HTTP ADAPTIVE STREAMING ARCHITECTURES FOR VIDEO ON DEMAND AND
LIVE TV SERVICES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YiGIT OZCAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2013






Approval of the thesis:

HTTP ADAPTIVE STREAMING ARCHITECTURES FOR VIDEO ON DEMAND AND
LIVE TV SERVICES

submitted by YiGIT OZCAN in partial fulfillment of the requirements for the degree of Mas-
ter of Science in Electrical and Electronics Engineering Department, Middle East Tech-
nical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Goniil Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Senan Ece Schmidt
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Senan Ece Schmidt
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gozde Akar
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ciineyt Bazlamacgci
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Halit Oguztiiziin
Computer Engineering Dept., METU

Date:




I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: YIGIT OZCAN

Signature

v



ABSTRACT

HTTP ADAPTIVE STREAMING ARCHITECTURES FOR VIDEO ON DEMAND AND
LIVE TV SERVICES

OZCAN, Yigit
M.S., Department of Electrical and Electronics Engineering
Supervisor : Assoc. Prof. Dr. Senan Ece Schmidt

August 2013, [57] pages

HTTP Adaptive Streaming (HAS) has become a popular video streaming solution since it both
benefits from the ubiquitous HTTP protocol and firewall and NAT traversal capabilities of
TCP. HAS aims to provide high Quality of Experience (QoE) to the clients under limited and
varying bandwidth by rate adaptation algorithms which allow the clients to choose the most
appropriate video quality. A rate adaptation algorithm should utilize the available bandwidth.
Furthermore, the received video bitrates should not deviate from each other leading to an
unfair bandwidth use among the clients. It is also desired to minimize the rate switches as
they degrade QoE of the clients. In this thesis, we propose two architectures that operate
on HAS. The first architecture is FEedback based Adaptive STreaming over HITP (FEAST).
FEAST enables the clients to adapt their rates according to the total number of clients, average
video rate and the average bandwidth information provided by the server. These values are
computed as moving averages by the server with a small amount of information sent from the
clients. The server side computation is simple and not client specific which makes FEAST a
scalable solution. The second architecture is Adaptive LIVE Streaming over HITP (ALIVE)
which enables a high number of clients to watch live TV channels over HTTP. ALIVE is
based on enabling the clients to download the contents from nearby clients instead of the
server whenever it is possible. ALIVE employs SVC which makes it possible to adapt the
video bitrates of the clients even when they download from other clients. ALIVE decreases
the load of the server and accommodates more clients as we demonstrate with simulations.

Keywords: video streaming, HTTP, video on demand, live TV, scalable video coding



(0Y/

ISMARLAMA VIDEO VE CANLI TV SERVISI ICIN HTTP ADAPTIF AKIS
MIMARILER]

OZCAN, Yigit
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Bolimii
Tez Yoneticisi : Do¢ Dr. Senan Ece Schmidt

Agustos 2013, [57|sayfa

HTTP Adaptif Akisi (HAS), HTTP protokoliiniin yaygin kullanimi ve TCP protokoliiniin
giivenlik duvari ve ag adresi doniistiiriiciilerinden gecis yapabilme yeteneginden dolay1 popii-
ler bir video akis ¢oziimii haline gelmistir. HAS, sinirli ve degisken bant genigligi olan du-
rumlarda hiz adaptasyonu yontemi ile kullanicilarin kendilerine en uygun video bit hizlarini
secmelerini saglayarak, kullanicilara yiiksek deneyim kalitesi sunabilmeyi amaclamaktadir.
Hiz adaptasyonu algoritmalarinda, kullanilabilir bant genigliginin yararli bir sekilde kullanil-
malidir. Bunun yaninda, kullanicilarin video bit hizlar1 arasinda biiyilik fark olmamasi da
gereklidir. Kullanicilarin bit hizlar1 arasinda yaptig1 gecis sayisinin da en aza indirilmesi
de deneyim kalitesi icin onemlidir. Bu tezin ilk kisminda 1smarlama video servisi icin kul-
lanicilarin video bit hizlarini sunucudan aldiklar ortalama video bit hizi, ortalama bant genisli-
&i ve kullanici sayisina gore belirlemelerini saglayan Geri Besleme Temelli HTTP Adaptif
Akis Uygulamasini (FEAST) Oneriyoruz. Bu ortalamalar sunucu tarafindan kullanicilardan
aldig1 bilgiye dayanarak ve ¢ok az durum bilgisi tutularak hesaplanir. Bu hesaplamalar ba-
sittir ve her kullanici i¢in ayr1 yapilmamaktadir. Bu da FEAST mimarisini 6lgeklenebilir bir
¢Oziim yapmaktadir. Tezin ikinci kisminda ¢cok sayida kullanicinin canli yayinlari internet
tizerinden izlemesine olanak veren HTTP iizerinden Adaptif Canli Akis (ALIVE) uygula-
masini oneriyoruz. ALIVE, kullanicilarin igerikleri uygun oldugu durumlarda sunucu yerine
daha yakinda bulunan diger kullanicilardan indirmesini saglayan bir sistemdir. ALIVE, SVC
kullanarak kullanicilara igerigi bagka kullanicidan indirse bile bit hizin1 ayarlama olanag:
saglar. Simiilasyonlarla da gosterdigimiz gibi ALIVE sunucunun yiikiinii azaltarak daha fazla
kullanicinin desteklenmesini saglar.

Anahtar Kelimeler: kesintisiz video, HTTP, ismarlama video, canli TV, 6l¢eklenebilir video

vi



To My Father

vii



ACKNOWLEDGMENTS

I would like to express my special thanks to my supervisor Assoc. Prof. Dr. Senan Ece
Schmidt. I could not finish this thesis, even could not start this thesis without her support,
guidance and friendship. It was an honor to work with her both as a student and a teaching
assistant. Every graduate student must have a supervisor like her.

This thesis is dedicated to my father. It is impossible for me to express my feelings. My dear
father, the only thing I will say is I missed you so much and I love you so much. Thank you
for always being with me. I owe you everything in my life.

I would also like to thank my mother who never stopped loving and supporting me. I will
feel great if this work will make her proud even if just a bit. Thank you for your lifelong
support. I am very lucky to have a mother like you. I must also thank to my sister Nazli1 with
whom I grew up together and learnt the life. She is the person whom I spent most of my life
with. She always praised me and made me feel good. I also acknowledge my grandfather
who encouraged me and lead the way in my academic life. I thank my grandmother, my aunt
Eser and Binhan and my other relatives for supporting me.

I want to thank Vicdan who was with me for a long time to here. It would be impossible to
achieve this without her support. Thank you for being with me all the time. Thank you for
your unending support and patience. Now it is my turn to support for your thesis.

I must thank my friends Can who I always say that, Burak the smurf, Egemen with whom
I become another person, Tamer who works seriously but lives in a joy, Ender who knows
every thing and does not care about any thing, Aysegiil who will grow up, Tayfun who is my
ex-student, Dicle the bride, Osman and Hakki who are not real and all my other friends. All
of them encouraged me and made me believe that I can accomplish this work.

viii



TABLE OF CONTENTS

ABSTRACTI. . . . . e v
OZ . . . vi
................................. viii
................................. ix
.................................... X
.................................... xi
LIST OF ABBREVIATTONS Xiv
1 INTRODUCTION| . . . ... ... e 1
2 BACKGROUNDI . . . . .. e e e e e 5
2.1  Internet Multimedial . . . . . . .. ... ... L ... 5

[2.2 Scalable Video Coding (SVC)[. . . . . . . . ... ... ... ..., 6

[2.3 HTTP Adaptive Streaming| . . . .. ... ... ... ........ 7

[2.3.1 Microsoft Smooth Streaming| . . . . . . ... ... .. .. 11
[2.3.2 Rate Adaptation for Adaptive HI'TP Streaming: Liu atal| 11
3 FEAST: FEEDBACK BASED ADAPTIVE STREAMING OVER HTTP. . . 15

3.3 Operation of FEAST|. . . . . .. ... ... ... ... ....... 19

[3.3.1 Client-Server Information Exchange and Server Side Com- |
putations| . . . . ... .. 19

5>  CONCLUSION| . . . .. oo 51
REFERENCES| . . . . . oo o 53

ix



LIST OF TABLES

TABLES

Table[2.1 Comparison of existing solutions for Internet Multimedia] . . . . . . . . .. 6
Table[3.1 Rate Decision| . . . . . . . . . . . . 22
TableB2 Unfaimess . . . . . . . oo vt 31
Table[3.3 SwitchingRates| . . . . .. ... ... ... ... ... ... ..., 31
Table|3.4 Avg. VideoRates| . . . . . . . . .. .. . . ... .. .. 31
Tableld.1 Applied Encoding Rates|. . . . . ... ... ... .............. 45
Table 4.2 Avg. Video bitrate according to number of channels| . . . . . ... ... .. 49




LIST OF FIGURES

FIGURES

Figure[2.1 [P multicasttree structure| . . . . . . . . . .. ... ... ... ......

Figure[2.2 Illustration of Media Presentation Description File| . . . . . . . .. .. ..

Figure[2.3 A client first downloads MPD and then downloads the successive segments| 9
Figure[3.1 ON-OFF periods of two HAS clients: Casel | . . . . .. ... ... .... 16
Figure[3.2  ON-OFF periods of two HAS clients: Case2| . . . . . .. ... ... ... 16
Figure|3.3 ON-OFF periods of three HAS clients| . . . .. .. ... .. ... .... 16
Figure[3.4 Average video bitrates and measured bandwidth of the clients| . . . . . . . 18
Figure[3.5 The network topology that is used in simulations|. . . . . . ... ... .. 24
Figure[3.6 Unfairness comparison of HAS algorithms| . . . . . . .. ... ... ... 25
Figure[3.7 Average video bitrate comparison of HAS algorithms| . . . . . . ... .. 25
Figure (3.8 Unfairness comparison of HAS algorithms in the existance of background |
Cmraffic] . . e 26
Figure 3.9 Average video bitrate comparison of HAS algorithms in the existance of |
| background traffic|. . . . . . . ... ... L L 26
Figure [3.10 Average unfairness comparison of HAS algorithms according to back- |
| ground trafficrate| . . . . . . .. .. L L 27
Figure [3.11 Rate switching comparison of HAS algorithms according to background |
Cmafficrate] . . . . v oot e 27
Figure [3.12 Average video bitrate comparison of HAS algorithms according to back- |
| ground trafficrate| . . . . . . .. .. L 28
Figure|3.13 Average unfairness comparison of HAS algorithms according to number of |
) 15 28
Figure|3.14 Average video bitrate comparison of HAS algorithms according to number |
[Cofclients]. . . . . vt 29
Figure [3.15 Average rate switch comparison of HAS algorithms according to number |

....................................... 30
Figure .1 The topology that denotes the importance of hop count| . . . ... .. .. 36
Figure4.2 Content preparation inthe server| . . . . . ... ... ... ... ..... 37
Figure4.3 Client downloads the first four segments: Casel | . . . . . ... ... ... 38
Figure4.4 Client downloads the first four segments: Case2| . . . . . . . . ... ... 38
Figure[4.5 Client downloads the first four segments: Case3| . . . . .. ... ... .. 39
Figure 4.6 'The backbone network that is used in ALIVE simulations| . . . . . . . .. 44
Figure 4.7 An example network with 20 clients that is used in ALIVE simulations| . . 44

X1



Figure 4.8 Effect of s parameter on the probability mass function of Zipf distribution| 46

Figure[4.9 A sample Average video bitrates vs time graph for ALIVE and Liu atal.| . 47

Figure [4.10 Comparison of number of clients that download the content from the server| 47

Figure 4.11 Average video bitrates of the clients according to different percentage of

[ clientsbehind NATT . . . . . . ... .. . 48
Figureld.12 Average video bitrates of the clients according to different number of clients |
I 48

Xii



3GPP
AIMD
ALIVE
AVC
CBR
CDN
DASH
FEAST
IETF
IGMP
IMS
P
HAS
HD
HTTP
MPEG
MSD
MSS
MVC
NAT
NS2
P2P
PSNR
QoE
QoS
RTCP

LIST OF ABBREVIATIONS

3rd Generation Partnership Project
Additive Increase Multiple Decrease
Adaptive Live Streaming over HTTP
Advanced Video Coding

Constant Bit Rate

Content Distribution Network
Dynamic Adaptive Streaming over HTTP
Feedback Based Adaptive Streaming over HTTP
Internet Engineering Task Force
Internet Group Management Protocol
IP Multimedia Subsystem

Internet Protocol

HTTP Adaptive Streaming

High Definition

HyperText Terminal Protocol
Moving Pictures Experts Group
Media Segment Duration

Microsoft Smooth Streaming
Multiview Video Coding

Network Address Translator
Network Simulator 2

Peer to Peer

Peak Signal to Noise Ratio

Quality of Experience

Quality of Service

RTP Control Protocol

xiii



RTP
SFT
SIP
SR
SvC
TCP
TV
UDP
URL
VBR
VoD

XML

Real-time Transport Protocol
Segment Fetch Time

Session Initiation Protocol
Switching Rate

Scalable Video Coding
Transmission Control Protocol
Television

User Datagram Protocol
Uniform Resource Locator
Variable Bit Rate

Video on Demand

Extensible Markup Language

X1v



CHAPTER 1

INTRODUCTION

In recent years, multimedia applications have become very popular and the amount of multi-
media traffic is rapidly growing every year. The most important and widely adopted class of
multimedia is video applications. According to the predictions of Cisco [1]], 90 percentage of
the total Internet traffic will be video related in 2017. With the same predictions, the amount
of total video traffic will be about 1.2 zettabytes per year.

With this enormous demand for multimedia, many commercial video tools appeared in the
last few years. Youtube [2], Hulu [3], Move Networks [4]], Microsoft Smooth Streaming [,
Apple HTTP Live Streaming [[6] are some examples. These video tools give both Video on
Demand and Live TV services to its clients.

Internet protocol [7] is a best-effort service and it does not guarantee any Quality of Service
(QoS) which is essential for video applications. Therefore, some solutions were offered in
the past years to cope with the enormous amount of multimedia traffic. One of the important
solutions is video compression. Amount of raw video data is so huge that it is impossible to
carry it on the network. Video data can be compressed and video traffic can be reduced by
compression methods. In addition, network infrastructures are upgraded to carry more traffic
with fiberoptic or wireless channels.

Many networking protocols are developed for managing multimedia traffic. Internet Engi-
neering Task Force (IETF) developed RTP [8]] (Real-Time Transport Protocol) which works
over UDP and carries multimedia traffic. It works in conjunction with RTP Control Proto-
col (RTCP) which provides feedback information about network conditions. IP Multimedia
Subsystem [9] is proposed by 3rd Generation Partnership Project for providing multimedia
services over IP in next generation networks. Another solution is IP Multicast [[10] which is
a promising solution by avoiding redundant traffic. However, these above solutions do not
possess scalability and are not easy to deploy in the existing network. Furthermore, firewalls
and NAT traversals affect their operation.

HTTP Adaptive streaming (HAS) is a promising solution for multimedia transfer [11]. In
HAS, clients download the contents by sending successive GET requests to the server. The
server encodes the video into small segments of generally 1 to 10 seconds with different



video bitrates. HAS clients choose the most appropriate bitrate each time before sending the
request and this property of HAS enables the clients to cope with scarce and varying network
bandwidth. The fact that each client chooses its own video quality makes HAS a scalable
solution. Moreover, HAS also makes use of firewall and NAT traversal abilities of TCP.
Using standard caches, server and clients makes HAS an easier solution when it is compared
to other streaming solutions. Many commercial tools such as [4], [S]] and [6] started using
HAS as their streaming enabler.

In previous researches, a number of problems of HAS are revealed. One important prob-
lem of HAS is unfairness which means huge video quality differences between HAS clients.
One other problem is instability which is caused by frequent video bitrate changes. These
issues degrade client Quality of Experience (QoE) severely. Other problems are due to live
streaming. Some researches reveal that the number of clients that HAS servers can support is
fewer than expected. This is a serious problem for a live TV architecture where the number
of clients are generally high. Principles of HAS and its related problems are given in detail in

In this thesis, we propose two architectures that operate using HAS. The first architecture is
FEAST which is used for Video on Demand services. FEAST aims to give a fair, stable and
efficient service by using feedback information from server. There are three feedback informa-
tion that are used by clients to adapt their video bitrates which are number of clients, average
video bitrates of the clients and average bandwidth measurements of the clients. When the
clients adapt their video bitrates by considering their own video bitrates and the feedback in-
formation, the unfairness of HAS can be reduced to minimal levels. We performed extensive
simulations on NS2 [12] to evaluate the performance of FEAST. From the simulations, it is
shown that FEAST outperforms other HAS solutions in terms of fairness and stability while
efficiently utilizing the available bandwidth. We also performed experiments to investigate
the effects of background traffic, number of clients and number of video resolutions on the
performance of FEAST.

Our second architecture is ALIVE for live TV applications. The aim of ALIVE is to support
more live TV clients with higher QoE by decreasing the load of the server. The basic prin-
ciple of ALIVE to enable the clients to download the contents from nearby clients instead
of the server whenever it is possible. We used Scalable Video Coding [[13]] in ALIVE which
enables the clients to adapt their video bitrates even when they download from other clients.
ALIVE can be considered a combination of HAS, SVC and Peer-to-Peer (P2P) systems. We
performed extensive simulations to evaluate the performance of ALIVE. We show that the
load of the server decreases significantly and more clients can use ALIVE with respect to
other HAS algorithms with a better QoE.

The remainder of the thesis is outlined as follows. In Chapter[2] we will explain the solutions
of IP multimedia networks and Scalable Video Coding. HTTP Adaptive Streaming will be
defined in detail in the same chapter. In Chapter [3| we propose FEedback based Adaptive
STreaming (FEAST) and evaluate the performance of FEAST. The details of Adaptive LIVE



Streaming over HTTP (ALIVE) and its performance evaluation are given in Chapter[d] Finally
in Chapter[5] we conclude the thesis and future work of this thesis is explained.






CHAPTER 2

BACKGROUND

2.1 Internet Multimedia

As the multimedia traffic increases, researchers propose methods to cope with this increasing
traffic demand. Especially for live video streaming, Real-Time Transport Protocol (RTP), IP
Multicast and IP Multimedia Subsystem are some of these solutions.

Real-Time Transport Protocol (RTP) [8] is a UDP based protocol. It is extensively used in
entertainment systems such as multimedia streaming. It works in conjunction with RTP Con-
trol Protocol (RTCP). RTCP [[14] provides feedback information related to QoS and network
conditions. Due to the nature of UDP, lighter traffic is generated by RTP which can increase
QoS. Disadvantage of RTP is due to UDP’s being blocked by firewalls and inability to tra-
verse across Network Address Translators. Moreover, it is a complex structure. It is not
cachable in Content Distribution Networks (CDN) and it is difficult to use RTP with CDNS.
The server also requires to manage seperate streaming sessions for each client which makes
RTP an unscalable solution.

IP Multicast [10] is a multicast technology based on sending the datagrams to a group of a
client instead of a single client. This technology significantly decreases the transmission of
duplicate data. Higher QoS can be provided by eliminating redundant data transfer. A sender
uses the multicast address instead of a single client address. Internet Group Management
Protocol IGMP) [15] is the enabler protocol for grouping the receivers and manage the mul-
ticast addressing. Multicast distribution is done by tree structure. Fig shows a typical IP
multicast structure. In the figure, the arrows denote the multicast tree. Although IP Multicast
looks as a promising solution for multimedia streaming, it requires all the routers between the
sender and the receivers to support multicast routing. Therefore, it is difficult to deploy IP
multicast. Furthermore, routing tables grow dramatically with the use of IP multicast which
makes it an unscalable solution.

IP Multimedia Subsystem (IMS) is another system proposed for delivering multimedia ser-
vices over IP in next generation networks. It is designed by 3rd Generation Partnership Project
(3GPP). In order to be competible with existing systems, IMS makes use of IETF protocols
wherever it is possible. For example, Session Initiation Protocol (SIP) is used which is a



Multicast Group

Receiver B

Source

Receiver C

Receiver D

Figure 2.1: IP multicast tree structure

signalling protocol [[16]. IMS is a platform that tries to form a fixed-mobile convergence for
wired and wireless terminals. The problem with IMS is its complexity and traffic overhead
due to control message. In [17], it is indicated that IMS based systems generate 50 to 75
percent more control signal messages than non-IMS systems. Therefore, scalability problems

arise with the usage of IMS.

Table|2.1|is showing the advantages and disadvantages of RTP, IP multicast and IMS.

Table 2.1: Comparison of existing solutions for Internet Multimedia

Advantages Disadvantages
Network aware by RTCP Not cachable in CDNs
RTP Lighter Traffic Firewall and NAT Traversal Problems

Stateful Servers

Avoids Redundant Traffic Deployment Problem

Higher QoS Larger Routing Tables

Aimed for NGN Complex Architecture
Fixed-Mobile Convergence | High amount of Control Packets

IP Multicast

IMS

2.2 Scalable Video Coding (SVC)

Beyond the networking protocols, important progresses are done in other video related fields.
Video compression is an important piece of multimedia networking. It is the process of re-
ducing the amount of original data by coding the information. It significantly decreases the



traffic on the network. An HD video has a bitrate close to 1.3 Gb/s [18]]. It is impossible for a
network to carry such traffic. Therefore, it is necessary to compress these videos into bitrates
such that it becomes suitable for multimedia networking.

A compression is based on eliminating the redundant information. The redundancy can be
classified into two as spatial redundancy and temporal redundancy. The former denotes the
similarity between neighbouring pixels and the latter measures the similarity between adjacent
video frames. Compression is achieved by exploiting the spatial and temporal redundancy in
the video.

Video compression techniques can be classified into groups according to the ability of con-
serving the original data. A compression technique is said to be lossless if no data is lost
after decompressing the compressed video. Lossy compression is the opposite of lossless
compression which loses some data during compression. MPEG4 is a lossless compression
method whereas MPEG?2 is a lossy compression which does not guarantee the full decoding
of original data.

Another video compression classification can be done as constant bitrate (CBR) coding or
variable bitrate (VBR) coding. CBR coding encodes the whole video with the same rate
which may not guarantee a good quality because of video content. A frequent changing
background of the video may cause a worse Peak Signal-to-Noise Ratio (PSNR). On the
other hand, VBR coding keeps the quality constant by changing the encoding rate whenever
it is necessary. However, it needs a more complex decoding and it may exceed the available
network bandwidth during streaming.

H.264/AVC video coding is one of the most commonly used video compression techniques
today. It is approved by ITU-T as Recommendation H.264 and by ISO/IEC as International
Standard 14 496-10 Advanced Video Coding (AVC) [19]. It is created to supply a good video
quality by lowering the resultant bitrates than previous standards such as MPEG1, MPEG2,
H.263 etc.

H.264/SVC [13]] is the extension of H.264/AVC which codes the videos by layers. In other
words, a base layer is coded. Then by adding enhancements layers, the quality of the video
is increased. When a server contains a video segment with resolution r,, it automatically
contains, ry, 12, ... I,—1 where ry is the lowest quality. We used this property in ALIVE which
will be proposed in Chapter [

2.3 HTTP Adaptive Streaming

HTTP Adaptive Streaming (HAS) is a recent multimedia streaming technology that is aimed
for high QoE against network fluctuations. There are some reasons for the popularity of HAS.
First of all, it can be used by standard HTTP servers, caches and clients without changing the
existing network infrastructure. The wide usage of HTTP ([20]) contributes to popularity of



HAS. Moreover, the underlying transport layer for HTTP is TCP which enables traversing
firewalls and Network Address Translators as opposed to UDP which is mainly used as the
transport layer protocol in standard video streaming applications such as RTP. In UDP based
protocols, servers just push the content towards the clients, however it would generate prob-
lems if the clients are behind NAT because UDP is not capable to traverse across it. In HAS,
the server offers different levels of quality for a given video and the client selects the most
appropriate video quality resulting in a scalable receiver-driven approach. Hence, HAS is
gaining popularity as a promising technology.

In HTTP Adaptive Streaming, servers encode the videos into multiple quality levels and di-
vide these videos into small segments of equal lengths. The length of these segments is
generally 1,2 or 10 seconds ([21]]). A client first gets the Media Presentation Description file
(MPD) which consists the URL,timing information, available resolutions etc. Fig[2.2] shows
an example MPD file.

—
4VIedia Representation |

—
| Periodia-1 periodid=2 —

Start = 0 sec = ‘
S / Start = 100 sec (7\ Segment Info

) ] Ve B Adaptation Set 1 o e
T ) . (7 / Initilization Segment

A s q : o p http://abr.rocks.com/ahs-

{ Period id = 2 {Adaptatlon Set 0 l/izl:r:fes’ggtl'(m;:) Representation 3 l\ 5.3gp
\Start =100 sec L N o Rate = 2 Mpbs

—— S Resolution = 720p (" Media Segment 1
e ﬂ?epresentatlon 2) \ http://abr.rocks.com/ahs-
I 5.1.3
/ Segment info \ \\7@

e i N Rate = 1 Mpbs
{ Period id =3 Adaptation Set 1 ) . Duration = 10 sec ———
_ : Media Segment 2
Start = 300 sec \ ) ﬁ:presf;tiﬂtlo; 3 Template: (http://abr.rocks.com/ahs—
- \\U ‘ahs-5-SIndex$.3gs, 5.2.3gp
;o ﬂlei ™S
. . " presentation 4 .
Period id = 4 {Adaptatlon Set2 Rate = 3 Mpbs
Start = 850 sec \_ ) T

N

Figure 2.2: Illustration of Media Presentation Description File

After getting MPD, client sends a request to download the available segment to server fol-
lowing a rate adaptation scheme. This process is shown in Fig [2.3] In HAS, each client
determines the video quality of the next segment to be requested according to its measure-
ments such as download time or current buffer state. With this approach, HAS becomes
robust against the scarcity and fluctuations in the network bandwidth.

One important feature of HAS is idle waiting time. A client sends the next request just after
the end of previous download if its buffer contain less than a certain amount of data. However,
if its buffer exceeds a threshold, then next request will be send for some time later. This time is
called idle waiting time. Although this is necessary to avoid buffer overflows, in next sections
it will be shown that idle waiting time will cause some unfairness issues.

HAS is different than traditional TCP streaming. In TCP streaming, the data that is down-



Server

AV

Request 1st Request 2nd
segment segment

Client |

Figure 2.3: A client first downloads MPD and then downloads the successive segments

loaded after each round becomes ready to play immediately after that round finishes. A round
starts with the transmission of W packets, where W is the current size of the TCP congestion
window [22]]. Whereas, in HAS, the data becomes ready to play after the segment will com-
pletely downloaded and delivered to application layer. Moreover, TCP streaming does not
adapt the video bitrate, but HAS changes it dynamically.

MPEG-DASH [23] is the first international standard for HAS. MPD file format is defined
which is an XML based schema that contains information about the video data. In [23],
some additional features of MPEG-DASH are written as ad insertion, scalable video cod-
ing, compact manifest, multiple base URLs and segments with variable durations. MPEG
DASH defines the quality metrics for reporting the session experience. The standard has a
set of well-defined quality metrics for the client to measure and report back to a reporting
server [24]. MPEG-DASH also supports Scalable Video Coding (SVC) and Multiview Video
Coding (MVC). The MPD gives the information about the decoding dependencies between
representations, which can be used for streaming any layered coded streams like SVC and
MVC.

Many commercial tools such as Microsoft Smooth Streaming [5]], Move Networks [4], Apple
HTTP live Streaming [[6]] have adopted HAS with different rate adaptation implementations.
They both offer Video on Demand and live tv services. Microsoft Smooth Streaming (MSS) is
the only open source HAS player and many researchers compare their own work with MSS.
We will also compare our work with MSS. Therefore, we will give the details of MSS in

Section2.3.11

In the literature, there are some works about HTTP Adaptive Streaming. Many works deal
with the rate adaptation algorithms. In [25]], authors propose a rate adaptation algorithm that
defines the video bitrate according to segment download time. This article is one of the earliest
works in this field and many other papers compare their own work with the one in this article.
We will also compare our proposed algorithms with this one, therefore we will explain the
algorithm of this paper later in Section[2.3.2]

In [26], authors propose a rate adaptation algorithm that define states according to the fullness
of the buffer. Then, combine these states with download times, then determine the resultant



bitrates.

In some previous works such as [21] and [27]], unfairness problem is observed for commercial
HAS tools. This unfairness means the huge differences between the video qualities of HAS
clients. It becomes unfair if one of the clients watch the videos in a high quality whereas
another client watches it with the lowest quality. Authors in [28] propose an HAS solution
to cope with unfairness, instability and low utilization. They add randomness to their rate
adaptation to avoid these situations. Although their solution decreases the unfairness, it may
not be useful when number of clients is high. In [29], a control theoretical rate adaptation
algorithm is proposed, where the server determines the rates of the clients to achieve a fair
service and efficient use of the available bandwidth. However, such server centric approach
suffers from scalability.

In [27], authors examine the performance of MSS for the case of concurrent clients accessing
videos in the same home. They suggest home gateway which works as a bandwidth manager
and divides the bandwidth according to the target bitrates of the clients. This approach only
ensures fair bandwidth division between the clients in the same home and it necessitates the
deployment of these gateways in each home.

In [30], the advantages of IP multicast and HAS are combined. They divide the connection
into two as UDP and HTTP part. In UDP part, content is sent with IP multicast. However,
firewall traversal issue and IP multicast deployment issue makes UDP part less efficient.

Parallel HTTP connections are proposed in [31]. In the article, successive video segments
are downloaded with more than one HTTP connections which increases the throughput and
decreases the download delay. However, the system is only tested for single HAS client. In
fact, it can be a disadvantage for multiple HAS clients due to high number of TCP and HTTP
connections. Moreover, as the number of clients increases, the throughput cannot be further
increased by increasing the number of connections as indicated in [32].

Authors investigate the effects of Scalable Video Coding on HAS in [33]]. It is written that
cache hit ratio increases with the usage of SVC. When cache contains a high quality version
of a video, it automatically contains the lower quality version of the video because of layered
coding. This ability of SVC will be used in ALIVE which will be proposed in Chapter (4| for
live TV services.

Video bitrate adaptation is performed not only in HAS but also in some other systems. In the
literature, there are some previous works that proposed adaptive streaming over other proto-
cols rather than HTTP. The biggest difference between HAS and the existing works is that
in HAS clients adapt the video bitrates whereas in other systems server is responsible from
determining the video quality for each client. This feature makes HAS a much more scalable
solution than existing solutions. For example, in [34], authors propose a rate adaptive video
streaming solution which works with RTP over UDP. In this system, server determines the
video bitrates. In [35], [36]] and [37]], authors propose sender-driven rate adaptation strate-
gies based on layered encoded videos such as SVC. Although these systems consider the

10



network’s and clients’ instant conditions, the fact that sender decides the video bitrates makes
them infeasible solutions especially for high number of clients.

In Chapter i] we propose ALIVE which can be thought as a combination of SVC, HAS and
P2P systems. In the literature, adaptive streaming for P2P systems was proposed such as in
[38]]. In the article, authors propose a window based rate adaptation algorithm. However,
ALIVE will be different from previous works because it will not be a pure P2P system and
only some clients will supply videos to other clients. Moreover, ALIVE will use HTTP as the
primary networking protocol different than previous works.

2.3.1 Microsoft Smooth Streaming

MSS is a commonly used open source HAS solution. In this section, we define the rate
adaptation algorithm of MSS by referring to [39] which provides the operation details of
MSS.

In most of the rate adaptation algorithms, clients measure the download time of each segment.
Then, they calculate the available bandwidth by dividing the size of the downloaded video
segment to the download time. These bandwidth measurements are averaged using a multi-
sample sliding window to smooth the estimate in order not to react to momentarily bandwidth
changes. In MSS, clients get the arithmetic mean of last 3 measurements. In the rest of this
thesis, we will denote the measured bandwidth of client i with b;(¢).

The maximum buffer level is indicated to be 20 seconds. Clients send the next request just
after the last download finishes if the buffer contains less than 20 seconds of video data. If
it is equal to 20 seconds, the client send the next request two seconds later which is the idle
waiting time for MSS. Segment time of MSS is denoted to be 2 seconds.

In MSS, a client is either in Buffering State or Steady State. It starts with the lowest bitrate
in buffering state. It increments the buffer as fast as possible while keeping the video bitrate
high according to the measured bandwidth. It quits the buffering state when its buffer contains
14.5 seconds of video data. In steady state, it increases the video bitrate only if the buffer
contains more than 17 seconds of data and the measured bandwidth is higher than the bitrate
of next higher resolution. It starts decreasing the video bitrate when the buffer drops below
14 seconds. It re-enters the buffering state again when buffer contains less than 7 seconds of
data and video bitrate is set to lowest. The aim of the rate adaptation algorithm is to put the
buffer between 12 and 17 seconds while maximizing the video bitrate.

2.3.2 Rate Adaptation for Adaptive HTTP Streaming: Liu at al.

The article [25] is one of the earliest works in HAS. It proposes a rate adaptation algorithm
according to the segment download time. A client starts with the lowest quality video. They
define Segment Fetch Time (SFT) as the time between the time instant of sending GET request

11



and receiving the last bit of the video segment. After each download, the clients calculate u.

_ MSD

= SFr 2.1)

U

In Equation 2.1 MSD denotes the Media Segment Duration. According to the value of g,
next segment’s video bitrate is calculated. If u is greater than a threshold, then video bitrate
is increased by one step.

u>1l+e 2.2)

If the above equation is satisfied, then next video’s resolution is one higher than current reso-
lution.

n—1 bl’,q.] — bri
€ =max ———
i=0 bri

(2.3)
where br; denotes the encoded media bitrate of representation i and n denotes the highest
representation level. The value of € becomes critical when there are few HAS clients. Some-
times, clients cannot increase their bitrates eventhough there is available bandwidth which
will be shown in detail in Section[3.4]

The algorithm decreases the video bitrate if u is less than another threshold.

<y 2.4)

If the above condition is satisfied, then the client must choose a lower bitrate. In the simu-
lations of the paper. vy, is selected to be 0.67. A higher value of y,; makes the a safer rate
adaptation by decreasing the video bitrate even in smaller bandwidth reduction whereas a
lower value lets the clients to decrease the video quality in much worse conditions only. In
such situations client will choose the maximum br; such that;

br; < u* br, (2.5)

where br, is the bitrate of current representation.
In the article, authors also include the idle waiting time. Following equation determines the

idle waiting time.

br,
ts = tm — tyin — ——MS D (26)

b7 min

12



where ¢, is idle waiting time, ¢, is buffered media time, f,,;, is predefined buffered media time
and br,;;, is the minimum bitrate representation. If 7 is lower than 0, then next request will
be sent immediately after the last download finishes. If it is greater than O, then the client will
wait for ¢, seconds before requesting the next video segment.

13



14



CHAPTER 3

FEAST: FEEDBACK BASED ADAPTIVE STREAMING OVER
HTTP

3.1 Motivation for FEAST

HTTP runs over TCP which determines the transport rate of a connection by Additive Increase
Multiple Decrease (AIMD) scheme. When multiple TCP connections share the same bottle-
neck link, the bandwidth is divided fairly between these connections due to nature of TCP.
Therefore, it is reasonable to expect that when multiple HTTP Adaptive Streaming (HAS)
users share a bottleneck link, they watch their videos in similar bitrates. However, this case is
not true in some conditions. In [21], authors evaluate the scenario with multiple HAS users
sharing the same link. In the article, it is shown that some users are watching the videos in
much higher quality than other users. Same behavior is observed in [27]. The reason for this
unfairness is investigated in [21]] and the authors concluded that the main reason is ON-OFF
behavior of HAS clients.

One of the important issues for HAS is idle waiting time. After filling its buffer to a certain
level, a client has to wait for a certain period of time before its next request in order to prevent
buffer overflow. For example MSS waits for two seconds before next segment’s download
if buffer contains 20 seconds of video data. This ON-OFF behavior affects the bandwidth
estimation of the clients. Clients measure the segment download times and estimate the avail-
able bandwidth in the application layer. However, this estimation might be wrong due to
overlapping download or idle waiting times with other HAS clients. Moreover, a user cannot
estimate the bandwidth during the OFF period because it is not downloading. Therefore, it
may not react to bandwidth fluctuations which occurs during OFF period. In other words,
the bandwidth information may be stale because of some fluctuations in network conditions.
Therefore, HTTP Adaptive Streaming is prone to unfairness problem although it is working
on a fair transport layer protocol.

Fig. and [3.3] are showing three different cases for ON-OFF periods of HAS clients.
Note that, normally download times are not slotted as in this example. It is just to show the
root of unfairness problem. Assume that capacity of the shared link bandwidth is C. In normal
conditions, if two TCP connections are sharing the same link, it is expected that both will use

15



C/2 portion of the bandwidth. If we analyze the first case, two clients are downloading and
waiting synchronously. Therefore, they are measuring the network such that both of them use
the half of the bandwidth. No unfairness will be encountered in this condition.

T1 T2 T3 T4 T5
CLIENT 1 IDLE DOWNLOAD IDLE DOWNLOAD IDLE
CLIENT 2 IDLE DOWNLOAD IDLE DOWNLOAD IDLE

Figure 3.1: ON-OFF periods of two HAS clients: Casel

Fig. B2} is showing another case for two HAS clients. In this time chart, Client 2 is down-
loading a segment during T1, T2 and T3 whereas Client 1 only downloads in T2. First client
will estimate the available bandwidth as C/2 because two clients are concurrently download-
ing in its active period. On the other hand, Client 2 will estimate the bandwidth as more than

C/2 and most probably close to C because it is the only active client in most of its download
time.

T1 T2 T3

CLIENT 1 IDLE DOWNLOAD IDLE

CLIENT 2 DOWNLOAD

Figure 3.2: ON-OFF periods of two HAS clients: Case2

Finally, Fig. [3.2]is showing the case where another potential unfairness problem will occur.
In this condition, only Client 1 is downloading in T2 whereas two clients are downloading
in T1. Therefore, Client 1 will measure the available bandwidth as C and other clients will
measure it as C/2. Here, we are facing an unfairness.

T1 T2 T3 T4 T5

CLIENT 1 IDLE DOWNLOAD IDLE DOWNLOAD IDLE
[eR[2\y v DOWNLOAD IDLE DOWNLOAD IDLE DOWNLOAD
[eRI2\ ) pcn DOWNLOAD IDLE DOWNLOAD IDLE DOWNLOAD

Figure 3.3: ON-OFF periods of three HAS clients

This problem can be avoided by removing idle waiting times. If clients always request the
next segment just after the end of previous one’s download, then unfairness problem will

16



be solved. However, client buffers will contain enormous amount of data which consists of
hundreds of seconds of video. These data will be wasted if user stops watching the video
some time later. Moreover, it will be unsuitable for live tv applications in which video data is
instantaneously prepared in the server. As a result, it is necessary for clients to wait for some
time for successful operation of HAS.

Stability is also another important factor for HAS. If a client changes the video bitrate very
frequently, user QoE will degrade seriously as indicated in [40]. Another circumstance that
degrades QoE is sudden bitrate changes. In other words, users’ satisfaction will decrease if
video bitrate changes from a very high level to low level or vice versa. Authors discuss this
problem in [41]]. Therefore, less frequent and step-wise changes in video bitrate is necessary
for HAS. Step-wise changes mean changing the video quality to one higher or one lower
quality level.

3.2 Performance Metrics

In this Section, we define the performance metrics that measure the fairness and stability
properties of HAS that we introduce previously. The system is defined as the video server and
its clients that are downloading videos.

Fairness:

If one of the clients watches the video with a low quality whereas another client watches in a
high quality, the bandwidth is shared unfairly between them. To this end, we first introduce
the fairness index introduced by Jain [42] as follows:

u(t
JE®) = (Zlif—r,(t))z (3.1)
u() X (ri0))?
In Eqn. (3.1), u(z) is the number of connected users to the server and r;(¢) is the video bitrate
of user i at time ¢. Normally the value of this fairness index resides between 1/n and 1 where
n is the number of users. Desired value of Jain’s fairness value is 1 whereas it becomes unfair
when it reaches to 1/n. If it is equal to 0.2, then it is unfair for 80 percent of the users.

In this thesis, we use unfairness as U(¢) = 1 — JF(¢) which means a system is perfectly fair
when U = 0.

Switch Rate:

As denoted before, users are sensitive to frequent changes in the downloaded video rate.
Accordingly we define the Switch Rate for the system SR in number of rate changes per
second. It is computed for the sum of all clients’ rate switches. A low value is desired for
SR. In this thesis, we assume that average SR is computed over a time interval while it can
be defined as an instantaneous measure as S R(f).

17



Bandwidth efficiency and Video Quality:
A good HAS player should minimize U(¢) and S R while using the available bandwidth as ef-

ficient as possible. The bandwidth is used efficiently if the available bandwidth in the network
is utilized by the clients for the transmission of videos with the highest possible quality.

We define video quality as the sum of instantaneous video bitrates of the clients. In [32],
throughput/link capacity ratio of multiple parallel TCP connections on a shared link is found
to approach to unity as the number of connection increase. The ratio is generally higher than
0.9 for 3 connections and higher than 0.95 for 6 or more connections. Therefore, for a good
HAS application, the video bitrate should be close to the available link bandwidth.

The best way to achieve desired values for the above metrics is to equally divide the available
bandwidth to all HAS users. However, it is generally not possible for users to exactly know
the instantaneous available bandwidth.

To this end, we investigated the relation between the estimated bandwidth and video bitrates,
with an experiment. We simulated MSS in NS2 with 9 HAS clients that share a common link
with a bandwidth of 9 Mb/s. We calculated the average video bitrates and average estimated
bandwidths of all users and plotted their values on the same graph with respect to time in Fig.
Average video bitrate r,(¢) is the instantaneous video bitrate averate of 9 clients which
is the average of r;(¢) for i=1,2..,9. Average estimated bandwidth b,(7) is the instantaneous
estimated bandwidth of 9 clients which is the average of b;(¢) for i=1,2..,9. Only steady-state
period is shown on the graph.

1,4

1,2
. —Avg.
a Video
.§ 1
é —Avg.
£os8 BW
)

0,6

0,4

200 250 300 350 400

Time (sec)

Figure 3.4: Average video bitrates and measured bandwidth of the clients

It is seen in Fig. that average video bitrates and average estimated bandwidths continu-
ously intersect. Accordingly, we deduce that, when users download more than the available
bandwidth, download times get higher and the amount of data in their buffers decreases by
time. Consequently, they decrease their video bitrates. After filling their buffers, they again
increase their bitrates and exceed the available bandwidth. This cycle continues resulting in
instability and unfairness. To avoid this problem, we propose a parameter p(¢) which is the ra-

18



tio of average video bitrate of the users to average estimated bandwidth. Users will determine
their video bitrates by considering this parameter.

3.3 Operation of FEAST

FEAST is proposed for achieving fairness and stability while using the available bandwidth
as efficient as possible. In FEAST, the clients adapt their video rates based on the feedback
information about the network state from the server and additional parameters that they can
individually measure. We defined the segment lengths as 2 seconds which is the same for
MSS. As the segment size increases (e.g. 10 sec), idle waiting time increases. Therefore
unfairness increases and clients cannot react to bandwidth changes properly. In [43], it is
writen that the additional overhead traffic increases when segment size decreases. Although
it can be useful for live streaming to make the segment length 1 second, 31 Kbps traffic is

introduced in every segment.

3.3.1 Client-Server Information Exchange and Server Side Computations

The request packets of the clients in our proposed FEAST contain the name of the requested
video and the start time of the requested segment as in most HAS implementations. In addi-

tion, the request of each client i at time ¢ includes the following information:

ri(t): Video bitrate of the currently requested segment

pri(t): Video bitrate of the last requested segment

bi(t): Estimated bandwidth of client i before the current request.

pbi(1): Estimated bandwidth of client i before the last request.

Each client i measures its estimated bandwidth as in MSS as described in Section A
client sends 0 as r;(f) and b;(¢) when it is leaving and sends O as pr;(¢) and pb;(f) when it is

connecting to the server first time.

The server maintains three system state variables. These are the average video bitrate of the
clients, the average available bandwidth of the clients as measured on the client side and the
number of connected clients which are denoted by r,(¢), b, () and u(¢) respectively. For each
request received from client 7, the server updates these system state variables as shown in
Algorithm

19



Algorithm 1 Server’s Equations

1: if new client is connecting then

7. ra(t) = ra(t);‘(ut():)—‘;ri(t)

. _ ba@xu(®)+bi(1)
s bl = B
4: u(t) =u()+1
5: else if a client is leaving then
6l = HOOpr()
. _ baOu®)—pbi()
8: u(t) = u() —1
9: else

100 ra(t) = rg(t) + 2B

bi(1)—pb,
e ba(t) = by(r) + 202220
12: end if

When server responds to a client request, it piggybacks r,(f), b,(¢) and u(t) with the requested
video segment. Note that the server side computations are scalable as system state variables
do not depend on the individual client. Server only tells the network condition to the clients.
However, the rate adaptation process will be done individually at each client.

3.3.2 Rate Adaptation on the Client Side

Client i computes two state variables C(¢) and F;(¢) which reflect the network congestion and
fairness of video download according to the system state variables r,(t), b,(¢) and u(t) received
from the server and r;(f). The FEAST rate adaptation of client i aims to decrease both S R and
U(¢) according to the client state S;(r) = (C(¢), F;i(t)). It is important to note that the client
buffer has to be full above a threshold in order to avoid video freezing and the client buffer
size bu f; must be checked for each rate adaptation. The buffer size is measured in seconds as
in [39]]. Similar to MSS we choose the maximum buffer size as 20 seconds.

Initially, user tries to fill its buffer as much as possible. It starts with the lowest bitrate in order
to achieve this. In this phase, buffer state is called to be insufficient. The user leaves this state
and enters enough state when the buffer contains 12 seconds of video data. The user again
enters the insufficient state when its buffer data drops below 8 seconds of data. The reason
for choosing different values for entering and leaving the state is to avoid oscillation between
states.

Accordingly client i selects r;(f) before each request to be sent at time ¢ as shown in Algorithm
where p; () is the next lower and p; () is the next higher video bit rate with respect to the
previous video bitrate p,(1).

We define decreasing the video bitrate as choosing the the next lower quality level whereas
increasing the video bitrate means choosing the next higher quality level.

20



Algorithm 2 Rate Adaptation Algorithm
1: Initially: r;(¢) is selected as the lowest bitrate

Initially: Buffer state bs;(¥) is insuf ficient

For Each Request:

if bs;(¢) is empty AND bufi(t) > 12 then
bsi(t) = enough

else if bs;(¢) is enough AND bufi(t) < 8 then
bsi(t) = insuf ficient

end if

After computing bs;(2):

: if bsi(t) = insuf ficient then

ri() = pri ()

. else

Compute C(¢) and F;(¢)

Increase of decrease r;(¢) accordingly

: end if

R A A O

e e e

Computing C(?):
As shown in Fig. MSS clients increase their video bitrates when b,(¢) is higher than r,(z).
However, when r,(f) becomes greater, then video bitrates start falling down. This repeating

behavior results in a large number of rate switches. In FEAST, the client takes into account
the congestion state of the network to avoid this problem. To this end, we define p(f) = 2“—((2
and introduce the network congestion parameter C() that is computed at the client side as

shown in Algorithm 3]

Algorithm 3 Network Congestion
1: if p(¥) < a then

2: Cn=0

3: elseif @ < p(r) < S then
4: cn=1

5: else if 8 < p(f) then

6: Cir=2

7: end if

If C(¢r) = 0, it means network is underutilized and video bitrates can be further increased. If
C(t) = 2, then there exists a congestion in the network. C(#)=1 is the desired state in order to
avoid both underutilization and congestion. & and S are the congestion threshold values. 8 can
be close to unity whereas « can be a value between zero and one. We describe the selection
of @ and g later in this Section.

Computing F;(¢):

Fi(¢) aims to bring r;(¢) close to the average download rate r,(f) provided by the server as
shown in Algorithm 4]

21



Algorithm 4 Fairness Variable
1: if pri(t) < ry(?) then

2: FH=0

3: else if pr; (t) < r,(t) < pri(t) then
4: Fi(n=1

5: elseif r,(t) < pr; (¢) then

6: Fi(t)=2

7. end if

On the one hand, if F;(t) = 0, then client i’s video bitrate is lower according to the average and
it should increase its bitrate. On the other hand, if F;(¢)=2 indicates that the client is unfairly
downloading at a high bit rate possibly resulting in a decreased QoE for other clients. Hence,
clients aim to keep Fi(t) = 1.

Rate Decision according to S ;(t) = (C, F(?)):

A user can be in nine different states according to the values of C(¢) and F;(f). We define
different rate selection decisions for each state aiming to reach S;(¥) = (1, 1) for all clients i
as seen in Table In this table, I means increase, D means decrease, NC means no change,
PI means probabilistic increase and PD means probabilistic decrease.

Table 3.1: Rate Decision

Client State | Fy(1) =0 | Fi() =1 | Fi(t) =2

CH)=0 I PI NC
CH)=1 I NC D
Ct)=2 NC PD D

When F;(t) is zero for a client, it increases its video bitrate if there is no congestion in the
network. It does not change its bitrate if congestion exists in the network and waits for other
clients to decrease their video rates. A client with F;(f)=1 does not change it video bitrate
if C(¥)=1 which is the desired condition. According to congestion status, it increases or
decreases with p; and p; respectively. These probabilities may depend on the number of
connected clients, its video bitrates or other parameters. In FEAST, p; decreases with the
increasing number of connected clients whereas p, increases for the same situation. Equations
and gives the equations for these two variables. With the contribution of u(¢), these
variables also become time dependent.

1
pi(t) = w0 (3.2)

22



1
pa(t) =1- 0 (3.3)

If F;(t) = 2 for a client, it decreases the video bitrate if C(¢) = 1 or C(¢) = 2. If the network is
underutilized, it does not change the bitrate and waits for other clients to increase their video
bitrates.

Selecting the congestion thresholds, a and £:

a and g are threshold values to determine C(f) as described in Algorithm [3| In our exper-
iments, we see that choosing S close to unity provides a reliable detection of congestion.
Choosing « as a value between 0.7 and 0.8 works well when the following inequality is satis-
fied;

u(t) = " > bwapail (3.4)

max 3

where ¥ is the maximum video bitrate and bw,,,; is the actual available bandwidth. How-
ever, the inequality may not hold when the number of connected clients is low. In this condi-
tion, the clients suppose that the network bandwidth is fully utilized although an underutiliza-
tion exists. This condition can be avoided by increasing the value of @ with the low number
of users. In other words, @ should be a function of u(#). For higher values of u(¢) (i.e u(t) > 5),

a can be set to 0.65, otherwise we calculate it by the following formula;

a(t) = 0.65 + 0.25 « exp(=3 * u(t)) (3.5)

It is important to note that this is a heuristic formula. Exponential term and the exponent of
-3 is found by experimentation. With a u(t)-dependent value of @, FEAST can work with any
number of connected devices. After deciding its own video bitrate, a client sends a request to
get the segment of 2 seconds of video.

3.4 Performance Evaluation of FEAST

We evaluate the performance of FEAST with respect to the performance metrics that are
defined in Section 3.2] We used NS2 [12] as the simulation platform. We simulated the
behavior of FEAST, MSS and the algorithm presented in Liu at al. [25]] and compare their
performances. We compared the results for different network conditions.

In [39]], video bitrates of MSS are between 0.3 Mb/s and 2.436 Mb/s. Therefore, we will use
similar video bitrates in our experiments. There will be eight different video bitrates between
0.3 and 2.4 Mb/s with an increase step size of 0.3 Mb/s. In FEAST, not all the users have
to watch the same video. They may watch different videos, but we assume that coding rate

23



levels of the videos are same. In other words, all the videos are coded into multiple bitrates
from 0.3 Mbps to 2.4 Mbps.

In the experiments, we use the topology given in Fig.

9 Mb/s 1msec

9 Mb/s 1msec 9 Mb/s Imsec
S R1

9 Mb/s 1msec

9 Mb/s 1msec

Figure 3.5: The network topology that is used in simulations

In Fig. [3.5] n clients (C1, C2 .., Cn) are downloading a video from the server S. In the
experiment, we also generated background traffic. Nodes E1 and E2 are generating expo-
nential traffic towards ER1 and ER2 respectively. The links from clients to router R3 have a
bandwidth of 3 Mb/s each and all other links have 9 Mb/s bandwidth in the network. In the
simulations, all the clients start downloading at a random time instant between t=0 and 20
sec. They quit watching at a random time between t=480 and 500 sec.

We compare our results in terms of video bitrates, unfairness and the rate of video rate
switches. The same start and quit times are used for FEAST, MSS and Liu at al..

The first experiment is conducted with 9 clients and without background traffic. Video seg-
ment size is set to 2 seconds in all of the experiments. Unfairness, rate switching and average
video bitrates of 9 clients are measured. Fig. [3.6]is showing a sample of the instantaneous
unfairness of 9 clients in the steady-state period.

It is clearly seen from Fig. that FEAST provides significantly more fair service. We also
investigated the average video bitrates of the users. In [32]], it is shown that when more than 6
TCP connections share the same link, total TCP throughput will approach to the capacity of
the link. Therefore, it is reasonable to expect that TCP throughput of our clients will be close
to 1 Mb/s. There will be also some overheads between transport layer and application layer,
so HTTP throughput will be less than but close to 1 Mby/s. Fig. is showing the average

24



0,5

0,4
—FEAST
1]
wv
g 0.3 —Mss
‘g 0.2 —Liu at
o ’

al.

100 150 200 250 300 350 400
Time (sec)

Figure 3.6: Unfairness comparison of HAS algorithms

video bitrates again in steady state. We display only data between 200 and 400th seconds in
the graph to have a more clear view. In the graph, we see that all the algorithms are arranging
the bitrates such that average video bitrates are generally close to 0.95 Mbps. FEAST is
performing much more stable than other algorithms. Average video bitrate of FEAST does
not change frequently while the bit rates for the others are oscillating. Switching rate is also
much lower than other algorithms. Total switching rate of all clients is 0.18 switch/second in
FEAST whereas it is 1.01 for MSS and 0.92 for Liu at al..

Avg. Bitrates (Mb/s)

200 250 300 350 400
Time (sec)

Figure 3.7: Average video bitrate comparison of HAS algorithms

In next step, we added some background traffic to see the reaction of FEAST to other traffics.
In this step, two sources are continuously producing exponential UDP traffic at a total rate of
3 Mby/s. In other words, sum of rates of two exponential traffic sources are 3 Mb/s. In Fig.
[3:3] E1 and E2 are sources and ER1 and ER2 are receivers for this background traffic.

Fig. [3.8]is showing the unfairness of three algorithms for this scenario. Although unfairness of

25



FEAST increased when it is compared to no background traffic scenario, it still outperforms
other two algorithms. It does not only performs a more fair but also more stable service
to users by avoiding unnecessary bitrate fluctuations. Total switching rate of all clients is
computed to be 0.21 switch/second in FEAST whereas it is 1.09 for MSS and 0.99 for Liu at
al. It means 0.21 user is changing its video bitrate each second for FEAST.

0,6

0,5

0,4
a
4] —FEAST
£
..'.; —MSS
=)

—Liu at

300 350 400

Figure 3.8: Unfairness comparison of HAS algorithms in the existance of background traffic

Fig. 3.9]is showing the average video bitrates for the same scenario. It is seen that average
video bitrates of the clients are generally close for FEAST, MSS and Liu at al., but FEAST
is again performing the most stable rate adaptation. It is an expected situation for the aver-
age bitrates to decrease when it is compared to the case without background traffic because
background exponential traffic uses some portion of the bandwidth.

0,8
Q)
)
2
807
©
s —FEAST
o
] —MSS
T
> =
o 0,6 =Liju at
o al.
[J]
>
<

0,5

300 320 380 400

340, ?60
Time (sec

Figure 3.9: Average video bitrate comparison of HAS algorithms in the existance of back-
ground traffic

In the next experiment, we examined how unfairness, stability and utilization change accord-

26



ing to the amount of background traffic. We used the same topology here. We changed the
background traffic rate from 0 to 5 Mb/s with step size of 0.5 Mb/s and measure the network

performance.
0,2
0,15
8 ~FEAST
g
£0,1 —MSS
€
= —Liu at al.
0,05

0 0,5 1 1,5 2 2,5 3 3,5 4 45 5
Background traffic rate (Mb/s)

Figure 3.10: Average unfairness comparison of HAS algorithms according to background
traffic rate

In this part, we define the average unfairness U, which shows the time average for U(¢) over
time interval of 0-500 seconds. Figure [3.10]is showing the variation of average unfairness
according to background traffic rate. It is clearly seen that FEAST is outperforming against
other HAS algorithms. It is interesting to see that when background traffic exceeds a point,
all algorithms show a similar performance because the available bandwidth becomes enough
only for the lowest video bitrates for the clients. Note that the error bars on the graph denotes
the max-min difference of the results.

[Eny

-=FEAST

o
[

==MISS

o
)}

==Liu at al.

Average rate switch / second
o
S

}

o

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
Background traffic rate (Mb/s)

Figure 3.11: Rate switching comparison of HAS algorithms according to background traffic
rate

Fig. [3.11]is showing the average rate switches of all the users. FEAST clients changes their

27



video bitrates much less frequently than the clients using other two HAS algorithms. It is
interesting to see that for the algorithm in Liu at al., switching rate increases with increasing
amount of background traffic whereas it is decreasing for MSS algorithm. This most probably
because Liu at al. only considers the download time of the last segment whereas FEAST and
MSS takes the average of last three downloads. Therefore, a smoother estimation is done and
systems react better to instantaneous changes in the background traffic.

==FEAST

— —MSS

o 0o 0o o o
o N o O k-

o
>

==Liu at al.

o e e
SN NI

Average video bitrates of the clients

o

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
Background traffic rate (Mb/s)

Figure 3.12: Average video bitrate comparison of HAS algorithms according to background
traffic rate

0,25
0,2
g
c
E 0,15 -=FEAST
5 —MSS
% 01 ,
c v ==Liu at al.
g
<
0,05
0

0 5 10 15
Number of clients

Figure 3.13: Average unfairness comparison of HAS algorithms according to number of
clients

We also took the long term average of average video bitrates of the users and compare them
in Fig. 3.12] It is obvious that average bitrates decrease with higher background traffic rate.
FEAST, MSS and Liu at al. provide very close average bitrates. The negligibly small differ-
ence between FEAST and other algorithms is due to a more stable operation and not attempt-
ing unnecessary video bitrate increments.

28



Next experiment is conducted to find out the relation between HAS performance and number
of clients. Same topology is used in this experiment. Background traffic is set to 3 Mbys.
Number of clients are changed from 1 to 15 to investigate the effects on unfairness, video
bitrates and switching rates.

Fig. [3.13]is showing the unfairness of FEAST, MSS and Liu at al. according to varying num-
ber of clients. When number of clients is higher than 5, FEAST shows a better performance in
terms of unfairness. When number of clients exceeds a point, all the algorithms perform close
to each other because all the clients should get the lowest quality videos in such conditions.

It is interesting to see that Liu at al. seems to perform better when number of clients is lower
than 5. However, it is understood that it is not the case when avg. video bitrate graph is
examined.

In Fig. [3.14] it is seen that Liu at al. cannot increase the video bitrates although there is
available bandwidth when there are a few number of clients. All the clients watch the videos
in lower qualities. Therefore, less unfairness is observed in that region. However, due to low
quality videos Liu at al. performs much worse than FEAST and MSS. On the other hand, then
number of clients increase, all the algorithms start to perform close to each other in terms of
average video bitrates. The reason for the low quality videos when number of clients is fewer
than 5 is due to the rate switch up algorithm of Liu at al. The algorithm increases the bitrate if
the available bandwidth is 1 + € times higher than the current video bitrate which is defined in
Section[2.3.2] For the given video bitrates, € is calculated to be 1 which means the available
bandwidth must be 2 times greater than the video bitrate of the client. In this topology, when
number of the clients is low, the bottleneck bandwidth for the clients is the local links which
is 3 Mb/s. The clients cannot exceed 1.5 Mb/s due to the value of €. Therefore, performance
becomes much worse than MSS and FEAST for such conditions.

2,5

3,
2
3
‘é 1,5 -=FEAST
E= -
o
8 -=\SS

1
:g \ ==Liu at al.
)
)
© —
g 0,5
<

0

0 5 10 15

Number of clients

Figure 3.14: Average video bitrate comparison of HAS algorithms according to number of
clients

The last observation of this experiment is rate switching. Fig. [3.15]shows that when number

29



of clients is more than 5, FEAST performs the best. However, again Liu at al. seems to
perform better here with low number of nodes because it cannot increase its bitrate, so rate
switching is less. However, it enormously increase the switching rate when number of clints

increase.
2,5
2 |
15 ~=FEAST

{ | —Mss

! [74[/ =Liu at al.
i

Average rate switch / second

Number of clients

Figure 3.15: Average rate switch comparison of HAS algorithms according to number of
clients

We conducted a final experiment to see the effects of encoding rates. HTTP servers encode
the videos into multiple bitrates and clients request the most appropriate video resolution.
Assume maximum video quality is 2.4 Mb/s. Until now, in our simulations, server encoded
the video into 8 different resolutions with the lowest of 0.3 Mb/s and highest of 2.4 Mbys.
There is no standard for the number of different resolutions defined for HAS. What would
happen if the server encoded it into 4 different resolutions of 0.6, 1.2, 1.8 and 2.4 Mb/s? In
this part we simulated both conditions and compared them.

The most important result of the final experiment is the supported number of clients. When
the lowest encoding rate of the video is 0.3 Mb/s, more users can watch the video in the worst
network conditions. When it becomes 0.6 Mby/s, this number of users decreases almost by
half.

We used the same topology and same background traffic. In the experiment, when number of
clients is less than 8, average video bitrates of the clients is almost the same for two encoding
scheme. When video is encoded into 8 different resolutions, unfairness decreases because
users will have more choice of video bitrates. On the other hand, less switching occurs when
video is encoded into 4 different bitrates.

When we increased the number of clients from 8 to 10, freezing starts to occur for 4 different
resolution cases because the lowest bitrate is 0.6 Mb/s and users cannot decrease further to fill
their buffers. Freezing occurs with an average of 34 times for each client in each simulation.
When number of clients becomes 13, it becomes impossible for the users to watch a video
due to frequent freezing. On the other hand, this number is only 0.1 when it is encoded into 8

30



different bitrates. Tables[3.2] [3.3and [3.4] are showing the average unfairness, switching rates
and video bitrates for these conditions respectively. In the tables n, denotes the number of
video resolutions. When the tables are examined, it is seen that most of the resultant values
are almost same for the two cases. Switching rate seems lower for n, = 4 case because it lets
the clients to increase or decrease their video bitrates faster. However, it cannot support as

many number of clients as n, = 8 case

Table 3.2: Unfairness Table 3.3: Switching Rates ~ Table 3.4: Avg. Video Rates
nodes | n, =8 | n, =4 nodes | n, =8 | n, =4 nodes | n, =8 | n, =4
1 0 0 1 0.01 0.01 1 2.18 2.18
2 0.013 | 0.006 2 0.03 0.01 2 2.20 221
3 0.18 0.30 3 0.43 0.43 3 1.75 1.74
5 0.13 0.13 5 0.33 0.21 5 1.08 1.11
8 0.11 0,13 8 0.32 0.16 8 0.69 0.70
10 0,08 0,01 10 0.24 0.04 10 0.55 0.58

In this chapter, we introduced FEAST which provides a fair, stable and efficient HTTP Adap-
tive Streaming service. However, it is based on pure client-server architecture. When we
apply it to a live streaming case, available server bandwidth may not be enough due to very
high number of users. Moreoever, we use a buffer length of 20 seconds of video data. There-
fore, FEAST is best suitable for Video on Demand (VoD) services in which the contents are
ready before users watch it. For live streaming, we propose ALIVE in the next chapter.

31



32



CHAPTER 4

ALIVE: ADAPTIVE LIVE STREAMING OVER HTTP

4.1 Motivation for ALIVE

In Video on Demand services, the possibility of multiple clients’ watching the same video
is quite low. However, in live TV applications, it is the opposite case. It is almost certain
that more than one clients will watch the same TV channel. By using this property of live
streaming, we developed Adaptive LIVE Streaming over HTTP (ALIVE) which is based on
downloading the video segments from a nearby client instead of the server if possible. ALIVE
can be considered as a combination of HAS, SVC and P2P systems.

In recent years, people started watching television over the Internet instead of cable television
networks. The frequently employed best-effort services are not sufficient for the television
over Internet. Hence, some new techniques must be developed to give a satisfactory ex-
perience to the clients. HTTP Adaptive Streaming has become a popular solution also for
live streaming. Microsoft Smooth Streaming [5], Move Networks [4] and Apple HTTP Live
Streaming [6] are some examples of this fashion.

Live streaming differs from video on demand streaming in a number of points. First of all,
content is dynamically prepared. It means that server cannot prepare the contents of next few
minutes as it does in recorded video streaming. A client cannot cache the next 20 seconds
of the video in its buffer as it is done in MSS or FEAST. Moreover, a client has to wait for
the next requested segment until it becomes ready. Buffering amount must be limited such
that the delay between the actual TV flow and the one on client’s screen is small enough.
In [43], the live TV delay for HTTP Adaptive streaming is analyzed. They concluded that
segment size is the most critical element in this delay. When the segment size is greater, the
delay becomes larger. For some TV events, this delay may become critical. For a football
game audience, it is the worst nightmare to hear a goal from the neighbours before they watch
it on the screen. Buffering delay, transmission delay and segment preparation delay are the
main contributers to this delay. Buffering delay is necessary for robustness. Therefore, buffer
management becomes much more critical. A detailed investigation of this analysis will be
given in Section 4.2

A second difference between live and recorded video streaming is the download popularity

33



of the videos as it is indicated in the first paragraph of this chapter. When many clients are
downloading exactly same data from the server, redundant data circulates in the network. This
lowers the quality and generates a delay for IP packets. To avoid this redundancy and manage
the dynamically prepared video contents, a different approach is needed for live streaming.

In HTTP Adaptive Streaming solutions, all the clients download the contents directly from
the server. In the ideal case, the shared bandwidth is fairly divided among TCP connections
and all the clients will get C/N portion of the bandwidth when C is the bandwidth of the link
and N is the number of TCP connections. In this part of the thesis, we propose Adaptive LIVE
Streaming over HTTP which enables the clients to download the contents from nearby clients
instead of the server whenever it is possible. It is actually a kind of Peer-to-Peer system with
HAS and SVC. ALIVE is a novel architecture because it is the first work combining HAS,
SVC and P2P systems. With this solution, the load of the server significantly decreases and
more clients are supported with more QoE. ALIVE clients can watch the video with a quality
more than C/N video bitrate.

4.2 Operation of ALIVE

The main aim of ALIVE is to decrease the load of the server and give a better service to the
clients. If the number of clients who download the contents from the server decreases, then
the quality of the video can be increased. Furthermore if a client downloads from a nearby
client rather than from a server that is many hops away, both the traffic load distribution in the
network and Qos/QoE perceived by the downloading client will improve. We call the client
that provides the video to the other clients seed.

When a client connects to ALIVE, it first connects to the server and downloads a number of
initial segments from the server to have initial buffering of the video. During these downloads,
it learns whether there is any seed that is watching its channel or not. Then the client decides
to connect to a seed according to the available bandwidth, number of hops to the seed certain
criteria by combining the available data, it gives the decision of connecting to a seed. An
additional feature of ALIVE is enabling the client to download the video from the seed at
different rates by making use of Scalable Video Coding [[13]].

When a neighbour contains a video segment with resolution r,,, it automatically contains, ry,
ra, ... ry—1 Where rq is the lowest quality. Therefore, the client can choose the most appropriate
rate by downloading the necessary layers. Although the maximum video bitrate seems to be
limited when it is downloaded from the neighbour, it will be seen in Section {.2.1] that a
client never connects to a neighbour whose condition is worse than the client itself. Those
conditions will also be explained in the next section.

Two important components of ALIVE operation are the selection of the seed and the rate
adaptation for downloading.

34



4.2.1 Seed Selection for ALIVE

A client selects a seed whenever it connects to ALIVE and whenever it changes the channel.
Now, the elements of seed selection for ALIVE will be defined.

Network Address Translators (NATS)

First of all, a client can download the content from another client if the other client is not
behind NAT because it will not be reachable otherwise. Although some NAT traversal meth-
ods exist in the literature as explained in [44], they are complex and the advantage of HTTP
Adaptive Streaming due to NAT traversal will be lost with the usage of them. In order to make
ALIVE simpler, a client can become a seed if it is not behind NAT.

Available Bandwidth

In ALIVE, a client measures the available bandwidth in application layer between itself and
the server. This measure helps the client for seed selection. Therefore, bandwidth mea-
surement will have a critical role. In the literature, many bandwidth measurement tools are
proposed. Some of them are Pathload [45], Pathchirp [46], Assolo [47]], Spruce [48], IGI
[49] and Abing [50]. These tools measure or estimate the available bandwidth by introducing
some additional traffic to the network and observing the results of that packets. In [S1]], [52]
and [53]], performance of existing bandwidth measurement tools are compared with respect to
their estimation time, additional traffic and accuracy. It is seen that all of the tools introduce a
significant traffic to the network which is an undesirable case. More importantly, in [52] the
time to estimate the available bandwidth for these methods is between 5 and 30 seconds which
is extremely high for ALIVE. In the evaluations, it is seen that more accurate estimations are
done when measurement times and additional traffics are higher. For example, Abing mea-
sures the bandwidth in a very small time with great inaccuracy. Beyond all the analysis, in
[54], the relation between the available bandwidth and TCP throughput is analyzed and it is
seen that in most cases they are not very relevant to each other. With all the information about
bandwidth measurement tools, we concluded that instead of all the complex bandwidth mea-
surement or estimation tools, we will simply use the download information of HAS clients
which contains the download time of a segment and the bitrate of the downloaded video seg-
ment. That result gives us the available bandwidth at application layer, not at the network
layer which is the case for the above tools and may give misleading information about TCP
throughput. Moreover, by taking the average of last three downloads, a smoother bandwidth
estimation is achieved.

Hop Count

The topology of the network plays a critical role in determining the connection between clients
and seeds. For example, consider the simple network given in Fig. @4.1]

Assume that Client 1 is a seed and downloading from the server. When Client 2 connects to
ALIVE, it may select Client 1 as its seed or download the segments from the server. The better

35



CLIENT 1

SERVER

CLIENT 2

Figure 4.1: The topology that denotes the importance of hop count

choice here is to connect to the server because it is closer. Otherwise, if Client 1 connects to
Client 2 it will download the videos in a worse quality and it will increase the network traffic.
Therefore, the hop count between the nodes will be a second parameter for this decision after
available bandwidth in the application layer.

Reachability

When a client selects another client as its seed, it must check whether the seed is reachable
or not. After learning the seeds from the server, the clients will send UDP messages to those
seeds to both learn their bandwidth between the seed to the server, hop information from the
seed to the server and test their reachability. The client also sends ping messages to the seeds
to again test the reachability. With ping operation, the client can also find the number of hops
to the seed.

Seed selection functions

After obtaining the available bandwidth from the seeds to server and number of hops between
the seeds and the server, clients made some computations in order to find the best seed. Let i
be the client and j (0 < j <= J where J is the number of seeds) be the seeds. F(j) is called
the choice function which is used in determining whether to connect to a seed or download
the videos from the server.

F(j) = bj(t) — a * hop j(server) “4.1)

In equation @ bj(?) is the available bandwidth from seed j to the server at time ¢ and
hop j(server) is the number of hops between seed j and the server. F(j) is defined as the
difference between the available bandwidth and the weighted number of hops between seed
j and server. A client calculates F(j); j = 1,..J where J is the number of seeds. It also
calculates F'(i) which is the result of choice function of the client itself.

F(@) = bi(t) — a = hop;(server) “4.2)

36



Bandwidth information will be used in this formula by Mb/s. a will be the coefficient of the
hops and will be 0.1 . To make it clear, consider the following example. If the measured
bandwidth between seed j and the server is 2 Mb/s and number of hops between seed j and
the server is 6, then F(j) will be 1.4 .

If the client decides that it should connect to a seed, it calculates L(j); j = 1,..J where L(j) is
a weighted version of F(j) which introduces the number of hops between the client and each
seed.

-
()= — LW

= 4.3
hop j(client) 4.3)

In equation @, hop j(client) denotes number of hops between the client and seed j. These
functions will be used in determining the target for downloading the video contents.

Catching the real TV flow

In live streaming, it is very important to keep the delay between the TV events and the time
client watch that event on its screen minimum. In [43], this delay is investigated. First com-
ponent of the delay is the segment creation time in the server. Assume that the segments are
t; seconds long. A server can prepare the segment of time 0-z, only after #,’th second because
it needs the whole #; second video to encode it. A simple time diagram of content preparation
is shown in Fig. f.2] The server can start encoding the T1 segment after T1 finishes. It can
encode it with a small encoding delay which we will neglect in our calculations.

input stream

output stream T1 T2 T3 T4

s

Encoding delay

Figure 4.2: Content preparation in the server

Other delays are asynchronous fetch, download delay and buffering delay. Asynchronous
fetch denotes the time that when a client sends a request to the server, it will get the latest
available segment. For example if segment time is 1 seconds, when a client request a segment
at 3.99th second, it will get the segment which becomes ready at t=3. Therefore, a maximum
delay of ¢; is also introduced here.

In [43], it is indicated that a client should have one or two full segments ready in its buffer
to cope with sudden network condition changes. Therefore additional delays are introduced
with this buffering scheme.

In ALIVE, we propose a new buffering scheme which aims to minimize live TV delay. To

37



this end, we choose the length of video segments as 1 second which is shorter than FEAST
as written in [43]]. When a client first connects to ALIVE, it should download four segments
before playout to make ALIVE robust against network conditions. In each download, client
requests the latest available segment. Figures 4.3 .4 and 4.5]are showing three cases of first
four downloads.

Server stream T6 17 T8 19 T10 T11

AVAYA

Request1 Request2 Request3 Request4
getT7 get T8 getT9 getT6

Client requests

Figure 4.3: Client downloads the first four segments: Casel

In Fig[4.3] in the first request, client downloads T7 because it is the latest available segment. In
the second download, T8 becomes ready, therefore T8 is downloaded. In the third download,
T9 becomes available and it downloads T9. In the fourth download, T9 is still the latest
available segment, however the client downloaded it before as well as T8 and T7. Therefore,
it downloads T6 in the fourth request. The client can start playing from its buffer just after the

download of T6 finishes. It will start by playing T6.

Serverstream | T6 | T7 | T8 | T9 | T10 | T11 |

Client requests /\/\/\/\‘

Request1 Request2 Request3 Request4
getT8 getT7 getT9 getT6

Figure 4.4: Client downloads the first four segments: Case2

In Fig client first downloads T8 because it is the latest available segment. In the second
request, T8 is still the latest available segment, however the client downloads T7 because it
already has T8. When it sends the third request, T9 becomes available and it is downloaded.
In fourth download, T9 is still the latest available segment, however the client downloads T6
because it downloads T9, T8 and T7 before. After the last download, client can start playing
by T6. This is almost the same with case 1 however, the order of the first 4 downloaded
segments is different.

In the third case, which is shown in Fig[4.5] client first downloads T8. In the second download
T8 is still the latest available segment and the client downloads T7. When the client sends the
request for third segment, T9 is the latest available segment and client downloads it. In the

38



severstream | T6 | T7 | T8 | T9 | T10 | T11 |

NNV

Request1 Request2 Request3 Request4
get T8 getT7 getT9 getT10

Client requests

Figure 4.5: Client downloads the first four segments: Case3

fourth request, T10 becomes ready and it is downloaded In this case the delay between the
events and their playouts becomes the lowest. Note that for all cases, after fourth download,
client downloads the segments in sequence.

Algorithm [5]is showing the decision algorithm when a client connects to ALIVE. The algo-
rithm explains the way for client i to find the most appropriate target for downloading the
segments. A client first connects to the server. In first four downloads from the server, the
client fills its buffer and during these downloads it learns the seeds of the channel. If no seeds
exist, then it will continue to download from the server. Moreover, if it is not behind NAT,
then that client declares itself as a seed for that channel. If it is behind NAT, then it downloads
from the server without being the seed. It will check if there are other seeds, periodically in
this case.

If there are more than one seeds for that channel, the client chooses the most appropriate seed
for itself. First of all, it checks if it will be in a better condition, which will be explained in
detail in next paragraphs, than the seeds. After learning about the seeds of the channels, it
will send UDP messages to all seeds and learns the bandwidth information and hop count to
the server of the seeds. The reasons of UDP usage are avoiding unnecessary TCP connections
which will waste bandwidth and time, and observing the reachability of the seeds. By band-
width information and hop count to the server of the seeds, the client calculates F(j) where j
is jth seed for each seed and F(i) of itself. F(j) and F(i) are the formulas given in[4.T|and [4.2]
respectively.

After calculation of F(j) for each seed and the client itself, the client chooses the highest of
all. If the client’s F (i) is the highest and the client is not behind NAT, it will become a seed.
Otherwise, it will update its F'({) by multiplying it with 0.8, which is a heuristic formula, and
compare it the F(j) of the seeds. If the client’s F'(i) is still greater than seeds’ F'(j), the client
will continue to download from the server and periodically checks the status of the seeds.
Note that F(j) and F(i) formulas are used only for determining whether the client should
connect to a seed or download from the server.

After that update, if F(i) of the client is not greatest, then it will calculate L(j) for each
seed where L(j) is defined in equation L(j) is actually the weighted version of F(j) by
considering the number of hops between the seed and the client. It avoids a client to connect

39



Algorithm S Seed Selection in ALIVE
1: Client downloads the first four segments from the server

2: Client calculates its available bandwidth and learn the seeds
3: if No seeds exist for that channel then

4: if Client is not behind NAT then

5 Client becomes a seed

6 else if Client is behind NAT then

7: Client downloads from the server

8 It periodically checks the situation of seeds
9 end if

10: else if There is(are) seed(s) for that channel then
11: Let the number of seeds be J

12: F(j) is calculated for each seed j=1,2,...J and F(i) for client itself
13: Highest of F(j) and F (i) is selected
14: if F'(7) is highest then

15: if Client is not behind NAT then

16: Client becomes a seed

17: else if Client is behind NAT then

18: Update F(i) as 0.8 * F(i)

19: if F(i) is highest then

20: Client downloads from the server
21: It periodically checks the situation of seeds
22: else

23: Calculate L(j) for each seed

24: Choose j as seed with highest L()
25: end if

26: end if

27: else

28: Calculate L(j) for each seed

29: Choose j as seed with highest L()

30: end if

31: end if

322 ALL THE VIDEO DATA TRANSFERS ARE DONE VIA HTTP ADAPTIVE
STREAMING

40



to a seed that is far away from itself. Therefore, unnecessary delays and network traffic is also
avoided. The client will connect to the seed with the highest L(j).

To sum up the Algorithm[5] the client tries to connect to a seed with high bandwidth to server,
low number of hops to the server and the client itself. If no seed exists, the client will become
a seed unless it is behind NAT. If it is behind NAT, it will download the contents from the
server. When there are one or more seeds, the client chooses the most appropriate seed. If
the situation of the client is better than other seeds, the client will be a seed if it is not behind
NAT. If the situation of the client is much better than the seeds and the client is behind NAT,
it will download the contents from the server. If there is a seed in a better situation, then the
client will download the contents from that client.

The clients download all the contents via HTTP and they adapt their video bitrates before
sending GET requests each time. The rate adaptation algorithm of ALIVE will be shown in

Section[4.2.7]

In lines 8 and 21 of Algorithm |3} it is written that the client periodically checks the situation
of the seeds. This period is defined to be 10 segment downloads for ALIVE. In other words,
after downloading 10 video segments from the server, the client again learns the seeds, learns
their bandwidth and hop information, calculate F'(j) and evaluate the situation again.

In ALIVE system, when a client connects to a seed, it will download the segments from the
seed unless some unwanted conditions occur. Now, we will define those conditions.

Seed exits or changes channel

Clients that are connected to that seed is informed by the seed about that situation as soon as
the seed changes the channel or exits from ALIVE. In this situation, clients perform the steps
in Algorithm [3] then either finds a new seed, becomes a seed or continues downloading from
the server.

Insufficient download bandwidth of the seed

This condition occurs when the download bandwidth of the client becomes insufficient. There
are two cases for this condition. The first case happens when buffer of the seed contains less
than 1.5 seconds of video data. Second case happens when the seed cannot download the
video segments in high quality. In other words, if the seed cannot exceed a certain video
quality for a certain time, then it means the download bandwidth of the seed is not enough. In
ALIVE, we defined this condition as not being able to download the video segments with a
quality of higher than 1.2 Mby/s for 10 successive segment downloads. In such a condition, the
seed stop being a seed and apply the algorithm in[5] In this case, it cannot be a seed again even
if it satisfies the conditions. It can connect to the second most available seed or download the
segments from the server.

If a seed, to which a client is connected, becomes insufficient, that client disconnects from the
seed and find a better seed by the same algorithm.

41



Insufficient upload bandwidth of the seed

This conditions occurs when the download bandwidth of a seed is enough but, it cannot upload
the videos to other clients sufficiently. We defined this condition for two cases. If the buffer
of a client which is connected to a seed contains less than 1 second of data, then we can
say that upload bandwidth of the seed is not enough. Second condition occurs if the client’s
video bitrate is much less than the video bitrate of the seed’s video bitrate for a certain time.
In ALIVE, we defined this condition as not being able to download the video segments in a
quality higher than 60 percent of quality of the seed for 10 successive segment downloads.

When it is realized that the upload bandwidth of the seed is not enough, the client disconnects
from that seed and applies Algorithm[5] After the algorithm, it can be a seed or download the
segments from the server without being a seed or connect to a seed which is not the previous
one.

Empty Buffer

When the buffer of a client or a seed becomes empty, the video freezes which is an annoying
experience for clients. In this conditions, if a client is connected to a seed, it disconnects from
that seed and applies the same algorithm. Note that it cannot connect to its previous seed here.
If a seed’s buffer becomes empty, then it quits being a seed and applies the same algorithm.
It is notable that when the buffer of a client or a seed starts decreasing, it is considered as
insufficient upload bandwidth or download bandwidth of the seed respectively. Therefore, it
decreases the chance of empty buffer by taking precautions beforehand.

When the buffer of the client depletes, there are two choices. The client can either skip the
segments that it cannot watch due to video freeze and download the next available video
segment, or it can download the last segment that it cannot watch and increase the live tv
delay. In ALIVE, we choose the former case and the clients will download the next segment
by skipping the previous ones.

4.2.2 Rate Adaptation for ALIVE Algorithm

In this section, we will define the rate adaptation algorithm for ALIVE. Rate adaptation is
one of the most important elements of HTTP Adaptive Streaming. Unlike FEAST or MSS,
live streaming requires less buffering in order to minimize the delay between the events and
their playout on the screen. Rate adaptation becomes much more critical when buffer contains
very small amount of data because buffer may be depleted in a badly defined rate adaptation
algorithm.

In ALIVE, we will use a similar version of the algorithm in Liu at al [25]. However, we will
consider the buffer size in the adaptation scheme which is not used in Liu at al.

Algorithm [6] defines the rate adaptation algorithm for ALIVE. Note that, when the client first

42



Algorithm 6 Rate Adaptation Algorithm for ALIVE
1: Initially: r;(¢) is selected as the lowest bitrate
2: For Each Request:
3: if bufi(t) < 1 then

4: riH=1

5: else

6 1’ =MSD/SFT

7: u= (mul® + mu™" + mu=?)/3
8 if 4 > 1.2 then

9: ri=pr;

10 else if 4 < 0.8 then

11: ri =max(ry) : 1o < | * pri
12: else

13: ri = pr;

14: end if

15: end if

connects to ALIVE or changes the channel, it first connects to the server and downloads the
first four segments. This four segments are downloaded with the lowest video bitrate. Rate
adaptation is done after this period.

Aim of the rate adaptation algorithm is to keep the video bitrate maximum while avoiding the
depletion of the buffer. Therefore, we performed aggressive rate switching down. Whenever
the buffer contains less than one seconds of video data, the rate is set to the lowest for precau-
tion. When the buffer size is higher, the client computes u which is the ratio between media
segment duration to segment fetch time. A higher value of y (higher than 1.2) denotes a good
network situation and it lets the client increase the video bitrate one step. If y is low (less than
0.8), than the client will choose the maximum bitrate r. which satisfies

re < W% pri 4.4)

Note that pr; is the previous segment’s bitrate whereas r; is the next segment’s video bitrate.
Different than Liu at al., we calculate u as the average of last three ¢ values to make a smoother
network prediction.

In ALIVE, both the clients and the seeds perform the same rate adaptation algorithm. How-
ever, the time that they send the GET request will be different for them. The seed or a client
who downloads from the server sends a request whenever the requested segments becomes
ready. A client who downloads from a seed sends the request 1 second after the content be-
comes ready because the seed will download the content at that time. If the download of that
content by the seed does not finish at that time, the seed sends the data to that client whenever
it finishes downloading.

43



4.3 Performance Evaluation of ALIVE

In this Section, we compare the performances of ALIVE with Liu at al. which is proposed
in [25] and is a pure client server architecture. The reason that we do not compare the per-
formance of ALIVE with MSS is that live TV algorithm of MSS is not available. Actually,
many of the HAS algorithms adapt the video rates according to high buffering values which
is not appropriate for live TV case. We performed several experiments on NS2 to measure
the server load, the average bitrates and supported number of clients according to number of
clients, percentage of clients behind NAT, number of channels.

In the experiments, we used the backbone given in Fig[4.6] In the figure, server is connected
to one of the core routers. The core routers form a backbone network. Then, the distribu-
tion routers are connected to these backbone routers. Finally, clients are connected to those
distribution routers. An example complete network with 20 clients is shown in Fig

SERVER

Figure 4.6: The backbone network that is used in ALIVE simulations

Figure 4.7: An example network with 20 clients that is used in ALIVE simulations

44



In the network, there are 4 types of links. The server link is the link between the server and
the corresponding core router. The core links are the links between the core routers. The
distribution links are between the core routers and distribution routers. Finally the local links
are the links between the distribution routers and clients.

It is important to note that some additional nodes create background traffic. That nodes are
also connected to distribution routers. There are both TCP and UDP background traffic gen-
erated by those nodes.

Some clients are behind NAT whereas some others are not. The percentage of clients be-
hind NAT is selected to be 30 [S5]. However, we will change that rate in some part of the
experiment to see the effect of that rate on the performance of ALIVE.

Scalable Video Coding extension of H.264/AVC will be the coding standard of ALIVE. We
use the same bitrates that are used in FEAST. There are 8 different encoding rates which are
0.3,0.6,0.9,1.2,1.5, 1.8, 2.1 and 2.4 Mb/s. In [13] and [56], it is stated that there is a 10
percent encoding overhead in each layer of scalable video coding. Therefore, the applied
encoding rates will increase and they are given in Table

Table 4.1: Applied Encoding Rates

Ql | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8

AVC(Mb/s) |03 | 06 | 09 | 1.2 | 15 | 1.8 | 2.1 | 24

SVC (Mb/s) | 0.3 | 0.63 | 0.96 | 1.29 | 1.62 | 1.95 | 2.28 | 2.61

In our experiments, clients connect to ALIVE and each client selects a channel to watch. They
switch the channel after some time. In [57]], [S8]] and [S9], it is shown that channel popularity
can be modelled as Zipf distribution. Probability Mass Function of Zipf Distribution is;

1
ks
N 1
i=1 7

flk,s,N) = 4.5)

where N is the number of channels, £ is the rank and s is the value of the exponent charac-
terizing the distribution [60]. The rank of the most watched channel is 1 whereas the rank of
the least watched channel is N. The value of s is critical in determining the channel selection
probabilities. It changes between 0 and 1. When it is equal to 0, all channels are equally prob-
able to be watched by a client. As it is increased, the probability of watching more popular
channels increases whereas the probability of watching less popular channels decreases. Fig
is showing the probability mass distribution of Zipf distribution according to different s
values for 10 channels. Note that graph is plotted in log scale.

45



—--s=0
s=0.2
s=0.5
s=0.7

——5=1

Probabilities
o
S

0,10
0,05 \
Channel Number

Figure 4.8: Effect of s parameter on the probability mass function of Zipf distribution

From the figure, it is clearly seen that the difference of probabilities between watching the
most and least popular channels increases as s approaches to 1 whereas it is exactly 0 when s
is zero. We will use s as 0.5 in our experiments.

In [57] and [61], the clients’ TV watching behavior over Internet is modeled. According to
these articles, the duration of watching each channel follows an exponential distribution. In
other words, the time that is passed between two channel changes of the client is an exponen-
tial random variable. In our simulations, we used exponential distribution with a mean of 100
seconds as channel switch time. Our simulations last for 500 seconds, therefore each client
changes the channel with an average of 5 times during a simulation.

We first present a very simple experiment in order to show the preliminary results of ALIVE.
In this experiment, 30 clients are randomly connected to the distribution routers. UDP and
TCP background traffic is applied. The bandwidth of the link between server and the core
router is set to 30 Mb/s. The links in the core network is also set to 30 Mb/s. The links
between the core routers and distribution routers have a bandwidth of 7.5 Mb/s and the local
links have a bandwidth of 3 Mb/s. All links have the propagation delay of 1 ms. All the clients
enter ALIVE in a random time between 0 and 20th seconds and quit ALIVE in a random time
between 450 and 500th seconds. There are 10 TV channels. Fig[4.9]is showing the average
of video bitrates of the clients with respect to time for a sample simulation. Only steady state
period is shown in the graph.

It is clearly seen from Fig [4.9| that average video bitrate is higher for ALIVE. This is mostly
because the number of clients that downloads the contents from the server is lowered. Fig
[.10)is showing the number of clients that are downloading the contents from the server.

From the figure, it is clearly seen that, fewer number of clients download the content from the
server. This lowers the server’s load and increases the video quality that is downloaded from

46



E 1,2 —ALIVE

1 —Liuatal.
|

100 150 200 250 300
Time (sec)

Figure 4.9: A sample Average video bitrates vs time graph for ALIVE and Liu at al.

w
o

N
oo

N
[e)]

—ALIVE

N
B

—Liu at al.

N
N

No. of clients connected to server
N
o

=
[oe]

100 150 200 250 300
Time (sec)

Figure 4.10: Comparison of number of clients that download the content from the server

the server.

After making it clear that ALIVE increases the video quality, we investigate the effects of
various parameters on ALIVE performance.

In the second experiment, the number of clients is set to 50. The bandwidth of the server
link and core links are set to 50 Mb/s. Distribution and local links have the same bandwidth
with the previous experiment. We are first interested in the effect of percentage of clients
behind NAT. If all of the clients are behind NAT, then it is expected that ALIVE and Liu at al
gives similar performances because all the clients will download from the server in ALIVE.
However, as the number of clients behind NAT decreases, the number of seeds increases and
therefore number of clients that downloads from the server decreases. Fig [{.11]is showing

the result of this experiment. As it is expected, average video quality decreases with a high

47



number of clients behind NAT. Actually, it performs almost the same with Liu at al. when
all the clients are behind NAT. Note that number of clients behind NAT does not affect the
performance of Liu at al. because clients always download the contents from the server.

=
o
o

=
w
o

1,20

—ALIVE
1,10

—Liu at al.
1,00

Average Video Bitrates (Mb/s)
2
o

0,80
0,00 20,00 40,00 60,00 80,00 100,00
Percentage of users behind NAT

Figure 4.11: Average video bitrates of the clients according to different percentage of clients
behind NAT

Now we investigate the effect of number of clients on the performance of ALIVE. Fig[d.12]is
showing the average video bitrates of the clients according to different number of clients.

n
o
s}

/

=
o0
S

=
D
o

1,40 —ALIVE

1,20 —Liu at al.

1,00

Average Video Bitrates (Mb

0,60

0 20 40 60 80
Number of clients

Figure 4.12: Average video bitrates of the clients according to different number of clients

It is seen from Fig[.12]that average video bitrate decreases with the higher number of clients.
It is expected because as the number of clients increase, the competition for the bandwidth
increases. However, the decrease for Liu at al is greater than ALIVE. When the number of
clients is low such as 5, they perform almost the same because number of seeds is low and
the probability of more than one clients’ watching the same channel is also low. However,
as the number of clients increase, the number of seeds is most likely to increase. Therefore,

48



the decrease in the average video bitrate for ALIVE is less than Liu at al. We also performed
the same experiment with 100 clients. In that experiment it is seen that 100 client cannot be
supported by Liu at al. because the server bandwidth will not be enough even for the lowest
video bitrate for 100 clients. Buffer of the clients becomes free so frequent that it becomes
impossible for the clients to watch the videos. On the other hand, ALIVE can support 100
clients with average video bitrate of 0.39 Mb/s and much less buffer depletion ratio than Liu
at al. This experiment proves that more clients can be supported by ALIVE. We performed
another experiment to see how the number of channels effect the performance of ALIVE. We
tested 5, 10, 15, 20 and 50 channels and the results are given in Table In this step, channel
popularities are again calculated with Zipf distribution and channel change times are the same
with the previous experiments.

Table 4.2: Avg. Video bitrate according to number of channels

No. of channels 5 10 15 20 50

ALIVE 125|118 | 1.14 | 1.09 | 0.95

Liu at al. 0.94 |1 094 | 093 | 0.93 | 0.93

When the number of channels is low, the probability of more than one clients’ watching the
same channel increases. Therefore, more seeds exist in such conditions and more clients con-
nect to those seeds. This causes a decrease in server’s load which increases the downloaded
video quality. However, as the number of channels increase, the number of clients that watch
the same channel decreases. Therefore, more clients download the contents from the server
and performance of ALIVE becomes closer to Liu at al. Note that performance of Liu at al.
again does not change with the number of channels.

We also computed the channel change delays which is the time between the client changes
the time and beginning of playout. Note that this number is still not enough to meet the 0.43
seconds which is defined to be the acceptable delay in [62]. However, ALIVE performs better
than Liu at al with respect to channel change delay because of server link’s lower utilization.
Average delay is 1.24 seconds for Liu at al. whereas this number is 1.04 seconds for ALIVE
when the number of clients is 50 and number of channels is 10. A client does not start playout
until 4 segments are downloaded. 4 segments with lowest quality of 0.3 Mb/s means 1.2
Mb of data. Due to the fact that less than 50 clients use the server’s link directly, ALIVE
clients can download them faster than Liu at al. Note that the main reason for this high
delay is the necessity to download the 4 segments. If the client is allowed to start playout
after downloading the first (or second, third) segment, this delay reduces significantly and it
most probably become less than 0.43 seconds. However, the system becomes prone to video
freezes due to network fluctuations and the buffer most probably deplete with such a solution.
Therefore, there is a tradeoff between robustness and channel change delay where robustness

49



is necessary during the whole TV experience whereas channel change delay is experienced
only after changing the channel.

50



CHAPTER 5

CONCLUSION

In this thesis, we examined HTTP Adaptive Streaming (HAS) and proposed new solutions
for weaknesses of HAS. First, the reasons for these weaknesses were investigated. Then
we proposed FEAST and ALIVE architectures for Video on Demand and Live TV services
respectively.

FEAST is proposed for avoiding unfair, instable and inefficient HAS service by getting certain
feedback information from the server. In FEAST, the server keeps the minimal information
about the clients which are number of clients, average video bitrates and average bandwidth
measurements. Here we note that, the state variables are selected such that they are not client
specific and can be easily computed to achieve a scalable system. We evaluated the perfor-
mance of FEAST by simulations via NS2. We analyzed the performance of FEAST for dif-
ferent number of clients, different amount of background traffic and different number of video
qualities. It is seen that clients can decide their video bitrates in much more fair and efficient
manner only by considering those values and their buffer status when it is compared to MSS
and Liu at al. Moreover, switching rate is much less than other two HAS implementations so
that client QoE is not degraded with frequent quality changes. Furthermore FEAST utilizes
the available link bandwidth upto 95 percent. In our future work, we will apply FEAST to
multi-server environments where the content is encoded in more than one servers. Another
issue to be considered is local link failures which will limit the rate adaptation capabilities
of the clients. If the local link of a client cannot supply the necessary bandwidth, the client
cannot increase its rate even if other clients decrease their rates. Clients should not drop their
video bitrates due to a local link failure of another client. We will also incorporate the support
for videos that are encoded at different rate levels with a weighted approach to maintain the
fairness.

We proposed ALIVE for live TV services. ALIVE is based on caching the video data in clients
which are called seeds and give the other clients the opportunity to download the videos from
those seeds instead of the server. Scalable Video Coding is used for rate adaptation of the
clients who download the contents from other clients but not from the server. We simulated
ALIVE and it is seen that load of the server decreases with this solution. Therefore, the
system can serve to more clients than the normal case in which clients always download
from the server. Moreover, clients can get a better QoE because of downloading from a

51



closer neighbour instead of a far server. We analyzed the performance of ALIVE for different
number of clients, number of channels and number of clients behind NAT. In our future work,
we will extend ALIVE to the case where clients behind NAT can also be seeds by NAT
traversal solutions. Moreover, we will work on to combining FEAST and ALIVE to give a
fair and stable service with higher video qualities for live TV streaming.

52



[1]

(2]
(3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

C. Systems, “Cisco visual networking index: Forecast and methodology, 2012-2017,”
May 2013.

“Youtube:,” http://www.youtube.com, [last accessed on 20/08/2013].

“Hulu:,” http://www.hulu.com, [last accessed on 18/08/2013].

“Move Networks:,” http://www.movenetworks.com, [last accessed on 18/08/2013].
“Microsoft Smooth Streaming:,” http://go.microsoft.com/?linkid=9682896, [last ac-
cessed on 18/08/2013].

“Apple HTTP live Streaming:,” http://tools.ietf.org/id/

draft-pantos-http-live-streaming-04.txt, [last accessed on 18/08/2013].

J. Postel, “Internet Protocol,” RFC 791 (INTERNET STANDARD), Internet Engineer-
ing Task Force, Sep. 1981, updated by RFCs 1349, 2474, 6864.

A.-V. T. W. Group, H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” RFC 1889 (Proposed Standard), Inter-
net Engineering Task Force, Jan. 1996, obsoleted by RFC 3550.

“ Technical Specification Group Services and System Aspects (2006), IP Multimedia
Subsystem (IMS), Stage 2, TS 23.228, 3rd Generation Partnership Project.”

S. Deering, “Host extensions for IP multicasting,” RFC 1112 (INTERNET STAN-
DARD), Internet Engineering Task Force, Aug. 1989, updated by RFC 2236.

A. C.Begen, T. Akgul, and M. Baugher, “Watching video over the web part 1: Streaming
protocols,” Internet Computing, IEEE, vol. 15, no. 2, pp. 54—63, March-April 2011.

“The Network Simulator NS-2)” http://www.isi.edu/nsnam/ns/, [last accessed on
20/08/2013].

H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding exten-
sion of H.264/AVC standard,” Circuits and Systems for Video Technology, IEEE Trans-
actions on, vol. 17, no. 9, pp. 1103-1120, 2007.

C. Burmeister, R. Hakenberg, A. Miyazaki, J. Ott, N. Sato, and S. Fukunaga, “Extended
RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback: Results
of the Timing Rule Simulations,” RFC 4586 (Informational), Internet Engineering Task
Force, Jul. 2006.

W. Fenner, “Internet Group Management Protocol, Version 2,” RFC 2236 (Proposed
Standard), Internet Engineering Task Force, Nov. 1997, updated by RFC 3376.

53


http://www.youtube.com
http://www.hulu.com
http://www.movenetworks.com
http://go.microsoft.com/?linkid=9682896
http://tools.ietf.org/id/draft-pantos-http-live-streaming-04.txt
http://tools.ietf.org/id/draft-pantos-http-live-streaming-04.txt
http://www.isi.edu/nsnam/ns/

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: Session Initiation
Protocol,” RFC 2543 (Proposed Standard), Internet Engineering Task Force, Mar. 1999,
obsoleted by RFCs 3261, 3262, 3263, 3264, 3265.

I. Baronak and L. Kockovic, “Alternatives of providing IPTV using IMS,” International
Journal of Computers and Technology, vol. 3, no. 2, 2012.

“Video Bitrate Calculator,” http://web.forret.com/tools/videofps.asp, [last accessed on
12/08/2013].

T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC
video coding standard,” Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 13, no. 7, pp. 560-576, 2003.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, “Hypertext Transfer Protocol — HTTP/1.1,” RFC 2616 (Draft Standard), Internet
Engineering Task Force, Jun. 1999, updated by RFCs 2817, 5785, 6266, 6585.

S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen, “What happens when
HTTP adaptive streaming players compete for bandwidth?” in Proc. ACM Int. Wksp.
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV), June
2012.

B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Multimedia streaming via TCP: An
analytic performance study,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 4,
no. 2, pp. 16:1-16:22, May 2008.

I. Sodagar, “The MPEG-DASH standard for multimedia streaming over the internet,”
MultiMedia, IEEE, vol. 18, no. 4, pp. 62-67, 2011.

“Overview of MPEG-DASH Standard:,” http://dashif.org/mpeg-dash/, [last accessed on
25/08/2013].

C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for adaptive HTTP streaming,” in
Proceedings of the second annual ACM conference on Multimedia systems, ser. MMSys
11, 2011, pp. 169-174.

K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, “Adaptation algorithm for adaptive
streaming over HTTP,” in Packet Video Workshop (PV), 2012 19th International, May,
pp. 173-178.

R. Houdaille and S. Gouache, “Shaping HTTP adaptive streams for a better user ex-
perience,” in Proceedings of the 3rd Multimedia Systems Conference, ser. MMSys *12,
2012, pp. 1-9.

J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in HTTP-
based adaptive video streaming with FESTIVE,” in Proceedings of the 8th international
conference on Emerging networking experiments and technologies, ser. CONEXT 12,
2012, pp. 97-108.

L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback control for adaptive live video
streaming,” in Proceedings of the second annual ACM conference on Multimedia sys-
tems, ser. MMSys 11, 2011, pp. 145-156.

54


http://web.forret.com/tools/videofps.asp
http://dashif.org/mpeg-dash/

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

N. Bouten, S. Latre, W. V. de Meerssche, K. D. Schepper, B. D. Vleeschauwer, W. V.
Leekwijck, and F. D. Turck, “An autonomic delivery framework for HTTP adaptive
streaming in multicast-enabled multimedia access networks.” in NOMS. IEEE, 2012,
pp. 1248-1253.

C. Liu, L. Bouazizi, and M. Gabbouj, ‘“Parallel adaptive HTTP media streaming,” in
Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th Interna-
tional Conference on, 2011, pp. 1-6.

E. Altman, D. Barman, B. Tuffin, and M. Vojnovic, “Parallel TCP sockets: Simple
model, throughput and validation,” in INFOCOM 2006. 25th IEEE International Con-
ference on Computer Communications. Proceedings, April, pp. 1-12.

Y. Sanchez, T. Schierl, C. Hellge, T. Wiegand, D. Hong, D. D. Vleeschauwer, W. V.
Leekwijck, and Y. L. Louedec, “Efficient HTTP-based streaming using scalable video
coding,” Signal Processing: Image Communication, vol. 27, no. 4, pp. 329 — 342, 2012.

A. Kantarci, N. Ozbek, and T. Tunali, “Rate adaptive video streaming under lossy net-
work conditions,” Signal Processing: Image Communication, vol. 19, no. 6, pp. 479 —
497, 2004.

B. Gorkemli and A. M. Tekalp, “Adaptation strategies for MGS scalable video stream-
ing,” Signal Processing: Image Communication, vol. 27, no. 6, pp. 595 — 611, 2012.

P. Papadimitriou and V. Tsaoussidis, “A quality adaptation scheme for internet video
streams,” in Wired/Wireless Internet Communications, ser. Lecture Notes in Computer
Science, F. Boavida, E. Monteiro, S. Mascolo, and Y. Koucheryavy, Eds.  Springer
Berlin Heidelberg, 2007, vol. 4517, pp. 165-176.

R. Rejaie, M. Handley, and D. Estrin, “Layered quality adaptation for internet video
streaming,” Selected Areas in Communications, IEEE Journal on, vol. 18, no. 12, pp.
2530-2543, 2000.

S. S. Savas, C. G. Gurler, A. M. Tekalp, E. Ekmekcioglu, S. Worrall, and A. Kondoz,
“Adaptive streaming of multi-view video over P2P networks,” Signal Processing: Image
Communication, vol. 27, no. 5, pp. 522 — 531, 2012.

S. Benno, J. O. Esteban, and I. Rimac, “Adaptive streaming: The network HAS to help,”
Bell Lab. Tech. J., vol. 16, no. 2, pp. 101-114, Sep. 2011.

N. Cranley, P. Perry, and L. Murphy, “User perception of adapting video quality,” Int. J.
Hum.-Comput. Stud., vol. 64, no. 8, pp. 637-647, Aug. 2006.

R. K. Mok, E. W. Chan, X. Luo, and R. K. Chang, “Inferring the QoE of HTTP video
streaming from user-viewing activities,” in Proceedings of the first ACM SIGCOMM
workshop on Measurements up the stack, ser. W-MUST 11, 2011, pp. 31-36.

R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A Quantitative Measure Of Fairness And
Discrimination For Resource Allocation In Shared Computer Systems,” DEC-TR-301,
Digital Equipment Corporation, Tech. Rep., Sep. 1984.

T. Lohmar, T. Einarsson, P. Frojdh, F. Gabin, and M. Kampmann, “Dynamic adaptive
HTTP streaming of live content,” in World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2011 IEEE International Symposium on a, 2011, pp. 1-8.

55



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A. Muller, G. Carle, and A. Klenk, “Behavior and classification of NAT devices and
implications for NAT traversal,” Network, IEEE, vol. 22, no. 5, pp. 14-19, 2008.

M. Jain and C. Dovrolis, “Pathload: A measurement tool for end-to-end available band-
width,” in In Proceedings of Passive and Active Measurements (PAM) Workshop, 2002,
pp. 14-25.

V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk Jiri Navratil, and L. Cottrell, “pathChirp:
Efficient available bandwidth estimation for network paths,” in PAM 2003, 4th Pas-
sive and Active Measurement Workshop, R. Ritke, T. McGregor, and J. Micheel, Eds.,
NLANR/MNA. San Diego, CA, USA: UCSD, Apr. 2002.

E. Goldoni, G. Rossi, and A. Torelli, “Assolo, a new method for available bandwidth es-
timation,” in Internet Monitoring and Protection, 2009. ICIMP ’09. Fourth International
Conference on, 2009, pp. 130-136.

J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of available bandwidth
estimation tools,” in Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, ser. IMC ’03. New York, NY, USA: ACM, 2003, pp. 39-44.

N. Hu, S. Member, P. Steenkiste, and S. Member, “Evaluation and characterization of
available bandwidth probing techniques,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, pp. 879-894, 2003.

J. Navratil and R. L. Cottrell, “ABwE:a practical approach to available bandwidth esti-
mation,” in 4th Passive and Active Measurements Workshop San Diego, CA, USA, 2003.

A. Botta, A. Davy, B. Meskill, and G. Aceto, “Active techniques for available bandwidth
estimation: Comparison and application,” in Data Traffic Monitoring and Analysis, ser.
Lecture Notes in Computer Science, E. Biersack, C. Callegari, and M. Matijasevic, Eds.
Springer Berlin Heidelberg, vol. 7754, pp. 28-43.

C. D. Guerrero and M. A. Labrador, “On the applicability of available bandwidth esti-
mation techniques and tools,” Comput. Commun., vol. 33, no. 1, pp. 11-22, Jan. 2010.

E. Goldoni and M. Schivi, “End-to-end available bandwidth estimation tools, an exper-
imental comparison,” in Proceedings of the Second international conference on Traffic
Monitoring and Analysis, ser. TMA’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
171-182.

M. Jain and C. Dovrolis, “End-to-end available bandwidth: measurement methodology,
dynamics, and relation with TCP throughput,” Networking, IEEE/ACM Transactions on,
vol. 11, no. 4, pp. 537-549, 2003.

L. D’Acunto, J. Pouwelse, and H. Sips, “A measurement of NAT and Firewall charac-
teristics in peer to peer systems,” in Proceedings of 15th ASCI Conference, 2009, pp.
1-5.

R. Huysegems, B. De Vleeschauwer, T. Wu, and W. Van Leekwijck, “SVC-based HTTP
adaptive streaming,” Bell Labs Technical Journal, vol. 16, no. 4, pp. 25-41, 2012.

M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain, “Watching television
over an ip network,” in Proceedings of the 8th ACM SIGCOMM conference on Internet
measurement, ser. IMC "08. New York, NY, USA: ACM, 2008, pp. 71-84.

56



[58]

[59]

[60]
[61]

[62]

T. Qiu, Z. Ge, S. Lee, J. Wang, J. Xu, and Q. Zhao, “Modeling user activities in a
large iptv system,” in Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference, ser. IMC ’09. New York, NY, USA: ACM, 2009, pp. 430-
441.

U. Oh, S. Lim, and H. Bahn, “Channel reordering and prefetching schemes for efficient
iptv channel navigation,” Consumer Electronics, IEEE Transactions on, vol. 56, no. 2,
pp. 483487, 2010.

“Zipf’s law,” http://en.wikipedia.org/wiki/Zipt’s_law, [last accessed on 20/08/2013].

L. Vu, I. Gupta, K. Nahrstedt, and J. Liang, “Understanding overlay characteristics of a
large-scale peer-to-peer iptv system,” ACM Trans. Multimedia Comput. Commun. Appl.,
vol. 6, no. 4, pp. 31:1-31:24, Nov. 2010.

R. Kooij, K. Ahmed, and K. Brunnstrom, ‘“Perceived quality of channel zapping,” in
Fifth IAESTED Intern Conf on Communication Systems and Networks (CSN 2006), Aug
28-30, 2006, Palma de Mallorca, Spain; Proc. Pp, 2006, pp. 155-158.

57


http://en.wikipedia.org/wiki/Zipf's_law

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	BACKGROUND
	Internet Multimedia
	Scalable Video Coding (SVC)
	HTTP Adaptive Streaming
	Microsoft Smooth Streaming
	Rate Adaptation for Adaptive HTTP Streaming: Liu at al.


	FEAST: FEEDBACK BASED ADAPTIVE STREAMING OVER HTTP
	Motivation for FEAST
	Performance Metrics
	Operation of FEAST
	Client-Server Information Exchange and Server Side Computations
	Rate Adaptation on the Client Side

	Performance Evaluation of FEAST

	ALIVE: ADAPTIVE LIVE STREAMING OVER HTTP
	Motivation for ALIVE
	Operation of ALIVE
	Seed Selection for ALIVE 
	Rate Adaptation for ALIVE Algorithm

	Performance Evaluation of ALIVE

	CONCLUSION
	REFERENCES

