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ABSTRACT 
 
 

IMAGE FUSION FOR IMPROVING SPATIAL RESOLUTION OF 
MULTISPECTRAL SATELLITE IMAGES 

 
 
 

Ünlüsoy, Deniz 
M.S., Department of Geological Engineering 

Supervisor: Prof. Dr. M. Lütfi Süzen 
 

September 2013, 83 pages 

In this study, four different image fusion techniques have been applied to high spectral and 
low spatial resolution satellite images with high spatial and low spectral resolution images to 
obtain fused images with increased spatial resolution, while preserving spectral information 
as much as possible. These techniques are intensity-hue-saturation (IHS) transform, principle 
component analysis (PCA), Brovey transform (BT), and Wavelet transform (WT) image 
fusion. Images used in the study belong to Çankırı region, and are obtained from Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite. 

MATLAB is used to build a GUI to apply and to present the results of the image fusion 
algorithms. Subjective (visual) and objective evaluation of the fused images have been 
performed to evaluate the success of the approaches. The objective evaluation methods 
include correlation coefficient (CC), root mean squared error (RMSE), relative global 
dimensional synthesis error (ERGAS), and high-pass correlation coefficient (HPCC). For 
visual evaluation, sulphate index (SI) and mafic index (MI) specific to thermal infrared 
(TIR) and hydroxyl index “a” (OHIa) specific to shortwave infrared (SWIR) bands are used. 

The results indicate that the IHS transformation provides the highest performance in 
increasing lower spatial resolutions of TIR and SWIR bands of the ASTER images to higher 
spatial resolution of visible near infrared (VNIR) bands, at the expense of some loss of 
spectral information. PCA and BT methods, on the other hand, perform better with respect to 
preservation of spectral information, while being less successful in increasing spatial 
resolution. WT performs next to IHS transformation for improving spatial resolution and 
comes after PCA and BT methods with respect to the preservation of spectral information.  

Keywords: Remote sensing, Image fusion, IHS transformation, Brovey transformation, 
Wavelet transformation, PCA. 
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ÖZ 
 
 

ÇOKLU SPEKTRAL GÖRÜNTÜLERİN ALANSAL ÇÖZÜNÜRLÜĞÜNÜN 
GÖRÜNTÜ BİRLEŞTİRME YÖNTEMİ İLE GELİŞTİRİLMESİ 

 
 
 

Ünlüsoy, Deniz 
Yüksek Lisans, Jeoloji Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Lütfi Süzen 
 

Eylül 2013, 83 sayfa 

Bu çalışmada dört değişik görüntü birleştirme tekniği yüksek spektral, düşük alansal 
çözünürlüklü uydu görüntüleri ile yüksek alansal ve düşük spektral uydu görüntülerine 
uygulanmıştır. Çalışmanın temel amacı, spektral özellikleri olabildiğince koruyarak alansal 
çözünürlüğü yüksek görüntülerin elde edilmesidir. Kullanılan teknikler yoğunluk-renk tonu-
doygunluk (IHS) dönüşüm temelli görüntü birleştirme, temel bileşenler analizi (PCA) temelli 
görüntü birleştirme, Brovey dönüşümü (BT) temelli görüntü birleştirme ve dalgacık 
dönüşümlü (WT) görüntü birleştirme olarak seçilmiştir. Çalışmada ASTER uydusundan 
alınan ve Çankırı yöresine ait görüntüler kullanılmıştır. 

Görüntü birleştirme işleminin yapılıp, sonuçlarının sunulması ve karşılaştırılması için 
MATLAB platformu üzerinde bir arayüz geliştirilmiştir. Farklı tekniklerle elde edilen 
yüksek çözünürlüklü görüntüler, orijinal görüntüler ve birbirleri ile karşılaştırılmıştır. 
Korelasyon katsayısı (CC), ortalama karesel hata (RMSE), göreceli küresel boyutsal sentez 
hatası (ERGAS) ve yüksek geçişli korelasyon katsayısı (HPCC) nesnel değerlendirmede 
kullanılmıştır. Öznel değerlendirme için termal kızılötesine (TIR) özgü mafik (MI) ve sülfat 
(SI) indisleri ve kısa dalga kızılötesi (SWIR) kanallarına özgü hidroksil “a” indisi (OHIa) 
gibi spektral indisler kullanılmıştır. 

Görüntü birleştirme uygulamalarından elde edilen sonuçlara göre, IHS temelli görüntü 
birleştirme tekniği alansal çözünürlüğün arttırılmasında en yüksek performansı 
göstermektedir. Ancak bu teknik diğer tekniklere göre spektral bilgide daha fazla kayba 
neden olmaktadır. PCA ve BT teknikleri ise spektral özellikleri korumada daha başarılı 
olmalarına karşın, alansal çözünürlüğün arttırılmasında IHS ve WT’nin gerisinde 
kalmaktadır. WT alansal çözünülürlüğün arttırılmasında IHS’den, spektral bilginin 
korunmasında ise PCA ve BT’den sonra gelmektedir. 

Anahtar Kelimeler: Uzaktan algılama, Görüntü birleştirme, Yoğunluk-renk tonu-doygunluk 
dönüşümü, Brovey dönüşümü, Dalgacık dönüşümü, Temel bileşenler analizi dönüşümü 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1. Purpose and Scope 

Remote sensing simply means obtaining information about an object without touching the 
object itself. It has two facets; acquiring data by a device at a distance from the object, and 
analysing data of the object to interpret its physical properties. These two aspects are closely 
connected to each other. 

The basic fact in remote sensing is that different wavelength ranges of the electromagnetic 
spectrum is reflected or emitted from an object at certain intensity, which is dependent upon 
the physical and compositional attributes of the object. Remote sensing today plays an 
important role in geological analysis of large areas which utilizes electromagnetic spectrum 
not only within the visible range but also beyond the visible range that human eye can’t 
perceive. 

The unique spectral signatures of rocks, minerals, and other geological elements are used to 
map these geological elements in large areas in a short time using remote sensing data. Earth 
observation systems generally include infrared region of the electromagnetic spectrum, 
which include the visible-near infrared (VNIR) and shortwave infrared (SWIR). Further 
some imaging systems such as LANDSAT and ASTER cover thermal infrared (TIR) region, 
which is a mid-long wave infrared region in the spectrum. TIR radiance values of objects can 
also be used for mapping similar to VNIR and SWIR. 

As useful as it may be, remote sensing like any tool requires continuously increasing 
improvement. Similarly advances in the technology necessitate the improvement of the 
methods accordingly, both in terms of accuracy and precision. Image fusion is one of the 
techniques that are employed to increase spatial and/or spectral resolution of remotely sensed 
data by fusing a high spatial but low spectral resolution image with a low spatial high 
spectral resolution image. 

The purpose of this study is to fuse TIR and SWIR bands of ASTER with VNIR bands, 
while evaluating the multispectral infrared data with increased resolution for lithological 
discrimination and mapping using the basic image fusion techniques. Evaluation techniques 
will reveal which methods provide the best information and show how they compare to the 
original non-fused data. To accomplish these objectives, a graphical user interface (GUI) 
was prepared using the commercial software MATLAB and its Image Processing toolbox 
which contains commands and utilities that are commonly used in image processing 
applications. 

  



 
 

2 
 

1.2. Literature Survey 

The most common practice in image fusion, for the purpose of increasing spatial resolution, 
is to fuse panchromatic images with multispectral images. In this literature survey papers on 
thermal imagery and image fusion used in earth observation were researched. It is noted in 
the literature that in image fusion applications, thermal or other more specific bands are 
rarely used and most image fusion attempts using near infrared bands involves fusing it with 
the entire multispectral visual bands. The majority of the applications involve security and 
medical imaging. Yet the major use of thermal imaging lies in forestry, oceanography, and 
agriculture. There are also some papers in literature that make use of pansharpening of 
thermal data with image fusion and some using ASTER data. The literature survey to follow 
is concentrated on the work more closely related to the problem in hand. 

Collins, et al (1997), in their paper analysed “thermal imagery from the Spatially Enhanced 
Broadband Array Spectrograph System (SEBASS) for target detection purposes. The push-
broom sensor was operated as part of the Western Rainbow experiment in October 1995. 
Data from 7.8-13.4 microns were collected in 128 wavelength bands, with 128 pixels in the 
cross-track direction. The data set had a nominal ground-resolution of better than one meter. 
Analysis techniques normally used in the reflective domain, with traditional imaging 
spectrometers, were used for the thermal data. Analysis was done in both the radiance and 
emissivity domains, following careful thermal calibration and atmospheric compensation. 
The techniques utilized were principal components, spectral angle mapper, and spectral 
matched filter. All were successful, with the first two showing a success rate comparable to 
that found in similar experiments in the reflective domain. The principal components 
technique was successful in discriminating man-made objects and disturbed earth from the 
desert background, much as expected. It was also successful in distinguishing between 
different categories of man-made objects. Of the latter two techniques, the spectral matched 
filter was more successful. This relatively greater success is attributed to the sensitivity of 
the spectral angle mapper to calibration errors, particularly in the conversion from radiance 
to emissivity. Analysis of the long-wave infrared (LWIR) spectral data resulted in the 
successful detection of military targets and demonstrated a significant improvement in 
detection success rate over traditional single-band, infrared forward looking infrared 
radiometer (FLIR) imagery. Both target and background materials were detected, 
characterized, and classified using standard hyperspectral analysis algorithms historically 
used for the analysis of data collected within the visible and near-infrared regions of the 
electromagnetic spectrum. Principal components analysis demonstrated that SEBASS was 
capable of collecting thermal spectral data with sufficient spectral and radiometric resolution 
to detect and discriminate military targets. The analysis revealed that the data collected by 
SEBASS were not only capable of discriminating between the majority background and 
man-made materials, but were also capable of discriminating between classes of man-made 
materials.” In this paper the importance of the spectral resolution of thermal infrared band is 
presented. 

The report written by Yin and Malcolm (2000) is about the fusion of thermal images with 
optical images. It is stated that “the mechanisms that produce thermal images are different 
from those that produce visual images. Thermal image produced by an object’s surface can 
be interpreted to identify these mechanisms. Thus thermal images can provide information 
about the object being imaged which is not available from a visual image. The objective of 
this project is to study the integration of information obtained from thermal (infrared) images 
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and that obtained from visual intensity images. The study is conducted by investigating the 
fusion techniques in an application of the non-destructive moisture detection for 
construction. Several fusion approaches have been explored. The approaches make available 
information that cannot be obtained by processing visual images alone or thermal images 
alone, and which is useful for the interpretation of imaged scenes. The approach developed 
identifies the type of information to be extracted from each image and establishes a way of 
combining this information for this general class of applications. In the project, a primary 
study on multiple sensor fusion is performed. Applications of these approaches in non-
destructive test of construction slab show that the proposed fusion approaches do help to 
enhance some weak features exhibited both in optical and particularly in infrared images. 
Through the study of this project, it can be concluded that fusion does provide an intelligent 
and cost-effective way to achieve reliable perception and detection in the case where the 
signal is weak and cannot be reliably detected by using only one kind of available sensor. 
Thus, it is concluded that fusion of multiple sensors has a good prospect in industrial 
applications.” This report shows methods for fusing thermal and optical images and gives 
mathematical equations such as linear fusion as displayed below that might be useful for 
fusion attempts in the present thesis work. 

Ifused(x, y)=aIIR(x, y)+(1-a)Iop(x, y) 

The paper by Kruse (2002) shows applications of ASTER’s bands other than TIR. In this 
research “multispectral short-wave infrared (SWIR) and long-wave-infrared (LWIR) remote 
sensing to map mineralogy associated with hot springs and epithermal mineral deposits were 
used. Selected sites around the world covering a range of active/inactive hot springs and 
deposit types are being studied using the MODIS/ASTER airborne simulator (MASTER) 
and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). 
MASTER and ASTER data analysis contribute to mineral mapping in the VNIR/SWIR, 
however, their main contribution is improved mapping of siliceous sinter utilizing LWIR 
signatures. Integrated study using these VNIR/SWIR/LWIR remote sensing datasets is said 
to be in progress. SWIR spectral signatures and mineral maps derived from MASTER and 
ASTER data generally agree with those extracted from higher spectral resolution 
hyperspectral data, thus validating the multispectral instruments’ performances. Analysis of 
the SWIR MASTER/ASTER data allow mapping of characteristic minerals associated with 
hot springs/mineral deposits, including carbonates, kaolinite, alunite, buddingtonite, 
muscovite, and hydrothermal silica. Mineral identification and distribution was verified 
utilizing ground spectral measurements and mineral maps produced from AVIRIS 
hyperspectral data. LWIR spectral signatures principally allowed improved mapping of the 
distribution of siliceous sinter associated with these deposits. Integrated analysis of the 
MASTER/ASTER data using both the SWIR and LWIR spectral data is in progress with the 
goal of refining maps showing the distribution of key minerals associated with active and 
fossil hot springs and epithermal mineral deposits.” 
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Aiazzi, et al (2005) states “image fusion aims at the exploitation of the information conveyed 
by data acquired by different imaging sensors. A notable application is merging images 
acquired from space by panchromatic and multi- or hyper-spectral sensors that exhibit 
complementary spatial and spectral resolution. Multiresolution analysis has been recognized 
efficient for image fusion. The Generalized Laplacian Pyramid (GLP), in particular, has been 
proven to be the most efficient scheme due to its capability of managing images whose scale 
ratios are fractional numbers (non-dyadic data) and to its simple and easy implementation. 
Data merge based on multiresolution analysis, however, requires the definition of a model 
establishing how the missing spatial details to be injected into the multispectral bands are 
extracted from the panchromatic image. The model can be global over the whole image or 
depend on the local space-spectral context. Each of the five thermal infrared (TIR) images of 
ASTER (90m) is merged with the most correlated visible-near infrared (VNIR) image (15m). 
Due to the 6:1 scale ratio, the GLP has been utilized. The injection of spatial details has been 
ruled by means of the Spectral Distortion Minimizing (SDM) model that minimises the 
spectral distortion between the resampled and fused images. Notwithstanding the lack of a 
spectral overlap between the VNIR and the TIR bands, experimental results show that the 
fused images keep their spectral characteristics while the spatial resolution is enhanced. The 
GLP scheme demonstrated its capability to merge images at any rational scale ratio, thus 
being superior to any dyadic wavelet scheme. In the case of 6:1 ASTER VNIR-TIR image 
fusion only the composition of two cascaded filters is needed for reduction and expansion. In 
addition, the adoption of the SDM injection model guarantees that the fused images have no 
spectral distortion with respect to the simply expanded images. This property can be 
particularly useful when, as in the ASTER case, no spectral overlap exists between the 
images that are to be merged. The analysis of correlation between bands is useful to find out 
the most suitable band from which to extract the spatial details to be injected.” 

Jiménez-Muñoz and Sobrino (2007) in their paper show an application of ASTER TIR bands 
and present the important concept of thermal imaging, which is retrieving land-surface 
temperature. In the paper it is explained that “ASTER provides the user community with 
standard products of land-surface temperature (LST) and emissivity using the temperature 
and emissivity separation (TES) algorithm. This letter analyses the feasibility of using two-
channel (TC) algorithms for LST retrieval from ASTER data, which could be considered as 
an alternative or complementary procedure to the TES algorithm. TC algorithms have been 
developed for all the ASTER thermal infrared bands combinations, and they have been 
applied to six ASTER images acquired over an agricultural area of Spain in 2000, 2001, and 
2004. LST values obtained with TC algorithms were compared with the TES product. In 
addition, the TC algorithms were tested using simulated data and ground-based 
measurements collected coincident with the ASTER acquisition in 2004. The results show 
that TC algorithms provide similar accuracies than the TES algorithm (∼1.5 K), with the 
main advantage that the atmospheric correction is included in the algorithm itself.” 

Strait, et al (2008), discussed pansharpening combinations of a low-resolution colour 
multispectral image with a high-resolution greyscale panchromatic image to create a high-
resolution fused colour image. This paper is important in the fact that it shows how 
comparisons are made among image fusion techniques and how their relative success is 
evaluated. In this paper they examine five different pan-sharpening methods: IHS, PCA, 
Wavelet fusion, P+XS, and variational wavelet pan-sharpening (VWP) and evaluate their 
effectiveness. Additionally, they propose an extension to the IHS pan-sharpening method to 
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improve the resulting spectral quality. In order to compare the method results spatial and 
spectral qualities are evaluated by relying on both visual inspection and metric performance 
data. The results indicate that VWP is most effective in preserving spectral data, while IHS 
methods produce images with the best spatial quality. In comparing the spatial quality, as 
mentioned before, it is relatively easy to judge spatial quality just by looking at the image. 
For example, IHS and PCA demonstrate clear edges whereas Wavelet experiences what is 
called a stair-casing effect. Similarly for all the other images this pattern follows. In the 
results of the spatial metrics, it confirms the prediction that IHS and PCA have the highest 
spatial quality, but it misleads the reader in evaluating P+XS and Wavelet. P+XS have a 
lower spatial evaluation value than Wavelet, yet P+XS visually look better. Overall, from the 
average of the results of the six images; it is clear the IHS and PCA spatially perform best 
outputs. The spectral quality was more difficult to judge visually; therefore many metrics 
were used in order to evaluate the results. In all the fused images, IHS and PCA have the 
highest colour distortion. This is due to overusing the panchromatic image. The colours 
visually look very different that the original MS. It is difficult to say which of the other 
images match better to the MS. The metrics were run on all the images and an average of the 
results was taken. Looking at the results it can be concluded from the metrics that VWP 
performs best spectrally. In comparing the three IHS methods only, the metrics conclude the 
original IHS performs best spatially whereas the Adaptive IHS performs best spectrally. In 
conclusion, overall the VWP performs best spectrally and the IHS performs best spatially. 
There is always a trade off in spectral and spatial quality, because of this the choice of 
method can depend on the how the fused image will be used. Also given the metric results, it 
was concluded that among the three different IHS methods, the Adaptive IHS performs best 
spectrally. 

Li and Yang, (2011), deals with “the remote sensing image pansharpening problem from the 
perspective of compressed sensing (CS) theory which ensures that with the sparsity 
regularization, a compressible signal can be correctly recovered from the global linear 
sampled data. First, the degradation model from a high to low-resolution multispectral (MS) 
image and high-resolution panchromatic (PAN) image is constructed as a linear sampling 
process which is formulated as a matrix. Then, the model matrix is considered as the 
measurement matrix in CS, so pan-sharpening is converted into signal restoration problem 
with sparsity regularization. Finally, the basis pursuit (BP) algorithm is used to resolve the 
restoration problem, which can recover the high-resolution MS image effectively. The 
QuickBird and IKONOS satellite images are used to test the proposed method. The 
experimental results show that the proposed method can well preserve spectral and spatial 
details of the source images. The pansharpened high-resolution MS image by the proposed 
method is claimed to be competitive or even superior to those images fused by other well-
known methods. In the novel pan-sharpening method based on CS technique, based on the 
PAN and MS images generation model, pan-sharpening problem is referred as an ill-posed 
inverse problem. Then, the sparsity regularization is employed to address the ill-posed 
inverse problem, and the high-resolution spectral image can be effectively recovered. The 
method is tested on QuickBird and IKONOS images and compared with six well-known 
methods: 1) Generalized IHS; 2) Gram-Schmidt Transform; 3) Singular Value Thresholding; 
4) Context Based Decision; 5) Additive Wavelet Based Fusion; and 6) Genetic Algorithm 
based methods. The spectral and spatial information are comprehensively evaluated using 
several image quality measures. The experimental results demonstrate the effectiveness of 
sparsity as a prior for satellite PAN and MS image fusion. In addition, it was noticed that the 
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proposed method can easily process image fusion and restoration when the source images are 
corrupted by noise by only adjusting the parameter ε. However, the proposed scheme takes 
more time than traditional methods.” The way the comparison was done between different 
image fusion methods was the highlight of the paper. The novel fusion technique had its 
strengths with short comings. 

Jeganathan et al (2011), not only shows the application of pansharpening thermal images of 
ASTER but also shows the limitations of how much the resolution can increase without 
giving error. According to the authors: “Fine spatial resolution (e.g., <300m) thermal data 
are needed regularly to characterise the temporal pattern of surface moisture status, water 
stress, and to forecast agriculture drought and famine. However, current optical sensors do 
not provide frequent thermal data at a fine spatial resolution. The TsHARP model, which is a 
thermal data sharpening model developed by Agam et al. (2007), provides a possibility to 
generate fine spatial resolution thermal data from coarse spatial resolution (≥1 km) data on 
the basis of an anticipated inverse linear relationship between the normalised difference 
vegetation index (NDVI) at fine spatial resolution and land surface temperature at coarse 
spatial resolution. The study utilised the TsHARP model over a mixed agricultural landscape 
in the northern part of India. Five variants of the model were analysed, including the original 
model, for their efficiency. Those five variants were the global model (original); the 
resolution-adjusted global model; the piecewise regression model; the stratified model; and 
the local model. The models were first evaluated using ASTER thermal data (90m) 
aggregated to the following spatial resolutions: 180 m, 270 m, 450 m, 630 m, 810m and 990 
m. Although sharpening was undertaken for spatial resolutions from 990m to 90m, root 
mean square error (RMSE) of less than 2000 could, on average, be achieved only for 990–
270m in the ASTER data. The RMSE of the sharpened images at 270 m, using ASTER data, 
from the global, resolution-adjusted global, piecewise regression, stratification and local 
models were 1.91, 1.89, 1.96, 1.91, 1.70 K, respectively. The global model, resolution 
adjusted global model and local model yielded higher accuracy, and were applied to sharpen 
MODIS thermal data (1 km) to the target spatial resolutions. Aggregated ASTER thermal 
data were considered as a reference at the respective target spatial resolutions to assess the 
prediction results from MODIS data. The RMSE of the predicted sharpened image from 
MODIS using the global, resolution-adjusted global and local models at 250m were 3.08, 
2.92 and 1.98 K, respectively. The local model consistently led to more accurate sharpened 
predictions by comparison to other variants.” 

Al-Wassai, et al (2012), compares various image quality assessment methods with a new 
method. It is stated that “most important details of the image are in edges regions, but most 
standards of image estimation do not depend upon specifying the edges in the image and 
measuring their edges. However, they depend upon the general estimation or estimating the 
uniform region, so this study deals with new method proposed to estimate the spatial 
resolution by Contrast Statistical Analysis (CSA) depending upon calculating the contrast of 
the edge, non-edge regions and the rate for the edges regions. Specifying the edges in the 
image is made by using Sobel operator with different threshold values. In addition, 
estimating the colour distortion added by image fusion based on Histogram Analysis of the 
edge brightness values of all RGB-colour bands and L component. Results of the study 
showed the importance of proposed new CSA as a criterion to measure the quality evaluation 
for the spatial resolution of the fused images, in which the results showed the effectiveness 
of high efficiency when compared with the other criterion methods for measurement.” 
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In Okyay (2012), ASTER thermal multispectral infrared data is evaluated in regard to 
lithological discrimination and mapping through emissivity values rather than conventional 
methods that utilize radiance values. In order to reach this goal, Principle Component 
Analysis (PCA) and Decorrelation Stretch techniques are utilized for ASTER VNIR and 
SWIR data. Furthermore, the spectral indices which directly utilize the radiance values in 
VNIR, SWIR and TIR are also included in the image analysis. The results show that utilizing 
emissivity values possesses potential for discrimination of organic matter bearing surface 
mixtures which has not been possible through the conventional methods. It is concluded that 
increased resolution is necessary for further assessment of accuracy. 

1.3. Motivation 

The present 90 meter resolution thermal infrared bands and the 30 meter resolution 
shortwave infrared (SWIR) bands of ASTER are not sufficient for detailed analysis. To 
improve this deficiency by the use of image fusion techniques, one possible approach is to 
merge product images of this band and images from higher resolution bands of ASTER such 
as visible and near infrared (VNIR) which has 15 meter resolution. 

In the literature survey, it is seen that while traditional pan-sharpening fusing pan-chromatic 
images with multispectral images, only a few studies actually used thermal infrared images 
for this purpose. Aiazzi, et al (2005) is probably the only researcher who utilized image 
fusion to improve the resolution of thermal images. However, he used just one method of 
image fusion in his study. While, the study indicated that the potential of the approach is 
promising, the level of possible improvement by other methods has not yet been 
investigated. The proposed present thesis study, therefore, aims to use other image fusion 
methods to determine the limits of improvement possible. It is hoped to reach a definite 
conclusion as to the best method(s) for increasing spatial resolution of the ASTER infrared 
bands without losing spectral information. 

1.4. Organization of the Thesis 

This thesis includes seven chapters and the contents of the chapters are as follows: Chapter 1 
defines the purpose and scope of the thesis; Chapter 2 includes information on ASTER, the 
data used, and the location and geology of the study area; Chapter 3 covers the background 
information about fundamentals of image fusion, use of objective evaluation methods; 
Chapter 4 is where the GUI is presented; Chapter 5 gives the results of the image analyses; 
Chapter 6 has detailed case studies on portions of the study area; and finally Chapter 7 
includes the discussion, conclusion, limitations, and recommendations for future work. 
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2.4. Geology of the Study Area 

The Çankırı Basin which contains the study area is located within the İzmir–Ankara–
Erzincan Suture Zone. The basement of the basin is covered by the North Anatolian 
Ophiolitic Melange (NAOM) and the Sulakyurt Granitoid. It is underlain by an upper 
Cretaceous ophiolitic melange and granitoids of the Kırşehir block. Isolated outcrops of 
ophiolite-related rocks with pelagic limestones, radiolarites and sheeted dyke complexes, 
intruded by the granitoids, are present in the southern part of the basin. (Kaymakçı, 2000). 

Within the majority of the study area are Deyim, Bozkır, Süleymanlı, Tuğlu, Çandır, and 
İncik formations along with NAOM as shown in Figure 2. There are also small areas that 
contain Paleocene-Eocene units, Upper Cretaceous units, and Sulakyurt Granitoids. The 
major formations’ lithology is briefly explained below as given by Kaymakçı (2000) and 
Kaymakçı, et al (2001). 

“North Anatolian Ophiolitic Melange (NAOM): Lithologically, the NAOM is composed of a 
tectonic mixture mainly of spilites, pillow lavas, diabase dykes, red to purple radiolarian 
chert, cherty limestone, reddish pelagic mudstone and various serpentinized ultramafic rocks 
including peridotites, harzburgites and pyroxenites. The NAOM also includes layered 
gabbros, plagiogranites and various limestones derived from nearby platforms during 
accretion. 

İncik Formation: The İncik formation is the most widespread and voluminous unit of the 
Çankırı Basin. The formation is characterized by alternation of very thick bedded red 
conglomerates with very thick bedded red sandstones and purple to brick red thick to very 
thick bedded mudstones in the northern and south-western parts of the basin; by creamy 
white gypsum which laterally and vertically grades into green shale in the eastern part of the 
basin. Higher up in the eastern part, the formation is characterized by an alternation of brick 
red to purple sandstones, siltstones, shale and greenish gray to bluish shale and very thick 
bedded red to orange gypsum layers. 

Çandır Formation: The formation is characterized by an alternation of red to pink, buff to 
creamy white pebbly mudstone, clayey limestone, siltstone, matrix supported conglomerate 
intercalated with white limy-marl, thin silty-limestone, oolite bearing limestone, clayey 
limestone and very thin organic rich layers at the bottom; alternation of red to pink sandy-
silty mudstone, loose matrix supported conglomerates, clayey sandstone, siltstone 
intercalated with caliche limestone, paleosol layers with carbonate concretions and cross 
bedded sandstone and conglomerates locally discordant with these layers in the middle; and 
pink sandy, limy-concretion bearing mudstone, clayey porous limestone, siltstone, silty-
limestone, white to creamy white marl, greenish shale alternations and clayey, pebbly 
sandstone intercalations at the top. 

Tuğlu Formation: The formation is characterized by dark gray shale, mudstone, siltstone and 
sandstone alternations at the bottom; alternation of green, pelecypoda bearing stiff bentonitic 
claystone and dark green to gray organic rich mudstone, intercalated with cherty limestone 
beds and lenses of conglomerate along with very thin coal seams in the middle; and at the 
top it gradually becomes marl dominated and grades laterally into alternation of thick-
bedded white gypsum and thick bedded yellow to pinkish silty mudstone.  
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Several methods have been proposed in literature for merging satellite images. Image fusion 
methods can be broadly classified into two as transform domain fusion and spatial domain 
fusion. 

Transform Domain Fusion: In transform domain fusion methods the input images are first 
transformed then fused and the result is converted back by an inverse transform. In these 
methods the fusing coefficients are calculated with fusion rules which are either pixel based 
or region based (Oudre, 2007). 

Spatial Domain Fusion: In spatial domain fusion input images are worked on directly. 
Weights are estimated for each input image and for each pixel with iterative methods which 
optimize a cost function (Oudre, 2007). 

The fusion methods such as averaging, Brovey Transformation (BT) (Al-Wassai, et al, 
2011), principal component analysis (PCA) (Canga, 2002), and Intensity-Hue-Saturation 
IHS based methods (Tu, et al, 2001) fall under spatial domain approaches. 

Another important spatial domain fusion method is the high pass filtering based technique. 
Here the high frequency details are injected into up-sampled version of MS images. The 
disadvantage of spatial domain approaches is that they produce spatial distortion in the fused 
image. Spectral distortion becomes a negative factor while we go for further processing, such 
as classification problem.  

Spatial distortion can be handled by transform domain approaches on image fusion. Some 
other transform domain fusion methods have also been developed, such as Laplacian 
pyramid based, curvelet transform based, etc. These methods show a better performance in 
spatial and spectral quality of the fused image compared to other spatial methods of fusion. 

The images to be used in image fusion should be registered before the process and 
misregistration is a major source of error in image fusion. The most commonly used image 
fusion methods are listed below and will be described together with their basic formulation 
in the following sections. 

 IHS transform based image fusion, 
 Brovey Transform (BT), 
 Wavelet transform image fusion (WT), 
 Principal component analysis (PCA) based image fusion, 
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3.1.1. Intensity-Hue-Saturation (IHS) Transformation 

The original RGB colour space is not sufficient for image fusion process since the 
correlation of the image channels is not clearly presented. IHS gives the opportunity of 
displaying separate channels with certain colour properties, namely intensity (I), hue (H), 
and saturation (S). Intensity, vector 1 (v1), and vector 2 (v2) can be obtained from the RGB 
values of each pixel, with coefficients related to image cube geometry (Tu, et al, 2001). 
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The intensity I describes the total colour brightness and exhibits as the dominant component, 
a strong similarity to the more highly resolved panchromatic image. Therefore, the intensity 
of the MS image pixel is replaced by the intensity of the corresponding pixel of high-
resolution (Panchromatic) data and then the merged result is converted back into the RGB 
space. 
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This transformation may involve a large number of calculations. To reduce calculation time, 
a new algorithm involving only summation and subtractions is proposed (Tu, et al, 2001). 
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PCA method is data dependent. The size of the input images affects the fusion results. 
Moreover, the correlation among the high spatial resolution and the first principal component 
of the higher spectral resolution image also affect the performance of the method. If the 
correlations are higher, better fused images are obtained. On the other hand, if the 
correlations are lower, the fused results may not be satisfactory both in terms of colour and 
spatial detail content. The linear regression method is successful in preserving the colour 
content of the original multispectral image; however, it produces spatial artifacts which 
deteriorate the performance of this method in terms of spatial detail transfer from the 
panchromatic image. The reason of being not successful is using the same weighting 
coefficients for the pixels covered by the local window. This problem gets worse when 
images from different sensors are fused (Kumar, 2009). 

3.2. Objective Evaluation of Image Fusion 

In the reference by Malviya and Bhirud (2010), it is argued that “the general requirements of 
an image fusion process are that it should preserve all valid and useful pattern information 
from the source images, while at the same time not introducing artifacts that could interfere 
with subsequent analysis. However it is not possible to combine images without introducing 
some form of distortion. As the image fusion technologies have been developing quickly in a 
number of applications such as remote sensing, medical imaging, machine vision, and 
military applications in recent years, the methods that can assess or evaluate the 
performances of different fusion technologies have been recognized as an urgent 
requirement.” 

The evaluation procedures are based on the verification of the preservation of spectral 
characteristics and the improvement of the spatial resolution. In practice, the most common 
way of evaluating the relative success of image fusion is based on subjective image viewing 
tests. Comparative evaluation by human visual inspection in image fusion is used to assess 
the relative fusion performance of different fusion schemes. The visual appearance may be 
subjective and depends on the human interpreter, but the power of the visual cognition as a 
final backdrop cannot be underestimated (Klonus-Ehlers, 2009). 

Even though the human visual system is still the most complex and able tool, in certain cases 
it may be inadequate for the evaluation and comparison of image fusion experiments. 
Therefore, a number of statistical evaluation methods are used to measure the evaluation of 
fusion performance. In devising objective measures for the performance of image fusion 
methods, two points should be emphasized: fusion quality and computational complexity. 
These methods have to be objective, reproducible, and of quantitative nature. Although there 
have been many attempts, as yet no universally accepted standard has emerged for 
evaluating image fusion performance. 

The following sections explain in detail selected spectral and spatial evaluation methods. 
There are many methods in the literature; however, they all seem to result in similar results 
without any one of them providing a more decisive conclusion compared to the others. 
Therefore, in this study only the most basic and widespread objective evaluation methods 
were implemented. 
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3.2.1. Spectral Evaluation 

A number of statistical evaluation methods are used to measure after-fusion colour fidelity. 
The most commonly used measures selected for the study to compare the performance of 
image fusion methods are introduced in the following sections. 

3.2.1.1. The Correlation Coefficient (CC) 

The main objective of image fusion applications is to preserve the maximum spatial and 
spectral information from the original images without changing the relationships among the 
original bands. Correlation coefficients are used to objectively determine the quality of the 
fused images. The value of CC ranges from -1 to 1. The higher the correlation coefficient 
value, the higher the quality of spectral information in the fused image compared with the 
original MS image. 

Correlation coefficient represents the overall quality of the fused image. Certain features can 
give a better response to the fusion algorithm implemented. Therefore, fusion quality will 
depend on the size of the window used. For this reason, it is suggested to calculate the 
correlation coefficient for a small window instead of the entire image (Klonus-Ehlers, 2009). 
Formula for CC is below, where r is the correlation coefficient, Ir is the intensity value of 
reference image and If is the intensity value of fused image, and sI is standard deviation of 
the image. 

n
ri r fi f

i 1 r f

I I I I1
r ( )( )

n 1 sI sI

 


  , 

n
2

i
i 1

1
sI (I I )

n 

   

3.2.1.2. Root Mean Squared Error (RMSE) 

The root mean squared error (RMSE) displays spectral distortion of the fused band when 
compared with the original low spatial resolution data. It is computed by the difference of 
the standard deviation and the mean of the fused and the original image. The best possible 
value is again 0. 

M N
2

r f
i 1 j 1

1
RMSE (I (i, j) I (i, j))

MN  

   

In the above equation, M and N are matrix sizes for the reference and fused images, 
respectively (Malviya and Bhirud, 2010). 
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3.2.1.3. Relative Global Dimensional Synthesis Error (ERGAS) 

The formula for Relative Global Dimensional Synthesis Error (French name acronym: 
ERGAS) in fusion is as follows: 

2n
i

2
i 1 i

RMSEh 1
ERGAS 100

n MR
 


 

where MRi is the mean radiance of the ith MS band, h is the spatial resolution of the high 

resolution image,   is the spatial resolution of the low resolution image. ERGAS offers a 
global depiction of the quality of radiometric distortion of the fused product.  

The lower the value of the RMSE index and the ERGAS index, the higher the spectral 
quality of the fused images (Klonus-Ehlers, 2009). 

The two comprehensive quality indices RMSE and ERGAS are normally employed to assess 
fusion algorithms by evaluating the quality of the entire synthetic images other than 
individual fused bands. It is worth pointing out that these indices along with the previously 
mentioned quality indices for individual bands, such as correlation coefficient, are scene-
dependent. For a smooth scene with small diversities of spatial signals and spectral 
frequencies, the quality of a synthetic image will be high; with lower RMSE and ERGAS 
values. For a complex scene with large spatial and spectral varieties, when an identical 
fusion algorithm is applied to it, the case will be reversed: the quality of the resultant 
synthetic image will be low; the RMSE and ERGAS values will be high (Jing, 2008). 

3.2.2. Spatial Improvement Evaluation 

Determination of a balanced spectral characteristics preservation and spatial improvement 
combination is the main goal of image fusion applications. It must be noted that if no spatial 
improvement is obtained, spectral properties are fully preserved. It has been common in most 
studies to deal with spectral improvement while less attention has been paid on spatial 
improvement. Therefore the quantitative method named high-pass correlation coefficient 
(HPCC) is used to evaluate the level of improvement in spatial resolution. 

The calculation of the HPCC starts with the application of a high-pass (HP) filter with a 3×3 
Laplacian kernel to the high spatial resolution image, and then to each band of the fused 
image. Next step is the calculation of the correlation coefficients between the HP filtered 
bands and the HP filtered high spatial resolution images. Any HP filter can be used for this 
purpose. 
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3.3. Preprocessing 

Preprocessing of ASTER images involve the calibration of ASTER VNIR, SWIR and TIR 
bands; recalibration of ASTER TIR bands. In this process, raw digital numbers are converted 
into radiance values. For this purpose, gain and offset settings of the ASTER data are 
obtained from the metadata file. The data used in this study have “High Gain” settings in 
VNIR Band 1 and Band 2, while Band 3N and Band 3B have “Normal Gain” settings. For 
SWIR and TIR, all the bands have “Normal Gain” settings. Unit conversion coefficients 
(UCC) were then selected for all 14 ASTER bands accordingly. 

As explained in section “2.2. ASTER Data Specifications”, ASTER TIR bands should be 
recalibrated in order to compensate the delay in radiometric calibration coefficient (RCC) 
updating. 

3.3.1. Calibration of ASTER VNIR, SWIR and TIR Images 

For the calibration of VNIR, SWIR and TIR images, the raw “digital number” values 
recorded by the sensor are converted to at-sensor radiance. For this conversion, the raw 
digital number is corrected for sensor gain and offset by applying the following equation. 

L' = (DN - 1) *UCC 

where 
L’ at-sensor radiance, 
DN digital number in the original ASTER image; 
UCC unit conversion coefficient 

The unit conversion coefficients depend on the gain setting of the band, which was used 
during image acquisition, as well as on the band of ASTER image. The gain and offset 
settings of the bands in an ASTER image can be obtained from the image metadata file of 
the raster. Detailed information regarding the unit conversion coefficients can be found in 
Table 3 (Yüksel et al, 2008; Smith, 2012). 
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3.4. Spectral Indices 

Spectral indices which are pre-defined coefficients. They are used to derive the physical 
meaning indicated by the image data. Thus the spectral index images show the 
differentiation of the selected outcrops providing a useful facility for the geological 
interpretation. 

Several indices for surface material discrimination based on ASTER SWIR and TIR data can 
be found in the literature. This present research utilizes sulphate and mafic indices for VNIR-
TIR fusions and OHIa index for VNIR-SWIR fusions to test the improvement of image 
fusion have over non-fused images. More ASTER TIR and SWIR spectral indices are 
present in GUI and their equations are given in next chapter as they are not part of the study. 

3.4.1. TIR Spectral Indices 

The mafic index (MI) which is essentially based on the bulk silica content of the target 
materials is defined by the equation below based on the spectral emissivity and absorption 
property of silica. (Ninomiya and Fu, 2002) 

ܫܯ ൌ
12݀݊ܽܤ
13݀݊ܽܤ

 

The next index calculated for TIR is the sulphate index (SI). The spectral property of the 
sulphate minerals such as gypsum shows high emissivity in ASTER band-10 and band-12 
region and high absorption in ASTER band-10 region (Öztan and Süzen, 2011). 

ܫܵ ൌ
10݀݊ܽܤ ∗ 12݀݊ܽܤ
11݀݊ܽܤ ∗ 11݀݊ܽܤ

 

3.4.2. SWIR Spectral Indices 

The hydroxyl index “a” (OHIa) is calculated for SWIR bands of ASTER and is used to 
reveal hydroxyl bearing minerals such as montmorillonite and mica. (Ninomiya and Fu, 
2002) 

ܽܫܪܱ ൌ
4݀݊ܽܤ ∗ 7݀݊ܽܤ
6݀݊ܽܤ ∗ 6݀݊ܽܤ
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5.2. Visual Accuracy Assessment 

5.2.1. TIR Spectral Indices 

In this study, mafic (MI) and sulphate (SI) indices for TIR data are used. The results of the 
spectral indices are displayed in linear grey-scale as the resultant image is a single layer. 
White pixels are the minerals which the index is meant to reveal. Additionally, in order to 
facilitate visual interpretation, the resultant layers are subjected to contrast enhancement 
through linear stretching. 

Each spectral index used in this study was applied on TIR images fused with VNIR 3N 
bands. Four different image fusion methods were utilized for each index. Figures 25 and 26 
are given for a visual appraisal of the degree of spectral information preserved for each 
image fusion method. Each figure shows the non-fused index map together with the fused 
images obtained by the four methods used. Increased resolution was clear in each fused 
image. The non-fused image has sharp gradients in pixel boundaries; while fused images, 
especially IHS, have slowly varying slopes with considerably more information than the 90 
meter resolution of TIR images. 

While objective evaluation results from previous section displays differences between image 
fusion methods, the scale of the study area denies almost any visual differences without 
zooming in. This problem will be addressed in chapter 6. 
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5.2.2 SWIR Spectral Indices 

The next part is the preparation of spectral index maps of SWIR bands. OHIa index defined 
for SWIR is used. Just like in the previous case, white pixels are the minerals which the 
index is meant to reveal, calcite index being the exact opposite with black pixels representing 
calcite minerals. In order to facilitate visual interpretation, the resultant layers are subjected 
to contrast enhancement through linear stretching. 

OHIa spectral index map used in this study was applied on SWIR bands 4, 5, 6, 7, 8, and 9 
fused with VNIR 3N band. Four different image fusion methods were utilized for each 
index. Figure 27 is given for a visual appraisal of the degree of spectral information 
preserved for each image fusion method. The figure shows the non-fused index map together 
with the fused images obtained by the four methods used. PCA, Wavelet, and Brovey 
transform image fusion methods display a degree of preservation of the spectral information. 
The increase in resolution is obvious in each image. Previously homogeneous regions that 
turned out to have various pixel values after the image fusion is the cause of less sharp 
looking spectral map.  

Loss of spectral information is highest in the IHS based fusion with regard to SWIR spectral 
indices. This is indicated by the conversion of the dark pixels in the river at the east of the 
study area to lighter pixels in OHIa map; it can be seen that details of the riverbank on east 
of the area are lost. Taking the poor objective evaluation results in Table 6 regarding spectral 
correlation to the original SWIR index maps; it is not possible to tie these differences merely 
to increase in resolution and the dispersion of previously homogeneous pixels. Despite all 
these, in all indices IHS provides us with the highest spatial detail. Formations normally 
unseen in original and other fusion methods are clearly visible and it can be argued that loss 
of some spectral information may be sacrificed in some applications. 

   



 
 

 

Figure 27

 

7 OHIa imagees: a) non-fu

 

49

used and with
image f

9 

h b) Brovey, 
fusion  

 

c) IHS, d) PPCA, and e) W

 

 

Wavelet 



 
 

50 
 

  



 
 

 

6.1. First C

As seen in
obtained u
resulting fr
obtaining b
features of 
in colour co

Fig

Case Study 

n previous ch
using differen
rom them, si
both objectiv
f the study ar
omposite ma

gure 28 Loca

hapter, it is 
nt methods. 
ince the stud
ve and subje
rea is selecte
ap (VNIR 3N

ation and clo

51

CHAPT

CASE ST

difficult to 
The same i

dy area is too
ective evalua
ed. Figure 28
N, 2, 1). 

ose up of the 

1 

TER 6 

TUDIES 

differentiate
is also the c
o large. In o
ation, a sma
8 displays the

first case stu

e visually be
case for the 
rder to comp

aller area wi
e case study 

udy area (VN

etween fused
spectral ind

plete the obj
ith known g

y area and its

 

 

NIR 3N, 2, 1)

d images, 
dex maps 
jective of 

geological 
s close up 

) 



 
 

 

After iso
procedur
Wavelet 
VNIR3N
bands. T

Figure 

 

 

olating the c
res discussed
t (“mean” fu
N band and 
The fused ima

29 VNIR (3

case study ar
d in chapter 3

usion rule) tr
all the SWIR
ages can be s

N) - TIR (ba

 

rea from the
3 were appli
ansformation
R and TIR b
seen in Figur

ands 10, 11, 
PCA, and

52 

e main image
ied on each b
n image fusi
bands, creat
res 29 to 32.

 

 

12) fusion; a
d e) Wavelet

es in each b
band image. 
ion techniqu
ing high res

a) Non-fused
t 

and, the pre
Brovey, IHS
es were then
olution SWI

, b) Brovey, 

e-processing 
S, PCA, and 
n applied to 
IR and TIR 

  

  

c) IHS, d) 



 
 

 

Figure 30

In Figures 
visual com
difference 
transformat
observed b

0 VNIR (3N)

29 and 30, 
mparison. Thi

between th
tion is obser
y visual insp

 - TIR (band

the improve
s is expected

he LR and 
rved to be va
pection.

53

 

 

ds 12, 13, 14)
PCA, and e

ement provid
d since for th
HR images

astly superior

3 

) fusion; a) N
) Wavelet 

ded by the fu
he case of TIR
 is significa
r to the other

 

Non-fused, b)

used images 
R and VNIR 
antly high (
r transformat

 

) Brovey, c) 

is clearly ev
R bands, the r

(90m to 15
ations as can 

  

  

IHS, d) 

vident by 
resolution 
5m). IHS 
be easily 



 
 

 

Figure

 

 

e 31 VNIR (33N) -SWIR (

 

(bands 4, 5, 
PCA, and

54 

6) fusion; a)
d e) Wavelet

Non-fused, 
t 

b) Brovey, c

 

 

c) IHS, d) 



 
 

 

Figure 32

In Figures 
the IHS tr
improveme
however, a
them are n
relatively s

 

2 VNIR (3N

31 and 32, a
ransformatio
ent. The rem
are observed
not clear visu
small (30m to

) - SWIR (ba

a visual exam
on provides 
maining three
d to be bette
ually, as the 
o 15m). 

 

55

ands 7, 8, 9) 
PCA, and e

mination of 
the best en

e transforma
er with respe

resolution d

5 

fusion; a) N
) Wavelet 

the fused im
nhancement 
ations, which
ect to spectr
difference be

 

Non-fused, b) 

mages leads t
of the feat

h are not as 
al detail. Th

etween the L

 Brovey, c) I

to the conclu
tures throug
 successful 

he difference
LR and HR i

 

 

IHS, d) 

usion that 
gh spatial 

spatially, 
es among 
images is 



 
 

56 
 

The objective evaluation of the fused case study images are given in Tables 9 to 12. When 
the results for the entire selected area and the case study area, presented in Tables 5, and 7 
and 8 are examined, an overall drop in spectral quality of fused TIR and SWIR images is 
observed. This is in line with the suggestion in part 3.2.1.1. “...to calculate the correlation 
coefficient for a small window instead of the entire image”. However unlike CC and RMSE, 
ERGAS values were improved. This may be due to the selection of the case study area which 
has higher mean pixel values in the SWIR bands. Another change is the increase in HPCC, 
giving higher spatial improvement. These changes were not substantial and the status quo 
between the image fusion methods didn’t change. PCA is still the best in spectral 
information preservation with the exception of CC in VNIR-SWIR fusions, while IHS is still 
has the highest spatial improvement. Similar conclusions are reached when the results 
presented in Tables 6, and 9 and 10 are compared. 

Table 9 Objective evaluation of VNIR3N and TIR bands 10, 11, and 12 image fusions in 
first case study area, best results are in bold 

 IHS Brovey PCA Wavelet 
CC 0.82806 0.9543 0.9659 0.96076 

RMSE 58.8160 32.0537 27.5154 28.4182 
ERGAS 4.5278 2.4675 2.1182 2.1817 
HPCC 0.99671 0.7219 0.84929 0.87786 

Table 10 Objective evaluation of VNIR3N and TIR bands 12, 13, and 14 image fusions in 
first case study area, best results are in bold 

 IHS Brovey PCA Wavelet 
CC 0.83174 0.95503 0.967 0.96169 

RMSE 60.2131 32.8886 28.0844 29.1203 
ERGAS 4.5967 2.5096 2.1432 2.2221 
HPCC 0.99758 0.72465 0.85212 0.88166 

Table 11 Objective evaluation of VNIR3N and SWIR bands 4, 5, and 6 image fusions in first 
case study area, best results are in bold 

 IHS Brovey PCA Wavelet 
CC 0.90191 0.9778 0.97678 0.97455 

RMSE 28.1562 14.1999 14.0457 14.2498 
ERGAS 7.8192 3.9165 3.8791 3.9363 
HPCC 0.94045 0.64979 0.77313 0.79899 

Table 12 Objective evaluation of VNIR3N and SWIR bands 7, 8, and 9 image fusions in first 
case study area, best results are in bold 

 IHS Brovey PCA Wavelet 
CC 0.88393 0.97242 0.97184 0.96882 

RMSE 30.5843 15.7523 15.4387 15.7998 
ERGAS 8.4824 4.3372 4.2638 4.366 
HPCC 0.86058 0.59535 0.68956 0.7237 
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Same procedures of pre-processing were applied on each VNIR, SWIR and TIR bands of the 
isolated SI, MI, and OHIa study area images. All four image fusion methods used in this 
study were applied to the second case study areas. The fused images can be seen in Figures 
38 to 41. 

The objective evaluations of the fused SI, MI, and OHIa case study images are given in 
Tables 13 to 16. The most notable feature of the new fusions were that SI and MI case study 
areas compared to the first case study area is the major drop in spectral data preservation and 
increase in spatial resolution improvement. This is due to the smaller areas selected for the 
second case studies and the difference of spatial resolution between TIR and VNIR bands. 

In Figures 38 and 39, the TIR images have almost no distinguishable geographic features 
while VNIR images displays quite a bit of them. Hence image fusion is expected to change 
most of the spectral information in TIR images in favour of adding spatial information from 
VNIR images. The result can be seen both in objective evaluation results and visual 
examination. CC values drop significantly and RMSE values increase, yielding poorer 
results for preservation of spectral information. Unlike first case study, ERGAS values this 
time followed other spectral evaluations and showed increased values. The cause of this is 
again attributed to the change in mean pixel value of the selected areas. Wavelet fusion 
provided highest spectral preservation among all methods. HPCC gave higher values for 
Brovey, PCA, and Wavelet. IHS this time displayed minor decrease in spatial improvement, 
getting marginally lower values than PCA. 

In Figures 40 and 41, there is a human made bentonite quarry site that has a clear shape in 
VNIR image while not visible in SWIR images. Image fusion’s effectiveness in improving 
spatial resolution is evident as all fused images reveal the quarry site. Preservation of 
spectral information, the fused SWIR images do not show the significant decrease in spectral 
evaluations as in fused TIR images. The changes in objective evaluation values mirror the 
change from original study area to the first case study area. Again as in fused TIR images, 
Wavelet fusion has the highest spectral evaluation values. This is possibly the result of the 
fusion rule “mean” performing better in smaller areas. IHS, while suffering in HPCC values, 
still performs best in spatial improvement. The difference between fusion methods’ spatial 
improvement got significantly smaller. 

After seeing these low spectral evaluation values a question must be asked. Was the spectral 
information in TIR and SWIR images lost during fusion? The answer to this question is 
given in spectral index maps in the following sections. 
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Table 13 Objective evaluation of VNIR3N and TIR bands 10, 11, and 12 image fusions in 
Sulphate Index study area, best results are in bold 

 IHS Brovey PCA Wavelet 
CC 0.021184 0.2261 0.046543 0.24205 

RMSE 27.6499 14.552 28.1019 13.7595 
ERGAS 1.9667 1.0349 1.9988 0.97858 
HPCC 0.99756 0.98468 0.99968 0.98405 

Table 14 Objective evaluation of VNIR3N and TIR bands 12, 13, and 14 image fusions in 
Mafic Index study area, best results are in bold 

 IHS Brovey PCA Wavelet 
CC 0.26664 0.45201 0.24564 0.54939 

RMSE 78.7001 44.3547 71.1353 39.1546 
ERGAS 5.8405 3.288 5.2715 2.9027 
HPCC 0.99606 0.9721 0.99786 0.94871 

Table 15 Objective evaluation of VNIR3N and SWIR bands 4, 5, and 6 image fusions in 
OHIa Index study area, best results are in bold 

 IHS Brovey PCA Wavelet 
CC 0.76187 0.90826 0.89473 0.91325 

RMSE 24.223 13.303 14.0439 12.5877 
ERGAS 6.4156 3.4852 3.6731 3.2983 
HPCC 0.92448 0.8207 0.84774 0.80919 

Table 16 Objective evaluation of VNIR3N and SWIR bands 7, 8, and 9 image fusions in 
OHIa Index study area, best results are in bold 

 IHS Brovey PCA Wavelet 
CC 0.67839 0.8586 0.81742 0.867 

RMSE 27.0083 15.0614 16.9165 14.2244 
ERGAS 7.1199 3.9252 4.4016 3.7114 
HPCC 0.83203 0.7478 0.82308 0.72768 
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CHAPTER 7 
 
 

DISCUSSION AND CONCLUSION 
 
 
 

7.1. Discussion 

One of the common uses of image fusion is pan-sharpening which is used to fuse the 
panchromatic images with the visible multispectral band images in remote sensing 
applications. A large number of such applications can be found in literature, in which various 
methods of image fusion have been used and their performances are compared to find the 
best method. A close look into the literature, however shows that a similar approach to the 
fusion of thermal and shortwave infrared images have not received much attention. This 
study aims to contribute to literature with regard to the use of image fusion to improve the 
spatial resolution of thermal infrared and shortwave infrared images as distinct from ordinary 
pan-sharpening applications. 

To test the image fusion’s effectiveness a study area from Çankırı was chosen. Satellite 
images from all ASTER bands were used for the study. For this purpose a GUI was 
developed using MATLAB and its toolboxes. Four distinct image fusion methods, IHS, 
PCA, BT, and WT were picked for their common use in literature and reliability. The 
methods were, in general, successful in increasing 90 meter and 30 meter spatial resolutions 
to 15 meter resolution and maintain multispectral image properties with relatively minor loss 
according to objective evaluation. The increase in spatial resolution is not only observed by 
objective evaluation but also evident to naked eye view when images are zoomed in for a 
closer view as displayed in the case study. 

Before the image fusion process, the images were imported out of the HDF file, and then 
were subjected to pre-processing. Emissivity data was converted into reflectance according 
to the information provided in metadata. Additionally recalibration of TIR bands was done to 
remove the known sensor related errors in them. Each one of the TIR and SWIR images 
were then resampled to the size of VNIR bands for the image fusion. After image fusions 
were performed, objective evaluation results were obtained and spectral index maps were 
produced from the fused image bands. 

Same procedures were applied on a smaller parts of the study area in a case study, since the 
entire study area was too large to notice most of the details regarding spatial improvement 
and preservation of spectral information. Smaller case study areas selected the images were 
examined down to individual pixels. In the second case study Sulphate, Mafic, and OHIa 
index case study areas were used to show the differences between fused images in detail. 
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The overall spatial resolution increase in IHS fused images is substantial and visible to the 
naked eye as it is possible to see formations, which are vague or not visible in the original 
index maps and index maps obtained by the other fusion methods. These details are 
supported by the high HPCC results obtained in the evaluation results. However, spectral 
objective evaluation results of CC, RMSE, and ERGAS were relatively poor when compared 
to those of the other methods. In spectral index maps, it was noted that there was some losses 
of spectral information for TIR and SWIR bands, as some pixel values of the fused images 
and the original images did not match. Most of the apparent loss of spectral information can 
be attributed to dispersion of previously homogeneous 90 or 30 meter pixels into smaller 15 
meter pixels with diverse values. 

PCA and BT performed better in preserving spectral information, matching the original TIR 
and SWIR bands very closely. However their spatial correlation with VNIR bands was less 
than the other methods. As stated in chapter 3, loss of spectral information is unavoidable 
when increasing spatial resolution. Objective evaluation shows how close the fused image is 
to the multispectral image in terms of spectral information rather than the ground truth. 
Increase in spatial resolution is bound to deteriorate spectral information since a perfect 
spectral preservation means there is no spatial improvement. The four pixel example in case 
study shows us that BT and PCA do divide 90 meter pixels into 15 meter pixels but the 
newly formed pixels do not form coherent shapes as IHS does, which displays the lack of 
spatial improvement. 

WT provided a good balance of both spatial resolution improvement and spectral 
information preservation even though it is not the best in either case. Its resolution 
improvement is greater than both BT and PCA, but lower than IHS. On the other hand, it 
preserves spectral information to a higher level when compared with IHS. 

Image fusion is a valuable tool for improving the spatial resolution of image data. Despite 
loss of some resolution detail and spectral information, better separation of ground material 
without using superior thermal infrared images from other platforms and satellites was 
shown to be possible. In this study image fusion was used with shortwave, thermal infrared 
and visible near infrared bands. Yet this is a relatively unexplored practice in literature, thus 
further exploration of possibilities with different methods and images from different 
satellites may be pursued. 
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7.2. Future Work 

It should be noted that Wavelet image fusion can use different fusion rules other than 
“mean” used in this study. It may be possible to get even better results from Wavelet 
transformation by choosing a fusion rule appropriate for the image used or creating an 
entirely new rule to meet desired specifications. For future studies it is recommended that 
more image fusion methods should be tested with thermal images from different satellites. 
An interesting application would be the use of even higher spatial resolution images than 
VNIR bands of ASTER bands in improving the TIR and SWIR bands. 

7.3. Conclusion 

This study shows that IHS provides the best spatial improvement among the image fusion 
techniques presented. IHS will reveal hidden details of the low resolution images at the cost 
of losing some spectral information. Wavelet and PCA transform on the other hand has less 
spatial resolution improvement but preserve spectral information of lower resolution images 
used in fusion better. Despite being very close to each other, WT has more inputs and types, 
hence it has great flexibility and the chance to fine tune image fusion. 

From the point of view of improvement in spatial resolution and minimization of spectral 
information loss and flexibility, WT comes out to be a compromise choice among the four 
methods used in an overall sense. If improvement of spatial resolution of images is to be 
emphasized, IHS is proposed as the image fusion method to be used. 
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