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ABSTRACT 

GPU-ACCELERATED ADAPTIVE UNSTRUCTURED ROAD DETECTION USING CLOSE 
RANGE STEREO VISION 

 
 
 

Özütemiz, Kadri Buğra 

M.Sc., Department of Mechanical Engineering 

Supervisor : Asst. Prof. Dr. Buğra Koku 

Co-Supervisor : Assoc. Prof. Dr. İlhan Konukseven 

 
July 2013, 125 pages 

 
Detection of road regions is not a trivial problem especially in unstructured and/or off-road 

domains since traversable regions of these environments do not have common properties unlike 

urban roads or highways. In this thesis a novel unstructured road detection algorithm that can 

continuously learn the road region is proposed. The algorithm gathers close-range stereovision 

data and uses this information to estimate the long-range road region. The experiments show 

that the algorithm gives satisfactory results even under changing light conditions. In addition to 

the algorithm structure, the massive parallel implementation on GPU with CUDA is proposed. 

The speed-up of the CUDA implementation with experiments done is analyzed. 

 
Keywords: Unmanned Ground Vehicle, Point Cloud, Road Detection, Unstructured Roads, 

Unstructured road detection, Traversability Detection, CUDA, GPU 
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ÖZ 

YAKIN MESAFE STEREO GÖRÜNTÜ KULLANILARAK GPU ILE HIZLANDIRILMIŞ 
UYUMLU YAPISIZ YOL BULMA 

 
 
 

Özütemiz, Kadri Buğra 

M.Sc., Department of Mechanical Engineering 

Supervisor : Asst. Prof. Dr. Buğra Koku 

Co-Supervisor : Assoc. Prof. Dr. İlhan Konukseven 

 
Temmuz 2013, 125 sayfa 

 
Yol bölgelerinin saptanması özellikle yapısız ve/veya arazi bölgelerinde çözülmesi zor olan bir 

problemdir. Yapısız bölgeler ya da arazi bölgeleri, şehiriçi veya şehirlerarası bölgeler gibi 

benzer özeliklere sahip olmadığından bu bölgelerde yol bulmak kolay değildir. Bu tez 

kapsamında yol bölgesini sürekli öğrenebilen yenilikçi bir yapısız yol saptama yöntemi 

önerilmiştir. Önerilen yöntem yakın çevredeki stereo kamera verisini kullanarak görüntü 

üzerindeki yol olan bölgeleri saptamaktadır. Yapılan deneyler önerilen yöntemin değişken ışık 

koşulları altında bile tatmin edici sonuçlar sağladığını göstermektedir. Bu tez çalışmasında 

önerilen yöntemin yanı sıra GPU üzerinde CUDA dili kullanılarak yapılmış olan paralelleştirme 

çalışması da sunulmuştur. Paralelleştirme sonucu elde edilen performans yükselmesi deneyler 

eşliğinde analiz edilip sunulmuştur.  

 
Anahtar Kelimeler: İnsansız Kara Aracı, Nokta Bulutu, Yol Saptama, Yapısız Yol Saptama, 

Geçilebilirlik Saptaması, CUDA, GPU 
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CHAPTER 1 

 
INTRODUCTION 

1.1 Mobile Robotics 

Robotics technology has been an active area of research for about half a century now and began 

to be used in manufacturing in early 70s. The main use of robotics technology in manufacturing 

was to replace the repetitive work done by human to decrease accidental risks and the costs with 

an increase in the production quality. The first applications of robotics products were in 

structured environments with predefined motion paths. However, as robotics technology 

develops the application areas were grown to dynamic environments without predefined paths. 

In order to deal with those applications the robots used become mobile and improved.  

 
 
 

 

Figure 1 - An example of industrial robots; welding robot [1]. 

 
 
 
For the past decades, mobile robotics, which involves different scientific disciplines such as 

computer science, mechanical engineering, electrical engineering, cognitive science, materials 
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science, has been an active research area due to the need of autonomous mobile activities. 

Different than industrial robots or industrial manipulators, mobile robots have the capability of 

moving autonomously. This capability makes them popular in various different real life 

applications. While some of these applications are easy to solve, some others consist hazardous 

environments and require precise perception, judgment and actuation. They are usually expected 

to accomplish these tasks by navigating dynamically in those environments consisting humans, 

other robots, objects and obstacles.  

 
 
 

 

Figure 2 - Some examples of mobile robots: (Left) Google's self-driving car [2]. (Right) Samsung Navibot robotic 
vacuum cleaner [3]. 

 
 
 
The examples of these applications can be given as car driving, autonomous flight, cleaning, 

space exploration, delivery, mine sweeping, aiding and rehabilitation. In each application space, 

the requirements are different and hence, each application has different problems and requires a 

variety of solutions to these problems. Although the scientific community extensively 

researched on the field, suggested a bunch of solutions to the different problems related with the 

area, and even some commercial applications are available, the research field is still intensely 

active and attractive for the researchers. 

1.2 Road Detection 

In order to accomplish a given mobile task successfully, the robot should be able to navigate 

autonomously. While navigating, the robot should be able to perceive its environment correctly, 

avoid hazardous situations and make appropriate decisions about the environment or actions. 
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Depending on the application a wrong implementation may yield catastrophic consequences for 

humans and environment besides the failure of the mission. The robot may even destroy itself 

due to a wrong perception, decision or action. Thus, to accomplish a successful navigation, road 

detection or road perception is a must to take the right action. 

In general roads can be classified as structured and unstructured. Structured roads are the roads 

which have common structures such as highways or urban roads. They usually have lane 

markings, pavements and a common color. Their surfaces are smooth and hence they are more 

suitable for driving. The examples of such roads can be seen in Figure 3. 

 
 
 

 

Figure 3 - Two examples of structured roads: (Left) Highway [4] and (Right) urban road [5]. 

 
 
 
Unstructured roads, on the other hand, do not have common structures such as pavements or 

driving lanes and usually are dangerous to navigate. In fact, there might not be a path or road but 

some traversable regions. Their surfaces are rough and the color of the road can vary as it is 

given in Figure 4.  
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Figure 4 - Two examples of unstructured roads [6], [7]. 

 
 
 
Since structured roads have common properties, the research on structured road detection 

problem led to useful results faster than the research on unstructured road detection. Thus some 

successful solutions do exist on structured road detection problem, but unstructured road 

detection is still an active research area. 

1.3 Scope of the Thesis 

In this thesis, the primary objective is to detect the traversable part of the terrain or the road 

region in unstructured environments by using a stereo camera with real-time processing. Other 

than the parameters required by the algorithm, the inputs used are the color image and point 

cloud data of the environment supplied by the camera. 

The aim of the study is to develop an algorithm which;  

 detects all kinds of traversable or road regions primarily on unstructured environments, 

 is robust to changing light conditions, 

 adapts itself quickly to the changing road conditions, types and appearances, 

 can work in real-time. 

1.4 Contributions of the Thesis 

In this thesis work a GPU-accelerated adaptive unstructured road detection algorithm is 

proposed. The contribution of this study is many. Firstly, a simple thresholding based on height 

variance of road/non-road regions is proposed to gather training samples from road regions 

automatically. Most of the literature on adaptive unstructured road detection achieves this by 
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offline trained classifiers which require lots of labeled training samples. Using offline training 

makes algorithm structures complex, algorithm efficiencies low and introduces training time to 

run the algorithms. Secondly, the adverse effect of sudden illumination and light intensity 

changes on road detection algorithms is addressed. In addition to these, integration of an 

estimation procedure for selecting number of models to be learned from the gathered data is 

proposed. In order to select the best distance measure for classification, a comparison for six 

different distance metrics are given. Lastly, manycore parallelization of the algorithm is done 

and implemented using CUDA resulting processing speeds of 50 Hz in the worst case.   

1.5 Outline of the Thesis 

The outline of the study can be summarized as follows: 

In Chapter 2, a literature survey on unstructured road detection algorithms are presented and 

concluded results are discussed. 

In Chapter 3, data collection from the unstructured environment to develop the method is 

presented. The hardware and software environments used are given with the structure of the 

algorithm proposed. Experiments conducted and results on performance are presented with a 

discussion. 

In Chapter 4, massively parallelization and CUDA implementation of the proposed algorithm 

are presented with the experiments and performance results.  

In Chapter 5, which is the final, a conclusion is given and the future directions on research are 

suggested. 
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CHAPTER 2 

 
LITERATURE SURVEY 

2.1 Introduction 

In this chapter, a survey on traversable road recognition, detection and following in unstructured 

or off-road terrains in the domain of mobile robotics or intelligent vehicles is presented. The 

unstructured roads or pathways, which can be found often in nature, do not have common 

structures or properties unlike urban roads or highways as it can be seen in Figure 5. In 

unstructured roads the road shape is usually arbitrary, the road surface can be degraded and road 

boundary can be unclear [8]. Furthermore, the road appearance or shape can change along the 

course. Thus, the problem of detecting and/or following road regions in unstructured 

environments is an ill posed problem and a variety of solutions are proposed in the literature. 

Some of these solutions use specific color and geometrical models, some of them are developed 

for specific types of roads, some solutions approach the problem as a machine learning problem 

and some approaches generate a more general solutions that can be applied to all type of roads 

and terrains which can also be adapted to the road. Although there are adaptive approaches, they 

have either too complex structures or are working slowly. The simpler adaptive approaches on 

the other hand require an offline training phase and hence the preparations for the use in mission 

take long times and require hard work. Thus, an adaptive unstructured road detection algorithm 

having a simple structure with low running times and without the need of offline training can be 

a more suitable alternative for the use.  

 
 
 

 

Figure 5 - Unstructured roads in the pathways of Yalıncak Village in METU campus. 
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2.2 Literature on Unstructured Road Detection 

When the literature on unstructured road detection problem is considered, a variety of methods 

have been proposed in the past few decades. Some of these methods use geometrical features, 

while some others use color and texture information. There are also couple of hybrid models are 

available in the literature. For generating the road model, some researchers apply simple 

geometrical, probabilistic or color models while some others approach the problem as a 

statistical machine learning problem [9-27]. There are also self-learning and adaptive 

approaches that update constructed models throughout the mission [28-51]. 

In their work Ekinci et al. [9] designed a road and junction detection and following algorithm 

around a constructed geometrical model. They modeled the road boundaries as two parallel 

curves via a second order polynomial and then the road was segmented using gray levels and 

texture representations obtained by Roberts operator. Afterwards the road model was updated in 

order to obtain the road boundaries exactly. 

In the study done by Jansen et al. [10], the authors classified road regions via Gaussian Mixture 

Models (GMM) in RGB color space. According to their assumption, the regions of similar 

environments with similar geometry (height, roughness and shape) have similar color 

distributions (appearance). Using this assumption, regions in an image such as sand, sky, foliage 

and etc. are modeled via GMMs using labeled sets and these GMMs are used then for terrain 

classification. 

 
 
 

 

Figure 6 - Classification result of the algorithm developed in [11] by Rasmussen. 
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In his work Rasmussen [11], used the combination of features coming both from color camera 

and laser range sensor for unstructured road detection. Joint histograms of image patches used as 

color features while texture features are obtained by applying Gabor filters to these patches. 

Geometrical features were calculated from the laser range measurements. All the features of 

training images then fed to a two layer neural network for training. Afterwards, this trained net 

used as road/non-road classifier. One of the most elegant geometrical features used in this work 

is the height variance of field areas since height variance is statistically sound and robust to 

noise. In another studies done by the researcher [12], [13], Rasmussen utilized Gabor filters for 

extracting texture features from the image. Using a voting procedure, the position of the 

vanishing point, the point where the road boundaries are intersected on the horizon, was found. 

Then this point in consecutive frames used to estimate the road boundaries by the algorithm.  

In their study, Zhang and Kleeman [14] modeled the roads via rapidly adapting 3D color 

histograms and geometric constraints. The road probability image constructed utilizing the 

image data coming from a panoramic camera. To this probability image, a road model was tried 

to fit and this model then used to detect road regions in the image. 

Cheng et al. [15] represented an approach that can be applied both structured and unstructured 

roads. In this approach color features of road images were used and then mean shift algorithm 

was applied to cluster feature vectors into road/non-road regions. 

Hu et al. [16] used average color values and standard deviations as color features, edges 

extracted via canny edge detector as edge features and road width as the shape feature. Then by 

using these features, pixels were clustered into road, non-road and ambiguous regions. 

In their work Huang et al. [17] used HSV color space and different road properties to generate 

feature vectors. Color features are calculated from saturation and value channels of HSV color 

space. The road boundaries assumed to be parallel and misclassifications were eliminated using 

this assumption. 

In their study Gao et al. [18] used features obtained both from RGB and HSV color spaces. The 

features used were the average value of each channel in the image patch. 

In a study carried out by Wang et al. [8], color, edge and texture features were used for 

classification and learning. Color features were normalized average color channel values, edge 

features were the edge image and texture features were contrast, energy and correlation 

properties of the image.  Then, Support vector machines were used as the road classifier. 

Alon et al. [19] used Oriented Gaussian Derivative Filters, Walsh-Hadamard kernels and 

Moments method for texture feature extraction. Then using Adaboost algorithm the image was 

segmented into road and non-road regions. Then, these results are combined with geometric 

projection to recover Pitch and Yaw. 
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In [20], Tan et al. used a monocular color camera as sensor and assumed the bottom part of the 

camera images showed the road surface for model training. In their approach they made use of 

color histograms in the normalized RG color space to model the road. To represent road, they 

used 4 models and to represent the background, they used one. These models updated 

dynamically frame by frame. The background model of the previous frame used to build the 

background model in the next frame. This way a temporal constraint was introduced for the 

background model.  

The study carried out by [21] Zheng et al. assumed the road has a trapezoidal shape and selected 

a rectangular region in front of the vehicle guaranteed to be road. Then, HSV color space values 

of this rectangular region recorded and average color channel values of these recorded data 

calculated. Using color filtering of these values on the image and geometrical constraints yielded 

road area in the image. 

In a study held by Foedisch and Takeuchi [22], an adaptive road detection algorithm that uses 

color features derived from color histogram as features and artificial neural networks as 

classifier. Six windows on an image are marked for the generation of training samples 

automatically. Three of these windows are to gather road training samples and three of them are 

for non-road training samples. Features extracted from these six windows and artificial neural 

networks are trained continuously using these features. 

The study done on the issue by Sun et al. [23] utilizes stereo vision for road detection. In order 

to generate training samples, a ground projected feature map which consists of the features 

obtained from the images projected to the ground terrain. Then a classifier is trained to separate 

road and non-road regions. 

In [24], Lieb et al. proposed an algorithm that assumes the starting place of the vehicle as road 

and use this assumption as a template to find the road region in the successive frames with the 

help of reverse optical flow. Previous views of the road surface were computed using reverse 

optical flow, and then road appearance templates were learned for several target distances. The 

main drawback is that the use of optical flow estimation does not work well on chaotic roads, 

when the camera is unstable and the optical flow estimation is not robust enough.   

Another road recognition algorithm is proposed by Li et al. [25] that can be used on both 

structured and unstructured roads. The algorithm uses fuzzy reasoning to extract edges and road 

regions are determined according to those edges. 

Different than the usual approach Poppinga et al. [26] use an infrared camera and a stereo 

camera as sensors to obtain 3D data from the environment. Hough transform is employed to this 

3D data and if the result does not resemble to a shape defined previously, this region is classified 

as road. 
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Wei and Gong [27] proposed an algorithm that utilizes Otsu’s multi-threshold algorithm and 

two-peak algorithm to calculate road probabilities of the regions and to cluster the image. Also, 

Canny operator is applied to the image to extract road boundaries.   

2.2.1 Near-to-Far Learning 

Since the underlying road model in the unstructured outdoor environments is highly 

complicated, instead of using one or more static models, the studies are directed to techniques 

that uses adaptive or continuously learning multi-models. One such technique is called Near-to-

far learning. Near-to-far learning technique is a recently proposed continuous learning method 

that uses a close-range (e.g. laser range finder) and a far-range sensor (e.g. camera) together in 

relation to detect unstructured roads autonomously. This method uses reliable close range sensor 

data to generate training samples automatically and continuously online. The training samples 

obtained from the close-range sensor is then used to learn a correspondence between the 

overlapped regions of close-range and far-range sensor data. This correspondence is then used to 

classify the traversable or road region in the far-range sensor data.  

The work done on near-to-far learning in the domain of road detection can be classified 

according to the sensors used as stereo camera and laser range finder – camera combination. 

2.2.1.1 Laser Range Finder – Camera Combination 

The algorithms based on laser range finder – camera combination use a laser range finder for 

close-range sensor while using a monocular camera for the far-range sensor. 

One of the first and the most important applications of the technique are done by Dahlkamp et 

al. [28] for the Stanford racing team on DARPA Grand Challenge 2005. The researchers 

proposed a self-supervised road detection algorithm that fuses laser data with monocular camera 

images for long distance adaptive road detection. The laser was used to find drivable regions and 

obstacles in near vicinity of the vehicle and hence generating the training data as described in 

[29]. The road regions found in the near vicinity is used as training data to generate mixture of 

Gaussians to learn an RGB model of the road and find the road from the monocular camera 

image. Although this approach does not require finding the non-road or obstacle samples as well 

as road samples, the authors used the road and the obstacle regions for global map 

representation. Later Nefian and Bradski [30] applied hierarchical Bayesian network for 

segmenting desert images and detecting off-road drivable corridors. They fused model 

geometrical and smoothness constraints such as road boundary and horizon semantics to the 

algorithm developed by Dahlkamp et al. [28] via a Bayesian image model.  
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Figure 7 - Raw image and the classification result of the algorithm developed by Dahlkamp et al. [28]. 

 
 
 
In [31] the authors proposed a self-supervised terrain cost estimator algorithm by the utilization 

of the features from both aerial imagery and the robot’s on-board sensors with the use of 

Bayesian scope learning model. An online probabilistic model was trained on satellite imagery 

and LADAR sensor data for the vehicle’s navigation system. They applied a learning approach 

to integrate both general feature-based estimation and self-supervised locale-specific estimation 

to improve navigation capabilities for unmanned ground vehicles. In their application, they 

integrated overhead data and short-range sensor data into an online learning framework. Both 

local information and global information were used to yield a cost map to improve robot 

navigation. Experiments showed dramatic improvement of navigation performance in traversal 

time, distance traveled, and average speed. 

Suzuki et al. [32] proposed techniques cope robustly with near-range road estimation using a 

laser scanner and long-range terrain classification using a color camera. Near-range road surface 

conditions were estimated by using information of remission values as reflectivity of a laser by 

modeling with a mixture of Gaussians. They applied graph cut algorithm to grid map in order to 

estimate road region robustly also in complex environments where fallen leaves exist sparsely. 

Moreover, the authors proposed superpixel-based terrain classification method which can give a 

good performance compared with pixel-based classification.  

2.2.1.2 Stereo Camera 

Most of the research done for autonomous unstructured road detection or traversability detection 

and terrain classification utilizing near-to-far learning use stereo vision as the primary sensor. 

The main reason behind it that the geometry data or point cloud data and color data comes 

registered, thus instead of utilizing two different sensors, one sensor is utilized as both the close-

range and the far-range sensors.  
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Hadsell et al. [33] proposed a near-to-far self-supervised traversable road and obstacle detection 

algorithm for natural terrains that uses stereo vision for the main sensor. Due to the range 

limitation of stereo vision depth measurements (reliable up to 10-12 meters), the authors adopted 

a near-to-far self-supervised architecture. They used a stereo algorithm to produce a 3D point 

cloud; then ground plane and footline estimation methods are applied to separate these points 

into ground, obstacle, and footline classes. The authors used offline learned feature extractors 

which learned from an image patch database with distinct features [34]. The features were fed 

through the learning algorithm to train the online classifier [35], [36], [37]. The trained classifier 

were used to predict long-range visual data from images. The same team in another study [38] 

proposed a low cost robotic platform with no hand-tuned calibration and a solution to the “fast 

learning – fast forgetting” problem that arises in the long-term runs and degrades the 

performance of the system. The solution proposed for the memory is the use of multiple experts 

classifiers that can select the learned model appropriate to the environment.  

 
 
 

 

Figure 8 - Raw image, traversability image from point cloud and final classification result of the algorithm proposed 
in [33]. 

 
 
 
Matthias et al. [39] used near-to-far learning approach that utilized both appearance and stereo 

information from the near field as inputs for training appearance-based models and then applied 

these models in the far field in order to predict safe terrain and obstacles farther out from the 

robot where stereo readings are unavailable (here, greater than 10 m). With such terrain 

predictions in the far field, the robot would follow a more natural path toward the goal, in this 

case avoiding trajectories toward the far-field obstacles. Terrain was represented as a collection 

of voxels. A voxel is simply a volume element. It can be thought as the volumetric version of a 

pixel. Each voxel had a density calculated from the number of range measurements obtained 

from that voxel. By using this density values as features for voxels of traversable and non-

traversable, an SVM classifier was trained offline for close range-traversability. For the mid-

field and far-field, three types of clustering methods were experimented to estimate the 

traversibility from the normalized RGB distribution of each cell: Unsupervised kMeans, 
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supervised kMeans and supervised MoG, where supervision was done by estimating a priori 

values for traversability using weak range measurements in the midrange. 

In [40] and [41], Procopio et al. proposed the adaptation for selecting and combining models 

from an existing model library to the time-evolving data associated with the outdoor robot 

navigation domain. They showed an ensemble of models outperformed a single model fitted to 

the data. An ensemble can be constructed in a variety of ways; for example, it can be 

dynamically created over time in response to the incoming data stream. Alternatively, a library 

of one or more models may already exist in memory, and ensembles can be selected from this 

library to optimize performance on the current test data. These two approaches can also be 

combined; in this case, a library of models is available but is also modified on-line by adding 

new models over time (and, if appropriate, pruning irrelevant models from the library). It was 

shown that without prior models, the performance is better but the system starts without 

knowing anything and hence the risk is increased. The Ensemble Selection procedure was 

explained as follows: 

 Start with the empty ensemble. 

 Add to the ensemble the model in the library that maximizes the ensemble’s 

performance to the mean CCA metric on a validation set of near-field stereo labels taken 

from the current image. 

 Repeat Step 3 until one of the stopping criteria has been met. 

 Apply each model in the resulting ensemble to the remainder of the image. 

 Combine each model’s output to obtain a final terrain classification and repeat Step 1. 

Linear SVM was used for base learner in the paper for all models in the model library. In [42], 

Procopio et al. used L2-regularized logistic regression instead of linear SVM in order to 

decrease the computational time required for the training without loss of accuracy. In another 

study [43], the authors proposed a method to cope with the imbalanced training data usual in 

autonomous navigation domain. In [44], however, instead of using the linear combinations of 

models in the ensemble, the authors proposed the use of model abstinence since the inclusion of 

inappropriate models to prediction of ground or obstacle degrades the estimation accuracy. 

Thus, in the determination of where models are applicable, they used the distribution of training 

data as the source of the mixing coefficients that form the soft gating network in the mixture of 

experts model. This gating network determines which models are applicable and to what extent. 

Grudic and Mulligan [45] also proposed a new distance metric for road segmentation as 

polynomial Mahalanobis distance. The algorithm proposed in this paper used color and texture 

properties of a reference road region as a seed for segmentation. 

In [46], the authors proposed a near-to-far learning method that uses stereo vision as primary 

sensor. Images, which were obtained by a stereo camera, used for geometrical and appearance 

based traversability analysis. Stereo matching and noise removal were done by acquired images. 

Next, plane was estimated from the point cloud. Finally, geometrical traversability was 

calculated. Then, features were acquired from images. In this research, Hue and Saturation of 
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16×16 2D histogram were used for learning each 33×33 image patches and classified by SVM. 

After that, predictive probability was calculated. Finally, appearance traversability was analyzed 

from probability of each cell of polar map. Final traversability was determined by two results of 

traversability; one is coming from the geometry and the other coming from the appearance. In 

this stage, probability of classification was used for reducing the effects of false positives and 

negatives. 

The use of stereo vision with near-to-far learning was also used by [47], where the algorithm 

involves segmenting the far field region of an image frame into a collection of segments. These 

were combined with ground/obstacle pixel labels from the robot’s stereo system. Segments 

which have any overlap with ground segments and segments immediately neighboring such 

segments made up the set Candidate Ground and those which overlap obstacle segments and 

segments immediately neighboring them make up Candidate Obstacle. If a segment overlaps (or 

neighbors) both ground and obstacle labels then it is deemed ambiguous and belongs to the set 

Candidate Ambiguous. All segments in CG which are closer to ground segments than some 

threshold “dg” and those in CO that are closer to obstacle segments than some threshold “do” in 

some feature space f, according to some similarity measure D, are labeled as “Ground plane” 

and “Obstacle” respectively. Finally, segments in CG and CO which are closer to both the stereo 

ground plane and the stereo obstacle regions than their respective thresholds were deemed 

ambiguous and were classified as unknown. As color models, an RGB segment of 30 bins was 

used for each segment. Each class was modeled as a mixture of histograms of contiguous 

regions made up of the pixels belonging to that segment set S. 

The authors of [48], proposed an algorithm for the classification of terrain traversability. A 

neural network was trained offline with hand-labeled 8 geometrical features that defines 

traversability and then this geometrical knowledge was associated with color information 

continuously by online unsupervised learning with a non-parametric model. The near-to-far 

approach used both appearance and stereo information from the near field as inputs for training 

appearance-based models and then applied these models in the far field in order to predict safe 

terrain and obstacles farther out from the robot where stereo readings are unavailable (here, 

greater than 10 m). 

Kim et al. [49], proposed a self-supervised traversability estimator algorithm in which the robot 

learns the affordance of traversability through the interactions with the environment without 

human intervention. A correspondence was established between the experience of the robot and 

the visual features from the stereo cameras by clustering. The experience of the robot here is the 

IMU, motor current and bumper switch on the robot. A 13 dimensional feature vector composed 

of 5 bins height histogram and 8 dimensional maximum Laws texture mask used for the image 

patch representation. Region primitives, such as patches, were preferred since they allow the 

robot to estimate the characteristics of the image region using rich features such as color and 

texture distributions. However, fixed-sized patches lack the ability to correctly identify the 

boundaries of complex objects, with the result that multiple distinct image regions may be 

contained within each patch, degrading the estimation accuracy. 
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Angelova et al. [50], developed an algorithm that uses the slip of the vehicle as the supervisor to 

reduce the dimensionality of the visual data and classify the terrain with probabilistic models. 

Slip is learned in a Mixture of Experts framework: terrain was classified first using appearance 

information and then slip, as a function of terrain slopes, was learned. The rationale for doing 

that was: 1) terrain type and appearance were approximately independent of slope; 2) 

introducing this structure helped constrain learning to better balance limited training data and a 

potentially large set of texture features. 

Konolige et al. [51] used geometrical and color information to find road area using stereo vision. 

They combined vision and depth into one system, to mitigate the drawbacks of each approach. 

They first estimated a ground plane from the disparity image and then established a sight line on 

the ground plane. By using this sight line, they established a Gaussian model of normalized 

colors and classify the region according to that model. If the classified road region is 

geometrically path-like, it is used as an input to the learning algorithm. 

In conclusion, near-to-far learning technique has promising results due to its adaptive and self-

training nature. The techniques that do not utilize near-to-far learning scheme either cannot deal 

with changing environment and road conditions or can be applied on a specific environment. 

The technique seems strong when combined with a stereo camera since stereo camera provides 

both reliable close-range information and rich far-field data. One main disadvantage of the 

method is its complex structure especially in near-field training sample generation. The studies 

in the literature deal it with offline trained classifier which requires labeled training data and 

hence a lot of unqualified hard work. Offline training also degrades the generality of the 

algorithm. The research proposed in this study approaches this problem with a simple 

thresholding and hence decreases the structure complexity and increases the generalization. In 

this study also the issues related to light changes are addressed. According to the survey done, it 

is also found out that that none of the described solutions implemented GPU acceleration. In this 

respect, this study is a pioneer. 
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CHAPTER 3 

 
PROPOSED ALGORITHM 

3.1 Introduction 

In this chapter, the proposed algorithm for adaptive unstructured road detection is explained in 

detail. For some parts of the algorithm several approaches are considered and evaluated in order 

to select the best alternatives. The algorithm proposed in this study is based on the Gaussian 

model learning and updating scheme proposed by Dahlkamp et al. in [28], though, there are a 

number of major and minor changes done. One of the most important differences is using a 

stereo camera both for close-range and far-range sensor instead of using a LADAR for close-

range and a monocular camera for the far-range. The use of stereo camera removes the need for 

registration between close-range and far-range sensor and as a result removes the registration 

errors and the time required for registration. The second major difference is the use of HSV 

color space instead of RGB color space. HSV color space represents the chromatic information 

and brightness information in separate channels. So in order to decrease the illumination effects, 

hue and saturation channels are used for color information. As feature vectors the joint 

histograms of hue and saturation channels are used to model the road appearance. As another 

major difference, the automatic training sample gathering procedure is simplified. The authors 

of [28] used offline trained Hidden Markov Models for training sample gathering. Since this 

training requires labeled data and hard work, it is replaced with a simple thresholding procedure 

using height variances of road regions. This removes the need for offline training and hence 

labeled training data. With this simple thresholding, the preparation of the system for running 

decreases significantly. Within the context of this study, agglomerative hierarchical clustering is 

applied to the training samples gathered in each frame to estimate the number of clusters 

residing in the samples and using this estimation Expectation algorithm is run. The effect of 

using hierarchical clustering for the estimation of number of models to be learned on 

performance is analyzed. The effect of six different distance metrics on classification 

performance is also analyzed.     

Throughout the chapter firstly, the hardware and software environments used are described. 

After that, the data gathered for the development and evaluation of the algorithm and how these 

data are gathered are explained. Then in the main body of the chapter, the algorithm structure is 

explained and complexity analysis is given in detail. After that, the experiments done are 

explained and results are given with a discussion. At last, conclusions related to developed 

algorithm are drawn. 
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3.2 Hardware and Software Environment 

Throughout the development of the algorithm all implementation is done on a Windows 7 64-bit 

machine using C++ and Visual Studio 2008 [52]. Most of the body of the algorithm is developed 

using OpenCV’s [53] data structures, image processing and machine learning algorithms when 

applicable. Whenever OpenCV’s native algorithms are not enough, custom C++ code is 

developed. 

Evaluation and ground truth labeling software is developed using Visual Studio C# 2010 with 

C# programming language and AForge.NET [54] image processing, artificial intelligence and 

robotics library. 

In order to gather stereo data Bumblebee®2 Stereovision Camera System by PointGrey Research 

[55] and its libraries are used. The stereovision camera has two CCD cameras each of which has 

the capability of delivering images of 640x480 resolution at 48 fps and 1024x768 resolution at 

20 fps. However, the stereo data speed coming from the data stream is about 15 fps for image 

size of 640x480 on an Intel Core i7 Windows 7 64-bit system with 8 GBs of RAM. The two 

cameras has an offset of 120 mm between them. The camera libraries have the ability to supply 

the image from two cameras and the registered point cloud data to these images. Figure 9 shows 

sample left and right images taken from the camera. 

 
 
 

 

Figure 9 - Left and right images taken from Bumblebee2 stereovision camera. 
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Figure 10 - Data collection software for Bumblebee2 camera. 

 
 
 
3.3 Data Gathering 

In order to develop the algorithm and run the experiments to test the success of the algorithm 

designed, color images and point cloud data of unstructured scenes are gathered. Data is 

collected from the pathways of Yalincak village in METU campus. A data collection software is 

developed using Bumblebee2 stereovision camera system’s native libraries and visual studio 

c++ 2008 which can be seen in Figure 10. The software is run with Bumblebee2 stereovision 

camera connected to a laptop supplied with a UPS and all data is gathered while the camera is 

held by hand through a course of about 3 km long. The data is gathered between mid to late 

afternoon in September through a time window of 50 minutes. Since the camera is held by hand 

and white balance is active, small tilt and pitch of the camera results in significant light intensity 

changes from frame to frame. This makes the dataset suitable for the development and 

evaluation of an algorithm that is robust to illumination changes. Both stereo and color images 

gathered has a resolution of 640x480 pixels and a total of 360 images are obtained. Data 

collection course obtained from Google Maps [56] can be seen as an aerial image in Figure 11.  

3.4 Algorithm Structure 

A stereovision camera system supplies two kinds of data to the user. First one is the images and 

the other one is the point cloud data of the environment. According to the type of the 

stereovision system, there can be two or more color or monochromatic cameras on the system. 

In the vision system used in this work, there are two color cameras thus two color images 

coming through the sensor stream. Point cloud information is actually derived from these images 

by triangulation as described in [57]. As stated in the literature [33], [48] there are two main 

drawbacks of using a stereovision system. First problem is that as the distance from camera 

grows, the point cloud data becomes sparse. The reason of this sparsity is the covered area grow 
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with the distance while the resolution of the camera is constant. The second issue is also related 

with the first one. As the distance from the camera grows, the error of the measurements 

increase with the square of the distance from the camera as visualized in Figure 12 and Figure 

13.  

 
 
 

 

Figure 11 - Aerial image of data collection course obtained from Google Maps [56]. 
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Figure 12 - Short range error in stereovision system [58]. 

 
 
 
As a result of this behavior of the stereovision system, the point cloud data coming from the 

stereo stream becomes unusable for a reliable autonomous navigation after approximately 10 m 

of distance from the camera. For this reason the designed algorithm finds smooth regions in the 

close range environment from point cloud and uses their color distribution to learn new road 

appearance models and to update older ones if any. Learned models are then used to classify 

road regions in the whole image. 

 
 
 

 

Figure 13 - Long range error in stereovision system [58]. 
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The adaptive unstructured road detection algorithm developed in this study can be divided into 

five main subparts: 

- Data preprocessing 

- Feature extraction 

- Automatic training sample generation 

- Color distribution model learning and updating 

- Classification 

After the assumptions done in the design of the algorithm is given, each of the subparts are 

explained in detail in the following subsections. For an overview the flow chart of the algorithm 

is given in Figure 14. 

3.4.1 Assumptions 

The design of the algorithm explained in this study is based on three main assumptions. Firstly it 

is assumed that, ground height variation, variance or difference is high in the areas where the 

terrain is uneven or rough. When one looks at the examples of unstructured environments, it is 

easy to see that this assumption holds most of the time. Several examples can be given as in 

Figure 15. 

The second assumption is that the color distribution in road appearance is different than the 

color distribution of the non-road regions. Although this assumption seems like a strong 

assumption, it causes troubles especially features spaces of low dimensions. As the dimension of 

feature space used increases, the dimension holds true most of the time. However, it is still weak 

if there is a camouflaged obstacle on the road. 

The last assumption is that the camera is assumed to be parallel to the ground. The algorithm 

proposed in this paper uses one of the camera coordinates as height and hence too much 

deviation from this assumption will affect the algorithm’s performance significantly. However, 

as the experiments suggest, small deviations does not affect the performance. In the future, the 

angle between camera and the ground can be measured and easily integrated to the system to 

remove this assumption.  
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Figure 14 - Overview of the proposed algorithm for each frame coming from the camera. 
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Figure 15 - Unstructured Road Examples. 

 
 
 

 

Figure 16 - Raw images taken from the camera (top row). Images after histogram equalization (bottom row). 

3.4.2 Data Preprocessing 

As mentioned at the beginning of the section, stereovision system supplies both point cloud data 

and color images. In order to extract color distribution, decrease the effect of noise and sharpen 

the color information, these raw data are preprocessed. In the first step, color image is processed 

with the utilization of histogram equalization to sharpen the constrast and increase color 

differences and then the image is converted from RGB color space to HSV color space. In the 

second step, both point cloud data and image are divided into patches to prepare for the 

histogram calculation and to increase the processing speed with subsampling. 
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3.4.3.1 Histogram Equalization and RGB-HSV Conversion 

The first step of the preprocessing is the application of histogram equalization on each color 

channel of the color image supplied by the camera. The reason of applying histogram 

equalization on the RGB image is to reduce the adverse effects of unbalanced illumination and 

increase the contrast in the image so the chromatic content of the image becomes more 

distinguishable and uniformly distributed. Some images  taken from the field and their 

appearance after the application of histogram equalization can be seen in Figure 16. 

 
 
 
Table 1- Classification results of the proposed algorithm for two different sets of algorithm parameters with histogram 

equalization and without histogram equalization. 

 without Hist. Equalization 

 

with Hist. Equalization 

 

TP % TN % FP % FN % TP % TN % FP % FN % 

Config 1 Ave % 81.99 87.50 12.50 18.01 69.84 96.04 3.96 30.16 

Std Dev 16.05 9.39 9.39 16.05 18.42 3.20 3.20 18.42 

Config 2 Ave % 89.21 76.25 23.75 10.79 83.98 90.38 9.62 16.02 

Std Dev 14.78 13.68 13.68 14.78 14.58 6.77 6.77 14.58 

 
 
 
Application of histogram equalization is especially useful for the regions in the image with low 

saturation and low value channel values. After converting RGB image to HSV, pixels with very 

low saturation and low value yields misclassification and more importantly increases false 

positive rates which can be fatal for an autonomous agent. However, the downside of using 

histogram equalization is the slight deformation of color content, thus the objects sometimes 

may not appear in their original colors. The other disadvantage is that the histogram equalization 

is done based on the content of each image while colors distribution models are generated and 

updated within different frames. This situation yields a decrease in the true positive rate (TP). 

Although histogram equalization damages the true positive rate (TP) success of the algorithm, 

since false positive rate (FP) decrease is much more than the decrease in true positive rate as can 

be seen from the experiments given in Table 1, histogram equalization is decided to be used. As 

Table 1 visualized, both the mean and standard deviation of false positive rate (FP) decreases 

dramatically. Since false positives (FP) yield risky judgements for the robot, their decrease is 

more important. 
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After the application of histogram equalization to the RGB image coming from the camera, next 

is the conversion of the RGB image to HSV color space. HSV color space is a cylindrical-

coordinate representations of points in an RGB color model and can be visualised as given in 

Figure 17. Since HSV color space separates brightness information from chromatic information 

as a separate channel, it is more resistance to the light changes. Thus, only by using Hue and 

Saturation channels in the application, the system becomes more robust to light effects on the 

images.  

The worst case time complexity for histogram equalization as well as RGB-HSV conversion for 

an image with � pixels is �(�).  

 
 
 

 

Figure 17 - HSV color space cylindrical coordinate representation [59]. 

 
 
 

 

Figure 18 - Patch representation of data. 
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3.4.4.2 Generation of Patches 

After conversion of the color image from RGB to HSV color space. Both point cloud data and 

color image are divided into patches of sizes n x n pixels. By dividing the data into patches, 

color distribution for image patches and height variations for point cloud patches can be 

obtained. Thus, the data become ready for feature extraction and since each region is represented 

with a patch, subsampling is achieved for increasing further processing speed. Patch 

representation can be visualized as given in Figure 18. 

3.4.3 Feature Extraction 

In order to represent or extract color and geometrical properties of the patches, it is required to 

calculate some features related to these patches. Since these features represent color and 

geometrical properties of the patches, extracted features are used to estimate or learn the road 

model and they are also used to classify whether a patch is belong to road or not. Usually 

extracted features are represented as a vector which is called feature vector. This feature vector 

is what represents the patch in the feature space where classification and learning is done.  

3.4.3.1 Feature Extraction for Point Cloud Data 

In designed algorithm, point cloud data is used to represent the roughness of the road regions. 

As it is mentioned at the beginning of the section, training samples that are used to learn color 

distribution models about the road are selected from the regions where ground roughness are 

low in the close-range. In order to find these regions, a feature that represents roughness should 

be used. In this study, the roughness feature used is the height variance within the patch. 

Although there can be other features used, height variance is statistically sound, robust to noise 

and as a result used in this study.  

Height variance feature describes the deviation of the height within a point cloud patch. For a 

point cloud patch � of size �� pixels, this feature can be calculated by using (1) 

����(�) =
�

����
∑ (�� − �)���

���         (1) 

Where � is the y coordinate or height of the point according to the camera coordinate system 

and � is the mean of the heights of the points in the patch. 

The worst case time complexity for (1) for an image with � pixels is �(�) with a single-pass 

variance calculation algorithm.  

3.4.3.2 Feature Extraction for Color Data 

In the algorithm proposed in this study, color distribution or appearance model of the road is the 

one wanted to learn. If the appearance of the road can be learned, then road and non-road 

regions can be classified using this information. In order to represent the color properties of a 
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region, joint histograms of hue and saturation channels of HSV color space is used. Due to the 

fact that value channel represents the brightness; it can be affected by the illumination easily. In 

order to obtain a road detection algorithm that is robust to light changes hue and saturation 

channel values are used. Joint histograms of these two channels are used as the feature vector to 

represent the color distribution of an image patch. Thus, for an m bin joint histogram, the feature 

space as well as the feature vector has m� dimensions. A schematic representation of H-S joint 

histogram is given in Figure 19 for better visualization. 

The worst case time complexity for H-S joint histogram calculation for an image with � pixels is 

�(�). 

 
 
 

 

Figure 19 - Schematic representation of Hue-Saturation joint histogram of m bins. 

 
 
 
3.4.4 Automatic Training Sample Generation 

After extracting features for both point cloud data and image patches, next is to find the smooth 

enough regions in the environment. These smooth regions are filtered and later on their color 

distributions are used to learn color distribution models of road regions. In order to find the 

smooth enough regions to select as training samples, a roughness threshold should be defined. 
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This threshold is defined as ��. Then all point cloud patches are filtered using this threshold. The 

patches which have a feature value smaller than �� are accepted as training samples and those 

have a feature value greater than �� are not accepted. For a patch �, this procedure can be 

represented as given in (2) for the proposed roughness feature. 

∀� ∈ {����(�) < ��}         (2) 

After the application of (2), selected training sample patches on a single frame can be seen in 

Figure 20. If the number of patches are �, the application of (2) yields a worst case time 

complexity of �(�). 

 
 
 

 

Figure 20 - Generated training samples after thresholding for a sample frame. 

 
 
 
After roughness threshold is applied, in order to get the training samples with the highest quality 

and to be more robust against the noise, connected components labeling algorithm is applied. 

Connected components labeling algorithm is carried out as follows: 
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- A downsampled binary image is formed where each image pixel corresponds to an 

image patch of size �� pixels. 

- In this downsampled binary image, the pixels corresponding to training sample patches 

selected in the thresholding phase marked as foreground and those not corresponding to 

training samples are marked as background. 

- Connected components labeling is applied to this binary image and patch groups are 

labeled. 

- Then the patches in the largest connected component are selected as final training 

samples. 

After the application of connected components labeling and the selection of the patch group in 

the largest connected component from the data visualized in Figure 20, the resultant final 

training samples can be visualized in Figure 21.   

If the number of patches are � and the number of components that will be found is �, the worst 

case time complexity of an efficient implementation of connected components labeling 

algorithm is �(��). Although the time complexity is high, as long as � is small, complMexity 

does not cause problems. According to the experiments conducted, � is rarely greater than 10, 

hence complexity does not matter much in the algorithm proposed.  

3.4.5 Color Distribution Model Learning and Updating 

After obtaining the training patches, next step is to construct color distribution models for road 

or updating the models learned in previous frames using freshly gathered training data. In this 

section color distribution model learning and updating scheme is explained. The learning and 

updating scheme explained here is proposed by Dahlkamp et al. in [28]. In this study it is used 

with minor adaptations and a hierarchical clustering scheme is integrated and its effect on 

performance is investigated.  

3.4.5.1 Model Learning 

After obtaining reliable training samples it is required to learn the appearance or color 

distribution models of road. Note that the training data are obtained only from road regions, not 

both road and non-road regions. Thus, the learning problem here is not the learning of a decision 

boundary that discriminates between two or more classes but learning the color distribution of 

road regions. The difference between model learning and decision boundary learning can be 

visualized with Figure 22. As mentioned in the previous sections, one possible shortcoming of 

this approach is that if a non-road region or patch has a similar color distribution with the 

training patches (a camouflaged obstacle), it can be classified as road. However, especially in 

high dimensional feature spaces the probability of coming across such a situation is very low. 

Thus it is assumed that non-road regions do not have similar color distributions with the road 

regions.  
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Figure 21 - Training samples obtained after the application of connected components labeling and selection of the 
largest connected component. 

 
 
 

 

Figure 22 - Schematic for model learning (left) and decision boundary learning (right). 
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Since it is very hard (probably impossible) to model the road color distribution with only a 

single model, multiple Gaussian models are used in this study as well as in [28] to increase 

reliability, decrease the false classification rates without loss of generality and to adapt different 

road types and hence different road appearances as fast as possible. Since multiple Gaussian 

models are used to model the color distributions of road regions, it can be called as mixture of 

Gaussians.  

One very appealing feature of Gaussians is that each Gaussian distribution model can be 

represented with three parameters, namely, mean vector (�), covariance matrix (�) and weight 

(w). If the dimension of H-S joint histogram of a patch is ��, the mean vector (�) becomes an 

�� dimensional vector, the covariance matrix (�) becomes an ����� matrix and weight (w) is 

a scalar between 0 and 1 representing the number of training patches encapsulated by each 

Gaussian. In order to increase the speed of the algorithm and decrease the complexity, the 

covariance matrix (�) is assumed to be a diagonal matrix. 

In order to learn mixture of Gaussians from the training samples, Expectation Maximization 

(EM) [60], a well-known iterative clustering algorithm is used. In the application the maximum 

number of iterations of the algorithm is limited to 100. One issue with EM algorithm is that, it 

requires the number of Gaussian models to be learned as input, however, most of the time this 

information is not known. Thus, the number of models to be learned becomes a parameter of the 

algorithm. Another issue with the algorithm is the high time complexity. For an �� dimensional 

feature space as in this algorithm, � or �� clusters (Gaussian models) and � training samples, the 

time complexity of EM algorithm can be given as �(��
��������) per iteration. 

In the algorithm structure, each learned Gaussian distribution model is held in a model library. 

Due to performance limitations, this model library should have a maximum limit (�). When the 

system is first started, this library is empty and by using the training sample patches extracted 

from the first frame, �� Gaussians are developed with EM algorithm. Then, in each frame if 

there is enough training samples � new Gaussian models are learned and put in the model 

library. The reason of having two parameters as �� and � is that since there are no models in the 

library at the start of the system, the first learned models might have a bigger effect on the 

system success. 

3.4.5.2 Model Updating 

After the first frame, for each training patch obtained in each frame, Mahalanobis distance as 

given in (3), for that patch to each model in the model library is calculated.  

��������,��� = �	(�� − ��)
����(�� − ��)      (3) 

Where �� is the ith training patch’s feature vector and �� is the jth Gaussian model in the model 

library. If the minimum Mahalanobis distance between a patch and the corresponding Gaussian 
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is smaller than model update threshold (��), this training sample patch is used to update that 

model’s parameters using the following equations.   

�� ← (���� + ����)/(�� + ��)       (4) 

�� ← (���� + �� ���� − ������ − ���
�
�)/(��+ ��)    (5) 

�� ← (�� + ��)/(1+ ��)       (6) 

In (4), (5) and (6) �� is the weight of the training sample used to update the model and is the 

weight of �� in all the data gathered in that frame. If the number of training samples obtained on 

that frame is �, it can be calculated simply as 1/�. 

If the number of training samples obtained in one frame is �, the worst case time complexity of 

finding the minimum Mahalanobis distance between a sample and the models in the library can 

be calculated as �(����) where �(��) term comes from Mahalanobis distance calculation in 

an �� dimensional feature space and � is the maximum number of models that can be stored in 

the model library. 

If the number of training samples obtained in one frame is �, the worst case time complexity of 

(4), (5) and (6) becomes �(���), �(���) and �(��), respectively. 

After updating, if there remains some training samples none of which are closer to any of the 

models in the model library than model update threshold (��), thus not used for model updates, 

two things can happen: 

- If the number of these remaining samples is smaller than a minimum number �, these 

samples remain in the buffer and are passed to the next frame. 

- Else, new � Gaussian models are estimated using EM and added to the model library. 

When the model library reaches its maximum model number �, the � old models with the 

smallest weights are replaced by new learned � models. The summary of model learning and 

updating is given as a flow chart in Figure 23. 

This kind of model memory scheme provides adaptation to both slowly and fast changing 

environments and prevents “fast-learn and fast-forget” problem stated in the literature [33]. 
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Figure 23 - Flow chart of learning & updating models. 
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3.4.5.3 Estimating the Number of Clusters in Training Samples 

As mentioned in Model Learning section, EM algorithm requires the number of Gaussian 

models to be learned as input, however, most of the time this information is not known. Thus, 

the number of Gaussian models to be learned in the first frame (��) and in each frame (�) 

become two parameters to be selected. In order to remove the burden of selecting these 

parameters, despite of its algorithmic complexity agglomerative hierarchical clustering is 

applied to the training samples in each frame to estimate the number of natural clusters exist in 

the training set. After an estimate to the number of clusters is found out, this number is given as 

an input to EM algorithm to learn Gaussian models from the training set. 

Hierarchical clustering is a method in clustering analysis that builds a hierarchy of clusters. 

Generally two types of hierarchical clustering are available: agglomerative and divisive. 

In agglomerative hierarchical clustering, each sample in the dataset starts its own clusters. Thus, 

at the beginning the number of clusters is equal to the number of training samples. Then, in each 

step of the algorithm the clusters that are closest to each other according to some distance 

measure merged until there remains only one cluster that includes all training samples. Divisive 

hierarchical clustering is works just as the opposite of the agglomerative approach. A sample 

dendogram formed after the application of agglomerative hierarchical clustering is given in 

Figure 24. 

In the literature, there is different distance measures used to calculate the distance between two 

clusters. However, none of them found superior to all of them. Depending on the application and 

dataset used, the success of the distance measure used differs. Three of mostly used distance 

measures can be listed as: 

- Minimum distance  (single-linkage or nearest neighbor) 

- Maximum distance (complete-linkage or farthest neighbor) 

- Average distance (mean-linkage) 

In minimum distance measure, the Euclidian distance between the closest samples of clusters is 

taken as the distance between two clusters. For each samples � and � in clusters � and � , this 

measure can be expressed as in (7). 

min	{�����(�, �):�	�	�, �	�	�}        (7) 

In maximum distance measure, the Euclidian distance between the farthest samples of clusters is 

taken as the distance between two clusters. For each samples � and � in clusters � and � , this 

measure can be expressed as in (8). 

max	{�����(�, �):�	�	�, �	�	�}        (8) 
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Figure 24 - Sample dendogram schematic formed after the application of agglomerative hierarchical clustering [61]. 

 
 
 

 

Figure 25 - Three distances between clusters: minimum, maximum and average distances. 

 
 
 
In average distance measure, the average Euclidian distance between all samples of clusters is 

taken as the distance between two clusters. For each samples � and � in clusters � and � , this 

measure can be expressed as in (9). 
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�

|�||�|	
∑ ∑ �����(�, �)�∈��∈�         (9) 

Where in (7), (8) and (9); �����(�, �) represents the Euclidian distance between samples � and 

� taken from clusters � and � . A schematic for three distance metrics for better visualsization is 

given in Figure 25. 

All distance metrics used in agglomerative hierarchical clustering result in different cluster 

shapes in the feature space. Use of minimum distance measure yields elongated or irregular 

shaped clusters with chopped distribution tails. Use of maximum distance measure, on the other 

hand, results in compact clusters with approximately equal diameters. Average distance measure 

is a compromise between minimum and maximum distance metrics and hence results in clusters 

shapes of neither elongated nor compact. Since, the real cluster shape is not known average 

distance measure is selected due to its compromised characteristics. 

As it is mentioned at the beginning of the subsection, agglomerative hierarchical clustering 

results only a hierarchical structure not the best configuration. In order to determine the number 

of clusters that yields best, in each step of agglomeration pseudo-F statistic [62] is calculated as 

an indicator of appropriate number of clusters. 

Pseudo-F statistic is intended to capture the tightness of data groups, and in essence a ratio of the 

mean sum of squares between clusters to the mean sum of squares within clusters. Thus, at the 

appropriate number of groups the pseudo-F statistic is expected to give a peak. The calculation 

of pseudo-F statistic for a given dataset and groups can be given in (10). 

������− � =
(������� )/(���)

��� /(���)
        (10) 

Where ��� is the total sum of squares, ���  is within-cluster sum of squares, � is the total 

number of samples and � is the number of groups.  

Thus at the end of the agglomerative hierarchical clustering algorithm, the number of clusters 

giving peak pseudo-F statistic is obtained. Since there is a maximum limit in the model library 

�, number of clusters which is smaller than �and results in a peak in pseudo F-statistic is 

selected as the number of clusters. However, in order to remove outliers before the model 

learning with EM, the number of training data encapsulated by each cluster found by 

hierarchical clustering algorithm is inspected. If the number of training data in a cluster is 

smaller than the minimum required samples �, these data are not used for learning and passed to 

the next frame. Number of appropriate Gaussian models found at last is used as an input to the 

EM algorithm and model learning is done. 

After the first frame, mentioned agglomerative hierarchical clustering procedure is applied for 

learning of new models after the model updating scheme described in ����� 	��������  section. 
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The overall model learning and updating scheme with hierarchical clustering is given in Figure 

26 as a flow chart. 

In order to evaluate the performance effect of agglomerative hierarchical clustering on the 

algorithm, the algorithm is run with hierarchical clustering and without hierarchical clustering 

with five different configurations and the results are given in Table 2. 

 
 
 

Table 2 - Classification results of the proposed algorithm for five different sets of algorithm parameters with and 
without agglomerative hierarchical clustering. 

 without Hierarchical 
Clustering 

 

with Hierarchical Clustering 

 

TP % TN % FP % FN % TP % TN % FP % FN % 

Config 1 Ave % 70.98 93.48 6.52 29.02 68.99 93.45 6.55 31.01 

Std Dev 19.97 5.72 5.72 19.97 21.70 6.43 6.43 21.70 

Config 2 Ave % 86.53 83.92 16.08 13.47 84.84 85.09 14.91 15.16 

Std Dev 16.30 11.74 11.74 16.30 17.58 10.26 10.26 17.58 

Config 3 Ave % 91.81 75.17 24.83 8.19 91.05 76.40 23.60 8.95 

Std Dev 15.37 15.36 15.36 15.37 15.78 14.84 14.84 15.78 

Config 4 Ave % 58.64 97.52 2.48 41.36 55.08 97.92 2.08 44.92 

Std Dev 22.02 3.10 3.10 22.02 21.76 2.73 2.73 21.76 

Config 5 Ave % 67.88 96.14 3.86 32.12 60.92 96.92 3.08 39.08 

Std Dev 21.25 4.12 4.12 21.25 22.71 3.68 3.68 22.71 
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Figure 26 - Flow chart of learning & updating models with agglomerative hierarchical clustering. 
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According to the results, it can be said that hierarchical clustering decreases false positive rate 

(FP) very slightly while decreasing true positive rate (TP) much more considerably in general. 

Although it damages the algorithm success considerably in some configurations, it has a very 

slight effect when true positive rates are high. Considering its high algorithmic complexity (for � 

training samples �(��) for hierarchical clustering and �(�) for the calculation of Pseudo-F 

statistic at best), it can be said that there is no need to use agglomerative hierarchical clustering 

algorithm to determine the number of clusters to be learned in each frame. Another conclusion 

that can be drawn from these results is that the success of the algorithm does not depend much 

on the number of clusters to be learned in the first frame (��) and in each new frame (�). In 

another words, �� and � have a negligible effect on algorithm performance. 

3.4.6 Classification 

After the models learned, the last step is the classification of all patches in the image using 

Gaussian color distribution models in the model library. The classification of patches is done 

using feature vectors extracted from image patches, that is, the H-S joint histograms of � bins. 

According to the similarity of a feature vector to any of the models in the model library, the 

patch related to that feature vector is accepted either as road or rejected. Mathematically, the 

similarity can be represented as the distance of the feature vector of the patch to any of the 

model learned in the feature space. After this distance is calculated, according to a classification 

threshold (��), the patch with the corresponding feature vector can be classified as road or non-

road. If the distance between the feature vector and the model is smaller than the threshold value 

�� it is classified as road, else it is classified as non-road. There are two problems arise in 

classification. The first one is the distant places that are not connected to road but has a color 

distribution and smoothness like road regions and the second one is the selection of right 

similarity (or distance) measure.   

In order to solve the first problem, in the classification of each frame, the training samples 

generated in that frame are used as seeds for classification. After these seeds are initialized, 

classification is applied by region growing. Thus, to be accepted as road, the patch both satisfies 

the similarity measure as well as the connectivity to the training samples. In the first step of 

region growing, four-neighbourhood of training samples are queried for the similarity to the 

models. After that in each step, region growing continues with the four-neighborhood of the 

patches classified in the previous step. This loop continues until there are no new patches are 

classified as road. The procedure can be visualized as in Figure 27. 
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Figure 27 - Steps of classification via region growing. (Left) Training samples obtained in the frame as seeds for 
classification. (Middle) Result of region growing after the first step. (Right) Result of the region growing after second 

step. 

 
 
 
For the solution of the second problem, the classification performance of the algorithm with six 

different distance measure is compared. The distance measures used for the classification step 

are; Manhattan distance, Euclidian distance, Mahalanobis distance, Chebyshev distance, 

Hellinger distance and Chi-square distance measures. 

3.4.6.1 Manhattan Distance 

Manhattan distance is a distance metric, in which the distance between two vectors is the sum of 

the absolute differences of their coordinates in the space. The metric is also known as �� norm 

or city block distance. For two vectors � and � of dimensions d, it can be expressed as given in 

(11) [63].    

�����(�, �) = ∑ |�� − ��|
�
���         (11) 

Since it is required to find the distance between a feature vector and a model in this algorithm, 

for the feature vector � and mean � of the Gaussian model �, (11) can be modified as given in 

(12). 

�����(�,�) = ∑ |�� − ��|
�
���         (12) 

3.4.6.2 Euclidian Distance 

Euclidian distance is the ordinary distance metric that can be found by Pythagorean formula. 

The Euclidian distance between two vectors is actually the length of the line segment connecting 

them. For two vectors � and � of dimensions d, it can be expressed as given in (13) [63].  

�����(�, �) = �∑ (�� − ��)
��

���         (13) 
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Then the distance between the feature vector � and mean � of the Gaussian model �, (13) can 

be expressed as given in (14). 

�����(�,�) = �∑ (�� − ��)
��

���        (14) 

3.4.6.3 Mahalanobis Distance 

Mahalanobis distance metric is a distance measure based on the correlations between variables 

[63]. Since it takes into account the correlations of the dataset and is scale-invariant, it is 

different from Euclidian distance measure. For a dataset �  with mean ��  and covariance ��  of 

dimension d, the calculation of Mahalanobis distance for a vector � is given in (15).   

�����(�) = �(� − �� )
���

��(� − �� )       (15) 

If covariance matrix ��  is a diagonal, then the resulting distance measure is called normalized 

Euclidian distance and if covariance matrix ��  is an identity matrix, then the distance measure is 

reduced to Euclidian distance. For a feature vector � and mean �, covariance � of the Gaussian 

model �, (15) can be expressed as given in (16). 

�����(�,�) = �(� − �)����(� − �)       (16) 

3.4.6.4 Chebyshev Distance 

Chebyshev distance metric, also known as maximum metric or ��  metric [64], is a metric 

defined as the distance between two vectors is the greatest of their differences along any 

dimension of the feature space where they defined. Mathematically, for two vectors � and � of 

dimensions d it can be expressed as given in (17). 

����� (�, �) = max�	(|�� − ��|)        (17) 

Then the distance between the feature vector � and mean � of the Gaussian model �, (17) can 

be expressed as given in (18). 

����� (�,�) = max�	(|�� − ��|)        (18) 

3.4.6.5 Hellinger Distance 

Hellinger distance is a distance measure to quantify the similarity between two distributions. 

Since in the proposed algorithm, the feature vectors and Gaussian model means are actually H-S 

joint histograms, they are actually distributions. Thus, Hellinger distance metric can be used to 

calculate the similarity (or dissimilarity) between them. For the feature vector � and the mean � 



43 
 

of the Gaussian model � of dimensions d, the calculation of Hellinger distance between the 

feature vector and the model can be found as given in (19) [65]. 

����� (�,�) = �1−
�

�������
∑ �����
�
���         (19) 

Where �� and �� are given in (20) and (21), respectively. 

�� =
�

�
∑ ��
�
���           (20) 

�� =
�

�
∑ ��
�
���           (21) 

3.4.6.6 Chi-squared Distance 

Another distance measure to quantify the similarity between two distributions is chi-sqaured 

distance measure. Chi-squared distance measure is used extensively in computer vision to 

measure the dissimilarity or similarity between two histograms. . For the feature vector � and 

the mean � of the Gaussian model � of dimensions d, the calculation of Chi-squared distance 

between the feature vector and the model can be found as given in (22) [65]. 

�����(�,�) = ∑
(�����)

�

��

�
���           (22) 

3.4.6.7 Results 

The classification performance of mentioned six distance measures for the same configuration 

with increasing classification threshold (��) is given in Figure 28. In Figure 28, the average false 

positive (FP) ratio versus the average true positive (TP) ratio of the algorithm is given. Since 

true positives are desirable and false positives are undesirable, the FP vs. TP curve should be as 

steep as possible. As the results suggests, the steepest curve is belonged to Mahalanobis distance 

(applied as Normalized Euclidian Distance here since covariance matrix is diagonal). Thus, 

Mahalanobis distance metric is selected in the use of classification due to its maximized 

performance. The worst case time complexity of classification all patches with Mahalanobis 

distance measure is �(����). Since the covariance matrix is assumed to be diagonal, the 

Mahalanobis distance measure becomes Normalized Euclidian distance with a worst case time 

complexity �(����). 
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Figure 28 - Classification performance of different distance measures for the same configuration with increasing 
classification threshold (��). 

 
 
 
3.5 Experiments and Results 

In this section the performance of the algorithm is evaluated. For a configuration selected as 

reference, each of the algorithm’s parameters is changed one at a time to see the effect of the 

parameters on the performance and the parameters that yield the best performance are tried to 

find. The reference algorithm parameters selected are given in Table 3. 

 
 
 

Table 3 - Reference values for algorithm parameters to evaluate the performance effect of each parameter. 

Parameter ��	(�
�)  �	(������) �	(����) �� � � � �� �� 

Value 0.00001 5 8 1 1 10 20 1 5 
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For the evaluation of the algorithm, the data gathered from the pathways of Yalincak village at 

METU campus – a total of 360 frames- as explained in ���� 	���ℎ����� section are used. The 

data gathered are labeled as road and non-road manually by using a custom interface developed 

in Visual C# [52] and with AForge.NET image processing libraries [54]. A screenshot taken 

from the software with manually labeled road region is presented in Figure 29. The white 

regions in the image in Figure 29 are labeled as road while other regions are labeled as non-road. 

The labeled images are used as ground truth to compare the images labeled by the algorithm. 

 
 
 

 

Figure 29 - Road region labeling user interface for ground truth data generation. 

 
 
 
As performance metrics, average (mean) and standard deviation of true positive (TP) and false 

positive (FP) rates of all 360 frames are used. The average TP and FP rates of all 360 frames 

give the overall performance of the algorithm. TP rate shows the rate of detection of road 

regions successfully. FP rate, on the other hand, shows the rate of detection of non-road regions 

successfully. Thus, it is desired to have the highest possible average TP rate while having the 

smallest possible average FP rate to have safe road detection. If FP rate is too high, this means 

the non-road regions are classified as road regions which is highly dangerous. While looking at 

the average FP-TP plots, the parameters resulting highest TP/FP ratio should be selected to 

obtain the highest performance. The standard deviations of TP and FP rates of all 360 frames, on 
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the other hand, show the variation of frame-based TP and FP rates. Hence, both the standard 

deviation of TP and FP rates should be as small as possible for reliability and faster learning 

when the road appearance changes. Through the experiments and parameter selection, the 

highest allowable FP rate is selected as 10% for a satisfactory performance. Thus, the 

parameters are selected to obtain the summation of average FP and standard deviation of FP as 

10% at maximum.      

The first experimentation is done to see the effect of the patch size on the algorithm’s road 

detection performance. The change of average FP rate vs. average TP rate with the change in 

patch size from 2 to 9 pixels is given in Figure 30. The results say that as the patch size 

increases, average FP rates are decreasing as well as average TP rates. It is expected due to the 

fact that increasing patch size increases the distinctivity of the algorithm. It also increases the 

sparsity within the feature space. On the other hand, the increase in the patch size also increases 

the subsampling and number of training samples obtained in each frame, and hence decreases 

the average TP rates. 

The increase in the patch size also increases the height variance within a patch and as a result for 

the same height variance threshold lesser training samples are obtained. In fact, after some point 

the increase in the patch size only decreases average TP rates without changing average FP 

rates. This situation can be seen in Figure 30 after a patch size of 7 pixels.  

In Figure 31, the standard deviations of FP and TP rates are given. As figure suggests, the 

standard deviation of TP rates grows steadily as patch size increases while the standard 

deviation of FP rates decreases up to a patch size of 7 pixels, but increases again after 7 pixels. 

As it has been mentioned this characteristics is a direct result of obtaining a very small number 

of training samples after a patch size of 7 pixels. 

As a result of the first experimentation it can be said that patch size (�) has a major effect on 

algorithm performance and a patch size of 5x5 or 6x6 seems like a reasonable compromise 

between FP and TP rates. 
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Figure 30 - The effect of patch size on average TP rates and average FP rates of the algorithm. Note that the number 
of pixels consisted by a patch is nxn. 

 
 
 

 

Figure 31 - The effect of patch size on the standard deviations of TP and FP rates of the algorithm. Note that the 
number of pixels consisted by a patch is nxn. 
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The second experiment is done to see the effect of the classification threshold (��) on the 

algorithm performance. The change of average FP rate vs. average TP rate with the change in 

classification threshold from 0.5 to 6 is given in Figure 32. Since classification threshold (��) 

directly affects which patch is accepted or rejected, as the threshold increases both average FP 

rates and TP rates increase. However as the figure suggests, after some point the increase in the 

average TP rate becomes insignificant compared to the increase in the average FP rate. 

 
 
 

 

Figure 32 - The effect of classification threshold on average TP rates and average FP rates of the algorithm. 

 
 
 
In Figure 33, the standard deviation of FP rate vs. TP rate with the change in classification 

threshold (��) is given. As it can be seen from the figure the uncertainty in the TP rate first 

increase and then decrease while the uncertainty in the FP rate continuously grows. Thus, to 

hold the uncertainty small the figure suggests choosing a relatively small classification threshold 

value.  

Since selection of a satisfactory classification threshold (��) also depends on the feature space. It 

is more suitable to select the classification threshold with other parameters. 
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Figure 33 - The effect of classification threshold on the standard deviations of TP and FP rates of the algorithm. 

 
 
 
After the classification threshold (��) the next experimentation is done to investigate the effects 

of model update threshold (��) on the algorithm classification performance. This parameter 

directly affects the shape of the Gaussians. As the threshold increases, the learned Gaussians 

become wider and as the threshold decreases, the models become more compact and hence the 

uncertainty within the models decreases.  

In Figure 34, the average of FP rate vs. TP rate with the change in model update threshold (��) 

is given. As the figure suggests, as the update threshold increases both average TP and FP rates 

are increasing. However, after some point the increase in the average FP rate is faster. On the 

other hand, the change in standard deviations of TP and FP rates with respect to the change in 

update threshold is somewhat different. As the update threshold increases, the change in the 

standard deviation of TP rate is very small compared to the large change in the standard 

deviation of FP rate. This figure suggests the selection of a small update threshold value.  
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Figure 34 - The effect of the update threshold on the average TP and FP rates of the algorithm. 

 
 
 

 

Figure 35 - The effect of the update threshold on the standard deviations of TP and FP rates of the algorithm. 
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Figure 36 - The effect of model update threshold with classification threshold change on average TP rates and average 
FP rates of the algorithm. 

 

 

Figure 37 - The effect of model update threshold and classification threshold change on the standard deviations of TP 
and FP rates of the algorithm. 
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If besides changing model update threshold (��), classification threshold (��) is also changed, 

the behavior of the system becomes as it is given in Figure 36 and Figure 37. As figures suggest, 

as classification threshold (��) for a given model update threshold (��) both average TP and FP 

rates increase, but for small (��) the increase in the average FP rate with respect to the average 

TP rate is small. For the standard deviations of TP and FP, as (��) increases the standard 

deviation of TP first increases but then decreases while the standard deviation of FP always 

increases. Again, for small (��) the increase in the standard deviation of FP with respect to TP 

is small. According to the figures, it seems logical to select (��) something smaller than 2. 

The next experimentation is done on the performance effects of the number of histogram bins 

(�). Since the feature vector used for the classification and learning is the H-S joint histogram 

of each image patch the number of bins (�) in one channel is actually determines the size of the 

feature space. Thus, if the histogram of one channel has (�) bins, then the joint histogram has 

(��) bins and the feature space becomes (��) dimensional.  

 
 
 

 

Figure 38 - The effect of number of histogram bins on average TP rates and average FP rates of the algorithm. 
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Figure 39 - The effect of number of histogram bins on the standard deviations of TP and FP rates of the algorithm. 

 
 
 
If only the number of histogram bins (�) is changed while other parameters are held constant, 

the FP vs. TP rates of the algorithm has a trend as given in Figure 38 and Figure 39. According 

to the figures, it can be said that the average FP and TP rates of the algorithm decrease as 

number of bins increases. It is expected due to the increase in the sparsity as a result of high 

dimensional feature space. In standard deviations however, as the number of bins increases the 

uncertainty in the false positives decreases but the uncertainty in the true positives increases. 

Looking only these figures suggest the selection of 8 or 10 bins might yield a reasonable 

performance.  

If besides changing number of bins (�), classification threshold (��) is also changed the figures 

becomes surprisingly different and given in Figure 40 and Figure 41. As Figure 40 suggests, 

with a proper selection of classification threshold (��) approximately same average FP and TP 

rate performances can be obtained within a different number of histogram bins (�). As for the 

standard deviation of FP and TP rate performances given in Figure 41, the characteristics are 

similar but the standard deviation of TP is smaller in smaller number of bins. According to these 

results, number of bins (�) can be selected as 6 or maybe 8 to decrease the uncertainty 

sufficiently.  
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Figure 40 - The effect of number of histogram bins with classification threshold change on average TP rates and 
average FP rates of the algorithm. 

 
 
 

 

Figure 41 - The effect of number of histogram bins and classification threshold change on the standard deviations of 
TP and FP rates of the algorithm. 
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Figure 42 - The effect of maximum number of Gaussian models on average TP rates and average FP rates of the 
algorithm. 

 

 

Figure 43 - The effect of maximum number of Gaussian models on the standard deviations of TP and FP rates of the 
algorithm. 
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The next experiment is done to see the effect of the maximum size of the Gaussian model 

library. This parameter determines how much Gaussian color models to be stored and used to 

classify the given frame. Thus it represents the size of the memory holding roads passed.  

The average and standard deviation of FP vs. TP rates of the algorithm are given in Figure 42 

and Figure 43. As the average FP vs. TP rates figure suggests, the increase in the maximum 

number of models (�) results in an increase in both average FP and TP rates. However, the 

increase in the average FP rates is much more serious compared to the increase in the average 

TP rates. When the standard deviation of FP vs. TP rates considered, as number of models (�) 

increase standard deviation of TP rates decreases very slightly while standard deviation of FP 

rates increases significantly. As a result selecting (�) as 5 or 10 seems logical according to the 

figures.       

 
 
 

 

Figure 44 - The effect of number of newly learned Gaussian models in each frame on average TP rates and average 
FP rates of the algorithm. 

 
 
The next experiment is done on the effect of the number of newly learned Gaussian models in 
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the effect of the parameter is lesser than the effect of (�) and does not change the algorithm 

performance much. As the value of the parameter grows, that is, the number of color models 

learned new increases, the algorithm forgets the old roads faster and hence, the average TP rate 

decreases without much change in average FP rate. In addition to that, as the number of models 

learned with the same number of training samples increases, the uncertainty per model grows. 
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Hence, this situation yields an increase in the standard deviation of TP rate without much change 

in the standard deviation of FP rate. Hence, selecting (�) as 1 seems like an appropriate choice 

in general.  

Another experiment is done to see the effect of the number of initially learned Gaussian color 

models on the algorithm classification performance. Since this parameter affects the first couple 

of frames at the beginning, the effect on the overall performance is insignificant as given in 

Figure 46 and Figure 47. Thus, it is not logical to evaluate the effect of the parameter on the 

overall performance but on the startup or transient state.  

 

Figure 45 - The effect of number of newly learned Gaussian models in each frame on the standard deviations of TP 
rates and FP rates of the algorithm. 
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Figure 46 - The effect of number of initially learned Gaussian models on average TP rates and average FP rates of the 
algorithm. 

 
 
 
 

 

Figure 47 - The effect of number of initially learned Gaussian models on the standard deviations of TP rates and FP 
rates of the algorithm. 
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In this respect the performance effect of this parameter on the average and standard deviations 

of FP and TP rates for the first 10 frames are evaluated as well as the FP and TP rates of the first 

frame only. As Figure 48 suggests, as (��) increases average FP and TP rates increase generally 

for the first 10 frames. According to Figure 49, as (��) increases the uncertainty in TP rate 

decreases slightly without a significant change in the uncertainty in FP rate. For the first frame, 

as it can be seen from Figure 50, the trend in Figure 48 is more distinct with a faster increase in 

the FP rate. According to the trends represented by the figures, it seems logical to select �� as 2 

for a satisfactory cold start performance of the algorithm. 

 
 

 

Figure 48 - The effect of number of initially learned Gaussian models on average TP rates and average FP rates of the 
algorithm for the first 10 frames. 
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Figure 49 - The effect of number of initially learned Gaussian models on the standard deviations of TP rates and FP 
rates of the algorithm for the first 10 frames. 

 

Figure 50 - The effect of number of initially learned Gaussian models on TP and FP rate of the algorithm for the first 
frame only. 
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in Table 4. As the obtained values suggest, the effect of (�) on algorithm performance is 

negligible and the use of such a minimum value can be omitted. 

 
 
 

Table 4 - The effect of the minimum number of training samples required to learn new k models on algorithm 
performance. 

�  Ave. FP % Ave. TP % Std. Dev. FP % Std. Dev. TP % 

5 8.41 82.91 6.26 15.60 

10 8.43 82.94 6.24 15.60 

15 8.43 82.99 6.24 15.58 

20 8.42 83.06 6.25 15.58 

25 8.43 83.09 6.25 15.57 

30 8.43 83.08 6.26 15.64 

35 8.43 83.08 6.26 15.64 

40 8.43 83.08 6.26 15.64 

45 8.45 83.08 6.28 15.66 

50 8.45 83.07 6.26 15.66 

55 8.45 83.07 6.26 15.66 

60 8.45 83.07 6.26 15.66 

65 8.45 82.95 6.28 16.03 

70 8.45 82.95 6.28 16.03 

 
 
 
The last experiment is done to see the effect of roughness threshold (��) on the algorithm 

performance. As the roughness threshold increases, more and more rough surfaces are accepted 

as training samples and hence the models are learned according to these more rough surfaces. 

However, selecting this threshold too low will yield an insufficient number of training samples 

generated and as a result a less general appearance or color model will be generated.  
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In this study the height is approximated as the camera’s vertical axis coordinate. This 

assumption holds if the camera is held approximately parallel to the ground. Thus, the roughness 

threshold should also be selected according to the angle between the camera and the ground 

plane if the camera is not held parallel to the ground. 

The average FP vs. TP performance curve of the algorithm is represented in Figure 51. As the 

threshold value increases, both average TP and FP increase. However, the increase in average 

TP becomes insignificant after about �� = 3�− 5. Thus this figure suggests the selection of the 

parameter as 2e-5 or 3e-5.  

The performance curve related to the standard deviation of FP vs. TP is given in Figure 52. 

According to the figure, as the roughness threshold increases the standard deviation of TP 

decreases with a slight increase in the standard deviation of FP. Again, after about �� = 4�− 5 

the decrease in the standard deviation of TP becomes insignificant. Considering the results given 

in Figure 51, the selection of the parameter as 2e-5 or 3e-5 seems appropriate. 

 
 
 

 

Figure 51 - The effect of roughness threshold on average TP rates and average FP rates of the algorithm. 
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Figure 52 - The effect of roughness threshold on standard deviation of TP rates and standard deviation of FP rates of 
the algorithm. 

 
 
 
Using the results obtained from the analysis, the algorithm parameters are selected as given in 

Table 5.  

 
 
 

Table 5 - Selected algorithm parameters. 

Parameter ��	(�
�)  �	(������) �	(����) �� � � � �� �� 

Value 0.00003 5 8 2 1 5 20 1 4 

 
 
 
Using the parameters given in Table 5 the algorithm is run and the performance of the algorithm 

is given in Table 6 as average TP, average FP, standard deviation of TP and standard deviation 

of FP. 
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Table 6 - Performance results of the selected algorithm parameters over 360 frames. 

Ave. FP % Ave. TP % Std. Dev. FP % Std. Dev. TP % 

5.52 82.93 3.65 11.19 

 

The qualitative results for four sequenced frames are given in Figure 53. As it can be seen the 

road regions are classified successfully.  

 
 
 

 

Figure 53 - Four sample sequence and their classification results. 

 
 
 
Figure 54 shows the performance of the algorithm under significant light variations. The two 

sequenced frames with different light conditions are successfully classified. This situation is a 

direct result of using HSV color space and continuously learning road regions. 
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Figure 54 - Two sequenced frame with significant light variations. The algorithm can successfully classify the road 
regions. 

 
 
 
3.6 Conclusion 

In this chapter, an adaptive self-learning unstructured road detection is presented. The main 

advantage of the algorithm is to learn the road region by using a simple roughness thresholding 

feature. The results show that the performance of the algorithm depends on different parameters. 

Analyzing the effects of these parameters, a parameter set with satisfactory unstructured road 

detection performance is proposed. The results also show that the algorithm is robust against 

sudden light changes.  

For better classification performance, the height variance threshold should change dynamically 

with the angle between the camera and ground. However, this will remain as a future work to 

this academic research. 

As mentioned within the chapter, the complexity of the algorithm is high and it cannot be used 

in real-time. In order to work faster, the algorithm should be implemented in parallel and the 

parallelization of the algorithm and implementation on a GPU is presented in the next chapter.  
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CHAPTER 4 

 
CUDA IMPLEMENTATION 

4.1 Introduction 

In this chapter, CUDA [66] implementation and parallelization of the algorithm proposed in the 

previous chapter is explained. According to the results and the evaluations given in the previous 

chapter, it is shown that the algorithm can successfully classify the road regions in the 

unstructured environments. Despite of its classification success, the time complexity of the 

algorithm is high and in the current state it is not suitable to run on a robot that requires real-

time road detection.  

Since there are lots of data to be processed and most of the processing is independent, the 

algorithm is redesigned in parallel to run the parallel work on the GPU to satisfy real-time 

considerations. Hence, in this chapter the parallelization of the algorithm as well as the CUDA 

implementation is presented. The reason of choosing CUDA as the parallel implementation 

environment is its maturity over other parallel software development environments such as 

OpenCL [67] or DirectCompute [68]. However, one big disadvantage of using CUDA is that it 

can only be used for NVIDIA graphics cards. Despite this disadvantage, huge community 

support that is available for CUDA is a big plus. 

In this chapter, a brief introduction for CUDA programming model is given first and then the 

parallelization of the algorithm with the implementation details are given. Since the 

implementation details are very important and affect performance severely on GPU 

computation, implementation of the algorithm is also given. 

4.1.1 CUDA Programming Model 

With the increase in the demand for real-time, high-definition 3D graphics, graphic processor 

units, which are the heart of the graphics cards, have evolved into massively parallel manycore 

processors with tremendous computational power and high memory bandwidth. The 

computational power as well as the bandwidth of GPUs grew faster than the computational 

power of CPUs. The grow in the computational power and memory bandwidth in GPUs and 

CPUs through last decade can be seen in Figure 55 and Figure 56. 

Since GPUs are originally designed for graphics rendering which is a compute-intensive, highly 

parallel computational application, their architecture is developed to handle large data 

processing instead of data caching and flow control. As a result, more transistors and more chip 

area are devoted for the computation in GPUs. In this respect, GPU is especially more suitable 
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for the solution of problems that are data-parallel, that is, if the same program is required to 

execute for many data elements and the number of memory operations are relatively small. 

Since memory operations are smaller than the computation in these types of problems, memory 

access latency can be hidden with calculations instead of big data caches.   

 
 
 

 

Figure 55 - Floating-Point Operations per Second for the CPU and GPU [66]. 
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Figure 56 - Memory Bandwidth for the CPU and GPU [66]. 

 
 
 
In 2006, NVIDIA introduced CUDA [66], a general purpose parallel computing platform and 

programming model that leverages the parallel compute engine in NVIDIA GPUs to solve many 

complex computational problems in a more efficient way than on a CPU. CUDA comes with a 

software environment (CUDA SDK) that allows developers to use C as a high-level 

programming language. 

The development of multicore CPUs and manycore GPUs puts forward the challenge of 

developing applications that transparently scales its parallelism to processors with different 

number of cores. CUDA parallel programming model is designed to beat this challenge and 

decrease the learning curve of design and implementation of massively parallel applications.  

With a minimal set of language extensions done on C language, three core abstractions are done 

with CUDA: a hierarchy of thread groups, shared memories, and barrier synchronization. These 

abstractions guide the programmer to partition the problem into coarse sub-problems that can be 

solved independently in parallel by blocks of threads, and each sub-problem into finer pieces 

that can be solved cooperatively in parallel by all threads within the block. This decomposition 

enables automatic scalability between different GPUs with different number of parallel cores. 
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Figure 57 - Thread hierarchy in CUDA programming model [66]. 

 
 
 
CUDA extends C language by allowing the programmer to define C functions that can be run on 

GPUs. These functions are called “kernels” and when they called they are executed N times in 

parallel by N different CUDA threads. Each thread executed knows its unique id through 

“threadIdx” variable. For example in an image processing implementation, if each thread 

processes one pixel, then threadIdx variable defines that individual pixel. “threadIdx” is a 3-

component vector, so that the index of threads can be one-dimensional, two-dimensional or 

three-dimensional depending on the application. On the higher hierarchy CUDA programming 

model has thread blocks. A block is composed of threads and depending on the architecture one 

block can contain 1024 threads. The thread blocks can be indexed using “blockIdx” variable and 

can be one-, two- or three-dimensional depending on the GPU architecture. The thread hierarchy 

is given in Figure 57. 

The threads of a thread block execute concurrently on one multiprocessor on GPU hardware and 

multiple thread blocks can execute concurrently on one multiprocessor. As thread blocks 

terminate, new blocks are launched on the vacated multiprocessors. These multithreaded 

processors create, manage, schedule, and execute threads in groups of 32 parallel threads called 

“warps”. While threads in the same warp are always executed together, warps in the same block 

are handled asynchronously and, if needed, they can be synchronized. No synchronization is 

available for all threads in all blocks launched. It can only be done through separate kernel calls. 
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CUDA programming model also contains a memory hierarchy. Depending on the application, 

CUDA threads may access data from multiple memory spaces during their execution, namely, 

registers, local memory, shared memory and global memory. The memory hierarchy is 

illustrated in Figure 59.  

Each thread has registers and private local memory location which can only be reached from the 

thread itself. The data stored in a register or local memory can only be accessed by the thread 

itself.  Registers are the fastest memory that can be used on the GPU, but has a very limited size 

per thread. Up to the size of registers, local memory uses registers. However, if a greater size is 

required, local memory uses global memory, which is the slowest memory space on the card. In 

the thread block level, each thread block has shared memory which is directly on GPU chip.  

Shared memory is visible to all threads of the block and is slower than registers. The total size of 

the shared memory on the chip is quite limited; 32 kB or 48 kB depending on the architecture. 

Although slower than registers, shared memory is still much faster than global memory. The 

main advantage of shared memory space is that the data stored in it can be seen by all threads of 

a thread block. Thanks to this advantage, cooperative computations such as summation can be 

done very fast within a thread block. Shared memory space should be used wisely; the use of 

shared memory greater than the limit will decrease the concurrent thread and thread block 

execution and degrades the performance severely.    

All threads in all blocks have access to the same global memory, which is actually the memory 

of the graphics card and is not on the GPU chip. Although global memory is the slowest 

memory space, it is the largest at the same time. Global memory transactions must be naturally 

aligned: Only the 32-, 64-, or 128-byte segments of device memory that are aligned to their size 

(i.e., whose first address is a multiple of their size) can be read or written by memory 

transactions. In other words, in one transaction a chunk of memory with size 32-, 64-, or 128-

bytes is transacted. Thus, to overcome the slowness of the global memory space, the memory 

access pattern should be coalesced in a warp. If not coalesced, some of the data transacted are 

not used and decreases efficiency. To achieve a coalesced access pattern, consecutive threads 

should access the consecutive global memory spaces. A schematic for coalesced access pattern 

is given in Figure 58. 

There are also two read-only memory spaces accessible by all threads, namely, constant and 

texture memory spaces. Constant memory is cached on the chip and resides in the global 

memory. It has a limited size. It is fast and can broadcast a reading to a half warp concurrently. 

Texture memory is also cached on the chip and resides in the global memory. The main 

advantage of texture memory is that it is optimized for irregular memory access patterns. Thus if 

the application requires irregular memory accesses, the use of texture memory can improve the 

performance.   

In this thesis work, the high performance paralleling strategy proposed by [69] is applied 

mainly. According to the strategy proposed by Volkov, to maximize the performance gain the 
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use of registers should be maximized and independent instructions should be called serially in 

each kernel as much as possible. Although this strategy might yield more illegible code writing, 

the increase in the performance is so dramatic that it is usually preferable.  

 
 
 

 

Figure 58 - Schematic representation of coalesced memory access pattern. 

 
 
 
4.2 Hardware and Software Environment 

Throughout the development of the algorithm all coding is done on a Windows 7 64-bit machine 

using CUDA C and Visual Studio 2008 [52]. The CUDA implementation is done using NVIDIA 

CUDA SDK 5.0 [66] and profiling is done on NVIDIA Visual Profiler coming with NVIDIA 

CUDA Toolkit.  

4.3 Parallel Analysis of the Proposed Algorithm 

In order to apply GPU acceleration to the solution of a given problem, the problem should be 

first analyzed to understand its nature. If the problem is not highly parallelizable due to its 

nature, GPU implementation will not increase the performance of the solution, but severely 

decrease. In addition to that, while some problems seem serial, they can be expressed and solved 

with a parallel point of view and parallel approaches work much more efficiently. One example 

for this type of problem patterns is reduction [70] (e.g. summation) and another is scan [71] (e.g. 

filtering).  

Due to the fact that proposed algorithm is actually composed of several image processing and 

data mining primitives, the overall nature of the algorithm is massively parallel. As it is 

expressed in detail in the previous chapter, the algorithm starts with histogram equalization. 

Since an image is composed of lots of pixels and in histogram equalization these pixels are 

processed for the computation of image histogram, its equalization and reassigning color values, 

this part of the algorithm is massively parallel and appropriate to run on a GPU. Due to the same 
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reason, RGB-HSV conversion is also a massively parallel process and an appropriate work for 

GPU computation.  

Both feature extraction for point cloud data and color data require highly parallel computations 

which are independent between patches but collaborative within patches. Thus, this part of the 

proposed algorithm is also suitable for GPU acceleration since GPU thread blocks are designed 

for collaborative computations. Since filtering of patches according to roughness threshold to 

generate training samples require a comparison of each patch with the threshold value; this 

computation can also be implemented on GPU efficiently.  

Although connected components labeling algorithm seems not suitable for a parallel processing, 

there are some efficient implementations on CUDA available, which will be explained in more 

detail. For large number of training samples, both expectation maximization algorithm and the 

model updating scheme can be implemented in parallel efficiently while it can be inefficient if 

the number of training samples are very low. Regular classification with distance calculation and 

thresholding is also an independent and highly parallel procedure. However, region growing by 

itself is iterative and in most of these iterations, computations are dependent and not so many. 

But with a different approach to the problem of classification via region growing, the same 

problem can be solved with a different and parallelizable manner. This approach is explained in 

detail in the following chapters.  

In the end it can be seen that nearly all of the parts of the proposed algorithm is suitable for 

parallelization and thus implementation on GPU. Thus, CPUs duty in the algorithm is to move 

raw data and processed data to/from GPU and controlling the end conditions of iterative parts.  

4.4 Algorithm Structure 

The algorithm structure of GPU implementation is similar with the CPU version as given in 

Figure 14. However, this time instead of having point cloud data and color data separately, r,g,b 

values coming from color image and y coordinate value coming from point cloud data are 

combined and held in a CUDA data structure float4. Thus, raw data is stored in an array of 

float4 structures. At the beginning of the algorithm, raw data are copied from CPU memory to 

GPU memory and bound to texture memory for fast access if irregular global memory access 

patterns are required. 

4.4.1 Data Preprocessing 

Data preprocessing part of the algorithm consists of histogram equalization and RGB-HSV 

conversion as it is given in chapter 3.  
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Figure 59 - Memory hierarchy of CUDA programming model [66]. 

 
 
 
4.4.1.1 Histogram Equalization on GPU 

Histogram equalization algorithm consists of four steps [53]: 

- Calculation of image histogram � (�) 

- Normalization of histogram bins to sum 255 

- Computation the integral of the histogram ��
�= ∑ � (�)�����  

- Transformation of the image using �′ as a look up table 

The GPU implementation of histogram equalization composed of four kernels: 

- Calculation of image histogram 
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- Calculation of cumulative distribution function (cdf) 

- Finding the minimum values in cdf 

- Transformation of the image 

The first kernel computes the image histograms for each of the RGB channels separately. In 

order to utilize the parallelization sufficiently, each pixel is assigned to a thread and in the upper 

level the image is divided into tiles such that each tile is processed by a thread block. The 

number of threads to run (��) and number of blocks to run (��) should be selected such that the 

multiplication of these two (�����) shoule be a divider of the total number of pixels. Due to the 

fact that each consecutive threads access to a consecutive global memory address, the global 

memory transactions are coalesced. Since threads in each thread block can work cooperatively, 

each thread block has its own sub-histogram part held in shared memory, which is much faster 

than global memory and can be reached by the threads of a thread block. Then at the end of the 

kernel, all sub-histograms are summed up and written in the global memory. Histogram 

calculation kernel is given in Listing 1. The kernel takes r,g,b and y data (�_����) as float4 

structure of CUDA and total number of pixels (����) as input and returns the histograms of each 

channel appended to each other as output (�_ℎ���). Thus, red channel histogram is the first 256 

value of the histogram (�_ℎ���) while green and blue channel histograms are the second and 

third 256 values in the array (�_ℎ���). The total shared memory used for each block is equals to 

the size of r,g and b channel histograms (3x256). 

The second kernel calculates the cumulative distribution functions (cdf) of the histograms of 

each channel by using parallel sum scan algorithm [71] and is described in [72]. A sum scan 

algorithm basically calculates the sum of all elements up to an element of an array from the 

beginning of the array. A naïve sum scan algorithm can be given as in Figure 60 schematically.  

 
 

 

Figure 60 - A schematic of the naive sum scan algorithm [72]. 
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If the last element of the array is included in the resultant array, it is called an inclusive scan and 

called an exclusive scan otherwise. The algorithm described in [72] is an exclusive scan 

algorithm, but for cdf calculation it is converted to an inclusive scan algorithm. The algorithm is 

also modified to calculate the cdf of all three channels. Since number of bins for image 

histogram is 256, the kernel is run with 1 thread block consisting of 128 threads. The number of 

threads for this implementation is required to be half of the number of bins and the shared 

memory allocated should be 3*number_of_bins+1 since there are three channels. The kernel 

requires the original histograms (�_ℎ���), number of bins (�_����) and total number of pixels 

(����_���) as input and returns the cdfs of each channel appending to each other as output 

(�_���) as given in Listing 2. Thus, the first 256 values are the cdf of red channel while the 

second and third 256 values are the cdfs of green and blue channels in the array. 

 
 

 

Listing 1 - Histogram calculation kernel. 

function kernel_hist(d_data, d_hist, size) 

 declare uint tempr, tempg, tempb in shared memory 

declare int i ← threadIdx.x + blockIdx.x * blockDim.x 

 declare int offset ← blockDim.x * gridDim.x 

  

 if threadIdx.x < 256 then 

  tempr[threadIdx.x] ← 0 
  tempg[threadIdx.x] ← 0 
  tempb[threadIdx.x] ← 0 

 end if 

 synchronize block 

  

 repeat 

  declare float4 dummy ← d_data[i] 

  atomicAdd(tempr[dummy.x],1) 

atomicAdd(tempg[dummy.x],1) 

atomicAdd(tempb[dummy.x],1) 

i ← i + offset 

 until i >= size 

 synchronize block 
   

  if threadIdx.x < 256 then 

  atomicAdd(d_hist[threadIdx.x],tempr[threadIdx.x]) 

atomicAdd(d_hist[threadIdx.x+256],tempg[threadIdx.x]) 

atomicAdd(d_hist[threadIdx.x+512],tempb[threadIdx.x]) 

 end if 

 return 
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function kernel_prefixsumscan_cdf(d_cdf, d_hist, n_bins, size_max) 
 declare uint temp in shared memory 
 declare int thid ← threadIdx.x 
 declare int offset ← 1 

declare int ai ← thid 
declare int bi ← thid + (n_bins/2) 
declare int bankOffsetA ← CONFLICT_FREE_OFFSET(ai) 
declare int bankOffsetB ← CONFLICT_FREE_OFFSET(bi) 
declare int cnst ← n_bins + CONFLICT_FREE_OFFSET(n_bins - 1) 
 
temp[ai + bankOffsetA] ← d_hist[ai] 
temp[bi + bankOffsetB] ← d_hist[bi] 
temp[cnst + ai + bankOffsetA] ← d_hist[n_bins  + ai] 
temp[cnst + bi + bankOffsetB] ← d_hist[n_bins  + bi]  
temp[2 * cnst + ai + bankOffsetA] ← d_hist[2 * n_bins  + ai] 
temp[2 * cnst + bi + bankOffsetB] ← d_hist[2 * n_bins  + bi] 
 
declare d ← n_bins >> 1 

repeat 

  synchronize block 

 if thid < d then 

  ai ← offset*(2*thid+1)-1 

  bi ← offset*(2*thid+2)-1 

  ai ← ai + CONFLICT_FREE_OFFSET(ai) 

  bi ← bi + CONFLICT_FREE_OFFSET(bi) 

temp[bi] ← temp[bi] + temp[ai]  

temp[cnst+bi] ← temp[cnst+bi] + temp[cnst+ai]  

temp[2*cnst+bi] ← temp[2*cnst+bi] + temp[2*cnst+ai]  

  end if 

  offset ← offset * 2 

  d ← d >> 1 

 until d <= 0 

 
if thid = 0 then 

temp[cnst - 1] ← 0  

temp[2 * cnst - 1] ← 0  

temp[3 * cnst - 1] ← 0  

 end if 
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Listing 2 - Cdf calculation kernel based on [72]. 

 
 

d ← 1 

repeat 

  offset ← offset / 2 
synchronize block 
if thid < d then 

  ai ← offset*(2*thid+1)-1 

  bi ← offset*(2*thid+2)-1 

  ai ← ai + CONFLICT_FREE_OFFSET(ai) 

  bi ← bi + CONFLICT_FREE_OFFSET(bi) 

  declare uint t ← temp[ai] 

  declare uint t2 ← temp[cnst+ai] 

declare uint t3 ← temp[2*cnst+ai] 

  temp[ai] ← temp[bi] 

temp[ai+cnst] ← temp[bi+cnst] 

temp[ai+2*cnst] ← temp[bi+2*cnst] 

temp[bi] ← temp[bi] + t 

temp[bi+cnst] ← temp[bi+cnst] + t2 

temp[bi+2*cnst] ← temp[bi+2*cnst] + t3 

  end if  

until d >= n_bins  
synchronize block 
 
if ai != 0 then 
 d_cdf[ai–1] ← temp[ai+bankOffsetA] 

d_cdf[n_bins+ai–1] ← temp[cnst+ai+bankOffsetA] 
d_cdf[2*n_bins+ai–1] ← temp[2*cnst+ai+bankOffsetA] 

else  
 d_cdf[n_bins–1] ← size_max 

d_cdf[2*n_bins–1] ← size_max 
d_cdf[3*n_bins–1] ← size_max 

end if 
d_cdf[bi–1] ← temp[bi+bankOffsetB] 
d_cdf[n_bins+bi–1] ← temp[cnst+bi+bankOffsetB] 
d_cdf[2*n_bins+bi–1] ← temp[2*cnst+bi+bankOffsetB] 

 return 
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Listing 3 - Kernel to find minimum values of cdfs. 

function kernel_findmin(d_cdf, d_min, n_bins) 
 declare uint s_cdf in shared memory 
 s_cdf[threadIdx.x] ← d_cdf[threadIdx.x] 

s_cdf[n_bins+threadIdx.x] ← d_cdf[n_bins+threadIdx.x] 
s_cdf[2*n_bins+threadIdx.x] ← d_cdf[2*n_bins+threadIdx.x] 

 
declare s ← n_bins >> 1 

repeat 

 if thid < s then 

  declare float dr1 ← s_cdf[threadIdx.x] 

  declare float dr2 ← s_cdf[threadIdx.x+s] 

declare float dg1 ← s_cdf[n_bins+threadIdx.x] 

  declare float dg2 ← s_cdf[n_bins+threadIdx.x+s] 

declare float db1 ← s_cdf[2*n_bins+threadIdx.x] 

  declare float db2 ← s_cdf[2*n_bins+threadIdx.x+s] 

   

if dr1 = 0 or dr2 = 0  then 

   s_cdf[threadIdx.x] ← max(dr1,dr2) 

  else 

   s_cdf[threadIdx.x] ← min(dr1,dr2) 

  end if 

if dg1 = 0 or dg2 = 0  then 

   s_cdf[n_bins+threadIdx.x] ← max(dg1,dg2) 

  else 

   s_cdf[n_bins+threadIdx.x] ← min(dg1,dg2) 

  end if 

if db1 = 0 or db2 = 0  then 

   s_cdf[2*n_bins+threadIdx.x] ← max(db1,db2) 

  else 

   s_cdf[2*n_bins+threadIdx.x] ← min(db1,db2) 

  end if 

  end if 

synchronize block 

  s ← s >> 1 

 until s <= 0 

if threadIdx.x = 0 then 

dmin ← uint4(s_cdf[threadIdx.x], s_cdf[n_bins+threadIdx.x], 

   s_cdf[2*n_bins+threadIdx.x], 0) 

end if 

return 
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The third kernel finds the minimum values other than zero in the cumulative density functions 

(�_���) of each channel with a standard parallel sum reduction [70] as given in Figure 61. Since 

cdfs has 256 bins, the CUDA kernel is run with 256 threads and a single thread block, and the 

shared memory size used is the three times of one channel’s histogram size (3*256). In order 

this kernel to be used, the number of bins of the cdfs should be a power of two due to the nature 

of parallel reduction. The algorithm takes cdf of all three channels (�_���) and number of bins 

in a cdf (�_����) as input and returns the minimum value of cdfs as a uint4 structure (�_���). 

The kernel implementation is given in Listing 3. 

 
 
 

 

Figure 61 - Parallel sum reduction tree [70]. 

 
 
 
The fourth kernel is given in Listing 4. The kernel basically rescales the red, green and blue 

values according to the cdf functions and minimum value in the cdfs found for each channel. 

While rescaling the pixel values, the global memory storing cdfs is accessed in a very irregular 

pattern and the performance of the algorithm degrades severely. To remove this degradation and 

increase the performance, the memory on the GPU’s ram that stored cdfs is bound to texture 

memory before this kernel launched. Since texture memory has a better performance in this type 

of irregular memory access patterns, it increases the performance. As it is the case in the first 

kernel, in this kernel each pixel is assigned to one thread and the whole image is divided into 

tiles and each tile is assigned to one thread block. The number of threads to run (��) and number 

of blocks to run (��) should be selected such that the multiplication of these two (�����) 

should be a divider of the total number of pixels. The kernel takes r,g,b and y data as float4 

structure (�_����), cdfs (�_���), minimum values of cdfs (�_���), total number of pixels 
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(����) and number of bins (�_����) in an image histogram as input and writes the rescaled 

image data on the old r, g, b data (�_����).  

 
 
 

 

Listing 4 - Kernel to transform the image to histogram equalized image using cdfs. 

 
 
 
4.4.1.2 RGB-HSV Conversion 

The procedure for RGB-HSV conversion is given in [53] for CPU and on GPU this procedure is 

taken as base. In Listing 5, its GPU implementation is given. In this implementation, again each 

pixel is assigned to a pixel and the whole image is divided into tiles and each tile is assigned to a 

thread block to get enough parallelization for performance increase and achieve a coalesced 

global memory access pattern. The number of threads to run (��) and number of blocks to run 

(��) should be selected such that the multiplication of these two (�����) shoule be a divider of 

the total number of pixels. The algorithm takes r,g,b and y data as float4 structure (�_����) and 

total number of pixels (����) as input and writes HSV image data on the old r, g, b data 

(�_����). 

function kernel_histeq(d_data,  d_min, n_bins, size) 
declare int i ← threadIdx.x + blockIdx.x * blockDim.x 

 declare int offset ← blockDim.x * gridDim.x 
 repeat 

  declare float4 dummynew 

  declare float4 dummy ← d_data[i] 

  declare uint dcdfr ← texfetch (d_cdf, dummy.x) 

  declare uint dcdfg ← texfetch (d_cdf, n_bins+dummy.y) 

declare uint dcdfb ← texfetch (d_cdf, 2*n_bins+dummy.z) 

  dummynew.x ← round((dcdfr-min.x)*255f/(size-1)) 

dummynew.y ← round((dcdfg-min.y)*255f/(size-1)) 

dummynew.z ← round((dcdfb-min.z)*255f/(size-1)) 

dummynew.w ← dummy.w 

d_data[i] ← dummynew 

i ← i + offset 

 until i >= size 

 return 
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Listing 5 - RGB-HSV conversion kernel. 

function kernel_rgb2hsv(d_data,  size) 
 declare int i ← threadIdx.x + blockIdx.x * blockDim.x 
 declare int offset ← blockDim.x * gridDim.x 
 repeat 
  declare float4 dummy ← d_data[i] 
  dummy.x ← dummy.x/255f 

dummy.y ← dummy.y/255f 
dummy.z ← dummy.z/255f 
declare float max ← max(dummy.x, dummy.y, dummy.z) 
declare float min ← min(dummy.x, dummy.y, dummy.z) 
declare float delta ← max – min 
declare float s ← delta/max 
synchronize block 
declare float f 
if max = 0 or s = 0  then h ← 0 

 else 
  if dummy.x = max then  

h ← (dummy.y-dummy.z)/delta 
   else if dummy.y = max then 
    h ← 2f+(dummy.z-dummy.x)/delta 

else if dummy.z = max then 
    h ← 4f+(dummy.x-dummy.y)/delta 
   end if 
  end if 

synchronize block 
h ← h * 60 
if h < 0 then h ← h + 360 
dummy.x ← h / 2f 
dummy.y ← 255f * s 
dummy.z ← 255f * max   
d_data[i] ← dummy 
i ← i + offset 

 until i >= size 
 return 
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Listing 6 - Kernel implementation for feature extraction with patch filtering. 

 
 
 
4.4.2 Feature Extraction and Automatic Training Sample Generation 

This part can be divided into two: Feature extraction with patch filtering according to roughness 

and finding the biggest connected sample group. While feature extraction for patches and patch 

function kernel_feature_extraction(d_data,  d_hists, d_trlabels,d_trsize, d_ntr, 

width, npatches, sizepatch, threshold_var_y) 

 declare int pid ← threadIdx.x + blockIdx.x * blockDim.x 
 declare int offset ← blockDim.x * gridDim.x 

 declare int binSat ← 256 / N_BINS 
 declare int binHue ← 181 / N_BINS 

declare uint lhist in local memory 

repeat 

 declare uint prow ← pid/(width/sizepatch) 

declare uint pcol ← pid%(width/sizepatch) 

declare uint basepixid ← prow*sizepatch*width+pcol*sizepatch 

declare float y ← 0 

declare float y_sqr ← 0 

initialize lhist to zero 

for all pixel in patch do 

 declare char hue ← pixel.x/binHue 

declare char sat ← pixel.y/binHue 

lhist[hue*N_BINS+sat] ← lhist[hue*N_BINS+sat]+1 

y ← y + pixel.w 

y_sqr ← y_sqr + pixel.w * pixel.w 

end for 

declare i ← 0 

repeat 

d_hist[i*n_patches+pid] ← lhist[i] 

until i >= N_BINS_SQR 

declare var ← (y_sqr – (y*y)/(sizepatch^2)/ (sizepatch^2-1)) 

if var != 0 or var < threshold_var_y then 

d_trlabels[pid] ← 1 

d_trsize[pid] ← 1 

atomicAdd(d_ntr, 1) 

end if 

pid ← pid + offset 
until pid >= npatchsize 

return 
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filtering according to roughness threshold are unified in a single kernel, due to its iterative and 

quite complex nature, connected components labeling and the search for the biggest connected 

training sample group are composed of several kernels. 

4.4.2.1 Feature Extraction with Patch Filtering 

In order to remove the burden of running several kernels for point cloud feature extraction, color 

feature extraction and filtering patches according to roughness threshold, they are unified in a 

single kernel. With the removal of the burden, increase the performance is aimed. As roughness 

feature height variance is used for point cloud patches. 

As it is given in Listing 6, the algorithm takes r,g,b and y coordinate data as float4 structure 

(�_����), width of the image (����), number of patches to be generated (�����ℎ��), size of a 

patch (��������ℎ) in pixels and height variance threshold (�ℎ���ℎ���_���_�) as input and 

returns H-S joint histograms of patches (�_ℎ����), a binary downsampled image (�_��������) 

that marks the locations of training samples or patches, and a copy of this binary image that will 

be used to calculate the size of each connected component (�_������), and the number of total 

training samples gathered as outputs (�_���). The binary downsampled image (�_��������) will 

be used to hold the labels in the connected components labeling algorithm later on. The binary 

downsampled image (�_��������) and its clone to be used in size calculation (�_������) are 

initialized to 0 at the global memory allocation. Since the height variance is only used in the 

algorithm for gathering training samples, height variance features are not stored in the memory. 

This time each thread is assigned to a patch and the patch image (downsampled image) is 

divided into tiles. Each tile is assigned to a thread block to achieve optimum parallelization with 

coalesced global memory access. The number of threads to run (��) and number of blocks to run 

(��) should be selected such that the multiplication of these two (�����) should be a divider of 

the total number of patches. Since registers are faster than any memory available, each thread 

holds its own H-S joint histogram, y coordinate sum and y coordinate squared sums on registers 

to have fast computation and at the end these computed histograms are stored in the global 

memory. At the end of the kernel by using calculated variance of height, the training samples are 

marked in the two binary images (�_�������� and �_������). Thus if one patch’s height variance 

is smaller than the threshold it is marked as 1, else the memory location left at 0.  

4.4.2.2 Finding the Biggest Connected Sample Group 

This part is composed of six kernels in total. Two of them are for connected components 

labeling algorithm and the remaining four are used to finding the biggest connected component 

group of samples and moving the training samples to a separate memory.  

4.4.2.2.1 Connected Components Labeling 

As it is mentioned, connected components labeling algorithm is composed of two kernels. One 

of these kernels is just for the initialization of labels on the binary downsampled image and the 
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other is for the actual connected component labeling part. While the first kernel is called only 

once at the beginning of this part, the second kernel is called iteratively until there are no labels 

propagating. In this study, one of the GPU accelerated connected components labeling algorithm 

explained by Hawick et al. in [73] is used with minor adaptations as given in [74]. A connected 

components labeling algorithm performing local neighbor propagation, named as 

Mesh_Kernel_B in [73], is used in the implementation. Note that this algorithm is not the most 

efficient one but its performance is enough when its simplicity is considered. 

Initialization kernel is a simple kernel as given in Listing 7. It takes the binary downsampled 

matrix (�_��������) that marks the locations of training samples created in the feature extraction 

kernel and the total number of patches (����) as inputs and initialize the labels and write them 

on the downsampled matrix (�_��������). The whole matrix is divided into tiles and each tile is 

assigned to a thread block while each patch is assigned to a thread. The number of threads to run 

(��) and number of blocks to run (��) should be selected such that the multiplication of these 

two (�����) should be a divider of the total number of patches.  If the value on the 

downsampled matrix (�_��������) is 1, the global thread id is assigned to that patch as the initial 

label; otherwise the label remains as 0. As it can be seen in Listing 7, this implementation is 

done without using an if clause. Elimination of “if” clause removes branch divergence in warps 

and results in a performance increase up to 2 times. Since each consecutive thread reads and 

writes to a consecutive global memory address, the global memory transactions are coalesced. 

 
 
  

 

Listing 7 - Kernel implementation for the initialization of connected components labeling algorithm. 

 
 
 
The local neighbor propagation kernel is given in Listing 8. The whole patch image 

(�_��������) that contains the initial labels of training samples is divided into tiles. Each thread 

block is assigned to a tile and each thread is assigned to one patch. The size of shared memory 

used in each block is equal to the number of threads in each thread block.  

function kernel_initLabels(d_trlabels, size) 

 declare int gid ← threadIdx.x + blockIdx.x * blockDim.x 
 declare int offset ← blockDim.x * gridDim.x 

 repeat 

d_trlabels[gid] ← d_trlabels[gid] * gid 

gid ← gid + offset 
 until gid >= size 

 return 
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The kernel requires the image that is initialized in the previous kernel (�_��������), the copy of 

the binary image that holds training sample locations (�_������), the number of tiles in the 

width and height of image (����ℎ���� and ℎ���ℎ�����) as inputs and returns the labels of 

connected components on the input binary patch image (�_��������), the size of each connected 

component (�_������) and a Boolean (�_�_���������) that tracks if there is a change in the 

labels in the given iteration.   

 
 
 

 

Figure 62 - Four iterations of the local label propagation algorithm. In this case the image is divided into four blocks 
indicated by heavy lines. Patches that are crossed out are yet to receive their final label [73]. 

 
 
 
Initially the threads fetch their patch’s label and the labels of all four neighbors from global 

memory and choose the lowest label of these. Then, the threads write these values into shared 

memory and the kernel loops through updating the labels within shared memory until they stop 

changing. In each iteration of this loop, the neighbors’ labels are loaded from shared memory 

and the lowest appropriate label is chosen. This effectively performs the entire labeling 

algorithm on each block at a time. 

The kernel also writes the number of patches in each connected component to the place in the 

binary copy (�_������) where the smallest label is. As the labels on the borders of the block will 

change, multiple calls of this kernel are required to correctly label the entire image. Hence, the 

kernel iterates until there is no change in the labels. The schematic representation of the 

algorithm is given in Figure 62. 
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function kernel_ccl_mesh_B_improved(d_trlabels, d_trsize, m_d, widthgrid, 

heightgrid, size) 

 declare int nid in local memory 

declare int Ll, ml in shared memory 

 declare int id ← (threadIdx.y + blockIdx.y * blockDim.y) * widthgrid + 

threadIdx.x + blockIdx.x * blockDim.x 

 declare int idl ← threadIdx.y * blockDim.x + threadIdx.x 

 declare int idn ← 0 

declare uint label ← texfetch(d_trlabels, id) 

ml ← 1 

if label != 0 then 

 if (id - widthgrid) >= 0 and label * texfetch (d_trlabels, id-

widthgrid) 

  nid[idn] ← texfetch (d_trlabels, id-widthgrid) 

  idn ← idn + 1 

 end if 

 if (id + widthgrid) < widthgrid * heightgrid and label * 

tex1Dfetch(d_trlabels, id+widthgrid) 

  nid[idn] ← texfetch (d_trlabels, id+widthgrid) 

  idn ← idn + 1 

 end if 

if ((id - 1) % widthgrid) != widthgrid - 1 and label * 

tex1Dfetch(d_trlabels, id-1) 

  nid[idn] ← texfetch (d_trlabels, id-1) 

  idn ← idn + 1 

 end if 

if ((id + 1) % widthgrid) != 0 and label * texfetch (d_trlabels, 

id+1) 

  nid[idn] ← texfetch (d_trlabels, id+1) 

  idn ← idn + 1 

 end if 

  declare int i ← 0 

  repeat 

   if nid[i] < label then 

label ← nid[i] 

md ← 1 

end if  

  i ← i + 1 
  until i >= idn  
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Listing 8 - The local neighbor propagation kernel. 

   idn ← 0 

   if (idl–blockDim.x)>=0 and label* texfetch (d_trlabels, id-widthgrid) 

  nid[idn] ← idl - blockDim.x 

  idn ← idn + 1 

   end if 

   if (idl+blockDim.x)<blockDim.x*blockDim.y and label*texfetch 

(d_trlabels, id+widthgrid) 

  nid[idn] ← idl + blockDim.x 

  idn ← idn + 1 

   end if 

   if ((idl - 1) % blockDim.x) != blockDim.x - 1 and label * texfetch 

(d_trlabels, id-1) 

  nid[idn] ← idl - 1 

  idn ← idn + 1 

   end if 

   if ((idl+1)%blockDim.x) != 0 and label * texfetch (d_trlabels, id+1) 

  nid[idn] ← idl + 1 

  idn ← idn + 1 

   end if 

    repeat 

   Ll[idl] ← label 

synchronize block 
   ml ← 0 

   i ← 0 

   repeat 

    if Ll[nid[i]] < label then 

label ← Ll[nid[i]] 

ml ← 1 

end if  

synchronize block 
   i ← i + 1 
   until i >= idn  

   d_trlabels[id] ← label 

declare uint n ← d_trsize[ id] 

if n && label != id then 

atomicAdd(d_trsize[label], n) 

d_trsize[id] ← 0 

end if  

  until ml != true  

end if  

return 
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Listing 9 - Kernel implementation of finding the largest connected component location. 

 
 
 
4.4.2.2.2 Selection of the Biggest Sample Group 

The first kernel in this part is the kernel for the search of the largest connected component and 

the number of patches in this component. Finding the maximum in an array or matrix is a 

function kernel_findmax(d_trsize, d_max, d_max_gid, size_max) 

declare uint s_max,s_max_gid in shared memory 

 declare uint gid ← threadIdx.x 

 declare uint max ← 0 

 declare uint max_gid ← 0 

repeat 

s_max [threadIdx.x] ← d_trsize[gid] 

s_max_gid [threadIdx.x] ← gid 

declare s ← blockDim.x >> 1 

repeat 

  if threadIdx.x < s then 

   declare uint dum1 ← s_max[threadIdx.x] 

   declare uint dum2 ← s_max[threadIdx.x+s] 

   if dum1 < dum2 then 

    s_max[threadIdx.x] ← dum2 

s_max_gid[threadIdx.x] ← 

s_max_gid[threadIdx.x+s] 

end if 

   end if 

synchronize block 

   s ← s >> 1 

  until s <= 0 

 if threadIdx.x = 0 and s_max[threadIdx.x] > max then 

  max ← s_max[threadIdx.x] 

max_gid ← s_max_gid[threadIdx.x] 

end if 

synchronize block 

gid ← gid + blockDim.x 
 until gid >= size_max 

if threadIdx.x = 0 then 

  d_max[threadIdx.x] ← max 

d_max_gid[threadIdx.x] ← max_gid 

end if 

return 
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parallel reduction problem (but not parallel sum this time). The whole downsampled image that 

holds the size of the connected components (�_������) is assigned to one thread block and each 

element of it is assigned to a thread. This kind of parallelization yields a coalesced global 

memory access and increase performance. The implementation uses shared memory and the size 

of the shared memory should be equal to the number of threads in the thread block. Since the 

size of the image is relatively small, even with one thread block the computation takes very 

short time. Thus, the implementation is remained with one thread block. However, the number 

of threads in the thread block should be a power of two due to the nature of reduction pattern. 

The kernel takes the image storing sizes of each connected component computed in the previous 

kernel (�_������) and the total number of patches (����_���) in the image as inputs and returns 

the memory location of (�_max	_���) and the number of training patches (�_���) in the 

biggest connected component. The kernel implementation is given in Listing 9. 

The next kernel is a simple kernel that filters the biggest connected component and creates a 

new binary image of patches where if a patch belongs to the biggest connected component, its 

value is 1 and 0 otherwise. This new binary image is written on the input patch image 

(�_��������) and is used to find the global memory locations of the patches belonging to the 

largest connected component in the next kernel. The patch image is again divided into tiles and 

each tile is assigned to one thread block while each patch is assigned to a thread. The number of 

threads to run (��) and number of blocks to run (��) should be selected such that the 

multiplication of these two (�����) should be a divider of the total number of patches.  The 

kernel implementation is given in Listing 10. The kernel takes label image (�_��������) or 

image generated with connected components labeling, the memory location of the biggest 

connected component (�_������) and the number of total patches in an image (�_����ℎ��) as 

inputs and writes a binary image that only contains the patches in the biggest connected 

component on the downsampled label image (�_��������).  

After filtering the patches in the biggest connected component, another kernel is run to 

determine the memory index where each of the training sample patches is stored in the training 

buffer. Although for a CPU implementation such an implementation is trivial since CPUs run in 

a serial fashion, due to the fact that GPUs are running parallel and concurrently finding memory 

indices to write is quite complicated, but can be implemented parallel and fast. This application 

is called parallel compact and used often in filtering applications such as scene rendering. Since 

the locations of the patches belonging to the biggest connected component are marked with 1 

and 0 otherwise, a parallel prefix sum scan pattern [71] can be applied as it is applied to find the 

cumulative distribution function of image histogram. Different from the cdf implementation, the 

parallel prefix sum scan algorithm required here is an exclusive scan algorithm same with [72]. 

The kernel takes the binary image generated in the previous kernel call (�_��������) and the 

total number of patches in the image (����_���) as inputs and returns an image (�_���������) 

with the same size of the total number of image patches but consist the memory indices where 

the training samples will be written in the training buffer. One thread block is assigned to the 

whole patch matrix. The kernel is also required that number of patches should be divisible to 
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twice of the number of threads in the block. Number of threads should be a power of two. The 

kernel implementation is given in Listing 11. 

 
 
 

 

Listing 10 - Kernel implementation for biggest connected component filtering. 

 
 
 
The last kernel implementation of this section is a simple kernel used to put only the training 

samples into the training buffer. The patch image that contains the memory indices of training 

buffer (�_���������) is divided into tiles and each tile is assigned to a block of threads.  Each 

patch, thus, assigned to a thread. The number of threads to run (��) and number of blocks to run 

(��) should be selected such that the multiplication of these two (�����) should be a divider of 

the total number of patches. The kernel basically checks whether there are any training samples 

in the patch location. If there is a training sample, then using the memory index found in the 

previous kernel, the feature vector related to that sample is inserted into that training memory 

index. As a result of this kernel the feature vectors of training samples are stored consecutively 

in the training buffer (�_��������). 

The kernel takes the binary image contains only the biggest connected component (�_��������), 

the training buffer indices of training samples (�_���������), H-S joint histograms of patches 

calculated previously (�_ℎ����), the number of patches in the largest connected component 

(�_���), and the total number of patches in an image (�_����ℎ��) as inputs and returns the 

training memory containing selected feature vectors as output (�_��������). The 

implementation of the kernel is given in Listing 12.  

function kernel_filterbiggestblob(d_trlabels, d_max_gid, n_patches) 

 declare uint gid ← blockIdx.x * blockDim.x + threadIdx.x 

 declare uint max ← d_max_gid[0] 

repeat 

 if d_trlabels[gid] = max then 

  d_trlabels[gid] ← 1 

 else 

  d_trlabels[gid] ← 0 

end if 

gid ← gid + blockDim.x * gridDim.x 
  until gid >= n_patches 

 return 
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function kernel_prefixsumscan_compact_uint(d_trcompact, d_trlabels, 

size_max) 

declare uint sum, temp in shared memory 

 declare int gid ← threadIdx.x 
 declare int goffset ← 2 * blockDim.x 

sum ← 0 

repeat 

  declare int thid ← threadIdx.x 

declare int offset ← 1 

declare int ai ← thid 

declare int bi ← thid + blockDim.x 

declare bankOffsetA ← CONFLICT_FREE_OFFSET(ai) 

declare bankOffsetB ← CONFLICT_FREE_OFFSET(bi) 

temp[ai+ bankOffsetA] ← texfetch (d_trlabels, gid) 

temp[bi+ bankOffsetB] ← texfetch (d_trlabels, gid + goffset/2) 

declare d ← blockDim.x 

repeat 

   synchronize block 

  if thid < d then 

   ai ← offset*(2*thid+1)-1 

   bi ← offset*(2*thid+2)-1 

   ai ← ai + CONFLICT_FREE_OFFSET(ai) 

   bi ← bi + CONFLICT_FREE_OFFSET(bi) 

   end if 

   offset ← offset * 2 

   d ← d >> 1 

  until d <= 0 

if thid = 0 then 
temp[2*blockDim.x-1 + 

CONFLICT_FREE_OFFSET(2*blockDim.x-1)] ← sum[0]  

  end if 
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Listing 11 - Kernel implementation of exclusive prefix sum scan algorithm to find the indices for the patches 
belonging to the biggest connected component. 

 
 
4.4.3 Color Distribution Model Learning and Updating 

The logic of color distribution model learning and the update of the learned color models are 

essentially the same as the CPU implementation, but parallelized.  

4.4.3.1 Model Learning 

After training samples obtained in a separate array (�_��������), by using these training 

samples the Gaussian mixture models are learned through parallel expectation maximization 

algorithm. The parallel expectation maximization algorithm used in this study is the one 

proposed by Pangborn in his master thesis [75]. In short, new cluster memberships are computed 

for each event in the E-step using Gaussian model parameters from the previous iteration, and 

then the parameters are updated using the new memberships in the M-step. Iteration continues 

until the total change in likelihood (which is computed in the E-step) is less than some user-

d ← 1 

repeat 

 offset ← offset / 2 

   synchronize block 

  if thid < d then 

   ai ← offset*(2*thid+1)-1 

   bi ← offset*(2*thid+2)-1 

   ai ← ai + CONFLICT_FREE_OFFSET(ai) 

   bi ← bi + CONFLICT_FREE_OFFSET(bi) 

    declare uint t ← temp[ai] 

   temp[ai] ← temp[bi] 

temp[bi] ← temp[bi] + t 

   end if 

   d ← d * 2 

  until d >= 2*blockDim.x 

synchronize block 

d_trcompact[gid] ← temp[ai+bankOffsetA] 
d_trcompact[gid+goffset/2] ← temp[bi+bankOffsetB] 
if thid = blockDim.x - 1 then 

 sum ← temp[bi+ bankOffsetB] + texfetch (d_trlabels, gid + 

goffset/2) 

gid ← gid + offset 
until gid >= size_max 

return 
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specified epsilon value or the number of iterations is greater than some maximum iteration 

criterion.  

 
 
 

 

Listing 12 – Kernel implementation for inserting training samples (the biggest connected component) to a separate 
memory. 

 
 
 
Similar to the CPU implementation, the maximum number of iterations is set to 100. The main 

difference between the work of Pangborn and the parallel EM implementation given here is that 

Pangborn’s implementation is for a cluster of GPUs while the implementation in this study is for 

a single GPU. Since Pangborn’s work requires the processing of much much larger data than in 

this thesis work, the researcher’s implementation is for a cluster of GPUs. Another difference is 

that in this thesis the covariance matrices are assumed to be diagonal while Pangborn’s 

algorithm is developed for a general case. 

The GPU accelerated expectation maximization algorithm proposed by Pangborn consists of six 

kernels in total. Of these six kernels, two are for expectation step while the remaining four are 

for maximization step. The last kernel in the maximization step of Pangborn’s implementation 

inverts the covariance matrices of Gaussians calculated, calculates the weights of each Gaussian 

and computes a constant that is shared by all likelihood computations. On the other hand, in this 

function kernel_insert_training_samples_w_inds(d_trlabels, d_trcompact, 

d_hists, d_trbuffer, d_trinds, d_max, n_patches) 

 declare int gid ← threadIdx.x + blockIdx.x * blockDim.x 
 declare int offset ← blockDim.x * gridDim.x 

declare uint ntr ← d_max 

 repeat 

  if d_trlabels[gid] != 0 then 

   declare int id ← d_trcompact[gid] 

   declare int i ← 0 

   repeat 

 d_trbuffer[i*n_tr+id] ← d_hists[i*n_patches+gid] 

 i← i+1 

until i >= N_BINS_SQR  

d_trinds[id] ← 1 

end if 

gid ← gid + offset 
 until gid >= n_patches 

 return 
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thesis instead of having a separate kernel, covariance matrix inversion and Gaussian model 

weight calculations are done in other kernels. In addition to this, it is observed that the constants 

are same for all Gaussian models and do not have an effect on model learning. Thus there is no 

need for constant calculation and hence the last kernel is completely removed. 

4.4.3.1.1 Expectation Step 

Before the EM algorithm is run, initial mean vectors are selected randomly from the training 

samples on CPU and their memory indices are copied to GPU. Initial covariance matrices are 

selected as identity matrix for all models and model weights are given equally. As it is 

mentioned, expectation step consists of two kernels. 

The first kernel computes the likelihood and the log-likelihood of a training sample patch �� 

belongs to a Gaussian model �� with a mean vector ��, a covariance matrix �� and weight �� as 

given in (23) and (24). 
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If the weight of the Gaussian is included the (23) and (24) become (25) and (26). 
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Since all log-likelihood computations are independent, for each computation a thread is 

assigned. The number of thread blocks should be a multiple of the number of Gaussian models 

to be learned. The thread blocks can also be configured as a two dimensional grid. Then the size 

of one dimension becomes the number of Gaussian models to be learned, and the other 

dimension can be selected according to the number of training samples. 

The kernel implementation is given in Listing 13. If it is the first iteration of the EM algorithm, 

the kernel initializes model means, covariance matrices and weights. This implementation 

caches the parameters (mean vector and covariance matrix) for the Gaussian models in shared 

memory since they are used repeatedly for every likelihood calculation. The log-likelihood is 

computed rather than likelihood for the sake of numerical stability since the exponential 

function can overflow a 32-bit floating point number with an input as small as 90. The 

implementation supports only the use of diagonal covariance and since the covariance matrix is 

diagonal, only the diagonal values are stored. 
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Listing 13 - Kernel implementation for the first step of Expectation part. 

function kernel_expectation_step_1(d_trbuffer, d_means, d_invCovs, 

d_weights, d_probs, d_irand, d_max, isFirstIt) 

declare float s_mean, s_invCov in shared memory 

declare float log_weight 

declare int cid ← blockIdx.y 

declare int gid ← threadIdx.x + blockIdx.x * blockDim.x 
 declare int offset ← blockDim.x * gridDim.x 

declare uint ntr ← d_max 

if isFirstIt = true then 

 log_weight ← log(1f/gridDim.y) 

else 

 log_weight ← log(d_weights[cid])  

 end if 

if threadIdx.x = 0 then 

 declare int i ← 0 

 repeat 

  if isFirstIt = true then 

   s_mean[i] ← d_trbuffer [i*n_tr+d_irand[cid]] 

   s_invCov[i] ← 1 

else 

   s_mean[i] ← d_means[cid * N_BINS_SQR + i] 

   s_invCov[i] ← d_invCovs[cid * N_BINS_SQR + i]  

   end if 

  i← i+1 

 until i >= N_BINS_SQR 

end if 

synchronize block 

repeat 

 declare float LL ← 0 

declare int i ← 0 

 repeat 

  declare float data ← d_trbuffer [i*n_tr+gid] 

  LL ← LL + s_invCovs[i]*(data-s_mean[i])*(data-

s_mean[i]) 

  i← i+1 

 until i >= N_BINS_SQR 

 d_probs[cid*n_tr+gid] ← -0.5 * LL + log_weight 

  gid ← gid + offset 

 until gid >= n_tr 

return 
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Listing 14 - Kernel implementation for expectation step 2. 

function kernel_expectation_step_2(d_probs, d_likelihood, d_max) 

declare float s_LL in shared memory 

declare int gid ← threadIdx.x + blockIdx.x * blockDim.x 
 declare int offset ← blockDim.x * gridDim.x 

declare uint ntr ← d_max 

s_LL ← 0 

repeat 

 declare float max ← max(d_probs) 

 declare float denominator ← 0 

declare int c ← 0 

 repeat 

  denominator ← denominator + exp(d_probs[c*n_tr+gid]-

max) 

  c ← c+1 

 until c >= N_CLUSTERS 

 denominator ← max + log(denominator) 

 s_LL[threadIdx.x] ← s_LL[threadIdx.x] + denominator 

c ← 0 

 repeat 

  d_probs[c*n_tr+gid] ← exp(d_probs[c*n_tr+gid]-

denominator) 

  c ← c+1 

 until c >= N_CLUSTERS 

  gid ← gid + offset 

 until gid >= n_tr 

synchronize block 

 

declare s ← blockDim.x >> 1 

repeat 

 if threadIdx.x < s then 

  s_LL[threadIdx.x] ← s_LL[threadIdx.x]+ 

s_LL[threadIdx.x+s] 

  end if 

synchronize block 

  s ← s >> 1 

 until s <= 0 

  

if threadIdx.x = 0 then 

 d_likelihood[blockIdx.x] ← s_LL[threadIdx.x]  

 end if 

 return 
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The second kernel of expectation step converts each weighted likelihood into a fuzzy probability 

membership of each Gaussian model using (27) and undoes the logarithm at the end and obtains 

the result of (28).  
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       (28) 

Since the first step computes log-likelihood rather than just likelihood, a log sum of exponentials 

must be used for the denominator. The membership computation is independent for each 

training sample, thus the number of parallel operations are the same as the number of training 

samples. As a result, for each training sample one thread is assigned and the number of thread 

blocks can be assigned according to the number of training samples. Since there is a parallel 

reduction, the number of threads in each thread block should be a power of two. The amount of 

shared memory used per block is same as the number of threads in each block. The kernel 

implementation for the second step is given in Listing 14. 

4.4.3.1.2 Maximization Step  

Maximization step of the parallel EM algorithm consists of three separate kernels each of which 

updates the parameters of Gaussian models according to the fuzzy membership values calculated 

in the expectation step. 

The first kernel is a simple one that computes the size of each model by adding all fuzzy 

membership values as it is given in (29) for a total of � training samples. The kernel also 

computes the weight of each model using this sum with (30). For each Gaussian model, one 

thread block is assigned and since there is a parallel reduction, the number of threads in each 

thread block should be a power of two. The amount of shared memory used per block is the 

same as the number of threads in each block. The implementation is given in Listing 15. 

�� = ∑ �(��|��)
�
���          (29) 

�� =
��

�
           (30) 

The second kernel computes �� dimensional mean vector for each Gaussian model using (31). 

It is launched with a 2-dimensional grid of blocks. The size of one dimension of the grid is the 

number of Gaussians to be learned (�) and the size of the other dimension is the dimension of 

the feature space (��).  
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Listing 15 - Kernel implementation for model size and weight computation. 

 
 
 

�� =
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The implementation of the kernel is very similar to the previous kernel and includes parallel 

reduction. Thus, the number of threads in each block should be a power of two. Again the 

amount of shared memory used per block is the same as the number of threads in each block. 

The implementation of the kernel is given in Listing 16. 

function kernel_maximization_step_n(d_probs, d_n, d_weights, d_max) 

declare float sums in shared memory 

declare int m ← blockIdx.x 
 declare int offset ← blockDim.x 

declare uint ntr ← d_max 

declare float sum ← 0 

declare int i ← threadIdx.x 

repeat 

 sum  ← sum + d_probs[m*n_tr+i] 

  i ← i + offset 

until i >= n_tr 

sums[threadIdx.x]  ← sum  

synchronize block 

declare s ← blockDim.x >> 1 

repeat 

 if threadIdx.x < s then 

  sums[threadIdx.x]  ← sums[threadIdx.x] + 

sums[threadIdx.x+s] 

  end if 

synchronize block 

  s ← s >> 1 

 until s <= 0 

if threadIdx.x = 0 then 

 declare float dummy_n ← sums[threadIdx.x]  

 d_n[m] ← dummy_n 

 d_weights[m] ← dummy_n / n_tr 

end if 

 return 
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Listing 16 - Kernel implementation for mean vector computation. 

 
 
 
The last kernel computes the covariance matrices of Gaussian models using (32) and stores them 

by inverting. It also is very similar to the kernel that computes means of the Gaussian models. 

Since the covariance matrices are assumed to be diagonal and only the diagonal values are 

stored; a two dimensional grid of blocks is launched. Same as the mean computation kernel, the 

size of the one dimension of the grid is the number of models to be learned (�) and the other is 

the dimension of the feature space (��). Due to the parallel reduction, the number of threads in 

each block should be a power of two. The amount of shared memory per block is again the same 

as the number of threads in each thread block. The implementation is given in Listing 17. 

function kernel_maximization_step_means(d_trbuffer, d_probs, d_means, d_n, 

d_max) 

declare float sums in shared memory 

declare int m ← blockIdx.x 

declare int d ← blockIdx.y 
 declare int offset ← blockDim.x 

declare uint ntr ← d_max 

declare float sum ← 0 

declare int i ← threadIdx.x 

repeat 

 sum  ← sum+d_trbuffer[d*n_tr+i]* d_probs[m*n_tr+i] 

  i ← i + offset 

until i >= n_tr 

sums[threadIdx.x]  ← sum  

synchronize block 

declare s ← blockDim.x >> 1 

repeat 

 if threadIdx.x < s then 

  sums[threadIdx.x]  ← sums[threadIdx.x] + 

sums[threadIdx.x+s] 

  end if 

synchronize block 

  s ← s >> 1 

 until s <= 0 

if threadIdx.x = 0 then 

 d_means[m*N_BINS_SQR+d] ← sums[threadIdx.x]/d_n[m] 

end if 

 return 
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�

��
∑ ��� − ���
�
��� ��� − ���

�
�(��|��)      (32) 

Expectation and maximization steps are called iteratively until the likelihood change drops 

below some predetermined threshold or the number of iterations is larger than the max iteration 

number determined. 

 
 
 

 

Listing 17 - Kernel implementation for diagonal covariance matrix computation. 

 

function kernel_maximization_step_covariance(d_trbuffer, d_probs, d_means, 

d_invCovs, d_n, d_max) 

declare float sums in shared memory 

declare int m ← blockIdx.x 

declare int d ← blockIdx.y 
 declare int offset ← blockDim.x 

declare uint ntr ← d_max 

declare float sum ← 0 

declare int i ← threadIdx.x 

repeat 

 declare float mean ← d_means[m*N_BINS_SQR+d] 

 declare float tr ← d_trbuffer[d*n_tr+i] 

sum  ← sum+(tr-mean)*(tr-mean)*d_probs[m*n_tr+i] 

  i ← i + offset 

until i >= n_tr 

sums[threadIdx.x]  ← sum  

synchronize block 

declare s ← blockDim.x >> 1 

repeat 

 if threadIdx.x < s then 

  sums[threadIdx.x]  ← sums[threadIdx.x] + 

sums[threadIdx.x+s] 

  end if 

synchronize block 

  s ← s >> 1 

 until s <= 0 

if threadIdx.x = 0 then 

 d_invCovs[m*N_BINS_SQR+d] ← d_n[m]/sums[threadIdx.x] 

end if 

 return 
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4.4.3.2 Model Updating 

Same as the CPU implementation, after the first frame in each new frame, the old models are 

updated using freshly gathered training samples. Model updating part is divided into two 

kernels. The kernel implementation for the first kernel is given in Listing 18. 

 
 
 

 

function kernel_update_models_step1(d_trbuffer, d_trinds, d_means. 

d_weights, d_invCovs, n_models, threshold, ntr) 

declare float sum_mean, sum_invCov, sum_weight in shared memory 

declare int gid ← blockIdx.x * blockDim.x + threadIdx.x 

declare int tid ← threadIdx.x 
 declare int offset ← blockDim.x * gridDim.x 

declare int n_tr ← ntr 

declare int n_tr_removed ← 0 

initialize sum_mean, sum_invCov, sum_weight to 0 

synchronize block 

repeat 

 declare float wsample ← 1f/n_tr 

 declare float mindist ← INF 

 declare uint minind ← 0 

 mindist, minind ← find closest model to d_trbuffer[gid] 

 if mindist < threshold then 

  d_trinds[gid] ← 0 

  declare int i ← 0 

  repeat 

   declare int ind ← minind * N_BINS_SQR + i 

   declare float sample ← d_trbuffer[i*n_tr+gid] 

   declare float mean ← d_means[ind] 

   atomicAdd(sum_mean[ind], wsample * sample) 

   atomicAdd(sum_invCov[ind], wsample * (sample-

mean)^2) 

   i ← i + 1 

  until i >= N_BINS_SQR 

  atomicAdd(sum_weight[minind], weight_sample) 

  n_tr_removed ← n_tr_removed + 1 

end if 

  gid ← gid + offset  

until gid>= n_tr 
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Listing 18 - Kernel for the first step of model updating. 

 
 
 
Initially, the first kernel finds the minimum Mahalanobis distance from each training sample to 

the models and the closest model to each sample using (3). After that for the samples that have a 

minimum distance smaller than the update threshold (��), the terms, which are the sample 

related terms in (4), (5) and (6), given in (33), (34) and (35) are calculated and added to the 

related mean, covariance and weight dimension in the shared memory. Those training samples 

which are used to update the available models are marked as zero in the training buffer.  

����           (33) 

�� ���� − ������ − ���
�
�        (34) 

��           (35) 

After these partial sums are calculated, the terms in the numerator of (4), (5) and (6), which can 

be given in (36), (37) and (38), are calculated at the end of the kernel using (33), (34) and (35). 

When the kernel is launched, one thread is assigned to each training sample and all training 

samples are divided into blocks. Since shared memory is used to hold partial sums in each block, 

the size of the shared memory used for each block is the same as the memory used by the model 

parameters. 

synchronize block 

atomicSub(ntr, n_tr_removed) 

tid ← threadIdx.x 

repeat 

 if blockIdx.x = 0 then 

  declare float weight ← d_weights[tid/N_BINS_SQR] 

  declare float invC ← d_invCovs[tid] 

  d_means[tid] ← d_means[tid] * weight 

d_invCovs[tid] ← weight / invC 

 end if 

 atomicAdd(d_means[tid],sum_mean[tid]) 

atomicAdd(d_invCovs[tid],sum_invCov[tid]) 

 atomicAdd(d_weights[tid/N_BINS_SQR], 

sum_weight[tid/N_BINS_SQR]) 

 tid ← tid + blockDim.x 

until tid >= N_BINS_SQR * n_models and ntr = n_tr 

return 
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(���� + ����)          (36) 

(���� + �� ���� − ������ − ���
�
�       (37) 

(�� + ��)          (38) 

 
 
 

 

Listing 19 - Kernel implementation for the second step of model updating scheme. 

 
 
 
For the division to the total weight and hence the total application of (4), and (5) for means and 

covariances, another kernel is run. Since the total number of models is relatively small, this 

computation can also be done on CPU. Normalization of weights using (6) is done on CPU by 

taking weight values from GPU memory to CPU memory since the number of data to be 

processed is too small. In the second kernel one thread is assigned to each dimension of weight 

or covariance, which results in a maximum ��� number of threads. If ��� is sufficiently large, 

the kernel can be called with more than one block of threads. The kernel implementation for this 

step is given in Listing 19.    

While some training samples are used for updating, some others are not. If there are no training 

samples that are not used for updating, the algorithm moves to the classification part. However, 

if there are some training samples which are not used for updating, new � models will be 

learned from these training samples. Those remaining training samples are compacted to another 

training buffer. In order to find the memory indices of these remaining training samples,  first 

the compact scan kernel algorithm given in Listing 11 used before for the filtering of training 

samples in the automatic training sample generation section is called. After that another kernel 

function kernel_update_models_step1(d_means. d_weights, d_invCovs, 

n_models) 

declare int gid ← blockIdx.x * blockDim.x + threadIdx.x 

 declare int offset ← blockDim.x * gridDim.x 

repeat 

 declare float weight ← d_weights[gid/N_BINS_SQR] 

 declare float invC ← d_invCovs[gid] 

 d_means[gid] ← d_means[gid] / weight 

d_invCovs[gid] ← weight / invC 

gid ← gid + offset 

until gid >= N_BINS_SQR * n_models 

return 
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which is very similar to the kernel given in Listing 12 is called to insert the specified training 

samples to another array (�_��������_���������). This kernel is given in Listing 20. 

 
 
 

 

Listing 20 - Kernel implementation for inserting the remaining training samples. 

 
 
 
After those remaining samples are gathered in a separate array, GPU-accelerated expectation 

maximization algorithm explained in the previous section is run to learn new k models. Those 

new � Gaussian models are then put into model library.  

However, the number of Gaussian models in the library can be at its maximum (�), that is, the 

model library can be full. Thus, on CPU, it is first checked if model library is full or not. Then, 

if model library is full, by checking the weights of the old models, the indices of the models with 

the smallest weights are found. If model library is not full, these indices are assigned as the 

empty indices in the library. After the indices are determined to insert new models to the model 

library another kernel is called. Note that, since the number of parameters to be inserted is small, 

this part can be done on CPU and the performance might be better. However, in that case some 

part of GPU memory should be copied to CPU memory and after the operation, this memory 

function kernel_insert_training_samples(d_trlabels, d_trcompact, d_trbuffer, 

d_trbuffer_remaining, d_max, d_max_old, n_patches) 

declare uint gid ← blockIdx.x * blockDim.x + threadIdx.x 

 declare uint offset ← blockDim.x * gridDim.x 

declare uint n_tr ← d_max 

 declare uint n_tr_old ← d_max_old 

repeat 

 if d_trlabels[gid] != 0 then 

  declare uint id ← d_trcompact[gid] 

  declare int i ← 0 

  repeat 

   d_trbuffer_remaining[i*n_tr+id] ← d_trbuffer 

[i*n_tr_old+gid] 

   i ← i + 1 

  until i >= N_BINS_SQR 

 end if 

gid ← gid + offset 

until gid >= n_patches 

return 
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should be copied back to the GPU memory. This memory copies create an overhead and might 

degrade the performance. In this study it is implemented on GPU.  

 
 
 

 

Listing 21 - Kernel implementation for placing the new learned models into model library. 

 
 
 

 

Listing 22 - Kernel implementation of the first step of classification. 

function kernel_replace_models (d_means. d_weights, d_invCovs, 

d_means_new. d_weights_new, d_invCovs_new, 

d_ind_clusters_min_weights) 

declare uint m ← blockIdx.x 

declare uint d ← threadIdx.x 
 declare uint m_replaced ← d_ind_clusters_min_weights[m] 

declare uint indr ← m_replaced * N_BINS_SQR + d 

declare uint ind ← m * N_BINS_SQR + d 

 d_means[indr] ← d_means_new[ind] 

 d_invCovs[indr] ← d_invCovs_new[ind] 

if threadIdx.x = 0 then 

 d_weights[m_replaced] ← d_weights_new[m] 

end if 

 return 

 

function kernel_classification_raw(d_hists, d_classified, d_trlabels, d_means, 

d_invCovs, size, n_models, threshold) 

declare uint gid ← blockIdx.x * blockDim.x + threadIdx.x 

 declare uint offset ← blockDim.x * gridDim.x 

repeat 

 declare float mindist ← find minimum mahalanobis distance 

between models and the patch gid 

 if mindist < threshold then 

  d_classified[gid] ← 1 

else 

  d_classified[gid] ← 0 

end if 

gid ← gid + offset 

until gid >= size 

return 
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The kernel implementation for new model placing is given in Listing 21. In the kernel call, for 

each model to be placed into the model library, one thread block is called. The number of 

threads in each block is the size of the dimension of the feature space, namely, ��. After this 

kernel call, weights of the Gaussians are copied to CPU memory and normalized such that the 

summation of all model weights is 1. This is required since with the newly learned models, the 

summation of weights is not 1 anymore. Since number of models is relatively small and weight 

parameter is only a scalar, the number of data to be processed is small and hence, this 

computation is done on CPU. 

4.4.4 Classification 

After model learning and updating, the last part is the classification of whole image using the 

Gaussian models in the model library. In CPU implementation, classification is done through 

region growing from the training samples obtained from the frame. Since region growing is 

inefficient to run on a highly parallel hardware, another approach that yields the same result and 

appropriate for parallelization is used. In this respect, the minimum Mahalanobis distance 

between each patch’s color feature vector in the image and the models in the model library is 

found first. If this distance is smaller than classification threshold (��), this patch is marked as 

road and else it is marked as non-road in a binary image (�_����������). This binary image 

holds the road/non-road value of each image patch. If the patch is marked as road, its value is 1, 

else its value is 0. After that, connected components labeling is applied to the binary image to 

find out the connected regions in the binary image. At last, the connected component which 

includes one of the training samples obtained in that frame (�_���������) is filtered and only 

that connected component is labeled as road.  

As it is mentioned, the first kernel evaluates the Mahalanobis distance between a patch and all 

models in the model library, and finds the minimum of them. If this minimum distance is 

smaller than classification threshold (T�), it is marked as road on a binary image, else marked as 

non-road. Since Mahalanobis distance is found as the most appropriate distance metric for the 

classification in the previous chapter, it is implemented and used in the classification. The whole 

patch image is divided into tiles and each tile is assigned to a thread block, while a thread is 

assigned to a patch. The number of threads to run (��) and number of blocks to run (��) should 

be selected such that the multiplication of these two (�����) should be a divider of the total 

number of patches. The implementation for this simple kernel is given in Listing 22. 

After this thresholding, classified image (�_����������) is fed to the connected components 

labeling algorithm given in Listing 7 and Listing 8. The algorithm in Listing 7 is run completely 

same as in the previous “Connected Components Labeling” section. This time the input to the 

initialization kernel is the found classified binary image (�_����������). However, the second 

kernel of connected components labeling algorithm given in Listing 8 has minor differences. 

Instead of the size calculation of each connected component, this time the local neighbor 

propagation kernel returns the label of the connected component having the training samples. To 

be able to do this, the location of one of the training samples found in the “automatic generation 
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of training samples” part is fed to the kernel (�_������). The modified kernel implementation 

is given in Listing 23. Same as before, the algorithm runs iteratively until there is no change in 

the connected component labels. 

In the last kernel, by using the label of the connected component including training samples 

found in the connected components labeling algorithm (�_���������), all classified image is 

filtered. Thus, only the patches of the connected component with the label found in the previous 

kernel remain as road and all other patches marked as non-road. Again the whole patch image is 

divided into tiles and for each tile a thread block is assigned. Each thread is assigned to a patch. 

The number of threads to run (��) and number of blocks to run (��) should be selected such that 

the multiplication of these two (�����) should be a divider of the total number of patches. The 

kernel implementation for filtering is given in Listing 24.   

After the filtering operation, the classified road image is obtained on GPU memory. Then, the 

classified binary image (�_����������) is copied from the GPU memory the CPU memory. 

4.5 Experiments and Results 

In this section the running speed of both the CPU and GPU algorithms are evaluated and 

compared to each other. For a configuration selected as reference, each of the algorithm’s 

parameters is changed one at a time to see the effect of the parameters on the performance and 

the parameters that yield the best performance are tried to find. The reference algorithm 

parameters selected are given in Table 3. As the effect of parameter (�) is found insignificant in 

the previous chapter, it is not included. On the other hand, since the GPU has special parameters 

that should be selected, number of threads to run (��) and number of blocks to run (��) are 

introduced as new parameters to be optimized. 

 
 
 

Table 7 - Reference values for algorithm parameters to evaluate the running speed effect of each parameter. 

Parameter ��	(�
�)  �	(������) �	(����) �� � � �� �� �� �� 

Value 0.00001 5 8 1 1 10 1 5 12 256 
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function kernel_ccl_mesh_B_improved_classify(d_classified, d_roadlabel, 

d_max_gid, m_d, widthgrid, heightgrid) 

 declare int nid in local memory 

declare int Ll, ml in shared memory 

 declare int id ← (threadIdx.y + blockIdx.y * blockDim.y) * widthgrid + 

threadIdx.x + blockIdx.x * blockDim.x 

 declare int idl ← threadIdx.y * blockDim.x + threadIdx.x 

 declare int idn ← 0 

declare uint label ← texfetch(d_trlabels, id) 

ml ← 1 

if label != 0 then 

 if (id - widthgrid) >= 0 and label * texfetch (d_trlabels, id-

widthgrid) 

  nid[idn] ← texfetch (d_trlabels, id-widthgrid) 

  idn ← idn + 1 

 end if 

 if (id + widthgrid) < widthgrid * heightgrid and label * 

tex1Dfetch(d_trlabels, id+widthgrid) 

  nid[idn] ← texfetch (d_trlabels, id+widthgrid) 

  idn ← idn + 1 

 end if 

if ((id - 1) % widthgrid) != widthgrid - 1 and label * 

tex1Dfetch(d_trlabels, id-1) 

  nid[idn] ← texfetch (d_trlabels, id-1) 

  idn ← idn + 1 

 end if 

if ((id + 1) % widthgrid) != 0 and label * texfetch (d_trlabels, 

id+1) 

  nid[idn] ← texfetch (d_trlabels, id+1) 

  idn ← idn + 1 

 end if 

  declare int i ← 0 

  repeat 

   if nid[i] < label then 

label ← nid[i] 

md ← 1 

end if  

  i ← i + 1 
  until i >= idn  
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Listing 23 - Kernel implementation for modified local neighbour propagation kernel. Modified from the kernel given 
in Listing 8. 

   idn ← 0 

   if (idl–blockDim.x)>=0 and label* texfetch (d_trlabels, id-widthgrid) 

  nid[idn] ← idl - blockDim.x 

  idn ← idn + 1 

   end if 

   if (idl+blockDim.x)<blockDim.x*blockDim.y and label*texfetch 

(d_trlabels, id+widthgrid) 

  nid[idn] ← idl + blockDim.x 

  idn ← idn + 1 

   end if 

   if ((idl - 1) % blockDim.x) != blockDim.x - 1 and label * texfetch 

(d_trlabels, id-1) 

  nid[idn] ← idl - 1 

  idn ← idn + 1 

   end if 

   if ((idl+1)%blockDim.x) != 0 and label * texfetch (d_trlabels, id+1) 

  nid[idn] ← idl + 1 

  idn ← idn + 1 

   end if 

    repeat 

   Ll[idl] ← label 

synchronize block 
   ml ← 0 

   i ← 0 

   repeat 

    if Ll[nid[i]] < label then 

label ← Ll[nid[i]] 

ml ← 1 

end if  

synchronize block 
   i ← i + 1 
   until i >= idn  

   d_trlabels[id] ← label 

if id = d_maxgid then 

d_roadlabel ← label 

end if  

  until ml != true  

end if  

return 
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Listing 24 - Kernel implementation for the filtering of connected components. 

 
 
 
The CPU algorithm is run on a Intel Core i7 3970K processor while the GPU algorithm is run on 

an NVidia Geforce GTX 650 graphics card. GTX 650 is a low-end graphics card with compute 

capability 3.0 and owns 384 CUDA cores. According to its architecture (Kepler architecture) 

this GPU has two streaming multiprocessors. For evaluation, the running time of the algorithm 

on CPU and GPU is compared. For GPU algorithm, the running time includes the time passing 

while the data is transferring from CPU to GPU memory and from GPU to CPU memory. 

Besides running times, the speed-ups gained using GPU algorithm over CPU algorithm are also 

given as performance metrics. 

The first experiment is done to find the optimal value of (��) the number of threads to run. In 

Table 8, the the running time of the GPU algorithm with different number of threads (��) run 

are given. The mean, minimum and maximum of the running times of 360 frames are given as 

the performance indicators. According to these results, running 256 or 512 threads yields 

approximately same performances while running smaller number of threads degrades the 

performance significantly.   

The next experiment is done on the number of blocks to run (��). Again, the mean, minimum 

and maximum of the running times of the 360 frames are given as performance indicators. As 

Table 9 suggests, running blocks more than 8 yields the best performance while 8 and smaller 

numbers degrades the performance since the resources of the graphics card are not utilized fully. 

 
 
 
 
 

function kernel_filter(d_trlabels, d_roadlabel, n_patches) 

declare uint gid ← blockIdx.x * blockDim.x + threadIdx.x 

 declare uint roadlabel ← d_roadlabel 

repeat 

 if d_trlabels[gid] = roadlabel then 

  d_trlabels[gid] ← 1 

else 

  d_trlabels[gid] ← 0 

end if 

gid ← gid + gridDim.x * blockDim.x 

until gid >= n_patches 

return 
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Table 8 - The effect of number of threads to run on the algorithm's running speed performance. Mean, min and max of 
360 frames are given. 

Number of Threads (� �) 32 64 128 256 512 

Mean (ms) 22.76 16.01 11.94 10.60 10.75 

Min (ms) 14.09 9.66 7.98 8.17 8.84 

Max (ms) 29.03 21.81 19.50 15.36 15.13 

 

Table 9 - The effect of number of blocks to run on the algorithm's running speed performance. Mean, min and max of 
360 frames are given. 

Number of Blocks (� �) 6 8 12 16 24 48 

Mean (ms) 11.97 11.04 10.63 10.38 10.51 10.19 

Min (ms) 8.68 8.60 8.47 7.71 8.62 7.70 

Max (ms) 16.76 15.18 14.91 13.92 14.44 14.43 

 
 
 
When the contribution of all algorithm parameters to algorithm complexity is considered, the 

thresholds ��, �� and �� do not have a direct effect on the running time. On the other hand, the 

situation is different for other parameters. For an image of specific size, patch size (�) 

determines how many patch to be processed. As � decreases, there will be more patch to be 

processed. As a result the running time of the algorithm becomes larger. Table 10 shows mean, 

minimum and maximum running times of 360 frames both for CPU and GPU with different 

patch size values. As it can be seen from the table, GPU algorithm is affected lesser due to its 

parallel nature and can work at least 50 Hz while CPU algorithm works in 1-40 Hz depending 

on the configuration. Even with the lightest configuration the speed of CPU algorithm drops up 

to 6 Hz, which cannot be considered as real-time.    

Table 11 shows the speedup gain of the GPU algorithm over CPU algorithm for different patch 

sizes. According to this table, the GPU algorithm can work 2.7 times to 62 times faster than the 

CPU version. Since small � means more data to be processed, the parallel work that should be 

done by GPU with its resources is more and hence the speedup gain becomes larger. 
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Table 10 - CPU and GPU algorithm running times with changing patch size. Mean, min and max of 360 frames are 
given. 

Run Time � = � � = � � = � 

CPU GTX 650 CPU GTX 650 CPU GTX 650 

Mean (ms) 434.99 11.27 269.59 10.38 89.32 7.78 

Min (ms) 77.96 7.60 54.98 7.71 25.76 6.07 

Max (ms) 669.67 17.04 443.19 13.92 146.74 11.24 

   

Table 11 - GPU algorithm speedup over CPU algorithm with changing patch sizes. Mean, min and max of 360 frames 
are given. 

Speedup � = � � = � � = � 

Mean (x) 38.81 26.05 11.59 

Min (x) 5.74 4.83 2.72 

Max (x) 61.94 41.10 20.43 

  
 
 
Another parameter having a large effect on the speed of the algorithm is number of histogram 

bins (�). Since the feature vectors used in the algorithm are actually H-S joint histograms of 

image patches, as (�) increases, the dimension of feature space increases with its square. The 

dimension of the feature space merely affects the speed of all types of matrix operations and also 

the speed of model learning. Table 12 shows mean, minimum and maximum running times of 

360 frames both for CPU and GPU with different number of histogram bins. As it can be seen 

from the table, GPU algorithm can work at least 50 Hz while CPU algorithm works in 1-20 Hz 

depending on the configuration. Even with the lightest configuration the speed of CPU 

algorithm drops up to 4 Hz, which cannot be considered as real-time.    

Table 13 shows the speedup gain of the GPU algorithm over CPU algorithm for different 

number of histogram bins. According to this table, the GPU algorithm can work 5.4 times to 66 

times faster than the CPU version. Since high � means more data to be processed, the GPU 

resources can be fully utilized and hence as �	grows, the speedup becomes larger.  
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Table 12 - CPU and GPU algorithm running times with changing number of histogram bins. Mean, min and max of 
360 frames are given. 

Run Time � = � � = � � = � � = �� 

CPU GTX 
650 

CPU GTX 
650 

CPU GTX 
650 

CPU GTX 
650 

Mean (ms) 188.30 8.95 193.34 9.32 269.59 10.19 415.23 11.58 

Min (ms) 50.62 6.81 45.74 6.96 54.98 7.70 58.32 8.01 

Max (ms) 247.06 12.72 282.69 14.06 443.19 14.43 746.48 15.94 

 

Table 13 – GPU algorithm speedup over CPU algorithm with changing number of histogram bins. Mean, min and 
max of 360 frames are given. 

Speedup � = � � = � � = � � = �� 

Mean (x) 21.32 20.88 26.50 35.80 

Min (x) 6.00 5.62 5.40 5.37 

Max (x) 31.86 32.15 43.62 65.91 

 
 
 
The number of models learned in the first frame (��) and the number of models learned in each 

new cycle (�) can only affect the speed of the learning. Usually the values of these parameters 

are so small that their effect becomes insignificant compared to the other parameters and hence 

they are not investigated.   

The last parameter having a considerable effect on algorithm running speed is the maximum size 

of the model library (�). This parameter determines how many Gaussian models to be held in 

the memory of the system. As the number of models in the model library increases, there will be 

more and more comparisons done in both model updating and classification steps. As a result as 

this parameter becomes larger the algorithm speed decreases. Table 14 shows mean, minimum 

and maximum running times of 360 frames both for CPU and GPU with different model sizes. 

As it can be seen from the table, GPU algorithm can work at least 50 Hz while CPU algorithm 

works in 0.5-20 Hz depending on the configuration. Even with the lightest configuration the 

speed of CPU algorithm drops up to 4 Hz, which cannot be considered as real-time. Since model 

library is initially empty, minimum running time of all configurations for both CPU and GPU 

versions are approximately the same. However, after the model library is full CPU algorithm 

becomes very small compared to the GPU algorithm. 
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Table 15 shows the speedup gain of the GPU algorithm over CPU algorithm for increasing 

model library sizes. According to this table, the GPU algorithm can work 3.5 times to 110 times 

faster than the CPU version. As � becomes larger the parallelization becomes more 

advantageous. 

 
 
 

Table 14 - CPU and GPU algorithm running times with changing model library size. Mean, min and max of 360 
frames are given. 

 Mean (ms) Min (ms) Max (ms) 

CPU GTX 650 CPU GTX 650 CPU GTX 650 

� = � 166.60 9.85 53.28 7.94 255.01 14.60 

� = �� 345.01 10.63 50.26 8.47 652.78 14.91 

� = �� 379.94 11.48 53.67 8.20 615.04 15.66 

� = �� 460.13 12.23 46.43 7.98 719.27 18.46 

� = �� 592.01 12.85 54.81 8.49 937.25 16.97 

� = �� 709.00 13.50 56.15 8.33 1122.82 17.71 

� = �� 793.30 14.20 48.97 8.00 1463.77 19.06 

� = �� 922.14 14.94 54.87 8.11 1525.85 20.90 

� = �� 1031.04 15.61 55.18 7.87 1676.24 19.69 

� = �� 1148.04 16.29 54.46 8.01 1947.75 20.84 

 

 
 
4.6 Conclusion 

In this chapter, the adaptive self-learning unstructured road detection algorithm presented in the 

previous chapter is parallelized and implemented on a CUDA accelerated GPU using CUDA C. 

The experiments are done to show the effect of the algorithm parameters on the algorithm 

running speed. The results show that even on a low-end graphics card, the algorithm can work at 

50 Hz in the worst case. Considering an autonomous mobile field robot, this performance is 

more than enough. 
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Table 15 - GPU algorithm speedup over CPU algorithm with changing model library size. Mean, min and max of 360 
frames are given. 

Speedup Mean (x) Min (x) Max (x) 

� = � 17.01 5.22 25.14 

� = �� 32.58 4.38 69.94 

� = �� 33.16 4.60 54.16 

� = �� 37.58 4.00 57.84 

� = �� 45.85 4.43 70.25 

� = �� 52.10 4.58 85.21 

� = �� 55.31 3.72 97.86 

� = �� 61.00 3.88 94.84 

� = �� 65.09 3.69 105.45 

� = �� 69.30 3.52 110.18 
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CHAPTER 5 

 
CONCLUSION & FUTURE WORK 

5.1 Conclusion 

In this thesis study an adaptive self-learning unstructured road detection algorithm which is 

suitable using on autonomous or semi-autonomous mobile field robots is proposed. The stereo 

data obtained using a stereo camera is used as the only information input to the robot. 

Processing both geometrical and color information streamed by the stereo camera, the robot can 

be able to find the traversable places without being affected light conditions. 

In this respect, a literature review on the unstructured road detection techniques is done to learn 

the state of the art. Examining the drawbacks of the techniques in the literature, a new technique 

is developed and implemented. The implemented solution is tested against a dataset captured 

with a stereo camera along the pathways of Yalincak village in METU Campus. Using the 

results of the experiments done, the algorithm parameters are optimized to have satisfactory 

classification results.  

Since the algorithm works slowly, in order to increase its processing speed to real-time the 

developed algorithm redesigned as parallel and implemented on a CUDA enabled NVidia GPU. 

With the parallelization of the algorithm the working speed of the algorithm becomes 50 Hz in 

the worst case and hence real-time considerations are satisfied. 

5.2 Future Work 

In this study the algorithm cannot be tested against very different fields. As the most important 

future work, the algorithm will be tested in different environment types and especially in 

shadowy regions. Since the algorithm is developed to work on a mobile robot, it will be 

deployed on an unmanned ground vehicle and tested on it.  

As mentioned in the third chapter, roughness threshold (��) can be changed dynamically from 

frame to frame for more accurate road detection. Low saturation channel values of HSV color 

space might yield the failure of the algorithm; in the future this will be prevented. This 

prevention might also increase the classification accuracy of the road detection algorithm. 

Finally, using not only color features on learning but color features with geometrical cues will 

increase the classification accuracy with a decreased false positive rate.  
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