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ABSTRACT

THE INPUT/OUTPUT MECHANISM OF CHAOS GENERATION

Fen, Mehmet Onur
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Marat Akhmet

September 2013, 134 pages

The main objective of this thesis is to develop a new method for chaos genettatimgh
the input/output mechanism on the basis of differential and discrete egsiatiothe thesis,
this method is applied to various models in mechanics, electronics, meteorologearal
networks. Chaotic sets of continuous functions as well as the concetite génerator and
replicator of chaos are introduced. Inputs in the form of both continundggecewise con-
tinuous functions are applied to arbitrarily high dimensional systems with stgbikbeium
points, and it is rigorously proven that the chaos type of the inputs is the saifte tne
outputs. Our theoretical results are based on the chaos in the senseaaelpd i-Yorke and
the one obtained through period-doubling cascade. Besides, replicatgil’'nikov orbits,
intermittency and the form of the bifurcation diagrams are investigated in thesgisen form.
Itis shown that the usage of chaotic external inputs makes the dynamtusrdfrey inhibitory
cellular neural networks exhibit chaotic motions. Moreover, the presehchaos in the dy-
namics of the Duffing oscillator perturbed with a relay function is demonstraedels, in
which the Lorenz system, shunting inhibitory cellular neural networks arftirigy oscillators
are utilized as generators, are considered. Extension of chaos irclogies of Chua circuits
and quasiperiodic motions as a possible skeleton of a chaotic attractoradésalsssed. The
controllability of the replicated chaos is theoretically proven and actualizeddans of the
OGY and Pyragas control methods.

Keywords: Replication of Chaos, Continuous Chaos, Chaotic Models andfecs and Elec-

tronics, Shunting Inhibitory Cellular Neural Networks, Control of the Reped Chaos



Oz

KAOS URETIMININ GIRDI/CIKTI MEKAN IZMASI

Fen, Mehmet Onur
Doktora, Matematik Bolimi
Tez Yoneticisi : Prof. Dr. Marat Akhmet

Eylil 2013, 134 sayfa

Bu tezin asil amaci diferansiyel ve ayrik denklemler bazinda girdi/¢cikt nizkes aracili-
giyla kaos uretimi icin yeni bir metodun gelistiriimesidir. Bu metot tezde, mekazidk-
tronik, meteoroloji ve sinir glarinda cesitli modellere uygulanmistir. Kaosun Ureticisi ve
cogalticisi kavramlarinin yani sira sirekli fonksiyonlarin kaotik kiimeleri aetitanistir.
Surekli ve parcal surekli fonksiyon formatindaki girdiler, kararingde noktalarina sahip
keyfi yukseklikte boyutu olan sistemlere uygulanmistir ve girdilerin kaos tipirinlgrinki

ile ayni oldwgu kesin olarak ispatlanmistir. Teorik sonuglarimiz Devaney, Li-Yorkedghn
ve periyot-giftlenmesi ¢atallanmasi ile meydana gelen kaos tipine dayanmakiwhun
yani sira, Shil'nikov yoériingelerinin, kesintili kaosun ve catallanma digiadarinin replikas-
yonlari tartisma formatinda incelenmistir. Kaotik harici girdilerin kullanilmasmanevra
engelleyici hiicresel sinirgdarinin dinamginin kaotik hareketler meydana getirmesinglsa
dig1 gosterilmistir. Ayrica, bir réle fonksiyonuyla etkilenmig Duffing osildtdin dinamgin-

de kaosun vard ispat edilmistir. Lorenz sistemlerinin, manevra engelleyici hiicresel sin
aglarinin ve Duffing osilatérlerinin Uretici olarak kullaniidimodeller ele alinmistir. Chua
devrelerinin agik zincirlerinde kaos genislemesi ve yari-periyodikketterin bir kaotik ce-
kicinin muhtemel bir iskeleti olmasi ayrica tartisiimistir. Replike edilen kaosair@l edile-
bilirli gi teorik olarak ispatlanmistir ve OGY ve Pyragas kontrol metotlari yardinhgyata
gecirilmigtir.

Anahtar Kelimeler: Kaosun Replikasyonu, Sirekli Kaos, Mekanik ve tEdeikte Kaotik

Modeller, Manevra Engelleyici Hicresel Sinighari, Replike Olan Kaosun Kontrolu
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CHAPTER 1

INTRODUCTION

The main subject of this thesis is chaos. Since the literature on the subjet icche we are

not original. In the same time, we consider in this thesis chaos as beingufor differential
equations. Formally speaking, we insert chaos in the right-hand-side efgilations. This

is what makes our studies a unique one among all others in the literature a@nencember

that standardly, chaos is formed by solutions of discrete equations derkdifal equations.
That is, chaos is an output with respect to these systems. One can cofusidgample, the
Lorenz system, the Duffing’s oscillator and the Chua circuit. Another lhoeé this thesis

is that we describe expansion of chaos on the basis of the input-outpuanigchby using

the concept ofnorphogenesito emphasize that the expansion keeps geometrical properties
of chaos.

Let us describe the importance of the input-output mechanism in chaossisnfiy both
theory and applications:

1. In the theory of dynamical systems, a large number of results use in theiul@tion
the input-output mechanism. For example, there are many theorems, whidie can
loosely formulated as follows: if the perturbation is periodic (bounded, dlimes-
odic), then there is a unique periodic (bounded, almost periodic) solMierpropose
to consider in our results the following implication to be considered: if the daatiom
is chaotic, then there is a chaos in the set of solutions. Thus, one carasaythmain
proposal is to return investigation of chaos into the main stream of classicahdcal
systems and, consequently, a huge number of rigorous mathematical metnoes-
ical instruments and applications, which rely on the mechanism, will now be iegolv
for investigation of chaotic processes.

2. Despite the fact that many distinguished specialists in chaos theory and matisema
have been involved in the investigation, there are still many challenging pnslie-
lated to origins of the chaotic theory: we do not have rigorously approteds in
Lorenz systems, Duffing equations and other systems. Hopefully, thé-dnpout
mechanism will give new opportunities for the analysis of the basic modelsslis w
as help to revise the theory of chaos. We believe that exploration of theamisohin
considered models can give mathematical clarity there.



3. The mechanism can become a strong instrument in applications to real wabld s
through modeling the expansion of chaos. We hope that unpredictabilityeafiwer
and irregularity as a global phenomena will be reflected in mathematical irvgstg
more comprehensively. This is true not only for atmospheric procebaéslso for
any large systems in economic theory, biology, neural networks and ¢engmiences.
Utilization of the input-output mechanism in cryptography and decipheriatsdeay
give effective results, too. The input-output mechanism is very pogolainstance, in
mechanics, chemistry, biology, cryptography, etc. Consequently,amsuppose that
what we suggest has to be realized immediately for these real world prablems

The studies mentioned here are attractive, in the mathematical sense, sitieeffst time
we have introduced what we understand as chaos for systems with augitime. This
may give a push for functional analysis of chaos to involve the operagorytresults, etc.
Hopefully, our approach will give a basis for a deeper comprehemsidrpossibility to unite
different appearances of chaos. In this framework, we also hopththeesults can be devel-
oped for partial differential equations, integro-differential equatidasctional differential
equations, evolution systems, etc.

The content of this thesis is a good background for applications in mechaiotogy, molec-
ular biology, physiology, pharmacology, secure communications, neataiorks, and other
real world problems involving complex behavior of models. Since chaosesept every-
where, we can say that our results are applicable in any field, wheeeatiffal equations and
difference equations are utilized as models.

1.1 Chaotic Dynamical Systems

The theory of dynamical systems starts with H. Poincaré, who studied nantiiféerential

equations by introducing qualitative techniques to discuss the globalrtiespef solutions
[64]. His discovery of the homoclinic orbits figures prominently in the studieshaotic

dynamical systems. Poincaré first encountered the presence of hamodtiits in the three
body problem of celestial mechanics [22]. A Poincaré homoclinic orbit ierhit of inter-

section of the stable and unstable manifolds of a saddle periodic orbit. Itad s&ructurally
stable if the intersection is transverse, and structurally unstable or a horadahigency if
the invariant manifolds are tangent along the orbit [81]. In any neididmm of a structurally
stable Poincaré homoclinic orbit there exist nontrivial hyperbolic set¢agtng a count-
able number of saddle periodic orbits and continuum of non-periodic Gtostsable orbits
[81, 204, 206]. For this reason, the presence of a structurally stabiedé homoclinic orbit
can be considered as a criterion for the presence of complex dynart]cs [8

The first mathematically rigorous definition of chaos is introduced by Li aoikéer [134]
for one dimensional difference equations. According to [134], a coatie mag- : J — J,
whereJ C R is an interval, exhibits chaos if: (i) For every natural numbpethere exists
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a p—periodic point ofF in J; (ii) There is an uncountable s&tC J containing no periodic
points such that for everg;,s, € Swith s; # s, we have limsup.,., |[F¥(s1) — F¥(sz)| > 0
and liminfi,. |[F¥(s1) — FX(sp)| = O; (iii) For everys € Sand periodic poins € J we have
limsup,_,. |FX(s) —FX(s)| > 0.

Generalizations of Li-Yorke chaos to high dimensional difference equatiere provided in

[20, 120, 133, 143]. According to results of [143], if a repelling fixamnt of a differentiable

map has an associated homoclinic orbit that is transversal in some semstelmeap must
exhibit chaotic behavior. More precisely, if a multidimensional differentiatdgy has a snap-
back repeller, then it is chaotic. Marotto’s Theorem was used in [133jaeerigorously the

existence of Li-Yorke chaos in a spatiotemporal chaotic system. Furthesiihar notion of

Li-Yorke sensitivity, which links the Li-Yorke chaos with the notion of sew#iyi was studied

in [20], and generalizations of Li-Yorke chaos to mappings in Banachespaicd complete
metric spaces were considered in [120].

Another mathematical definition of chaos for discrete-time dynamics was irteddoy De-
vaney [64]. According to [64], a map : J — J, whereJ C R is an interval, has sensitive
dependence on initial conditions if there exidts- O such that for anx € J and any neigh-
borhoodN of x there existy € J and a positive integdrsuch thatF¥(x) — F¥(y)| > 8. Onthe
other handF is said to be topologically transitive if for any pair of open d8t¥ C J there
exists a positive integet such thatf*(U) NV # 0. According to Devaney, a map : J — J

is chaotic onJ if: (i) F has sensitive dependence on initial conditions; (ii) F is topologically
transitive; (iii) Periodic points of are dense in J. In other words, a chaotic map possesses
three ingredients: unpredictability, indecomposability and an element ofarégu

Symbolic dynamics, whose earliest examples were constructed by Had@@patd Morse
[156], is one of the oldest techniques for the study of chaos. Symbadiiardical systems are
systems whose phase space consists of one-sided or two-sided infipiemses of symbols
chosen from a finite alphabet. Such dynamics arises in a variety of situatimhsas in
horseshoe maps and the logistic map. The set of allowed sequencesianinwvader the shift
map, which is the most important ingredient in symbolic dynamics [64, 84, 92 2BR, 233].
Moreover, it is known that the symbolic dynamics admits the chaos in the sérsw®ho
Devaney and Li-Yorke [8, 10, 12, 64, 179].

The Smale Horseshoe map is first studied by Smale [207] and it is an exanapdifefomor-
phism which is structurally stable and possesses a chaotic invariandsdtl[p, 233]. The
horseshoe arises whenever one has transverse homoclinic orbitthasase of the Duffing
equation [85]. People used the symbolic dynamics to discover chaosebauppose that it
can serve as an “embryo” for the morphogenesis of chaos.

From the mathematical point of view, chaotic systems are characterized dyinetability
and uniform boundedness of the trajectories. Since local instability of arlgystem implies
unboundedness of its solutions, chaotic system should be necessaliheao[76]. Chaos in
dynamical systems is commonly associated with the notion of a strange attréutdr,isvan



attractive limit set with a complicated structure of orbit behavior. This termimtezduced by
Ruelle and Takens [183] in the sense where the word strange means thelihdssa fractal
structure [81]. The dynamics of chaotic systems are sensitive to smaltlpertns of initial
conditions. This means that if we take two close but different points in theep$ace and
follow their evolution, then we see that the two phase trajectories startingtfrese points
eventually diverge [64, 89]. The sensitive dependence on the initraditon is used both
to stabilize the chaotic behavior in periodic orbits and to direct trajectories ¢sieed state
[196].

It was Lorenz [137] who discovered that the dynamics of an infinite dimeassystem be-
ing reduced to three dimensional equation can be next analyzed in its chppgarances
by application of the simple unimodal one dimensional map. Smale [207] expldiatthe
geometry of the horseshoe map is underneath of the Van der Pol egsiatbomplex dynam-
ics which was investigated by Cartwright and Littlewood [48] and later byirisan [131].
Nowadays, the Smale horseshoes with its chaotic dynamics, is one of thensasiments
when one tries to recognize a chaos in a process. Guckenheimer and WiBiahazave a
geometric description of the flow of Lorenz attractor to show the structtahlliy of codi-
mension 2. In addition to this, it was found out that the topology of the Loedtractor
is considerably more complicated than the topology of the horseshoe [8&edver, Levi
[130] used a geometric approach for a simplified version of the Van derquation to show
the existence of horseshoes embedded within the Van der Pol map andenloarskshoes fit
in the phase plane.

1.2 The Input/Output Mechanism of Chaos and Morphogenesis

Itis naturalto discover a chaog2, 96, 134, 137, 143, 145, 175, 180, 181, 183, 186, 189, 200,
215], and proceed by producing basic definitions and creating theyth@arthe other hand,
one carshapean irregular process by inserting chaotic elements in a system which hearreg
dynamics (let us say comprising an asymptotically stable equilibrium, a globattatiratc).
This approach to the problem also deserves consideration as it may atlawnire rigorous
treatment of the phenomenon, and helps to develop new methods of investigatioresults

are of this type.

In this thesis, we use the idea that chaos can be used as input in systequatidres. To ex-
plain the input-output procedure which is realized in our study, let usggiviéicular examples
of systems used in the thesis. Consider the following system of differeqtiatiens,

dx
= = B(x). 1.1

gt ~ B (1)
The system (1.1) is callethe base-systemWe assume that the system admits a regular
property. For example, there is a globally asymptotically stable equilibrium.bj.(Next,

we apply to the system a perturbatiditt), which will be called aninput and obtain the
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following system,
dx _
dt

which will be called as theeplicator system.

B(X) +1(t), (1.2)

Suppose that the inplitadmits a certain property, let us say, it is a bounded function. We
assume then that there exists a unique solusi@n, of the last equation, the replicator, with
the same property of boundedness. This solution is consideredaagpn The process for
obtaining the solutiorx(t) of the replicator system by applying the perturbatidh to the
base-system (1.1) is called thgput-output mechanispand sometimes we shall call it the
machinery It is known that for certain base-systems, if the input is periodic, alnergbgic,
bounded, then there exists an output, which is also periodic, almost pettiadinded. In
this thesis, we consider inputs of the new nature: chaotic sets and chauttmfis. The
motions which are in the chaotic attractor of the Lorenz system considergethlés provide
us an example of a chaotic set of functions. Any element of this set is @radids a chaotic
function. Both of these types of inputs will be used in our study effectivéty prove rig-
orously, by verification of all ingredients, that there exists a certain typhaos generated
by the input-output mechanism, we use the concept of the chaotic set. Fdatsimsi we
shall use inputs in the form of chaotic functions. The diagram in Figure 1dtridites the
input-output mechanism schematically. We have to say that in the figure thel iopo be a
set of functions as well as a single function. The same is true for the output,

l I(t)

=
\J

x(t)

System
(1.2)

Figure 1.1: The input-output mechanism.

The main source of chaos in theory are difference and differentiaties. For this reason
we consider inputs, which are solutions of some systems of differentiatiegs or discrete
equations. These systems will be caltgmheratordn this thesis.

Thus, we can consider the following system of differential equations,

dz_

Fri G(z2), (1.3)



and it is assumed that this system possesses chaos. We shall call this @gsteerator If
z(t) is a solution of the system from the chaotic attractor, that is, it is a chaotic suolttien
we notatd (t) = z(t) and use the functioh(t) in the equation (1.2).

In this thesis, we have proved rigorously that the output is of the same fyg®os as the
input if base-systems are with globally asymptotically stable equilibriums. We esetitept
of morphogenesis for two reasons. First of all, morphogenesis is ommigo describe how
the input-output mechanism works if chaos is an input. Secondly, it previdermation
about the structure of the chaos-output, if one knows the structure ofitas-input. We give
a full description of the chaos expansion as morphogenesis, if batsysy are linear and
with constant matrices of coefficients.

The term morphogenesis is used issuing from the sense of the maogd meaning “form”
andgenesigneaning “creation”. This is similar to the idea such that morphogenesis is used
in fields such as urban studies [58], architecture [182], mechani&, [2emputer science
[36], linguistics [91] and sociology [25, 45]. Morphogenesis in this ihésunderstood in

this weak sense, and mechanism of the replication is simple. In discussiomwiconsider
inheritance of intermittency, the double-scroll Chua’s attractor and qeréaiical motions

as a possible skeleton of a chaotic attractor. We make comparison of the me@ptof our
study with Turing’s morphogenesis [223] and John von Neumann autofr&Q§ Fonsidering

that this may not be only a formal comparison, but will give ideas for theskiavelopment

in the morphogenesis of Turing and for self-replicating machines.

We propose a rigorous identification method for replication of chaos frpnbaone to sys-
tems with large dimensions. Extension of the formal properties and feathieesamplex
motion can be observed such that ingredients of chaos united as knossdiphaos, De-
vaney's, Li-Yorke and others. This is true for other appearanceshabs: intermittency,
structure of the chaotic attractor, its fractal dimension, form of the bifimealiagram, the
spectra of Lyapunov exponents, etc.

In our theoretical results of chaos extension, we use coupled systentmcin thhe generator
influences the replicator in a unidirectional way, that is, the generatectafthe behavior of
the replicator, but not the converse. The possibility of making use of maneahe replicators
and nonidentical systems in the machinery is an advantage of the procédlurne other
hand, contrary to the method that we present, in the synchronization afickgstems, one
does not consider the type of the chaos that the master and slave systeing ad problem
that whether the synchronization of systems implies the same type of chdustifiomaster
and slave has not been taken into account yet.

The concept of morphogenesis is considered carefully only in the det@pter of the thesis,
for systems with stable equilibrium, since for systems with stable equilibriums alhiherk
ingredients of chaos are proper.



1.3 Synchronization of Chaotic Systems

One of the usage areas of master-slave systems is the study of synatiooni# chaotic sys-
tems|[1, 3, 82,100, 122, 168, 184]. In 1990, Pecora and Car@# [ealized that two identi-
cal chaotic systems can be synchronized under appropriate unidigdatamipling schemes.
Consider the system

X = G(x), (1.4)

as the master, whevec RY, such that the steady evolution of the system occurs in a chaotic
attractor. The dynamics of the slave system is governed by the equation

y =H(xy). (1.5)

When the unidirectional drive is established, suppose that the rightdidadf equation (1.5)
satisfies that

H(x,y) = G(X), (1.6)

for y = x, and the slave system takes the form

which is a copy of systeml.4), in the absence of driving. In unidirectional couplings, the
signals of the master system acts on the slave system, but the conversgug nbtoreover,
this action becomes null when the two systems follow identical trajectories T82] contin-
uous control scheme [67, 113] and the method of replacement of vari@dlel169] can be
used to obtain couplings in the form of the systéh#) + (1.5). Synchronization of a slave
system to a master system, under the conditib), is known as identical synchronization,
and it occurs when there are sets of initial datac R and%, c RY for the master and slave
systems, respectively, such that the equatioplim|x(t) — y(t)|| = 0 holds, wheréx(t), y(t))

is a solution of systenil.4) + (1.5) with initial data(x(0),y(0)) € %x x .

In paper [4], Afraimovich et al. proposed the synchronization of thaystems that are dif-
ferent and not restricted in coupling. To realize this proposal, RulkaV. ¢184] considered
the concept of generalized synchronization for unidirectionally coupfstems.

Consider the unidirectionally coupled systéfin4) + (1.5) such that the dimensions of the
master and slave systems af@ndr, respectively. Generalized synchronization [1, 3, 82,
100, 122, 184] is said to occur if there exist sgfg C RY, %y C R" of initial conditions
and a transformatiogy, defined on the chaotic attractor of (1.4), such that fox@) € Ay,
y(0) € #y the relation

lim [[y(t) —@(x(t))[ =0 (1.8)

t—oo
holds. In this case, a motion that starts@h x %, collapses onto a manifolel C Ay x %y
of synchronized motions. The transformatigris not required to exist for the transient tra-
jectories. Generalized synchronization includes the identical synclatmnzas a particular
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case. That is, ifp is the identity transformation, then identical synchronization takes place.
The paper [100] deals with the case when the transformatiendifferentiable.

According to Kocarev and Parlitz [122], generalized synchronizatamuis in the dynamics
of the coupled systerti.4) + (1.5) if and only if for all xo € %y, Y10,Y20 € Sy, the criterion

tlm [|y(t, %o, Y10) — Y(t, X0, Y20)|| = O (1.9

holds, wherey(t, X0, Y10), Y(t, X0, Y20) denote the solutions of the slave system (1.5) with the
initial datay(0,Xo,Y10) = Y10, ¥(0,X0,Y20) = Y20 and the samg(t), x(0) = Xo.

As a consequence of generalized synchronization, the behavior siatiesystem (1.5) can
be predicted by the knowledge of the trajectories of the master system (itl4he trans-
formation . The master system is also predictable from the slave systgmisifinvertible
[122].

1.4 Control of Chaos

The idea of chaos control is based on the fact that chaotic attractoesahsikeleton made
of an infinite number of unstable periodic orbits [64, 82, 89, 114, 195hbifity can be
described as the ability of a system to keep itself working properly even wheurbations
act on it, and this is the main goal to be achieved by the control strategy thabisdeled
in the system [195]. In other words, the aim of chaos control is to stabiligee@ously
chosen unstable periodic orbit by means of small perturbations applied $gstem, so the
chaotic dynamics is substituted by a periodic one chosen at will among thalsavailable
[82]. That is, when control is present, a chaotic trajectory transfortesarperiodic one
[76]. Experimental demonstrations of chaos control methods werergiegsan the papers
[30, 32, 35, 68, 80, 94, 150, 194].

Small perturbations applied to control parameters can be used to stabilag kbaping the
parameters in the neighborhood of their nominal values, and this idea imficeduced by
Ott, Grebogi and Yorke [163]. Experimental applications of the OGY abntethod requires
a permanent computer analysis of the state of the system. The method deal$wiitttaré
map and therefore, the parameter changes are discrete in time. Using thisl hogtbaan
stabilize only those periodic orbits whose maximal Lyapunov exponent is sorafhared to
the reciprocal of the time interval between parameter changes [177{héncontrol method
has been developed by Pyragas [177] to stabilize unstable periodicapplisng small time
continuous control to a parameter of a system while it evolves in continuougitistead of
a discrete control at the crossing of a surface [82]. Pyragas ¢onéthod uses a delayed
feedback employing a suitably amplified difference of an output measuterhtre chaotic
system and the respectively delayed measurement for control. Thelcigtral vanishes in
the post-transient behavior for the stabilized orbit. For this reason, thg tikme has to be
the exact value of the period of the unstable periodic orbit that will be stabi[i@7]. Both
of the OGY and Pyragas control methods will be utilized in the thesis.
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1.5 Neural Networks and Chaos

The chaos phenomenon has been observed in the dynamics of néwalksd5, 6, 77, 86,
126, 158, 159, 176, 201, 205, 220, 231], and chaotic dynamics iagphg external inputs
are useful for separating image segments [201], information proced$B8g159] and syn-
chronization of neural networks [136, 140, 240]. Aihara et. al. [@jpesed a model of a
single neuron with chaotic dynamics by considering graded respoesasye refractoriness
and spatio-temporal summation of inputs. Chaotic solutions of both the singlechauron
and the chaotic neural network composed of such neurons were deatedsiumerically in
[6]. Focusing on the model proposed in [6], dynamical properties bbatic neural network
in chaotic wandering state were studied concerning sensitivity to extepwhbiim [126]. On
the other hand, in the paper [201], Aihara’s chaotic neuron model aséhe fundamental
model of elements in a network, and the synchronization characteristicsparnse to exter-
nal inputs in a coupled lattice based on a Newman-Watts model are investiBatdes, in
the studies [158, 159], a network consisting of binary neurons whiamotidisplay chaotic
behavior is considered, and by means of the reduction of synaptic civities it is shown
that the state of the network in which cycle memories are embedded reveali ehander-
ing among memory attractor basins. Moreover, it is mentioned that chaotiewag@dmong
memories is considerably intermittent. Chaotic solutions to the Hodgkin-Huxlesgtieqa
with periodic forcing have been discovered in [5]. The paper [86] mtdis the existence of
chaotic solutions in the Hodgkin-Huxley model with its original parameters. malydical
proof for the existence of chaos through period-doubling cascadelisceete-time neural
network is given in [231], and the problem of creating a robust chaatigal network is
handled in [176].

1.6 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we propose a rigorous method for replication of chaos &grior one to
systems with arbitrary large dimensions. Extension of the formal propemnig@deatures
of a complex motion can be observed such that ingredients of chaos usitetban types
of chaos, Devaney'’s, Li-Yorke and obtained through period-doghiascade. This is true
for other appearances of chaos: intermittency, structure of the chattictar, its fractal
dimension, form of the bifurcation diagram, the spectra of Lyapunovmepis, etc. That is
why we identify the extension of chaos through the replication as morplesgero provide
rigorous study of the subject, we introduce new definitions such as clsmtsiof functions,
the generator and replicator of chaos, and precise description oflingts for Devaney and
Li-Yorke chaos in continuous dynamics. Appropriate simulations which illtesttee chaos
replication phenomenon are provided. Moreover, in discussion formonsider inheritance
of intermittency, replication of Shil'nikov orbits and quasiperiodical motions gmssible
skeleton of a chaotic attractor. Chaos extension in an open chain of @Qloudscis also
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demonstrated.

Chapter 3 deals with the Duffing equation forced with a pulse function, &noements
of discontinuity depend on the initial data. Existence of the chaos througbdpgoubling
cascade is proved, and the OGY control method is used to stabilize theipesidations.
Appropriate simulations of the chaos and stabilized periodic solutions aserjesl.

Taking advantage of external inputs, it is shown in Chapter 4 that shuntiifgtory cellu-
lar neural networks (SICNNs) behave chaotically. This is the first timeé&ttaeoretically
approved chaos is obtained in SICNNs. The analysis is based on thekéa-¥efinition of
chaos. We develop the concept of Li-Yorke chaos to continuous and imdtidional dynam-
ics of SICNNSs. Appropriate illustrations which support the theoreticalltesare depicted.

The last chapter of the thesis is devoted to conclusions and possibledtudies. Moreover,
a comparison of the synchronization theory of chaotic systems and replictichaos is
mentioned.
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CHAPTER 2

REPLICATION OF CHAOS

2.1 Introduction

It is known that if one considers the evolution equatibe- L[u] +1(t), whereL[u] is a linear
operator with spectra placed in the left half of the complex plane, then &duari¢t) being
considered as amput with a certain property (boundedness, periodicity, almost periodic-
ity) produces through the equation thatput a solution with a similar property, bounded-
ness/periodicity/almost periodicity [54, 75].

A reasonable question appears whether it is possible to use as inputti chation and to

obtain output also as a chaos of certain type. Our study is devoted to ratigsvguestion

even if the input is inserted non-linearly. One must say that we consider iaput first of all

a single function, a member of a chaotic set to obtain a solution, which is a mefreratber

chaotic set. Beside that we consider the chaotic sets as the input and thie Wéeave been
forced to consider sets of functions as inputs and outputs, since Bewahé Yorke chaos

are indicated through relation of motions (sensitivity, transitiveness,jmpedity). Thus, we

consider the input and the output not only as single functions, but alsallastions of func-

tions. The way of our investigation is arranged in the well accepted traditioaidematical

fashion, but with a new and a more complex way of arrangement of theecbons between
the input and the output.

Since the concept of chaos is much more complex than just single periodimastgperiodic
solutions, we have to use a special terminology for the chaos generatougihthe input-
output mechanisnrgplication of chaos

The technique of the replication used in this chapter is as follows. We neroi@ef chaotic
inputs, but mostly chaos can be obtained through solving differential ferelifce equations.
For this reason, we use special generator systems as the source®bclchaotic functions.
Nevertheless, we emphasize that the generator is not necessarily theteléthe replication
procedure since it can be replaced by another source of a chaoti¢ amglin applications
present result may be considered with, for example, chaotic inputs othfaime experimental
activity. So, initially, we take into account a system of differential equat{tims generator)
which produces chaos, and we use this system to influence in a unidiedatiay, another
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system (the replicator) in such a manner that the replicator mimics the sameiemgseaf
chaos provided to the generator. In the present chapter, we usénguetiients in the form
of period-doubling cascade, Devaney and Li-Yorke chaos. Forttity of the subject, we
introduce new definitions such as chaotic sets of functions, the genaradaeplicator of
chaos, and precise description of ingredients for Devaney and lieYciaos in continuous
dynamics.

Throughout the chapter, the generator will be considered as a systemform
X =F(t,x), (2.1)

whereF : R x R™ — R™Mis a continuous function in all its arguments, and the replicator is
assumed to have the form

whereg: R™x R" — R" is a continuous function in all its arguments, the constenn real
valued matrixA has real parts of eigenvalues all negative and the fungfigris a solution of
system (2.1). The generator-replicator cougkel) + (2.2), will be called in the remaining
parts of the chapter as tiesult-system

Now, to illustrate the replication mechanism discussed in our study, let ugdeottise fol-
lowing example. For our purposes, as the generator we shall take irdordadbe Duffing’s
oscillator represented by the differential equation

X" +0.05¢ +x3 = 7.5cod. (2.3)

It is known that equation (2.3) possesses a chaotic attractor [218]nibgfihe variables
X1 = xandx; = X, equation(2.3) can be reduced to the system

Xy = X2
; 3 (2.4)
Xy = —0.05% — X7 + 7.5co4.
Next, let us consider the following system
X3 = X4 +Xq(t) 2.5)

X, = —3x3 — 2X4 — 0.008S + Xo(t).

In this form system (2.5) is a replicator. One has to emphasize that the lingaofhe
associated with (2.5) non-perturbed system

X5 = Xa

2.6
X, = —3xg — 2x4 — 0.008¢, o

has eigenvalues with negative real parts and does not admit chaos.

Figure 2.1 shows the trajectory of system (2.6) witf0) = —2 andx4(0) = 1. It is seen in
the figure that the behavior of the solution is non-chaotic.
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Figure 2.1: The trajectory of system (2.6) wik$(0) = —2 andxs(0) = 1.

To visualize the process of replication by the result-sys(@#,) + (2.5), let us consider the
Poincaré sections of the both. By marking the trajectory of this system with itied thata
x1(0) = 2, x2(0) = 3, x3(0) = —1, x4(0) = 1 stroboscopically at times that are integer multi-
ples of 21, we obtain the Poincaré section and in Figur, 2vhere the chaos replication is
apparent, we illustrate its-2limensional projections. Figure2(a) represents the projec-
tion of the Poincaré section on the — x, plane, and we note that this projection is in fact
the strange attractor of the generator sys{@m). On the other hand, the projection on the
X3 — X4 plane presented in Figure2 (b) is the attractor corresponding to the replicator sys-
tem (2.5). One can see that the attractor indicated in Fig2g2) repeated the structure of
the attractor shown in Figure2 (a) and this result is a manifestation of the replication of
chaos. One has to think about mathematical aspects of this phenomena andgtumdy we
handle this problem.

-2

-4

15 2 25 3 35 1 15 2 25 3

Figure 2.2: The picture in (a) represents not only the projection of thdenditractor on
thex; — %o plane but also the strange attractor of the generator. In a similar way, toeepic
shown in (b) represents the chaotic attractor of the replicator. Themegsehaotic attractors
of the generator and the replicator systems reveal that the chaos repliv&thanism works
consummately.
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In our theoretical results, we use coupled systems in which the generfétenices the repli-
cator in a unidirectional way. In other words, the generator affectsehawior of the repli-
cator counterpart in such a way that the solutions of the generatoreateaasan input for the
latter. The possibility of making use of more than one replicator systems withaailyitnigh
dimensions in the extension mechanism is an advantage of our procedureodr, we are
describing a process involving the replication of chaos which does ot @t the course of
time, but instead aimstantaneousone. In other words, the prior chaos is mimicked in all
existing replicators such that the generating mechanism works throwgtgarg connections
between systems not with the lapse of time.

Since we do not restrict ourselves in this chapter with a simple cahglegenerator-the
replicator, but get them in different combinations and numbers, having the geonestiaés
of chaos saved, we shall call the extension of chase@phogenesis

In our study, we try to use the term morphogenesis issuing from the sktiseveordsmorph
meaning “form” andgenesismeaning “creation” [62]. In other words, similar to the ideas
of Reré Thom [217], we employ the worthorphogenesias its etymology indicates, to de-
note processes creating form€One should understarmdorphogenesis of cha@s a form-
generating mechanism emerging from a dynamical process which is baseglwation of
chaos. Here, we accept the form (morph) not only as a type of chabalso accompanying
concepts as the structure of the chaotic attractor, its fractal dimensiompfdhe bifurcation
diagram, the spectra of Lyapunov exponents, inheritance of intermittetacy,

To understand the concept of our study better, let us consider maphbsig of fractal struc-
tures [141, 142]. It is important to say that Mandelbrot fractal strest@xhibit the appear-
ance of fractal hierarchy looking, that is,a part is similar to the whole. Examples for this
are the Julia sets [42, 152] and the Sierpinski carpet [170]. In ouplnogenesis both direc-
tions,in andout, are present. Indeed, the fractal structure of the prior chaos hasdiig
looking in, and the structure for the result-system is obtained considering higriaaking
out, that is, wherthe whole is similar to the part.

In our results, we do not consider the chaos synchronization problenwé say that the
type of the chaos is kephvariant in the procedure. That is why the classes which can be
considered with respect to thisvarianceis expectedly wider then those investigated for
synchronization of chaos. Since we do not request strong relatioa@utdance between
the solutions of the generator and the replicator in the asymptotic point of thewierms
masterandslaveas well adrive andresponsere not preferred to be used for the analyzed
systems. On the other hand, contrary to the method that we present, in tdhemyration of
chaotic systems, one does not consider the type of the chaos that theandstive systems
admit. The problem that whether the synchronization of systems implies the speefty
chaos for both master and slave has not been taken into account yet.

The phenomenon of the form recognition for chaotic processes haslglbegun in pioneer-
ing papers [48, 85, 87, 130, 131, 137, 207]. All these results saytaihaos recognition, by
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reducing complex behavior to the structure with recognizable chaos, $ [0, 11, 12, 13,
16, 17], we provide a different and constructive way when a reizegrchaos can be extended
saving the form of chaos to a multidimensional system. In the present stedyemeralize
the idea to the morphogenesis of chaos.

Nowadays, one can consider the development of a multidimensional cbaoa fow dimen-
sional one in different ways. One of them is the chaaotic itinerancy [102, 108, 109, 110,
190, 220, 221]. The itinerant motion among varieties of ordered stataggitagh dimen-
sional chaotic motion can be observed and this behavior is named as chaetianityn In
other words, chaotic itinerancy is a universal dynamics in high dimensdymamical sys-
tems, showing itinerant motion among varieties of low-dimensional ordered $tategh
high dimensional chaos. This phenomenon occurs in different redd \woocesses: optical
turbulence [102], globally coupled chaotic systems [107, 108], nailibqum neural net-
works [220, 221], analysis of brain activities [78] and ecologicatays [119]. One can see
that in its degenerated form chaotic itinerancy relates to intermittency [154, difice they
both represent dynamical interchange of irregularity and regularity.

Likewise the itinerant chaos observed in brain activities, we have low diowgischaos in
the subsystems considered and high dimensional chaos is obtained wheormiders all
subsystems as a whole. The main difference compared to our techniquea<iapied time
for the occurrence of the process. In our discussions, no itineratibmis observable and
all resultant chaotic subsystems process simultaneously, whereas thienlemstbnal chaotic
motions take place as time elapses in the case of chaotic itinerancy. Knowfeatigeype of
chaos is another difference between chaotic itinerancy and our pnacdbssibly the present
way of replication of chaos will give a light to the solutions of problems alext¢nsion of
irregular behavior (crises, collapses, etc.) in interrelated or multiple coetheystems which
can arise in problems of classical mechanics [154], electrical system4.16], economic
theory [138] and brain activity investigations [78].

In systems whose dimension is at least four, it is possible to observe chtmittors with at
least two positive Lyapunov exponents and such systems are callecthgpgc [211]. An

example of a four dimensional hyperchaotic system is discovered byeR{it81]. Combin-

ing two or more chaotic, not necessarily identical, systems is a way of actyibyjrerchaos
[112, 115, 116]. However, in the present chapter, we take into at@xactly one chaotic
system with a known type of chaos, and use this system as the generagpraduce the
same type of chaos in other systems. On the other hand, the crucial phretoiméhe hyper-
chaotic systems is the existence of two or more positive Lyapunov expaam@htbe type of
chaos is not taken into account. In our way of morphogenesis, the csiioation is rather
the replication of a known type of chaos.

The paper [223] was one of the first studies that consider mathematicabglfheplicating
forms using a set of reaction-diffusion equations [193]. Taking inspmdrom the ideas of
Turing, Smale [208] considers the problem of whether oscillations carbergted through
coupling of identical systems which tend to an equilibrium. A similar question is also r
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sonable for the achievement of chaos in such systems and it is founcagutitinout using a
chaotic input, it is possible to obtain coupled systems which exhibit chaotiwioeh@he ex-
istence of strange attractors in a family of vector fields consisting of twosBtasors linearly
coupled by diffusion is proved analytically in the paper [71] and numeexainples of such a
chaotic behavior are provided in [72]. Such couplings display sevasas of Hopf-pitchfork
singularities of codimensions 2, 3 and 4. In all these cases, the condisgdifurcation di-
agrams provide regions of parameters such that the system exhibits@yizakion, regions
where synchronization depends on the initial state and regions whetg sitbw infinitely
many transients of synchronization [73]. Another example of a linearlgledisystem which
exhibit chaotic behavior can be found in [241]. According to the restifgper [241], a suf-
ficiently large coupling coefficient used in a network of linearly coupleaiidal systems,
where each node is located in a non-chaotic region, leads to existenpesifige transversal
Lyapunov exponent and makes the system behave chaotically. Thezlsygtems with stable
equilibriums can be used in the construction of such a network of linearlpledsystems.
Distinctively, in our study, we make use of coupled systems such that exawtlpf them
is chaotic with a known type of chaos and prove theoretically that the sametybi@os is
extended. Moreover, in the presented mechanism, we are not restrictssllioear couplings
as well as identical systems.

In the next section we will present assumptions for systems (2.1) andyBi&) are needed
for the chaos replication, and introduce the chaotic attractors of thesersym the functional
sense.

2.2 Preliminaries

In the chapterR andN denote the sets of real numbers and natural numbers, respectigkly, an

the uniform norm|I"|| = sup ||I'v|| for matrices is used.
Ivl=1

Since the matriXA, which is aforementioned in system (2.2), is supposed to admit eigenvalues
all with negative real parts, it is easy to verify the existence of positivelrarsN andw such
that||e*|| < Ne™**, t > 0. These numbers will be used in the last condition below.

The following assumptions on systems (2.1) and (2.2) are needed thrdugbeahapter:

(A1) There exists a positive numbe@&rsuch that the functiof (t, x) satisfies the periodicity
condition
F(t+T,x) =F(t,x),

forallt e R, xe R™
(A2) There exists a positive numblkeg such that
[F(t,x1) = F(t,%2)[| < Lol[x1 —Xzl|,

forallt € R,xq,x, € R™,
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(A3) There exists a positive numbkEp < « such that

sup [|[F(t,x)[| < Ho;
teR xeR™M

(A4) There exists a positive numbker such that

19(x1,Y) — 9(X2,Y) || > La[[xa — 2|,
for all x3,x; € R™ y e R";

(A5) There exist positive numbeks andL3 such that

9(x1,Y) —9(%2,y) || < La|x1 — 2|,

for all x;,xo € R™, y e R", and

||9(XaY1) - g(X,YZ)H S L3 HY1*YZ|| )
forall xe R™ yi1,y» € R™;

(AB) There exists a positive numbkl, such that

sup _[[9(x,y)l| < Mo;
XeRMyeR"

(A7) NLs—w< 0.

Remark 2.2.1 The results presented in the remaining parts are also true even if we eeplac
the non-autonomous systétl) by the autonomous equation

X =F(x), (2.7)

where the functiofr : R™ — R™is continuous with conditions which are counterpart$As)
and(A3).

At the present time, systems of differential equations which are knownHhibiexhaotic
behavior are either nonautonomous and periodic in time such as the Duftingaa der Pol
oscillators or autonomous such as the Lorenz, Chua asdl& systems. In a similar way, in
our investigations of chaos generation, we take advantage of periagthctumomous systems
as well as autonomous ones as generators.

Using the theory of quasilinear equations [93], one can verify that fiwen solutionx(t)
of system (2.1), there exists a unique boundedRosolutiony(t) of the systeny = Ay+
g(x(t),y), denoted byy(t) = @) (t), which satisfies the integral equation

v = [ S0, y(s)ds. 9)
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Our main assumption is the existence of a nonempty4aif all solutions of system (2.1),
uniformly bounded orR. That is, there exists a positive numiésuch that supx(t)|| < H,

teR
for all x(t) € o.
Let us introduce the sets of functions
ay = { B (t) | X(t) € S}, (2.9)
and
o = {(X(1), g (1)) | X(t) € . (2.10)
N Mo
We note that for aly(t) € 2% one has sufpy(t)|| <M, whereM = o

teR

Next, we reveal that if the se#; is an attractor with basif#, that is, for eackx(t) € %; there
existsX(t) € o% such that|x(t) — X(t)|| — 0 ast — o, then the set is also an attractor in
the same sense. Denote®y the set consisting of all solutions of systgha= Ay+g(x(t),y),
wherex(t) € %. In the next lemma we specify the basin of attractionf

Lemma 2.2.1 7 is a basin ot

Proof. Fix an arbitrary positive number and lety(t) € %, be a given solution of the sys-
temy = Ay+g(x(t),y) for somex(t) € %. In this case, there exis&t) € <% such that
[X(t) = X(t)|| — 0 ast — . Let a = #’;‘jﬁm andy(t) = @ (t). Condition (A7) implies
that the numben is positive. Under the circumstances, one can Rgd= Ro(g) > 0 such
that ift > Ry, then||x(t) — X(t)|| < a& andN ||ly(Ro) — ¥(Ro)|| €N~ < ae. The functions

y(t) andy(t) satisfy the relations
YO = HRyR) + [ S y(s)ds
and
5(t) = A-Ry(Re) + [ SS9 9(5)ds
respectively. Making use of these relations, one can verify that
y(t) = y(t) = X (y(Ro) ~ ¥(Ro))

+ R: 9 [g(x(s), ¥(s) — 9(x(9),¥(9))] ds
t

/. A9 [g(x(9), ¥(5)) — 9(X(5),(s))] ds

Therefore, we have

NL
I3(0) = 9(0) ] < Ne- R y(Ro) —Y(Ro) |+~ e (e &%)

t
L [ e 909 Jy(s) —y(s) | ds
Ro
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Let u: [Ry,) — [0,) be a function defined agt) = et |ly(t) —y(t)||. By means of this
definition, we reach the inequality

U{t) < N y(Ro) —9(Ro) | + 2 (e — &%) 1 NI /F;u<s>ds

NLae ot

Now, lety(t) = andg(t) = ¢ (t) +c, where

NL
c= N [y(Ro) ~Y(Ro) |~~~ e,

Using these functions we get

t
u(t) < o(t) +NL3/ u(s)ds
Ro
Applying Gronwall's Lemma [55] to the last inequality foi> Ry, we attain the inequality

t 't
u(t) < c+ Lp(t)+NL3/ eN'-3(t‘S)cds+NL3/ NSy (s)ds
Ro Ro

and hence,
ut) <c+yl(t)+c (eN'-3(t’R°) — 1>
N2LoLsare i (NLs—@) (t—Ro)
T o(w—NLy) ¢ (1-e )
NL,ae _
= ——e 1 N|ly(Ro) — y(Ro)|| e*RoeN (=R
NLoa€g o, La(t—Ro) N?L,Lsae wt (NLs—w)(t—Ro)
¢ el +w(w—NL3)e (1 e >
Thus,

NL
Iy(t) =[] < ~22E 4+ N ly(Ro) — Y(Ro) || eNLo=e) R0

NLe@e niywyi-ry , NZLabsae (1 _ e(NLsfw)ﬁfRo))
w w(w—NLg)

NL,ae
e(NLs—w)(t—Ro) 2
<N|ly(Ro) ~y(Ro)|| oo NG

Consequently, for > 2Ry, we have that

_ NL, B
Iy -0 < (14 22 Jae=e,
and hencely(t) — y(t)|| — O ast — co.
The proof of the lemma is completed.

Now, let us define the s&¥ consisting the solution&(t), y(t)) of system (2.1)+(2.2), where
X(t) € 7. Next, we state the following corollary of Lemma 2.2.1.
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Corollary 2.2.1 7 is a basin ofe.

Proof. Let (x(t),y(t)) € % be a given solution of systef2.1) + (2.2). According to Lemma
2.2.1, one can fingk(t),y(t)) € < such that|x(t) —X(t)|| — 0 ast — e and||y(t) —y(t)|| — 0
ast — co. Consequentlyl| (x(t),y(t)) — (X(t),y(t))|| — 0 ast — . The proof is finalized]

2.3 Description of Chaotic Sets of Functions

In this section, the descriptions for the chaotic sets of continuous funetidiise introduced
and the definitions of the chaotic features will be presented, both in thenBggssense and
in the sense of Li-Yorke.

Let us denote by
B ={Y(t) | Y:R— Kis continuous (2.12)

a collection of functions, wheré C RY, g € N, is a bounded region.

We start with the description of chaotic sets of functions in Devaney’'ssams$then continue
with the Li-Yorke counterpart.

2.3.1 Chaotic set of functions in Devaney’s sense

In this part, we shall elucidate the ingredients of the chaos in Devaneayse $er the set?,
which is introduced by2.11), and the first definition is about the sensitivity of chaotic sets
of functions.

Definition 2.3.1 & is called sensitive if there exist positive numberand A such that for
every(t) € # and for arbitrary & > 0 there exisi(t) € 4, to € R and an interval JC

[to, ®), with length not less thaf, such that| @ (to) — P(to)|| < d and||@(t) — @(t)|| > €, for

allt € J.

Definition 2.3.1 considers the inequalify €) over the intervall. In the Devaney’s chaos
definition for the map, the inequality is assumed for discrete moments. Letes few one
can extend the inequality from a discrete point to an interval by consideoingnuous flows.

In [64], it is indicated that a continuous map: A — A, with an invariant domaim\ C
RK.k € N, has sensitive dependence on initial conditions if there exists0 such that for
anyx € A and any neighborhoo@ of x, there existy € %/ and a natural numbersuch that

167(x) —¢"(y)ll > €.

Suppose that the se#; satisfies the definition of sensitivity in the following sense. There
exists€ > 0 such that for everx(t) € o and arbitraryd > 0, there exisX(t) € 2%, to € R
and a real numbef > to such that|x(to) — X(to)|| < 0 and||x({) —X({)|| > €.
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In this case, for givex(t) € 2% andd > 0, one can findX(t) € o% and { > tp such that
I(to) —X(to)|| < & and [|x({) —X({)|| > €. Let A = g7 and take a numbet; such that
A<M < ﬁ_o. Using appropriate integral equations fag [{, { +A4], it can be verified that

Ix(t) ~ X0 > [X(Q) ~ %) - H | [F(s.X(9) — F(s.X(9)]ds
> ?— 2H Lo

™M

> —.
-2

The last inequality confirms that satisfies Definition 3.1 withe =€/2 andJ = [{, { +A].
So the definition is a natural one. It provides more information then discreteemis and for
us it is important that the extension on the interval is useful to prove theegyofor chaos
extension.

In the next two definitions, we continue with the existence of a dense funictithe set of
chaotic functions followed by the transitivity property.

Definition 2.3.2 % possesses a dense functign(t) € £ if for every functiony(t) € 4,
arbitrary smalle > 0 and arbitrary large E> 0, there exist a numbef > 0 and an interval
J C R, with length E such that|g(t) — ¢*(t+ &)| < &, forallt € J.

Definition 2.3.3 A is called transitive if it possesses a dense function.

Now, let us recall the definition of transitivity for maps [64]. A continuouspngawith
an invariant domai\ C R¥ k € N, possesses a dense orbit if there exists A such that
for eachc € A\ and arbitrary numbeg > 0, there exist natural numbekg andly such that
|¢'o(c) — ¢'otho(c*)|| < &, and maps which have dense orbits are called transitive.

Suppose that satisfies the transitivity property in the following sense. There exists a func
tion x*(t) € o such that for eack(t) € 2% and arbitrary positive numbet, there exist a real
number{p and a natural numberng such that|x({o) — X*({o+ moeT)|| < €.

Fix an arbitrary functiorx(t) € <%, arbitrary smalk > 0 and arbitrary larg& > 0. Under the
circumstances, one can figg € R andmy € N such that|x({o) — x*({o+moT)|| < ge~oE.

Using the condition(A2) together with the convenient integral equations t{a} andx*(t)
satisfy, it is easy to obtain fdre [{o, {o + E] that

t
[[X(t) = X" (t+moT)[| < [[x(do) —X"({o+moT)|| +/Z Lo||x(s) =X"(s+moT)|[ds
0
and by the help of the Gronwall-Bellman inequality [56], we get
IX(t) = X" (t+moT)[| < [[X(do) — X" (do+moT) | e~ < e.
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The last inequality shows that the s} satisfies Definition 2.3.2 with = koT and is transi-
tive in accordance with Definition 2.3.3.

The following definition describes the density of periodic functions inside
Definition 2.3.4 %8 admits a dense collectia#i C % of periodic functions if for every func-

tion (t) € A, arbitrary smalle > 0 and arbitrary large E> 0, there existJi(t) € ¢4 and an
interval JC R, with length E such that|@/(t) — Ji(t)|| < €, forall t € J.

Let us remind the definition of density of periodic orbits for maps [64]. Téteo$ periodic
orbits of a continuous mag with an invariant domaim\ ¢ R¥ k € N, is called dense i if

for eachc € A, arbitrary positive numbeg, there exist a natural numbkrand a point € A

such that the sequené@'(C) } is periodic and|¢'o(c) — " (©)|| < e.

Let us denote by the set of all periodic functions inside. Suppose thats satisfies den-
sity of periodic solutions as follows. For an arbitrary functiqh) € <% and arbitrary small
€ > O there exist a periodic functiofit) € % and a numbedy € R such that|x({o) — X({o)|| <
€.

Let us fix an arbitrary functiox(t) € 2%, arbitrary smalle > 0 and arbitrary largé& > 0.
In that case, there exist a periodic functih) € % and{p € R such that|x({o) —X({o)|| <
geHoE,

It can be easily verified fare [{o, {o+ E] that the inequality
t
[X(t) =X || < [[x(do) —X(o)| +/z Lo|[x(s) — X(s)[|ds
0
holds, and therefore for eatlirom the same interval of time we have

Ix(0) —%(1) | < [pe(Zo) ~X(Zo) [ 5% < e.
Consequently, the se# satisfies Definition 2.3.4 witd = [{o, {0 + E].

Finally, we introduce in the next definition the chaotic set of functions in Deya sense.

Definition 2.3.5 The collection# of functions is called a Devaney’s chaotic set if

(D1) A is sensitive;
(D2) &£ is transitive;

(D3) % admits a dense collection of periodic functions.

In the next subsection, the chaotic properties of theZetill be imposed in the sense of
Li-Yorke.
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2.3.2 Chaotic set of functions in Li-Yorke sense

The ingredients of Li-Yorke chaos for the collection of functia®s which is defined by
(2.11), will be described in this part. Making use of discussions similar to the ones made
in the previous subsection, we extend, below, the definitions for the iiggtsdf Li-Yorke
chaos from maps [20, 120, 134, 224] to continuous flows and we justtbesié indications
here.

Definition 2.3.6 A couple of functiongy(t), P(t)) € £ x A is called proximal if for arbi-
trary smalle > 0 and arbitrary large E> 0, there exist infinitely many disjoint intervals with
length no less than E such thigg(t) — @(t)|| < €, for each t from these intervals.

Definition 2.3.7 A couple of functionsy(t), gi(t)) € # x £ is frequently(&,A)-separated
if there exist positive numbeiy, A and infinitely many disjoint intervals of length no less
thanA, such that|@(t) — @(t)|| > &, for each t from these intervals.

Remark 2.3.1 The numbergy and A taken into account in Definitio@.3.7 depend on the
functionsy(t) and{(t).

Definition 2.3.8 A couple of functiony(t), Pi(t)) € & x A is a Li—Yorke pair if it is prox-
imal and frequently( &y, A)-separated for some positive numbegsandA.

Definition 2.3.9 An uncountable se&t” C 4 is called a scrambled set # does not contain
any periodic functions and each couple of different functions ingides” is a Li—Yorke pair.

Definition 2.3.10 Z is called a Li-Yorke chaotic set if
(LY1) There exists a positive numbeg Juch that# admits a periodic function of period
KTo, for any ke N;

(LY2) % possesses a scrambled g&t

(LY3) Forany functiony(t) € ¢ and any periodic functiog(t) € 2, the couplg Y (t), @(t))
is frequently(&y,A)—separated for some positive numbegandA.

2.4 Hyperbolic Set of Functions

The definitions of stable and unstable sets of hyperbolic periodic orbitstohamous sys-
tems are given in [166], and information about such sets of solutions rtdirped non-
autonomous systems can be found in [129]. Moreover, homoclinic stasctualmost peri-
odic systems were studied in [151, 167, 192]. In this section, we givédimitae for hyper-

bolic collection of uniformly bounded functions and before this, we start thightdescriptions
of stable and unstable sets of a function.
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We define the stable set of a functiguit) € %, where the collectio4 is defined by(2.11),
as the set of functions

W2 (g(t) = {u(t) € 2| [lu(t) — y(t)[| — O ast — o}, (2.12)
and, similarly, we define the unstable set of a functjgh) € % as the set of functions

WH(W(t)) = {v(t) € Z | [[v(t) — @(t)|| — 0 ast — —eo}. (2.13)

Definition 2.4.1 The set of function$ is called hyperbolic if both the stable and unstable
sets of each functiogy(t) € & possess at least one element different fip(t) .

Theorem 2.4.11f <7 is hyperbolic, then the same is true fof,.

Proof. Fix an arbitrary positive numbeg and a functiony(t) = @) (t) € 4. Let a =

S NeRE and B = £. By condition (A7), one can verify that the numbeus and 3

are both positive.

Due to the hyperbolicity of#, both the stable s&/5(x(t)) and the unstable s&"(x(t)) of
X(t) contain at least one element different frauh).

Let us take an arbitrary functiarit) € W3(x(t)) such that(t) # x(t). Since||x(t) — u(t)|| — 0
ast — o andNLz — w < 0, there exists a positive numb&4, which depends om, such
that [|x(t) —u(t)|| < ae andeNs—@It < 288 for t > Ry. Let y(t) = @ (t). We note that

y(t) # y(t). Otherwise, ify(t) = y(t), then the equalitg(x(t),y(t)) = g(u(t),y(t)) holds, and
this implies that(t) = u(t) by condition(A4), which is a contradiction. We shall prove that
the functiony(t) belongs to the stable set ).

The bounded ofR functionsy(t) andy(t) satisfy the relations

v = [ 9g0x(s)y(s))ds
and
)= [ Igu(s).9)ds

respectively, fot > Ry.

Therefore, one can easily reach up the equation

) -3 = [ 9009, v(9) ~ g(uls) (3]s
+ [ 9 {1a0(9).(8) ~ 1X(9). 9(5)]+ [9X(3).9(5) — 9(u(S). 96} s
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which implies that
R
Iy(®) - y(t)]| < | 2MoNe - 9ds

+/ w(t—s) NL3Hy( —y(9)||+NLz||x(s) —u(s)||)ds
2MoN
< —8

-, Wt-Ry) 4 Lot (NLs[ly(s) —¥(s)|| + NLxag) ds
Ry

Using the Gronwall type inequality indicated in [242], we obtain that

NL,ae
1
OO—NLg[

2MoN
ly(t) —y(t)]| < Toe(NLsfw)(t—Rl) n _eN-0)t-R)] ¢ >Ry,

For this reason, for atl > 2R;, one has

- 2MoN - NLyae NLp
<027 (NL3 (A))Rl - = = c.
Iy(®) -y < = e +o)—NL3<<1+w—N|—3)as °

According to the last inequality, we have thigtt) — y(t)|| — 0 ast — . Hence, the function
y(t) belongs to the stable sét3(y(t)) of y(t).

On the other hand, left) be a function inside the unstable ¥ét(x(t)) such thaw(t) # x(t).

Since||x(t) — v(t)|| tends to 0 as — —oo, there exists a negative numbs(¢) such that
[X(t) —v(t)[| < Befort <Rp. Lety(t) = @ (t). Itis worth noting thay/(t) # y(t). Now, our
purpose is to show thatt) belongs to the unstable 3&t'(y(t)) of y(t).

By the help of the integral equations
t
0= [ Ig(x(s).y(9)ds

and

we obtain that

Therefore, fot < Ry, one has

IO 501 < [ NLae @9 () ~v(y) ds

+ [ e NG w9 ds
NL; NL.
< ;B£+afts<l£!y() v
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Hence, we attain that sujy(t) — y(t)|| < NLzBe + NLs sup||y(t) —y(t)|| . Accordingly, one
t<Ry w w t<Ry

can verify that

NLyBe
E.
w_NLz

suplly(t) —=y(t)|| <
<Ry

The last inequality confirms thdy/(t) — y(t)|| — 0 ast — —co. Thereforey(t) € WY(y(t)).

Consequently, the se¥; is hyperbolic since an arbitrary functiofit) € ., has stable and
unstable sets which possess at least one element differenyftom

The theorem is proved.]

Theorem 24.1 implies the following corollary.
Corollary 2.4.1 If % is hyperbolic, then the same is true fof.

Next, we continue with another corollary of Theoréth4.1), following the definitions of
homoclinic and heteroclinic functions.

A function (1) € £ is said to be homoclinic to the functiap(t) € £, Yo(t) # Yu(t), if
Ya(t) € W2 (Uo(t)) "W (Yho(t)) -

On the other hand, a functiam(t) € £ is called heteroclinic to the functiongy(t), Y1 (t) €
B, Wo(t) # Yo(t), Ya(t) # Wa(t), if Yalt) € W (Yo(t)) NWH (ga(t)).

Corollary 2.4.2 If x1(t) € % is homoclinic to the functionoft) € 2%, Xo(t) # X(t), then
@, (1) (t) € % is homoclinic to the functio® ) (t) € 4.

Similarly, if %(t) € <% is heteroclinic to the functiongt),x (t) € 2%, Xo(t) # Xa(t), X1 (t) #
X2(t), then@,, ) (t) is heteroclinic to the functiong (1), @« (t) € <%.

In the next section, we theoretically prove that the sétreplicates the ingredients of De-
vaney’s chaos provided to the s&4, and as a consequence the same is valid also for the set
<. The same problem for the chaos in the sense of Li-Yorke will be handle€dtio 2.6.

2.5 Replication of Devaney’s Chaos

In this part, we will prove theoretically that the ingredients of Devaneya&oshurnished to
the sete, are all replicated by the se¥;.

Suppose that the functiog(x,y) which is used in the right hand side of system (2.2) has
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component functiong;(x,y), j =1,2,...,n. That is,

«Q
=
~~
x
=

On (X> y)

where eaclyj(x,y), j =1,2,...,n, is areal valued function.

We start with the following assertion, which will be needed in the proof of Ler2rG&.

Lemma 2.5.1 The set of functions

F ={gj(X(t), @) (1)) — 95 (X(V), Gy (1) | 1< j <, x() € %, X(t) € o}

is an equicontinuous family dR.

Proof. Let us define a functioh: R™ x R™ x R" — R" by the formula
h(x1,X2,%3) = 9(X1,X3) — g(X2, X3).
Being continuous on the compact region
7 ={(x1,%2,%3) € RTx RMx R [ [[xa]| <H, [xel| <H, [Ixs| <M},
the functionh(xy, X2, X3) is uniformly continuous or¥.

Fix an arbitrarye > 0. Our aim is to determine a positive numh®e 6(&) such that for all
t1,to € R with |t; —tp| < & the inequality

| h(x(te), X(t1), @) (t2)) — h(X(t2), X(t2), Br) (t2)) H <&
holds for allx(t),X(t) € .

By uniform continuity of the functiom(x, x2,X3) on 2, one can find a numbeéq = d:(¢) >0
such that for al(x3,x3,X3) , (x},x3,x3) € R™x R™x R"with || (x3,x3,x3) — (x},%3,X3) || < o1,
the inequality

0,0

Hh(Xg,X27X3) —h (X%,X%,X%) H <€

holds.
Sincel||X (t)|| < Ho for eachx(t) € 2%, the sete is an equicontinuous family dR. Therefore,

there exists a numbeh = 8,(d1) > 0 such that for alt;,t; € R satisfying|t; —t2| < &, we
have||x(t1) — X(t2)|| < & /3 for all x(t) € .o%.

Similarly, the sete, is also an equicontinuous family d& sincelly'(t)|| < ||A]|M + Mo for
eachy(t) € .o, Thus, one can find a numbég = 83(d1) > 0 such that for alt;,t, € R with
Ity —t2| < 83, the inequality|y(t1) — y(t2)|| < 1/3 is valid for ally(t) € <4,.
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In this case, for alty,t; € R with [t; —tz| < min{J,,d3}, one has

| (X(te) X(t2), Be) (t2)) — (X(t2), X(t2), Br) (t2)) ||
< Ix(te) = x(t2)[| + [IX(t2) = X(t2) [ + || @ty (t2) — Bty (t2) ]
<&,

for all x(t),X(t) € 2%.

Hence, takingd(€) = min{d,, 3}, one can see that for &lf,t, € R with |t; —ty| < J, the
inequality

| (03 0x(t), B () — 0 (X(t2). By ()

— (9j (X(t2), @) (t2)) — 9j (X(t2), Br) (2))) H

< [Jh (X(t2), X(t1), Br) (t2)) —h (X(t2), X(t2), @) (t2)) ||
<€

holds for all 1< j < nandx(t),X(t) € <. Consequently, the family? is equicontinuous on
R.

The lemma is proved.]

We continue with replication of sensitivity in the next lemma.
Lemma 2.5.2 Sensitivity of the set4 implies the same feature for the sgf.

Proof. Fix an arbitraryd > 0 and lety(t) € .« be a given solution of system (2.2). In this
case, there existgt) € <% such thay/(t) = @ (t).
Let us choose a number=€(J) > 0 small enough which satisfies the inequality
NLy 1\ _
<1+ o NL3> £<0.

Then takeR = R(€) < 0 sufficiently large in absolute value such that

2MoN glw-NL)R z
w

and letd; = 61(€,R) = €€-°R. Since the set of functions is sensitive, there exist positive
numbersgp andA such that the inequalitig(to) — X(to) || < 1 and||x(t) —X(t)|| > &o,t € J,
hold for some solutioi(t) € <%, a numbety € R and an interval C [to, ) whose length is
not less tham.

Using the couple of integral equations

X(t) = x(to) + tF (s,x(s))ds,

to
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X(t) =X(to) + tF(s,X(s))ds

to

together with conditiorfA2), one can see that the inequality

[ Lonx(s)—x(s)uds'

holds fort € [to + R, to]. Applying the Gronwall-Bellman inequality [56], we obtain that

() =X()]] < [Ix(to) —X(to) || +-

I(0) () < xtto) Xt -

and thereforeix(t) — x(t)|| < € for t € [to+ R to].
Let us denotg(t) = g (1). First, we will show thafly(to) — y(to) | < 5.
The functionsy(t) andy(t) satisfy the relations

)= [ 0x(s)y(s)ds
and

50 = [ HIg(x(s),9(5)ds
respectively. Therefore,

050 = [ 9o y(5) ~ 9(x(5).95)Jds

and hence we obtain that

Since||x(t) —X(t)|| < € fort € [to+ R to], one has

YO -JOI <NLs [ et y(s) - y(s)] ds

t
to+R

n NI(:)ZEG_M(GM . ew(to+R)) + @e—w(t—to—m.

Now, let us introduce the functiongt) = et ||y(t) —y(t)|, k(t) = Nl;)zse‘*" andh(t) =c+

N _NLE) g,

K(t), wherec = (

These definitions give us the inequality
t

u(t) <h(t)+ to+RNL3u(s)ds
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Applying Lemma 22 [34] to the last inequality, we achieve that

u(t) < h(t) +NLs / t Vst=9h(s)ds

to+R

Therefore, on the time intervith + R, to], the inequality

u(t) < c+k(t)+c (eNL3(t*t0*R) - 1)

n N2L2L3§eNL3t /t a(@-NLs)sy g
t

w o+R
_ NLoE N <2M0N B N|-23> cWORNLs(tto—R)
w w

N2LoLsE (NLs—w)(t—to—R)
aax@f{“e }

holds.

The last inequality leads to

NL€e 2MoN e(N L3—w)(t—to—R)
w—NLg w

ly(®) —y(®) <

9

and consequently, we obtain that

w—NLs w

ly(to) — ¥(to)|| <

In the remaining part of the proof, we will show the existence of a positivalrere; and
an intervald® c J, with a fixed length which is independent yt),y(t) € 24, such that the
inequality ||y(t) — y(t)|| > & holds for allt € J*.

According to Lemma 2.5.1, there exists a positive numberA, independent of the functions
X(t),X(t) € 4, y(t),¥(t) € 2%, such that for anyy, t, € R with |t; —t| < T the inequality

(9j (X(t2),y(t1)) — gj (X(ta),y(t2)))

—(9j (X(t2),¥(t2)) — 9j (X(t2), y(t2))) (2.14)
@
2n

holds, for all 1< j <n.

Condition(A4) implies that, for alk € J, the inequality

lg(x(t), y(t)) — g(X(t), y(t) | = La[Ix(t) =x(t)]

is satisfied. Therefore, for eatk J, there exists an integgp = jo(t), 1 < jo < n, such that
o L o
1910 (X(0),¥(8)) — G (X(1). (1) | =~ [Ix(t) X
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Otherwise, if there existse J such that for all I< j < n, the inequality

|9j ((5).¥(9)) —gj(X(9),¥(9)| < - [IX(s) =x(s)l|

holds, then one encounters with a contradiction since

19(x(s), y(s)) —g(X(s), y(9))I| < i 195(x(s),¥(5)) — 9j(X(s),Y(5))]
=

<Lal[x(s) =x(s)]-

Now, let s be the midpoint of the interval and 6 = sy — 7/2. One can find an integer
jo=jo(%0), 1< jo < n, such that

9o (X(0), ¥(S0)) — Gjo(X(0). ¥(%0))| >~ [[X(50) —X(0) | > = = (2.15)

|9jo (X(s0), ¥(S0)) — Gjo (X(S0). ¥(%0))| — |gjo (X(1), ¥(1)) — Gjo (X(1), ¥(1))]
< |(gjo (X(1), ¥(1)) = Gjo (X(1), ¥(1))) — (9jo (X(S0), ¥(S0)) — Gjo (X(S0), ¥(%0)))]
L1&
o
Therefore, by means of (2.15), we obtain that the inequality
|9jo (X(1),¥(1)) — Gjo (X(1), y(1))]
L1&

> [9jo (X(S0), ¥(50)) — 9o (X(S0), ¥(%0)) = 5 (2.16)
L&
2n

holds for allt € [6,0 + 1].

By applying the mean value theorem for integrals, one candiirsg, ..., s, € [6,0 + 1] such
that

T[g1(X(s1),Y(s1)) — 9u(

[ o) y(s) - gt yisas= | TFEIE) 76

T[gn(X(n),Y(Sh)) — Gn(X(Sn),Y(Sn))]

Thus, using2.16), one can verify that

’ 6

0+t

[} lax9.y(9) - aix9), (sl

> 1]03,((55). ¥(55) ~ GX(530).¥(530)| .17)
TL1&
2n -
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It is clear that, fott € [6, 6 + 1], the solutiong/(t) andy(t) satisfy the integral equations

+ [ st [ g9, y(s)ds

and

respectively, and herewith the equation
t
y(t) —y(t) = (y(6) —y(6)) + ; A(y(s) —Y(s))ds
t

+ [9(x(s),¥(8)) —9(X(s),¥(s))]ds

holds. Hence, we have the inequality

6+ r
Iv(0-+ 1) -0 +7) H>H I a9 v(9) ~ o(x(9), v s
YO -3@)~ [ 1Al -5s)lds 2.18)
0+1
- [ lve -l ds

) < gy
T 22+ 1(Ls+ [JAID]
counters with a contradiction since, by means of the inequaliZids) and(2.18), we have

In the present case, one en-

Now, assume that max]|y(t) —
te[0,0+1]

max [ly(t) =y(t)| > [[y( + 1) —y(@ + 1)]|

te[0,0+1]
TL1&o -
-1 L3+ A t
on LTk AD] max fly®) -yl

> TL1&
— 22+ 1(Ls+ |AD]

Therefore, one can see that the inequality

_ TL1&
ey YO =YOI > S+ TAD)

is valid.

Suppose that at a pointe [8, 6+ 1], the real valued functiofiy(t) — y(t)|| takes its maximum
on the interval6, 0 + 1]. That is,

e ly(®) =y®) 1l = [ly(m) =y(n)ll-

Fort € [0, 8 + 1], by virtue of the integral equations

| Ay(s)ds / g(x(9).y(9)ds
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and

n n
we obtain
VO =300 = () ~3() + | A -5(9)ds
N n‘ [9(X().Y(5)) — g(X(S),¥(5))]ds
Define L
1 i [T 1%
r —m'”{z’sn(lvl [A] +Mo)[2+ r(L3+HAH)]}
and let

ol — n, ifn<6+1/2
| n-t ifn>6+1/2 "
We note that the intervalt = [62, 61 + 1] is a subset off, 6 + 1] and hence od.

Fort € J1, we have that
IO~y > Iy(n) — () - ] / Al Iy —y<s>||d%
- \ / l9(x(9).%(9) —g<x<s>,y<s>>||d%

- TL1&
2n2+1(Ls+ [|Al])]

> TL1&

~ A2+ (L + [|AD]

— 204 (M||A]| +Mo)

Consequently, the inequalitiy(t) — y(t)|| > & holds fort € J*, where

TL1&
an[2+1(Ls+[|Al)]"

&=

and the length of the intervdl does not depend on the functiox(s), X(t) € 7.
The proof of the lemma is finalizedl

Through Lemma 5.2, we mention the replication of sensitivity feature from the set of func-
tions &% to .24, that is, from the generator system to the replicator counterpart. In a similar
way, it is reasonable to analyze the sensitivity of the set of functignsvhich is defined
through equatior{2.10). In the present case, we shall say that the&geis sensitive pro-
vided thats is sensitive. This description is a natural one since, otherwise, the ilitgqua
|IX(t) —X(t)|| > & implies that

| (x(®), @ty (1) = (X(1), @y (D) || > &0

in the same interval of time, which already signifies sensitivityz0f But in replication of
chaos, the crucial idea is the extension of sensitivity not only by the regsiém, but also by
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the replicator, and one should understand sensitivity of the result-sestenproperty which
is equivalent to the sensitivity of the replicator. According to this explanati@note that if
a is sensitive, then Lemma 2.5.2 implies the same feature for the{s@ind hence for the
setor.

Now, let us illustrate the replication of sensitivity through an example. It isvkntinat the
Lorenz system

Xy = 0 (—X1+X2)
Xp = —Xo 4 IX1 — X1X3 (2.19)
Xg = —bx3 + x1%2,

with the coefficientr = 10,b = 8/3,r = 28 admits sensitivity [137]. We use system (2.19)
with the specified coefficients as the generator and constitute-tierensional result-system

X7 = 10(—x1 +X2)
Xp = —Xo + 28X1 — X1X3

8

X=Xt X (2.20)
Xy = —5Xg + X3

X’5 = —2x5+0.0002 %, — X5)3 + 4%

Xg = —3%6 — 3Xy.

When systent2.20) is considered in the form of systef®.1) 4 (2.2), one can see that the di-
agonal matrixA whose entries on the diagonal a6, —2, —3 satisfies the inequalitye™ || <
Ne~® with the coefficientdN = 1 andw = 2. We note that the functiog : R® x R® — R3
defined as

0(Xe, X2, X3, X4, X5, X6) = (Xa,0.0002X2 — X5)° + 4%z, —3xq )

provides the condition&\4) and(A5) with constants; = 1/v/3, L, = 11v/3/2 andLz = 3/2
since the chaotic attractor of systé&20) is inside a compact region such tigt| < 30 and
Ixs| < 50. Consequently, systei2.20) satisfies the conditiofA7).

In Figure 23, one can see the-3limensional projections in thg — xo — X3 andXs — X5 — Xg
spaces of two different trajectories of the result-syst2r20) with adjacent initial conditions,
such that one of them is in blue color and the other in red color. For thettajewith blue
color, we make use of the initial data(0) = —8.57, x(0) = —2.39, x3(0) = 33.08, x4(0) =
5.32, x5(0) = 10.87, x5(0) = —6.37 and for the one with red color, we use the initial data
x1(0) = —8.53, x2(0) = —2.47, x3(0) = 33.05, x4(0) = 5.33, x5(0) = 10.86, X5(0) = —6.36.

In the simulation, the trajectories move on the time intef@e8]. The results seen in Figure
2.3 supports our theoretical results indicated in Lemma 2.5.2 such that thetepsigstem,
likewise the generator counterpart, admits the sensitivity feature. Thag isplilitions of both
the generator and the replicator given by blue and red colors divevga,though they start
and move close to each other in the first stage.

In the next assertion we continue with the replication of transitivity.
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Figure 2.3: Replication of sensitivity in the result-systgh?0). The picture in (a) represents
the 3—dimensional projection on the; — X, — X3 space, and the picture in (b) shows the
3—dimensional projection on the; — X5 — Xg space. The sensitivity property is observable
both in (a) and (b) such that the trajectories presented by blue andImed nwve together
in the first stage and then diverge. In other words, the sensitivity pyopéthe generator
system is mimicked by the replicator counterpart.

Lemma 2.5.3 Transitivity of.c, implies the same feature fa¥.

Proof. Fix an arbitrary smalk > O, an arbitrary largee > 0 and lety(t) € ., be a given
function. Arising from the description (2.9) of the sef, there exists a function(t) €
ay such thaty(t) = @) (t). Lety = ZMONE’;(Jf’ﬁ'C'S'ﬁNLZw. Condition (A7) guarantees thatis
positive. Since there exists a dense solutidft) € <%, one can find > 0 and an interval
J C R with lengthE such that|x(t) — x*(t + &)|| < ye for allt € J. Without loss of generality,

assume thal is a closed interval, that ig,= [a,a+ E] for some real numbea.

Lety*(t) = @¢(y)(t). Fort € J, the bounded o solutionsy(t) andy*(t) satisfy the relations

t
vt = [ Ig0x(s),y(9)ds

and

t

y(©)= [ 99y (9)ds

respectively. The second equation above implies that

t+&

y'(t+¢&) = e 9g(x*(9),y"(s))ds
Using the transformatioa= s— &, and replacing by sagain, it is easy to verify that
t
Y (t+ &) = / A-Sg(x (s+&),y*(s+ £))ds
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Therefore, fott € J, we have that
0 -y (+6) = [ M Igxs)y(9) ~gix (s+£).y"(+)lds
+ [ 91gx9.3(9) - gx(9).y (5 £)))ds
+ [ Igx(s)y (9) —gx (5 €).' (s+ 6))lds
which implies the inequality
Iy -y t+&) < [ 2MoNe @ ds
+ [ Nise 9yt -y (s+ &)l ds

t
+/ NLe~ @9 |Ix(s) — x*(s+&)||ds
a

< ZI\AioNefw(t*a) + Mefwt (e(/.)t — ewa)
w w

t
+ / NLse 9 |ly(s) — y* (s+ &)|| ds

Hence, we get

e y(t) —y (14 &) < ey NV (gun o

t
+ / NLse®[ly(s) — y*(s+ &) ds

Through the implementation of Lemma 2.2 [34] to the last inequality, we obtain

2MgN NLoye
X ly(t) —y (t+ )] < S 0mewn T2V (et gon)
—l—/tNLg, [ZMON ewa 4 NLpye (ews_eo)a)} eNL3(t—s)dS
a w w

_ NLZVSewt + <2M0N _ NL2V£> ewagNLs(t-a)
w w w

N2LoLaye Nt (e(w—NLg)t _ glw-N L3)a>
w(w—NLg) '

Multiplying both sides bye~*t, one can attain that

2MoN (L ot
Iy(t) —y (©)] < F2-eNe-w)t-a)

w
NLye = N2LLgye (NLs—w)(t—a)
+( W w(w—NLg) (l ¢ )
_ 2MoN _Ni—w)i—a) , NL2Ve (NLs—w)(t—a)
=" © +co—N|_3(1 © )

Now, suppose that the numbris sufficiently large such that

2 In i
w—NLs ve)
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If t € [a+E/2,a+E], thenitis true that

eNL—0)(t-a) < gNLa—0)§ e

As a result, we have

2MpoN n NL>
w w—NL3

Iy(®) —y"(t+ &)l <

ye=¢,

fort € J; = [ay,a1+ E1], wherea; = a+ E/2 andE; = E/2. Consequently, the se¥, is
transitive in compliance with Definition.2.3.

The lemma is proved.]

The extension of the last ingredient of chaos in the sense of Devanegdented in the
following lemma.

Lemma 2.5.4 If o% admits a dense collection of periodic functions, then the same is true for
.

Proof. Fix a functiony(t) = @) (t) € <4, an arbitrary small numbes > 0 and an arbitrary
large numbeE > 0. Let y = ZMONE‘(’L(,‘_‘ETS';?NLZQ), which is a positive number by condition
(A7). Suppose thaty is a dense collection of periodic functions insidg In this case, there
existX(t) € % and an intervall C R with lengthE such that|x(t) — X(t)|| < ye, forall't € J.
Without loss of generality, assume thiis a closed interval, that is,= [a,a+ E] for some

acR.

We note that by conditiofA4) there is a one-to-one correspondence between thé&satsd

G ={Bwt) | x(t) € %}, (2.21)

such that ifx(t) € % is periodic theng)(t) € %, is also periodic with the same period, and
vice versa. Therefore&q, C .24 is a collection of periodic functions and in the proof our aim
is to verify that the se¥ is dense ine,.

Lety(t) = @) (t), which clearly belongs to the s@}. Making use of the relations

t
vt = [ Ig0x(s),y(9)ds
and
t
y0) = [ tIg(x(s),5(9)ds

fort € J, we attain that
) -50) = [ e Ig(x(9).y(9) ~ gX(3) 719 s
+ [ 9g(x(9),v(9) - alx(9)5(9)]ds
+ [ 1gx(9),7(5) - x(3),519) s
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The last equation implies that
ra
Iv(®) -yl < | 2MoNe -ds
t
+ [ Niae @9 |y(s) — y(s)| ds
a

t
+ / NLye ©t9 ||x(s) —X()|| ds
a

< 2'\2())N g w(t-a) + NLpye g Wt (ewt B ewa)

t
+ [ NLse 9 jy(s) - 519 ds
a
Hence, we have
& y(t) - g(t) ] < 2N e NE2VE (px _ pn)
t
+ [ NLse ly(s) -5 ds

Application of Lemma 2.2 [34] to the last inequality yields

& y(t) ~y10) | < Do N2V (g grn)
t
+/ NLg {2'\2(;'\' qwa | NL2ve I;Z)ye (e¥s — e“’a)] eNls(t-9gg
a

- %e‘*’t + (ZMON — NLZVS) gRNLs(t-a)

W W
N2LolaVe  Nigt (@ Nist  (@-Nis)a
w(w—NL3)* (e —° )
Multiplying both sides bye“*, we obtain that

- 2MoN (NL w1t
ly(t) —y(t)|| gT"e(NLs w)(t-a)

NLoye N2L2L3V5 (NLz—w)(t—a)
1- 3
+ ( w  w(w—NLg) ( © )

_ ZMONe(NLg—w)(t—a)+ NLZVS (1_e(NL3—w)(t—a))
w w—NLs '

. - 2 1 E
— . — <
Suppose that the numbEris sufficiently large such th& > N In (yg) If a+ 5=

t < a-+E, then one hagNts—®)(t-2) < eNLs—w)E/2 - v Consequently, the inequality

2MN, NL
W w—NLg ve=¢

Ive) 5101 <
holds fort € J; = [a;,a1 + E1], whereay = a+E/2 andE; = E/2.
The proof of the lemma is accomplished.

We end up the present part by stating the following theorem and its immediaikacgr
which can be verified as consequences of Lemma 2.5.2, Lent&dhd Lemma 5.4.
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Theorem 2.5.1If the set is Devaney’s chaotic, then the same is true for thesget
Corollary 2.5.1 If the setes is Devaney’s chaotic, the# is chaotic in the same way.

In the next part, the replication of chaos in the-Morke sense is taken into account.

2.6 Replication of Li-Yorke Chaos

Our aim in this section is to prove thatdfy is chaotic in the sense of Li-Yorke, then the same
is valid for the setw#,, and consequently for the set.

We start by indicating the following assertion, which presents the replicafiprogimality
feature in accordance with Definition326.

Lemma 2.6.1 If a couple of functiongx(t),X(t)) € <% x <% is proximal, then the same is
true for the coupleg @) (t), ) (t)) € % x 4.

Proof. Fix an arbitrary small positive numberand an arbitrary large positive number
Definey = ZMONE‘Zg‘fg['ﬁNsz. Condition (A7) implies thaty is positive. Because a given
couple of functiongx(t),X(t)) € o x % is proximal, one can find a sequence of real numbers
{Ei} satisfyingE; > E for eachi € N, and a sequencs;}, & — « asi — o, such that we
have||x(t) — X(t)|| < ye, for eacht from the intervals) = [aj,& +E], i € N, andJNJ; =0

wheneveli # j.

Let us fix an arbitrary natural numbgrSince the functiong(t) = @) (t) € <% andy(t) =
@) (t) € o satisfy the relations

v = [ -9g0x(s).y(s)ds
and
)= [ Ig(x(s)5(5))ds

respectively, fot € J;, we have that



This implies that the inequality
a
Iv(®) -yl < [ 2MoNe -ds
t
a

t
+ / NLoe =9 ||x(s) — X(s)|| ds
a
w w
t
+ / NLge “ |ly(s) — y(s)| ds
a
is valid. Hence, we attain that
2MoN ...  NLoye .
ot v <70 waj y [NE2VE ot qwa
e ly(t) —y(0)] < = meR 4 = (e - e
1
+A NLse“*||y(s) - y(s)||ds
Implementing Lemma 2.2 [34] to the last inequality, we obtain

e +

2MpoN NLpye .
& (1) -yl < =2 2 (e e

t
+/ NL3 {ZMONe“’ai 4 M (695 — g3 )] NLs(t-9) g
a w w

_ NLaVe o <2MON - NLZVS) g ghbs(t-a)
w W W

N2L,Lgye NLst [ a(@-NLg)t _ A(w—NLg)a
W(w—NL)© (¢ —° )

Multiplying both sides by the terra=“*, one can verify that

2MoN Y
ly(t) —y(t)|| STOe(NLS w)(t-a)

NLoye  N2LplLaye (NLs—o)(t—a
1— 3 a)
* ( W w(w—NLg) ( € )

_ 2MoN Nt w)t-a) | _NLa¥e (1-eNsral),
w w—NL3

If E is sufficiently large such thd > In (1> , then one has

w—NL3 1%

gNLe—w)(t-a) - g(NLs-w)Ei/2 < g(NLs~w)E/2 VE,

forte[a+E/2,a+E].
Since the natural numbervas arbitrarily chosen, for eaéke N, we have that

. 2MoN  NLp B
Iy -geo] < (4 B2 Yo




for eacht € J = {5;,5,- +I§i} , whered, = a + E;/2 andE; = E; /2. Note that for eachi the
intervalJ R has a length no less th&h= E/2. As a consequence, the couple of functions
(@) (t), @ (1)) € o x 4 is proximal according to Definition.2.6.

The proof is completed.]

The following lemma indicates the replication of the next characteristic feafure¥orke
chaos.

Lemma 2.6.2 If a pair (x(t),X(t)) € o x o is frequently &, A)-separated for some positive
numbersgy andA, then the pair(@((t)(t), &) (t)) € o, x o is frequently(&,A)-separated
for some positive numbees andA.

Proof. Since a given couple of functiorig(t),X(t)) € .o% x 2% is frequently( &, A)-separated
for somegy > 0 andA > 0, there exist infinitely many disjoint intervals, each with a length
no less tha\, such that|x(t) —X(t)|| > & for eacht from these intervals. Without loss of
generality, assume that these intervals are all closed subsRtslofthat case, one can find
a sequencégA;} satisfyingA; > A, i € N, and a sequencfd; }, di — o asi — o, such that
for eachi € N the inequalityi|x(t) —X(t)|| > & holds fort € J; = [di,di + Ai], andJ N J; = 0
whenevei # j. Throughout the proof, let us denotét) = @) (t) € <4 andy(t) = @) (t) €

.

Our aim is to show the existence of positive numbata and infinitely many disjoint inter-
valsJi C J,i € N, each with length), such that the inequalitjjy(t) — y(t)|| > & holds for
eacht from the intervals)j,i € N.

gl(X, y)

X?
As in Section 5, we again suppose thgtx,y) = 92(. , Where eacly;(x,y), 1 <

Gn(X,Y)
j < n, is a real valued function. Using the equicontinuity Bnof the family .%, which

is mentioned in Lemma 2.5.1, one can find a positive nuntberA, independent of the
functionsx(t),X(t) € .o, y(t),y(t) € o4, such that for anyts,t € R with |ty —tp] < T the
inequality

(9j (x(t2), y(t1)) — gj (X(t2), ¥(t1)))

—(9j (x(t2),y(t2)) — 9j (X(t2), ¥(t2))) (2.22)
2n

holds for all 1< j <n.

Suppose that the sequen{ee} denotes the midpoints of the intervdjsthat is,s = di +A; /2
for eachi € N. Let us define a sequen¢é,} through the equatio =s —1/2.
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Let us fix an arbitrary natural numbern a similar way to the method specified in the proof
of Lemma 25.2, one can show the existence of an integet ji(s), 1 < ji <n, such that

Li&

!m&ﬂstS»—gMWSLWSth;ﬂvﬁd—i@ﬂt> — (2.23)
On the other hand, making use of the inequaly22), it is easy to verify that
|95 (X(s),¥(8)) = gj; (X(5), ¥(s)] — |gj (x(1), ¥(1)) — gj; (X(1), y(1))]
< [(gy (x(1), y(1) — g (X(1), ¥(1))) — (g5 (x(s),¥(s)) — 5 (X(s), ¥(s)))]
L1&
?7
forallt € [6,6 + 1]. Therefore, by favour 0f2.23), we obtain that the inequality
|9j; (X(1), ¥(1) — gj; (X(1), y(t))| ]
> [g; (X(8).¥(8)) ~ 93 (X(8).%(8))| — - (2.24)
Ligo
2n

is valid on the same interval.

Using the mean value theorem for integrals, it is possible to find nunshess .. ., s, that
belong to the intervdlg;, 6 + 1] such that

I

/Iel T [9(x(s),y(s)) —a(X(s),¥(9))] dSH

" G (9).Y(9) — a(X(S). (9] ds

" l02x.3(9) - (x5 (9 s

T [an(X(sh), Y(sh) — Gn(X(sh), Y(sh)]

Hence, the inequality2.24) yields that

‘ 6

6+t
JACCCRCIREEERENEE
> 79;,(X(5}),¥(8},)) — 95, (X(5}), ¥(S}))|
TL1&
2n

Fort € [6, 6 + 1], the functionsy(t) € .4 andy(t) € .4 satisfy the relations

= y(@)+ [ Avsds+ [ gix(s).y(9)ds
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and

~y@)+ [ Avds [ ox(s),()as

respectively, and herewith the equation

Y(t) = () = (@)~ (@) + [ AY(S)—3(9)ds

6
N /6 [9(X(5).Y(8)) — g(X(5).Y(9))lds
N /9‘[g<x<s) ¥(9) —9(X(9).y(9))lds

is achieved. Takiny= 6 + 1 in the last equation, we attain the inequality

«Q
—
pay)
—~

Iv(6+1) - .+rH>H/ ~g(x(S)y(9)lds
1@ 5@ [ (Al +L I -39 ds

(2.25)

|| TL1&
— 202+ 1(Ls+[|AD]
contradiction since, by means of the inequali{i224) and(2.25), we have

Now, assume that max||y(t) — y(t) In this case, one arrives at a
te[6,6+1]

max_ HY( )=YO)I = [ly(& +1) -y(6 + 1)

te(6,6+
TL1€o -
-1 L A t
o~ LT+ IAD] [[ygﬁr]l\y() yol
TL1& TL1&

z n e HIAD G G A
Cthieo [, 1+ (Lst A
o2n <_2+T(|—3+!A||))
TL1&
2n[2+1(Ls+||Al)]

" _ TL1&
Therefore, itis true that max | > .
te[6,6+1] Iy(®) =3l 2n[2+ 1(Ls+ ||A]])]

Suppose that the real valued functipyit) — y(t)|| takes its maximum value fare [6,, 6 + T
at a pointn;. In other words, for soms; € [, 6 + 1], we have that

max_ Hy() YOI = lly(mi) =yl

te[6,6+

Making use of the integral equations

v(0) =y(n) + | Ads+ | alx(sy(s)ds

and

5(0)=5(n) + | Ag(sids- | a(x(s).5(s))ds
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on the time interval@, 8 + 1], one can obtain that

Define the numbers

A= min{ TLago }
27 8n(M||A| +Mo)[2+ T(Ls+ [|Al])]
and
pt_ ) M ifn<6+r1/2
' ni—tt, ifni>64+1/2°

For eacht € [61, 61 +A], we have that

1) -0l > Iyt 5l - | [ 1Al Iyt9) - 5ts)1 s

| [ 1atx.3(9) - alx(s).5 >>||d%

I—l“50 1 1
—2M ||Al| 77— 2MpT
~n [2+€( SHIAII)]
1¢c0 1
= 21" (M||A]| +M
oz r(Lsr A 2 MIAl Mo
TL1&

= 21 t(Lst AN

The information mentioned above is true for an arbitrarily chosen naturabati. There-

fore, for each € N, the intervald; = [61,01 +A] is a subset of6,, 6 + 1], and hence 08,.
TL1&

4n[2+1(Ls+[|Al)]

Moreover, for any € N, we havel|y(t) —y(t)|| > &1,t € Ji, whereg; =

Consequently, according to Definition327, the pair(@(t)(t),(&(t)(t)) € oy x A is fre-
quently(&;,A)—separated.

The proof of the lemma is finalizedl

Now, we state and prove the main theorem of the present section. In tbie wesuppose
that % C 2% denotes the set of periodic functions insidg and the set%, C .4, defined
through equatiori2.21), denotes the set of periodic functions insiet

Theorem 2.6.11f the seta is Li-Yorke chaotic, then the same is true for the.skt

Proof. It can be easily verified that for any natural numbex(t) € % is akT—periodic
function if and only if @) (t) € 4 is KT—periodic, where% and%, denote the sets of all
periodic functions inside% and.c,, respectively. Therefore, the sef admits &k T —periodic
function for anyk € N.
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Next, suppose that the sé} is a scrambled set insid& and define the set

Gy ={ B ) [ X(t) € G} - (2.26)

Condition (A4) implies that there is a one-to-one correspondence between th&satsl
%y. Since the scrambled s is uncountable, it is clear that the &t is also uncountable.
Moreover, using the same condition one can show that no periodic fusetiost insidezy,
since no such functions take place inside thedgeThat is, 6, N4, = 0.

Since each couple of functions insid@g x %x is proximal, Lemma 2.1 implies the same
feature for each couple of functions insidg x .

Similarly, Lemma 26.2 implies that if each couple of functiofig(t), X(t)) € €x x €x (€x x %)

is frequently (&,A)—separated for some positive numbegsand A, then each couple of
functions(y(t),y(t)) € 6, x ¢y (6y x 4) is frequently(e1, A)—separated for some positive
numberse; andA. Consequently, the séf, is a scrambled set inside%, and according to

Definition 2.3.10,4 is Li-Yorke chaotic.
The proof of the theorem is accomplishéd.

An immediate corollary of Theorem@1 is the following.

Corollary 2.6.1 If the setes is Li-Yorke chaotic, then the sef is chaotic in the same way.

2.7 Morphogenesis of Chaos

Two different mechanisms of chaos extension (morphogenesis) theqpiying replication
are considered in this study. The first one is illustrated schematically in FiydreThe
figure represents consecutively connected systems as boxes arldeterbws symbolize
unidirectional couplings between two systems. In the first coupling, weitd@eccount a
generator system, the leftmost box in the figure, which is connected withoadaystem
considered as a replicator in the couple. In the next coupling, the segstein is considered
as a generator with respect to the third one. That is, it changes its role extlesion
process. In the third coupling, the third system is considered as a tmnara the forth
one as a replicator. In summary, the mechanism proceeds as follows. Satalaccount
consecutive unidirectionally coupled systems such that the initial one iseaajenand at
each next coupling the role of the previously chaotified replicator clsaaige we start to use
it as a generator. As a result of the mechanism all individual subsystermokaotic as well as
the system which consists of all subsystems. Moreover, the type of ties chaaved under
this procedure.

In Figure 2.5 we show another mechanism of chaos extension. Hereetleeagor is sur-
rounded by three replicators and the blue arrows symbolize, again, ectidital couplings
between two systems. Distinctively from the former mechanism, the replicaiorst¢hange
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Figure 2.4: Morphogenesis of chaos through consecutive replications

their role with respect to each other according to the special topologynokotion. The gen-
erator is coupled with all other replicators such that it is rather a core thegianing element.
The result of the mechanism is similar to the former such that all replicatorehasvthe
system consisting of all subsystems become chaotic, saving the chao$ tiypeenerator.
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Figure 2.5: Morphogenesis of chaos from a prior chaos as a core

We call the two ways athe chainandthe coremechanisms, respectively, and the system
which unites the generator and several replicators, of 2@, in either extension mecha-
nism asthe result-systemTheoretically, we do not discuss constraints on the dimension of
the result-system, but under certain conditions it seems that the dimensidameastnicted for
both mechanisms. However, this is definitely true for the core mechanismaétreimfinite
dimensions. We will discuss and simulate the chain mechanism in the chapter,, rsi@icdy

the core mechanism can be discussed very similarly. One can invent otbleammms, for
example, by considering “composition” of the two mechanisms proposedmihgs

Next, to exemplify the chaos extension procedure of our study, acgptalithe chain mech-
anism shown in Figure 2.4 we set up the followingdmensional result-system

Xp =X
X, = —0.05%; — X3 + 7.5 cogt
X3 = X4+ X1
o . - 3
Xf‘ = —3x3 — 2x4 — 0.008¢; + %2 (2.27)
Xg = X6+ X3
X = —3%5 — 2.1% — 0.00%¢ + X4
Xj = Xg+ X5

X = —3.1%7 — 2.2xg — 0.006< + Xs.

We note that systen2.27) consists of four subsystems with coordinat®g xz), (X3, Xs),
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(xs,Xs) and (xz,Xxg) such that the subsystefwry,x2) is exactly the generator used in system
(2.4) + (2.5), while the subsystertxs, X4) is the replicator 0f2.4) 4 (2.5).

According to the theoretical results of the present chapter, sy®R&W) possesses a chaotic
attractor in the 8 dimensional phase space. By marking the trajectory of this system with
the initial datax; (0) = 2, X2(0) = 3, X3(0) = x5(0) = X7(0) = —1, X4(0) = x6(0) = xg(0) =1
stroboscopically at times that are integer multiples of #e obtain the Poincaré section
inside the 8-dimensional space. In Figure& which informs us about morphogenesis, the
3—dimensional projections of the whole Poincaré section oxthexs — Xg andxz — Xs — X7
spaces are shown. One can see in Figuse(a) and in Figure B, (b) the additionafoldings
which are not possible to observe in the classical strange attractor shéigure 2.2, (a).

Figure 2.6: In (a) and (b) projections of the result chaotic attractor oxithexs — xg and

X3 — X5 — X7 Spaces are respectively presented. One can see in (a) and (b)ditienadl
foldingswhich are not possible to observe in thedmensional picture of the prior classical
chaos shown in Figure.2 (a). In the same time, the shape of the original attractor is seen in
the resulting chaos. The illustrations in (a) and (b) repeat the structtine attractor of the
generator and the similarity between these pictures is a manifestation of theagengsis

of chaos.

Despite we are restricted to make illustrations at most-aliBhensional spaces, taking in-
spiration from Figure 2.2 and Figure 2.6, one can imagine that the strudttine original
Poincage’section in the 8 dimensional space will be similar through its fractal structure, but
more beautiful and impressive than its projections. From this point of vievare@ot sur-
prised since these facts have been proved theoretically.

Next, we shall handle the problem that whether the chaos extensiordprecsorks for all
existing systems in the mechanisms presented above, from the theoretitalf pagw. Since
the core mechanism does not need any additional theoretical discysesongl consider the
chain mechanism.
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In addition to the syster(2.1) + (2.2), we take into account the system
Z =Bz+h(y(t),2), (2.28)

whereh: R" x R' — R! is a continuous function in all of its arguments, the constaritreal
valued matrixB has real parts of eigenvalues all negative gftdlis a solution system (2.2).

It is easy to verify the existence of positive numbBrand & such that|e®|| < Ne~, for
allt > 0.

In our next theoretical discussions, the systgh?8) will serve as the third system in the
chain mechanism presented by Figure 2.4, and we need the following &@gsuswhich are
counterparts of the conditiori$d) — (A7) presented in Section2

(A8) There exists a positive numbkr such that
1h(y1,2) = h(y2,2)[| > La[lys —yall,
forally;,y, € R", ze R!;
(A9) There exist positive numbets andLz such that
1h(y1,2) = h(y2,2)[| < Lallys —yall,
forally;,y, € R", ze R, and
Ih(y,22) = h(y, )| < Ls||zs 2|,
forallyeR", z,20 € R';
(A10) There exists a positive numbkg such that

sup [[h(y,2)|| < Ko;
yeRN zeR!

(A11) NLz— @ < 0.

Likewise the definition for the set of functions), given by(2.9), let us denote by the set
of all bounded orR solutions of systerd = Bz+h(y(t), z), for anyy(t) € <4,.

In a similar way to the Lemma 2.2.1, one can show that the set
= {z(t) | z(t) is a solution of the system = Az+ g(y(t),z) for somey(t) € % }

is a basin of«7. Furthermore, a similar result of Theoreml2 introduced in Section.2,
hold also for the set,.

We state in the next theorem that similar results of the Theorebns @nd 26.1 presented in
Sections 5 and 26, respectively, hold also for the sef.

We note that, in the case of the presence of arbitrary finite number of syskdnach obey
conditions that are counterparts(@®) — (A7), one can prove that a similar result of the next
theorem holds for the chain mechanism.
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Theorem 2.7.1If the sete is Devaney chaotic or Li-Yorke chaotic, then thesgts chaotic
in the same way as boti, and.c,.

Proof. In the proof, we will show that for eack(t) € <7; and arbitraryd > 0, there exist
2(t) € o, andtg € R such that|z(tg) — z(to)|| < &, which is needed to show sensitivity of,.
The remaining parts of the proof can be performed in a similar way to thegppoe$ented in
Sections 5 and 26, and therefore are omitted.

Suppose that the sef; is sensitive. Fix an arbitray > 0 and letz(t) € <% be a given solution
of system(2.28). In this case, there exisyst) = @) (t) € <%, wherex(t) € %, such that(t)
is the unique bounded dk solution of the systerd = Bz+ h(y(t), 2).

Let us choose a number= €(d) > 0 small enough which satisfies the inequality

1+ NN"EN (1+N"2)s<5
@—NL3 w—NLg

NL,
w—NL3

and denote; = <1+ >£. Now, takeR = R(€) < 0 sufficiently large in absolute

NL3—w)R/2 —(NLz—@)R/2

: . 2MoN 2MoN
value such that both of the mequalltle%e*( <€ andToe <&
are valid, and lety = & (€,R) = £€-°R. Since the set¥ is sensitive, one can firg(t) € %

andtp € R such that the inequalityx(to) — X(to)|| < &1 holds.
As in the case of the proof of Lemmab2, for t € [to+ R tg], one can verify that
Ix(t) —x(t)|| <€

and

NL2g  2MoN (Ni-w)it-10-R)

VO =3Ol < 5=+

According to the last inequality, we hayg(t) — y(t)|| < &1, fort € [to+ R/2,1to].

Suppose that(t) is the unique bounded di solution of the systerd = Bz+ h(y(t),z). One
can see that the relations

z(t):/t E=Sh(y(s),z(s))ds
and
2= [ EIniy(s),2(s)ds

are valid. Using these equations, it can be verified that
t -~
Izt -2l | Ne 9 ||h(y(s), 2(s)) — h(y(s), 2(9)) || ds
ot3
t -~
+ [ Ne®“9h(y(s),2(s) —h(y(s),2(s))|| ds

to+5

+/_ti+z Neg @(t-9) Ih(y(s),z(s)) —h(y(s),z(s))||ds
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Since||y(t) —y(t)|| < & fort € [to+ R/2,t0], one has

|z(t) —z(t)]| < N[g,/t Re—(T)(t—s) |z(s) —z(s)||ds

to+35
to+5

e t ~ - _
N / e Ot g5t 2MoN e Ot-9gg
t0+§ —00
. t ~
SNLz [ e @929~ 2s)|ds
to+53
(Nbagr e (67t _ ghllo R/2)) | 2MoN __tto-R/2)
w w

Now, let us introduce the functiongt) = e ||z(t) — z(t)||, k(t) = NLaz)sle‘:’t, andv(t) =

c+k(t) wherec = <2|\?§N — '\”‘63281> eW(totR/2)

t
These definitions imply thati(t) < v(t) + . NLzu(s)ds and applying Lemma .2 [34]
to+5
leads to . ’ -
u(t) < v(t)+NLs \3(=Sh(s)ds

R
tot+3

Therefore, fott € [to + R/2,t5] we have

. 2T . t .
uft) < o+ k(R +o (MR g BRI [ o-Rlasgs

to+5

ULV <2'V'BN _ NL(;) T it

)

MLaboft g 3 _ No-a1tt0-R12)
@(@— NL3)

and hence

J2(t) —2(t)| < 2L [1  eEs-ait-to-R] | 2N G- ay0-t0-mi),
- w

is valid.

The theorem is proved.]
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2.8 Replication of Period-Doubling Cascade

We start this section by describing the chaos through period-doublicgda$21, 92, 187]
for the set of functions#, and deal with its replication by the set of functio®, which is
defined by equatiof2.9).

Suppose that there exists a functiGn R x R™ x R — R™ which is continuous in all of its
arguments such th&t(t,x) = G(t, X, H) for some finite numbept.,, which will be explained
below.

To discuss chaos through period-doubling cascade, let us consédgystem
X' = G(t,x, Y), (2.29)
wherey is a parameter.

We say that the set’ is chaotic through period-doubling cascade if there exist a natural
numberk and a sequence of period-doubling bifurcation valugg} , Um — Mo aSm — oo,

such that for eaclm € N as the parameter increases (or decreases) throygh system
(2.29) undergoes a period-doubling bifurcation and a periodic solution with gé26'T
appears. As a consequencejlat L, there exist infinitely many unstable periodic solutions
of system(2.29), and hence of systeif2.1), all lying in a bounded region. In this case, the
set.w% admits periodic functions of periodd’, 2kT, 4kT, 8kT, - - -.

Now, making use of the equation (2.8), one can show that for any naturaberp, if
X(t) € <% is apT—periodic function therg;)(t) € <4 is alsopT—periodic. Moreover, con-
dition (A4) implies that the converse is also true. Consequently, if theZseidmits periodic
functions of period«T, 2kT, 4kT,8KkT,-- -, then the same is valid fo,, with no additional
periodic functions of any other period. Furthermore, the technique indidatéhe proof
of Lemma 2.5.2 can be used to show that these periodic solutions are alllaretahthis
provides us an opportunity to state the following theorem.

Theorem 2.8.1If the setas is chaotic through period-doubling cascade, then the same is
true for .«

The following corollary of Theorem.8.1 states that the result-systégl) 4 (2.2) is chaotic
through the period-doubling cascade, provided the sy$gehy is.

Corollary 2.8.1 If the seta is chaotic through period-doubling cascade, then the same is
true for o7

Our theoretical results show that the replicator system (2.2), likewise theraer coun-
terpart, undergoes period-doubling bifurcations as the parameiecreases or decreases
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through the valuegm, me N. That is, the sequendgiy,} of bifurcation parameters is exactly
the same for both generator and replicator systems. In this case, if thamgersystem obeys
the Feigenbaum universality [74, 198, 218, 243] then one can canthad the same is true
also for the replicator. In other words, when }imc, % is evaluated, the universal con-

stant known as the Feigenbaum numb&692016.. is achieved and this universal number
is the same for both generator and replicator.

It is worth saying that the results about replication of period-doublingazdesas well as the
Feigenbaum’s universal behavior, which can be perceived asarasthect of morphogenesis
of chaos, are true also for chaos extension mechanisms shown in Figuaed®Figure 2.5.
In our next example, using the chain mechanism, we will illustrate through simmsaiie
morphogenesis of period-doubling cascade.

In paper [189], it is indicated that the Duffing’s equation
X" +0.3x +x° = pcog (2.30)

admits the chaos through period-doubling cascade at the parameteuvalug = 40. Defin-
ing the new variableg; = x andx, = X, equation(2.30) can be rewritten as a system in the
following form

Xy = X2

231
X = —0.3%2 — X3 + [ COSL. (231)

Making use of systenf2.31) as the generator, let us constitute theddmensional result-
system

Xy = X2

X, = —0.3% — X5 + [ codt

X5 = 2X3 — X4 + 0.4 tan((x1 + X3) /10)

Xy = 17x3 — 6X4 + X2

= —2%5+ 0.5sinXg — 4x4

= —Xs — 4Xs —tan(xz/2)

X, = 2X7 + 5xg — 0.0003 X7 — Xg)° — 1.5%s
Xg = —5X7 — 8Xg + 4Xs.

; (2.32)
X5
Xg

System (2.32) is designed according to the chain mechanism indicated ire RAgur In

the coupling between the subsystems with coordingtes.) and (xs, x4) the former is the
generator and the latter is the replicator. In the second coupling betweeulibgstems
with coordinategxs, x4) and(Xs, Xs), this time the former is used as the generator although it
was the replicator in the previous coupling. The final coupling betweenuthgystems with
coordinategxs, Xg) and(xz, Xg) is constructed in a similar way. In this exemplification we will
refer to subsystems with coordinates, x2), (x3,Xa), (Xs,Xs) and(xz,Xs) as the first, second,
third and the fourth subsystems, respectively.

According to our theoretical discussions, the result-syst2®2) with the parameter value
U = U = 40 admits a chaotic attractor in the-8imensional phase space, which is obtained
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through period-doubling cascade. For the parameter vallbetween 30 and 4Ghe bi-
furcation diagrams corresponding to tke x4, X andxg coordinates of system (2.32) are
illustrated in Figure 2.7. The picture shown in Figure 2.7, (a) is the bifurcalimgram of the
system (2.31), while the pictures presented in Figure 2.7, (b), (c) gnzbfckspond to the
second, third and the fourth subsystems, respectively. For the paramaletes where stable
periodic solutions exist, the one-to-one correspondence betweenrtbéipsolutions of the
subsystems is observable in the figure. Moreover, it is seen in Figur.%) and (d) that,
likewise the first subsystem, all other subsystems undergo period-dguiifiimcations at the
same parameter values such thatfice u. all of them are chaotic. One should recognize
that the similarities between the presented bifurcation diagrams indicate mersig) of
period-doubling cascade.

5<° -0.6f

-0.7r

-0.8 -2
30 32 34 36 38 40 30 32

Figure 2.7: The bifurcation diagrams of system (2.32) according to owaigs. The pictures
in (@), (b), (c) and (d) represent the bifurcation diagrams corredipg to thex,, X4, Xg andxg
coordinates, respectively. It is observable that all replicators, likethis generator, undergo
period-doubling bifurcations at the same values of the parameter andth#rafare chaotic
for u = . = 40.

In Figure 28, (a)-(d), we depict the 2dimensional projections of the trajectory of system
(2.32), with the initial datax;(0) = 2.16, x2(0) = —9.28, x3(0) = —0.21, x4(0) = —2.03,

x5(0) = 3.36, xs(0) = —0.52, x7(0) = 3.07, xg(0) = —0.32, on the planex; — X2, X3 — Xa,

Xs — Xg, andxy — xg, respectively. The picture in Figure&(a), shows in fact the attractor

of the prior chaos produced by the generator syst2®il) and similarly the illustrations in
Figure 28, (b) — (d) correspond to the chaotic attractors of the second, third and the fourth
subsystems, respectively. The resemblance between the shapestivatiiera of the subsys-
tems reflect the morphogenesis of chaos in the result-sy2&®).
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Figure 2.8: 2-dimensional projections of the chaotic attractor of the result-sy$&8®).
The pictures in (a), (b), (c) and (d) represent the projections omithexs, X3 — X4, X5 — Xg
andx; — Xg planes, respectively. The picture in (a) shows the attractor of the pnaosc
produced by the generator syst€231), and in (b)-(d), the chaotic attractors of the remaining
subsystems are observable. The illustrations in (b)-(d) repeat theéus&'wd the attractor
shown in (a), and these pictures are indicators of the chaos extension.

To obtain a better impression about the chaotic attractor of sy&2e38), in Figure 29 we
demonstrate the-3dimensional projections of the trajectory with the same initial data as
above, on thexg — Xs — X7 andX4 — Xg — Xg spaces. Although we are restricted to make il-
lustrations at most in-3dimensional spaces and not able to provide a picture of the whole
chaotic attractor, the results shown both in Figure 2.8 and Figure 2.9 gareidsa about the
spectacular chaotic attractor of systéxB?2).

We note that systerf2.32) exhibits a symmetry under the transformation
t%/ . (X17X27 X37X47 X57X67 X77X87t> — (_Xl7 _X27 _X37 _X47 _X57 _X67 _X77 _X87t + T[)

and the presented attractors are symmetric around the origin due to the symhtietryesult-
system(2.32) under this transformation.

Now, let us show that the first replicator system which is included in@®?) satisfies the
condition(A7).

In the calculations below, we will denote Hly|| the matrix norm which is induced by the
usual Euclidean norm iR'. That is,

IT|| = max{ /< : ¢ is an eigenvalue of "I } (2.33)

for anyl x | matrix " with real entries, an@' denotes the transpose of the maififo8].
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Figure 2.9: 3-dimensional projections of the chaotic attractor of the result-sy&23R). (a)
Projection on thei; — X5 — X7 space, (b) Projection on thg — xg — Xg space. The illustra-
tions presented in (a) and (b) give information about the impressiveictatractor in the
8—dimensional space.

When the system

X, = 2X3 — X4 4 0.4tan((x + x3) /10)

/ (2.34)
Xy = 17x3 — 6X4+ X2

is considered in the form of syste(@.2), one can see that the matxcan be written as

2 -1
A= , which admits the complex conjugate eigenvalu&sri.
17 -6

-2 -1
The real Jordan form of the matrixis given byJ = and the identityP AP =
1 -2

0 1
J is satisfied wher® = . Evaluating the exponential matr&t! we obtain that
-1 4

cosgt —sint
fl—e2p pL. (2.35)
sint  cost

TakingN = [|P|| |[P71|| < 18 andw = 2, one can see that the inequaljtg™ || < Ne~** holds
for all t > 0. The functiong : R? x R? — R? defined as

O(X1,X2,X3,Xa) = <0'4tan<xll+ox3) ,Xz>

satisfies the conditiongA4) and (A5) with constantd ; = v/2/50, L, = v/2 andLz = 0.08
since the chaotic attractor of systéth32) satisfies the inequalitigs; | < 6, [x3| < 3/2, and
consequently*58| < 3/4. Therefore, the conditiofA7) is satisfied.
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In a similar way, for the second replicator system, making uggspK 3/2 once again, one
can show that the functidm: R? x R? — R? defined as

h(xa, X4, X5, Xs) = (0'5Sinx6 — 4, - tan(%))

satisfies the counterparts of the conditioAd) and(A5) with constants; = v/2/4, Lo = 41/2
andLz; =1/2.

Now, we shall focus on the third replicator system

X, = 2%7 + 5xg — 0.00004%7 — Xg)% — X6

K (2.36)
Xg = —5X7 — 8xg + 4Xs.

The matrix of coefficients of the systefR.36) with the assumed coefficients is

()

It can be easily seen that3 is an eigenvalue of the matrix with multiplicity 2. The real

-3 1
Jordan form of the matrid is J = and the identityd = P~*AP is satisfied
0 -3

1 0
whereP = ( ) . Evaluating the exponential matr&! we have
-1 1/5

1t
ft=ep P (2.37)
01

If we denote byl the 2x 2 identity matrix, then using equatid@.37), one can conclude for

t > 0 that
3t 1 0t
] < &2 ey -+
00

<e ¥|P|||PH(1+t)
— e 2Py Pt =

<e 2 |PI[|[P~
since 1+t < e for all t > 0.

Thus, takingN = [|P|| ||P~!|| < 10.2 andw = 2, one can see that the inequaljtg™ || < Ne~“*
holds for allt > 0. Furthermore, the functiok: R? x R? — R? defined by the formula

3
k(X57 X6, X7, X8) = <OOOOKX7 — X8)3 — §X6’ 4X5>

satisfies the conditiong\4) and(A5) with constantd; = 3v/2/4,L, = 4v/2 andL3 = 0.19,
since the chaotic attractor of systét36) satisfies the inequalitids;| < 8, |xg| < 4. There-
fore,NLs — w < 0 and conditionA7) is satisfied.
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Remark 2.8.1 We have proved that the replicator system (2.2) exhibits chaos in the sense
Devaney, Li-Yorke and the one obtained through period-doublingacksgrovided that the
generator system (2.1) or (2.7) exhibits the same types of chaos. Sinoed 2.2.1 implies
the presence of the criterion (1.9) for the unidirectionally coupled sys&w) + (2.2), in
which an autonomous generator is used, we can say that generalizedrasgization takes
place in the dynamics of systé&7) + (2.2).

The next section is devoted to the results about controlling the replicated.cha

2.9 Controlling Replication of Chaos

In the previous sections, we have theoretically proved replication ofscluaspecific types
and controlling the extended chaos is another interesting problem. Théeexém and its
corollary indicate a method to control the chaos of the replicator sy&eéthand the result-
system(2.1) + (2.2), respectively, and reveal that controlling the chaos of sygi2n) is
sufficient for this.

Theorem 2.9.1 Assume that for arbitrarg > 0, a periodic solution (t) € % is stabilized
such that for any solution(k) of systerm{2.1) there exist real numbers a andE0 such that
the inequality|x(t) —xp(t)|| < € holds for te [a,a+ E].

Then, the periodic solutiop, ) (t) € < is stabilized such that for any solutioty of system

(2.2) there exists a number® a such that the inequalitH/y(t) — @t (t) H < <l+ oﬁkﬁg) €
holds for te [b,a+ E], provided that the number E is sufficiently large.

Proof. Fix an arbitrary solutiory(t) of systemy = Ay+ g(x(t),y) for some solutiorx(t) of
system(2.1). According to our assumption, there exist numbe@ndE > 0 such that the
inequality[[x(t) —xp(t)[| < € holds fort € [a,a+ E]. Let us denotg/p(t) = @) (t) € 4. It
is clear that the functiog,(t) is periodic with the same period &g(t). Sincey(t) andyp(t)
satisfy the integral equations

y(t) = Ay(a) + [ Ig(x(s),y(5)ds
and
yolt) = €M 2yp(a) + [ €M Igx5(9).yp(s))ds
respectively, one has
YO~ yplt) = 2y @) — yp(a)
+ [ M9 [gix(9),¥() — 9X(S),yp(9))]ds

Ja

+ [ 9 g(x(9),y5(8)) — 9(6(9),Yp(8))] s

a
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By the help of the last equation, we have

ot NLre
Iy(t) —yp(t)| < Ne~ @3 [ly(a) —yp(a)|| + — et (e — *?)

w
t
#NLs [ &9 y(s) - yp(s)] ds
a

Letu: [a,a+ E] — [0,) be a function defined agt) = e ||ly(t) —y,(t)| . In this case, we
reach the inequality

t
(et —e™) + NL3/ u(s)ds

a

NLoe

u(t) < Ne“ly(a) —yp(a)l| +—

Implementation of Lemma.2 [34] to the last inequality, whettec [a,a+ E], provides us

NLoe
u(t) <
)<~

N L2£ewaeNL3(t—a) + Me&’t <1 _¢eN Lsfw)(t*a)>
w w(w—NLg) ‘

e +N|ly(a) — yp(a)| €=

and consequently,

NLoe o
2~ FN|ly(a) — yp(a)| eNte-@)t-a)

[y(t) —yp(t)[| <

w
NLZg (NL3—O.))(t—a) N2L2L38 (NL —w)(t—a)
_ 1=t — (1- s
w © w(w—NL3) ( © )
NLye
B (NLz—w)(t—a) 2
<Nlly(a) —yp(a)lle T - NL’
NLy

If y(a) =yp(a), then clearlyi|yp(t) —y(t)|| < <1+ > g, t € [a,a+ E]. Suppose that

w—NL3

£ > , the inequalityeNs—@)(t-3) <

1
In <
NLs—w  \N|ly(a) —yp(a)]
is satisfied. Assume that the numkers sufficiently large so thaE >

y(a) # yp(a). Fort > a+

Nly(a) —yp(a)]
1 £

Nm—wm<NW@%vM®H

b= max{a,a+ NL31— P <|\| ||y(a)£—Yp(a)|| ) }

E:min{E,E— Nle_wIn (Nyy(a)g—yp(a)H>}

. w—NLs+NLy
tt t) —yp(t T w_NL.
one attaingy(t) —yp(t)|| < < w—_NLg

for the duration of control for systef2.2). We note thab>a, 0 < E < E andb+E = a+E.

) . Thus, taking

and

) g, fort € [b,b+E]. Here the numbeE stands

NLo
Hencel|y(t) —yp(t)|| < <l+ . NL3) g, fort € [b,a+E].
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The proof of the theorem is finalized]

An immediate corollary of Theorem 2.9.1 is the following.

Corollary 2.9.1 Assume that the conditions of Theor@mM.1 hold. In this case, the peri-
odic solution 3(t) = (xp(t),q;(p(t)(t)) € o/ is stabilized such that for any solutiofitx of
system(2.1) + (2.2) there exists a number b a such that the inequalityjzy(t) — z(t)|| <

(2+ wﬂklzl_s) ¢ holds for te [b,a+ E], provided that the number E is sufficiently large.

Proof. Making use of the inequality

’

I2(t) = Zo(0)]] < () = Xp(0)]] + |[V(0) — B 1)

and the conclusion of Theorem 2.9.1, one can show that the inequality

o) 20 < (24 o)

holds fort € [b,a+ E] and for somé > a. The proof is completed.]

Remark 2.9.1 As a conclusion of Theorem 2.9.1, the transient time for control to take ef-
fect may increase and the duration of control may decrease as theanuhltonsecutive
replicator systems increase.

In the remaining part of this section, our aim is to present an illustration wtoofirms
the results of Theorem 2.9.1, and for our purposes, we will make use ¢fhtragas control
method [177]. Therefore, primarily, we continue with a brief explanatiotisfmethod.

A delayed feedback control method for the stabilization of unstable peioblits of a chaotic
system was proposed by Pyragas [177]. In this method, one conaidgstem of the form

X =H(x,q), (2.38)

whereq = q(t) is an externally controllable parameter and do£ O it is assumed that the
system(2.38) is in the chaotic state of interest, whose periodic orbits are to be stabilized
[76, 82, 177, 243]. According to Pyragas method, an unstéblperiodic solution of the
system(2.38) with g = 0, can be stabilized by the control lag(t) = C[s(t — &) —s(t)],
where the paramete® represents the strength of the perturbation sftgl= o [x(t)] is a
scalar signal given by some function of the state of the system.

Itis indicated in [82] that in order to apply the Pyragas control method to thetehDuffing
oscillator given by the system

X =X

2.39
X, = —0.10% + 0.5%; (1 —X2) +0.24sirt, (2.39)
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one can construct the corresponding control system

\/l =\
V, = —0.10v2 + 0.5v; (1—VZ) + 0.24sin(v3) + C[Va(t — 271) — Va(t)] (2.40)
=1

whereq(t) = C[va(t — 21) — v»(t)] is the control law and an unstabler2periodic solution
can be stabilized by choosing an appropriate value for the para@eter

Now, let us combine system (2.39) with two consecutive replicator systethsetrup the
following 6—dimensional result-system

Xq =X
X, = —0.10%2 + 0.5x; (1—x§) +0.24 sint
Xg = X4 — 0.1x1

2.41
xil: —3)@—2X4—0.008(g+1.6X2 ( )

Xg = Xg + 0.6x3
Xg = —3.1x5 — 2.1%g — 0.007¢ + 2.5xs.

In system (2.41) the subsystems with coordindigsx,) and(xs,Xs) correspond to the first

and the second replicator systems, respectively. Since our procefdorerphogenesis is

valid for specific types of chaos such as in Devaney’s and Li-Yorksesand through period-
doubling cascade, we expect that our procedure is also applicablg tdheam chaotic system

with an unspecified type of chaos. Accordingly, syst@#1) is chaotic since the generator
system(2.39) is chaotic.

Theorem 2.9.1 specifies that in order to control the chaos of systen) (hédkhould control
the chaos of the generator system, which is the subsystem of (2.41) witfirates(x, X2).
In accordance with this purpose, we will use the Pyragas control methodelans of the
system

\/1 =V

V, = —0.10v, 4 0.5v; (1—V2) +0.245sin(v3) +C [Va(t — 271) — Vo (t))]

V=1

\/4 = Vg — O.lV]_ (242)
Vg = —3Vs — 2vs — 0.008/5 + 1.6,

Vg = V7 +0.6v4

V, = —3.1vg — 2.1v7 — 0.00AZ + 2.5vs,

which is the control system corresponding to (2.41).

Let us consider a solution of systefR.42) with the initial datav;(0) = 0.2, v»(0) = 0.2,

v3(0) = 0, v4(0) = —0.5, v5(0) = 0.1, v = —0.2 andv7(0) = 0.1. We let the system evolve
freely takingC = 0 until t = 60, and at that moment we switch on the control by taking
C =0.84. At t = 200, we switch off the control and start to use the value of the parameter
C =0 again. In Figure 20 one can see the graphs of thevs, v; coordinates of the solu-
tion. Supporting the result of Theorem 2.9.1, it is observable in Figur@ that stabilizing
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a 2rr—periodic solution of the generator system provides the stabilization of thespamd-
ing 2r—periodic solutions of the replicator systems. After switching off the contr@, th
2m—periodic solutions of the generator and replicators lose their stability aras @merges
again. For the coordinateg, v, andvg we have similar results which are not just pictured
here.

0 50 100 150 200 250

50 100 150 200 250

0 50 100 150 200 250

Figure 2.10: Pyragas control method applied to the result-sy&ett) with the aid of the
corresponding control syste(@.42). The pictures in (a), (b) and (c) show the graphs of the
Vo, V5 andvy coordinates, respectively. The result of Pyragas control methdiedpp the
generator systen2.39) is seen in (a). Through this method, the-2periodic solution of
the generator and accordingly the-2periodic solutions of the first and the second replicator
systems are stabilized. In other words, the chaos of the result-sy2#his controlled. The
control starts at = 60 and ends dt= 200, after which emergence of the chaos is observable
again.

2.10 Discussion

In this part of the chapter, we intend to consider not rigorously proetinteresting phe-
nomena which can be considered in the framework of our results. Sohallegs/e some
additional light on the results obtained above and say about the possihilityefoeplication
of intermittency, Shil'nikov orbits and relay systems. We also demonstrate gy of
guasiperiodic motions as an infinite basis of chaos.

We start our discussions with replication of intermittency.
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2.10.1 Replication of intermittency

In the previous sections, we have rigorously proved replication offspggpes of chaos such
as period-doubling cascade, Devaney’s and Li-Yorke chaos. égoesitly, one can expect
that the same procedure also works for the intermittency route.

Pomeau and Manneville [175] observed chaos through intermittency in tfenz.cystem
(2.19), with the coefficientsr = 10, b = 8/3 and values of slightly larger than the critical
valuer. =~ 166.06. To observe intermittent behavior in the Lorenz system, let us consider a
solution of systen{2.19) together with the coefficients = 10, b= 8/3, r = 166.25 using

the initial datax; (0) = —23.3, X2(0) = 38.3 andxz(0) = 1934. The time-series for they, X,
andxz coordinates of the solution are indicated in Figurel2where one can see that regular
oscillations are interrupted by irregular ones.

10 20 30 40 50 60 70

100

-100 L L L L L L
0 10 20 30 40 50 60 70

200
<7 150 ]\ \I

100

Figure 2.11: Intermittency in the Lorenz system (2.19), where 10, b = 8/3 andr =
166.25. (a) The graph of the; —coordinate, (b) The graph of the—coordinate, (c) The
graph of thexz—coordinate.

To perform replication of intermittency, let us consider the Lorenz sy$&th®) as a gener-
ator and set up the-&dimensional result-system

X = 0 (—X1+X2)

Xp = —Xo 4 X1 — X1X3

X5 = —bXg 4 X1%2

Xy = —Xa+4x1

X5 = X6+ 2%

X = —3x5 — 2% — 0.00005¢ 4 0.5x4,

(2.43)

again with the coefficientsr = 10, b = 8/3 andr = 166.25. It can be easily verified that
condition (A7) is valid for system(2.43). We consider the trajectory of systef2.43) cor-
responding to the initial datg (0) = —23.3, x2(0) = 383, x3(0) = 1934, x4(0) = —17.7,
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x5(0) = 11.4, andxg(0) = 2.5, and represent the graphs for thexs andxg coordinates in
Figure 212 such that the intermittent behavior in the replicator system is observdidesim-
ilarity between the graphs of the coordinates corresponding to the genana the replicator
counterpart reveals the replication of intermittency.
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Figure 2.12: Intermittency in the replicator system. The pictures in (a), @Y&rshow the
graphs of theq, X5 andxg coordinates, respectively. The analogy between the time-series of
the generator and the replicator systems indicates the replication of intermittency

2.10.2 Replication of Shil'nikov orbits

To illustrate that by our method it may also be possible to replicate strange atirpttp85,
232], let us provide simulations of homoclinic and complicated Shil'nikov orbiigure 2.13
and Figure 2.14 correspondingly).

As a model for Shilnikov’s orbits, the paper [26] considers the system

Xq = X2
Xp = X3 (2.44)
Xg ==Xz — Bx3+ fu(xa),

where

1—pux, if x>0
f = ’ 2.45
u®) { l1+ax if x<O. ( )

The valuesa = 0.633625 8 = 0.3375 and the paramet@rused in system (2.44) are taken
from [92]. There exists an equilibrium poiey = (—1/a,0,0) of system (2.44) and the
eigenvalues of the matrix of linearizationeatare 04625 —0.4+ 1.1i such that the condition
of the Shil'nikov’s theorem about eigenvalues [203] is satisfied. Flwegof the parameter
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U near 216 system (2.44) possesses a special type homoclinic 8thitrikov orbit and
its presence implies chaotic dynamics [92]. In this case, Shil’'nikov’s tine@sserts that
every neighborhood of the homoclinic orbit contains a countably infinite mummbunstable
periodic orbits [26, 203].

To demonstrate numerically the replication of a Shil'nikov orbit, let us conslaefollowing
system

Xy = X2

Xo = X3

Xg = —Xo — BX3+ fu(X1) 246
X, = —2X4+ X (2.40)
4 — 1

Xg = —0.6x5+ 2% + 0.1

Xg = —1.2%g +0.001sir(Xg) + X3,

where, again, the functiof),(x) is given by formula (2.45).

System (2.44) is used as a generator in system (2.45), where the lastdrelinates are of

a replicator. Let us consider system (2.46) with the valmes 0.633625 8 = 0.3375 and

U = 2.16 once again. In Figure 2.13 we show the trajectory of this system with inétal d
x1(0) —1.5759 x2(0) = 0, x3(0) = 0, x4(0) = —0.78795 x5(0) = 0 andxg(0) = 0. The picture

in Figure 2.13, (a), where we illustrate the projection of the trajectory orxihex, — x3
space represents, in fact, the Shil'nikov orbit corresponding to thergear system (2.44).
On the other hand, the picture in Figure 2.13, (b), shows the projectioredfdfectory on
thexs — X5 — Xg Space and in this picture the replication of the Shil'nikov orbit is observable.

15 0.6

0.5 0.2

-15 -0.6

-2.5 -1

Figure 2.13: Replication of a Shil’nikov type homoclinic orbit. In picture (a)e @an see
the projection on th&; — x, — x3 space of the trajectory of system (2.46) corresponding to the
initial datax; (0) —1.57590Q x2(0) = 0, x3(0) = 0, X4(0) = —0.78795 x5(0) = 0 andxs(0) = 0.

The picture in (b) shows the projection on the— x5 — Xg space of the same trajectory. The
parameter valueg = 0.633625 3 = 0.3375 andu = 2.16 are used in the simulation. The
picture in (a) represents a Shil’nikov type homoclinic orbit correspontiindpe generator
system (2.44), while the picture in (b) shows its replication through the sy&€i®).
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Next, we consider system (2.46) with the valwes- 0.633625 3 = 0.3375 u = 0.83 and
take the trajectory of this system with the same initial data as above. In Figuyre(@)land
(b), we represent the projections of this trajectory onxdhe X, — X3 andxs — X5 — Xg Spaces,
respectively. The picture in (a) represents the complicated behavioe gfetherator system
(2.44) and one can see in picture (b) the replication of this behavior.

Figure 2.14: Projections of a complicated orbit of system (2.46) with the sadue-
0.633625 B = 0.3375 andu = 0.83. (a) Projection on thex; — X, — X3 space, (b) Pro-
jection on thexs — x5 — Xg space. The initial data (0) — 1.5759Q x2(0) = 0, x3(0) = 0,
Xa(0) = —0.78795 x5(0) = 0, x6(0) = 0 is used for the illustration. The picture in (a) repre-
sents the behavior of the trajectory corresponding to the generato},(@Hite the picture in
(b) illustrates its replication.

We suppose that theoretical affirmation of our simulation results can beifdameconsiders
interpretation of Shil’nikov’s theorem [203] for the multidimensional replicafthat is, we
are still questioning whether our approach can be somehow combined witbdaétidicating
chaos through Shil'nikov type strange attractors [71, 232]. At least,da&y to see that a
homoclinic trajectory exists for a replicator as well as a denumerable sestdhle periodic
solutions.

In next our discussion, we will emphasize by means of simulations the magphbsig of
the double-scroll Chua’s attractor in a unidirectionally coupled open abfathua circuits.
Approaches for the generation of hyperchaotic systems have alreadydiscussed making
use of Chua circuits which are all chaotic [24, 115]. It deserves to nlemhat to create
hyperchaotic attractors in previous papers, others consider both éavimiteracting systems
chaotic, but in our case only the first link of the chain is chaotic and othegsemutive Chua
systems are all non-chaotic.
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2.10.3 Morphogenesis of the double-scroll Chua’s attractor

There is a well known result of the chaoticity based on the double-sciala® attrac-
tor [145]. It was proven first in the paper [52] rigorously, and thegbris based on the
Shil'nikov’s theorem [203]. Since the Chua circuit and its chaotic behasiof extreme im-
portance from the theoretical point of view and its usage area in eleatitcaits by radio
physicists and nonlinear scientists from other disciplines, one can sig@isnorphogenesis
of the chaos will also be of a practical and a theoretical interest.

In this part, we just take into account a simulation result which supports thgthogenesis
idea can be developed also from this point of view.

Let us consider the dimensionless form of the Chua’s oscillator givendogytstem

Xy = ka[xg —x1 — f(x1)]

Xp = K(X1 — X2 +X3)

X3 = K(—B%2 — yX3)

f(x) = bx+0.5(a—Db) (]x+ 1|+ [x—1|),

(2.47)

wherea, 3, y,a,b andk are constants.

In paper [53], it is indicated that systefR.47) with the coefficientsax = 21.32/5.75, 3 =
7.8351 y=1.3816639212 a= —1.8459 b = —0.86604 andk = 1 admits a stable equilib-
rium.

In what follows, as the generator, we make use of syg&24v) together with the coefficients
a=156,3=2558 y=0,a=—-8/7,b=—5/7 andk = 1 such that a double-scroll Chua’s
attractor takes place [21].

Consider the following 12dimensional result-system

Xy = 15.6[x; — (2/7)xa+ (3/14) ([xa + 1] + pxa — 1))]

X/Z =X1—Xo+X3

X, = —25.58%)

X, = (21.32/5.75)[xs — 0.13396¢ + 0.48993(|x4 + 1| + |X4 — 1])] + 2
X = Xq — X5+ X6 + 5%

X, = —7.8351xs — (1.3816639212)xg + 23

X, = (21.32/5.75)[xg — 0.13396¢; + 0.48993(|x7 + 1| + [x7 — 1|)] + 2x4
Xg = X7 — Xg + X9+ 35

Xq = —7.8351Xg — (1.3816639212)Xg — 0.001xg

Xy = (21.32/5.75)[x11 — 0.13396¢10+ 0.48993|x10+ 1| 4 [x10— 1|)] +4x7
X171 = X10— X11+ X12— 0.1Xg

X, = —7.8351x;7 — (1.3816639212)x12+ 2Xo.

(2.48)

System (2.48) consists of four unidirectionally coupled Chua circuits thatlthe subsystems
with coordinategx, X2, X3), (X4,Xs,Xs), (X7,Xg,X9) and (X10,X11,X12) correspond to the first,
second, third and the fourth links of the open chain of circuits.
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In Figure 2.15, we simulate the-8limensional projections on the — X, — X3 andxs — Xs — Xg
spaces of the trajectory of the result-syst@w8) with the initial datax; (0) = 0.634, x2(0) =
—0.093 x3(0) = —0.921, x4(0) = —8.013 X5(0) = 0.221 xg(0) = 6.239, x7(0) = —50.044,

xg(0) = —0.984 x9(0) = 48513 x10(0) = —256.325 x11(0) = 7.837, x12(0) = 264331 The
projection on thex; — xo — x3 space shows the double-scroll Chua’s attractor produced by
the generator systel(2.47), and projection on th&, — x5 — Xg Space represents the chaotic
attractor of the first replicator.

Figure 2.15: 3-dimensional projections of the chaotic attractor of the result-system (2.48).
(a) Projection on the; — x, — X3 space, (b) Projection on thg — x5 — Xg space. The picture

in (a) shows the attractor of the original prior chaos of the generattersy&.47) and (b)
represents the attractor of the first replicator. The resemblance beshaees of the attractors

of the generator and the replicator systems makes the extension of clpaosrdp

In a similar way, we display the projections of the same trajectory orxthexs — X9 and
X10— X11 — X12 Spaces, which correspond to the attractors of the second and the phiceta
systems, in Figure.26. The illustrations shown in Figure 25 and Figure 2.6 indicate the
extension of chaos in system (2.48). Possibly the result-sy&2etB) produces a double-
scroll Chua’s attractor with hyperchaos, where the number of posifrapunov exponents
are more than one and even four.

The type of chaos for the double-scroll Chua circuit is proposed iemp&?2]. It is an inter-

esting problem to prove that this type of chaos can be replicated througtethed discussed
in our study. Nevertheless, we show by simulations that the regular bela@hua circuits

placed in the extension mechanism can also be seen. This means thaten@ditispestiga-

tion has to be done. Moreover, this shows how one can use morphogeoissidy for chaos,

but also for Chua circuits by uniting them in complexes in electrical (physseal$e, and ob-
serving the same properties as a unigue separated Chua circuit admitss arnigteresting
problem which can give a light for the complex behavior of huge electticalits.
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Figure 2.16: 3-dimensional projections of the chaotic attractor of the result-system (2.48).
(a) Projection on the; — Xg — Xg space, (b) Projection on they — x11 — X12 space. The pic-
tures in (a) and (b) demonstrate the attractors generated by the sechih@ éimrd replicator
systems, respectively.

2.10.4 Quasiperiodicity through chaos replication

Now, let us indicate that if there are more than one generator system themeib®e extension
mechanism will lead to some new forms such as periodicity gives birth to quasijoiy.

In paper [69], it is mentioned that the Duffing equation
X" +0.168¢ — 0.5x (1 - x%) = psint, (2.49)

wherey is a parameter, admits the chaos through period-doubling cascade atahesfs
valueu = U, = 0.21. That is, at the parameter valpe= L, for each natural numbéerthe
equation(2.49) admits infinitely many periodic solutions with perioder2 Using the change
of variableg = 2risandx(t) = y(s), and relabeling ast, one attains the following equation

y’ +0.1681y — 0.5m°y (1—y?) = r?psin(7t). (2.50)

Likewise equatior{2.49), it is clear that equatio(2.50), when considered witp = i, also
admits the chaos through period-doubling cascade and has infinitely maogipsolutions
with periods 24,8,....

Using the new variableg; = x, x, = X andxz =y, X4 = Y, one can convert the equations
(2.49) and(2.50) to the systems

Xq = X2

2.51
X5 = —0.168x2 + 0.5x; (1—x§) + usint ( )
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and

X5 = X4

X, = —0.1687x4 + 0.57%x3(1 — X3) + e sin(t),
respectively. Now, we shall make use both of the systéisl) and (2.52), with U = o,
as generators to obtain a chaotic system with infinitely many quasiperiodic sslutite
mean that the two systems admit incommensurate periods and consequentlyflinenca
on the replicator will be quasiperiodic. In this case, one can expectapitator will expose
infinitely many quasiperiodic solutions. For that purpose, let us consideg-tHimensional
result-system

(2.52)

Xq = X2
X, = —0.168%, + 0.5%; (1 — X2) + 0.21 sirnt
A
=X , _ (2.53)
X, = —0.1681mx4 + 0.57x3(1 — x3) 4 0.2177 sin(tt)
X5 = Xg -+ X1+ X3

X = —3X5 — 2Xg — 0.008¢ + X2 + X4,
where the last two equations are of a replicator.

To reveal existence of quasiperiodic solutions embedded in the chaotict@ttod system
(2.53) we control the chaos of system (2.53) by the Pyragas method khtbedollowing
control system

Vy = —0.168v, + 0.5v1 (1 — v2) 4 0.21 sinv3 + Cy (Va(t — 271) — V(1))
Va=1
Vy = Vs

Vi = —0.1681vs + 0.572vs(1 — V3) + 0.2172 sin(1ve) + Co (Vs (t — 2) — Vs (t)) (2.54)

V=1
\/7:V8+V1+V4
Vg = —3Vv7 — 2vg — 0.0087 + v + Vs.

We take into account the solution of the result-syst@rB3) with the initial datav; (0) = 0.4,

V2(O) = —0.1, V3(O) =0, V4(0) =-0.2, V5(0) = 0.5, VG(O) =0, V7(0) =11 andv8(0) =25.

The simulation results are shown in Figurd2 The control mechanism starts ta 35

and ends at = 120 The chaos not only in the generator systems, but also in the replicator
counterpart is observable before the control is switched on. Duringathieol, we make use

of the values ofC; = 0.62 andC, = 2.58 to stabilize the periodic solutions corresponding to
the generator systeni2.51) and(2.52) with periods 2rand 2 respectively. Up té = 35 and
aftert = 120 the value€; = C, = 0 are used. Betwedn= 35 andt = 120, the quasiperiodic
solution of the replicator is stabilized and after 120 chaos in the systef2.53) develops
again.

Possibly the obtained simulation result and previous theoretical discussioiggve a support
to the idea ofquasiperiodical cascadmr the appearance of chaos which can be considered
as a development of the popular period-doubling route to chaos.
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Figure 2.17: Pyragas control method applied to the result-sy§253) by means of the
corresponding control system (2.54). The pictures in (a),(b) antefrsent the graphs of
the v,, vs andvg coordinates, respectively. The simulation for the result-syst258) is
provided such that in (a) and (b) periodic solutions with incommensuratedse? and 2r
are controlled by the Pyragas method, and in (c), a quasiperiodic soldtitie ceplicator
system is pictured. The control startstat 35 and ends at= 120 After switching off the
control, chaos emerges again and irregular behavior reappears.

In paper [202], it has been mentioned that, in general, in the place ofatdarset of periodic
solutions to form chaos, one can take an uncountable collection of Passole motions
which are dense in a quasi-minimal set. This can be also observed in Rioesatractor
[207]. These emphasize that our simulation of quasiperiodic solutionsecaartsidered as
another evidence for the theoretical results.

2.10.5 Replicators with nonnegative eigenvalues

We recall that in our theoretical discussions, all eigenvalues of theakad constant matrix

A, used in systen{2.2), are assumed to have negative real parts. Now, as open problems
from the theoretical point of view, we shall discuss through simulationsribtdem of chaos
replication in the case when the matdpossesses an eigenvalue with positive or zero real
part.

First, we are going to concentrate on the case of the existence of anaigemith positive
real part. Let us make use of the Lorenz syster9) together with the coefficients = 10,
r = 28 andb = 8/3 as the generator, which is known to be chaotic [137, 211], and setup th
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6—dimensional result-system

Xa_ = —10x; + 10,
Xo = —Xo + 28X1 — X1X3
X5 = —(8/3)X3+x1%2

2.55
Xy = —2X4+X (2:59)
Xg: —3X5+ X2
Xg = 4% — X3 + Xa.

It is crucial to note that systeif2.55) is of the form(2.1) + (2.2), where the matribA admits

the eigenvalues-2,—3 and 4 such that one of them is positive. We take into account the
solution of systen{2.55) with the initial datax;(0) = —12.7, x2(0) = —8.5, x3(0) = 36.5,
X4(0) = —3.4, x5(0) = —3.2, X(0) = 3.7 and visualize in Figure 2.18 the projections of the
corresponding trajectory on the — X, — X3 andXx4 — X5 — Xg Spaces. It is seen that the repli-
cator system admits the chaos and the input-output mechanism workstEmg2s55).

50
45
40
35
30
25
20
15

10

20

Figure 2.18: 3-dimensional projections of the chaotic attractor of the result-sy$&bb).

(a) Projection on the; — X, — X3 space, (b) Projection on the — x5 — Xg space. In (a),

the famous Lorenz attractor produced by the generator syRer) with coefficientso =

10, r = 28 andb = 8/3 is shown. In (b), as in usual way, the projection of the chaotic
attractor of the result-syste(@.55), which can separately be considered as a chaotic attractor,
is presented. Possibly one can call the attractor of the result-systelhlag@nz attractor.

Next, we continue to our discussion with the case of the existence of anvaigerwith a
zero real part. This time we consider the chaotic Réssler system [18PDd@4dribed by

X = —(%2+X3)
Xp = X1 + 0.2%2 (2.56)
X, = 0.2+ x3(x — 5.7)
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as the generator, and constitute the result-system

X = —(X2+Xa)
X5 = X1+ 0.2%
X5 =0.24Xx3(X1 —5.7)

2.57
Xy = —4Xa+ X1 ( )
X5 = —X5+ X2
Xg = —0.2X2+X3.

In this case, one can consider syst&2rb7) as in the form of(2.1) + (2.2) where the ma-
trix A is a diagonal matrix with entries4, —1,0 on the diagonal and admits the number 0
as an eigenvalue. We simulate the solution of syst2ra7) with the initial datax;(0) =
4.6,x2(0) = —3.3,x3(0) = 0,x4(0) = 1,x5(0) = —3.7 andxs(0) = 0.8. The projections of the
trajectory on thex; — xo — X3 andxq — Xs — Xg Spaces are seen in Figurd 2

10
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Figure 2.19: 3-dimensional projections of the chaotic attractor of the result-sy$&h7).
(a) Projection on the; — X, — X3 space, (b) Projection on the — x5 — Xg space. The picture
in (a) indicates the famous Rdssler attractor produced by the generstemsg.56).

Figure 219 confirms that the replicator mimics the complex behavior of the generatensys
even if the number 0 is an eigenvalue. The results of the simulations requesdetailed
investigation, which concern not only the theoretical existence of chaba)so its resistance
and stability. The attractor of the result-syst€b7) can possibly be called aP6eRdssler
attractor. The similarity between the illustrations (a) and (b) supports the ngephsis of
chaos.
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CHAPTER 3

CHAOTIC PERIOD-DOUBLING AND OGY CONTROL FOR
THE FORCED DUFFING EQUATION

3.1 Introduction and Preliminaries

The Duffing equation is a second order differential equation of the type
X" 4 c1X 4 CoX + Cax® = Bcog ant), (3.1)

wherex is a function oft andB, c1, ¢y, C3, ay are fixed real numbers [82].

Ueda examined chaos in an electrical circuit with a nonlinear inductor [228, &sing the

Duffing equation, and gave description for the parameters of these tygmations [226].

Moreover, in [27, 44, 83, 153, 155], the Duffing equations havehesed to model physical
systems. Further, Thompson and Stewart [218] provided many more detdiie equation
(3.2).

In the last decades, the effect of non-smoothness and discontinuithefamhaos phenom-
ena was widely investigated and realized [7, 8, 9, 10, 11, 12, 13, 28,229 230]. Non-

smooth nonlinear characteristics are often encountered within the systepogents while

considering real world problems and commonly used in control systentsasunechanical,
hydraulic, magnetic, biomedical, and physical systems [214, 245]. Mergitvese nonlinear-
ities limit the system performance and it is known that they vary with time [245]s{stems

with non-smooth characteristics, the control problem is very complicatethecwimes even
more difficult to handle in the case of unknown time-varying parameters A43]. There

have been developed control techniques to diminish the effects of umkmom:smooth non-
linearities [50, 125].

One of the important applications of nonlinear oscillators subjected to noonternpertur-
bations is the vibro-impact oscillators which has a wide spectrum of studiesgastien-
tists and engineers. In the presence or absence of friction, the motionrofimpact sys-
tems is usually described by non-smooth nonlinear differential equatidns4®@ 65, 85,
101, 121, 157, 161, 162, 172, 185, 228, 234, 246]. Such systamesadrcomplex dynamic
structure that comprises chaotic motions, subharmonic oscillations, anistenee of dif-
ferent attractors for the same excitation and system parameters undeemifinitial data
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[29, 50, 101, 125, 214, 228, 245]. In general, these systems inuultgple impact interac-
tions in the form of jumps in the state space. On the other hand, vibro-impaatrdgs has
applications on lumped systems such as bouncing ball on a vibrating platfoise;spang-
dashpot systems, and on continuous systems such as strings and beahgjiffer from
lumped systems [101]. In papers [127, 128], feedback based tofitimpact oscillators
under asymmetric double-sided barriers is proposed and it was shawat#wdic impact os-
cillators can be controlled and kept in a desired position using a synchtmmzscheme. The
OGY control method is applied to impact oscillators and stabilized their chaotictattian
period-1 and period-2 orbits using small time-dependent perturbations of the driving fre-
guency [106]. Moreover, some results pertaining to chaotic motions iniedieally forced
impacting system, which is analogous to the version of Duffing equations vgttine linear
stiffness have been presented in [200].

Our investigation demonstrates that processes comprising discontinuitgrplea is con-
venient to generate rigorously approved chaotic motions from the theadrptimt of view.
This is not surprising since the same we have already for discrete ecqatioh as the lo-
gistic map and the ehon map [105, 186]. But in our case we have proved assertively the
presence of the chaos for continuous dynamics. We want to emphadiziesipite the most
popular and well known examples of chaos are the Lorenz systems avidrtlier Pol equa-
tions, there are not definitely proved results of the chaos for them. Meahaed result of
the Lorenz systems is given by J. Guckenheimer [87], where he cossidethe system it-
self but the geometric approach. Similarly, the proof for the Van der Radtéans has been
made by Levi [130] for the simplified version of the equation. On the othadhéor the
Duffing equations, the occurrence of chaotic period-doubling is dégcllsy making simula-
tions of bifurcation diagrams, but not proved mathematically [84, 188,.280hsequently,
the problem of discovering chaos rigorously with precise indication whict &f chaos is
admitted continuous to be very actual for the nonlinear science. For moslf&eims, in our
papers [7, 8, 9, 10, 11, 12, 13], we provide the method which allowsdlyzathe problems
rigorously. Of course we do not pretend that our results even aia béghe solution for
the already discussed equation. But we hope this constructive appraacgive a light on
solutions of the problems in future.

Formation of chaos in systems with arbitrary large dimension is one of the sagrtitton-
sequences of our paper. More precisely, our results show that #us o one dimensional
maps can be extended to multidimensional systems. In addition to this, extensibaosf
control techniques for low dimensional maps to multidimensional systems is ametust.
Therefore, the present chapter leads for the applications of thedretcdts for one dimen-
sional maps to high dimensional sytems. In this sense, itis a continuationiof/estigations
which we startin [7, 8, 9, 10, 11, 12, 13, 14, 16].

In the paper [215], besides the familiar period-doubling scenario toschat@rmittent and
guasiperiodic routes to chaos as well as period-adding sequencéagydsequences are
introduced in a nonlinear non-autonomous circuit, and verified experitheatad through
simulations. On the other hand, a control method without feedback is dexkfopcontrol-
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ling a Duffing equation which admits chaos through the period-doublingadadd 11, 114].
Two different modifications of the OGY control method [70], which can l&ad better per-
formance of the control and the method presented by Pyragas [17afj@lied to the classical
Duffing oscillator [70, 82], but in these cases the nature of chaos jsraoise. Oppositely, in
our results, we prove the type of the existing chaos theoretically and u€&xemethod not
for the classical Duffing equation but for the one which involves a pulsetion, such that
we emphasis it to be considered as a primary object of analysis.

Switching systems have important applications in high dimensional systems land $ys-
tems [8, 191, 229], and the system taken into account in this chapter cam$&idered as one
example. Moreover, the systems with impacts are convenient for simulatidresm&thod
and solutions that we present can be applied to hybrid systems in the fisiuiestance to
impulsive systems [7, 185]. In this chapter, we construct chaos witlciibesl properties
such that chaos developed by using the logistic map with slightly deviatedcté@stcs.
Consequently, it can be effectively used for the security of communica#iod information
using our chaos to mask and unmask [114, 118, 123, 238]. Since wetihachaos with
known properties, it can also be used in master-slave systems ancpooidesly to control
these type of systems [168, 219]. Moreover, the research in the altifézieal networks em-
phasize that the deterministic chaos is a powerful mechanism for the seordgetrieval of
information in the dynamics of artificial neural networks [59, 60, 139,|]2Zherefore, our
results are also applicable to neuroscience.

The main object of the present investigation is the following modified Duffingaggn

X'+ dyX + dox 4 dax® = D cogkrtt) + v(t, to, i), (3.2)
whered;,d;,ds,D are real numbers ankl is a natural number, the scalar pulse function
V(t,to, H) is defined below.
Using the new variableg; = x andx, = X, one can reduce the differential equation (3.2) to
the system

X) = X2

3.3
Xp = —thiXp — dox1 — dgx} -+ D cogkrit) + v (t, to, ). o9

Let R andN denote the sets of real numbers and natural numbers respectivelytrendnit
interval [0, 1].

In this study, we will investigate also the system,

Z(t) = Adt) + f(t,2) + v(t.to, 1)
Z(tO) = 2y, (thZO) elx Rn)
which is the general form of the system (3.3).

(3.4)

In system (3.4)ze R",t € R, = [0,), then x n constant real valued matrihas real parts
of eigenvalues all negative. The functib(t, z) satisfies the periodicity conditiolt 4 2,z) =
f(t,2),t € R4, and is Lipschitzian with respect towith the Lipschitz constarit.
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Let us now, introduce the function(t, to, i) as follows

mo, if  {oi(to, ) <t < oiga(to, M)
— 35
Vb0, 1) { my, it oira(to, 4) <t < Qoiga(to, 4), (3:5)

wherei is a nonnegative integer ang, my € R", such thatny # my. The sequencé(to, 1) =
{¢i(to, )}, 1 > 0, is defined through the equatidi(to, i) =i + Ki(to, 1), with Ki;1(to, 1) =
h(ki(to, 1), 1), Ko(to, 1) = to, andh(s, ) = us(1—s) is the logistic map, the central auxiliary
instrument in the present chapter.

We shall need those values of the paramgtewhich are between.87 and 4 such that the
period-doubling cascade accumulates there to provide the chaotic stri@durl79] for the
logistic map,h(s, 1). In paper [103], it was proved that the measure of suds positive.

In the sequel, we fix one of them, and notate ittas Moreover, we will not indicate the
dependence on the parameterif there is no need to specify it. Thus, for evdgye |, the
sequence (tp) of real numbersg, i > 0,k (tg) C | is defined. The sequendgty) has the
periodicity property if there exists a natural numigesuch thatdi ., = i + p, for all i > 0.

In other words, ifkj,p = kj,i > 0. The main object of the present chapter is to stabilize the
periodic solutions of the chaotic structure generated by the differentiatieg (3.2).

We should point out that the adjoint linear equation of the non-perturlgihD equation
X'+ diX + dox+ dax® = D cog krtt) (3.6)

has eigenvalues both with negative real parts. The logistic map, which éassitive Lya-
punov exponent [89, 198], gives rise to the emergence of chaos imatmeequation (3.2) and
generates the switching moments. That is, the chaotic scenario in our moéeklsping
“along” the time axis.

We suppose that the main reason of dealing an equation of the type of eg{Ba#pis that
the generated chaos can give the way of analysis of systems with dis@ugiperturbations,
which is unfortunately far of to be complete [84].

The chapter is organized as follows. In the next section, the existertbe ohaotic attractor
is proved, through the period-doubling cascade. The third sectionicemésults of the OGY
control of the chaos.

3.2 The Chaos Emergence

3.2.1 The cascade: The analysis results

Let us start with the analysis of system (3.4). In what follows we assunie tha

sup  [[f(t,2)[| = Mo <o
zZeR"teR
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and we denote the maximum of the real parts of the eigenvalues of mMdispo. Note that
O is negative.

There exist a positive numbéf and a negative number > o such that|e*|| < Ne™, for
t > 0. Therefore, we can find a natural numipgisuch thaf|e*™|| < Ne"P < 1. For p > po,
we have

1 1
— e < < .
1= = 1N = 1-nem
Let us denote
K=max{ max [|(1—e")7 1 (3.7)
1<i<po—1 "1-Neipo |’
and in the sequel we assume also that
—KNL
<1 (3.8)
a

A function z(t), z(tg) = 2o is a solution of (3.4) ortg,«),to € | if: (i) z(t) is continuous on
[to, ), (ii) the derivativeZ (t) exists at each poirtte [to, ) with the possible exception of the
points{i(to), i > 0, where left sided derivatives exist, (iii) equation (3.4) is satisfied ch ea
interval (¢i(to), Gi+1(to)], 1 > 0 [10].

In[7,9, 10, 11, 12, 13] we develop the approach, when a systeniffefahtial equations
inserted with a chaotic element, the generator of switching moments, prodobesti at-
tractor. Itis proved that the attractor presents Li-Yorke [9, 12] anchDey [10] chaos, as well
as a quasi-minimal set [11]. In the same time, it is known that both Li-Yorkemdney
scenario of chaos emergence are difficult in the simulation with the logistic mapedver,
speaking generally, period-doubling cascade route to the chaos is eh@lstated in simula-
tions. That is why, in the present article we consider the route to identifyatichstructure
for the equation. One must say, also that, it is a difficult task to obsenas¢hanultidimen-
sional systems, exceptionally with clear theoretically supported propertiresnext result is
suitable for systems with arbitrary finite dimension.

Consider the sequence of period-doubling bifurcation valugs, tm — He asm— oo for
the logistic magh(s, u) = us(1—s) [197].

We shall say that the system (3.4) has a chaos through the period-dpcanicade gt = Lo,

if for each p—periodic sequencéxi(to, 1)}, p € N, wherety € |, and is equal either tQuy,
me N or ., there exists a unique periodic solutiag(t), of the system (3.4) with the same
U. Moreover, all trajectories of these solutions lie in a bounded domain. THhisitea is
natural since periodic solutions, which correspond to different sespsa, do not coincide,
and consequently, the equation (3.4) with= L., has infinitely many periodic solutions.

The principal result of this section is the following theorem.

Theorem 3.2.1 System (3.4) admits the chaos through period-doubling cascade. at
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Proof. Fix u andtp € | such that the sequende;(to, 1)} is p—periodic,p € N. It is easily
seen that to verify the theorem, one needs to prove that the system (3.4havislameu
admits a periodic solutiorgy(t), and the norms of all these periodic solutions with all the
possibleu, are bounded with one and the same positive number.

Setpg = max{||mo|, ||m]|}, and pick a numbeH = _—KN(Moero), where the numbeK

is defined by the formula (3.7). One can see thatoes not depend on

We shall consider the cases in whiplis even and odd. Let us start wighis even. Using the
standard technique [93], one can verify that the solutigih), if exists, satisfies the integral
equation

@a%:ApU—Jﬂ_%ﬂp$HU+34@+$)+VU+&@uﬂds

Introduce the se®; of continuous function$ : [to,) — R" such thapp(t+p) = ¢(t),t > 1o
and|[¢||; <H, where||$|[; = sup, [[¢ ()]

Define an operatddon the set; through the equation
p -
S(9)(t) = /0 (1) AP I [f(t+sg(t+9)+v(t+Sto,p)lds
First of all, we shall check th&&(#,) C %1.

Sincep is even, we have fop € #; thatf(t+p+s¢(t+p+9s)=f(t+s¢(t+s) and
V(t+ p+sto,u) = v(t+sty,u) for eacht >ty ands € [0, p]. Therefore,S(¢)(t + p) =
S(¢)(t) forallt > to.

Let us defineM = maxg 5 H (- eAP)_leA(P*S)H. Take$ € %1, and fixt € [tp, ) and an
arbitrarye > 0. Because the functionf(t,z) and¢(t) are continuous in all their arguments,
the functionf (t,¢(t)) is also continuous. Therefore, there exists a nundiper 0 such that
for anys € [0, p|] the inequality

€
f(t t —f(t f —
If(t45.9(t+9) (45949 < 5
holds, provided that — | < d1.

£

Sets—mindsy, &
{ 2pM [[mg — my ||

} . In the case that — | < , one can verify that

p
/0 IVt +S.to, 1) — V(E+S.to, )| ds < p& Imo— my]|,

since there are at moptsubintervals of0, p|, each with a length less than such that in each
of these subintervals the functioné +s,to, 1) andv(t+s,to, 1), s€ [0, p|, are different from
each other.

Thus, if [t —f| < J, then we obtain that

[so)0-s@@]=| [ 1-e9) teos 1045 pt+9)
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TVt sto ) — FE+sdE+s) — v(f+s,to,u)]dsH
gM/Op\|f(t+s,¢(t+s))—f(t+s,¢(t+s))|]ds
M [ v(t+sto,0) — vT+ s t0, )] ds

£ .
< 5+ PoM[mo —my]|
<E.

Hence,S(¢)(t) is continuous on the intervéth, ). On the other hand, fap € %, one can

attain for allt > tg that

Isio)0ll < [ (19| ere

p
< KN(Mo+po)/ e?(P-9ds
JO

—KN
= (Mo+po)(1- e’?)

<H.

If(t+sd(t+s)+v(t+stou)|ds

The last inequality implies thatS(¢)||; < H. Consequentlyy(%,) C #1.

Next, we shall show that the opera®is a contraction. Fog1, ¢, € %1, we have that

S(¢1)(t) — S(¢2)(t)
= /Op (1 — ) P9 [f(t 45 ga(t+9)) — F(t+5 Pa(t+5))]ds

Therefore,

15(91)(t) — S(¢2)(1)]]
< [lo-en e

= K/prNLe"("‘S) 12(t+5) — $a(t +9)| ds

If(t+s ¢1(t+59))— f(t+s¢2(t+9))| ds

—KNL

< o (1—€"P)[|¢1— @2,
—KNL

< p |o1—¢2[l1,

—KNL
a

and hencél S(¢1) — S(¢2)||; < 1 — @21

Since

L . . . . , :
< 1, the operatofSis a contraction. Thus, there exists a unique fixed point of

a
S, and for eachp—periodic{ki(to, )}, there exists a unique solution of the syste) with

the same period, provided thais even.

In the case thap is an odd natural number, due to its definition, the relay funatignto, (1)

is 2p—periodic. Therefore, ify(t) exists, it satisfies the integral equation

_ py 1 A2p-9
Zp(t)—/o (1 — €P) LeA2P9) [f(t 45 7,(t+9) + V(t+S 1)) ds
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Introduce the set4, of continuous functiong : [to,0) — R" such thatg (t + 2p) = ¢(t),
t >tpand||¢||; < H, and define an operat&: %, — %, by means of the equation

S()(1) = /02p<' — &P AP [t 45, 9 (t+5)) + Vit +S to, )] ds

Similar to the case of evep, it can be proved tha® is a contraction. Therefore, for each
p—periodic sequencéx;(to, 1)} , wherep is odd, there exists a unique2periodic solution
zp(t) of the system(3.4) such that]|z,(t)|| < H for all t > to. Consequently, system (3.4)
admits the chaos through period-doubling cascade,af]

As a result of the proof of Theorem 3.2.1 and making use of variousmea values of
period-doubling bifurcations for the logistic més, ) = us(1—s) [21, 146], Table 3.1 is
constructed. The table indicates the periodicity dependence betweeapesiodic{k; (to, 1) }
and the unique periodic solutiag(t) of system (3.4) with the same. In the table, we also
specify the values of the parametefor which thep—periodic{ki(to, 1)} is stable, likewise
the periodic solutiorz,(t) of system (3.4).

Table 3.1: Correlation betwegnand the period oZp(t)

Range ofu p Period ofz,(t)

l<u<3 1 2

3<u<34494 2 2
3.4494< 1 < 35440 4 4
3.5440< u < 35644 8 8

3.5644< u < 35687 16 16
2

3.5687< | < 3.5696 3 32
3.6265<‘/;l‘< 36304 6 6
3.7382<';;:'< 37411 5 10
3.8284<'/;l.< 38415 3 6

If system (3.4) is compared with the system

Z(t) = AzZt) + v(t,to, 1)

Z(to) = 20, (to,20) € 1 x R, (3.9)

one can see that the difference is the presence of the furfctior), and the old theorems from
[10] can be repeated almost identically for system (3.4) considering treehig condition
on the functionf (t, z).
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3.2.2 The Duffing equation’s chaotic behavior

In this part of the chapter, we consider both the Duffing equation (3@jrencorresponding
system (3.3) with the coefficients = 0.18,d, = 2,d3 = 0.00004D = 0.02,k = 2, andmg =
2,m =1

The bifurcation diagram of equation (3.2) with the specified coefficientsds/s in Figure
3.1. In the range oft values greater than.57, correlatively to the behavior of the logistic
map [21, 65], successive intervals of chaos and intervals of stalitedmesolutions, called
the periodic windows, appear in the diagram.

25

15+

26 2.8 3 3.2 34 3.6 3.8 4

11

0.9 0.9

0.8

0.8 0.8
x

07 07 X 015

0.6 0.6

.7
05 05 o

0.4

0.65
3 3.2 34 3.4 3.45 3.5 3.55 3.46 3.48 35 3.52 3.54 3.56

H H |

Figure 3.1: Bifurcation diagrams of the Duffing equation perturbed with laepfunction
X" 4-0.18X 4 2x+0.00004¢ — 0.02 cog27tt) = v(t,to, 4), wheremy = 2 andmy = 1. (a) The
bifurcation diagram where the parametevaries between.B and 40. (b) Magnification of
(a) whereyt is between D0 and 358. (c) Magnification of (b) wherg is between 300 and
3.572. (d) Magnification of (c) wherg changes from 360 to 3571.

At u = 3, for which the period-doubling bifurcation for the logistic map occurs forftist
time [146, 197], splitting occurs in the bifurcation diagram of equation (3.#) thhe ap-
pointed coefficients, but period-doubling does not occur at this pdesuvedue. That is, up to
the second bifurcation valye = 3.4494 all periodic solutions of the Duffing equation have
period 2. This is a prospective behavior, since the periodicity of the giersmlution of the
Duffing equation corresponding topa-periodic sequencéxi(to, 1)} is 2p in the case o is

an odd integer.

If we denote by{rm} the sequence of the values of the paramgteat which the period-
doubling bifurcations for the Duffing equation (3.2) with the given cogffits occur, it is
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numerically observed that this sequence coincides with the seqygnge which has been
defined above for the cascade of the logistic map, except the first terat.isThy, = .1,

m > 1. Consequently, when lig, o % is evaluated, the universal constant known as
the Feigenbaum number6692016.. is achieved [198, 218, 243].

In the regions where stable periodic solutions exist, for a fixed value qgfdremeteiu, the
bifurcation diagram represents the values of the stable periodic solufiegsiation (3.2) at
timet = {p € I, where(p is the initial term of the periodic sequen¢é } corresponding to
the same value gfi. We note that, foun, < ¢ < um+1, there are 2 different choices for the
periodic sequencé(; } with periodicity 2", and this is the reason for the observation 8f 2
different stable periodic solutions for these values of the parameter.

A stable periodic solution in turn becomes unstable and is replaced by a ngple af stable
solutions as the parametgrincreases through the bifurcation values. A stable solution is
replaced by a couple of stable periodic solutions of twice its period, extepe parameter
values corresponding to-periodic{k; } with p odd and the process continues in this way.
For such values ofi, the periodicity does not change, by the same reasoning explained as
above. In the intervals of chaos, all existing periodic solutions are Usstab

In Figure 3.2, one can see the larger image of the periodic window whidh atar= 3.8284
and its magnification for the parameter values betwe8850 and 360Q It is observed that
a similar copy of the whole bifurcation diagram reappears in this region.

Now, let us check that the conditions of the last theorem are true for #hemsy(3.3). The ma-

0 1
trix of coefficients of the system (3.3) with the assumed coefficieisis
-2 -0.18
The eigenvalues of the matrik are aFib, wherea = —0.09 andb = v/2—0.09%. The
a —-b
real Jordan form of the matriX is given byJ = ) and the identitP tAP = J is
b a
- 01 1 —al . . .
satisfied wher® = andP~1== . Evaluating the exponential matrix
b a b\ b o0
e’ we have
cogbt) —sin(bt)
e\l =ep p-L (3.10)

sin(bt) cogbt)
Denote byj|.|| the matrix norm which is induced by the usual Euclidean noriR"inThat is,

|| = max{\f/\ : A is an eigenvalue oFTF}

for anyn x n matrix I” with real entries, an@' denotes the transpose of the maififo8].

One can see that

1/2
3 V14018 /
IPl={5+—%5—] -
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33825 3.83 3.835 3.84 3.845 3.85 3.855

Figure 3.2: The periodic window which starts at= 3.8284 in the bifurcation diagram
of the Duffing equation perturbed with a pulse functigh+ 0.18x + 2x + 0.00004¢ —
0.02cog2mt) = v(t,to, i), wheremy = 2 andmy = 1. (a) The bifurcation diagram where
U is between 3250 and 3B600. (b) Magnification of (a) wherg changes from 3350 to
3.8600Q

and
12
ST 3, VI+01® /
V2-0.0% \ 2 2 '
Therefore, using (3.10), we obtdi\mf“” < Ne” whereN = 3+vi+01¢ anda = —0.09.
v8—-0.18

In what follows, we use approximation with accuracy of 7 digits in the deciragl p

For pg = 4, NéPo — (% ;fg_‘iélfz) e 0362 0.9926395< 1. One can easily evaluate that,

max {||(1—¢") ||} = || (1 - ") 7*|| = 0.8045044

1<i<3
Then, using the matrix identitil —eA) " = P (I — &™) "*P~1, the inequality

max {||(1 =€) || } < IPI [P~ max {|| 0 - €") 7|} = 11446324

1<i<3 1<i<3

is obtained. On the basis of above evaluations, one can find that

K:max{ max ||(1 —e*) 71|, 1

max 1I\Fe4°’} >~ 1358619956
SIS -
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System (3.3) with the prescribed coefficients has the nonlinear term
f(t,x1,%) = [0 —0.00004¢] " .

The Lipschitz constarit for this function can be taken as0D03468 since the, values of the
chaotic attractor satisfies the conditips| < 1.7. Thus <Nt 2 0.7448557 and the condition
(3.8) is also satisfied.

We end up this part, by simulating a solutioa, x2) of system (3.3) with initial dat&; (0.5) =
0.01, x2(0.5) = 0.025 andu. = 3.8. In Figure 3.3, the chaotic behavior of the solution is
revealed.

a 150 i

0.5

-05= L

Figure 3.3: Simulation results of the Duffing equation perturbed with a pulsetiuin x” +
0.18X + 2x+ 0.00004¢ — 0.02cog 27t) = V(t,to, e ), Wheremp = 2,my = 1 andple = 3.8.
The pictures in (a) and (b) show the graphs of xth@ndx, coordinates, respectively, while
the picture in (c) represents the trajectory of the solugir(t),xx(t)).

3.2.3 Lyapunov exponents

The Lyapunov exponent is a measure of divergence of state trajestarid is one of the
most important features of deterministic chaos [243]. There are wellajme results for
Lyapunov exponents of maps, and it is technically difficult for continudysamics [82,
164, 197, 198]. Evaluation procedures of Lyapunov exponentsdiotinuous dynamics are,
in general, provided for low dimensional systems [178, 210]. Our systiespite there is
discontinuity property, evolves along continuous time. Therefore, to waitk Lyapunov
exponents, we should consider mainly the results for continuous dynaicge exactly,
our systems involve continuous and discrete dynamics such that the speddes change
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continuously while the switching moments of time satisfy discrete equations, thateis,
belong to the class of hybrid systems [8, 191, 229]. Consequently, wetbavaluate the
divergence of solutions by continuous as well as discrete Lyapunpenexts. Moreover,
our systems are essentially non-autonomous. That is why one has toezahsignethod of
Lyapunov exponents for non-autonomous systems [210]. For clesetoppment the positive
Lyapunov exponent is appropriate. So, one can conclude that tlite/@osss of one of the
Lyapunov exponents is an indicator of chaos if the system is consideeebldnnded region.
That is why for the general case of our analysis in this chapter, it i<miffito find that the
Lyapunov exponent is positive for the logistic map, the generator of tiielsing moments.

To illustrate the general discussions, let us consider the following example.

Example. Let the equation
X = —2X+ V(t,to, leo) (3.11)
be given withu., = 3.8.

If we consider two solutions of equatidB.11) with the samey, they are both bounded and
approach to each other with exponef, that is,—2 is an eigenvalue. Since the equation is
non-autonomous then it needs a special treatment [210]. When the timel@asiaonsidered
as a spatial one, one can transform equat®hl) to a system as

X
qr _2X+ V(T7t07ll°°)

d
8} (3.12)
i 1

Giv1=1+1+h({i—i, o).
The second equation in (3.12) provides us the zero Lyapunov exp{@0j. Since our
system involves the discrete equation, the logistic map with= 3.8, it admits the third
Lyapunov exponent which is approximatelyd82 [23]. This Lyapunov exponent describes
the divergence of solutions with different initial moments along the time axis. ll¥inee
have obtained that the divergence of solutions of equdBalil) is described through three
Lyapunov exponentd; = 0.432 A, =0, A3 = —2.

3.3 Controlling Results

3.3.1 The logistic map

We stabilize the periodic solutions by control of the switching moments of the fauiséon,
which are defined through the logistic map. Therefore, one will need therigéon of the
OGY method for the map [196].

Suppose that the parameterin the map, can be finely tuned in a small range around the value
Mo = 3.8, that is,u is allowed to vary in the rangel., — 0, [ + 0], whered is small. Denote
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the target period p orbit to be controlled as() (to, U ), 1 =1,2, ..., pwherety belongs to the
unit intervall = [0,1], kY (ty, o) = h(k W (to, teo), thoo) AN K P+ (tg, teo) = KD (1o, oo ).
The logistic maph(s, u) = us(1—s), in the neighborhood of a periodic orbit can be approx-
imated by a linear equation expanded around the periodic orbit. If we dgpetg., = Ap;j,
andkjy1(t1, 4j) = h(kij(te, 4j), 1), t1 € |, we get

8 = Sk =]+ ST

= o[~ 2 V][K; — k] kO [L— kO],

Kira (3.13)

where partial derivatives are evaluated atk V) (t, L) @andpt = L. We requirek;.1(ty, ;)
to stay in the neighborhood af+ 1 (tg, i, ). Therefore, if we set
) — KDt ) — O
KJ+1( 17“]) K (Oal-loo) 5

then we obtain that

Al = Hoo KO[1— k0] (3.14)
or equivalently
_ [2() —1] K] — k]
Hj = Heo <1+ KO — k0] . (3.15)

This equation holds only when the trajectaryenters a small neighborhood of the periqal
orbit, hence the required parameter perturbafipm is small. When the trajectory is outside
the neighborhood of the target periodic orbit, we do not apply any pdearperturbation,
so the system evolves at its nominal parameter valie Hence, we seflj = [, when
}A[Ij‘ > 0.

Suppose that € | is fixed such that the sequent® (to, L) } is p—periodic. Thus, for given

d > 0, there existe > 0 andig, jo € N such that for ali,ip <i <ip+ jo, we havelAL;| <
and |k;(ty, i) — Ki(to, Lo )| < € [82, 163, 195, 196], wherg 1 (t1, 1) = h(ki(ty, i), 1) The
numberjg is, in general, finite, since the nonlinearity is not included in (3.13). We wdl us
the numberg,ip and jo for Theorem 3.3.1.

We note that the control of chaos is not achieved immediately after switchitigeorontrol
mechanism, rather, there is a transient time before the logistic map is contrdilettansient
time increases if thé decreases [82, 195].

Now, we consider a simulation for the stabilization of the logistic map. Namely, of¢he
quence{k; }, wherekj;1 = 3.8ki(1— ki), i > 0 andko =t; = 0.5. If the OGY control method
is applied around the fixed point& 3.8, that is the period1 orbit of the logistic equation
h(s,3.8) = 3.8s5(1— s), we obtain the result that is shown in Figur&.3\Ne used the value
0 = 0.19. The control starts at the iteration numiber 25 and ends at= 60. Despite the
control was switched off at 8Diteration, the stabilization prolongs till the 1% Gteration.
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Figure 3.4: The OGY control method applied to the sequengg wherek; 1 = 3.8ki(1—
Ki), Ko = 0.5, around the fixed point.8/3.8 of the logistic map witid = 0.19. The control
is switched on at the iteration numbet 25 and switched off at= 60.

3.3.2 The general system control

From the description made above, it is seen that the control by OGY methots meastruc-
tion of a sequence of the parameter’s valuaear a chaotic value of the paramefgs, to
generate a solution, which is close to the chosen periodic one. It is olb@isimilar control
problem can be formulated for the system (3.3), and consequenthgdiatien (3.2).

To control system (3.3), we replace the paramgtéy the control sequenc{e,ui} and define

mo, it ai(ty, 1) <t < Qoipa(ty, 1)

: . . (3.16)
my, it ity p') <t < Qigo(ty, 1),

v(t,ty, 1) :{

wherei > 0 is an integenmy, m; € R", the same as for the functiart,to, ) in (3.5). The se-
quence (tg, 4') = {¢(ty, u")}, i >0, is defined through the equatidrity, u') =i+ ki (ty, 4'),
with Kia(ty, f') = h(ki(ts, 1), 1'), Ko(tz, 4') =ta.

Consider, now, the system,

_ [
Z(t) =AZt)+ f(t,2)+v(tt, 1) (3.17)
(1) =z, (t1,z1) €I xR,
which is the control system conjugate to the system (3.4).

Our aim is to determine the sequen{:p‘} which stabilizes the periodic solutions of (3.4)
and in the next theorem a convenient choice for this sequence is indicated

By @(t,t,Z),t €1, Z€ R", we denote a solution @B.17) witht; =t andz; =z
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In the following theorem we shall use the numbeyig, and jo, which were mentioned above
for the stabilization of the logistic map.

Suppose that,(t), p € N, denotes the periodic solution of (3.4) with(tg) = Zo and i = Le.
Takez € R" and consider the solutior(t) = @(t,t1,2) of system (3.17). 1&(i,(to, Ueo))
is not equal tazy({j,(to, L)), then suppose that the numbkfe, z)) is the maximum of the

: 1 1-e%¢ :
numbersd, (to, heo ) + g IN (Nuz@ioao,um))zP<zi0<to,um))\> andj(fo, k). In the case that

(i, (to, Heo)) @ndzp (i (to, Heo)) @re equal to each other, takee, ) = ¢y (to, Heo). The num-
berT(€,z) will be needed in the following theorem, which is one of the main results of this
chapter.

In the proof of the following theorem, we assume without loss of generalitydka0. In this

—KNL
<1,we

_ . . . —NL
case(, (to, Heo) = to and{j, (t1, 4i) =t1. It is worth saying that smceT <
haveNL+ a < 0.

Theorem 3.3.1 Assume that ¢, z1) < io+ jo. Then the sequendgy } stabilizes the periodic
solution 3(t) such that

ift e [T(£,Zl>,i0+ jo] .

Proof. Without loss of generality, assume that to. The solutionz(t) = ¢(t,t1,21), t1 €1,
71 € R", of (3.17) can be continued up te=to. Let us denote(ty) = N1 andzy(tp) = 2. In
this case, the integral equations

o) = MmN (s2(0) vl s

and
t
zy(t) = 0z + [ AI[f(s,25(9)) + V(S o, o) ]dS
to

are satisfied. Therefore, foe> to we have

2(t) ~ 25(t) = A0 (7~ 2) + [ UI[1(5.29) ~ F(5:2(9)]ds

t (3.18)
+ [ Iv(sty, ) — V(S to, )]s
to
Since for each, 0 <i < jg, the inequality
|Gi(to, Heo) — Gi(ta, H) | = |Ki(to, eo) — i (t1, )| < €
holds, one can verify that
‘/Zi(tl?ui)e"(t‘s)ds < <_1> (1—e%)er(ti=1-0) (3.19)
Zi(to«,lJm’) a
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where|t | denotes the greatest integer which is not larger th&m the other hand, by means
of the inequality (3.19) we have that

t
eA(t_s) [V(S7tlaﬁi) - V(S,tO, Iloo)] ds

to
t
g/ Ne 9 ||y (s, tr, ;) — V(S to, ko) || dS

ZI tlIJ

N =) |my —my || ds

i (to, o)

[t]
< —)@—e")|mg—my| Y e -1~
( T ) a-eim 13

—Ne™[[mp—my|
1- €.
ai-_e) 17

Using the equation (3.18) together with the last inequality one can obtain that

e % |[mo — my||
a(l—e")

2(t) = zp(t)[| < N&U )|y — 20| + — (1—e%)

t
+ [ NLE©9|jz(s) —z5(9) | ds

to

Now, letu(t) = ||z(t) — z(t)| €. Under the circumstances we have

_Ne—a(t+1)HmO_m1|| t
1—e)+NL [ u(s)ds

u(t) < Ne ®|Iny—zof| +

Applying Lemma 22 [34] we attain that

A mo —my |
o(l—ev)

t
+N2L||n1 — 2o e‘“to/ NL-9ds
to

—N?Le % ||mg — my| t e
1-—e% /e’\‘L(t Se %%ds
a(l—e”) ( ) to

u(t) < Ne~®||ny — zof| + — (1-e")

Making use of the equations
t 1
L(t—s) L(t—to) _
s e ds= TR (eN ) ,

and

t -1
NL(t—8) o= 0Sq e —at _ a(NL+a)(t—to)
/toe e “ds <NL+0{> e (1 e )

it can be verified that

Ne—a(t+l) HmO . ml”
a(l—e")

u(t) < NJlny — 2o e o) (1-€")
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N2Lea(t+1) ”mO_m1H
(NL+a)a (1—e9)
NL(t—to) Ne @+ |imo — my |

(l_ eCXE) (l— e(NL-HJ)(t—to))

N o —aty 1— ae
<Nlin—2z[e e ai—e) &)
N2Le a(t+1) _
€ [[mo — my | (lieas)
(NLt+a)a (1—e)
- N Hr’l_ZOHe—atoeNL(t—to) _ Ne (D Mo — my | (l—e"s).

(NL+a)(1—e)

Multiplication of both sides of the last inequality i implies that

NL+a)(t—t) _ N€ 7 [[mo —my|| (1— %)

It is clear that ifn1 = zy, then the conclusion of the theorem is true. Supposerthat z. If

t €[T(g,z1), jo], then one can easily verify that

NL+a)t—to) o _ L —€%°

( =
e :
= NN -2z

Consequently, the inequality

J20) 200 < (1= (e ) (- €)

holds, fort € [T (&,21), jo] -
The theorem is proved

Implementation of Theorem 3.3.1 to the system (3.3) is mentioned in the next part.

3.3.3 The Duffing equation control

Let us, consider the main system (3.3) with = 3.8 andd; = 0.18, d, = 2, d3 = 0.00004
D=0.02 k=2, my=2,m =1, again. The system satisfies the conditions for existence of
chaos and admits the chaosiat = 3.8. Theorem 3.3.1 is applicable to (3.3). The control
system (3.17) has, in this case, the form

X) = X2
; 3 _ (3.20)
Xy = —2X1 — 0.18xp — 0.00004; + 0.02 cog2t) + v (t,t1, [i).
To simulate the result, let us take= 0.5,tp = 2.8/3.8 and the solutior{xy,x;) of system
(3.20) with the initial conditiorx; (t1) = 0.01, xp(t;) = 0.025. Its graph is seen in Figure
3.5 and it approximates the-deriodic solutionz; (t). The valued = 0.19 is used, and the
control starts at timé = {5 and ends at = {go. Here, we note that since the OGY control
method is applied to the logistic map, the iteration momeviten the control is switched on
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Figure 3.5: The OGY control method applied to the Duffing equation perdunith a pulse
function x” 4+ 0.18x’ + 2x+ 0.00004¢ — 0.02 cog27t) = v(t,to, te ), Wheremp = 2,m; = 1
and u,, = 3.8. The control starts at time= {5 and ends at = {so. (a) The graph of
the x;—coordinate. (b) The graph of the—coordinate. (c) The trajectory of the solution

(xa(t), %2(t))-

corresponds to the time moment {;; and a similar argument is valid for the moment when
the control ends.

We use the same interval of stabilization for the logistic map and the Duffingiegu@ut
the interval of periodicity for the map is larger in the former, approximatelyr8D6® respec-
tively. The reason is that the chaos of the equation is secondary witbctespthe chaos of
the logistic map. Likewise the control of the logistic map, the chaos transient timeases
if the  decreases.

To discuss our main assumptions, let us arrange the following simulationssidéorthe
following Duffing equation in the standard form [218]

X' +0.05¢ +x3 = 7.5co4. (3.21)

To convert this equation to a suitable form for which our theorem can pkedpwe use the
change of variables =t/mandy(u) = x(t). Using these new variables and relabelinast,
one can reduce (3.21) to the differential equation

y’ +0.05ny + m?y® = 7.5 cog 1tt). (3.22)
Defining new variableg; =y andx, =y we can reduce (3.22) to the system

Xy = X2

3.23
X, = —0.057X; — 12X + 7.5 cog Tt ). (3.23)
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The eigenvalues for this system are 0 and.05rt. Since one of the eigenvalues is zero,
one can expect that our results are not applicable to syQet8). That is, the system is not
controllable with our method. Take a solution of systEgh23) with x;(0.5) = 1,%2(0.5) = 2.
The chaotic behavior is seen in Figure 3.6.

20

10

tl‘tlﬁ)

A )% ‘~.I.
N\

-20
-4

Figure 3.6: The trajectory of the solutidry (t),x(t)) for system (3.23).

Now, we apply the method developed in the previous part to the equation

y' = —0.05my — 1?y° + 7.5 cog 1t) + V(t, to, teo ) (3.24)

The corresponding control system is

X, = —0.051x — 12X3 + 7.5 cog Tt ) + v (t,ty, [4). (3.25)

Lett; = 0.5,to =2.8/3.8 andd = 0.19. We take the solution of the last system wift;) = 1
and xy(ty) = 2. The control is switched on &t= {»5 and switched off at = {go. The
simulation result is seen in Figure73

One can see that our way of application of the OGY method does not wotkdosystem
(3.25). The reason is that the corresponding non-perturbed Duffing equatithis system
has the zero eigenvalue.
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Figure 3.7: The trajectory of the solutidry(t),x(t)) for the control systenf3.25), where
my =2 andmy = 1.

3.4 Morphogenesis and the Logistic Map

In Subsection 3.2.2, we demonstrated that the Duffing equation pertuitied pulse func-
tion

X' +0.18¢ + 2x-+ 0.00004¢ = 0.02 co$271t) + V(t, to, Heo), (3.26)

with the coefficientsng = 2, m; = 1 andp., = 3.8, admits the chaos through period-doubling
cascade on the time intenj@l, ) and obeys the Feigenbaum universal behavior [74].

By favour of the new variableg; = x andx; = X, equation(3.26) can be reduced to the
system

X| = X2

3.27
X, = —0.18xz — 2x1 — 0.00004¢ + 0.02 cog27tt) + V(t, to, Heo)- (3.27)

For the illustration of chaos extension, we will make use of the relay-syg§8e2ii) as the
generator, in the role of a core as displayed in Figure 2.5, and attachrémlezator systems
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with coordinatexs — X4, X5 — Xg andx; — xg to obtain the 8 dimensional result-relay-system

Xy = X2

X, = —0.18xz — 2x1 — 0.00004¢ + 0.02 cog271t) + v (t, to, Heo)

X5 = Xa —0.1x1

x:4 = —10x3 — 6x4 — 0.03S + 4%, (3.28)
X5 = X6 + 2X1

Xg = —2X5 — 2Xg -+ 0.007¢ + 0.6

X5 = xg — 0.5

X = —5X7 — 4xg — 0.05 + 2.5x1,
where againmy = 2,m; = 1 andpi, = 3.8.

Our theoretical results mentioned in Chapter 2 reveal that sy@3&8), as well as the repli-
cators, admit the chaos through period-doubling cascade and obewyittegsal behavior
of Feigenbaum. Figure.8 shows the 2dimensional projections on thg — Xz, X3 — X4,

Xs — X andxz — xg planes of the trajectory of the result-relay-syst8128) with initial data
x1(0) = 1.37, x2(0) = —0.05, x3(0) = 0.05, x4(0) = —0.1, x5(0) = 1.09, x6(0) = —0.81,
x7(0) = 0.08 andxg(0) = 0.21. The picture seen in Figure&(a) is the attractor of the gen-
erator(3.27) and accordingly Figure.8, (b) — (d) represent the attractors of the first, second
and the third replicator systems, respectively. It can be easily verifiedlttraplicators used
inside the systen3.28) satisfy conditionA7) of Chapter 2 The resemblance of the chaotic
attractors of the generator and the replicators is a consequence ofagenasis of chaos.

Now, let us continue with the control of morphogenesis of chaos by méams OGY control
method. In order to stabilize the unstable periodic solutions of sy&2e2#), we consider the
system

Xy = X2
X, = —0.18%, — 21 — 0.00004¢ + 0.02 cog27tt) + v (t,t1, 14
Xg = X4 — 0.1x1
[, = —10x3 — 6x4 — 0.03C + 4
X 370 3T (3.29)
X5 = X6+ 2X1
X = —2X5 — 2Xg + 0.007%¢ + 0.6%;
X5 = xg — 0.5

X = —5X7 — 4xg — 0.05 + 2.5xq,

which is the control system conjugate to the result-relay-sys®&8), wheremy = 2 and
m = 1.

To simulate the control results, we make use of the vadue$.19, t; = 0.5, to = 2.8/3.8 and
the trajectory of syster{B.29) with the initial datax; (0) = 1.37, x2(0) = —0.05, x3(0) = 0.05,
X4(0) = —0.1, x5(0) = 1.09, x5(0) = —0.81, x7(0) = 0.08, xg(0) = 0.21. Taking the value

to = 2.8/3.8 means that the control mechanism is applied around the fixed point of thiddogis
map, and consequently stabilizes thep2riodic solutions of the generator and the existing
replicators. We switch on the control mechanism at the iteration nureb2b for the logistic
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Figure 3.8: 2-dimensional projections of the chaotic attractor of the result-sy$&a8).

The pictures in (a), (b), (c) and (d) represent the projections onjthexy, X3 — Xa, X5 — Xg
andx; — xg planes, respectively. The picture () shows the attractor of the prior chaos
produced by the generat®.27), which is a relay-system, and in (b)-(d) the chaotic attractors
of the replicator systems are observable. The illustrations in (b)-(dptegehe structure

of the attractor shown in (a), and the mimicry between these pictures is an imdiah®
replication of chaos.

map, such that for the continuous-time system this moment correspanes(te, and switch

off ati = 125 which corresponds to the time momeet {325 The graphs of the coordinates
X3,X5 andxy are pictured in Figure.9, and it is possible to obtain similar illustrations for
the remaining ones, which are not just simulated here. It is observablthéhat periodic
solutions of the replicators and hence of the result-relay-sy&328) are stabilized. In other
words, the extended chaos is controlled, and the result of Theoremi2.@alidated one
more time. One can see in Figur®3hat after approximately 60 iterations when the control
is switched off, the chaos becomes dominant again and irregular motioresgapp

3.5 Discussion

A chaotic attractor contains an infinite number of unstable periodic orbits. cdhtol of
chaos is the stabilization of one of these orbits, by means of small perturbappfied to the
system. One of the important applications of nonlinear oscillators subjectamhtemooth
perturbations is the vibro-impact systems, and such systems can exhiiticahations [29,
50, 101, 125, 214, 228, 245]. The pioneering paper [163] provide famous OGY method
of the control, and there have been proposed many other ideas to ochmdiad [2, 41, 49,

95



a o2 -

c %8 -
06
M A A AAAAAAAMAAAAAN A
X’\ 04 A‘v Ay vvvvvv
0.2 -
o 4

Figure 3.9: OGY control method applied to the result-relay-syst@@8). (a) The graph of
thexs— coordinate, (b) The graph of ttke— coordinate, (c) The graph of thxe— coordinate.

63, 135, 177, 209, 237]. The parameters of the Duffing equation eadsen such that it
alternatively admits only regular motions or a chaotic attractor [82, 173,195,218, 225,
226, 227]. In the present chapter, the Duffing equation is modified witlisepunction such
that it admits the period-doubling cascade of chaos. This idea of insefticimaotic non-
smooth elements in such systems to obtain chaos has been realized in [7.B,118,13].

We have proved that the OGY control of the logistic map stabilizes the unstaeblzdjc
solutions embedded in the attractor. The exceptional result is that an grlstdation of
the system (3.17) approaches to the controlled periodic solution eventtitiby,initial mo-
ment is chosen properly. Thus, the way is found, which extends catbchaos of low-
dimensional maps to continuous systems with arbitrary large dimension. Thisdnegho
be useful for construction and stabilization of mechanical systems anti@l&ccuits with
chaotic features.

One can find that to control chaos of the system (3.4), unstable peridatis of the logistic
equation must be necessarily controlled. There are several other rméthozhtrol chaos of
the logistic map such as the method proposed by Pyragas [177] and theezktene delayed
auto synchronization method [243]. The main idea of the Pyragas methbeddjuplogistic
map is the usage of a perturbation in the form of a delay, that is, a perturludtibe form
y(ki—j — ki). Here, the parameterrepresents the strength of the perturbation and the positive
integerj is the order of the desired unstable periodic orbit [177, 243].

To show the results of Pyragas method applied to the sy&enwith the coefficientsl; =
0.18 dy, =2,d3=0.00004 D =0.02 k=2, andmg =2, m = 1, U. = 3.8, we use the method
around the period1 orbit, that is the fixed point, of the logistic mags, u) = us(1—s) and
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construct the following control system

Xq =X

X, = — 2%, — 0.18%; — 0.00004E + 0.02008(271t) + v (t,ty, [)
Gir1(ty, Heo) = i+ 14+ N(Gi(te, Poo) — 1, Hoo) + V(i1 (t1, Hoo)
_Zi (tl,”m) +1)

If we simulate a solution of the last system with= 0.5 andx; (t1) = 0.01, x2(t1) = 0.025
the result seen in Figure 3.10 is obtained. It approximates tgefodic solutionz (t) of
system(3.3). We use the valug = —0.5 and the control starts at tinte= {3p and ends at

(3.30)

t = {100

0 20 40 60 80 100 120 140 160 180 200

Figure 3.10: The Pyragas control method applied to the Duffing equatidariped with
a pulse functiorx” 4 0.18x + 2x + 0.00004 — 0.02 cog2mt) = v(t,to, le), Wheremy =
2,m =1 and . = 3.8. The control starts at time= {30 and ends at = {100. (a) The
graph of thex; coordinate. (b) The graph of the coordinate. (c) The trajectory of the
solution(xy (t),X2(t)).

Now, let us analyze through simulation an interesting question if large ovgqudrey of
unperturbed Duffing equation may suppress the chaos appearaneesparthrbed system.
With this aim, consider the system

Xy = X2

3.31
X, = —50x; — 0.18%; — 0.000043 + 0.02 c0$271t) + V(1 to, Lo ) (3:31)

which is in the form of system (3.3), whem) = 2, m; = 1 and ., = 3.8. The eigenvalues
for this system are-0.09Fiv/50— 0.0%. Take a solution(xs, xz) of the system with initial
datax;(0.5) = 0.01 andx(0.5) = 0.025 One can see that the frequency is high, but the

97



[ 50 100 150

0 50 100 150

Figure 3.11: Simulation results of the perturbed Duffing equat6r- 0.18x' + 50x +
0.00004c — 0.02 cog2mtt) = v(t,to, e ), Wheremy = 2,m; = 1 and ik, = 3.8. (@) The graph
of the x; coordinate. (b) The graph of the coordinate. (c) The trajectory of the solution

(x1(t),%2(t)).

simulation seen in Figure 3.11 shows that the chaos appearance is pessigtertonditions
of our theorems are fulfilled for the system.

We have one more confirmation of our theoretical results. The contralommrent is sus-
tained for the system (3.31) as seen in Figure 3.12. In this simulation, we;také.5,
to = 2.8/3.8, d = 0.19, and consider the solutioix;, x) of the control system

Xy =X

, 5 _ (3.32)
X, = —50x; — 0.18%; — 0.00004¢ + 0.02 co§271t) + v (t,t1, [1),

with the initial conditionxy (t1) = 0.01, x2(t1) = 0.025. The control starts at timie= {»s and
ends at = Cgp.

Figure 312 supports our results such that the depicted solution approximates plezi@dic
solutionz; (t) of system(3.31). Therefore, one can say that the chaos control results are valid
even if the frequency is high. The Pyragas control method can alsebenuthe case of high
frequency.

As the simulation results show, our proposals of generation of chao®asdquently control
of it can be extended by the rich diversity of results for discrete mapsefional interest
is expected for development of security of communication systems [76,7&2,195]. We
suppose also that direct extension of the results can be done on thebasigks, which
consider control of chaos generated by the logistic map [147, 148] seslthe map as an
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Figure 3.12: The OGY control method applied to the Duffing equation pextiaith a pulse
functionx” +0.18x’ + 50x + 0.00004¢ — 0.02 cog27tt) = V(t,to, Ue ), Wheremp = 2,my = 1
and ., = 3.8. The control starts at timte= {,5 and ends at = {go. () The graph of the;
coordinate. (b) The graph of tkxe coordinate. (c) The trajectory of the solutipn (t),x(t)).

instrument of ciphering and deciphering [33]. Next extension of invatitig can be done by
the discussion of low dimensional discrete dynamics [57, 149].

Concerning the Lyapunov exponents, we must say that the dynamics sfskem (3.4)
consist of the continuous dynamics of the differential equation itself arldeofliscrete dy-
namics of the switching moments. That is, one can say that our system isid fysiem
[8, 191, 229]. The important fact is that the Lyapunov exponent ofdikerete part of the
system is a positive one, since it is the Lyapunov exponent of the logisti¢188h
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CHAPTER 4

SICNNS WITH CHAOTIC EXTERNAL INPUTS

4.1 Introduction

A class of cellular neural networks, introduced by Bouzerdoum anigiFh0], is the shunt-
ing inhibitory cellular neural networks (SICNNs), which have been esttety applied in

psychophysics, speech, perception, robotics, adaptive pattergnigon, vision, and image
processing [37, 38, 39, 47, 79, 104, 174].

The model in its most original formulation [40] is as follows. Consider a two dsieral
grid of processing cells, and I€};,i=1,2,...,m, j=1,2,...,n, denote the cell at th&, j)
position of the lattice. Denote kY (i, j) ther—neighborhood o€, such that

N (i, ]) = {Cux:max{|k—i|,|l = j|} <r, 1<k<m 1<I|<n}.

In SICNNSs, neighboring cells exert mutual inhibitory interactions of thenshg type. The

dynamics of the celCj; is described by the nonlinear ordinary differential equation
%:_ai.xi._ cKl ¢ ST

dt i Xij > Gt +Lij (), (4.1)

CuaeN (i, )

wherex;j is the activity of the cellCjj; Lj;(t) is the external input t&€;;; the constant;

represents the passive decay rate of the cell acti(?]i'gilz 0 is the connection or coupling

strength of postsynaptic activity of the c€l} transmitted to the celljj; and the activation

function f(xq ) is a positive continuous function representing the output or firing rateeof th

cell Cy. For our theoretical discussions, we will consider continuous exterpats.

The existence and the stability of periodic, almost periodic and anti-periotitians of
SICNNs have been published in papers [46, 66, 99, 132, 165, 981285, 236, 244]. The
main novelty of the present chapter is the verification of the chaotic behiav81CNNs. To
prove the existence of chaos, we apply the technique based on thekd-definition [134],
and make use afhaotic external inputf the networks. We say that the external inputs are
chaotic if they belong to a collection of functions which satisfy the ingredieinthaos. That

is, we consider members of a chaotic set as external input terms, andgsidtawe obtain
solutions which display chaotic behavior.
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Existence of a chaotic attractor in SICNNs with impulses was numerically cdxben[88]
without a theoretical support, as well it is the case for the paper [218}. r€sults can be
extended to impulsive systems [12], but they will be very specific.

4.2 Preliminaries

Throughout the chapteR will stand for the set of real numbers, and the norm

lul| = (i’%X’Uij‘

will be used, where

u={uj} = (U,...,Utn,..,Uma...,Unn) € R™"

andm, n are natural numbers.

Suppose tha# is a collection of continuous functiong(t) = {yij(t)},i=1,2,....m, j=
1,2,...,n, such that supy(t)|| < M, whereM is a positive number. We start by describing
teR

S
the ingredients of Li-Yorke chaos for the collectigh

We say that a coupléy(t), i(t)) € Z x £ is proximal if for arbitrary smalle > 0 and
arbitrary largekE > 0, there exist infinitely many disjoint intervals of length not less tEan
such that||@(t) — @(t)]| < €, for eacht from these intervals. On the other hand, a couple
(Y(t),P(t)) € B x A is called frequently gy, A)—separated if there exist positive numbers
£, and infinitely many disjoint intervals of length not less tigrsuch that| ¢ (t) — g(t)|| >

&, for eacht from these intervals. It is worth saying that the numlsgrandA depend on the
functionsy(t) andgi(t).

A couple (@ (t),J(t)) € Z x A is a Li—Yorke pair if it is proximal and frequentlyeg, A)-
separated for some positive numbeyaindA. Moreover, an uncountable sétC 4 is called

a scrambled set i# does not contain any periodic functions and each couple of different
functions inside#’ x % is a Li—Yorke pair.

% is called a Li-Yorke chaotic set if:(i) There exists a positive numb@&g such that#
possesses a periodic function of peridg, for anyk € N; (ii) 4 possesses a scrambled&et
(iii) For any functiony(t) € ¢ and any periodic functiogi(t) € 4, the couple(g(t), J(t))
is frequently(&y,A)—separated for some positive numbegandA.

One can obtain a new Li-Yorke chaotic set from a given one as followgp&se thah :
R™N _ R™N s a function which satisfies for all,u, € R™" that

La[Jur — tef] < [[h(ug) —h(uz)|| < Lz |lug — w2, (4.2)

wherelL; andL, are positive numbers. One can verify that if the collecti#ris Li-Yorke
chaotic then the collectior, whose elements are of the forly(t)), Y(t) € 4, is also
Li-Yorke chaotic.
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The following conditions are needed:

(C1) y= r(ni_?auj >0;
I’J
(C2) There exist positive numbehd;; such that sufLj (t)| < Mij;
teR
(C3) There exists a positive numbket; such that supf (s)| < Mg;

ESIN

(C4) There exists a positive numbley such thatf(s;) — f(s)| < Lt |s1 — | forall 51,5 €

R;
N
(C5) Mfmaxizck'e'\'r("” <1,
(i.0) aij ’
C(LiKog+M .
(C6) ClliKotMr) 1, wheret and Ko are defined ag = max %  Cff andKo =
(1) Gefi(i.3)
Mij
max—
(i,j) &
K-
1 M max 2%t ) S
(i) aj

Using the theory of quasilinear equations [93], one can verify that adedionR function
X(t) = {ij (t)} is a solution of the network (4.1) if and only if the following integral equation
is satisfied

Xij (t) = —/_tooea”(ts)[ > Chlf(xkl(s))xij(S)_Lij(s)}ds (4.3)

CaeN (i)

A result about existence of boundedBrsolutions is as follows.

Lemma 4.2.1 For any L(t) = {Ljj(t)},i=1,2,...,m j=1,2,...,n, there exists a unique
bounded orR solutiong (t) = { | (t)} of the network (4.1) such thatigg [|@.(t) ]| < Ko.

Proof. Consider the se€ of continuous functionsi(t) = {uj(t)}, i=1,2....m j=
1,2,....n, such thatjjul|; < Ko, where||ul|; = Sup.g ||u(t)|. Define onCy the operatofT
as

(I'Iu)ij(t):/t e 9| z( )cik,-'f(ukl(s))ui,-(s)Li,-(s)}ds
- CaeN (i,

whereu(t) = {ujj(t)} andMu(t) = {(Mu);j(t)} . If u(t) belongs taCo then

\(I‘Iu)ij(t)jg/t e—aj(t—s)[ Z Cikj'|f(uk|)(s)||uij(s)\+\Lij(s)”ds
- CueNe (i, )
1w K
- a‘i(M” ! MfKOCkuegr(iJ)C” )
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S Gaeni (i,j) Cif

Accordingly, we havéiMu, < rzjaxJ +M¢Komax 2 _ K. Therefore[1(Co) C
e

) &ij (i) aij
Co.

On the other hand, for any v € Cy,

\(nu)ij(t)—(nv)i,-(t)yg/t eSS cHf(uaeus
- CureN (i, ])

—f(UkI(S))Vij(S)‘dS—l-/t CR Y ij"f(um(S))Vij(S)
- )

Cu €N (i ]
— £ (via(9))Vij (5) (ds

5 Gaen(i.j) Cff H

u—Viy.
" Is

< (LfKo+Mf)r(na)x
1)

S caennij) G

ki
Thus, [Mu—Tv]|; < (LiKo+ Mf)rpa)x 21 |ju—v]|,, and condition(C6) implies
1] i

j
that the operatoll is contractive. Consequently, for ahyt), there exists a unique bounded
onR solutiong_(t) of the network (4.1) such that sup || @ (t)|| < Ko. O

For a givenL(t) = {Lijj(t)},i=1,2,....,m j=1,2....n, let us denote by (t,xo) =
{x:_j (t,xo)} the unique solution of the SICNN (4.1) with (0,x9) = Xo. We note that the
solutionx (t, Xp) is not necessarily bounded &

Consider the se# whose elements are functions of the farf) = {L;j(t)},i=1,2,....m,
j=1,2,...,n, such that sutj_ij (t)} < M;j for eachi andj. Suppose that7 is the collection
teR

of functions consisting of the bounded Brsolutionsg_(t) of system (4.1), wherk(t) € .Z.
In the present chapter, we assume tiats an equicontinuous family oR.

The following assertion confirms the attractiveness of thezéet

Lemma 4.2.2 Forany % € R™"and L(t) = {Ljj(t)},i=1,2,...,m j=1,2,...,n,we have
I (t,%0) — @ (t)]] = 0ast— co.

Proof. Making use of the relation
X! (t.x0) — ¢! (1) = e (! (0.0) — ' (0))
t .
—aij (t— Kl ¢ (Kl
_/0 eailt S)[ S G (s,%0))x (5:%0)

CueN(i.j)
- Y i ed (9)ds
CreN:(i,j)
we obtain fort > 0 that

X t0) @ ()] < e (0.30) — ¢! 0)
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t . .
5 cff [e 9 sx0) - gl (3)]ds

CuaeNe (i, )

t
ik [ &9y Cl(s00) - o (9)]ds
0 CaeNe(i.])

The last inequality implies fdr> 0 that

I (t,%0) — @(t)]| < o — @ (0)]| + (L Ko+ 'Vlf)/ot e”®|x(s,%0) — @ (s)llds

Applying Gronwall-Bellman Lemma, one can attain that

X (t.%0) = @.(1)]| < %0 — @ (0] Lo MOV ¢ >0,

Consequentlyx, (t,xo) — @ (t)|| — 0 ast — oo, in accordance with conditiofC6). [

Our purpose in the next part is to prove rigorously that if the collecti6is chaotic in the
sense of Li-Yorke then the same is true iaf. In other words, if the external input terms
Lij (t) behave chaotically, then the dynamics of the SICNNs are also chaotic.

4.3 Chaotic Dynamics

The replication of the ingredients of Li-Yorke chaos from the collectiério the collection

<7 will be affirmed in the following two lemmas, and the main conclusion will be stated in
Theorem 4.3.1. We start with the following lemma, which indicates existenceogirpality

in the collectiongs.

Lemma 4.3.1 If a couple of functions(L(t), L(t)) € ¥ x £ is proximal, then the same is
true for the couplg(@.(t), @ (t)) € & x .

Proof. Fix an arbitrary small positive numberand an arbitrary large positive numker Set

. C.k.| M
R=2 MfKomaxmijaxJ
(i,J) ajj (i,j) Qi

and (LeKot M
0<a< V_C(if o+Myp) .
1+y—C(LtKo+My)

Suppose that a given pa{L(t), L(t)) € ¢ x £ is proximal. There exist a sequence of real
numbers{Eq} satisfyingEy > E for eachq € N and a sequencfty } , tq — o asq — o, such
thatHL(t) —E(t)H < ae for eacht from the disjoint intervalsy = [tq,tq+ Eg), g € N. Let us

denoteq (t) = {qq'_’ (t)} ande (t) = {cp‘g’ (t)}.
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Fix q € N. Fort € Jq, using the relation (4.3), one can reach up for aagd j that

dO- o=/ en 9] 5 e E Lo

CiaeNe(i,])
- Y i@ (9 +Lie)]ds
Ck|€NI'<I~J)
By means of the last equation, one can obtain that

- - NG Yy
‘q{” (t) - q)llf] (t)‘ <2 (Mf Kozcklelj;w + ”) e ai(t—tq)

j ajj
L a¢ (1_e—an (t—tq>)
aij

+¢(LtKo+ Mf)/

tq

t

e a9 @ () - g(9)ds
Accordingly, fort € J; we have that
el (t) - g (1) < Res +“y€ (" — &)
FelLiko o) [ ¢ a(s - (9] ds
Application of Gronwall's Lemma to the last inequality implies faf Jq that

aeg .
t)—g ()] < 1 _ elC(LiKo+Mp)—y](t—tq)
la®-a®]< y—¢(LiKo+Mt) ( )
+REC(L Ko+ M) —V(t—tg)

Suppose that the numbEris sufficiently large such that

E> 2 In <R>
y—¢(LtKo+ Ms) ag )’
In this case, it belongs to the intervdty + E/2,tq+ Eq], then

RéC(LfKOJFMf)*V](t*tq) < OE.

Thus, fort € [tq+ E/2,tq+ Eg], the inequality
1
y—¢(LtKo+M¢)

is valid. Consequently, since the last inequality holds for gaftbm the disjoint intervals
Jg = ltg+E/2,tg+Eg], g€ N, the couple(q.(t), ¢4 (t)) € 7 x .« is proximal.]

>ae§£.

o) o] < 2+

Now, let us continue with the replication the second main ingredient of Li-€/ohHaos in the
next lemma.

Lemma 4.3.2 If a couple (L(t),f(t)) € Z x 2 is frequently(&,A)-separated for some

positive numbersy and A, then there exist positive numbessand A such that the couple
(@.(t), (1)) € o x o is frequently(e1, A)-separated.
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Proof. Suppose that a given coup(da(t),[(t)) € ¥ x Zis frequently(g,A) separated, for
somegg > 0 andA > 0. In this case, there exist infinitely many disjoint interv@ysg € N, each
with length not less thad, such thatHL(t) —[(t)H > & for eacht from these intervals. In

the proof, we will verify the existence of positive numbegsA and infinitely many disjoint
intervalsJ; C J;,q € N, each with length\, such that the inequalityq (t) — ¢ (t)|| > &
holds for each from the intervals]é,q eN.

According to the equicontinuity afZ, one can find a positive number< A, such that for
anyty,ty € R with [t —t| < 1, the inequality

‘ (Lij (t1) —Eij (t1)> — <Lij (t2) —Eij ('[2)) ‘ < 8—20 (4.4)
holdsforall 1<i<m,1<j<n.

Suppose that for eaape N, the numbeis; denotes the midpoint of the intervd. Let us
define a sequencgfy } through the equatioly = 54— 1/2.

Let us fix an arbitrary] € N. One can find integeliig, jo, such that

Lioio(0) — Lioil )| = | L(s9) ~ L(s0) | > & (4.5)
Making use of the inequalit{4.4), for all t € [6, 65+ T] we have
Lioio(S2) — Cioi(0)| — |Lioio®) ~ Lia()|
(Lioio(t) - Eioio(t)) - (Lioio(SQ) - [iojo(SQ)) ‘

and therefore, by means @£.5), we achieve that the inequality

<

~ ~ & &
‘Liojo(t) - Liojo<t)’ > ‘Liojo(SQ) - Lioio(%)‘ ) > 2 (4.6)
is valid for allt € [6g, 6q+ 1]

For each andj, one can find numbercs? € [6y, 8¢+ 1] such that

/:w (L)~ L(9)) ds= 1 (Laa(¢h) ~ Laa(Ggh). - L) — Lrnn( G5l )

q

Thus, according to the inequality.6), we have that

’ /9 A (Lt~ L(5)) ds

q
Fort € [6y, 64+ 1], using the couple of relations

T&
—. 4.7
> (.7)

> 1 ‘Liojo<Zi2j0) —Liojo(&igy,)

dO=d@)- [ [a+ Y ct@e)]d s [ Ly

b CaeNe(i,)
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and

o=@ [ [ar 3 ciies)]e ods [ i
q kI €N (1] a

it can be verified that

- . Og+T ~
@J(GQJFT)_‘PE(QQJFT):/Q ’ (Lij(s)—Lij(s)>ds

. . 6g+T - .
ol @) - g 60— [ ai (a9 -gl(9) ds

Oq+1 - .
- at@ede- Y cidogs]ds
6q CaeN(i,) CueN(i,j)

Hence we achieve that

(61 e o = | [ (Lo -9

—||@.(6) — @ (6q) || — max /ewai- (d(9-d'(9)ds
! VI e L (4.8)
Oq+T . -
_ Clklf Kkl ] o Clklf Kkl ij ds .
T’%X /Bq |:Ck|€§r(i7j) : <(”- (S>)(H_ (S) CueN(i,j) : ((pI: (S)> - (Sﬂ °

Let us denotg/ = r(na)xa” andHp = rpa)xMij. The inequalitieg4.7) and(4.8) together imply
i i
that

max ||@(t) — @ t)]| > [|@(6g+T) — @ (6g+ 1)

te[6q,0q+1]
T& _

> — — 1+ 1Y+ 1C(LiKo+ M max t)—q@(t)].
5 — [1+Ty+TC(LiKo+ f)]te[eq,eq+r]Hm‘(> Rull

Therefore, we have max t)—@-(t)|| > €, where
& o mslla®—al]
T&

€= — )
22+ ty+ 1C(LtKo + M¢)]

Suppose that max || (t) — ¢ (t)|| = || (&) — @ (&q) ||, for someéq € [6y, 64+ T). De-
te[0q,64+1]

fine

A= min{T £ }
a 2’4(Ho+KoV+ M¢KoC)
and let

g | & i E&<6+1/2
a &—D, if&>0q+T1/2

Fort € [qu, 65 + E} , by favour of the integral equation

ad' ) - )= (¢’ (&) — ¢ (&)
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K (a(s)dl’ (9) - CHt(@'(9)g! (9)]ds
S0 “CueN (i, ) CueNe (i)
we have
o) — g0 > [l Eq %(E@H
_T,%X’./q(LIJ() LIJ max‘ Eqa” ‘HI_J I'_J()) ‘
t ..

— max Ci"-'f )@’ (s) - Kt (s))@! (5)|dS]

na | [ck.%(ij) [t @e- 5 alide) i(9)]ad
> E&— 25(H0+Koy+MfKOC)
S €
-2

Consequently, for eadhfrom the disjoint intervaIsJ& = [9(}, qu +E] , q € N, the inequality
o) — @ ()]

The following theorem, which is the main result of the present article, indith#tghe net-
work (4.1) is chaotic, provided that the external inputs are chaotic.

Theorem 4.3.11f .Z is a Li-Yorke chaotic set, then the same is truedor

Proof. Assume that the se¥’ is Li-Yorke chaotic. Under the circumstances, there exists
a positive numbefly such that for any natural numbky ¥ possesses a periodic function
of periodkTp. One can confirm that(t) € £ is kTo—periodic if and only if@ (t) € < is
kTo—periodic. Therefore, the set’ contains &Ty—periodic function for any natural number
k.

Next, suppose tha¥s is a scrambled set insid#’ and take into account the collectiows
with elements of the forn_(t), whereL(t) € Zs. Since.Zsis uncountable, the seisis also
uncountable. Due to the one-to-one correspondence between th@ipéritctions inside?
and.«Z, no periodic functions exist inside’s.

According to Lemmas 4.3.1 and 4.3.&sis a scrambled set. Moreover, Lemma 4.3.2 implies
that each couple of functions insidé; x .« is frequently(e;, A)-separated for some positive
numberss; andA, wheres denotes the set of all periodic functions insiele Consequently,
the setes is Li-Yorke chaotic.[]

Remark 4.3.1 Combining the result of Theorem 4.3.1 with the one of Lemma 4.2.2, we con-
clude that a chaotic attractor takes place in the dynamics of system (4.1).
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4.4 Examples

To actualize the results of the chapter, one needs a source of extemial im; (t), which are
ensured to be chaotic in the Li-Yorke sense. For this reason, in thexastpe, we will take
into account SICNNs whose external inputs are relay functions withtidadly changing
switching moments. Then, to support our new theoretical results, we will msdef the
solutions of this network as external inputs for another SICNNs, whicleigidin illustrative
object for the results of the chapter. To increase the flexibility of our mefhroapplications,
we will also take advantage of nonlinear functions to build chaotic inputs.

Example 1.Let us introduce th&ICNN

dzi
S = buzi— Y Do)z +vi(tto), (4.9)
Dy €Ny (i, )
in whichi, j=1,2 3
by by, b3 | =] 10 6 5 |,
D11 Dio Dais 0.006 0 0001
Do1 Dy Dp3 | =] 0.009 Q002 Q003
D31 D3> D33 0 0.005 Q004

In equation (4.9)D;; denotes the cell at the, j) position of the lattice, and for eachj, the
relay functionvj; (t,to) is defined by the equation

Vij (t,to) = aij, if  {aq(to) <t < {ag+1(to),
Y Bij, if ZZq—l(tO) <t< qu(to)7

wheretg € [0,1] and the numbergg(to), g € Z, denote the switching moments, which are
the same for all, j. The switching moments are defined through the fornfylén) = q+
Kq(to), 0 € Z, where the sequendgq(to) } , Ko(to) = to, is generated by the logistic equation
Kq+1(to) = 3.9Kq(to) (1 — Kq(to)), which is chaotic in the Li-Yorke sense [134]. More infor-
mation about the dynamics of relay systems and replication of chaos canrimkifopapers
[9, 10, 14, 15, 16, 18].

In system (4.9), leg(s) = & and ajj = 1, B;j = 2 for all i, j. By results of the paper [9],
the family {vij (t,to) } , to € [0,1], is chaotic in the sense of Li-Yorke, and the collectigh
consisting of elements of the formt) = {zj(t) } , wherez(t) are bounded off solutions of
(4.9), is a Li-Yorke chaotic set.

Next, we consider the simulations of the network (4.9). Figure 4.1 repieses chaotic
solutionz(t) = {zj(t)} of (4.9) with z11(to) = 0.1678 z15(tg) = 0.3956 z13(tg) = 0.1987,
21(tp) = 0.1261 zy5(tg) = 0.2405 zp3(tp) = 0.3012 z31(tp) = 0.2412 z35(tg) = 0.3942
z33(tp) = 1.6692 wherety = 0.45.
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Figure 4.1: The chaotic behavior of t8S¢CNN(4.9).

In Example 1 to procure a Li-Yorke chaotic set, we used QICNNin the form of (4.1),
where the termg;; (t) are replaced by relay functiong;(t,tg), whose switching moments
change chaotically. Now, to support the results of the present chayewill construct
anotherSICNN but this time we will use external inputs of the fotm (t) = hj; (z(t)), where
z(t) are the chaotic solutions of the network (4.9) &td) = {hj;(v) } is a nonlinear function
which satisfies the inequality (4.2).

Example 2. Consider the followingsICNN

dx
o= ki Y G ()% +Li (), (4.10)
Cia€Na(i,])

in whichi,j=12 3

ajlr d12 ai3 5 12 2

a1 a2 &3 |=|6 4 8],

az; az2 ass 2 9 3
Ci1 Cip Ci3 0.02 004 006
Co1 Cpp C3 | =| 004 007 Q09 |,
Cs1 Csp Cs3 0.03 004 008

1
andf(s) = 553. One can calculate that

Chi=017, 5 Cj=032 5 C=026
CaeNy(1,1) CueN1(1,2) CueN1(1,3)

K =0.24, S K, =0.47, )3 K —0.38,

Ck|€N1(2,l) Ck|€N1(2,2) CK|EN1(273)
$=018 5 C{=035 5 CH=028
Ca€Ny(3,1) CueNy(3,2) CueNL(3,3)
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In the previous example, we obtained a network whose solutions behaveaztly. Now, we
will make these solutions as external inputs for (4.10), with the help of a reanlifunction
h.

Define a functionh(v) = {hjj(v)}, wherev = {v;}, i,j = 1,2,3, through the equations
h11(V) = 2vi1 4 sin(va1), hia(V) = 3V2,, hia(v) = €22, hyy(v) = tan(%), h22(V) = V22 +

arctansy, h23(V) = %, h31(V) = %(2+V31)3/2, h32(V) = tanl‘(v32), h33(V) = %Vg3—}—
%V33. We note that the inequality (4.2) can be verified by using the bounded segibere
each component functionj(t) lies in. Accordingly, the set?}, whose elements are of
the formh(z(t)), z(t) € .2, where.Z is the set of bounded oR solutions of (4.9), is Li-
Yorke chaotic. Moreover, for eactit) € .2 we have|hjj (z(t))| < Mjj, whereM;;1 = 0.78,
Mi2 = 0.54, M13 = 1.35 M2; = 0.11, My = 0.69, Mp3 = 2.11, M3; = 2.41, M3, = 0.51 and

Maz = 2.4.

Consider the network (4.10) with; (t) = hij (z(t)), whereh(z(t)) = {hij (z(t)) } € %. Inthis

case, the conditiofC6) holds for (4.10) withM; = 0.864, L1 = 2.16, Ko = 1.36, y = 2 and
€= 0.47. The results of Theorem 4.3.1 ensure us to say that the colleetiovth elements
@(1), z(t) € £, is Li-Yorke chaotic.

In the SICNN (4.10), we use the chaotically behaving solutiéh= {zj(t)} which is sim-
ulated in Example land depict in Figure 4.2 the solution of (4.10) with(to) = 0.1341
X12(to) = 0.0247, Xlg(to) = 0.6493 X21(t0) = 0.0143 X22(t0) = 0.1503 X23(t0) = 02394
X31(to) = 1.1574 x32(tp) = 0.0467 andkzs(tp) = 0.5145 wherety = 0.45. Figure 4.2 reveals
that each celCij, i, = 1,2,3, behave chaotically, and this supports the result mentioned
in Theorem 4.3.1. Moreover, Figure 4.3 shows the projection of the sajeettng on the

X22 — X31 — X33 Space, and this figure also confirms the results of the present chapter.
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Figure 4.2: The chaotic behavior of t8&¢CNN(4.10).
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0.9

Figure 4.3: The projection of the chaotic attractor of the network (4.10) ®@rpph- X31 — X33
space.

4.5 Discussion

In this chapter, it is shown that SICNNs with chaotic external inputs admit atichattrac-
tor. Considering this phenomenon with the input-output mechanism, oneyab®at chaos
expansion among nonlinearly coupled SICNNs. The presented two exaoguisidered to-
gether illustrate the possibility. Our method can be applied to other types o$,cluaiex-
ample, that one analyzed through period-doubling cascade. Theaapgsosuitable for the
control of unstable periodic motions. Our results can be applied to the stfdibaotic com-
munication, combinatorial optimization problems and on problems that have lociahaniim
energy (cost) functions.
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CHAPTER 5

CONCLUSIONS

Replication of different types of chaos such as the one obtained bydpeoiabling cascade,
Devaney’s and Li-Yorke chaos is recognized in the thesis. The defisitibohaotic sets as
well as the hyperbolic sets of continuous functions are introduced, anephication of the
chaos is proved rigorously. The morphogenesis mechanism consideredstudy is based
on a chaos generating element inserted in a network of systems. Replidatiterimittency
as well as Shil’nikov orbits are discussed. Morphogenesis of the d@gbdd-Chua’s attractor
and quasiperiodical motions as a possible skeleton of a chaotic attracttamaomstrated nu-
merically. We handled the problem of chaos generation in Duffing oscillttoragh period-
doubling cascade by means of perturbations in the form of a relay fundtidhe thesis, it
is also shown that chaotic external inputs make the dynamics of shunting impibétular
neural networks behave chaotically. Moreover, control problemeoégtended chaos is real-
ized. Some of the results are illustrated through the relay system’s dynamicappropriate
simulations are presented using the indicated method successively. Tie mesntioned in
this thesis are published in the papers [16, 18, 19], and the simulationeepaergd by using
MATLAB [144]. The presented methods are useful for creating clasgstems that are en-
countered in mechanics, electrical systems, economic theory, meteonoéaggl networks
theory and communication systems.

The concept of self-replicating machines, in the abstract sense, stdrthesideas of von
Neumann [160] and these ideas are supposed to be the origins of celltdarata theory
[193]. Morphogenesis was deeply involved in mathematical discussioasghrTuring’s
investigations [223] as well as in the concept of structural stability [26}he thesis, the
term “morphogenesis” is used in the meaning of “processes creating’faimese we accept
the form not only as a type of chaos, but also accompanying concepts as thirgtrat
the chaotic attractor, its fractal dimension, form of the bifurcation diagramsgectra of
Lyapunov exponents, inheritance of intermittency, etc. This is similar to thesidela that
morphogenesis is used in fields such as urban studies [58], architg¢tB2je mechanics
[213], computer science [36], linguistics [91] and sociology [25, 45].

According to von Neumann, it is feasible in principle to create a self-repligatiachine,
which he refers as an “automaton”, by starting with a mackinahich has the ability to
construct any other machine once it is furnished with a set of instructimiasthen attaching
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to Aanother componemthat can make a copy of any instruction supplied to it. Together with
athird component labelddl it is possible to create a machine, denotedRbyith components
A,B andC such that is responsible to initiatd to construct a machine as described by the
instructions, then makB to create a copy of the instructions, and supply the copy of the
instructions to the entire apparatus. The compokei#t referred as “control mechanism”.

It is the resulting machin&, obtained by furnishing the machiieby instructiondg, that

is capable of replicating itself. Multiple usage of the set of instructignis crucial in the
mechanism of self-replication. First, the instructions must be fulfilled by thdhmeaé, then
they must be copied bB, and finally the copy must be attached to machHi® form the
systemR’ once again [160, 193].

Our theory of morphogenesis of chaos relates the ideas of von Neurnanisa|f-replicating
machines in the following sense. Initially, we take into account a system eféliffial equa-
tions (the generator) which plays the role of machikas in the ideas of von Neumann,
and we use this system to influence in a unidirectional way, another systemeplicator)

in the role of machind3, in such a manner that the replicator mimics the same ingredients
of chaos furnished to the generator. In this thesis, we use such ingt®diethe form of
period-doubling cascade, Devaney’s and Li-Yorke chaos. Inlasion, the generator system
with the replicator counterpart together, that is, the result-system, admiediagts of the
generator. In other words, a known type of chaos is replicated.

Replication of a known type of chaos in systems with arbitrary large dimensgsignificant
consequence of the second chapter of the thesis. More preciselg imethod presented, we
show that a known type of chaos, such as obtained through peridalitipuascade and in the
sense of Devaney or Li-Yorke, can be extended to systems with ardergeydimension. To
be more precise, we provide replication of chaos between unidirectiorallyled systems
such that finally to obtain a result-system admitting the same type of chaos. aDreig-
struct the morphogenesis mechanism by the formation of consecutiveatepis of chaos or
replication of chaos from a core system. It is also possible to constresugt+system using
these two mechanisms in a mixed style.

The chaotification procedure presented in the third chapter shows thahlyocontinuous
functions, but also piecewise continuous functions in the form of a reliagtion with chaot-
ically changing switching moments can be used to replicate a certain type of.chathe
third chapter, it is also shown both theoretically and numerically that the oltaima&os is
controllable, and OGY and Pyragas methods are suitable to stabilize thelarstalodic
solutions.

Cellular neural networks have been paid much attention in the past twoatedaxteptional
role in psychophysics, speech, perception, robotics, adaptiverpagtrgnition, vision, and
image processing has been played by shunting inhibitory cellular neuvebms. Chaotic
dynamics is an object of great interest in the theory neural networkis igmatural since
chaotic outputs have been obtained for several types of neural hatwAccording to the
design of neural networks, solutions of some of them can be used apanfon another

116



ones. Confirming one more time that the chaos phenomenon can be ohiseitvedynam-
ics of neural networks, the results obtained in the fourth chapter of #sept thesis make
contribution to the development of neural networks theory.

The synchronization theory of chaotic systems and our method of replicattionaos are
compared in the following part.

5.1 Synchronization versus Replication

According to Pecora and Carroll [168], two identical chaotic systemsbeasynchronized
under appropriate unidirectional coupling schemes. To realize the ssbpbAfraimovich
et al. [4] about the synchronization of nonidentical chaotic systems that@ restricted
in coupling, Rulkov et al. [184] considered the concept of generaky@dhronization for
unidirectionally coupled systems. Generalized synchronization [1, 3,122) 184] occurs in
the dynamics of the unidirectionally coupled systéi®) + (1.5) if the relation (1.8) holds.
This relation indicates the asymptotic closeness of the solutions of the mademn gits4)
and the slave system (1.5) under a transformatiorAccording to the results of Kocarev
and Parlitz [122], generalized synchronization occurs in the sy$tefn+ (1.5) if for all
initial Xp in a neighborhood of the chaotic attractor of the master system, the slavenggste
asymptotically stable [100], that is, the asymptotic stability criterion (1.9) holds.

The main disadvantage and in the same time the advantage of the synchrorifatiantic
systems [1, 3, 82, 100, 122, 168, 184] is that the description of chams iequested. It is
assumed in any form for the master system.

According to the lack of its description, chaos in the slave system is dismbyerough (i)
asymptotic closeness, (ii) a transformation. Lyapunov’s second metB3&d, \@hich is first
used by He and Vaidya [95] in the theory of synchronization, can bieapi indicate the
asymptotic closeness.

In the studies about synchronization of chaotic systems, we supposthehatithors were
forced to apply this simple method because of the absence of concretatmepf chaos.

Even in the case of generalized synchronization [1, 3, 100, 122 th84jame indicators are
used. However, in the generalized synchronization, it is a difficult taskpfdy even the

Lyapunov’s second method. As well they cannot arrange the tramafmm theoretically.

That is why other methods such as the analysis of conditional Lyapummnexts [122], the

auxiliary system approach [1] and the method of mutual false nearesthuegy[184] were

proposed to detect the generalized synchronization. In other woelshebretical support
for generalized synchronization is weak.

In the replication theory, the correspondence between the chaos oétleeator and repli-
cator systems is very clear and has a definitive form. Our results arelsuibaldentical
as well as nonidentical systems with the same or different dimensions. Tiespondence
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is arranged not only for identical systems but also for arbitrary notickdrgenerator and
replicator systems with different dimensions.

For certain type of replicator systems we can also arrange the asymptotinesssof different
type by applying linearization and Lyapunov’s second method. Replicafiaians can
be proved even when the asymptotical property is not definitely fulfilled.ekample, the
general hyperbolic case can be considered.

Further investigations about replication of chaos can be done by applyapynov’s second
method. Moreover, in future, we will focus on chaotification of systemsbasess stable
limit cycles instead of equilibrium points. Such systems can occur as a rés$idipd bifur-
cation, and they are important for problems in biological systems, chematioas, neural
networks, mechanics and electrical circuits.
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