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ABSTRACT

THE INPUT/OUTPUT MECHANISM OF CHAOS GENERATION

Fen, Mehmet Onur

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Marat Akhmet

September 2013, 134 pages

The main objective of this thesis is to develop a new method for chaos generation through
the input/output mechanism on the basis of differential and discrete equations. In the thesis,
this method is applied to various models in mechanics, electronics, meteorology and neural
networks. Chaotic sets of continuous functions as well as the concepts ofthe generator and
replicator of chaos are introduced. Inputs in the form of both continuous and piecewise con-
tinuous functions are applied to arbitrarily high dimensional systems with stable equilibrium
points, and it is rigorously proven that the chaos type of the inputs is the same as for the
outputs. Our theoretical results are based on the chaos in the sense of Devaney, Li-Yorke and
the one obtained through period-doubling cascade. Besides, replicationof Shil’nikov orbits,
intermittency and the form of the bifurcation diagrams are investigated in the discussion form.
It is shown that the usage of chaotic external inputs makes the dynamics of shunting inhibitory
cellular neural networks exhibit chaotic motions. Moreover, the presence of chaos in the dy-
namics of the Duffing oscillator perturbed with a relay function is demonstrated. Models, in
which the Lorenz system, shunting inhibitory cellular neural networks and Duffing oscillators
are utilized as generators, are considered. Extension of chaos in openchains of Chua circuits
and quasiperiodic motions as a possible skeleton of a chaotic attractor are also discussed. The
controllability of the replicated chaos is theoretically proven and actualized bymeans of the
OGY and Pyragas control methods.

Keywords: Replication of Chaos, Continuous Chaos, Chaotic Models in Mechanics and Elec-

tronics, Shunting Inhibitory Cellular Neural Networks, Control of the Replicated Chaos
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ÖZ

KAOS ÜREṪIMİNİN GİRDİ/ÇIKTI MEKAN İZMASI

Fen, Mehmet Onur

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Marat Akhmet

Eylül 2013, 134 sayfa

Bu tezin asıl amacı diferansiyel ve ayrık denklemler bazında girdi/çıktı mekanizması aracılı-
ğıyla kaos üretimi için yeni bir metodun geliştirilmesidir. Bu metot tezde, mekanik,elek-
tronik, meteoroloji ve sinir ăglarında çeşitli modellere uygulanmıştır. Kaosun üreticisi ve
çoğaltıcısı kavramlarının yanı sıra sürekli fonksiyonların kaotik kümeleri de tanıtılmıştır.
Sürekli ve parçalı sürekli fonksiyon formatındaki girdiler, kararlı denge noktalarına sahip
keyfi yükseklikte boyutu olan sistemlere uygulanmıştır ve girdilerin kaos tipinin çıktılarınki
ile aynı oldŭgu kesin olarak ispatlanmıştır. Teorik sonuçlarımız Devaney, Li-Yorke tipindeki
ve periyot-çiftlenmesi çatallanması ile meydana gelen kaos tipine dayanmaktadır. Bunun
yanı sıra, Shil’nikov yörüngelerinin, kesintili kaosun ve çatallanma diyagramlarının replikas-
yonları tartışma formatında incelenmiştir. Kaotik harici girdilerin kullanılmasının manevra
engelleyici hücresel sinir ağlarının dinamĭginin kaotik hareketler meydana getirmesini sağla-
dığı gösterilmiştir. Ayrıca, bir röle fonksiyonuyla etkilenmiş Duffing osilatörünün dinamĭgin-
de kaosun varlı̆gı ispat edilmiştir. Lorenz sistemlerinin, manevra engelleyici hücresel sinir
ağlarının ve Duffing osilatörlerinin üretici olarak kullanıldığı modeller ele alınmıştır. Chua
devrelerinin açık zincirlerinde kaos genişlemesi ve yarı-periyodik hareketlerin bir kaotik çe-
kicinin muhtemel bir iskeleti olması ayrıca tartışılmıştır. Replike edilen kaosun kontrol edile-
bilirli ği teorik olarak ispatlanmıştır ve OGY ve Pyragas kontrol metotları yardımıylahayata
geçirilmiştir.

Anahtar Kelimeler: Kaosun Replikasyonu, Sürekli Kaos, Mekanik ve Elektronikte Kaotik

Modeller, Manevra Engelleyici Hücresel Sinir Ağları, Replike Olan Kaosun Kontrolü
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CHAPTER 1

INTRODUCTION

The main subject of this thesis is chaos. Since the literature on the subject is very rich, we are

not original. In the same time, we consider in this thesis chaos as being aninputfor differential

equations. Formally speaking, we insert chaos in the right-hand-side of the equations. This

is what makes our studies a unique one among all others in the literature. One can remember

that standardly, chaos is formed by solutions of discrete equations and differential equations.

That is, chaos is an output with respect to these systems. One can consider, for example, the

Lorenz system, the Duffing’s oscillator and the Chua circuit. Another novelty of this thesis

is that we describe expansion of chaos on the basis of the input-output mechanism by using

the concept ofmorphogenesisto emphasize that the expansion keeps geometrical properties

of chaos.

Let us describe the importance of the input-output mechanism in chaos analysis for both

theory and applications:

1. In the theory of dynamical systems, a large number of results use in their formulation

the input-output mechanism. For example, there are many theorems, which canbe

loosely formulated as follows: if the perturbation is periodic (bounded, almost peri-

odic), then there is a unique periodic (bounded, almost periodic) solution.We propose

to consider in our results the following implication to be considered: if the perturbation

is chaotic, then there is a chaos in the set of solutions. Thus, one can say that our main

proposal is to return investigation of chaos into the main stream of classical dynamical

systems and, consequently, a huge number of rigorous mathematical methods, numer-

ical instruments and applications, which rely on the mechanism, will now be involved

for investigation of chaotic processes.

2. Despite the fact that many distinguished specialists in chaos theory and mathematics

have been involved in the investigation, there are still many challenging problems re-

lated to origins of the chaotic theory: we do not have rigorously approvedchaos in

Lorenz systems, Duffing equations and other systems. Hopefully, the input-output

mechanism will give new opportunities for the analysis of the basic models as well

as help to revise the theory of chaos. We believe that exploration of the mechanism in

considered models can give mathematical clarity there.
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3. The mechanism can become a strong instrument in applications to real world problems

through modeling the expansion of chaos. We hope that unpredictability of weather

and irregularity as a global phenomena will be reflected in mathematical investigations

more comprehensively. This is true not only for atmospheric processes,but also for

any large systems in economic theory, biology, neural networks and computer sciences.

Utilization of the input-output mechanism in cryptography and deciphering deals may

give effective results, too. The input-output mechanism is very popular, for instance, in

mechanics, chemistry, biology, cryptography, etc. Consequently, one can suppose that

what we suggest has to be realized immediately for these real world problems.

The studies mentioned here are attractive, in the mathematical sense, since for the first time

we have introduced what we understand as chaos for systems with continuous time. This

may give a push for functional analysis of chaos to involve the operator theory results, etc.

Hopefully, our approach will give a basis for a deeper comprehensionand possibility to unite

different appearances of chaos. In this framework, we also hope that the results can be devel-

oped for partial differential equations, integro-differential equations, functional differential

equations, evolution systems, etc.

The content of this thesis is a good background for applications in mechanics, biology, molec-

ular biology, physiology, pharmacology, secure communications, neuralnetworks, and other

real world problems involving complex behavior of models. Since chaos is present every-

where, we can say that our results are applicable in any field, where differential equations and

difference equations are utilized as models.

1.1 Chaotic Dynamical Systems

The theory of dynamical systems starts with H. Poincaré, who studied nonlinear differential

equations by introducing qualitative techniques to discuss the global properties of solutions

[64]. His discovery of the homoclinic orbits figures prominently in the studies of chaotic

dynamical systems. Poincaré first encountered the presence of homoclinic orbits in the three

body problem of celestial mechanics [22]. A Poincaré homoclinic orbit is anorbit of inter-

section of the stable and unstable manifolds of a saddle periodic orbit. It is called structurally

stable if the intersection is transverse, and structurally unstable or a homoclinic tangency if

the invariant manifolds are tangent along the orbit [81]. In any neighborhood of a structurally

stable Poincaré homoclinic orbit there exist nontrivial hyperbolic sets containing a count-

able number of saddle periodic orbits and continuum of non-periodic Poisson stable orbits

[81, 204, 206]. For this reason, the presence of a structurally stable Poincaré homoclinic orbit

can be considered as a criterion for the presence of complex dynamics [81].

The first mathematically rigorous definition of chaos is introduced by Li and Yorke [134]

for one dimensional difference equations. According to [134], a continuous mapF : J → J,

whereJ ⊂ R is an interval, exhibits chaos if: (i) For every natural numberp, there exists
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a p−periodic point ofF in J; (ii) There is an uncountable setS⊂ J containing no periodic

points such that for everys1,s2 ∈ S with s1 6= s2 we have limsupk→∞
∣∣Fk(s1)−Fk(s2)

∣∣ > 0

and liminfk→∞
∣∣Fk(s1)−Fk(s2)

∣∣ = 0; (iii) For everys∈ S and periodic points∈ J we have

limsupk→∞
∣∣Fk(s)−Fk(s)

∣∣> 0.

Generalizations of Li-Yorke chaos to high dimensional difference equations were provided in

[20, 120, 133, 143]. According to results of [143], if a repelling fixedpoint of a differentiable

map has an associated homoclinic orbit that is transversal in some sense, then the map must

exhibit chaotic behavior. More precisely, if a multidimensional differentiablemap has a snap-

back repeller, then it is chaotic. Marotto’s Theorem was used in [133] to prove rigorously the

existence of Li-Yorke chaos in a spatiotemporal chaotic system. Furthermore, the notion of

Li-Yorke sensitivity, which links the Li-Yorke chaos with the notion of sensitivity, was studied

in [20], and generalizations of Li-Yorke chaos to mappings in Banach spaces and complete

metric spaces were considered in [120].

Another mathematical definition of chaos for discrete-time dynamics was introduced by De-

vaney [64]. According to [64], a mapF : J → J, whereJ ⊂ R is an interval, has sensitive

dependence on initial conditions if there existsδ > 0 such that for anyx∈ J and any neigh-

borhoodN of x there existsy∈ J and a positive integerk such that
∣∣Fk(x)−Fk(y)

∣∣> δ . On the

other hand,F is said to be topologically transitive if for any pair of open setsU,V ⊂ J there

exists a positive integerk such thatf k(U)∩V 6= /0. According to Devaney, a mapF : J → J

is chaotic onJ if: (i) F has sensitive dependence on initial conditions; (ii) F is topologically

transitive; (iii) Periodic points ofF are dense in J. In other words, a chaotic map possesses

three ingredients: unpredictability, indecomposability and an element of regularity.

Symbolic dynamics, whose earliest examples were constructed by Hadamard[90] and Morse

[156], is one of the oldest techniques for the study of chaos. Symbolic dynamical systems are

systems whose phase space consists of one-sided or two-sided infinite sequences of symbols

chosen from a finite alphabet. Such dynamics arises in a variety of situationssuch as in

horseshoe maps and the logistic map. The set of allowed sequences is invariant under the shift

map, which is the most important ingredient in symbolic dynamics [64, 84, 92, 117, 232, 233].

Moreover, it is known that the symbolic dynamics admits the chaos in the sense of both

Devaney and Li-Yorke [8, 10, 12, 64, 179].

The Smale Horseshoe map is first studied by Smale [207] and it is an example ofa diffeomor-

phism which is structurally stable and possesses a chaotic invariant set [64, 117, 233]. The

horseshoe arises whenever one has transverse homoclinic orbits, as inthe case of the Duffing

equation [85]. People used the symbolic dynamics to discover chaos, but we suppose that it

can serve as an “embryo” for the morphogenesis of chaos.

From the mathematical point of view, chaotic systems are characterized by local instability

and uniform boundedness of the trajectories. Since local instability of a linear system implies

unboundedness of its solutions, chaotic system should be necessarily nonlinear [76]. Chaos in

dynamical systems is commonly associated with the notion of a strange attractor, which is an
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attractive limit set with a complicated structure of orbit behavior. This term wasintroduced by

Ruelle and Takens [183] in the sense where the word strange means the limit set has a fractal

structure [81]. The dynamics of chaotic systems are sensitive to small perturbations of initial

conditions. This means that if we take two close but different points in the phase space and

follow their evolution, then we see that the two phase trajectories starting fromthese points

eventually diverge [64, 89]. The sensitive dependence on the initial condition is used both

to stabilize the chaotic behavior in periodic orbits and to direct trajectories to a desired state

[196].

It was Lorenz [137] who discovered that the dynamics of an infinite dimensional system be-

ing reduced to three dimensional equation can be next analyzed in its chaoticappearances

by application of the simple unimodal one dimensional map. Smale [207] explainedthat the

geometry of the horseshoe map is underneath of the Van der Pol equation’s complex dynam-

ics which was investigated by Cartwright and Littlewood [48] and later by Levinson [131].

Nowadays, the Smale horseshoes with its chaotic dynamics, is one of the basicinstruments

when one tries to recognize a chaos in a process. Guckenheimer and Williams[87] gave a

geometric description of the flow of Lorenz attractor to show the structural stability of codi-

mension 2. In addition to this, it was found out that the topology of the Lorenzattractor

is considerably more complicated than the topology of the horseshoe [85]. Moreover, Levi

[130] used a geometric approach for a simplified version of the Van der pol equation to show

the existence of horseshoes embedded within the Van der Pol map and how the horseshoes fit

in the phase plane.

1.2 The Input/Output Mechanism of Chaos and Morphogenesis

It is naturalto discover a chaos[52, 96, 134, 137, 143, 145, 175, 180, 181, 183, 186, 189, 200,

215], and proceed by producing basic definitions and creating the theory. On the other hand,

one canshapean irregular process by inserting chaotic elements in a system which has regular

dynamics (let us say comprising an asymptotically stable equilibrium, a global attractor, etc).

This approach to the problem also deserves consideration as it may allow for a more rigorous

treatment of the phenomenon, and helps to develop new methods of investigation. Our results

are of this type.

In this thesis, we use the idea that chaos can be used as input in systems of equations. To ex-

plain the input-output procedure which is realized in our study, let us giveparticular examples

of systems used in the thesis. Consider the following system of differential equations,

dx
dt

= B(x). (1.1)

The system (1.1) is calledthe base-system. We assume that the system admits a regular

property. For example, there is a globally asymptotically stable equilibrium of (1.1). Next,

we apply to the system a perturbation,I(t), which will be called aninput and obtain the
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following system,

dx
dt

= B(x)+ I(t), (1.2)

which will be called as thereplicatorsystem.

Suppose that the inputI admits a certain property, let us say, it is a bounded function. We

assume then that there exists a unique solution,x(t), of the last equation, the replicator, with

the same property of boundedness. This solution is considered as anoutput. The process for

obtaining the solutionx(t) of the replicator system by applying the perturbationI(t) to the

base-system (1.1) is called theinput-output mechanism, and sometimes we shall call it the

machinery. It is known that for certain base-systems, if the input is periodic, almost periodic,

bounded, then there exists an output, which is also periodic, almost periodic,bounded. In

this thesis, we consider inputs of the new nature: chaotic sets and chaotic functions. The

motions which are in the chaotic attractor of the Lorenz system considered altogether provide

us an example of a chaotic set of functions. Any element of this set is considered as a chaotic

function. Both of these types of inputs will be used in our study effectively. To prove rig-

orously, by verification of all ingredients, that there exists a certain type of chaos generated

by the input-output mechanism, we use the concept of the chaotic set. For simulations we

shall use inputs in the form of chaotic functions. The diagram in Figure 1.1 illustrates the

input-output mechanism schematically. We have to say that in the figure the input I can be a

set of functions as well as a single function. The same is true for the output,x(t).

Figure 1.1: The input-output mechanism.

The main source of chaos in theory are difference and differential equations. For this reason

we consider inputs, which are solutions of some systems of differential equations or discrete

equations. These systems will be calledgeneratorsin this thesis.

Thus, we can consider the following system of differential equations,

dz
dt

= G(z), (1.3)
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and it is assumed that this system possesses chaos. We shall call this system agenerator. If

z(t) is a solution of the system from the chaotic attractor, that is, it is a chaotic solution, then

we notateI(t) = z(t) and use the functionI(t) in the equation (1.2).

In this thesis, we have proved rigorously that the output is of the same type of chaos as the

input if base-systems are with globally asymptotically stable equilibriums. We use the concept

of morphogenesis for two reasons. First of all, morphogenesis is convenient to describe how

the input-output mechanism works if chaos is an input. Secondly, it provides information

about the structure of the chaos-output, if one knows the structure of thechaos-input. We give

a full description of the chaos expansion as morphogenesis, if base-systems are linear and

with constant matrices of coefficients.

The term morphogenesis is used issuing from the sense of the wordsmorphmeaning “form”

andgenesismeaning “creation”. This is similar to the idea such that morphogenesis is used

in fields such as urban studies [58], architecture [182], mechanics [213], computer science

[36], linguistics [91] and sociology [25, 45]. Morphogenesis in this thesis is understood in

this weak sense, and mechanism of the replication is simple. In discussion form we consider

inheritance of intermittency, the double-scroll Chua’s attractor and quasiperiodical motions

as a possible skeleton of a chaotic attractor. We make comparison of the main concept of our

study with Turing’s morphogenesis [223] and John von Neumann automata [160], considering

that this may not be only a formal comparison, but will give ideas for the chaos development

in the morphogenesis of Turing and for self-replicating machines.

We propose a rigorous identification method for replication of chaos from aprior one to sys-

tems with large dimensions. Extension of the formal properties and features of a complex

motion can be observed such that ingredients of chaos united as known types of chaos, De-

vaney’s, Li-Yorke and others. This is true for other appearances ofchaos: intermittency,

structure of the chaotic attractor, its fractal dimension, form of the bifurcation diagram, the

spectra of Lyapunov exponents, etc.

In our theoretical results of chaos extension, we use coupled systems in which the generator

influences the replicator in a unidirectional way, that is, the generator affects the behavior of

the replicator, but not the converse. The possibility of making use of more than one replicators

and nonidentical systems in the machinery is an advantage of the procedure. On the other

hand, contrary to the method that we present, in the synchronization of chaotic systems, one

does not consider the type of the chaos that the master and slave systems admit. The problem

that whether the synchronization of systems implies the same type of chaos forboth master

and slave has not been taken into account yet.

The concept of morphogenesis is considered carefully only in the second chapter of the thesis,

for systems with stable equilibrium, since for systems with stable equilibriums all the known

ingredients of chaos are proper.
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1.3 Synchronization of Chaotic Systems

One of the usage areas of master-slave systems is the study of synchronization of chaotic sys-

tems [1, 3, 82, 100, 122, 168, 184]. In 1990, Pecora and Carroll [168] realized that two identi-

cal chaotic systems can be synchronized under appropriate unidirectional coupling schemes.

Consider the system

x′ = G(x), (1.4)

as the master, wherex∈ R
d, such that the steady evolution of the system occurs in a chaotic

attractor. The dynamics of the slave system is governed by the equation

y′ = H(x,y). (1.5)

When the unidirectional drive is established, suppose that the right handside of equation (1.5)

satisfies that

H(x,y) = G(x), (1.6)

for y= x, and the slave system takes the form

y′ = G(y), (1.7)

which is a copy of system(1.4), in the absence of driving. In unidirectional couplings, the

signals of the master system acts on the slave system, but the converse is nottrue. Moreover,

this action becomes null when the two systems follow identical trajectories [82].The contin-

uous control scheme [67, 113] and the method of replacement of variables [61, 169] can be

used to obtain couplings in the form of the system(1.4)+ (1.5). Synchronization of a slave

system to a master system, under the condition(1.6), is known as identical synchronization,

and it occurs when there are sets of initial dataBx ⊂R
d andBy ⊂R

d for the master and slave

systems, respectively, such that the equation limt→∞ ‖x(t)−y(t)‖= 0 holds, where(x(t),y(t))

is a solution of system(1.4)+(1.5) with initial data(x(0),y(0)) ∈ Bx×By.

In paper [4], Afraimovich et al. proposed the synchronization of chaotic systems that are dif-

ferent and not restricted in coupling. To realize this proposal, Rulkov etal. [184] considered

the concept of generalized synchronization for unidirectionally coupledsystems.

Consider the unidirectionally coupled system(1.4)+ (1.5) such that the dimensions of the

master and slave systems ared and r, respectively. Generalized synchronization [1, 3, 82,

100, 122, 184] is said to occur if there exist setsBx ⊂ R
d, By ⊂ R

r of initial conditions

and a transformationψ , defined on the chaotic attractor of (1.4), such that for allx(0) ∈ Bx,

y(0) ∈ By the relation

lim
t→∞

‖y(t)−ψ(x(t))‖= 0 (1.8)

holds. In this case, a motion that starts onBx×By collapses onto a manifoldM ⊂ Bx×By

of synchronized motions. The transformationψ is not required to exist for the transient tra-

jectories. Generalized synchronization includes the identical synchronization as a particular
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case. That is, ifψ is the identity transformation, then identical synchronization takes place.

The paper [100] deals with the case when the transformationψ is differentiable.

According to Kocarev and Parlitz [122], generalized synchronization occurs in the dynamics

of the coupled system(1.4)+(1.5) if and only if for all x0 ∈ Bx, y10,y20 ∈ By, the criterion

lim
t→∞

‖y(t,x0,y10)−y(t,x0,y20)‖= 0 (1.9)

holds, wherey(t,x0,y10),y(t,x0,y20) denote the solutions of the slave system (1.5) with the

initial datay(0,x0,y10) = y10, y(0,x0,y20) = y20 and the samex(t), x(0) = x0.

As a consequence of generalized synchronization, the behavior of theslave system (1.5) can

be predicted by the knowledge of the trajectories of the master system (1.4) and the trans-

formationψ . The master system is also predictable from the slave system, ifψ is invertible

[122].

1.4 Control of Chaos

The idea of chaos control is based on the fact that chaotic attractors have a skeleton made

of an infinite number of unstable periodic orbits [64, 82, 89, 114, 195]. Stability can be

described as the ability of a system to keep itself working properly even when perturbations

act on it, and this is the main goal to be achieved by the control strategy that is embedded

in the system [195]. In other words, the aim of chaos control is to stabilize apreviously

chosen unstable periodic orbit by means of small perturbations applied to thesystem, so the

chaotic dynamics is substituted by a periodic one chosen at will among the several available

[82]. That is, when control is present, a chaotic trajectory transforms into a periodic one

[76]. Experimental demonstrations of chaos control methods were presented in the papers

[30, 32, 35, 68, 80, 94, 150, 194].

Small perturbations applied to control parameters can be used to stabilize chaos, keeping the

parameters in the neighborhood of their nominal values, and this idea is firstintroduced by

Ott, Grebogi and Yorke [163]. Experimental applications of the OGY control method requires

a permanent computer analysis of the state of the system. The method deals with aPoincaré

map and therefore, the parameter changes are discrete in time. Using this method, one can

stabilize only those periodic orbits whose maximal Lyapunov exponent is smallcompared to

the reciprocal of the time interval between parameter changes [177]. Another control method

has been developed by Pyragas [177] to stabilize unstable periodic orbitsapplying small time

continuous control to a parameter of a system while it evolves in continuous time, instead of

a discrete control at the crossing of a surface [82]. Pyragas control method uses a delayed

feedback employing a suitably amplified difference of an output measurement of the chaotic

system and the respectively delayed measurement for control. The control signal vanishes in

the post-transient behavior for the stabilized orbit. For this reason, the delay time has to be

the exact value of the period of the unstable periodic orbit that will be stabilized [97]. Both

of the OGY and Pyragas control methods will be utilized in the thesis.
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1.5 Neural Networks and Chaos

The chaos phenomenon has been observed in the dynamics of neural networks [5, 6, 77, 86,

126, 158, 159, 176, 201, 205, 220, 231], and chaotic dynamics applying as external inputs

are useful for separating image segments [201], information processing[158, 159] and syn-

chronization of neural networks [136, 140, 240]. Aihara et. al. [6] proposed a model of a

single neuron with chaotic dynamics by considering graded responses, relative refractoriness

and spatio-temporal summation of inputs. Chaotic solutions of both the single chaotic neuron

and the chaotic neural network composed of such neurons were demonstrated numerically in

[6]. Focusing on the model proposed in [6], dynamical properties of a chaotic neural network

in chaotic wandering state were studied concerning sensitivity to external inputs in [126]. On

the other hand, in the paper [201], Aihara’s chaotic neuron model is used as the fundamental

model of elements in a network, and the synchronization characteristics in response to exter-

nal inputs in a coupled lattice based on a Newman-Watts model are investigated.Besides, in

the studies [158, 159], a network consisting of binary neurons which donot display chaotic

behavior is considered, and by means of the reduction of synaptic connectivities it is shown

that the state of the network in which cycle memories are embedded reveals chaotic wander-

ing among memory attractor basins. Moreover, it is mentioned that chaotic wandering among

memories is considerably intermittent. Chaotic solutions to the Hodgkin-Huxley equations

with periodic forcing have been discovered in [5]. The paper [86] indicates the existence of

chaotic solutions in the Hodgkin-Huxley model with its original parameters. An analytical

proof for the existence of chaos through period-doubling cascade in adiscrete-time neural

network is given in [231], and the problem of creating a robust chaotic neural network is

handled in [176].

1.6 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we propose a rigorous method for replication of chaos from a prior one to

systems with arbitrary large dimensions. Extension of the formal properties and features

of a complex motion can be observed such that ingredients of chaos united as known types

of chaos, Devaney’s, Li-Yorke and obtained through period-doubling cascade. This is true

for other appearances of chaos: intermittency, structure of the chaotic attractor, its fractal

dimension, form of the bifurcation diagram, the spectra of Lyapunov exponents, etc. That is

why we identify the extension of chaos through the replication as morphogenesis. To provide

rigorous study of the subject, we introduce new definitions such as chaoticsets of functions,

the generator and replicator of chaos, and precise description of ingredients for Devaney and

Li-Yorke chaos in continuous dynamics. Appropriate simulations which illustrate the chaos

replication phenomenon are provided. Moreover, in discussion form weconsider inheritance

of intermittency, replication of Shil’nikov orbits and quasiperiodical motions asa possible

skeleton of a chaotic attractor. Chaos extension in an open chain of Chua circuits is also
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demonstrated.

Chapter 3 deals with the Duffing equation forced with a pulse function, whose moments

of discontinuity depend on the initial data. Existence of the chaos through period-doubling

cascade is proved, and the OGY control method is used to stabilize the periodic solutions.

Appropriate simulations of the chaos and stabilized periodic solutions are presented.

Taking advantage of external inputs, it is shown in Chapter 4 that shuntinginhibitory cellu-

lar neural networks (SICNNs) behave chaotically. This is the first time thata theoretically

approved chaos is obtained in SICNNs. The analysis is based on the Li-Yorke definition of

chaos. We develop the concept of Li-Yorke chaos to continuous and multidimensional dynam-

ics of SICNNs. Appropriate illustrations which support the theoretical results are depicted.

The last chapter of the thesis is devoted to conclusions and possible futurestudies. Moreover,

a comparison of the synchronization theory of chaotic systems and replication of chaos is

mentioned.
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CHAPTER 2

REPLICATION OF CHAOS

2.1 Introduction

It is known that if one considers the evolution equationu′ = L[u]+ I(t), whereL[u] is a linear

operator with spectra placed in the left half of the complex plane, then a function I(t) being

considered as aninput with a certain property (boundedness, periodicity, almost periodic-

ity) produces through the equation theoutput, a solution with a similar property, bounded-

ness/periodicity/almost periodicity [54, 75].

A reasonable question appears whether it is possible to use as input a chaotic motion and to

obtain output also as a chaos of certain type. Our study is devoted to answer this question

even if the input is inserted non-linearly. One must say that we consider asan input first of all

a single function, a member of a chaotic set to obtain a solution, which is a member of another

chaotic set. Beside that we consider the chaotic sets as the input and the output. We have been

forced to consider sets of functions as inputs and outputs, since Devaney or Li-Yorke chaos

are indicated through relation of motions (sensitivity, transitiveness, proximality). Thus, we

consider the input and the output not only as single functions, but also ascollections of func-

tions. The way of our investigation is arranged in the well accepted traditional mathematical

fashion, but with a new and a more complex way of arrangement of the connections between

the input and the output.

Since the concept of chaos is much more complex than just single periodic or almost periodic

solutions, we have to use a special terminology for the chaos generation through the input-

output mechanism,replication of chaos.

The technique of the replication used in this chapter is as follows. We need a source of chaotic

inputs, but mostly chaos can be obtained through solving differential or difference equations.

For this reason, we use special generator systems as the source of chaos or chaotic functions.

Nevertheless, we emphasize that the generator is not necessarily the element of the replication

procedure since it can be replaced by another source of a chaotic input, and in applications

present result may be considered with, for example, chaotic inputs obtained from experimental

activity. So, initially, we take into account a system of differential equations(the generator)

which produces chaos, and we use this system to influence in a unidirectional way, another
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system (the replicator) in such a manner that the replicator mimics the same ingredients of

chaos provided to the generator. In the present chapter, we use suchingredients in the form

of period-doubling cascade, Devaney and Li-Yorke chaos. For the study of the subject, we

introduce new definitions such as chaotic sets of functions, the generatorand replicator of

chaos, and precise description of ingredients for Devaney and Li-Yorke chaos in continuous

dynamics.

Throughout the chapter, the generator will be considered as a system of the form

x′ = F(t,x), (2.1)

whereF : R×R
m → R

m is a continuous function in all its arguments, and the replicator is

assumed to have the form

y′ = Ay+g(x(t),y), (2.2)

whereg : Rm×R
n → R

n is a continuous function in all its arguments, the constantn×n real

valued matrixA has real parts of eigenvalues all negative and the functionx(t) is a solution of

system (2.1). The generator-replicator couple,(2.1)+ (2.2), will be called in the remaining

parts of the chapter as theresult-system.

Now, to illustrate the replication mechanism discussed in our study, let us consider the fol-

lowing example. For our purposes, as the generator we shall take into account the Duffing’s

oscillator represented by the differential equation

x′′+0.05x′+x3 = 7.5cost. (2.3)

It is known that equation (2.3) possesses a chaotic attractor [218]. Defining the variables

x1 = x andx2 = x′, equation(2.3) can be reduced to the system

x′1 = x2

x′2 =−0.05x2−x3
1+7.5cost.

(2.4)

Next, let us consider the following system

x′3 = x4+x1(t)

x′4 =−3x3−2x4−0.008x3
3+x2(t).

(2.5)

In this form system (2.5) is a replicator. One has to emphasize that the linear part of the

associated with (2.5) non-perturbed system

x′3 = x4

x′4 =−3x3−2x4−0.008x3
3,

(2.6)

has eigenvalues with negative real parts and does not admit chaos.

Figure 2.1 shows the trajectory of system (2.6) withx3(0) = −2 andx4(0) = 1. It is seen in

the figure that the behavior of the solution is non-chaotic.
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Figure 2.1: The trajectory of system (2.6) withx3(0) =−2 andx4(0) = 1.

To visualize the process of replication by the result-system,(2.4)+ (2.5), let us consider the

Poincaré sections of the both. By marking the trajectory of this system with the initial data

x1(0) = 2, x2(0) = 3, x3(0) =−1, x4(0) = 1 stroboscopically at times that are integer multi-

ples of 2π, we obtain the Poincaré section and in Figure 2.2, where the chaos replication is

apparent, we illustrate its 2−dimensional projections. Figure 2.2,(a) represents the projec-

tion of the Poincaré section on thex1− x2 plane, and we note that this projection is in fact

the strange attractor of the generator system(2.4). On the other hand, the projection on the

x3−x4 plane presented in Figure 2.2, (b) is the attractor corresponding to the replicator sys-

tem (2.5). One can see that the attractor indicated in Figure 2.2, (b) repeated the structure of

the attractor shown in Figure 2.2, (a) and this result is a manifestation of the replication of

chaos. One has to think about mathematical aspects of this phenomena and in our study we

handle this problem.
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Figure 2.2: The picture in (a) represents not only the projection of the whole attractor on
thex1− x2 plane but also the strange attractor of the generator. In a similar way, the picture
shown in (b) represents the chaotic attractor of the replicator. The presented chaotic attractors
of the generator and the replicator systems reveal that the chaos replication mechanism works
consummately.
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In our theoretical results, we use coupled systems in which the generator influences the repli-

cator in a unidirectional way. In other words, the generator affects the behavior of the repli-

cator counterpart in such a way that the solutions of the generator are used as an input for the

latter. The possibility of making use of more than one replicator systems with arbitrarily high

dimensions in the extension mechanism is an advantage of our procedure. Moreover, we are

describing a process involving the replication of chaos which does not occur in the course of

time, but instead aninstantaneousone. In other words, the prior chaos is mimicked in all

existing replicators such that the generating mechanism works through arranging connections

between systems not with the lapse of time.

Since we do not restrict ourselves in this chapter with a simple couplethe generator-the

replicator, but get them in different combinations and numbers, having the geometric features

of chaos saved, we shall call the extension of chaos asmorphogenesis.

In our study, we try to use the term morphogenesis issuing from the sense of the wordsmorph

meaning “form” andgenesismeaning “creation” [62]. In other words, similar to the ideas

of René Thom [217], we employ the wordmorphogenesisas its etymology indicates, to de-

noteprocesses creating forms. One should understandmorphogenesis of chaosas a form-

generating mechanism emerging from a dynamical process which is based on replication of

chaos. Here, we accept the form (morph) not only as a type of chaos,but also accompanying

concepts as the structure of the chaotic attractor, its fractal dimension, form of the bifurcation

diagram, the spectra of Lyapunov exponents, inheritance of intermittency,etc.

To understand the concept of our study better, let us consider morphogenesis of fractal struc-

tures [141, 142]. It is important to say that Mandelbrot fractal structures exhibit the appear-

ance of fractal hierarchy lookingin, that is,a part is similar to the whole. Examples for this

are the Julia sets [42, 152] and the Sierpinski carpet [170]. In our morphogenesis both direc-

tions, in andout, are present. Indeed, the fractal structure of the prior chaos has hierarchy

looking in, and the structure for the result-system is obtained considering hierarchy looking

out, that is, whenthe whole is similar to the part.

In our results, we do not consider the chaos synchronization problem, but we say that the

type of the chaos is keptinvariant in the procedure. That is why the classes which can be

considered with respect to thisinvariance is expectedly wider then those investigated for

synchronization of chaos. Since we do not request strong relation andaccordance between

the solutions of the generator and the replicator in the asymptotic point of view,the terms

masterandslaveas well asdrive andresponseare not preferred to be used for the analyzed

systems. On the other hand, contrary to the method that we present, in the synchronization of

chaotic systems, one does not consider the type of the chaos that the masterand slave systems

admit. The problem that whether the synchronization of systems implies the same type of

chaos for both master and slave has not been taken into account yet.

The phenomenon of the form recognition for chaotic processes has already begun in pioneer-

ing papers [48, 85, 87, 130, 131, 137, 207]. All these results say about chaos recognition, by
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reducing complex behavior to the structure with recognizable chaos. In [7, 9, 10, 11, 12, 13,

16, 17], we provide a different and constructive way when a recognized chaos can be extended

saving the form of chaos to a multidimensional system. In the present study, we generalize

the idea to the morphogenesis of chaos.

Nowadays, one can consider the development of a multidimensional chaos from a low dimen-

sional one in different ways. One of them is the chaotic itinerancy [102, 107, 108, 109, 110,

190, 220, 221]. The itinerant motion among varieties of ordered states through high dimen-

sional chaotic motion can be observed and this behavior is named as chaotic itinerancy. In

other words, chaotic itinerancy is a universal dynamics in high dimensionaldynamical sys-

tems, showing itinerant motion among varieties of low-dimensional ordered statesthrough

high dimensional chaos. This phenomenon occurs in different real world processes: optical

turbulence [102], globally coupled chaotic systems [107, 108], non-equilibrium neural net-

works [220, 221], analysis of brain activities [78] and ecological systems [119]. One can see

that in its degenerated form chaotic itinerancy relates to intermittency [154, 175], since they

both represent dynamical interchange of irregularity and regularity.

Likewise the itinerant chaos observed in brain activities, we have low dimensional chaos in

the subsystems considered and high dimensional chaos is obtained when one considers all

subsystems as a whole. The main difference compared to our technique is in the elapsed time

for the occurrence of the process. In our discussions, no itinerant motion is observable and

all resultant chaotic subsystems process simultaneously, whereas the low dimensional chaotic

motions take place as time elapses in the case of chaotic itinerancy. Knowledge of the type of

chaos is another difference between chaotic itinerancy and our procedure. Possibly the present

way of replication of chaos will give a light to the solutions of problems aboutextension of

irregular behavior (crises, collapses, etc.) in interrelated or multiple connected systems which

can arise in problems of classical mechanics [154], electrical systems [51, 116], economic

theory [138] and brain activity investigations [78].

In systems whose dimension is at least four, it is possible to observe chaoticattractors with at

least two positive Lyapunov exponents and such systems are called hyperchaotic [211]. An

example of a four dimensional hyperchaotic system is discovered by Rössler [181]. Combin-

ing two or more chaotic, not necessarily identical, systems is a way of achieving hyperchaos

[112, 115, 116]. However, in the present chapter, we take into account exactly one chaotic

system with a known type of chaos, and use this system as the generator to reproduce the

same type of chaos in other systems. On the other hand, the crucial phenomenon in the hyper-

chaotic systems is the existence of two or more positive Lyapunov exponentsand the type of

chaos is not taken into account. In our way of morphogenesis, the criticalsituation is rather

the replication of a known type of chaos.

The paper [223] was one of the first studies that consider mathematically theself-replicating

forms using a set of reaction-diffusion equations [193]. Taking inspiration from the ideas of

Turing, Smale [208] considers the problem of whether oscillations can be generated through

coupling of identical systems which tend to an equilibrium. A similar question is also rea-
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sonable for the achievement of chaos in such systems and it is found out that, without using a

chaotic input, it is possible to obtain coupled systems which exhibit chaotic behavior. The ex-

istence of strange attractors in a family of vector fields consisting of two Brusselators linearly

coupled by diffusion is proved analytically in the paper [71] and numericalexamples of such a

chaotic behavior are provided in [72]. Such couplings display severalcases of Hopf-pitchfork

singularities of codimensions 2, 3 and 4. In all these cases, the corresponding bifurcation di-

agrams provide regions of parameters such that the system exhibits synchronization, regions

where synchronization depends on the initial state and regions where orbits show infinitely

many transients of synchronization [73]. Another example of a linearly coupled system which

exhibit chaotic behavior can be found in [241]. According to the results of paper [241], a suf-

ficiently large coupling coefficient used in a network of linearly coupled identical systems,

where each node is located in a non-chaotic region, leads to existence of apositive transversal

Lyapunov exponent and makes the system behave chaotically. The Lorenz systems with stable

equilibriums can be used in the construction of such a network of linearly coupled systems.

Distinctively, in our study, we make use of coupled systems such that exactlyone of them

is chaotic with a known type of chaos and prove theoretically that the same typeof chaos is

extended. Moreover, in the presented mechanism, we are not restricted touse linear couplings

as well as identical systems.

In the next section we will present assumptions for systems (2.1) and (2.2)which are needed

for the chaos replication, and introduce the chaotic attractors of these systems in the functional

sense.

2.2 Preliminaries

In the chapter,R andN denote the sets of real numbers and natural numbers, respectively, and

the uniform norm‖Γ‖= sup
‖v‖=1

‖Γv‖ for matrices is used.

Since the matrixA, which is aforementioned in system (2.2), is supposed to admit eigenvalues

all with negative real parts, it is easy to verify the existence of positive numbersN andω such

that
∥∥eAt

∥∥≤ Ne−ωt , t ≥ 0. These numbers will be used in the last condition below.

The following assumptions on systems (2.1) and (2.2) are needed throughout the chapter:

(A1) There exists a positive numberT such that the functionF(t,x) satisfies the periodicity

condition

F(t +T,x) = F(t,x),

for all t ∈ R, x∈ R
m;

(A2) There exists a positive numberL0 such that

‖F(t,x1)−F(t,x2)‖ ≤ L0‖x1−x2‖ ,

for all t ∈ R,x1,x2 ∈ R
m;

16



(A3) There exists a positive numberH0 < ∞ such that

sup
t∈R,x∈Rm

‖F(t,x)‖ ≤ H0;

(A4) There exists a positive numberL1 such that

‖g(x1,y)−g(x2,y)‖ ≥ L1‖x1−x2‖ ,

for all x1,x2 ∈ R
m, y∈ R

n;

(A5) There exist positive numbersL2 andL3 such that

‖g(x1,y)−g(x2,y)‖ ≤ L2‖x1−x2‖ ,

for all x1,x2 ∈ R
m, y∈ R

n, and

‖g(x,y1)−g(x,y2)‖ ≤ L3‖y1−y2‖ ,

for all x∈ R
m, y1,y2 ∈ R

n;

(A6) There exists a positive numberM0 such that

sup
x∈Rm,y∈Rn

‖g(x,y)‖ ≤ M0;

(A7) NL3−ω < 0.

Remark 2.2.1 The results presented in the remaining parts are also true even if we replace

the non-autonomous system(2.1) by the autonomous equation

x′ = F(x), (2.7)

where the functionF :Rm→R
m is continuous with conditions which are counterparts of(A2)

and(A3).

At the present time, systems of differential equations which are known to exhibit chaotic

behavior are either nonautonomous and periodic in time such as the Duffing and Van der Pol

oscillators or autonomous such as the Lorenz, Chua and R ¨ossler systems. In a similar way, in

our investigations of chaos generation, we take advantage of periodic nonautonomous systems

as well as autonomous ones as generators.

Using the theory of quasilinear equations [93], one can verify that for agiven solutionx(t)

of system (2.1), there exists a unique bounded onR solutiony(t) of the systemy′ = Ay+

g(x(t),y), denoted byy(t) = φx(t)(t), which satisfies the integral equation

y(t) =
∫ t

−∞
eA(t−s)g(x(s),y(s))ds. (2.8)
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Our main assumption is the existence of a nonempty setAx of all solutions of system (2.1),

uniformly bounded onR. That is, there exists a positive numberH such that sup
t∈R

‖x(t)‖ ≤ H,

for all x(t) ∈ Ax.

Let us introduce the sets of functions

Ay =
{

φx(t)(t) | x(t) ∈ Ax
}
, (2.9)

and

A =
{
(x(t),φx(t)(t)) | x(t) ∈ Ax

}
. (2.10)

We note that for ally(t) ∈ Ay one has sup
t∈R

‖y(t)‖ ≤ M, whereM =
NM0

ω
.

Next, we reveal that if the setAx is an attractor with basinUx, that is, for eachx(t)∈Ux there

existsx(t) ∈ Ax such that‖x(t)−x(t)‖ → 0 ast → ∞, then the setAy is also an attractor in

the same sense. Denote byUy the set consisting of all solutions of systemy′ = Ay+g(x(t),y),

wherex(t) ∈ Ux. In the next lemma we specify the basin of attraction ofAy.

Lemma 2.2.1 Uy is a basin ofAy.

Proof. Fix an arbitrary positive numberε and lety(t) ∈ Uy be a given solution of the sys-

tem y′ = Ay+ g(x(t),y) for somex(t) ∈ Ux. In this case, there existsx(t) ∈ Ax such that

‖x(t)−x(t)‖ → 0 ast → ∞. Let α = ω−NL3
ω−NL3+NL2

andy(t) = φx(t)(t). Condition(A7) implies

that the numberα is positive. Under the circumstances, one can findR0 = R0(ε) > 0 such

that if t ≥ R0, then‖x(t)−x(t)‖ < αε andN‖y(R0)−y(R0)‖e(NL3−ω)t < αε . The functions

y(t) andy(t) satisfy the relations

y(t) = eA(t−R0)y(R0)+
∫ t

R0

eA(t−s)g(x(s),y(s))ds,

and

y(t) = eA(t−R0)y(R0)+
∫ t

R0

eA(t−s)g(x(s),y(s))ds,

respectively. Making use of these relations, one can verify that

y(t)−y(t) = eA(t−R0)(y(R0)−y(R0))

+
∫ t

R0

eA(t−s) [g(x(s),y(s))−g(x(s),y(s))]ds

+
∫ t

R0

eA(t−s) [g(x(s),y(s))−g(x(s),y(s))]ds.

Therefore, we have

‖y(t)−y(t)‖ ≤ Ne−ω(t−R0) ‖y(R0)−y(R0)‖+
NL2αε

ω
e−ωt (eωt −eωR0

)

+NL3

∫ t

R0

e−ω(t−s) ‖y(s)−y(s)‖ds.
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Let u : [R0,∞) → [0,∞) be a function defined asu(t) = eωt ‖y(t)−y(t)‖ . By means of this

definition, we reach the inequality

u(t)≤ NeωR0 ‖y(R0)−y(R0)‖+
NL2αε

ω
(
eωt −eωR0

)
+NL3

∫ t

R0

u(s)ds.

Now, letψ(t) =
NL2αε

ω
eωt andφ(t) = ψ(t)+c, where

c= NeωR0 ‖y(R0)−y(R0)‖−
NL2αε

ω
eωR0.

Using these functions we get

u(t)≤ φ(t)+NL3

∫ t

R0

u(s)ds.

Applying Gronwall’s Lemma [55] to the last inequality fort ≥ R0, we attain the inequality

u(t)≤ c+ψ(t)+NL3

∫ t

R0

eNL3(t−s)cds+NL3

∫ t

R0

eNL3(t−s)ψ(s)ds

and hence,

u(t)≤ c+ψ(t)+c
(

eNL3(t−R0)−1
)

+
N2L2L3αε

ω(ω −NL3)
eωt
(

1−e(NL3−ω)(t−R0)
)

=
NL2αε

ω
eωt +N‖y(R0)−y(R0)‖eωR0eNL3(t−R0)

−NL2αε
ω

eωR0eNL3(t−R0)+
N2L2L3αε

ω(ω −NL3)
eωt
(

1−e(NL3−ω)(t−R0)
)
.

Thus,

‖y(t)−y(t)‖ ≤ NL2αε
ω

+N‖y(R0)−y(R0)‖e(NL3−ω)(t−R0)

−NL2αε
ω

e(NL3−ω)(t−R0)+
N2L2L3αε

ω(ω −NL3)

(
1−e(NL3−ω)(t−R0)

)

< N‖y(R0)−y(R0)‖e(NL3−ω)(t−R0)+
NL2αε

ω −NL3
.

Consequently, fort ≥ 2R0, we have that

‖y(t)−y(t)‖<
(

1+
NL2

ω −NL3

)
αε = ε ,

and hence‖y(t)−y(t)‖→ 0 ast → ∞.

The proof of the lemma is completed.�

Now, let us define the setU consisting the solutions(x(t),y(t)) of system (2.1)+(2.2), where

x(t) ∈ Ux. Next, we state the following corollary of Lemma 2.2.1.
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Corollary 2.2.1 U is a basin ofA .

Proof. Let (x(t),y(t)) ∈ U be a given solution of system(2.1)+(2.2). According to Lemma

2.2.1, one can find(x(t),y(t))∈A such that‖x(t)−x(t)‖→ 0 ast →∞ and‖y(t)−y(t)‖→ 0

ast → ∞. Consequently,‖(x(t),y(t))− (x(t),y(t))‖→ 0 ast → ∞. The proof is finalized.�

2.3 Description of Chaotic Sets of Functions

In this section, the descriptions for the chaotic sets of continuous functionswill be introduced

and the definitions of the chaotic features will be presented, both in the Devaney’s sense and

in the sense of Li-Yorke.

Let us denote by

B = {ψ(t) | ψ : R→ K is continuous} (2.11)

a collection of functions, whereK ⊂ R
q, q∈ N, is a bounded region.

We start with the description of chaotic sets of functions in Devaney’s sense and then continue

with the Li-Yorke counterpart.

2.3.1 Chaotic set of functions in Devaney’s sense

In this part, we shall elucidate the ingredients of the chaos in Devaney’s sense for the setB,

which is introduced by(2.11), and the first definition is about the sensitivity of chaotic sets

of functions.

Definition 2.3.1 B is called sensitive if there exist positive numbersε and ∆ such that for

everyψ(t) ∈ B and for arbitrary δ > 0 there existψ(t) ∈ B, t0 ∈ R and an interval J⊂
[t0,∞), with length not less than∆, such that‖ψ(t0)−ψ(t0)‖< δ and‖ψ(t)−ψ(t)‖> ε , for

all t ∈ J.

Definition 2.3.1 considers the inequality(> ε) over the intervalJ. In the Devaney’s chaos

definition for the map, the inequality is assumed for discrete moments. Let us reveal how one

can extend the inequality from a discrete point to an interval by consideringcontinuous flows.

In [64], it is indicated that a continuous mapϕ : Λ → Λ, with an invariant domainΛ ⊂
R

k,k ∈ N, has sensitive dependence on initial conditions if there existsε > 0 such that for

anyx∈ Λ and any neighborhoodU of x, there existy∈ U and a natural numbern such that

‖ϕn(x)−ϕn(y)‖> ε .

Suppose that the setAx satisfies the definition of sensitivity in the following sense. There

existsε > 0 such that for everyx(t) ∈ Ax and arbitraryδ > 0, there existx(t) ∈ Ax, t0 ∈ R

and a real numberζ ≥ t0 such that‖x(t0)−x(t0)‖< δ and‖x(ζ )−x(ζ )‖> ε .
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In this case, for givenx(t) ∈ Ax and δ > 0, one can findx(t) ∈ Ax and ζ ≥ t0 such that

‖x(t0)−x(t0)‖ < δ and‖x(ζ )−x(ζ )‖ > ε . Let ∆ = ε
8HL0

and take a number∆1 such that

∆ ≤ ∆1 ≤ ε
4HL0

. Using appropriate integral equations fort ∈ [ζ ,ζ +∆1], it can be verified that

‖x(t)−x(t)‖ ≥ ‖x(ζ )−x(ζ )‖−
∥∥∥∥
∫ t

ζ
[F(s,x(s))−F(s,x(s))]ds

∥∥∥∥
> ε −2HL0∆1

≥ ε
2
.

The last inequality confirms thatAx satisfies Definition 2.3.1 with ε = ε/2 andJ= [ζ ,ζ +∆1].

So the definition is a natural one. It provides more information then discrete moments and for

us it is important that the extension on the interval is useful to prove the property for chaos

extension.

In the next two definitions, we continue with the existence of a dense functionin the set of

chaotic functions followed by the transitivity property.

Definition 2.3.2 B possesses a dense functionψ∗(t) ∈ B if for every functionψ(t) ∈ B,

arbitrary smallε > 0 and arbitrary large E> 0, there exist a numberξ > 0 and an interval

J ⊂ R, with length E, such that‖ψ(t)−ψ∗(t +ξ )‖< ε , for all t ∈ J.

Definition 2.3.3 B is called transitive if it possesses a dense function.

Now, let us recall the definition of transitivity for maps [64]. A continuous map ϕ with

an invariant domainΛ ⊂ R
k,k ∈ N, possesses a dense orbit if there existsc∗ ∈ Λ such that

for eachc ∈ Λ and arbitrary numberε > 0, there exist natural numbersk0 and l0 such that∥∥ϕ l0(c)−ϕ l0+k0(c∗)
∥∥< ε , and maps which have dense orbits are called transitive.

Suppose thatAx satisfies the transitivity property in the following sense. There exists a func-

tion x∗(t) ∈ Ax such that for eachx(t) ∈ Ax and arbitrary positive numberε , there exist a real

numberζ0 and a natural numberm0 such that‖x(ζ0)−x∗(ζ0+m0T)‖< ε .

Fix an arbitrary functionx(t) ∈Ax, arbitrary smallε > 0 and arbitrary largeE > 0. Under the

circumstances, one can findζ0 ∈ R andm0 ∈ N such that‖x(ζ0)−x∗(ζ0+m0T)‖< εe−L0E.

Using the condition(A2) together with the convenient integral equations thatx(t) andx∗(t)

satisfy, it is easy to obtain fort ∈ [ζ0,ζ0+E] that

‖x(t)−x∗(t +m0T)‖ ≤ ‖x(ζ0)−x∗(ζ0+m0T)‖+
∫ t

ζ0

L0‖x(s)−x∗(s+m0T)‖ds,

and by the help of the Gronwall-Bellman inequality [56], we get

‖x(t)−x∗(t +m0T)‖ ≤ ‖x(ζ0)−x∗(ζ0+m0T)‖eL0(t−ζ0) < ε .
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The last inequality shows that the setAx satisfies Definition 2.3.2 withξ = k0T and is transi-

tive in accordance with Definition 2.3.3.

The following definition describes the density of periodic functions insideB.

Definition 2.3.4 B admits a dense collectionG ⊂ B of periodic functions if for every func-

tion ψ(t) ∈ B, arbitrary smallε > 0 and arbitrary large E> 0, there existψ̃(t) ∈ G and an

interval J⊂ R, with length E, such that‖ψ(t)− ψ̃(t)‖< ε , for all t ∈ J.

Let us remind the definition of density of periodic orbits for maps [64]. The set of periodic

orbits of a continuous mapϕ with an invariant domainΛ ⊂ R
k,k∈ N, is called dense inΛ if

for eachc∈ Λ, arbitrary positive numberε , there exist a natural numberl0 and a point̃c∈ Λ
such that the sequence

{
ϕ i(c̃)

}
is periodic and

∥∥ϕ l0(c)−ϕ l0(c̃)
∥∥< ε .

Let us denote byGx the set of all periodic functions insideAx. Suppose thatAx satisfies den-

sity of periodic solutions as follows. For an arbitrary functionx(t) ∈ Ax and arbitrary small

ε > 0 there exist a periodic functioñx(t)∈Gx and a numberζ0∈R such that‖x(ζ0)− x̃(ζ0)‖<
ε .

Let us fix an arbitrary functionx(t) ∈ Ax, arbitrary smallε > 0 and arbitrary largeE > 0.

In that case, there exist a periodic functionx̃(t) ∈ Gx andζ0 ∈ R such that‖x(ζ0)− x̃(ζ0)‖<
εe−L0E.

It can be easily verified fort ∈ [ζ0,ζ0+E] that the inequality

‖x(t)− x̃(t)‖ ≤ ‖x(ζ0)− x̃(ζ0)‖+
∫ t

ζ0

L0‖x(s)− x̃(s)‖ds,

holds, and therefore for eacht from the same interval of time we have

‖x(t)− x̃(t)‖ ≤ ‖x(ζ0)− x̃(ζ0)‖eL0(t−ζ0) < ε .

Consequently, the setAx satisfies Definition 2.3.4 withJ = [ζ0,ζ0+E].

Finally, we introduce in the next definition the chaotic set of functions in Devaney’s sense.

Definition 2.3.5 The collectionB of functions is called a Devaney’s chaotic set if

(D1) B is sensitive;

(D2) B is transitive;

(D3) B admits a dense collection of periodic functions.

In the next subsection, the chaotic properties of the setB will be imposed in the sense of

Li-Yorke.
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2.3.2 Chaotic set of functions in Li-Yorke sense

The ingredients of Li-Yorke chaos for the collection of functionsB, which is defined by

(2.11), will be described in this part. Making use of discussions similar to the ones made

in the previous subsection, we extend, below, the definitions for the ingredients of Li-Yorke

chaos from maps [20, 120, 134, 224] to continuous flows and we just omitthese indications

here.

Definition 2.3.6 A couple of functions(ψ(t),ψ(t)) ∈ B×B is called proximal if for arbi-

trary smallε > 0 and arbitrary large E> 0, there exist infinitely many disjoint intervals with

length no less than E such that‖ψ(t)−ψ(t)‖< ε , for each t from these intervals.

Definition 2.3.7 A couple of functions(ψ(t),ψ(t)) ∈ B×B is frequently(ε0,∆)-separated

if there exist positive numbersε0, ∆ and infinitely many disjoint intervals of length no less

than∆, such that‖ψ(t)−ψ(t)‖> ε0, for each t from these intervals.

Remark 2.3.1 The numbersε0 and ∆ taken into account in Definition2.3.7 depend on the

functionsψ(t) andψ(t).

Definition 2.3.8 A couple of functions(ψ(t),ψ(t)) ∈ B×B is a Li−Yorke pair if it is prox-

imal and frequently(ε0,∆)-separated for some positive numbersε0 and∆.

Definition 2.3.9 An uncountable setC ⊂ B is called a scrambled set ifC does not contain

any periodic functions and each couple of different functions insideC ×C is a Li−Yorke pair.

Definition 2.3.10 B is called a Li−Yorke chaotic set if

(LY1) There exists a positive number T0 such thatB admits a periodic function of period

kT0, for any k∈ N;

(LY2) B possesses a scrambled setC ;

(LY3) For any functionψ(t)∈C and any periodic functionψ(t)∈B, the couple(ψ(t),ψ(t))

is frequently(ε0,∆)−separated for some positive numbersε0 and∆.

2.4 Hyperbolic Set of Functions

The definitions of stable and unstable sets of hyperbolic periodic orbits of autonomous sys-

tems are given in [166], and information about such sets of solutions of perturbed non-

autonomous systems can be found in [129]. Moreover, homoclinic structures in almost peri-

odic systems were studied in [151, 167, 192]. In this section, we give a definition for hyper-

bolic collection of uniformly bounded functions and before this, we start withthe descriptions

of stable and unstable sets of a function.
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We define the stable set of a functionψ(t) ∈ B, where the collectionB is defined by(2.11),

as the set of functions

Ws(ψ(t)) = {u(t) ∈ B | ‖u(t)−ψ(t)‖→ 0 ast → ∞} , (2.12)

and, similarly, we define the unstable set of a functionψ(t) ∈ B as the set of functions

Wu(ψ(t)) = {v(t) ∈ B | ‖v(t)−ψ(t)‖→ 0 ast →−∞} . (2.13)

Definition 2.4.1 The set of functionsB is called hyperbolic if both the stable and unstable

sets of each functionψ(t) ∈ B possess at least one element different fromψ(t).

Theorem 2.4.1 If Ax is hyperbolic, then the same is true forAy.

Proof. Fix an arbitrary positive numberε and a functiony(t) = φx(t)(t) ∈ Ay. Let α =
ω−NL3

ω−NL3+NL2
and β = ω−NL3

1+NL2
. By condition (A7), one can verify that the numbersα and β

are both positive.

Due to the hyperbolicity ofAx, both the stable setWs(x(t)) and the unstable setWu(x(t)) of

x(t) contain at least one element different fromx(t).

Let us take an arbitrary functionu(t)∈Ws(x(t)) such thatu(t) 6= x(t). Since‖x(t)−u(t)‖→ 0

as t → ∞ andNL3 −ω < 0, there exists a positive numberR1, which depends onε , such

that ‖x(t)−u(t)‖ < αε ande(NL3−ω)t < ωαε
2M0N for t ≥ R1. Let y(t) = φu(t)(t). We note that

y(t) 6= y(t). Otherwise, ify(t) = y(t), then the equalityg(x(t),y(t)) = g(u(t),y(t)) holds, and

this implies thatx(t) = u(t) by condition(A4), which is a contradiction. We shall prove that

the functiony(t) belongs to the stable set ofy(t).

The bounded onR functionsy(t) andy(t) satisfy the relations

y(t) =
∫ t

−∞
eA(t−s)g(x(s),y(s))ds,

and

y(t) =
∫ t

−∞
eA(t−s)g(u(s),y(s))ds,

respectively, fort ≥ R1.

Therefore, one can easily reach up the equation

y(t)−y(t) =
∫ R1

−∞
eA(t−s)[g(x(s),y(s))−g(u(s),y(s))]ds

+
∫ t

R1

eA(t−s) {[g(x(s),y(s))−g(x(s),y(s))]+ [g(x(s),y(s))−g(u(s),y(s))]}ds,
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which implies that

‖y(t)−y(t)‖ ≤
∫ R1

−∞
2M0Ne−ω(t−s)ds

+
∫ t

R1

e−ω(t−s) (NL3‖y(s)−y(s)‖+NL2‖x(s)−u(s)‖)ds

≤ 2M0N
ω

e−ω(t−R1)+
∫ t

R1

e−ω(t−s) (NL3‖y(s)−y(s)‖+NL2αε)ds.

Using the Gronwall type inequality indicated in [242], we obtain that

‖y(t)−y(t)‖ ≤ 2M0N
ω

e(NL3−ω)(t−R1)+
NL2αε

ω −NL3
[1−e(NL3−ω)(t−R1)], t ≥ R1.

For this reason, for allt ≥ 2R1, one has

‖y(t)−y(t)‖ ≤ 2M0N
ω

e(NL3−ω)R1 +
NL2αε

ω −NL3
<

(
1+

NL2

ω −NL3

)
αε = ε .

According to the last inequality, we have that‖y(t)−y(t)‖→ 0 ast → ∞. Hence, the function

y(t) belongs to the stable setWs(y(t)) of y(t).

On the other hand, letv(t) be a function inside the unstable setWu(x(t)) such thatv(t) 6= x(t).

Since‖x(t)−v(t)‖ tends to 0 ast → −∞, there exists a negative numberR2(ε) such that

‖x(t)−v(t)‖< βε for t ≤ R2. Let ỹ(t) = φv(t)(t). It is worth noting that̃y(t) 6= y(t). Now, our

purpose is to show that̃y(t) belongs to the unstable setWu(y(t)) of y(t).

By the help of the integral equations

y(t) =
∫ t

−∞
eA(t−s)g(x(s),y(s))ds,

and

ỹ(t) =
∫ t

−∞
eA(t−s)g(v(s), ỹ(s))ds,

we obtain that

y(t)− ỹ(t) =
∫ t

−∞
eA(t−s)[g(x(s),y(s))−g(v(s),y(s))]ds

+
∫ t

−∞
eA(t−s)[g(v(s),y(s))−g(v(s), ỹ(s))]ds.

Therefore, fort ≤ R2, one has

‖y(t)− ỹ(t)‖ ≤
∫ t

−∞
NL2e−ω(t−s) ‖x(t)−v(t)‖ds

+
∫ t

−∞
e−ω(t−s)NL3‖y(s)− ỹ(s)‖ds

≤ NL2βε
ω

+
NL3

ω
sup
t≤R2

‖y(t)− ỹ(t)‖ .

25



Hence, we attain that sup
t≤R2

‖y(t)− ỹ(t)‖ ≤ NL2βε
ω

+
NL3

ω
sup
t≤R2

‖y(t)− ỹ(t)‖ . Accordingly, one

can verify that

sup
t≤R2

‖y(t)− ỹ(t)‖ ≤ NL2βε
ω −NL3

< ε .

The last inequality confirms that‖y(t)− ỹ(t)‖→ 0 ast →−∞. Thereforẽy(t) ∈Wu(y(t)).

Consequently, the setAy is hyperbolic since an arbitrary functiony(t) ∈ Ay has stable and

unstable sets which possess at least one element different fromy(t).

The theorem is proved.�

Theorem 2.4.1 implies the following corollary.

Corollary 2.4.1 If Ax is hyperbolic, then the same is true forA .

Next, we continue with another corollary of Theorem(2.4.1), following the definitions of

homoclinic and heteroclinic functions.

A function ψ1(t) ∈ B is said to be homoclinic to the functionψ0(t) ∈ B, ψ0(t) 6= ψ1(t), if

ψ1(t) ∈Ws(ψ0(t))∩Wu(ψ0(t)) .

On the other hand, a functionψ2(t) ∈ B is called heteroclinic to the functionsψ0(t),ψ1(t) ∈
B, ψ0(t) 6= ψ2(t), ψ1(t) 6= ψ2(t), if ψ2(t) ∈Ws(ψ0(t))∩Wu(ψ1(t)) .

Corollary 2.4.2 If x1(t) ∈ Ax is homoclinic to the function x0(t) ∈ Ax, x0(t) 6= x(t), then

φx1(t)(t) ∈ Ay is homoclinic to the functionφx0(t)(t) ∈ Ay.

Similarly, if x2(t) ∈Ax is heteroclinic to the functions x0(t),x1(t) ∈Ax, x0(t) 6= x2(t), x1(t) 6=
x2(t), thenφx2(t)(t) is heteroclinic to the functionsφx0(t)(t), φx1(t)(t) ∈ Ay.

In the next section, we theoretically prove that the setAy replicates the ingredients of De-

vaney’s chaos provided to the setAx, and as a consequence the same is valid also for the set

A . The same problem for the chaos in the sense of Li-Yorke will be handled in Section 2.6.

2.5 Replication of Devaney’s Chaos

In this part, we will prove theoretically that the ingredients of Devaney’s chaos furnished to

the setAx are all replicated by the setAy.

Suppose that the functiong(x,y) which is used in the right hand side of system (2.2) has
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component functionsg j(x,y), j = 1,2, . . . ,n. That is,

g(x,y) =




g1(x,y)

g2(x,y)
...

gn(x,y)



,

where eachg j(x,y), j = 1,2, . . . ,n, is a real valued function.

We start with the following assertion, which will be needed in the proof of Lemma2.5.2.

Lemma 2.5.1 The set of functions

F =
{

g j(x(t),φx(t)(t))−g j(x(t),φx(t)(t)) | 1≤ j ≤ n, x(t) ∈ Ax, x(t) ∈ Ax
}

is an equicontinuous family onR.

Proof. Let us define a functionh : Rm×R
m×R

n → R
n by the formula

h(x1,x2,x3) = g(x1,x3)−g(x2,x3).

Being continuous on the compact region

D = {(x1,x2,x3) ∈ R
m×R

m×R
n | ‖x1‖ ≤ H,‖x2‖ ≤ H,‖x3‖ ≤ M} ,

the functionh(x1,x2,x3) is uniformly continuous onD .

Fix an arbitraryε > 0. Our aim is to determine a positive numberδ = δ (ε) such that for all

t1, t2 ∈ R with |t1− t2|< δ the inequality

∥∥h(x(t1),x(t1),φx(t)(t1))−h(x(t2),x(t2),φx(t)(t2))
∥∥< ε

holds for allx(t),x(t) ∈ Ax.

By uniform continuity of the functionh(x1,x2,x3) onD , one can find a numberδ1 = δ1(ε)> 0

such that for all
(
x0

1,x
0
2,x

0
3

)
,
(
x1

1,x
1
2,x

1
3

)
∈R

m×R
m×R

n with
∥∥(x0

1,x
0
2,x

0
3

)
−
(
x1

1,x
1
2,x

1
3

)∥∥< δ1,

the inequality ∥∥h
(
x0

1,x
0
2,x

0
3

)
−h
(
x1

1,x
1
2,x

1
3

)∥∥< ε

holds.

Since‖x′(t)‖≤H0 for eachx(t)∈Ax, the setAx is an equicontinuous family onR. Therefore,

there exists a numberδ2 = δ2(δ1) > 0 such that for allt1, t2 ∈ R satisfying|t1− t2| < δ2 we

have‖x(t1)−x(t2)‖< δ1/3 for all x(t) ∈ Ax.

Similarly, the setAy is also an equicontinuous family onR, since‖y′(t)‖ ≤ ‖A‖M+M0 for

eachy(t) ∈ Ay. Thus, one can find a numberδ3 = δ3(δ1)> 0 such that for allt1, t2 ∈ R with

|t1− t2|< δ3, the inequality‖y(t1)−y(t2)‖< δ1/3 is valid for ally(t) ∈ Ay.
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In this case, for allt1, t2 ∈ R with |t1− t2|< min{δ2,δ3}, one has

∥∥(x(t1),x(t1),φx(t)(t1)
)
−
(
x(t2),x(t2),φx(t)(t2)

)∥∥

≤ ‖x(t1)−x(t2)‖+‖x(t1)−x(t2)‖+
∥∥φx(t)(t1)−φx(t)(t2)

∥∥

< δ1,

for all x(t),x(t) ∈ Ax.

Hence, takingδ (ε) = min{δ2,δ3}, one can see that for allt1, t2 ∈ R with |t1− t2| < δ , the

inequality
∥∥∥
(
g j(x(t1),φx(t)(t1))−g j(x(t1),φx(t)(t1))

)

−
(
g j(x(t2),φx(t)(t2))−g j(x(t2),φx(t)(t2))

)∥∥∥

≤
∥∥h
(
x(t1),x(t1),φx(t)(t1)

)
−h
(
x(t2),x(t2),φx(t)(t2)

)∥∥

< ε

holds for all 1≤ j ≤ n andx(t),x(t) ∈ Ax. Consequently, the familyF is equicontinuous on

R.

The lemma is proved.�

We continue with replication of sensitivity in the next lemma.

Lemma 2.5.2 Sensitivity of the setAx implies the same feature for the setAy.

Proof. Fix an arbitraryδ > 0 and lety(t) ∈ Ay be a given solution of system (2.2). In this

case, there existsx(t) ∈ Ax such thaty(t) = φx(t)(t).

Let us choose a numberε = ε(δ )> 0 small enough which satisfies the inequality
(

1+
NL2

ω −NL3

)
ε < δ .

Then takeR= R(ε)< 0 sufficiently large in absolute value such that

2M0N
ω

e(ω−NL3)R < ε,

and letδ1 = δ1(ε,R) = εeL0R. Since the set of functionsAx is sensitive, there exist positive

numbersε0 and∆ such that the inequalities‖x(t0)−x(t0)‖< δ1 and‖x(t)−x(t)‖> ε0, t ∈ J,

hold for some solutionx(t) ∈ Ax, a numbert0 ∈ R and an intervalJ ⊂ [t0,∞) whose length is

not less than∆.

Using the couple of integral equations

x(t) = x(t0)+
∫ t

t0
F(s,x(s))ds,
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x(t) = x(t0)+
∫ t

t0
F(s,x(s))ds

together with condition(A2), one can see that the inequality

‖x(t)−x(t)‖ ≤ ‖x(t0)−x(t0)‖+
∣∣∣∣
∫ t

t0
L0‖x(s)−x(s)‖ds

∣∣∣∣

holds fort ∈ [t0+R, t0]. Applying the Gronwall-Bellman inequality [56], we obtain that

‖x(t)−x(t)‖ ≤ ‖x(t0)−x(t0)‖eL0|t−t0|

and therefore‖x(t)−x(t)‖< ε for t ∈ [t0+R, t0].

Let us denotey(t) = φx(t)(t). First, we will show that‖y(t0)−y(t0)‖< δ .

The functionsy(t) andy(t) satisfy the relations

y(t) =
∫ t

−∞
eA(t−s)g(x(s),y(s))ds

and

y(t) =
∫ t

−∞
eA(t−s)g(x(s),y(s))ds,

respectively. Therefore,

y(t)−y(t) =
∫ t

−∞
eA(t−s)[g(x(s),y(s))−g(x(s),y(s))]ds

and hence we obtain that

‖y(t)−y(t)‖ ≤
∫ t

t0+R
Ne−ω(t−s) ‖g(x(s),y(s))−g(x(s),y(s))‖ds

+
∫ t

t0+R
Ne−ω(t−s) ‖g(x(s),y(s))−g(x(s),y(s))‖ds

+
∫ t0+R

−∞
Ne−ω(t−s) ‖g(x(s),y(s))−g(x(s),y(s))‖ds.

Since‖x(t)−x(t)‖< ε for t ∈ [t0+R, t0], one has

‖y(t)−y(t)‖ ≤ NL3

∫ t

t0+R
e−ω(t−s) ‖y(s)−y(s)‖ds

+
NL2ε

ω
e−ωt(eωt −eω(t0+R))+

2M0N
ω

e−ω(t−t0−R).

Now, let us introduce the functionsu(t) = eωt ‖y(t)−y(t)‖ , k(t) =
NL2ε

ω
eωt andh(t) = c+

k(t), wherec=

(
2M0N

ω
− NL2ε

ω

)
eω(t0+R).

These definitions give us the inequality

u(t)≤ h(t)+
∫ t

t0+R
NL3u(s)ds.
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Applying Lemma 2.2 [34] to the last inequality, we achieve that

u(t)≤ h(t)+NL3

∫ t

t0+R
eNL3(t−s)h(s)ds.

Therefore, on the time interval[t0+R, t0], the inequality

u(t)≤ c+k(t)+c
(

eNL3(t−t0−R)−1
)

+
N2L2L3ε

ω
eNL3t

∫ t

t0+R
e(ω−NL3)sds

=
NL2ε

ω
eωt +

(
2M0N

ω
− NL2ε

ω

)
eωReNL3(t−t0−R)

+
N2L2L3ε

ω(ω −NL3)
eωt
[
1−e(NL3−ω)(t−t0−R)

]

holds.

The last inequality leads to

‖y(t)−y(t)‖ ≤ NL2ε
ω −NL3

+
2M0N

ω
e(NL3−ω)(t−t0−R),

and consequently, we obtain that

‖y(t0)−y(t0)‖ ≤
NL2ε

ω −NL3
+

2M0N
ω

e(ω−NL3)R

<

(
1+

NL2

ω −NL3

)
ε

< δ .

In the remaining part of the proof, we will show the existence of a positive numberε1 and

an intervalJ1 ⊂ J, with a fixed length which is independent ofy(t),y(t) ∈ Ay, such that the

inequality‖y(t)−y(t)‖> ε1 holds for allt ∈ J1.

According to Lemma 2.5.1, there exists a positive numberτ < ∆, independent of the functions

x(t),x(t) ∈ Ax, y(t),y(t) ∈ Ay, such that for anyt1, t2 ∈ R with |t1− t2|< τ the inequality
∣∣∣(g j (x(t1),y(t1))−g j (x(t1),y(t1)))

−(g j (x(t2),y(t2))−g j (x(t2),y(t2)))
∣∣∣

<
L1ε0

2n

(2.14)

holds, for all 1≤ j ≤ n.

Condition(A4) implies that, for allt ∈ J, the inequality

‖g(x(t),y(t))−g(x(t),y(t))‖ ≥ L1‖x(t)−x(t)‖

is satisfied. Therefore, for eacht ∈ J, there exists an integerj0 = j0(t), 1≤ j0 ≤ n, such that

∣∣g j0(x(t),y(t))−g j0(x(t),y(t))
∣∣≥ L1

n
‖x(t)−x(t)‖ .
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Otherwise, if there existss∈ J such that for all 1≤ j ≤ n, the inequality

∣∣g j (x(s) ,y(s))−g j(x(s),y(s))
∣∣< L1

n
‖x(s)−x(s)‖

holds, then one encounters with a contradiction since

‖g(x(s),y(s))−g(x(s),y(s))‖ ≤
n

∑
j=1

∣∣g j(x(s),y(s))−g j(x(s),y(s))
∣∣

< L1‖x(s)−x(s)‖ .

Now, let s0 be the midpoint of the intervalJ and θ = s0 − τ/2. One can find an integer

j0 = j0(s0), 1≤ j0 ≤ n, such that

∣∣g j0(x(s0),y(s0))−g j0(x(s0),y(s0))
∣∣≥ L1

n
‖x(s0)−x(s0)‖>

L1ε0

n
. (2.15)

On the other hand, making use of inequality(2.14), for all t ∈ [θ ,θ + τ ] we have

∣∣g j0 (x(s0),y(s0))−g j0 (x(s0),y(s0))
∣∣−
∣∣g j0 (x(t),y(t))−g j0 (x(t),y(t))

∣∣

≤
∣∣(g j0 (x(t),y(t))−g j0 (x(t),y(t)))− (g j0 (x(s0),y(s0))−g j0 (x(s0),y(s0)))

∣∣

<
L1ε0

2n
.

Therefore, by means of (2.15), we obtain that the inequality

∣∣g j0 (x(t),y(t))−g j0 (x(t),y(t))
∣∣

>
∣∣g j0 (x(s0),y(s0))−g j0 (x(s0),y(s0))

∣∣− L1ε0

2n
>

L1ε0

2n

(2.16)

holds for allt ∈ [θ ,θ + τ ] .

By applying the mean value theorem for integrals, one can finds1,s2, . . . ,sn ∈ [θ ,θ + τ ] such

that

∫ θ+τ

θ
[g(x(s),y(s))−g(x(s),y(s))]ds=




τ [g1(x(s1),y(s1))−g1(x(s1),y(s1))]

τ [g2(x(s2),y(s2))−g2(x(s2),y(s2))]
...

τ [gn(x(sn),y(sn))−gn(x(sn),y(sn))]



.

Thus, using(2.16), one can verify that

∥∥∥∥
∫ θ+τ

θ
[g(x(s),y(s))−g(x(s),y(s))]ds

∥∥∥∥
≥ τ

∣∣g j0(x(sj0),y(sj0))−g j0(x(sj0),y(sj0))
∣∣

>
τL1ε0

2n
.

(2.17)
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It is clear that, fort ∈ [θ ,θ + τ ], the solutionsy(t) andy(t) satisfy the integral equations

y(t) = y(θ)+
∫ t

θ
Ay(s)ds+

∫ t

θ
g(x(s),y(s))ds,

and

y(t) = y(θ)+
∫ t

θ
Ay(s)ds+

∫ t

θ
g(x(s),y(s))ds,

respectively, and herewith the equation

y(t)−y(t) = (y(θ)−y(θ))+
∫ t

θ
A(y(s)−y(s))ds

+
∫ t

θ
[g(x(s),y(s))−g(x(s),y(s))]ds

+
∫ t

θ
[g(x(s),y(s))−g(x(s),y(s))]ds

holds. Hence, we have the inequality

‖y(θ + τ)−y(θ + τ)‖ ≥
∥∥∥∥
∫ θ+τ

θ
[g(x(s),y(s))−g(x(s),y(s))]ds

∥∥∥∥

−‖y(θ)−y(θ)‖−
∫ θ+τ

θ
‖A‖‖y(s)−y(s)‖ds

−
∫ θ+τ

θ
L3‖y(s)−y(s)‖ds.

(2.18)

Now, assume that max
t∈[θ ,θ+τ]

‖y(t)−y(t)‖ ≤ τL1ε0

2n[2+ τ(L3+‖A‖)] . In the present case, one en-

counters with a contradiction since, by means of the inequalities(2.17) and(2.18), we have

max
t∈[θ ,θ+τ]

‖y(t)−y(t)‖ ≥ ‖y(θ + τ)−y(θ + τ)‖

>
τL1ε0

2n
− [1+ τ(L3+‖A‖)] max

t∈[θ ,θ+τ]
‖y(t)−y(t)‖

≥ τL1ε0

2n[2+ τ(L3+‖A‖)] .

Therefore, one can see that the inequality

max
t∈[θ ,θ+τ]

‖y(t)−y(t)‖> τL1ε0

2n[2+ τ(L3+‖A‖)]

is valid.

Suppose that at a pointη ∈ [θ ,θ +τ ], the real valued function‖y(t)−y(t)‖ takes its maximum

on the interval[θ ,θ + τ ]. That is,

max
t∈[θ ,θ+τ]

‖y(t)−y(t)‖= ‖y(η)−y(η)‖ .

For t ∈ [θ ,θ + τ ], by virtue of the integral equations

y(t) = y(η)+
∫ t

η
Ay(s)ds+

∫ t

η
g(x(s),y(s))ds,
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and

y(t) = y(η)+
∫ t

η
Ay(s)ds+

∫ t

η
g(x(s),y(s))ds,

we obtain

y(t)−y(t) = (y(η)−y(η))+
∫ t

η
A(y(s)−y(s))ds

+
∫ t

η
[g(x(s),y(s))−g(x(s),y(s))]ds.

Define

τ1 = min

{
τ
2
,

τL1ε0

8n(M ‖A‖+M0)[2+ τ(L3+‖A‖)]

}

and let

θ 1 =

{
η , if η ≤ θ + τ/2

η − τ1, if η > θ + τ/2
.

We note that the intervalJ1 = [θ 1,θ 1+ τ1] is a subset of[θ ,θ + τ ] and hence ofJ.

For t ∈ J1, we have that

‖y(t)−y(t)‖ ≥ ‖y(η)−y(η)‖−
∣∣∣∣
∫ t

η
‖A‖‖y(s)−y(s)‖ds

∣∣∣∣

−
∣∣∣∣
∫ t

η
‖g(x(s),y(s))−g(x(s),y(s))‖ds

∣∣∣∣

>
τL1ε0

2n[2+ τ(L3+‖A‖)] −2τ1(M ‖A‖+M0)

≥ τL1ε0

4n[2+ τ(L3+‖A‖)] .

Consequently, the inequality‖y(t)−y(t)‖> ε1 holds fort ∈ J1, where

ε1 =
τL1ε0

4n[2+ τ(L3+‖A‖)] ,

and the length of the intervalJ1 does not depend on the functionsx(t),x(t) ∈ Ax.

The proof of the lemma is finalized.�

Through Lemma 2.5.2, we mention the replication of sensitivity feature from the set of func-

tionsAx to Ay, that is, from the generator system to the replicator counterpart. In a similar

way, it is reasonable to analyze the sensitivity of the set of functionsA , which is defined

through equation(2.10). In the present case, we shall say that the setA is sensitive pro-

vided thatAy is sensitive. This description is a natural one since, otherwise, the inequality

‖x(t)−x(t)‖> ε0 implies that

∥∥(x(t),φx(t)(t)
)
−
(
x(t),φx(t)(t)

)∥∥> ε0

in the same interval of time, which already signifies sensitivity ofA . But in replication of

chaos, the crucial idea is the extension of sensitivity not only by the result-system, but also by
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the replicator, and one should understand sensitivity of the result-systemas a property which

is equivalent to the sensitivity of the replicator. According to this explanation, we note that if

Ax is sensitive, then Lemma 2.5.2 implies the same feature for the setAy, and hence for the

setA .

Now, let us illustrate the replication of sensitivity through an example. It is known that the

Lorenz system

x′1 = σ (−x1+x2)

x′2 =−x2+ rx1−x1x3

x′3 =−bx3+x1x2,

(2.19)

with the coefficientsσ = 10,b= 8/3, r = 28 admits sensitivity [137]. We use system (2.19)

with the specified coefficients as the generator and constitute the 6−dimensional result-system

x′1 = 10(−x1+x2)

x′2 =−x2+28x1−x1x3

x′3 =−8
3x3+x1x2

x′4 =−5x4+x3

x′5 =−2x5+0.0002(x2−x5)
3+4x2

x′6 =−3x6−3x1.

(2.20)

When system(2.20) is considered in the form of system(2.1)+(2.2), one can see that the di-

agonal matrixA whose entries on the diagonal are−5,−2,−3 satisfies the inequality
∥∥eAt

∥∥≤
Ne−ωt with the coefficientsN = 1 andω = 2. We note that the functiong : R3×R

3 → R
3

defined as

g(x1,x2,x3,x4,x5,x6) =
(
x3,0.0002(x2−x5)

3+4x2,−3x1
)

provides the conditions(A4) and(A5) with constantsL1 = 1/
√

3, L2 = 11
√

3/2 andL3 = 3/2

since the chaotic attractor of system(2.20) is inside a compact region such that|x2| ≤ 30 and

|x5| ≤ 50. Consequently, system(2.20) satisfies the condition(A7).

In Figure 2.3, one can see the 3−dimensional projections in thex1−x2−x3 andx4−x5−x6

spaces of two different trajectories of the result-system(2.20) with adjacent initial conditions,

such that one of them is in blue color and the other in red color. For the trajectory with blue

color, we make use of the initial datax1(0) =−8.57, x2(0) =−2.39, x3(0) = 33.08, x4(0) =

5.32, x5(0) = 10.87, x6(0) = −6.37 and for the one with red color, we use the initial data

x1(0) =−8.53, x2(0) =−2.47, x3(0) = 33.05, x4(0) = 5.33, x5(0) = 10.86, x6(0) =−6.36.

In the simulation, the trajectories move on the time interval[0,3]. The results seen in Figure

2.3 supports our theoretical results indicated in Lemma 2.5.2 such that the replicator system,

likewise the generator counterpart, admits the sensitivity feature. That is, the solutions of both

the generator and the replicator given by blue and red colors diverge,even though they start

and move close to each other in the first stage.

In the next assertion we continue with the replication of transitivity.

34



−20

0

20 −40
−20

0
20

40

5

10

15

20

25

30

35

40

45

x
2

a

x
1

x 3

2

4

6 −20
−10

0
10

20

−5

0

5

10

x
5

b

x
4

x 6

Figure 2.3: Replication of sensitivity in the result-system(2.20). The picture in (a) represents
the 3−dimensional projection on thex1 − x2 − x3 space, and the picture in (b) shows the
3−dimensional projection on thex4− x5− x6 space. The sensitivity property is observable
both in (a) and (b) such that the trajectories presented by blue and red colors move together
in the first stage and then diverge. In other words, the sensitivity property of the generator
system is mimicked by the replicator counterpart.

Lemma 2.5.3 Transitivity ofAx implies the same feature forAy.

Proof. Fix an arbitrary smallε > 0, an arbitrary largeE > 0 and lety(t) ∈ Ay be a given

function. Arising from the description (2.9) of the setAy, there exists a functionx(t) ∈
Ax such thaty(t) = φx(t)(t). Let γ = ω(ω−NL3)

2M0N(ω−NL3)+NL2ω . Condition(A7) guarantees thatγ is

positive. Since there exists a dense solutionx∗(t) ∈ Ax, one can findξ > 0 and an interval

J⊂R with lengthE such that‖x(t)−x∗(t +ξ )‖< γε for all t ∈ J. Without loss of generality,

assume thatJ is a closed interval, that is,J = [a,a+E] for some real numbera.

Let y∗(t) = φx∗(t)(t). For t ∈ J, the bounded onR solutionsy(t) andy∗(t) satisfy the relations

y(t) =
∫ t

−∞
eA(t−s)g(x(s),y(s))ds,

and

y∗(t) =
∫ t

−∞
eA(t−s)g(x∗(s),y∗(s))ds,

respectively. The second equation above implies that

y∗(t +ξ ) =
∫ t+ξ

−∞
eA(t+ξ−s)g(x∗(s),y∗(s))ds.

Using the transformations= s−ξ , and replacingsby s again, it is easy to verify that

y∗(t +ξ ) =
∫ t

−∞
eA(t−s)g(x∗(s+ξ ),y∗(s+ξ ))ds.
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Therefore, fort ∈ J, we have that

y(t)−y∗(t +ξ ) =
∫ a

−∞
eA(t−s)[g(x(s),y(s))−g(x∗(s+ξ ),y∗(s+ξ ))]ds

+
∫ t

a
eA(t−s)[g(x(s),y(s))−g(x(s),y∗(s+ξ ))]ds

+
∫ t

a
eA(t−s)[g(x(s),y∗(s))−g(x∗(s+ξ ),y∗(s+ξ ))]ds,

which implies the inequality

‖y(t)−y∗(t +ξ )‖ ≤
∫ a

−∞
2M0Ne−ω(t−s)ds

+
∫ t

a
NL3e−ω(t−s) ‖y(s)−y∗(s+ξ )‖ds

+
∫ t

a
NL2e−ω(t−s) ‖x(s)−x∗(s+ξ )‖ds

≤ 2M0N
ω

e−ω(t−a)+
NL2γε

ω
e−ωt (eωt −eωa)

+
∫ t

a
NL3e−ω(t−s) ‖y(s)−y∗(s+ξ )‖ds.

Hence, we get

eωt ‖y(t)−y∗(t +ξ )‖ ≤ 2M0N
ω

eωa+
NL2γε

ω
(
eωt −eωa)

+
∫ t

a
NL3eωs‖y(s)−y∗(s+ξ )‖ds.

Through the implementation of Lemma 2.2 [34] to the last inequality, we obtain

eωt ‖y(t)−y∗(t +ξ )‖ ≤ 2M0N
ω

eωa+
NL2γε

ω
(
eωt −eωa)

+
∫ t

a
NL3

[
2M0N

ω
eωa+

NL2γε
ω

(eωs−eωa)

]
eNL3(t−s)ds

=
NL2γε

ω
eωt +

(
2M0N

ω
− NL2γε

ω

)
eωaeNL3(t−a)

+
N2L2L3γε

ω(ω −NL3)
eNL3t

(
e(ω−NL3)t −e(ω−NL3)a

)
.

Multiplying both sides bye−ωt , one can attain that

‖y(t)−y∗(t)‖ ≤ 2M0N
ω

e(NL3−ω)(t−a)

+

(
NL2γε

ω
+

N2L2L3γε
ω(ω −NL3)

)(
1−e(NL3−ω)(t−a)

)

=
2M0N

ω
e(NL3−ω)(t−a)+

NL2γε
ω −NL3

(
1−e(NL3−ω)(t−a)

)
.

Now, suppose that the numberE is sufficiently large such that

E >
2

ω −NL3
ln

(
1

γε

)
.
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If t ∈ [a+E/2,a+E] , then it is true that

e(NL3−ω)(t−a) ≤ e(NL3−ω) E
2 < γε .

As a result, we have

‖y(t)−y∗(t +ξ )‖<
[

2M0N
ω

+
NL2

ω −NL3

]
γε = ε ,

for t ∈ J1 = [a1,a1+E1] , wherea1 = a+E/2 andE1 = E/2. Consequently, the setAy is

transitive in compliance with Definition 2.3.3.

The lemma is proved.�

The extension of the last ingredient of chaos in the sense of Devaney is presented in the

following lemma.

Lemma 2.5.4 If Ax admits a dense collection of periodic functions, then the same is true for

Ay.

Proof. Fix a functiony(t) = φx(t)(t) ∈ Ay, an arbitrary small numberε > 0 and an arbitrary

large numberE > 0. Let γ = ω(ω−NL3)
2M0N(ω−NL3)+NL2ω , which is a positive number by condition

(A7). Suppose thatGx is a dense collection of periodic functions insideAx. In this case, there

exist x̃(t) ∈ Gx and an intervalJ ⊂ R with lengthE such that‖x(t)− x̃(t)‖< γε , for all t ∈ J.

Without loss of generality, assume thatJ is a closed interval, that is,J = [a,a+E] for some

a∈ R.

We note that by condition(A4) there is a one-to-one correspondence between the setsGx and

Gy =
{

φx(t)(t) | x(t) ∈ Gx
}
, (2.21)

such that ifx(t) ∈ Gx is periodic thenφx(t)(t) ∈ Gy is also periodic with the same period, and

vice versa. Therefore,Gy ⊂ Ay is a collection of periodic functions and in the proof our aim

is to verify that the setGy is dense inAy.

Let ỹ(t) = φx̃(t)(t), which clearly belongs to the setGy. Making use of the relations

y(t) =
∫ t

−∞
eA(t−s)g(x(s),y(s))ds,

and

ỹ(t) =
∫ t

−∞
eA(t−s)g(x̃(s), ỹ(s))ds,

for t ∈ J, we attain that

y(t)− ỹ(t) =
∫ a

−∞
eA(t−s)[g(x(s),y(s))−g(x̃(s), ỹ(s))]ds

+
∫ t

a
eA(t−s)[g(x(s),y(s))−g(x(s), ỹ(s))]ds

+
∫ t

a
eA(t−s)[g(x(s), ỹ(s))−g(x̃(s), ỹ(s))]ds.
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The last equation implies that

‖y(t)− ỹ(t)‖ ≤
∫ a

−∞
2M0Ne−ω(t−s)ds

+
∫ t

a
NL3e−ω(t−s) ‖y(s)− ỹ(s)‖ds

+
∫ t

a
NL2e−ω(t−s) ‖x(s)− x̃(s)‖ds

≤ 2M0N
ω

e−ω(t−a)+
NL2γε

ω
e−ωt (eωt −eωa)

+
∫ t

a
NL3e−ω(t−s) ‖y(s)− ỹ(s)‖ds.

Hence, we have

eωt ‖y(t)− ỹ(t)‖ ≤ 2M0N
ω

eωa+
NL2γε

ω
(
eωt −eωa)

+
∫ t

a
NL3eωs‖y(s)− ỹ(s)‖ds.

Application of Lemma 2.2 [34] to the last inequality yields

eωt ‖y(t)− ỹ(t)‖ ≤ 2M0N
ω

eωa+
NL2γε

ω
(
eωt −eωa)

+
∫ t

a
NL3

[
2M0N

ω
eωa+

NL2γε
ω

(eωs−eωa)

]
eNL3(t−s)ds

=
NL2γε

ω
eωt +

(
2M0N

ω
− NL2γε

ω

)
eωaeNL3(t−a)

+
N2L2L3γε

ω(ω −NL3)
eNL3t

(
e(ω−NL3)t −e(ω−NL3)a

)
.

Multiplying both sides bye−ωt , we obtain that

‖y(t)− ỹ(t)‖ ≤ 2M0N
ω

e(NL3−ω)(t−a)

+

(
NL2γε

ω
+

N2L2L3γε
ω(ω −NL3)

)(
1−e(NL3−ω)(t−a)

)

=
2M0N

ω
e(NL3−ω)(t−a)+

NL2γε
ω −NL3

(
1−e(NL3−ω)(t−a)

)
.

Suppose that the numberE is sufficiently large such thatE >
2

ω −NL3
ln

(
1

γε

)
. If a+

E
2
≤

t ≤ a+E, then one hase(NL3−ω)(t−a) ≤ e(NL3−ω)E/2 < γε . Consequently, the inequality

‖y(t)− ỹ(t)‖<
(

2M0N
ω

+
NL2

ω −NL3

)
γε = ε ,

holds fort ∈ J1 = [a1,a1+E1] , wherea1 = a+E/2 andE1 = E/2.

The proof of the lemma is accomplished.�

We end up the present part by stating the following theorem and its immediate corollary,

which can be verified as consequences of Lemma 2.5.2, Lemma 2.5.3 and Lemma 2.5.4.
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Theorem 2.5.1 If the setAx is Devaney’s chaotic, then the same is true for the setAy.

Corollary 2.5.1 If the setAx is Devaney’s chaotic, thenA is chaotic in the same way.

In the next part, the replication of chaos in the Li−Yorke sense is taken into account.

2.6 Replication of Li-Yorke Chaos

Our aim in this section is to prove that ifAx is chaotic in the sense of Li-Yorke, then the same

is valid for the setAy, and consequently for the setA .

We start by indicating the following assertion, which presents the replication of proximality

feature in accordance with Definition 2.3.6.

Lemma 2.6.1 If a couple of functions(x(t),x(t)) ∈ Ax ×Ax is proximal, then the same is

true for the couple
(
φx(t)(t),φx(t)(t)

)
∈ Ay×Ay.

Proof. Fix an arbitrary small positive numberε and an arbitrary large positive numberE.

Define γ = ω(ω−NL3)
2M0N(ω−NL3)+NL2ω . Condition (A7) implies thatγ is positive. Because a given

couple of functions(x(t),x(t))∈Ax×Ax is proximal, one can find a sequence of real numbers

{Ei} satisfyingEi ≥ E for eachi ∈ N, and a sequence{ai} , ai → ∞ as i → ∞, such that we

have‖x(t)−x(t)‖ < γε , for eacht from the intervalsJi = [ai ,ai +Ei ], i ∈ N, andJi ∩ Jj = /0

wheneveri 6= j.

Let us fix an arbitrary natural numberi. Since the functionsy(t) = φx(t)(t) ∈ Ay andy(t) =

φx(t)(t) ∈ Ay satisfy the relations

y(t) =
∫ t

−∞
eA(t−s)g(x(s),y(s))ds,

and

y(t) =
∫ t

−∞
eA(t−s)g(x(s),y(s))ds,

respectively, fort ∈ Ji , we have that

y(t)−y(t) =
∫ ai

−∞
eA(t−s)[g(x(s),y(s))−g(x(s),y(s))]ds

+
∫ t

ai

eA(t−s)[g(x(s),y(s))−g(x(s),y(s))]ds

+
∫ t

ai

eA(t−s)[g(x(s),y(s))−g(x(s),y(s))]ds.
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This implies that the inequality

‖y(t)−y(t)‖ ≤
∫ ai

−∞
2M0Ne−ω(t−s)ds

+
∫ t

ai

NL3e−ω(t−s) ‖y(s)−y(s)‖ds

+
∫ t

ai

NL2e−ω(t−s) ‖x(s)−x(s)‖ds

≤ 2M0N
ω

e−ω(t−a)+
NL2γε

ω
e−ωt (eωt −eωa)

+
∫ t

ai

NL3e−ω(t−s) ‖y(s)−y(s)‖ds

is valid. Hence, we attain that

eωt ‖y(t)−y(t)‖ ≤ 2M0N
ω

eωai +
NL2γε

ω
(
eωt −eωai

)

+
∫ t

ai

NL3eωs‖y(s)−y(s)‖ds.

Implementing Lemma 2.2 [34] to the last inequality, we obtain

eωt ‖y(t)−y(t)‖ ≤ 2M0N
ω

eωai +
NL2γε

ω
(
eωt −eωai

)

+
∫ t

a
NL3

[
2M0N

ω
eωai +

NL2γε
ω

(eωs−eωai )

]
eNL3(t−s)ds

=
NL2γε

ω
eωt +

(
2M0N

ω
− NL2γε

ω

)
eωai eNL3(t−ai)

+
N2L2L3γε

ω(ω −NL3)
eNL3t

(
e(ω−NL3)t −e(ω−NL3)ai

)
.

Multiplying both sides by the terme−ωt , one can verify that

‖y(t)−y(t)‖ ≤ 2M0N
ω

e(NL3−ω)(t−ai)

+

(
NL2γε

ω
+

N2L2L3γε
ω(ω −NL3)

)(
1−e(NL3−ω)(t−ai)

)

=
2M0N

ω
e(NL3−ω)(t−ai)+

NL2γε
ω −NL3

(
1−e(NL3−ω)(t−ai)

)
.

If E is sufficiently large such thatE >
2

ω −NL3
ln

(
1

γε

)
, then one has

e(NL3−ω)(t−ai) < e(NL3−ω)Ei/2 ≤ e(NL3−ω)E/2 < γε ,

for t ∈ [ai +Ei/2,ai +Ei ] .

Since the natural numberi was arbitrarily chosen, for eachi ∈ N, we have that

‖y(t)−y(t)‖<
(

2M0N
ω

+
NL2

ω −NL3

)
γε = ε ,
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for eacht ∈ J̃i =
[
ãi , ãi + Ẽi

]
, whereãi = ai +Ei/2 andẼi = Ei/2. Note that for eachi the

interval J̃i ⊂ R has a length no less thañE = E/2. As a consequence, the couple of functions(
φx(t)(t),φx(t)(t)

)
∈ Ay×Ay is proximal according to Definition 2.3.6.

The proof is completed.�

The following lemma indicates the replication of the next characteristic feature of Li-Yorke

chaos.

Lemma 2.6.2 If a pair (x(t),x(t))∈Ax×Ax is frequently(ε0,∆)-separated for some positive

numbersε0 and∆, then the pair
(
φx(t)(t),φx(t)(t)

)
∈ Ay×Ay is frequently(ε1,∆)-separated

for some positive numbersε1 and∆.

Proof. Since a given couple of functions(x(t),x(t))∈Ax×Ax is frequently(ε0,∆)-separated

for someε0 > 0 and∆ > 0, there exist infinitely many disjoint intervals, each with a length

no less than∆, such that‖x(t)−x(t)‖ > ε0 for eacht from these intervals. Without loss of

generality, assume that these intervals are all closed subsets ofR. In that case, one can find

a sequence{∆i} satisfying∆i ≥ ∆, i ∈ N, and a sequence{di} , di → ∞ as i → ∞, such that

for eachi ∈ N the inequality‖x(t)−x(t)‖> ε0 holds fort ∈ Ji = [di ,di +∆i ], andJi ∩Jj = /0

wheneveri 6= j. Throughout the proof, let us denotey(t) = φx(t)(t) ∈ Ay andy(t) = φx(t)(t) ∈
Ay.

Our aim is to show the existence of positive numbersε1,∆ and infinitely many disjoint inter-

vals Ji ⊂ Ji , i ∈ N, each with length∆, such that the inequality‖y(t)−y(t)‖ > ε1 holds for

eacht from the intervalsJi , i ∈ N.

As in Section 2.5, we again suppose thatg(x,y) =




g1(x,y)

g2(x,y)
...

gn(x,y)



, where eachg j(x,y), 1 ≤

j ≤ n, is a real valued function. Using the equicontinuity onR of the family F , which

is mentioned in Lemma 2.5.1, one can find a positive numberτ < ∆, independent of the

functionsx(t),x(t) ∈ Ax, y(t),y(t) ∈ Ay, such that for anyt1, t2 ∈ R with |t1− t2| < τ the

inequality

∣∣∣(g j (x(t1),y(t1))−g j (x(t1),y(t1)))

−(g j (x(t2),y(t2))−g j (x(t2),y(t2)))
∣∣∣

<
L1ε0

2n

(2.22)

holds for all 1≤ j ≤ n.

Suppose that the sequence{si} denotes the midpoints of the intervalsJi , that is,si = di +∆i/2

for eachi ∈ N. Let us define a sequence{θi} through the equationθi = si − τ/2.
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Let us fix an arbitrary natural numberi. In a similar way to the method specified in the proof

of Lemma 2.5.2, one can show the existence of an integerj i = j i(si), 1≤ j i ≤ n, such that

∣∣g j i (x(si),y(si))−g j i (x(si),y(si))
∣∣≥ L1

n
‖x(si)−x(si)‖>

L1ε0

n
. (2.23)

On the other hand, making use of the inequality(2.22), it is easy to verify that
∣∣g j i (x(si),y(si))−g j i (x(si),y(si))

∣∣−
∣∣g j i (x(t),y(t))−g j i (x(t),y(t))

∣∣

≤
∣∣(g j i (x(t),y(t))−g j i (x(t),y(t)))− (g j i (x(si),y(si))−g j i (x(si),y(si)))

∣∣

<
L1ε0

2n
,

for all t ∈ [θi ,θi + τ ] . Therefore, by favour of(2.23), we obtain that the inequality
∣∣g j i (x(t),y(t))−g j i (x(t),y(t))

∣∣

>
∣∣g j i (x(si),y(si))−g j i (x(si),y(si))

∣∣− L1ε0

2n
>

L1ε0

2n

(2.24)

is valid on the same interval.

Using the mean value theorem for integrals, it is possible to find numberssi
1,s

i
2, . . . ,s

i
n that

belong to the interval[θi ,θi + τ ] such that
∥∥∥∥
∫ θi+τ

θi

[g(x(s),y(s))−g(x(s),y(s))]ds

∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




∫ θi+τ

θi

[g1(x(s),y(s))−g1(x(s),y(s))]ds
∫ θi+τ

θi

[g2(x(s),y(s))−g2(x(s),y(s))]ds

...
∫ θi+τ

θi

[gn(x(s),y(s))−gn(x(s),y(s))]ds




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥




τ
[
g1(x(si

1),y(s
i
1))−g1(x(si

1),y(s
i
1))
]

τ
[
g2(x(si

2),y(s
i
2))−g2(x(si

2),y(s
i
2))
]

...

τ
[
gn(x(si

n),y(s
i
n))−gn(x(si

n),y(s
i
n))
]




∥∥∥∥∥∥∥∥∥∥

.

Hence, the inequality(2.24) yields that
∥∥∥∥
∫ θi+τ

θi

[g(x(s),y(s))−g(x(s),y(s))]ds

∥∥∥∥

≥ τ
∣∣g j i (x(s

i
j i ),y(s

i
j i ))−g j i (x(s

i
j i ),y(s

i
j i ))
∣∣

>
τL1ε0

2n
.

For t ∈ [θi ,θi + τ ], the functionsy(t) ∈ Ay andy(t) ∈ Ay satisfy the relations

y(t) = y(θi)+
∫ t

θi

Ay(s)ds+
∫ t

θi

g(x(s),y(s))ds,
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and

y(t) = y(θi)+
∫ t

θi

Ay(s)ds+
∫ t

θi

g(x(s),y(s))ds,

respectively, and herewith the equation

y(t)−y(t) = (y(θi)−y(θi))+
∫ t

θi

A(y(s)−y(s))ds

+
∫ t

θi

[g(x(s),y(s))−g(x(s),y(s))]ds

+
∫ t

θi

[g(x(s),y(s))−g(x(s),y(s))]ds

is achieved. Takingt = θi + τ in the last equation, we attain the inequality

‖y(θi + τ)−y(θi + τ)‖ ≥
∥∥∥∥
∫ θ+τ

θ
[g(x(s),y(s))−g(x(s),y(s))]ds

∥∥∥∥

−‖y(θi)−y(θi)‖−
∫ θi+τ

θi

(‖A‖+L3)‖y(s)−y(s)‖ds
(2.25)

Now, assume that max
t∈[θi ,θi+τ]

‖y(t)−y(t)‖ ≤ τL1ε0

2n[2+ τ(L3+‖A‖)] . In this case, one arrives at a

contradiction since, by means of the inequalities(2.24) and(2.25), we have

max
t∈[θi ,θi+τ]

‖y(t)−y(t)‖ ≥ ‖y(θi + τ)−y(θi + τ)‖

>
τL1ε0

2n
− [1+ τ(L3+‖A‖)] max

t∈[θi ,θi+τ]
‖y(t)−y(t)‖

≥ τL1ε0

2n
− [1+ τ(L3+‖A‖)] τL1ε0

2n[2+ τ(L3+‖A‖)]

=
τL1ε0

2n

(
1− 1+ τ(L3+‖A‖)

2+ τ(L3+‖A‖)

)

=
τL1ε0

2n[2+ τ(L3+‖A‖)] .

Therefore, it is true that max
t∈[θi ,θi+τ]

‖y(t)−y(t)‖> τL1ε0

2n[2+ τ(L3+‖A‖)] .

Suppose that the real valued function‖y(t)−y(t)‖ takes its maximum value fort ∈ [θi ,θi +τ ]
at a pointηi . In other words, for someηi ∈ [θi ,θi + τ ] , we have that

max
t∈[θi ,θi+τ]

‖y(t)−y(t)‖= ‖y(ηi)−y(ηi)‖ .

Making use of the integral equations

y(t) = y(ηi)+
∫ t

ηi

Ay(s)ds+
∫ t

ηi

g(x(s),y(s))ds,

and

y(t) = y(ηi)+
∫ t

ηi

Ay(s)ds+
∫ t

ηi

g(x(s),y(s))ds,
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on the time interval[θi ,θi + τ ], one can obtain that

y(t)−y(t) = (y(ηi)−y(ηi))+
∫ t

ηi

A(y(s)−y(s))ds

+
∫ t

ηi

[g(x(s),y(s))−g(x(s),y(s))]ds.

Define the numbers

∆ = min

{
τ
2
,

τL1ε0

8n(M ‖A‖+M0)[2+ τ(L3+‖A‖)]

}

and

θ 1
i =

{
ηi , if η ≤ θi + τ/2

ηi − τ1, if ηi > θi + τ/2
.

For eacht ∈ [θ 1
i ,θ 1

i +∆], we have that

‖y(t)−y(t)‖ ≥ ‖y(ηi)−y(ηi)‖−
∣∣∣∣
∫ t

ηi

‖A‖‖y(s)−y(s)‖ds

∣∣∣∣

−
∣∣∣∣
∫ t

ηi

‖g(x(s),y(s))−g(x(s),y(s))‖ds

∣∣∣∣

>
τL1ε0

2n[2+ τ(L3+‖A‖)] −2M ‖A‖τ1−2M0τ1

=
τL1ε0

2n[2+ τ(L3+‖A‖)] −2τ1(M ‖A‖+M0)

≥ τL1ε0

4n[2+ τ(L3+‖A‖)] .

The information mentioned above is true for an arbitrarily chosen natural number i. There-

fore, for eachi ∈ N, the intervalJi = [θ 1
i ,θ 1

i +∆] is a subset of[θi ,θi + τ ], and hence ofJi .

Moreover, for anyi ∈N, we have‖y(t)−y(t)‖> ε1, t ∈ Ji , whereε1 =
τL1ε0

4n[2+ τ(L3+‖A‖)] .

Consequently, according to Definition 2.3.7, the pair
(
φx(t)(t),φx(t)(t)

)
∈ Ay ×Ay is fre-

quently(ε1,∆)−separated.

The proof of the lemma is finalized.�

Now, we state and prove the main theorem of the present section. In the proof, we suppose

that Gx ⊂ Ax denotes the set of periodic functions insideAx and the setGy ⊂ Ay, defined

through equation(2.21), denotes the set of periodic functions insideAy.

Theorem 2.6.1 If the setAx is Li-Yorke chaotic, then the same is true for the setAy.

Proof. It can be easily verified that for any natural numberk, x(t) ∈ Gx is a kT−periodic

function if and only ifφx(t)(t) ∈ Gy is kT−periodic, whereGx andGy denote the sets of all

periodic functions insideAx andAy, respectively. Therefore, the setAy admits akT−periodic

function for anyk∈ N.
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Next, suppose that the setCx is a scrambled set insideAx and define the set

Cy =
{

φx(t)(t) | x(t) ∈ Cx
}
. (2.26)

Condition (A4) implies that there is a one-to-one correspondence between the setsCx and

Cy. Since the scrambled setCx is uncountable, it is clear that the setCy is also uncountable.

Moreover, using the same condition one can show that no periodic functions exist insideCy,

since no such functions take place inside the setCx. That is,Cy∩Gy = /0.

Since each couple of functions insideCx ×Cx is proximal, Lemma 2.6.1 implies the same

feature for each couple of functions insideCy×Cy.

Similarly, Lemma 2.6.2 implies that if each couple of functions(x(t),x(t))∈Cx×Cx (Cx×Gx)

is frequently(ε0,∆)−separated for some positive numbersε0 and ∆, then each couple of

functions(y(t),y(t)) ∈ Cy×Cy (Cy×Gy) is frequently(ε1,∆)−separated for some positive

numbersε1 and∆. Consequently, the setCy is a scrambled set insideAx, and according to

Definition 2.3.10,Ay is Li-Yorke chaotic.

The proof of the theorem is accomplished.�

An immediate corollary of Theorem 2.6.1 is the following.

Corollary 2.6.1 If the setAx is Li-Yorke chaotic, then the setA is chaotic in the same way.

2.7 Morphogenesis of Chaos

Two different mechanisms of chaos extension (morphogenesis) throughapplying replication

are considered in this study. The first one is illustrated schematically in Figure2.4. The

figure represents consecutively connected systems as boxes and the blue arrows symbolize

unidirectional couplings between two systems. In the first coupling, we takeinto account a

generator system, the leftmost box in the figure, which is connected with a second system

considered as a replicator in the couple. In the next coupling, the secondsystem is considered

as a generator with respect to the third one. That is, it changes its role in theextension

process. In the third coupling, the third system is considered as a generator and the forth

one as a replicator. In summary, the mechanism proceeds as follows. We take into account

consecutive unidirectionally coupled systems such that the initial one is a generator and at

each next coupling the role of the previously chaotified replicator changes and we start to use

it as a generator. As a result of the mechanism all individual subsystems are chaotic as well as

the system which consists of all subsystems. Moreover, the type of the chaos is saved under

this procedure.

In Figure 2.5 we show another mechanism of chaos extension. Here, the generator is sur-

rounded by three replicators and the blue arrows symbolize, again, unidirectional couplings

between two systems. Distinctively from the former mechanism, the replicators do not change
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Figure 2.4: Morphogenesis of chaos through consecutive replications

their role with respect to each other according to the special topology of connection. The gen-

erator is coupled with all other replicators such that it is rather a core than abeginning element.

The result of the mechanism is similar to the former such that all replicators as well as the

system consisting of all subsystems become chaotic, saving the chaos type of the generator.

Figure 2.5: Morphogenesis of chaos from a prior chaos as a core

We call the two ways asthe chainand the coremechanisms, respectively, and the system

which unites the generator and several replicators, of type(2.2), in either extension mecha-

nism asthe result-system. Theoretically, we do not discuss constraints on the dimension of

the result-system, but under certain conditions it seems that the dimension is not restricted for

both mechanisms. However, this is definitely true for the core mechanism evenwith infinite

dimensions. We will discuss and simulate the chain mechanism in the chapter, mainly, since

the core mechanism can be discussed very similarly. One can invent other mechanisms, for

example, by considering “composition” of the two mechanisms proposed presently.

Next, to exemplify the chaos extension procedure of our study, according to the chain mech-

anism shown in Figure 2.4 we set up the following 8−dimensional result-system

x′1 = x2

x′2 =−0.05x2−x3
1+7.5cost

x′3 = x4+x1

x′4 =−3x3−2x4−0.008x3
3+x2

x′5 = x6+x3

x′6 =−3x5−2.1x6−0.007x3
5+x4

x′7 = x8+x5

x′8 =−3.1x7−2.2x8−0.006x3
7+x6.

(2.27)

We note that system(2.27) consists of four subsystems with coordinates(x1,x2), (x3,x4),
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(x5,x6) and(x7,x8) such that the subsystem(x1,x2) is exactly the generator used in system

(2.4)+(2.5), while the subsystem(x3,x4) is the replicator of(2.4)+(2.5).

According to the theoretical results of the present chapter, system(2.27) possesses a chaotic

attractor in the 8−dimensional phase space. By marking the trajectory of this system with

the initial datax1(0) = 2, x2(0) = 3, x3(0) = x5(0) = x7(0) =−1, x4(0) = x6(0) = x8(0) = 1

stroboscopically at times that are integer multiples of 2π, we obtain the Poincaré section

inside the 8−dimensional space. In Figure 2.6, which informs us about morphogenesis, the

3−dimensional projections of the whole Poincaré section on thex2−x4−x6 andx3−x5−x7

spaces are shown. One can see in Figure 2.6, (a) and in Figure 2.6, (b) the additionalfoldings

which are not possible to observe in the classical strange attractor shownin Figure 2.2, (a).
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Figure 2.6: In (a) and (b) projections of the result chaotic attractor on thex2− x4− x6 and
x3 − x5 − x7 spaces are respectively presented. One can see in (a) and (b) the additional
foldingswhich are not possible to observe in the 2−dimensional picture of the prior classical
chaos shown in Figure 2.2, (a). In the same time, the shape of the original attractor is seen in
the resulting chaos. The illustrations in (a) and (b) repeat the structure ofthe attractor of the
generator and the similarity between these pictures is a manifestation of the morphogenesis
of chaos.

Despite we are restricted to make illustrations at most in 3−dimensional spaces, taking in-

spiration from Figure 2.2 and Figure 2.6, one can imagine that the structure of the original

Poincaré section in the 8−dimensional space will be similar through its fractal structure, but

more beautiful and impressive than its projections. From this point of view, weare not sur-

prised since these facts have been proved theoretically.

Next, we shall handle the problem that whether the chaos extension procedure works for all

existing systems in the mechanisms presented above, from the theoretical point of view. Since

the core mechanism does not need any additional theoretical discussions, we will consider the

chain mechanism.
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In addition to the system(2.1)+(2.2), we take into account the system

z′ = Bz+h(y(t),z), (2.28)

whereh : Rn×R
l →R

l is a continuous function in all of its arguments, the constantl × l real

valued matrixB has real parts of eigenvalues all negative andy(t) is a solution system (2.2).

It is easy to verify the existence of positive numbersÑ andω̃ such that
∥∥eBt

∥∥ ≤ Ñe−ω̃t , for

all t ≥ 0.

In our next theoretical discussions, the system(2.28) will serve as the third system in the

chain mechanism presented by Figure 2.4, and we need the following assumptions which are

counterparts of the conditions(A4)− (A7) presented in Section 2.2.

(A8) There exists a positive numberL̃1 such that

‖h(y1,z)−h(y2,z)‖ ≥ L̃1‖y1−y2‖ ,

for all y1,y2 ∈ R
n, z∈ R

l ;

(A9) There exist positive numbers̃L2 andL̃3 such that

‖h(y1,z)−h(y2,z)‖ ≤ L̃2‖y1−y2‖ ,

for all y1,y2 ∈ R
n, z∈ R

l , and

‖h(y,z1)−h(y,z2)‖ ≤ L̃3‖z1−z2‖ ,

for all y∈ R
n, z1,z2 ∈ R

l ;

(A10) There exists a positive numberK0 such that

sup
y∈Rn,z∈Rl

‖h(y,z)‖ ≤ K0;

(A11) ÑL̃3− ω̃ < 0.

Likewise the definition for the set of functionsAy, given by(2.9), let us denote byAz the set

of all bounded onR solutions of systemz′ = Bz+h(y(t),z), for anyy(t) ∈ Ay.

In a similar way to the Lemma 2.2.1, one can show that the set

Uz =
{

z(t) | z(t) is a solution of the systemz′ = Az+g(y(t),z) for somey(t) ∈ Uy
}

is a basin ofAz. Furthermore, a similar result of Theorem 2.4.1 introduced in Section 2.4,

hold also for the setAz.

We state in the next theorem that similar results of the Theorems 2.5.1 and 2.6.1 presented in

Sections 2.5 and 2.6, respectively, hold also for the setAz.

We note that, in the case of the presence of arbitrary finite number of systems, which obey

conditions that are counterparts of(A4)− (A7), one can prove that a similar result of the next

theorem holds for the chain mechanism.
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Theorem 2.7.1 If the setAx is Devaney chaotic or Li-Yorke chaotic, then the setAz is chaotic

in the same way as bothAx andAy.

Proof. In the proof, we will show that for eachz(t) ∈ Az and arbitraryδ > 0, there exist

z(t) ∈ Az andt0 ∈ R such that‖z(t0)−z(t0)‖< δ , which is needed to show sensitivity ofAz.

The remaining parts of the proof can be performed in a similar way to the proofs presented in

Sections 2.5 and 2.6, and therefore are omitted.

Suppose that the setAx is sensitive. Fix an arbitraryδ > 0 and letz(t)∈Az be a given solution

of system(2.28). In this case, there existsy(t) = φx(t)(t)∈Ay, wherex(t)∈Ax, such thatz(t)

is the unique bounded onR solution of the systemz′ = Bz+h(y(t),z).

Let us choose a numberε = ε(δ )> 0 small enough which satisfies the inequality
(

1+
ÑL̃2

ω̃ − ÑL̃3

)(
1+

NL2

ω −NL3

)
ε < δ

and denoteε1 =

(
1+

NL2

ω −NL3

)
ε . Now, takeR= R(ε) < 0 sufficiently large in absolute

value such that both of the inequalities
2M0N

ω
e−(NL3−ω)R/2 ≤ ε and

2M̃0Ñ
ω̃

e−(ÑL̃3−ω̃)R/2 ≤ ε1

are valid, and letδ1 = δ1(ε,R) = εeL0R. Since the setAx is sensitive, one can findx(t) ∈ Ax

andt0 ∈ R such that the inequality‖x(t0)−x(t0)‖< δ1 holds.

As in the case of the proof of Lemma 2.5.2, for t ∈ [t0+R, t0], one can verify that

‖x(t)−x(t)‖< ε

and

‖y(t)−y(t)‖ ≤ NL2ε
ω −NL3

+
2M0N

ω
e(NL3−ω)(t−t0−R).

According to the last inequality, we have‖y(t)−y(t)‖ ≤ ε1, for t ∈ [t0+R/2, t0].

Suppose thatz(t) is the unique bounded onR solution of the systemz′ = Bz+h(y(t),z). One

can see that the relations

z(t) =
∫ t

−∞
eB(t−s)h(y(s),z(s))ds

and

z(t) =
∫ t

−∞
eB(t−s)h(y(s),z(s))ds,

are valid. Using these equations, it can be verified that

‖z(t)−z(t)‖ ≤
∫ t

t0+
R
2

Ñe−ω̃(t−s) ‖h(y(s),z(s))−h(y(s),z(s))‖ds

+
∫ t

t0+
R
2

Ñe−ω̃(t−s) ‖h(y(s),z(s))−h(y(s),z(s))‖ds

+
∫ t0+

R
2

−∞
Ñe−ω̃(t−s) ‖h(y(s),z(s))−h(y(s),z(s))‖ds.
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Since‖y(t)−y(t)‖< ε1 for t ∈ [t0+R/2, t0], one has

‖z(t)−z(t)‖ ≤ ÑL̃3

∫ t

t0+
R
2

e−ω̃(t−s) ‖z(s)−z(s)‖ds

+ÑL̃2ε1

∫ t

t0+
R
2

e−ω̃(t−s)ds+2M̃0Ñ
∫ t0+

R
2

−∞
e−ω̃(t−s)ds

≤ ÑL̃3

∫ t

t0+
R
2

e−ω̃(t−s) ‖z(s)−z(s)‖ds

+
ÑL̃2ε1

ω̃
e−ω̃t(eω̃t −eω̃(t0+R/2))+

2M̃0Ñ
ω̃

e−ω̃(t−t0−R/2).

Now, let us introduce the functionsu(t) = eω̃t ‖z(t)−z(t)‖ , k(t) =
ÑL̃2ε1

ω̃
eω̃t , and v(t) =

c+k(t) wherec=

(
2M̃0Ñ

ω̃
− ÑL̃2ε1

ω̃

)
eω̃(t0+R/2).

These definitions imply thatu(t) ≤ v(t) +
∫ t

t0+
R
2

ÑL̃3u(s)ds and applying Lemma 2.2 [34]

leads to

u(t)≤ v(t)+ ÑL̃3

∫ t

t0+
R
2

eÑL̃3(t−s)h(s)ds.

Therefore, fort ∈ [t0+R/2, t0] we have

u(t)≤ c+k(t)+c
(

eÑL̃3(t−t0−R/2)−1
)
+

N2L̃2L̃3ε1

ω̃
eÑL̃3t

∫ t

t0+
R
2

e(ω̃−ÑL̃3)sds

=
ÑL̃2ε1

ω̃
eω̃t +

(
2M̃0N

ω̃
− ÑL̃2ε1

ω̃

)
eω̃TeÑL̃3(t−t0−R/2)

+
Ñ2L̃2L̃3ε1

ω̃(ω̃ − ÑL̃3)
eω̃t
[
1−e(ÑL̃3−ω̃)(t−t0−R/2)

]
,

and hence

‖z(t)−z(t)‖ ≤ ÑL̃2ε1

ω̃ − ÑL̃3

[
1−e(ÑL̃3−ω̃)(t−t0−R/2)

]
+

2M̃0N
ω̃

e(ÑL̃3−ω̃)(t−t0−R/2).

Consequently, the inequality

‖z(t0)−z(t0)‖ ≤
ÑL̃2ε1

ω̃ − ÑL̃3
+

2M̃0Ñ
ω̃

e(ω̃−ÑL̃3)R/2

<

(
1+

ÑL̃2

ω̃ − ÑL̃3

)
ε1

< δ

is valid.

The theorem is proved.�

50



2.8 Replication of Period-Doubling Cascade

We start this section by describing the chaos through period-doubling cascade [21, 92, 187]

for the set of functionsAx, and deal with its replication by the set of functionsAy, which is

defined by equation(2.9).

Suppose that there exists a functionG : R×R
m×R → R

m which is continuous in all of its

arguments such thatF(t,x) = G(t,x,µ∞) for some finite numberµ∞, which will be explained

below.

To discuss chaos through period-doubling cascade, let us consider the system

x′ = G(t,x,µ), (2.29)

whereµ is a parameter.

We say that the setAx is chaotic through period-doubling cascade if there exist a natural

numberk and a sequence of period-doubling bifurcation values{µm} , µm → µ∞ asm→ ∞,

such that for eachm∈ N as the parameterµ increases (or decreases) throughµm, system

(2.29) undergoes a period-doubling bifurcation and a periodic solution with period k2mT

appears. As a consequence, atµ = µ∞, there exist infinitely many unstable periodic solutions

of system(2.29), and hence of system(2.1), all lying in a bounded region. In this case, the

setAx admits periodic functions of periodskT,2kT,4kT,8kT, · · · .

Now, making use of the equation (2.8), one can show that for any naturalnumber p, if

x(t) ∈ Ax is a pT−periodic function thenφx(t)(t) ∈ Ay is alsopT−periodic. Moreover, con-

dition (A4) implies that the converse is also true. Consequently, if the setAx admits periodic

functions of periodskT,2kT,4kT,8kT, · · · , then the same is valid forAy, with no additional

periodic functions of any other period. Furthermore, the technique indicated in the proof

of Lemma 2.5.2 can be used to show that these periodic solutions are all unstable and this

provides us an opportunity to state the following theorem.

Theorem 2.8.1 If the setAx is chaotic through period-doubling cascade, then the same is

true forAy.

The following corollary of Theorem 2.8.1 states that the result-system(2.1)+(2.2) is chaotic

through the period-doubling cascade, provided the system(2.1) is.

Corollary 2.8.1 If the setAx is chaotic through period-doubling cascade, then the same is

true forA .

Our theoretical results show that the replicator system (2.2), likewise the generator coun-

terpart, undergoes period-doubling bifurcations as the parameterµ increases or decreases
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through the valuesµm, m∈N. That is, the sequence{µm} of bifurcation parameters is exactly

the same for both generator and replicator systems. In this case, if the generator system obeys

the Feigenbaum universality [74, 198, 218, 243] then one can conclude that the same is true

also for the replicator. In other words, when limm→∞
µm−µm+1

µm+1−µm+2
is evaluated, the universal con-

stant known as the Feigenbaum number 4.6692016. . . is achieved and this universal number

is the same for both generator and replicator.

It is worth saying that the results about replication of period-doubling cascade as well as the

Feigenbaum’s universal behavior, which can be perceived as another aspect of morphogenesis

of chaos, are true also for chaos extension mechanisms shown in Figure 2.4 and Figure 2.5.

In our next example, using the chain mechanism, we will illustrate through simulations the

morphogenesis of period-doubling cascade.

In paper [189], it is indicated that the Duffing’s equation

x′′+0.3x′+x3 = µ cost (2.30)

admits the chaos through period-doubling cascade at the parameter valueµ = µ∞ ≡ 40. Defin-

ing the new variablesx1 = x andx2 = x′, equation(2.30) can be rewritten as a system in the

following form

x′1 = x2

x′2 =−0.3x2−x3
1+µ cost.

(2.31)

Making use of system(2.31) as the generator, let us constitute the 8−dimensional result-

system

x′1 = x2

x′2 =−0.3x2−x3
1+µ cost

x′3 = 2x3−x4+0.4tan((x1+x3)/10)

x′4 = 17x3−6x4+x2

x′5 =−2x5+0.5sinx6−4x4

x′6 =−x5−4x6− tan(x3/2)

x′7 = 2x7+5x8−0.0003(x7−x8)
3−1.5x6

x′8 =−5x7−8x8+4x5.

(2.32)

System (2.32) is designed according to the chain mechanism indicated in Figure 2.4. In

the coupling between the subsystems with coordinates(x1,x2) and(x3,x4) the former is the

generator and the latter is the replicator. In the second coupling between thesubsystems

with coordinates(x3,x4) and(x5,x6), this time the former is used as the generator although it

was the replicator in the previous coupling. The final coupling between the subsystems with

coordinates(x5,x6) and(x7,x8) is constructed in a similar way. In this exemplification we will

refer to subsystems with coordinates(x1,x2), (x3,x4), (x5,x6) and(x7,x8) as the first, second,

third and the fourth subsystems, respectively.

According to our theoretical discussions, the result-system(2.32) with the parameter value

µ = µ∞ ≡ 40 admits a chaotic attractor in the 8−dimensional phase space, which is obtained
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through period-doubling cascade. For the parameter valueµ between 30 and 40, the bi-

furcation diagrams corresponding to thex2, x4, x6 andx8 coordinates of system (2.32) are

illustrated in Figure 2.7. The picture shown in Figure 2.7, (a) is the bifurcationdiagram of the

system (2.31), while the pictures presented in Figure 2.7, (b), (c) and (d) correspond to the

second, third and the fourth subsystems, respectively. For the parameter values where stable

periodic solutions exist, the one-to-one correspondence between the periodic solutions of the

subsystems is observable in the figure. Moreover, it is seen in Figure 2.7,(b), (c) and (d) that,

likewise the first subsystem, all other subsystems undergo period-doubling bifurcations at the

same parameter values such that forµ = µ∞ all of them are chaotic. One should recognize

that the similarities between the presented bifurcation diagrams indicate morphogenesis of

period-doubling cascade.
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Figure 2.7: The bifurcation diagrams of system (2.32) according to coordinates. The pictures
in (a), (b), (c) and (d) represent the bifurcation diagrams corresponding to thex2, x4, x6 andx8

coordinates, respectively. It is observable that all replicators, likewise the generator, undergo
period-doubling bifurcations at the same values of the parameter and all ofthem are chaotic
for µ = µ∞ ≡ 40.

In Figure 2.8, (a)-(d), we depict the 2−dimensional projections of the trajectory of system

(2.32), with the initial datax1(0) = 2.16, x2(0) = −9.28, x3(0) = −0.21, x4(0) = −2.03,

x5(0) = 3.36, x6(0) = −0.52, x7(0) = 3.07, x8(0) = −0.32, on the planesx1− x2, x3− x4,

x5− x6, andx7− x8, respectively. The picture in Figure 2.8,(a), shows in fact the attractor

of the prior chaos produced by the generator system(2.31) and similarly the illustrations in

Figure 2.8,(b)− (d) correspond to the chaotic attractors of the second, third and the fourth

subsystems, respectively. The resemblance between the shapes of the attractors of the subsys-

tems reflect the morphogenesis of chaos in the result-system(2.32).
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Figure 2.8: 2−dimensional projections of the chaotic attractor of the result-system(2.32).
The pictures in (a), (b), (c) and (d) represent the projections on thex1− x2, x3− x4, x5− x6

and x7 − x8 planes, respectively. The picture in (a) shows the attractor of the prior chaos
produced by the generator system(2.31), and in (b)-(d), the chaotic attractors of the remaining
subsystems are observable. The illustrations in (b)-(d) repeat the structure of the attractor
shown in (a), and these pictures are indicators of the chaos extension.

To obtain a better impression about the chaotic attractor of system(2.32), in Figure 2.9 we

demonstrate the 3−dimensional projections of the trajectory with the same initial data as

above, on thex3 − x5 − x7 andx4 − x6 − x8 spaces. Although we are restricted to make il-

lustrations at most in 3−dimensional spaces and not able to provide a picture of the whole

chaotic attractor, the results shown both in Figure 2.8 and Figure 2.9 give usan idea about the

spectacular chaotic attractor of system(2.32).

We note that system(2.32) exhibits a symmetry under the transformation

K : (x1,x2,x3,x4,x5,x6,x7,x8, t)→ (−x1,−x2,−x3,−x4,−x5,−x6,−x7,−x8, t +π)

and the presented attractors are symmetric around the origin due to the symmetryof the result-

system(2.32) under this transformation.

Now, let us show that the first replicator system which is included inside(2.32) satisfies the

condition(A7).

In the calculations below, we will denote by‖.‖ the matrix norm which is induced by the

usual Euclidean norm inRl . That is,

‖Γ‖= max
{√

ς : ς is an eigenvalue o fΓTΓ
}

(2.33)

for any l × l matrix Γ with real entries, andΓT denotes the transpose of the matrixΓ [98].
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Figure 2.9: 3−dimensional projections of the chaotic attractor of the result-system(2.32). (a)
Projection on thex3− x5− x7 space, (b) Projection on thex4− x6− x8 space. The illustra-
tions presented in (a) and (b) give information about the impressive chaotic attractor in the
8−dimensional space.

When the system

x′3 = 2x3−x4+0.4tan((x1+x3)/10)

x′4 = 17x3−6x4+x2
(2.34)

is considered in the form of system(2.2), one can see that the matrixA can be written as

A=




2 −1

17 −6


 , which admits the complex conjugate eigenvalues−2∓ i.

The real Jordan form of the matrixA is given byJ=




−2 −1

1 −2


 and the identityP−1AP=

J is satisfied whereP=




0 1

−1 4


 . Evaluating the exponential matrixeAt we obtain that

eAt = e−2tP




cost −sint

sint cost


P−1. (2.35)

TakingN = ‖P‖
∥∥P−1

∥∥< 18 andω = 2, one can see that the inequality
∥∥eAt

∥∥≤ Ne−ωt holds

for all t ≥ 0. The functiong : R2×R
2 → R

2 defined as

g(x1,x2,x3,x4) =

(
0.4tan

(
x1+x3

10

)
,x2

)

satisfies the conditions(A4) and(A5) with constantsL1 =
√

2/50, L2 =
√

2 andL3 = 0.08

since the chaotic attractor of system(2.32) satisfies the inequalities|x1| ≤ 6, |x3| ≤ 3/2, and

consequently
∣∣ x1+x3

10

∣∣≤ 3/4. Therefore, the condition(A7) is satisfied.
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In a similar way, for the second replicator system, making use of|x3| ≤ 3/2 once again, one

can show that the functionh : R2×R
2 → R

2 defined as

h(x3,x4,x5,x6) =
(

0.5sinx6−4x4,− tan
(x3

2

))

satisfies the counterparts of the conditions(A4) and(A5)with constantsL1=
√

2/4, L2=4
√

2

andL3 = 1/2.

Now, we shall focus on the third replicator system

x′7 = 2x7+5x8−0.00004(x7−x8)
3− 3

2x6

x′8 =−5x7−8x8+4x5.
(2.36)

The matrix of coefficients of the system(2.36) with the assumed coefficients is

A=




2 5

−5 −8


 .

It can be easily seen that−3 is an eigenvalue of the matrixA with multiplicity 2. The real

Jordan form of the matrixA is J =




−3 1

0 −3


 and the identityJ = P−1AP is satisfied

whereP=




1 0

−1 1/5


 . Evaluating the exponential matrixeAt we have

eAt = e−3tP




1 t

0 1


P−1. (2.37)

If we denote byI the 2×2 identity matrix, then using equation(2.37), one can conclude for

t ≥ 0 that

∥∥eAt
∥∥≤ e−3t ‖P‖

∥∥P−1
∥∥
∥∥∥∥∥∥
I +




0 t

0 0




∥∥∥∥∥∥

≤ e−3t ‖P‖
∥∥P−1

∥∥(1+ t)

= e−2t ‖P‖
∥∥P−1

∥∥ 1+ t
et

≤ e−2t ‖P‖
∥∥P−1

∥∥

since 1+ t ≤ et for all t ≥ 0.

Thus, takingN= ‖P‖
∥∥P−1

∥∥< 10.2 andω = 2, one can see that the inequality
∥∥eAt

∥∥≤Ne−ωt

holds for allt ≥ 0. Furthermore, the functionk : R2×R
2 → R

2 defined by the formula

k(x5,x6,x7,x8) =

(
0.0003(x7−x8)

3− 3
2

x6,4x5

)

satisfies the conditions(A4) and(A5) with constantsL1 = 3
√

2/4,L2 = 4
√

2 andL3 = 0.19,

since the chaotic attractor of system(2.36) satisfies the inequalities|x7| ≤ 8, |x8| ≤ 4. There-

fore,NL3−ω < 0 and condition(A7) is satisfied.
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Remark 2.8.1 We have proved that the replicator system (2.2) exhibits chaos in the senseof

Devaney, Li-Yorke and the one obtained through period-doubling cascade, provided that the

generator system (2.1) or (2.7) exhibits the same types of chaos. Since Lemma 2.2.1 implies

the presence of the criterion (1.9) for the unidirectionally coupled system(2.7)+ (2.2), in

which an autonomous generator is used, we can say that generalized synchronization takes

place in the dynamics of system(2.7)+(2.2).

The next section is devoted to the results about controlling the replicated chaos.

2.9 Controlling Replication of Chaos

In the previous sections, we have theoretically proved replication of chaos for specific types

and controlling the extended chaos is another interesting problem. The nexttheorem and its

corollary indicate a method to control the chaos of the replicator system(2.2) and the result-

system(2.1) + (2.2), respectively, and reveal that controlling the chaos of system(2.1) is

sufficient for this.

Theorem 2.9.1 Assume that for arbitraryε > 0, a periodic solution xp(t) ∈ Ax is stabilized

such that for any solution x(t) of system(2.1) there exist real numbers a and E> 0 such that

the inequality‖x(t)−xp(t)‖< ε holds for t∈ [a,a+E].

Then, the periodic solutionφxp(t)(t)∈Ay is stabilized such that for any solution y(t) of system

(2.2) there exists a number b≥ a such that the inequality
∥∥∥y(t)−φxp(t)(t)

∥∥∥<
(

1+ NL2
ω−NL3

)
ε

holds for t∈ [b,a+E], provided that the number E is sufficiently large.

Proof. Fix an arbitrary solutiony(t) of systemy′ = Ay+g(x(t),y) for some solutionx(t) of

system(2.1). According to our assumption, there exist numbersa andE > 0 such that the

inequality‖x(t)−xp(t)‖ < ε holds fort ∈ [a,a+E]. Let us denoteyp(t) = φxp(t)(t) ∈ Ay. It

is clear that the functionyp(t) is periodic with the same period asxp(t). Sincey(t) andyp(t)

satisfy the integral equations

y(t) = eA(t−a)y(a)+
∫ t

a
eA(t−s)g(x(s),y(s))ds,

and

yp(t) = eA(t−a)yp(a)+
∫ t

a
eA(t−s)g(xp(s),yp(s))ds,

respectively, one has

y(t)−yp(t) = eA(t−a)(y(a)−yp(a))

+
∫ t

a
eA(t−s) [g(x(s),y(s))−g(x(s),yp(s))]ds

+
∫ t

a
eA(t−s) [g(x(s),yp(s))−g(xp(s),yp(s))]ds.
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By the help of the last equation, we have

‖y(t)−yp(t)‖ ≤ Ne−ω(t−a) ‖y(a)−yp(a)‖+
NL2ε

ω
e−ωt (eωt −eωa)

+NL3

∫ t

a
e−ω(t−s) ‖y(s)−yp(s)‖ds.

Let u : [a,a+E]→ [0,∞) be a function defined asu(t) = eωt ‖y(t)−yp(t)‖ . In this case, we

reach the inequality

u(t)≤ Neωa‖y(a)−yp(a)‖+
NL2ε

ω
(
eωt −eωa)+NL3

∫ t

a
u(s)ds.

Implementation of Lemma 2.2 [34] to the last inequality, wheret ∈ [a,a+E], provides us

u(t)≤ NL2ε
ω

eωt +N‖y(a)−yp(a)‖eωaeNL3(t−a)

−NL2ε
ω

eωaeNL3(t−a)+
N2L2L3ε

ω(ω −NL3)
eωt
(

1−e(NL3−ω)(t−a)
)
.

and consequently,

‖y(t)−yp(t)‖ ≤
NL2ε

ω
+N‖y(a)−yp(a)‖e(NL3−ω)(t−a)

−NL2ε
ω

e(NL3−ω)(t−a)+
N2L2L3ε

ω(ω −NL3)

(
1−e(NL3−ω)(t−a)

)

< N‖y(a)−yp(a)‖e(NL3−ω)(t−a)+
NL2ε

ω −NL3
.

If y(a) = yp(a), then clearly‖yp(t)−y(t)‖<
(

1+
NL2

ω −NL3

)
ε , t ∈ [a,a+E]. Suppose that

y(a) 6= yp(a). For t ≥ a+
1

NL3−ω
ln

(
ε

N‖y(a)−yp(a)‖

)
, the inequalitye(NL3−ω)(t−a) ≤

ε
N‖y(a)−yp(a)‖

is satisfied. Assume that the numberE is sufficiently large so thatE >

1
NL3−ω

ln

(
ε

N‖y(a)−yp(a)‖

)
. Thus, taking

b= max

{
a,a+

1
NL3−ω

ln

(
ε

N‖y(a)−yp(a)‖

)}

and

Ẽ = min

{
E,E− 1

NL3−ω
ln

(
ε

N‖y(a)−yp(a)‖

)}

one attains‖y(t)−yp(t)‖<
(

ω −NL3+NL2

ω −NL3

)
ε , for t ∈ [b,b+Ẽ].Here the number̃E stands

for the duration of control for system(2.2). We note thatb≥ a, 0< Ẽ ≤E andb+ Ẽ = a+E.

Hence‖y(t)−yp(t)‖<
(

1+
NL2

ω −NL3

)
ε , for t ∈ [b,a+E].
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The proof of the theorem is finalized.�

An immediate corollary of Theorem 2.9.1 is the following.

Corollary 2.9.1 Assume that the conditions of Theorem2.9.1 hold. In this case, the peri-

odic solution zp(t) =
(

xp(t),φxp(t)(t)
)
∈ A is stabilized such that for any solution z(t) of

system(2.1) + (2.2) there exists a number b≥ a such that the inequality‖zp(t)−z(t)‖ <(
2+ NL2

ω−NL3

)
ε holds for t∈ [b,a+E], provided that the number E is sufficiently large.

Proof. Making use of the inequality

‖z(t)−zp(t)‖ ≤ ‖x(t)−xp(t)‖+
∥∥∥y(t)−φxp(t)(t)

∥∥∥ ,

and the conclusion of Theorem 2.9.1, one can show that the inequality

‖zp(t)−z(t)‖<
(

2+
NL2

ω −NL3

)
ε

holds fort ∈ [b,a+E] and for someb≥ a. The proof is completed.�

Remark 2.9.1 As a conclusion of Theorem 2.9.1, the transient time for control to take ef-

fect may increase and the duration of control may decrease as the number of consecutive

replicator systems increase.

In the remaining part of this section, our aim is to present an illustration which confirms

the results of Theorem 2.9.1, and for our purposes, we will make use of the Pyragas control

method [177]. Therefore, primarily, we continue with a brief explanation ofthis method.

A delayed feedback control method for the stabilization of unstable periodicorbits of a chaotic

system was proposed by Pyragas [177]. In this method, one considersa system of the form

x′ = H(x,q), (2.38)

whereq = q(t) is an externally controllable parameter and forq = 0 it is assumed that the

system(2.38) is in the chaotic state of interest, whose periodic orbits are to be stabilized

[76, 82, 177, 243]. According to Pyragas method, an unstableξ−periodic solution of the

system(2.38) with q = 0, can be stabilized by the control lawq(t) = C[s(t −ξ )−s(t)] ,

where the parameterC represents the strength of the perturbation ands(t) = σ [x(t)] is a

scalar signal given by some function of the state of the system.

It is indicated in [82] that in order to apply the Pyragas control method to the chaotic Duffing

oscillator given by the system

x′1 = x2

x′2 =−0.10x2+0.5x1
(
1−x2

1

)
+0.24sint,

(2.39)
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one can construct the corresponding control system

v′1 = v2

v′2 =−0.10v2+0.5v1
(
1−v2

1

)
+0.24sin(v3)+C[v2(t −2π)−v2(t)]

v′3 = 1,

(2.40)

whereq(t) = C[v2(t −2π)−v2(t)] is the control law and an unstable 2π−periodic solution

can be stabilized by choosing an appropriate value for the parameterC.

Now, let us combine system (2.39) with two consecutive replicator systems and set up the

following 6−dimensional result-system

x′1 = x2

x′2 =−0.10x2+0.5x1
(
1−x2

1

)
+0.24sint

x′3 = x4−0.1x1

x′4 =−3x3−2x4−0.008x3
3+1.6x2

x′5 = x6+0.6x3

x′6 =−3.1x5−2.1x6−0.007x3
5+2.5x4.

(2.41)

In system (2.41) the subsystems with coordinates(x3,x4) and(x5,x6) correspond to the first

and the second replicator systems, respectively. Since our procedureof morphogenesis is

valid for specific types of chaos such as in Devaney’s and Li-Yorke sense and through period-

doubling cascade, we expect that our procedure is also applicable to any other chaotic system

with an unspecified type of chaos. Accordingly, system(2.41) is chaotic since the generator

system(2.39) is chaotic.

Theorem 2.9.1 specifies that in order to control the chaos of system (2.41) one should control

the chaos of the generator system, which is the subsystem of (2.41) with coordinates(x1,x2).

In accordance with this purpose, we will use the Pyragas control method by means of the

system

v′1 = v2

v′2 =−0.10v2+0.5v1
(
1−v2

1

)
+0.24sin(v3)+C[v2(t −2π)−v2(t)]

v′3 = 1

v′4 = v5−0.1v1

v′5 =−3v4−2v5−0.008v3
4+1.6v2

v′6 = v7+0.6v4

v′7 =−3.1v6−2.1v7−0.007v3
6+2.5v5,

(2.42)

which is the control system corresponding to (2.41).

Let us consider a solution of system(2.42) with the initial datav1(0) = 0.2, v2(0) = 0.2,

v3(0) = 0, v4(0) = −0.5, v5(0) = 0.1, v6 = −0.2 andv7(0) = 0.1. We let the system evolve

freely takingC = 0 until t = 60, and at that moment we switch on the control by taking

C = 0.84. At t = 200, we switch off the control and start to use the value of the parameter

C = 0 again. In Figure 2.10 one can see the graphs of thev2,v5,v7 coordinates of the solu-

tion. Supporting the result of Theorem 2.9.1, it is observable in Figure 2.10 that stabilizing
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a 2π−periodic solution of the generator system provides the stabilization of the correspond-

ing 2π−periodic solutions of the replicator systems. After switching off the control, the

2π−periodic solutions of the generator and replicators lose their stability and chaos emerges

again. For the coordinatesv1,v4 andv6 we have similar results which are not just pictured

here.
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Figure 2.10: Pyragas control method applied to the result-system(2.41) with the aid of the
corresponding control system(2.42). The pictures in (a), (b) and (c) show the graphs of the
v2, v5 andv7 coordinates, respectively. The result of Pyragas control method applied to the
generator system(2.39) is seen in (a). Through this method, the 2π−periodic solution of
the generator and accordingly the 2π−periodic solutions of the first and the second replicator
systems are stabilized. In other words, the chaos of the result-system(2.41) is controlled. The
control starts att = 60 and ends att = 200, after which emergence of the chaos is observable
again.

2.10 Discussion

In this part of the chapter, we intend to consider not rigorously proved,but interesting phe-

nomena which can be considered in the framework of our results. So, we shall give some

additional light on the results obtained above and say about the possibility for the replication

of intermittency, Shil’nikov orbits and relay systems. We also demonstrate the possibility of

quasiperiodic motions as an infinite basis of chaos.

We start our discussions with replication of intermittency.
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2.10.1 Replication of intermittency

In the previous sections, we have rigorously proved replication of specific types of chaos such

as period-doubling cascade, Devaney’s and Li-Yorke chaos. Consequently, one can expect

that the same procedure also works for the intermittency route.

Pomeau and Manneville [175] observed chaos through intermittency in the Lorenz system

(2.19), with the coefficientsσ = 10, b= 8/3 and values ofr slightly larger than the critical

valuerc ≈ 166.06. To observe intermittent behavior in the Lorenz system, let us consider a

solution of system(2.19) together with the coefficientsσ = 10, b = 8/3, r = 166.25 using

the initial datax1(0) =−23.3, x2(0) = 38.3 andx3(0) = 193.4. The time-series for thex1, x2

andx3 coordinates of the solution are indicated in Figure 2.11, where one can see that regular

oscillations are interrupted by irregular ones.
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Figure 2.11: Intermittency in the Lorenz system (2.19), whereσ = 10, b = 8/3 andr =
166.25. (a) The graph of thex1−coordinate, (b) The graph of thex2−coordinate, (c) The
graph of thex3−coordinate.

To perform replication of intermittency, let us consider the Lorenz system(2.19) as a gener-

ator and set up the 6−dimensional result-system

x′1 = σ (−x1+x2)

x′2 =−x2+ rx1−x1x3

x′3 =−bx3+x1x2

x′4 =−x4+4x1

x′5 = x6+2x2

x′6 =−3x5−2x6−0.00005x3
5+0.5x4,

(2.43)

again with the coefficientsσ = 10, b = 8/3 andr = 166.25. It can be easily verified that

condition(A7) is valid for system(2.43). We consider the trajectory of system(2.43) cor-

responding to the initial datax1(0) = −23.3, x2(0) = 38.3, x3(0) = 193.4, x4(0) = −17.7,
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x5(0) = 11.4, andx6(0) = 2.5, and represent the graphs for thex4,x5 andx6 coordinates in

Figure 2.12 such that the intermittent behavior in the replicator system is observable. The sim-

ilarity between the graphs of the coordinates corresponding to the generator and the replicator

counterpart reveals the replication of intermittency.
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Figure 2.12: Intermittency in the replicator system. The pictures in (a), (b) and (c) show the
graphs of thex4, x5 andx6 coordinates, respectively. The analogy between the time-series of
the generator and the replicator systems indicates the replication of intermittency.

2.10.2 Replication of Shil’nikov orbits

To illustrate that by our method it may also be possible to replicate strange attractors [71, 85,

232], let us provide simulations of homoclinic and complicated Shil’nikov orbits (Figure 2.13

and Figure 2.14 correspondingly).

As a model for Shilnikov’s orbits, the paper [26] considers the system

x′1 = x2

x′2 = x3

x′3 =−x2−βx3+ fµ(x1),

(2.44)

where

fµ(x) =

{
1−µx, if x> 0

1+αx, if x≤ 0.
(2.45)

The valuesα = 0.633625, β = 0.3375 and the parameterµ used in system (2.44) are taken

from [92]. There exists an equilibrium pointe0 = (−1/α ,0,0) of system (2.44) and the

eigenvalues of the matrix of linearization ate0 are 0.4625,−0.4±1.1i such that the condition

of the Shil’nikov’s theorem about eigenvalues [203] is satisfied. For values of the parameter
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µ near 2.16 system (2.44) possesses a special type homoclinic orbit–Shil’nikov orbit, and

its presence implies chaotic dynamics [92]. In this case, Shil’nikov’s theorem asserts that

every neighborhood of the homoclinic orbit contains a countably infinite number of unstable

periodic orbits [26, 203].

To demonstrate numerically the replication of a Shil’nikov orbit, let us considerthe following

system

x′1 = x2

x′2 = x3

x′3 =−x2−βx3+ fµ(x1)

x′4 =−2x4+x1

x′5 =−0.6x5+2x2+0.1x3
2

x′6 =−1.2x6+0.001sin(x6)+x3,

(2.46)

where, again, the functionfµ(x) is given by formula (2.45).

System (2.44) is used as a generator in system (2.45), where the last three coordinates are of

a replicator. Let us consider system (2.46) with the valuesα = 0.633625, β = 0.3375 and

µ = 2.16 once again. In Figure 2.13 we show the trajectory of this system with initial data

x1(0)−1.5759, x2(0) = 0, x3(0) = 0, x4(0) =−0.78795, x5(0) = 0 andx6(0) = 0. The picture

in Figure 2.13, (a), where we illustrate the projection of the trajectory on thex1 − x2 − x3

space represents, in fact, the Shil’nikov orbit corresponding to the generator system (2.44).

On the other hand, the picture in Figure 2.13, (b), shows the projection of the trajectory on

thex4−x5−x6 space and in this picture the replication of the Shil’nikov orbit is observable.
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Figure 2.13: Replication of a Shil’nikov type homoclinic orbit. In picture (a), one can see
the projection on thex1−x2−x3 space of the trajectory of system (2.46) corresponding to the
initial datax1(0)−1.57590, x2(0) = 0, x3(0) = 0, x4(0) =−0.78795, x5(0) = 0 andx6(0) = 0.
The picture in (b) shows the projection on thex4− x5− x6 space of the same trajectory. The
parameter valuesα = 0.633625, β = 0.3375 andµ = 2.16 are used in the simulation. The
picture in (a) represents a Shil’nikov type homoclinic orbit correspondingto the generator
system (2.44), while the picture in (b) shows its replication through the system(2.46).
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Next, we consider system (2.46) with the valuesα = 0.633625, β = 0.3375, µ = 0.83 and

take the trajectory of this system with the same initial data as above. In Figure 2.14, (a) and

(b), we represent the projections of this trajectory on thex1−x2−x3 andx4−x5−x6 spaces,

respectively. The picture in (a) represents the complicated behavior of the generator system

(2.44) and one can see in picture (b) the replication of this behavior.
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Figure 2.14: Projections of a complicated orbit of system (2.46) with the values α =
0.633625, β = 0.3375 andµ = 0.83. (a) Projection on thex1 − x2 − x3 space, (b) Pro-
jection on thex4 − x5 − x6 space. The initial datax1(0)− 1.57590, x2(0) = 0, x3(0) = 0,
x4(0) = −0.78795, x5(0) = 0, x6(0) = 0 is used for the illustration. The picture in (a) repre-
sents the behavior of the trajectory corresponding to the generator (2.44), while the picture in
(b) illustrates its replication.

We suppose that theoretical affirmation of our simulation results can be doneif one considers

interpretation of Shil’nikov’s theorem [203] for the multidimensional replicator. That is, we

are still questioning whether our approach can be somehow combined with methods indicating

chaos through Shil’nikov type strange attractors [71, 232]. At least, it iseasy to see that a

homoclinic trajectory exists for a replicator as well as a denumerable set of unstable periodic

solutions.

In next our discussion, we will emphasize by means of simulations the morphogenesis of

the double-scroll Chua’s attractor in a unidirectionally coupled open chainof Chua circuits.

Approaches for the generation of hyperchaotic systems have already been discussed making

use of Chua circuits which are all chaotic [24, 115]. It deserves to remark that to create

hyperchaotic attractors in previous papers, others consider both involved interacting systems

chaotic, but in our case only the first link of the chain is chaotic and other consecutive Chua

systems are all non-chaotic.

65



2.10.3 Morphogenesis of the double-scroll Chua’s attractor

There is a well known result of the chaoticity based on the double-scroll Chua’s attrac-

tor [145]. It was proven first in the paper [52] rigorously, and the proof is based on the

Shil’nikov’s theorem [203]. Since the Chua circuit and its chaotic behavior is of extreme im-

portance from the theoretical point of view and its usage area in electricalcircuits by radio

physicists and nonlinear scientists from other disciplines, one can suppose that morphogenesis

of the chaos will also be of a practical and a theoretical interest.

In this part, we just take into account a simulation result which supports that morphogenesis

idea can be developed also from this point of view.

Let us consider the dimensionless form of the Chua’s oscillator given by the system

x′1 = kα [x2−x1− f (x1)]

x′2 = k(x1−x2+x3)

x′3 = k(−βx2− γx3)

f (x) = bx+0.5(a−b)(|x+1|+ |x−1|) ,

(2.47)

whereα ,β ,γ ,a,b andk are constants.

In paper [53], it is indicated that system(2.47) with the coefficientsα = 21.32/5.75, β =

7.8351, γ = 1.38166392/12, a=−1.8459, b=−0.86604 andk= 1 admits a stable equilib-

rium.

In what follows, as the generator, we make use of system(2.47) together with the coefficients

α = 15.6, β = 25.58, γ = 0, a=−8/7, b=−5/7 andk= 1 such that a double-scroll Chua’s

attractor takes place [21].

Consider the following 12−dimensional result-system

x′1 = 15.6[x2− (2/7)x1+(3/14)(|x1+1|+ |x1−1|)]
x′2 = x1−x2+x3

x′3 =−25.58x2

x′4 = (21.32/5.75)[x5−0.13396x4+0.48993(|x4+1|+ |x4−1|)]+2x1

x′5 = x4−x5+x6+5x2

x′6 =−7.8351x5− (1.38166392/12)x6+2x3

x′7 = (21.32/5.75)[x8−0.13396x7+0.48993(|x7+1|+ |x7−1|)]+2x4

x′8 = x7−x8+x9+3x5

x′9 =−7.8351x8− (1.38166392/12)x9−0.001x6

x′10 = (21.32/5.75)[x11−0.13396x10+0.48993(|x10+1|+ |x10−1|)]+4x7

x′11 = x10−x11+x12−0.1x8

x′12 =−7.8351x11− (1.38166392/12)x12+2x9.

(2.48)

System (2.48) consists of four unidirectionally coupled Chua circuits suchthat the subsystems

with coordinates(x1,x2,x3), (x4,x5,x6), (x7,x8,x9) and(x10,x11,x12) correspond to the first,

second, third and the fourth links of the open chain of circuits.

66



In Figure 2.15, we simulate the 3−dimensional projections on thex1−x2−x3 andx4−x5−x6

spaces of the trajectory of the result-system(2.48) with the initial datax1(0) = 0.634, x2(0) =

−0.093, x3(0) = −0.921, x4(0) = −8.013, x5(0) = 0.221, x6(0) = 6.239, x7(0) = −50.044,

x8(0) =−0.984, x9(0) = 48.513, x10(0) =−256.325, x11(0) = 7.837, x12(0) = 264.331. The

projection on thex1 − x2 − x3 space shows the double-scroll Chua’s attractor produced by

the generator system(2.47), and projection on thex4− x5− x6 space represents the chaotic

attractor of the first replicator.
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Figure 2.15: 3−dimensional projections of the chaotic attractor of the result-system (2.48).
(a) Projection on thex1−x2−x3 space, (b) Projection on thex4−x5−x6 space. The picture
in (a) shows the attractor of the original prior chaos of the generator system (2.47) and (b)
represents the attractor of the first replicator. The resemblance betweenshapes of the attractors
of the generator and the replicator systems makes the extension of chaos apparent.

In a similar way, we display the projections of the same trajectory on thex7 − x8 − x9 and

x10−x11−x12 spaces, which correspond to the attractors of the second and the third replicator

systems, in Figure 2.16. The illustrations shown in Figure 2.15 and Figure 2.16 indicate the

extension of chaos in system (2.48). Possibly the result-system(2.48) produces a double-

scroll Chua’s attractor with hyperchaos, where the number of positive Lyapunov exponents

are more than one and even four.

The type of chaos for the double-scroll Chua circuit is proposed in paper [52]. It is an inter-

esting problem to prove that this type of chaos can be replicated through themethod discussed

in our study. Nevertheless, we show by simulations that the regular behavior in Chua circuits

placed in the extension mechanism can also be seen. This means that next special investiga-

tion has to be done. Moreover, this shows how one can use morphogenesisnot only for chaos,

but also for Chua circuits by uniting them in complexes in electrical (physical)sense, and ob-

serving the same properties as a unique separated Chua circuit admits. Thisis an interesting

problem which can give a light for the complex behavior of huge electricalcircuits.
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Figure 2.16: 3−dimensional projections of the chaotic attractor of the result-system (2.48).
(a) Projection on thex7−x8−x9 space, (b) Projection on thex10−x11−x12 space. The pic-
tures in (a) and (b) demonstrate the attractors generated by the second and the third replicator
systems, respectively.

2.10.4 Quasiperiodicity through chaos replication

Now, let us indicate that if there are more than one generator system then thechaos extension

mechanism will lead to some new forms such as periodicity gives birth to quasiperiodicity.

In paper [69], it is mentioned that the Duffing equation

x′′+0.168x′−0.5x
(
1−x2)= µ sint, (2.49)

whereµ is a parameter, admits the chaos through period-doubling cascade at the parameter

valueµ = µ∞ ≡ 0.21. That is, at the parameter valueµ = µ∞, for each natural numberk the

equation(2.49) admits infinitely many periodic solutions with periods 2kπ. Using the change

of variablest = 2πs andx(t) = y(s), and relabelings ast, one attains the following equation

y′′+0.168πy′−0.5π2y
(
1−y2

)
= π2µ sin(πt). (2.50)

Likewise equation(2.49), it is clear that equation(2.50), when considered withµ = µ∞, also

admits the chaos through period-doubling cascade and has infinitely many periodic solutions

with periods 2,4,8, . . . .

Using the new variablesx1 = x, x2 = x′ andx3 = y, x4 = y′, one can convert the equations

(2.49) and(2.50) to the systems

x′1 = x2

x′2 =−0.168x2+0.5x1
(
1−x2

1

)
+µ sint

(2.51)
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and

x′3 = x4

x′4 =−0.168πx4+0.5π2x3(1−x2
3)+π2µ sin(πt),

(2.52)

respectively. Now, we shall make use both of the systems(2.51) and(2.52), with µ = µ∞,

as generators to obtain a chaotic system with infinitely many quasiperiodic solutions. We

mean that the two systems admit incommensurate periods and consequently their influence

on the replicator will be quasiperiodic. In this case, one can expect that replicator will expose

infinitely many quasiperiodic solutions. For that purpose, let us consider the 6−dimensional

result-system

x′1 = x2

x′2 =−0.168x2+0.5x1(1−x2
1)+0.21sint

x′3 = x4

x′4 =−0.168πx4+0.5π2x3(1−x2
3)+0.21π2sin(πt)

x′5 = x6+x1+x3

x′6 =−3x5−2x6−0.008x3
5+x2+x4,

(2.53)

where the last two equations are of a replicator.

To reveal existence of quasiperiodic solutions embedded in the chaotic attractor of system

(2.53) we control the chaos of system (2.53) by the Pyragas method through the following

control system

v′1 = v2

v′2 =−0.168v2+0.5v1(1−v2
1)+0.21sinv3+C1(v2(t −2π)−v2(t))

v′3 = 1

v′4 = v5

v′5 =−0.168πv5+0.5π2v4(1−v2
4)+0.21π2sin(πv6)+C2(v5(t −2)−v5(t))

v′6 = 1

v′7 = v8+v1+v4

v′8 =−3v7−2v8−0.008v3
7+v2+v5.

(2.54)

We take into account the solution of the result-system(2.53) with the initial datav1(0) = 0.4,

v2(0) =−0.1, v3(0) = 0, v4(0) =−0.2, v5(0) = 0.5, v6(0) = 0, v7(0) = 1.1 andv8(0) = 2.5.

The simulation results are shown in Figure 2.17. The control mechanism starts att = 35

and ends att = 120. The chaos not only in the generator systems, but also in the replicator

counterpart is observable before the control is switched on. During thecontrol, we make use

of the values ofC1 = 0.62 andC2 = 2.58 to stabilize the periodic solutions corresponding to

the generator systems(2.51) and(2.52) with periods 2π and 2, respectively. Up tot = 35 and

aftert = 120 the valuesC1 =C2 = 0 are used. Betweent = 35 andt = 120, the quasiperiodic

solution of the replicator is stabilized and aftert = 120 chaos in the system(2.53) develops

again.

Possibly the obtained simulation result and previous theoretical discussionscan give a support

to the idea ofquasiperiodical cascadefor the appearance of chaos which can be considered

as a development of the popular period-doubling route to chaos.
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Figure 2.17: Pyragas control method applied to the result-system(2.53) by means of the
corresponding control system (2.54). The pictures in (a),(b) and (c)represent the graphs of
the v2, v5 and v8 coordinates, respectively. The simulation for the result-system(2.53) is
provided such that in (a) and (b) periodic solutions with incommensurate periods 2 and 2π
are controlled by the Pyragas method, and in (c), a quasiperiodic solution of the replicator
system is pictured. The control starts att = 35 and ends att = 120. After switching off the
control, chaos emerges again and irregular behavior reappears.

In paper [202], it has been mentioned that, in general, in the place of countable set of periodic

solutions to form chaos, one can take an uncountable collection of Poissonstable motions

which are dense in a quasi-minimal set. This can be also observed in Horseshoe attractor

[207]. These emphasize that our simulation of quasiperiodic solutions can be considered as

another evidence for the theoretical results.

2.10.5 Replicators with nonnegative eigenvalues

We recall that in our theoretical discussions, all eigenvalues of the realvalued constant matrix

A, used in system(2.2), are assumed to have negative real parts. Now, as open problems

from the theoretical point of view, we shall discuss through simulations the problem of chaos

replication in the case when the matrixA possesses an eigenvalue with positive or zero real

part.

First, we are going to concentrate on the case of the existence of an eigenvalue with positive

real part. Let us make use of the Lorenz system(2.19) together with the coefficientsσ = 10,

r = 28 andb= 8/3 as the generator, which is known to be chaotic [137, 211], and set up the
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6−dimensional result-system

x′1 =−10x1+10x2

x′2 =−x2+28x1−x1x3

x′3 =−(8/3)x3+x1x2

x′4 =−2x4+x1

x′5 =−3x5+x2

x′6 = 4x6−x3
6+x3.

(2.55)

It is crucial to note that system(2.55) is of the form(2.1)+(2.2), where the matrixA admits

the eigenvalues−2,−3 and 4, such that one of them is positive. We take into account the

solution of system(2.55) with the initial datax1(0) = −12.7, x2(0) = −8.5, x3(0) = 36.5,

x4(0) = −3.4, x5(0) = −3.2, x6(0) = 3.7 and visualize in Figure 2.18 the projections of the

corresponding trajectory on thex1−x2−x3 andx4−x5−x6 spaces. It is seen that the repli-

cator system admits the chaos and the input-output mechanism works for system(2.55).
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Figure 2.18: 3−dimensional projections of the chaotic attractor of the result-system(2.55).
(a) Projection on thex1 − x2 − x3 space, (b) Projection on thex4 − x5 − x6 space. In (a),
the famous Lorenz attractor produced by the generator system(2.19) with coefficientsσ =
10, r = 28 andb = 8/3 is shown. In (b), as in usual way, the projection of the chaotic
attractor of the result-system(2.55), which can separately be considered as a chaotic attractor,
is presented. Possibly one can call the attractor of the result-system as 6D Lorenz attractor.

Next, we continue to our discussion with the case of the existence of an eigenvalue with a

zero real part. This time we consider the chaotic Rössler system [180, 211] described by

x′1 =−(x2+x3)

x′2 = x1+0.2x2

x′3 = 0.2+x3(x1−5.7)

(2.56)
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as the generator, and constitute the result-system

x′1 =−(x2+x3)

x′2 = x1+0.2x2

x′3 = 0.2+x3(x1−5.7)

x′4 =−4x4+x1

x′5 =−x5+x2

x′6 =−0.2x3
6+x3.

(2.57)

In this case, one can consider system(2.57) as in the form of(2.1)+ (2.2) where the ma-

trix A is a diagonal matrix with entries−4,−1,0 on the diagonal and admits the number 0

as an eigenvalue. We simulate the solution of system(2.57) with the initial datax1(0) =

4.6,x2(0) =−3.3,x3(0) = 0,x4(0) = 1,x5(0) =−3.7 andx6(0) = 0.8. The projections of the

trajectory on thex1−x2−x3 andx4−x5−x6 spaces are seen in Figure 2.19.
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Figure 2.19: 3−dimensional projections of the chaotic attractor of the result-system(2.57).
(a) Projection on thex1−x2−x3 space, (b) Projection on thex4−x5−x6 space. The picture
in (a) indicates the famous Rössler attractor produced by the generator system(2.56).

Figure 2.19 confirms that the replicator mimics the complex behavior of the generator system

even if the number 0 is an eigenvalue. The results of the simulations request more detailed

investigation, which concern not only the theoretical existence of chaos,but also its resistance

and stability. The attractor of the result-system(2.57) can possibly be called as 6D Rössler

attractor. The similarity between the illustrations (a) and (b) supports the morphogenesis of

chaos.
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CHAPTER 3

CHAOTIC PERIOD-DOUBLING AND OGY CONTROL FOR
THE FORCED DUFFING EQUATION

3.1 Introduction and Preliminaries

The Duffing equation is a second order differential equation of the type

x′′+c1x′+c2x+c3x3 = Bcos(ω0t), (3.1)

wherex is a function oft andB, c1, c2, c3, ω0 are fixed real numbers [82].

Ueda examined chaos in an electrical circuit with a nonlinear inductor [225, 227] using the

Duffing equation, and gave description for the parameters of these type of equations [226].

Moreover, in [27, 44, 83, 153, 155], the Duffing equations have been used to model physical

systems. Further, Thompson and Stewart [218] provided many more details on the equation

(3.1).

In the last decades, the effect of non-smoothness and discontinuity forthe chaos phenom-

ena was widely investigated and realized [7, 8, 9, 10, 11, 12, 13, 28, 29, 124, 230]. Non-

smooth nonlinear characteristics are often encountered within the system components while

considering real world problems and commonly used in control systems, such as mechanical,

hydraulic, magnetic, biomedical, and physical systems [214, 245]. Moreover, these nonlinear-

ities limit the system performance and it is known that they vary with time [245]. For systems

with non-smooth characteristics, the control problem is very complicated andbecomes even

more difficult to handle in the case of unknown time-varying parameters [214, 245]. There

have been developed control techniques to diminish the effects of unknown non-smooth non-

linearities [50, 125].

One of the important applications of nonlinear oscillators subjected to non-smooth pertur-

bations is the vibro-impact oscillators which has a wide spectrum of studies among scien-

tists and engineers. In the presence or absence of friction, the motion of vibro-impact sys-

tems is usually described by non-smooth nonlinear differential equations [31, 43, 65, 85,

101, 121, 157, 161, 162, 172, 185, 228, 234, 246]. Such systems have a complex dynamic

structure that comprises chaotic motions, subharmonic oscillations, and coexistence of dif-

ferent attractors for the same excitation and system parameters under different initial data
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[29, 50, 101, 125, 214, 228, 245]. In general, these systems involvemultiple impact interac-

tions in the form of jumps in the state space. On the other hand, vibro-impact dynamics has

applications on lumped systems such as bouncing ball on a vibrating platform, mass-spring-

dashpot systems, and on continuous systems such as strings and beams, which differ from

lumped systems [101]. In papers [127, 128], feedback based control of impact oscillators

under asymmetric double-sided barriers is proposed and it was shown that chaotic impact os-

cillators can be controlled and kept in a desired position using a synchronization scheme. The

OGY control method is applied to impact oscillators and stabilized their chaotic attractor on

period−1 and period−2 orbits using small time-dependent perturbations of the driving fre-

quency [106]. Moreover, some results pertaining to chaotic motions in a periodically forced

impacting system, which is analogous to the version of Duffing equations with negative linear

stiffness have been presented in [200].

Our investigation demonstrates that processes comprising discontinuity phenomena is con-

venient to generate rigorously approved chaotic motions from the theoretical point of view.

This is not surprising since the same we have already for discrete equations such as the lo-

gistic map and the H´enon map [105, 186]. But in our case we have proved assertively the

presence of the chaos for continuous dynamics. We want to emphasize that despite the most

popular and well known examples of chaos are the Lorenz systems and theVan der Pol equa-

tions, there are not definitely proved results of the chaos for them. Most advanced result of

the Lorenz systems is given by J. Guckenheimer [87], where he considers not the system it-

self but the geometric approach. Similarly, the proof for the Van der Pol equations has been

made by Levi [130] for the simplified version of the equation. On the other hand, for the

Duffing equations, the occurrence of chaotic period-doubling is discussed by making simula-

tions of bifurcation diagrams, but not proved mathematically [84, 188, 230]. Consequently,

the problem of discovering chaos rigorously with precise indication which kind of chaos is

admitted continuous to be very actual for the nonlinear science. For modifiedsystems, in our

papers [7, 8, 9, 10, 11, 12, 13], we provide the method which allows to analyze the problems

rigorously. Of course we do not pretend that our results even are begin of the solution for

the already discussed equation. But we hope this constructive approach may give a light on

solutions of the problems in future.

Formation of chaos in systems with arbitrary large dimension is one of the significant con-

sequences of our paper. More precisely, our results show that the chaos of one dimensional

maps can be extended to multidimensional systems. In addition to this, extension ofchaos

control techniques for low dimensional maps to multidimensional systems is another result.

Therefore, the present chapter leads for the applications of theoretical results for one dimen-

sional maps to high dimensional sytems. In this sense, it is a continuation of ourinvestigations

which we start in [7, 8, 9, 10, 11, 12, 13, 14, 16].

In the paper [215], besides the familiar period-doubling scenario to chaos, intermittent and

quasiperiodic routes to chaos as well as period-adding sequences andFarey sequences are

introduced in a nonlinear non-autonomous circuit, and verified experimentally and through

simulations. On the other hand, a control method without feedback is developed for control-
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ling a Duffing equation which admits chaos through the period-doubling cascade [111, 114].

Two different modifications of the OGY control method [70], which can leadto a better per-

formance of the control and the method presented by Pyragas [177] areapplied to the classical

Duffing oscillator [70, 82], but in these cases the nature of chaos is notprecise. Oppositely, in

our results, we prove the type of the existing chaos theoretically and use theOGY method not

for the classical Duffing equation but for the one which involves a pulse function, such that

we emphasis it to be considered as a primary object of analysis.

Switching systems have important applications in high dimensional systems and hybrid sys-

tems [8, 191, 229], and the system taken into account in this chapter can beconsidered as one

example. Moreover, the systems with impacts are convenient for simulations. The method

and solutions that we present can be applied to hybrid systems in the future,for instance to

impulsive systems [7, 185]. In this chapter, we construct chaos with prescribed properties

such that chaos developed by using the logistic map with slightly deviated characteristics.

Consequently, it can be effectively used for the security of communications and information

using our chaos to mask and unmask [114, 118, 123, 238]. Since we have the chaos with

known properties, it can also be used in master-slave systems and correspondingly to control

these type of systems [168, 219]. Moreover, the research in the artificial neural networks em-

phasize that the deterministic chaos is a powerful mechanism for the storageand retrieval of

information in the dynamics of artificial neural networks [59, 60, 139, 222]. Therefore, our

results are also applicable to neuroscience.

The main object of the present investigation is the following modified Duffing equation

x′′+d1x′+d2x+d3x3 = Dcos(kπt)+ν(t, t0,µ), (3.2)

whered1,d2,d3,D are real numbers andk is a natural number, the scalar pulse function

ν(t, t0,µ) is defined below.

Using the new variablesx1 = x andx2 = x′, one can reduce the differential equation (3.2) to

the system

x′1 = x2

x′2 =−d1x2−d2x1−d3x3
1+Dcos(kπt)+ν(t, t0,µ).

(3.3)

Let R andN denote the sets of real numbers and natural numbers respectively, andI the unit

interval[0,1].

In this study, we will investigate also the system,

z′(t) = Az(t)+ f (t,z)+ν(t, t0,µ)
z(t0) = z0, (t0,z0) ∈ I ×R

n,
(3.4)

which is the general form of the system (3.3).

In system (3.4),z∈R
n, t ∈R+ = [0,∞), then×n constant real valued matrixA has real parts

of eigenvalues all negative. The functionf (t,z) satisfies the periodicity conditionf (t+2,z) =

f (t,z), t ∈ R+, and is Lipschitzian with respect toz with the Lipschitz constantL.
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Let us now, introduce the functionν(t, t0,µ) as follows

ν(t, t0,µ) =

{
m0, if ζ2i(t0,µ)< t ≤ ζ2i+1(t0,µ)
m1, if ζ2i+1(t0,µ)< t ≤ ζ2i+2(t0,µ),

(3.5)

wherei is a nonnegative integer andm0,m1 ∈R
n, such thatm0 6=m1. The sequenceζ (t0,µ) =

{ζi(t0,µ)}, i ≥ 0, is defined through the equationζi(t0,µ) = i +κi(t0,µ), with κi+1(t0,µ) =
h(κi(t0,µ),µ), κ0(t0,µ) = t0, andh(s,µ) = µs(1−s) is the logistic map, the central auxiliary

instrument in the present chapter.

We shall need those values of the parameterµ , which are between 3.57 and 4, such that the

period-doubling cascade accumulates there to provide the chaotic structure [64, 179] for the

logistic map,h(s,µ). In paper [103], it was proved that the measure of suchµ is positive.

In the sequel, we fix one of them, and notate it asµ∞. Moreover, we will not indicate the

dependence on the parameterµ , if there is no need to specify it. Thus, for everyt0 ∈ I , the

sequenceκ(t0) of real numbersκi , i ≥ 0,κ(t0) ⊂ I is defined. The sequenceζ (t0) has the

periodicity property if there exists a natural numberp such thatζi+p = ζi + p, for all i ≥ 0.

In other words, ifκi+p = κi , i ≥ 0. The main object of the present chapter is to stabilize the

periodic solutions of the chaotic structure generated by the differential equation (3.2).

We should point out that the adjoint linear equation of the non-perturbed Duffing equation

x′′+d1x′+d2x+d3x3 = Dcos(kπt) (3.6)

has eigenvalues both with negative real parts. The logistic map, which has the positive Lya-

punov exponent [89, 198], gives rise to the emergence of chaos in themain equation (3.2) and

generates the switching moments. That is, the chaotic scenario in our model is developing

“along” the time axis.

We suppose that the main reason of dealing an equation of the type of equation (3.2) is that

the generated chaos can give the way of analysis of systems with discontinuous perturbations,

which is unfortunately far of to be complete [84].

The chapter is organized as follows. In the next section, the existence ofthe chaotic attractor

is proved, through the period-doubling cascade. The third section contains results of the OGY

control of the chaos.

3.2 The Chaos Emergence

3.2.1 The cascade: The analysis results

Let us start with the analysis of system (3.4). In what follows we assume that

sup
z∈Rn,t∈R+

‖ f (t,z)‖= M0 < ∞

76



and we denote the maximum of the real parts of the eigenvalues of matrixA by σ . Note that

σ is negative.

There exist a positive numberN and a negative numberα ≥ σ such that
∥∥eAt

∥∥ ≤ Neαt , for

t ≥ 0. Therefore, we can find a natural numberp0 such that
∥∥eAp0

∥∥≤ Neα p0 < 1. For p≥ p0,

we have
∥∥(I −eAp)−1

∥∥≤ 1
1−Neα p ≤ 1

1−Neα p0
.

Let us denote

K = max

{
max

1≤i≤p0−1

∥∥(I −eAi)−1
∥∥ , 1

1−Neα p0

}
, (3.7)

and in the sequel we assume also that

−KNL
α

< 1. (3.8)

A function z(t), z(t0) = z0 is a solution of (3.4) on[t0,∞), t0 ∈ I if: (i) z(t) is continuous on

[t0,∞), (ii) the derivativez′(t) exists at each pointt ∈ [t0,∞) with the possible exception of the

pointsζi(t0), i ≥ 0 , where left sided derivatives exist, (iii) equation (3.4) is satisfied on each

interval(ζi(t0),ζi+1(t0)], i ≥ 0 [10].

In [7, 9, 10, 11, 12, 13] we develop the approach, when a system of differential equations

inserted with a chaotic element, the generator of switching moments, produces achaotic at-

tractor. It is proved that the attractor presents Li-Yorke [9, 12] and Devaney [10] chaos, as well

as a quasi-minimal set [11]. In the same time, it is known that both Li-Yorke andDevaney

scenario of chaos emergence are difficult in the simulation with the logistic map. Moreover,

speaking generally, period-doubling cascade route to the chaos is most celebrated in simula-

tions. That is why, in the present article we consider the route to identify a chaotic structure

for the equation. One must say, also that, it is a difficult task to observe chaos in multidimen-

sional systems, exceptionally with clear theoretically supported properties.The next result is

suitable for systems with arbitrary finite dimension.

Consider the sequence of period-doubling bifurcation values{µm}, µm → µ∞ asm→ ∞ for

the logistic maph(s,µ) = µs(1−s) [197].

We shall say that the system (3.4) has a chaos through the period-doubling cascade atµ = µ∞,

if for eachp−periodic sequence{κi(t0,µ)} , p∈N, wheret0 ∈ I , andµ is equal either toµm,

m∈ N or µ∞, there exists a unique periodic solution,zp(t), of the system (3.4) with the same

µ . Moreover, all trajectories of these solutions lie in a bounded domain. This definition is

natural since periodic solutions, which correspond to different sequencesκ, do not coincide,

and consequently, the equation (3.4) withµ = µ∞ has infinitely many periodic solutions.

The principal result of this section is the following theorem.

Theorem 3.2.1 System (3.4) admits the chaos through period-doubling cascade atµ∞.
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Proof. Fix µ andt0 ∈ I such that the sequence{κi(t0,µ)} is p−periodic,p∈ N. It is easily

seen that to verify the theorem, one needs to prove that the system (3.4) withthe sameµ
admits a periodic solution,zp(t), and the norms of all these periodic solutions with all the

possibleµ , are bounded with one and the same positive number.

Setρ0 = max{‖m0‖ ,‖m1‖} , and pick a numberH =
−KN

α
(M0+ρ0), where the numberK

is defined by the formula (3.7). One can see thatH does not depend onp.

We shall consider the cases in whichp is even and odd. Let us start withp is even. Using the

standard technique [93], one can verify that the solutionzp(t), if exists, satisfies the integral

equation

zp(t) =
∫ p

0

(
I −eAp)−1

eA(p−s) [ f (t +s,zp(t +s))+ν(t +s, t0,µ)]ds.

Introduce the setB1 of continuous functionsϕ : [t0,∞)→R
n such thatϕ(t+ p) = ϕ(t), t ≥ t0

and‖ϕ‖1 ≤ H, where‖ϕ‖1 = supt≥t0 ‖ϕ(t)‖ .

Define an operatorSon the setB1 through the equation

S(ϕ)(t) =
∫ p

0

(
I −eAp)−1

eA(p−s) [ f (t +s,ϕ(t +s))+ν(t +s, t0,µ)]ds.

First of all, we shall check thatS(B1)⊆ B1.

Sincep is even, we have forϕ ∈ B1 that f (t + p+ s,ϕ(t + p+ s)) = f (t + s,ϕ(t + s)) and

ν(t + p+ s, t0,µ) = ν(t + s, t0,µ) for eacht ≥ t0 and s∈ [0, p]. Therefore,S(ϕ)(t + p) =

S(ϕ)(t) for all t ≥ t0.

Let us defineM = maxs∈[0,p]
∥∥∥
(
I −eAp

)−1
eA(p−s)

∥∥∥ . Takeϕ ∈ B1, and fix t ∈ [t0,∞) and an

arbitraryε > 0. Because the functionsf (t,z) andϕ(t) are continuous in all their arguments,

the function f (t,ϕ(t)) is also continuous. Therefore, there exists a numberδ1 > 0 such that

for anys∈ [0, p] the inequality

‖ f (t +s,ϕ(t +s))− f (t +s,ϕ(t +s))‖< ε
2pM

holds, provided that|t − t|< δ1.

Setδ = min

{
δ1,

ε
2pM ‖m0−m1‖

}
. In the case that|t − t|< δ , one can verify that

∫ p

0
‖ν(t +s, t0,µ)−ν(t +s, t0,µ)‖ds< pδ ‖m0−m1‖ ,

since there are at mostp subintervals of[0, p], each with a length less thanδ , such that in each

of these subintervals the functionsν(t+s, t0,µ) andν(t+s, t0,µ), s∈ [0, p], are different from

each other.

Thus, if |t − t|< δ , then we obtain that
∥∥∥S(ϕ)(t)−S(ϕ)(t)

∥∥∥=
∥∥∥
∫ p

0

(
I −eAp)−1

eA(p−s)
[

f (t +s,ϕ(t +s))
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+ν(t +s, t0,µ)− f (t +s,ϕ(t +s))−ν(t +s, t0,µ)
]
ds
∥∥∥

≤ M
∫ p

0
‖ f (t +s,ϕ(t +s))− f (t +s,ϕ(t +s))‖ds

+M
∫ p

0
‖ν(t +s, t0,µ)−ν(t +s, t0,µ)‖ds

<
ε
2
+ pδM ‖m0−m1‖

≤ ε .

Hence,S(ϕ)(t) is continuous on the interval[t0,∞). On the other hand, forϕ ∈ B1, one can

attain for allt ≥ t0 that

‖S(ϕ)(t)‖ ≤
∫ p

0

∥∥∥
(
I −eAp)−1

∥∥∥
∥∥∥eA(p−s)

∥∥∥‖ f (t +s,ϕ(t +s))+ν(t +s, t0,µ)‖ds

≤ KN(M0+ρ0)
∫ p

0
eα(p−s)ds

=
−KN

α
(M0+ρ0)(1−eα p)

≤ H.

The last inequality implies that‖S(ϕ)‖1 ≤ H. Consequently,S(B1)⊆ B1.

Next, we shall show that the operatorS is a contraction. Forϕ1,ϕ2 ∈ B1, we have that

S(ϕ1)(t)−S(ϕ2)(t)

=
∫ p

0

(
I −eAp)−1

eA(p−s) [ f (t +s,ϕ1(t +s))− f (t +s,ϕ2(t +s))]ds.

Therefore,

‖S(ϕ1)(t)−S(ϕ2)(t)‖

≤
∫ p

0

∥∥∥
(
I −eAp)−1

∥∥∥
∥∥∥eA(p−s)

∥∥∥‖ f (t +s,ϕ1(t +s))− f (t +s,ϕ2(t +s))‖ds

≤ K
∫ p

0
NLeα(p−s) ‖ϕ1(t +s)−ϕ2(t +s)‖ds

≤ −KNL
α

(1−eα p)‖ϕ1−ϕ2‖1

≤ −KNL
α

‖ϕ1−ϕ2‖1 ,

and hence‖S(ϕ1)−S(ϕ2)‖1 ≤
−KNL

α
‖ϕ1−ϕ2‖1 .

Since
−KNL

α
< 1, the operatorS is a contraction. Thus, there exists a unique fixed point of

S, and for eachp−periodic{κi(t0,µ)}, there exists a unique solution of the system(3.4) with

the same period, provided thatp is even.

In the case thatp is an odd natural number, due to its definition, the relay functionν(t, t0,µ)
is 2p−periodic. Therefore, ifzp(t) exists, it satisfies the integral equation

zp(t) =
∫ 2p

0

(
I −e2Ap)−1

eA(2p−s) [ f (t +s,zp(t +s))+ν(t +s, t0)]ds.
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Introduce the setB2 of continuous functionsϕ : [t0,∞) → R
n such thatϕ(t + 2p) = ϕ(t),

t ≥ t0 and‖ϕ‖1 ≤ H, and define an operatorS: B2 → B2 by means of the equation

S(ϕ)(t) =
∫ 2p

0

(
I −e2Ap)−1

eA(2p−s) [ f (t +s,ϕ(t +s))+ν(t +s, t0,µ)]ds.

Similar to the case of evenp, it can be proved thatS is a contraction. Therefore, for each

p−periodic sequence{κi(t0,µ)} , wherep is odd, there exists a unique 2p−periodic solution

zp(t) of the system(3.4) such that‖zp(t)‖ ≤ H for all t ≥ t0. Consequently, system (3.4)

admits the chaos through period-doubling cascade atµ∞. �

As a result of the proof of Theorem 3.2.1 and making use of various parameter values of

period-doubling bifurcations for the logistic maph(s,µ) = µs(1− s) [21, 146], Table 3.1 is

constructed. The table indicates the periodicity dependence between ap−periodic{κi(t0,µ)}
and the unique periodic solutionzp(t) of system (3.4) with the sameµ . In the table, we also

specify the values of the parameterµ for which thep−periodic{κi(t0,µ)} is stable, likewise

the periodic solutionzp(t) of system (3.4).

Table 3.1: Correlation betweenp and the period ofzp(t)

Range ofµ p Period ofzp(t)

1< µ < 3 1 2
3< µ < 3.4494 2 2

3.4494< µ < 3.5440 4 4
3.5440< µ < 3.5644 8 8
3.5644< µ < 3.5687 16 16
3.5687< µ < 3.5696 32 32

· · · · · · · · ·
3.6265< µ < 3.6304 6 6

· · · · · · · · ·
3.7382< µ < 3.7411 5 10

· · · · · · · · ·
3.8284< µ < 3.8415 3 6

· · · · · · · · ·

If system (3.4) is compared with the system

z′(t) = Az(t)+ν(t, t0,µ)
z(t0) = z0,(t0,z0) ∈ I ×R

n,
(3.9)

one can see that the difference is the presence of the functionf (t,z), and the old theorems from

[10] can be repeated almost identically for system (3.4) considering the Lipschitz condition

on the functionf (t,z).
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3.2.2 The Duffing equation’s chaotic behavior

In this part of the chapter, we consider both the Duffing equation (3.2) and the corresponding

system (3.3) with the coefficientsd1 = 0.18,d2 = 2,d3 = 0.00004,D = 0.02,k= 2, andm0 =

2,m1 = 1.

The bifurcation diagram of equation (3.2) with the specified coefficients is shown in Figure

3.1. In the range ofµ values greater than 3.57, correlatively to the behavior of the logistic

map [21, 65], successive intervals of chaos and intervals of stable periodic solutions, called

the periodic windows, appear in the diagram.

2.6 2.8 3 3.2 3.4 3.6 3.8 4
−1

−0.5

0

0.5

1

1.5

2

2.5

µ

x

a

3 3.2 3.4

0.4

0.5

0.6

0.7

0.8

0.9

1

µ

x

b

3.4 3.45 3.5 3.55

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

µ

x

c

3.46 3.48 3.5 3.52 3.54 3.56
0.65

0.7

0.75

0.8

0.85

µ

x

d

Figure 3.1: Bifurcation diagrams of the Duffing equation perturbed with a pulse function
x′′+0.18x′+2x+0.00004x3−0.02cos(2πt) = ν(t, t0,µ), wherem0 = 2 andm1 = 1. (a) The
bifurcation diagram where the parameterµ varies between 2.6 and 4.0. (b) Magnification of
(a) whereµ is between 2.90 and 3.58. (c) Magnification of (b) whereµ is between 3.400 and
3.572. (d) Magnification of (c) whereµ changes from 3.460 to 3.571.

At µ = 3, for which the period-doubling bifurcation for the logistic map occurs for thefirst

time [146, 197], splitting occurs in the bifurcation diagram of equation (3.2) with the ap-

pointed coefficients, but period-doubling does not occur at this parameter value. That is, up to

the second bifurcation valueµ = 3.4494, all periodic solutions of the Duffing equation have

period 2. This is a prospective behavior, since the periodicity of the periodic solution of the

Duffing equation corresponding to ap−periodic sequence{κi(t0,µ)} is 2p in the case ofp is

an odd integer.

If we denote by{rm} the sequence of the values of the parameterµ at which the period-

doubling bifurcations for the Duffing equation (3.2) with the given coefficients occur, it is
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numerically observed that this sequence coincides with the sequence{µm}, which has been

defined above for the cascade of the logistic map, except the first term. That is, rm = µm+1,

m≥ 1. Consequently, when limm→∞
rm−rm+1

rm+1−rm+2
is evaluated, the universal constant known as

the Feigenbaum number 4.6692016. . . is achieved [198, 218, 243].

In the regions where stable periodic solutions exist, for a fixed value of theparameterµ , the

bifurcation diagram represents the values of the stable periodic solutions of equation (3.2) at

time t = ζ0 ∈ I , whereζ0 is the initial term of the periodic sequence{ζi} corresponding to

the same value ofµ. We note that, forµm < µ < µm+1, there are 2m different choices for the

periodic sequence{ζi} with periodicity 2m, and this is the reason for the observation of 2m

different stable periodic solutions for these values of the parameter.

A stable periodic solution in turn becomes unstable and is replaced by a new couple of stable

solutions as the parameterµ increases through the bifurcation values. A stable solution is

replaced by a couple of stable periodic solutions of twice its period, exceptat the parameter

values corresponding to ap−periodic{κi} with p odd and the process continues in this way.

For such values ofµ, the periodicity does not change, by the same reasoning explained as

above. In the intervals of chaos, all existing periodic solutions are unstable.

In Figure 3.2, one can see the larger image of the periodic window which starts atµ = 3.8284,

and its magnification for the parameter values between 3.8350 and 3.8600. It is observed that

a similar copy of the whole bifurcation diagram reappears in this region.

Now, let us check that the conditions of the last theorem are true for the system (3.3). The ma-

trix of coefficients of the system (3.3) with the assumed coefficients isA=




0 1

−2 −0.18


.

The eigenvalues of the matrixA are a∓ ib, wherea = −0.09 andb =
√

2−0.092. The

real Jordan form of the matrixA is given byJ =




a −b

b a


 and the identityP−1AP= J is

satisfied whereP=




0 1

b a


 andP−1 =

1
b




−a 1

b 0


 . Evaluating the exponential matrix

eAt we have

eAt = eatP




cos(bt) −sin(bt)

sin(bt) cos(bt)


P−1. (3.10)

Denote by‖.‖ the matrix norm which is induced by the usual Euclidean norm inR
n. That is,

‖Γ‖= max
{√

λ : λ is an eigenvalue o fΓTΓ
}

for anyn×n matrix Γ with real entries, andΓT denotes the transpose of the matrixΓ [98].

One can see that

‖P‖=
(

3
2
+

√
1+0.182

2

)1/2

,
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Figure 3.2: The periodic window which starts atµ = 3.8284 in the bifurcation diagram
of the Duffing equation perturbed with a pulse functionx′′ + 0.18x′ + 2x+ 0.00004x3 −
0.02cos(2πt) = ν(t, t0,µ), wherem0 = 2 andm1 = 1. (a) The bifurcation diagram where
µ is between 3.8250 and 3.8600. (b) Magnification of (a) whereµ changes from 3.8350 to
3.8600.

and

∥∥P−1
∥∥= 1√

2−0.092

(
3
2
+

√
1+0.182

2

)1/2

.

Therefore, using (3.10), we obtain
∥∥eAt

∥∥≤ Neαt whereN =
3+

√
1+0.182

√
8−0.182

andα =−0.09.

In what follows, we use approximation with accuracy of 7 digits in the decimal part.

For p0 = 4, Neα p0 =
(

3+
√

1+0.182√
8−0.182

)
e−0.36 ∼= 0.9926395< 1. One can easily evaluate that,

max
1≤i≤3

{∥∥∥
(
I −eJi)−1

∥∥∥
}
=
∥∥∥
(
I −eJ1)−1

∥∥∥∼= 0.8045044.

Then, using the matrix identity
(
I −eAt

)−1
= P

(
I −eJt

)−1
P−1, the inequality

max
1≤i≤3

{∥∥∥
(
I −eAi)−1

∥∥∥
}
≤ ‖P‖

∥∥P−1
∥∥ max

1≤i≤3

{∥∥∥
(
I −eJi)−1

∥∥∥
}
∼= 1.1446324

is obtained. On the basis of above evaluations, one can find that

K = max

{
max
1≤i≤3

∥∥(I −eAi)−1
∥∥ , 1

1−Ne4α

}
∼= 135.8619956.
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System (3.3) with the prescribed coefficients has the nonlinear term

f (t,x1,x2) =
[
0 −0.00004x3

1

]T
.

The Lipschitz constantL for this function can be taken as 0.0003468 since thex1 values of the

chaotic attractor satisfies the condition|x1| ≤ 1.7. Thus−KNL
α

∼= 0.7448557 and the condition

(3.8) is also satisfied.

We end up this part, by simulating a solution(x1,x2) of system (3.3) with initial datax1(0.5) =

0.01, x2(0.5) = 0.025 andµ∞ = 3.8. In Figure 3.3, the chaotic behavior of the solution is

revealed.
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Figure 3.3: Simulation results of the Duffing equation perturbed with a pulse functionx′′+
0.18x′+2x+0.00004x3−0.02cos(2πt) = ν(t, t0,µ∞), wherem0 = 2,m1 = 1 andµ∞ = 3.8.
The pictures in (a) and (b) show the graphs of thex1 andx2 coordinates, respectively, while
the picture in (c) represents the trajectory of the solution(x1(t),x2(t)).

3.2.3 Lyapunov exponents

The Lyapunov exponent is a measure of divergence of state trajectories, and is one of the

most important features of deterministic chaos [243]. There are well developed results for

Lyapunov exponents of maps, and it is technically difficult for continuousdynamics [82,

164, 197, 198]. Evaluation procedures of Lyapunov exponents forcontinuous dynamics are,

in general, provided for low dimensional systems [178, 210]. Our system,despite there is

discontinuity property, evolves along continuous time. Therefore, to workwith Lyapunov

exponents, we should consider mainly the results for continuous dynamics.More exactly,

our systems involve continuous and discrete dynamics such that the space variables change
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continuously while the switching moments of time satisfy discrete equations, that is,they

belong to the class of hybrid systems [8, 191, 229]. Consequently, we have to evaluate the

divergence of solutions by continuous as well as discrete Lyapunov exponents. Moreover,

our systems are essentially non-autonomous. That is why one has to consider the method of

Lyapunov exponents for non-autonomous systems [210]. For chaos development the positive

Lyapunov exponent is appropriate. So, one can conclude that the positiveness of one of the

Lyapunov exponents is an indicator of chaos if the system is considered ina bounded region.

That is why for the general case of our analysis in this chapter, it is sufficient to find that the

Lyapunov exponent is positive for the logistic map, the generator of the switching moments.

To illustrate the general discussions, let us consider the following example.

Example. Let the equation

x′ =−2x+ν(t, t0,µ∞) (3.11)

be given withµ∞ = 3.8.

If we consider two solutions of equation(3.11) with the samet0, they are both bounded and

approach to each other with exponent−2, that is,−2 is an eigenvalue. Since the equation is

non-autonomous then it needs a special treatment [210]. When the time variable is considered

as a spatial one, one can transform equation(3.11) to a system as

dx
dt

=−2x+ν(τ , t0,µ∞)

dτ
dt

= 1

ζi+1 = i+1+h(ζi − i,µ∞).

(3.12)

The second equation in (3.12) provides us the zero Lyapunov exponent [210]. Since our

system involves the discrete equation, the logistic map withµ∞ = 3.8, it admits the third

Lyapunov exponent which is approximately 0.432 [23]. This Lyapunov exponent describes

the divergence of solutions with different initial moments along the time axis. Finally, we

have obtained that the divergence of solutions of equation(3.11) is described through three

Lyapunov exponentsλ1 = 0.432, λ2 = 0, λ3 =−2.

3.3 Controlling Results

3.3.1 The logistic map

We stabilize the periodic solutions by control of the switching moments of the pulsefunction,

which are defined through the logistic map. Therefore, one will need the description of the

OGY method for the map [196].

Suppose that the parameterµ , in the map, can be finely tuned in a small range around the value

µ∞ = 3.8, that is,µ is allowed to vary in the range[µ∞−δ ,µ∞+δ ], whereδ is small. Denote
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the target period−p orbit to be controlled asκ(i)(t0,µ∞), i = 1,2, . . . , p wheret0 belongs to the

unit interval I = [0,1], κ(i+1)(t0,µ∞) = h(κ(i)(t0,µ∞),µ∞) andκ(p+1)(t0,µ∞) = κ(1)(t0,µ∞).

The logistic map,h(s,µ) = µs(1−s), in the neighborhood of a periodic orbit can be approx-

imated by a linear equation expanded around the periodic orbit. If we denoteµ̄ j −µ∞ = ∆µ̄ j ,

andκ j+1(t1, µ̄ j) = h(κ j(t1, µ̄ j), µ̄ j), t1 ∈ I , we get

κ j+1−κ(i+1) =
∂h
∂s

[κ j −κ(i)]+
∂h
∂ µ

∆µ̄ j

= µ∞[1−2κ(i)][κ j −κ(i)]+κ(i)[1−κ(i)]∆µ̄ j ,
(3.13)

where partial derivatives are evaluated ats= κ(i)(t0,µ∞) andµ = µ∞. We requireκ j+1(t1, µ̄ j)

to stay in the neighborhood ofκ(i+1)(t0,µ∞). Therefore, if we set

κ j+1(t1, µ̄ j)−κ(i+1)(t0,µ∞) = 0,

then we obtain that

∆µ̄ j = µ∞
[2κ(i)−1][κ j −κ(i)]

κ(i)[1−κ(i)]
(3.14)

or equivalently

µ̄ j = µ∞

(
1+

[2κ(i)−1][κ j −κ(i)]

κ(i)[1−κ(i)]

)
. (3.15)

This equation holds only when the trajectoryκ j enters a small neighborhood of the period−p

orbit, hence the required parameter perturbation∆µ̄ j is small. When the trajectory is outside

the neighborhood of the target periodic orbit, we do not apply any parameter perturbation,

so the system evolves at its nominal parameter valueµ∞. Hence, we set̄µ j = µ∞, when∣∣∆µ̄ j
∣∣> δ .

Suppose thatt0 ∈ I is fixed such that the sequence{κi(t0,µ∞)} is p−periodic. Thus, for given

δ > 0, there existε > 0 andi0, j0 ∈ N such that for alli, i0 ≤ i ≤ i0+ j0, we have|∆µ̄i | ≤ δ
and|κi(t1, µ̄i)−κi(t0,µ∞)|< ε [82, 163, 195, 196], whereκi+1(t1, µ̄i) = h(κi(t1, µ̄i), µ̄i). The

number j0 is, in general, finite, since the nonlinearity is not included in (3.13). We will use

the numbersε , i0 and j0 for Theorem 3.3.1.

We note that the control of chaos is not achieved immediately after switching onthe control

mechanism, rather, there is a transient time before the logistic map is controlled. The transient

time increases if theδ decreases [82, 195].

Now, we consider a simulation for the stabilization of the logistic map. Namely, of these-

quence{κi}, whereκi+1 = 3.8κi(1−κi), i ≥ 0 andκ0 = t1 = 0.5. If the OGY control method

is applied around the fixed point 2.8/3.8, that is the period−1 orbit of the logistic equation

h(s,3.8) = 3.8s(1− s), we obtain the result that is shown in Figure 3.4. We used the value

δ = 0.19. The control starts at the iteration numberi = 25 and ends ati = 60. Despite the

control was switched off at 60th iteration, the stabilization prolongs till the 110th iteration.
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Figure 3.4: The OGY control method applied to the sequence{κi}, whereκi+1 = 3.8κi(1−
κi), κ0 = 0.5, around the fixed point 2.8/3.8 of the logistic map withδ = 0.19. The control
is switched on at the iteration numberi = 25 and switched off ati = 60.

3.3.2 The general system control

From the description made above, it is seen that the control by OGY method means construc-

tion of a sequence of the parameter’s valueµ near a chaotic value of the parameter,µ∞, to

generate a solution, which is close to the chosen periodic one. It is obviousthat similar control

problem can be formulated for the system (3.3), and consequently, for equation (3.2).

To control system (3.3), we replace the parameterµ by the control sequence
{

µ i
}

and define

ν(t, t1,µ i) =

{
m0, if ζ2i(t1,µ i)< t ≤ ζ2i+1(t1,µ i)

m1, if ζ2i+1(t1,µ i)< t ≤ ζ2i+2(t1,µ i),
(3.16)

wherei ≥ 0 is an integer,m0,m1 ∈R
n, the same as for the functionν(t, t0,µ) in (3.5). The se-

quenceζ (t1,µ i)= {ζi(t1,µ i)}, i ≥ 0, is defined through the equationζi(t1,µ i)= i+κi(t1,µ i),

with κi+1(t1,µ i) = h(κi(t1,µ i),µ i), κ0(t1,µ i) = t1.

Consider, now, the system,

z′(t) = Az(t)+ f (t,z)+ν(t, t1,µ i)

z(t1) = z1,(t1,z1) ∈ I ×R
n,

(3.17)

which is the control system conjugate to the system (3.4).

Our aim is to determine the sequence
{

µ i
}

which stabilizes the periodic solutions of (3.4)

and in the next theorem a convenient choice for this sequence is indicated.

By φ(t, t̄, z̄), t̄ ∈ I , z̄∈ R
n, we denote a solution of(3.17) with t1 = t̄ andz1 = z̄.
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In the following theorem we shall use the numbersε , i0, and j0, which were mentioned above

for the stabilization of the logistic map.

Suppose thatzp(t), p∈N, denotes the periodic solution of (3.4) withzp(t0) = z0 andµ = µ∞.

Takez1 ∈ R
n and consider the solutionz(t) = φ(t, t1,z1) of system (3.17). Ifz(ζi0(t0,µ∞))

is not equal tozp(ζi0(t0,µ∞)), then suppose that the numberT(ε ,z1) is the maximum of the

numbersζi0(t0,µ∞)+
1

NL+α ln

(
1−eαε

N‖z(ζi0(t0,µ∞))−zp(ζi0(t0,µ∞))‖

)
andζi0(t0,µ∞). In the case that

z(ζi0(t0,µ∞)) andzp(ζi0(t0,µ∞)) are equal to each other, takeT(ε ,z1) = ζi0(t0,µ∞). The num-

berT(ε ,z1) will be needed in the following theorem, which is one of the main results of this

chapter.

In the proof of the following theorem, we assume without loss of generality that i0 = 0. In this

case,ζi0(t0,µ∞) = t0 andζi0(t1, µ̄i) = t1. It is worth saying that since
−NL

α
<

−KNL
α

< 1, we

haveNL+α < 0.

Theorem 3.3.1 Assume that T(ε ,z1)< i0+ j0. Then the sequence{µ̄i} stabilizes the periodic

solution zp(t) such that

‖φ(t, t1,z1)−zp(t)‖<
(

1− Ne−α ‖m0−m1‖
(NL+α)(1−eα)

)
(1−eαε) ,

if t ∈ [T(ε ,z1), i0+ j0] .

Proof. Without loss of generality, assume thatt1 ≤ t0. The solutionz(t) = φ(t, t1,z1), t1 ∈ I ,

z1 ∈ R
n, of (3.17) can be continued up tot = t0. Let us denotez(t0) = η1 andzp(t0) = z0. In

this case, the integral equations

z(t) = eA(t−t0)η1+
∫ t

t0
eA(t−s)[ f (s,z(s))+ν(s, t1, µ̄i)]ds

and

zp(t) = eA(t−t0)z0+
∫ t

t0
eA(t−s)[ f (s,zp(s))+ν(s, t0,µ∞)]ds

are satisfied. Therefore, fort ≥ t0 we have

z(t)−zp(t) = eA(t−t0)(η1−z0)+
∫ t

t0
eA(t−s)[ f (s,z(s))− f (s,zp(s))]ds

+
∫ t

t0
eA(t−s)[ν(s, t1, µ̄i)−ν(s, t0,µ∞)]ds.

(3.18)

Since for eachi,0≤ i ≤ j0, the inequality

|ζi(t0,µ∞)−ζi(t1,µ i)|= |κi(t0,µ∞)−κi(t1, µ̄i)|< ε

holds, one can verify that
∣∣∣∣
∫ ζi(t1,µ i)

ζi(t0,µ∞)
eα(t−s)ds

∣∣∣∣<
(−1

α

)
(1−eαε)eα(⌊t⌋−1−i), (3.19)
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where⌊t⌋ denotes the greatest integer which is not larger thant. On the other hand, by means

of the inequality (3.19) we have that
∥∥∥∥
∫ t

t0
eA(t−s) [ν(s, t1,µ i)−ν(s, t0,µ∞)]ds

∥∥∥∥

≤
∫ t

t0
Neα(t−s) ‖ν(s, t1,µ i)−ν(s, t0,µ∞)‖ds

≤
⌊t⌋

∑
i=1

∣∣∣∣
∫ ζi(t1,µ i)

ζi(t0,µ∞)
Neα(t−s) ‖m0−m1‖ds

∣∣∣∣

<

(−N
α

)
(1−eαε)‖m0−m1‖

⌊t⌋

∑
i=1

eα(⌊t⌋−1−i)

<
−Ne−α ‖m0−m1‖

α (1−eα)
(1−eαε) .

Using the equation (3.18) together with the last inequality one can obtain that

‖z(t)−zp(t)‖ ≤ Neα(t−t0) ‖η1−z0‖+
−Ne−α ‖m0−m1‖

α (1−eα)
(1−eαε)

+
∫ t

t0
NLeα(t−s) ‖z(s)−zp(s)‖ds.

Now, letu(t) = ‖z(t)−zp(t)‖e−αt . Under the circumstances we have

u(t)≤ Ne−αt0 ‖η1−z0‖+
−Ne−α(t+1) ‖m0−m1‖

α (1−eα)
(1−eαε)+NL

∫ t

t0
u(s)ds.

Applying Lemma 2.2 [34] we attain that

u(t)≤ Ne−αt0 ‖η1−z0‖+
−Ne−α(t+1) ‖m0−m1‖

α (1−eα)
(1−eαε)

+N2L‖η1−z0‖e−αt0
∫ t

t0
eNL(t−s)ds

+
−N2Le−α ‖m0−m1‖

α (1−eα)
(1−eαε)

∫ t

t0
eNL(t−s)e−αsds

Making use of the equations

∫ t

t0
eNL(t−s)ds=

1
NL

(
eNL(t−t0)−1

)
,

and ∫ t

t0
eNL(t−s)e−αsds=

( −1
NL+α

)
e−αt

(
1−e(NL+α)(t−t0)

)

it can be verified that

u(t)≤ N‖η1−z0‖e−αt0eNL(t−t0)− Ne−α(t+1) ‖m0−m1‖
α (1−eα)

(1−eαε)
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+
N2Le−α(t+1) ‖m0−m1‖
(NL+α)α (1−eα)

(1−eαε)
(

1−e(NL+α)(t−t0)
)

< N‖η1−z0‖e−αt0eNL(t−t0)− Ne−α(t+1) ‖m0−m1‖
α (1−eα)

(1−eαε)

+
N2Le−α(t+1) ‖m0−m1‖
(NL+α)α (1−eα)

(1−eαε)

= N‖η1−z0‖e−αt0eNL(t−t0)− Ne−α(t+1) ‖m0−m1‖
(NL+α)(1−eα)

(1−eαε) .

Multiplication of both sides of the last inequality byeαt implies that

‖z(t)−zp(t)‖< N‖η1−z0‖e(NL+α)(t−t0)− Ne−α ‖m0−m1‖
(NL+α)(1−eα)

(1−eαε) .

It is clear that ifη1 = z0, then the conclusion of the theorem is true. Suppose thatη1 6= z0. If

t ∈ [T(ε ,z1), j0] , then one can easily verify that

e(NL+α)(t−t0) ≤ 1−eαε

N‖η1−z0‖
.

Consequently, the inequality

‖z(t)−zp(t)‖<
(

1− Ne−α ‖m0−m1‖
(NL+α)(1−eα)

)
(1−eαε)

holds, fort ∈ [T(ε ,z1), j0] .

The theorem is proved.�

Implementation of Theorem 3.3.1 to the system (3.3) is mentioned in the next part.

3.3.3 The Duffing equation control

Let us, consider the main system (3.3) withµ∞ = 3.8 andd1 = 0.18, d2 = 2, d3 = 0.00004,

D = 0.02, k= 2, m0 = 2, m1 = 1, again. The system satisfies the conditions for existence of

chaos and admits the chaos atµ∞ = 3.8. Theorem 3.3.1 is applicable to (3.3). The control

system (3.17) has, in this case, the form

x′1 = x2

x′2 =−2x1−0.18x2−0.00004x3
1+0.02cos(2πt)+ν(t, t1, µ̄i).

(3.20)

To simulate the result, let us taket1 = 0.5, t0 = 2.8/3.8 and the solution(x1,x2) of system

(3.20) with the initial conditionx1(t1) = 0.01, x2(t1) = 0.025. Its graph is seen in Figure

3.5 and it approximates the 2−periodic solutionz1(t). The valueδ = 0.19 is used, and the

control starts at timet = ζ25 and ends att = ζ60. Here, we note that since the OGY control

method is applied to the logistic map, the iteration momentī when the control is switched on
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Figure 3.5: The OGY control method applied to the Duffing equation perturbed with a pulse
function x′′+0.18x′+2x+0.00004x3−0.02cos(2πt) = ν(t, t0,µ∞), wherem0 = 2,m1 = 1
and µ∞ = 3.8. The control starts at timet = ζ25 and ends att = ζ60. (a) The graph of
the x1−coordinate. (b) The graph of thex2−coordinate. (c) The trajectory of the solution
(x1(t),x2(t)).

corresponds to the time momentt = ζī , and a similar argument is valid for the moment when

the control ends.

We use the same interval of stabilization for the logistic map and the Duffing equation. But

the interval of periodicity for the map is larger in the former, approximately 80 and 60 respec-

tively. The reason is that the chaos of the equation is secondary with respect to the chaos of

the logistic map. Likewise the control of the logistic map, the chaos transient time increases

if the δ decreases.

To discuss our main assumptions, let us arrange the following simulations. Consider the

following Duffing equation in the standard form [218]

x′′+0.05x′+x3 = 7.5cost. (3.21)

To convert this equation to a suitable form for which our theorem can be applied, we use the

change of variablesu= t/π andy(u) = x(t). Using these new variables and relabelingu ast,

one can reduce (3.21) to the differential equation

y′′+0.05πy′+π2y3 = 7.5π2cos(πt). (3.22)

Defining new variablesx1 = y andx2 = y′ we can reduce (3.22) to the system

x′1 = x2

x′2 =−0.05πx2−π2x3
1+7.5π2cos(πt).

(3.23)
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The eigenvalues for this system are 0 and−0.05π. Since one of the eigenvalues is zero,

one can expect that our results are not applicable to system(3.23). That is, the system is not

controllable with our method. Take a solution of system(3.23) with x1(0.5) = 1,x2(0.5) = 2.

The chaotic behavior is seen in Figure 3.6.
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Figure 3.6: The trajectory of the solution(x1(t),x2(t)) for system (3.23).

Now, we apply the method developed in the previous part to the equation

y′′ =−0.05πy′−π2y3+7.5π2cos(πt)+ν(t, t0,µ∞). (3.24)

The corresponding control system is

x′1 = x2

x′2 =−0.05πx2−π2x3
1+7.5π2cos(πt)+ν(t, t1, µ̄i).

(3.25)

Let t1 = 0.5, t0 = 2.8/3.8 andδ = 0.19. We take the solution of the last system withx1(t1) = 1

and x2(t1) = 2. The control is switched on att = ζ25 and switched off att = ζ60. The

simulation result is seen in Figure 3.7.

One can see that our way of application of the OGY method does not work for the system

(3.25). The reason is that the corresponding non-perturbed Duffing equationto this system

has the zero eigenvalue.
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Figure 3.7: The trajectory of the solution(x1(t),x2(t)) for the control system(3.25), where
m0 = 2 andm1 = 1.

3.4 Morphogenesis and the Logistic Map

In Subsection 3.2.2, we demonstrated that the Duffing equation perturbed with a pulse func-

tion

x′′+0.18x′+2x+0.00004x3 = 0.02cos(2πt)+ν(t, t0,µ∞), (3.26)

with the coefficientsm0 = 2, m1 = 1 andµ∞ = 3.8, admits the chaos through period-doubling

cascade on the time interval[0,∞) and obeys the Feigenbaum universal behavior [74].

By favour of the new variablesx1 = x andx2 = x′, equation(3.26) can be reduced to the

system

x′1 = x2

x′2 =−0.18x2−2x1−0.00004x3
1+0.02cos(2πt)+ν(t, t0,µ∞).

(3.27)

For the illustration of chaos extension, we will make use of the relay-system(3.27) as the

generator, in the role of a core as displayed in Figure 2.5, and attach threereplicator systems
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with coordinatesx3−x4, x5−x6 andx7−x8 to obtain the 8−dimensional result-relay-system

x′1 = x2

x′2 =−0.18x2−2x1−0.00004x3
1+0.02cos(2πt)+ν(t, t0,µ∞)

x′3 = x4−0.1x1

x′4 =−10x3−6x4−0.03x3
3+4x2

x′5 = x6+2x1

x′6 =−2x5−2x6+0.007x3
5+0.6x2

x′7 = x8−0.5x2

x′8 =−5x7−4x8−0.05x3
7+2.5x1,

(3.28)

where againm0 = 2,m1 = 1 andµ∞ = 3.8.

Our theoretical results mentioned in Chapter 2 reveal that system(3.28), as well as the repli-

cators, admit the chaos through period-doubling cascade and obey the universal behavior

of Feigenbaum. Figure 3.8 shows the 2−dimensional projections on thex1 − x2, x3 − x4,

x5− x6 andx7− x8 planes of the trajectory of the result-relay-system(3.28) with initial data

x1(0) = 1.37, x2(0) = −0.05, x3(0) = 0.05, x4(0) = −0.1, x5(0) = 1.09, x6(0) = −0.81,

x7(0) = 0.08 andx8(0) = 0.21. The picture seen in Figure 3.8,(a) is the attractor of the gen-

erator(3.27) and accordingly Figure 3.8,(b)− (d) represent the attractors of the first, second

and the third replicator systems, respectively. It can be easily verified that all replicators used

inside the system(3.28) satisfy condition(A7) of Chapter 2. The resemblance of the chaotic

attractors of the generator and the replicators is a consequence of morphogenesis of chaos.

Now, let us continue with the control of morphogenesis of chaos by means of the OGY control

method. In order to stabilize the unstable periodic solutions of system(3.27), we consider the

system

x′1 = x2

x′2 =−0.18x2−2x1−0.00004x3
1+0.02cos(2πt)+ν(t, t1, µ̄i)

x′3 = x4−0.1x1

x′4 =−10x3−6x4−0.03x3
3+4x2

x′5 = x6+2x1

x′6 =−2x5−2x6+0.007x3
5+0.6x2

x′7 = x8−0.5x2

x′8 =−5x7−4x8−0.05x3
7+2.5x1,

(3.29)

which is the control system conjugate to the result-relay-system(3.28), wherem0 = 2 and

m1 = 1.

To simulate the control results, we make use of the valuesδ = 0.19, t1 = 0.5, t0 = 2.8/3.8 and

the trajectory of system(3.29) with the initial datax1(0) = 1.37, x2(0) =−0.05, x3(0) = 0.05,

x4(0) = −0.1, x5(0) = 1.09, x6(0) = −0.81, x7(0) = 0.08, x8(0) = 0.21. Taking the value

t0 = 2.8/3.8 means that the control mechanism is applied around the fixed point of the logistic

map, and consequently stabilizes the 2−periodic solutions of the generator and the existing

replicators. We switch on the control mechanism at the iteration numberi = 25 for the logistic
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Figure 3.8: 2−dimensional projections of the chaotic attractor of the result-system(3.28).
The pictures in (a), (b), (c) and (d) represent the projections on thex1− x2, x3− x4, x5− x6

andx7 − x8 planes, respectively. The picture in(a) shows the attractor of the prior chaos
produced by the generator(3.27), which is a relay-system, and in (b)-(d) the chaotic attractors
of the replicator systems are observable. The illustrations in (b)-(d) repeated the structure
of the attractor shown in (a), and the mimicry between these pictures is an indicator of the
replication of chaos.

map, such that for the continuous-time system this moment corresponds tot = ζ25, and switch

off at i = 125 which corresponds to the time momentt = ζ125. The graphs of the coordinates

x3,x5 andx7 are pictured in Figure 3.9, and it is possible to obtain similar illustrations for

the remaining ones, which are not just simulated here. It is observable thatthe 2−periodic

solutions of the replicators and hence of the result-relay-system(3.28) are stabilized. In other

words, the extended chaos is controlled, and the result of Theorem 2.9.1is validated one

more time. One can see in Figure 3.9 that after approximately 60 iterations when the control

is switched off, the chaos becomes dominant again and irregular motion reappears.

3.5 Discussion

A chaotic attractor contains an infinite number of unstable periodic orbits. Thecontrol of

chaos is the stabilization of one of these orbits, by means of small perturbations applied to the

system. One of the important applications of nonlinear oscillators subjected to non-smooth

perturbations is the vibro-impact systems, and such systems can exhibit chaotic motions [29,

50, 101, 125, 214, 228, 245]. The pioneering paper [163] provides the famous OGY method

of the control, and there have been proposed many other ideas to controlchaos [2, 41, 49,

95



0 50 100 150 200 250
−0.4

−0.2

0

0.2

t

x 3

a

0 50 100 150 200 250
0

1

2

3

t

x 5

b

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

t

x 7

c

Figure 3.9: OGY control method applied to the result-relay-system(3.28). (a) The graph of
thex3− coordinate, (b) The graph of thex5− coordinate, (c) The graph of thex7− coordinate.

63, 135, 177, 209, 237]. The parameters of the Duffing equation can be chosen such that it

alternatively admits only regular motions or a chaotic attractor [82, 173, 195,197, 218, 225,

226, 227]. In the present chapter, the Duffing equation is modified with a pulse function such

that it admits the period-doubling cascade of chaos. This idea of insertion of chaotic non-

smooth elements in such systems to obtain chaos has been realized in [7, 9, 10,11, 12, 13].

We have proved that the OGY control of the logistic map stabilizes the unstable periodic

solutions embedded in the attractor. The exceptional result is that an arbitrary solution of

the system (3.17) approaches to the controlled periodic solution eventually,if the initial mo-

ment is chosen properly. Thus, the way is found, which extends controland chaos of low-

dimensional maps to continuous systems with arbitrary large dimension. This method can

be useful for construction and stabilization of mechanical systems and electric circuits with

chaotic features.

One can find that to control chaos of the system (3.4), unstable periodic orbits of the logistic

equation must be necessarily controlled. There are several other methods to control chaos of

the logistic map such as the method proposed by Pyragas [177] and the extended time delayed

auto synchronization method [243]. The main idea of the Pyragas method applied to logistic

map is the usage of a perturbation in the form of a delay, that is, a perturbation of the form

γ(κi− j −κi). Here, the parameterγ represents the strength of the perturbation and the positive

integer j is the order of the desired unstable periodic orbit [177, 243].

To show the results of Pyragas method applied to the system(3.3) with the coefficientsd1 =

0.18, d2 = 2, d3 = 0.00004, D= 0.02, k= 2, andm0 = 2, m1 = 1, µ∞ = 3.8, we use the method

around the period−1 orbit, that is the fixed point, of the logistic maph(s,µ) = µs(1−s) and
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construct the following control system

x′1 = x2

x′2 =−2x1−0.18x2−0.00004x3
1+0.02cos(2πt)+ν(t, t1,µ∞)

ζi+1(t1,µ∞) = i+1+h(ζi(t1,µ∞)− i,µ∞)+ γ(ζi−1(t1,µ∞)

−ζi(t1,µ∞)+1).

(3.30)

If we simulate a solution of the last system witht1 = 0.5 andx1(t1) = 0.01, x2(t1) = 0.025,

the result seen in Figure 3.10 is obtained. It approximates the 2−periodic solutionz1(t) of

system(3.3). We use the valueγ = −0.5 and the control starts at timet = ζ30 and ends at

t = ζ100.
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Figure 3.10: The Pyragas control method applied to the Duffing equation perturbed with
a pulse functionx′′ + 0.18x′ + 2x+ 0.00004x3 − 0.02cos(2πt) = ν(t, t0,µ∞), wherem0 =
2,m1 = 1 andµ∞ = 3.8. The control starts at timet = ζ30 and ends att = ζ100. (a) The
graph of thex1 coordinate. (b) The graph of thex2 coordinate. (c) The trajectory of the
solution(x1(t),x2(t)).

Now, let us analyze through simulation an interesting question if large own frequency of

unperturbed Duffing equation may suppress the chaos appearance in the perturbed system.

With this aim, consider the system

x′1 = x2

x′2 =−50x1−0.18x2−0.00004x3
1+0.02cos(2πt)+ν(t, t0,µ∞),

(3.31)

which is in the form of system (3.3), wherem0 = 2, m1 = 1 andµ∞ = 3.8. The eigenvalues

for this system are−0.09∓ i
√

50−0.092. Take a solution(x1,x2) of the system with initial

datax1(0.5) = 0.01 andx2(0.5) = 0.025. One can see that the frequency is high, but the
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Figure 3.11: Simulation results of the perturbed Duffing equationx′′ + 0.18x′ + 50x+
0.00004x3−0.02cos(2πt) = ν(t, t0,µ∞), wherem0 = 2,m1 = 1 andµ∞ = 3.8. (a) The graph
of the x1 coordinate. (b) The graph of thex2 coordinate. (c) The trajectory of the solution
(x1(t),x2(t)).

simulation seen in Figure 3.11 shows that the chaos appearance is persistent since conditions

of our theorems are fulfilled for the system.

We have one more confirmation of our theoretical results. The control environment is sus-

tained for the system (3.31) as seen in Figure 3.12. In this simulation, we taket1 = 0.5,

t0 = 2.8/3.8, δ = 0.19, and consider the solution(x1,x2) of the control system

x′1 = x2

x′2 =−50x1−0.18x2−0.00004x3
1+0.02cos(2πt)+ν(t, t1, µ̄i),

(3.32)

with the initial conditionx1(t1) = 0.01,x2(t1) = 0.025. The control starts at timet = ζ25 and

ends att = ζ60.

Figure 3.12 supports our results such that the depicted solution approximates the 2−periodic

solutionz1(t) of system(3.31). Therefore, one can say that the chaos control results are valid

even if the frequency is high. The Pyragas control method can also be used in the case of high

frequency.

As the simulation results show, our proposals of generation of chaos and consequently control

of it can be extended by the rich diversity of results for discrete maps. Exceptional interest

is expected for development of security of communication systems [76, 82, 173, 195]. We

suppose also that direct extension of the results can be done on the basisof works, which

consider control of chaos generated by the logistic map [147, 148] and uses the map as an
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Figure 3.12: The OGY control method applied to the Duffing equation perturbed with a pulse
functionx′′+0.18x′+50x+0.00004x3−0.02cos(2πt) = ν(t, t0,µ∞), wherem0 = 2,m1 = 1
andµ∞ = 3.8. The control starts at timet = ζ25 and ends att = ζ60. (a) The graph of thex1

coordinate. (b) The graph of thex2 coordinate. (c) The trajectory of the solution(x1(t),x2(t)).

instrument of ciphering and deciphering [33]. Next extension of investigation can be done by

the discussion of low dimensional discrete dynamics [57, 149].

Concerning the Lyapunov exponents, we must say that the dynamics of thesystem (3.4)

consist of the continuous dynamics of the differential equation itself and ofthe discrete dy-

namics of the switching moments. That is, one can say that our system is a hybrid system

[8, 191, 229]. The important fact is that the Lyapunov exponent of thediscrete part of the

system is a positive one, since it is the Lyapunov exponent of the logistic map[198].
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CHAPTER 4

SICNNS WITH CHAOTIC EXTERNAL INPUTS

4.1 Introduction

A class of cellular neural networks, introduced by Bouzerdoum and Pinter [40], is the shunt-

ing inhibitory cellular neural networks (SICNNs), which have been extensively applied in

psychophysics, speech, perception, robotics, adaptive pattern recognition, vision, and image

processing [37, 38, 39, 47, 79, 104, 174].

The model in its most original formulation [40] is as follows. Consider a two dimensional

grid of processing cells, and letCi j , i = 1,2, . . . ,m, j = 1,2, . . . ,n, denote the cell at the(i, j)

position of the lattice. Denote byNr(i, j) ther−neighborhood ofCi j , such that

Nr(i, j) = {Ckl : max{|k− i|, |l − j|} ≤ r, 1≤ k≤ m, 1≤ l ≤ n}.

In SICNNs, neighboring cells exert mutual inhibitory interactions of the shunting type. The

dynamics of the cellCi j is described by the nonlinear ordinary differential equation

dxi j

dt
=−ai j xi j − ∑

Ckl∈Nr (i, j)

Ckl
i j f (xkl(t))xi j +Li j (t), (4.1)

wherexi j is the activity of the cellCi j ; Li j (t) is the external input toCi j ; the constantai j

represents the passive decay rate of the cell activity;Ckl
i j ≥ 0 is the connection or coupling

strength of postsynaptic activity of the cellCkl transmitted to the cellCi j ; and the activation

function f (xkl) is a positive continuous function representing the output or firing rate of the

cell Ckl . For our theoretical discussions, we will consider continuous externalinputs.

The existence and the stability of periodic, almost periodic and anti-periodic solutions of

SICNNs have been published in papers [46, 66, 99, 132, 165, 171, 199, 235, 236, 244]. The

main novelty of the present chapter is the verification of the chaotic behaviorin SICNNs. To

prove the existence of chaos, we apply the technique based on the Li-Yorke definition [134],

and make use ofchaotic external inputsin the networks. We say that the external inputs are

chaotic if they belong to a collection of functions which satisfy the ingredients of chaos. That

is, we consider members of a chaotic set as external input terms, and, as aresult, we obtain

solutions which display chaotic behavior.
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Existence of a chaotic attractor in SICNNs with impulses was numerically observed in [88]

without a theoretical support, as well it is the case for the paper [212]. Our results can be

extended to impulsive systems [12], but they will be very specific.

4.2 Preliminaries

Throughout the chapter,R will stand for the set of real numbers, and the norm

‖u‖= max
(i, j)

∣∣ui j
∣∣

will be used, where

u=
{

ui j
}
= (u11, . . . ,u1n, . . . ,um1 . . . ,umn) ∈ R

m×n

andm,n are natural numbers.

Suppose thatB is a collection of continuous functionsψ(t) =
{

ψi j (t)
}
, i = 1,2, . . . ,m, j =

1,2, . . . ,n, such that sup
t∈R

‖ψ(t)‖ ≤ M, whereM is a positive number. We start by describing

the ingredients of Li-Yorke chaos for the collectionB.

We say that a couple(ψ(t), ψ̃(t)) ∈ B ×B is proximal if for arbitrary smallε > 0 and

arbitrary largeE > 0, there exist infinitely many disjoint intervals of length not less thanE

such that‖ψ(t)− ψ̃(t)‖ < ε , for eacht from these intervals. On the other hand, a couple

(ψ(t), ψ̃(t)) ∈ B×B is called frequently(ε0,∆)−separated if there exist positive numbers

ε0,∆ and infinitely many disjoint intervals of length not less than∆, such that‖ψ(t)− ψ̃(t)‖>
ε0, for eacht from these intervals. It is worth saying that the numbersε0 and∆ depend on the

functionsψ(t) andψ̃(t).

A couple(ψ(t), ψ̃(t)) ∈ B×B is a Li−Yorke pair if it is proximal and frequently(ε0,∆)-
separated for some positive numbersε0 and∆. Moreover, an uncountable setC ⊂B is called

a scrambled set ifC does not contain any periodic functions and each couple of different

functions insideC ×C is a Li−Yorke pair.

B is called a Li−Yorke chaotic set if:(i) There exists a positive numberT0 such thatB

possesses a periodic function of periodkT0, for anyk∈N; (ii) B possesses a scrambled setC ;

(iii) For any functionψ(t) ∈ C and any periodic functioñψ(t) ∈ B, the couple(ψ(t), ψ̃(t))

is frequently(ε0,∆)−separated for some positive numbersε0 and∆.

One can obtain a new Li-Yorke chaotic set from a given one as follows. Suppose thath :

R
m×n → R

m×n is a function which satisfies for allu1,u2 ∈ R
m×n that

L1‖u1−u2‖ ≤ ‖h(u1)−h(u2)‖ ≤ L2‖u1−u2‖ , (4.2)

whereL1 andL2 are positive numbers. One can verify that if the collectionB is Li-Yorke

chaotic then the collectionBh whose elements are of the formh(ψ(t)), ψ(t) ∈ B, is also

Li-Yorke chaotic.
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The following conditions are needed:

(C1) γ = min
(i, j)

ai j > 0;

(C2) There exist positive numbersMi j such that sup
t∈R

∣∣Li j (t)
∣∣≤ Mi j ;

(C3) There exists a positive numberM f such that sup
s∈R

| f (s)| ≤ M f ;

(C4) There exists a positive numberL f such that| f (s1)− f (s2)| ≤ L f |s1−s2| for all s1,s2 ∈
R;

(C5) M f max
(i, j)

∑Ckl∈Nr (i, j)C
kl
i j

ai j
< 1;

(C6)
c(L f K0+M f )

γ
< 1, wherec and K0 are defined asc = max

(i, j)
∑

Ckl∈Nr (i, j)

Ckl
i j and K0 =

max
(i, j)

Mi j

ai j

1−M f max
(i, j)

∑Ckl∈Nr (i, j)C
kl
i j

ai j

.

Using the theory of quasilinear equations [93], one can verify that a bounded onR function

x(t) =
{

xi j (t)
}

is a solution of the network (4.1) if and only if the following integral equation

is satisfied

xi j (t) =−
∫ t

−∞
e−ai j (t−s)

[
∑

Ckl∈Nr (i, j)

Ckl
i j f (xkl(s))xi j (s)−Li j (s)

]
ds. (4.3)

A result about existence of bounded onR solutions is as follows.

Lemma 4.2.1 For any L(t) =
{

Li j (t)
}
, i = 1,2, . . . ,m, j = 1,2, . . . ,n, there exists a unique

bounded onR solutionφL(t) =
{

φ i j
L (t)

}
of the network (4.1) such thatsupt∈R ‖φL(t)‖ ≤ K0.

Proof. Consider the setC0 of continuous functionsu(t) =
{

ui j (t)
}
, i = 1,2, . . . ,m, j =

1,2, . . . ,n, such that‖u‖1 ≤ K0, where‖u‖1 = supt∈R ‖u(t)‖ . Define onC0 the operatorΠ
as

(Πu)i j (t)≡−
∫ t

−∞
e−ai j (t−s)

[
∑

Ckl∈Nr (i, j)

Ckl
i j f (ukl(s))ui j (s)−Li j (s)

]
ds,

whereu(t) =
{

ui j (t)
}

andΠu(t) =
{
(Πu)i j (t)

}
. If u(t) belongs toC0 then

∣∣(Πu)i j (t)
∣∣≤

∫ t

−∞
e−ai j (t−s)

[
∑

Ckl∈Nr (i, j)

Ckl
i j | f (ukl)(s)|

∣∣ui j (s)
∣∣+
∣∣Li j (s)

∣∣
]
ds

≤ 1
ai j

(
Mi j +M f K0 ∑

Ckl∈Nr (i, j)

Ckl
i j

)
.
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Accordingly, we have‖Πu‖1≤max
(i, j)

Mi j

ai j
+M f K0max

(i, j)

∑Ckl∈Nr (i, j)C
kl
i j

ai j
=K0. Therefore,Π(C0)⊆

C0.

On the other hand, for anyu,v∈C0,

∣∣(Πu)i j (t)− (Πv)i j (t)
∣∣≤

∫ t

−∞
e−ai j (t−s) ∑

Ckl∈Nr (i, j)

Ckl
i j

∣∣∣ f (ukl(s))ui j (s)

− f (ukl(s))vi j (s)
∣∣∣ds+

∫ t

−∞
e−ai j (t−s) ∑

Ckl∈Nr (i, j)

Ckl
i j

∣∣∣ f (ukl(s))vi j (s)

− f (vkl(s))vi j (s)
∣∣∣ds

≤ (L f K0+M f )max
(i, j)

∑Ckl∈Nr (i, j)C
kl
i j

ai j
‖u−v‖1 .

Thus,‖Πu−Πv‖1 ≤ (L f K0+M f )max
(i, j)

∑Ckl∈Nr (i, j)C
kl
i j

ai j
‖u−v‖1 , and condition(C6) implies

that the operatorΠ is contractive. Consequently, for anyL(t), there exists a unique bounded

onR solutionφL(t) of the network (4.1) such that supt∈R ‖φL(t)‖ ≤ K0. �

For a givenL(t) =
{

Li j (t)
}
, i = 1,2, . . . ,m, j = 1,2, . . . ,n, let us denote byxL(t,x0) ={

xi j
L (t,x0)

}
the unique solution of the SICNN (4.1) withxL(0,x0) = x0. We note that the

solutionxL(t,x0) is not necessarily bounded onR.

Consider the setL whose elements are functions of the formL(t) =
{

Li j (t)
}
, i = 1,2, . . . ,m,

j = 1,2, . . . ,n, such that sup
t∈R

∣∣Li j (t)
∣∣≤ Mi j for eachi and j. Suppose thatA is the collection

of functions consisting of the bounded onR solutionsφL(t) of system (4.1), whereL(t) ∈ L .

In the present chapter, we assume thatL is an equicontinuous family onR.

The following assertion confirms the attractiveness of the setA .

Lemma 4.2.2 For any x0 ∈R
m×n and L(t) =

{
Li j (t)

}
, i = 1,2, . . . ,m, j = 1,2, . . . ,n, we have

‖xL(t,x0)−φL(t)‖→ 0 as t→ ∞.

Proof. Making use of the relation

xi j
L (t,x0)−φ i j

L (t) = e−ai j t
(

xi j
L (0,x0)−φ i j

L (0)
)

−
∫ t

0
e−ai j (t−s)

[
∑

Ckl∈Nr (i, j)

Ckl
i j f (xkl

L (s,x0))x
i j
L (s,x0)

− ∑
Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L (s))φ i j
L (s)

]
ds

we obtain fort ≥ 0 that
∣∣∣xi j

L (t,x0)−φ i j
L (t)

∣∣∣≤ e−ai j t
∣∣∣xi j

L (0,x0)−φ i j
L (0)

∣∣∣
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+M f ∑
Ckl∈Nr (i, j)

Ckl
i j

∫ t

0
e−ai j (t−s)

∣∣∣xi j
L (s,x0)−φ i j

L (s)
∣∣∣ds

+L f K0

∫ t

0
e−ai j (t−s) ∑

Ckl∈Nr (i, j)

Ckl
i j

∣∣∣xkl
L (s,x0)−φ kl

L (s)
∣∣∣ds.

The last inequality implies fort ≥ 0 that

eγt ‖xL(t,x0)−φL(t)‖ ≤ ‖x0−φL(0)‖+c(L f K0+M f )
∫ t

0
eγs‖xL(s,x0)−φL(s)‖ds.

Applying Gronwall-Bellman Lemma, one can attain that

‖xL(t,x0)−φL(t)‖ ≤ ‖x0−φL(0)‖e[c(L f K0+M f )−γ]t , t ≥ 0.

Consequently,‖xL(t,x0)−φL(t)‖→ 0 ast → ∞, in accordance with condition(C6). �

Our purpose in the next part is to prove rigorously that if the collectionL is chaotic in the

sense of Li-Yorke then the same is true forA . In other words, if the external input terms

Li j (t) behave chaotically, then the dynamics of the SICNNs are also chaotic.

4.3 Chaotic Dynamics

The replication of the ingredients of Li-Yorke chaos from the collectionL to the collection

A will be affirmed in the following two lemmas, and the main conclusion will be stated in

Theorem 4.3.1. We start with the following lemma, which indicates existence of proximality

in the collectionA .

Lemma 4.3.1 If a couple of functions
(

L(t), L̃(t)
)
∈ L ×L is proximal, then the same is

true for the couple
(
φL(t),φL̃(t)

)
∈ A ×A .

Proof. Fix an arbitrary small positive numberε and an arbitrary large positive numberE. Set

R= 2

(
M f K0max

(i, j)

∑Ckl∈Nr (i, j)C
kl
i j

ai j
+max

(i, j)

Mi j

ai j

)

and

0< α ≤ γ −c(L f K0+M f )

1+ γ −c(L f K0+M f )
.

Suppose that a given pair
(

L(t), L̃(t)
)
∈ L ×L is proximal. There exist a sequence of real

numbers
{

Eq
}

satisfyingEq ≥ E for eachq∈N and a sequence
{

tq
}
, tq → ∞ asq→ ∞, such

that
∥∥∥L(t)− L̃(t)

∥∥∥< αε for eacht from the disjoint intervalsJq = [tq, tq+Eq], q∈ N. Let us

denoteφL(t) =
{

φ i j
L (t)

}
andφL̃(t) =

{
φ i j

L̃
(t)
}
.
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Fix q∈ N. For t ∈ Jq, using the relation (4.3), one can reach up for anyi and j that

φ i j
L (t)−φ i j

L̃
(t) =−

∫ t

−∞
e−ai j (t−s)

[
∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L (s))φ i j
L (s)−Li j (s)

− ∑
Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L̃
(s))φ i j

L̃
(s)+ L̃i j (s)

]
ds.

By means of the last equation, one can obtain that

∣∣∣φ i j
L (t)−φ i j

L̃
(t)
∣∣∣≤ 2

(
M f K0

∑Ckl∈Nr (i, j)C
kl
i j

ai j
+

Mi j

ai j

)
e−ai j (t−tq)

+
αε
ai j

(
1−e−ai j (t−tq)

)

+c(L f K0+M f )
∫ t

tq
e−ai j (t−s)

∥∥φL(s)−φL̃(s)
∥∥ds.

Accordingly, fort ∈ Jq we have that

eγt
∥∥φL(t)−φL̃(t)

∥∥≤ Reγtq +
αε
γ
(
eγt −eγtq

)

+c(L f K0+M f )
∫ t

tq
eγs
∥∥φL(s)−φL̃(s)

∥∥ds.

Application of Gronwall’s Lemma to the last inequality implies fort ∈ Jq that

∥∥φL(t)−φL̃(t)
∥∥≤ αε

γ −c(L f K0+M f )

(
1−e[c(L f K0+M f )−γ](t−tq)

)

+Re[c(L f K0+M f )−γ](t−tq).

Suppose that the numberE is sufficiently large such that

E >
2

γ −c(L f K0+M f )
ln

(
R

αε

)
.

In this case, ift belongs to the interval[tq+E/2, tq+Eq], then

Re[c(L f K0+M f )−γ](t−tq) < αε .

Thus, fort ∈ [tq+E/2, tq+Eq], the inequality

∥∥φL(t)−φL̃(t)
∥∥<

(
1+

1
γ −c(L f K0+M f )

)
αε ≤ ε .

is valid. Consequently, since the last inequality holds for eacht from the disjoint intervals

J1
q = [tq+E/2, tq+Eq], q∈ N, the couple

(
φL(t),φL̃(t)

)
∈ A ×A is proximal.�

Now, let us continue with the replication the second main ingredient of Li-Yorke chaos in the

next lemma.

Lemma 4.3.2 If a couple
(

L(t), L̃(t)
)
∈ L ×L is frequently(ε0,∆)-separated for some

positive numbersε0 and ∆, then there exist positive numbersε1 and ∆ such that the couple(
φL(t),φL̃(t)

)
∈ A ×A is frequently(ε1,∆)-separated.
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Proof. Suppose that a given couple
(

L(t), L̃(t)
)
∈L ×L is frequently(ε0,∆) separated, for

someε0> 0 and∆> 0. In this case, there exist infinitely many disjoint intervalsJq,q∈N, each

with length not less than∆, such that
∥∥∥L(t)− L̃(t)

∥∥∥ > ε0 for eacht from these intervals. In

the proof, we will verify the existence of positive numbersε1,∆ and infinitely many disjoint

intervalsJ1
q ⊂ Jq,q ∈ N, each with length∆, such that the inequality

∥∥φL(t)−φL̃(t)
∥∥ > ε1

holds for eacht from the intervalsJ1
q,q∈ N.

According to the equicontinuity ofL , one can find a positive numberτ < ∆, such that for

anyt1, t2 ∈ R with |t1− t2|< τ , the inequality
∣∣∣
(

Li j (t1)− L̃i j (t1)
)
−
(

Li j (t2)− L̃i j (t2)
)∣∣∣<

ε0

2
(4.4)

holds for all 1≤ i ≤ m,1≤ j ≤ n.

Suppose that for eachq ∈ N, the numbersq denotes the midpoint of the intervalJq. Let us

define a sequence
{

θq
}

through the equationθq = sq− τ/2.

Let us fix an arbitraryq∈ N. One can find integersi0, j0, such that
∣∣∣Li0 j0(sq)− L̃i0 j0(sq)

∣∣∣=
∥∥∥L(sq)− L̃(sq)

∥∥∥> ε0. (4.5)

Making use of the inequality(4.4), for all t ∈ [θq,θq+ τ ] we have
∣∣∣Li0 j0(sq)− L̃i0 j0(sq)

∣∣∣−
∣∣∣Li0 j0(t)− L̃i0 j0(t)

∣∣∣

≤
∣∣∣
(

Li0 j0(t)− L̃i0 j0(t)
)
−
(

Li0 j0(sq)− L̃i0 j0(sq)
)∣∣∣

<
ε0

2

and therefore, by means of(4.5), we achieve that the inequality
∣∣∣Li0 j0(t)− L̃i0 j0(t)

∣∣∣>
∣∣∣Li0 j0(sq)− L̃i0 j0(sq)

∣∣∣− ε0

2
>

ε0

2
(4.6)

is valid for all t ∈ [θq,θq+ τ ] .

For eachi and j, one can find numbersζ q
i j ∈ [θq,θq+ τ ] such that

∫ θq+τ

θq

(
L(s)− L̃(s)

)
ds= τ

(
L11(ζ q

11)− L̃11(ζ q
11), . . . ,Lmn(ζ q

mn)− L̃mn(ζ q
mn)
)
.

Thus, according to the inequality(4.6), we have that
∥∥∥∥
∫ θq+τ

θq

(
L(s)− L̃(s)

)
ds

∥∥∥∥≥ τ
∣∣∣Li0 j0(ζ

q
i0 j0

)− L̃i0 j0(ζ
q
i0 j0

)
∣∣∣>

τε0

2
. (4.7)

For t ∈ [θq,θq+ τ ], using the couple of relations

φ i j
L (t) = φ i j

L (θq)−
∫ t

θq

[
ai j + ∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L (s))
]
φ i j

L (s)ds+
∫ t

θq

Li j (s)ds,
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and

φ i j
L̃
(t) = φ i j

L̃
(θq)−

∫ t

θq

[
ai j + ∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L̃
(s))
]
φ i j

L̃
(s)ds+

∫ t

θq

L̃i j (s)ds,

it can be verified that

φ i j
L (θq+ τ)−φ i j

L̃
(θq+ τ) =

∫ θq+τ

θq

(
Li j (s)− L̃i j (s)

)
ds

+(φ i j
L (θq)−φ i j

L̃
(θq))−

∫ θq+τ

θq

ai j

(
φ i j

L (s)−φ i j
L̃
(s)
)

ds

−
∫ θq+τ

θq

[
∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L (s))φ i j
L (s)− ∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L̃
(s))φ i j

L̃
(s)
]
ds.

Hence we achieve that

∥∥φL(θq+ τ)−φL̃(θq+ τ)
∥∥≥

∥∥∥∥
∫ θq+τ

θq

(
L(s)− L̃(s)

)
ds

∥∥∥∥

−
∥∥φL(θq)−φL̃(θq)

∥∥−max
(i, j)

∣∣∣∣
∫ θq+τ

θq

ai j

(
φ i j

L (s)−φ i j
L̃
(s)
)

ds

∣∣∣∣

−max
(i, j)

∣∣∣∣∣

∫ θq+τ

θq

[
∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L (s))φ i j
L (s)− ∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L̃
(s))φ i j

L̃
(s)
]
ds

∣∣∣∣∣ .

(4.8)

Let us denoteγ = max
(i, j)

ai j andH0 = max
(i, j)

Mi j . The inequalities(4.7) and(4.8) together imply

that

max
t∈[θq,θq+τ]

∥∥φL(t)−φL̃(t)
∥∥≥

∥∥φL(θq+ τ)−φL̃(θq+ τ)
∥∥

>
τε0

2
− [1+ τγ + τc(L f K0+M f )] max

t∈[θq,θq+τ]

∥∥φL(t)−φL̃(t)
∥∥ .

Therefore, we have max
t∈[θq,θq+τ]

∥∥φL(t)−φL̃(t)
∥∥> ε , where

ε =
τε0

2[2+ τγ + τc(L f K0+M f )]
.

Suppose that max
t∈[θq,θq+τ]

∥∥φL(t)−φL̃(t)
∥∥=

∥∥φL(ξq)−φL̃(ξq)
∥∥ , for someξq ∈ [θq,θq+ τ ]. De-

fine

∆ = min

{
τ
2
,

ε
4(H0+K0γ +M f K0c)

}

and let

θ 1
q =

{
ξq, if ξq ≤ θq+ τ/2

ξq−∆, if ξq > θq+ τ/2
.

For t ∈
[
θ 1

q ,θ 1
q +∆

]
, by favour of the integral equation

φ i j
L (t)−φ i j

L̃
(t) = (φ i j

L (ξq)−φ i j
L̃
(ξq))
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+
∫ t

ξq

(
Li j (s)− L̃i j (s)

)
ds−

∫ t

ξq

ai j

(
φ i j

L (s)−φ i j
L̃
(s)
)

ds

−
∫ t

ξq

[
∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L (s))φ i j
L (s)− ∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L̃
(s))φ i j

L̃
(s)
]
ds,

we have

∥∥φL(t)−φL̃(t)
∥∥≥

∥∥φL(ξq)−φL̃(ξq)
∥∥

−max
(i, j)

∣∣∣
∫ t

ξq

(
Li j (s)− L̃i j (s)

)
ds
∣∣∣−max

(i, j)

∣∣∣
∫ t

ξq

ai j

(
φ i j

L (s)−φ i j
L̃
(s)
)

ds
∣∣∣

−max
(i, j)

∣∣∣
∫ t

ξq

[
∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L (s))φ i j
L (s)− ∑

Ckl∈Nr (i, j)

Ckl
i j f (φ kl

L̃
(s))φ i j

L̃
(s)
]
ds
∣∣∣

> ε −2∆(H0+K0γ +M f K0c)

≥ ε
2
.

Consequently, for eacht from the disjoint intervalsJ1
q =

[
θ 1

q ,θ 1
q +∆

]
, q∈ N, the inequality

∥∥φL(t)−φL̃(t)
∥∥> ε1 holds, whereε1 = ε/2. �

The following theorem, which is the main result of the present article, indicatesthat the net-

work (4.1) is chaotic, provided that the external inputs are chaotic.

Theorem 4.3.1 If L is a Li-Yorke chaotic set, then the same is true forA .

Proof. Assume that the setL is Li-Yorke chaotic. Under the circumstances, there exists

a positive numberT0 such that for any natural numberk, L possesses a periodic function

of periodkT0. One can confirm thatL(t) ∈ L is kT0−periodic if and only ifφL(t) ∈ A is

kT0−periodic. Therefore, the setA contains akT0−periodic function for any natural number

k.

Next, suppose thatLS is a scrambled set insideL and take into account the collectionAS

with elements of the formφL(t), whereL(t)∈LS. SinceLS is uncountable, the setAS is also

uncountable. Due to the one-to-one correspondence between the periodic functions insideL

andA , no periodic functions exist insideAS.

According to Lemmas 4.3.1 and 4.3.2,AS is a scrambled set. Moreover, Lemma 4.3.2 implies

that each couple of functions insideAS×AP is frequently(ε1,∆)-separated for some positive

numbersε1 and∆, whereAP denotes the set of all periodic functions insideA . Consequently,

the setA is Li-Yorke chaotic.�

Remark 4.3.1 Combining the result of Theorem 4.3.1 with the one of Lemma 4.2.2, we con-

clude that a chaotic attractor takes place in the dynamics of system (4.1).
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4.4 Examples

To actualize the results of the chapter, one needs a source of external inputs,Li j (t), which are

ensured to be chaotic in the Li-Yorke sense. For this reason, in the first example, we will take

into account SICNNs whose external inputs are relay functions with chaotically changing

switching moments. Then, to support our new theoretical results, we will makeuse of the

solutions of this network as external inputs for another SICNNs, which is the main illustrative

object for the results of the chapter. To increase the flexibility of our methodfor applications,

we will also take advantage of nonlinear functions to build chaotic inputs.

Example 1.Let us introduce theSICNN

dzi j

dt
=−bi j zi j − ∑

Dkl∈N1(i, j)

Dkl
i j g(zkl(t))zi j +νi j (t, t0), (4.9)

in which i, j = 1,2,3,



b11 b12 b13

b21 b22 b23

b31 b32 b33


=




8 4 7

10 6 5

6 4 1


 ,




D11 D12 D13

D21 D22 D23

D31 D32 D33


=




0.006 0 0.001

0.009 0.002 0.003

0 0.005 0.004


 .

In equation (4.9),Di j denotes the cell at the(i, j) position of the lattice, and for eachi, j, the

relay functionνi j (t, t0) is defined by the equation

νi j (t, t0) =

{
αi j , if ζ2q(t0)< t ≤ ζ2q+1(t0),

βi j , if ζ2q−1(t0)< t ≤ ζ2q(t0),

wheret0 ∈ [0,1] and the numbersζq(t0), q ∈ Z, denote the switching moments, which are

the same for alli, j. The switching moments are defined through the formulaζq(t0) = q+

κq(t0), q∈ Z, where the sequence
{

κq(t0)
}
, κ0(t0) = t0, is generated by the logistic equation

κq+1(t0) = 3.9κq(t0)(1−κq(t0)), which is chaotic in the Li-Yorke sense [134]. More infor-

mation about the dynamics of relay systems and replication of chaos can be found in papers

[9, 10, 14, 15, 16, 18].

In system (4.9), letg(s) = s2 and αi j = 1, βi j = 2 for all i, j. By results of the paper [9],

the family
{

νi j (t, t0)
}
, t0 ∈ [0,1], is chaotic in the sense of Li-Yorke, and the collectionL

consisting of elements of the formz(t) =
{

zi j (t)
}
, wherez(t) are bounded onR solutions of

(4.9), is a Li-Yorke chaotic set.

Next, we consider the simulations of the network (4.9). Figure 4.1 represents the chaotic

solutionz(t) =
{

zi j (t)
}

of (4.9) with z11(t0) = 0.1678, z12(t0) = 0.3956, z13(t0) = 0.1987,

z21(t0) = 0.1261, z22(t0) = 0.2405, z23(t0) = 0.3012, z31(t0) = 0.2412, z32(t0) = 0.3942,

z33(t0) = 1.6692, wheret0 = 0.45.
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Figure 4.1: The chaotic behavior of theSICNN(4.9).

In Example 1, to procure a Li-Yorke chaotic set, we used anSICNN in the form of (4.1),

where the termsLi j (t) are replaced by relay functionsνi j (t, t0), whose switching moments

change chaotically. Now, to support the results of the present chapter,we will construct

anotherSICNN, but this time we will use external inputs of the formLi j (t) = hi j (z(t)), where

z(t) are the chaotic solutions of the network (4.9) andh(v) =
{

hi j (v)
}

is a nonlinear function

which satisfies the inequality (4.2).

Example 2.Consider the followingSICNN,

dxi j

dt
=−ai j xi j − ∑

Ckl∈N1(i, j)

Ckl
i j f (xkl(t))xi j +Li j (t), (4.10)

in which i, j = 1,2,3,



a11 a12 a13

a21 a22 a23

a31 a32 a33


=




5 12 2

6 4 8

2 9 3


 ,




C11 C12 C13

C21 C22 C23

C31 C32 C33


=




0.02 0.04 0.06

0.04 0.07 0.09

0.03 0.04 0.08


 ,

and f (s) =
1
2

s3. One can calculate that

∑
Ckl∈N1(1,1)

Ckl
11 = 0.17, ∑

Ckl∈N1(1,2)

Ckl
12 = 0.32, ∑

Ckl∈N1(1,3)

Ckl
13 = 0.26,

∑
Ckl∈N1(2,1)

Ckl
21 = 0.24, ∑

Ckl∈N1(2,2)

Ckl
22 = 0.47, ∑

Ckl∈N1(2,3)

Ckl
23 = 0.38,

∑
Ckl∈N1(3,1)

Ckl
31 = 0.18, ∑

Ckl∈N1(3,2)

Ckl
32 = 0.35, ∑

Ckl∈N1(3,3)

Ckl
33 = 0.28.
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In the previous example, we obtained a network whose solutions behave chaotically. Now, we

will make these solutions as external inputs for (4.10), with the help of a nonlinear function

h.

Define a functionh(v) =
{

hi j (v)
}
, wherev =

{
vi j
}
, i, j = 1,2,3, through the equations

h11(v) = 2v11+ sin(v11), h12(v) = 3
2v2

12, h13(v) = ev13, h21(v) = tan
(

v21
2

)
, h22(v) = v22+

arctanv22, h23(v) =
v2

23−v23−1
v23−1 , h31(v) = 2

3(2+ v31)
3/2, h32(v) = tanh(v32), h33(v) = 1

4v3
33+

1
5v33. We note that the inequality (4.2) can be verified by using the bounded regions where

each component functionzi j (t) lies in. Accordingly, the setLh whose elements are of

the formh(z(t)), z(t) ∈ L , whereL is the set of bounded onR solutions of (4.9), is Li-

Yorke chaotic. Moreover, for eachz(t) ∈ L we have
∣∣hi j (z(t))

∣∣ ≤ Mi j , whereM11 = 0.78,

M12 = 0.54, M13 = 1.35, M21 = 0.11, M22 = 0.69, M23 = 2.11, M31 = 2.41, M32 = 0.51 and

M33 = 2.4.

Consider the network (4.10) withLi j (t) = hi j (z(t)), whereh(z(t)) =
{

hi j (z(t))
}
∈Lh. In this

case, the condition(C6) holds for (4.10) withM f = 0.864, L f = 2.16, K0 = 1.36, γ = 2 and

c= 0.47. The results of Theorem 4.3.1 ensure us to say that the collectionA with elements

φz(t), z(t) ∈ L , is Li-Yorke chaotic.

In the SICNN (4.10), we use the chaotically behaving solutionz(t) =
{

zi j (t)
}

which is sim-

ulated in Example 1, and depict in Figure 4.2 the solution of (4.10) withx11(t0) = 0.1341,

x12(t0) = 0.0247, x13(t0) = 0.6493, x21(t0) = 0.0143, x22(t0) = 0.1503, x23(t0) = 0.2394,

x31(t0) = 1.1574, x32(t0) = 0.0467 andx33(t0) = 0.5145, wheret0 = 0.45. Figure 4.2 reveals

that each cellCi j , i, j = 1,2,3, behave chaotically, and this supports the result mentioned

in Theorem 4.3.1. Moreover, Figure 4.3 shows the projection of the same trajectory on the

x22−x31−x33 space, and this figure also confirms the results of the present chapter.
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Figure 4.2: The chaotic behavior of theSICNN(4.10).
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Figure 4.3: The projection of the chaotic attractor of the network (4.10) on thex22−x31−x33

space.

4.5 Discussion

In this chapter, it is shown that SICNNs with chaotic external inputs admit a chaotic attrac-

tor. Considering this phenomenon with the input-output mechanism, one can say about chaos

expansion among nonlinearly coupled SICNNs. The presented two examples considered to-

gether illustrate the possibility. Our method can be applied to other types of chaos, for ex-

ample, that one analyzed through period-doubling cascade. The approach is suitable for the

control of unstable periodic motions. Our results can be applied to the studiesof chaotic com-

munication, combinatorial optimization problems and on problems that have local minima in

energy (cost) functions.
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CHAPTER 5

CONCLUSIONS

Replication of different types of chaos such as the one obtained by period-doubling cascade,

Devaney’s and Li-Yorke chaos is recognized in the thesis. The definitions of chaotic sets as

well as the hyperbolic sets of continuous functions are introduced, and the replication of the

chaos is proved rigorously. The morphogenesis mechanism consideredin our study is based

on a chaos generating element inserted in a network of systems. Replication of intermittency

as well as Shil’nikov orbits are discussed. Morphogenesis of the double-scroll Chua’s attractor

and quasiperiodical motions as a possible skeleton of a chaotic attractor aredemonstrated nu-

merically. We handled the problem of chaos generation in Duffing oscillatorsthrough period-

doubling cascade by means of perturbations in the form of a relay function. In the thesis, it

is also shown that chaotic external inputs make the dynamics of shunting inhibitory cellular

neural networks behave chaotically. Moreover, control problem of the extended chaos is real-

ized. Some of the results are illustrated through the relay system’s dynamics, and appropriate

simulations are presented using the indicated method successively. The results mentioned in

this thesis are published in the papers [16, 18, 19], and the simulations are prepared by using

MATLAB [144]. The presented methods are useful for creating chaosin systems that are en-

countered in mechanics, electrical systems, economic theory, meteorology,neural networks

theory and communication systems.

The concept of self-replicating machines, in the abstract sense, starts with the ideas of von

Neumann [160] and these ideas are supposed to be the origins of cellular automata theory

[193]. Morphogenesis was deeply involved in mathematical discussions through Turing’s

investigations [223] as well as in the concept of structural stability [216].In the thesis, the

term “morphogenesis” is used in the meaning of “processes creating forms” where we accept

the form not only as a type of chaos, but also accompanying concepts as the structure of

the chaotic attractor, its fractal dimension, form of the bifurcation diagram, the spectra of

Lyapunov exponents, inheritance of intermittency, etc. This is similar to the ideasuch that

morphogenesis is used in fields such as urban studies [58], architecture[182], mechanics

[213], computer science [36], linguistics [91] and sociology [25, 45].

According to von Neumann, it is feasible in principle to create a self-replicating machine,

which he refers as an “automaton”, by starting with a machineA, which has the ability to

construct any other machine once it is furnished with a set of instructions,and then attaching
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to A another componentB that can make a copy of any instruction supplied to it. Together with

a third component labeledC, it is possible to create a machine, denoted byR, with components

A,B andC such thatC is responsible to initiateA to construct a machine as described by the

instructions, then makeB to create a copy of the instructions, and supply the copy of the

instructions to the entire apparatus. The componentC is referred as “control mechanism”.

It is the resulting machineR′, obtained by furnishing the machineR by instructionsIR, that

is capable of replicating itself. Multiple usage of the set of instructionsIR is crucial in the

mechanism of self-replication. First, the instructions must be fulfilled by the machineA, then

they must be copied byB, and finally the copy must be attached to machineR to form the

systemR′ once again [160, 193].

Our theory of morphogenesis of chaos relates the ideas of von Neumann about self-replicating

machines in the following sense. Initially, we take into account a system of differential equa-

tions (the generator) which plays the role of machineA as in the ideas of von Neumann,

and we use this system to influence in a unidirectional way, another system (the replicator)

in the role of machineB, in such a manner that the replicator mimics the same ingredients

of chaos furnished to the generator. In this thesis, we use such ingredients in the form of

period-doubling cascade, Devaney’s and Li-Yorke chaos. In conclusion, the generator system

with the replicator counterpart together, that is, the result-system, admits ingredients of the

generator. In other words, a known type of chaos is replicated.

Replication of a known type of chaos in systems with arbitrary large dimension isa significant

consequence of the second chapter of the thesis. More precisely, by the method presented, we

show that a known type of chaos, such as obtained through period-doubling cascade and in the

sense of Devaney or Li-Yorke, can be extended to systems with arbitrarylarge dimension. To

be more precise, we provide replication of chaos between unidirectionally coupled systems

such that finally to obtain a result-system admitting the same type of chaos. One can con-

struct the morphogenesis mechanism by the formation of consecutive replications of chaos or

replication of chaos from a core system. It is also possible to construct a result-system using

these two mechanisms in a mixed style.

The chaotification procedure presented in the third chapter shows that not only continuous

functions, but also piecewise continuous functions in the form of a relay function with chaot-

ically changing switching moments can be used to replicate a certain type of chaos. In the

third chapter, it is also shown both theoretically and numerically that the obtained chaos is

controllable, and OGY and Pyragas methods are suitable to stabilize the unstable periodic

solutions.

Cellular neural networks have been paid much attention in the past two decades. Exceptional

role in psychophysics, speech, perception, robotics, adaptive pattern recognition, vision, and

image processing has been played by shunting inhibitory cellular neural networks. Chaotic

dynamics is an object of great interest in the theory neural networks. This is natural since

chaotic outputs have been obtained for several types of neural networks. According to the

design of neural networks, solutions of some of them can be used as an input for another
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ones. Confirming one more time that the chaos phenomenon can be observedin the dynam-

ics of neural networks, the results obtained in the fourth chapter of the present thesis make

contribution to the development of neural networks theory.

The synchronization theory of chaotic systems and our method of replicationof chaos are

compared in the following part.

5.1 Synchronization versus Replication

According to Pecora and Carroll [168], two identical chaotic systems canbe synchronized

under appropriate unidirectional coupling schemes. To realize the proposal of Afraimovich

et al. [4] about the synchronization of nonidentical chaotic systems that are not restricted

in coupling, Rulkov et al. [184] considered the concept of generalizedsynchronization for

unidirectionally coupled systems. Generalized synchronization [1, 3, 100, 122, 184] occurs in

the dynamics of the unidirectionally coupled system(1.4)+ (1.5) if the relation (1.8) holds.

This relation indicates the asymptotic closeness of the solutions of the master system (1.4)

and the slave system (1.5) under a transformationψ . According to the results of Kocarev

and Parlitz [122], generalized synchronization occurs in the system(1.4) + (1.5) if for all

initial x0 in a neighborhood of the chaotic attractor of the master system, the slave system is

asymptotically stable [100], that is, the asymptotic stability criterion (1.9) holds.

The main disadvantage and in the same time the advantage of the synchronizationof chaotic

systems [1, 3, 82, 100, 122, 168, 184] is that the description of chaos isnot requested. It is

assumed in any form for the master system.

According to the lack of its description, chaos in the slave system is discovered through (i)

asymptotic closeness, (ii) a transformation. Lyapunov’s second method [239], which is first

used by He and Vaidya [95] in the theory of synchronization, can be applied to indicate the

asymptotic closeness.

In the studies about synchronization of chaotic systems, we suppose thatthe authors were

forced to apply this simple method because of the absence of concrete properties of chaos.

Even in the case of generalized synchronization [1, 3, 100, 122, 184]the same indicators are

used. However, in the generalized synchronization, it is a difficult task toapply even the

Lyapunov’s second method. As well they cannot arrange the transformation theoretically.

That is why other methods such as the analysis of conditional Lyapunov exponents [122], the

auxiliary system approach [1] and the method of mutual false nearest neighbors [184] were

proposed to detect the generalized synchronization. In other words, the theoretical support

for generalized synchronization is weak.

In the replication theory, the correspondence between the chaos of the generator and repli-

cator systems is very clear and has a definitive form. Our results are suitable for identical

as well as nonidentical systems with the same or different dimensions. The correspondence

117



is arranged not only for identical systems but also for arbitrary nonidentical generator and

replicator systems with different dimensions.

For certain type of replicator systems we can also arrange the asymptotic closeness of different

type by applying linearization and Lyapunov’s second method. Replication of chaos can

be proved even when the asymptotical property is not definitely fulfilled. For example, the

general hyperbolic case can be considered.

Further investigations about replication of chaos can be done by applyingLyapunov’s second

method. Moreover, in future, we will focus on chaotification of systems thatpossess stable

limit cycles instead of equilibrium points. Such systems can occur as a result of Hopf bifur-

cation, and they are important for problems in biological systems, chemical reactions, neural

networks, mechanics and electrical circuits.
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