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ABSTRACT 
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August 2013, 92 Pages 

 

Resource leveling problem (RLP) focuses on optimizing resource utilization curves obtained 

by using Critical Path Method (CPM). This thesis presents a new and efficient branch and 

bound algorithm for the RLP. The proposed algorithm has been compared with mixed-

integer linear modeling methods and previous branch and bound algorithms. An adaptive 

branch and bound heuristic has been developed for a good upper bound calculation. A new 

lower bound calculation strategy has been introduced and dual calculation has been used to 

obtain better lower bound values. Activity selection methods for branching process have 

been proposed to improve lower bounds and accelerating techniques have been implemented 

to achieve an efficient branch and bound algorithm for the RLP. 

Extensive computational experiments have been conducted using test problems from the 

literature including instances from Project Scheduling Problem Library (PSPLIB), Kolisch 

et al. (1999), Franck et al. (2001) and Rieck et al. (2012). The branch and bound algorithm 

has proven the best performance in terms of computational times for problems up to 20 

activities for all objective functions. Moreover, for resource idle days optimization, 

problems up to 30 activities were solved for the first time in literature. Mixed-integer linear 

model could only solve problems with 10 activities for resource idle days and its 

performance highly depends on the type of the objective function. The proposed branch and 

bound algorithm provides a powerful method for the RLP due to its flexibility in applying 

several accelerating techniques and it can solve optimization functions in all forms. 

 

Keywords: Resource Leveling Problem, Branch and Bound, Lower Bound, Mixed-Integer 

Linear Modeling, Resource Idle Days 
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ÖZ 

 

KAYNAK DENGELEME PROBLEMİ 

İÇİN 

ETKİN BİR DAL VE SINIR ALGORİTMASI 

 

 

Yeniocak, Hüseyin 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi : Doç. Dr. Rıfat Sönmez 

Ortak Tez Yöneticisi  : Yard. Doç. Dr. Tankut Atan 

 

 

 

Ağustos 2013, 92 Sayfa 

 

Kaynak dengeleme problemi (KDP) projelerin kaynak kullanım eğrilerini en iyilemeyi 

amaçlamaktadır. Bu kapsamda, dal ve sınır tabanlı bir algoritma geliştirilmiştir. Geliştirilen 

dal ve sınır algoritması doğrusal karma-tamsayılı modelleme yöntemi ile literatürde yer alan 

diğer dal ve sınır tabanlı yöntemlerle karşılaştırılmıştır. İyi bir üst sınır değeri hesabı için 

uyarlamalı bir dal ve sınır sezgiseli geliştirilmiştir. İkinci bir alt sınır değeri hesabı sunularak 

ikili alt sınır değeri hesabı KDP‟nin çözümünde ilk defa kullanılmıştır. Alt sınır değerlerini 

geliştirmek için dal açma işleminde kullanılmak üzere çeşitli aktivite seçim metodları 

sunulmuştur. Algoritmayı hızlandırmak ve yüksek performanslı bir yöntem elde etmek 

amacıyla çeşitli teknikler uygulanmıştır. 

İçerisinde PSPLIB, Kolisch vd. (1999), Franck vd. (2001) ve Rieck vd. (2012)‟den problem 

örneklerinin de olduğu literatürden alınan test setleri kullanılarak kapsamlı deneyler 

yapılmıştır. Geliştirilen dal ve sınır algoritması 20 aktiviteye kadar olan problemlerin tüm 

amaç fonksyonlarına göre çözümünde işlem süresi bakımından literatürdeki en iyi 

performansı sergilemiştir. Ayrıca, atıl kaynak günü en iyilemesinde literatürde ilk defa, dal 

ve sınır algoritması 30 aktiviteye kadar olan problemleri çözmüştür. Doğrusal karma-

tamsayılı model aynı amaç fonksyonu için 10 aktiviteye kadar olan problemleri çözebilmiş 

ve bu yöntemin performansının kullanılan amaç fonksiyonuna yüksek oranda bağımlı 

olduğu gözlenmiştir. Geliştirilen dal ve sınır algoritması KDP‟nin çözümünde işlem süresini 

hızlandırma tekniklerinin uygulanabilmesindeki ve birbirinden farklı amaç fonksiyonlarını 

çözebilmesindeki esnekliğiyle en iyileme algoritmaları için güçlü bir yöntem sunmaktadır. 

Anahtar Kelimeler: Kaynak Dengeleme Problemi, Dal ve Sınır Yöntemi, Alt Sınır, Doğrusal 

Karma-Tamsayılı Modelleme, Atıl Kaynak Günü 
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CHAPTER 1 

INTRODUCTION 

 

Planning and management are vital processes for projects to achieve desired goals at least 

within budgeted availabilities and with expected quality outcomes. The significance of 

planning and management is mostly seen in construction projects, where the environmental 

conditions affecting the process are highly changing. The function of good planning and 

management is to adapt the process to the dynamic conditions so as to complete the 

construction project within its budgeted time and cost availabilities and with the expected 

quality outcomes. Construction projects differ from other projects from the aspect of being 

unique endeavors that have a start time, finish time and a processing period in which all 

tasks are performed to complete the project. Tasks to complete a construction project may 

be similar to the tasks to complete another. However, mostly the affecting conditions are not 

the same and so each project requires its own project plan. Each project depends on a well 

prepared planning and management accordingly to be finished within its budgeted time, cost 

availabilities, and with the expected quality outcome. Most of the problems like delays, 

exceeding resource limits, exceeding budgeted cost, decreasing quality are all due to the 

lack of efficient planning and management. 

There are several challenges faced while planning a construction project. Among those 

challenges can be listed the resource constrained project scheduling problem (RCPSP), the 

resource leveling problem (RLP), the time-cost trade-off problem (TCTP), the net present 

value problem (NPVP), and the resource availability cost problem (RACP). Resource 

constrained project scheduling problem focuses on performing the work with limited 

resources to finish the project in duration as short as possible. Resource leveling problem 

concentrates on optimizing the resource utilization of a project to minimize resource related 

cost issues and obtain the most effective resource schedule to complete the project in more 

economical way. Time-cost trade-off problem deals with the optimization of the time 

required to perform the works and the cost of these works. It tries to find the shortest 

duration to finish a project while at the same time keeps the cost as minimum as possible. 

The net present value problem aims to maximize the net present value where cash inflows 

and periodic expenses are considered. Finally, resource availability cost problem deals with 

different resource levels and corresponding cost values to find the best combination for a 

project. Throughout this thesis, the resource leveling problem (RLP) will be focused on only 

and studies carried out on this subject will be presented. 

Construction projects are generally large projects that require a considerable amount of work 

carried out by large number of resources where resources may be labor and non-labor. These 
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resources may not be available always at desired quantities, or occupying high number of 

resources at the same time for short periods may become much costly than using them in 

less quantities but constant and spread to longer periods. Due to such financial issues related 

to resources, it is highly desirable to have a smooth and leveled resource utilization profile 

in which peak demands are lowered and fluctuations, causing unproductive working periods, 

are minimized. This can be accomplished by scheduling the activities such that their 

resource usages are summed up to form targeted resource utilization profile. Targeted 

resource utilization profile may vary depending on the type of the project. Yet for 

construction projects, generally, a bell shaped profile which has low peak demand is the 

most desirable and acceptable (Mutlu 2010). 

The mostly used scheduling method in construction projects is the critical path method 

(CPM). In this method, the activities are scheduled to their earliest start times that satisfy the 

precedence relationships in between. Additionally, latest start times of activities are 

calculated and total float of each activity is determined. Some activities have zero total float 

which means they are not allowed to be started later than their earliest start times and they 

are critical. Any delay caused by these activities causes a delay in the project finish time. 

Other activities have positive total floats meaning that these activities have the chance to be 

started later than their earliest start time without causing any delay at the end of the project. 

Starting the activities on their earliest start times causes the most resources to be used at the 

beginning of the project. The corresponding resource usage profile usually comes out to 

have a high peak occurring at the early times of the project and fluctuations throughout the 

project span. The peak should not necessarily be seen at the beginning, but it may occur 

towards the end of the project where all the activities are scheduled to their latest start times, 

for example. Both of these cases are not wanted because of extra cost of irregular resource 

usage. High peak resource demands and fluctuations are seen as waste of time and cost due 

to inefficient planning. Therefore, many studies focused on leveling the resource utilization 

profile to reduce the high peak and to get a flatter resource usage and hence, to minimize 

resource related financing issues. 

Leveling resources is done by changing start dates of non-critical activities (activities having 

positive total floats) to obtain schedules that have smooth resource usage profiles. To find 

the best schedule that gives the most desired resource usage profile, roughly all possible 

schedules should be generated and compared. This means that the effort required to find the 

best solution to RLP depends on the size of search of the overall solution space. RLP in 

nature is a non-deterministic polynomial time hard (NP-hard) problem (Neumann et al, 

2003) and to find the exact solution special techniques should be applied. 

Because of the nature of the NP-hard problems, solving to find the best solution requires 

immense computation time and memory as the solution space is very large and today‟s 

technology is still insufficient to handle it. Exact solution methods (like branch and bound 

method) can be useful for problems with few activities. But for problems with many 

activities, i.e. like in the case of most construction projects that have hundreds to thousands 

activities, finding the exact solution is almost impossible with current technology. Thus, the 

immediate growing idea has become to develop heuristic methods and solve for an 
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acceptable result in short time and low memory requirement. As a result of that, most 

studies have proposed heuristic methods to solve RLP. Many heuristic and metaheuristic 

methods have been developed and large problem instances have been solved for RLP in 

short time. From this aspect, heuristic and metaheuristic methods comprise an easy and 

useful way of solving large problems and generating resource leveled schedules. 

Nevertheless, the main issue with heuristic and metaheuristic methods is that it is not known 

how good of a solution they find. Since exact results of test problems are not available 

without exact solution methods, the results obtained by heuristic and metaheuristic methods 

cannot be compared to identify their performance and efficiency. Exact methods are needed 

to find the exact solutions of at least problem test sets and use the exact result of these 

problem sets as reference for performance comparison of heuristic and metaheuristic 

methods. Available studies in the literature use dynamic programming, implicit 

enumeration, branch and bound algorithm and integer linear programming methods for exact 

solution of RLP (Petrovic 1969, Mason and Moodie 1971, Easa 1989, Bandelloni et al. 

1994, Younis and Saad 1996, Mattila and Abraham 1998, Neumann and Zimmermann 2000, 

Son and Mattila 2004, Mutlu 2010, Gather at al. 2010, Rieck et al. 2012). However, still the 

available methods are limited. In this thesis, an efficient branch and bound algorithm is 

proposed for the resource leveling problem. The aim behind the selection of this method is 

that its capability to be applied to solve for any objective function. Many techniques are 

implemented to improve the algorithm and increase its capability to solve larger problems. 

As a result, a branch and bound algorithm for the resource leveling problem has been 

developed with the implementation of many improvements and it has been tested through 

extensive computational experiments using four different objective functions. 

The following assumptions are made for the RLP: 

 Precedence relations, activity durations, activity resource requirements are 

predefined and all of them remain constant throughout the solution procedure. 

 The complete project duration is fixed, i.e. the project finish time cannot be delayed. 

 Activities remain continuous throughout their work span. Once they are active, they 

remain active until they are completed. 

 Activities, utilize a uniform resource profile throughout their work span. 

The proposed algorithm is constructed using C++ programming language. The problem sets 

used to test the developed algorithm are instances from the test set of Mutlu (2010), PSPLIB 

of Kolisch et al. (1997), benchmark instances (rlp_j10, rlp_j20) of Kolisch et al. (1999), 

problem instances (ubo10, ubo20) of Franck et al. (2001), and test set T2 of Rieck et al. 

(2012). Experimented problem instances have 10 to 30 activities and include single resource 

and multi resource cases (1, 3 and 5 resource types). All problem sets and computational 

results are presented in Chapter 7. 

The remainder of this thesis is organized as follows. In Chapter 2, the literature review is 

provided. In Chapter 3, the objective functions used for RLP are stated. In Chapters 4 and 5, 
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the developed branch and bound algorithm is presented in detail. In Chapter 6, a mixed-

integer linear model is proposed for the resource leveling problem. In Chapter7, the 

computational test results are given, and finally in Chapter 8, the conclusion of the study and 

outlook for further research is outlined. 
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CHAPTER 2 

LITERATURE REVIEW 

 

There are limited studies focusing on resource leveling problem. Besides, comparing the 

literature of heuristic and metaheuristic methods with exact methods of RLP, it is seen that 

there are less studies on exact methods since their nature is more complex and they require 

relatively high effort to construct their algorithms. Actually, researchers tend to concentrate 

on heuristic and metaheuristic methods as they are generally simpler than exact methods and 

they are capable of finding near optimal results to large problems with low effort, which is 

most of the time acceptable and very useful. However, as stated before, the need for exact 

solutions is inevitable as to be used for performance analysis of heuristic and metaheuristic 

methods. In this chapter, a literature review is given on heuristic and metaheuristic methods 

in simple way to generate the overview of RLP solving strategies and the literature review 

on exact methods and the studies that are inspired from are stated to give the reference of the 

main study of the thesis. 

2.1 Literature Review of Heuristic and Metaheuristic Methods for Solving RLP 

Heuristic methods are usually simple methods developed for an optimization problem. They 

are problem solving strategies to create a good solution with step by step construction or to 

improve a present solution with several trials of changing problem parameters. Burgess and 

Killebrew (1962), proposed one of the first heuristic methods to solve RLP. This method 

simply changes the start dates of the non-critical activities in some ordered steps for a 

number of cycles until to find the best result. On the other hand, metaheuristic algorithms 

are problem type independent methods and can be implemented to variety of optimization 

problems. They are more complex methods but usually are stronger in solving more difficult 

problems. Examples for metaheuristic methods are genetic algorithm, particle swarm 

optimization, ant colony, simulated annealing etc. 

The heuristic method that Burgess and Killebrew (1962) have proposed is a priority based 

and simple shifting method. After Burgess and Killebrew (1962), most of studies also have 

focused on priority based shifting techniques (Galbreath 1965, Woodworth and Willie 1975, 

Wiest and Levy 1977, Harris 1978, Martinez and Ioannou 1993). Among these studies, a 

multi-project multi-resource case for RLP has been also studied (Woodworth and Willie, 

1975). Harris (1990) has introduced a new method called Packing Method (PACK) to solve 

RLP by minimizing the moment of resource profile. Martinez and Ioannou (1993) and 

Hiyassat (2000) also have studied PACK method by modifying the minimization of moment 

of the resource profile. Hiyassat (2000) has considered activity resource requirements and 
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free floats for the selection of activities to be shifted. In Hiyassat (2001), minimum resource 

moment has showed well results for projects with multiple resources by a modification in 

the method. Cristodoulou et al. (2010) have developed the minimum moment and PACK 

methods by allowing the activities to be stretched or compressed. They have stated that the 

resource rate of the activities can be adjusted to obtain better resource usage profiles while 

at the same time they have considered maximum daily resource demand and solved for RLP 

in this way. A method called “The entropy-maximization method” has been also proposed in 

the paper. The first study that uses a different method than priority based methods is based 

on using neural network (Savin et al. 1996, and Kartam and Tongthong 1998). 

Genetic algorithms have become popular in the following years and most of the researches 

have suggested RLP solving strategies based on GA‟s (Chan et al. 1996, Leu and Yang 

1999, Hegazy 1999, Son and Skibniewski 1999, Leu et al. 2000, Wang and Zheng 2001, 

Oral et al. 2003, Zheng et al. 2003, Senouci and Eldin 2004, Chen et al. 2005, Han and Sun 

2006, Hwang and He 2006, Roca et al. 2008, Bettemir 2009, El-Rayes and Jun 2009, 

Doulabi et al. 2010, Jun and El-Rayes 2011, Ponz-Tienda et al. 2013). The natural evolution 

inspires genetic algorithms. GA generates a population of initial solutions. The solution data 

are coded to chromosomes and by crossing over or mutation of chromosomes new 

generations (chromosomes) are produced. GA gives the good solutions a chance of survival 

and passes their chromosomes to the next generations to improve the result further. From 

this aspect, GA has a very strong search capability in the solution space and can be 

applicable to various types of problems. Yet, still there are some weaknesses of GA. Hegazy 

(1999) has applied random activity priorities to enhance GA. Son and Skibniewski (1999) 

used simulated annealing (SA) to have improved searching capabilities by escaping from 

local optimal points. Leu et al. (2000) have introduced a decision support system (DSS) to 

increase the capabilities of genetic algorithm. Senouci and Eldin (2004) have developed a 

GA based model to solve for total project cost optimization problems considering the 

precedence relations and multiple crew strategies. 

El-Rayes and Jun (2009) have introduced new resource utilization metrics and developed a 

GA based model to solve problems using different objective functions. They have solved a 

problem with 20 activities and single resource type. The new metrics that El-Rayes and Jun 

(2009) have introduced aim to reduce the number of release-rehire and idle resource times. 

The first metric states that during the transition from high demand period to low demand 

period resources may be released and again for a coming high demand period resources are 

rehired. High number of release-rehire periods affects the performance of the resources by 

disturbing the experiment gaining of workers and affecting working in a comprehensive 

manner. Thus, this metric focuses on reducing the number of release and rehire periods. The 

second metric is about when the resources are not released while passing from higher 

demand periods to lower demand periods but kept waiting for the coming high demand 

period. In this case waiting resources are idle and they increase the resource cost. This 

metric tries to minimize the resource idle periods. As a limiting factor, maximum daily 

resource demand can be integrated with the above-mentioned metrics to prevent high peak 

demands. It has been stated that the new metrics have high capability of optimizing resource 

usage profiles where resource fluctuations are minimized and a bell-shaped histogram is 
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obtained. The second metric that is about resource idle periods will be explained in detail in 

Chapter 3 as it has been used in the experimental work of this study. Doulabi et al. (2010) 

have used a repair mechanism in GA to improve converging capabilities of GA and reduce 

computation time. Roca et al. (2008) and Jun and El-Rayes (2011) have used GA to solve 

RLP and RCPSP simultaneously.  

The most recent study on metaheuristic methods is by Ponz-Tienda et al. (2013) using 

genetic algorithm based methods for solving RLP. They have proposed an adaptive genetic 

algorithm using Weibull distribution to estimate global optimality and terminate the 

procedure. The developed algorithm has been tested using problem sets of 30, 60 and 120 

activities size from Project Scheduling Problem Library, PSPLIB. The results have been 

compared with the early start schedules to analyze the performance of the algorithm.  

Neumann and Zimmermann (1999) have developed a polynomial priority based 

metaheuristic algorithm. They tested their algorithm using different objective functions and 

analyzed the results using empirical performance analysis techniques. Ballestin et al. (2007) 

have presented a population based method of integrated greedy type for make-to-order 

production and then, they applied this method to solve RLP. One of the other most popular 

metaheuristic methods is particle swarm optimization (PSO). Qi et al. (2007), Pang et al. 

(2008), Guo et al. (2009) has studied PSO to solve RLP and some solved two examples in 

both PSO and GA and stated that PSO has better performance compared to GA. Other 

studies on metaheuristic methods by Xiong and Kuang (2006), and Geng et al. (2010) have 

used ant colony algorithm. Xiong and Kuang (2006) have integrated the serial programming 

generation scheme with ant colony algorithm. 

Some of the literature studies have included small test samples in their experiments. Hegazy 

(1999) has used test samples of at most six resource types and 20 activities. Leu et al. (2000) 

has studied with problems of three resource types and 9 activities at most. Bettemir (2009) 

has compared five different GA algorithms using problems up to 13 activities. 

Heuristic and metaheuristic problems propose fast and easy solution procedures for project 

scheduling problems. However, their solution capability is not known as they are not 

guaranteed to find the optimal solution but they find the best solution they can find. For the 

performance analysis, the need to know exact results is inevitable. The literature of heuristic 

and metaheuristic methods proposed for project scheduling problems especially those that 

have focused on RLP has been investigated. Therefore, an idea of the state of RLP solving 

approaches can be generated. Summary of the heuristic and metaheuristic literature is given 

in Table 2.1 as grouped according to the project scheduling problems that have been focused 

on and the methods that have been employed. Studies are sequenced according to their 

publication year within the groups and some general remarks are stated. 
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Table 2.1 Literature review of heuristic and metaheuristic methods for RLP and other 

project scheduling problems (1/3) 

 

 

 

Year Authors 
Developed 

Methods 

Scheduling 

Problem 
    

1962 

1965 

1975 

1977 

1978 

Burgess and Killebrew 

Galbreath 

Woodworth and Willie 

Wiest and Levy 

Harris 

Priority Based 

Simple Shifting 

Project Scheduling 

Problems 

    

Notes: Simple shifting heuristics or priority-rule based methods for project 

scheduling problems subject to precedence constraints. 
    

    

1990 

1993 

2000 

2001 

2010 

Harris 

Martinez and Ioannou 

Hiyassat 

Hiyassat 

Cristodoulou, Ellinas and 

Kamenou 

PACK Method 

with Priority Based 

Simple Shifting 

RLP 

 

    

Notes: Minimum moment method, modified minimum moment method, has been 

utilized based on PACK method. Activity selection criteria have been defined 

for some studies. Activity stretching is allowed and entropy-maximization 

method has been introduced in the study of Cristodoulou et al. (2010) 
    

    

1996 

1998 

Savin, Alkas and Fazio 

Kartam and Tongthong 
Neural Network RLP 

    

Notes: Neural network based methods have been applied for resource leveling 

problem. 
    

    

1996 

1999 

2004 

2008 

2011 

Chan, Chua and Kannan 

Hegazy 

Senouci and Eldin 

Roca, Pugnaghi and Libert 

Jun and El-Rayes 

GA Based RLP, RCPSP 

    

Notes: GA based procedures have been introduced to minimize deviations from the 

available resource limits. Random activity selection has been defined and 

double moment method has been employed to the GA module by Hegazy 

(1999). Minimization of total project cost has been studied (Senouci et al., 

2004). Resource leveling and resource allocation problems have been 

considered simultaneously (Roca et al., 2008, Jun et al., 2011). 
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Table 2.1 Literature review of heuristic and metaheuristic methods for RLP and other 

project scheduling problems (2/3) 

 

 

 

 

Year Authors 
Developed 

Methods 

Scheduling 

Problem 
    

1999 Son and Skibniewski SA Based RLP 
    

Notes: Sum of squares method is used as for objective function. 
    

    

2000 Leu, Yang and Huang GA Based RLP 
    

Notes: A Decision Support System (DSS) has been introduced to the GA based 

procedure. Minimization of absolute deviation from average resource level 

has been aimed. 
    

    

2003 Oral, Oral, Bozkurt and Erdis GA Based RLP 
    

Notes: Minimum deviations from the average resource demand has been utilized to 

level resources by a GA based algorithm. 
    

    

2003 Zheng, Ng and Kumaraswamy GA Based RLP 
    

Notes: Minimum moment method has been utilized to level resources. Weighted 

multiple resource cases has been discussed to represent effects of different 

resource types. 
    

    

2009 El-Rayes and Jun GA Based RLP 
    

Notes: Two new metrics of Release-Rehire and Resource Idle Days have been 

defined, GA based module has been developed to solve for RLP using these 

new metrics. 
    

    

2010 Doulabi, Seifi and Shariat GA Based RLP 
    

Notes: Local search heuristic and repair mechanism have been integrated with the 

genetic algorithm to solve RLP. 
    

    

2013 Ponz-Tienda, Yepes, Pollicer 

and Moreno Flores 
GA Based RLP 

    

Notes: An adaptive GA with utilization of Weibull distribution for decision of global 

optimality has been developed. Test sets from PSPLIB have been solved to 

test the algorithm. 
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Table 2.1 Literature review of heuristic and metaheuristic methods for RLP and other 

project scheduling problems (3/3) 

 

 

 

 

 

 

 

 

 

 

Year Authors 
Developed 

Methods 

Scheduling 

Problem 
    

1999 

2009 

Leu and Yang 

Bettemir (PhD. Thesis) 
GA Based 

RLP, RCPSP, 

TCTP 
    

Notes: Generic GA based algorithms have been developed to solve general project 

scheduling problems. Five different GA based metaheuristic algorithms have 

been developed and tested by Bettemir, 2009. 
    

    

1999 Neumann and Zimmermann 
Polynomial priority 

based heuristic 
RLP, RCPSP 

    

Notes: A polynomial priority based metaheuristic method has been developed to 

solve RLP using several different objective functions. 
    

    

2007 
Ballestin, Schwindt and 

Zimmermann 

Population based 

greedy heuristic 
RLP 

    

Notes: Optimization on make-to-order production has been offered and then this 

model has been adapted to resource leveling problem using population based 

greedy method. 
    

    

2007 

2008 

2009 

Qi, Wang and Guo 

Pang, Shi and You 

Guo, Li and Ye 

PSO RLP 

    

Notes: Particle swarm optimization based metaheuristic algorithm has been 

developed to solve resource leveling problem. A constriction factor has been 

defined to prevent early convergence to a local optimal in Pang et al. (2008). 
    

    

2006 

2010 

Xiong and Kuang 

Geng, Weng and Li 
Ant Colony RLP 

    

Notes: Hybrid model of serial programming generation scheme with ant colony 

(Xiong et al., 2006) and an oriented ant colony (Geng et al., 2010) models 

have been proposed to solve RLP. 
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2.2 Literature Review of Exact Methods for Solving RLP and other Project Scheduling 

Problems 

Studies proposing exact solution methods for the RLP in literature are limited. Therefore, 

exact methods that are used for RLP, RCPSP and combination of cost and these problems 

studied in literature have been presented in this section. Main exact solving algorithms are 

based on dynamic programming, implicit enumeration, branch and bound algorithm and 

linear integer programming methods. 

Agin (1966) has presented a general description of branch and bound algorithms. It has 

demonstrated that branch and bound methods are widely applicable on combinatorial 

problems with non-linear, discontinuous or non-mathematically defined objective functions 

under variety of constraints. Basic characteristics of branch and bound procedure have been 

explained and points that affect the efficiency of the method have been stated. 

As a first contribution on exact methods of resource leveling problem, Petrovic (1969) 

offered a multistage dynamic programming approach. One of other first studies in the 

literature that deals with exact methods is by Mason and Moodie (1971). This study has 

focused on minimization of cost and resource utilization combined together. Elongation of 

project duration is allowed, and any delay on project finish date is penalized appearing in the 

cost function. Similarly, resources exceeding available resource limits are also penalized and 

seen in the cost function. The solution approach has been based on branch and bound 

algorithm. During scheduling an activity possible scenarios have been regarded and a lower 

bound has been calculated for each possibility. The possibilities to be kept have been 

decided according to the lower bound. Schedules that have over allocated resources have 

been also eliminated. The proposed algorithm has been tested using a 25 activity network. 

Results and parameters affecting computation time have been stated in the paper (Mason 

and Moodie, 1971). Ahuja (1976) has studied to level resource fluctuations by using 

enumeration method. 

Patterson (1984) has studied the RCPSP problem using three exact methods and compared 

their performances. These three methods have been branch and bound, bounded 

enumeration and implicit enumeration. Based on the test results, branch and bound method 

has been reported to solve all instances out of 110 problems in 5 minutes. Bounded 

enumeration has recorded for some instances the shortest computation time. Implicit 

enumeration has required the least computation storage. Patterson (1984) has stated that 

branch and bound algorithm has more performance as it directs the search in the solution 

space to more promising regions. 

Easa (1989) proposed a linear integer programming method for RLP that minimizes the 

deviations from average resource demand. Small to medium sized problem instances have 

been solved for optimality and optimal resource profiles have been compared with the early 

schedule resource profiles. In the paper, it has been stated that because high number of 

variables and constraints have been needed to define the model, the implementation of the 

linear integer model becomes difficult to apply it for practical purposes. Karshenas and 

Haber (1990) also have developed a linear integer programming based method aiming to 
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minimize the sum of cost of resources and the project duration. Two simple examples have 

been solved and it has been reported that the duration of the solution schedule has been 

optimal and the resource usage cost has been low. 

Demeulemeester and Herroelen (1992) have proposed a method based on branch and bound 

algorithm having a depth-first methodology for RCPSP. At an instant, where feasible partial 

schedules are constructed from an eligible activity that is to be scheduled yet, nodes are 

generated and the ones having high lower bound values according to the bounding strategy 

are fathomed. 110 test problem set of Patterson (1984) has been solved at an average 

computation time of 0.215 seconds. It has been reported that the offered method has been 

faster than the developed methods earlier and requires low storage memory during its 

computation to solve for RCPSP. Afterwards, Shah et al. (1993) have studied a linear 

integer model to find the minimum resources to complete a project. Bandelloni et al. (1994) 

have offered a non-serial dynamic programming model that reduces the absolute deviations 

from a targeted resource level. 

Following these studies Demeulemeester (1995) suggested to use branch and bound 

algorithm for solving resource availability cost problem. A small bridge project was used in 

addition to the problem set of Patterson (1984) to test the proposed algorithm. The effect of 

additional resource types on computation time was also observed. It has been reported that 

the computational time increases as additional resource types are included since the search 

space of the efficient solutions expands. Younis and Saad (1996) occupied a mathematical 

model to optimize resource utilization of a project, Icmeli and Erenguc (1996) used a depth-

first branch and bound algorithm to solve resource constrained project scheduling problem 

with discounted cash flows (RCPSPDC). Demeulemeester and Herroelen (1997) developed 

the depth-first branch and bound algorithm to solve the generalized RCPSP. In this 

algorithm precedence based lower bound calculations have been added to several dominance 

rules in order to fathom nodes that are non-promising. The same problem set of Patterson 

(1984) were used to test the algorithm. 109 instances out of 110 problems have been solved 

in an average computation time of 8.1065 seconds. 

Mattila and Abraham (1998) focused on resource leveling problem of linear scheduling 

projects like highway construction projects, high buildings, pipeline construction projects 

etc. Linear integer programming has been adapted for this problem and the absolute 

deviation from the average resource demand has been minimized. The programming was 

carried out using a software program called LINDO, and the obtained leveled resource 

utilization profile for a highway construction project has been reported. As most of the 

researchers has stated, Mattila and Abraham (1998) also has mentioned on the hardness of 

implementation of large size problems due to the high number of variables and constraints 

required to define the problem.  

Another study using branch and bound algorithm for RCPSP is by Brucker et al. (1998). In 

this study, a tabu search algorithm has been integrated to the branch and bound algorithm in 

the root of the search tree. This way the tree formation procedure has been initialized with a 

better schedule. In addition a linear integer based lower bound calculation has been adapted 
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to the procedure. Brucker et al. (1998) have experimented problem sets with 30 and 60 

activities having 4 types of resources. 326 of 480 problem instances of 60 activities have 

been solved for optimality within one hour. De Reyck and Herroelen (1998) also presented a 

branch and bound algorithm with depth-first methodology for RCPSP. Minimal delaying 

alternatives method has been employed to overcome resource infeasible nodes. Extensive 

experimentation results have been presented and problem networks up to 100 activities have 

been solved for optimal solution. 

One of the most extensive papers has been published by Neumann and Zimmermann (2000) 

concentrating on heuristic and exact procedures to solve RLP and net present value problem. 

In this paper minimization of resource costs, minimization of deviations from a given 

resource level and minimization of deviations of consecutive time periods are used as 

objective functions to solve RLP with and without resource limitations. For the stated exact 

procedure branch and bound and truncated branch and bound algorithms have been utilized. 

The branch and bound algorithm has been based on enumeration of feasible start times. 

Nodes represent partial schedules and leaves (final nodes that do not have any remaining 

unscheduled activity) represent complete feasible schedules. Selection of the node to be 

branched from is done according to its lower bound value. The node having the smallest 

lower bound among newly formed nodes is branched. Branching new nodes from the 

selected node is carried out by scheduling the activity that has the lowest total float among 

remaining eligible activities. In truncated branch and bound algorithm a heuristic is used to 

cut non-promising branches and allow only most promising branches to grow up the 

solution. Moreover, a tabu search procedure has been integrated to the algorithms mentioned 

above. Neumann and Zimmermann (2000) have employed an extensive problem set for 

experiments. Instances have activities from 10 to 500 and resource types from 1 to 5. Most 

of the problems in the sets that consist of up to 20 activities have been solved for optimality 

within 100 seconds. It has been declared that, instances with 20 activities and 5 resources 

have been solved for optimal solutions for the first time in the literature. 

Nübel (2001) has developed a depth-first branch and bound algorithm to solve for resource 

renting problem subject to temporal constraints. The aim of resource renting problem is to 

minimize resource availability costs. Time-independent and time-dependent renting costs 

have been included in the study. The solution approach has been based on enumeration of a 

finite set of schedules that is proven to contain the exact solution. A computational study has 

been devised over a randomly generated test set and results are reported. 

Vanhoucke et al. (2001) have suggested a branch and bound algorithm for maximizing the 

net present value. New upper bound computation strategies and more branching strategies 

have been employed to reduce the search tree size in considerable amounts. Problem sets of 

Patterson (1984) and Icmeli and Erenguc (1996) have been used for testing the algorithm. It 

has been stated that instances up to 30 activities and 4 resource types have been solved 

optimally for net present value problem.  

Zamani (2001) has introduced a different approach to the selection of node for branching in 

solving RCPSP. In this paper, the node with the minimum lower bound is branched, but 
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different than Neumann and Zimmermann (2000) the node with smallest lower bound 

among all open nodes is selected instead of taking into account only newly formed nodes. 

Zamani (2001) has constructed the algorithm to follow the minimum lower bound nodes for 

branching process until the optimal schedule is found. It has been stated that branching from 

a node with the minimum lower bound does not require large memory to keep open nodes 

and does not require large comparability time to trace in the tree and select the node to 

branch from. The developed algorithm has been tested using a test problem set that includes 

networks up to 100 activities and 6 different resource types. Experimentation results have 

been reported in the paper. 

Son and Mattila (2004) have approached resource leveling problem from a different manner. 

Up to that time, researchers assumed that activities cannot be split, i.e. once they are started 

they should remain continuous till it is finished. In this paper, a linear program of binary 

variable model has been introduced to level resource usage of a project where activity 

splitting is allowed. Two example projects have been solved and it has been stated that the 

resulted resource profiles where activities can be split are more representing actual 

construction projects. 

The study of Jiang and Shi (2005) is another study focusing on solving RCPSP. In that 

paper, enumerative branch and bound procedure has been employed. In this procedure, 

similar to truncated branch and bound procedure of Neumann and Zimmermann (2000), a 

cutting rule has been applied to eliminate bad schedules. 110 problem instances set of 

Patterson (1984) could be solved in reasonable computational time. It has been also stated in 

this paper that computational time is not a big deal for solving project scheduling problems 

as scheduling in a real life is not repeated every time throughout a project life. 

Mutlu (2010) has studied the resource leveling problem by developing an algorithm based 

on depth-first strategy branch and bound procedure in his master thesis. Improved lower 

bound calculation strategies have been presented to reduce the stored feasible partial 

schedule start time packages. The developed algorithm have been stated to solve instances 

up to 20 activities and 4 resource types using four different objective functions. In addition 

to traditional sum of squares of daily resource usages and absolute deviations from a 

targeted resource level, minimization of resource idle days (El-Rayes and Jun, 2009) and 

minimization of weighted combination of resource idle days and maximum daily resource 

demand have been employed for testing. A test set consisting of small-scale problems has 

been solved for RLP, and the objective function of minimization of resource idle days has 

been used for testing for the first time. 

One of the most recent studies has been published by Gather et al. (2010). This paper 

concentrates on solving resource leveling problem subject to general temporal constraints. It 

has been mentioned that the resource leveling problem even with single resource is an NP-

hard problem (Neumann et al., 2003). To solve NP-hard resource leveling problem they 

have introduced a new enumeration scheme. They have proposed an appropriate solution 

procedure combining the enumeration scheme with the branch and bound procedure to solve 

for RLP. For this purpose, a tree-based enumeration scheme has been developed where a 
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concept of Gabow and Myers (1978) has been integrated to overcome the significant 

weaknesses of the tree-based approach of Nübel (2001). The proposed algorithm has been 

tested by a comprehensive computational study using the well-known rlp_j10 and rlp_j20 

test sets of Kolisch et al. (Benchmark Instances for Project Scheduling Problems, 1999). It 

has been declared that the proposed algorithm outperformed the methods known in the 

literature. Large number of instances with 20 activities of test sets of Kolisch et al. (1999) 

have been solved for optimality for the first time. It has been pointed out that mixed integer 

linear programming can be suitable to model resource leveling problem appropriately for the 

future studies. 

Following the study of Gather et al. (2010), Rieck et al. (2012) published a paper that has 

introduced a mixed-integer linear programming technique for the resource leveling problem 

subject to general temporal constraints. In this study, sum of squares of the resource 

utilization cost and the “overload problem” have been considered. The overload problem 

tries to minimize the cost due to exceeding a resource limit. Generally, this limit is taken to 

be the average resource demand. The overload problem is very similar to the minimization 

of absolute deviations from the average resource demand from the aspect of their functions 

on leveling. This objective function will be explained in detail in Chapter 3 as it has been 

employed in the experimentation of the thesis study. Rieck et al. (2012) have presented new 

mixed-integer linear model formulations and domain-reducing preprocessing techniques. 

Lower and upper bounds for resource requirements at particular points in time, effecting 

cutting planes and problem-specific preprocessing techniques have been implemented to 

enhance the models. The developed algorithm has been constructed using CPLEX 12.1. The 

most generic experimentation up to that time has been carried out in this study. Medium-

sized problems and problem sets of Kolisch et al. (1999) have been solved. Instances with 

30 activities and up to 5 resources types have all been solved for optimality. Moreover, 

some instances up to 50 activities have been solved for the first time in the literature. Tests 

have been performed for the strict project completion duration case and for extended project 

completion duration. Test results of Rieck et al. (2012) have been used for performance 

comparison of the algorithm proposed in this thesis study. 

Looking up to the literature it is seen that only few studies have focused on optimally 

solving resource leveling problem. As studies of other project scheduling problems can be 

inspired from and the applied techniques could be adapted to any other specific scheduling 

problem, publications related to branch and bound procedures and other utilized techniques 

have been stated. The summary of the literature review for exact solutions of RLP and other 

project scheduling problems have been presented in tabular form in Table 2.2 sequenced in 

chronological order. General remarks related to each study have also been stated. 
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Table 2.2 Literature review of exact solutions for RLP and other project scheduling 

problems (1/4) 

 

 

 

Year Authors 
Developed 

Methods 

Scheduling 

Problem 
    

1969 Petrovic 
Dynamic 

Programming 
RLP 

    

Notes: Multistage dynamic programming approach has been presented as an early 

study for solving RLP. 
    

    

1971 Mason and Moodie Branch and Bound 

RLP and Project 

Duration 

Minimization 
    

Notes: Project duration extension is allowed but delays and over allocated resources 

are penalized using a cost function. The importance of lower bound 

calculations for algorithm performance has been stated. 
    

    

1984 Patterson 

Bounded 

Enumeration, 

Branch and bound, 

Implicit 

Enumeration 

RCPSP 

    

Notes: Using special rules, non-promising solution space regions are eliminated. A 

test set of 110 instances has been used for performance comparison of the 

proposed algorithms. 
    

    

1989 Easa 
Linear Integer 

Model 
RLP 

    

Notes: A linear integer optimization model has been developed to solve resource 

leveling problem. Deviations from average resource demand and resource 

deviations of consecutive time periods have been aimed to be minimized. 
    

    

1990 Karshenas and Haber 
Linear Integer 

Model 

Resource Cost 

Minimization 
    

Notes: A general approach to optimize project scheduling problems. Financially 

leveled resource histograms as well as optimal project duration have been 

obtained by the proposed method. 
    

    

1992 Demeulemeester and Herroelen Branch and Bound RCPSP 
    

Notes: A depth-first branch and bound algorithm has been developed. Partial 

schedules that have bad lower bounds are fathomed. 110 test problem of 

Patterson (1984) has been solved in short durations. 
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Table 2.2 Literature review of exact solutions for RLP and other project scheduling 

problems (2/4) 

 

 

Year Authors 
Developed 

Methods 

Scheduling 

Problem 
    

1993 Shah, Farid and Baugh 
Linear Integer 

Model 

Minimum Resource 

Requirement 
    

Notes: Minimum resources to complete a project within time has been investigated. 
    

    

1994 Bandelloni, Tucci and Rinaldi 

Non-Serial 

Dynamic 

Programming 

RLP 

    

Notes: Minimization of absolute deviations from a targeted resource level has been 

used as objective function for resource leveling problem. 
    

    

1995 Demeulemeester Branch and Bound 

Resource 

Availability Cost 

Problem (RACP) 
    

Notes: Branch and bound method for cost minimization of available resources levels 

has been proposed. It has been stated that additional resources increases the 

complexity of problem. 
    

    

1996 Icmeli and Erenguc Branch and Bound RCPSP 
    

Notes: Depth-first methodology has been occupied for the branch and bound 

algorithm to solve RCPSP in which discounted cash flows take place and net 

present value has been maximized. 
    

    

1996 Younis and Saad 
Mathematical 

Model 
RLP 

    

Notes: Multi resource projects have been mathematically modeled to optimize their 

resource utilization profiles. 
    

    

1997 Demeulemeester and Herroelen Branch and Bound RCPSP 
    

Notes: Extensive version of depth-first branch and bound algorithm suggested by 

Demeulemeester et al., (2002) has been presented. Extensive experimentation 

has been carried out. 
    

    

1998 
Brucker, Knust, Schoo and 

Thiele 
Branch and Bound RCPSP 

    

Notes: Tabu search has been integrated to the algorithm to start the search tree from 

a good point. Linear integer programming based lower bound calculation has 

been presented. 
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Table 2.2 Literature review of exact solutions for RLP and other project scheduling 

problems (3/4) 

 

 

 

 

 

Year Authors 
Developed 

Methods 

Scheduling 

Problem 
    

1998 De Reyck and Herroelen Branch and Bound RCPSP 
    

Notes: Depth-first methodology of branch and bound has been integrated with 

dominance rules. Extensive testing has been performed and instances up to 

100 activities have been solved. 
    

    

1998 Mattila and Abraham 
Linear Integer 

Model 
RLP 

    

Notes: Using linear integer model programmed in LINDO, resource optimization has 

been done for linear schedules. A highway project has been utilized for 

testing the algorithm. 
    

    

2000 Neumann and Zimmermann Branch and Bound 

RLP, Net Present 

Value Problem 

(NPVP) 
    

Notes: Different heuristic and exact methods are proposed to solve for RLP and 

NPVP. Instances up to 20 activities and 5 resources have been solved for the 

first time for RLP. 
    

    

2001 Nübel Branch and Bound 

Resource 

Availability Cost 

Problem (RACP) 
    

Notes: Depth-first branch and bound procedure has been proposed to solve for 

resource renting problem subject to temporal constraints. Computational test 

results of randomly generated problems have been reported. 
    

    

2001 
Vanhoucke, Demeulemeester 

and Herroelen 
Branch and Bound 

Net Present Value 

Problem (NPVP) 
    

Notes: Net present value problem has been studied. Instances up to 30 activities and 

4 resource types have been solved for optimality. 
    

    

2001 Zamani Branch and Bound RCPSP 
    

Notes: Selection of node having minimum lower bound value for branching process 

has been stated to reduce computation and storage memory to find the 

optimal solution. 
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Table 2.2 Literature review of exact solutions for RLP and other project scheduling 

problems (4/4) 

 

 

 

 

 

 

 

 

 

 

Year Authors 
Developed 

Methods 

Scheduling 

Problem 
    

2004 Son and Mattila 
Linear Integer 

Model 
RLP 

    

Notes: Activity splitting has been allowed for the resource leveling problem. This 

way more realistic project representations have been stated to be obtained. 
    

    

2005 Jiang and Shi Branch and Bound RCPSP 
    

Notes: Enumerative branch and cut procedure have been employed. 110 instances 

set of Patterson (1984) have been reported to be solved for optimality. 
    

    

2010 Mutlu (Master Thesis) Branch and Bound RLP 
    

Notes: Depth-first based approach has been developed for RLP. Lower bound 

calculation strategy has been improved. Small scale test instances have been 

solved for the minimization of resource idle days and other traditional 

objective functions. 
    

    

2010 
Gather, Zimmermann and 

Bartels 
Branch and Bound RLP 

    

Notes: A new enumeration scheme has been integrated to the branch and bound 

algorithm. Test sets rlp_j10 and rlp_j20 of Kolisch et al. (1999) and ubo10 

and ubo20 of Frank et al. (2001) have been solved and results have been 

reported. 
    

    

2012 Rieck, Zimmermann and Gather 

Mixed-Integer 

Linear 

Programming 

RLP 

    

Notes: New methods based on mixed-integer linear modeling have been proposed to 

solve RLP using sum of squares metric and overloading metric. Extensive 

computational tests have been carried out and instances up to 50 activities 

and 5 resources have been solved to optimality for the first time. 
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CHAPTER 3 

 

OBJECTIVE FUNCTIONS USED IN RLP ALGORITHMS 

 

There are several objective functions used for the resource leveling problem. Most of the 

objective functions force the solution procedure to yield a flat resource utilization histogram 

where fluctuations are minimized. However, this rectangular shape of histogram may not be 

possible to obtain most of the times, and in actual construction projects a bell-shaped 

resource profile would be more practical. Four objective functions have been used for 

testing. They are minimization of weighted sum of square of daily resource usages, 

weighted sum of absolute deviations of daily resource usages from the targeted (generally 

average) resource level, weighted sum of daily overloaded resource amounts, and finally 

weighted sum of weighted combination of maximum daily resource demand and resource 

idle days. Resource weights can be considered as resource costs or else for which the 

pressure of each resource is emphasized. In the following sections these objective functions 

are stated in detail and corresponding formulations are given. 

3.1 Sum of Squares of Daily Resource Utilization Method, (SSQR) 

In this method the objective function minimizes the sum of squares of daily resource usages 

where summation is performed by weights for different resource types. This metric affects 

all daily resource usages under and over the average resource demand individually. It has a 

stronger capability of peak minimization than the absolute deviations from average resource 

demand and overloaded resource amount metrics. The formulation of SSQR metric has been 

given in Equation (3.1). 

 

      ∑   ∑   
 

 

   

 

   

 

 

(3.1) 

 

where; fSSQR is the objective function to be minimized, K is the total number of resource 

types, k is the resource type, wk is the weight of resource k, T is the total project duration, t is 

a day in the project span, rkt is the resource usage of resource type k at the day of t. 

In Figure 3.1 a sample resource utilization profile of 10 days length is given. The squares of 

daily resource usages are calculated and this sum has been aimed to be minimized by the 

SSQR objective function. As high resource usages make high contribution to the 
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summation, they are forced to approach average values in which the contribution of the total 

resources are minimum. In the right hand side profile of Figure 3.1, the possible best 

resource profile that has the lowest SSQR value has been shown. Note that the convergence 

point of SSQR yields a flat, rectangular-shaped resource utilization profile in the best case. 

 

 

 

Figure 3.1 Sum of squares of daily resource usages of a sample profile 

 

3.2 Absolute Deviations of Resource Utilization from the Targeted Resource Utilization 

Level Method, (ABSDEV) 

This method calculates the absolute deviations of daily resource usages from the targeted 

resource utilization level. The targeted resource utilization level is generally taken as the 

average resource demand but it may take different values to achieve different resource 

levels. In the experimentation work of the thesis, the targeted resource level has been taken 

as the average resource demand calculated based on standard rounding. The formulation of 

this objective function has been given in Equation (3.2). 
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where; fABSDEV is the objective function to be minimized, K is the total number of resource 

types, k is the resource type, wk is the weight of resource type k, T is the total project 

duration, t is a day in the project span, rkt is the resource usage of resource type k at the day 

of t, and yk is the average resource utilization level as calculated in Equation (3.3). The 

addition of 0.5 in the average calculation is to ensure standard rounding before flooring 

operation. 

 

 

 

Figure 3.2 Absolute deviations of daily resource usages from the average resource demand 

of a sample profile 

 

In Figure 3.2 the same resource utilization profile in section 3.1 is given. The absolute 

deviations of daily resource usages from the average resource demand are calculated and 

this sum has been aimed to be minimized by the ABSDEV objective function. All the 

resource usage bars are forced to approach the average level. In the right hand side profile of 

Figure 3.2, the possible best resource profile that has the lowest ABSDEV value has been 

shown. Note that the convergence point of ABSDEV yields a flat, rectangular-shaped 

resource utilization profile in the best case similar to that of SSQR. 

3.3 Overloaded Resource Amounts Over the Targeted Resource Utilization Level 

Method, (OVERLOAD) 

This metric is very similar to the ABSDEV metric from the aspect of leveling capability. 

The main difference is that in resource overloading metric the resources that exceed the 

targeted resource utilization level, i.e. the positive deviations, are taken into account. 

Considering the average resource demand is taken as the targeted resource level, in this 

objective function the aim is to minimize the overloading resources that exceeds the average 

resource demand (Rieck et al., 2012). In the experimentation of the thesis study, for some 

problem sets ABSDEV metric has been utilized, for some others OVERLOAD metric has 

been utilized to able to compare with previous testing. As their function on leveling is very 
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similar but the representation metrics are different only one of them has been employed for 

the experimentation of the same test set. The formulation of this objective function has been 

given in Equation (3.4). 
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and where; fOVERLOAD is the objective function to be minimized, K is the total number of 

resource types, k is the resource type, wk is the weight of resource type k, T is the total 

project duration, t is a day in the project span, rkt is the resource usage of resource type k at 

the day of t and yk is the average resource utilization level as calculated in Equation (3.3). 

 

 

 

Figure 3.3 Overloading resources of a sample profile 

 

In Figure 3.3 overloading resources are represented. Overloading resources are the 

exceeding amount of daily resource demands over average resource level. OVERLOAD 

metric tries to minimize those exceeding resource amounts. Therefore, all resource bars that 

are greater than the average resource level are forced to approach the average level. In the 

right hand side profile of Figure 3.3, the possible best resource profile that has the lowest 

OVERLOAD value has been shown. Again the convergence point of OVERLOAD yields a 

flat, rectangular-shaped profile in the best case similar to that of SSQR and ABSDEV. 
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As stated in section 3.1, ABSDEV and OVERLOAD metrics are not as good as SSQR 

metric in terms of minimizing the peak. To illustrate this difference the same sample 

resource profile in previous sections is used in Figure 3.4. The only change between the 

right side profile and the left side profile is that for the 3
rd

 and 4
th
 days resource demands are 

changed (6, 4 for the left side; 5, 5 for the right side for the 3
rd

 and 4
th
 days respectively). 

Right side profile has a lower peak of 5 while on left side profile the peak is 6. When the 

objective function values are considered, it can be seen that SSQR has a lower objective 

function value with the profile having lower peak (SSQR = 153 for the left side; SSQR = 

151 for the right side) whereas other metrics have the same objective function values for 

both profiles. As a result, it can be said that SSQR metric obtains better resource utilization 

profiles with lower maximum daily resource demands. However, computation wise SSQR 

metric may be disadvantageous compared to other two metrics. 

 

 

 

Figure 3.4 Different capabilities of SSQR, ABSDEV and OVERLOAD metrics on peak 

minimization 

 

3.4 Resource Idle Days and Maximum Daily Resource Demand Method, (RID-MRD) 

The resource idle day (RID) is relatively a new metric offered by El-Rayes and Jun (2009). 

Any low demand period occurring between two high demand periods employ lower amount 

of resources unless high demand period resources are released. In that case, some of the 

resources are not employed and they are waited idle. The purpose with that metric is to 

eliminate such resource idle periods. However, RID itself does not take the care of peak 

demand. The convergence point of RID yields resource utilization profiles from rectangular-

shapes to hill-shapes. Yet, as stated above, most of the times the resultant resource usage 

profiles have a high peak demand. The integration of maximum daily resource demand 

(MRD) metric is to ensure peak minimization and to guarantee the resultant profile be more 

like a bell shape rather than a hill shape. The weights for combination of RID and MRD 
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allow to define the pressure of which metric to be minimized more. For the rest of the 

experimentation of the thesis RID and MRD are equally weighted. The formulation of RID-

MRD objective function has been given in Equation (3.5). 
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fRID-MRD is the objective function to be minimized, K is the total number of resource types, k 

is the resource type, wk is the weight of resource type k, T is the total project duration, t is a 

day in the project span, rkt is the resource usage of resource type k at the day of t, wRID is the 

weight of RID metric, wMRD is the weight of MRD metric. wRID and wMRD are taken as 1 in 

this thesis. 

In Figure 3.5 resource idle days and maximum daily resource demand (peak demand) are 

represented. As seen in the left hand side profile, for some periods resource demands are 

lower than the minimum of the maximums before and after. In these periods there are 

previously hired higher number of resources and for the coming periods there will be need 

of at least these resources again. Thus, the excess resources at that period are not released 

and they are idle. RID metric tries to minimize those idle resource days. Meanwhile, MRD 

tries to reduce the peak demand. In the right hand side profile of Figure 3.5, the possible best 

resource profile that has the lowest RID-MRD value has been shown. The convergence 

point of RID-MRD yields a bell-shaped resource utilization profile different than that of 

other objective functions. 
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Figure 3.5 Resource idle days and maximum daily resource demand of a sample resource 

profile 
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CHAPTER 4 

BRANCH AND BOUND ALGORITHM STRATEGIES FOR NP-HARD 

OPTIMIZATION PROBLEMS 

 

Resource leveling problem is an NP-hard optimization problem in nature (Neumann et al., 

2003). In NP-hard optimization problems, the solution space increases exponentially as the 

size of input increases. For example, in resource leveling problem, the size of the input 

highly depends on the number of the activities and the amount of floats that each activity 

has. As the number of activities increases, the size of the solution space increases 

exponentially. The proposed algorithm for the resource leveling problem in this thesis has 

been developed based on branch and bound algorithm. In order to improve its capabilities to 

solve large problems, this section explains the strategies implemented in the branch and 

bound algorithm. Most sensitive parts of the procedure have been addressed while applying 

new techniques so as to obtain best improvement results. In this chapter, a general overview 

of the branch and bound algorithm with basic definitions of branching strategy, lower bound 

calculation and upper bound calculation strategies, use of fathoming have been introduced. 

Then, storage memory and computation time dependency of branch and bound algorithm 

has been analyzed, and finally, propositions are made to focus on effective points for the 

improvement of the algorithm. 

4.1 General Overview of Branch and Bound Algorithm with Basic Definitions 

Branch and bound algorithm is a procedure where the permutations of an optimization 

problem are applied step by step by branching on the possibilities from each node till a 

complete solution is obtained while some possibilities are fathomed according to the 

bounding strategy during the solution tree formation. The solution procedure grows up a tree 

in which nodes represent partial solutions and the lowest level nodes, i.e. leaves, represent 

complete solutions to the problem. The starting point to the procedure is the root node. 

Starting from the root node, new nodes are generated via branching and some nodes are 

omitted by the bounding strategy. The branch and bound algorithm stages are described in 

the following sections. 

Preparing Scheduling Information and Initial Data: Before starting the branch and bound 

procedure, the instance that is going to be solved is scheduled to find early and late start 

times for activities. Scheduling is performed with respect to either precedence relations or 

temporal constraints depending on the problem specifications. After early and late start 

times of activities are calculated, total floats for each activity are determined. The activities 

having zero total float are critical activities, and others are non-critical activities. Before 
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starting the tree formation procedure, earliest and latest start times, total float of activities 

are determined. The solution procedure will operate on non-critical activities using their 

available floats. The starting point to the tree formation is the root node. In the root node, 

only critical activities are started at their definite start times and all non-critical activities are 

not scheduled yet. 

Lower Bound Calculation Strategy: In any node, resources of critical activities, scheduled 

non-critical activities and unavoidable periods are allocated. Then, the remaining resources 

are distributed to obtain the best resource histogram. The objective function value calculated 

for the obtained resource utilization profile specific to the issued node is called lower bound 

value of that node. In the root node, the resources of critical activities and unavoidable 

resources of non-critical activities are allocated. Remaining resources are distributed over 

the project span. The lower bound value calculated for the root node is the lowest value 

calculated throughout the solution procedure. As new nodes are generated, one of the non-

critical activities is scheduled to a specific start time between its earliest and latest start 

times. The resources for this activity does not participate to the distribution over the 

allocated resources to obtain the best resource profile, but instead, allocated accordingly 

with the scheduled activities. Therefore, the lower bound value calculated for a specific 

node cannot be better than the values calculated for nodes existing in the path reaching to 

the root node. In all paths starting from the root node to the leaves (lowest level nodes) the 

lower bound value increases or remains the same but cannot decrease. The leaf that is 

guaranteed to have the lowest bound value is the optimal solution. 

Branching Strategy: Starting from the root node, new branches and new nodes are formed. 

As stated above, root node has only critical activities scheduled. Among the remaining 

activities one of them is selected according to activity selection criteria, and then, new nodes 

as many as the number of available float days are formed. In each of these newly formed 

nodes, the selected activity is scheduled to one of its possible start dates and the 

corresponding lower bound is calculated. Since the first non-critical activity has been taken 

into account, this node is called the first level or first generation node. Then, similarly, 

branching continues for the next levels. Branching goes on from the node that has the 

minimum lower bound value among all open nodes as has been offered by Zamani (2001). 

When branching process approaches the lowest level and the newly formed nodes are 

leaves, the best leaf is compared with the minimum lower bound node. If the best leaf has 

smaller or equal objective function value than the node with minimum lower bound, this leaf 

is said to be the optimal solution and no more branching is required as the remaining open 

nodes do not have the capability to yield a better solution. 

Upper Bound Calculation Strategy and Pruning: Before starting the tree formation 

procedure, an upper bound value is calculated. Upper bound value is nothing but just the 

objective function value of the best feasible solution known at any instant of the procedure. 

Initially, it is calculated using some simple heuristics to be used until first leaf is generated. 

Upper bound is used for pruning branches during the solution procedure and it is very 

important to reduce the solution space to deal. As new nodes are generated and lower bound 

values are calculated, these lower bound values are compared with the upper bound. If any 
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node having a lower bound value greater or equal to the upper bound value, it is said that 

this node does not have the ability to yield better solutions than the best known solution. 

Therefore, those nodes can be fathomed and no branching goes on. The branches that would 

be formed through those nodes are pruned. When a newly generated leaf contains better 

objective function value than the current upper bound value and this leaf is not proven to be 

optimal yet, the upper bound value is updated to be the value found in the leaf being the 

current best solution. 

The performance of the branch and bound algorithm highly depends on the initial upper 

bound value and the lower bound calculation strategy. The upper bound value defines the 

limiting value for the lower bound values to be kept in memory. On the other hand, lower 

bound value is the one that is compared with the upper bound value and used to decide for 

the node to be kept in memory or to be deleted. In Figure 4.1 a sample solution tree has been 

shown. In this solution tree, 4 non-critical activities (A, B, C, and D) are scheduled. Upper 

bound value is assumed to be 330 and branches have been cut for values exceeding upper 

bound. In Figure 4.2, the simplified schematic of the solution tree has been presented to 

show the effect of pruning. Lower bound values shown in the nodes are hypothetical but in 

actual solution trees it is not much different than that representation. Upper bound value is 

calculated at the beginning of the branch and bound procedure by a heuristic method and it 

is updated during the solution. However, each newly formed node has been calculated a 

lower bound. That means, lower bound computation module is run as many times as the 

number of generated nodes. The following section is going to discuss the storage memory 

and the computation time dependency of the branch and bound procedure based on the 

quality of upper bound value and lower bound calculation strategy mentioned in this section. 

 

 

 

Figure 4.1 A sample solution tree of branch and bound procedure 
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Figure 4.2 Pruned form of the sample solution tree in Figure 4.1 

 

4.2 Storage Memory and Computation Time Dependency of the Branch and Bound 

Algorithm 

The memory used during the solution procedure should be as low as possible not to be stack 

with the limit of the computer RAM capacity during operation. On the other hand, the 

computation time is the main parameter used for performance comparison and should be as 

short as possible to increase the capability of the algorithm to solve larger problems in 

predefined time limits. 

Nodes in the solution tree are the only significant memory consuming elements. They keep 

the information of the start date of the scheduled activity, the lower bound value and some 

other information. For this thesis study, minimum data are coded to the node structure so as 

to ensure the minimum sized data storing element. As computer memories have their own 

limits, the number of nodes to be stored in the memory is limited. The node structure 

defined in the proposed algorithm has a size of 20 bytes roughly. That number implies that a 

solution tree of 50 million nodes can be handled with a free RAM memory of 1 GB. 

Therefore, the algorithm should be capable of reaching the optimal solution through the 

number of nodes filling up the available free RAM memory of the computer used for 

experimentation. As a result, for efficient use of storage memory, the number of nodes 

should be reduced as much as possible. This is possible by fathoming nodes and pruning 

non-promising branches. An upper bound value as good as possible and a lower bound 

calculation strategy as tight as possible can achieve this purpose. The quality of upper bound 

value and the lower bound calculation strategy determines the number of stored nodes and 

thereby the storage memory to be occupied. 

There are several functions operating inside the branch and bound algorithm. Most of the 

functions are called at specific instances during the solution process while some of them are 

run frequently and compose the highest portion of the operation time. It has been observed 

that, the module that calculates the lower bound value has the most effect for computation 
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time. There is a trade-off with this function. For each newly generated node, this function 

has to be called, which means that the number of generated nodes determines the calling 

frequency of the function. As stated above, a tight lower bound calculation strategy leads 

more fathomed nodes and reduces the number of nodes to be formed in the solution tree. 

This procedure reduces the frequency of the function. Nevertheless, the function itself 

should be simple. Otherwise, as more complexity is added to the function to make it find 

tighter lower bound values, its individual computation time will significantly increase. In 

this case, the increase in the function duration will overpass the recovery gained from the 

reduction in the function calling frequency. To sum up, for computation time efficiency of 

the branch and bound algorithm, lower bound calculation strategy should be constructed in a 

sense that tight values are found by non-complex simple calculations. 

For a complete solution procedure, the distribution of the occurrence of lower bound values 

calculated for nodes gives a lot of information about how to approach to the solution 

procedure. In Figure 4.3, a sample distribution is shown. Calculated lower bound values are 

in a range from the first calculated value (the root node value) to a value with the worst 

schedule. Optimal value is the lowest objective function value of a leaf i.e. of a complete 

schedule. Upper bound value can be in the range above the optimal value. 

 

 

 

 

Figure 4.3 A sample distribution of occurrence of calculated lower bound values and 

regions that require different treatments during solution procedure 
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From the distribution of occurrence of lower bound values a number of propositions can be 

deduced: 

- All nodes that have smaller lower bound value than the optimal value (Region I) 

must be branched i.e. must be used to generate new nodes since they still promise to 

lead to an optimal solution. 

- All nodes that have smaller lower bound value than the upper bound value (Region I 

and II) must be stored in memory for branching process since optimal value is not 

known during the solution procedure. 

- All nodes that fall above the upper bound value (Region III) can be deleted since 

they have lost the ability to lead to an optimal solution. 

- Only the leaf with the best objective function value is kept in memory as being the 

current best solution and the rest is deleted. Upper bound value is updated to the leaf 

value if the leaf has a better objective function value. 

- To avoid branching the nodes of region between the optimal value and upper bound 

value (Region II), the node with the minimum lower bound value among all open 

nodes should be selected for branching. This way, before starting to branch from 

this region optimal solution will already be found. 

- Whenever the next node for branching has a lower bound value equal or greater than 

the current best solution i.e. the upper bound, the solution process is terminated and 

the current best solution is reported as the optimal solution. 

This analysis provides us some hints on which points should be focused on to improve the 

storage memory and computation time performance of the branch and bound algorithm. The 

number of nodes falling to the branching region (Region I) and memory requiring regions 

(Region I and II) should be reduced as much as possible. Employed function modules 

should be simple as much as possible. The deductions inferred from the analysis can be 

listed as in the following: 

- A lower bound calculation strategy with non-complex computations is required to 

obtain tighter values (values greater the optimal value are of interest). As more 

number of nodes will fall above the optimal value region, number of branching 

requiring nodes will go down. Only the most promising nodes will stay in the 

branching region and will require new node generation process. Constructing a 

tighter lower bound calculation strategy implies that the level of optimality 

promising is refined. Simplicity and tightness of the lower bound calculation 

strategy will determine the timing performance of the algorithm. 

- A near optimal initial upper bound value would be enough to limit the memory 

requiring nodes. The heuristic method employed for the initial upper bound 

calculation should be designed such that it should be simple not to consume much 

time and successful to find near optimal results. The quality of the initial upper 



 
 

35 
 

bound value and the tightness of the lower bound value calculation strategy will 

determine the memory performance of the algorithm. 

The techniques applied to improve the branch and bound algorithm and increase its 

capability to solve larger problems are mainly concentrated on the points that are inferred 

from the frame study stated above. Apart from the abovementioned points, algorithmic and 

code based improvements are also applied. All the detailed work of the developed branch 

and bound algorithm will be given in Chapter 5. 
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CHAPTER 5 

AN EFFICIENT BRANCH AND BOUND ALGORITHM FOR THE 

RESOURCE LEVELING PROBLEM 

 

Several improvement techniques are implemented to achieve an efficient branch and bound 

algorithm for the RLP. With the applied techniques, improvements for storage memory and 

computation time performance have been achieved. In this chapter, the developed algorithm 

will be explained in detail. The first section will include the definitions of the terminology of 

the algorithm. In the second section, the problem will be defined and scheduling methods 

will be explained. Third section will focus on the upper bound calculation technique and 

following this section lower bound calculation strategies are going to be explained in detail. 

In the next section, the branching strategy, node gender decision system, candidate mother 

queue arranging method are going to be presented and finally the flow chart of the algorithm 

will be illustrated. 

5.1 Definitions of the Terminology of Branch and Bound Algorithm 

This section included definitions of the terminology used to describe the branch and bound 

algorithm. 

 

Solution tree: The tree like scheme that represents all of the solution procedure is 

called solution tree. It contains the nodes and the branches that connect 

the child nodes to their mother nodes. 

Node: A partial solution packet that contains information of scheduled activity 

and the lower bound value of the partial solution is called node. In nodes 

one more non-critical activity has been scheduled at each generation 

process. The ID of that recent scheduled activity, the defined start time, 

the lower bound value, the mother node address and the next best node 

address are coded in a node element. 

Root: 

(start node) 

The first node of the solution tree is called root node. It has no non-

critical activity scheduled. Thus, it has the minimum lower bound value. 

Leaf: 

(end node) 

The last node of the tree is called leaf. It has all non-critical activities 

scheduled to a definite start time. It contains a complete solution i.e. a 

feasible schedule. 

Branching Opening new branches from an existing node, that is, generating new 

nodes from a current node is called branching. 
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Mother node: The node that has been used for branching and generating new nodes is 

called mother node. Root node does not have a mother node. 

Child node: The node generated by branching a mother node is called child node. By 

scheduling one of the unscheduled non-critical activities during 

branching child nodes are formed. Root node is not a child node.  

Sister nodes: Nodes of the same mother node are called sister nodes. 

Candidate 

mother node 

All nodes that are capable of generating new nodes are called candidate 

mother nodes and kept to produce child nodes at a later time. Once it has 

been used to generate child nodes, it is not a candidate anymore. 

Node gender During branching, one of the unscheduled non-critical activities is 

scheduled in addition to the non-critical activities scheduled up to the 

mother node. The ID of the additional non-critical activity that is going 

to be scheduled at that node is called the gender of the node. Child nodes 

of the same mother node have the same node gender. It is determined for 

each branching process by the node gender decision system. 

Node gender 

decision system 

This system decides which non-critical activity to use in branching 

process of candidate mother node. The selected non-critical activity 

highly affects the increase in the lower bound value of child nodes 

compared to the lower bound of mother node. 

Node level 

(Generation or 

branching level) 

Starting from the root node, non-critical activities are scheduled step by 

step as approaching to the end of the tree. The number of non-critical 

activities that have been recently scheduled represents the node level or 

the generation level. A leaf has maximum level as it has all non-critical 

activities scheduled to a definite start time. 

Critical 

resources 

Resources of critical activities are called critical resources. 

Scheduled 

resources 

Resources of non-critical activities that have defined start times are 

called scheduled resources. 

Unavoidable 

resource periods 

Periods of which resources of an activity will occur inevitably are called 

unavoidable resource periods. It is the period between late start time and 

early finish time unless late start time is later than early finish time for 

an activity. Otherwise, no unavoidable resource periods exists. 

Unallocated 

resources 

Resources of non-critical activities that do not have defined start times 

yet are called unallocated resources. They are subjected to be used for 

lower bound calculation. According to the lower bound strategy, they 

can be split to single resources or bounded to stay together. 

 

Some definitions are represented in the Figure 5.1, where the solution tree of the problem of 

Easa (1989) has been presented. The upmost node (A) of the tree is seen as the root node, 

while at the end of the tree, leaf nodes (E, F, G, H and from K to Q) can be seen. The leaf G 

is the optimal solution. The numbers on the right down corners outside the nodes shows the 

sequence of node formation. Nodes with dotted frame (from I to Q) are the nodes subjected 

to pruning. In fact they are not produced in the actual procedure, but they are included in 

Figure 5.1 to show the complete solution tree. The solution tree has three generation levels 

in total. In the first level activity 4; in the second level activity 5; and finally in the third 

level activity 3 have been scheduled. In Figure 5.2, the change in the candidate mother node 

queue can be traced. As can be seen in the figure, the dotted frame means that this node is 
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used for branching, it is not a candidate anymore, and hence, it is omitted from the queue. At 

the last level the child nodes of D are all leaf nodes, and since the optimal solution is found 

at that moment B is not used for furthermore branching. Each newly generated node is 

placed in the queue using its lower bound value. Nodes with smaller and equal lower bound 

values take the front place. Lastly generated node has higher priority in the queue. 

 

 

 

Figure 5.1 Solution tree of problem of Easa (1989) 
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Figure 5.2 Change in the candidate mother node queue for the problem of Easa (1989) for 

solution tree shown in Figure 5.1 

 

 

 

Resource 

utilization 

profile 

The discrete graph of daily resource utilizations over the project duration 

that represents the fluctuations and leveled periods is called the resource 

profile. Each resource type has its own resource utilization profile. 

Critical profile 

 

 

The resource utilization profile obtained as a result of resource 

allocations of critical activities only. 

Scheduled 

profile 

The resource utilization profile obtained as a result of resource 

allocations of critical and scheduled activities and as well as unavoidable 

resource periods. 

Nodal profile The resource utilization profile obtained as a result of resource 

allocations of unallocated resources by distributing them over the 

scheduled profile. 

Daily maximum 

allowable 

profile 

The resource utilization profile representing the daily maximum 

allowable resource demands. It is obtained by resource allocations of 

critical and scheduled activities, and adding the daily resource demands 

of unscheduled activities from their current early start times to their 

current late finish times. 

Lower bound 

and Lower 

Bound 

Calculation 

(LBC) strategy 

Each node has a number of non-critical activities scheduled to definite 

start times and the remaining non-critical activities are not scheduled 

yet. The scheduled activities have their resources allocated while others 

have not been allocated yet. Unallocated activities are allocated with or 

without any constraints to obtain the best possible resource utilization 

profile. The objective function value of that profile is the lower bound 

value corresponding to the partial schedule kept in that node. The 

constraints employed during the allocation of unallocated resources 

define the lower bound strategy. 
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Lower bound 

calculation 

module 

This module has mainly the duty of distributing the unallocated 

resources over the scheduled profile to obtain possible best profile while 

employing some strategies with constraints to tighten the calculated 

values for nodes as much as possible. The strategies should guarantee to 

yield non decreasing values as node level increases in a path from the 

root to the leaf.  

Upper bound The objective function value of the best possible schedule known before 

and during the formation of the solution tree defines the upper bound 

value. Before the solution procedure starts, it is found by a simple 

heuristic procedure. During the solution tree formation, when a leaf is 

produced and if it contains a better complete schedule than the best 

schedule at hand, the best possible schedule is upgraded to the schedule 

found in leaf and the upper bound value is updated to the new value. 

Promising node The nodes that are capable of leading to an optimal solution are 

promising nodes. A node is called promising if it has a lower bound 

value smaller than or equal to the upper bound value during the tree 

formation process. 

Non-promising 

node 

The nodes that are not capable of leading to an optimal solution are 

called non-promising nodes. They can be identified as the ones having 

greater lower bound value than the upper bound value. 

Candidate 

mother node 

queue 

All promising nodes are arranged to form a queue. The arrangement is 

performed according to the lower bound values of the nodes. The node 

with the minimum lower bound is the head of the queue and the 

immediate next node to be used for branching. The end of the queue is 

the node with maximum lower bound value but not greater than the 

upper bound since greater ones are non-promising and deleted. 

Candidate 

mother node 

queue arranger 

module 

Newly formed child nodes are also candidate mother nodes unless they 

are leaves. They are sent to the queue arranger module. This module 

places the new candidate mother nodes to the queue according to their 

queue indexes. 

Pruning After a branching process, the newly formed nodes checked and 

promising nodes are sent to the candidate mother node queue, but the 

non-promising nodes are deleted. The branch of non-promising nodes is 

pruned in the tree to simplify the solution procedure. 

 

A partial solution packet taken from the solution procedure of problem rlp_10_1_1 from test 

set T2 of Rieck et al. (2012) has been presented in Figure 5.3. Critical, scheduled, 

unavoidable and unscheduled resources have been shown. Note that activity_10‟s early start 

time has been delayed due to the scheduled start time of activity_2 and the temporal relation 

in between. Therefore, an unavoidable resource period has been occurred (duration of 

activity_10 is 7 days). Unallocated resources are distributed one by one within the daily 

maximum allowable resource usage profile to obtain a lower bound. The cost of the 

resources is given as 4, and optimal solution results of that instance in case of future study 

needs are as follows: SSQR: 2472, OVERLOAD: 28, RID-MRD: 96. 
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Figure 5.3 Representation of basic definitions using problem of rlp_10_1_1 from test set T2 

of Rieck et al. (2012) 
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Queue index Arrangement of candidate mother node queue is carried out by indexes. 

The size of the indexing is the difference between the initial upper 

bound value and the root node lower bound value. Each node has a 

queue index calculated using its lower bound value. Candidate mother 

nodes are placed to the queue according to their indexes. 

Schedule map A list that shows which activities have been scheduled and to what start 

times and which activities have not been scheduled yet. Before a 

branching process takes place, it is determined by tracing and picking 

information from the mother nodes of the current candidate mother node 

up to the root node. 

Rescheduling When scheduled non-critical activities have been defined start times that 

may affect start and finish times of the unscheduled activities. 

Recalculating early and late start times of unscheduled non-critical 

activities regarding the current schedule map is required to eliminate 

possible infeasible schedule variations. 

Rescheduler 

module 

This module utilizes the schedule map and performs scheduling over the 

activities by treating the start time defined activities as fixed. The non-

critical activities that have not defined start times yet are calculated for 

their new early and late start times and then, total floats are updated. 

 

5.2 Problem Instances and Scheduling Methods 

In project scheduling, there are certain types of relations among tasks. The relationships 

represent the work logic. The simplest way of defining a work logic is having precedence 

relationships between the activities. The general way of defining all relationships between 

the activities is provided by temporal constraints. In this thesis study problem instances 

subjected to both precedence relations and general temporal constraints have been used. 

Problem instances with precedence relations are scheduled using critical path method 

(CPM). While on the other hand, instances subjected to general temporal constraints are 

scheduled using temporal scheduling (TPS). In this section, both scheduling methods are 

going to be explained. 

5.2.1 Problems subjected to precedence relations and CPM scheduling 

The simplest way of definition of task relations is the precedence relations. In this relation, 

tasks are scheduled to start after finish of their predecessors. Once the predecessor of the 

task is finished, it can be started any time without causing any delay at the project 

completion time. The procedure of CPM scheduling contains two processes, one is forward 

pass to find early times and the other is backward pass to find late times. In forward pass, 

start activity (which is generally a milestone) is started at time zero. Then, the activity which 

has all its predecessors‟ early start times calculated is started to the latest early finish time of 

its predecessors. This way all activities‟ early start times are calculated. The finish activity is 

started at the latest finish time of its predecessors and this way forward pass is completed. In 

backward pass, finish activity is assigned a late finish time at its early start time as it is a 

dummy activity representing the finish of the project. Similar to the forward pass, the 

activity having all its successors‟ late finish times are calculated is finished to the earliest 
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late finish time of its successors. This way all activities‟ late start times are calculated. After 

early and late start times are calculated for each activity, available float for activities can be 

computed easily by subtracting the early start time from late start time. The activities having 

zero float are critical activities and compose the critical path of the project. 

The considerations in precedence relations and CPM scheduling are relatively simple. In 

Figure 5.4 and 5.5, the activity network diagram (AoN) and early start schedule and an 

optimal schedule with respect to SSQR metric with corresponding resource utilizations are 

presented. Relationships are given as FS (finish to start) with zero lags. Note that, the early 

start schedule corresponds to leaf (end node) K, the optimal schedule corresponds to leaf G 

in the solution tree given in Figure 5.1. 

 

 

 

Figure 5.4 Activity network diagram of problem of Easa (1989) with precedence relations 

 

5.2.2 Problems with general temporal constraints and TPS scheduling 

A more general way of representing activity relations is achieved under general temporal 

constraints (Neumann et al., 2003). In this relationship type, there are minimum and 

maximum time lags between the start times of the activities. Similar to the precedence 

relations case, there is a critical path, however, the critical path is neither continuous nor 

complete. That is, there may be periods of which no critical work is performed (see Figure 

5.3 – Scheduling Table) or first critical activity may start at the middles of the project. All 

relationships depend on the tasks‟ dependencies under various conditions. Under general 

temporal constraints, relationships are defined based on start times as time lags. Activities 

may have minimum time lags, maximum time lags or both at the same time dually. 

Instances subjected to general temporal constraints are scheduled using temporal scheduling. 
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Figure 5.5 Early start schedule and an optimal schedule for problem of Easa (1989) 

 

Temporal scheduling is very similar to CPM scheduling and has forward pass for early start 

times determination and backward pass for late start times determination. Before starting to 

forward pass, all activities‟ early start times are initialized at time zero. Then, each activity‟s 

early start time is checked if it satisfies the minimum and maximum time lag relationships 

with its predecessors‟ early start times. If it does not satisfy, the early start time of the 

activity is shifted forward to the earliest start time that satisfies all temporal relations with its 

predecessors. This way, early start times of all activities are calculated and the early start 

time of the finish activity is assigned as the project due time. Forward pass calculations are 

iterated as many times as the number of activities so as to ensure the effect of a change in an 

early start time of a predecessor is taken into account. Before starting to backward pass, all 

activities‟ late start times are initialized at the project due time. Then, similar to forward 

pass, each activity‟s late start time is checked if it satisfies the minimum and maximum time 

lag relationships with its successors‟ late start times. If it does not satisfy, the late start time 

of the activity is shifted backward to the latest start time that satisfies all temporal relations 

with its successors. This way, late start times of all activities are calculated. Backward pass 

calculations are iterated as many times as the number of activities so as to ensure the effect 

of a change in a late start time of a successor is taken into account. After early and late start 

times are calculated, available floats can be computed easily. Early and late finish times of 

activities can be found by adding the duration of each activity to their start times. Similar to 

the CPM case, activities with zero total floats are called as critical activities. 

The network diagrams of instances subjected to general temporal constraints may have 

double arrows defining the relationship between two activities. When double arrow case 

occurs, it means that those dual activities have both minimum and maximum time lag 
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relationships. Figure 5.6 represents the activity network diagram (AoN) of problem 

rlp_10_1_1 (Rieck et al., 2012). Time lags are noted on the corresponding arrows. Since 

scheduling calculations are carried out on start dates and finish dates can easily be calculated 

later using start dates and durations, only start dates are noted in the diagram. A sample 

partial schedule and corresponding resource utilization profile of rlp_10_1_1 used for 

resource leveling also has been presented in Figure 5.3. 

 

 

 

 

Figure 5.6 Activity network diagram of problem rlp_10_1_1 (Rieck et al., 2012) with 

general temporal constraints 

 

5.3 Adapted Branch and Bound Heuristic for Upper Bound Calculation 

An upper bound value defines the limit of the objective function value for the nodes to be 

kept in memory and it is an effecting parameter in determination of storage memory 

performance. It has been stated before that upper bound is the objective function value of the 

best known solution. Before starting the branch and bound procedure for the exact solution, 

upper bound is found by solving the problem with a heuristical method. Then, throughout 

the procedure, it is updated whenever a better solution is found. An adapted branch and 

bound heuristic has been developed to determine a good upper bound value. The heuristic to 

calculate upper bound should be simple as not to require much computation time, and 
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should be successful as to yield near optimal results enough to limit excessive memory 

usage. For this purpose, already studying branch and bound algorithm for exact solutions of 

RLP, with some modifications an adapted procedure has been proposed for heuristic 

solution. 

The adapted branch and bound heuristic differs from the ordinary branch and bound 

procedure in terms of node gender decision system, number of iterative procedures and 

promising node acceptance criteria. Node genders, i.e. activity ID‟s to be used for 

branching, are predefined according to some strategies. There are two main iterative 

procedures; void filling and grading cycle and rehabilitation cycle. Each cycle has a solution 

tree grown up. Finally, a promising node acceptance criterion has been defined in duty of 

upper bound. The details of the adapted branch and bound algorithm are explained as in the 

following. 

5.3.1 Node gender decision system – Activity priority determination 

In node gender decision system, activities to be used for branching are identified at the 

beginning. For each node level, the activity ID to be used for branching is defined. The 

activity to be used for branching during tree formation has already been stated to affect the 

increase or change in the lower bound. In fact, most effecting activities are preferred to be 

branched prior to others. Activity priority determination in simple heuristics is done 

according to the activity ID, total float, resource demand, duration etc. During early 

experimentations, it has been realized that the criteria defined for the activity priority is 

highly problem dependent. That is, while for some problems, ascending total float is very 

effective, it may deteriorate the performance for some other problems where descending 

resource demand is the top effecting parameter. In order to find the best effecting priority for 

branching procedure, some high effecting parameters have been defined and several activity 

priorities have been applied. The problem is solved regarding all activity priorities and the 

best result is picked and reported. The parameters used in the determination process are as 

follows: 

- (resource demand)*(duration) 

- (resource demand)*(unallocated duration) 

- (resource demand) 

- (total float) 

- (non-critical activity crowdness) 

where (unallocated duration) = (duration – unavoidable period) and non-critical activity 

crowdness for an activity is the number of non-critical activities that may be performed at 

the same time with that activity. Considering ascending and descending orders of these 

parameters, ten different sequencing criteria are obtained. A further two sequencing stages 

are applied in order to arrange the activities that have equal value according to the selected 

criteria at the first stage. In the second and third stages the same ten criteria has been applied 
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for sequencing. Figure 5.7 illustrates the activity sequencing strategy employed in the 

developed algorithm and the best priority selection. 

At the first stage, activities are sequenced according to the parameters and the heuristic 

procedure is run for each procedure. The priority which has yielded the best result is 

selected and for the second stage it is used for the first level sequencing. Activities that have 

equal values in the first level (for example, activities having the same [res]*[unalloc dur] 

values) are sequenced in the second level. Similarly, activities with same values (same 

[res]*[unalloc dur] and [total float] values) are sequenced in the third level. 

Experimentations have shown that sequencing up to third level is reasonably enough. This 

way, the problem instance is solved 30 times heuristically and the best result is picked up 

through and reported. Moreover, for the first and second stage, it can be seen from the 

Figure 5.7 that, activities are not scheduled utilizing all levels. For the 1
st
 and 2

nd
 levels, 

intuitively chosen descending resource demand and descending total float criteria 

respectively are employed to enhance the results. Therefore, the first stage is carried out by 

[x, 2, 3], second stage by [(1
st
 best), x, 3], third stage by [(1

st
 best), (2

nd
 best), x] so as at the 

end the [(1
st
 best), (2

nd
 best), (3

rd
 best)] sequencing criteria is obtained. The activity priority 

determination process has been presented in Figure 5.8. For further research, new 

sequencing criteria can be defined and different sequencing strategies can be applied. The 

aim in applying multi-level different sequencing strategies is to cover up various problem 

dependencies for sequencing. Although the problem is solved 30 times heuristically, the 

computation time is negligible compared to the exact branch and bound procedure.  

 

 

Figure 5.7 Activity sequencing and best priority selection 
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        Activity priority list according to [A, B, C]: give priority with respect to; 

             A, if equal; 

                  B, if equal; 

                       C. 

 

Stage 1 Stage 2 Stage 3 

 [x, 2, 3]  [1
st
 best, x, 3] [1

st
 best, 2

nd
 best, x] 

 

Iterate x for criteria‟s 

from 0 to 9, 

solve instance for 

each priority list, 

pick 1
st
 best. 

  

Iterate x for criteria‟s 

from 0 to 9, 

solve instance for 

each priority list, 

pick 2
nd

 best. 

  

Iterate x for criteria‟s 

from 0 to 9, 

solve instance for 

each priority list, 

pick 3
rd

 best. 

 

_____________________________________________________________ 
Pick the result of priority list of [1

st
 best, 2

nd
 best, 3

rd
 best] and report as the 

best heuristic solution result. 
 

Figure 5.8 Flow of activity priority determination process for heuristic module 

 

5.3.2 Iterative procedures of the branch and bound heuristic 

As stated above, heuristic procedure has two different iterative cycles. The first cycle is void 

filling and grading cycle and the second is the rehabilitation cycle. In the first cycle, a 

primitive solution is generated. Then, rehabilitative cycles are applied on the generated 

solution to improve the result. 

In the void filling and grading cycle, the root node is constructed by scheduling only critical 

activities. As generation level increases, the next activity in the priority list is scheduled. At 

a generation level, activities up to that level in the priority list are scheduled and the 

resources of remaining activities are unallocated. Unallocated resources are distributed 

according to their possible effects on the resource profile, that is, they are uniformly 

distributed to the periods that they can occur. The total number of unallocated resources is 

divided to the length of the period of ES-LF, and the resulted number is used to shift the 

daily demands of that period. After the distribution, we may come up with fractional daily 

demands. Figure 5.9 shows the resource utilization profile of a node during tree formation of 

the void filling and grading cycle of the problem rlp_10_1_1 of Rieck et al. (2012). Note 

that, activity_8 and activity_10 are unscheduled activities. Their total resource demand is 

distributed uniformly through the range of ES-LF. The resulting resource profile has 

fractional daily demands. This way, the effect of unallocated activities is aimed to be taken 

into account. The resource utilization profile resembles to a non-uniform rough way, the 

resource blocks to be allocated by scheduling resembles to bricks. Allocating resources 

resembles like filling the voids in the resource profile. That is why it is called void filling. 

The unallocated resources are distributed uniformly to their occurrence range so their effect 

is accounted. The overall process resembles grading a surface of a road. Hence, the 

procedure is called void filling and grading. The resulted resource utilization profile is used 
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to calculate the bounding value of the node. At the last generation level, complete schedules 

are obtained and the best schedule is selected to be imposed to rehabilitation cycle. 

In the rehabilitation process, the root node and all nodes have complete schedules. The root 

node schedule is the best solution found in the void filling and grading cycle. New nodes are 

generated by unscheduling the activity that corresponds to the branching level from the 

priority list and scheduling it again within its updated available float days. In each branching 

level, corresponding activities are rescheduled to their available float days to pick better 

solutions. All nodes of the rehabilitation cycle contain a feasible schedule. Rehabilitation 

cycle is iterated a number of times until no further improvement is obtained on the current 

best solution. The final best solution is the best solution obtained regarding the predefined 

activity priority. 

 

 

Figure 5.9 Bound calculation with void filling and grading 
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5.3.3 Promising nodes acceptance criteria 

Similar to the ordinary branch and bound procedure, nodes are generated and a bound value 

is calculated in the void filling and grading cycle while objective function value is calculated 

for complete schedule nodes in the rehabilitation cycle. Different than the exact solving 

procedure, branching does not goes on from the node having the best (smallest) value, but 

instead it goes level by level, i.e. after one generation level is finished completely, the next 

generation level is started. In actual cases, the number of nodes increases exponentially. 

Here indeed, the number of generated nodes in a level are sequenced from best (smallest 

value) to the worst (greatest value) and only a number of the best nodes are accepted eligible 

for branching in the next generation level. All remaining nodes are omitted. Therefore, the 

growth of the tree is kept limited. For experimentation, this limiting number is started from 

10 for the first generation level and decreased linearly to 1 up the last generation level. With 

this limitation, the sensitivity of keeping a best solution is aimed to be high, and at the same 

time, the number of branched nodes is aimed to be kept limited due to time and capacity 

limitations. Table 5.1 illustrates the limitation in the growth of the solution tree compared to 

the ordinary case of the problem given by El-Rayes and Jun (2009). The problem is of 20 

activities and has 13 non-critical activities. Branching on all nodes leads to finding the 

optimal solution but it requires millions of nodes to process. By the node acceptance 

limitation, this number is reduced to just hundreds. That is actually the main reason why this 

heuristic does not take much computation time. 

 

Table 5.1 Tree size growth of ordinary and limited node acceptance cases for the problem of 

El-Rayes and Jun (2009) 

Node 
level 

ID 
(TF+1) 
of each 
activity 

Length of the 
candidate mother 

node queue 
(ordinary case) 

Limiting number of 
eligible nodes for 

the next level 
branching 

Length of the 
candidate mother 

node queue (limited 
acceptance case) 

, -      , - , - ∏ , -  , -
 

 
   (  

   

 
)  , - , -  , -    , - 

1 4 5 5 10 5 
2 5 2 10 9 10 
3 15 2 20 8 18 
4 12 2 40 7 16 
5 20 6 240 6 42 
6 13 5 1,200 6 30 
7 18 6 7,200 5 36 
8 2 5 36,000 4 25 
9 17 2 72,000 3 8 
10 7 5 360,000 3 15 
11 14 5 1,800,000 2 15 
12 9 8 14,400,000 1 16 
13 = n 10 5 72,000,000 1 5 

Total:   88,676,715  241 
Note: Available float days of activities are assumed not to show variations due to scheduling of other activities during 
formation of the solution. Values given for the lengths of candidate mother node queues do not represent exactly actual 
values as in actual solution tree values are slightly different. 
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The proposed heuristic algorithm uses adapted branch and bound procedure to generate a 

good solution in shortest possible time. Meanwhile, applying several different activity 

priority lists for branching, including unallocated resources‟ effect for bound calculation in 

void filling and grading cycle and iterating rehabilitative cycles on the primitive solution to 

improve the result, a good upper bound value is obtained for the exact solution procedure. 

5.4 Lower Bound Calculation Strategy 

For the branch and bound algorithm, one of the most significant issues is how to calculate 

the lower bound value. The lower bound value is so important that it is the most effecting 

parameter for time and capacity performance of the algorithm. As lower bound calculation 

includes more considerations of problem variables and constraints, it yields more desirable 

(tighter) results. Nevertheless, more complexity introduced to the calculation strategy means 

more computation effort. Since lower bound calculation is performed for every node 

generated, any increase in computation time of the lower bound calculation module is 

reflected as it is to the overall computation time. In this study, a new lower bound 

calculation method has been developed and proposed to be used together with the existing 

lower bound calculation method. In the following sections, both calculation strategies have 

been explained, and strength of both methods have been compared. Both calculation 

methods have been observed to have different strengths which generated the idea to use both 

methods together at the same time in the procedure.  

5.4.1 LBC-1 – Distribution of unallocated resources one by one method 

This is the most known lower bound calculation method proposed by Neumann et al. 

(2000). It relies on distributing unallocated resources over the scheduled profile one by one 

so as to obtain the best leveled resource utilization profile. The only constraint employed in 

this method is that resources are distributed within the daily maximum allowable resource 

utilization limit. 

Before starting to distribute unallocated resources, scheduled profile is obtained by 

allocating resources of critical and scheduled activities and unavoidable periods. Then, daily 

maximum allowable profile is obtained. Unallocated resources are distributed over the 

scheduled profile to the lowest demand periods for SSQR, ABSDEV and OVERLOAD 

metrics without exceeding the daily maximum allowable limits. For RID-MRD metric, 

resource distribution is carried out by first filling the resource idle days of the scheduled 

profile, and then, if unallocated resources still exists, lowest demand periods are filled. 

Figure 5.10 shows one by one unallocated resource distribution for lower bound calculation. 

Then, nodal resource utilization profile is ready to calculate its objective function. 

LBC-1 calculation method has mainly three steps; 

- Scheduled profile calculation 

- Daily maximum allowable profile calculation 

- One by one distribution of the unallocated resources. 
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Figure 5.10 Lower bound calculation by distributing unallocated resources one by one 

 

During branching on a mother node, child nodes are generated one by one and for each node 

its lower bound value is calculated. When schedule maps of sister nodes are compared, it 

can be observed that the only difference is the one day shift occurring at the start time of 

node gender activity. Since sister nodes have the same ancestor nodes, apart from the node 

gender activity, all other scheduled activities have the same schedule. Therefore, a further 

simplification can be implemented for the calculation of lower bound steps. When lower 

bound value has been calculated for the first child node, the scheduled profile and daily 

maximum allowable profile calculation data is stored. This data is used during lower bound 

calculation of sister nodes by applying respective modifications. Only unallocated resource 

distribution is repeated for each sister node. This data inheritance between sister nodes has 

significantly reduced the computation time shared by lower bound calculation module, and 

it improved the algorithm. 

5.4.2 LBC-2 – Uncombined individual unscheduled activity resource effect method 

This method is a new method presented in this thesis and represents a different approach for 

lower bound calculation. Unscheduled resources are not distributed. Instead, individually 

unscheduled activities are placed over the scheduled profile by trying their float day‟s one 

by one. For each trial, the minimum resource effects of individual activities are summed up 

and accounted for the lower bound calculation. Resource demand of an unscheduled activity 

is not split and it is considered within its available schedule periods. The quality drawback 

in this method is that unscheduled activities are not considered with their combinatorial 

effects during resource effect calculation. 

Similar to the LBC-1 strategy, scheduled profile is calculated at first and it should be ready. 

Daily maximum allowable resource profile is not required in this method. Then, 

unscheduled activities are determined. One by one, each activity is taken to the resource 

effect calculation process. In this process, the unscheduled activity is started at each day of 
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its available float days. For each case, the resource effect according to the objective function 

is calculated. Minimum resource effect is picked and noted as the unscheduled activity‟s 

individual resource effect. All minimum resource effects are summed up and added to the 

objective function value of the scheduled profile. The final obtained value is coded as the 

lower bound value to the node. 

In Figure 5.11, uncombined individual resource effect calculation is illustrated using the 

resource utilization profile of rlp_10_1_1 of which schedule has been mention earlier in 

Figure 5.3. Activity_8 and Activity_10 were the unscheduled activities. Each activity is 

scheduled to its available float days individually. Objective function is calculated for each 

time, and the minimum increase compared to the scheduled profile objective function value 

is taken as the resource effect of that unscheduled activity. Resource effect calculation of an 

unscheduled activity does not affect other activity‟s resource effect calculations.  

LBC-2 calculation method has mainly two steps; 

- Scheduled profile calculation 

- Uncombined individual unscheduled activity resource effect calculation. 

LBC-2 is relatively much more complex compared to LBC-1. It requires much computation 

time to calculate resource effects for each node. Even considering sister nodes, one day shift 

at the start time of the node gender activity may cause all unscheduled activity resource 

effects to change. Although scheduled profile calculation data can be inherited between 

sister nodes, the resource effect calculation is still complex enough to take the most 

computation effort. Therefore, a different data heritance method has been developed with a 

cost of slight quality decrease. That is, the unscheduled activity resource effects are 

calculated based on the scheduled profile in which the node gender activity is also assumed 

unscheduled. The scheduled profile indeed belongs to the mother node. Uncombined 

resource effects of each individual unscheduled activity are calculated just before child node 

generation process. Even the node gender activity has been imposed to the uncombined 

resource effect calculation. This situation will be referred in section 5.5, where it is also 

related with the node gender decision system. Minimum resource effects of each individual 

unscheduled activity are summed up except the one of node gender activity. This summed 

value is used for the whole sister nodes lower bound value calculation. For each child node, 

objective function value of the scheduled profile is calculated and by the addition of the total 

uncombined individual unscheduled activity resource effect the lower bound value is 

obtained. This method can be called as mother data inheritance method. Considering that a 

mother node can generate tens of child nodes, uncombined resource calculation process is 

run once for mother node and never for child nodes. This method has saved from the 

computation time up to hundred times. It has been observed that the positive outcome 

overpassed the loss of the quality due to non-consideration of the node gender activity 

during resource effect calculation. 
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Figure 5.11 Uncombined individual unscheduled activity resource effect calculation 

 

Comparing LBC-1 and LBC-2, it has been observed that both methods have different 

strengths. LBC-1 has been monitored to yield lower bound values spread to a range of 

moderate minimum – moderate maximum lower bound value. On the other hand, LBC-2 has 

been monitored to yield lower bound values spread to a range of small minimum – high 

maximum lower bound value. For example, using LBC-1, early generated nodes have 

moderate lower bound values. As more nodes are generated, the new lower bound values 

show gradual increase. Some of the values exceed optimal value and remain unbranched 

while other nodes are branched until optimal solution is reached. However, using LBC-2, 

early generated nodes have very small lower bound values. Yet, as more nodes are 

generated, the new lower bound values show fast increase. Therefore, many of the values 

are pushed over the optimal value and fewer nodes remain for branching. It cannot be said 

that LBC-1 is better that LBC-2 or vice a versa. Based on experimentation, both lower 

bound calculation strategies performed well for different problem sets. The situation of 

being strong at different parts of the solution procedure triggered the idea to use both 

calculation strategies together at the same time. With dual implementation, two lower bound 
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values are calculated for each node. The tighter (greater) value is selected and coded to the 

corresponding node. With this implementation, the computation time is increased 

(approximately doubled), but the strength of both strategies is combined. Hybrid used of 

LBC-1 and LBC-2 has revealed a very powerful and high performance bounding for branch 

and bound procedure. Larger size problems could be solved and the performance of the 

algorithm has shown relatively good results. 

The use of LBC-2 has also enabled an effective way for implementing the node gender 

decision system. In the following section, how the node gender is decided using LBC-2 data 

will be explained. 

5.5 Node Gender Decision, Branching Strategy and Candidate Mother Node Queue 

Node gender, that is, the activity to be scheduled when branching from a mother node is a 

significant element that affects the lower bound value growth. Branching strategy also 

affects the path to reach the optimal solution. Finally, candidate mother nodes, which are the 

nodes to be branched for generating new nodes, are required to be organized well so that at a 

large solution tree sizes interpreting millions of nodes becomes possible. There are two three 

node gender decision methods employed in the developed algorithm. In the first one, a 

predefined priority list is utilized while at the second one, average resource effect 

calculation has been employed to determine node gender activity. The third one is slightly 

different than the first method. All methods are going to be explained in detail in the 

following sections. Then, branching strategy and candidate mother node queue with queue 

indexing are going to be explained. 

5.5.1 NGD1 – Predefined priority list for node gender decision 

In this node gender decision method, the activity to be scheduled for branching from a 

mother node is determined according to a predefined activity priority list. This list is formed 

before starting the tree formation procedure. The generation level of the mother node to be 

branched is found. Then, the activity that corresponds to this generation level from the 

priority list is decided as node gender. One of the sequencing criteria that have been 

mentioned in section 5.3.1, for node gender decision system of adapted branch and bound 

procedure, has been utilized to determine the activity priority list. Based on 

experimentations, the sequencing criteria of [2-1-8] – which employs descending resource 

demand for the first level, descending amount of unallocated resources for the second level 

and ascending total float for the third level – has performed best results in general. Activities 

are sequenced according to that criteria and obtained activity priority list is used for node 

gender decision. Some other intuitively chosen sequencing criteria have also been 

experimented. However, in average, other criteria have not performed as good as the above 

mentioned one. 

In NGD1 method, the activities to be scheduled at each branching level are predefined and 

no calculation takes place during branching for node gender decision. However, as a 

drawback of that method, the selected criteria for priority determination is problem 

dependent. Some problem instances may require much computation time compared to the 
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same size instances. Besides, there is no mean to solve the problem many times with 

different criteria based priority lists and pick the best performance. 

5.5.2 NGD2 – Maximum average resource effect calculation for node gender decision 

This method has been inspired from the individual unscheduled activity resource effect 

calculation for LBC-2. Minimum uncombined individual unscheduled activity resource 

effects are summed up and added to the scheduled profile objective function value to find a 

lower bound value for issued node. In section 5.4.2, it has been stated that unscheduled 

activity resource effects are calculated using mother node‟s information. Just at this stage, 

the calculation data is utilized for average resource effect calculation also. For lower bound 

calculation purposes, the minimum resource effect of an unscheduled activity is picked up. 

On the other hand, for node gender decision purposes, all resource effects are summed up, 

divided to the number of possible start times (TF+1) to find average resource effects and 

then, the unscheduled activity with the maximum average resource effect is selected as node 

gender. The resource effect calculation is illustrated in Figure 5.11. Each unscheduled 

activity is scheduled for its possible start times starting from ES time to LS time. For each 

case the resource effects are summed up and then, the average resource effect is found. The 

unscheduled activity with the maximum average resource effect is considered the one that 

will cause the most increase in the lower bound values of child nodes compared to their 

mother node. A high increase in the lower bound value increases the possibility of 

generating more non-promising nodes and thereby, increases the possibility of pruning. 

This method is a dynamic node gender decision method. However, since already available 

calculations are utilized, computation time is not increased. The activity scheduled may not 

be the same for the same generation levels. The idea of using maximum average resource 

effect plays an important role for fast lower bound tightening. This leads to pruning more 

nodes at early stages of the solution tree before having a large tree size. Both node gender 

decision methods have been tested. Experimentation results have shown that this method has 

proven better in average compared to the predefined priority method although for some 

problem instances predefined priority method showed far better performance. Test results 

have been presented in Chapter 7 for both methods. 

5.5.3 NGD3 – Dynamic priority list for node gender decision 

This method is slightly different than the predefined activity priority list method. In this 

method, node gender activity is selected as the one having most unallocated resources, if 

two activities equal to each other, the one with larger resource demand is selected. [1, 2, -] 

sequencing criteria is utilized. The priority list is updated dynamically as unallocated 

resource amount may change depending on reschedule. NGD3 has been used for the RID-

MRD objective function. 

5.5.4 Branching strategy 

Branching is the process of generating new nodes from a candidate mother node. Branching 

process continues until optimal solution is found. As branching applied, newly generated 
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nodes are increased one level in generation and it can be applied to all nodes except leaves 

(end nodes). When current node is finished for branching, from which node to continue is a 

raising issue in branch and bound procedure. Zamani (2001) has proposed to continue 

branching from the node having minimum lower bound value among all open nodes. In this 

thesis study, this branching method is utilized. Branching is continued from the smallest 

lower bound value (best) node. This process requires finding the best node at each branching 

process. Linking the nodes tree wise and tracing these links to find the best node is a time 

consuming process. Also, as defined in section 5.1, because a node only knows the address 

of its mother node, tracing is possible only towards the root node. Instead of tracing on the 

solution tree, a candidate mother node queue is formed in which nodes that can be branched 

are arranged from the best node to the worst node. As stated in node definition, each node 

also knows the address of the next coming best node. Considering the queue, each node 

knows the address of its successor node. At each time, the node that will be imposed to 

generate new nodes is taken from the head of the queue. The next coming node becomes the 

head. During branching, newly generated nodes are placed into the queue to the correct 

places according to their lower bound values. This way, the node for branching can be 

picked easily and precisely. Dealing with the candidate mother node queue requires a special 

effort because for difficult problems its size extremely enlarges. This issue has been solved 

by an indexing method which is explained in the next section. 

5.5.5 Candidate mother node queue and queue indexing 

The candidate mother node queue is used to keep the nodes arranged for branching and to 

easily pick the best node for the next branching process. The head of the queue is the best 

node and the tail is the worst node. The worst node can have a lower bound value equal to 

the upper bound value at most since the nodes with greater lower bound value than the upper 

bound value are non-promising and they are just deleted. When the head node of the queue 

is imposed for branching, its link is broken from the queue and stays at memory just as a 

mother node. The next coming node becomes the head of the queue. Newly generated child 

nodes are checked if they are capable of new node generation (i.e. not leaf nodes) and if they 

are promising. Eligible child nodes are selected candidate mother nodes and placed to the 

queue according to their lower bound values. They are placed just in front of the nodes 

having the same lower bound value. Finding the correct place for a new node requires 

searching in the queue. Generally, implemented searching method starts from the head node 

and compares lower bound values until correct place is found. Nevertheless, for difficult 

problem instances, the size of the queue reaches to billion nodes. At such cases, for each 

new node placement, billions of nodes are searched. Every time, lower bound information of 

a node is looked up. If it is smaller than the new node value, the address of the next best 

node is traced. Looking up for data and comparing values are repeated until correct place of 

the new node is found. Considering that this bulky searching process is repeated for each 

newly generated node, as the size of the queue increases, the speed of the algorithm severely 

drops to plodding speeds. 

The arrangement in the candidate mother node queue is performed according to the lower 

bound values. The smallest lower bound value is found just at the beginning of the tree 
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formation process and belongs to the root node. The biggest lower bound value is equal to 

the upper bound value. As a result, the range of the lower bound values in the queue is 

definite. All candidate mother nodes will have values falling in this range. A new node is 

placed just in front of the nodes with the same value in the queue. Considering these facts, it 

has been realized that if the address of the frontmost node of the same lower bound value is 

known, the new node can be placed directly. Therefore, addresses of frontmost nodes 

belonging to all lower bound values in the range are kept in memory as indexed. Once a new 

node is to be placed in the queue, the queue index is determined corresponding to its lower 

bound value. Without searching in the queue, the address of the correct frontmost node is 

found by the queue index and the new node is placed in front of that node. After placement 

finishes, necessary address updates are performed and next process is initiated. This method 

is queue size independent. By queue indexing the management of the candidate mother node 

queue is achieved with negligible effort even for difficult problem instances. The method 

has omitted all the drawbacks of link-wise searching. 

Figure 5.12 illustrates a candidate mother node queue with queue indexing. The root node 

value is assumed to be 37, upper bound value is to be 50 and the optimal value is to be 48. 

Queue indexing is in the range of 37-50 which has 14 addresses of frontmost nodes. At the 

beginning of the solution tree, branching starts with the root node and the queue is empty. 

As new nodes are generated, the queue is filled. Newly generated child nodes having lower 

bound values greater than 50 (greater that the upper bound value) are deleted. Child nodes 

with values less than 50 are placed in the queue. The address at the queue index 

corresponding to the lower bound value is read and the new node is placed in front of the 

node group with the same value. The existing link is broken and relinking is performed with 

the new node. Each time, the head node is used for branching. Newly generated nodes 

cannot have a lower bound value smaller than that of the head node. This is guaranteed by 

the lower bound calculation strategy – child nodes cannot have better values than their 

mother node – and by processing already on the best node. As the branching process goes 

on, the head node value steps up towards the optimal value. After a certain time, through the 

branching process, some mother nodes generate leaves. In this case, the leaf that has a better 

value than the upper bound value (say 48) is taken as the current best solution. Upper bound 

value is updated. Candidate mother nodes at index 48 and above lose their capability of 

producing better solutions. Therefore they are never branched from. Whenever no candidate 

mother node remains with a value under 48, the current best solution is reported as the 

optimal solution to the problem. All nodes below the optimal value should be branched with 

the priority for branching not being important. However, as the optimal value is not known 

during the procedure, arrangement of the nodes from best to the worst plays a crucial role 

not to branch the nodes between the optimal and initial upper bound value. Some queue 

indexes may remain empty for the whole branching process if a node with the corresponding 

lower bound value does not exist. The proposed queue indexing method significantly 

improved the computation performance compared to link-wise searching method. For most 

of the problems, almost 99% of the computation time was saved. 
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Figure 5.12 Candidate mother node queue with queue indexing 

 

5.6 Summary of the Proposed Branch and Bound Procedure and Process Overview 

The proposed branch and bound algorithm has many simple and effective techniques 

integrated within to increase its capability to solve larger problems and improve its 

performance. An upper bound value is determined by the adapted branch and bound 

heuristic. The root node is formed and the smallest lower bound value is also determined. 

The candidate mother node queue indexing size is defined in the range of the smallest lower 

bound value and the upper bound value. Branching process is initiated by generating new 

nodes from the root node which is also the only node in the queue. For the rest of branching 

processes, the head node of the candidate mother node queue is used. By tracing the 

ancestor nodes of the mother node schedule map is obtained. Using schedule map, 

rescheduling is performed to update early and late start times. The node gender for child 

nodes is determined either using predefined activity priority list or using average resource 

effect method. Once the node gender is defined, new nodes are generated. For each newly 

generated node, two lower bound values are calculated using LBC-1 and LBC-2 strategies. 



 
 

61 
 

The tighter (greater) value is coded to the node. Nodes are checked for being promising. 

Non-promising nodes are deleted. Queue index is determined corresponding to the lower 

bound value for the eligible nodes. Newly generated eligible nodes are placed in the queue. 

The head node of the queue is occupied for branching and removed from the queue. As 

branching continues, more new nodes are generated, the size of the queue increases, and the 

average generation level of the candidate mother nodes increases. Towards the end of the 

solution tree, last generation level nodes come to the head of the queue and newly generated 

nodes become leaves. Each leaf is compared with the upper bound value as it contains a 

complete schedule. Upper bound value is updated if a better value is obtained. Candidate 

mother nodes that fall above the new upper bound value due to the update are not eligible 

for branching any more. However, deletion of them implies a link-wise search and delete 

process, which may require tedious effort. Thus, they are left in memory as garbage. Among 

the generated leaves, only the best leaf is kept in memory and remaining is deleted. The leaf 

is also checked for optimality. This is achieved by looking for existence of eligible nodes in 

the queue. After the upper bound update, if eligible candidate mother nodes exist in the 

queue, branching process is continued. However, if no more eligible candidate mother node 

(no head node) remains in the queue, the solution process is terminated and the scheduled 

map obtained from the best leaf is reported as the optimal solution. Figure 5.13, the flow 

chart of the developed algorithm for solving RLP to optimality has been shown. 

When the developed branch and bound algorithm is analyzed in terms of memory use, it can 

be seen that two main groups occupy memory. The first group is the node pile that falls in 

the region of optimal value and upper bound value. Those nodes remain in memory as their 

deletion is a time consuming process. They can be eliminated not to occur as long as the 

initial upper bound is equal to the optimal solution. The second group is the mother node 

population. All of the candidate mother nodes are kept in memory even after they are used 

for new node generation. They are necessary at later times for obtaining schedule map as 

node data contains the start date of only the node gender activity. Each node might be 

assigned all start dates of scheduled activities, however, that increases the individual size of 

node and reduces the capacity performance as well. On the other hand, considering the 

computation time performance of the procedure, the functions that are called frequently are 

simplified as much as possible. Also, the quality of the lower bound calculation is important 

in reducing the number of branching applied nodes. However, the more complexity is 

introduced to the algorithm, the more computation is required. Despite the limitations, 

branch and bound algorithm still can be improved and developed further to increase its 

performance and solving capability for larger size problems. 
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Figure 5.13 Flow chart of the developed RLP optimal solving algorithm
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CHAPTER 6 

MIXED-INTEGER LINEAR MODEL FOR RLP 

 

In addition to branch and bound algorithm, other methods also have been widely used in the 

literature. One of the most popular methods is integer linear programming. The recent 

research study published by Rieck et al. (2012) uses a mixed-integer linear optimization 

model for the resource leveling problem. However, experimentations have been carried out 

for two objective functions; minimization of sum of squares and minimization of overload 

resources. The proposed branch and bound algorithm is tested using the same test set of 

Rieck et al. (2012). One of the aims of this thesis study is to develop and solve RLP using 

RID-MRD metric. Therefore, using mixed-integer linear programming a model is 

developed. Branch and bound algorithm and mixed-integer linear model have been 

compared for solving RLP based on RID-MRD. Results have been given in Chapter 7. The 

mixed-integer linear model is integrated into MS Excel and GAMS/CPLEX software to 

simplify application. In the following, details of model have been presented. 

6.1 Definitions of Model Inputs 

6.1.1 Sets 

                             . 

                                                     . 

                                             . 

                                                                    . 

6.1.2 Parameters 

                                    . 

                                   . 

                          . 

                                                        . 

                                                                 . 

                             . 

                   . 

      {
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6.1.3 Variables 

    Weighted sum of square of daily resource demands of all resource types. 

    Weighted sum of absolute deviations of daily resource demands from the 
targeted resource demand of all resource types. 

    Weighted sum of maximum daily resource demand of all resource types. 

    Weighted sum of resource idle days of all resource types. 

    Start day of activity i. 

      Daily demand of resource k at time t. 

      Maximum daily demand of resource k. 

         Maximum daily demand of resource k before time t. 

         Maximum daily demand of resource k after time t. 

        The smallest of mx1 or mx2 for each time interval and for each resource 
type. 

      Square of daily demand of resource k at time t. 

      Excess demand from the targeted resource level ( t,k) of resource k at 
time t  where over demand periods occur. 

      Less demand from the targeted resource level ( t,k) of resource k at time t 
where under demand periods occur. 

        {
                                                          
                                                                                                

 

      {
                                                   
                                                                               

 

      {
                                             
                                                                  

 

6.2 Modeling 

The resource leveling objective functions that have been mentioned in Chapter 3 have been 

modeled based on mixed-integer linear programming. Equation (6.1) tries to minimize the 

weighted sum of squares of daily resource demands. Equation (6.2) tries to minimize the 

weighted sum of absolute deviations of daily resource demands from the targeted resource 

level. Equation (6.3) tries to minimize the weighted sum of excess resource usage over the 

targeted resource level. Equation (6.4) – which is MRD (maximum resource demand) – 

minimizes the weighted sum of peak demands of each resource type. Equation (6.5) – which 

is RID (resource idle days) – tries to minimize the weighted sum of resource idle days 

occurring at each resource utilization profile. 

         ∑∑      
 

  

 (6.1) 

         ∑∑  |    

 

      |

 

 (6.2) 
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         ∑∑  (    

 

      ) 

 

 (6.3) 

         ∑      (           )

 

 (6.4) 

         ∑∑  (    (   (           ) 

  

   (           ))      ) (6.5) 

 

Because above mentioned functions are not linear, they are first linearized. In the following 

sections, each linear representation of the function is given with its constraints different than 

the others, and then, common constraints shared by all of the models have been stated. 

6.2.1 Model for sum of squares metric 

         ∑∑  

 

    

 

 (6.6) 

Constraints: 

     ∑       

 

              (6.7) 

     ∑        

 

              (6.8) 

∑      

 

                (6.9) 

                      (6.10) 

       *   +                   (6.11) 

 

The model (6.6) aims to minimize the weighted sum of squares of daily resource demands. 

Equation (6.7) finds the total use of resource k at time t. Equation (6.8) is equal to the square 

of that value. Equation (6.9) imposes the daily total use of resource k to take a single value. 

     variables can take the value of zero or positive integer values.        are binary 

variables. 
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6.2.2 Model for absolute deviations metric 

         ∑∑  (    

 

     )

 

 (6.12) 

Constraints: 

                                  (6.13) 

                           (6.14) 

 

The model (6.12) aims to minimize the weighted sum of absolute deviations of daily 

resource demands from the targeted resource level. Due to the nonlinearity of the absolute 

value function, the constraint (6.13) ensures linearity of the model by implying           

as a difference of two non-negative integer variables.            variables can take the value 

of zero or positive integer values.  

6.2.3 Model for overload resources metric 

         ∑∑      

  

 (6.15) 

Constraints: 

                      (6.16) 

 

The model (6.15) aims to minimize the weighted sum of overload resources from the 

targeted resource level.      variable can take the value of zero or positive integer values. 

6.2.4 Model for maximum resource demand metric 

         ∑      

 

 (6.17) 

Constraints: 

                        (6.18) 

                 (6.19) 

 

The model (6.17) aims to minimize the weighted sum of peak demands of each resource 

type.      is a variable that represents maximum daily usage of resource type k. After that 

definition, daily resource usages of each resource is restricted not to exceed corresponding 
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     value. With this constraint (6.18) the model is linearized.      variables can take the 

value of zero or positive integer values. 

6.2.5 Model for resource idle days metric 

         ∑∑  (           )

  

 (6.20) 

Constraints: 

                                  (6.21) 

                                  (6.22) 

                            (6.23) 

                            (6.24) 

                                       (6.25) 

 

The model (6.20) aims to minimize the weighted sum of resource idle days. In other words, 

it tries to minimize the weighted sum of differences between the resource demand of each 

day and the smallest one of the largest resource demands before and after that day.         

is the largest demand of resource k before time t. On the other hand,         is the largest 

demand of resource k after time t. Constraints (6.21) and (6.22) imply that daily demands of 

resource k before and after time t cannot be greater than the largest demands of resource k 

before and after time t. Inequalities (6.23) and (6.24) finds the smallest one of the largest 

daily demands of resource k before and after time t for each day and each resource type. 

       ,               variables can take the value of zero or positive integer values. 

6.2.5 Common constraints 

∑               

 

            (6.26) 

           (     )              (6.27) 

∑               

           

 (6.28) 

∑             

           

 (6.29) 
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     ∑                                    

    (      )

      (           )

 (6.30) 

                           (6.31) 

                                (6.32) 

     (6.33) 

     (6.34) 

       (6.35) 

                    (6.36) 

            (6.37) 

     *   +           (6.38) 

     *   +           (6.39) 

 

All constraints related to the scheduling of the activities are common for all models. 

Equation (6.26) finds the daily resource demand. The activities are constricted to use 

resources only within the time they are in progress with this constraint. Constraint (6.27) 

prevents starting of an activity unless its predecessors are finished. (6.28) finds the starting 

time of activities. Constraint (6.29) implies that each activity can be started in a time only in 

between its early start and late start times. Equation (6.30) determines the period of which 

the activity is on progress and it ensures the continuity of this period. Constraints (6.31) and 

(6.32) imply that an activity cannot be active on a time before its early start time and after its 

late finish time. (6.33) states that the dummy start activity starts at time zero and (6.34) 

states that the dummy finish activity ends before time D implying the project start time and 

due times. (6.35) denotes that the start activity is active at time zero.          variables can 

take the value zero or positive integer values.           variables are binary variables. 

The mixed-integer linear model has been implemented into an MS Excel file. Instance input 

data is entered using a sheet prepared in MS Excel. The problem data is prepared according 

to the model by the Excel file, and then, computational processes are performed by 

GAMS/CPLEX software. Results are printed in a sheet of the Excel file. Experimentation 

results have been presented in Chapter 7. 
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CHAPTER 7 

COMPUTATIONAL EXPERIMENT RESULTS 

 

The developed branch and bound algorithm is capable of solving resource leveling problem 

subjected to precedence relations and general temporal constraints. One of the four objective 

functions stated in Chapter 3 can be utilized to measure leveling. For the objective functions 

except RID-MRD, LBC-1 and LBC-2 strategies have been utilized together for lower bound 

calculation, two node gender decision methods (NGD1 and NGD2) have been implemented 

and test results corresponding to both methods have been presented. For RID-MRD metric, 

only LBC-1 has been employed. LBC-2 is not suitable for this metric, hence, it is not 

applied. For node gender decision, NGD3 method has been utilized for RID-MRD. 

Testing of the algorithm has been performed on a computer with Intel® Core™ i5-2500 

CPU at 3.30 GHz and an operating system of 64 bit. 16 GB RAM capacity with a 120 GB 

SSD added as virtual memory, in total a net 127 GB computation capacity has been 

provided. Although, the employed computer has a processor speed of 3.30 GHz, time results 

are given scaled with a factor to enable comparison with some other experimentation results. 

Therefore, for comparison with time results of Gather et al. (2010) and Rieck et al. (2012) 

the factor is 1.24 (3.30/2.67) to comply with 2.67 GHz processing speed. 

Computational study has been conducted using the following test sets. A 21 problem set 

with sizes 5 to 20 activities collected from the literature has been solved using branch and 

bound algorithm based on SSQR, ABSDEV, RID-MRD objective functions (Mutlu, 2010). 

Results are given in section 7.1 in comparison with a start time enumeration based branch 

and bound procedure of Mutlu (2010). A test set of 48 problems with sizes of 30 activities 

selected from PSPLIB has been solved using branch and bound algorithm and mixed-integer 

linear model based on RID-MRD objective function. Results have been given in section 7.2. 

Test sets rlp_j10, rlp_j20 of Kolisch et al. (1999) and test sets ubo10, ubo20 of Franck et al. 

(2001) have been solved using branch and bound algorithm based on SSQR objective 

function. Results have been given in section 7.3 in comparison with Gather et al. (2010). 

Test set T2 of rlp_10, rlp_15, rlp_20 and rlp_30 of 1, 3, and 5 resource cases of Rieck et al. 

(2012) have been solved using branch and bound algorithm and mixed-integer linear model 

based on SSQR, OVERLOAD and RID-MRD objective functions. Results have been given 

in section 7.4 in comparison with Rieck et al. (2012). 
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7.1 Computational Results of 21 Problem Test Set 

A 21 problem test set collected from the literature consisting of instances with sizes 5 to 20 

activities with single and multi-resource cases have been solved using branch and bound 

algorithm (Mutlu, 2010). The instances in the test set are subjected to precedence relations. 

The test set has been solved utilizing SSQR, ABSDEV and RID-MRD objective functions. 

The same test set has also been solved by start time enumeration based branch and bound 

algorithm developed by Mutlu (2010) according to Zimmermann (2000). Both tests have 

been performed on the same computer with 3.30 GHz processor speed. The same optimal 

results with the results of Mutlu (2010) have been obtained. Table 7.1, 7.2 and 7.3 represent 

the computation time results. Optimal results of the problem set are available in Appendix 

A. Optimal resource profiles of the problem of El-Rayes and Jun (2009) are available in 

Appendix B. 

 

Table 7.1 Computation time results of the 21 problem set according to SSQR metric 

SSQR 
(weighted sum of squares of daily resource 

demands) 

 Computational Time (s) 

 
This Study 

(B&B with NGD2) 

 Start Time 
Enumeration Based 
Branch and Bound 

(Mutlu, 2010) 

 
Problem Act. 

 Single 
Resource 

Multi 
Resource 

 
Single 

Resource 
Multi 

Resource 

1 Demeulemeester (2002 Pg.416) 10  0 0.015  0 0 

2 Easa (1989) 5  0 0  0 0 

3 El Rayes and Jun (2009) 20  0.016 0.015  1 30 

4 Generated II (Mutlu 2010) 6  0 0  0 0 

5 Generated III (Mutlu 2010) 14  0 0.016  0 0 

6 Generated IV (Mutlu 2010) 18  0 0.015  0 0 

7 Generated V (Mutlu 2010) 13  0 0  0 0 

8 Generated VI (Mutlu 2010) 14  0.016 0.015  0 6 

9 Generated VII (Mutlu 2010) 16  0.016 0.015  2 3 

10 Harris (1990) 11  0 0.016  0 0 

11 Hinze (2004 Pg.152) 15  0 0.016  68 53 

12 Leu (2000) 13  0.015 0.093  30 43 

13 Mubarak (2004 Pg.61) 14  0 0.016  7 0 

14 Mubarak (2004 Pg.67) 11  0 0  0 0 

15 Mubarak (2004 Pg.217) 8  0 0  0 0 

16 Newitt (2005 Pg.82) 16  0 0.016  0 0 

17 Newitt (2005 Pg.121) 12  0 0.016  0 0 

18 Son and Skibniewski (1999) 13  0 0.015  1 0 

19 Son and Skibniewski (1999) 11  0 0.016  0 3 

20 Stevens (1990 Pg.97) 15  0.016 0.11  72 529 

21 Stevens (1990 Pg.172) 19  0.031 0.046  10 104 

 Average Time   0.005 0.021  9.095 36.714 
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Table 7.2 Computation time results of the 21 problem set according to ABSDEV metric 

ABSDEV 
(weighted sum of absolute deviations from 

the average resource demand) 

 Computational Time (s) 

 
This Study 

(B&B with NGD2) 

 Start Time 
Enumeration Based 
Branch and Bound 

(Mutlu, 2010) 

 
Problem Act. 

 Single 
Resource 

Multi 
Resource 

 
Single 

Resource 
Multi 

Resource 

1 Demeulemeester (2002 Pg.416) 10  0.015 0.015  0 0 

2 Easa (1989) 5  0 0  0 0 

3 El Rayes and Jun (2009) 20  0.016 0.032  2 48 

4 Generated II (Mutlu 2010) 6  0 0.015  0 0 

5 Generated III (Mutlu 2010) 14  0 0.016  0 0 

6 Generated IV (Mutlu 2010) 18  0 0.015  0 0 

7 Generated V (Mutlu 2010) 13  0 0.016  0 0 

8 Generated VI (Mutlu 2010) 14  0 0.031  0 8 

9 Generated VII (Mutlu 2010) 16  0 0.031  2 6 

10 Harris (1990) 11  0 0.016  0 0 

11 Hinze (2004 Pg.152) 15  0 0.015  69 90 

12 Leu (2000) 13  0.031 0.078  36 54 

13 Mubarak (2004 Pg.61) 14  0.016 0.015  10 38 

14 Mubarak (2004 Pg.67) 11  0.015 0  0 0 

15 Mubarak (2004 Pg.217) 8  0.016 0  0 0 

16 Newitt (2005 Pg.82) 16  0 0.016  0 1 

17 Newitt (2005 Pg.121) 12  0 0  0 0 

18 Son and Skibniewski (1999) 13  0 0.015  1 4 

19 Son and Skibniewski (1999) 11  0 0  0 0 

20 Stevens (1990 Pg.97) 15  0.016 0.187  63 728 

21 Stevens (1990 Pg.172) 19  0.031 0.046  16 158 

 Average Time   0.007 0.027  9.476 54.048 

 

Absolute deviations have been based on average resource demand. The average calculations 

have been carried out using standard rounding. Weights of RID and MRD have been equally 

distributed and assigned as 1 for each metric. 

Computational results based on minimization of sum of squares, absolute deviation and 

resource idle day with maximum daily resource demand methods show that the developed 

branch and bound algorithm with the applied techniques has performed far better than the 

start time enumeration based branch and bound algorithm proposed by Zimmermann (2000) 

and developed by Mutlu (2010). Average computation time is less than 0.1 seconds for both 

single and multi-resource cases and all objective functions for the developed branch and 

bound algorithm. However, it is about tens of seconds for the start time enumeration based 

branch and bound procedure. Besides, the average computation time of the RID-MRD 

solutions for the multi resource case reaches about 500 seconds. 
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Table 7.3 Computation time results of the 21 problem set according to RID-MRD metric 

RID-MRD 
(weighted sum of (1*resource idle days) + 

(1*maximum daily resource demand)) 

 Computational Time (s) 

 
This Study 

(B&B with NGD2) 

 Start Time 
Enumeration Based 
Branch and Bound 

(Mutlu, 2010) 

 
Problem Act. 

 Single 
Resource 

Multi 
Resource 

 
Single 

Resource 
Multi 

Resource 

1 Demeulemeester (2002 Pg.416) 10  0.015 0  0 0 

2 Easa (1989) 5  0.016 0  0 0 

3 El Rayes and Jun (2009) 20  0.015 0.047  39 3414 

4 Generated II (Mutlu 2010) 6  0 0  0 0 

5 Generated III (Mutlu 2010) 14  0.015 0.016  0 0 

6 Generated IV (Mutlu 2010) 18  0 0.016  0 0 

7 Generated V (Mutlu 2010) 13  0 0.016  1 2 

8 Generated VI (Mutlu 2010) 14  0 0.047  3 86 

9 Generated VII (Mutlu 2010) 16  0.015 0.046  49 228 

10 Harris (1990) 11  0 0  0 0 

11 Hinze (2004 Pg.152) 15  0 0  17 45 

12 Leu (2000) 13  0.015 0.141  216 261 

13 Mubarak (2004 Pg.61) 14  0.015 0.062  72 835 

14 Mubarak (2004 Pg.67) 11  0 0.016  0 0 

15 Mubarak (2004 Pg.217) 8  0 0  0 0 

16 Newitt (2005 Pg.82) 16  0.016 0.078  5 17 

17 Newitt (2005 Pg.121) 12  0 0.015  0 0 

18 Son and Skibniewski (1999) 13  0.015 0.016  28 144 

19 Son and Skibniewski (1999) 11  0.016 0  0 1 

20 Stevens (1990 Pg.97) 15  0.015 0.53  493 4009 

21 Stevens (1990 Pg.172) 19  0.031 0.187  257 854 

 Average Time (s)   0.009 0.059  56.190 471.238 

 

7.2 Computational Results of 48 Problem Set from PSPLIB 

A problem set of 48 problems with sizes of 30 activities from the PSPLIB of Kolisch et al. 

(1997) has been solved using branch and bound algorithm and mixed-integer linear model 

based on RID-MRD objective function. The problems are subjected to precedence relations. 

Computations for the developed branch and bound algorithm have been carried out using the 

3.30 GHz computer. The mixed-integer linear model has been run using a 2.67 GHz 

computer. Time results of branch and bound algorithm are scaled and all time results are 

given based on 2.67 GHz processing speed. Each algorithm has been given a computation 

time limit of 3 hours. The developed branch and bound algorithm has been able to solve 28 

of the 48 problems to optimality, whereas mixed-integer linear model has been able to solve 

only 5 of the 48 problems within the specified computation time limit.  Table 7.4 presents 

the timing results. It has been shown that the developed branch and bound algorithm 

outperforms the mixed-integer linear modeling for solving RLP based on RID-MRD metric. 
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Table 7.4 Computation time results of 48 problem set from PSPLIB (Kolisch et al., 1997) 

based on RID-MRD metric (1/2) 

RID-MRD 
(weighted sum of (1*resource idle days) + 

(1*maximum daily resource demand)) 

 Computational Time (s) 

 
This Study 

(B&B with NGD3) 

 This Study 
(Mixed-Integer 

Model 4&5) 

 
Problem Optimal 

 
Time (s) 

3hr 
Limit 

 Time (s) 
3hr 

Limit 

1 J301_1.RCP 89   -  170  

2 J302_1.RCP 229  389.029   257  

3 J303_1.RCP 556  103.575    - 

4 J304_1.RCP 237  8,619.200    - 

5 J305_1.RCP 243  153.095    - 

6 J306_1.RCP 201  3,633.613    - 

7 J307_1.RCP --   -   - 

8 J308_1.RCP 307  21.869    - 

9 J309_1.RCP --   -   - 

10 J3010_1.RCP 236  408.801    - 

11 J3011_1.RCP --   -   - 

12 J3012_1.RCP --   -   - 

13 J3013_1.RCP 223  913.861    - 

14 J3014_1.RCP 234  41.243    - 

15 J3015_1.RCP --   -   - 

16 J3016_1.RCP --   -   - 

17 J3017_1.RCP --   -   - 

18 J3018_1.RCP 462  743.973    - 

19 J3019_1.RCP 211  23.325    - 

20 J3020_1.RCP 629  49.635   3850  

21 J3021_1.RCP 581  610.878   200  

22 J3022_1.RCP 390  15.560    - 

23 J3023_1.RCP 658  2,520.088    - 

24 J3024_1.RCP 261  997.155    - 

25 J3025_1.RCP --   -   - 

26 J3026_1.RCP --   -   - 

27 J3027_1.RCP 232  467.286    - 

28 J3028_1.RCP --   -   - 

29 J3029_1.RCP --   -   - 

30 J3030_1.RCP --   -   - 

31 J3031_1.RCP --   -   - 

32 J3032_1.RCP --   -   - 

33 J3033_1.RCP 531  4.956    - 

34 J3034_1.RCP --   -   - 

35 J3035_1.RCP --   -   - 

36 J3036_1.RCP --   -   - 

37 J3037_1.RCP 354  370.481    - 

38 J3038_1.RCP 339  48.594    - 

39 J3039_1.RCP 357  3,820.863    - 

40 J3040_1.RCP 401  3,391.900    - 

41 J3041_1.RCP 761  0.106   35  
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Table 7.4 Computation time results of 48 problem set from PSPLIB (Kolisch et al., 1997) 

based on RID-MRD metric (2/2) 

RID-MRD 
(weighted sum of (1*resource idle days) + 

(1*maximum daily resource demand)) 

 Computational Time (s) 

 
This Study 

(B&B with NGD3) 

 This Study 
(Mixed-Integer 

Model 4&5) 

 
Problem Optimal 

 
Time (s) 

3hr 
Limit 

 Time (s) 
3hr 

Limit 

42 J3042_1.RCP --   -   - 

43 J3043_1.RCP 476  107.545    - 

44 J3044_1.RCP 248  59.065    - 

45 J3045_1.RCP --   -   - 

46 J3046_1.RCP 296  3,455.500    - 

47 J3047_1.RCP 460  4,761.025    - 

48 J3048_1.RCP 432  6,268.413    - 

 Average Time (s)   1,500.023 28/48  902.400 5/48 

 

7.3 Computation Results of Test Sets rlp_j10, rlp_j20 of Kolisch et al. (1999) and Test 

Sets ubo10, ubo20 of Franck et al. (2001) 

Test sets rlp_j10, rlp_j20 of Kolisch et al. (1999) and test sets ubo10, ubo20 of Franck et al. 

(2001) have been solved based on sum of squares metric using the developed branch and 

bound algorithm with the 3.30 GHz computer. The problem instances are subjected to 

general temporal constraints. Average resource effect based node gender decision method 

(NGD2) has been utilized for the experimentation. The same test sets have also been 

experimented by Gather et al. (2010) using bridge-based approach, tree adaption and start 

time enumeration methods based on SSQR objective function. The computational results of 

Gather et al. (2010) have been based on 2.67 GHz processing speed. The optimal results of 

sets rlp_j10 and rlp_j20 were validated by checking the optimal results of Gather et al. 

(2010). Optimal results of ubo10 and ubo20 test sets of Gather et al. (2010) could have not 

been accessed. Computation time results of the developed branch and bound algorithm have 

been scaled and all results have been given based on 2.67 GHz processing speed. In Table 

7.5, 7.6, 7.7 and 7.8, the average computation times and number of instances solved in less 

than a duration of 1, 10, 1000, and 36000 seconds have been presented. 

 

Table 7.5 Computation time results for rlp_j10 test set (270 test instances) 

 Average # < 1 s # < 10 s 

This Study (B&B with NGD2) 0.017 s 270 270 

Bridge-Based Approach 0.020 s 270 270 

Tree Adaption 0.440 s 215 268 

Start Time Enumeration 0.660 s 241 263 
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Table 7.6 Computation time results for ubo10 test set (90 test instances) 

 Average # < 1 s # < 10 s 

This Study (B&B with NGD2) 0.034 s 90 90 

Bridge-Based Approach 0.190 s 86 90 

Tree Adaption 5.290 s 43 80 

Start Time Enumeration 0.620 s 78 89 

 

Table 7.7 Computation time results for rlp_j20 test set (90 test instances) 

 Average # < 10 s # < 1000 s # < 36000 s 

This Study (B&B with NGD2) 22.868 s 86 89 90 

Bridge-Based Approach 373.380 s 35 85 90 

Tree Adaption 6,069.970 s 15 41 90 

 

Table 7.8 Computation time results for ubo20 test set (90 test instances) 

 Average # < 10 s # < 1000 s # < 36000 s 

This Study (B&B with NGD2) 28.832 s 76 90 90 

Bridge-Based Approach 22.280 s 27 53 74 

Tree Adaption 5,549.420 s 6 16 41 

 

Results have shown that the developed branch and bound algorithm has outperformed the 

bridge-based approach, tree adaption and start time enumeration methods significantly. All 

problem instances have been able to be solved to optimality. Although the average 

computation time of branch and bound procedure seems greater than the bridge based 

approach in Table 7.8, the number of solved instances is more and instances that could not 

have been solved are not accounted at average time calculation. 

7.4 Computation Results of Test Sets T2 of Rieck et al. (2012) 

The most extensive experimentation has been performed on the test set T2 of Rieck et al. 

(2012).  The test set has been generated using the ProGen/max problem instance generator 

(Schwindt, 1998). Problem instances are subjected to general temporal constraints. The 

utilized test set is composed of test groups of problems with 10, 15, 20, 30 and 50 activities 

and 1, 3 and 5 resources. The test sets of problems with 50 activities have not been used for 

testing as the computation time exceeded 3 hours time limit in general. Each group contains 

40 instances, in total 480 problem instances have been experimented. This test set has been 

solved using branch and bound algorithm and mixed-integer linear model based on SSQR, 

OVERLOAD and RID-MRD objective functions. For the SSQR and OVERLOAD 
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functions, both predefined priority list and average resource effect methods for node gender 

decision system has been experimented separately. Rieck et al, (2012) has also used the 

same set to test their mixed-integer linear based algorithm with a 2.67 GHz computer. The 

test results have been given based on SSQR and OVERLOAD functions. Therefore, 

comparison of RID-MRD function has been done between the developed branch and bound 

algorithm and the mixed-integer linear model developed through this thesis study. The 

results of the proposed branch and bound algorithm and the mixed-integer linear model on 

solving the test set T2 of Rieck et al. (2012) based on sum of squares and overload objective 

function has been validated by obtaining the same optimal results with Rieck et al. (2012). 

For the RID-MRD objective function, the same optimal results have been obtained by the 

branch and bound algorithm and the mixed-integer linear model. Computations of branch 

and bound algorithm and mixed-integer linear model have been performed based on the 3.30 

GHz processing speed. However, those time results have been scaled and all results have 

been presented based on 2.67 GHz processing speed to simplify the interpretation. A 

computation time limit of 3 hours has been used. Results are shown in Tables 7.9, 7.10, 7.11 

and 7.12. The branch and bound algorithm with node decision system of predefined priority 

list is denoted as B&B with NGD1, with the average resource effect is denoted as B&B with 

NGD2, and with the dynamic priority list is denoted as B&B with NGD3. 

 

Table 7.9 Computation results for rlp_10 test sets 

 rlp_10_1 rlp_10_3 rlp_10_5 

 Method Time (s)  Time (s)  Time (s)  

SSQR        

This Study B&B with NGD1 0.012 40 0.013 40 0.021 40 

 B&B with NGD2 0.011 40 0.014 40 0.024 40 

 Mixed-Integer Model 1 0.405 40 0.967 40 1.427 40 

Rieck et al. (2012) Mixed-Integer M1 0.029 40 0.153 40 0.199 40 

 Mixed-Integer M2 0.029 40 0.108 40 0.206 40 

 Tree-Based B&B 0.028 40 0.033 40 0.049 40 

OVERLOAD    

This Study B&B with NGD1 0.010 40 0.018 40 0.027 40 

 B&B with NGD2 0.014 40 0.019 40 0.027 40 

 Mixed-Integer Model 3 0.254 40 0.335 40 0.397 40 

Rieck et al. (2012) Mixed-Integer M3 0.031 40 0.140 40 0.298 40 

 Mixed-Integer M4 0.014 40 0.027 40 0.051 40 

 Tree-Based B&B 0.022 40 0.023 40 0.038 40 

RID-MRD        

This Study B&B with NGD3 0.013 40 0.171 40 0.064 40 

 Mixed-Integer Model 4&5  61.609 40 105.809 36 429.105 31 
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Table 7.10 Computation results for rlp_15 test sets 

 rlp_15_1 rlp_15_3 rlp_15_5 

 Method Time (s)  Time (s)  Time (s)  

SSQR        

This Study B&B with NGD1 0.032 40 0.048 40 0.072 40 

 B&B with NGD2 0.035 40 0.043 40 0.061 40 

 Mixed-Integer Model 1 1.324 40 2.912 40 4.517 40 

Rieck et al. (2012) Mixed-Integer M1 0.154 40 0.291 40 0.513 40 

 Mixed-Integer M2 0.154 40 0.356 40 1.194 40 

 Tree-Based B&B 0.146 40 25.722 40 29.397 40 

OVERLOAD        

This Study B&B with NGD1 0.027 40 0.048 40 0.077 40 

 B&B with NGD2 0.030 40 0.052 40 0.070 40 

 Mixed-Integer Model 3 0.918 40 0.843 40 1.161 40 

Rieck et al. (2012) Mixed-Integer M3 0.309 40 0.975 40 14.390 40 

 Mixed-Integer M4 0.096 40 0.071 40 0.112 40 

 Tree-Based B&B 9.733 40 20.043 40 23.640 40 

RID-MRD        

This Study B&B with NGD3 0.156 40 0.228 40 1.461 40 

 

When the computation results are compared, it is seen that the developed branch and bound 

algorithm has performed the best except for the test set of rlp_30 for the results of SSQR 

and OVERLOAD metrics. Considering the tree-based branch and bound procedure stated at 

Rieck et al. (2012), the newly developed branch and bound procedure far more outperforms 

that algorithm. Also, the proposed branch and bound algorithm has revealed best 

performance for the test sets rlp_10, rlp_15 and rlp_20 based on all objective functions. For 

problem instances of 30 activities, integer linear modeling based procedures has proven 

better performance. The main advantage of branch and bound procedures is their flexibility 

to apply various techniques and to employ various objective functions. In integer linear 

modeling approach the type of the objective function is highly an effecting parameter for the 

performance. Computation time results of the branch and bound algorithm based on the 

RID-MRD function is not much different than other functions. Whereas, computation time 

results of the mixed-integer linear model developed for RID-MRD metric (results of both 

Table 7.4 and Table 7.9) are much worse than that of the branch and bound procedure. As 

stated in section 3.4, RID-MRD function generates bell-shaped resource utilization profiles 

where resource idle days with peak demand are minimized at the same time. For many 

construction projects, such utilization profiles may be more preferable. Both node gender 

decision methods NGD1 and NGD2 have performed similar, yet NGD2 has offered better 

performance in general. It has been preferred for most of the computational experimentation. 
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Table 7.11 Computation results for rlp_20 test sets 

 rlp_20_1 rlp_20_3 rlp_20_5 

 Method Time (s)  Time (s)  Time (s)  

SSQR        

This Study B&B with NGD1 0.190 40 1.259 40 1.445 40 

 B&B with NGD2 0.282 40 0.468 40 0.968 40 

 Mixed-Integer Model 1  6.714 40 73.061 40 90.689 40 

Rieck et al. (2012) Mixed-Integer M1 0.336 40 2.410 40 2.410 40 

 Mixed-Integer M2 0.691 40 10.994 40 41.639 40 

 Tree-Based B&B 1792.086 40 1540.256 40 3392.972 40 

OVERLOAD        

This Study B&B with NGD1 0.102 40 0.826 40 0.847 40 

 B&B with NGD2 0.166 40 0.568 40 1.506 40 

 Mixed-Integer Model 3  1.516 40 9.648 40 6.212 40 

Rieck et al. (2012) Mixed-Integer M3 1.236 40 16.086 40 48.214 40 

 Mixed-Integer M4 0.191 40 1.172 40 1.523 40 

 Tree-Based B&B 1566.697 40 2283.954 40 2751.409 40 

RID-MRD        

This Study B&B with NGD3 34.839 40 21.919 40 234.198 40 

 

Table 7.12 Computation results for rlp_30 test sets 

 rlp_30_1 rlp_30_3 rlp_30_5 

 Method Time (s)  Time (s)  Time (s)  

SSQR        

This Study B&B with NGD1 308.662 37 183.297 39 338.914 33 

 B&B with NGD2 308.919 39 54.427 40 401.747 36 

 Mixed-Integer Model 1  258.116 39 285.705 39 347.955 35 

Rieck et al. (2012) Mixed-Integer M1 9.983 40 18.389 40 61.198 40 

OVERLOAD        

This Study B&B with NGD1 58.128 40 149.008 39 308.185 36 

 B&B with NGD2 182.689 40 144.958 40 415.695 36 

 Mixed-Integer Model 3  227.479 40 43.281 40 123.696 40 

Rieck et al. (2012) Mixed-Integer M4 12.529 40 14.155 40 101.538 40 

RID-MRD        

This Study B&B with NGD3 786.324 32 571.606 35 488.751 25 
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CHAPTER 8 

CONCLUSION 

 

There are few studies focusing on resource leveling problem. Most of these studies offer 

heuristic and metaheuristic methods to solve RLP. Despite heuristic and metaheuristic 

methods generate acceptable results for the RLP, it cannot be known if the results they 

generate are near optimal enough or not. In order to test the performance of heuristic and 

metaheuristic methods, exact solution results are required. Literature studies focusing on 

exact solution of resource leveling problem is even less than the heuristic and metaheuristic 

based studies. This thesis study aimed to improve existing exact solution methods and to 

develop an algorithm capable of solving larger problem instances to optimality. A branch 

and bound based procedure and a mixed-integer linear model have been developed. 

The proposed branch and bound algorithm has been integrated with an adapted branch and 

bound heuristic. The adapted branch and bound heuristic utilizes very similar procedure of 

the main branch and bound algorithm to generate a good upper bound value at the beginning 

of the solution. This has improved the storage capacity consumption. The adapted branch 

and bound algorithm itself includes many accelerating techniques and offers different areas 

to study branch and bound methods for heuristic procedures. Another uniqueness of this 

thesis study is that a new lower bound calculation strategy that considers individual 

unscheduled activity resource effect has been developed to be used for sum of squares and 

overload resources metrics. The developed lower bound calculation strategy has been used 

together with the traditional lower bound calculation strategy. With the dual use of both 

lower bound calculations, it has been shown that the branch and bound algorithm can 

perform well for many problem sets of large size instances. Moreover, many computation 

improvement methods are developed for the proposed algorithm. By the implemented node 

gender decision systems, it has been observed that the selected unscheduled activity to be 

used for branching (node gender) highly affects the early marginal increase in lower bound 

values of newly generated nodes. Early higher marginal increase of lower bound value in 

newly generated nodes increases the possibility to reach more non-promising nodes at early 

stages thereby enables more pruning of the solution tree. A node gender decision system that 

considers maximum average resource effects of individual unscheduled activities also 

improves the computation time. A predefined activity priority list that best fits the specified 

problem instance can be utilized to determine the node gender activity. Candidate mother 

nodes are arranged from the best to the worst in a queue by an access of direct indexing 

method. Branching is performed from the best node by pulling out the first node of the 
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queue at each time. By the help of the queue, node extraction and placement operations have 

been so simplified that required operational time has been improved significantly. 

Linear integer modeling has also been utilized in this thesis study. Resource leveling 

problem has been modeled with mixed-integer linear modeling based on the objective 

functions which are minimization of sum of squares, minimization of absolute deviations 

and minimization of resource idle days with maximum daily resource demand. Mixed-

integer linear modeling has been also used in a very recent study by Rieck et al. (2012). In 

Rieck et al. (2012), the developed model could have solved RLP with the objective of 

minimization of sum of squares and overload resources. 

Extensive computational experiments have been performed to test the proposed branch and 

bound algorithms. Results have indicated that the proposed branch and bound algorithm 

outperformed previous state-of-art branch and bound based methods significantly. The 

proposed branch and bound algorithm has outperformed the mixed-integer linear model 

developed by Rieck et al. (2012) for problems up to 20 activities. For larger size problems, 

with sum of squares and overload objective functions, the proposed branch and bound 

procedure still needs further improvements. However, as the performance of linear integer 

modeling based algorithms highly depend on the objective function, the proposed branch 

and bound algorithm is significantly better than the mixed-integer linear models for the 

RID-MRD objective function. The results for the RID-MRD experimentation have showed 

that the developed mixed-integer linear model in the concept of this thesis study could solve 

problems up to 10 activities in much longer durations compared to that of the branch and 

bound algorithm. The proposed branch and bound procedure could have solved problems up 

to 30 activities using RID-MRD objective function. As RID-MRD objective function profile 

is of practical significance for the construction projects, the branch and bound algorithm still 

offers an important base for the optimization of resource leveling problem. Moreover, since 

branch and bound procedure is flexible to be used with several applied techniques, it can be 

further studied to increase its capability to solve larger size actual construction projects to 

obtain leveled resource utilization curves. 

 

As a future study, new lower bound calculation methods can be developed to improve the 

performance of branch and bound algorithms. An efficient lower bound calculation strategy 

significantly improves the solving capability of branch and bound algorithm. Besides, with 

the advance of the developing technology on multi-core processor chips, parallel computing 

techniques can be implemented to carry out multi processes on a single multi-core 

processing unit. By programming the algorithm suitable to parallel processing, computation 

times can be shortened to a considerable extent. 
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APPENDIX A 

OPTIMAL RESULTS OF 21 PROBLEM SET (MUTLU, 2010) 

 

Table A.1 Optimal results of the 21 problem set according to SSQR metric 

SSQR 
(weighted sum of squares of daily resource 

demands) 

 All resources are weighted by 1. 

 
Optimal Result 

 Problem Act.  Single Resource Multi Resource 

1 Demeulemeester (2002 Pg.416) 10  3522 9390 
2 Easa (1989) 5  428 1096 
3 El Rayes and Jun (2009) 20  3059 16863 
4 Generated II (Mutlu 2010) 6  1238 3964 
5 Generated III (Mutlu 2010) 14  1237 5049 
6 Generated IV (Mutlu 2010) 18  1419 6303 
7 Generated V (Mutlu 2010) 13  927 5540 
8 Generated VI (Mutlu 2010) 14  1530 4442 
9 Generated VII (Mutlu 2010) 16  3767 12802 
10 Harris (1990) 11  821 3841 
11 Hinze (2004 Pg.152) 15  509 3005 
12 Leu (2000) 13  12246 33986 
13 Mubarak (2004 Pg.61) 14  1817 10692 
14 Mubarak (2004 Pg.67) 11  1553 6453 
15 Mubarak (2004 Pg.217) 8  1636 5466 
16 Newitt (2005 Pg.82) 16  1564 3720 
17 Newitt (2005 Pg.121) 12  1043 5625 
18 Son and Skibniewski (1999) 13  6225 18675 
19 Son and Skibniewski (1999) 11  915 2801 
20 Stevens (1990 Pg.97) 15  1525 8987 
21 Stevens (1990 Pg.172) 19  2226 5608 
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Table A.2 Optimal results of the 21 problem set according to ABSDEV metric 

ABSDEV 
(weighted sum of absolute deviations from 

the average resource demand) 
(standard rounding) 

 All resources are weighted by 1. 

 
Optimal Result 

 Problem Act.  Single Resource Multi Resource 

1 Demeulemeester (2002 Pg.416) 10  20 114 
2 Easa (1989) 5  5 41 
3 El Rayes and Jun (2009) 20  90 393 
4 Generated II (Mutlu 2010) 6  18 98 
5 Generated III (Mutlu 2010) 14  37 159 
6 Generated IV (Mutlu 2010) 18  37 165 
7 Generated V (Mutlu 2010) 13  27 198 
8 Generated VI (Mutlu 2010) 14  45 238 
9 Generated VII (Mutlu 2010) 16  75 366 
10 Harris (1990) 11  25 141 
11 Hinze (2004 Pg.152) 15  22 144 
12 Leu (2000) 13  109 514 
13 Mubarak (2004 Pg.61) 14  76 302 
14 Mubarak (2004 Pg.67) 11  60 224 
15 Mubarak (2004 Pg.217) 8  95 300 
16 Newitt (2005 Pg.82) 16  48 206 
17 Newitt (2005 Pg.121) 12  138 423 
18 Son and Skibniewski (1999) 13  105 505 
19 Son and Skibniewski (1999) 11  19 101 
20 Stevens (1990 Pg.97) 15  67 337 
21 Stevens (1990 Pg.172) 19  82 336 
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Table A.3 Optimal results of the 21 problem set according to RID-MRD metric 

RID-MRD 
(weighted sum of (1*resource idle days) + 

(1*maximum daily resource demand)) 

 All resources are weighted by 1. 

 
Optimal Result 

 Problem Act.  Single Resource Multi Resource 

1 Demeulemeester (2002 Pg.416) 10  19 69 
2 Easa (1989) 5  10 43 
3 El Rayes and Jun (2009) 20  17 200 
4 Generated II (Mutlu 2010) 6  13 50 
5 Generated III (Mutlu 2010) 14  45 108 
6 Generated IV (Mutlu 2010) 18  25 110 
7 Generated V (Mutlu 2010) 13  10 78 
8 Generated VI (Mutlu 2010) 14  29 120 
9 Generated VII (Mutlu 2010) 16  47 143 
10 Harris (1990) 11  10 65 
11 Hinze (2004 Pg.152) 15  13 84 
12 Leu (2000) 13  31 132 
13 Mubarak (2004 Pg.61) 14  11 75 
14 Mubarak (2004 Pg.67) 11  11 80 
15 Mubarak (2004 Pg.217) 8  12 58 
16 Newitt (2005 Pg.82) 16  53 204 
17 Newitt (2005 Pg.121) 12  23 80 
18 Son and Skibniewski (1999) 13  22 43 
19 Son and Skibniewski (1999) 11  9 91 
20 Stevens (1990 Pg.97) 15  11 105 
21 Stevens (1990 Pg.172) 19  14 171 
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APPENDIX B 

OPTIMAL RESOURCE UTILIZATION CURVES OF PROBLEM OF EL-

RAYES AND JUN (2009) 
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