hybrid Hierarchical 

algorithms on the second synthetic data set in Euclidean framework. ........................... 134 

Table 6.6 Running time evaluation of original and hybrid Hierarchical algorithms 

generating 10 clusters on synthetic data sets in Euclidean framework. .......................... 135 

Table 7.1 Confusion matrix for classification of winter weekdays data clustered by 

Follow-the-Leader using load shape indices. .................................................................. 145 

Table 7.2 Confusion matrix for classification of winter weekdays data clustered by 

Follow-the-Leader using actual features. ........................................................................ 146 

Table 7.3 Behavior of Cluster1 of Table 7.2 with changing threshold as marked on ROC 

curve. ............................................................................................................................... 148 

Table 7.4 Evaluation of classifications performed on the illustrated clusters covered in 

Chapter 5. ........................................................................................................................ 149 

Table 7.5 Statistics regarding the ratio of new hourly prices to currently-utilized fixed 

unit price for Follow-the-Leader clustering. ................................................................... 154 

Table 7.6 Weighted average statistics regarding the ratio of new hourly prices to 

currently-utilized fixed unit price of all clusters by several algorithms. ......................... 155 

Table 7.7 Statistics regarding the ratio of new hourly prices to currently-utilized fixed 

unit price for Follow-the-Leader clustering. ................................................................... 157 

 



 

 xviii 

LIST OF NOTATIONS 

 

 

 

  Number of data points 

  Number of clusters 

     Maximum number of iterations until convergence 

  Current iteration number 

  Dimensionality 

  Set of data points 

   Data point indexed by   such that            

  
 
 Feature   of data point    where          and           

  Set of clusters 

   Cluster indexed by   such that          

   Center of the cluster indexed by   such that          

  
 
 Feature   of center vector of cluster    where          and          

  Distance matrix 

    Distance matrix element indexed by   and   where          and           

   Set of data points belonging to cluster    

  
  Data point indexed by   in    where           and          

   Size of cluster    

   Number of cluster-changing data points at iteration   where             

   Centroid initializer constant used in K-means 

   Centroid initializer constant used in K-means 

  Initial cluster count variable of K-means++ where           



 

 xix 

     Weighted fuzzy average  

  Number of training iterations of Hopfield network 

     State vector used in Hopfield network at time   where          

  
   

 State node indexed by   in      such that          and           

  Weight vector used in Hopfield network. 

    Weight indexed by   and   such that            

   Desired number of clusters 

   Minimum inter-cluster distance threshold 

   Maximum number of merges threshold 

   Maximum intra-cluster standard deviation threshold 

   Minimum cluster size threshold 

  Error threshold 

       Width of Self Organizing Map 

        Height of Self Organizing Map 

  Neighborhood radius function of Self Organizing Map 

  Distance falloff function of Self Organizing Map 

  Learning rate used in the training of Self Organizing Map 

  Neighborhood function of Self Organizing Map 

  A node of the Self Organizing Map 

    Best matching unit of the data point    in Self Organizing Map 

 

  



 

 xx 

 



 

 1 

CHAPTER 1 

 

 

 INTRODUCTION 

 

 

 

1.1 Background and Motivation 

Classifying electricity customers based on real power consumptions has been noteworthy 

in the last decade following the liberalization of electricity markets in numerous 

countries. Economic processes have been encouraging evermore participants including 

distributors and retailers to take part in the market. Customers could benefit from the 

situation by choosing the optimal price for the service they receive. In order to the pave 

the way for such a development, correct knowledge of customer classes should be 

identified.  

 

Customer classes can be used in developing business strategies as the business owner can 

deduce the most profitable groups via continuously monitoring their customers. Temporal 

changes of customers among identified classes shall constitute an important factor in 

forecasting revenues and in evaluating quality of the services provided. Similarly, 

seasonal and occasional behavior changes in electricity consumption are significant facts 

that shape the composition of customer classes in such a way that classification of 

customers must be conducted separately for weekdays, weekends and holidays together 

with seasons. 

 

Electrical energy cannot be stored for re-use. Therefore, forecasting future electricity 

consumptions based on previous real consumption amounts regarding each customer 

class is of the utmost importance. Formed customer classes should be compact and well-

separated from each other and be as robust as possible against the presence of noise so as 

to develop applications upon them. In order to stimulate consumption or disposal of then-

current electrical energy, appropriate strategies could be established based on 

characteristics of each customer class. These characteristics are useful in planning 

dedicated tariff structures and future investments, as well. In short, discovered customer 

classes are of significant informative value for characterizing and manipulating the whole 

electricity market. 

 

The most contemporary way to collect real electricity consumptions of customers is 

employing Automatic Meter Reading (AMR) systems that collect consumption and status 

data from electric metering devices and transfer the data to central databases in 

predefined intervals. By inspecting the data obtained in a relatively long period, 
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representative load diagrams for every customer can be computed. Representative load 

diagrams of a set of customers can be clustered into several consumer classes, each of 

which is characterized by a representative load profile by using a set of clustering 

algorithms proposed in the data mining literature. 

 

Formation of representative load profiles offers fundamental solutions to problems 

associated with the electricity domain. Possible positive uses of classification based on 

consumption shapes include designing class-specific tariffs to give customers new 

degrees of freedom; forecasting future electricity consumption to plan the amount of 

electricity the country needs so that dependency to other countries that sell energy can be 

diminished and waste can be prevented; and detecting fraud to develop policies against all 

kinds of misuse. 

1.2 Overview and Scope of the Study 

Using the knowledge of customer classes obtained by computational techniques that 

process data from AMR devices offers various advantages over forming macro categories 

based on contractual and billing data or surveys. Currently, macro categories such as 

household and commercial are used as part of the national energy policies of Turkey to 

classify electricity customers. Each macro category comes with dedicated tariffs.  

 

A study conducted in Finland puts forward that classes emerged through the use of data 

mining techniques are more accurate than macro categories and members of a major 

category could indeed be distributed across obtained classes (Räsänen et al., 2010). It is 

worth noting that Finland electricity distribution companies traditionally utilized several 

more macro categories than the ones in Turkey. Furthermore, intuitively, there is no 

direct correlation between categories separating a house and an office and the related 

electricity consumption patterns. Discovering natural clusters on real consumption data 

makes it possible for more criteria to emerge that can classify customers more accurately 

compared to major categories. 
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Figure 1.1 Components of load profile classification.  

 

Components necessary to conduct load profile classification is illustrated in (Fig. 1.1). 

Data collected over AMR devices are transferred remotely to a central database for 

storage. Customer management deals with data collected over at least one year so as to 

perform classification to discover representative load profiles of all customers and to 

deploy applications based on the results of the classification. 

 

The study involves a two-step processing of data by first clustering load diagrams, then 

classifying the recently-formed labeled data for generalization purposes. It combines 

supervised and unsupervised learning as in (Pao and Sobajic, 1992). Components 

included in the customer management task in (Fig. 1.1) are visualized in the following. 

 

 
 

Figure 1.2 A modular representation of components of customer management. 

 

This study aims to highlight components of customer management shown in (Fig 1.2) and 

focuses primarily on discovering natural clusters of customers computed on real 

consumption data for different seasons along with weekdays, weekends, and holidays; 
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and evaluating the quality of performance of generated clustering in such a way that 

discovered clusters shall be compact and well-separated from each other to be reckoned 

as having informative value. 

 

Data pre-processing is a crucial step which helps making sense of vast amounts of 

consumption data by forming representative load diagrams of customers for weekdays, 

weekends and holidays of both winter and summer seasons. Load diagrams are calculated 

by taking averages of per hour consumption amounts at specified date intervals. 

Meanwhile, missing values are replaced; outliers are detected and smoothed; and 

obtained diagrams are normalized to go through the clustering step. Data pre-processing 

step also includes computation of load shape indices that characterize the consumption 

summarized in a load diagram. 

 

Next, representative load diagrams are clustered by several clustering methods. Centers of 

generated clusters are adopted as representative load profiles of customers residing in 

them. Clustering algorithms are evaluated by numerous validity indices to reveal the 

quality of performance regarding produced clusters. Clustering and evaluation are the two 

steps that work in a coherent fashion so that designs of algorithms are improved 

following their evaluation. Moreover, performance quality evaluation provides means for 

comparing clustering algorithms. 

 

Evaluation of clustering algorithms is also carried out based on scalability criterion. This 

work aims to reveal scalability of clustering algorithms by testing them on larger amounts 

of data, which shall be of great value to predict average sizes of data sets for which 

automatic customer class formation is proved to be effective. Consequently, higher-level 

relations can be formed among several local regions holding the data of a particular 

number of customers for possible use in developing national energy policies. 

 

Following the discovery of natural clusters on consumption data that is processed into 

forms of occasional load diagrams of customers, classification is performed to highlight 

the rules regarding consumption shapes that make a customer be part of a particular 

cluster. This paves the way for devising applications such as customer recognition that is 

used to place new customers in correct classes, forming class-specific tariffs, and 

proposing tariffs to new customers by using the results of customer recognition. 

Foundations for load forecasting and fraud detection applications are also explained in the 

study, although their deployable applications are not designed or evaluated due to lack of 

available consumption data collected over several years. 

 

As a summary, this study is bound within the scope of clustering and classification of 

electricity customers that are represented by seasonal load diagrams for weekdays, 

weekends and holidays computed over collected data in a one-year period. An elaborated 

evaluation of employed methods regarding both accuracy and scalability is presented as 

well. Possible uses of load profile classification are explained through proposed 

applications. 
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1.3 Contributions 

This study presents a prototype of customer management for an electricity distribution 

company. Literature review included in the next chapter covers numerous pioneer works 

in the area with contributions from all over the world. However, problem domain is yet to 

draw a similar attention in Turkey. For this reason, the scope of the study is kept quite 

comprehensive in order to provide a large-scale example work. 

 

Prominent algorithms of the literature are evaluated on the data provided by Boğaziçi 

Electricity Distribution Company in Istanbul. Following modifications and design 

improvements are among contributions of the thesis. 

 

 Clustering algorithms that are originally not covered by load profiling literature 

such as K-means++ and Similarity-Based K-means using point symmetry 

distance are analyzed. 

 

 Particular clustering algorithms are modified such as using centroid initialization 

proposed by K-means++ in algorithms such as K-medians and WFA-K-means 

and allowing new cluster formation in later iterations of Follow-the-Leader 

algorithm. 

 

 Effects of designing hybrid distance heuristics on the performance of clustering 

algorithms are thoroughly discussed and a hybrid Pearson distance framework is 

proposed, which supersedes the performance of well-known Euclidean metric in 

particular cases. 

 

 Scalability of clustering algorithms is analyzed elaborately. In order to decrease 

running times and increase scalability of Hierarchical algorithms, two hybrid 

methods, Hierarchical–K-means++ and Hierarchical–Follow-the-Leader, are 

designed. 

 

Regarding all methods covered in this study, more recent work is given particular 

importance in the content of this study so as to motivate the authorities in Turkey to adopt 

load profile classification in electricity domain. 

1.4 Structure of the Thesis 

Following chapters discuss load profile clustering and classification in a detailed fashion. 

Chapter 2 covers the related work and recent improvements in the problem domain. 

Chapter 3 presents characteristics of used data sets and data pre-processing. Detailed 

descriptions of clustering algorithms are included in Chapter 4.  
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Performance quality of each clustering method is evaluated by means of various validity 

indices in Chapter 5, which also includes illustrations of generated clusters by each 

algorithm. Chapter 6 presents a discussion about running time complexities and 

scalability of clustering methods to increasing amounts of data and offers solutions that 

decrease running times and increase scalability. 

 

Chapter 7 includes classification of load profiles by using load shape indices and actual 

features with class labels inherited from generated clusters. Throughout this chapter, 

prototypes of applications based on load profile classification are exemplified. 

 

The last chapter, Chapter 8, contains conclusions of the study along with discussions and 

guidelines for future work. 
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CHAPTER 2 

 

 

 RELATED WORK 

 

 

 

2.1 Introduction 

Data mining techniques have been rapidly applied to various problem domains including 

power systems since the turn of the millennium. According to the survey conducted in 

(Mori, 2006) problem areas include security assessment (48.8%), fault detection (11.6%), 

power systems control (9.3%), load forecasting (6.9%), and load profiling (6.9%). The 

problem of classifying electricity customers based on their electrical behaviors is heavily 

inspected in load profiling area.  

 

Application of data mining to customer segmentation is useful as a customer profile 

analysis for the establishment of business strategies (Chicco et al., 2001; Kitayama et al., 

2002). Relationship between the amount of the electric power use and the load factor 

reveal information about the regular and preferred, i.e. eligible customers. Temporal 

changes between the preferred and regular segments can be used in evaluation of the 

planned service (Kitayama et al., 2002). Formed customer classes can also be used in 

obtaining better support management decisions in terms of planning of bids and energy 

offers in real-time energy markets (Gabaldón et al., 2010), optimum fixed or real-time 

price offering (Mahmoudi-Kohan et al., 2010), and short-term (24-hour-ahead) price 

prediction (Zareipour et al., 2011). 

 

Surveys were employed to identify electricity consumption behaviors of customers in late 

1990’s. Data collected by surveys are manipulated by statistical techniques to arrive at 

major customers classes varying from residential customers to extra high voltage 

customers, to which distinct prices for consumption at particular hours are assigned so 

that more effective load management alternatives to reduce the system peak demand is 

carried out (Chen et al., 1997).  

 

Predefined macro categories formed through surveys or simple contractual data does not 

take into account possible misinformation, irregular consumer behaviors, changes 

between customer classes and regional differences (Chicco et al., 2005b; Mutanen et al., 

2011). Electricity consumption data of customers is gathered by Automatic Meter 

Reading (AMR) systems which record true values of power usage in predefined time 

intervals such as every 15 minutes or one hour (Piao et al., 2010) to overcome 

disadvantages of traditional techniques. Mathematical comparison techniques indicate the 
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superiority of AMR to prior means of data collection (Chicco, 2005a) and developed 

countries such as Finland require its distribution operators to equip at least 80% of the 

customers with AMR by the end of 2013 (Mutanen et al., 2011).  

2.2 Load Profile Clustering and Classification 

Data collected via AMR devices are stored to form effective customer classes with the 

help of appropriate automatic clustering techniques instead of the traditional few 

parameters and commercial codes (Chicco et al., 2001). 

 

Load diagrams for each customer can be identified by properly averaging the 

consumption data and normalizing the result in the interval [0, 1] to obtain representative 

load diagrams which are used as inputs to clustering algorithms. Clustering results lead to 

formation of class representative load diagrams for each customer class built on the basis 

of load diagrams aggregated in the same customer class which may be used in several 

applications. 

 

Clustering proceeds in two phases: pre-classification phase which includes data 

preparation, obtaining measurements, bad data detection (Gerbec et al., 2005), data 

reduction (Chicco et al., 2006), identification of loading conditions (seasons, weekends, 

holidays), and definition of representative load patterns for each customers and 

classification phase which includes feature selection like picking time-domain data 

(Verdú et al., 2006), load shape factors including indices such as lunch impact and night 

impact (Figueiredo et al., 2005), harmonic coefficients; customer classification by a 

suitable technique; class representative load patterns computation and classification 

adequacy measurement (Chicco et al, 2005b).  
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Figure 2.1 Analysis techniques heavily used in load profiles classification domain 

(Verdú et al., 2006) 

 

Various algorithms are proposed in load profiling area. These data analysis techniques 

can be categorized depending on computational and mathematical backgrounds, as 

illustrated in (Fig. 2.1). Several methods are described in the following. 

 

K-means clustering requires the knowledge of number of clusters to operate and applies 

in cycles to assign data points to clusters and to update cluster centers according to the 

optimum distance arrangement between cluster centers and data points (Chicco et al., 

2003). Although traditional K-means algorithm sets initial cluster centers randomly, 

centroids can also be initialized using constant values (Tsekouras et al., 2008). 

 

WFA K-means uses a type of fuzzy averaging that puts the center prototype among the 

more densely situated points and it approximates to the true WFA value following five 

iterations (Mahmoudi-Kohan et al., 2008). Performance of the algorithm can be improved 

with the use of new distance computation metrics that take into account the variance of a 

particular feature from the corresponding average (Mahmoudi-Kohan et al., 2009b). 

 

Fuzzy K-means (Fuzzy C-means, FCM) is an algorithm that is based on the idea that 

every data point belongs to a cluster at some degree specified by membership grades 

which is updated according to some objective function at each iteration. When the 

algorithm converges, final cluster centers are chosen as typical load profiles of the 

samples (Chang and Lu, 2003). 

 

Modified Follow-the-Leader method forms new clusters or assigns data points to existing 

clusters depending on its operating distance threshold by traversing data instances in 

cycles until cluster stabilization is attained. Modified Follow-the-Leader algorithm uses a 

weighted Euclidean heuristic in the calculation of distance that amplifies the impact of 
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high-variance features and requires a user-defined similarity threshold to build and refine 

clusters (Chicco et al., 2004). 

 

Hierarchical clustering generates dendrograms that keep the history of the clustering 

process, which begins with assigning each data point to singleton clusters and continues 

by iteratively merging clusters according to various linkage criteria such as average 

linkage and Ward’s linkage (Chicco et al., 2003).  

 

Self organizing map (SOM) is an unsupervised neural network that projects a multi-

dimensional dataset into a reduced dimensional space. SOM updates not only the weights 

of the winning unit, but also the weights of its neighbors in inverse proportion of their 

distances (Chicco et al., 2004). SOM is often combined with other clustering algorithms 

to serve as an intermediate step of the clustering process (Räsänen et al., 2010). SOM is 

also used for anomalous behavior filtering to detect outliers due to external factors (Verdú 

et al., 2006). 

 

Probabilistic neural networks (PNN) represent a form of unsupervised learning and 

comprises of the input layer that takes the average profile of the respective activity as 

input, the radial basis layer has its neurons corresponding to the average load profile of an 

individual cluster obtained by FCM, and the output layer. PNN classifies an input pattern 

into the most suitable one of the obtained classes (Gerbec et al., 2005). 

 

Entropy-based clustering is a multi-step hierarchical process that iteratively merges most 

similar clusters to reduce number of clusters based on the notions of similarity between 

two load patterns and similarity between two clusters that are devised via between-cluster 

entropy computation (Chicco and Akilimali, 2010). 

 

TS-part algorithm does not require the exact knowledge of number of clusters and 

proceeds iteratively by computing the best split point for large clusters via considering the 

inter-cluster and intra-cluster distances (Gullo et al., 2009). ISODATA is another 

algorithm that proceeds iteratively by applying a variant of K-means, splitting or merging 

the clusters depending on the computed Euclidean distance (Mutanen et al., 2011). For a 

comprehensive review of clustering algorithms, refer to (Jain et al., 1999) and (Xu and 

Wunsch, 2005). 

 

Decision trees are used for classification purposes. Several entropy definitions that deal 

with normalized monthly energy usages, monthly and seasonal changes, and normalized 

average seasonal energy usage are used in a standard C4.5 induction algorithm (Chang 

and Lu, 2003). Hybrid induction algorithms produce rules from committees of decision 

trees (Piao et al., 2010). 

 

SVM-based classification methods determine separating hyper planes to distinguish data 

classes in such a way that hyper planes have the maximum possible distance from either 

of the data classes (Zareipour et al., 2011). 
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2.3 Evaluation of Algorithms 

Algorithms are evaluated according to quality of performance via several validity metrics. 

Two of the most commonly used metrics are Mean Index Adequacy (MIA) and 

Clustering Dispersion Indicator (CDI). MIA is used to assess the compactness of clusters 

while CDI is used to measure the degree to which clusters are separated from each other 

(Ramos and Vale, 2008; Mahmoudi-Kohan, 2009a). Less values of MIA and CDI metrics 

indicate that the algorithm exhibits a higher quality of performance. 

 

Among other validity metrics, there are Similarity Matrix Indicator (SMI) (Chicco et al., 

2003), Davies-Bouldin Index (DBI), Modified Dunn Index (MDI), Scatter Index (SI) 

(Chicco et al., 2006), Mean Average Percentage Error (MAPE) (Gerbec et al., 2005), the 

ratio of Within-Cluster Sum of Squares to Between-Cluster Variation (WCBCR) and the 

number of dead clusters (Tsekouras et al., 2008). Computational complexities of 

algorithms can be compared using heuristics such as the relative computation time index 

(RCTI) (Chicco et al., 2003). 

 

There are particular trade-offs in adopting an algorithm related to characteristics of the 

data regarding the content and the size, and the objectives of the application (Mahmoudi-

Kohan, 2009a). Moreover algorithms follow certain tendencies. Advantages include the 

speed of statistical algorithms (K-means and Follow-the-Leader), possibility of 

reallocations in successive iterations (K-means, and Follow-the-Leader), no need of 

training (K-means, Follow-the-Leader, and Hierarchical algorithm), interpretation and 

visualization of results (SOM and Hierarchical algorithms), and stability of the obtained 

solution (Follow-the-Leader, and Hierarchical algorithm). Disadvantages include 

randomness of the solution obtained in K-means and SOM, non-reallocation of data 

points in successive steps (Hierarchical algorithm), lack of objective function 

(Hierarchical algorithm), and implementational difficulties of the modified Follow-the-

Leader approach (López et al., 2011). 

 

Design of algorithms can be extended to arrive at hybrid methods (Räsänen et al., 2010; 

López et al., 2011) and frameworks that apply clustering algorithms in successive cycles 

(Figueiredo et al., 2005) or frameworks that apply a set of algorithms to a particular 

dataset many times to discover optimum algorithmic parameters and then evaluate them 

according to several metrics (Tsekouras et al., 2008). However most studies indicate that 

new algorithm designs should compete with the robust and adequate performances of the 

Modified Follow-the-Leader approach and Hierarchical algorithms (Chicco et al., 2003; 

Chicco et al., 2005b). 
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2.4 Applications 

Tariff design based on generated customer classes offers solutions to increase profits of 

retailers in the market by maximizing a profit function based on customer revenues, 

supply cost, and risk penalty (Mahmoudi-Kohan et al., 2010). Both annual and seasonal 

frameworks can be generated as part of the business strategy regarding retailers 

(Panapakidis et al., 2012). Revenue assessment through area-based and customer class-

based load profiling techniques puts forward the superiority of customer classes generated 

by suitable clustering methods (Chicco, 2005a). 

 

Customer classes can be used in tariff design to reduce peak hour demands (Morais et al., 

2013). Time-of-use pricing, critical peak pricing, real-time pricing, real-time pricing with 

load limit and extreme real-time pricing are among pricing techniques that can be applied 

to generated clusters of customers. Experiments with customers reveal that users tend to 

prefer dynamic pricing, which offers them the opportunity to adjust their consumption 

levels. However, there is a trade-off concerning daily habits that some customers may not 

be keen on changing (Paetz et al., 2012).  

 

Consumption patterns should be modeled before estimating future demands of electricity. 

Besides clustering algorithms, statistical constructs such Markov models can be used for 

this purpose (Labeeuw and Deconinck, 2013). Together with representative load profiles, 

models of daily consumption over weeks may be necessary (Zhang et al., 2013). Load 

forecasting can be realized by using regression methods (Cho et al., 2013), artificial 

neural networks (Felea et al., 2012), association rules (Piao et al., 2008), decision trees 

and SVM classifiers. 

 

Fraud detection can be realized by using fuzzy logic constructs such as rough sets (Cabral 

and Gontijo, 2004). Distance-based, set-based, density-based, depth-based and model-

based techniques are used to discover customer irregularities before processing these 

outliers by several prediction and classification methods including Support Vector 

Machine and Extreme Learning Machine to detect actual frauds (Nizar and Dong, 2006).  

 

Ideas from similar other domain such as telecommunication industry may come handy in 

power domain. SVM, neural networks and decision trees can be combined so that normal 

clusters, outlier clusters and inconsistent clusters of customers are discriminated. 

(Farvaresh and Sepehri, 2011).  
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CHAPTER 3 

 

 

 DATA PREPARATION 

 

 

 

3.1 Introduction 

Data preparation is a crucial step before clustering and classification. Representative load 

diagrams for each customer regarding every external load condition should be computed 

before any further process that intends to discover representative load profiles or deploy 

an application. 

 

While forming load diagrams, fundamental tasks of data pre-processing is carried out 

including dealing with missing values, detecting outliers, smoothing and normalization.  

3.2 Characteristics of Used Data Sets 

Electricity consumption amounts measured per hour for the interval 01 January 2012 to 

31 December 2012 by Boğaziçi Electricity Distribution Company in Istanbul, which 

provides electricity service to European side of Istanbul, are used in this study. 

 

Consumption data belongs to mostly high voltage customers including factories, offices 

and grand houses, which may exhibit distinct consumption styles. 

 

Table 3.1 Number of customers whose data available at months of 2012. 

 

 
Months (2012) 

01 02 03 04 05 06 07 08 09 10 11 12 

Size 259 268 327 329 329 321 245 242 242 249 247 244 

 

As data in Table 3.1 suggests, number of instances of monthly data is not evenly 

distributed throughout the months. Moreover, missing values exist regarding particular 

hours of the days to be processed during the course of data preparation. 
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3.3 Data Preparation Tasks 

Data preparation involves identifying loading conditions and dividing data instances 

accordingly for each customer, dealing with missing attribute values, outlier detection and 

smoothing, generating monthly and seasonal load diagrams, and finally normalizing 

seasonal load diagrams so that customer representative load diagrams are formed for 

clustering and classification (Kotsiantis et al., 2006). 

 

Statistical operators used in data preparation are briefly described in the following. Let   

be the set of instances indexed as    and let the cardinality of   be  . Then, the mean of 

the values in the set is computed subsequently in equation (3.1). 

 

   
 

 
    

 
                            (3.1) 

 

Let    be the set that is composed of elements of  , sorted in an ascending order. Median 

operator computes the most centrally located data instance as follows. 

 

                      
   

 
                

    (3.2) 

 

                       
 

 
               

 

 
    

      
      

 

Trimmed mean, also known as truncated mean, computes the average value of a data set 

by excluding a particular percentage of extremum values of the sorted data set   . Let   

be the percentage of data excluded at high and low ends. Trimmed mean is computed as 

follows. 

 

      
 

   
   (3.3) 

 

   
 

    
    

    
       

 

Median operator in equation (3.2) is an extended version of trimmed mean in (3.3), in 

which percentage of the excluded extremum values are adjusted to leave out only the 

most centrally located value in the set. Both operators are utile in outlier detection and 

exclusion. 

 

Inter-quartile range measures the difference between upper and lower quartiles of the 

data, which corresponds to the absolute value of difference between 25
th
 and 50

th
 

percentile marked by    and    respectively. IQR is computed in the subsequent 

equation. 
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   (3.4) 

 

     
           

  . 

 

                . 

 

Note that median of the set corresponds to 50
th
 percentile and is denoted by   . 

3.3.1 Identifying Weekdays, Weekends and Holidays 

Date categorization is among important loading conditions. It is evident that there are 

changes in electricity consumption amounts and shapes between working days and 

holidays.  

 

Information on weekdays, weekends and holidays of year 2012 is used to divide 

consumption data into three parts for every month. Official national days and feasts of 

Turkey are selected as holidays. Conflictions among holidays and other days are resolved 

by excluding data of holidays from weekdays and weekends data. 

 

While dividing data by day information, missing attribute values that are indicated by 

empty strings in the original format of the obtained data are marked with a special 

character to be processed subsequently. Moreover, more than one copy of the data of all 

customers is eliminated. 

3.3.2 Missing Values 

Missing values occur due to device or human errors while gathering, transferring or 

processing data. Frequency of missing values in the utilized consumption data is low. 

 

If a missing value is observed for an hour of a particular day while forming monthly and 

seasonal representative load diagrams, it is replaced by the truncated mean of the 

remaining instances. 

 

More sophisticated methods that deal with missing values are not used in the study due to 

low frequency of missing values in the consumption data, except consumption data of 

two customers containing more than 80% missing values of all their measurements. These 

customers are excluded from further steps of the study. 

 

Missing values can be filled by classification algorithms. Pre-classification configuration 

imposes that the attribute with the missing value is selected as the class label while 

remaining are the attributes of the training data composed of instances that strictly do not 

have their class labels missing. Once the classification is performed, the instance with the 
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missing value is used as the test data and the predicted class becomes the value that fills 

the missing attribute. 

 

Regression techniques, instead of classification algorithms, can also be used in the 

mentioned configuration to fill a missing value. 

3.3.3 Outlier Detection and Smoothing 

Inter-day outliers regarding consumption values per hour can be detected during the 

computation of monthly and seasonal load diagrams. 

 

In order to detect outliers, following statistical property is employed. 

 

                                                                   (3.5) 

 

While computing load diagrams, outliers are detected for each hour consumption value 

and their value is diminished to be at most            or at least            

depending on whether they are higher than the upper limit or lower than the lower limit 

indicated in equation in (3.5). 

 

Proposed outlier detection and smoothing method applies to less than 5% of all customers 

regarding all months. More sophisticated methods used in outlier detection include 

clustering algorithms or other statistical criteria such as Peirce’s criterion. Since the 

frequency of outliers is so low, sophisticated methods are not used in this step of data 

preparation. 

 

Dealing with outliers, informational loss caused by simply eliminating them should be 

carefully considered. Outliers are only smoothed while computing hourly average values 

during the course of load diagram formation in order to prevent them from misleading the 

results of relatively less robust methods such as the mean operator in (3.1). 

 

Diagrams residing within divided consumption data sets that could be detected as outliers 

may actually exhibit merely distinct consumption shapes, whose discovery is of 

informative value. These kinds of outliers are neither excluded, nor smoothed in data 

preprocessing so as to evaluate clustering algorithms based on their powers of 

discriminating outliers in separate clusters.  

3.3.4 Forming Monthly Load Diagrams 

Monthly profiles of customers are formed by using mean, trimmed mean, and median 

operators, respectively.  
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Mean is the regular statistical average operator working on consumption amount for 

every day of the month. Median chooses the middle consumption data for every hour of 

the sorted data instances. Trimmed mean, however, sorts data instance for every hour of 

the day separately, leaves aside 10% of the values lying closer to the extremum, and runs 

the regular statistical mean operator on the remaining instances. 

 

Median and trimmed mean are more robust to outlier instances because the first one 

searches the most centrally located instance and the second excludes near-extremum 

values from the computation. Trimmed mean operator runs a higher probability of 

capturing the average consumption throughout the month since it works on a set of 

possibly non-outlier instances, while median operator outputs only one instance, which 

may result in information loss. 

 

During the course of monthly representative load diagrams computation, missing attribute 

values are replaced with the trimmed mean value computed over all instances in the 

month, and intra-day hourly outlier values are detected and smoothed through re-

adjusting their values to the maximum of the interval of values that are not considered as 

outliers. 

 

Regarding each month, data of a customer is generated for weekdays, weekends and 

holidays and by separately using mean, trimmed mean and median operators. 

3.3.5 Presence Check Across Monthly Load Diagrams 

Having computed the monthly representative load diagrams, presence of a customer’s 

diagram in all months of the year should be checked before the formation of seasonal 

diagrams. As data in Table 3.1 suggests, number of load diagrams varies throughout 

months. 

 

Therefore, presence of load profiles in every month should be summarized in a table 

structure starting from January 2012. Number of data instances that appear for the first 

time in a particular month starting from the beginning of the year is included in the 

subsequent table. 
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Table 3.2 Number of customers whose data first appears in indicated months. 

 

 
Months (2012) 

 

01 02 03 04 05 06 07 08 09 10 11 12 Total 

Size 258 10 62 5 1 3 2 0 0 7 1 0 349 

 

Table 3.2 shows that data of a customer may appear for the first time as late as in 

November 2012 and a total of 349 distinct customers’ consumption data is present in the 

whole data set. Note that the table does not indicate whether existence of a customer’s 

data that first appeared in the first month will pursue in subsequent months. The presence 

check table, which is not included in this section due to its size, holds the mentioned 

information. 

 

Information on customers’ presence throughout the months of 2012 is useful while 

computing seasonal load diagrams in the next section. 

3.3.6 Forming Seasonal Load Diagrams 

Load diagrams are further divided by winter and summer loading conditions, which is 

expected to differ due to effects of external factors such as temperature on electricity 

usage. Summer is assumed to be between April and September, while winter is assumed 

to be between October and March. 

 

The presence check described in the previous section is used in forming seasonal load 

diagrams in such a way that if data associated to a company does not appear in at least 

three months for a season, it is discarded from further clustering operations. In total, 43 

and 31 monthly load diagrams are excluded from winter and summer seasons, 

respectively. In other words, missing values are not filled but discarded during the 

computation of seasonal load diagrams, since it may be incorrect filling missing values 

for only six months at this scale of aggregation. Therefore, the final cardinality of winter 

load diagrams is 306 and that of summer diagrams is 316. 

 

Although, cardinalities of both seasonal diagrams should be kept the same in order to 

arrive at more conclusive results, data used in the study is limited. Hence, a relaxation to 

this objective is preferred for a slightly more comprehensive evaluation of clustering 

algorithms. Moreover, discovery of distinct diagrams residing in two seasonal sets are 

crucial to generate models for synthetic data to be used in running time and scalability 

evaluation in Chapter 6. 

 

Seasonal load diagrams are formed by averaging hourly consumption data of monthly 

load diagrams. If a customer’s data appears in all six months of a season, averaging is 
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carried out by mean, trimmed mean and median operators. Trimmed mean is modified to 

exclude only two extremum hourly consumption amounts of all months of the season. If 

the customer’s data does not appear in all six months, then only mean and median 

operators are used in order not to lose any more information from the existing data. 

 

At the end, winter and summer representative load diagrams for weekdays, weekends and 

holidays are obtained. 

3.3.7 Normalization 

Normalization of attribute values for all computed load diagrams residing in winter and 

summer weekdays data sets is necessary so that bias due to measured consumption 

amounts can be prevented during distance computation and shapes of consumptions can 

be used as discriminative features. 

 

Min-max normalization of a vector is computed as follows. 

 

  
     

  

       
                   (3.6) 

 

All diagrams are normalized by their own peak demand as indicated by equation in (3.6) 

because normalizing every data instance by a global constant would result in losing 

details about consumption shapes of particular customers. In pre-processing of load 

diagrams, z-score normalization is also used (Kotsiantis et al., 2006). 

3.4 Load Shape Indices 

Load shape indices offer characterizing consumption shapes of a customer under 

particular loading conditions in less number of features than the 24 actual features 

corresponding to a day. These indices can be used in clustering and classification of 

representative load diagrams. 

 

A list of load shape indices defined in (Verdú et al., 2004) is included subsequently. 
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Table 3.3 Load shape indices. 

 

 Computation 

                    

                         

                    

                           

                                    

                              

                          

                                

                          

 

Notation used in Table 3.3 is explained as follows. Day is the set of all 24 features of a 

diagram, daylight is the time interval from 7.00 in the morning until 18.00 in the evening, 

night is from 22.00 in the evening till 6.00 in the morning, and lunchtime is between 

12.00 and 14.00.             refers to the minimum consumption amount for the interval 

      , and             and            stand respectively for maximum and average 

values of consumptions observed in course of the period marked with       . 

 

Load shape indices that are included in Table 3.3 yield information about daytime, lunch 

and night impacts on daily consumption along with effects of the minimum and the 

maximum demands in particular hours of the day. Constants in the formulas of   ,    and 

   are used to diminish the effect of these indices while being used by methods of 

clustering and classification and to prevent these indices from taking unity values. 

 

Load shape indices are computed on seasonal load diagrams prior to normalization. Note 

that shape indices normalize a customer’s electricity consumption on an average day 

under particular loading conditions by using only the data within their scope, just like 

min-max normalization covered in the previous section. 

3.5 Visualization of Seasonal Load Diagrams 

Seasonal representative load diagrams can be visualized by using Follow-the-Leader 

clustering algorithm, whose details and evaluation is included in the subsequent chapters. 

All diagrams residing within the same cluster are displayed in the same color so that 

distinct consumption shapes among customers can be visually identified. 
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Regarding all included diagrams, horizontal axis holds hours of the day and vertical axis 

holds normalized consumption values. 

 

 
 

Figure 3.1 Normalized load diagrams of winter weekdays and weekends as clustered 

by Follow-the-Leader algorithm. 

 

Inspecting the contents of winter weekdays and weekends data, which are respectively 

illustrated on the left and the right in (Fig. 2.1), reveals that weekends data includes more 

distinct consumption shapes than weekdays data. Although some of the profiles seem to 

be conserved in both data sets, visualization of winter data indicates the information gain 

by separating weekdays and weekends data. 

 

Summer weekdays and weekends data are illustrated in the following. 

 

 
 

Figure 3.2 Normalized load diagrams of summer weekdays and weekends as 

clustered by Follow-the-Leader algorithm. 

 

Illustration in (Fig. 3.2) also confirms that weekends and weekdays data sets indeed 

include distinct shapes of consumption. A quick look in both winter and summer load 

diagrams indicates the seasonal impact on load profiles, despite the fact that some clusters 

of diagrams exhibit little variance between seasons. 
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3.6 Summary 

Data preparation is an obligatory task before proceeding with clustering and classification 

of electricity consumption. The goal of data preparation is forming normalized customer 

representative load diagrams in order to make sense of large amounts of data. 

 

Load diagrams are formed by aggregating daily consumption data into monthly and 

seasonal diagrams. Meanwhile, weekdays, weekends and holidays serve as load 

conditions that separate monthly profiles into three groups. Seasonal load diagrams 

impose the winter-summer division over monthly profiles. 

 

While aggregating daily profiles into higher levels in the hierarchy, hourly values are 

combined by mean, trimmed mean and median operators. During the process, missing 

values are filled and inter-day outliers are detected and smoothed. In addition to this, 

presence check regarding all customers’ data in months of the year is conducted prior to 

the formation of seasonal load diagrams. 

 

Normalization is a tool used on winter and summer load diagrams so that all data is 

mapped within [0, 1] interval. This makes it possible to compare consumption shapes 

rather than measured values. 

 

Instead of actual 24 features of load diagrams, normalizing load shape indices can be used 

for clustering and classification purposes, which are covered in the subsequent chapters. 
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CHAPTER 4 

 

 

 CLUSTERING ALGORITHMS 

 

 

 

4.1 Introduction 

Clustering of customers of an electricity distribution company based on real consumption 

values per hour in the format of load diagrams per season is the most crucial operation 

that reveals the natural groupings inside seasonal data sets to be used in the computation 

of class-representative load profiles. 

 

All clustering algorithms covered in this chapter works on pre-processed and normalized 

data and yields clusters whose representative centers constitute the load profiles regarding 

all customers. Further classification and application deployment steps strictly depend on 

clustering operation carried out by the algorithms described in detail throughout the 

chapter.  

4.2 Problem Definition and Distance Frameworks 

Clustering process involves dividing data instances into distinct sets, each of which are 

characterized by their centers. Instances residing in the data set are  -dimensional 

vectors, whose position in the data set of cardinality   is marked with indices   as 

described in (4.1). 

 

                       (4.1) 

 

       
    

      
       

 

Clusters have  -dimensional center points and the set of all clusters,   contain   

elements. 

 

                     (4.2) 

 

       
    

    
     

 

Algorithms assign data points to particular clusters by their innate comparison 

mechanisms. The following notation represents set of data points that a cluster has. 
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                                                         . (4.3) 

 

Clustering algorithms make heavy use of distance between two vectors to compare data 

points and clusters. Several distance measures exist, among which Euclidean, weighted 

Euclidean and a hybrid version of Pearson distance heuristics are covered in this study. 

 

Euclidean distance between two  -dimensional vectors is computed as follows. 

 

                         
 
   

 
 
 

 
     (4.4) 

 

Squared Euclidean distance is computed as the square of Euclidean distance. 

 

                   
 
     

 
   

 
 
 

 
    (4.5) 

 

Weighted Euclidean distance proposed in (Chicco et al., 2004) is computed subsequently. 

 

               
    (4.6) 

 

              
  
 

   
   

 
   

 
 
 

 
      

 

Feature variance,   
  in equation (4.6) is the variance of the     feature over all vectors 

residing in the set   and     is the mean value of all feature variances. If two features of 

the two vectors are at the same Euclidean distance, yet one of them has higher variance, 

then the weighted Euclidean distance between the two vectors regarding the feature with 

high variance will be larger than the one with less variance. In short, features with higher 

variances are used as amplifying factors in distance computation. 

 

Squared weighted Euclidean distance is simply the square of the weighted Euclidean 

distance as computed in the following. 

 

              
  
 

   
   

 
   

 
 
 

 
     (4.7) 

 

Hybrid Pearson distance combines the squared Euclidean distance and an adaptive tuning 

function taking Pearson correlation as a parameter by a simple multiplication. This 

measure is inspired by the measure developed in (Chouakria-Douzal and Nagabushan, 

2007) for classifying time series. 
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        (4.8) 

 

           
 

    
              

                               

 

In case of data vectors with distinct shapes, or uncorrelated data, distance measure 

reduces to squared Euclidean distance. However, when vectors are correlated value of the 

distance measure decreases and in case of negative correlation measured distance 

increases, assuming that all two vectors compared are of the same squared Euclidean 

distance. Parameter   in equation (4.8) controls the effect of correlation on the distance 

measure, which increases as the value of this parameter increases. 

 

Distance between two vectors is computed as follows, depending on the adopted distance 

framework. 

 

         

 
  
 

  
 

                                                                       

                                                                

                                                                 

                                                      

                                                                   

           (4.9) 

 

Distance formula in equation (4.9) makes a selection among Euclidean distance in (4.4), 

squared Euclidean distance in (4.5), weighted Euclidean distance in (4.6), squared 

weighted Euclidean distance in (4.7), and hybrid Pearson distance in (4.8) on the basis of 

the data analyst’s choice of distance framework. Parameters of the distance function,    

and    are substituted by actual data point features or cluster centers during the course of 

clustering. 

 

Clustering operation outputs final set of data points belonging to a cluster,    for all 

clusters and final cluster representative centers     computed over several iterations until 

convergence. Algorithmic steps differ among clustering methods, which are described 

throughout the chapter. 

4.3 Description of Algorithms 

Mechanisms of the algorithms are highlighted in this section. K-means, K-means++, K-

medians, WFA-K-means, Hopfield-K-means, K-medoids, Similarity-based K-means, 

ISODATA, Fuzzy K-means, Follow-the-Leader, Hierarchical clustering, and Self-

Organizing Map clustering are covered respectively. Notations used in this chapter are 

included in the List of Notations. 
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4.3.1 K-Means Clustering 

K-means is an unsupervised partitional classification algorithm, which requires the exact 

information of number of clusters in order to operate. In thesis work, K-means algorithm 

is employed in its classical form with mere modifications regarding the computation of 

initial cluster centroids. The steps of the algorithm are as follows: 

 

 Step 1: Set up K centroids initially. In order to deterministically set up cluster 

centers, method described in (Tsekouras et al., 2008) is used so that several re-

runs of the algorithm due to random initialization can be avoided. The formula in 

equation (4.10) initializes cluster centers. 

 

  
 
              

 

   
                                                     (4.10) 

 

The values of   and c2 are determined experimentally by running and evaluating 

the algorithm several times on a particular dataset. Mark all clusters as updated. 

 

 Step 2: Compute distance matrix. If this step is to be performed for the first time, 

construct an  -by-  matrix. For each updated cluster, compute the corresponding 

entry in the distance matrix, as indicated below. 

 

                                                                    (4.11) 

 

All clusters are considered as not updated following distance matrix computation 

unless this is the first iteration, which requires all clusters to be marked as 

updated. 

 

 Step 3: Make assignments. Distances of each data point to cluster centers are 

calculated by using the corresponding distance metric formula. Then, data points 

are assigned to their closest clusters by traversing the distance matrix. 

 

           
  

                                                                                          (4.12) 
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If a data point is assigned to another cluster than its previous one, then both 

clusters are marked as updated. Assign number of cluster-changing data points to 

the variable,   . 

 

 Step 4: Compute cluster centers. Traditionally, the centroid of a cluster is 

computed by taking average of each feature of every data point belonging to it as 

it is indicated in equation (2.4). 

 

  
 
 

 

  
   

 
                                                         (4.13) 

 

 Step 5: If no data points have changed clusters, namely    is equal to 0 or 

maximum number of iterations,      is reached, then stop. Else, increment the 

current iteration number,   and continue with Step 2. 

K-means clustering provides the basis for all partitional clustering algorithms. Subsequent 

algorithms examined in the thesis modify particular steps of the K-means algorithm, yet 

keeping the main mechanisms and work flow quite the same. The modification to the 

original K-means clustering employed in this section is the deterministic choice of initial 

cluster centers, which turns out to be an improvement in the quality of clustering, as 

further discussed by the evaluation section. 

4.3.2 K-Means++ Clustering 

K-means++ clustering algorithm (Arthur and Vassilvitskii, 2007) is a modified version of 

the classical K-means algorithm, offering a solution to cluster centers initialization 

problem. Although randomness is still included in that method, it could be controlled 

better because centroid initialization has been put into a direct relation with inter-point 

distances. Furthermore, a more accurate and timesaving clustering is provided by the 

algorithm in most cases. 

 

K-means++ method follows the same steps as K-means algorithm except for the sole 

modification in the centroid initialization step as follows. 

 

 Step 1: Set up K centroids initially.  

 

o Step 1.1: Select a random number   uniformly from the interval        . 

 

o Step 1.2: Set       and set     . 

 

o Step 1.3: Find the minimum distance between each data point and 

already processed clusters and store the accumulated squared value of 

this distance in an array as described in the following equation. Set 

      before every time this computation is performed. 
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                                                  (4.14) 

 

                                         

 

o Step 1.4: Select another data point as the center of the next cluster. In 

order to achieve that, generated random number shall be multiplied with 

the distance weights computed in the previous step. Computations 

regarding this step are included in the following. 

 

                                    (4.15) 

                                     

 

           

 

                                               . 

 

o Step 1.5: If   becomes  , then cluster center initialization step is 

successfully terminated. Else continue with Step 1.3. 

One disadvantage regarding the algorithm is that, several re-runs may be necessary in 

order to obtain the clustering that has the best performance quality with respect to others 

due to randomness factor. However, K-means++ clustering algorithm yields better 

clustering than the classical K-means algorithm with respect to several performance 

indices discussed thoroughly in the next chapter of the thesis. 

4.3.3 K-Medians Clustering 

K-medians clustering algorithm (Anderson et al., 2006) follows the same steps as K-

means++ clustering with a sole modification in the computation of cluster centers. 

Centroids are chosen to be combinations of feature-based median values of the data 

points that the clusters have. The modified step is described subsequently. 

 

 Step 4: Compute cluster centers using the median operator, as follows. 

 

                                                                        (4.16) 

 

                     
 
 

  
    

   

 
          

  

 
     

 

                    
 
 

  
   

 
          

  

 
      

 

                                        



 

 29 

Effect of the outlier values is diminished in cluster center computation by utilizing 

median operator instead of the statistical mean operator. 

4.3.4 WFA K-Means Clustering 

Weighted fuzzy average (WFA) K-means clustering algorithm (Mahmoudi-Kohan et al., 

2008) follows the same steps as K-means++ clustering with only modifying the centroid 

update step by computing the weighted fuzzy average of data points belonging to a 

cluster to be its center instead of taking feature-by-features averages of the points. Cluster 

center computation of WFA K-means algorithm is described in the following. 

 

 Step 4: Compute cluster centers by the WFA operator included in equation 

(4.17), assuming that      is initially 0 as in (Looney, 2002). 

 

                                                                                    (4.17) 

 

  
 
 

    
 
   

 
  
 
 
 
  

  
  
 
       

      
 

              

   

 
  
 
 
 
  

  
  
 
       

                    

                                     

 

By using weighted fuzzy average instead of the mean operator, more robust clustering 

results are expected to be obtained, since weighted fuzzy average diminishes the effect of 

outliers on cluster centers. However, computation costs associated to centroid update sub-

task will increase due to the complexity of the WFA operator. 

4.3.5 Hopfield-K-Means Clustering 

Hopfield K-means clustering algorithm (López et al., 2011) uses a Hopfield network in 

the computation of the initial cluster centers. It employs K-means++ centroid 

initialization algorithm to establish the initial state vector. Although randomness is still a 

factor at the state initialization step of the neural network training, states are expected to 

converge eventually when the minimum energy configuration is obtained (Takefuji et al., 

1992). Then, the centroid initialization shall be performed. 

 

Hopfield artificial neural networks contain nodes that are connected to all others, forming 

a complete graph. The algorithm follows the same steps as classical K-means except the 

change in the first step that computes initial centroids. Corresponding modification is 

described in the following. 

 

 Step 1: Set up K centroids initially.  
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o Step 1.1: Build a Hopfield network consisting of N neurons, each of 

which corresponds to a data point. Neurons have states, which are 

characterized by output functions that return the indices of clusters the 

data points are assigned to. A state vector pertaining at a particular 

instance of the training process characterizes the state of the system. 

State vector is initialized randomly by using K-means++ centroid 

initialization algorithm, prior to the first iteration of training.  

 

        
   
   (4.18) 

        
                                                

 

                 [       }                                   

 

               

 

                                                        

  
   

                               

 

                   .  

 

o Step 1.2: Every neuron is connected to each other by means of weight 

functions. Convergence of the training step is controlled by making use 

of an energy function, which takes the current state vector as its argument 

and measures the degree of similarity of states based on inter-data point 

distances. Energy function requires the knowledge of similarity between 

states, which is attained through utilizing the simple function included 

below. 

 

                                                             (4.19) 

 

    
      

       
         

            
   

                         
    

 

           
 

 
          

      
     

   
 
      

 

o Step 1.3: Change the state at the position implied by the training iteration 

number. A neuron can change its state if the corresponding change 

implies a decrease in the energy function. Compute the new state vector 

by reflecting the performed changes. If none of the states has been 

updated, then the new state vector is unchanged. 
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                  (4.20) 

     
  
     

   
  
   
                 

                                       

 

                  
     

              
         

           

                    

 

                          

 

o Step 1.4: If maximum training iteration number has not been reached, 

continue with Step 1.3. Else, continue with Step 1.5. 

 

o Step 1.5: Find the state vector with minimum energy. For each 

constituent states in the state vector with minimum energy, assign the 

corresponding data point to the cluster whose index is the same as the 

output value of the constituent. Then, update the cluster centers in 

accordance with the traditional K-means cluster centroid update rule. The 

processes regarding this step are included in the following. 

 

   
         

      

                                                             (4.21) 

 

     
    

          

 

                          

                         

                                           

 

   
 
 

 

  
   

 
                                                      

 

The training of the Hopfield network is terminated at the completion of the above steps. 

Energy function of the Hopfield network decreases steadily over iterations until it reaches 

a local optimum that corresponds to the solution of the centroid initialization problem. 

Maximum number of iterations regarding the training should be set reasonably, so that 

convergence of the energy values can be observed. Having set the initial cluster centers, 

algorithm continues with the same steps as the classical K-means until the final clustering 

of data points is attained. 
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4.3.6 K-Medoids Clustering 

K-medoids clustering selects the most centrally located data points within clusters as 

cluster centers called medoids. The algorithm employed is based on Partitioning Around 

Medoids (PAM) method (Kaufman and Rousseeuw, 1987) with modifications. Initial 

medoids are computed by K-means++ centroid initialization algorithm. Cluster medoids 

are updated by choosing the most centric data point in then-currently existing cluster, 

instead of computing a swapping cost for each data point and crosschecking as proposed 

by the original algorithm. 

 

Main progress of the algorithm is described below. 

 

 Step 1: K-means++ centroid initialization algorithm is run. Data points selected 

as cluster centers by this method are marked as medoids and are added to 

corresponding clusters. 

 

                          (4.22) 

                              

                                              

 

 Step 2: Compute the distance matrix. This step is the same as in the K-means 

clustering algorithm. 

 

                                                                      (4.23) 

 

 Step 3: Make assignments. This step is the same as in the K-means method 

except the following modification asserting that data points that are marked as 

medoids cannot change clusters in the assignment step. Assignment of non-

medoid data points to clusters is carried out by searching the minimum distance 

between clusters and data points, as in K-means clustering. 

 

                                                                            (4.24) 

 

 Step 4: Update cluster medoids. A new medoid is chosen if a non-medoid data 

point within a cluster is more centrally located than the current medoid according 

to the following formula. 
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                                                               (4.25) 

                              

 

               

                                                      
     

           ,  

                 . 

 

 Step 5: If no data points have changed clusters, namely    is equal to 0 or 

maximum number of iterations,      is reached, then stop. Else, increment the 

current iteration number and continue with Step 2. 

Medoid initialization method inherited from K-means++ contributes to reduce the 

running time of the algorithm and to yield high-quality partitioning of the data set by 

carefully selecting initial cluster centers. Employing medoids instead of centroids in the 

algorithm, improves the quality of generated clusters, since medoids achieve better 

isolation of outliers and noise that may exist in the dataset. 

4.3.7 Similarity-Based K-Means Clustering 

Similarity-based K-means clustering (Bandyopadhyay and Saha, 2007) is a two-step 

algorithm. In the first-step or the coarse-tuning phase, K-means++ performs an initial 

clustering of data points. In the second-step or the fine-tuning phase, distance metric is 

changed as the point symmetry distance, which is not a mathematical metric yet a 

heuristic that aims at gathering data points close to each other within certain threshold 

limits by making use of the concept of symmetry in multidimensional space.  

 

Definition of the point symmetry distance is included below, as outlined in (Su and Chou, 

2001). In order to compute the distance, first the symmetric point of a data instance with 

respect to a cluster center should be computed. The symmetric point, which does not have 

to reside physically in the data set, is calculated as follows. 

 

   
 
    

 
   

 
                                                                   (4.26) 

 

Next, the two minimum squared Euclidean distances regarding the symmetric data point 

is computed, as in the following. 

 

                 
                                                                                 (4.27) 
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Computation proceeds with the actual formula of the point symmetry distance between a 

cluster and a data point, which combines the distance calculations regarding the 

symmetric point and the Euclidean distance between the cluster and the data point as in 

(4.28) 

 

                                 
 
                                       (4.28) 

 

Further clustering based on distance metric switch is performed in order to refine 

clustering results obtained at the end of the coarse-tuning. Therefore, further clustering is 

called as fine tuning. In fine tuning phase, firstly the distance metric is changed to the 

point symmetry heuristic and the algorithm follows the main steps of the K-means 

clustering except the centroid initialization. 

 

 Step 1: Initial cluster centroids are inherited from the coarse tuning phase and all 

clusters are marked as updated so that distance matrix computation is carried out.  

Cycles of assignment and update steps are the same as the ones in the original K-means 

clustering except a sole modification in the assignment step. This modification ensures 

that a data point may change its cluster only if the computed point-symmetry distance is 

below a certain threshold value     . The threshold value can be specified by the data 

analyst or can be computed automatically according to the following heuristics. 

 

                                   
 
     

 
              (4.29) 

 

                            

 

Hence, the threshold is set to the maximum nearest neighborhood distance regarding all 

points in the set unless its value is explicitly determined. This rule of thumbs contributes 

greatly in reducing the time the analyst has to spend on running the algorithm, since it 

offers the chance of deciding the value automatically for any number of clusters to be 

generated. 

4.3.8 ISODATA Clustering 

Iterative Self-Organizing Data Analysis Technique (ISODATA) is a clustering method 

based on thresholds of minimum cluster size, maximum standard deviation within a 

cluster, minimum inter-cluster distance, desired number of clusters to be obtained by the 

end of the operation, and maximum number of merge operations that could be performed 

during clustering (Ball and Hall, 1965). Yet, ISODATA does not require the exact 

number of clusters to function. The algorithm operates by merging or splitting clusters 

and re-distributing data points among clusters depending on thresholds. 

 



 

 35 

ISODATA makes heavy use of the notion of average distance within a cluster, which is 

included in equation (4.30). 

 

       
 

  
                                                                            (4.30) 

 

System-wide average distance is calculated by employing the average distance within 

clusters. It is a weighted average function so that large clusters will have more impact on 

the value of the total average distance as put forward in (4.31).This distance is a 

parameter for determining clusters that are less compact than others to decide the next 

action regarding them. 

 

        
 

 
           

 
                                                                                           (4.31) 

 

Intra-cluster deviation is another important control parameter of ISODATA. It measures 

distance between the cluster center and the data points belonging to the cluster feature-by-

feature as computed in the following. 

 

  
 
  

 

  
     

 
   

 
 
 

           (4.32) 

 

                                           

 

The largest standard deviation among all clusters and the index of the feature with the 

largest deviation is computed and stored for use by the algorithm, as indicated in equation 

in (4.33). 

 

          
 
                     

 
      (4.33) 

 

                                  

 

ISODATA proceeds as described in the following steps. 

 

 Step 1: Set initial centroids. Begin the algorithm with arbitrary number of 

clusters stored in the variable  . Compute initial cluster centers exactly as in K-

means++ clustering.  

 

 Step 2: Make assignments. Each data point is assigned to a cluster that is closest 

to it in terms of calculated distances. This step is the same as Step 3 of K-means 

clustering. 
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 Step 3: Check cluster sizes. If a cluster has less elements than minimum cluster 

size, then remove this cluster, decrement number of clusters and assign its data 

points to the closest one of the remaining clusters by going back to Step 2. 

 

 Step 4: Update cluster centroids. Set the center of each cluster to the mean of the 

data points belonging to it. This step is the same as Step 4 of the K-means 

clustering. 

 

 Step 5: Compute system-wide average distance as defined by the equation (4.31). 

 

 Step 6: If this is the last iteration, set minimum inter-cluster distance to 0. 

Proceed with merge operation described in Step 9. 

 

 Step 7: If current number of clusters is less than or equal to half of the desired 

number of clusters, then proceed with the split operation described in Step 10. 

 

 Step 8: If current number of clusters is greater than or equal to twice as the 

desired number of clusters and current iteration number is even, then proceed 

with the merge operation described in Step 9. 

 

 Step 9: Merge clusters. 

 

o Step 9.1: Check each pair of clusters and add the pairs that can be 

merged into a list as described in the following. If there are no pairs of 

clusters to be merged, continue with Step 11. 

 

                                                  (4.34) 

 

                                                        

 

o Step 9.2: Sort the list of the elements to be merged in a descending order 

based on distance between cluster pairs. If number of pairs in the list 

exceeds the maximum number of merges, then re-organize the list so that 

it will contain only the number of elements up to the merge threshold. 

 

                                              (4.35) 

                        

 

                    
  
       

 

o Step 9.3: Merge each pair of clusters in the list. For each pair, create a 

new cluster having its centroid as the weighted average of the centroids 
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of the two clusters. Then remove the old clusters and adjust the number 

of clusters accordingly. 

 

                                                                                         (4.36) 

 

   
 
 

 

       
         

 
         

 
                   

 

                     

 

                            

 

o Step 9.4: Continue with Step 2. 

 

 Step 10: Split clusters. 

 

o Step 10.1: Check each cluster whether it fulfills the preconditions of the 

split operation. Add splitable clusters to a list. If no cluster can be split, 

continue with Step 11. 

 

              (4.37) 

                                   
   

 
    

                              

 

o Step 10.2: Split each cluster in the list into two new clusters. Compute 

the features of the centroids of the new clusters to be the same on each 

two clusters as the split cluster, except the feature with the highest 

standard deviation. This feature has two different values in the new 

centroids as the following description indicates. Remove the split cluster 

and adjust the number of clusters accordingly. 

 

                                     (4.38) 

 

 
  

      
 

                            
      

 

                    

 

   
 
   

 
           

 
   

 
                           

 

            

 

                  

 

o Step 10.3: Continue with Step 2. 
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 Step 11: If no data points have changed clusters, namely    is equal to zero, and 

no cluster has been removed due to having insufficient number of elements; or 

maximum number of iterations,      is reached then stop. Else, increment the 

current iteration number,   and continue with Step 2. 

ISODATA method efficiently groups data points into clusters, detects outliers, and is 

robust to noise given that parameters are carefully selected. Since the algorithm requires 

several parameters, it is data analyst’s responsibility to adjust them to obtain the desired 

clustering configuration. Although this seems to be a disadvantage at the first glance, one 

could take advantage of this situation by manipulating the mechanisms of the algorithm, 

since many trade-offs that the partition of the data exhibits can be analyzed through the 

parameters.  

4.3.9 Fuzzy K-Means Clustering 

Fuzzy K-means clustering imposes a fuzzy partition of the data set in which a data point 

belongs to a cluster by a degree computed by the algorithm (Cannon et al., 1986). 

Likewise, cluster centroids are calculated by taking averages of all data points weighted 

by their degree of belonging to clusters. This approach is also called soft clustering, as an 

antagonist analogy to all clustering algorithms that have been covered so far, since they 

are examples of hard clustering, which imposes that a data point belongs to a particular 

cluster and does not belong to any other. 

 

The algorithm follows the steps of the K-means clustering with modifications in distance 

and cluster representative vector computation. Fuzzy K-means utilized in the thesis is 

slightly modified so that instead of random initialization of the degree matrix. First, K-

means++ cluster centroid initialization algorithm is run and then degree vector is 

computed. 

 

Fuzzy K-means is controlled by the minimization of the objective function defined in the 

following equation. 

 

          
 
        

 
   

 
      (4.39) 

 

Degree of belonging of a data point to a cluster is computed by making use of fuzziness 

factor, which is a parameter of the algorithm, as indicated by the following equation. 

 

         
 

  
        

        
 
 

 
   

 
    

     (4.40) 
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The algorithm proceeds by following the steps included subsequently. 

 

 Step 1: Initial steps.  

 

o Step 1.1: Run K-means++ initial centroid computation algorithm and 

compute initial cluster centers.  

 

o Step 1.2: Compute the degree matrix based on the formula in (4.40) by 

taking into account the two special cases introduced in the following. 

 

                                                                     (4.41) 

 

                                       
        

   
  

 

This modification is necessary since utilizing K-means++ algorithm in 

initial centroid computation implies that certain data points shall be 

chosen as cluster centers. Therefore, for these data points, the degree of 

belonging to the clusters, whose centroid set by their coordinates will be 

infinity, and the degree they belong to others will be zero, as calculated 

by (4.40). This is a direct side effect of using a hard clustering algorithm 

as part of a fuzzy clustering algorithm. In order to prevent that, above 

modification is put in use. Next, the degree matrix is constructed and 

computed as described below. 

 

                                            (4.42) 

 

                                           

 

 Step 2: Compute cluster centroids. Use an average of features of all data points 

weighted by their degree of belonging while computing the representative center 

of a cluster, as follows. 

 

  
 
 

   
 
     

  
   

      
  

   

                              (4.43) 

 

 Step 3: Update the degree of belonging matrix by utilizing the original formula in 

(4.42). 

 

                                              (4.44)  

 

 Step 4: Compute change in the objective function. If the change goes below a 

predefined threshold that should be small enough to ensure a local optimum 

solution; or the value of the objective value starts to increase; or maximum 
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number of iterations is met, then exit the loop and proceed with Step 5. Else, 

increment the iteration number and go to Step 2. 

                                       
 
        

 
   

 
        (4.45) 

 

                  

                                                        

 

 Step 5: Make assignments. A data point is assigned to a cluster to which it 

belongs with the strongest degree. 

 

             
 

                                                        (4.46) 

                              

 

Fuzzy K-means clustering performs the soft partition of the data set by the steps 

described above. It is more time-consuming than hard k-means clustering algorithms, 

since it is mandatory to update the computationally expensive degree matrix at each cycle 

of the loop, regardless of whether a cluster is updated or not. Furthermore, its 

convergence takes longer whenever the value of the fuzziness factor is decreased. Yet, it 

does not require assignment of data points while performing the main steps of the 

algorithm, which could be regarded as a positive factor reducing the total computational 

cost. 

4.3.10 Follow-The-Leader Clustering 

Follow-the-Leader clustering (Chicco et al., 2004) relies on a distance threshold and 

performs iteratively on a data set by incrementing clusters and refining them based on the 

threshold and the distance between data points and clusters. The algorithm does not 

require exact number of clusters, yet solely has the threshold as its parameter.  

 

The steps of the algorithm are covered in the following. 

 

 Step 1: Set the centroid of the first cluster to the features of the first data point in 

the data set and add the data point to the cluster. Set the number of clusters to 1, 

number of changes over clusters to 1, and the number of iterations to 0. 

 

  
 
   

 
                   (4.47) 
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 Step 2: Take action regarding the next data point as indicated in subsequent 

steps. 

 

o Step 2.1: Check the distance of the next data point from the existing 

cluster centers and identify the cluster at minimum distance. 

 

                                    (4.48) 

                                                  

 

o Step 2.2: If the iteration number is zero and computed minimum distance 

exceeds the threshold, then create a new cluster for the data point, set the 

coordinates of the centroid to its features, and add it to the cluster. 

Continue with Step 2.7. 

 

                                                                         (4.49) 

 

    
 

      
 

                         

                

            

                                    

 

o Step 2.3: If the iteration number is zero and computed minimum distance 

is less than or equal to the threshold, then add the data point to the cluster 

that is closer to it. Update the cluster centroid afterwards. Continue with 

Step 2.7. 

 

                                         (4.50) 

 

                     

   
 
 

 

   
    

 
                        

 

o Step 2.4: If the iteration number is not zero, further cluster creation is 

allowed in successive cycles, and minimum distance is greater than the 

threshold; then create a new cluster for the data point, set the center 

coordinates to the features of the data point, and add it to the cluster. 

Continue with Step 2.7. 
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            (4.51) 

                                            

                             

 

    
 

      
 

                        

                

             

                                    

 

o Step 2.5: If the iteration number is not zero, minimum distance is not 

greater than the threshold, and the closest cluster to the data point is its 

current cluster, then do nothing and continue with Step 2.7. 

 

o Step 2.6: If the iteration number is not zero, minimum distance is not 

greater than the threshold, and the closest cluster to the data point is not 

the cluster that it already belongs to, then remove the data point from its 

current cluster and add it to the closest cluster. Update both cluster 

centers. Continue with Step 2.7. 

 

                                                                    (4.52) 

 

                                 

 

                            

                            

          
 
 

 

   
    

 

      

                   

         
 
 

 

   
    

 

      

                   

                                        . 

 

o Step 2.7: The processing of the data point has been completed. Increment 

the subject number and continue with Step 2.1. 

 

           .                                                                               (4.53) 

 

 Step 3: If all data points are covered, and maximum number of iterations is 

reached or no cluster change has occurred then exit the loop and continue with 

Step 5. Else go to Step 4. 

 

 Step 4: If all data points are covered but neither the maximum number of 

iterations is reached nor any of the data points have changed clusters, then reset 
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the number of data points and number of changeovers and increment the number 

of iterations. Continue with Step 2. 

 

                                                 (4.54) 

 

                                      

 

 Step 5: The algorithm terminates. 

 

Number of clusters is set in the first iteration of the algorithm by going over every point 

in the set. This process depends on the order of the data points. Yet, in successive cycles, 

data points may change clusters and if cluster creation is allowed in successive cycles, 

points may form new clusters on condition that they are more-than-threshold-distance far 

away from all existing clusters.  

 

Follow-the-Leader is a computationally efficient, fast converging, and parametrically 

simple clustering algorithm. It manages outlier detection and is robust to noise. The mere 

disadvantage of the algorithm for the data analyst is deciding the value of the threshold, 

since setting a distance threshold for separating points in a multi-dimensional space is not 

a subtle issue. However, once the threshold is set to a suitable value, the analyst can 

easily control the quality of clustering based on parameters such as the number of clusters 

by manipulating the threshold. 

4.3.11 Hierarchical Clustering 

Hierarchical clustering imposes a top-down or bottom-up ordering of data points based on 

inter-cluster distance (Chicco et al., 2003). Within the scope of this thesis, a bottom-up 

(agglomerate) approach is adopted, in which all data points form standalone clusters by 

themselves in the beginning and as the algorithm progresses, most similar clusters are 

linked until all of the data points are eventually organized in a single cluster.  

 

The method itself is a deterministic way of distributing data points among clusters, unlike 

the partitional cluster algorithms examined up to this point. Furthermore, it does not rely 

on the order of points within the dataset, unlike the Follow-the-Leader approach. 

 

Hierarchical agglomerate clustering algorithms are classified by the heuristics used to 

decide which clusters are the two most similar ones at a cycle. In order to judge the 

similarity of algorithms, following distance computation is made by each particular type 

of the algorithm. 

 

Parametric distance formula used in Hierarchical clustering is included as follows. 
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                                       (4.55) 

                                                             

                                                               

 

                              

                                                                               

 

                                                        

 

Each type of algorithm sets parameters in the distance formula distinctly (Murtagh and 

Contreras, 2011). Particular settings of parameters are explained in the following.  

 

In single linkage, computation implies that distance between other clusters and the new 

cluster becomes the minimum of the centers of two clusters that have been merged to a 

particular cluster. This is ensured by setting the parameters as in below. 

 

                                                                                 (4.56) 

 

Complete linkage imposes the distance of the new cluster to other clusters to be the 

maximum distance between the centers of each of the two linked clusters to them. The 

parameters are set as in the following. 

 

                                                (4.57) 

 

Average linkage computes the distance of the new cluster to others as the mean of the 

distances between the two linked cluster centers and a particular unlinked cluster. 

Weighted pair-group method with averaging (WPGMA) takes the simple average of the 

distances as implied by the subsequent equation. 

 

                                   (4.58) 

 

A more advanced type of linkage, namely unweighted pair-group method with averaging 

(UPGMA), takes the average by taking into consideration the number of elements in the 

clusters that have been merged. The parameter setting is carried out as follows. 

 

                 
  

     
    

  

     
          (4.59) 

 

Linkage criterion may involve taking into account the distance between the linked cluster 

centers. Weighted pair-group method using centroids (WPGMC), a type of centroid 

linkage method, computes the distance of the new merged cluster to some unlinked 

cluster as the mean of distances of its constituent cluster centers to the unlinked cluster 
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diminished by the value of the distance between the linked cluster centroids. WPGMC 

sets the parameters of the formula as below. 

 

                                        (4.60) 

 

Unweighted pair-group method using centroids (UPGMC) is the other centroid-linkage 

method, which includes the effect of number of elements the linked clusters have in the 

distance computation as implied by the following equation. 

 

                 
  

     
    

  

     
    

    

       
       (4.61) 

 

Ward’s minimum variance method intends to minimize total intra-cluster variance by 

controlling the process of the Hierarchical algorithm such that two clusters having the 

least variance are merged at each cycle. The parameter setting of this criterion is 

explained below.  

 

                      
     

        
    

     

        
    

  

          
      (4.62) 

 

The last linkage type covered, flexible linkage, does not impose a direct setting of values. 

Rather, it gives the opportunity to data analyst to choose the value of constants within 

certain limits, as explained below. By manipulating the constants, a clustering satisfying 

particular conditions such one having minimum value of an evaluation metric may be 

obtained. 

 

                                                 
   

 
    

   

 
    (4.63) 

 

Steps of the agglomerate Hierarchical clustering algorithm are covered subsequently. 

 

 Step 1: Initial steps. 

 

o Step 1.1: Build singleton clusters. Add every data point to the cluster 

formed by it. Set maximum number of iterations to the number of data 

points. 

 

  
 
   

 
                                        (4.64) 

 

      

 

                

 

o Step 1.2: Build up the distance matrix. Compute the distance between 

data points and clusters. 
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                                            (4.65) 

                                    

 

 Step 2: Find closest cluster pairs by making use of the distance matrix. Create a 

new cluster by merging the obtained pair. Add data points of both clusters to the 

new cluster. Decrement number of clusters. 

 

                        (4.66) 

 

                                                        

 

                                     

 

        

 

 Step 3: Update distance matrix by utilizing the Hierarchical distance computation 

imposed by the type of linkage criterion. For all unlinked clusters, keep distances 

among each other the same, as included in the current data matrix. Only compute 

the distances between the new cluster and the unlinked clusters, and store the 

results in corresponding entries of the new matrix. Set the distance matrix as the 

new matrix. 

 

                                                
      (4.67) 

 

   
                                 

 

   
                                  

      
                       

 

   
       

 

           

 

 Step 4: Increment number of iterations. If number of iterations equals the 

maximum number of iterations minus the desired number of clusters, namely the 

cutoff point is reached, continue with Step 5. Else, go to Step 2. 

 

                                         (4.68) 

 

 Step 5: Update cluster centers by computing feature-by-feature averages of the 

data points belonging to them. 
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                                                (4.69) 

 

History of the process is kept in a data structure called dendrogram, which is a tree 

structure having nodes with coordinates of the identities of cluster and the distance level, 

in which corresponding clusters are merged. Dendrograms have the single cluster 

obtained at the end of the algorithm in the root position, and the singleton clusters 

computed at the beginning of the algorithm as leaves. 

 

Quality of Hierarchical clustering depends strictly on the type of the linkage employed in 

the algorithm. Characteristics of each linkage criterion are covered in the evaluation 

chapter of the thesis. Hierarchical clustering does not reallocate data points in successive 

cycles, namely data points only become part of larger clusters hierarchically. If a data 

point is assigned to a wrong cluster in previous steps, it may not be correctly assigned in 

subsequent cycles. However, the major advantage of Hierarchical approach is the 

deterministic computation of data distribution among clusters so that cluster compositions 

remain the same no matter how many times the algorithm is run. 

4.3.12 Self-Organizing Map Clustering 

Self-organizing map (SOM) is an unsupervised artificial neural network that produces a 

projection of multidimensional data in two dimensions (Vesanto and Alhoniemi, 2000). It 

consists of two layers: input layer through which input vectors are fed and the single 

computational layer that consists of neurons to be trained. The computational layer, or the 

map, is generally a two dimensional rectangular or hexagonal lattice formed by adjacent 

neurons. Input vectors are connected to all neurons in the map. SOM is topology-

preserving, meaning that trained map places the input vectors in a topologically-ordered 

fashion.  

 

Training of SOM is based on a process called competitive learning, in which neurons 

forming the map compete with each other at instances of training, and a particular neuron 

called winning neuron or the best matching unit (BMU) becomes activated. BMU has the 

weights closest to a particular data point. Following its identification, the BMU and all 

the neighbors that reside within a computed neighborhood are moved towards the data 

point by a certain amount inversely proportioned by their distance to the data point. 

Competitive learning ensures the self organization of the map by adjusting the weights as 

described so that neurons of the lattice can represent the input space after the training.  

 

Neighborhood radius is computed according to the following formula having its 

parameter as the current iteration number so that radius decreases exponentially over 

iterations to a value close to 1. 
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 (4.70) 

 

Distance between neurons is computed as the Euclidean distance between their positions 

in the grid, as indicated below. 

 

         
        

             
 
          

 
  (4.71) 

 

Distance falloff within the neighborhood of a neuron is computed exponentially 

according to the following formula. 

 

         
 
  

          (4.72) 

 

                                                            

 

Learning rate determines how fast the weight vector of a neuron in the computational unit 

converges to a particular input vector during cycles of the training process. It is given as a 

parameter of SOM clustering algorithm. Learning rate can be selected as a relatively large 

number for the first phase of training so that self organization process is accelerated. 

Later, it is set to a smaller value in order to ensure the convergence of the algorithm. This 

phase of training is called fine tuning. Division between the two phases and setting of the 

learning rate at an instant of training is carried out as follows. 

 

    
   

           
  
                                                  

   
                     

  
                                  

                    (4.73) 

 

SOM provides means of data visualization, by placing closer data points to near locations 

and more distant points to further locations in the two dimensional grid. In order to 

determine the clusters, weight vectors of neurons of the trained map should be clustered 

by making use of the clustering algorithms described so far. Following further clustering, 

map is divided into regions of clusters. 

 

SOM training is carried out as outlined by the following steps. 

 

 Step 1: Assign each data point as an input vector. Input vectors constitute the 

input layer. Build a lattice of specified size as the competitive layer of the 

network. Each neuron in the network has a weight vector that has exactly as the 

same number of dimensions as a data point. Initialize weight vectors to small real 

random numbers. 
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                                                    (4.74) 

 

                                                 

 

                                                         

                                      

 

                                    

                                                              

                                   

 

     
 

                                      

 

 Step 2: Grab an input vector and compute its best matching unit in the map. 

 

             
  
   

                           (4.75) 

                                                         

 

 Step 3: Adjust weights of the winning neuron and its neighbors inversely 

proportional to their distance of the input vector based on the learning rate of the 

current iteration. 

 

                  
    (4.76) 

            
        

                                               
    

    

 

       
  
   

 
 

   
  
   

 
 

               
        

            
 
  

  
   

 
 

       

        
                      

 

 Step 4: Continue with Step 2 until all of the input vectors are processed. If all the 

vectors are finished training, increment the number of iterations by one and start 

training over the input vectors at Step 2. If maximum number of iterations is 

reached, then stop. 

Training algorithm outlined above is a form of sequential training, in which update of the 

weight vectors is carried out just after the winning neuron is computed. On the contrary, 

batch training first locates best matching units for all input vectors and then updates 

weight vectors of all neurons at one step, as included subsequently. 
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      (4.77) 

 

                                                 
        

 

Batch training eliminates the need for learning rate, thus eliminating explicitly defined 

phases of training, and tends to converge faster than sequential algorithm, while in most 

cases yielding as good or better clustering results compared to sequential training, which 

is discussed in the Chapter 5 of the thesis. 

 

Trained map requires further processing for clustering the data set. Once the training is 

complete, an unsupervised classification algorithm is run for clustering the final weight 

vectors of the neurons in the competitive layer. Distribution of the actual data set among 

clusters is computed by grouping the data points whose best matching units reside in the 

same cluster together. Final clustering obtained this way is evaluated and visualized by 

diagrams. 

4.4 Summary 

A comprehensive review concerning mechanisms of prominent clustering algorithms 

existing in the literature has been made in this chapter, using a genuine notation. 

Modifications to original versions of the algorithms have been explicitly stated.  

 

Explained methods can be gathered in six distinct algorithm families, based on the 

similarity of algorithms. K-means family consists of K-means with centroid initialization 

through constants, K-means++, K-medians, WFA-K-means, Hopfield-K-means, K-

medoids, and Similarity-based K-means. All the members in K-means family follow the 

same algorithmic flow of initialization, updating the distance matrix, assigning data 

points to cluster, and updating cluster centroids; although they differ among each other 

substantially in ways they realize the outlined subtasks. 

 

The second family holds only the Fuzzy K-means algorithm allowing variations in 

fuzziness factor. Although Fuzzy K-means has a similar algorithmic flow to K-means, it 

offers fuzzy clustering, imposing profound alterations to sub-tasks associated with K-

means family.  

 

ISODATA clustering, a variant of K-means algorithm merges and/or split clusters 

throughout its course of progress and does not hold fixed number of clusters. Judging by 

the underlying mechanisms, ISODATA is placed in the third family consisting only of 

itself.  
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Remaining algorithms form algorithm families by themselves: Hierarchical family 

containing every linkage criterion, Follow-the-Leader algorithm and SOM clustering. 

 

Evaluation of performance quality of methods and illustrated clustering results are 

covered in Chapter 5. Associated running times and scalability of the algorithms are 

analyzed in Chapter 6. Classification of clustering results and corresponding applications 

are included in Chapter 7.  
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CHAPTER 5 

 

 

 EVALUATION OF CLUSTERING ALGORITHMS 

 

 

 

5.1 Introduction 

Quality of a clustering algorithm can be demonstrated via evaluating generated clusters 

internally by validity indices that provide means of comparison among distinct clustering 

results and present the infra structure for automatically selecting the optimum number of 

clusters to be generated on a particular data set. 

 

Design and evaluation of algorithms have a mutual relation between each other such that 

following the design process, algorithms whose performances are of high quality are 

considered to be promising; and in order to come up with algorithms that can generate 

high quality clustering, design of algorithms should be improved. 

 

This chapter presents an elaborated evaluation of all algorithms generating distinct 

number of clusters for each data set in each distance framework. Evaluation results are 

analyzed in relation with algorithmic mechanisms outlined in Chapter 4. A comparison of 

algorithms based on accuracy is also included at the end of the chapter. 

5.2 Evaluation Metrics 

Quality of performance of a clustering can be measured via several evaluation metrics 

(Halkidi et al., 2001). Among many, Davies-Bouldin Index, Modified Dunn Index, 

Clustering Dispersion Indicator, and Similarity Matrix Indicator are used to assess quality 

along with accuracy. 

 

Distance computation is refined for evaluation purposes so that metric results are filtered-

out from the number of clusters, data set size, and dimensionality. Distance between two 

vectors in multi-dimensional space is calculated throughout this chapter as follows. 

 

          
 

  
             (5.1) 
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Distance in equation (5.1) is the Euclidean distance scaled by the reciprocal of the 

squared root of dimensionality. Squared distance between two vectors is simply the 

square of (5.1), as indicated in the following. 

 

           
 

 
        

      (5.2) 

                                               

 

Distance of a data point to a set of data points that belongs to the same cluster is 

computed as in equation (5.3) by taking the geometric mean of the squared distances 

between the data point and all members of the set. 

 

          
 

    
                

                                     (5.3) 

 

Average distance regarding a set of data points is calculated as in equation (5.4) by 

making use of geometric mean operator. It measures scattering of data points within a 

cluster. 

 

        
 

      
                                               (5.4) 

 

Distance of a cluster to all clusters is computed as in equation (5.5). 

 

          
 

   
               

        (5.5) 

                                                 

 

Average distance among all cluster centroids is computed as follows. 

 

       
 

     
                                                     (5.6) 

 

DBI is computed by making use of the sum of average inter-distance of two clusters’ data 

points, which is calculated as in equation (5.7). 

 

       
             

          
                                      (5.7) 

 

The basic mechanism used by DBI metric to compare two clusters is       which is 

computed in equation (5.7) to measure the ratio of sum of within cluster scatter of two 

clusters to their inter-distance. More compact clusters whose centers are sufficiently far 

away from others are awarded with lower values of      .  
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For a cluster, maximum value of   is obtained by traversing through the set of all clusters 

to find the companion cluster that maximizes the value of the metric, as indicated by 

(5.8). 

 

                                          (5.8) 

 

Davies-Bouldin Index is then simply the average of maximum   values of all clusters, as 

computed by the equation in (5.9). DBI examines the quality of each cluster separately by 

challenging them with other clusters and then presents the average case regarding all 

clusters. 

 

    
 

 
    

 
    (5.9) 

 

Modified Dunn Index is derived from Dunn Index (Chicco et al., 2006), whose lower 

values indicate better performance, unlike the original metric. The computation of the 

index involves discovering the maximum intra-cluster scatter and the minimum inter-

cluster distance of two unequal clusters as in equation (5.10). 

 

     
                   

                    
                            (5.10) 

 

MDI is the ratio of maximum scatter to minimum inter-cluster distance. High values of 

the metric are yielded for cases in which clusters are close to each other and data points 

are scattered within clusters. In other words, if clusters are not well-separated and data 

points residing in them exhibit high statistical variance, MDI decides that the clustering is 

of poor quality. 

 

Clustering Dispersion Indicator is computed according to the following formula. 

 

    
 

    
 
       
 
   

 
                                          (5.11) 

 

Equation in (5.11) implies that as average compactness of the clusters decrease together 

with average inter-cluster distance, CDI metric yields high values and deciding the 

clustering in question to be of bad quality. 

 

Similarity Matrix Indicator, proposed in (Chicco et al., 2002), is the maximum value of 

similarity between two distinct clusters. Similarity of the two clusters is computed as in 

the following. 

 

                
 

              
 

  

                            (5.12) 
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If similarity between any two clusters is computed to be high, then SMI value will be 

high, indicating poor-quality performance. 

 

Note that MDI, and SMI deals with extremum cases present in the clustering, while CDI 

works on average cases concerning all clusters and data points. On the other hand, DBI 

deals with both cases. All metrics are biased towards compactness and well separateness 

of clusters to deem a clustering accurate. Lower metric values indicate better performance 

for all validity indices. 

 

Two additional measures are used in the analysis of fuzzy K-means clustering. Partition 

Coefficient (PC), the first one, measures the degree of fuzziness in the membership 

matrix and is computed as in equation (5.13). PC values reside in the interval [0, 1]. 

Higher values of PC indicate more decisive partition of the data among clusters and a less 

fuzzy clustering. Hard clustering attains a PC value of 1.0, in which a data point belongs 

to a cluster with a probability of 1. 

 

   
 

 
     

 
                    (5.13) 

 

The second measure is Classification Entropy (CE), which quantifies the amount of 

information held in the membership matrix by using Shannon’s entropy. As a clustering 

gets fuzzier, the information that could be encoded increases. Therefore, a CE value that 

is close to 0 indicates that corresponding clustering is more of an example of hard 

clustering. On the other hand, if a CE value is closer to 1, the clustering is said to be a 

representative of soft clustering. Computation of CE is included in the equation in (5.14). 

 

     
 

 
                                 (5.14) 

 

Both PC and CE measures do not explicitly assess the validity or quality of the clustering 

as no computation is performed concerning data points or clusters in equations in (5.13) 

and (5.14). Instead, they are heuristic measures that provide information about the degree 

of fuzziness present in the clustering, demonstrating whether a clustering is more hard or 

soft.  

5.3 Evaluation Methodology 

All algorithms are run to generate between 5 and 20 clusters on winter and summer 

weekdays data sets in Euclidean, hybrid Pearson, and weighted Euclidean frameworks. 

DBI, MDI, CDI, and SMI metric values associated to each case are visualized in the 

proceeding section together with an example of high quality clustering generated by 

algorithms, as decided by metric curves. 

 

Algorithms including randomness in their mechanisms; K-means++, K-medians, WFA-

K-means, Hopfield-K-means, K-medoids, Similarity-based K-means, Fuzzy K-means, 
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ISODATA, and SOM clustering; are run with the same parameters 25 times and the 

clustering with the lowest DBI value that does not include empty clusters is presented. 

 

K-means clustering is run with distinct values of centroid-initializer constants in the 

interval [0, 1] and the non-empty clusters with the lowest DBI are included. 

 

Maximum iteration of the training of the Hopfield network used by Hopfield-K-means 

clustering is set to 600 so that convergence of the total energy of states can be observed. 

 

Parameters of ISODATA clustering are adjusted to yield between 5 and 20 clusters 

Evaluation of this algorithm is carried out only briefly in accordance with other methods, 

although more detailed evaluation is required to assess the performance of ISODATA to 

reveal the affects of each parameter of the algorithm on the final clustering.  

 

Fuzziness factor of fuzzy K-means is set as 2.0 throughout the evaluation. Euclidean and 

weighted Euclidean distance metrics are used in squared forms for fuzzy clustering. 

 

Distance threshold of Follow-the-Leader clustering is adjusted to generate between 5 and 

20 clusters. However, some particular number of clusters could not have been yielded by 

the algorithm, as indicated by the following section of this chapter. 

 

Distance threshold utilized by the fine tuning phase of similarity-based K-means 

clustering is automatically determined, as proposed in the corresponding section of 

Chapter 4. 

 

Hierarchical clustering is separately evaluated for every linkage criterion except WPGMC 

and UPGMC, which fail to generate regular dendrograms (Murtagh and Contreras, 2011) 

due to non-monotonicity in distance levels of merged clusters as the algorithm progresses. 

Other criteria exhibit monotonicity in distance levels. For flexible linkage,   is set to 21 

distinct values that divide the interval [-0.5, 0.95] and clustering with lowest MDI values 

is illustrated. Except UPGMA and flexible linkage criteria, every linkage criterion is 

evaluated only on winter weekdays data due to chapter volume considerations. 

 

Regarding each distance framework, data set, and number of clusters; SOM clustering is 

run separately in order to demonstrate the affect of random initialization on final clusters, 

despite the fact that only one trained map could be utilized to generate clusters regarding 

each case. Hierarchical clustering with UPGMA linkage is selected to carry out the post-

clustering of the map. SOM clustering is evaluated only on winter weekdays data in order 

to save space. 

 

Since     map nodes are sufficient to cluster a data set of size   (Vesanto and 

Alhoniemi, 2000), map size is selected to be      to effectively process 306 instances of 

the winter weekdays data. Both batch and sequential training techniques are run and 
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evaluated. Concerning sequential training, initial learning rate and secondary learning rate 

are set to 0.10 and 0.02, respectively. Number of iterations in the training step is set to 90. 

 

Maximum number of iterations until convergence is set to 100 for all algorithms except 

Hierarchical clustering and SOM clustering. 

 

Clustering of winter and summer weekends and holidays data is excluded from this 

chapter due to space limitations and prevent distraction. 

 

In clustering diagrams, hours of the day reside in the horizontal axis and normalized 

consumptions amounts are held in the vertical axis. 

5.4 Evaluation Results 

Evaluation results of cases outlined in the methodology section is presented in the 

proceeding sub-sections for every clustering method. For all curves included in this 

section, red stands for weighted Euclidean, purple stands for Euclidean and orange stands 

for hybrid Pearson frameworks. 

5.4.1 K-Means Clustering Evaluation 

Clustering evaluation results for the data set of winter weekdays is included as follows. 

 

 

 
 

Figure 5.1 Evaluation of K-means for winter weekdays data. 
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Evaluation results summarized in (Fig. 5.1) suggest that the performance of weighted 

Euclidean metric is inferior with respect to Euclidean and hybrid Pearson distance 

measures, keeping in mind that lower values of the indices imply better performance. 

Inspecting all values in the graphs, the lowest corresponds to the results obtained via K-

means algorithm in Euclidean distance framework for seven clusters. The corresponding 

clustering is included in the figure below. 

 

 

    
 

Figure 5.2 Clustering of winter weekdays data by K-means in Euclidean framework. 

 

Summer weekdays clustering evaluation results are included subsequently. 

 

 
 

Figure 5.3 Evaluation of K-means for summer weekdays data. 
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Figure 5.3 Evaluation of K-means for summer weekdays data. (cont’d) 

 

DBI, CDI, and MDI metrics in (Fig. 5.3) agree that 10 clusters could be selected as load 

profiles and Euclidean distance metric yields only very slightly better results than the 

modified Pearson while outperforming the weighted Euclidean. Customer distribution 

within clusters is included below. 

 

    
 

Figure 5.4 Clustering of summer weekdays data by K-means in Euclidean 

framework. 

 

K-means clustering with deterministic centroid initialization succeeds to form main 

clusters with several data points as in (Fig. 5.2) and (Fig. 5.4). These large clusters tend to 

have more or less the same number of elements. Although the algorithm can have some 

outliers, whose elements vary considerably from the rest of the load profiles yet resemble 
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each other grouped such as in Cluster 1 of winter weekdays data set and Cluster 5 of 

summer weekdays data set; it may yield redundant clusters having only one element such 

as Cluster 3 and Cluster 4 of the winter weekdays data, and Cluster 1 and Cluster 4 of 

summer weekdays data. Moreover, the algorithm cannot guarantee the absence of noise 

within clusters such as noisy representative diagrams residing in Cluster 5 of winter 

weekdays data and Cluster 8 of summer weekdays data. 

5.4.2 K-Means++ Clustering Evaluation 

Evaluation results for the winter weekdays data set are summarized in the following 

charts. 

 

 

 
 

Figure 5.5 Evaluation of K-means++ for winter weekdays data. 

 

Charts included in (Fig 5.5) indicate that the minimum values computed by DBI and MDI 

indices correspond to seven clusters using Euclidean distance metric followed by the 

hybrid Pearson. Moreover, CDI metric suggests that greatest decrease in the graph has 

occurred for six or seven clusters produced by the algorithm employing Euclidean metric. 

SMI metric also agrees with CDI, as it has almost the same value for six or seven clusters 

on Euclidean or hybrid Pearson metric. Seven clusters for winter weekdays yielded by the 

algorithm in a Euclidean distance framework are depicted subsequently. 
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Figure 5.6 Clustering of winter weekdays data by K-means++ in Euclidean 

framework 

 

In case of seven clusters as illustrated for Euclidean framework in (Fig. 5.6), K-means++ 

clustering utilizing hybrid Pearson distance measure attains more or less the same results 

of evaluation as curves in (Fig. 5.5) suggest. Moreover, it is clearer for the hybrid Pearson 

framework that the knee of DBI, MDI and CDI graphs correspond to seven clusters, 

rather than controversial case of six clusters for Euclidean framework. Hence clustering 

of winter weekdays by K-means++ with hybrid Pearson distance is also included below 

for comparison. 

 

 
 

Figure 5.7 Clustering of winter weekdays by K-means++ in hybrid Pearson 

framework. 

 



 

 63 

    
 

Figure 5.7 Clustering of winter weekdays by K-means++ in hybrid Pearson 

framework. (cont’d) 

 

Distinction between Euclidean and hybrid Pearson frameworks should be sought in 

clustering of outliers by inspecting (Fig. 5.6) and (Fig. 5.7). Both frameworks have two of 

their smaller clusters with the same composition, yet Euclidean framework has its 

singleton Cluster 7, and hybrid Pearson framework has its Cluster 7 with two members as 

different.  

 

As visual inspection suggests, although some of the large clusters obtained in both 

frameworks are quite similar, hybrid Pearson framework has its large clusters more 

compact, due to taking into account the correlation between features of data points. 

Evaluation metrics are biased in such a way that singleton clusters are considered to be 

more compact than ones such as Cluster 7 in (Fig 5.7), which in turn might affect the 

decision-making in subtle conditions. Hence, visual inspection by the data analyst may be 

useful in such cases. 

 

Evaluation of summer weekdays dataset is summarized in the following charts. 

 

 
 

Figure 5.8 Evaluation of K-means++ for summer weekdays data. 
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Figure 5.8 Evaluation of K-means++ for summer weekdays data. (cont’d) 

 

DBI metric suggests that for six clusters greatest decrease in the chart is obtained and 

hybrid Pearson framework attains the lowest value followed by Euclidean and weighted 

Euclidean frameworks. MDI and SMI evaluations point out that for six clusters 

performance of Euclidean and hybrid Euclidean frameworks are almost of the same 

quality. Although CDI suggests that Euclidean framework yields slightly better results, 

clustering of K-means++ depicted below is presented in hybrid Pearson framework due to 

its achieving the greatest decrease for six clusters in DBI chart in (Fig. 5.8). 

 

 

 

 
 

Figure 5.9 Clustering of summer weekdays by K-means++ in hybrid Pearson 

framework. 

 

K-means++ clustering yields main clusters that can vary in size and generally includes 

less intra-cluster variation as in (Fig 5.9), compared to K-means clustering. The algorithm 

also groups outliers that tend to vary considerably from the rest of the load profiles in 

separate clusters. Visual inspection may come handy in cases which Euclidean and hybrid 
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Pearson distance measures have similar performance qualities, since the latter is expected 

to behave marginally better in outlier detection and grouping. 

5.4.3 K-Medians Clustering Evaluation 

Performance evaluation of K-medians with increasing number of clusters for winter 

weekdays data set is included subsequently. 

 

 

 
 

Figure 5.10 Evaluation of K-medians for winter weekdays data. 

 

Performance of K-medians clustering in all distance frameworks is measured by the 

metrics in (Fig 5.10) to yield a similar condition as K-means and K-means++, in which 

weighted Euclidean framework is always outperformed by the latter frameworks. 

Although best performance according to DBI is for six clusters with hybrid Pearson 

distance measure, the greatest declines in both DBI and CDI indices correspond to eight 

clusters in hybrid Pearson framework, which is depicted in the following. 
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Figure 5.11 Clustering of winter weekdays by K-medians in hybrid Pearson 

framework. 

 

K-medians algorithm effectively forms compact large clusters as well as small clusters 

holding customers with distinct electricity consumption patterns as illustrated in (Fig 

5.11). Evaluation of summer weekdays data is included below for comparison. 

 

 
 

Figure 5.12 Evaluation of K-medians for summer weekdays data. 
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Knee point of CDI graph corresponds to seven clusters on Euclidean distance as included 

in (Fig. 5.12). However, second decline in DBI values corresponds to nine clusters, which 

is evaluated to be slightly more promising with respect to DBI, CDI, and SMI metrics. 

MDI value for nine clusters is more or less equal to the value for seven clusters. Looking 

for more diverse and robust grouping of customers, nine clusters in Euclidean framework 

are adopted as load profiles, as in the following graphs. 

 

 

 
 

Figure 5.13 Clustering of summer weekdays data by K-medians in Euclidean 

framework. 

 

Clustering included in (Fig. 5.13) shows that the algorithm ensures the formation of 

compact large clusters and small clusters with variable sizes, which hold the outlier 

consumption patterns. Utilizing median operator to determine cluster centers results in 

protecting clusters against noisy data points by filtering out the effect of such points in 

centroid computation.  

5.4.4 WFA-K-Means Clustering Evaluation 

Evaluation of performance of WFA-K-means clustering for winter weekdays data set is 

summarized in the following charts. 
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Figure 5.14 Evaluation of WFA-K-means for winter weekdays data. 

 

Graphs in (Fig. 5.14) demonstrate that the lowest DBI value is for nine clusters in a 

hybrid Pearson distance framework. Similarly, the greatest decrease in CDI values is for 

nine clusters in this framework. MDI and SMI values for nine clusters are greater than 

prior number of clusters. However, for this number of clusters, DBI value is considerably 

high and MDI and SMI graphs tends to follow a steadily increasing curve for which the 

elbow point can be decided as nine clusters. Therefore, the winter weekdays data set is 

partitioned among nine clusters in hybrid Pearson distance framework as included in the 

following. 

 

 
 

Figure 5.15 Clustering of winter weekdays data by WFA-K-means in hybrid 

Pearson framework. 
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Figure 5.15 Clustering of winter weekdays data by WFA-K-means in hybrid 

Pearson framework. (cont’d) 

 

WFA-K-means discovers newer outlier elements such as the ones grouped in Cluster 7, 

thus reducing the data diversity in large clusters, especially in Cluster 4, as shown in (Fig. 

5.15). 

 

Evaluation of summer weekdays data clustering is summarized in the charts below. 

 

 

 
 

Figure 5.16 Evaluation of WFA-K-means for summer weekdays data. 

 

DBI metric included in (Fig. 5.16) indicates that the best performance is for six clusters in 

a Euclidean distance framework. MDI and SMI evaluations confirm this and six clusters 

lie on a local knee point of CDI chart. Clustering of summer weekdays is shown in 

subsequent diagrams. 
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Figure 5.17 Clustering of summer weekdays by WFA-K-means in Euclidean 

framework. 

 

Clustering in (Fig. 5.17) does not yield most of the outlier groupings that have been 

examined so far. However, it does capture the general shape of the consumption shapes 

and discriminates two data points as outliers. Nonetheless, large clusters contain certain 

amount of noise, especially Cluster 1. 

5.4.5 Hopfield-K-Means Clustering Evaluation 

Hopfield-K-means clustering evaluation for winter weekdays data set is summarized in 

the following charts. 

 

 
 

Figure 5.18 Evaluation of Hopfield-K-means for winter weekdays data. 
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Figure 5.18 Evaluation of Hopfield-K-means for winter weekdays data. (cont’d) 

 

14 clusters in Euclidean framework is a knee point for DBI, MDI and CDI metrics and a 

local minimum in SMI curve as in (Fig. 5.18). Therefore, 14 clusters are selected for 

winter weekdays as illustrated in the following diagrams together with the graph of 

energy function used in the training of the Hopfield network. 

 

 
 

Figure 5.19 Clustering of winter weekdays data by Hopfield-K-means in Euclidean 

framework. 
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Figure 5.19 Clustering of winter weekdays data by Hopfield-K-means in Euclidean 

framework. (cont’d) 

 

The algorithm forms large clusters of nearly equal sizes, medium clusters of similar sizes 

and also groups outliers in separate clusters, as shown in (Fig. 5.19). Note the presence of 

subtle noise in Cluster 1 and Cluster 2.  

 

Energy function computation over iterations during Hopfield network training is also 

included in clustering illustration. Energy values steadily decrease where particular knee 

points are occasionally encountered until convergence, which corresponds to the 

minimum energy configuration of states.  

 

Summer weekdays data clustering evaluation results are summarized in the following 

graphs. 

 

 
 

Figure 5.20 Evaluation of Hopfield-K-means for summer weekdays data. 
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Figure 5.20 Evaluation of Hopfield-K-means for summer weekdays data. (cont’d) 

 

10 clusters in Euclidean framework are slope-changing, moderately low values in DBI, 

MDI, and CDI curves and this value resides in a local plane structure (step) where 

surrounding points correspond to more or less the same metric values in the SMI curve, 

as shown in (Fig. 5.20). Diagrams of summer weekdays data partitioned into 10 clusters 

are included below. 

 

    
 

Figure 5.21 Clustering of summer weekdays data by Hopfield-K-means in hybrid 

Pearson framework. 
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Figure 5.21 Clustering of summer weekdays data by Hopfield-K-means in hybrid 

Pearson framework. (cont’d) 

 

Large clusters formed by the algorithm contain high-variance elements, possibly due to 

the incapacity of the algorithm to form the important outlier groupings Cluster 5 and 

Cluster 7 of the summer weekdays data created by K medians method, as shown in (Fig. 

5.21).  

 

Convergence of the energy function within maximum number of iterations can be 

observed from the graph included in (Fig 5.21), where certain shoulder points can be 

inspected, since some data points may not be assigned to a cluster other than the one it 

belongs to, if that operation would cause an increase in total energy value at that instant. 

5.4.6 K-Medoids Clustering Evaluation 

Evaluation of K medoids clustering for winter weekdays data set is summarized in 

subsequent charts. 

 

 
 

Figure 5.22 Evaluation of K-medoids for winter weekdays data. 
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Figure 5.22 Evaluation of K-medoids for winter weekdays data. (cont’d) 

 

DBI, MDI, and SMI metrics in (Fig. 5.22) have their lowers for seven and eight clusters 

in hybrid Pearson distance framework. Values of indices do not vary considerably 

between seven and eight clusters. However, CDI values indicate that performance of 

eight clusters is better than seven clusters. Therefore, winter weekdays data set is grouped 

into eight clusters using the algorithm in hybrid Pearson distance framework, as the 

following diagrams illustrate. 

 

 

 
 

Figure 5.23 Clustering of winter weekdays by K-medoids in hybrid Pearson 

framework. 

 

The algorithm forms main clusters with relatively small amounts of high-variance data 

and forms outlier clusters. Although there are no problems with representative powers of 

cluster medoids in singleton clusters or clusters that have few similar elements such as 

Cluster 8 in (Fig. 5.23); medoids may not capture characteristics of each member of 

clusters consisting of two or three elements that resemble each other in shape, yet may be 

considered to be distant from one another, such as Cluster 6 and Cluster 3. This is a 
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shortcoming of the algorithm enforcing one of the data points to be the center within 

clusters.  

 

On the other hand, in large clusters, such as Cluster 1, Cluster 2, Cluster 4, and Cluster 5 

medoids are robust to data points that deviate considerably from other members of 

clusters, which turns out to be the greatest advantage of K medoids clustering algorithm. 

 

Evaluation of summer weekdays data clustering is included in the following. 

 

 

 
 

Figure 5.24 Evaluation of K-medoids for summer weekdays data. 

 

DBI, MDI, and SMI metrics agree that 11 clusters have the lowest values in hybrid 

Pearson distance framework. 11 clusters correspond to the second lowest value in CDI 

graph as well, as depicted in (Fig. 5.24). Oscillations observed in MDI and SMI metric 

values after 13 clusters are due to medoid selection in outlier clusters that turns out to be 

not informative enough, i.e. outliers can be included in one of the large clusters instead. 

 

 
 

Figure 5.25 Clustering of summer weekdays data by K-medoids in hybrid Pearson 

framework. 
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Figure 5.25 Clustering of summer weekdays data by K-medoids in hybrid Pearson 

framework. (cont’d) 

 

As illustrated in (Fig. 5.25), K-medoids forms four main large clusters with certain 

amounts of noise that can be considered as moderate in case of Cluster 1, and forms 

outlier clusters, for most of which medoid selection is representative enough. Cluster 9 

out of outlier clusters does not differ greatly from Cluster 1, a not-so-compact large 

cluster. Nonetheless, generated clusters meet the performance standards of good quality 

clustering. 

5.4.7 Similarity-Based K-Means Clustering Evaluation 

Evaluation of the performance of the algorithm for clustering the winter weekdays data 

set is included in the following charts. 

 

 
 

Figure 5.26 Evaluation of similarity-based K-means for winter weekdays data. 
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Figure 5.26 Evaluation of similarity-based K-means for winter weekdays data. 

(cont’d) 

 

Similarity-based K-means algorithm produces high quality clustering until 14 clusters as 

demonstrated in (Fig. 5.26). DBI values versus number of clusters do not change steadily 

until 13 clusters in Euclidean framework. After 13 clusters, DBI values increase rapidly. 

Similarly, for MDI and SMI metrics, 13 clusters is a point after which slopes of the 

graphs change. Therefore, winter weekdays data is grouped into 13 clusters as in the 

following diagrams. 

 

 

 
 

Figure 5.27 Clustering of winter weekdays data by similarity-based K-means in 

Euclidean framework. 
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Figure 5.27 Clustering of winter weekdays data by similarity-based K-means in 

Euclidean framework. (cont’d) 

 

Clustering in (Fig. 5.27) yielded by the algorithm is highly robust to noise. It restricts the 

source of noise to be data points having similar shapes for most of the data features but 

distinct levels of consumption for few features such as data variation in Cluster 11. 

Between hours 0 and 5, customers have the same shape of consumption at varying 

amounts. Outlier clusters correspond to truly different shapes of consumption and 

therefore are informative. 

 

Evaluation of summer weekdays data is summarized in the charts below. 

 

 

 
 

Figure 5.28 Evaluation of similarity-based K-means on summer weekdays data. 

 

DBI, MDI, and SMI metric evaluations in (Fig. 5.28) indicate that 14 clusters in 

Euclidean framework correspond to locally minimum values. Although this tendency is 

not supported by the CDI metric, 14 clusters still reside within the acceptable limit 

according to this metric. 
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Surprisingly, six clusters in weighted Euclidean metric have the lowest DBI value. 

However, corresponding clustering results are not included, since six clusters are not 

informative enough to separate outliers from the rest of the data set. Partitioning summer 

weekdays into 14 clusters is illustrated as follows. 

 

 
 

Figure 5.29 Clustering of summer weekdays data by similarity-based K-means in 

Euclidean framework. 

 

Similarity-based K-means method works by grouping data points with similar shapes 

together both in large clusters and outlier clusters. Doing so, variation in cluster 

compositions reduces and performance becomes quite significant in case of large number 

of clusters such as 13 clusters of winter weekdays in (Fig 5.27) and 14 clusters of summer 

weekdays in (Fig 5.29). Similarity of data points within clusters can be observed in 

Cluster 12, Cluster 10, Cluster 9, Cluster 6, and Cluster 5 as outlier clusters in (Fig. 

5.29). 
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5.4.8 ISODATA Clustering Evaluation 

Performance of the algorithm on winter weekdays data set is summarized in the following 

charts. 

 

 

 
 

Figure 5.30 Evaluation of ISODATA clustering on winter weekdays data. 

 

Unsteady behaviors observed in the charts of validity metrics in (Fig. 5.30) are due to the 

fact that final clusters are generated by either merging or splitting large or small number 

of initial clusters. Due to evaluation methodology, better-performing cluster formations 

are kept, which may have been created only by either the merge or the split operation. 

 

Seven clusters in Euclidean distance framework are chosen to partition summer weekdays 

data set as shown in the following, because they correspond to generally low DBI, MDI 

and SMI values, and a moderate value of CDI metric. 

 

 
 

Figure 5.31 Clustering of winter weekdays data by ISODATA in Euclidean 

framework. 
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Figure 5.31 Clustering of winter weekdays data by ISODATA in Euclidean 

framework. (cont’d) 

 

ISODATA forms densely populated main clusters of similar sizes including less within 

cluster scatter as illustrated in (Fig. 5.31). Outlier clusters yielded by ISODATA is 

considered to be informative, preventing the amount of noise from increasing within large 

clusters if outlier elements were to be added to them. 

 

Summer weekdays data set clustering evaluation is presented in subsequent charts. 

 

 

 
 

Figure 5.32 Evaluation of ISODATA on summer weekdays data. 

 

Seven clusters in Euclidean distance metric correspond to local minimum values for DBI, 

MDI, and SMI curves in (Fig. 5.32). The value of seven clusters is also a knee point for 
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CDI metric. Therefore, seven clusters are selected to represent partitioning of summer 

weekdays data.  

 

It should be noted that performance of weighted Euclidean metric generally supersedes 

that of hybrid Pearson, and in some cases the performance of Euclidean metric. However, 

it tends to show substantial unsteady behavior as indicated by DBI and CDI graphs. 

 

 

    
 

Figure 5.33 Clustering of summer weekdays data by ISODATA in Euclidean 

framework. 

 

Main large clusters, Cluster1 and Cluster 2 in (Fig 5.33) contain considerable amount of 

noise, in other words data points within these clusters are notably scattered. Outlier 

clusters yielded by the algorithm are informative in sense that their presence in any other 

of the large clusters would decrease the overall compactness of clusters. 

5.4.9 Fuzzy K-Means Clustering Evaluation 

Winter weekdays clustering by Fuzzy K-means with a fuzziness factor of 2 is included 

subsequently. 
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Figure 5.34 Evaluation of Fuzzy K-means on winter weekdays data. 

 

Six clusters for winter weekdays in squared Euclidean framework are awarded with lower 

values of DBI, MDI, and SMI and the greatest decline in CDI metric value, as the curves 

in (Fig. 5.34) indicate. Moreover, since higher values of PC and lower values of CE are 

desirable so that belonging of a data point to its assigned cluster is not confronted with 

doubts, selecting six clusters appears to be reasonable.  

 

 
 

Figure 5.35 Clustering of winter weekdays data by Fuzzy K-means in squared 

Euclidean framework. 
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Figure 5.35 Clustering of winter weekdays data by Fuzzy K-means in squared 

Euclidean framework. (cont’d) 

 

Fuzzy K-means clustering illustrated in (Fig. 5.35) yields large clusters some of which 

contain moderate amounts of noise such as in Cluster 3. Note that although Cluster 6 

contains only one element, its centroid diverges slightly from its sole element due to the 

fact that centroid computation involves all data points in the set. 

 

Summer weekdays clustering by the algorithm is evaluated as follows. 

 

 

 
 

Figure 5.36 Evaluation of Fuzzy K-means on summer weekdays data. 
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Figure 5.36 Evaluation of Fuzzy K-means on summer weekdays data. (cont’d) 

 

Partition of summer weekdays data set into 14 clusters in a hybrid Pearson framework 

achieves lowest values of DBI and MDI metrics as shown in (Fig. 5.36). 14 clusters also 

attain a local minimum value of SMI and constitute a slope-changing point in the chart of 

CDI with a low value of the metric. This number of clusters is further promoted by 

relatively high values of PC and low values of CE measures. Hence, corresponding 

clustering is included in the following diagrams. 

 

 
 

Figure 5.37 Clustering of summer weekdays data by Fuzzy K-means in hybrid 

Pearson framework. 
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Figure 5.37 Clustering of summer weekdays data by Fuzzy K-means in hybrid 

Pearson framework. (cont’d) 

 

Clustering of summer weekdays data as depicted in (Fig. 5.37) reveals well-formed 

outlier clusters, most of which are non-singleton and have successfully gathered similar 

elements. Data scatter within cluster is somewhat high in Cluster 6, yet majority of the 

large clusters are quite compact. 

5.4.10 Follow-The-Leader Clustering Evaluation 

Winter weekdays data set clustering by the algorithm is evaluated in the following charts. 

 

 

 
 

Figure 5.38 Evaluation of Follow-the-Leader clustering on winter weekdays data. 

 

Follow the leader clustering of winter weekdays data set into 5-to-20 clusters achieves the 

smallest interval for DBI and MDI metrics compared to the clustering algorithms that 

have been examined so far, according to the graphs in (Fig. 5.38). Almost every 

clustering carried out by the algorithm corresponds to good performance results.  
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Note that charts do not include values for some number of clusters. This is due to distance 

threshold utilized by the algorithm. Although evaluation methodology for Follow-the-

Leader method searches narrow threshold intervals for finding different number of 

clusters, particular number of clusters could not be yielded due to data set characteristics. 

 

Follow-the-Leader algorithm originally comes with weighted Euclidean distance metric 

in the name of modified follow-the-leader as examined in the literature review of load 

profile classification in Chapter 2. However, on winter weekdays data set, Euclidean 

metric outperforms the latter. Eight clusters in a Euclidean distance framework is adopted 

for clustering demonstration, since this value corresponds to a local minimum in DBI and 

MDI curves and slope-changing points in CDI and SMI graphs. Corresponding clustering 

is included as follows. 

 

 

 
 

Figure 5.39 Clustering of winter weekdays data by Follow-the–Leader method in 

Euclidean framework. 

 

The algorithm organizes data points into main large clusters and outlier clusters as 

illustrated in (Fig. 5.39). Follow the leader method works by iterating over data points. In 

this case, small outlier clusters follow the large clusters due to the order of neighborhoods 

of the data points in the set with respect to the distance threshold. Although some data 

points may have changed clusters in succeeding few iterations of the algorithm, this 

reflects a tendency of the winter weekdays data set.  

 

Summer weekdays data clustering evaluation is included in the following charts. 
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Figure 5.40 Evaluation of Follow-the-Leader clustering on summer weekdays data. 

 

14 clusters in hybrid Pearson framework are selected for exemplifying Follow-the-Leader 

clustering, because this value corresponds to local minima of DBI and MDI charts and is 

within the range of low values of CDI and SMI metrics, whose graphs are included in 

(Fig. 5.40). Corresponding clustering is included subsequently. 

 

 

 
 

Figure 5.41 Clustering of summer weekdays data by Follow-the-Leader algorithm in 

hybrid Pearson framework. 
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Figure 5.41 Clustering of summer weekdays data by Follow-the-Leader algorithm in 

hybrid Pearson framework. (cont’d) 

 

Clustering of summer weekdays data set in (Fig. 5.41) reveals outliers together with large 

and medium-sized clusters. Small clusters tend to follow the latter, although there is no 

particular order between large and medium-sized clusters. 

5.4.11 Hierarchical Clustering Evaluation 

Hierarchical clustering offers a variety of linkage criteria. In this section, all linkage 

criteria but UPGMA and flexible linkage are tested solemnly on winter weekdays data 

set, so as to reduce the volume of this chapter. UPGMA and flexible linkage criteria are 

evaluated on both data sets. 

5.4.11.1 Single Linkage Clustering Evaluation 

Performance of Hierarchical clustering with single linkage for winter weekdays data set is 

evaluated as follows. 

 

 
 

Figure 5.42 Evaluation of Hierarchical clustering with single linkage on winter 

weekdays data. 
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Figure 5.42 Evaluation of Hierarchical clustering with single linkage on winter 

weekdays data. (cont’d) 

 

Hierarchical clustering is a deterministic algorithm, consequently reducing the intrinsic 

errors of evaluation methodology. All distance frameworks come to rendezvous point at 

nine clusters on curves of DBI, MDI, and SMI metrics in (Fig. 5.42). The values of the 

CDI metric for all distance measures are nearly the same following the rendezvous point. 

Since weighted Euclidean measure only very slightly yields better performance results, 

winter weekdays data set grouping into nine clusters is presented in this framework in the 

following. 

 

 

 
 

Figure 5.43 Clustering of winter weekdays data by Hierarchical clustering with 

single linkage in weighted Euclidean framework. 
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Figure 5.43 Clustering of winter weekdays data by Hierarchical clustering with 

single linkage in weighted Euclidean framework. (cont’d) 

 

Single link clustering combines nearest cluster pairs as it progresses. At cutoff level, an 

overly large cluster accompanied by singleton clusters is obtained. Dendrogram included 

in (Fig. 5.43) illustrates the progress of merge operations, pointing out how quickly 

clusters combine to form one exceptionally large cluster.  

 

Most of the singleton clusters have their members categorized as outliers in prior 

algorithms. However, Cluster7 and Cluster 9 had never appeared as singleton outlier 

clusters. Inheriting knowledge from the performance of other algorithms, it cannot be said 

that single linkage criterion effectively groups outliers in suitable clusters. On the 

contrary, the algorithm combined with this linkage criterion only tends to separate 

singleton clusters from the rest of the data set that is grouped in a massive cluster. 

5.4.11.2 Complete Linkage Clustering Evaluation 

Winter weekdays data set clustered by the algorithm employing complete linkage is 

evaluated as follows. 

 

 
 

Figure 5.44 Evaluation of Hierarchical clustering with complete linkage on winter 

weekdays data. 
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Figure 5.44 Evaluation of Hierarchical clustering with complete linkage on winter 

weekdays data. (cont’d) 

 

12 clusters in a Euclidean framework are local minima in DBI, MDI, and CDI curves 

included in (Fig. 5.44). This value also corresponds to a minimum value in the second 

floor of SMI curve. Hence, 12 clusters are adopted to represent winter weekdays as 

illustrated subsequently. 

 

 

 
 

Figure 5.45 Clustering of winter weekdays data by Hierarchical clustering with 

complete linkage in weighted Euclidean framework. 
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Figure 5.45 Clustering of winter weekdays data by Hierarchical clustering with 

complete linkage in weighted Euclidean framework. (cont’d) 

 

Unlike single linkage, complete linkage tends to avoid singleton outlier clusters. As the 

formation process summarized in the dendrogram in (Fig. 5.45) demonstrates, complete 

linkage criterion forms large clusters of similar sizes, while leaving outliers with few 

elements. This may result in existence of certain proportions of scattered data in large 

clusters, as in case of Cluster 3 and Cluster 6.  

 

Once assigned, a data point cannot change its cluster within successive cycles of 

Hierarchical clustering. Only the cluster it belongs to may expand. This tendency explains 

the similarity of Cluster 2 and Cluster 8, while their sizes clearly differ.  

 

Since complete linkage does not favor singleton clusters, it can actually misplace data 

points by merging their clusters at some level, which is irreversible. This is a probable 

source of scatter in large clusters.  

5.4.11.3 WPGMA Linkage Clustering Evaluation 

Hierarchical clustering with WPGMA linkage has its performance evaluated on winter 

weekdays data as shown in the following validity index curves. 

 

 
 

Figure 5.46 Evaluation of Hierarchical clustering with WPGMA linkage on winter 

weekdays data. 
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Figure 5.46 Evaluation of Hierarchical clustering with WPGMA linkage on winter 

weekdays data. (cont’d) 

 

Seven clusters in hybrid Pearson metric are slope-changing points for all indices, and a 

minimum value for MDI and SMI indices in (Fig. 5.46). Hence, winter weekdays are 

grouped into seven clusters by the algorithm using WPGMA linkage as follows. 

 

 

 

    

 
 

Figure 5.47 Clustering of winter weekdays data by Hierarchical clustering with 

WPGMA linkage in hybrid Pearson framework. 

 

WPGMA linkage creates main clusters that are either over-populated or under-populated, 

together with some outlier clusters as in (Fig. 5.47). The history of formation of large 
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clusters can be tracked via the dendrogram by focusing on parts of the tree around leaves, 

where smaller clusters are combined at earlier iterations of the algorithm. One can also 

deduce that smaller main clusters and outlier clusters are formed either at the time of 

large cluster formation or later.  

 

Large clusters such as Cluster 3 may contain many data points that do not resemble each 

other possibly due to their history of linkage in pre-stages of the algorithm never to be 

broken later. Also relatively large clusters like Cluster 4 seem to have combined elements 

with slightly different shapes causing its noisy appearance. 

5.4.11.4 UPGMA Linkage Clustering Evaluation 

Evaluation of winter weekdays data clustering by UPGMA linkage is included in 

subsequent graphs. 

 

 

 
 

Figure 5.48 Evaluation of Hierarchical clustering with UPGMA linkage on winter 

weekdays data. 

 

Nine clusters in Euclidean framework are selected for illustration in the following 

diagrams, because this value corresponds to elbow or knee points in DBI, MDI, CDI, and 

SMI charts in (Fig. 5.48). 
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Figure 5.49 Clustering of winter weekdays data by Hierarchical clustering with 

UPGMA linkage in Euclidean framework. 

 

Clustering with UPGMA linkage in (Fig. 5.49) tends to form less number of main dense 

clusters such as Cluster 2, which may hold distant points together. Outlier clusters 

generated by the algorithm are informative, behaving as barriers against noise in large 

clusters.  

 

UPGMA behaves similarly as WPGMA, yet can be assessed as superior in terms of 

performance quality. UPGMA favors even larger clusters due to the fact that cluster sizes 

are weight factors in the computation of average distance by the algorithmic progress, 

thus attracting elements having smaller inter-distance to gather up, while repelling 

outliers from these relatively homogeneous large clusters. Main clusters contain less 

scattered elements compared to WPGMA. 

 

Summer weekdays clustering by the algorithm with UPGMA linkage is evaluated as 

subsequently. 
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Figure 5.50 Evaluation of Hierarchical clustering with UPGMA linkage on summer 

weekdays data. 

 

It is evident from DBI and CDI curves in (Fig. 5.50) that 10 clusters in Euclidean 

framework constitute turning points regarding the slope with low value readings of these 

metrics. MDI and SMI charts also include 10 clusters as one of their knee points. For 

grouping summer weekdays data, 10 clusters are selected to be illustrated in the 

following. 

 

 

 
 

Figure 5.51 Clustering of summer weekdays data by Hierarchical clustering with 

UPGMA linkage in Euclidean framework. 
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Figure 5.51 Clustering of summer weekdays data by Hierarchical clustering with 

UPGMA linkage in Euclidean framework. (cont’d) 

 

UPGMA linkage forms abundant number of outlier clusters whose presence is considered 

to be informative, helping to detect distinct shapes of consumption illustrated in (Fig. 

5.51). However, some large clusters such as Cluster 2 include elements with high 

variance. 

5.4.11.5 Ward’s Linkage Clustering Evaluation 

Winter weekdays data clustering evaluation by the algorithm adopting Ward’s linkage is 

included in the following. 

 

 
 

Figure 5.52 Evaluation of Hierarchical clustering with Ward’s linkage on winter 

weekdays data. 
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Figure 5.52 Evaluation of Hierarchical clustering with Ward’s linkage on winter 

weekdays data. (cont’d) 

 

Hybrid Pearson framework outperforms the remaining distance frameworks whenever 

Ward’s linkage is employed. Curves of the graphs have local minima in 11 clusters in 

hybrid Pearson framework for DBI and MDI metrics. This value is also a knee point in 

CDI and SMI curves, as shown in (Fig. 5.52). Therefore, winter weekdays data is grouped 

into 11 clusters as follows. 

 

 
 

Figure 5.53 Clustering of winter weekdays data by Hierarchical clustering with 

Ward’s linkage in hybrid Pearson framework. 
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Figure 5.53 Clustering of winter weekdays data by Hierarchical clustering with 

Ward’s linkage in hybrid Pearson framework. (cont’d) 

 

Ward’s linkage forms large clusters of similar sizes together with few outlier clusters, as 

shown in (Fig. 5.53). Due to lack of several distinct consumption shapes in the data set, 

some main clusters resemble each other, differing only in details. Certain noisy groupings 

are present in Cluster 5 and Cluster 2. Within cluster scatter combined with general 

resemblance of large clusters accumulate error readings by validity indices. However, 

Ward’s linkage presents suitable groupings that can be useful in applications whose goals 

may favor its clustering.  

 

As distance levels increase exponentially in Ward’s linkage, it is hard to visualize the 

dendrogram that shows clustering history. Hence, a close-up picture of the dendrogram is 

also included in (Fig. 5.53). This view verifies that Ward’s linkage tends to form clusters 

of similar sizes. 

5.4.11.6 Flexible Linkage Clustering Evaluation 

Hierarchical clustering can be manipulated to yield clustering that fits with user demands 

through flexible linkage. In the rest of this section, power of flexible linkage in 

minimizing MDI value for all number of clusters will be analyzed. DBI minimization is 

not sought since minimum values of DBI metric correspond to a single linkage type of 

clustering that gathers most of the elements in a substantially large cluster while the rest 

is assigned to singleton clusters. 

 

Flexible linkage to minimize MDI evaluation values for winter weekdays clustering is 

evaluated subsequently. 
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Figure 5.54 Evaluation of Hierarchical clustering with flexible linkage on winter 

weekdays data. 

 

Nine clusters in hybrid Pearson framework are selected to represent grouping of winter 

weekdays data, because this value appears as local minima in DBI, MDI, SMI curves and 

constitutes a slope-changing point of CDI curve in (Fig. 5.54). 

 

 

 
 

Figure 5.55 Clustering of winter weekdays data by Hierarchical clustering with 

flexible linkage in hybrid Pearson framework. 
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Figure 5.55 Clustering of winter weekdays data by Hierarchical clustering with 

flexible linkage in hybrid Pearson framework. (cont’d) 

 

Flexible clustering yields main clusters of variable sizes, and carries out outlier detection 

and separation of informative quality as demonstrated in (Fig. 5.55). Although some of 

the main clusters include elements with higher variance, general quality of flexible 

linkage clustering turns out to be promising. 

 

Summer weekdays data clustering by flexible linkage is evaluated as follows. 

 

 

 
 

Figure 5.56 Evaluation of Hierarchical clustering with flexible linkage on summer 

weekdays data. 

 

13 clusters in hybrid Pearson framework are selected to represent groupings in summer 

weekdays data as this value corresponds to the lowest DBI value, a slope-changing point 

of CDI curve, and low MDI and SMI values, as graphs in (Fig. 5.56) suggest. 

Corresponding clustering is included subsequently. 
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Figure 5.57 Clustering of summer weekdays data by Hierarchical clustering with 

flexible linkage in hybrid Pearson framework. 

 

Looking at the dendrogram included in clustering results in (Fig. 5.57), one could observe 

characteristics of single linkage and complete linkage taking action in different regions of 

the graph. Flexible clustering produces large clusters some of which include moderate 

amounts of within-cluster scatter, and several outlier clusters. Note that in both winter and 

summer weekdays data clustering examples, value of β is set to 10
-1

. 



 

 105 

5.4.12. SOM Clustering Evaluation 

SOM clustering evaluation is carried out using two distinct setups for batch and 

sequential training of the map. Results are presented for each of them in the following 

subsections. 

5.4.12.1 Sequentially Trained SOM Clustering Evaluation 

Evaluation of clustering winter weekdays data by sequentially trained SOM of size 6 by 

15 is included as follows. 

 

 

 
 

Figure 5.58 Evaluation of SOM (Seq. 6 15) clustering on winter weekdays data. 

 

10 clusters to group winter weekdays data set are selected, since this value corresponds to 

local minima in DBI, MDI and CDI indices in (Fig. 5.58). Corresponding clustering is 

included in the following. 
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Figure 5.59 Clustering of winter weekdays by SOM (Seq. 6 15) in Euclidean 

framework. 

 

SOM clustering illustrated in (Fig. 5.59) tends to form clusters that have relatively close 

centroids, as load profiles diagram illustrates. Main clusters come with varying number of 

elements. Some clusters may contain substantial amount of scatter such as in Cluster 2. 

Some outlier clusters such as Cluster 9 and Cluster 10 reveal distinct consumption styles. 

 

The map obtained at the end of training, following the post-clustering operation is 

included subsequently. Nodes belonging to the same clusters are illustrated in same colors 

and names of the data points are marked to display node contents. 
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Figure 5.60 Final SOM (Seq 6 15) of winter weekdays data set grouped into 10 

clusters in Euclidean framework, Map 1. 

 

SOM provides means of visualization for the whole data set as in (Fig. 5.60). Most of the 

time, data points having same clusters lie in the same neighborhood in 2D space except 

Cluster 5 which is illustrated by red on the map and has one of its members not adjacent 

to the rest of the data points pertaining to it. 

5.4.12.2 Batch Trained SOM Clustering Evaluation 

Evaluation of clustering of winter weekdays data set by batch-trained SOM of size 6 by 

15 is included in the following. 

 

 
 

Figure 5.61 Evaluation of SOM (Batch 6 15) clustering on winter weekdays data. 
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Figure 5.61 Evaluation of SOM (Batch 6 15) clustering on winter weekdays data. 

(cont’d) 

 

Lowest DBI, MDI, and SMI values in (Fig. 5.61) indicate that performance of the 

algorithm at six clusters in Euclidean distance framework is superior to any other number 

of clusters. This value attains the greatest decline in CDI curve, as well. Therefore, six 

clusters are selected to group winter weekdays data, as illustrated below. 

 

 

 
 

Figure 5.62 Clustering of winter weekdays data by SOM (Batch 6 15) in Euclidean 

framework. 

 

Winter weekdays data clustering yields main clusters of varying sizes that contain 

scattered elements, and two outlier clusters. Main clusters are dense and clusters having 

less amounts of scatter such as Cluster 1 in (Fig. 5.62) appear compact.  

 

Trained and clustered map is included subsequently. 
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Figure 5.63 Final SOM (Batch 6 15) of winter weekdays data set grouped into 6 

clusters in Euclidean framework, Map 2. 

 

Note that all data points residing in Cluster 2 have the same best matching unit in the map 

marked by purple color, as shown in (Fig. 5.63). This phenomenon explains the source of 

scatter present in main clusters: As distinct data points will eventually share same best 

matching units, hence the same locations in the map, a source for higher within-cluster 

variance naturally arises, because total number of neurons in a 6-by-15 map is less than 

one third of the data points in the winter weekdays set. 

 

Quantization and topographic errors (Pölzlbauer, 2004) of the two maps in (Fig. 5.60) and 

(Fig. 5.63) are included in the following. 

 

Table 5.1 Quantization and topographic errors comparison for the two maps. 

 

 qe te 

 

Map 1 

 

0.2491 0.0817 

 

Map 2 

 

0.2231 0.0033 

 

According to the results presented in Table 5.1, SOM under batch training has more 

prominent topology-preserving properties and generates less quantization error, meaning 



 

 110 

that weight vectors in SOM lattice have closer values to actual data points, compared to 

SOM under sequential training.  

 

Comparing first and second maps reveals that the second one preserves the topology of 

the multidimensional data set better than the latter, which is an expected result since the 

first map is reported to violate adjacency of data points within a cluster. 

5.5 Discussion on Evaluation of Clustering Algorithms 

In this section, algorithms are evaluated only on winter weekdays data set in Euclidean 

and hybrid Pearson frameworks, in order to demonstrate their performance with 

increasing number of clusters. 

 

Subsequent subsections cover the evaluation of K-means family, Hierarchical clustering 

family and a comparison of all clustering algorithms, in which Hierarchical clustering and 

K-means families are represented by only one member algorithm that is analyzed to have 

acquired better performance quality in terms of validity indices. 

5.5.1 Comparison of K-Means Clustering Family 

K-means and algorithms with similar mechanisms that group data items into hard, i.e. 

non-fuzzy clusters are evaluated in this section in order to analyze their performances. 

Included algorithms are shown in these colors throughout this section: K-means in purple, 

K-means++ in red, K-medians in blue, WFA-K-means in orange, K-medoids (PAM) in 

brown, Hopfield-K-means in grey, and Similarity-Based K-means in green. 

 

Evaluation of K-means family on winter weekdays data set in Euclidean distance 

framework is included in the following. 

 

 
 

Figure 5.64 Evaluation of K-means family algorithms on winter weekdays data in 

Euclidean distance framework. 
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Figure 5.64 Evaluation of K-means family algorithms on winter weekdays data in 

Euclidean distance framework. (cont’d) 

 

K-means and similar algorithms compete with each other in terms of performance quality. 

However, DBI, MDI, and SMI metrics evaluation in (Fig. 5.64) cover a wider range with 

respect to other clustering algorithm families. Especially according to MDI metric 

performance degrades considerably as number of clusters increase. DBI and SMI metric 

concur with this observation, though not at the same scale. CDI metric also suggests that 

K-means clustering algorithms perform significantly better for lower number of clusters 

as CDI curve exhibits greater declines in value for up to nine clusters. Afterwards, the 

curve follows rather a linear decrease with occasional oscillations to yield more or less 

the same evaluation results for higher number of clusters. 

 

For lower number of clusters, K-medoids, WFA-K-means and similarity-based K-means 

algorithms tend to lead other family members. However, for higher number of clusters 

performance of K-medoids rapidly decays, possibly due to the contribution of medoid 

selection operation to total error values, since medoids correspond to actual data points, 

not to some hypothetical centers computed by going over all data points pertaining to 

clusters. 

 

Zigzags in evaluation curves of K-means and K-means++ algorithms are notable. On the 

contrary, WFA-K-means and Similarity-Based K-means methods follow relatively 

smooth curves. Hopfield-K-means also exhibits fewer oscillations and its evaluation 

curves are rather continuous, yet it is evaluated to perform slightly worse than most of the 

family members. However, neither WFA-K-means nor Similarity-Based K-means can be 

said to outperform other member algorithms, as curves of evaluation metrics demonstrate 

several trade-offs. In other words, situational analysis is obligatory to arrive at a decision 

concerning which family member to use for some desired number of clusters. 

 

Partitioning winter weekdays data into clusters by K-means family algorithms in hybrid 

Pearson distance framework is evaluated subsequently. 
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Figure 5.65 Evaluation of K-means family algorithms on winter weekdays data in 

hybrid Pearson distance framework. 

 

In hybrid Pearson framework, K-medoids clustering is evaluated to have the best 

performance for lower number of clusters, as the results in (Fig 5.65) shows. However, 

the same algorithm attains the worst performance among family members as number of 

clusters increase. It is quite hard to make a strict ordering between algorithms based on 

evaluation metric readings. Nonetheless, robust performances of K-medoids, WFA-K-

means, and similarity-based K-means turn out to be stimulating. 

 

For both distance frameworks, performance of WFA-K-means is considered to be the 

most promising, because the algorithm attains relatively low validity index values and 

less amounts of change in these values exist between successive numbers of clusters in 

curves of evaluation metrics. Sudden great deteriorations of performance in adjacent 

cluster numbers such as in case of classical K-means clustering, or tendency of achieving 

only isolated discontinuous better performance results, as observed in case of K-medoids 

clustering do not occur in WFA-K-means clustering. Therefore, WFA-K-means algorithm 

is selected to represent K-means family for further comparisons among all algorithms. 

5.5.2 Comparisons of Hierarchical Clustering Family 

Performance of Hierarchical clustering algorithms on winter weekdays data set in 

Euclidean framework is evaluated in the following. 
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Figure 5.66 Evaluation of Hierarchical clustering with distinct linkage criteria 

clustering winter weekdays data in Euclidean distance framework. 

 

Concerning evaluation results included in (Fig. 5.66) and in subsequent curves included 

in this section, purple curve represents single linkage, while the blue represents UPGMA, 

the gray represents flexible linkage, the orange represents WPGMA, the brown represents 

Ward’s linkage, and finally the red represents the complete linkage, as included in the 

legend. 

 

DBI evaluation depicted in (Fig. 5.66) indicates that for 5 to 14 clusters, the most 

adequate performance is met by Hierarchical clustering with single linkage. However, 

DBI is biased towards singleton clusters, and single linkage is analyzed to yield only one 

over-populated cluster accompanied by several singleton clusters within the range of 5 to 

20 clusters. CDI metric is also overwhelmed by this phenomenon, so single linkage 

clearly outperforms all other linkage criteria according to this index as well. 

 

MDI and SMI metrics do not exhibit as biased behaviors praising singleton clusters as 

DBI and CDI. Graphs included in (Fig. 5.66) indicate that UPGMA linkage criteria turns 

out to be more promising than the latter by attaining lower evaluation values in almost 

each case. Leaving aside single linkage, DBI and CDI curves also concur with this 

observation. 

 

If one has to make only one choice of linkage criteria only by looking at the graphs of 

validity indices before running Hierarchical clustering on winter weekdays data in 

Euclidean distance framework, the highest quality of performance is most likely to be 

obtained by selecting UPGMA linkage. However, as all evaluation curves suggest, there 
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are many trade-offs concerning the adopted linkage criterion. Instead of making blindfold 

choices, a data analyst should deeply analyze and visually inspect clustering results; as 

done in previous sections of this chapter. 

 

Winter weekdays data clustering by Hierarchical algorithms in hybrid Pearson framework 

is evaluated as follows. 

 

 

 
 

Figure 5.67 Evaluation of Hierarchical clustering with distinct linkage criteria 

clustering winter weekdays data in hybrid Pearson distance framework. 

 

Evaluation of the same data set in hybrid Pearson framework in (Fig. 5.67) verifies that 

performance of UPGMA linkage is favorable. Under hybrid Pearson distance, the gap 

between single linkage and UPGMA increases at each side of the crossover in DBI curve, 

covering a wider interval than Euclidean framework.  

 

Flexible linkage follows less regular curves in metric graphs, since for each number of 

clusters it may set algorithmic parameters utilized in distance computation differently. 

However, in certain cases flexible linkage outperforms UPGMA, as CDI and SMI metrics 

evaluation in (Fig. 5.67) put forward. Therefore, flexible clustering shall be considered as 

an alternative to UPGMA in particular cases, though the data analyst should be aware that 

flexible linkage has no intrinsic characteristics or definite predefined behavior. 

 

Although cases have been shown in which UPGMA is overthrown by other linkage 

criteria, it is selected to represent Hierarchical clustering in future comparisons with other 

clustering algorithms. The reason for this choice is that UPGMA exhibits a consistent 

behavior and even in cases validity indices indicate that it may not be the most promising 
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criterion, difference in metric value between UPGMA and the winning criterion never 

gets too significant. 

5.5.3 Comparisons of All Clustering Algorithm Families 

Performance comparisons among main clustering techniques; WFA-K-means 

representing K-means family, Hierarchical Clustering with UPGMA linkage representing 

Hierarchical clustering family, Follow-the-Leader clustering, Fuzzy K-means, and SOM 

clustering; are likely to reveal the grounds for adopting a particular algorithm. ISODATA 

clustering is not included in this section due to deficiencies of the evaluation 

methodology in assessing the performance of this algorithm, as discussed previously. 

 

Evaluation of algorithms is carried out on both winter and summer weekdays data sets in 

Euclidean distance framework. Winter weekdays data clustering by all algorithm families 

in Euclidean distance framework is evaluated as follows. 

 

 
 

Figure 5.68 Evaluation of all families of clustering algorithms on winter weekdays 

data in Euclidean distance framework. 

 

Validity index curves included in (Fig. 5.68) and in other figures covered in this section 

display WFA-K-means in purple, Hierarchical clustering with UPGMA linkage in red, 

Follow-the-Leader clustering in orange, Fuzzy K-means in blue and SOM clustering with 

batch training in brown. 

 

Evaluation of algorithms summarized in (Fig. 5.68) indicates that Hierarchical clustering 

with UPGMA linkage and Follow-the-Leader algorithm turn out to be the most promising 
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clustering techniques that exhibit similar behaviors. On the other hand, WFA-K-means, 

Fuzzy K-means and SOM clustering methods follow the same pattern in metric curves, 

among which WFA-K-means clearly outperforms the latter. 

 

Summer weekdays data clustering by algorithms is evaluated in the following charts. 

 

 

 
 

Figure 5.69 Evaluation of all families of clustering algorithms on summer weekdays 

data in Euclidean distance framework. 

 

In case of summer weekdays data, Hierarchical clustering with UPGMA linkage 

outperforms the rest of the algorithms, while WFA-K-means surpasses Follow-the-Leader 

clustering for most number of clusters shown in (Fig. 5.69). This observation suggests 

that characteristics of a data set constitutes a crucial criterion in deciding a particular 

algorithm to use and all candidate methods must be evaluated on all available data sets 

prior to decision. However, both evaluation results indicate certain tendencies of 

performance qualities of clustering algorithms such as relatively poor performance of 

SOM clustering and outstanding performance of UPGMA linkage as verified by 

evaluation of clustering of both data sets.  

5.6 Summary 

Evaluation metrics do not necessarily explain every aspect of performance quality of 

algorithms in comparing clusterings generated by two distinct methods. Throughout the 

evaluation chapter, clusters that are evaluated to attain either the lowest or relatively low 

values of validity indices are visualized for all algorithms so that data analyst who can 
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arrive at a final concrete decision on a particular algorithm to use can visually inspect the 

generated clusters.  

 

Furthermore, discovering natural clusters in a data set is most of the time an intermediate 

step of a large project aiming at developing an application. In such cases, subjective goals 

that are not necessarily captured by evaluation metrics come into question to complicate 

the problem fundamentally. Therefore, proposing a variety of clustering algorithms that 

are demonstrated to effectively cluster a data set associated to a particular problem 

domain and modifying mechanisms of algorithms in search for increased quality of 

performance will be wiser than trying to prove the superiority of a certain algorithm, 

which can easily be falsified by a hypothetical data set.  

 

Running time complexities and scalability of algorithms to increasing amounts of data 

sizes are analyzed in the proceeding chapter to elaborate the evaluation of clustering 

algorithms. 
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CHAPTER 6 

 

 

 RUNNING-TIME EVALUATION OF CLUSTERING ALGORITHMS 

 

 

 

6.1 Introduction 

Running time complexities of clustering algorithms come to be crucial issues when large 

data sets are involved in the problem. In this chapter, performances of all algorithms are 

evaluated based on the time they spend to generate clusters on winter and summer 

weekdays data sets.  

 

Running times of algorithms are also measured on synthetic data sets of increasing sizes 

generated by using models based on winter and summer weekdays data sets so that 

scalability of algorithms to larger data is revealed. Fundamental algorithmic solutions to 

decrease running times and to improve scalability whenever possible are also discussed in 

course of the chapter. 

 

Running time evaluation is conducted on a computer with Intel® Core™ i7-3829QM 

CPU with 2.70 GHz. Maximum number of processing units is 8, attained by Turbo Boost 

Technology. 

 6.2 Synthetic Data Generation 

Members of prominent clusters as well as outliers produced by algorithms can be utilized 

as models to generate synthetic data points that are similar in shape to their models, yet 

differ in values and in the amount of noise present. 

 

11 distinct model sets composed of particular data points belonging to major or outlier 

clusters are formed. Number of cases generated using main and outlier models is kept 

proportional to actual number of data points assigned to these two types of clusters. 

 

Multivariate normal random distribution is used to synthesize data points based on 

models. MATLAB mvnrnd function is adopted for synthetic data generation in the thesis 

(Theodoridis et al., 2010). Multivariate normal random numbers function of MATLAB 

operates on each of the models whose feature-based mean values and feature-by-feature 

covariance matrix together with the desired number of instances of synthetic data are used 

as parameters of the mvnrnd function.  
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Data points are normalized in the process, as done in pre-clustering stages. Instances 

having some of their features with negative values may be generated by mvnrnd function. 

These instances are excluded from synthesized data sets.  

 

Three data sets with increasing number of instances are formed such that the first data set, 

Synthetic Data 1, consists of 883 data points, the second data set, Synthetic Data 2, 

consists of 1613 data points, and the third data set, Synthetic Data 3, has 3222 data points. 

Note that sizes of sets grow twice as much while traversing from the first to the second 

and from the second to the third data set. 

 

 
 

  
 

Figure 6.1 All points of the first, second, and the third synthetic data sets partitioned 

into 10 clusters. 

 

Instances of synthetic data sets, as partitioned into 10 clusters by WFA K-means 

algorithm, are illustrated in (Fig. 6.1), in which horizontal axis stands for hours and 

vertical axis stands for normalized consumption values. Data points belonging to the 

same cluster are shown in the same color. The first synthetic data set is displayed in the 

upper middle, the second is in the lower left, and the third is in the lower right positions 

of the illustration in (Fig. 6.1).  

 

Although every cluster is not visible due to overlapping features of data points, data set 

sizes can be compared by observing the illustration. 

6.3 Running Times of Algorithms on Real Consumption Data 

Running times and number of iterations to generate 10 clusters by all algorithms in 

Euclidean, hybrid Pearson, and weighted Euclidean frameworks are summarized in the 

following table.  
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Table 6.1 Running times and number of iterations of all algorithms running on 

winter and summer weekdays data sets to generate 10 clusters. 

 
Euclidean Hybrid Pearson Weighted Euclidean 

Run- 

time (ms) 
Iteration # 

Run- 

time (ms) 
Iteration # 

Run- 

time (ms) 
Iteration # 

K-means 
Winter 47 12 94 27 44 17 

Summer 36 15 64 16 36 15 

K-means++ 
Winter 52 19 66 15 44 6 

Summer 43 16 63 6 46 7 

K-medians 
Winter 73 12 54 11 37 7 

Summer 48 9 89 25 32 6 

WFA-K-

means 

Winter 43 9 41 4 61 14 

Summer 89 15 64 10 80 13 

Hopfield- 

K-means 

Winter 29+Tt 17 40+Tt 13 26+Tt 12 

Summer 28+Tt 15 21+Tt 5 20+Tt 10 

K-medoids 
Winter 53 2 97 3 59 2 

Summer 58 2 184 3 64 2 

Similarity 

K-means 

Winter 7290 39 2978 22 2353 14 

Summer 1918 13 1762 11 3855 27 

ISODATA 
Winter 248 21 293 15 160 18 

Summer 147 12 243 10 146 12 

Fuzzy 

K-means 

Winter 347 8 885 12 3081 84 

Summer 552 13 2058 29 384 7 

Follow-the- 

Leader 

Winter 57 7 79 6 110 14 

Summer 31 4 49 4 53 4 

Hierarchical 

(UPGMA) 

Winter 157 295 176 295 151 295 

Summer 123 307 136 307 137 307 

SOM 

(Seq. 6 15) 

Winter 6098 (90, 80) 10892 (90, 80) 27677 (90, 80) 

Summer 6621 (90, 80) 11357 (90, 80) 27804 (90, 80) 

SOM 

(Batch 6 15) 

Winter 7257 (90, 80) 11997 (90, 80) 29756 (90, 80) 

Summer 7630 (90, 80) 14334 (90, 80) 30924 (90, 80) 
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A quick look in Table 6.1 to compare running times of algorithms under distinct distance 

frameworks elicits that running time complexity associated with hybrid Pearson measure 

is higher than other metrics, while similar results are yielded regarding Euclidean and 

weighted Euclidean metrics. However, number of iterations until convergence differs 

among distance metrics and algorithms. Since majority of the algorithms included in 

Table 6.1 contains mechanisms working in a random fashion and the evaluation 

methodology aims to present the clustering with the lowest metric values, a direct 

comparison of running time complexities regarding distance metrics by taking the 

majority vote of all algorithms may be error prone. 

 

In order to understand better running time complexities related to adopting a particular 

distance framework, comparisons can be made among algorithms having deterministic 

nature. A candidate for such an algorithm is Follow-the-Leader clustering, whose 

evaluation indicates that Euclidean distance metric requires less computation time than 

the latter, and most of the time running time complexity of hybrid Pearson measure is 

lower than weighted Euclidean distance. 

 

Most of the algorithms do not compute distance between clusters and data points at every 

iteration, unless a cluster is updated at the assignment step and running time values 

included in Table 6.1 includes time spent outside the main loop of the algorithms, as well. 

Therefore, the ratio of total running time to iterations until convergence is not a strictly 

informative measure of running time comparison.  

 

However, SOM clustering computes distance between every node and every input vector 

at all iterations of the training step without any special update rules. Although random 

initialization of the map and time spent to perform the Hierarchical clustering in the post-

clustering step contribute to measured running time, SOM clustering on every data set 

converges more quickly for Euclidean framework than the latter. Similarly, hybrid 

Pearson framework attains lower running times than the weighted Euclidean distance 

measure. 

 

The time spent outside the main loop of algorithms belonging to the K-means clustering, 

family except Similarity-Based K-means, contributes considerably to overall running 

times. This is more obvious in case of K-medoids clustering, in which almost all the time 

is spent in computing data point distance matrix and setting initial medoids, while the 

algorithm is reported to converge quickly in its main loop.  

 

Time spent on the main loop of an algorithm similar to K-means can be tracked via the 

table entries regarding Hopfield-K-means clustering. For this algorithm, training step to 

set the cluster centers takes    ms, which is actually around 600 ms and is not reported in 

the table due to its invariant nature regarding distinct distance frameworks. Running times 

of Hopfield-K-means clustering point out that more than one third of the computational 

time must be spent on setting initial cluster centers by K-means++ and similar algorithms. 
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Similarity-Based K-means clustering attains substantially greater complexities than the 

rest of the K-means family due to vast computation resources required by the point 

symmetry distance. Moreover, the algorithm requires larger number of iterations prior to 

convergence. The results summarized in the table suggest not using Similarity-Based K-

means clustering when running time issues have priority. 

 

A comparison between running times of hybrid Pearson and weighted Euclidean distance 

frameworks on algorithms of the K-means family favors the weighted Euclidean distance 

measure for most of the cases. However, it could be claimed that average number of 

cluster-changing data points at each cycle of the main loop in hybrid Pearson framework 

is higher than weighted Euclidean, causing the metric to be computed more often than the 

rest. This claim is also supported by the observation regarding the case of SOM 

clustering, in which both distance measures are computed equal number of times and time 

complexity of weighted Euclidean measure supersedes that of hybrid Pearson measure. In 

order to make up for the gap, hybrid Pearson distance computation must have been 

carried out more frequently than weighted Euclidean by K-means family algorithms. 

 

ISODATA either splits few initial clusters or merges many initial clusters to finally form 

desired number of clusters. Thus, its running time evaluation can differ depending on the 

operation performed and it is not decisive about the performance of a particular distance 

framework, as the corresponding table entry indicates. 

 

Fuzzy K-means has higher running time complexity than most members of the K-means 

family due to necessary computation of degree of belonging matrix for all data points to 

all clusters at every cycle. In some cases, convergence may come after many iterations, 

contributing to prolonged running times. 

 

As a deterministic clustering algorithm, Follow-the-Leader method attains low running 

times and converges quickly. The fact that all algorithms alike K-means are run several 

times in search for the clustering with the best quality due to randomness factor, or to the 

need for deciding the best constants to set initial cluster centers does not hold for Follow-

the-Leader clustering. Therefore, Follow-the-Leader clustering turns out to be promising 

in terms of lower computational complexities, as well. 

 

Hierarchical clustering running time per iteration is less than rest of the algorithms since 

only one cluster is updated at each iteration, the distance is computed from previous 

distance values in linear time at an instant, and no cluster center update is performed until 

the end of the algorithm. However, number of iterations is very high because the 

algorithm works in an agglomerative fashion, merging two closest clusters at one time. 

Initial running times of the algorithm is especially high since the method operates on 

every pair of data points at the beginning of the algorithm. One advantage of the 

algorithm is that, in one pass all possible number of clusters are generated, as stored in 

dendrograms so that several re-runs are not obligatory. 
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SOM clustering, similar to Hierarchical clustering, offers the possible re-use of the 

trained map. Training of the map in 90 iterations contributes mostly to the overall running 

time. SOM generates a reduced data set residing in a 2-D map from the actual data, which 

is further clustered by a clustering algorithm. In this study, Hierarchical clustering with 

UPGMA linkage is employed to do the post-clustering deed, which requires 80 iterations 

to generate clustering of 90 nodes in the map into 10 clusters.  

 

Change in running times of winter weekdays data clustering with respect to increasing 

number of clusters is summarized in the table below. 

 

Table 6.2 Running times of clustering of winter weekdays data in Euclidean 

framework with increasing number of clusters. 

 

Running time (ms) in Euclidean framework 

5 clusters 10 clusters 15 clusters 20 clusters 

K-Means 28 47 47 52 

K-Means++ 9 52 48 84 

K-Medians 12 73 52 74 

WFA-K-Means 23 43 54 93 

Hopfield-K-Means 16+Tt 29+Tt 18+Tt 19+Tt 

K-Medoids 43 53 70 94 

Similarity-Based K-Means 976 7290 2342 7140 

ISODATA 205 248 108 141 

Fuzzy K-Means 255 347 2174 2663 

Follow-The-Leader 52 57 64 N/A 

Hierarchical (UPGMA) 141 157 145 162 

SOM (Sequential 6 15) 6995 5712 5952 6183 

SOM (Batch 6 15) 7582 7257 6935 7491 

 

Only the Euclidean distance framework is covered in Table 6.2, because it is determined 

to provide the means of fastest clustering among all other frameworks, as verified by the 

data in Table 6.1. Most of the time, as number of clusters increase, total running times 

increase for K-means family, Fuzzy K-means clustering, and Follow-the-Leader 

algorithm.  

 

In certain cases, convergence of the algorithm may occur in less number of iterations or 

less number of changes in cluster compositions per iteration for relatively higher number 
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of clusters, decreasing the total running time. An example case is 15 clusters generated by 

K-means++, K-medians, Similarity-Based K-means and Hopfield-K-means.  

 

Running times associated with Fuzzy K-means clustering increase substantially after 10 

clusters, which is a discouraging factor for adopting the algorithm if higher number of 

clusters is desired. 

 

Differences in running times of SOM clustering reported in the table is mostly due to 

random initialization of the map; therefore the effect of increasing number of clusters is 

not directly observed. On the other hand, in all cases batch training of the map takes 

modestly longer times than sequential training.  

 

Although non-determinism is not an issue in case of Hierarchical clustering, at one pass 

the algorithm generates the whole hierarchy of clusters for the data. Therefore, a healthy 

observation regarding the affect of increasing number of clusters over measured running 

times cannot be made merely by examining the corresponding table entries.  

6.4 Running Times of Algorithms on Synthetic Data 

Running times distinct cluster algorithms take to group instances of synthetic data sets 

into 10 clusters in Euclidean distance framework is summarized in Table 6.3. All running 

times are measured in milliseconds. Hopfield-K-means and ISODATA algorithms are 

excluded from tests conducted on synthetic data, since computational complexity of the 

first algorithm is dominated by the training step of the Hopfield network while the 

remaining steps are identical to K-means, and ISODATA clustering includes distinct 

mechanisms of producing the final clustering, which is complicated to assess. 
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Table 6.3 Running times of algorithms on synthetic data sets in Euclidean 

framework, generating 10 clusters 

 

Synthetic Data 1 

(883 instances) 

Synthetic Data 2 

(1613 instances) 

Synthetic Data 3 

(3222 instances) 

Run- 

 time 

Iter 

# 

Per- 

 iter 

Run- 

  time 

Iter 

# 

Per- 

 iter 

Run- 

   time 

Iter 

# 

Per- 

  iter 

K-means 
Init 70 - - 100 - - 162 - - 

ML 415 30 13 1410 61 23 2996 63 47 

K-means++ 

Init 124 - - 209 - - 426 - - 

ML 153 12 12 296 12 24 2181 42 51 

K-medians 
Init 120 - - 206 - - 394 - - 

ML 288 19 15 748 23 32 1483 23 64 

WFA- 

K-means 

Init 135 - - 222 - - 402 - - 

ML 219 9 24 999 23 43 2575 33 78 

K-medoids 
Init 783 - - 2352 - - 9057 - - 

ML 26 2 13 43 2 21 84 2 42 

Similarity- 

based 

K-means 

Init 130 - - 211 - - 396 - - 

ML 67181 35 1919 500559 47 10650 2176690 48 45347 

Fuzzy 

K-means 

Init 505 - - 668 - - 1269 - - 

ML 1101 5 220 4214 13 324 7773 14 555 

Follow- 

The-Leader 
422 6 70 1997 15 133 3605 17 212 

Hierarchical 

(UPGMA) 
16651 873 19 110381 1603 68 796563 3212 247 

SOM 

(Sequential) 
63066 

(90, 

140) 
5 181973 

(90, 

200) 
10 450002 

(90, 

275) 
18 

SOM 

(Batch) 
68486 

(90, 

140) 
5 171396 

(90, 

200) 
9 456273 

(90, 

275) 
18 

 

The data included in Table 6.3 demonstrates changes in running times of algorithms with 

respect to increasing number of data set sizes. Number of iterations until convergence and 

running time per iteration are included together with measured running times. If the 

algorithm does not start directly with a main loop, i.e. centroid initialization and distance 

matrix computation phases precede the main loop as in K-means family and Fuzzy K-



 

 127 

means; the time spent prior to and within the main loop are indicated separately in the 

table with Init and ML marks, respectively. 

 

Scalability of the algorithm can be tracked via per iteration time, because this value 

corresponds to a parameter of computational complexity of the algorithm with respect to 

only the size of the data set. Doing so, number of iterations is filtered out, while the 

number of clusters and dimensionality of data are constant factors. Change in number of 

iterations as data set size increases is affected by both innate mechanisms of the algorithm 

and statistical properties of the data set. Therefore, it cannot be manipulated directly and 

its effects on scalability are not covered in the scope of the thesis. Moreover, running 

times of each cycle are not the same due to variation in number of cluster-changing points 

or merging clusters. Hence, per iteration time actually corresponds to an average value. 

For these reasons, scalability comparison performed in this section is rather constrained. 

 

All members of the K-means family except Similarity-Based K-means clustering and K-

medoids turn out to be quite scalable, with around a two-time increase in running times as 

the data sizes double, suggesting the time complexities of algorithms are linear in data 

size. Note that algorithms utilizing centroid initialization in a K-means++ fashion tend to 

converge in less number of iterations compared to the original K-means algorithm 

initializing centroids by constants. Therefore, total running times associated to algorithms 

like K-means++ are less than K-means.  

 

On the other hand, K-medoids algorithm spends most of its time in computing data point 

distance matrix, causing a four-time increase between running times of the second and the 

first, and the third and the second data sets, validating the complexity of data matrix 

computation to be      . For this reason, per iteration running time is not enough to 

decide K-medoids to be scalable to increasing amounts of data. For the rest of the 

algorithms in K-means family, the time spent outside the main loop is also scalable with 

less than two times increase as data sizes double. 

 

Similarity-Based K-means spends most of the computational time in its fine-tuning phase. 

Actually, the time spent for initialization and coarse-tuning is insignificant. Judging by 

the per iteration time included in Table 6.3, Similarity-Based K-means clustering is not at 

all scalable to increasing amounts of data, attaining at least a four-time increase in per 

iteration time as the data doubles. This verifies that the complexity of fine-tuning phase 

per iteration whenever number of clusters is kept fixed is at least O(N
2
) due to point 

symmetry distance. 

 

Per iteration time comparison among K-means, K-medoids, K-means++, K-medians and 

WFA-K-means reveal that medoid computation and centroid computation by taking 

feature-by-feature means of all member data points take more or less the same 

computation times, while centroid computation utilizing median operator is slightly more 

time-consuming. On the other hand, computation of weighted fuzzy average to be set as a 

cluster center takes clearly more time than the rest. Yet, the affect of distinct cluster 
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center computation techniques over number of iterations until convergence cannot be 

directly observed from Table 6.3. Running time evaluation suggests that centroid 

initialization has a crucial impact on convergence. 

 

Fuzzy K-means clustering, like its relatives in K-means family carrying out hard-

clustering, is scalable with respect to both main loop time per iteration and the non-main 

loop time. However, time spent per iteration exceeds greatly that of all members in K-

means family except Similarity-Based K-means clustering; decrementing the chance of 

selection of the algorithm, if running time is the only critical issue.  

 

Follow-the-Leader clustering may converge after distinct number of iterations due to 

characteristics of the data sets when the distance threshold operates over data points in the 

set. The algorithm tends to converge more rapidly than the algorithms in the K-means 

family. Follow-the-Leader does not have a cluster center initialization phase; therefore 

main loop running time is equal to total running time. The algorithm is quite scalable with 

less-than two-time increase in per iteration running times as the data sizes double. 

Although per iteration time is higher than K-means family due to lack of a selectively 

updated distance matrix mechanism, Follow-the-Leader method has a deterministic 

nature and does not require being re-run several times in order to find the best clustering.  

 

Hierarchical clustering does not scale well to larger data sets, as the corresponding 

running time entries in Table 6.3 demonstrate. Between a three-time and a four-time 

increase is observed for per-iteration computational complexity. However, this is not a 

good measure of time complexity with respect only data set sizes, because at the 

beginning of the algorithm distance matrix is of size N-by-N, shrinking towards its final 

size of 10-by-10 and all algorithmic processes take place at the space characterized by the 

matrix size. Therefore, the time spent in the first iterations of the algorithm is much 

greater than average running time of the last iterations.  

 

Nonetheless, as data set sizes increase, both number of iterations before convergence and 

per iteration time increase, causing Hierarchical clustering to be clearly unscalable to 

increasing data. If running time is a prior concern, and the data size is large, it is not wise 

to use Hierarchical clustering, although the algorithm will be a good choice for smaller 

data sets due to its low running times and deterministic nature providing that only one run 

of the algorithm is enough before the evaluation. An example to the explained trade-off is 

that winter weekdays data having 305 instances is clustered by the Hierarchical algorithm 

within 157 ms, and the first synthetic data set having almost three times more instances is 

clustered in 16651 ms, demonstrating poor scalability of the algorithm. 

 

Training of the map in SOM clustering takes most of the computational time, because 

post-clustering of the map using Hierarchical algorithm with UPGMA linkage is carried 

out on at most 270 instances, the map size for the third synthetic data, which is less than 

the size of the winter weekdays data set that was grouped into 10 clusters in 157 ms. 
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Therefore, main loop time is selected as the training time of SOM and is assumed to be 

equal to the total running time in Table 6.3.  

 

Per iteration time for SOM is computed as the training time divided by number of training 

iterations which is 90 for all maps, to be further divided by the number of nodes in the 

maps. In this case, per iteration time is actually per iteration per node time so that number 

of iterations and the map size is filtered out to observe the change in running time with 

increasing sizes of data. Map sizes are 140, 200, and 275 for the maps of the first, second, 

and the third synthetic data sets, respectively. 

 

Modified per iteration time fields of Table 6.3 indicate that training of the SOM is a 

linearly scalable process with respect to increasing amounts of data. Yet, SOM training 

takes longer times than most of the algorithms. Nevertheless, trained self-organizing map 

can be stored for post-processing by several clustering algorithms. It is merely a process 

of reducing data set sizes that takes relatively longer time. In our case, 883 instances of 

the first data set are reduced to 140 node vectors, 1613 instances of the second data set 

are reduced to 200 node vectors, and 3222 instances of the third data set are reduced to 

275 instances; which can be clustered by Hierarchical algorithms in less than 157 ms. 

 

As a summary, all members of the K-means family excluding Similarity-Based K-means 

and K-medoids; Fuzzy K-means, and Follow-the-Leader algorithms together with SOM 

training tend to be linearly scalable with respect to size of the data set; whenever number 

of clusters and dimensionality of the data are kept constant, and the number of iterations 

until convergence is utilized as a normalizing factor, i.e. filtered-out from the measured 

running times.  

6.5 Fundamental Approaches to Decrease Running Times 

In this section, effects of utilizing parallel versions of clustering algorithms, designing 

hybrid algorithms, and reducing data size or dimensionality on running times and 

scalability are discussed. 

6.5.1 Utilizing Parallel Versions of Algorithms 

K-means clustering is scalable and offers the potential of being run in parallel (Farnstorm 

et al., 2000). Since K-means utilized in the thesis sets its initial centroids through 

constants, sequential and concurrent versions of the algorithm will behave 

deterministically given that the constants have the same values. Not any other member in 

K-means family can be controlled in this manner, as they include randomness factor. 

Therefore, gain obtained using parallel algorithms is exemplified through devising a 

parallel version of the K-means algorithm, whose sequential version is described in 

Chapter 4. 
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In order to parallelize K-means algorithm, concurrency mechanisms of Java environment 

(Göetz et al., 2006) is utilized, as all clustering methods are coded in Java. The idea 

behind a parallel version of the algorithm lies in aiming at a more efficient use of the 

processors by reducing the workload of time-consuming algorithmic steps through 

distributing data points among available processing units.  

 

Time-consuming parts of K-means are classified as distance computation and assignment 

making steps. Data points residing in the set are distributed over existing processors and 

each processor does its work concurrently until corresponding processes meet at 

rendezvous points, where synchronization is controlled by a barrier construct. 

 

In order to ensure mutually exclusive access to shared resources, related functions or code 

segments are marked with Java synchronized keyword, practically serving as a 

mutex construct of concurrent programming literature. Accuracy of the parallel version of 

the algorithm can be assessed by the output clustering generated, which is the same as 

clustering of sequential K-means since algorithmic flows is not altered. 

 

Table 6.4 Running time comparison of sequential and concurrent versions of K-

means partitioning synthetic data sets into 10 clusters in Euclidean framework. 

 
Synthetic Data 1 

(883 instances) 

Synthetic Data 2 

(1613 instances) 

Synthetic Data 3 

(3222 instances) 

Run- 

time 

Main 

time 

Iter 

# 

Per 

iter 

Run- 

time 

Main 

time 

Iter 

# 

Per- 

Iter 

Run- 

time 

Main 

time 

Iter 

# 

Per- 

iter 

K-M 485 415 30 13 1510 1410 61 23 3158 2996 63 47 

C K-M 313 243 30 8 1001 905 61 14 1905 1781 63 28 

 

Around a 40% decrease in per iteration running times is achieved by utilizing parallel 

version of the K-means algorithm as indicated by the data in Table 6.4, in which K-M 

stands for K-means and C K-M stands for concurrent K-means. The amount of decrease 

increases modestly as the data sizes double and is more pronounced in case of the third 

synthetic data set, suggesting that concurrent K-means may attain even lower running 

times for much larger sets.  

 

As each thread running concurrently does its work on an equal-size portion of the data, 

computational complexity of the algorithm remained the same and scalability tendency of 

K-means is not changed by utilizing parallel version of the algorithm. However, more 

tests with larger data sets are essential to prove the claim, which is not covered by the 

scope of this work. 
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To sum things up, a notable decrease in running times is attained, proposing the design 

and use of concurrent versions of algorithms when large data segments are to be 

clustered. 

6.5.2 Designing Hybrid Algorithms 

Hierarchical clustering has been analyzed to be not scalable to larger data and it has been 

mentioned that running time complexity is especially higher at earlier steps of the 

algorithm where      -computation is performed on each pair of data points. 

Hybridizing Hierarchical clustering with other algorithms may ensure that the algorithm 

will start with less number of data points.  

 

One way to provide less number of data points as inputs to Hierarchical clustering is 

running a scalable clustering algorithm as the initial step of the new hybrid algorithm to 

generate a particular number of initial clusters proportional to the desired number of 

clusters. Then, Hierarchical algorithm is run using centers of initial clusters as data 

points, until desired number of clusters is yielded. Following the convergence of the 

Hierarchical clustering at this second phase, final clusters are obtained by adding all 

members of the clusters of initial clusters to their correct positions. 

 

Hierarchical clustering is hybridized with K-means++ and Follow-the-Leader algorithms 

respectively. Hybrid Hierarchical–K-means++ clustering follows the steps included 

subsequently. 

 

 Step 1: Use K-means++ described in Section 4.2.2 to generate    clusters, where 

  is a constant used to determine the number of clusters obtained at the end of the 

first phase.  

 

 Step 2: Utilize Hierarchical clustering as indicated in the following steps. 

 

o Step 2.1: Take clusters of the first phase as the initial clusters of the 

Hierarchical algorithm. 

 

       (6.1) 

 

                         

 

                                                                 

 

o Step 2.2: Build up the distance matrix. Compute the distance between 

data points and clusters. 
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                                            (6.2) 

 

                                     

 

o Step 2.3: Proceed with Step 2 - Step 5 of the Hierarchical clustering 

algorithm described in Section 4.2.11. 

 

An example clustering of hybrid Hierarchical–K-means++ algorithm is illustrated in the 

following for 10 clusters on the second synthetic data set in Euclidean framework. 

 

 

 

    

 
 

Figure 6.2 Clustering of the second synthetic data set by Hierarchical–K-means++ 

algorithm in Euclidean distance framework. 

 

Dendrogram in (Fig 6.2) is marked with cluster indices of the first phase in which 50 

clusters are generated. For every clustering and evaluation result, Hierarchical algorithms 

are run with UPGMA linkage. 
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As number of clusters to be generated in the first phase increases, performance of K-

means++ deteriorates because more and more computational time is spent for setting 

initial cluster centers, which could be at worst       in only number of clusters. Another 

problem is the introduced randomness to deterministic Hierarchical clustering, which may 

require several re-runs of the algorithm. This is a burden regarding the algorithm’s 

appliance to higher number of clusters. 

 

Hybridizing Hierarchical clustering with Follow-the-Leader algorithm, however, may be 

a solution to limitations of K-means++ since Follow-the-Leader operates on a distance 

threshold, with no cluster center initialization phase. Moreover, the algorithm is 

deterministic unless the order of the data points changes. 

 

Hybrid Hierarchical–Follow-the-Leader algorithm follows the same steps as 

Hierarchical–K-means++ clustering, with only the obligatory modification to the first 

step as follows. 

 

 Step 1: Use Follow-the-Leader clustering described in Section 4.2.10 to generate 

at least    clusters, where   is a constant determining the number of clusters 

obtained at the end of the first phase. If generated clusters are less than   , 

decrement the operating distance threshold by a suitable amount and re-run the 

algorithm. Else continue with Step 2 of Hierarchical–K-means++ clustering. 

 

Hybrid Hierarchical–Follow-the-Leader clustering is illustrated subsequently.  

 

 

 

 
 

Figure 6.3 Clustering of the second synthetic data set by Hierarchical–Follow-the-

Leader algorithm in Euclidean distance framework. 
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Figure 6.3 Clustering of the second synthetic data set by Hierarchical–Follow-the-

Leader algorithm in Euclidean distance framework. (cont’d) 

 

Distance threshold is set to 0.60 and 78 clusters are generated at the end of the first phase 

to be included as leaves of the dendrogram in (Fig. 6.3) that shows the history of the 

process of Hierarchical clustering in the second phase of the algorithm. 

 

Clustering of the second synthetic data set by hybrid Hierarchical algorithms illustrated in 

(Fig. 6.2) and (Fig. 6.3) resemble each other. However, clusters generated by 

Hierarchical–Follow-the-Leader algorithm appear more compact. Quality of two sets of 

clusters is evaluated as follows. 

 

Table 6.5 Evaluation of 10 clusters generated by Hierarchical and Hybrid 

Hierarchical algorithms on the second synthetic data set in Euclidean framework. 

 

 DBI MDI CDI SMI 

Hierarchical 1.17 0.75 0.48 0.64 

Hierarchical– 

K-means++ (50) 
1.04 0.75 0.46 0.64 

Hierarchical– 

Follow-the- 

Leader (78) 

1.09 0.74 0.48 0.64 

 

As evaluation results included in Table 6.5 indicate, hybrid clustering algorithms perform 

at least as good as the original Hierarchical clustering algorithm. Regarding DBI metric, 

even a moderate decrease is attained, promoting the use of hybrid algorithms for 

clustering large data sets. 
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Running time comparison of hybrid algorithms and the original Hierarchical algorithms 

are included in the following table. 

 

Table 6.6 Running time evaluation of original and hybrid Hierarchical algorithms 

generating 10 clusters on synthetic data sets in Euclidean framework. 

 
 Synthetic Data 1 

(883 instances) 

Synthetic Data 2 

(1613 instances) 

Synthetic Data 3 

(3222 instances) 

Phase 

times 

Iter 

# 

Per 

iter 

Phase 

times 

Iter 

# 

Per- 

Iter 

Phase 

times 

Iter 

# 

Per- 

iter 

 

Hierarchical 

 

16651 873 19 110381 1603 68 796563 3212 247 

Hierarchical–

K-means++ 

(50) 

Init 1958 - - 3659 - - 7238 - - 

P1 621 28 22 967 18 53 2776 23 120 

P2 348 40 8 372 40 9 343 40 8 

Hierarchical–

K-means++ 

(100) 

Init 8104 - - 14561 - - 28580 - - 

P1 756 16 47 1755 23 76 9123 58 157 

P2 422 90 4 404 90 4 388 90 4 

Hierarchical–

Follow-the- 

Leader (~80) 

P1 963 6 160 2508 10 250 7754 19 408 

P2 380 71 5 373 68 5 396 70 5 

Hierarchical–

Follow-the- 

Leader (~160) 

P1 1678 6 279 5333 12 444 11286 14 806 

P2 468 149 3 470 149 3 468 151 3 

 

Running times of Hierarchical–K-means++ algorithm generating 50 and 100 clusters, and 

Hierarchical–Follow-the-Leader algorithm yielding around 80 and 160 clusters by the end 

of the first phase are independently shown in Table 6.6. Running times regarding the first 

and second phases of the hybrid algorithms are separately indicated by P1 and P2 marks. 

In case of Hierarchical–K-means++ algorithm, running time of the initialization step is 

also shown in distinct rows marked with Init, for which no information on iteration 

numbers or per iteration running time is included. 

 

The values in the table demonstrates that both hybrid algorithms attain much lower 

running times than the original Hierarchical clustering method. Evaluation methodology 

dictates that for each synthetic data set, number of clusters generated by the end of the 

first phase should be the same, making per-iteration time regarding the second phase a 

constant, regardless of the size of the set. Therefore, both hybrid algorithms are scalable, 

as K-means++ and Follow-the-Leader algorithms have been shown to be scalable when 

number of iterations and clusters are assumed to be fixed. 
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Per iteration times regarding the first phase of the algorithm verifies the scalability of K-

means++ and Follow-the-Leader methods, as previously claimed. Corresponding running 

time data in Table 6.6 also shows that Follow-the-Leader is slightly better scalable than 

K-means++. 

 

As number of first-phase clusters increases, per iteration time regarding the second phase 

decreases for both hybrid methods. However, for Hierarchical–K-means++ total running 

time increases by a factor of four in all data sets as number of clusters doubles, due to the 

complexity of the initialization phase of the K-means++ algorithm. On the contrary, 

Hierarchical–Follow-the-Leader clustering turns out to be scalable to doubling number of 

clusters as well as doubling data size according to the per iteration time heuristic.  

 

Although higher numbers of clusters are generated for test purposes following the end of 

the first phase of Hierarchical–Follow-the-Leader algorithm, this method has a 

substantially lower total running time than Hierarchical–K-means++. Moreover, it offers 

deterministic clustering unless the order of the data points in the set is changed. Once the 

distance threshold is correctly selected, there is no need for further re-runs of the 

algorithm in order to improve the quality of a clustering.  

 

A crucial point to keep in mind is that number of clusters generated at the end of the first 

phase must never be close to the actual data size so that Hierarchical clustering will not 

dominate the total running time. Although this effect is not observed in Table 6.6, more 

elaborated tests should be conducted to provide the means of devising genuine methods 

that automatically select the number of clusters to be generated in the first phase of the 

hybrid algorithm, without increasing the running time complexity significantly. 

 

Running time speedup acquired by hybridizing Hierarchical algorithm with K-means++ 

or Follow-the-Leader is much higher than the one that could be gained by utilizing a 

parallel version of the original method, which is a more intriguing task than 

parallelization of K-means due to the difficulty of effective partitioning in Hierarchical 

clustering (Dash et al., 2004). Nevertheless, parallel versions of the proposed hybrid 

algorithms may be a positive contribution to further decreasing overall running times.  

6.5.3 Decreasing Data Size or Dimensionality 

Data sets can be projected into lower dimensions by preserving associated topological 

properties. Self-organizing maps covered in the thesis effectively carries out such a 

projection of multidimensional space into 2-D. As previously discussed, once computed, 

SOM may be stored so that map node vectors, rather than actual data points, are clustered 

several times. Since best matching unit of multiple data points may be the same node in 

the map, all points that are mapped into the same node are then added to the cluster to 

which the vector of that node, belongs in only one pass over the data set. 
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Recalling that 883 instances of the first synthetic data set are reduced to 140 node vectors, 

1613 instances of the second data set are reduced to 200 node vectors, and 3222 instances 

of the third data set are reduced to 275 instances; Hierarchical clustering as the least 

scalable algorithm utilized in the thesis will complete the clustering of the third synthetic 

data set, the largest of all, within less time than it takes the algorithm to cluster winter 

weekdays data set. 

 

Working in the reduced data set space does actually diminish the burden of running times 

outstandingly. However, accuracy of clustering decreases as well. Trade-off regarding the 

accuracy of utilizing SOM node vectors in clustering instead of actual data points is 

reported in detail in Section 5.4.12. 

 

Among other methods to reduce data size or dimensionality; employing nine load-shape 

indices rather than 24 features, other algorithms of multidimensional scaling such as 

Principal Component Analysis and Sammon mapping (Chicco et al., 2006), and variable 

subset selection techniques to eliminate redundant features present in data points exist. 

Nonetheless, speed-accuracy trade-off should always be taken into consideration 

whenever data reduction is applied. 

6.6 Summary 

Running time complexities and scalability of clustering algorithms are analyzed in-depth 

throughout the chapter, which can be crucial issues if the clustering is to be applied for a 

larger scale of customers. 

 

Synthetic data sets are constructed based on models of the real electricity consumption 

values in order to compensate for the need of increasing amounts of data to evaluate 

scalability of algorithms. In addition to that, scalability of the method to increasing 

number of clusters is briefly discussed. 

 

Pointing out true computational complexity of a clustering algorithm requires founding 

mathematical relations between number of iterations and other parameters including 

statistical properties of the data sets in use. Since these relations are not covered within 

the scope of this thesis, per-iteration running time is utilized as a measure of scalability 

for the majority of algorithms, explicitly stating the situations in which per iteration 

running time comes short in analyzing scalability.  

 

Using parallel versions of algorithms, designing hybrid algorithms, and working in a 

reduced data space with possibly lower dimensionality are examined as solutions to 

decrease running times of algorithms. Two new hybrid algorithms, Hierarchical–K-

means++ and Hierarchical–Follow-the-Leader clustering, are designed and evaluated 

which decrease computational complexity of Hierarchical clustering substantially. 
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Moreover, both hybrid methods are reported to increase scalability to increasing amounts 

of data compared to the original algorithm. 

 

For elaborated studies regarding scalability of K-means++ and other clustering 

algorithms, please refer to (Bahmani et al., 2012) and (Farnstorm et al., 2000). 
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CHAPTER 7 

 

 

 CLASSIFICATION OF LOAD PROFILES AND RELATED APPLICATIONS 

 

 

 

7.1 Introduction 

Clustering of representative load diagrams and discovery of representative load profiles 

computed as centers of the generated clusters are used in a variety of applications targeted 

at both customers and distribution companies. 

 

In this chapter, customer recognition based on further classification of clustered load 

diagrams and fundamentals of dynamic tariff design are analyzed. Requisites of other 

applications are also briefly discussed.  

7.2 Customer Recognition 

Clustering of customers can be processed in order to learn the characteristics of 

consumption shapes. For this purpose, clustering should be organized as labeled data, 

where labels are names of the clusters for each data point in the set. Labeled data is then 

inputted to supervised classification algorithms. 

 

Customer classification enables one to find out reasons of existence of a data point within 

a particular cluster, and not in any other. Moreover, classification provides the means of 

generalization so that new customers are placed into the correct cluster, although they 

have not participated in the clustering operation. 

 

Classification method employed in customer recognition is the well-known decision tree 

induction algorithm C4.5 (Quinlan, 1996). The algorithm utilizes the notion of 

information entropy in such a way that an attribute that yields higher information having 

split training instances into particular intervals of its value is placed in a position closer to 

the root in the tree. C4.5 can handle continuous attributes as in electricity consumption 

data sets. Following the creation of the tree, further pruning is performed so that tree size 

is reduced, over-fitting to training data is avoided and acquired learning has a more 

general nature in recognizing further test instances.  

 

In the thesis, J48, an open source Java implementation of C4.5 available in WEKA 

machine learning framework (Witten et al., 2011) is used. Both actual features of data 

points and shape indices characterizing consumption styles as which are defined in 
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Chapter 2 are selected as attributes, as proposed in (Ramos and Vate, 2008). The control 

parameter of the post-pruning, namely the confidence factor, is set to 0.25, and minimum 

number of instances with a particular label is selected as 1 throughout the trials conducted 

in this section. 

 

 

 
 

Figure 7.1 Clustering of winter weekdays data by Follow-the-Leader algorithm in 

Euclidean framework. 

 

Clustering of winter weekdays data by Follow-the-Leader algorithm for eight clusters in 

Euclidean distance framework as illustrated in (Fig. 7.1) is selected to demonstrate 

customer recognition application.  

 

Normalized features of all data points in the set and computed shape indices during the 

course of clustering are used as distinct sets in the classification. Labels are cluster names 

as previously mentioned.  

 

The tree induced and pruned by the algorithm by using shape indices as attributes is 

included in the following. 
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The tree included in (Fig. 7.2) is created by using all instances as the training set. For 

most of the clusters there are several paths. However, the majority of data points of a 

large cluster are all grouped in one leaf node. Classification error for each cluster is also 

included in (Fig. 7.2) as the number of incorrectly classified instances. If that number is 

greater than zero, it is placed in the leaf node just after the all number of instances 

residing in the node followed by a slash mark. In this case, the only error appears in a 

branch yielding Cluster 3 for two instances. 

 

The tree can be interpreted by following all the nodes starting from the root up to a 

certain leaf depicted by a rectangular shape with a lighter color of blue. In this manner, 

rules for testing particular cluster memberships are generated by taking non-leaf nodes 

combined through conjunction with each other in an if clause, as exemplified below for 

Cluster7, a singleton outlier cluster generated by Follow the Leader method. 

 

                                                (7.1) 

                                             

 

                                           

 

Note that in course of rule generation for a particular class label, redundancy may be 

present since the tree is induced for all labels. Redundancy in (7.1) can be eliminated by 

reducing two appearances of    in the if-clause into one, as in the following.  

 

                                                (7.2) 

 

                                          

 

The decision tree yielded by C4.5 does its partition of clusters for the shape index    at 

the root position. This index is the rate of average night consumption to average daylight 

consumption. If average daylight consumption exceeds that of night more than a certain 

threshold value, a data point is assigned to a different set of clusters most of the time. 

However, Cluster 1 and Cluster 3 hold quite a few members in both sides of the 

branching of    values. Lunch time impact, daily average consumption with respect to 

the peak demand, minimum consumption divided by average of all hours are among other 

shape indices appearing in the tree that characterize the mechanisms behind clustering.  

 

According to the definitions of load shape indices   ,   , and   , a possible capture of 

the semantics regarding the rule generated for the label Cluster 7 may correspond to the 

following degrees of power consumptions during particular hours. 
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                                                                      (7.3) 

 

                                                                                  

 

The justification of the rule (7.3) can be made as follows. The index    is the ratio of 

average night to average daytime consumption. Since it should be high for an instance of 

Cluster 7, average night consumption of the customer shall be high, while average day 

light consumption could be at most medium. The shape index    is computed as the ratio 

of average over maximum daily consumption. The rule indicates that    shall be high but 

not too high. Thus, average daily consumption could be at least a medium value, while 

maximum daily consumption is high. Lastly,    is the ratio of minimum over average 

daily consumption amounts. Since this index should have a low value according to the 

rule, minimum daily consumption can only be low, because average consumption is 

decided to be medium before. 

 

If a new customer whose data is unavailable is to enter the system, their own opinions on 

consumption amounts during night, daylight, and lunch times together with minimum, 

maximum, and average amounts of electricity they consume daily can be determined 

through a questionnaire so that an initial prediction is made about the cluster they most 

likely belong to. 

 

Discrete values of high, medium and low can be defined in accordance with the branching 

criteria of the decision tree. In order to reveal more rules concerning all customers, more 

elaborated degrees than only high, medium and low shall be utilized depending on the 

distinct number of values an attribute can take at branching nodes. Moreover, a conflict 

resolution strategy shall be developed to avoid contradictions. However, it would be wise 

to keep the number of degrees limited so that questionnaires will not be too detailed, 

since this may result in distracting the customers and causing higher errors in predicting 

the initial cluster.  

 

Decision tree obtained by using all features of the data points as attributes and names of 

the clusters generated by Follow-the-Leader algorithm as labels is presented in the 

following. 
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As the tree in (Fig. 7.3) suggests, the consumption value at the end of the first hour 

resides in the root position to characterize few members of the large clusters, and one of 

the large clusters at the right branch while the majority of the leaves are located at the left 

branch. Consumption amounts between nine in the evening until nine in the morning 

could be considered to differ among data points at greater amounts than the rest of the 

features, as the labels of non-leaf nodes of the tree are interpreted. This concurs with the 

clustering illustrated in (Fig. 7.1), in which most of the data points indicate steadily high 

consumptions during late morning, lunch and afternoon hours, yet consumption amounts 

differ among data points during the rest of the day. 

 

Accuracy of the classification is assessed by cross-fold validation, in which data set is 

split into folds of equal sizes and one fold is utilized as test instances while the others 

constitute the training set. 10-fold stratified cross validation is adopted, in which each 

fold corresponds to 10% of the whole data set. Each fold is selected in a way such that 

they have more or less the same distribution of the labeled data as the rest of the data set, 

which names the validation technique as stratified. Evaluation results are presented as 

averages obtained in each fold of the cross validation. 

 

Clusters having less than 10 elements cannot be evenly distributed among folds, which is 

a particular reason of error in classification. Although stratified validation stresses on 

even distributions of differently-labeled data, in particular folds outlier clusters may not 

reside and hence their instances are necessarily misclassified. Confusion matrix clarifies 

the number of incorrect classifications of instances label by label. Considering the case of 

cross validation of the decision tree in (Fig 7.1) of winter weekdays data set classification 

by employing load shape indices, the following confusion matrix is generated by the 

evaluation. 

 

Table 7.1 Confusion matrix for classification of winter weekdays data clustered by 

Follow-the-Leader using load shape indices. 

 

a b c d e f g h Classified as 

46 0 3 6 0 0 0 0 a = Cluster1 

0 92 5 0 0 0 0 0 b = Cluster2 

3 7 89 2 1 0 0 0 c = Cluster3 

7 0 3 35 0 0 0 0 d = Cluster4 

0 0 1 0 2 0 0 0 e = Cluster5 

0 0 0 1 0 1 0 0 f = Cluster6 

0 0 0 0 1 0 0 0 g = Cluster7 

0 0 0 1 0 0 0 0 h = Cluster8 

 

Singleton outlier clusters, Cluster 7 and Cluster 8 in (Fig. 7.1), are incorrectly classified, 

as Table 7.1 indicates. Other outlier clusters, Cluster 5 and Cluster6 also include 

classification errors. Although the tree in (Fig. 7.2) constructed by all instances do not 

incorrectly classify instances of the outlier clusters, cross validation methodology does. In 
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order to discuss further the nature of misclassifications due to clustering errors and 

comment about inter-cluster similarity, confusion matrix for the classification of the same 

clustering by using all data features as attributes is included subsequently. 

 

Table 7.2 Confusion matrix for classification of winter weekdays data clustered by 

Follow-the-Leader using actual features. 

 

a b c d e f g h Classified as 

44 0 8 2 0 1 0 0 a = Cluster1 

0 88 9 0 0 0 0 0 b = Cluster2 

1 9 87 4 0 0 1 0 c = Cluster3 

2 0 2 40 0 1 0 0 d = Cluster4 

0 2 1 0 0 0 0 0 e = Cluster5 

1 0 0 0 0 1 0 0 f = Cluster6 

0 0 1 0 0 0 0 0 g = Cluster7 

0 0 1 0 0 0 0 0 h = Cluster8 

 

Confusion matrix of classification with actual features of the data points in Table 7.2 

reveals particular clues about the similarity of large clusters Cluster 1, Cluster 3, and 

Cluster 4. Although most instances labeled with the names of these clusters are correctly 

classified, particular instances have been mistakenly labeled as one of the other large 

clusters. Another large cluster, Cluster 2, whose elements have high hourly consumption 

values throughout the day, is incorrectly classified only with Cluster 3, which has higher 

consumptions during nighttime and early morning hours than Cluster 1 and Cluster 4 and 

otherwise as high values as Cluster 2 in the remaining hours of the day.  

 

Outlier clusters are poorly classified, as the matrix indicates that only one instance of 

Cluster 6 is correctly classified in successive folds during the course of evaluation. In 

fact, a quick comparison of the two confusion matrices reveals that classification utilizing 

shape indices outperforms the one using actual features on the clustering of winter 

weekdays by Follow-the-Leader algorithm. 

 

In order to evaluate the quality of the classification, several performance metrics existing 

in the literature are employed by the WEKA framework. These metrics are defined 

briefly in the following. 

 

Kappa statistics measures the degree to which the classification has correctly computed 

the labels of the instances by discarding the chance factor.  

 

  
         

      
 (7.4) 

 

In the formula in (7.4),      corresponds to the percentage of correctly classified 

instances by the classifier and      represents the hypothetical chance of agreement, 
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which is computed as the product of probabilities of every possible classification covered 

in the confusion matrix. In other words, Kappa statistics compares the accuracy of the 

classifier with the random classifier to measure the improvement obtained by adopting 

the classifier and is more sensitive than the directly measuring the percentage of correctly 

classified data points since, it filters out the agreement achieved by chance. 

 

Root mean squared error (RMSE) is the square root of the mean of the squared difference 

between the prediction probability, which is either 0 or 1 implying whether an instance is 

correctly classified; and prior class probability computed by calculating the frequencies of 

classes. It measures accuracy. Lower RMSE values indicate better performance. 

 

True Positive (TP) Rate regarding a class is the percentage of correctly classified 

instances with the class label. For example, Cluster 1 in the confusion matrix in Table 7.2 

has its TP rate as 44 / (44+8+2+1) = 0.8. TP rate is equivalent to recall. 

 

False Positive (FP) Rate regarding a class with label c is the proportion of instances 

incorrectly classified as c but originally belonging to another class over all instances other 

than c. For example, the FP rate for Cluster1 in the confusion matrix in Table 7.2 is 

(1+2+1) / (251) = 0.1594.  

 

Precision of a class having label c is the proportion of correctly classified instances with 

label c over all instances with label c. For example, precision of Cluster 1 in the 

confusion matrix in Table 7.2 is 44 / (44+1+2+1) = 0.917. 

 

Receiver operating characteristics (ROC curve) of a class with label c is the graph 

depicting the false positive rate on the horizontal axis and the true positive rate on the 

vertical axis by manipulating an operating threshold parameter, which is a probability 

threshold that deals with the proportion of instances classified as c in the data, while 

keeping the model fixed. In other words, operating threshold controls the probability of 

particular predictions via the probability assigned by the classifier to c. For further details, 

please refer to (Davis and Goadrich, 2006). ROC curve of Cluster1 in the confusion 

matrix in Table 7.2 is as follows. 

 

 
 

Figure 7.4 ROC curve for Cluster1 residing in Table 7.2. 
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The color transition of the curve in (Fig. 7.4) displays the change in the threshold value 

such that brown values imply that the threshold is close to 1, while blue values imply that 

the threshold is closer to 0. Area under ROC curve is utilized as an accuracy measure 

whose higher values are appreciated. In case of Cluster1, cross fold validation yields a 

value of 0.8979. The upper limit of the ROC area is 1.  

 

Table 7.3 Behavior of Cluster1 of Table 7.2 with changing threshold as marked on 

ROC curve. 

 

Threshold TP Rate FP Rate TP FN FP TN Precision 

1.0 0.71 0.016 39 16 4 247 0.907 

0.98 0.8 0.016 44 11 4 247 0.917 

0.024 0.82 0.04 45 10 10 241 0.82 

0.0 1.0 1.0 55 0 251 0 0.18 

 

As the threshold goes from 1 to 0, number of true positives and false positives increase. 

On the other hand, number of false negatives, namely the misclassifications of Cluster1 

as other classes, and number of true negatives, correctly classified instances as not 

belonging to Cluster1 diminish as operating threshold decreases. Thresholds 1 and 0 can 

be interpreted as the behavior of Cluster1 at worst and at best according to the TP rate. 

However, the reverse situation will be valid, if evaluation is done based on the FP rate.  

 

ROC curve in (Fig. 7.4) demonstrates trade-offs by manipulating the test data, as values 

in Table 7.3 indicate. The highest TP rate with respect to the lowest FP rate constitutes 

the main trade-off, which results in the threshold corresponding to the highest precision 

being included in the final evaluation of the classifier, which is 0.98 in this case. 

 

Weighted averages of TP rate, FP rate, precision and area under ROC curve of each class 

label are computed to evaluate the classifier. 

 

Classification of all illustrated clusterings of winter and summer weekdays data in all 

frameworks but the weighted Euclidean that are covered in Chapter 5 are evaluated in the 

subsequent table. 
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Table 7.4 Evaluation of classifications performed on the illustrated clusters covered 

in Chapter 5. 

 

Kappa 

Statistics 
RMSE 

TP 

Rate 

(Recall) 

FP 

Rate 
Precision 

ROC 

Area 

WFA- 

K-means 

 

Winter 

(hp/9) 

indices 0.83 0.1632 0.876 0.04 0.87 0.925 

features 0.8261 0.168 0.873 0.046 0.871 0.918 

Summer 

(e/6) 

indices 0.8468 0.1829 0.896 0.032 0.898 0.936 

features 0.8882 0.1585 0.925 0.032 0.921 0.948 

K-medoids 

Winter 

(hp/8) 

indices 0.8115 0.1791 0.869 0.061 0.867 0.916 

features 0.8642 0.1535 0.905 0.044 0.897 0.933 

Summer 

(hp/11) 

indices 0.7716 0.1701 0.84 0.048 0.833 0.894 

features 0.7708 0.1706 0.84 0.06 0.837 0.889 

Similarity-

based 

K-means 

Winter 

(e/13) 

indices 0.718 0.1847 0.775 0.053 0.76 0.865 

features 0.8494 0.1363 0.879 0.027 0.866 0.922 

Summer 

(e/14) 

indices 0.7556 0.1678 0.802 0.033 0.789 0.879 

features 0.7762 0.1612 0.818 0.033 0.818 0.895 

Fuzzy 

K-means 

Winter 

(se/6) 

indices 0.7608 0.238 0.827 0.06 0.829 0.892 

features 0.8363 0.1976 0.882 0.053 0.881 0.92 

Summer 

(hp/14) 

indices 0.7587 0.1682 0.802 0.026 0.801 0.886 

features 0.8349 0.139 0.865 0.024 0.86 0.921 

Follow- 

The- 

Leader 

Winter 

(e/8) 

indices 0.8171 0.1797 0.866 0.043 0.863 0.922 

features 0.7936 0.1922 0.85 0.059 0.843 0.901 

Summer 

(hp/14) 

indices 0.7743 0.1607 0.818 0.031 0.807 0.892 

features 0.7939 0.1543 0.833 0.034 0.824 0.9 

Hierarchical  

(UPGMA) 

Winter 

(e/9) 

indices 0.775 0.1615 0.876 0.068 0.869 0.914 

features 0.8592 0.1319 0.922 0.052 0.909 0.921 

Summer 

(e/10) 

indices 0.7368 0.1734 0.846 0.069 0.833 0.896 

features 0.8402 0.1373 0.906 0.045 0.898 0.925 

SOM 

(batch 6 15) 

Winter 

(e/6) 

indices 0.7866 0.2148 0.859 0.064 0.853 0.893 

features 0.8662 0.1709 0.912 0.045 0.91 0.933 

Summer 

(hp/8) 

indices 0.7766 0.2063 0.827 0.035 0.828 0.896 

features 0.8335 0.1793 0.871 0.03 0.874 0.927 
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Winter and summer weekdays data sets are represented in the Table 7.4 with Winter and 

Summer keywords. Euclidean, hybrid Pearson, and squared Euclidean distance 

frameworks are abbreviated as e, hp, and se, followed by number of clusters generated in 

the framework on the data set. Whether a classification is done by using load shape 

indices or actual data features are also indicated in the table. 

 

As discussed in Chapter 5, WFA-K-means, K-medoids, and Similarity-Based K-means 

are K-means family members that achieve high quality clustering; UPGMA linkage is 

chosen to represent Hierarchical clustering family, and batch training is selected to 

represent SOM clustering. Fuzzy K-means and Follow-the-Leader are also included. 

Only, ISODATA clustering is excluded from classification because of inadequacy of the 

evaluation methodology regarding this algorithm. 

 

A good classification manages to get high values in Kappa statistics, TP rate, precision, 

and area under ROC curve and low values in root mean squared error and FP rate. 

 

Using actual features results in more adequate classifications than employing shape 

indices for most of the cases in Table 7.4. Nonetheless, shape indices are able to explain 

nature of classifications well enough and even in some cases their utilization is evaluated 

to surpass that of data features, such as the classification of Follow-the-Leader clustering 

exemplified previously.  

 

Regarding the clustering operations listed in Table 7.4, the one carried out by WFA-K-

means appears to yield the most promising classification according to most of the 

evaluation metrics. However, since the inspected groupings of data points are for distinct 

number of clusters, such a comparison may come short in explaining every instant of the 

behavior of clustering algorithms. Nonetheless, it would not be wise not to take into 

consideration this comparison. 

 

Decision tree algorithm and the cross validation technique tend to produce more 

classification errors when number of clusters increase to include outlier groups with few 

members. As discussed in case of Follow-the-Leader clustering on winter weekdays data, 

it is not always possible to distribute evenly the instances of a label among the folds when 

the label corresponds to outlier clusters. Moreover, during induction and post-pruning 

phases, the splits necessary to generate conditions of classification of an outlier clusters 

may have not been performed, due to not yielding substantial information gain or coming 

short in assuring the confidence interval. However, trees generated on all instances 

correctly classify even the singleton outlier clusters. 

 

Every reported classification in Table 7.4 passes the adequacy evaluation with at least 

substantial success if not outstanding. This verifies the importance of clustering step in 

developing applications based on load profiles of electricity consumers. 
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7.3 Basic Class-Based Dynamic Tariff Design 

One of the applications that could be devised as a direct consequence of the load profiles 

clustering is designing tariffs that are specific to each customer class. In this chapter, 

utilization of features of cluster centers in the formation of specific tariffs and the 

conditions of obtaining at least the same revenues as fixed tariffs that apply to each 

customer of the company will be discussed. Detailed economic background and 

implications, as well as constituents of an elaborated business strategy are beyond the 

scope of the thesis. 

 

The process flow regarding tariff design and proposal is included in the following. 

 

 
 

Figure 7.5 Process flows of tariff design and appropriate tariff proposal to new 

customers. 

 

Tariff design is based on clustering of customers as described in (Fig 7.5). Customer 

recognition outlines the conditions of class membership for new customers. As these 

customers are assigned to the most appropriate class, corresponding tariffs are proposed 

automatically. 

 

Features of cluster centers can be used as direct weight factors of a base unit price that 

affects the amount a member customer has to pay at a certain hour of day for their 

consumption of electricity. A consumer has to pay more for the peak hours of the day but 

much less than the fixed price for the rest of the day. Follow-the-Leader clustering of 

winter weekdays data reveals the following tariffs per cluster. 
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Figure 7.6 Tariffs proposed to customers for electricity consumption in winter 

weekdays and generated by Follow-the-Leader clustering. 

 

Using cluster center features as weight factors of cluster-specific tariffs is exemplified for 

Follow-the-Leader clustering in (Fig. 7.6). Revenue computation is carried out as follows. 
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                   (7.5) 

 

                                              

                                                                      

 

Revenue obtained from a particular tariff is computed as in (7.5). Base costs, taxes, etc 

are not covered by the equation. Since true consumption levels of all customers are close 

to each other, normalized features of data points together with features of the cluster 

centers is used in the equation. 

 

Next, total revenue is calculated by summing all tariff revenues as in the following. 

 

         
 
                                                             (7.6) 

 

As all customers are high-power consumers, currently an unweighted fixed price is 

applied to everybody regardless of any clustering. Following the computation in equation 

(7.6), current employed revenue collection is assumed to be carried out as follows.  

 

         
    

 
   

 
             (7.7) 

 

                                                                            

                                                            

 

Ratio of the two total revenues gives clues about developing a simple business strategy. If 

a company hopes to collect as much revenue as before by adopting tariffs formed by the 

clustering operation, then the new fixed unit price which ia multiplied by tariff features to 

determine hourly price shall be proportional to the current fixed unit price, as covered in 

the following equation. 

 

                        (7.8) 

 

  

  
  

    
  

 
   

 
   

     
    

  
        

 
   

  

 

The clustering whose tariffs are illustrated in (Fig. 7.6) gives the ratio formulated in (7.8) 

as 1.20 which shall be further multiplied by the centroid features generated by Follow-

the-Keader clustering. As the graph of Tariff 1 can tell, members of Cluster 1 should pay 

as much as less-than-1.20 times they currently pay for their peak demands, while should 

pay only less-than-0.36 times they currently pay for hours at which they consume the 

least amount of energy. Average, minimum and maximum amount they should pay for 

electricity consumption in winter weekdays is included in the following table. 

 



 

 154 

Table 7.5 Statistics regarding the ratio of new hourly prices to currently-utilized 

fixed unit price for Follow-the-Leader clustering. 

 

Follow-the-Leader 

(winter weekdays) 
Size Minimum Maximum Average Deviation 

Cluster 1 55 0.28 1.17 0.77 0.38 

Cluster 2 97 0.97 1.15 1.08 0.06 

Cluster 3 103 0.63 1.15 0.93 0.2 

Cluster 4 45 0.38 1.17 0.74 0.33 

Cluster 5 3 0.71 1.19 0.88 0.15 

Cluster 6 2 0.22 1.13 0.54 0.36 

Cluster 7 1 0.17 1.2 0.91 0.34 

Cluster 8 1 0.19 1.2 0.7 0.3 

Weighted Average 0.64 1.16 0.91 0.21 

 

Results in Table 7.5 demonstrates that for most of the clusters average hourly prices are 

considerably less than the fixed price when it is taken as the unity. At most 30% and at 

least 7% decrease in average hourly prices has occurred concerning all clusters except 

Cluster 2, whose data points correspond to generally high consumption values throughout 

the day. For customers categorized to be in Cluster 2, the prices have risen by 8%. That 

rise concerns less than one third of all customers. Weighting the computed statistics with 

cluster sizes, a 9% decrease in overall average hourly prices is obtained. 

 

Inter-cluster statistics for several clustering operations carried out by distinct algorithms 

illustrated in Chapter 5 are enlisted in the following table for both winter and summer 

weekdays data sets.  
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Table 7.6 Weighted average statistics regarding the ratio of new hourly prices to 

currently-utilized fixed unit price of all clusters by several algorithms. 

 

Minimum Maximum Average Max Avg Deviation Ratio 

WFA- 

K-means 

Winter (hp | 9) 0.628 1.168 0.916 1.08 0.214 1.211 

Summer (e | 6) 0.649 1.158 0.917 1.06 0.2 1.205 

K-medoids / 

PAM 

Winter (hp | 8) 0.64 1.191 0.917 1.118 0.212 1.191 

Summer (hp | 11) 0.646 1.172 0.916 1.09 0.202 1.172 

Similarity- 

based 

K-means 

Winter (e | 13) 0.631 1.159 0.913 1.114 0.211 1.198 

Summer (e | 14) 0.647 1.152 0.913 1.105 0.2 1.18 

Fuzzy 

K-means 

Winter (se | 6) 0.641 1.156 0.917 1.104 0.208 1.197 

Summer (hp | 14) 0.649 1.15 0.913 1.107 0.2 1.173 

Follow The 

Leader 

Winter (e | 8) 0.635 1.16 0.914 1.078 0.209 1.201 

Summer (hp | 14) 0.647 1.151 0.913 1.103 0.201 1.18 

Hierarchical 

(UPGMA) 

Winter (e | 9) 0.639 1.164 0.922 1.018 0.21 1.21 

Summer (e | 10) 0.658 1.155 0.923 1.034 0.197 1.191 

SOM 

(batch 6 15) 

Winter (e | 6) 0.637 1.162 0.92 1.05 0.207 1.207 

Summer (hp | 8) 0.655 1.15 0.92 1.097 0.196 1.183 

 

Attributes in Table 7.6 are weighted average statistics such as the ones computed at the 

last row of the table in order to clarify the average case regarding clusters generated by 

the algorithms enlisted. 

 

All clustering results for the same data sets covered in Table 7.6 yield more or less the 

same average hourly prices no matter how different the ratios are, since total revenues are 

assumed the same. Hierarchical clustering offers the highest average price, yet has the 

lowest maximum average price applied to a particular cluster generated by the algorithm, 

which could be regarded as a positive factor in the first adoption of dynamic tariffs to 

ensure trust in customers. Statistics presented in the table offers many possible trade-offs 

to be used as guidelines in selecting a particular consumption data clustering. 

 

Tariffs reflecting particular business strategies can also be designed based on clustering 

of customers. One particular strategy aims at reducing the peak of load profiles and 

making the consumption curves as flat as possible. For this purpose, price of electricity 

service at peak hours shall be higher than the rest, while the rest shall be priced as 

constantly as possible. 
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Figure 7.7 Tariffs aiming at reducing peak load and stabilizing consumption based 

on Follow-the-Leader clustering of winter weekdays data. 

 

Ratio between unit prices of several tariffs based on natural clusters to one global tariff 

applying to all customers for tariffs illustrated in (Fig. 7.7) is calculated as 1.33, which is 

higher than the ratio computed previously for tariffs designed by directly employing 

cluster center features, because tariff constituents displayed in (Fig. 7.7) are generally of 

less values than centroid features. Since all features of Cluster 2 is greater than 0.8, 
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namely all hourly consumption values are very high, the gap between the centroid and the 

tariff is increased on purpose so that pricing of the peak hours demand can be more 

significant.  

 

Table 7.7 Statistics regarding the ratio of new hourly prices to currently-utilized 

fixed unit price for Follow-the-Leader clustering. 

 

Follow-the-Leader 

(winter weekdays) 
Size Minimum Maximum Average Deviation 

Cluster 1 55 0.32 1.3 0.74 0.38 

Cluster 2 97 0.95 1.26 1.05 0.1 

Cluster 3 103 0.71 1.26 0.97 0.21 

Cluster 4 45 0.43 1.29 0.74 0.31 

Cluster 5 3 0.77 1.32 0.93 0.16 

Cluster 6 2 0.25 1.25 0.53 0.37 

Cluster 7 1 0.17 1.33 0.93 0.38 

Cluster 8 1 0.2 1.33 0.69 0.3 

Weighted Average 0.67 1.28 0.92 0.22 

 

As the values in Table 7.7 indicate, there is a moderate increase in minimum and 

maximum hourly prices with respect to centroid-feature utilization analyzed in Table 7.6. 

However, overall average hourly price is still lower than the unity, which is assumed to 

be equal to the unique fixed price currently in use. Moreover, average hourly prices of 

Cluster 1 and Cluster 2 whose number of data points are almost half of the data set, have 

decreased. 

 

Relatively high hourly prices regarding Cluster 2 can be resolved by directly decreasing 

prices for this cluster, while increasing the hourly prices of other clusters to compensate 

for the change. Moreover, if the company aims at eliminating outlier clusters, values of 

tariff features regarding these clusters can be substantially increased, which will be 

reflected as a slight decrease of prices in remaining large clusters so that the total 

revenues is maintained unchanged. As a matter of fact, the company may decide to accept 

even lower revenues at the beginning of the transition to dynamic tariffs to result in lower 

unit prices regarding all clusters, expecting to attract more customers and more revenues 

at longer terms. 

 

Since the second tariff design intends to achieve a particular business strategy, continuous 

monitoring of customers is essential in order to evaluate behavioral changes for deciding 

on re-clustering and renewing tariffs, since a dynamic tariff, instead of the static one, is 

more likely to change consumption shapes and amounts.  
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In other words, dynamic tariffs like the ones illustrated in (Fig. 7.7) do not necessarily 

result in cheaper tariffs for all hours of the day, yet they intend to manipulate 

consumption of customers to realize particular economical and/or technical goals. 

Cluster-based tariffs tend to decrease the economic burdens at the customer side as well 

by reducing average prices and by giving them the opportunity to change their 

consumption behaviors accordingly such as consuming less electricity at hours that are 

charged with higher prices. 

 

More factors exits in setting up a business strategy, which are not covered merely by the 

anonymous consumption data of certain dates as used in this study. Among these factors, 

there are parameters risen from the history of the customer with the company, goals of the 

company to be covered in particular deadlines, labor power that could be assigned to 

clustering applications, the scale to which automatic meter reading devices are utilized, 

the amount of data that has already been collected and is planned to be collected, etc. 

Real life matters are essential to elaborate on any business strategy that could be 

developed on top of clusters of consumption data. 

7.4 Other Applications 

Load forecasting is another example of applications of load profiling (Zhang et al., 2013). 

The process flow of load forecasting is included in the following. 

 

 
 

Figure 7.8 Process flow of load forecasting. 

 



 

 159 

Estimating future consumption values, whose process flow is illustrated in (Fig. 7.8), 

requires building an accurate model of seasonal and yearly consumptions based on load 

profiles generated by clustering algorithms. Corresponding model should inspect 

consumption data of several years together with change in external factors such as the 

climate in this period. Load forecasting also requires statistics regarding number of 

customers a company has within several years so that an estimation regarding future 

customer sizes is made. Since the data used in this study does not include the necessary 

information for deploying an application of load forecasting, please refer to (Labeeuw 

and Deconinck, 2013) for further details. 

 

Another application based on load profile clustering is fraud detection. In order to detect 

anomalous use of electricity for possible illegal purposes, continuous monitoring of 

customers through AMR devices is essential so that deviations from representative load 

profiles could be detected. 

 

The process flow of fraud detection is illustrated in the following. 

 

 
 

Figure 7.9 Process flow of fraud detection. 

 

As flow in (Fig. 7.9) indicates, deviation of updated load diagram of a customer from its 

original cluster is a sign for suspecting fraud. The amount of deviation that could be 

judged as fraud should be large enough whose actual value depends on the choice of the 

designer. 

 

Fraud detection should be put into use following the computation of representative load 

profiles and assuring continuous data flow from AMR devices so that continuous 

monitoring of customers will be possible. Since, this study does not have the obligatory 

resources for deploying a fraud detection application, please refer to (Nizar et al., 2006) 

for further details. 
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7.5 Summary 

Clustering of seasonal load diagrams of customers of an electricity distribution company 

provides the basis for deploying applications that offer various solutions to the problems 

in power domain. 

 

Throughout the chapter, customer recognition involving further classification of clustered 

customers, which aims at discovering the conditions of membership of clusters and 

correctly placing new customers into classes; and designing class-specific tariffs, which 

constitutes the basis of devising business strategies with pre-defined goals is analyzed. 

 

Moreover, mechanisms of load forecasting and fraud detection applications are briefly 

described. This study focuses on computational infrastructure for deploying such 

applications and further elaboration is mandatory for both the design and evaluation of 

applications, which can be attained by collecting more comprehensive data of 

consumption over several years and discussing the crucial parts of possible business 

strategies with domain experts. 

 



 

 161 

CHAPTER 8 

 

 

 DISCUSSION AND CONCLUSION 

 

 

 

 

Clustering and classification of electricity consumption data has emerged as a recent 

research topic. Traditional data mining and machine learning methods are used 

extensively in the problem domain together with particular modifications and 

hybridization. 

 

Electricity consumption data of numerous customers that are collected at hourly intervals 

by AMR devices over long periods are stored in centralized databases of electricity 

distribution companies. These vast amounts of data can be used to generate crucial 

information that provides the basis for developing business strategies and planning 

electricity usage through processing with suitable techniques. 

 

In this study, a prototype framework that is capable of preparing and clustering data, 

evaluating clusters, classifying cluster-representing load profiles and deploying related 

applications is proposed. 

 

Data preparation step focuses on forming seasonal customer-representative load diagrams 

that summarize hourly consumption of the customer on a typical day in the corresponding 

season. Along with seasons, days of the week and holidays are used as data divisors, 

because they are among the loading conditions that effect consumption amounts and 

shapes.  

 

Data is prepared for further processing by filling missing feature values, detecting outliers 

and smoothing. Normalizing diagram features is necessary so that consumption shapes 

are the discriminating characteristics to be used in clustering. An alternative to 

normalization is using discriminative load shape indices such as measured impact of 

lunchtime over daily average consumption or night impact, which assess consumption 

behaviors at particular periods during a typical day  

 

Various methods are described to cluster representative load diagrams. Included 

algorithms are analyzed within six families composing of K-means family, Hierarchical 

family, Fuzzy clustering, ISODATA, Follow-the-Leader clustering and SOM clustering.  

 

Families of algorithms have distinct mechanisms that enable them to cluster data sets. K-

means family algorithms require exact number of clusters, which are initialized and then 

refined iteratively in successive cycles. Fuzzy clustering imposes a soft clustering of data 
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points via computing a fuzzy degree-of-belonging matrix. ISODATA clustering does not 

require number of clusters to function, yet it uses successive merges or splits depending 

on its several parameters until some desired number of clusters are generated.  

 

Follow-the-Leader clustering does not require exact information of number of clusters nor 

does it perform cluster initialization. The algorithm traverses data points iteratively and 

forms clusters depending on an operating distance threshold. Hierarchical clustering 

arranges data points into singleton clusters and iteratively merges clusters according to a 

distance function until cutoff is reached. Finally, SOM clustering projects data points into 

a 2-D lattice having fewer nodes than the size of the data set and then calls another 

clustering algorithm to partition the map.  

 

Three distance measures are used as heuristics that guide clustering algorithms: Euclidean 

distance metric, weighted Euclidean distance and hybrid Pearson distance. In particular 

algorithms, the first two measures are used in squared forms. Hybrid Pearson distance 

takes into consideration Euclidean distance along with correlation so that shape of 

consumption contributes to computed distance. In most of the cases, hybrid Pearson 

measure performs as well as Euclidean metric and in particular cases the hybrid measure 

outperforms the latter. On the other hand, performance of weighted Euclidean distance 

tends to be inferior compared to other measures. A future study regarding distance 

heuristics shall include learning weights to be used distance computations, since pre-

defined weights have been shown not to necessarily increase performance quality. 

 

Point symmetry distance heuristic is also covered in the study as an alternative to the 

described distance measures in Similarity-Based K-means clustering algorithm, showing 

that genuine measures of distance and similarity can be devised by using mathematical 

constructs that are not extensively employed in data mining. 

 

Generated clusters are evaluated for quality of performance by validity indices. More 

compact and well-separated clusters are considered to have higher quality. Evaluation of 

algorithms through their products has revealed that superiority of an algorithm over 

another cannot be proven, yet general tendencies can be discussed. Distinct methods yield 

their best performance at differing number of clusters, which may be assessed changeably 

depending on the goals of performed load profile classification. Therefore, testing 

numerous methods over a data set is essential in discovering the clustering that fits best to 

both objective and subjective purposes. 

 

Running time complexity of algorithms is a severe issue that needs attention. If the 

proposed framework is intended to be applied on massive data sets, used algorithms 

should convergence in reasonable time just like they should produce high-quality 

clustering. All clustering methods are evaluated for elapsed running times and scalability 

tendencies.  
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Parallel versions of algorithms are studied as a way of decreasing running times in the 

example of K-means clustering. Hybrid Hierarchical–K-means and Hierarchical–Follow-

the-Leader algorithms are designed as scalable alternatives to the original Hierarchical 

methods that are just as accurate and attain substantially less running times on larger data 

sets. Effect of reducing data size as in case of SOM clustering is also discussed as means 

of reducing total running times, yet at the expense of reduced accuracy. 

 

The effect of number of iterations until convergence on the scalability to larger data is not 

included within the scope of this study. Algorithmic improvements such as using single-

pass algorithms in massive data sets are necessary to obtain absolutely scalable clustering.  

 

Classification of load diagrams composed of hourly features or load shape indices by 

using cluster names as labels puts forward the adequacy of shape indices in explaining 

consumption styles. For most cases, adequacy evaluation of load shape indices has 

yielded closer results to that of actual load features. 

 

Classification of load diagrams paves the way for customer recognition that makes it 

possible to correctly classify new customers and customer-specific tariff design that 

offers the possibility of designing various business strategies that have consequences on 

both the company-side and the customer side. Foundations for load forecasting and fraud 

detection are also discussed among deployable applications that make use of load 

profiling. 

 

Considering future studies, several improvements can be realized in each sub-step 

covered. More comprehensive data preparation requires more sophisticated treatment of 

missing attributes and detecting outliers. Moreover, modeling external conditions such as 

temperature throughout the year is obligatory to filter out the climate effect from 

consumption data in order to arrive at annual frameworks that come handy in applications 

such as forecasting revenues and consumption amounts. 

 

Numerous clustering algorithms in the literature can be tested on the proposed 

framework. Improvements over the performance of clustering algorithms can be attained 

through designing hybrid algorithms and employing other distance metrics. 

 

Access to data having vast amounts of instances and collected over several years is the 

most crucial ingredient for future studies. Processing large amounts of data will give a 

more concrete idea about quality of performance and scalability of algorithms. Proposed 

modifications to popular clustering algorithms and designed hybrid methods require to be 

tested on new consumption data sets. 

 

Load forecasting and fraud detection applications demand data collected over several 

years so that continuous monitoring can be emulated by building up and testing models 

over seasonal profiles of distinct years. In addition to this, all applications based on load 

profiling necessitates collaboration among specialist from several domains including 
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national energy policy, macroeconomics and sensor technology so that the end product 

could actually take place in the market. 

 

Framework proposed in this study offers the generality so that it can be applied to similar 

problem domains such as telecommunications and natural gas as long as corresponding 

data is measured within a pre-defined time interval. Although particular modifications are 

obligatory, cross-appliance of the framework shall make it possible to discuss 

characteristics of problem domains. Furthermore, exchange of ideas regarding 

classification and application deployment may result in collective enhancements. 

 

As a summary, this study has shown the potentials of load profiles classification and 

advocates the use of such a framework in electricity domain in order to develop 

sophisticated solutions to encountered problems. 
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